From 2552bb2ea06fad8d010ef184ff75638fcd2c3c76 Mon Sep 17 00:00:00 2001 From: Open Risk Date: Tue, 15 Mar 2022 15:38:54 +0100 Subject: [PATCH] Docs update, more fixture files --- README.md | 30 +- docs/source/Asset.rst | 10 +- docs/source/Borrower.rst | 9 + docs/source/EmissionsSource.rst | 18 + docs/source/GHG_Project.rst | 26 - docs/source/GHG_Project_Workflow.rst | 7 + docs/source/Mortgage.rst | 9 + docs/source/PCAF.rst | 6 +- ...tgages.rst => PCAF_Mortgages_Workflow.rst} | 0 ...e.rst => PCAF_ProjectFinance_Workflow.rst} | 0 docs/source/Portfolios.rst | 18 + docs/source/PrimaryEffect.rst | 9 + docs/source/Project.rst | 9 + docs/source/ProjectActivity.rst | 9 + docs/source/SecondaryEffect.rst | 9 + docs/source/description.rst | 67 +- docs/source/index.rst | 12 +- docs/source/modules.rst | 18 +- docs/source/requirements.rst | 20 +- docs/source/screenshots/admin.png | Bin 58961 -> 193458 bytes docs/source/screenshots/landing.png | Bin 109366 -> 167315 bytes docs/source/screenshots/login.png | Bin 11056 -> 51943 bytes docs/source/setup.rst | 117 +- portfolio/Asset.py | 8 +- portfolio/fixtures/AMS_Multi_Polygon.json | 1 + portfolio/fixtures/AMS_Polygon.json | 1 + portfolio/fixtures/AreaSource.json | 35 + portfolio/fixtures/Borrower.json | 92 + portfolio/fixtures/Borrowers.json | 1 + portfolio/fixtures/Building.json | 2146 + .../fixtures/BuildingEmissionsSource.json | 14 + .../fixtures/BuildingEmissionsSources.json | 1 + portfolio/fixtures/Buildings.json | 1 + portfolio/fixtures/Mortgage.json | 112 + portfolio/fixtures/Mortgages.json | 1 + portfolio/fixtures/Portfolio.json | 28 + portfolio/fixtures/PortfolioSnapshot.json | 12 + .../fixtures/BuildingEmissionFactor.json | 4610 + reference/fixtures/EmissionFactor.json | 627587 +++++++++++++++ reference/fixtures/GPCSector.json | 167 + start/fixtures/ORMKeyword.json | 12 + 41 files changed, 635088 insertions(+), 144 deletions(-) create mode 100644 docs/source/Borrower.rst create mode 100644 docs/source/EmissionsSource.rst delete mode 100644 docs/source/GHG_Project.rst create mode 100644 docs/source/GHG_Project_Workflow.rst create mode 100644 docs/source/Mortgage.rst rename docs/source/{PCAF_Mortgages.rst => PCAF_Mortgages_Workflow.rst} (100%) rename docs/source/{PCAF_ProjectFinance.rst => PCAF_ProjectFinance_Workflow.rst} (100%) create mode 100644 docs/source/Portfolios.rst create mode 100644 docs/source/PrimaryEffect.rst create mode 100644 docs/source/Project.rst create mode 100644 docs/source/ProjectActivity.rst create mode 100644 docs/source/SecondaryEffect.rst create mode 100644 portfolio/fixtures/AMS_Multi_Polygon.json create mode 100644 portfolio/fixtures/AMS_Polygon.json create mode 100644 portfolio/fixtures/AreaSource.json create mode 100644 portfolio/fixtures/Borrower.json create mode 100644 portfolio/fixtures/Borrowers.json create mode 100644 portfolio/fixtures/Building.json create mode 100644 portfolio/fixtures/BuildingEmissionsSource.json create mode 100644 portfolio/fixtures/BuildingEmissionsSources.json create mode 100644 portfolio/fixtures/Buildings.json create mode 100644 portfolio/fixtures/Mortgage.json create mode 100644 portfolio/fixtures/Mortgages.json create mode 100644 portfolio/fixtures/Portfolio.json create mode 100644 portfolio/fixtures/PortfolioSnapshot.json create mode 100644 reference/fixtures/BuildingEmissionFactor.json create mode 100644 reference/fixtures/EmissionFactor.json create mode 100644 reference/fixtures/GPCSector.json create mode 100644 start/fixtures/ORMKeyword.json diff --git a/README.md b/README.md index c6115bd..ab7cf53 100644 --- a/README.md +++ b/README.md @@ -1,9 +1,9 @@ [![Documentation Status](https://readthedocs.org/projects/equinox-server/badge/?version=latest)](https://equinox-server.readthedocs.io/en/latest/?badge=latest) # Equinox Overview -![Equinox Logo](/docs/source/equinox-logo.png) Equinox is an open source platform that supports the holistic risk management and reporting of major sustainable finance projects (the financing of projects with material physical footprint) such as project finance. +![Equinox Logo](docs/source/equinox-logo.png) Equinox is an open source platform for sustainable portfolio management. It supports the holistic risk management and reporting of sustainable finance projects in accordance with industry standards. -## The Challenge of Project Finance and Sustainability +## The Challenge of Sustainable Finance Sustainability (understood both in environmental and social terms) is a serious and ongoing issue that affects all economies. Developing tools and methodologies that improve the ability of all stakeholders to assess and report risks is thus an important objective ## What exactly is Equinox? @@ -20,10 +20,26 @@ The initial functionality of Equinox focuses on integrating the following concep * Equator Principles for Project Finance * GHG Accounting Protocol for Projects +## Screenshots + +The landing page of a working equinox instance: + +![Landing Page](docs/source/screenshots/landing.png) + + +To get anything done we need to login! (admin/admin would be the credentials in a local demo instance) + +![Login Page](docs/source/screenshots/login.png) + +Once you login successfully you'd be greeted by the admin area + +![Admin Page](docs/source/screenshots/admin.png) + +The admin is our main workbench ## Credits -* Django -* Jazzmin -* European Banking Authority -* Partnership for Carbon Accounting Financials -* Equator Principles +* The Python and Django ecosystems and the many powerful software components (Geodjango, Jazzmin, ... full list coming) +* The GHG Protocol +* The European Banking Authority +* The Partnership for Carbon Accounting Financials +* The Equator Principles Alliance \ No newline at end of file diff --git a/docs/source/Asset.rst b/docs/source/Asset.rst index 6f72fb9..0bcf976 100644 --- a/docs/source/Asset.rst +++ b/docs/source/Asset.rst @@ -1,13 +1,19 @@ Asset ------------------------------ -The Asset model holds asset specific data for each real asset, facility (plant, infrastructure etc) that is part of a Project (which may or may not be financed) +The Asset model holds asset specific data for each real asset, facility (plant, infrastructure etc) that is part of a **Project* (which may or may not be financed) The assumption is that an Asset participates in only one Project at a time (if linked to a project object) +A special type of Asset is a **Building** (whether used for residential or commercial purposes). + +.. note:: To further classify assets, the EBA Loan Asset Classes are used for correspondence, but those are *financial asset classes*. .. automodule:: portfolio.Asset :members: :undoc-members: :noindex: - .. automethod:: portfolio.Asset.Asset \ No newline at end of file + .. automethod:: portfolio.Asset.ProjectAsset + + + .. automethod:: portfolio.Asset.Building \ No newline at end of file diff --git a/docs/source/Borrower.rst b/docs/source/Borrower.rst new file mode 100644 index 0000000..b1ab949 --- /dev/null +++ b/docs/source/Borrower.rst @@ -0,0 +1,9 @@ +Contractor +------------------------------ + +.. automodule:: portfolio.Borrower + :members: + :undoc-members: + :noindex: + + .. automethod:: portfolio.Borrower.Borrower \ No newline at end of file diff --git a/docs/source/EmissionsSource.rst b/docs/source/EmissionsSource.rst new file mode 100644 index 0000000..504f7d2 --- /dev/null +++ b/docs/source/EmissionsSource.rst @@ -0,0 +1,18 @@ +Emissions Source +------------------------------ +Emissions Source models hold granular activity and emissions type data that characterize and quantify the emissions of an Asset. + +An asset may involve multiple emissions sources. There are several submodels, adapted to different portfolio management use cases + +.. automodule:: portfolio.EmissionsSource + :members: + :undoc-members: + :noindex: + + .. automethod:: portfolio.EmissionsSource.EmissionsSource + + + .. automethod:: portfolio.EmissionsSource.GPCEmissionsSource + + + .. automethod:: portfolio.EmissionsSource.BuildingEmissionsSource \ No newline at end of file diff --git a/docs/source/GHG_Project.rst b/docs/source/GHG_Project.rst deleted file mode 100644 index 584a543..0000000 --- a/docs/source/GHG_Project.rst +++ /dev/null @@ -1,26 +0,0 @@ -GHG Project Protocol Workflows ------------------------------------- - -The CIRIS Methodology is an *attribution* and *reporting* methodology for Cities. It implements the GPC Recommendations for Community-Scale emissions accounting (See References). - -The following steps replicate the GHG Project workflow -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -* GPC Sectors: Stationary energy, Transportation and Waste must be completed for a BASIC inventory. -* Each sector is broken down by sub-sector and scope, using the GPC referencing system. [FORMULAS] -* Select the number of rows you will need from the drop-down list under 'Add'. You will need to do this for each emission category (sub-sector / scope). -* For each sub-sector, select an activity from the drop-down list e.g. natural gas. If your activity does not appear in the drop-down list, please enter this in yourself. -* For the Stationary sector you will also need to select a sub-category; for Transportation the boundary system methodology; and for the Waste sector the type of waste. -* If data are not available for an emission category (sub-sector/scope), notation keys should be used. Select the appropriate notation key from the drop-down list. -* Next, you will be asked to enter activity data. If the units are different to the denominator of the emission factor used, use the activity data multiplier function to convert. -* To use the activity data multiplier, select the unit you wish to convert your activity data into. Alternatively, you can enter your own conversion factor in the override column. -* Select the greenhouse gases included in your calculations from the drop-down list. -* Select an emission factor from the drop-down list. These are the ones you will have defined earlier in the Emission factors sheet. They are shown here in tonnes of CO2e. -* Alternatively, if you do not have an emission factor for a specific activity, you may enter emissions data directly. Make sure this is reported in metric tonnes of CO2e. -* To report emission data directly, select the tick mark (a) from the drop-down list and enter emissions data under the appropriate GHG. -* The oxidation factor for combustion has been set to 1. This appears in the Oxidation factor column when you enter data. Use the override column to choose a different value. -* The tool then calculates emissions based on the data submitted, in metric tonnes of CO2e. -* Assess the quality of your activity data in the Data quality column. Choose from high, medium or low. You can provide an optional explanation in the final column. -* You must also provide a clear description of the methodologies you have used. If you have used a notation key, please provide an explanation. -* Finally, select a data source from the drop-down list which lists all the references you defined in the Data sources sheet. -* Repeat the above process for all emission sources in your city. -* The estimated emissions can be found in the Results section. diff --git a/docs/source/GHG_Project_Workflow.rst b/docs/source/GHG_Project_Workflow.rst new file mode 100644 index 0000000..574913e --- /dev/null +++ b/docs/source/GHG_Project_Workflow.rst @@ -0,0 +1,7 @@ +GHG Project Protocol Workflow +------------------------------------ + + +The following steps replicate the GHG Project workflow +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + diff --git a/docs/source/Mortgage.rst b/docs/source/Mortgage.rst new file mode 100644 index 0000000..a54211a --- /dev/null +++ b/docs/source/Mortgage.rst @@ -0,0 +1,9 @@ +Mortgage +------------------------------ + +.. automodule:: portfolio.Mortgage + :members: + :undoc-members: + :noindex: + + .. automethod:: portfolio.Mortgage.Mortgage \ No newline at end of file diff --git a/docs/source/PCAF.rst b/docs/source/PCAF.rst index bfacca4..aa3952a 100644 --- a/docs/source/PCAF.rst +++ b/docs/source/PCAF.rst @@ -3,11 +3,11 @@ The PCAF Workflows The Partnership for Carbon Accounting Financials proposed methodologies (PCAF (2020), The Global GHG Accounting and Reporting Standard for the Financial Industry.) for attributing GHG Emissions to diverse financial contracts. -The workflows for PCAF methodologies implemented in Equinox are documented below. For the methodologies themselves consult PCAF documentation or the `Open Risk Manual Entries `_ +The workflows for PCAF methodologies implemented in Equinox are documented below. For the methodologies themselves consult the corresponding PCAF documentation or the `Open Risk Manual Entries `_ .. toctree:: :maxdepth: 1 :caption: Methodology List: - PCAF_Mortgages - PCAF_ProjectFinance \ No newline at end of file + PCAF_Mortgages_Workflow + PCAF_ProjectFinance_Workflow \ No newline at end of file diff --git a/docs/source/PCAF_Mortgages.rst b/docs/source/PCAF_Mortgages_Workflow.rst similarity index 100% rename from docs/source/PCAF_Mortgages.rst rename to docs/source/PCAF_Mortgages_Workflow.rst diff --git a/docs/source/PCAF_ProjectFinance.rst b/docs/source/PCAF_ProjectFinance_Workflow.rst similarity index 100% rename from docs/source/PCAF_ProjectFinance.rst rename to docs/source/PCAF_ProjectFinance_Workflow.rst diff --git a/docs/source/Portfolios.rst b/docs/source/Portfolios.rst new file mode 100644 index 0000000..d27aa3f --- /dev/null +++ b/docs/source/Portfolios.rst @@ -0,0 +1,18 @@ +Portfolios +------------------------------ + +.. automodule:: portfolio.Portfolios + :members: + :undoc-members: + :noindex: + + .. automethod:: portfolio.Portfolios.Portfolio + + + .. automethod:: portfolio.Portfolios.PortfolioSnapshot + + + .. automethod:: portfolio.Portfolios.PortfolioData + + + .. automethod:: portfolio.Portfolios.LimitStructure \ No newline at end of file diff --git a/docs/source/PrimaryEffect.rst b/docs/source/PrimaryEffect.rst new file mode 100644 index 0000000..15d5eb5 --- /dev/null +++ b/docs/source/PrimaryEffect.rst @@ -0,0 +1,9 @@ +Operator +------------------------------ + +.. automodule:: portfolio.PrimaryEffect + :members: + :undoc-members: + :noindex: + + .. automethod:: portfolio.PrimaryEffect.PrimaryEffect \ No newline at end of file diff --git a/docs/source/Project.rst b/docs/source/Project.rst new file mode 100644 index 0000000..8a708e8 --- /dev/null +++ b/docs/source/Project.rst @@ -0,0 +1,9 @@ +Project +------------------------------ + +.. automodule:: portfolio.Project + :members: + :undoc-members: + :noindex: + + .. automethod:: portfolio.Project.Project \ No newline at end of file diff --git a/docs/source/ProjectActivity.rst b/docs/source/ProjectActivity.rst new file mode 100644 index 0000000..5defcd8 --- /dev/null +++ b/docs/source/ProjectActivity.rst @@ -0,0 +1,9 @@ +Operator +------------------------------ + +.. automodule:: portfolio.ProjectActivity + :members: + :undoc-members: + :noindex: + + .. automethod:: portfolio.ProjectActivity.ProjectActivity \ No newline at end of file diff --git a/docs/source/SecondaryEffect.rst b/docs/source/SecondaryEffect.rst new file mode 100644 index 0000000..8a8cea0 --- /dev/null +++ b/docs/source/SecondaryEffect.rst @@ -0,0 +1,9 @@ +Operator +------------------------------ + +.. automodule:: portfolio.SecondaryEffect + :members: + :undoc-members: + :noindex: + + .. automethod:: portfolio.SecondaryEffect.SecondaryEffect \ No newline at end of file diff --git a/docs/source/description.rst b/docs/source/description.rst index ccdcaff..bf3958d 100644 --- a/docs/source/description.rst +++ b/docs/source/description.rst @@ -1,44 +1,47 @@ -The equinox platform -===================== -**equinox** is a Python / Django powered portfolio management platform that allows the collection and reporting of project finance risk and sustainability characteristics +The equinox platform at a glance +============================================ +**equinox** is a Python / Django powered sustainable portfolio management platform that allows the collection and reporting of sustainable finance risk and sustainability characteristics Architecture ------------- -* At the core of equinox are a number of data models that capture information about the different entities and concepts involved in Sustainable Finance. These data models follow a logical pattern that is independent of any of the reference standards or eventual applications that are being implemented. -* Functionality is delivered via a number of apps that process user inputs and portfolio data and deliver analyses and reports - +- At the core of equinox are a number of **data models** that capture information about the different entities and concepts involved in Sustainable Finance and more specifically Portfolio Management. These data models follow a logical pattern that is independent of any of the reference standards or eventual applications that are being implemented. +- Functionality is delivered via a number of **apps** that process user inputs and portfolio data and deliver analyses and reports Data Layer --------------- -The data layer can be segmented into two major categories: The Physical Layer that holds information about physical aspects of assets, activities etc. and the "socioeconomic" layer that holds information about entities, economic and financial aspects etc. - - -Physical Layer -~~~~~~~~~~~~~~~~~~ -* Project is the core object. It belongs to a Project Category -* One or More Assets are major real items linked to the Project. -* Primary Effect is the GHG impact of a Project Activity -* Secondary Effect is the GHG impact of a Project Activity -* Project Activity is a specific Sustainability impact (eg GHG reduction) of a Project - -Socioeconomic Layer -~~~~~~~~~~~~~~~~~~~~~ -* Project Company is a Legal Entity that finances a Project -* Contractors are Entities that are involved in delivering under contract to the Project Company -* Operators are Entities that are involved in operating under contract to the Project Company -* Sponsors are Entities that are involved in commissioning, guaranteeing or providing equity to the Project Company -* Stakeholders are other entities that are impacted or impacting by the Project Company -* Revenue focuses specifically on the business model of a Project Company -* A Loan is a borrowing made by a Project Company -* Swap is an example of additional contract by the Project Company -* Scorecard collects relevant data to support the risk analysis of a Project Company +The data layer can be segmented into two major categories: +- The *Physical Data Layer* that holds information about physical aspects of assets, activities etc. and +- The *Socioeconomic Data Layer* that holds information about entities, economic and financial aspects etc. + + +Physical Data Layer +~~~~~~~~~~~~~~~~~~~~ +- Assets are the core objects with environmental impact (emissions) +- Project is the core portfolio management object. It belongs to a Project Category +- One or More Assets may ne linked to a Project. +- Primary Effect is the GHG impact of a Project Activity +- Secondary Effect is the GHG impact of a Project Activity +- Project Activity is a specific Sustainability impact (eg GHG reduction) of a Project + +Socioeconomic Data Layer +~~~~~~~~~~~~~~~~~~~~~~~~~ +- Project Company is a Legal Entity that finances a Project +- Borrower is a Legal Counterparty to a Loan contract (may be natural person or corporate entity) +- Contractors are Entities that are involved in delivering under contract to the Project Company +- Operators are Entities that are involved in operating under contract to the Project Company +- Sponsors are Entities that are involved in commissioning, guaranteeing or providing equity to the Project Company +- Stakeholders are other entities that are impacted or impacting by the Project Company +- Revenue focuses specifically on the business model of a Project Company +- A Loan is a borrowing made by a Project Company +- Swap is an example of additional contract by the Project Company +- Scorecard collects relevant data to support the risk analysis of a Project Company Application Layer ------------------ -The application layer help the user extract useful information from the database and perform the required analyses and reports +The application layer helps users extract useful information from the database and perform the required analyses and reports -* Asset Manager -* Risk Analysis -* Results Explorer +- Asset Manager +- Risk Analysis +- Results Explorer diff --git a/docs/source/index.rst b/docs/source/index.rst index 748669d..dedccb6 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -8,12 +8,12 @@ equinox Documentation :alt: equinox Logo :align: left -**Equinox** is an open source platform for collecting and reporting risk and sustainability information about project finance. Equinox implements and integrates a number of regulatory or industry standards that cover the space of GHG emissions attribution and reporting and ESG risk analysis. +**Equinox** is an open source platform for sustainable portfolio management. Equinox implements and integrates a number of regulatory or industry standards that cover the space of GHG emissions attribution and reporting and ESG risk analysis. The full list of implemented standards is in :ref:`References` -.. note:: The equinox project is still in its early phases and is not yet suitable for deployment. +.. note:: The equinox project is still in its development phase and is not yet suitable for production deployments. Overview @@ -24,9 +24,9 @@ Overview * Development Website: `Github `_ * Online Code Documentation: `Read The Docs `_ * Project Discussion: `Open Risk Commons `_ -* Docker Image: Coming -* Training: Coming: `Open Risk Academy `_ - +* Docker Image: `Docker Hub `_ +* Training: `Open Risk Academy `_ +* Showcase: `Equinox Point `_ .. toctree:: :maxdepth: 2 @@ -57,7 +57,7 @@ Overview getting_started pages reference_data - GHG_Project + GHG_Project_Workflow PCAF CIRIS EBA_Scorecard diff --git a/docs/source/modules.rst b/docs/source/modules.rst index bee28b2..f9a2182 100644 --- a/docs/source/modules.rst +++ b/docs/source/modules.rst @@ -2,14 +2,27 @@ Equinox Data Models ============================== -The following pages document the Equinox data models. Each data model is implemented in a separate file TABLE_NAME.py in the portfolio directory. +The following pages document the Equinox data models. In general each data model is implemented in a separate file TABLE_NAME.py in the portfolio directory. + +.. note:: Variations of data models might be implemented together in the same file. + +Portfolio Data Models +---------------------------- .. toctree:: :maxdepth: 4 Asset + EmissionsSource + Project ProjectCompany + ProjectActivity + PrimaryEffect + SecondaryEffect + Borrower Loan + Mortgage + Portfolios Contractor Operator Swap @@ -17,4 +30,5 @@ The following pages document the Equinox data models. Each data model is impleme Sponsors Revenue - +Reference Data Models +----------------------------- diff --git a/docs/source/requirements.rst b/docs/source/requirements.rst index f8bc081..9428e32 100644 --- a/docs/source/requirements.rst +++ b/docs/source/requirements.rst @@ -7,25 +7,9 @@ Dependencies / Requirements .. note:: A Linux based system is recommended but with minor tweaks it is in principle also possible to deploy in Windows systems - equinox requires a working Python 3 installation (including pip) -- Python >= 3.6 -- Django >= 3.0 +- Python >= 3.9 +- Django >= 4.0 - The precise python library dependencies are listed in the :doc:`requirements`.txt file. - equinox may work with earlier versions of these packages but this has not been tested -- A linux based system is recommended. Some tweaks are required for Windows but is in principle also possible to deploy there -.. note:: The current User Interface (UI) of equinox is desktop oriented and might not work properly in smaller (mobile) screens. Mobile clients are in the roadmap -Full List -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -List of python requirements. At this point the main dependencies are related to django and sphinx - -:: - - Django>=3.1.9 - django-debug-toolbar>=2.2.1 - django-grappelli>=2.14.2 - djangorestframework>=3.11.2 - drf-yasg>=1.20.0 - Sphinx>=3.1.1 - sphinx-rtd-theme>=0.5.0 diff --git a/docs/source/screenshots/admin.png b/docs/source/screenshots/admin.png index 2d2a4de3deddb264f9d68f28c5103aed8a548c6c..85ead4b6a8f9fcf06edaa2b8fd9925a673693e2c 100644 GIT binary patch literal 193458 zcmaI7bwCtMw?8h3G$^o?^ioTAr?5+lbax{S(v9TOAR!^Llyrx5cPiZ_Al)D<@LQkf zzW09bd*A2x=f=#OGjq;o&V1%GQ7X!^IG8UnpFDYjBQFP5d-4PY^5hBf0y-+<8&#*A z<|j|6pU8t>X?PhOW&VWViWV6-_7}`Gzq%sUNIf#s`4R>U3vDyqLGI)#U?yymG&|Ucb0`eC5}++E7rpS>$`N z7yU5zy06x$_o0%Dz=SYLFQdCcqfGnkpfApys=i09e(65DsXQ2e8yHTXpbNnxOUrVO z#FjiAc|xsd)R_?)1x`i65i@a`fXSVZsP?9T6aAuIKwv+0(@##OD&u}vj3p#N=x@Lwi0wuZeRB@OFbpQMY=f`IW>7IXoo!Mz#B7c%rR0QnG3{7R6S zj&>4WubYXCu^_^ET_16a{5!;O-)tD#I1s~~e|WPZa43ILPR@j~$#_}_#%myP8O6QL zPMN|(mXbtAjF(`K{81C&!l46*|I{uw%OX4i1=2-=W&3QarC@Rb?vq zwK`RgN=c%ArYC&a8cgOn%Baj?nM^P_%%`dQ-*JKk=%Jj{;*F8OpH?Mu(qTa_ zULf0kl(Zs*u;QWdva9wkEszS^bKrgnwSMuf_-Y|BfNC$fLd_d1YHFCA6^Z4~JcJ=q)I9_*ROx<7 zXEnnjjauchIFmRU$^59?h6hlfk-(_TXEmJ4~wlk-ye%Y#HIG zcBr|`GqcRugvx?Vmo_eL-TRD0pJV0?WQLj*kappz(zT5d*;fAL(ipznb68|-Jz*>6 zuC#}?_3On&6xaUcGk>UWzyx3OD?biO*18ILDCk?B?3;T7oi-oBf@g)qbj|oqpJ&wi zVdzw*r|X{&Y{)726#*OjN$05y?Y0gyownB{Lwom%wd>y{dn^vWcT(pEGgxq|TKtHA z&*^zYV=v*ugwvVEkk5o{1qB*~xth=JQ4W6UdnGmq0n1F9XAs&u{L<~md_D+s-+MlC zx(5M?tTXepEXL67{G9uv7MD)FycBffCrcmcHb(wB7-RzNK?u=nr%leK* zEFMi=UX1q?q301l!KkPo(=o21=B`qg28>Go+{-iWdn;{_-4bv^lWH&cd1w=V&3`85 zqF=KyyBz1d$r56r0r(BdK3R&z>{(ry@InFHUseR@VJVg+JLit z0D(GPs#h+dj1m-hC{Ey+`th6|E7!>K&5>XqwzD74?v9v*y^!Qj_ge>LKc{!2C|P|& zNO`DreXS{vQx-sa#hGH;-OtK6r=2IH4U~e}r(czn&j9mXqYo)8Mo(7srl*w*nDOuu zKcFpAiNt3OjG?_TyPCr$$+bjh(w)-tlKJUX$_F7BpdY`qt@u3EZ6I)C$%3AP0O0c2qDnzk>C^w+*v9z znKf_EpDq5s8VGbc9t~hinaQi6tndeiOR7ecfC*!UJFgX_F*~m=2~Ly&j#YVA3Re?R zl+hQETgvM5f#AV39+u-f@&0(XhrTE`fjuJ2_u(@mo6$7c>#1YU#I=vjPHz!2LNmtP0N07kr?dAjy97&{xIf}NeTzGlZJ$9q`Z7NF~1E1pilOxuL zTQn4!%OUqxXoJ*=xc_BKVGL+` zh~yPC{sKoW`@!H%ki)OsFq2+Q#BzrbO(K@NtCdjSIo{CEUe544dq0|cSv=bFdz)%^ zsJOrd($Mr_)wBl>d;li5+n>T^{R`FIN?%|91Dh^MJxiJvEbN5GXRy(11L$I#_;r>4 zipBI>h`UeM7oFhcy`=`+S$hd|;|@lzbD-cW$77)yGq3ocV+AQ$n;{BWwn5CqT!qD6>wK)~mS`hBl>FLxKuXlEXoeIV{uE(wQlIaLmX)zsieo@DK>w{<2)hUE^ z(M!W$^U}eP!r>qlk~Vd*cN7|2@+l^&+{lN{+0P7;m`XJs@;LJ1G&6Mg)3dX!NZebW zafU+)f3aEJvSR5<{H7D(er;cJ?;cHso$q1NI=}p2x-wITp z#ZXL=2h+{pkpJTO{rl&G#jf1V%YZzh*l(0ytM=eD>y0L~{T$s>BLR!MNCY=Bco0^R zRJF{%fRBKHlOD=jvL7Zh(<+zn*_tEII?XnEc5AE4(3VW!c`{@1^P$lGdof0Nz=nH8 ztl@Gf0zCF6s0b?pH$F`|GpSnKi+74E){NVE#VLHE+?#L0yr#P8`gx&kI>FIzrx|3e zydD+!qPbcz#=|hv6&5M(7?}$)d!bK9X@{qdfLu*pgKT>fONRA?N#{`Tl()mL;C_6V zoZTqgmmms=lp%ZtlM@p?^^Yuv%LA(2ppOPlo11**o36FPi9f(a{VAtCqXl}ouX;)Y zBT&)(NMra~l;8H!^OSSH!$PNrPP4?z2bO&^HklbAdR6WU;W9sa89NDUIo+%W(5UA7 znk!{U!_cE+XWu36vzt+B^DOl;ZxFv`r z*6}q<*VHPm?8I94o4|(%YoxBr)W8?lpPIwp7KnAGvRGHF4$QCd1F0hoD6pa9YWWLr zo)i#_C0SxWbg6yf>_Ea-(~#InOln3gtm?<gfhK8`u4=2yAWQBYDE<|vdR@Iy!FC#?jm@rn-6Wm*GV|JJi|M1!Mf&rDS(Nyk zwjkdMdq4tv2rF0jAbwtuRjbW%s*^bSgjtwsxjomtb>>ZWcQux0!uQyZnsLb=eU)8v zxL!bf>K!73(q65bd)q7eY)jYbStj!M67@L_&`=q)Njsfj8)P+cTwgNyjwW2|bZkB0 zYAqmca839TnLWc&K$*&Xock+evf*ZU#rl*rDTnpLFfdJ@h`Yrn%20MyOs zZ@>NV9%=+hU@IkXT=oyG7m248%<|_bPh`<2%6LwwB514}`ptdce*@Lyg2a}sY&Z=R z89t*>>~iD(n_S=K;oK}^?2O{*r?A!>2Ioe6J$ihc3uA4sXpnl`_Dbo+2Q;HQ1|77( zo(YPjOe4|O?n6!ZhTGLE*66tIV@I9qm8IMLn^-}w9aPkY$}kyCh0Ss&qCCH--|4?} zJ+bNW))(6bNLDIIhXL-g60VS`DBwr~#XvWXEFK9t)bTZQu6A_Et=BNKC=jch%c=2m zW(kFOX0*T^u7HZz?V2wuR2afO$-(yt~g2G-@cY{rT& z&9@HSo)?XvG?E4%??yW@KVI*YVK8^TImNy-#^v2xysW`*11f-D9&#+Fo^!-JbF`(= zv;mJW#zNM$Fhj-)vu|(;Q*-k$mq2^ff!AaUDFzQ4KeK0vW&?4>7hsYd+{df)f!!y!`L! z%YQxS-B7WwwNjbaN#2~k5l$`G(u^@ z@6SyKl1N$~%Rx{{SuQ9kx@KY$sH(mhu;eIhTeAdt>nF7rbaLu1}Y2xiS$tk;pAsM(lYqTi%+T|WEvb1$lh+IJH|_cxkEBh zz>4wf`Kk*}N{Q$B0<|>Taht(J?#yP3At{mhVV~;TXiJg{K0yS?-9f(#dIj+56P7GIhQQPEs6uvktjxEYp70 z!M+lcmaFRQ?$RmiufO@+RmA6(H{o3#>q}LOUksvtMEOdc8PlM=&;p2^2T(gM%PW3o zK+lz;8NQD9l`%z)T}1t1IscZV!y(4*m3=C8cUnS>f0-R^14s?Ue{qHfE?npNu6sT= z+xcvtEdxt-V{bi(vV4dl!t6uY!jIQ!xng7QXPXqDm%--Nnxnx+4rB>U-pIR-qF^rk z_+7yUlZjtl!qG^6_qb*;Mw77j2+zFAZFNj<@V7qB=knOowPn7zrn}?w}_*9(_rjfmG=I^>) zdk9vXwZHvhETW`a1zpy$Nh~j)h%O^0s`(LIOu`^&9wVWby zYaypiF6u%lt8A!pR8`RFMvGQA-~lag-O1nxcXtXOnR7HdQN?sDHF$Dp(`6jFY|Z?| zi@K!zQb<2znwmJ{qatV=-CwKTuNdXy*WEEim>fYHT&a@(N*;jGxzoltS??}AKSegz zA#nI@lm%-2J)!~aS%k@oQQR3m0X&Scn(*~9v(YmfCD9ajOti5T`BW-_`e=dxb^CcE z#~R{CL-xPVG~eV1<1uKUm)tVtJu3m3>5UsM)zt+bckq#J(X2X771cy%2)lsM#+* z>ls@O`j)&olI}~Pmng^Op<_J?w|fs=9J?sVj}Y-`ERVqGc#PJb#dV%I3Ll84N=`x6 z^_vv^xl%~^+Ze@UH7xOyB#+B&z)siM>5t--Fm+l<)w2845qcwuC6Xqd~Z#=_r3^y_jF zL3C{P*9uWHRG(-yaGRB;3EANSd!@MaxMygKNMUj#`}AB7Z64_KX~O~Lfjwi4AAHi* zp4d_ezfJfe4!=0wH+7wy|9JWpQeEDwMyLLo_Gj6jI}fK=X{CUrEla_2S)DzBx+LDiD$)b2Sa?h@JkIgR zz6=S(@uC4x-3nLQl}QJtN zeQ%Z+>JwvEz1WT4M86|s>7jh)YCVv^j$?aPhYZ0Y2FItmpZ1hl`Xri24)`>=-2`)w z?F#gUr{YnDVZw;nD!O}k*_l~oPNje#L3DK{l{mF_d>?7c{$9&Ld!}#Y-kM+;6-jb@ zyD|rRCNwtyZkAw#|G;=By`q*Me?Ha@``VXpc>880tuuv0zbPg9;%Ke8%B)!on*5%k zwGLTIk`08hacC&v5kYQw)F^acY|JC`q^ZD*I~>Tgr1`B|ygvRI{fHbU?YPVy^0 zW%ZKc)__yvLE>fxkFVA@gR%`tT|O;`g=n`+R6(pLt*jIqMB;7Sgg_F@ZbLo{tugh> z8NedT+X(I&oFttZvR!`eJiY3Bca=IjCW!%bL96}ojEgv#ohRz|w_zo7CsydCjqb?d z0p~a9vi0iEk|?I$S?qT!)s{Vs_xh^#S?*qU+{oUpKU9K0V{H$;DsCS{hL)jwIXco2 z*WSQAJEM5gTtZoUdFOCrd0K33XMT9R!x3E4FBU|_F#Il`jaEzpoi10==)=rVVh1*N zudTy}URq%HAr(uqbN?EuKUPGXBG?a8xvLCc(103+EG5M?v zCP-l*cq~&4^iF9?N`eh8bG21vA}8F}XPdFAnkpuasjq3Cy=moGn~4Si({twOuZ*(f&6r61>NJ=QD`V~X=Nz|&DT?Nheg?Rpb% zu^Tq{kWB1yKqIzW0w$7=ANZ94>fTkkkvBgV3{)&t|u1*AGI@2sw#*K2EnLF`r74SAQ&n;6i_L5C;Ob80V^jW z3_}rBPtyr14^Wi~wK7@omrnNI;nm~+l3SDcyNzilmLpT?`LPBSK_HwAkueD(*wMhn zc?vrG)1Z~F12FW0bW2sbw9Hk*-aHfWceHq6YW+^yuckLr4Gn$j7&zjSvaw@E%u#zNH0WPw9W4k+^z>=$`iM2>9J*}!Zp)xU4dVm7 z>h?_s|A3x}mAgm&lZZIF{mIM#f4>a$OUA?y^UuHAuF!|Q-##sW3(4~HzA#bQ4IeHK zUU9o+yV;}3uJ*pc<4y|NkW@MPdTrKIj7^s+2*_D3^yg%D*_P5X~ zd`;mHNBUuC=#9wW{6I7RCJ|(`1(&wm-W-hQ@Yzzp)pMO%nVj?XSpnqEMpD)*rzN~+ zbyrg%9@+}m5?S;J+r&x?3qFPqQakyIK#TJ5AfT^eQn4CU>w{zy({5;Twz7IBY5R5mxMM<5Rvuf1c(&8^od=LY<$*|QYhdZ#>#xZn7GBn`O)vh=vU z6_-saNJnrt96VZ-l6S`dR6a zKdefRwT}q0p9FHvLH7Ejjs=uf?ftmSvs&au=9X4DXYr1j$0&faAva7KB|d^Z!QSu1 z=%Ml9A{iHh~{oNAF^TehG`^wf3i{@1@03{xVLxvK|rilDHt#Ia) zrvMGt(o2-XM$HqZ(R_WLx zi_Y&MOa+snZ%)jb?>z8Rw>s{>v;b$wWH(u0PuHJN^yfvLWdoNNb-H8Rr(gXt%bp-l z#eLH%@>C7oHP^+A6K+)$(*S)m{u*sSI}#x=OWD2QcA5REz~d`WLBj;;2UAq!#T-@P zJoWB}f&l?QdY#8F7=TrXcj$?Xca<@nHoHMTkQ)RVg9!>RbfVA~P;%tW>D zC-uqQ4**Ehb1{$=rghE+tI%!*Jc(=q*AmAp%Rd}`X*v;ZBNwcr`$E{`p(7yH%B??&oXc%9Tdj6Tr2Vl86b(zAm z=-fGbaFYY_e2J?h;$T7ijvk3Q0SxGIVCZ1s9>Lv-1dfInby~R9b+2FZY4X<`(gnGm z`QAwx_Gn!`5vudWx{9nhn1`gSfRZTN@BuQ2DzJ8x`)AQ#q<eRFypq$WT59j5Y=ybla6^9A`O}Yhy$H+>$AeZcpM7$YMHZZ6(5dH zrjm=il(?S!D$qB=oKcCj-!Je#ZpdvutkfWr2RMmqn7mMqu4q z%_*``CKG)WOm2o7qUncfN#8BxsMM<3;jv5ebwVWzHyRNjMcehX(a`62b@`vOZd?X; zgh^?$%`L${zK}ZnNUOK zWe!WDYFQOppU;;{r%G8Q&r5sVrw1P7y%%X4UknRa6~1qpv-O1w`u||}w{BWj#DC>M zDfnuE|ColF_vOj84b*z#Q)21Jv+d!O=uL=57cG>p+GZvYbfimes6X4EaTM|MsG?)o z{(I8qwvv8b_@eZMUY{9P;^NeDr5-6ImVk8ajgHYho3U*0Ds?=3 zMWUgb z5z0t9rfMbTI**tYRgcq^iW9zxKGr3W*q7&!9L!F`#G*X}5kN_Y;Qw#TRrnz4h0OUzFo;_ZBK>8r08Yr0rij$a2tZUIcNv8LAg( zn7*?y2uq?}?td>EKQvD*(l$5@>y~nsN`@`$^+nieU7oDPOPSrO|84}~LqOt%@%{87 z72MA2lJ^5Uh%#~UEf^2l_POzLGMc6koM;cY&spv6XXcs(+Ph4(5=8-rAEQRKU$edx z)OwFu_g4OfG>+*rU(TG^Z){jP^>e==H4BMn*ZFQP451A;%%4B|vZI8lC>TNMo%goA zUk4E@$S>ttzOH41g#0Y1P0pibTOR3(=APr6D{b_z_KxQ#1fc~f+Tc0tpg=hgL9e2N z=Q$ptl8sy-td@CvE3UP``>E}75DYM3t`omQ2X$6TB)K6aE468zX)YXYu5yLr8MMOz ze8Xvx^w6p+MMv!cua8WMc=#_jYXGM7wSeN_*LJB8TV(xWOe#slx5EbdSQ|rx{3}@dj^~5Gd>b#s{zq z-a#umFV}1rd}iwob9e=?zX0ga%(T2tKYuN7lc|f~0+9RgVT0{Gs~|%d=Q2o+11?cP z(^&FC3nk@;T)@?RukmS`)1BHfRV<`){}EKq=uj#5D#9D@M@ApSf5KtaEhbdN^#@ES zgQumm#(DF;h+`#m9UZG#tsn^=^YuG7?eRc0gjtRJ!&h^kyffbpWz3=+8P^5zY%5C)aeJRDY?a66ytm&i-^>;Mh(1^VgA;iLY4YX&60TgzQ~XDc=3l_rbm~t~v5L z08_5s@eE4ky)hh#G6aJL9HQGv2{VI!K?9CUD>=nYn~+-ZnbwlVxpm)fn&cQvx7+LG z`6j>wI-1SB$f)vas+|+a?y}7bIH?|D4mQlaB`k#`cfa44UzmRDQ{?*LXu8v_Blg>c z>UQJJ9Q#&OE{U^#6w*l%lwXP~n#Tam>3idAf=BR`bYE~TjDV?0qO}84rWEIrfQpC6 zAKTmc-j9-9_&fVU=2D>@0aczCS(}Tt!*mVbC7L=?SRHb*qp17UL4Qxx#9OkHi8F&Q z@jf1lZs+aI{QH8;?9IQrj`&PSjD5G-M91b4ckWAz-KWBu7n)>y(=i8=tHCuBt=}Pt z!wgM<>I_z*=wrQ`j=&?%F3kka%FVOqAJ0T*#%NZ^w@#2&M7dHNmtvScd*G?|8mP&y zR+_&*C%MuhAiQ;7T=Pvbh$m0)M!{!+lJLuNKy7mLKUBKXi61XK5ht!xzor=;E>yed zANMM(lmaILC=H5@{t}aU|KThJoBZ{MA8h;VSl(YLtH^-@^3tPEu8;CD>PolHJ(}GipwM?a3#ZsEGaT&X$*?~S6cNc>STWGMg?h++bfAms`)0A z0x8QD!j=yH%GF#~x_UEWS&zD=lF2Xy0I9Io6HCU?kfrC8J@DzD)A*2>&FEfws0z=8 zYHDgID`Xm3pUuLHtN6FI(r7@ruto5P)_rjE#l8mP%CD>7x9RocQsI4197KNUTzSYJ z5alv3HX6hE1!vD>;5Iztd+#?$puj={>)Tc=~54OIDwd6w!Un^&P`5ocy*{rz_;$?%Y=wQg?7;r76|Bqjmm+Rowl7 zv8sS8(-_ipW&i1CW7B=rQ+*v=r{AM71j|Y%BmrEa9R=;*Ef39;dE1qZGv6Pk7U5)B zyenT+e=$-mEz)n1GgY+5oAsE1zL+7*YutKw0$RBVS)`n3A{!T>Z|?OlRy?mmh|z}j zwmY$9sD)s1SvS&0(N9)Jo)}s&RRe}h2xOaS|D4O^^#2HCGPdb1k+n$ido9vc+t#gh z0+@$wShz`13@fFJvFHZU>A;3&e&EJ^V#NAw0R>WSf8>lb z^LM;GdD6E!-QL8DZ~pRwa|p#VJqkpDob~JE`d(H~H5C6-ue#6WUh!Iu&lR(4-&9*< zQT$dclNt=?>x9kP_`&ap%K-3V#P574FdXN{vsii6&^bbePy#pNINJj~&JI4(w!od_ zK|kN&d42oQBPPM`^SMWSu*gJsR-bZ`8etSDNzI~Q^-`wu8w~v>hf37_c@~DQBeX!y zCzI`)(H|Z{GK1bk4Zx+O46A)Nebs;ZtUh-})JdDe)BWIfZpBc8aHoRfU3biR0w=yz z%n&n+Es@$=i3!QY8}8?Q=CC z$`~N;45ZTqZ0MQ)0`x@^F|a|5p4tqn^~QX)M>XMjE8o&$arsbSc<$70$$gzl@lGZL6;&CFN$2APQlnyx4X#&eS&3iw;3X%Z47uS!RckFc%k4SAsV z%B#)W-g_(;8-H-yYTO&Aho2-uZ1U4P$%}6vlC)`|HqaErzPokZ{Pk*=#^O+-|z2O}B z)OTJV1v2w4R5QP$L&zQP$OUZc|5VG8=)J%Mb}*h|{Ku~cFWbVP!O_vL^ig?l)VLs* zFm&C4bj-REk>%N0B0jrWsVIE`n?yk8?!VbST1YM(P#F`hPEy_F{>SQgQDei^8MoFF};}%5r_&c%P1qL9CfN?&Aw>+P>LD@ zW%UC{N_TiYo#IpxX6uOG%pCDw8ruH9G_(lzPqQIC)LvOB_AV%#QYIBht=fx_p!Vh@ zr5)5UG=9=5*Q4REgv=0U^C^*&y49ru!(r%lFNJgH@E}S!ANm?cy5~3LzP}FRzW!rfiZ$3#@EQJSYp*9fhLJ>b>q6E3I;|sSh%Wh$_I3H3 z2u59`ijH0Qq(+`qo)GeOwk(R{Uh?BL17rJm-WtJ7#agaK=O#lXMLRb0AsZbX{Nseg&HME zp1KwaNw_h!qMCGtCFi!`vMH=Nl=fXw3 zE1Q~|yL)<`j*n;9i_k&qX039j3JWzCykc1)8W#H5iZR8Kr5SIx*oNG5hxV`r5NiWA zLjU;IlN7GRw|wR?s|Jgl1R#?JOMW^pUc$QO!!3vqzyqtLwPd~iYhwt;u+UNk>l(_0 zBXJx**+8l+BI7q7MSJJ)iVGq*`IhQ_b#;}I2_EyNRaU!91xd3+W5%h&>nDC(wqTUD z)^#=a%HsU|XRY$Z(@R#2QdG7@h<+lv8AJif_o#6fvBMZmn?beT@v^u_a(eRjOWL4b zd#Ev>TA>1DhAO%M`TIWnU#s$Wgdni514V(5?TLu5@8y(r4wAB(5?&698I;#<7CQ`+ zP%S&)au2V;ej&tWOJhKfuIzQ4!xE8JJy|`SYOewY@RI7Tqn|lcLY+HOnQp3j8v3#y zIZB3uE8BH0%m3R+mHf!x62!k$)_-xJe>A4yAh4IIHtUN4;}OZe)1tXl2Pbah=8<#!LF>PJK>7n^|Mh_`RZo0AJS$gq~&oO}Kfq4J-Ja#4j&|z@5vrrt}}WVg1t$ zDmKaI=LgmAeyV}NV7hr!kBO;BAYC{J3r|`VOs0(}5G`W!$XWl}k$)}9UoO%m{qZXJ zDcb%7K0dzLEa?~kQg;UVAO&;DPn0aRI!np^*982pcId%id^yCLAOA#5pGW4#EzRN~ zk1!IL_?;#KPQMQS7o7gj^!?ph5+5THlmvEmP5%dv+A&&9RYTh>%2MKETqZSLa^%+t z6!re&l2Dfu$U#9#0#2)7PsJ1QyqYm*XHADYLvvLyZM=#+bz!7ct+=;SRxDS&*pyhp z(|_;-8$yjx)vG;0*adj&8uJf!nIV+$@?3Rl)&KB&Du#{}U?_2J#)7y{t(OkC@ai8j z;WaV>*Mzal%xi{#&~z}J$p4fXf z@Hc!U1ZeW}&pMAJ6FPpa?d}>VugJB_C-Hb$Wp zr2g>j5Sd*!JAtnyIiMvHSj?5-iu?Z>_1_C7)oK4H8!>%CEaw1DI)SC_#D=$Fsq z+*j>|3{;AZFf2xX0=Xcglz0oO{}3I7f4V5)KbH!I32DMZp7vCE-rIshW&0M48W?Qn zt6>NWxHDYw|Nks_=}{JHFO)SSG)~zTl}YSJAZlFA{R`p0FW5r%KR2Y-M5luQY!^y} z$+HeM;MZkhu|d1lD^@XN#|nFGr^4M{kU1|hQH~zm`2-Zsg;$Lr@+i0IW<+?5<(Fi{!&Xiwi|1= z5i;&vzgJFqg*6%4)iW0z8K@Ti+A*pBk6(kIQIc4o>CyDxp}>hxw=~S$YA(Ym0y(R_ z3^dLhPoKWPzf?Qg+)sUqiyOD&s!R+I3kwH!K7M>#nyg4|UJV6FEFQ;*lB1CzfYWnJxYD?fKm${|iVfLYU>YQ!kvC zmxo768m#4{`97~!5f+*VAb{+QWe_; z?}&i#?E_8R|1({rD90RmDsQ>ly^0l751RewosGhe-g8nZ7AN;m@r&!fW?Xou&fSP}^g zyl+7bh|lR9pC$6X*pbQ3m`Rk#X?eR^2AR_(=f!g?Ar{}797%f>r_ zh6WD{)Geiwc(<&3tmjyH<{=Culm=^v1l5jKuRIg1y51Isn_rGPaPP^B`g3 z0r8D{!j`4Y}D}^A??N9SmPoDK`^}Vlq3P zp@sj~^P&IVr%dpWS)m`8)mMS;^7N$dCBwMs`GU1@maUaDoO3olT{Mf2MFW>7o%IqP z9}YM`KYkR;*l+Kyt^e**-1p@7#PHjQ2U3Pjo|GGXQEhv9zC9im87XJb;_@`J!G7S= zQ(3dvcQ4q^y>pGD%T(?z593^a3{%_9mZ4*#hfaKT(`hlq8aHk(kwDBw@m$lh)#D|! za{YSARne~-kDJe~sYGK60xSC!)iVC*&~gGE=%GYRG1m_Ii9Zy@ThY-wb9-c~f9LRd z?K}dt;K)yZ%fG;od4K0V)n;ey<((>dZNG53J*18~>x0ZP=NLkD@2G=65)6rhS}JbL zF(qs8sTWPak%jI!49J0mMzzZ1HDW< z)79jb*T23Gcv+uH>g_#`^Gqk=&=0m`(JDUbhYj|PXshV4Op<6h|JvvCyIjylFx?1_ zFpZkXE(U8r?$^7~Mz3|aiUVdLZ#(O}AD{L!m$4K4yY=8lo`^dGaH3aHlKsC|>YX8f zyk^zp*NSDw#rvXq$c4G{oJH$M_$t@NV1^D=&TnY zKkv^F8iV&OtN=Y4n?24$r}3O4>}Gi8!0Yilm&Gf58G=3F1bgZTQQlr6q8#@jcm|(H1}XA@3O;&dAmi-_ZqK zfXFye5MdZyB#Va`ZkkHjotH%TL}^HL`+{vw`hCDrAa)w1MOTc25p#ZU@qDz?TfyN} z7PR>8uxi`;J1=;#-O}LmHR*_k@|m36T+?kNXM&N(2Vyi_iny7Z{Ocb#r0UhyYXO=? zTyBiAvi3$d9N`@jNwY_3Y_8&t)&;IcRs#UjlL)_KZN%h2FN$%WI&-BSmiAHy4d)xHM(!)~hRc2%H+Cp=Fj5XJ2`gQc3??{|s zy6~1~XkyFjQma@_tIMMO3#Q8jt;Ir?72*1xs#o_jIam({aUI$f{;vVQ?%+||{hQ_2 z8-ffD`n+9V-iT`iRvOeIxe>E_kEw+&@m<{f;;PEaJKb$v*e*%Z_UE_gWo$z5bKS-M zEe#GTKt&Z5&hYj}j86#=RN|e<5?g7%yEFLyiT`%ZMb8`cnUkm;lWp;yRA#D}m(iV_ zX(i%XqXvfL)h=wWE%4);*xt*=^zt}dQ{mPLo6SGD+?$0Qalqt8Cx@N>eb31!M1liQFz{ z`rJ>#6xdf@S5$97cn%{8(e0S%yNk`7sUE@$MAQf2*)7*5L&kx2>AC|J7-p&#BX^o4 zzsC^|r$}m)$76~O+UxW<8ttdljK|y_cZY*Io0^zZdntCua~M@YA2#0?5+LL#7RuzS zrFR6%Qs5Rx|11BkxSDQ)SFhBC%H!DILuGSAbQ<@a>es51i%w@A12mROG(gcg{qgEK zwINp>R17pB1}=go%xE?<&y;@n|1y?Zum;isRX~B1te+%gXBypZ#DDX;BT{wsHbLQE zT7byhgl>5Cm&qbu##Wwp3BrzdhZ3hJ!!sWoie56@-?rV^kA;uj9>qhd`#JY4pYW^Y z%+G|enKxfjehH~&W{+Aov1fu2xV>Y>;*Kov4dg=(j%Cn0Shh zuBnHxo;aAZ-RS~!;Xi4x({(Y^{MHa?fS^=gzu#le8x3Tf)kergA&Fx6Q;Oy*m>?O=kb}R(NzPUAivfWu_c$2&cp{1PjKC* zQK=>)54)0{jz=(4%9{xxu3C(eEXUUy;bx~n0sErKa(lnxQK$?NgzjwBAl3g#FnmOU z^%fRMSabQP$^aoQ9+T@}g-SvF&vwr=-F-aQdE9qtDz0GP5wuxa%TA>PjeQNrgp za%g{5|4xX|GoL;43*lHa?q7?*`mB8f-ySCjd%fyy>q`@J;DJ$afwp<9{`TZ9sp+)y zH3m=Ib>-=+=u#WC+2^lJ`RC=}9E;kaav4tLs%=(mg6h|k<(d3n+*v#J-VA=*N{-h7 z484CY{-9wgIHQ|VR+M(aV>Qv0>L8L3i|-#pA`Xb%pQ8;P#FPb%c5{3$RL35DK~F-+ zp#@;A@Ja<$;D@m4HDl{H-WN68bHTNuM~w8Udb+#|**VpwSf08^wuuCkJmcl5%0o=%L_T_tz2AOw3b3ZLYR!)XF{Gv zq(u2xs-cELt`-v|@l38)cQ}M6?}>Mi9wtt&<|nRR$){KjTP%PUN)*C;*ydn0e{Pi= z^Zv7hIgb#nXQ;CPR_Oo7-CMV{*?n81Pbn^?K%h{xL4!MmA}tWy-Q8VVC|=w(xD*H$ z9E!VJaVajv-Q7;wXYX^Jckkc(1LD|gmfb4?j@%yE}IAD}L0uI1r?XT8L%LG0G; zlIczRAt2%~U{f*I(_K4pUwMQ0hR~e}h64w+JJmuZtMlc1cP9k_ zSB9@>Jg-a9FWZffXs>RL7Rnv`*xR4jFV#(TtM-obW?R0HCq7?dqme^SsHxG3*gXTn zo*N8C7zdlR5TA*KUhsg7cTtY9#IFwK*c@h?==b-1(tgE5`tfB_`BfW!MLc=}nDrXJ zISR@6TC1ruYV%|F$$vFo%b})I>VCNr@rW>K{wPMIP?u{l4!m)G(vf*^M>lmAC}FSl zJ{w0NJl{;J_{R0bb40AVefZ(aRD*L&2OTrg6Op0mJt1hcLC}DqPV}%yrwo2F}AAwSRCxiK)4b2lef`%>shmH)Y?ic0zub-xW*c5P z4HwKPx`<>c_-~bx|3*V72>eP6Q7ZPNWfyzu!=9zBIqw=7X|Nl^^EV%j4{_hV;(W-* zEwRa6KPR)~VbQ8AG=L@@J=$v=#a7)hz?L*}7?JJCpVl zIs=17+cQ`umh52xp_H(!QZ4SjO$K#UU<~-&n|3HJH(AiQcF*}xi;L|rDYQ_voUJOZ zc=YHnjWq!gKp;2^%VT!;l6i6mzU8(JyaN35nb0)Mb}}0yurFkcb$99IQsZagZ96Zz zhydb-?u`y4^f;JUsA$yE2X5n$bY8cU_BXD3Q~8L%r;|L_hhp{d1koO_d%RAwi)QJm zyN>hbVCci`qGRtiNe?PDoJ3>vlc|Wz0z!Pnz8Yw?bJladwyP;z<2p6#XtLKigEM-1 zTR@)e-1oUsa9e1$v3q!WlS?rGi6HtL((3BYKiiCDR%0%KNbwzyUm13E5}&J6fBHVv z*3)&)xx8mOIeGW;GUsIdjU32XC*S0jUN_1Ory$P>t_@3k1o>ZS*0+msI6)NE5zgtKwYy%;WI`nW$&md;83cJoB52;v6^)wD6K1U(HJ!R?uEOQi z_@2zQ6T#~F$y-qk2(UyXWageph`q=oosTI0`0gDY zS+H6~NVNJojVzALes@dLXV}xpQ+|oGSmeV$?wWw?t7|G)X3&kTCgQ8b{1Res+iqiM(L+HY#B z6)AjrgOP*XLd`lHl7UjwV;}7?`}WtS?w#ACv0ahu6D6W=U`;&kvi0!t99z<1ya54n zcGmr^p<1EflQOl-RJr<_N4hyFL#NTonwocYgl{n4F(mjW2yE-3gB_z5jjoP_zIT%m zeEE8P5LDjwC>IKz0pR63^`KkKL*LQJrOJ@eJke>?*UwF|sfxyCQwpjPkT=s|7hr;B zOlHoelSjuYy|kyts<&BwPqMw;N0%$V-`t6{n9fPL^SDS_ci6a*6m@7HA2V<{8k4iv z&8Y^g8GGj?lR!XujM~{Qc^~ths5qN*&MPm)^3XR=`|R6bcicA1QABN{)gg3MW{+Z! z#~>se$W?I8QQ6a%6kMKqOmBOtqquSiS5DdFlSu?>_x}+E9OxV!-~FiW-`vyiKdKiXNHgca#7Q!9>lLB_0~riV&cgzIfGN z8KM7gzi@zJ?8k|n=d!?S9WSG6;un551UXBP}1(5cJ51K}380SIy6w=t@4^^$Kg8Oddx6T0u z8^VL4xiuAZ%I)OmL0KY?m75ARCWJJXEmAoW)HNAP@6BHEzdR;>s~8}3K1dEN5uc6A zvkFysnBC^%d)@%Q#pLxFYYb;n1?K9l8TwX-*~Y~%L~!-oxox*#pKK#&RSQmb_i$ob zy(RyxNGYV02&5Ez&{)AHCbqWGIcM>v=7Dfo|1utA5h`k=iMjvTB_2Ii?V*0Lw~R&F zbVc#$;XQ6sDdn>2%C02F>du#Lqe2_m!C`s}0$|_PI_;wl7 z3kBh9ysPrKCkWGImo#nGY;^O(H6dWic8+IN4K7jfelR4_EaIHNP_?B4^n4IO&IT{M zI`P;EcY;_a3lJ-V0V(Hw2wJ}PFk}xm05q9gHYQp|yWU|HaxM5o5)Fz8w{s%SFT6bW zh`0@ZqH<1oW5TU0y{R`-WKuA|X?CH$Qna4RT~f@*P_NVAgw-~j5&VHlVuNxr_j-jG zSuLmj;by3uil3w+gs$`QaIPuqq3o(_nv0?F^HJdhh2tqrTPaKH?WdK3Ox+I#A>8e| zE%)%PpV&M(_xL7-Kg7U5&{{uxy{l`~Aspri({p~GOc_?;%dwaHWjqXs<2=`5o`r7I zwd+pIV;6$GOqxI62^SlyE~oro?I1ss*M+ejJl<{}US~1U`#!#@TJ47p!D<)0Kku-% z66TbWC^RZisd;|=Mg;xR0JKU25)DaQm|AHysuOF|BFnSksZfMd9N=Owa1bkwYkoAAeaF z3O43cp~FkHo0z;1xDW~w>jbw(GfEjL4hn@B)spG6ymH{U(mjP3z>qQ^mb^7u?T`<4lYW1F z(5|lk96eL+0bxD={9I?@wFIBn%*@QRn1oTADWk8zppd61u?sg>o6kE0yPw!!%Itf!m;4HOkPF&g=a} zBy>Rgo=>8pSH{})P3T+g7P^Uifd?`H84vi#=09&!A043c$Fy>aq->0smh;eK)f2$_ z+1aM_*}FkFoyqZ>JILoE#XCuU*(aD$hBN%Je$Y=u{B)^%z$%{FD9oXqXf&?8E|z2W z4_*pwz1>ag!1I|3KF%RZx#(8ylz5%OX-acN&X=>2uJMO*uhU>X!`eE>;!YI)XgOJ6KK#D(w4ACS1k=?K;k_%W zkFy5Xb$zP6M9c;DeAzC3ud9Yoti1Gs5K#%ZI8S*Nbvi5D8AE}};p@L259l?D-%{@}4Ei6V+e)$<@Q8Lsy%^x#(137x3hZg8=;Fh{J!> z3XD?)$VO^Ve|pV$8zUOaGPG*?KJSjy0a7C0$!e(j4l#(=(CysAP3(w6sGJ2hT8m3w zT}wr>*x-fH7fm)(Kaxz8d|53oq{gz-Mr|F=_#?Ae8W~9h6xDY@R9#_ni$49F7rs?o zQeG`_a{_#m5Dl8dEPvLj+eajLJ5!?biRC!SaJ`p_PNR^*8>nc!_+`D)`g-|SK&aG4 z9-H|Urb;!|?XZ)7p}0hB(AH71mtHR@0z=>G;q-7qJoPyCt%9u8nz(4AE@4Gf|9nA zc^jK6!B_{uaPYZ!)FYNyW@t-x>{~z-Kj0@#U& zLPpo_uTUMZ3ghY|pz5WrB(YK}|90FqgIKQHVD@s0SqGO^|CQK6x%`)@+<)HBRW~So zCifx9NsvjaJM3O0YAZAr1%%>dc>b@Rd?1<*zX!=O2N`7@16YiU&JY@@lM85RE~Cmt zOZfTbY(Awf{b$%H!5g(sv^I?`FHOMQSsu@w9H^`k@a~gH9rvTxj;2$VWBaHz2B`A8 z#F0V7ky|)IKJuDo3~A`QhDtYeW@-se#%ra9QI-3WZ&fi0i9r9+*!u`PGuwf39I!;P z=G~em=S>x7-m0tG5r6LdifC6=LR6w~_(9tatZEZ6$l`ZsH++UVXQ+wXGk{2$cJiB$ zsOCu;dIij%Embs@d845{a9u^OVlSheUgw+@3qh9p*Dz@XF=T^^9F~E36TB+@O!NL0Sz8v8|C;FGer|Yz1 zKP-(o?dK9F(1hfOb0j=}g%th6M$lRd<@=x6JG`YTv5q*B#p}05YQt8wq#O3ha!TWH z1{H46!eXZ?7jOzVeN4K%aT2b(_3Jn{Gz^^(bThwkj;f~L=;*bgy`(E*Z`YQ z%1iPt+pR{GUNQj`Gl1+*AbwY}pg3INDugLX0+$mYSeE2%_?gd)ZT*zbxFYVUO5+L6~^8R6og1k3W!2A{4yWkf4lYqEajj*|WhH*rbV(dXV72T_M z;fCdN&zM(lmbfxMmR?-7f= zW9Y=@@KFT(*|~9~|A7ifL5;fDVRUSG@o( zYzm)%{h#gVKUfGD6)xDf-nnbs|2q|nS+ffEPX?TH+JHDKOtoW5p@-c3F-3|?rS_e3 zcnEMSF7EMv@(bYYNs1oS3f8lo4&8ttM9Or8GASH{E!{tkJGB6ZlA}R3w9SZ1YM4Z^Wu3HnJsg4M|Q2w*IG2^Jv zX%88(b;d{dVXe9%fPi7$m%gxjnbs4Nw|}*rC&>NkTbov8wEm0SX}L>A znG0_jecYlna8wixKAA37Uq$(4@iahgRSI675^>og*4q6`VT5BAK+Z6j+OP9 zi+E`(pMrhF*qb9Zf`dvG>VI>|A}~edqOnqOlM@;I+$IQKgogniDh9FpA1dDB+lCh& z^cbwCvZzHX-@o9qT}zz#%O#xP@hkjCfA&T{I8s#whCvzhO~MoYGiBBPrE&HzA}((T z&^X5@Eo1oolx;W42{|%^_ymc+m_f4c7@Wymp@dU{8n%-!;DauH@R6esL(3` zv3d;naWtT5=m0{)!rB8TX%&BHG1SjD2gJ7s*c{qiCMe%^@H%4`{Q0Hu|8zoxw+(Sf z-Ue+O&eZ!HQAnv4Vro~R%E&5G#g(YwHugbvj`Pg^y#NxD2=-@W@o|rFjc|`8agWGI zA6BRVjHL>@Nf*tts)?PRzT|@63FxEbJEp&lcq-A=z&0Vz=I9)mKp556h2mKt=y9ox z5oebSkLXj51j02T5$}I}`3mB4w*ZY7Ui{3T73d%k;DC*g+QKOmHx4AHET>4g=MNBr zB4u__wl@%B*Z*~y6ov>7+{Y(R8Fb2-qBvE^GP^RILD$Ls4!B_4`o8|zf1TsUJDQmJ zKd1RGDVG{mLk2LOw-QMu9UE@mqSz)m^nQUhCxkjkcJD7SqgfN-{)?^1?wP8AIJ~RJ z*#f$JEDNXY1T9ncD^X>8{7lOOn*S@q^g{Zz#IOf^^2h6{TfV0vtXMbm^zG_1W^D|yozQz;Y8q@QTSBKPV9fte0M{9zZx)! z!-pfnps+uGMq4tTz!A2D{d>IKA{1Q5Y^R|>IH4m*7zv|$uJikM1OBt~E}|^w*&nVS zjuw5AcYE0x854B0C{@~SHQSe$-wm^`es=O`fb+!K#|L=Tv_(WjUdyuRn#nyQWl~EU zEcke^-bV*o)(TCq4#5SgyU%3u#Qq$}#~|96RP2&UMmPs;;KW&)?{CKYXRS)2IP1o0 zWt!0q7)fR@KMXj3DRmn5-326%3np<`J5#+$Z;GKI3J3~lhYO)`+AhAHp$cn8#q7Mw z@VKxwE&l#im43C4ymwbnzy${iZw(;PTX6^0d3( z|EwPl?N2rL!Lf<-CI_@H$3kPrsSLry{L%pNS{pV=>i^>On5M>>D4JZ*lIOr7WZ0_pd7JELBM|@+>*VHUl2`Dz z3mc9jF^r-H*O%qCQHuS$Slz!?r3A(i96>Ixa9?V>`*E@2`HUAuB2-i!_tGs05#?R_ zZ%t9Kn6|b))9Qcl1Uj+B3l2$a$49P+nYhe%| zn4C!s9l)ftnEf%kzNx9nBOISWr2^QqgvW^Xy6$JkGa`) zEAR25Grr)94c_0UcX{(s410Nw11AH#0i-O?X#&%;(mf*`FJ@-APrsEr(neHY2j7cF z^AZFH;EPDU_z*7&^g2=d2 zB(ZpukhnCc0I>F$Ofg&MjKOXuQQnx+WI=TG^i|?9BNVO7;&(a_snvEKb-GyfQ{vB* zsiEht;OLY4O1$?D8;A%(uQBf&Z(=4k9zS4j45r}OYIy}$Z7jqx+iHDv#O`jnzjoZ% zaU|ipL;04>$Y#~}$REof{@HV-igz%9IS_MKcU2bJe!0(6d0Z#*-g!-l4j3dEJK6UN z2Q8aYMk?v~ZH<+R2*+D{Z+4Q+LB41*p?qgP31fk>+BN4V+iULndML(q{spyBp5b|I z>~e)nqg!K}82i^E`}rGUl~N_N2B*yc_*nIFt5-0Cdb!bdrv5;|#t7|WHzGL=*qew? z0tbjwL-rWF`gSdTfEsJ2TrZ#7`TC^&i)|C(XTyo!__91K99*ouU!Pj|YGRqJ)!x6K zUEeHLfA4XG@OjKlSHBtEHFTmjqm$`C`U4&_7fcoHI(gyq5jDqLja7v9uX2hU8rk{~sZf;YhXqt6fT|h~h zS1dZk9V0$Oe`Ymam;C#DYnT|5bP9!w@;&Vl551D8&~k(*>u{nS(t3xT6yZ!{F#=QFgO+MD#Fvl4bSQ`YgGRSV*=fjsRi+Ae2n53i8)< zzxm=IXvt{=0%Eo0U%y5~^c%%^!DKAs)-MJQV=X$F=^`z%#DA`9S-{#0e<30sH@Mb# zH^Li8S!=I_A+99k;PG)U#`#%K%!&Q1L?fF-iSI-4=;&D3^9fu0)Jh5?opKc-LCjhK zQeK>calAS=vTRBxnrdqqs)t7gZ2jQY2R}Q<$FEEyo8N3wx~WyS-i@fPpV)sOd=Nt4 ze)qDY%4V7m?l;A439j-ogq&R|@jGwBMN2f`xGkk_;}0uswfrBuv!vyEZJ$Doz^`RM zg0jS1tZp!p5ANvV^65ZfI>K#corsg5%{T7Hb!4+uj#yRZaHP5EdNmsuUq9uTsWYdT zl|cAa*y7}btzIH8+BjVPD4jQ^b08Kqs9DM}yNzJzmyLo?o6{vSzkmRxN|;-VPw@AD zglx3x(0QxOmG9kJy~6Pdp1%F^U;(`Q9X`O~Ma<)lESLH8LGH$BKH<8lPAU+pzVYC( zi|#G-6uftB-RRRwr>*t4ly!2jm@Aao)Cdk~@WkOl5DpWKjJ0_OcPMaUeU1EriMB*I ztpAYq&j;<>fxd}sH2fxAaX`F+k?!S3l=dUyj*d_CTtWIj3gk!%Cba7XJdVO%>E6>p zPz#b}Qdp6>iq%zDGVadFBeM9Uz51Bk*{w_TYJHU`m0&*CB&>j6ArA&hCJeDi?oQiE zS@v_S#6xQ3JecEi11}hoe)?0oYdGxBd%U(=Y!1D)7r^K3vgBSQVA1zKY`P}88iK#u zWh?f#FLAN7R_!s&le04p_?+J2%Z69*&Q}0j7>I~uupgv~j9`BD(>>wJS;_0oo80Ne z1}B5gLPHo_tBBEM{~qtQU?)P>Yrq&PeLrI%TO_jhii}rmFEJ1mdfJOjPNS0p6YSCu zO%Uw57Vi68I)2zEXT>kS%Xdx8PePVy?@Aa8%XK~PwfL0}x#Ni!J8ZlN!)q-G8Iax> zn+SAP$%@Y82Pb8|#6%~T6H4VV2BPElm$zBs%9tlXIr6Y16Dt0}86|;!vCXoC6 z7|k2Nuszwom=@b4u^AsEF8&IIUvVb_#Jsrp>pXTLQ8v`+Ta%lMp^v z)Tw8Aj8`t|WUcp+&u70ZBC5}LSm)%nnZFzGwrSNWGD5n%eV}Hj@L2Jam%ve@*Y1PV>2x&b_Lp-(HtZ*P`a(S@WR-*EDNYMKm%x+5lWErUm60u2kqpC$B+X+R6&!3*sHSE%P%Jt|ugv1K~ z4pP}efk`xfJqYOa7<+F3&r@;?@X`CNU$IJy=!yoUW23i!O(X{ktC;)i1!;g;i!q&$Twc9AC?&WrbiWtbb#cJMOmznn4dW)m${o0}`%Zb1@IUcYNL zS2BUiEyEbs7r{dvy)KoO$8e>2l{>RIntEz@ALn0s}fYI>ix|J@KG0x+yU!-0A zHVAX?%^`*xoR{aaFYsFS?G#vF$;=^~8HCH-L(PXW%^>*uY=TTX4>ewFX5(Fx$32b6 z9S(7b-AYaL17BuW*Al6I0)13bd~cERcswv&5RcfiK6*9|m_E}5?GNG_n%0;#xLlaw zv&UKQ{q=pbPIjzGT>bLYuS=ZG_$cRnJaF+1ga6(XENT#XHXu$FIvv~)@^tgz`k=4V zv@wAJ?i?w`W8ex{Up?HjfzuXt%Refeo?Y`HF!gf%HS({7huNvCna9fvR5ykj5&1?(3k-uy*79b2SDcb&1t#*ag5hHGt6FaQ>wVHlW7L7A2u+{a0|bAz)3bM&`=u|H zxFqO)2cVUR^1QhLUFt*+oeQ=~;LteE*VqM)P^EawS5_)tdk^|8Ck#WOs6E9=EIO5L z%Zw&8ofcC!MS~i0e@`g$-xGQd+v7;lnK0U%xD5i2`E`kbjxp>$i5?{~X#(PVqt%|x za^<;2u@>If?lSy5`O@63RRn(l#?z*G4M^RAh}%lIa4A_~m9TqwWcfvH?Z9r}iuP^9 zjTG7=28U&FgxnwHRP!PwnKTAR^T*sW-j)>t z1|?K|2ut`p7mVmAD|B+J`)llGJn<&SBZXoNFuksahDQYDQr+ErakeO#_8TMZZ{on= z5N{%$6e`hZ07!{WpG<}_C>Aa3v(Q!8`R25cL^5FQZcQ9}ha}@Z?!LnNw;HPtSp@kl z2STXo1{$pOvs*eg85pG(8p4wDVb?mNS}EXkO(=yTrP`q=TQs4lkLnQv;oHZFzpj1; ziYnC9(gGJH+1Nw4B6q5TUlxBH74F!q(@L-9J`_+Vo)Hb*XB)lX2qN}E$B`V*t9TW% zv4r6SC~EY=;2`dP5)05Y7mH>%xp+`T3hz%q#`_zPQN_VwCm8$kj~+P$Ey+$zpVw(x z@FG}UOtTh|n`(Dpy$+bx3k@iXdd=*fqvvN|GLJUU42uagFPUnpDY;8^v!4czSyvQc z$P7F6mAeJ^Y3de>6@peXg)o3?(-moVR)ScENtmGSHd>0^=N#NpPfV|M!Q}~rYUQwm zY)?9)`-zc9_6D{>dlvub-uX!Fj%V@d`fl53X3{Yj*tupmYU#exqCsx=JAuoRe(qOD zITkcd57fERhn&@Bd78d%*5hPqbO7q?+c-U%{qc5JS7(Z_PcGF@=xGYFxY_Fslu;}++}n>)QY4XYZs1Q?D8oZ zvaE*F1C7LAAWFE6)G%mWh{pW zLMcwGCjq6raY*5BRlz5mY7R~zXh}&)s3o-}ygRrvrzQVIDQ}F8cjZH}l`XtRH8O5+ zR~#X%cKNCV9mdvO-6Z}Pkxh=n!!q?g4k!2eWE^j2QtP7OSGs+#u`zBixl}DVX23;K zu)V`_5c!YvSKUQI4@A+tSOcN)b3s`M#xh|Q0nyI07fifFCocPouOO|kk05Tr9SIXG zJX#qN#}&V)MhMuN*t(MfX`tJ+X7n;rbMA{uQyN>v_h+}C{IBF;Z6gORdp~wD7uel< zW~a#uKlb>y2%LfTPpIynEM%`>y(xje!Hkg2r6LUHoPed^=KP*^ z)MGh$z1<^j1{qO7^HbH>_V#=E&yg)6os{5<%FeI}wp&g6^jB|}b-NbcfK>i*Hj_~- zRvp;keO{^A|G|2q*g9M(`kcPSc2b=}+vAD(#M8&WPLPrOIuW2*?^YCsMZ%+$H`AkG zcQ-|rSyA9R9?MPA*CGgQV~?U2REXe+vMw9Vq{Fv}O6PT4pV6%$?-P;3`@Qb)uyI=K zLi1J#@99qrqp$@2EnhndC2*F5ht}UyYOms(d({Taj(U9!Boi> zo+wfYph&*>NbU9LIgk~)%s~@DT123(Ub;|HyM7&?cWzE$pSifVBCTH1YsJou^(y-s zC$+CYX17F%_kv}o1sU@t-qlPZ!EBXxV7AJ!nv{KdwF8@~OLpa$PUiivD+MULJ~H54_&sLZpCPsj79f1QZ=D==e_!2 zG5AH#)Em9(!yI9H^W)1R&d-)eg{JUEP!fA}t$8)VhI z@a3@M;8uFao**E;ttxb9IWIT+Yiz5HqejW*%DDI+NBIyp++a!>gcU^o*kXE5E|Ou` z@o>uu^O^%OUh&*?7`8FVUMBa+PY9~_}a}nRicMKWD)xvX_Kwm*yq|?ND<=y#!83=Oz)$bxiRqa1Y6+z zTH&qbeQjwB94>11yp@U-Z1d948N;Jf>r?N34xep(ppx#cpH_pf8HHe&!EiG54TT)L0E)@d{X;Y)EEN390{r1vw@r*#>%BY>_!JBVJte#6ZpFm z`Kp$}rcy~tY{{div!Ox`Ax5<Z#90ABNA5Olxy9`9h4B-Cu--CzsK}7 zP>lQQ%y1fSD1n1(c&bg5`@xMQSKDX;8zoG=*v3tti0w13K(VW1jz#uEGPh%dpN4_R zFvc5}*mp%7dk^J_9mxsPE?tr>h4x&Ho?1RH1(F5C>Elx;z8{563mn*Nxl)R&z37GG@3x)`{8Hsc&j84Vz=86-9&$sn` z@OI;IYx<*mZUmTZ?i6iKB_W+J(u4@}&orXq3zATnGRfb2%HT-Db0UMsJ<}lTOWlR& zAXsyMv%wW$6Qx)7jW{*~m;A00HRcohLk1f!!5dEwbD8Ko3^O8$I!f{A^{L&qDIH51Ms~Z=4$)6xC!j{CWZs^&a~ijG8IaA*b#VSpnWOfV%Jm14I~O`> zyh2~!kLh>&*3LB(JaG&|K zy=`!$!&_^o52_nyo+d3}wXtWmdH{gA^n?P4}o* zPvgz$YXOWgZ{(t)(AU>gw&ISlE#VMX%#Xh%YOszAJfMxv^rFK7QO<IKk$k z`7JZHYv2PVIBaZ>{}K5C(`4O>dBtiGUbct{zSC8CKrMHyNy`F(yV3wJdrNnDF2@=~ z(oi8T&5tU;ip#LX`sN?!j+&Kic0IyUTv%S-m#N<5d38o<1jA$b5avJ{8;?)N#LUcm zT#X+&F(fT9R~Hoo3E@5_Q0jzz{^;S8<# z3<+JUtpdAGVf6;R`L<0JM#Di4eN^OPCE6KN>|3?gIxO~n#Fw@Cz`*Xi`NK}scfWWvA`LE7 zKUA`{x_yZVM9Be0Yx0g4eiFDio>ay`TQB%2DyFrRDrEf@g6@Knq>P!r{x%*6J1&~K z-eeeziJm6i98Bye5_;~4a1Wny7lYgOHt6^MdSFJ{3{0bIUC8ka8_0i9ks-J~Q!`5O z@MW_KxRnx-BI=lQUc#Gr1=NA5mW6~vgcnnN!DT}QF0CSxb#=*mey zEGrzYRKS9cB@=zy(9@x~YB-Gk0$v0W;^F)*CKy#@>0C5ZqQ+@yWIniRCS0g;$Gc=J zko$2wA)N=?C&ojLd^`1y>yza)dBH-n_qtr*>oTJizb+iXE;v&CEq`T-)~N+`xLg@@ zmNNaNSz;)>3kRpOS)cOEfKjnI#<(|!{qa4Gr1U;D=AI5?vQp1XpyD=u$>7tffougH58(4jU zxM@F)3j1!SLhQljrCDRdQbs#&XAS9UP>!>V2P^@6Ge+4=F%a;tUa0{Eps^--dB&E;tkh2T(5L8 zCW04FJ_l2uVuAiakKa0fIPt*yNO9TjIdWb3$jt|mvCbQH0#;}9u_NJmYkyPvQ_4T6 zv$Yacb8#2+%ttL?QF-twjl7?s?%8 zM5(hIwT~!@CzeZ&dUMa*I*~;U1kpK)hQy?MH<;}rm~5yr0%_`v{MbO9w|h3|BavPL zd(&lQO2A7*Hy2~!8)yhN^2Jfmo+`sSs;o($T(S(_;@6#p;tzJ?RPoAw?`c?Q(OA8D;_GGEBvvf7vgu(uQ$elkp2XDWy1s6(K<= z&EoX!g_Cc5RGpCFZvMMC{4P)y{t0#zF?13*#xyGSi(QsPGBGMZO~u+0%>;Tstdpqc zQ}X~Q>QI#C_=)V}S93TJQ1fr_?ISLlYn#c2YBt^#O$@k~mM|`_~mtYRaa8L4PZxfsQ%(Ky6Dc z2=T}Ko#w$_6aI3CM_H#$p^z!}kRLgj#2(OA8v81`~)l%Ek!36r&p>*VYDJxNPGXS3s68> zNTN8|iv__J54Q7C*-So>Iy*DDSjdkYgO9!D_0P6E^Qcm9QI|FkCzlkz%zO>)2g0cJ z+T^eSTu)Reu1^PIL<80UqIM(&uo$8*MR7d|`Vc(G#pY@G zO0#a!A-sQ85@QgrqV}a?kTRz?-~r>;wy4B)4JG%IMpSU)@W~=5I<8;%_7+_;Wze z!1VM;II`T0><3SzD>{uQl5tETlu1wqn0(k84xJ~7L$?M}NTmsWDrUJJ&FQPggOYjb z=m&;ac5R+|BlXW3*s;nVDw9yQi%+fICed#I@a+`ifSk8yEPk=*zB5(?ShDK%2PFD*N zLd69@ov>6>3^N8W)==-Y@-iiZ)1sthC%)swE{D!|K3(2u#AD3Y$yRH7YV)oA^Ta(H z=Uwpn+k?smMN{%Wo%+A%JPiQU8S;U5)({EeZ(jXD&7cC8vUyt|epn}?H&!Z5DBql3 z=w$=ceOgMN9-mZbazR1scf2?@Rwl5-Mn}9=?%Z5fF_R=5#7qjU2k5Q4t%{t6VX5&R z#-nYuw^MZGH#@ZRZeJy6RefGpD_QwLJr9+DdqPnts`~P-)a?dV{{dv3C2gz{jpE+I zk-jkN+5>WCC0`_pZSn4#_G`n*7HO2JGDY2nCu~yQCp@K%sa@qk5&?X7)s|fL#1hdp zk9Q)CD#=`~ah(yvUA!#%f1qY6Cd3~RY?2tfyu|QzhF~FtegmvYD#)^H?>`xf(_e1{ zujTgsKIYh#{6<{(z>a)*oEsrJ*U-k4LVOygn<&Gqf^412US~a90!fXi>@*x`Cc22r zBDJO~a32U$mFit6H1wj+Sm4ouqS|jf?ID5au3(Z*$4~yJ-Iu265;#|P6(3o-A{jCs`&cvk>j}XA#~shHooXITGYTx5cDY>vV(vmdKev0UyD>2KRl1 zzCAE1Q*mHDzOq65-@_I8(|Vzy0^y2|t}&Bp6%%&lP0f7?lk~0VotLSw*J)8vl}wS? zT!C*Z%t*0JhqvN$53VcHf>K`c{q+%{L~KKN;yPi9v3mAILyN~l;qL`s!(5ey-ikx6 z9#S>Uh_`|&u`fv_@hwYYRvoJl0`NVWpRsj4z~O+kK;NC-fDrgft<~5Wvt%tf?rPm` z-vZsDihS~2oD}lj@GjRLPC;Px0<<=sr?%C-VXQ{Rd}<{D1%O@gdX?fcE{HpS1c+nn z^}z4)-_s*Z`;bZ=2Kejka-{yRr;BGy+4v;j)19=lL{aFy`Xd=~X6LA}H;dTdK*YoCb{5XpuoG{a z&pciegw)TQXZ||tjn1Rqv1(bNGVt0Ewa$KTM!0E)X?kT2l8TlQK{P>JX6*tS6%7U$ z*7SvRJgVs0W&Z3DX3e*FT>kQ%;d=~O^wPKB5&de$I77ftGbC%GrdAc(n_shzM zovgIcDdYM}%nzFaS0U@Hcx0R>r$hL-PJ$s=whO9nD%e4(OQ|$D!F` z<0rMg`rc_{=M;_sHS6Ll1v;RCy?gb5v|m}+TbUJ`3xRRZ5BH4uIGQ%;g1NMC?1+f(HEph!<%t}OGGhaud+Mzc;T4~9vlJi!Ud zP&G~KpD<4bgxblhs?12Pizy)mR>1-`who&xgMGwd?UBVvih2H=RtGkOBT}+Uzc(0#ix=W5G^eVsECY4*5KYPy{Z8joS= z!y^#YJ%h6e*>4}}YptYJ)%HV8+r{+PI^kEs^ zM51_LvwViu^mv1pwg0%4j1fW-DYImLfuSUh+~q^1@dwq;M}1&GuTrS)dM{gv-r-vl zRy{=s^nw<+{;r2G>O-$o^f0uxGTX_&`C~Q1rP%=;Gi+1_ z%1`vKF$nxM25bRd%0I>cLI{llgzlozBp!NMfX9<2WR(i!{9mVDoJqH9pWQlq_q-BV z;4Yfn5pW=c7t$idy~b`Lafg5rkYW5!HPXcMF8z46!n%=i$6K_Ed{(Qz?M~=7z?Kf zeH4BNrzQ%&Bj2h|FV+n`8!T2Y{U)hwt`I8BG7k)Bmb(L;^Qq;!>~ejKrPku&#=C${ zx4}7Q#`r{~nN24wsyHVFB)91rjSkEQ5+ltHbMz#FUxojVp9JSQrs!O-b{VV`sf)%{ zqqF`$jD2NTRNeQsAV_zE5nd+inXy4Tt?MJS2thUg$3(}F)YOUgxg{}tSy-$yRfQR=4;fN20g z2(fZ{UI*=eIRq~FK*|A<=1*tT$j4?COC3DUA4*H4wQ{O+w(3}`(0mO?44?fGQ&WJ? zNy8lMZl3pf)2OTm2rL@iZ^1piQoxi1+9|yMoC$J$(^%ouD|xh`kh{`ZZRA;D+K>D9 zX?cVK07DSs+`oeKV;Ht3@RL$7@Cr-;yc^Fd4-KV`go@5B1-Rh-S?Hmuu7Avgl)1|0 z(f1Mw|1Oxfpn2xKdZ&gKgtZp(jH0aBT#pVgyeNZMUcJI(I!Dh{8iE(lC z8^cM6>-;G7KJ3KDykBAF&Gd=zdzy;?{r%3od1_&Ep9SFn{I0hFl}{nS0w{hA0G*3S zn+_8D^9wyQ{XJnrJpR5Wo%3|yO|{?WqRUK*@0llC-_#og_~;-57u!A44>X3C8vi{y zpU)3l@qQ^JqI*^&=O~yV#jb;1B9L7ERU(Hv_A6n@&N(?kItby9FAM?1_k_sS#{YP# z?na&z_u(Wua{fI|VZQCmxp{lChE^b6tlRH<^ofUk*JS9tXLBhBhbNws#E&)1osOrIsZqn%p6Z=++@A~ibue^$iHorvPr|Y$i%%a2&#H6$!_z3 zBZ3YI9pg9v(ki6u(GtjbLyV0y-Xm$Ow@Y#P6^tse;d!xl_>l1{>vq3)$c_tkDtZP9)>O-O&g;0smkbkunEEM z$0cXOCR?jAoe+obr(th%)dJDA;K!#Ps)llNml5NiEH;OqAYs*??LB*HVrl!jGc*R2 zIryA~`QanPuj&4g!Ok1(#^N3X6@~;9pCdlI1&&~umP^Tiq_`ey_nNu>ruEfz7s`r+)+C4!FlJ@fU#wVwpU@&*(v?!aVHL;Du?v0Bx>-?pkHteq}KP;Ll z@Q-_WF<{Rt;0@T5^WA$y^eu*6mN_pVe?qUvaLmcemkTXy1FcxM4 zAlG3+e~DqX{~P`Njs>7t{=e=d%p1b^HXrKjY?(toCEa&s#2{fhUL2;-O;+G!vMe;dF|)kTGT zdMXWL7>9%A2vf-6$H{ID-^bwpq=5II6ukbh31~blOnxuyA_6=R7XuKxY4EZQU-i9V z5PYtw#F!TvU8D2iW1KDULXcK~cfpGw9!=aLfik>aP8fPPBlsxa#s9skzM;B6@WVqk z0)T=|7vha_SMlu&OEdf8cdu$mc@(p4n>fmsm)uLQ_H2HeqFvCO55T8CkyHDf5(?_&ldC;U<(4OsC|EY&3Ibh{^``R@=tS? zao!2#D=})O4X!S;p8g~cw`{n>tdjaL0g{AuUO3629ex7r(HifAMY&(V@c|2xgLitD z_54P?=Pv{91+ZU9QO}uXuL?L6SqWy<8Z_B6u%v!X`R5v~F}i2Ac!clEmUc}sIi&`@+1#C@)EnkQBu5qCG&&W z7ghRrFuA+lf)4fT-(t>a#h-gaaB=#UGfVI|Ee8o6a~`$dJQIv~jmKepr*<>j*oYGT z$rYXv8w1L(Um3Gk!aui>gFmhNiv=c(6OyWaP*hq1x`U-ZgD8v;5R5YnU6P{s;o<(` zDEG2eav=Z}^K+N@YQ*;>Qh2|y>Hc9rkeXXvqN73py3A*m@!-9q40lZn-r1?i#1;`u zcnj>{1WBTgxj!K2SW%+5E6Bg+w6fo$1e6(2X*q(*#^)Al4-)9ax|g;ag#&*&3IYtn zH`r8d4#Nc#e#Rel{kGF-Iq=I(xSh`6+`WC{BtcFU4A73)*w_#%=}#snwcY-9J@fHt z&i992D*L0OgFy&6!p1M_@xaC|IZOT1#?0Ay#!WWBN@fZHPa@YaeYOO}q?LO?!=JwAbEMO)}T8jfxDzBZinwnan z=l~p;gkMg}s$CiiT&`z&cY70j_?cCUaxjGl;?%Il?|UlDYrAmVd(pYpOeO60@+1E8 zhs{6fNxN3l)oR(2+xt^rjlw5x^QYzI2htt4;%It_U{nBYWnW<@}EI^`kE2(=IaaWm@h^Rq<2P5u--T(3emquN9~31+@*_2ZsPCb1**Ue zCay8uZ&XSR>jYK~cADOPbod$XI}tAX z3(r)f2@jk3>G5ENarR~4P)Pum^G?%LPf))j*vggt{%(~LCX;F z4Sod5G8<3fxzgUNww;}v-nEPM4g`!#Cj;N-4-f9=)8~H{TpAd;()~c7rCq+a;7Qvy z=CPt0tKrw=w^Dnm!R=sf;1o#Rz#t9>`#WyC8w6Vp%E_V~#i2eomqCKJDLn5TPquxN zgx#GAhw+{XUiV_v=El)4w0K4n(94Xt&H|t+nX#822b)*eOr=$c==M}ubbJxiZ2p%^ z_N7H$Xh;FG(`FwkFr*xkX0y0Ao0EzEJXD`>j}2)|e~%OAOao2J$IV_55Y zMtxF2WIJ0W_3M?j<3*n(yK(c=wzf8Mc?P1AHw&IkvS)Vlj(@HNG(kTG8(jCxEqbBC z-j^s}RQ~~^|MT<5zLU+iLP1k;%&MUXeMoJS z8h`a&wuosORhe;1TQJU!E|H{>4^fHh-TPe2pz=PKtlOUJK$psGh{#Bdsxf3_AdN>ckHN8TVDh;EG2B!McHnNy;17UcQ(g(E!rT7(uHL;+@50tcs5eooZccfn z%5)KSZz@CO?bx^OLv$3R=l7NwNHIR^Xh$(VgvIR-QS`)27lL8GaL7e1@56#BIsva% zq)HX#O;kR6?`(y+Y&_dph4f3BIC;2l?_-PW^TQ|OTDNH=I5$^8Oi0J(*ov@&O&ls- zO-uqioiZbyLiUI<9Dq0LP=jsXZ#9e!1Kf-mDSWydz!E#$8Xn;0q8nn^V`#odD*?thD+q9&DVvhbA6(Wl02J zcVAVzJEIUJJKkOgy#;c1ZmQ;QPN2H<=TT2@pS9fiF!asRvxD1(;+d=D;+P^Qnm30s zq?SRDc&8t=70}KkV(T#k1_7~l@b}!)J)tFvypyMbUMv7&Y|%vvopfL`tPK?$nyxU< zRfbvg#zOL5UYvWeXWJ-0saY+I2C7snW`#D%V+RLr;ee?pA4|(Y0R>Y%IBINriW$QP z?fd(mr`~YAv6O!BF-e5?9tAwyv6#nhVoSA+&q*iX*8SF=W-Y|RE?YyTU8n}2UGFB0 z0xF_f?Pi+T{2tu9c=a6*0@@Eg^u;8(^3-pTd^^Xf!c z_Gxq|ah>wU7mWhoYQhLHcRvU7yq-Ow8pqX3oa5b@{upG!NsUfjaJ#i|v!+Ohh8vef zkN8H}V@}rvLt&6V(>GFTuvw$`e7(zkOJM2iN+wOdLuHs|nf9|8CyVYr61Ja?5gJwz zcSD#-7^}=NP{ckniQ_k`K};PTo%JGUjx+|e?z_%J@bnZzbLxHI(0L}pcyph;(q{da zoQz%{^&ve34svP_S|vP68!~|I1dQ9lAHRGhne0Df<~99Cqk8F=$Q1fn`x2PC~1xJHd0UgLkE98nBnak0P>|kiNB&ueKwz9j!d8|ja%MLF(HYWPi z+ml~aJN)j@MA2Lwm?1-zf;~t&10IdRMs>6{sAz?l*Tlq1M7Ju7u$E3KmuEXm_t$*x zk*fs&VkCsg@{qRMrvMB4;BR?mh0PY%T$3xGHX<~j=`oCy4Ysk!(|v5s9Zym07;X;@ z>_w0+R<$C)aX_b6a!(eu0=Q#~dpEt^GJd8uVcZY6bV|Gka#rDaW`|Ht#hobDVWgi@ z?&}6_1-?6&wQm6dvsa}1EyHAm)$nPi0t_EhrVpgFn%lEc};;HSVKQ zq(20*hmrTJvF2{-Vlgbm^M?2*rJ}_UR?^`hy1n;pqc8Nn;|?a64KKPy(Ea^Lq=(-I z^NtaVZQ_@$<5VyE-3?Up+N|gq+a4Wdlvh@UJM2>N+MFZOz8-b~hw+8=Y!Xzq84*wP z{{8!euN6M?9twGfm@W~a@gTt9TxR1CP+uIacN?&xHd^kGUdwWv%_Vsi8n;k;^@^>s zCg2Ty=JBjWghoc<=vQ67PL8^~LSs3y++S$wQT6sw?0iy?7&z6g0b4_03f%Nwt!dzZDl{_z_N~v!z&O+ysi7)`1b5N+RqRMdLpoqyOC;mIVTVL+_o* zo>XRzyivE3K7qUIzj)9*6=kNXXBfFQ#fT&AV!}=^H2|C+yHdD(z%0c7!#i@e z@)80b^fG4YAsO)gCUHuEAI}vnk7vH_h^Dz}#oq2Bp< zspP=dwGIo2&0?3$JcR_A9||N|36$1{_syb!!Y|GcwP(x;o7K5_0{M!Y~LDeF;;fF?87+NUn_6 zb`p3o-_vXgH1Gf^#)bNWLd5+3=iB6RT8!52Q$`@c1KJz9lE`t`ajDSw?-TQ2{^NtK zub*EJo9wxB$ar^YfeCX182uvmVwsukW1|!FV_U(=Kfn)8Q*SPm3;iMNUGe`H2(LKh zSs4EdglX!e5pe_=@tmu7$5H{Ol>;-Pb@lbLtt<1-xBD@l-SQd#j|*^c zc+$4q5#k60uFn2OU9pe;<-N#rAD!eRX#b$6QE7<%Nq;*cl`ORQ)`6H?tTSbZi6-j- z_f+x`SbyX%?oUt4$<)Rnaf}wzX{L0nI(KZ4(g3wM4<+FD-X@NECKPPneDTEnXszvd zYh1nDMB>BlG(n}+pnqZwpU>_Qy|C~c2^iYq<9%}DAB461d+AfN_mx>kaAd91`nN5l z1p1`s4_jtd%~yb}gdd8Hlu`cq0%)@i`1ui>)fPBt<2UmAI*6EaR!IB_6FP$e3PTq| zZ2xBz^9TVt`#%V|jRC!-?aQYU5)wT?`sQ)E>n9QLB-=9l^8waDchuf2Nt#xPHstpD zf&|R_){7a z8Td^}@%o4g>g#3XbeiITy8#z%E(UcXNGc&|#qsI?Osagdr74Bzq3=L(- z!To;!EaC>H%fFWk2hann;f%;IB4)zmm11%B*EuKvix`(lIi(P%(22P6pJEIgb;V0y zAgj~S5=|E3bH(k)EdkxG1l)Bs7Uce)FbHDE%_SXHD|Z;k%~yyrYELbP5TSW_jQPr$ z!9iH0E2n$2Jt;hF9%p}Y<=`8O-XX1@9_>z7NJ*F|!6KdtU;@`pcAe}@O}Lg4gVo9( zZ4779=+s)=Nk=@WGQ-NOPVlV&J@9O4r;~>#!=;_}dtajZ@zVkdfV*T}_nt6T zqGBMKSpM?>Y3U^}jhgaxeUtP}FwkmmA&*V|^3lcLb=iWU^!S3%nrOWGk2eH=>_23H z?&yKOT~JVkNgHw=`_@zo&BwjDFz3x72x^E|W*`C3L`f|V*Z*N`>J>h_{W1F|udus$ zxX9+X`8-WB{!<%xpndLiy8h{RQQeU(%3se}{B`VY&8Os1JaKG4;3@ajQ8b?%SGVV( zsU%g1p=C5zgio2vzrhIjq@+vqxKBuu za7fMR6`3`4&v{uzXH)%UZe8cuqf2&^+rs~pIVrn8m-LEqZb|fA1Y5}yD|@O?8B1f6eq#!J zatn&Gfc1)XmHo)D2B#vQ^j+kUuSeW#gG-TC+={JJi>$AsnbWPK0r^yQ3v0_N`4ee7 z(?UMGH2LS~Et(!>7)~Fm9`^>;3Wub6EyKoZpzVY70_~?nah?J4a1A~UGv>(IE2FY_9g3EwEJ2RwWHBIhmz`TVc;wbJRp z`fV5+*sSmGQiY|`ddLDB7A3BEB0G8uu7K)0`0lhKCbe}K6;g6JQ|wM63Uet2kYC7c zg&RG-`|-Jjo7R_!jCogc+Ndbm z!pIoc8WE$FTPCDN11lUqFfjBRcfA|q`rf_KDM@`WI+?oi@CXX-902;ztusU2-F+56 z+%x%Q)?vBb-PvEK%S;BaBxYvNz_OFIefwChHbVNE4XwmxNgvna(i{Al@ynINowX!q zTA|y<3;4?-qiaS%9bf0!jzqNEk zD`MrU&ZG6fhtTYszNl9nP`O>{nJ#48IGo4@(=E;gD8e2YdaMPi8yqd2Tv@#HHAtn! zF1&lh6W$z5X4?|NRNNnBr5-oHBl2RkY!<9en@gs!dD=-txszmD=eSoy6m{eDB4 z{c*Op$Pw20h(PttB}Gbts}w7m@0{CqsC4}bX*;`A5n9FdEWjw9GI4!RtOinx8J_HDc=hK`>p&I zim+WTD3o@z_<1@vErB9+)0;QpEVGDd;S=q5Y_lq6Bw|ysc2>&&0c;yTyu9E--QLEF zF2(!%r>_$JQ}U0veEz2&bt5fMAkDJ2YY0k8OPCdq|W{5GuJEM8jg6kSccWy zhS26yclOeAyU-7*{{i%-ZMf71zj-x@A>>?Q+rqjOWyeDUUl~Ii-ujD5+#hwD*oBYv zr>R^cFov(_*5d^SFsfzPuG4uP{74o8bGp~O_!7wc1-CcgWq2cRQYiWOHSTAc!BVG&zyAn+YrT;2EnZCZU)u zE@AP1@F?S4<-nrqN#Xo~eEMQ#dDrbLNGILJ63xQ6=k$_om z&h;bbHDXuDm5&jAwJ`m2GuET|*1JC$oz(T1{w}_2T%moCyAFo>V(6B4 z*Ir_<(^fY9#&wF(kIYvpNZBj>HS3wVJOrTJu<0{eJW`c)FJ);yvEgK5({>9%;HvaF zRX?GxN_OG;3{frD(k%_0NzzUjaV8O*%xgq|IaeX?(}pc!S%B{fe(=B$`wj!SUq0 znQK{)PuGkxkjCky0!zcIG(jNP>Ebd=!D zO9vw#L+@Sb+PmDN)w@f8)*Yg)Z7<^dl0}}dd$p}mmSP;EWR^_epw^C#INc4OR}_h% zA=-`c+-G&g#C|Q!fTPvFx)S|wTIlwbTF(!YcG9!}r54zvUr-#DD}Wr>j#*BoFmt&>24NJ07t5mSTVfdTZcw@-#A3e5And_;T^Fuxkw?7r!}Tc=-(Rn_sRk z#<+SzefvkoooC_CkjGQoD+xfiH7v4xi<{Be&5VwK#bZ^+=Oc$`EaRLegbDHuaSFk| z=_&m^Bah`V?ffDg<~KL}SOI*HAw+2+CVE5z3wL+8)~6)FQhBWkDefxW_Ed?qfFk-= zB+t+MDlgeTcvZC7f!a3Xeo50{Va39%ENj@}|L8{z{e?rNKN@_c{{XZdM~Ew#N7RJV ze?2MnPusbbD5kR87I-$w{o68(-A$Wb45lQC$XGY63E#e&?n;XJDewuZ{ONmq{>FY# zOm`x_laCO4!1W_4A>HpO;aN?qCWn_kh*iE4A%^>yuw6%vz`351i&O&yWR_15a(D^} z;KXhsTkEmwj+H4lHETo>6+LcX07KdvdrF0t{$0cqLgo#Zy^lw z5_!1GU2*I7eYM%B$!$l{9{Q=N2ZvYZPCZ0F`J_i)(F*XY3i}rHmWl2+xSiG@oa$g@ zGQSZ&GCg2{SvYXk6NM&(<}+X2*qPD*+n2X|8FFL_Qy4;Fycyq*-YqXLZ;pO^t!`NG zoyt2^xj0$K?qiZCt!(@%XBVt{GBgyY$&W4dqUqqf7Hdk}luH7UF6wx?rf{R+JJq;% zOeLpjie;g=K4CqoC>p~FG&%x$)I)Lhul3d@X3}0PWMi8pyHO}QeQa)S6e~cgAYA_$ z8PD&;_ysyH2Y6>QLDQy%3gpIb`O^7DckS!D^tyTmvizn^Q-w(&$TwR-toOf$Vi$i! z=xZ)^TeVZB6%evFpW{mS+KZ1=Qi-S7$Z2Ok_y2m08D4^B0#Ep9rd8kJ`vdQtlJKqc zXzWrT51l;x1rPOd$u;#8LTT05R~h0<_pxsnpy%k@)9SQ4Sp)@<56{Ph^XX3?)D2Z#he zi|n^7<@Dig8(j6N%E7KF7l)rm;WTlW@iisc-^L``dQ~R*6DN6-}^ z)YTu^HofgDf3ZmDQ_|2T=qazOwS%;1xo2V?r=(m<1X1({+N&8L)h8{VN~MX(b#@i3 zi2NZT-%KtlO36n)jcJF*Q#an`QjVUBh5;yR8DezsPYzaIo6WAbJOS0^8-1WJoF>=z z=Bh{f$&^k{LoxP++KK+5^)|LWSw;am+iS|tJ`$LT(7teMiachgcN;YE#T}a-7Uz0O zGpXDvz)+SQFfZI}7+^#XKi3A3y;znErW9N*CeC2AkI7~c_eB`tee!nbHyk%uKJn(b zZZx3C<~bX&3||WlRf!2UH|wZS+)sR)s6LreBK>dRl7yp)5k4P@&4hY1j=0s~3g28T zEy~*CmqC{)Bp8ry&=WsAnG#NQm<6-mtIdoWI+rJ@IZmruLR9@GN7v=B*uW){Ud<>P z#UrkZ4z>jDvz=lzVkR-T*8CkeFi@rcmMA%TTk$A3fv<8dsvJUMV z9LeUArQ7@(E28JERtt`5{nSalWUvQ~@}oC3Enk%|l8LQ#e<@$&{!BH5F)Ro&4i?&9 z{0d^p>v03cxw(A1ONpMavOy>e&4LnK)%f z%&p9!*DB=6Lu;oQ;x#rKNt@c~UHAaey4 zKTog={&clzvUN+``->x=yb^a3wK+J*`BHU7T5cmpJk0*l8>o;oj5%-N_v)i<9NC^Y zwsJWs@DxQ@y!REdM1c-|+mV{=SN>S_Bb{d~E+M2P3-xs8%kH|Qh5k#*Hy^NwC*!+} zPK9V?DHQe&Aw7Fy_)gYk3N(@NY4Z2*iH|&Bu*WB2Du80=KeS|Gm)Bi;1olFiedZ!l zC+n+-W2-8S_TF?>90^{f@1O*uhei(9h35z6$K$wIE}bY;vxf*L!ltCm0(tAl3J`1U z1rlWzu{6sbsw>0JRh?e2j!;SLQ#{7U!$LqMg%^RosHw~hRBP&?N|0=K+FXc_&JYTSraMblw%CLpVzpm#hOPaajGS*&+;py z)Kt^vIGAXv_lsTJJ4UiR`mIJI#E)lwNlLn9AHRggZ&HI!dZ}t>TX@rk=VgP%_Svc+ z4o*~te~h1jzlun0i?O7$ODPE3>tllDkkehpDRcz|mbSC>34DeT@`m#8r8yE)^?U&@ z79N>0E+?0J_>hpI7PseE z(4*X{tc4U%l`8TD~Ns$36W3Y3*IldWt-)xl_#4&0j;JEuE7!V}T;Z zAJWQ(=J!(%Ub=$!Zj92+2B|bosQufa?yp-Kl-DAd;n?n`e_dozcAp~cxN@|g7;zdd z-$NZNd2;)LcxteS)S2(IwU)|Kd5dVT5w00#eL{i#C$|bRC26o;5`CX+=%Kd`S*Lq( z4#|Xb($zDWuF}ZfLeI6&bLS_E(OQ)e^6>JT-{TgiF{%lQm}1w_jm5%^AGC(rfyo5Z zL>6d~(P8I}6pbv;{)&E#b+W&0+hujJVx=&S&emhiHZ^V2rz; zxIGmc9M3MqIj;F;6Qr`f@Nn%me=<=>bf5hGO0x7h+O=qb$+t?34qb^NnKz zLTG2&*WidB@c=+bIE?5yC#{({!9<)N9Y=m?6AN@sIf>L@t!3aS&~dO#a!0GAz!q?) zdi{JylF{9$kb#4Uk)2|aO~8#YYMj4TiQUt_oGT#jX9Y0*a>ULg01cLAs@`E8%UZer zL=}_^qH_a@hW{k7mV16QsHv@~Te!`;9(L`J=hRSAgl&rk;+3)Q&pm2%ud-JOp@N-L zRCCfKr~e8DCzI!d#@L6UIDNxn=n!TF26e_P)bbPqxvg3b6n0R(yV}mkqM`QnQeM#h zMP2G=R?>2dRI0@7b)T_V;+v-wLt|{kbT|qvVmi2H*X}D{IXrt853wGf4X!iHNV|3? zALkH;Z8Gb9U@jH44*U7rh~$E4H{eSM$7^j4^kGQ~_?tiKJOrLvyl5Gd?Ba16DPE{S zg%g#siwRnB5S2`K13He3i5JAnXTsT$++b)HWs&f^@wM_z<|58ZGKUe&bW|{;QTs!n zR!oavzE%MIm4Jw9y=|W&Govj2d|n&%Ford>9x;fU%Cx%F@Gbn;XUkF1E2h|r1xv=Q zYSydgMWRligQ?!~7f_6B$hYylG8}ITj*MuaYdl&6=1wQLmeQM`Rj8r z{wrABs!=Y63$Norhu01&pm_*iSImARXmb4SBL#R^EKv39aqUzc2orx9E*=ZI|-OhSoEzmb|q-|vbp@ohlrJ@ z>p+-Z(!bZ4gqhk11nOYYOe=SywHFL|h3?^~V`Pe@aQNL?u`kv<+~ndIR7x2oNehM` z-~P(dOd_?wwfoz0dtmg7n%DYUd;N^`xgC`ZYZn^k<9;s^Q;4X3b3AnlyNi`BPbTKw zN&L#{4|4U(x1;st1KNZVSIpAe!~Q^2IZ!l4KU|EnhvXuM|G0_x4vXhO2$_28^Uw$%As}C8LMA%L!~(d#o_&dGjPnf&C=kn- z0{fp)q{WyYI-ZD>y%l+Dh%9kT_+yKkgEBr)r;C`thlWD|-e^pOHAU>hCJ6aWMwnI< z%B6pz_e(oc!yTs9ryN5?VV*HBnfxOD&IrNF?(7R8n$mn_o+od~C3If8{RC*8V|ZUf zE;=jQx-#L-Lnl+=Vd15Ljnp6mpP|khj1lb2Wa{w1mTb0>E%D%0aE~oD6VfFvRk`?$ zM1z%}Kj!MHLVw;F8x7q(044$ewx1lz;COvIgSLG>p&9(Dr<3y?MIP+|71unkgRko@sxiD<4hFX&R+e7%hpq(j>`TEQ z;UJfyQ&$g2ia|_$=iPy!t}ui7jEp(H+Zhdtkwqr40hD+nKx;nx;Po%u-ftu!T9L1b zTYgczMDI1C{%jdatT&Fs>)zK_F!)qJdo~-7(e$DZ&3wA!EYL*}( z3kN5)AaTI{=y>S(8Nc(?jlq;&l(Z?0iPApd%BaPes)sB~vANHDzB_C?7^3WwDYiQa zZ<}I-1TKcW>7-o6c;D4tUOJOF_C~OSiJ{dbhcY&;Q37*Px@RIFz93zyH#{;@Tk730 zBx_a#1mW$d=l@bnQY^9c${GLoh>l&u(%<%P@4@RCl1b?Uhp)92ey`ELvW1?2vVN+L^veW1}Y82jGK5kwb|q=%9h}L@o4KE=6247E^S$qHFRwf5kBjvb#S? z08la}_-IQiRI$-FVey&Bj=#37_e z3zGtXT95;^_f-09@_kUw~715aeTd%kCZ%M2kwoJ+OO~8IX()K<`*%ZtoObwoVUwXSy0Z5evC3NPTjQ=x6|XNW0a7A#lO0iMeP2KYTbVJMI3HUrCK}Jzt-9ynGCnTq;vZ`j5GD_ z0^DTPqLL>O_=yv|qAp4{SFG-#jIs#Kz$CPgznC8^XuHcCEN^sIQl?BOKzENUKQvtW z^+z+dhK1tGX+#Wh#l_;IKsRVT()xP?JpxC#D4q>vtYJz5h&E3SpzF64morp~wBR)L z;`J!V!ZhEiYCsjAfuXfe*yVax8uAOE>E*`)frv>`iRNMjTp|zwf&K5O1c%33D7(nwFs=u_wMWOz> zGtAv55>@a-DF5CfDhuI-rDL&ZZal~nKVFp4PWs5(D+aWkto8npzxM*&@1D8n3{cdI z^0!>nNDbYON@=YdSj>(ZrM<5+oBlqsDb`;-7n48BiB~^m^;9JxcBl2^&|_sm#{?;g ziz8X$5s<{^6{7p^g8gZcbGR(`m1jzx&)deHc{4M753077AN%e#wJGJaFS0pzCm^u7 z=Gu}CevQT1&!R$tMqgmE_#&t$Pg45{~3D1WEgTUi^*W{i9*L%ydD!8%%?)$w(w`P>m{>bD^Wo( zuf)jr#U%>Ta3UJs9NLlsg7ab2PSOECXQOwmo1HG}qPd5sosL{VDt{WE&%MzsZ-Aa; zefgE*KXQX&+hh3_?B5cMJn@6(0_XDa`z7f2ls?h8(mc7rsqE~+8%JNL3sw!`@4rL$Xsz=Oetg&Z7pyWc8B6emWSi-#uoKDIb3@5fWQT&U!SSleeTtR{f223EEU|~%f5(92^Dgn!y;0K zzYD!ECv`a8C(aIKqwxKmqL!uA_mZf^lhbg%*Q3%(C&5uhf?!Nsr$uZjmFSSTM~h6A zgR{6goBeHeJj50b?&{(G-o-y&qnH)SeG>frM+PQ3F#(I&@FAmRIPymg+A172p?-&h zhEGOsV&Zu7ZBW|}CC`^=s=7U=f`@yldTK8CLH%5M~zTUlpBMJ6Ov`j(~cy?00UTiBYRM-V`6Qdg%Ivnn2 z6zK&tuQ-}9Z2d5a3;$3<_6jtEwe)E}?y!4sy9z;Aa@aMH6{R#v*e3SyI(QU%`y~uk zK^QQvT&2Y2%uI24vc9)cexc?deBW)=-)Ci@e!|H0kX9lggRIc`=Eu--7Fx_{RllE; z8p z0=>!1zTg>J#3Gy3azApXLebZHk8PPes-fUQ^pZpRB||({)HCt94C9^?W*JMm)lYN1 zk_1jyquREL$wRlYfs86&RBhmeEnejO6+D(Kk}}l#_I=Gd4GsEI5p-=Y@hzrEJ)^SZ zX!4NI`?6%1f3uX}ppkN_1*f`w^ZMB(Tg)TF4%y|K)L_-ilI!~YqDt^Jk{<{e@>Faa zA*0^<1W-fM^$*pDhfkks{?$G9@b(f;57&9Yvs+>_G9Ii>V{c92NVFcDlXE*R+&0DR zDmvpv2^dPX)_6*IEBZu7s?JyAI&E(JWw~1mg@F@ip_$_(vDMA-@xO;beRI=q)rJw! z^RbiNxWNX+<_x^%%-O!-&XWpWLxMLHS-(GxXhh%#a~swe^hamC>Bq-hDfZu}c=AE4 zhQo38ZSHkM(+?s=0xB=RJaqNeUXpUF$mKf040d5R6_eVumw!-)^WH_}1#G?vP^eIO zkFA=OHXL=kb|U-30(6F-(GVw;X%jR0>MLg>Z)b^1=d0nrlpXJbhJxlb-afN%khE3# zn4Wcc?tW1pIQzzuPHMRQJ&@%#b{%A1UmKE@aZ)I{AJy3a_XYK+vAl~zqUD^#RAG5$H`v@+6r-cqI!@l?JA zf2ND&jN`P+?EaT4baHA`T(_IqG|mc}aXdT99l;44Ja^L@ys3UNl1nC{!zYKE8@z{2 z8y{0XVcN1xgyd@ibi$(Ht;#^(&EfBMuf@aRBl|{AI*b$&WJ=bxq^W; z{OUv}!xOES58B;8rd&ScvD2{r{=H4GQO)MO-a@VBdNAm zF;?-&d=bJy>u@-EdAycibTW))w3iV&+d_Dmo7xNQwCJ^dov2Ki^hp^uA`sZf=i%Vk^_WDn+4(n>({TBw@%S zV`3HshED9R-Q6tg%B0hpf>WX)Y(~jjN-^`=yRCRcGe_LR$M0qEy!7?L`n$jHRPIti z=ki6%xWI2g6apRyJ9XL}Fzx#Y+bhlC7fBPZgM#PZutbF|ukm*NF;;$&bWQ)+Ka!bD zj;G4XqK${CO7`QL`3mKm6I( zY}>(?5e5{2Ja--FDjZ)k?U)FR6?_sW@B?j82{+xoZe34Ydb01I? ziF~6UenZOg&C1@+ayfgPQmtx<#Or2A3l&@Djxg}YtPFzA_?wc?ewvI!zF?mJ5PGvD4wH_?uOK8sl{;QJP zM+BEor(K7rZ2a244lHQ8zN%aMU8K@H6}QdPO}nx$qiKOsx8GUJTX}_h$7c}Y7Dt8K z(CgsI?AipI~w!X8E|em5@E>6nn-%)T=LzPZ9HAc@xw}L7P~OB_!+^^tSH9zsH{))a~=g@sStlBZvABsno&`Bff%+gct-A=LA`?b5EKL7xPgh+9Pqu>3= z<+Oi~Q&?TIUZxKdv%hN#=OM>_6|g^t7(`6*^DdFg|gS<`SjPQwL=i z(}`@JnC>ekpJ(0_j>P75!@FMR<@2`w9FF`HyJ3eViYqI&9MUl)p$)u*^g{D89evB_ z(UU8Q=`$mxU5|-}sY1@0*#ZVVPo_n0g^$)ly9@JvR2;S#vS#$^hzukx!NK_WR|ZO!al^rGeps= z#+mAwXSdbZdfDe}JF(HfjHEXcI}WavA4TXIvR3_x{|jb$a1dS+(tb)s_irv=W7&pN zA`VyLIz=Ssv}&->z8}yC-Rv=_T%uf+yMUIkRf+?HJF=&!deigCCuw>DMy}2>C}E9< z5YrFEE>e2V(w%P)H>OA&wwMmALn_}wpSQEJw3CA0pQ2=`*C{5+wduKYsGIAOSU5LD zKR4%Koua6=xme#9W+8K<5EK5+&nX4xb{;D1_Huo#w=0&ZECDzD!m)f(pFQm(EcE0~ zQ}F)1ks-KQawBnDdi9Tmddu%m9JZD?U{YCIP7>bSe*nQwgYj2DM@x{uby>t_^!vY$ z;09;vW%bOXeMN8HkvJ5JV2KgI6u3U-_wB%GYAN}IrPH1Xe8;W3M8uvG#ojxSa$QT| z&)!U^XB2m5Yp?-S+oWo7hQWEpV7pvU50nw)bqYVh$z;MG@HdE6!L(Tz*zBL$fAr^CB%U$K1h6LdtRLA2Cv^7@Q zS>*BT!AYmpMkoE4J&@=v`8M4FxHX)GYTjvv6bqvp9C?DfB~){(fbLbBm-l}dbdDeR zy9yAYu~C13QWODU!X4!MQO**03W|FSjaVxLvDXLTFx*s2v81R(E7-n29v%)9RF>}^ zTMRP{mobC`hESZtBLinR^h+|hB}*q*?E z46Rh}0*Ngr0y$O*+Z9*QDF+EGNe4yYBR7=gz5EPsYF_Z9qa$wbhhXEsKc~hmIdA?I zE@|AUa|!6vVWS}EsxEgYl0T=Nbq& z%-i%%IgWbik3752rrztQr-?yH*=oQ+cqEc!DPL#8{s(lFj`7qv#I?Um!N21cisXKBmG>qgEc3_rhdnn$1G$^)@itl*R~pWd2QYd7 z_DjwnBgMp5RZL)2Jti=y6qG$scYkz~w~WM5fmJ*NflPN!9V*@rAF&0)h@GDM{k3<> zw=#OejZgWN5AE~Bx$}K9#RYsMt{`0!)qmUM*&!wz&`7c=`n7@A+A7ja$Vvg9U0guXHEm!FJDy;uRZAY=h1ThCG zDLNRT!hhk|7=9k{4+)S zshJ%`0eLE>l`AUsw6uS-7u5k2Bh;$7^+5`$pMP3ep;mm$>Xc?6w3mKN&z82xqeq7Q zU_AZ(`HwlOMEQ#I`%bJtESrjKz2KHGvbpLLd3{t%n*biWF(#>9&&NN$>P*;>_DJU3 zukDBdLRtrWhta#lkTty|jXj~(rAuI0^{=~kG#(UoH~g+a zj=l@~n%1$6=V8BE@IldwM@ChGstVPV>R+8SM`QsQ6r#BL#QAGWe~PPVbs1L@xR-F* zA!7o}i1lhi>A)v@=oF~Z)2SN1y*lzoT;QR*thT6UYPJ_B`v?FTKrq z`4W&)PUb6pd;QSo+?SCqbhoe!6TvdyL;Dgg_!`ReX8e^M!h7u~`G243CD)}(cs%l?|f+la|dWWLvvHEIEi0fROb6 z?94#{u#q29m)W32^fnanrul4`^S$~T9cN9t~;I#KjRiar9(wJz{0W#x*S zY=?UZ1=|Di%f9+ke3=4P-&O#esUip1GP~$~u6)LXXxH7k_9r={1$N*FVsetbb5oe- zo(Q?%s=sa`klX^Z!TTR8msEN;jb_EUR&M*}7WWTw7wP&$En_CW2Y2L*Oj+V(!~_q@ zwAS+ZD=PG!Ln!r;3xQSifhYYFZ=(}xy~cet8icuhmNHfy%Uye9-4Zg&_GfXiyvFjf zYe+{*mc@?Y)yJ)sIL+-W3v4rA!k}v)46>5cglwLC`(;OZ*sr}B-#uB&4kgVqqCHf_9IBsSCl!&i(Fd8`$>XhFk z)FcYBcY!mBbhsk%m}_Tf?Bj_$gO*4u;?85dQURmvLY|HWUP z7WKD$-kL}rfp|8VE&jTNj}GVLR3FQoreGv|9+_z*nHgh#N~h0+MfO~ix5#@H1X5JQ zbBh-EqsaWtoQm!t@$_NMD6j_hk=%^S>!FZok21E4A%;dnXEkv5zNAWNqJdXEhiel) zRP+p|t>Lb)J7&df0Qs{5^xkFvbY=XdZQySUtu6GvQgFzL1wN{!4;H?yhvCMa(U)?0 zTTHk#T_Dy^YYPRS(VS2=XoyO&)-+Z$wR0HsHxSR)wKqD;OIZ_^+2lf<&t{w1MVf`# zik!WZWVQtV^cf#XpQFbdC~rG%Fq8vvo?N@pth{vIets+HM zIm)9;NgaKaAOQP*5R!{}l~(r@>aCSMaQ;gia}6gn1gDsiPtCmOIe+q+wZ4aNVbhYu zR#l;(3Pc;j4Sl{U7~t*;>J5NRq$K3!iJK{Vzh=TB@Dz*%-uR&xi&kR%)n`u&79vm= zv<4OqE+n2f77kdv zm4qm>q*YXc*gullxJ!aC0dPnui$)ZSL@HHiA$&d+#b|m(K>9$)=)-Y{`grUTqkskVdi2B%&7ba)L}+WGrd#St`TJSC zZQTrw=>QduRHV}F#9f&yx(+)f^0j;KfUnYihcsy;Pnr)Vjc{xH6{_*Dvwiq;jTohK z)g>h>Lw!fLJ%$y$&d8i)w2sh-wHGqqfv;4~^UhLFszN;g7sM6_2|gyJaLuv)sY(Y+ z|Af|iw(PE|S&Gzw^zL%Jc)KpCJlkPw(aqTGz4KG#g8D?vQshJ1U;D77%tm>p)l-!n zyjIsApZWw9>GWYKkc2LOs6zSA=X{KF`YB?=Cu=9yw0t?V+|W1{Pu0mDzo0{>&tn^> zdG{cEZYuWuuf0q$74o-lv0;8;!(A@EL`8m;4bxY)_A$%x8M69Wu~KDr@{E zL7hjvcB|&IzKU4IojSH?jM!#C&&>M-NDw*05N^jqIs%Hzk0o;aYhjB^fwag{diT*% zRW?{w2dxJe9t1OM2CXzUpNa zWCs}zbdnj|Y{bsFFaRm;cyXT`uBXwz?pVZVhc1=?;+P37)SD`63UIgZoUpAY`mwh< zUMQjhl^_A+#;vzx#CF#!#?8)0(;4aB*Y3`ObcKdKVR!kn(M2`(kW!vpB=J9S7PGkx z>_!;}zLg@Z*y2&-PorRK<@r55DiYvxQa@dY;bb z4eH0;&-alnKHv#7RsS;T-B2>vk6IO8L7@~>4?LYViH61Z~7THa`qn%{plPX4k&vAOUK=+ylV;f%Xb2TB}fc;Lz8 z&MOc!RVdSK?EW@mE&25b3J4)+hb|Bc+2??FKYGv#@;-n<5!Q=Xr8UrBjyd~Rd~w*f z*~v7s&c-NnOrqW5qiAXk)}r5EP(bUKX1kr@b5i!t2-QdQDg4N!Qx6aCM@p=&;FUD- zOEW_IzdIX~jnuTlR}t^I6}wL8yPr;tN}U$44gO0qGcy7?vP1Gkncp@tKF|L(*2;B>r%*l$bjiMAEh+Ja`+$oWVt6Xz}ks&QeW z^36ySbR8`^J083%{s0f-;u6v)Yud@p`wRFfuS#v1hNKEQH)Ej!SANk%rj;Kx`Iu&xJR$5RMW?rSITo6a z)GGz%b{~oFv^LF!Aq>1kakwAfPr4$u`J05XLRP+$v>$}74#w`}>dTBr2U^3bUD3Oy zzxPcom08k3HTZc72lv|)jP2L+ay-Y=@!t&dnV_G<0_il$& z;UowkHqR#9ch3ra*!cM$6Bc>AM^YJ_S`TiQN6$T1Ey2$I?Yff zNY+B}%HDl%ZnoI22cWBr08d`~`|*hVF#_{O+cVgwMXVcSmPodrI&~{U=A$nr|+a3RK@S{=y8!_RQd! zmwOg*rACX6(1xSiR2q}oHYW7JGWz81JO-5-@Pyek@XaEMsQ!wd{k)+S#@`i@GvpDt zfB2wk%2DDNuJzNOy9yH_9^;whk%fq2thr@(Pu%Hi&uGD!G)2Ua+!tK{G)+e~EFMOyWIE$FB zmIxe2?e=B!gnd612)N}7J3Pg&?`Fev1yiyHB(%(R*agP3RAFd<97RpAA&?0hyg`rc1TGGX|ecYtvK( z>qy)zMXVwl&UaAn2j?M($F$BH|JhFBZqhmSBb6~e9EY*sE-S7^Tpy|Aeb3yFy!&C+ zTiTYt(9SKFAeon$yaA*w5)(gE4-c`XUOjDsb(qUBwynsGZ*ORP{{%0N6}83c;(q!8 z`vbO0vs7oWt}R#OTw7Q{m7=sSn~R>iQ`cbg91q)#UJ^H`r501QeDoOAd3X! zn$}OJ8bq-l`BH;B1Pk9nu`8!x19b@zEv{15c>xC#5nb2=zQCUk^NL=hF4bUrd6%A{ zadG*Z(zOl2p)-+dSa9s*ZLO_Fq}Bpv!!znB!t8j*eu6V3F+kQzX4?NZN;=lLv0Wpm z99p;S8uQVHyRo^s2+g&Cr+N**Ey8FQKZ(g=xkL|UQijYVOOdsRWwQ()d!srFmt|K^ zYp`Ra_SceXYPElIklXwIURDmm*nOJM#+UC^aMS*g(xyN}3n*7#u#~a3O9eU{-;%{Y znQ#hN=*c7V4@VmRb4bXNE~>JcChB=Zu^zKI1k%QLPvUUcb4WHeov|H|Qj|>=YKi5n{*+Cb&3VzdyA1nYk z5B?)ebXGC+pdO0d7)(G;gmRF_4=DJz%Ubx@x*(izh) zgDQ zp7KG1+Xj9Ibmxzmx0M@)3TpKq=0!4DkAK};%b}~YBEO)_K5+D(FNI0^(x+tt1>^?j15?c6{&-A(six2cN|Q%EE%h4Jsl|7 z#_D7lzlXSBWv26)Lzp96nYwO{<;R0`l+7jDrn}Zjw>IQkl&Yb9`cO}x zydeZbg;smVkx21Yc~jhx^V5%5?)TS(A*XLMi?`zG=pF?~E8-+50v%m;Yh6fO@_Db{ zA+HT}-u3nTxg?FnmB~(bxx&CWaB9e+oF3EqsQ8lE(N#V6l7#{y{ z3v~HF?+-ywS_D;TdG_kgAsjxI*n2vmm$9O(E8Uq|RKp3?e}y5On(t?UC-tXBXlmPf&qL&ba;JNaRH?((g`4@dGu$p_AKkP9xdo{w|8YF=i4;{9 zK1ENVu@Q!o4_cx)&Ptvm!rZ0X%_7~AR1RzOwSZi;I{*||-WJvWNr-vLQ7A#{QKlvS z7>E|N$!eOWb{`QX;N!N$_$QeM zZPS>&%z!g25>EkqN8R7}4)4JYqm>zGWJsP0mz}+`Qzp=WuUas-iKJaH$T`!xd9E(BJWcZJ{z; zZu#sQ=NF8j!lg@_LH-CXa_vI;U7qCx3&dDSvnvVkqTh!2KM5R@iCWkYGhn+5T76Qg z?|SLMvA>z&OW>bFGhH@&njf1K$fP)^U3qh>@2!E0zxI`Qt}wjZZu7Xxm<kSYa`{?tCqN3nv884oBG9BcUON1xybZ2mW>#ISTu->+*%S z#;a`q5OcB~O$eBd#2;ehL_|az+y3ae)>4zo#hwxlvJ4U&(4Cg-c z*3W;*w7jkaJ{LH6v%fSrwS|B5(v9}lxjc#ls!&sw4L{Vx?+|e(VGVx*Tl_Iocr6Un z+EEq(*F!Gi5KKqq6;_OkBk%-YHX7M=s#+#pV|j-cW=i+;n$|vNFXKDtB#VH5jFMQ= zgHl$*0tAgwJA9(zR^dJ)h19Ooec}dxnka2&p`ppj?Ms#e=}tt3yRSbnL+`aqWqOi5 zWlFqhI&1v1kM`(ml_l5`w@@rg5&`&J-<_i6Gd&z+PT#nwix-3mHZlk2WUFo!wud^z z`wYnEpy`T%I}@qiE_e6@x6pC*DOPLUSnDdL6~0OPsC?!~rdrRkHe#xT5(pUW>WTN= z9w7%sI3l|3kdzp>JK2(FzZ0c)cdNEuSP3%M@UQ>55Z0XM##{!l@QqU52kPj>huOh{ zAv$AbQ!hh>7^QisFUqNS;BIH!k#|KG_a4fI3@ZuvqW)L}VqI4BAPOYzZ zz*Fe$vT2BgldfpmvOh86`rQywGisgfSFAh;XGUq-xE=^Iab@M0yb?62jU?NOmkUj9 zoxQP7D9@@1et*1Yl$cd3A3%Yme8wid{>C3Qod9yuCCqfk*%Xu$Pjc=PM6Y&)1fs_x z9`>EF)yQ?k{_{^A|2<75d;bW+DA+_lu zE7laQ!uvtn)Q8EzSaJEkbC{00k>)m|-S#&8=o72gO0(6PU;o^F18E#rvhB`HyCswg zK`5SP2kmKB-z*H-U`nJaM~YT(jJGY}kewelmg)DDF+e3juW)V;1Q-YTwv&6P30He*~lcoMi~|J%|Scn8T)Rd zdKdU@iau@{{1`hJYk%7D6%$JDdCt))*wf5-0;+2Vff|Mkl+`Q&SBhyRN#iNY!?nJc zN|i|3@h!Ft&dEvGEE!i4a}=5voT$Eah}4PqCCoDk+*A9!-)ur1%Qjl)w=T3e!7-rX zFCKFMmz94>VL9>UAI0%|$H=N-b66^Zj1uRKGjeFc@^3Rp>D-!}o;!X|GrZGqM2@Fl z4`mYHFPe#aUXp!f6c!cGg!De1*Hm}^QLwk4?F+;dJeF(R1|ue2;b66S!D_PVsSsJn zw!^;rH36Z%R%q~h7bfB!yA4v^MHGCwP{Ft2gD6iJJfVMx~{2oh5fCl1y+p?h1 zw>=nw1EVMUZLp)8p960;HD1b%L?4uVUdT6QSIbmigenLn=aShpor6qqcK6wT5(MO@%ge|2;QOx?&BQnR4?&z2JvysNClE7G|bR4TNO3$0~ z6b$fvNMsHRw`=`=a7**+?Z>G>a<>J3zF7g=MAb~+9=+i?lE9VL`>bKY4a9eWZ)tv|Ga$=~&3@&f*l`Zj&XyUU z_RXBBu*E}*5M>t8PR|+$Sg~h(g4Wr)4kTx~n;^=aC?cz54Zn-yMC-qjfrn_lL}i>& zUngoMJZ)4%M6k4JX}5SouR@|jh zcaIpXP{4BdGCAp%HGzp4?K5@nh2z-pDpCR{A3I{JA`G zZ^|~B)r#Xd7lFtTyWqNIL=CJWr-y>|cQ!Nwf%^4<;?aZYw?Ez0$?=5O}0zE?q!ycY=8!^`m^-qIhKvI>G3`}O=MROw7DOQgg*E|{V`QrM660uOFbTO?Hq8sGod`ab32iJkh*lY23%MTu+({V1p2sd4qh&XlsA3gBv9%{Ip2#qPaz|H!!{yBtTT~}W zT2{Tug87jPQ}2~JKbXbbrb3U*qX1RrAyZc)2cS*1)Q<@&e2Ixb(?zieOuxw1-IKtgu6XYEmD2YF5(lsIg)@2n9?IWA2Q-Y80_NYEEz55KM&rDx}NvX~6 z$bevdTKE$kM30J~1Nt6^Fun%fM{&>A3 zf-I0;)0oCPP_CX3z01n(bc;b*4VCq>hA4d4--Ve)pThJtWaglG_T$2DyY$MYzj*7G zkQElip!W5U<_8;=!Ww^iC=CbmrJq0BxW!E*xpp)acaqsF$IaZPK4!-o?}fyTL>nVp zhM(pviH}?8GhAY=7Zfj#Y8CKy@iUqIwM5#nB5_!_c=lF&RXEw;Efa^jXA3>Jd&YgI zId0LI?Pcm3pD&<-vuxOg?inm;TcD&oVWHGVa|g@_V5gE!){K>)icB>84Je0}fpOe$wfaRfUu;DpR40Y&7OI zLjqUf0Awhwmemxfu;6ziJpUA2Y2otvydu&*(vO7|kD{)nF6qT3@21;?V8iiiH0+xc z6msnl@udA3VaHPQB+l3(#W-EVx7_D_*%|+GFJoxdc|$LI;=8}vSW@!_JX_^aT$#-t zgDqqK1Rk^8PvtC7RI)^zufdkW`D~?=&{f*z6RAy$v|?DM$=Di1DO$Qkw!Q@AiZXiW z3q<%I6*h@Yn^B)1U}c&WBvY|PKEZCtKO#LoshVi!R6St2sjX}vfvOf~wUF`P(j;GG z54QiBTxx9<)RM(kZ5w)x*`D1xJ`jGPK)%Vn;a+CVSNKpJfNmfx>Yu;cr_e8iAgA5;^t zY;0cTmMtW*r9Va^%BE>$&QU1(-m=&mSq&)!MF`Zc#5+{DxYmUbhzA&w4U{upy%miS zl7YdD7mfTpuBb+g&R~><%6)2b`!h0H#VSGrVlu2Q{{N@wArZUaPZ+G^Pm+~Z$H$?% z6n{jiGa6;1^327-g8m0W;mnMTXl9k|KFL52>V)p3a`Q~<72UH-uan0mH6QBo=(=?X z&+j)92tgS}K`d$O&C6Oou!7nl3YhA+9MPOv_f6j47A1+d%nukdME*aB9zLg+&0uDT ze9_zXbbC}}O&$;o+Bw=Br6D%qhy=J+Xs4F%SVztQJ%d)Zli@W;3xP0AAvI2y=BJR4 zUOUtJm8Ryvc+E*luN7Pc>jRCj@a!+Eh>#^4R9O8+ukyuw4{Zw+wGYEXigb*uNrrmn zXz-JLlU!QI8Laqn=699=Y3To819jTI$VoW;;TKv@@i+!CuJd;OVCaTmVTcASd_NV& zc>JNvmszT52hj1oif;S48sZvYm?l=4gYh8I-n63JRdOzoF$&*)Zb_G46YJ2LdV&^?N4)jXqR7Q9Oh*i@uW!5wfp4uRe;_Fz>%kB)^Xa)jQgP3<$N5RDj^yE=li>Ek+ zEKV~zY5cyTk!8AzT;u`*(9Xo1uGC*L=Mq(A@v}vqyewv#VQiP%ZJG)U{2w%Ke~Vo_ zuZcfA9%p>G=CWDB%#}oy$i+LvBqB;VV0SqhCn?k75HI9jaco5Y6$n|+#X!ilnCK?p zG=p|ISlT+_%2UgJi4BS(v3Qx0dGcTOmGqqTFLRYDUNDhsw4sCnWNxnySZP=~}VVz&5lHW|c9 zQ2Sq-EE_9XN#f}kD|wnoWw^S4V}k|U z?WNF-OZKn+5ZCzBe(@xkv0Lb(IqQ@Hzy%}_? zh?Iq&l?1Q&?K*-RR`(#0sr6vL@3;&SH%%*hcSOx!y%HG27U)Wtgj!n#s@!3O@6|PG zYy+pnVu0)G4HuHwt9Gx;>WNagn5ABrXQ>!;voH#X=H`l*%xO*8d7 zd)f2KaPOi56C1mD$+5X@h49>0Cv2x!UHsd|FZ;AoPD!OE9n#~NyS8g4El#^)2J)Hm zXI#M+*PaY-gcH4I3>8lzPB%Eg6)za~bJ&f^1cTv}`*$vnj}?6CWiqCy#B7*Nj$6Gm zHjAfTk$Z^4>HDnLgzbroO_sZ27f0NP_gBw_M|K(=Bz+M?{*oh$6dVkw!6>-hSx?7` zO$qUweU{Mgo!TGubW_Kbdi(nk7NuKeR}Q{SnU5Bqw|QQQY(a2OKCeRU9a}rFd!2}= zlq!&L+pegnk@!9|{r%Qcp*FHJalM>T{6yc?b+ebsdvl+;Jb;Diw>nc+xr9SR6mlo0 z&FhG$t()}X4r&;9O~8y$1L~N)Pi-+`+An1n1_`#oxi~Wjw0t&T@ABjsly)OPkVd&B zTgGG_Lc!~_-PyLqP48uTH<)Jg$#U#9`ylmw0Av$)@JkCpCFT%BGOZ5+6}6VPR;To$rjP zna~toRFSksK8?YvW53pO`&mp=2IGfoE3VZ3Mr zrWxfq*EHu zkVyISw5Qe1e(!=1nz*fUv+x#?P7M?o8rgf5?wh^xyodSorWbINbWU-o;HSXQ^@I6y zx7}YU1fLVh!xI^P4Jw;=9tm4tcFm9;AlJCuV#7(r22w2R9S3}_sF#RSJ5<$fcxWb4 z9OdbDJXlGdQEG(=(JGr{5AJG5%s~Hb`cAKPcd^)+c2_1)E zrOu$HMq_vQeW-)Uylhn{U427lRbT*d&Qkz!4a$P z5x0qRb}*;HCbP`-Z>U|XnW744M4Dg<-{-;cUe#Y*-@?Lbzb*(`E~1PH1KgkHzrT}f z7)8iA!QF5VALd=qA6%tHu}A}WU_wyUx2jc#Q%r?RcqmZtnN`(T5A=Gf6enRMWD*#n zs&KH)n+;J?JWZftPYjYW(1^L|Elh+~ymC>9T9u-gY*y4rzvW9WbW{MAQl7j-jw}!d zu%0>D-%gM5nTybdS~g@AE|n#67vhC zUHml5$jx_6;i1L6qB_a|(=dv*`%UiGqF5H~6#M&ydP{#*t63b5pCt@}bNQRO6UGVm zDBA7zrSY3f<~L8}n=_NyHdZ$`cRx$niMec*#&nBKkXW(|8c5+Oyu5gA*ld>?ZwWx_ z%>;879(Hfg-wEZEdv}cS(`_Rm0DAHE#TtIC+QYCPp)(Y3iK!p~gVcgT`63nNunCe8 zM8>?o%DD_dH_jJx-}cx6iuAJ@3g}~tnPccHb$zTAz``oqFB2DbP-AD#{4(DExY*l zL(rV_V{!h;^_ZlANouwI`VFO59<0RK)<_^HNP#n|m7Ivf${31FXEa3h_sQ?GggG%N zrTx~2Sed^qPqT6a?1qjM*M#MP{-X(NC3KRA4PS1?Md^-^#IfMX=o1+_V{-dd3rNs` zGhurbny(N7Opu|}xU83V+-gZl>xL3Ktb-+WBA6#T1)?EMr&aP*ba z(4*!J(Q8wbK4HP*Ki*vgked1%mP8iEk0z3fwtTkBdY``_hXk=FfUmE#n2IfBAE-0A zUh%e=Fa1_cWVnwdG)EBxR9y__TH+5wrmlRhd*tchKW@q3f=hlIY>p<#F83G&1vVAH zN;D3WB8e@vd13^HL`ie#{HbZZMt|_~uKHV{ySaxQkjCq%@DP6*EgEySHMH^9FiZJ{uU1xX~ z6Iv&CsbO!&w-GLL6|H)}QQb$FWLEjq4kY|1_9%K8S!9sIq$t@4AhQDmA)jAV5mi%^ zc_kYD6tur*fZ#MiEou2vH*Hk^IcIT^Uy0z#Zn&{Y6@}Ec;)}>3W|&DfPONFy23}O60Q%`@XOFzv-sZW1>!^KtcGW%aw384%xcYqHQeYcjuaW(V zCaR(0G<|p#rtGM7zA9Z}@byX$mjYz})4|vq!96Y4O%;?mZ4wzzg$SD(0bj`{nib4^TUbFD7#?zzN67sLQA5^f|q@O;&o6lM}e#^0OK` z@L!-74v@wNPN|(=Whe&t|BbLw5>vd`tDeVR>%SpJ{C@&tUaQX*d@RB7AUFHoyG z0JWCB4vq_nky7icKU}H5bPfPtkL8O*Ux&+F>D3OKolU%bK#%HjaJ0m*qKg1Q?=aQff3@!2JR>9KRH(z0U9_LBD)J69as_ z^1sH$u+ku#c*7AuR7mSqZb@tR1v;S=I==+lkDv3u=!eQ)QDUmq#0}A3CljH8inSJo z5k%}z{4PgBZ_!+H)R13>`a_Rm%Ih$R-2JDWlD@l>KEj4$ivyNKwvToIC}brC{3vPV zqW4;=Yeiu4hOr_>7%KUP5fS7 zB64w|LJP2|i#5H0>QbBv(OugB^M|xUmIkZyJJlaoTc51&ysc7Fe@8rJf zzSwjrSHYG$;10k_0~}_+KDT=|kmL6b&=eU-IoN2{0%eTiTMbRX)xPe|kyJPzA-cM9 zKb#+ve0qGK4-$0qd-C?o1rqB<;8MI4&M!Y1Xw60*(f7F?%-lyekGzZ28uk8Uy)nNg`3hv#b}om|uH4+#bB%op6Ja|l`a zH;MIbu_4&k#rG}WSJ=2hZ~x!w0n@y;J+~qW$B38Dp+>3&VMIdHEeF z>c4RK%RLGT3TP{C>)wV{=1Tfjte2F#Jgx}D^y){HAh*OU>9#Z1i8fmn$R?ya5|jJk z%vF!!p1VR~8}9gB-%Kv=$=|C7`FJ0X2AnzXK2q6#LfRz3PLk`X4bi!a+*=Mb!^?>h zvYI)5J-|F}*bh#rXN$yK?3!)qj-pHG*(?%OOhrG-_sfY%TYy8*U&F3-AXETO!1;Ij zxBJ&nK#oJt-Nm)~M6If4P)IO&z9%8%Qzjo&2_l3+ze%zwFP=#gyT;5bs-it3aM|-Z z`(rNrzdJ1&IOzK08B1`&csfopBQYEd!4e9!5SsnB58~^VWW}_hu(cD6hZae}40+nvN zjt{3h=y1Y~!+19Q>sRUg1lNQ81F75?)Sog6N-c!m@xJYk%IwV>E6~nD6#s#wTp(I8 zYdrijx^gR8_+!UB5G;gjh2tCiEm%!xH!ZRu#UKt?ImYOH$pybG(E#DT()T`LZLSEy zN33>AaJAzIAH9_A0yEBwV)8Io^5{SD;ULIOElWCArh&D1nRj?u3lo9)F2^kc@xtaS z9E$7qFV{unVm*Kc{HMYmA?e6%W7zq)aPL=0!jXYRILc4q@({ZI--0A%R!iNJzGq~5 z72d_wTV}wOHNgDFP6!&9J_6!85S@1tFF#1L#*4K*LvYN(cVLIDaUI-PB~`bt z^;plJx*Yq+5DUS7$3^VPzDjQ??x-mlEw@Pp4d13RI6`n4b4rDdmOCm&+5Ie6YFV4V zdM+yIb%>JEpzSw)23qK2PU$`+Qr_S@Q-UWl?gWF3Km8yPrH}!Z9px zm3t9WE@p_=460&buP4%hs#FW9f+_0h)Q7O((nJB(=IA(zS}m}k;!@;4V*|OOkdV+^ z{g-z}Mn(hO-Js(@-Mei9M%yn4-mlG5 zfTv?57*;c|ayl6*G?1Ub1) z=wRp#kO&`)HS$bZ{B=zeL}49#dLJ_VZ{e?QnzTXw*_L^nePR|`%Q=-zAR(l6dSCGE zdz+ho(|_dz)Z2(wjvm{$un99XrvLw?NDc`^M;`+jnlas@Ex%ZVXfcZK;0rLMms&x2Bzgk_R za-Zh*5F@{O*J_RvRXT6#ebQ70b&w2~WepTrtqipRDnEN2K!NK(A7IZgr@qWyxWftv zz``|CQHnZ*^*4mzIog7}o>+ODdx+!I@q3z5_4ahQDtNr+_5>^wP(@Wr(XFm`y3-hg zS+?qwe=5&hxP(Rf3n%uKDR49FxoXrM|5Cc1s2DWmNY;p4fu3MWh#LGVFP(=%U5*^k zQbIz?(GdnPnkgtkevd@jJ%dGvwcBUHR?sT4OzX5y>^Wb~75Sv64RR$7la1005)W$j>jdsILsquBlh3j zoL{549gbw={nnJ7W-pNM3Jy<7cpuJ~H2^qoSEUhK)9R_`N^@4$ADjM*#yYZU%X9kluaHxrYg%i`#Mr;6#wX@KHZTSlbXLhG0SSM?kVf>*o3I^j8SQ$#qoE z4|Ma>WzyR!M|qOkVh5ZyVx4R&SqgzZxE`%cDU(_}7$1iH%2O)bZ!gi&AOR52%tkqy zfx9uD78h`bl#C~0^YPyC=t-HF#6xIf-+~O2qT-KC8)5+BnXy?VE;0Q<|FL3e`e(ar^=z~Nk%67y@Q3^{JZloueF}(r2|iv%gMHiGO^l# zqaeH`7^}ab9GMj&aH6=+B(Gf=y3BdSqv$nrdVBj8Y+B8|!PumsI8wl&AprgY8F*53 z{2w*Di7gxmRHT4gUT!-+zA@<3(zflY*E!t*!eorX`-dYHr*CXsWJv>!_s(irBz3G< zK#d_VDsHxw#amnvPU4AgtKtn3sZWN(9FLc<&`lBONia?j3q-j5#9)ME@ri05Q>b<` z=e&PFkl@ovK$)Ts_3vmkWxBr$-tx{Fq5~-J#aLV<9H^W#X+Qe?vZn36{_Ob|7C5e; zH)0i%1?Zj$WY=;hg7yXu@dG)LN66ICK>jiyklR-zVJhJ>xg(@)pg*em=`Q7DsxO`)@6$vXeq~d{aE$A+2N< zq}R94&SxVcfDUifxRG7%njG)f42se8ioyX*HV;`ssrmY&0+7zrB(tBRc=0+VLLOsS z#)}CdwH7l3xsqQ07inJ|7UdU(senpI3=G{v4jlptNDrMuNrxy(BaL(pLwEPk3W%h1 zr-YOO0@96?H0%ez-F=?j=h?sZKbZMu=H7G9Irp6NzW3Z>a}VW9^EINzKz|tt3D*c3 zk%y=Ip*ghOKUlSj>1JF!rFS`h%y5-6zE=j-&Mc-dzh+U@_+|UkrNAmt(LE9Ev#drf zIdDuPdu`;QWn-#-AXh8rcfs`W`qu-M=@!NA890FN!Rqt6SFErDynZh~&wE{S zcI56ifO0x4jeh!3qb(O3MU2E~g<}g@J)xidV+uBIN?wEL4jLv@|EXhN@2$~Q%s+Nl zT;1G~y3|aTNk+MfjdkltJq+}H_%01E@K2XuSLV#a$VP5MYu6B7HgM1P@y-4D(dHWg zbKPiW)(^2u==C$Ucs1|k^v|!<42po{DWFI-%S#_h+bF)7MnOz$=0e>x?DRI#^|L|8 z$cS3^=%Qc#j$m9`fxP0W7*Jiw7lwQOqQM~BsKNBP-gTR((3NXwc1WTSd;V@~D$;sv zyZPq1{CkINXP%hFpESU&papID1*|Gu1uN9zSVc77zM+bY6ml`A2kBNOYd>qH--tM; z%o(<5={cWOJ_4JuXT)}fs<%z%J@;8+tlj+?Cdir2j)Nb?-SNwYu!mKFOfzVR@0}jrx)&qEe^7r z&u<>SpdBAGPJjE+B_)CVJ_BKmdF3DT(M`+wObQk*Ek}9I((F-F@D||hm6G6gXBbEK z0-Z9WIB9pgpM8M+a%cl^Xs`<;LiA0knLJy{;MJFtG>@?#! z;Km%p0nA`|*I#?0Ddz@e2Cn%DOxUPm3E$z!PgJZ04-Xa zaUsdmjS5K0!K`D~+=>0{byGyW2Q*~E7N!Jy%=oBmUzcNuEN{S`((c3^_S#!RUv01| zg(PCH4w`QTePMG#{^DeOPpt;*BU7$@C$+kCO41-AvM~lWJ}T0Yi~#%EoxcZ63vVe# z*BCUF&uaJGpc;4841eW{2L^~Bam-Gj`4lTW@0n=xh6>9=hmYTeE8hX~{+VXJ{MQ>p z=x`}?H@a%X0r{JkdN}8Wp57de(3@<94YAI4_<0M^BjL3h;c4mt28(DvpT%eZU(!Jv z4?~=}2e_X&>`fqE?&=B~$*cBuV|Ehk-T>Tmq=%WYGu6_NPD&nQdvqh-!%6oh5rU>PXYRU+s~g`ac98Xd2DF)FQsG`5)P`(dU^y5Va3! z-~M3~lrSQvZjl*)A41gv%~HcwAyjzx2+XrJ2V4yYaUE198{XHj3(>F5dMngswF`1H zqpd!z=-B=K0`a?sfUCeHgxP>DLTI?H(uvFYORSZ#z*@xvEjt(}<>=ubw}frn@+-># zmhWOAyl0rtUSJxpapDI34)B@wLgPqQUibd+fE&Kpl_BZ8$NV(;pR~b+FAoR#yQ*Tx zT#14I>o5s*wX-$yqYHc10*SP04nm>Zk{qd31}DG1XbB%F^bM}8eBxfVZCz|!gFO?k zgx!kZR^g(%hDLJsK1vlhZL|o@1PUl#47Mh+NudzYKSz{Z8^!W`6?n4F&Wy*72LSt5 zJP9T9U*=Kj7d15ea;}*mrS-uh!6P_V+`lN6xLEa|Z9Dx{5-}?$8WYX6lt5B1jc*b` zA4>kT6@B#;>L%cQqMs>|L_WRuu~?$4`$z`_s?9E~5a;R8n|860jAoai_ zpfDYPmhPIW0jleqj;W&ro);;S|0Vm0PVxf2F&OscC_q=2$6;8*gzVacT4>7zK7I5UYBwNOYz|GlF z!@1#Ye{#|8TRMA$aC4K)5_n>o6`=fzoI$n4WD+WUCi@MP&W*STnAU>RN^bbR~S|KE=4o5?s1GN4!Q^nStD zUhtRgP8MiJEB{XEcqxqk3@&WyN`Af*PX65O1`S(NIR+-~6Mjb<0BT}vDh?k)B|vij z(oS67yk|8}@(=vOOJ-IE3XI)xf+h=mA#_0$AWi~dKqI)j%C#O?-4Sb(I8P^En{q8k zqHEsiBhcX`rN*)@vF?U6A|SzRO{Z9-p$jAK1hcup+nope%eNh$7(0YL#ox|%c1?{o)mjE^T zfPnKb+Q!hiFmPX$dXT_cm~ram%OS#?8&M{~7GQzHJRQb+Wo)y8f%S z$`wx+7}&gi5)lHKl27;{@Dzp@lh}XzO9a2Iu(US%_UkvCf=AfZ300vxoX9GfUmqFL zbzzSz0t0jVbO>M|mMRMdI&4-*9$f$j^kW^EwK{n3)9DMK5qSaU`*f7T<=p-Wy667O z)47G0@8eCfzZ^@trOie4uJij}$+zi4KX5;Lu+B<|I;`d#MQ!Bf6^F(X>F1w~uxRY` z33O@Wc69sTs=F)+L+u3^Df70H3itT)3j1^zwYVb(xdn%vePspYe*CSK!Y1=V&)qqs zA)HnTU=!?^C}210r9_80vR-;ebm7`dgIpAlL=!eoV&+EevY5kPu}fJ=Ycz8%%4Oyh zzeNV*DZyPiLzb|KlXgYXzu`Q|6=&N*)k|yS5o+18Fqr+4s1Ke9D4pDvN42JtlMM=m zREa6Xu2x8B=JHN_mhH$<@l2sBQtyXU_Or`rJd2!V=zhof^i#dB!6!AEmO!FhlUTK2ed0^*Q|p9HpLBUpDKu~6D_Oq?sg%d= zyBT>9vX3VuJAjv2N*0OYsNV+4e`ghpYP=+P1T$^aG@DxSHj#Eb zCwOM04DWLHN>AXz{Di^e(g=df5E)W$t;^DHhD(w>?x~8*DPA}Nu7bzV{tA*ed^yEv zEdzRWu&sprtJAX(8^@H77e^?h1Zr#vdI9e$clU5$fyC?=AYQ;3UpjrIGJ`J3l*JZx z+=-+zPC|B}k^1C%PP+i{u9+Qf4K!n1i?lDJ6NB1PsNwO=OTAbQ7MlhmVqg&6Y&l!5`?RioyG3Veq~0j}+en{$ENu?{ zapxw-zga0{-@e}G-i{b|+Kb=ev{T>%C?0G&b<{5PAp$e*VfGs~*t42hX^mX0xM`Kx z(-JMsX{xb~(>iXyL9Hf%Ot3~m@l#lO7#vxQLtMZmgcEaojZs`Y7%5-Dn*@-Lf7=1? zpiAX!@={`1vuL(Ym+`T6$x{*MB_T8{73(}kt*&FcdjWY=$R$Bsy9WbBK>ld-Fg_y4 z(sq<5(XPx$#(y&DBgHt}x~wZxjP*JgJ!ekw3&ecI05fMJ=?recwU{Q?&YSviJs_ch zXBIz0XR1bqhHu={oeMP06$Mpg3D?9hHvFs;tDfJ3BN5dJIMP`I&aIp%ghb&fzJJws z#*HYu{64%b!R2Lq^>uOvVg;37Vw7z7wDq`#X(eEd#4@#RH94uqQzzD?{G38oLfE^P zjJFq1hno?O0z^oFxR!14D4R>l7_}iTE^(iZ=nDzgj97ROS+Ra3npe1#T(F_Guws76 z?4z7x@@4--y*fQhsQI)m2A~d0tL>Qx3I7C0$@%(Zx)qB)x+pQA?tmKfJ${%3`Q_Ig z%J-0z$utt&F#5T6hl1#^+c=ekq4ATb{BENZ_4}p3Yjv}JnvE-OhnkNs850gdKWd43 zvDPpb%EpvjJ}n4&cirUBV2~McI-4_E>W-23rnu$RBetv=B5Xp&9@Hx`E?WP8`}@!n z7IL;NaDJ|H%Fqu>nLpZZewVAOQyN(-cW;91gYhqFs4D@ynrKEN#)z~6L*(}M&HhIv00rykx zd1?0&nL^{rM-!H5ADYBs@jL{kYZ&%G38d?(FRIHN!;dy452B}V20w(fupm6?OSX;4 ziq}F^ixNpmX}55lBaADEj2>*T7cxJ6oicgu_*xHk;VBF2W8h8wV`I#rCiXSVdDbRRzBSgr*ot7MQ3K`p_DMC}^ZN z(yNVCImzO?78^Xp&6iXJjcFTt9SUW$$OLYtM4YbcAQ4BJBkfuSY7-J3&UjV%(}5p( zvtLI|0BKk7BCm?cJS^=szp$>)=ac7T9nsRhn*<3y1vys2R5P8Fx#A7+5E!es>;!qP zqY4!UdVHnA$O#CK17`DWZyaA|lmRwV<3aPg(Ya&sHZta&%*%|h*K+x=Bg;iusiVHu zULLDC#zrx8nmJyKSIA1R-M;odDF&>W zMjdfXUi#YndGix!sF3t$_&^#YwXj!ouLJL!ZxopKCE|((%I9%Kc6LtO(L(=-rKyQDS$>~0&s z9X&1YJ`?&frf|<4VY--QwuA+f*)k8-n~B_#^qUe+0Vna zRHLk~zJR~%1}X~aONN0#aMe#^$AJHxt7DD~t*D5GrTrunQvw3xb={D;J@IkmX}R&jDizn5tZMz3?N4@W zZjyR)vZiHatzwWkkjP_qynSp5lbLS{9%;RLEaG;{cAAKV)t;hJk!PH#U+*i9mtJSr z`-8hhwg5?7d6@nt$+1&4yW209yWjV8caj>QyySg!>NHuJ7dyi|-CGzLW>|UsnXwHX zRDeiS3dVm8NC7ZcNxuTj3Uua}TP#2|Vl9UN?~On3tDtYNGc-rKQ7}c!NziT~Do#pD z4y2IZqbk#ly?U@}N&9-L3EyF91$w+Q|LA*`2ZhncljKKH!QdCJON?R{XZ%5Oa}r)s z0ivxAf27*gN*)yJ%8>Um$W*V@5vNr9 zGa5+maA4bhaixUks?tZ`->nOQ3Aahu;vzgneA{RU^(^Ce>&;_)e0;CdNx02i6*1+; z+)4uYcw>hA`to0g^EVx38xH0Oau`&^O`)yHdfL)h{fQ;C1CGim_inMjbH_ld^-6F* zNKh;cs~!v(0oP&uE9B1;$roS2AgFF*t$k0PnppSLuDAkTyQHMM{Y*NUm^rvmnJgR} zhjZs`WD>6~#_`F7&TX&UwyF~#xB1IAFJ)~DXl*vfE#XQaM|mr(xSNIMkIvGx$eoS3 z{0b)6&IyS7Pfw)0&4pQd1ZIQ#CSP29{OTmhkPkj6HuhEJ-`D5+$D8~H@_Al|zxb3; z3X^P!Z>k40zZ(o{J)5^t%8^h6IdSDnq%Kp*&Wb&uiTuymRw>X`wD^7n8ifQdb*B2^ z5Sl`lAo!652qW4AekIT?1oro+HgZG6fowRl^)F^<;)0idRWAJm#YL{f-@gvMjbGQ` z&OOFZ*yG!M?ToAa1Qk>t%F&*Vu8nqC;hRNuB0D7##EqMe88`4Z@0dDv@2Inun&f@F zKJx7B%yeYLpg;n|S*nt)N6(-r?6Mz-NyypsD@npX22#R=AkQx7Ba%b@bcG$fyH~d- z1by;|=ZbNFvbCYFDe?G=GPl7QqiOwWl7UT>vxJIz9Z*3Iyo;w~$Rkp&x2!O{D{sv7 zS{tRW+`_{8wTZPgU~-WQ0SprEC@jr+4-2lmy}l%uG7IWh;<9M~TBLD$tD0P+HWbT2 zt^gW)w7%0&-Ld`{mh6C%k4kb%Vp;tNHE;Q-bn7;DYv{#m6zwvbzY0pd^X$rPb{I1L zVia?RsFAthF_1Z6D8IAV@P{xmLi}PN<&~4-3;o1}?-yQh(b_E>ymz+ix0c$m;q-u^ z`sA`Xy8ls&51v0dyL{c(cJu1&peW_v6r-NH%TN$B>EzGqYFJQ^j8g98aV!KflP?bv zS8_|;L5(q~4^57p?*u!agU`%JC1o}ePO=&?d<18!i)Mqt^O^fgQ zYu7Hy4Yd05v!we;;?d`{x}guG;Ha}7^O?M|`FGPY4DX_kPU5}~Rvjn+cblP!MC@?` z8%my3nUjME8#aT9w_agklXABT3^&R?i8Gek)Mx&Lo!FR@Wjg}loc^4Uh#ZD&I&96I zh%9X2c5K)&*DyaFaFIwxJOJ^Zxv0({hK9%obey>VTuu^iR z_qecEs}F8oa`i0qSwD{|uODD!TZZRVcoDwd*3#M|zW+cEIGd)}Mho>RH z*`)e)aZW_Byi)&;^RKO^Y-J1$Gsc@#4Lu;|I>;2<%rkzNeGuQ70_%j`(k>qmju?Ld zZsxeNePJ|NBkZTsw?XNOe+YOx;6cfBcdMUc3IZ%A11?hl?-!s`8D@QGacvCL}_#@jC*5} zjT2iJ$%Qvyzu4;4bEPmvydMJ%EEwNJrmXYDu~tOVB%5uiw|lzGtl1safI;?#xLTQ~ zsy3om)~TIzddQz|H~+HU8`(NNfrlxvViN1aM19T$`JepyfGQt}x@BSAt2qdW1D+Rw z9lO4+TZ5mXof{)JPV_T`J;~l|xB5wyK6i)bQr5`YdVKrmwQR_fM6keg_c1zq%#CVc zMn)zEVZE@w@s}C}Z>fu+keCAbc~Sfpw);m~0q4^JXKXFEZQ&;J_u_=faDtknP<;oT z#YVRZXYdV;i^u}ZR`7i!RjxuO$o#lBno6c7?L^+Qu^&wF(Z}9R1|`2-l=khP^q*h+ zcfsUgOq>7prH!Y{T^wffEytawh#`i%0MU?zNPy_aL0Ite6~3CGTtXnQ4pl12agq^BOh9nj+d=r|cbnyN0e|n-n}||@Eh*_($eLjDzl$5dcuJDd z)S~Wuv8fYaJitEUrE%b=3ZuJK0wKXzBEZcwB|6kP7GNyIaij$0>fApfgL^ zk40%}Z{tgRTjG_5#>?Xk#pcR8!`tm2rE7zCk$^p( z0z(|a2m+Vf4hyb7;WH&)d;ndnrlWGcy%WOoU28vqQtxlePj5zgdGB+P zyVx?>+ga3+c`@Nm@mF7aIKzR^Z7h$( zn>~IWR-Sk+&QRlj5>ZF9zGb8L3CbJM6dEnLQ8_l&644DeKQHS&80>%G)hNWOyKLcH zl|JKly-(9sIg-`(g+16tObovd!v+ZH5S*;SrcZ$+Ja|VQ3h6=^R|Kji2ds2i5HdY( zoTtPe#z1-H*nr*C@QW1?#adQSnODfaGxrL@^DvoF9Z3HStl1X5P(s&&ortaWQ{Hd8 z#2mkf1NLt@0EK4KV_z1kQ9w1oH zK`JGnmiJJ$4l^VqlOQT=u-9XY`S_eze=?D zXo!T3rB>mN_1+`YCf6iEwxQwc=fDl4V2(Tgu;Kx9wB8Qj)e%bp*df^U11oJkxv&M{@NV zWMi}Y!|h*)SR915YB`=0sdJ3JCkfLQ>U;tipn47_*aG^aL6Xt<;~zHt=2;#U6hgk@ z-0TXpBd&>Ia;t;g{!k%h;r8iUJGN+}-teW%v0M1>n7lJDxAzS?Q_<(72J&fMb=>lb zv2?;dYdwecpxvlk&hmH^LT=r|C0B^Ga_iyw<^37*YV&0 z5f;`xyZ>F%=92?$e-ad4+N18}7 zja(VDwG;91R&FpvQbQ~ftPu+aX^@iIdqDK8k&6UX5J(R-PHj?WCCT*YRaoOjT|Eg_ zjEoJ98#r@qN>--2C;{S|all|k2pM5tDd~>t59R&WI8eQSPT51FLi7gC#HyM#?r3LJ zUlOUe*Gjq0jPqIbl?Il5bz?y5FmaL-X*z=Em&h)ithXkyZzd~@&o|q zA8VIQ7hIs*scO5?37uMeZ-`2Qn5&Z4EU%I@PlXmJ6wOd|W+Dej+A(?B(# zZZ&klD>vq-N-e6%NwK><-w{qb9TzQ-zsC=Wvk-vUcXe6w)LcFi<^Qaa##Cv4@le@N zPY)US>EEr>m&yc4-Tr&^E`xB_uiKIc!lQo|ILTvW3V_9*FIUsLX0uu;3_2DH^g8t~ zU{tZg%IiKw^cAjZoSnHO=y_vWMV8dOmYv<5kwm=Hd!+r=u4q}tU)&|FlcrAmd%KR} z!$1=ruq{hFLG6=oMEtIKEFH_N(Snqt3mFM6WJ5GkL#ERpCt&~6@z+c zSMn8<5puu{0a#$p=2&fs<-Nxy3mrd%)9Ze2G|J~JH_4Zi9Y6k6Haj@TsJFDdyr{q# zI0RqmroZiMK4Y9iM#Nn9MtI`B{N~y-(&*csaUQ<7PD|Iy#r8a0o{%?b<002pg!_+_ zd9jxFK8pp(kXss&5Rp3jT)SO;hx~*bcHN4>gP@GC@WyCV7lt0O{?(}4>0dwm-%74l zDX+d5pA+2e*nZj=*m2<0s&9D_83gY+V!zliex~*LtN1%k7gb`DdrYn&XVFbtfO?iX zz8{eQxJiWV>UMACuDqkD9`vys*TqtLbNk^oxk7B@>)Y;9am7WF$@7%4BdRnNHBMN> z+3Oz3riQ|}h!4Y7wrP$D^5r?m~W5d8M+wkM~_<$BNV~_ z0S=If4X(dmyk9oSAz;_0^GE zP#-(CcBD==+Ab5M&m5$$vgvTur4Yw#;24=F(#4GGE1ou%?RB-SJP);HHLT~!@~i^+ z%$%@aVUu?7s|hI_8N&1jbCQj_L$nvf4x4Vzw(WrMwlWPr;Rk5E9tWFA2o;c%%1G;xYkUn(F%Nh@oB>DaN_)D zSs%}~+azt~z6ItfEEziP9%KNn7C^BcDIih%V(}MW3X&js>YK=EwV0-Nbis(9B)Hhp zj0Gbp1$}Lnonslu0-YR0oLIQkpBd_Sclm5F&7VrBk*h$VBwfkp)L-9UwQd|pauQM$ zCM1>+?igDmOu3u?8g$%Si}O=Bn~hjkQ*z%q#r z;(HJR`B7#plM?4v(F#BR_Fzy+(uu$sxr%v)pS}+mV3Zz?{`k;;Had61H#X^ActQtF z{m%lDC8f*GqqUbnqnE&xtpa(ZP2yoY!D9OA&G8S$@7D(Ok0RJERt>UY^1rTmpOW5& z$S%JvRbs)`o7%?PE%42WzzdztDUkowinhfzBBAk|pr_A?XXlctGyy}i>w`LOjw?%! z19V_EDy~GR{$GVcR`o}mo^6&KOjh)SPg3+lbvX;S#8^q}h1X)o;opiLYi{8c4EzR~ zlO}em>%4#5nI@zR60ma1k>sYU7AyG2*zRse8_`>fd<@bXBxm1SAlVKsK!ibn((NZ^ znm{bkEWbge*n|WN89A8QTuSW5k1sD(vtLF#Y8L;5hJ|TVGzZMT{HE}Qz=t6YZrdd9 z3{HB_wXbQ>`-SMX0Las-Q^7N>+tbaMEROI(XM!vi5Pfay?K!E2+n(vm=&8zBa29@6cw>`cKQ=*D5FkYHU=n{ z%XEby2tY2fS;hLWLfl}W;(4&ty{Iq-(a>nLjn@z36G4KAsJnhD%-c`V6jFZ zq{{Mq6s8}!Y^(=M$!1_&FumSetEw6;WeuT_e5BV~k%KQ?{ia6T`!w}Ng@Gq%Z89Ad z@s6wV{aowW-YNX2XMG9>o=DODizc}v0+^Y{YqTgx3^nw_$$6)9^fA9MoVcF(mYeSkZg1nolwwfEbkOygeyuaty6RfQ2Yz&7$?2p9M8>T#z2zx zbQXUIbrqjn&hI0uE0o?uqmeg0U~|mV%3Q1XG5s><(wa%4M0AU!LgIFxgmq*;UV}4L z_A`*iZYx2!t$^}wh`R&xA_M~n2%eH%5ONu{m|wI@-D>;hQIHI$t5BOaRlb=8uE(>0 z4upm*9x>5sl-V-89lll{z%<(keYz3&&o(PL&%A3RtX}%J@eokQ!?swv3V!}^FTl$y zx(s@F__uvyzJSQ*cA1;Q@UTJI7E~e-zBVG+`S`@)Y6S{4fy3eIqB)prBc8fb;(8a8 z9~2vYy-oy!jNC3x_WYAW@ne^kKa+n&1v%!^x{ohpAqE)V{?iN^2V`6Q~b7DgATC=&NYDAu~Zk5$Ihk<%O<$%*(vRogm(rA)We8GZ# zID^wquu{vN$nP!x;N&KRu9m1&M9=N3EJyA;V0|xEFOy$B58g`is(cAnz}G)~TO-~K z))+0SPz%k!km}}HY0TfhqtF=m5b1667~v}EUQqAJyYq*)cAe^TUgc>C zke;|3Ov-8D@oTBH6@8#+5>nNv#aK>-tKISYSqX2|Zpm46P*5>6uHKd;LN_|LZ&YG3 z=LxubK>_qp)4nM&_c&r>^5kQ5w=5bG*y$aD*RFx-N?PgaT)~x65O}B5Tz{ zCj5OaFZHG@AKsz;RY0ms%nhW^d`ydRaK@z`T;x9<5Z=;UKFs`|G?-D-?o6Un7G?Z21s z{Hw={?#D2U^s9ld7{7ZktidS1`raT%VN4pPfzQHHEqjoymiIH(8c{|O6n;&Sv(@Fo zC#5T0MPF+7eoKtO3TXqAI{8t5WxlL@YN_SKh^xeo@@p3&7~tBccl^y*Y|dbTp>)xQ z^M6oT`nC4U--`IHgt#6(BP4QG#VqL6w#PYpgr>z0lN@7$Hj+p?24fGpW;j+5W!1nct&NYZw4s}mvXY$Ka$)?j@cn7TDy6huHmdJXH>YHjY)gm1Y?Qel^`Zf) zRfTDDIG_PmSx$QIO_Bup=lupi2)RvYGO;XV+n5UEx6(l$R@QcB;XXE3W+KFlkwqKP z27GM!lFi>KO{ab&M*Xcq8Q8?8sEf-PC248us5bND~#psK}vwQ8q zcOhc~VPj(Ar4jMTxq{CaQ;Lv-5+Gfa|GOq@k^KQ?H9ec}$S4zCxt(}w?Fs*GYGKSgnh?-eyvkB@W3J{VlpUA2}5VMZEic9E2Y^_rqZv)ow_ zuwNb5L9r`_(_f&wY)^EYQr3?8rmxaNCS_4|pU(HJgA(wP&@4K8z6-`fq_i*|k#xsJ zi^WWDoiFjEwlLIQo|+$6bb6*745#zqzCE*k{V5J2wY2m5B>$o>xTc4EJSdL7<+=cu7#FBB~s$s-4pGjjvq&3E7?G-R0XT zpyoMjIlau)QeR9|+m9@sHw)#>2PEjkY0Z&NKY1p}gv8MB@SwA~Ix0T95p@4OJ#ax@ zXRUEcP7XapKlb-|p4shVAP-8V8TaIP8g`ny(0pd50?J-ech1DxO(NIY%!bH6_DU)N zk4@O&!-ARRjfG(IMQ{}(CmEcDg_Z|gng>(Pa2bs}KCmsbA~cUnE8*K5hs2LlqMSS~ zp(Rr5o%s6)>NoHE)Af7i^1u9;2J@zpQVW)!tKLj{HAVd}kU1Vu>U=zi$G3*}VhS~a znR+;BNt^5Jz?0;CP3=-~u8p0%AyTJNq@%)-Ax@dcvlE^n)>-iZ$fu~}fpR6f*-=4? z#6voO7!y|V>M7}kV2qKaR+#>|nX!y8*+#R`Pn00$Poj{vz+^|qcbe*|yi!w|MI>>I zq?c2nQ?o{jpxC4jW__Bedv(EJP_)uME!vxOg;DC?va!??wmrSHIm7(2Y;kE--hx^* zVh)t`&orTVY`WRV?5H5u{dM&&IY|`_M&zic{7s@&U*;{p5;QM&5nr2E*pg-SOxaz2s0B!oPHqbwH9Eo0|B8_T~nutxKc&D<_VKCpu|X5f)Q4DGWe$*~GJacI6f_C)Vd@gxexqm6~KEYFjL*=bp?4F7I)-#l?d zw0vY4mk05xKI@P8EwUkm&&DJhmFl-0TenKluZ%=o(Cjz!W7Sw`^*$uzvsdxO$2vG* zl@^dp@~I*SE`GURWa7opIC~eIVymtH<2E(D72_k68KxJdGB!4TRc#uzBmZ@O1pVyq zazU+eqbSWiY@-QO5#1f{5DX=NtrLs$+iI|!m)>M2@jY+V;6Nb$zHTvtidQ8q8^#oEQGM3yUujYW zz#xvgn<~Ha)A0PO++m874S47^m)c3z@^FhFiwALh??x%vwyYSi!^w&}Bcp^TSzWN; zf{rKzr*7TJ>(yXzzkEO?*_WHtgV<=6m{9GGNDp=5y~P*b!eoB|2tOoAxR)d4C3+%Tf}FWI#N2%U&m?a=Um^s62eou9{vFr7 zDN4O`bgYN{HXjI5XL7js!)X;TlpAdx>Sw*Xg18ZPGIC+ zf@(U-IR4s5N$IVS7Yn!tgzgXp8;rP60AG+G1UP`0V|01;-Iu}|+>9>2aWwpli^d1O zbcK2zh$&SR`?N5RH>^-`BRM& zm?v_8QT5%hA{!<23h}e+8o3OAV%LXB{*CltQ0$;xDuew7ypFUEb0SW# zdrfx^=^>rgncl~KvzaD8e->q<#L+V z9b*uWuMZBlwKpjvShqg869m6aDj#N)H3VuOCmN8-=Sg1A<+u`iC&3EMSu>*3Xd^W? zA#`z=3RKRG6lsz%qdl& z!nXQ#)zvF1-oN9R(8h{Bl1_Zmz|Eq`s^TA>7ytKqe2V%oG{xicX7&x-Gi5s%^PKNv zkHH7G>6SpwUZ5*Mj%9MxyC3!RNbrF)M}KPPElp?INxH&B*V=S4!2&5@3aW~LFNzl< z%OW9i(6}>&3EG(-Mee8t%lF>a&k%J>g-m;BxD3c#TCqO8Ep&Z1)f z!wssg=^J<(n0;?Qv8}yKmN=8dHmT{VOfezf030o+Bcrm`M)gy(P6$~WD zH~cppwyc|K26iREh%6tojD(C7Mexj_q9_RwkN2&1yn~C|X@XH_hDtEVVBQ1*TFcni zFR0^3UZYJB5FAbp&KdwW_QjK#LCwF9FTcJYhcX>5fG9T60smAo0e{t^&T|T}V9b;N zx$ElTtDy35ExXun@ynF};M?G-o;MiX-pJS=LpN}gr!(;4*D+MRJ9OMv=mUq`5J&+M z%m#(V{-}n3;3E6K}ach;t^4kS-dR<*SK zc&z95%&!kVDc_`PRA^9`P?)}oPUf3Wsc1?dYt}cO5yLDPAyV`W6rEmGTQ|hTdnSWp zuhvd-#|!BEw`f0@O;VYy#D9>NkSE|SJt--ikt@-B;PgC0MfEk*oG3yR^Ukr}Qwrdf zSwah(M3q9oT>mlKl<^unW%_Hyp!g^Xpx~RahI1MYL{Qi@<0JXKvZn>Ek;w5JW_qk(z1lTBNig~v09Yi zezc1Orck&;mcRm($N>WwZB&j;pf$jg5|nw_Pw-L!^wF;Lr&850LLi-~1}TjH9tvmV zrJqk5KOx1kN3y*0PE0QC60BE}s&gok~K0WgeU?4X5P>K5C0;A2f`r334 zAE)?P1BIKVnUQGAk$Xh`E!sH@iNX-fVFjH&E6y(0#*2Sk6B2DX#pz)$^IN*LuC<%r zWnj50m@?&BUrvj|XozoWk(}KTx-{JR#Ra0zXoR8g7(cZD!C!F|z%O)%tz!>ct&6+? z7#0fveIm}DmUDsZZawHmuvVTx%_q*J3_eXUaI8mfMOKtkF5)B?4$3ykv2o_Cbw)aHCs(Y(~aP^>!G` zniud@09f6k-Oqo|7)@mv_~7`j#3kPDfmVFcpHRtfHT}{9D7>$Z zpeKSl5MH3z&yt>!f=EaJgSl)Ji4>I;yW-T67Kc*#qeVT0A|JbKPj-&0q?^x9eSYqJ zQN5b-_Ip~cN_y?+yNTysE0|NCjB%Tdv)?|ojEB${DCOI?-mvObVT9!vysG)|h|8n_ zvObq1iSE2NK|Vh}4;;CoO7g9vI^BO`^gyUAc_0Xjs4_Na{2XW9=@?n6^Epj)f1*V5 zh42Cm;7S2U9_`Zo`hN6OcblcO<5Bm$TYrSSUuqlFNVU}~a(i5ln^;Q@_*+@uN}Ap5 z@~CY5pg%L;Q#hvmo5wACBB?_a6WR6F{{D7b__N}BYc{;|E2*NpxA*nT#Ct?DY5Lo8 z91@PU^P_c*S{psD>yv3r9Gv*ez<>bWB$+`Qie(=|s(G@P6hL~y;&Ztx6siDvCU6tS zvv0i?+%>R|h2T;OcEzh?b>#(zuaND|)`gmY#6O+c!P0nPD0zVNI*`oH(j7>^vfz8$ zEL!N0+d;;&2-Etcg;i(2&@;0?y)^WTpMdYrYO+bkN`L&Sqkz>!!r{{Osb!wW(OR)d ztC%P&^@gYW^Ooy1%HzFpO580WKb^Af=vm(``;WeZ4w1;>9LE3 zDOO@|kbTR!zHtwSlo!rl-i=|^fkW?aC7sOGutXob~M=8ga2(EzZe$#gg$Y=s!nar-rbp{ zUm20Z$_UxVF9WJd^Y1%nbM%^#NhK(*QY)1@ileZ9HvO~ta&Dq>v`w1!sS2@w|6(d< zi*ZU>c9g_=R+}n$SY8J|m zIV|_!Mv(JAp5ExZPEtu{jVs^_!KIdkn6dRILi7|t^zvf*)$&>F7z$tCen0pVN(%u< zx$(>@9Uu3T*3r(_@9*|pcfc2ht>$8R}Y4K^aagvoTK2=%-I z=v$K1BCZJ_2+%Nf!Z)cnb^;v}3W3}G+Y=zxCx%;WPubRc?qa_kNsH8AB!z4ZFb$Z2N z1C^_#GhL_^3h=Z*H@Bn&AuKGc_aOk|3q_b(!QB;%{9!XR#vK^?w7sTGw}4I&U_Mq4 z*E=q+yaH@2r!P5*?~v)MeC#nG*qxzt5&V3)R(g@gQ0UBQes}n4N~Vablv!)XtD|d* zuAZ(uOoalV!B=AwK*|E(i@}a1$$REq6ytw-N_B2=u7AhJyyEXX_V4>ucd;(=;u5?o z-n!bk>w_zI6Y*vJI|^+7p!oN=Aw(ojI^*5R!Cf$=OlcH5*1W2PJl>pr@*NrnIdR?D z(BLRweY7AI%=*I&OiaxQbz8^-C)Le+@dNq{lo9k*_vf3xxF5(NSg?5AN9hc60}5vA z?A4rnE~Lr;UF=a4-);LX;>P;Tg0Ux>*8W9{+(_1F{Lpi+GsGlZCW8aJ1=)v%ujaNh ze}dz4{^s;`a_Bo1!$w!zm{K`c|X|(R%?SVHYWhvAnb6akcS?L}R2gQv)PV zb;w2hF)l>}rsDRm25US)=^Q0Z?~`@4U$9m z0LsuHC0#>zi*!gzNr!X|IdsR+Al=d+-6aAd3P=i)(r_O9z2~g;t##gSo%etK;JN3z zuh@HE`(}p*hlE&RX_>G0lZ@K2IN#93x@;dBLBc8KYa-IqeZMx^7BWrj*3s2_|5HLP z8S?z6==WS<2%bD+RU+8-y%%A4ZfcJ#1)C4B&Z>%Ny7PLv(=v*ifZUwd8Y}BIeJ6Zk z9TPijDH!uz7~{InYVLQIc*V;-y=NnTt>ngyqP0k0I(b&YI#G1|E-i*8%0UFwI^lQ$ z+L1=ZHsP_90%k`)fVZ=GZ!R99fOP)6zpW?@3}%-rotr~HQaSM=xSOsv@@47BY(|rN ztGP)OOWnaeJ#J0~v%hJS zkq02|y9K=y!g8&*nh!=YJsskw{xA^voqR;z?7W5?D1w+z=kwh&3PE`fNqA?`ipLAa- zQ_NF{c}S<0@fT|j7ToQSO{2ZOMm#Y{?AcF8qbSxj1lYA?;+4% zlR3;8Bp`#57-bEG&LsmFMh2tM>Ugd&Wtbm!5)J^tjz$g>X$V6bHAuqVK!p+#c+)tH z5?9~DNZ7+k*t4|g7y0VrMxuyb)L9J0yG~l{2*Oh>xr*M!J1q41k4yej5}Q*Wll^0l zMVJ7PTJ89BAVZ?-pKz82q6BvkXYSO)+__`1yy^Izoez73rz5qc!B{>t3WT3Us5)b> zeuXGt#-6czrdwrjE-$<~k6xMvMqoyijU8KV49-VE+2{CltMwJid5>+Y;jfD#6Tsl> zpHM=;kzHp{)DE@7W7QzL2=Bt2=%m2^#zP))P5z*9^CMx_iYFONvBx~u;w1jsjh6|^ z`fKb<)fr|#Hn|vZ7X4+;dio^#O%EcoZiz+WSlhiC3mAdcm zH0q?FiiHXZP*cDyHxhh*uU+K9%#8(SPg&GRql1I3;sJfR5`phWR+^-LLxehjuTjCW zI0sQqM1j$S<0KLozjq|9zC=Bj3n>;J$&7p1oCr3jg5&a-_B=`EG!dInMig3D!lxPJ za97rwv){&ia^L^CTcS3`!Pl`A_b-7ozflqSCm^Sb#{hvKgrI~-4NgPJoavkCvS)%` zU0fu0`e+0*84sy!oHPmGehkdklcP&_vt{h|-$BM@w#4K%&|r~u)t=#x$-+a3S0 zO*@>^kx^g0g1Gj~gE|K$XuZD~sc7$9e~4X@$nW`eM9WXNxwpV9_<5IvNiFiz&g*TMqX54yO^lRj9G-+cn9juEJBV4XtX*1Nkn4XZV~ssqdBwvI4Be#v zl)f~N%3mP9t+}=2D2m;~bZOi2=~3(Fl-CcaCc=v4<7$r;_<_F!^!c%AAiSY}v$;r6 zFdZ~g8#dS{X|^NO%~8E}UMo>;$b!p_Y4(&N07F^)TIoYSp&7(i?~ly7aUyZLf4;~$ z1j|mI50w1eSzsjm@ZEr_-4Nsb&az&ivaPuJcR=8qc&hq^Wp^1#zk>nflgb(wzi_p}6dnOd` zj;?6>ih8XOkY>D~=kfRVPGqJ~-f_nCT<7(Aufha@ijm=mi%(ttoHL@wfMkYx`sVH# zlfC=jT7dqq#5%PPZUk<&_)!E^<)|BbFpL-Ur<#@fWyaTHK7RT`U}&7taj%^An#^y! zqlFSU*gr3>Ct+)m+d>-EuzMq@;Oyc>@W%9A|1wYKTQnoqT4${9YudQb-TSwHh2#>8 z8M{_UH&H61OV#los|~yqSisoA8_hos>#Zbwx)( zhdG;L$ES>pS$0W&=O>uAE+rUU%S15}-HbLn{&laUid{zpKazPPv%j5B)0CEh-8$Lw z-TJoGinI_;{4y(wq!3pXV;dOH6jvI(b4>o*@NV6V?VB;0I1PK8lZj}YG%41`MxJup z!TIQbL?O?5PaD{~tJw<~HA%vwSYFD7HruC)e6%{BKe5zFs<9CCVAZ%%+)NtbQS z)Kkw2VtDM$)I17KOBxeG{PU#TE?=}&%~(Iv!b&!jK)geH?kGX3i@8{ zlt+EzKJxjz)bvm^tuN-M=_KpS%xsVK}|*s z0`|)M(eVSfYzh{gW$;Lgy>+Mf3(e0zNO7Pm3S6NFL4U{psJGroom$e85m}ghyQ05a zp{%&iqq92IP6VeF=-Tt72&p#d0ta^P0yOok#x&oe0HE>FDPruuoFazFAM=+~G}ABz z<>H~p_yviPakHvOFy{wIEai-&SNjcWV>Y}El+jvGIGN}r-?Ha z65w({&7s|mbsZq8dwa%RSrn;S)8jOUTd*d_=kj;3-=34k6)Vlrdp+bG!Vyz_SS#AP z0=ltO;b|+z%~NIl2l9~3jv*F}xtR#W((v)j#82N7p+kO_c$PW-e(9^S-&|@6^6}1z z;FPsHBme+`&}llwujCOy%pHz}VthmsJ;#&krOS)VC&Cnasum3yowBj4zOmb&`N4`} z|41lk%8au%$fp@1nhth>`#AP;)dtwZfu*5)g8#*j;EXG<^ZVFXy2?JvRxm-Rnz5S3 zXzb+~XtQq>qhHHaIbCRpCb(O~6>MY+wMs(u26TakUiqZgYi~U(BzdlAD`qrccJAuJ zYv@@CEMOzqdC-U=jLnN%xn$C>b(N7TH{S=m79(g2h_1qPp%vqc-6?(HA$W7v&2x(+ z51?S`A(%#NqP>0q9X=dyiybxq`}Dl#!)tbH?BFSL$%swts zFDpGrkW=HfNGieW15oF6a)S`gbTRO4)2|n=v?1DZ!QVM4L+qvnQdG6cGrA%^Lr3N* z4R011)s{O^H_nOFQPi;v6%^ZAJ+ZIvOyH(%=F5MGo`~?JYkH2(b!BlGzQVCedCT?D zyC0-c=z&gghAg$OWv50Mv;DW%%Yil7%`Vk7yjY$?&*w`iuu$^fN9ZVtT2Bjus_6^& zuqD4T!A2p}WlbTa#c+X{hYf>P*DOs9=4&aHT^8C~GAzytaez0KlMzU_0x5uDIk=@h zj1A4n{Uep%y$b$PM`kjB&$o72xL+&6XAU?Dtj^oDvx-FKlZ9TMgt0Q4fC;GOdoXt4 zI@d8@*G@+$>q%gO4-~`()UzT~?qlBzrK*~&(y|u{%Ab5^1%sE}IF%6f;bX{b-mH_5O2mD(+_X`k`U&05 zD?&yQVzX-)(kk2kUES+is@qCP+l~*!855!L3-{pu7o!BPv%OF<$B&>*;u^viiVL>) zEdHxcKXvOOCyy379%G$7I0l{EijglQmOs*Ki)rZp+kWIlg4<<0VMbjT)nEO7}0 z1KK9uhb()cnLt)5&`wwLOc?}L#x}d}{55AAH&;*8T$WS@C2R!{%@I4-vsE)HiaIkR z*EH|T*{kJky$y>Z%M?yLTCi;l>Cphm`{myjI-KWq-2VQkc4PbJ`Vg?eH5S1vpk4CY zU4DS2c4Upc#%e*kdZ8(hJy!OHgJeXA={`SB0Ab{O8-l2L^@iAwglPB`l6^4-pYMMo z8KiT`_#aCKRg9z$OB7=3=HS3AP0kBA`NN5#d6MKGKoxOw`M_%Sfk~xJ7o%jbz0_$R86!I-ii(77S^JdK>@|c- z)+iMxIVCr|!i7Z`(-`yMf$AJ z!!WcTRM24U+-B5Fkf=83+}Tyi9`ta<2%~NbZ>^AQ{aS-mp=v0Hs-rWV;1F5yCiBx2 zAV7ZuSMTKI=>94=cSpWJrSNnJ3u1coEVO>iSKd$nv*IfTd2gcFNuPuU)#wLW2ABR7 zbs3|?bril8Bu0V8tWtP-{`>#(rXs~qp8%mk(~5o@;0zG6u&sEbxsl>Z1!&JJxI`di zn97z_W&7%boUzMMfh``me1O19u2d%+EB{3Bm`PBHlttN_*igwV6s2yOFh!Ce72{Vh zgzYyPh^)Pt>A>BJIrl37iDBQeujI})f_0q#UHSSjMEkYD8c)c5FBFTI#k4mVwalQ2 zB^;L;7KTj<7NbYvy!*rS`Lm1?WVXxSw=H0#G_P-Hg%TJp2P4^DLyF3pM=4CTZ*}cT7?pLBb9vc zNQ-Mw25@hh57Uh`H%UkUYZY*45L9?16|6LXgeuSx`N@=?EaRCSf9#n#XoE|l6<}oX zPD!(H@R{~S zc=OgoR-x;!QD8;k=CEDA(}zzrM~La7$zg_&m_@f|wpi(4G!fm?@jsRO0_)e(KS=1~ z<90BXyx$}LtxNQ1YE_1{Q-@il{yRAYk_kxIu1J9(XgSKmd&zRd38-E{^=9uCeFZ@I+xvEfDtU zTjUvq#np55`Ge=hkwSDRnKTXXS`Qv#zfP7yshH0i^mb8X?j>$n%FC4RuVWUJgyhhL z+CdOX3K%Z6P=0M*p5Hq_Q33~%N0{}8Z>$esr#7a~Yg*1Apy_<}BqPc4BSpFg%QmM{ zl;gRgta34zMYoSmD@yR&y2L9EfH7m92AXHk&d`*=6pDi?AT%V@sw3k#dq>wkSw`4& z(%%v3#-*Mt{r}ayNmN3IefH+15;x7)uBUz4l_20*O%5Dymbts;1Tb>kcX5ZUZAtbRVds_LE*{CoJ&O~JSh*6!qKjh zMe2eU6iQXIP#4e4A0Vq=#~k-4YQ+MiO3nMC$ce=ddq_F2VUh0K0lj{HpEk9!g*|bL zmC^=>;e|z@-K9!Wx3kQZR+qw#9N@6_=56)c|N4f8g^l=wHH#D%SRR3%-~UfxWw@jJ z#v>N<%DhH78g8UZ(^1p$Keo?mwFPd6$wy>jwF694OhOAyHk`D0iJOayg^_0ZQ+biS$Q-%NC;YI0iv28Q5zW~^lhh1D^@d&&I<5D(eHG7=aUb(v(!1t%nt?Q zZEgIWSg~2Fd%E|fJOsc45w69fWc+^VA0dee>5*wBA24S;RrsLB`DF=v3wb?>OiGrP zBa{~3d$v@vj;6#Pz9v)SZ5aRo1&qX1#A6MBm>>|-5|D;qaAE`Pw1WZ=UtpP#%Xf|P zY6Ry}nv0$I?;PEQsE`leDD6=7P&l6*WVG@2J5r72&^SgAfx6V7|S%u=P zMwji=6(tDj-9jdb7YVmnm{$iSPM|TI)m7DN#G|u(@Q!2ZrBwZxf`FbLQ#$_CwsI!D zI8fcMz2*;W)&MWXk?a5Wb%q$jm(4%j4{`~lC!nQ`w_mIt zako4an`^SyQLzZ~`hth#_3=hs$yRq}Y_^dE2B$L$HvF_hmb zkJ4U}XHxHr)Q;u5r!@1IY!YZcTc#2F;Ms|(`IWt-PC9<<{9Hcly^8D}^S0zdKjv!) z<$84O!Z(Lv(9E5wbee0@X3eyn*jEkp;(wsJR*J|!V@1`O`#DYX9pi2!2LzDeKqqWcR4KLL0Af_LsZ1j zsNBC_b3|?|!>O2#0N+X9$gC3ZXkb;I>v|7(G<0pu?Zo-@kFHw(z8AduCl&#ehbMlC zxXJ&Gqzk7>5n>Os%%nMO1y-EBsR|4aJar(N^_B{5yR)b!0q4XbogG#=aQFQ$8^iGa zw)Nf@+a~|%Hr5sn76DcMqIi4B_d zRMubtVM=w6kmlIP?5REq$g*U`Zplwu-*{|(&`SY>bxN}2;kMttCK@!j@9WATHtgHT z{-H944kIUS8G%txy3O3-DG7LMweAd2q~|A;E!h zG?i}H^M14Z>c~2V;aK$0fDK9`7kRNw`k${&YZ|}M=)w5+wLkuEUrXg}2Yk_nykC4f zi4uH>VEyhY4Coz%72vP#R2hcF$?r%PU3UyHvE)COkyhuc?)clxqfv>NkVSuB3yHK* zi~IrGhQ!_ zzkqedXI#zCV@44{W#CKWsL}X-0NRwQ zeWYcMA}$00^-#S+kM;;PJuM(?ZjG_Rc{8{2IhvM z{s*QC{Q#IfECFT@w|WL9&;y=}4v4Tt5 zvhA~7cS`Vx{+@8XhP4idtUqplJxYe&qHvf9h5)XvQX5-uchi$L`1?3Q0X-SEC|j;w zH4y!Ebs)&^;(;kp2KP}C1tZcol>igXr`BM<%@9IO8H@zfmC^O#Vktq|-7uP1hMBz3 z;j{B!3dS~E1^rClqUL@~@TK4zup!yYQulvk|KC>kQtwBVUqvAAhJDm*2Bee8Wtgr491lHr zu%tWM;x34g(fAug^aV1te5A68i7G7C<$zP#THSPBKRR!{nxqauovUpI84?4`9wK#VxdcdQp6p9Tf=qBGSv$bf9wI{g0aqxBgK zh^v2+B;dKkM?a#Ps9-=F7#UkEzbFgW1i9r}!*H)GcOZmd<4YU4GAK;D03%AT%df9~ zusKFNSdIDGV!IA;Vy_djF7KG#qxFY3IIW$g_%_jHD_o%>@}Q+0o%@{;>aEA#j12)j zIJ~JfZt|I9U&Q3<|G|wD5K&*b{xV-{GDhOln^#IL8r<)>xMjZ~bi7>e8}M3 zAKviX&k^!@OVB1Q8N10Z{XwoBrVorAi#KfH0mjr*i?BY43ftL`y^8b}JoNCNywDl8 z2T=^)QtITB&6)=2<{`hk$O;c8IZ5*KK3SywvtwYYRrS(s+| z_}O0Cr+H*{mt-T)&nJ`x^XTG^0hvJ!^r$!m&w?o4;P@Y|GBgL zsbIiejqt(fv`#+3G1k%4xdEdwkAV>r`Z%gy^~l8BeyZ@R-bzlftU^XRhA2}(>wEhr zB30kpD`n8zh2a!YFj*ld=IfIGRI%l7@;4a)Yw#G*AyVZV>^!-PuG}wgY-S>`s=gG+ z$Cj^h{>ZS6oz1TQk0Ap2P|dZNE^K_)H{4Ri!n>MnlIo&PmS<#@kGZ)r;~ym8dvD_*fXIur%Z?zd`*(9%PvQ>?*zmL>UzY z#7z%!@l+g`gp>+?Glhd}1Em$#jAS{gVGRV6OH%L=dzMq?sF(xC4q_G`CW~E4Qg5HJ z0@mXEg^}9r5TbN7F*;i~lkHHgHl@e+EWG9>nG zf+9C$Y74K350g2W6Vcqz{Io)519{?e&ZqL_O_vz`8tcqU_7!!MGKo5D zO&CaWC+%*XT=*zTy(`W^Ta-#?MweKd=&&N8mG!=rsvka^LfYSp)m@H}MzNbG`Imzw z@u+c*jC`}V@x~eg!LQy;ae}yqccc+h+tazLvJZzpW*|HYXb|AtkXST2_W>K`(S`7i zbNwPVYOLZ}EUe<0_rvR1fnbt==+95Wkfo3c0@dlPACGD8{W;d1jm7%kGrVUkI*CzJ zbf1W@Hmd^z!Oug%PqV&Db`M@~-7A3PGjFwgLm5N{Nlr&dH+SU;ny0GEU)1fXzyA12 z*~%@C7wu)D7O|CZf4=EO=3p>cf&_J zU%Fai(|rtS2Syw@Jpj6uwkmU=r)lTHZOpSE=^wv(%*9A*Ehun9H;v(%zBErtTb>9^9a+5R%^K@J&obx9df#go zCl8n9%NS{d1_gC93!P zY@GLf!AAEP&n4ooFSttXRNOM(;5m83j3!9He(;%J585<_IYN8P1X9#XD zGZh)a^bCO=7V@eR^ZPF+x5A*80#-V%&#Q6QS3gn*kO)}3tM!WK9Q9TIMYc?%c+X(F zV4WKd?l<@*l_xv%jgkL(FV=<-v~N-|UPGz!SWzJByKo40a_T9=`OvLu$pvn4*WC^u zI$%A3R*9R+Bu?mgsctvj5wv)GyoL4EcV?#woT*Ot0`=r6lq1#-D=i7`Eb4`7_QxX- zz~qmvx6$I8r&pL=?pOJpKl!0o1G)0oui*C1{hr-h_RDHv+>Am|4i$&I0}nJ6EG+05 zk_!F8K00ynU=cKkYr3b)Z{H1+gjke5sYHd|c;?57JUfVrO=wFFs$U?pxxdCbX-}g= zZ3@skSiy-H(h&S? zU5|%|tur=~-WPonG|>n4Zu~bPHWvYSVX;pwMa21>io1w6RCIwUVh?A zYbj^GFY+V37_d=8ACrItx1NLq!NxNX96aC$j{a#~`FQVx!5;yKOH6C--|g0wrA0bL z-o8+L3SFNw9FQ3em|^&)(6ir0aLKMbyXNVZmcsXk(REpb-rbG5*4}t{fM_{v%z~=( zF!=l-*?VhH*Zg_4c2^7kLBDthGn4gAE^OEe4OtAnBTH;Ub|$C{5j(Z{ZOi2SR3vG~kD%=E zf-GJK%RzKEh!&C(QB1~{pZFOEQLEYSqM+y?b_hYpe2&n`B_3u4ywRVRaaR+wOf4bp zUxGe2mIuq}jODKf`-^}Xn!CguTd<{mEv?Yak+%lOYd>65$=9A`gg#GkE|p$zXnFHG z3#}Vv?0;(kp1@F=N|@tu<&EyPUY2v)YG58!<3@p@iK(%HhNW9{vftg&+%!r9PlXHe z<#DN@M!Oq-62n2enxCkWJH=#2PZqDbM(LyTm$^y9v$l7gP8iGA(hy>!(l<9E%)u*? zx|J`qD~F_J_gm3Uwiu8U_h)|J;p*yOw$AV1oL@%`c0pWaR0CyciIB2a6bS@CONp!2 z<$+-D+&Oc(e>a>CRQp&2>qM9nF9nedVkvaL@Ygmx)Xr%_0V@|c!my@%b8{xYy}hGJl^BbR z3`@s=MUp=Us&BepP=^$JrHX~2%iLD`a*Ol+m(jtmn1q&<{Mn8*vj_Ru_MBk&&M%CI zfq>J4@g81;HTw>RZv9!tjgdV=d5l)`iV7h_v;36=oVtAMKCQ|mvde)>z(9wcyl-ek z6w3TdmXsRpF3JQlH-M$-j6RHPjQqPCL3GMkS0A>wJ(Hm1qyNkZXQ2d-e&G8LF-X}= zn6kf}M1%YD#z zSPTT!>$g^BD{Or(Y>hZ8%%JhWjjKh-o1sZ-Cu`pB7cqOKAmp!@06>~ARsj5zBc5pe z=g;Kei<^NT#rc-Z#Aw;iS_Xo}S$`~x7A^$YlxP6g5ecgNGD(J03h5n$WCws8a_d!r8p??Apm>A69?-)`+=H(K``SOI&z|a`m zAXn@QiF?7Yu5n5g$&J0M4Hq3J?R#?p8a}L^&M!g9#tn01#m68}l#@2nOckW_dDcNm zAXtbTYH)T#wP&$U-~K62n&1#3Wz0~vM!T$IQO4-x&ST*JQtLb;MqOsC$Xv$+f(K4QWN-|a6Jn8nlWS2KbWR@*n5Bma52hp^z8+SQ zfUo00)8*cbCTW9oe@Loov^0Boh!m&uk(|Rb5y1vIidnI{^ZfiCw-Jn~uzrM^zVMw6 za|C!J&1XZtj58<^-G(e3$H|lRcl&RJfFbfi1?J+2^Wp_N?`48^JRd>HcSL6#^2?$IQISW{O?A?z*PX_>nenjh z#+e@(2Wq7@i?ma7d zc`vJ_-zV%(b1V7GCTV(kBl?K~T7bQ7Z^G@qM8w|H`uax}AY_RU8{}vhRm+U3kfE6h_A!MHl2?jVh zYdj4>E|_WWj)_B-`3S+9kY*hNwMmY!k%=a=Hhb2myvUg^e;f{8yFVP$((p6X;wtxK zqd>0!2rg%qm|_IV580Tf?*e2rXdzyuH`0wYcVuz=LZNF7eQG!U<-w(t9XYf=S}yu| zCN>)gaJ{T@Nvqkge$~VqXcFJ3?mGWI-Dm!lKeS1lyR*cF)WllmEMP22EIhU`oidAJ zqM5I#`nfC)@7QkN>nrn_pz}!X)sI5oLYWi&vq9@DLoRD|kPrWd>|C19`3eu=8tGp+ zQ~ekYW-F6OzO3v+_w*jKjd9TxM|BelBw-~ug=ws|f~Q)py725Cp9Zz>R!ZLjfBj_V zt#hj@o|UJGtY)CFf8MM%=emdsLY!Au^^@ayFYedQ|g zUS~9&TFeLm?8t;!B!rHSTx#1R=pHv^)2gJ3g6CrSMwC+thtvs~>1jDag^7+2bGb4= z+S3jjnks**M}hrn3S5ERtcvVuO z7Nc8^32DpWb40)#db%icczi}|MDaioA1;(%$YLZNgSRR*rr5XB`&<*RJu7$SN1qiGsPFqjZHBk5~iIC&xs66 zNYrBeRb3&N{S!OP@sIQnSbF$#iX_2bF6*I&V=J004Lu|%3W$JKMJgzM>tkEszy0(93CczZ+vIIZpV|9%KAApygB#xD9Xe;`;bj3ApO<0#Kt&BL=Vb9~ z86%aGHaa@p!S?$#e?Dgr3HxHUo374_t7$gof;YZIcob7Q{2jYm-Vc<;4q8$is;kJ3 zJGr^E@DaSACU57(Z&y>d9L}a>-Y*$2**4<7TU4w~Gq2m~#PIsG17v3usBTPm5L$|k ze*Gf4_#wTtUod!rb*(p8;1FIDNmcb$fH}r<0eh)55R44#NFXvXbUW6g&8n5l&%RU(t8U zzrQxRPy}J!fqPAOzrYkIX#;YM$1VkYRo+_3u?FH52-hL`@R+AuEg;UakSxcqkt|&V zypvTvwXw`a{lMm&7`qJYJDGar8&j7;KE_4+Y8IZax}FxgU*fs$!o zh#LNO15|rYacpt}1FAon-cIS9JcG`T>l3YSI6EJ@mA}cTA|>j z@nzJ!R;55uP|ADF&0#137nukT{=@iKFi`WL2=oF80%kgrk0r!L+i%b{C(`I&dG{sY zKh8_j@F97Ft2L@#HC1Uy5cU^DDEPZ0OUxg#sO9^3$h>a6MZx6d)`e>;k##0vU`dV+ z>i)s6Pk^!Ws*2lHqhqfSp&T}9t~Andj5qEKY(0VSG6sT0-XLu45(I8b+01G9jw!co zvLQzMy2)ZOo9j}Ev#}f=dAv%4a3!y(zCfv{y?f}~3U(R8MuXyxx2akIuco#Yh^QKV zG24z|7E9)D*r%5)_CtgD)eR6wuVHNLzQjpnTRs?yHGQMkJ~n4fBchAg$o5I)HG-Y% z0~bWSNMFsA`;t@-sm_$|pwpV*`5=g1G4R(6Px7aJ&3EZ0@{TifK%32^`T4s+bkoMv z#tFOcMp;4q&; zMJ!N8_sFvVKQGh|hZJnrbChHEe>Wh#ACYlt2$M2luGMv4dH7&*bM*eX6Z<% z_Zjcdq3h+0e@GuvHYeEqpIa2kQ-Cs>xSs@2r8u9xFMMU6$7%ONw(*(%=2(R%*xM2# zgl^5@qG!CTKrKdBX`@hu*fvj&Y!)m_Rz=eHkyKqq0xp%Vi%=?%_{sYC^DYQloIO>d zS5%@NO?Nysv}Sw!L17?Uk~93gXI(Iomy~omtlKRi(CFW}9)xSRKO?GMbmZ=nSh*)C z|8--oANlm5gh9a^@|wIqH?|!}k6xM4x$pHPL@ZnvhrxfDgMiFGeLg}5eEpS2DcNuZq!~H1g?a}QWNFp_8=`5b;L!JkcSaH+W+Zu+Fs-qHayIho16&b&J>BFMgQU^tNHVaC|~aY_Ht;`qf{NzCSDAS_i_!-LC}E z75xU~{l1)X`9|mH@`_e>-ln@^d1v=R^D(`{{4GCrvlV|KQ6DXN1l*f^F~))wo~1D- zds-J`R2_?k-5<8^47SAnp$f9=ic&8g*621DF_^TA)ck8V{+lR#?-vaN?=mhaf{IyL zkVDkJ#5IFadCwzcFfB42#s0c@ic;7{1c8Z)^>_s#I6Bw`Q;$~=B_+3gED;$>a>#=2 zImGz!!#*L>GZF&q&o4%QoG|9R-Q!Ggekt2m;iBga*slg>`$3=Rp>K4R_GNRySf*&AjYS$h+e^S zINt54tZkY3xu0`SRWyD`3d{TJZE@vc>}Hu7@=%iiSAj z(`~M|22+&kn&kbwYH;c#HM2D)y^q4{VLrr!Hok(gxA-wiEmV1)9r9Xk5bvh%94H!Leo5IWU7(-@!}OqjDxaVJccpZEO*=pN;EDIR-c zIPiSuh1^xMhEl~W_vF{pUQEFidpHTCulXR`6((-+`g;6t(xHge_Bn2ySJ;QLTHT%6 zo0z8=T_tqGaw_-qT`01CUU|735U&;`MvB>&X(@j@Wj3xeJ3dP}QU(O#Pw-*^Lt=iU z?c2m1D6{EX)X%{Sj%;b0`^faf&b)Z*5;bqlHGT~zZi#j-tB8-~R=A?t+lU~NGI|ify3))G ze&&6t83xaXH;s3q8)OG>2m(wzHq;p-2ZgUo?QZo=coJ4cezKu)mgUme&KBN_!lc?J z3L@E!E`l@G`FR|0wm5WNFF&mrF z6wxelT>?2|yAm~jK~vTzj(nPC6z!AFIe&!;l)}xh%%gR4r8wj(qgs-slq}m`UCYI^ zm8c1~yDh_75+;yBQkHjABcot1Slp1BmrO#o(jDSs&Qd(tcwg50(sKZK8sq-@2PmBF zWA5%^u@mzwLvmjL>F<+mbxY2$t78DX7^eTNPDf2E3%?9ibWy{*L!( zS#jRQ(y66tqay0z%^k6>j*#0$c3(<%F?|#A_NkODb;cg8fz{jB_Jm{+oW`BOgS5Pe z?wFtbYQC_J1@7R|d#W}AtcaRc)2Xmo5vV+GfrJ@z!kYDX6@O6cBHNS6ZKr~71{L3m zwOxO}b)w6E#R|U*#y=ZTT~?FS;o!+)+-?@t%JaUBS!lnM*b_m$PPm&k6vY@>CKw%j zYN{?8Y<8h{)*`wY(jDTnj}r_g=s5ZMUXPkJhBDD8&%5J37nJmKk5 z#Uzi^Y|4&XWo&b?&Nbdgy)g<8TM<8ZoJ6(PkR%AWury#)XjQOfx1EU7v}{%ri!Ju` zcM+JxqD_1um$ft{MWEZZ^(W&6*Ukz>tH+|)-6d*2=LXtUq@RK<+iOYqs~SV;hZ=jU zPXR&|HeP8b=>g=PBrB>u=66ZMNio9QYw^WShM&(&Sbt8ZXo`qNgb_`x8H?F7OMQTx zq8ULO$Z=p~!0t+=ST#gMvse_`Y$9Bf-%&VmptY68xPo zg2620-CObCSLB$B^m^T&If6}UbZa+(0A#j7sJ;_jO1f{p~mQgcXseob-b zJYA>DR=i)dZiXQKYr+vW5O76b7pjxQDnhKX2=H`32j|EimHQv8od9C`?>ylO!0yL_ zFhPG;4P4<@6_J`nf44D6@@Md~Ke^H^-c7F>O{-EL80L?ZK97c2Dk_%qj6HBD%}_rS zPyH@hB>8>9@Kk5YI$!?PXxjJ7!`B^(GfaB9n;Z=lyox9MW(!VRIIS=cY~GZH$@ZN? zg#2%z{kZVt`ninRH$cW15#Sb2?wnIIolFg6D~J>*o^mKY%b>|yP>i55+LyJ^Zhs@< zAC6R@x~bQ9@)3CH3GMJTz?$uzb?k#PebyV9w1aLX;4)6uhSc9tf>5NTUbuyBPrhgN z-!=AW3|n48`zc!P&|JgnP)KA-diCVE*9sHnuze)?XDc0e6`?@kLqVjZ>UZg$E6n|qeH@;KiY zcBR84x?iTCsKxvO47$AsG1NZ!J?XE)PWU$5UZ9Mh;7t38VGN^IhN49{VdO-qMq^L) z$-C%qu@jJ`Bzu9$MI1LmRubZKe)IHxb0uFj=;t*(+2p&37~Bbh$xQ+*VzTGdL(R!et#AfhL{MKjkLM4=#V1n-31N)8ix58j)c~n<*rA#= zwpgvuSDU(&-%b;iTvyDCKWCp`XOvv#c}-RD#;_LS6Ja%9ktDJH$pM^GO+G@gWhx0Y zFQIW-zgU)8n^z#0Qj?ixWx)^~^f7Z`o%!Q}CCQcb?Ax6K&X+ z!UExjXZ6$4A{9(;xB#H`Ly3FW1+hBgT4K~wSoy!^PgA+HnyeY1O6fqCYC)t(u-Zzi zw-q19-@SVnx?QhHoY_Hi`?+w;Mm-$t3k?8Pz z@@Mo}=*HtKo^-feB;vCjm#b+%a?1i*Eq#;RNysjfH+kbLf~^?-Uc9-=saiV$fc!im z>~`6-ufJ+7jU*(XMGh;GFfPC#_U*g!TsWqeG_QN8wmFjB7np zr9|=Tq~vc|za+hlcy>#$TFnvx4(F-H$e0#eIl##Tk-?HrfRTx#I5;yPpx~Gg<+vQlYRD5_Z%LNy*rk4!5uF@6XBrv%gJPIPAgn_&py(snGgdvP z;TwOna|*>{1#^lKI-Nf_87A*`JSInG@=%dspk?1cceZ@_f>BnX7CL~UAyEGuTvA8| z`}cEsiJ=;Um{0unA`5}E8+6M8a43mC{)F#?FbM_UQzqL{ZvuNGE}Fhxx84MYrB2{F zm_Q%;f?Uc7<*my#SD`L#|8Q@ZgPdzEC)oI1^1eSjjGhEjW>&q#RG#Mk&_svoiDoE*bfOGr z{v>m^h%67cWLvS|Z!{aq7asG|{7CPu6W(#E&B#fP#oC>j(BhBHa{a*j3OqU7giGI+iPwidFSlTu<@Nb#^mSy_L6T$RXtNxSUHXAXk_5pC2#&@kv3FQQ z-|o%-{-6D_qe(dZJ#IW`#HP{CbftqFlz|kc$28oo9Om(0ZZm=>gGi>d=Xt9l+DN7O z8I#$Uq9F3;EiSInkN?HpTZP3LJ$-_K;4Y23g~r`onqa|Qg9S?<5ZqlF4-UcIC1`Nh z;1*kP?z<%S|^=v2q9LU>cPstrx4CoeJP?^AB$fSiK z8ws)ba5>QElJJ`d>f<@c;lyudAJ?kkJAw|}P%K4lF!it=n^frnTnS0x>3#x3u?+^( z>ixAE;}c}7LRkWPhzU!rXowUF{vxlQn9dek>w~kQu^Cb@PY9bPUOJsFg&mwuk>D)` zIjd41Ist&1U_#l~;qKvtb^T81?}teuE>gR_%TT~-O?S{Gme>D&y3QC2hz1*wMLpj- zU?9Du&k`xczkHY%oof(!`FPpbpeFI7MJ7aWhhdn?T%Nw^5YvCV1}P{en_`Na_~t{t zJPVv$H{x7i|5BP1c2W`!@1KJAjp?vZc0;F1pIGNK*ux(H6e2PEj?@6ARM?C%UgL61 znX1vjZ+4>Zha|Rpu!p&iAV%6tF-du7a6qms?bA2e#YQBg2m06G-24?xcY02}0u-*F zX0|zX4S_RmNLBnjIY`!&_Cn+znbBE@nuqHXWYml3#doIjW2Hiy1(erBAa zy=}@~yS~qHb{5yj`X?5>?2+QYm7|%Z(mW&>sjumPzQ6DyiT8<`R^lq=X!9@NEL5KG21`oO zx$q~|gGpF4OXIBL1>WPtQA5s^0L7b?6M-d9$3Jl5QI~!U{P$-omOpDY@HL$1L2g}m z0OMwoEunx-$t)6l8*F~j_SV9#UJqS6&bwrO8ffd6RL)sE$Kt(jIUt)5(miFZ;}ND+ z_T5EDNc30IfGl#RWKX|>*;_NSp0^5bla6S#t1m#!*k2}6EH;+AC^3aXj9)$^17-fg zW$gneYnFQunqfrrorOvm*~sHaw8ggRfP8{o9{o-Co#nRH%szaoJvwlm9vi{=D(a-n zJ+UvBeo@2FR0%j@td?SdR33G-R=)KwQH_f2_Y(b+riBAnuHN1N=ur?XThsGCT4(#4 zL>H+GXD%h#O}wA@1eRRB6-bm7iuOlX7uB_A1A|NkEJaZ3xL$x+ zVrc8P5lAKfU54ORtF!}a&I|38-@DWO!v@O2k+o4uT=7O~>-dN0U%*9}VW~_+)*L;1 zkriLD+9DG&qFADuzCMjNy|pm$p(0T35u;=uQ2_6u^2S%LaZCE+6ur=|#t+qEtMhaq ze773yusPU$nB~E@9iR!IvK<*~aFYJi&+9+E1e=*ARl@Bdzsw<1GVwEG?yejMU18Dv z=(5R=y0A@E`BDp{B3&TQIAe>GfeK%%CN2#P17=H(VWEH&01Tx*<#z)BkO5(uGAhEM zm?I7Y!WvJ34NLCJc`7*ilT1xJazeB7DXRib)GSj!LXuwv_ySm(PS$b%;24OKA_q7} z+zurS-qsF9ckt@(oApX=B@u?GWMkn0Zzc(vPcTddP$-5?1}kGAdNd>)yd3^XCZHn* zc|%!@o9?@z_LQudcQg*@Thf z2YIG6@Eu4TDWs7Ns!_n7?>`WD0-Dv9zd-%bTjXcu>e>IKT;%|z{@4}-l%x^MTzs#2 z`duQ|p2SR5FS}b~a_w_EQH%U^s`2CXjR3S5ScLdy`Va;X*bg?hTNkF6>pF+7ygRjd zb7a@+e|^(QArRXe`vjkHn|rbD7<&VmGTqC#l-$AjwuB+HiGBB))r(hhqxC}Pwzqp1 z0lzo8Fod@1Y}^Sx0q!RPTYc+gPMThnXP zX9Za>8pP&?Zl!24dBWO`toM~p&zyXyYm0RDo0FHNLl_4w8_@B_n(=4Tp&ysQig9hIKFG0bEHZ7E$ zsy?ac457Q3$?^EGwY%}aWwP3gE~@!U#a(*_uihDYDn8Y#34#O&cKz&q*+PF|eo*P7 zM>a-p3t$-#sXi?xuoJ11ad*W_ivAWB3@3?!i)5{PNhMPskz1Dm$YyJL_8P}dANa_a z0x6HB%RSCvAKNuhaJ3N~WNWv3aBn`gVOM$yo-iJKaDtQlvkLG72R=DB)>(YK6xVAi zy*;{7%Dmd*Zjmf@V%5O7#3KGdUDsaJOGetadgC7>Z>R{9?F6=X=X+gp{N$dKa=s(J zktGmxnGLy?{}Gz8NBldHlEPmpshI;0v#BY#J5p$JPD+NXG3TJU0DkW-J|lz?Dx#;7n!ywYs#Ui+gaW<q(NzPv| z!P(dLFEozfh9+Nz^y&~+9w6=*6Gio{sJ~Q;n4GBc2#ldGI!!+p-SDUcu+mEJ&FVk_ zg7R+ld`ee&Ql`Jr1kL&w#}C4;~zaD35ou+uevt|&-^$-aI7*srVT=0+b>)z5y(r@l0prj z$m;OGE1h|2CmkLd*r4i4tUTXy1lL~Yl4y~hD2ZXdWPM2g-GdEP5%B7R_he1jDiH$+ zp3w?%pB&l2uvfBY&JsT=ELR+;Q5=KUh!)~p&{sulK7!X8kKjOcS&EtN(c29V?%84O zrd+b{DeGHQ)CTmt3q z)iy``>N(hEWb((uT;=36fkO;eDy}F>i^%-#B;F@5JROIo#4f}9q@$J$*tB!?$AFv0 zz^Tf%umpAz`PcJ0#5roEzX_r9 znQAzYd*%JiPQklz=P&%S0ATT)o&54%W29;zJc}_nc7t#-biV)(DM%1Bi3<{l{z3Bc zW2zTlgQ9R?yD@Q_m`+*ul;z-g-oSSK$w`f7X7(U6ER%dQ`Sct@p>lCmNC+jBu0Ih8 zD! zmChASc(r@i96hBHjy>7{a(N6HG+rg~sN@`hW@MBqC>&%d;BF8Fynh*zUmZa8hw$RH zw$zxK|AM9N?3MUireWt#K~%grA$et#eakQj4YBBYNQoQR1n zi+AshT;jq~>yhx2vi^w=Ta5EUz(4tA#H~(ev^780XHSUyq5F$3OR&F%dt$r=+rS<3 z_E2}TG59jsERH@hT<^bing3dzA0WL?%7@Bk)#SHO^{b`)Cvi?$-g#@LFLMD51Ojhc z#JdF1>13eqJguI|Qg)enT^bay>zyC7j}~7jec`!Alq(aB*S}MwD}B+E%in&xNbzLw zNg{#~lcP`yWR$nZZvD|rHsaR?3l0REakFMKh#+IcZ*f{_Dw+P}Paie0wiz}qpG%iF zeMP^9X`=i2zIlTvwkt@h^9{@OLGNwM+ zsIo%ze=M2@XN-=(yL!(1Pv7dF7`l>jzVrSV%)vH&K9`A-Ff+9crGs+Qw-zF?-v3Rpo>&Q?_N18wm-;CcipAC zA9rY!C0d?5!S6{a_iwQeebIg@+*7)12GrgnSv7be^{wCQ-c{x=R||_%sVmxlV%32M z{qJ_sk2=YTuU7{}9XR(D(I6?4HhN~S%CwJF=u!=Rnl5^2g8V;+8`@`E)QA4&cRq&a z^O7^7U?7q|+d_coJTZF*0}8hiW@fT?t64s~TSf1Mm{MErDp1{Sr+NommND} z7`>`6(X@*EKB*OmY)HeeW70+Ox-y{~z!FC%#N=JLUz#Sn{ed_}(60mRywFJuJrYUMyIR*7^t1ptB8z z>4u@DIDsE#~U zL6@q3kwfg?7`1vLIeH@apN$51V)-cKa?DVyu6z*7O5qG_oI*Svq|KH=0@U>4c`@NH z#y%8;kwD)M9evdh$3A7n|A%z=n?75X`bn(9GpQdp|D0^?%s&rgvZ^CCz-WdBNBBtV z+@R~IqFls1_)>FlAXf;szCZo?aiq$2W!(_p(Bq=#AtlAKU%$hSEYic9pHZvWZ)3y! zVCgGnL=v-ofABrRbDyD4F39{ zV!d=+?VI1fsMIBU;Rqo59k(v;-V#rK#diW3_DxwHxmHBwb1MC?F81noqq1Q1G$&lmKy>#&4Qs@n0x_!QTPd5wA6ByyS0AkM zdXS;zp}FrY2TL0YoYL%bBEo~pHFR~Z(?d5l^Rg*B&3N8(sPQU?9!S7-C`nz8vAc1B zIbRNkymYH4L60Cdc~zP3-#%H!j&(DE1yaQUnM}|+k5ikKq5+-`S>ixFNG7ceCI|-d zc<#peD_#7{f1SLe&s9MZGDI}(R8+9RKEjyqL!YIwPY>d4|C3SAlMzXP*yHcO7_o=) zUU6&$@qjYTz9*TsMA7XZ%Ok#jFxu`g`+-@lZ?24F6;^q5L;JF6o)2*bglP>lRq#pq zGa4cX0_I~C!Vk0jetEkNy5qFxhL0-Sjv3HwQ@xE?bejRcxYk2d^Z2f0me8-RLffti zFWp#pk@mg;K=5|VLDrMUpNeBDLJ#(QFd#QC!&_xkI>hSA`c>qX_RQ<<-WBd~5#@x{ zu6wcze^ZtzXJQZu=?u1nfLp$^%Rv38A&vpmntBpijhJe_M2PSOV;{j&=7hQoBatfk zdit`Uq0hBvZ^)gg3%c!vdl&X&j9(&)N#hBKJK@LP=X>8h%(H*f&XUH{H;P$kE>ENP%?c*! z5;Sl2Cp}NK!UjuYh;gP$8{jBwI{Nyn%XtIHirxy_-Ufrm{oT6&Pz98pmhZxif?q`> zw}>ES{mML5lLGN-MouM8fl)Blf~EuQBuK`ZN^Yw_+`dCKEQ zDZ;BC@(T;8H->rO;I#tKFXIp(gkd*-rejW0UO)zCZILSVf?oviAawBJG}ag%)bs68_Oh3oGFi4H9OU)@JrQiE!PLNuDF6r6e% zag^bYc42#}TqB2t?0ObvQ|gIChMV}Yh_19)>L?)t92161sOXx3CUmZwk7!WyEK!<9 z=YWeT_Cc@Go>*y_G0O%itrn&kPXdWd!gw0cY8*qRL~I&b&Zib}-%$B8&S|YToDy-z z?z*N;Zn$6~S-cO$2d*|ab=prMM>F_P=C~$@GCyhnKCWKc&o#~wR|UuZ;wl99Cu|CQ zhl6L{^2j0&ORY2($Id%Rf`bg--kPreOmw>d!+a33B;!Z~cC2n^qMk3NQ0HdWlGLk} z%Yj%)B|*BSp`uxJH`Ckq(_06tV~XFs2@v^w2(+9MsdH4n414CredrpPwjk&qHD6;l z%L%6ejzLxzrImFctk7@hY*l_&D20t5-j&PSubdJvG4YYxyM&`q&3rJ;xnpg3cK_|J z7`<{v*N($+_t+SI#|MLfRaqCAGKqw2Z`mlKFNQv+N>1=zSTBgN zqxzhkaeQoCG}EnsAV2`8prrczt3&Mt{uObHD48L}uQ-3?K#B3H@Z^(%hh4@U<8N2= z>|tc%{lk^v88Oy9O0<^qvW2CBXGkU=Lo$Aq{<@#28N}jrumD0H(?yuXc&moU8Shzn zaXLv00?Yk<@UiF92LSs`WIa2AN#Q<$O0U~FGcvTAJC!Vbej6CsWpUS=gaeR$a3I)Co@UIw0w}EOZk(%OM4G)MIs!p=tYq49OQ#EGe<`Da_iaSL; zim|aVU~D^?5eX;ZDj)Spf4aRHPC;|^X&aY=&0R^UCUUo90RQ)&PSh!?V)GY72yXpt zLg5tSF9v7Ak8_;|D#s(2ySiZR8JxqrUbQXl{1})kXO@3OBh3)m=w))r@b~HEX_W4e z^q189ZwrEGdDh+9;{~rB>G0cL+}KW0VnRieftsZ0tM~pdgxD!i8|uzl`VHRDObjBC zPBnZzubH3j@1>AY?ze_xL@-NCq0h3nUSF@8wk3LcS2a|A;8#f@>1z7&!n~L9ybQ9- z_i`}h^5x)~-5EID>62z5ZWnX->K5JrD`0h~IH zPrWsgFbe9FY=8or@RKOu{@^fD$NY~8p@fc6*4JM`A{C>N7ToPKA$T&cM7}s#;z`ll zFS=r8!2rh1%6F{Rh%Hh$dly7q4js9AvwsuwI?LyZj+#2JIx?4RA;uKA{)CqNt_tu; zu=$f5iHi|eE)0Xo+%wXkHnH55&@kJZE zrgi^nMq4^jV+LrPH*2ou^t={?&@P!obBn2wSFaDNcT*5uviPM$ZAQQpwSzPHwpUaKznYw}@2Hz&DVmeQ90-MSuPl6zDSq8xDg)bKtNj=Rg~2+Maf2+MWv#T!^>vB{qNUorlHEBh8^LX| zzCYW>)bOVv@U^KI=e|^?Pq!C8;f6^Z+b9zqP_bT?C9j{v`PTSNxlN@d7tuG^8-;3z zcK8n`GM){_+ifI%PHN{&QB*PB{e{Y=F8}7?oAb$G^7%x*g(t>GoqP9P>ObelHBNc6 zkt)3%UnqEEU&}Qvz3dc6w5_+%+RkJioi?AhPp{rfz7)m-SJZ&A%{gsYqTf6dS8;3n z_I)YAuT8j3&7fE#FL^|n-AmEWQHNNFX^Z01ckjO6G8w5##LfSb zSp`xC+C!zxw>6TC)m3pw+`n%xXcJvu3l#Kw8aCokvWy}J5(DUjoB`UHzw3N>J_v$7b zeDy{Vp3ZActKSBO0^+*gyzs8YtbgWnT+{2;zK0~K1Vx#3X`kN;o{ZRc1d?UgBWPBc zFuXoU@vpilILGWWfL1rlzN#zd=6osgp1H3E8Bk-(I(%s~9evg-C<-HT`b=6fNL!ak z5lw%{+)tqU_*ZNvx5@AIxQEA`^#e;U0}YUZ>Reyx(iVeKngp?u?F6T~$NV~qC$lsb(h{*ZNNGgJQGY@-=raqT`qTh-(!P!U4SGXc;75I{rgvaK3beb(=l@Md zZ1#_aOTvJpX!)CC2-=O30AA@RPXl)TQ?gqp_VH-$yxA|p5W*%xzAa~dRXjrcdetJA zHyErQO!-GY|4R$damM&fwPX>{WfaH4PdTC3qx34b_bGT43j&!lbCCBQsi2(t=^O|7;vyuu0&>MkE23q}SppdvW z>pUfYW|vpP1@2Lw-u?N*`SKNeZyjomTHkrcpOAecQlKRafC~?}Gxak+FGbU+|38z% znpIiX5~lLo1=m@J+XfnsxsK52dh!*MTv#es(&{rmK3L&+q=YZ80Zltr`df5;CbFeN z9DhKP=Ek_!u26a7<>_8L%H@Btv<`<6MJ`f^L4># z2A3ozan*O6sROtYDiiDm!}6*C_XeD?Vm8{d%m1-!K9s$GkS@8 zdwne)Y=*&%|0>O@of?{rHh9Stc+& zl-Sjpo~J8)U*}U3nid%+EIwcr2(IvR>jyP-zuM~n*mA}ENV#v=DzuhFy2D6JWuB{R z7SP|al0A3M&Bg;^d`rD_P#x@w8!*6D0ql%r12hf=p7WXV?lTum=mg~BlGyLcOX*|T zJ=GxxX&yMZ^BP;&L`(x;w%e(3!SaC+UG|gCT;BhI7?fBF*8!YM-@aD`LX8+PsMD0} z6UhDJwiq0lXNY>zmitdA0eg+aD; zX6lt<;9J?bRO>Tei!i}=g+IHGl)L)axyh%W`)AJ#>`W)9UQkt3A6Bv%DD>eawy?cx z65aPtzcNcYyuA8}4Icaj+x(_BVVrT$_{O_F+Tfah(-5~twO)bUY4Anc?TR8Duvfk2 zr2uYF4(Zd4rIhR3mo-3$m4lg9N4x}ns-Q$?w2?{nbh|U6aIxW4xH0@&R@;8)Bno^c z;46T)jYGC9gx8NVG`6GXoxTLR`{*U8_g=Evsjyvau=1p)n~Fh5nS( zwJo$Wq8^fj3rd|4A+<12I~{{QF|KNyyGL%Cv1b23TPM7VUmo(ax6M&Fy#L+YpE>3E z8JxHs!&Ojo#{w(#l|=lFc!6d;V#+LE!c@S41Aji~QCOS!nt=@PNBA{^29LS6w9>_Y z+v302K5ta9W6?ay<@{0}0MTM8OyWDLLzbMN7qS+E*UV5c|H;yLnCddNZdtz6hp4vA zFcEqXy0s@EI~T3OOa3Bo4;!teBe&y_isBF1jJ_onD10SxAhTsJrP&TgNSVBc45mlgDqv z!h*C+V9p?FX&vWAp_&uRtcB;M!jVHcKKEud=+aKtN$T?rc)oeD1OpgJL z*Fxs(yTtpWOMJchO%Tf(VCdO&F0*20zH?D3v|?_?LY{kma0XDn2aF5N+bni zlUeJ3yyKjrvVRG{J1(_~?=sh`WGbqE4WRB44JWLxBfe%vK2hv1gOiz>G65EBagXRh z5y%H`I{R)=Z&%*Ap2)|y?2^;>=r2k>pv0(@D02Q(Cyt6_TsojSUl?g5{dkdv3iOa- zyqFn(gCT#^_v^&xl{yG&ybFqa*cG!fO$w(|I_rLB9Y60JMwa!YQ^vlP-3f|5`R$HT zz_zFm)1V^si?Y@74ejl>ZeBqcmpDu;3WKEVK^F{)3%lsQq~itwlyF0<)6YJ8=_}UV z$+`+-h1-xbraty;%vE;I` zDia41W+qH=`r5kN)d^Nu@)N40HVKB2RJ?%U}& z)k_YDD5g*hl?Gb47o_caOV*gju+2S~1@X;#QLJxs5HR!&pi`7rjT)zm?V#wv515<; z>@~@2I_a1t+8o86?!%seYSai%Opa9yvOo8nH);+}dtnIy2GYNjx<)9YEQ1B=vPI~} zD$ftahKH*iXT~&M*=&EbL)C~r*uu9qWQ1f+SsY!w;*$A4^COhk6=qV)rWA!a?qE&~ zEC=4L;9yk+)n0-zR6jbtG_OqXnfAta3iS2blVNsvtY)mo!=+0kWNc5dl@k4&LoRYSk!SEq?LzEbl8Fd6Z~s~QQ!117>vaH0`)|2Kv&@8z z?*L9xxsTXu)@4gY*jC3lCe6Q%1X+086#2}N>h-4dUPQ*=GmdSE+E`l8McG+=Kegdi zY|fq~cfS}I5?XHu+62f&&`+Py%Fsb{9(!%ApM0>+;8NPeTqBHWXYVV0ciMt?S4M8_ zKd7T|fChqp9SBPQ4-N!9WEG}?TP#=2`9>eUk6Q!`Fh_r(gt^V~> zLxafQiqAPCXxJ`=2;Z6%&ZIaEDu@TTLyKKTgQ@mN{n6+)F7G8B*)R`}&nX*SVGb6v zTPXVb;%SKreyNxbJyKA%c;lbhape@qVt?=Gm~cZ5xS8>*U2l=q$71%$bL%m=6W1PRC>-*aW_0;_3`eL( z6Mu<_@M9~|^)z3cP9Mo?;9lPF2D*7MW6=dWo$3CK+9lBzLoL}*S9_RSy(-Ys>5O#9 z>C!zcVM545a_-!$m{-yN&m5M`K)ZDo{Na%cRUj24_|{ATc1 zJ3QWlZyG{~pG@p54Y<~kI{}YGV$y~5A}xVlCqb1!fY1MpAy;Oub$KR7-kW(!OhDi8 z!}NdSJ&4;5qK-1MdAED56{-AJmZDP*`#Oe{b9do6>Fiw)#iP&*;sS_Btp;V4%7)DR zTjAnkOgSkAuyUFNYZvQ*C~Oj`q$3YS5N2^q=``oWI|a1xN<=-|c8pf5^xgK2KWBb~d;_^Li*%^0BU|D2I=I6Q3!< zq#5|;%tzBatOWAIa8<6jC9!*M$wLC%9rn{$>{dIWqivD^+Js|d zkTsG!phc?i9!IiGL1vyU;@okLr4w0+4em-{2Fj@5I}Ci4e3ebS4E^UmRKoOtG~M&R zr0Ia&0Fddd7WrWTUB%S?|6x5KidVX~6#VK0K3km$5A#j%gI{JFQwv+>t>^*DTEML> z^oDh2db<*!!61Je*x1G+!;c0Q3h3X!&!up|_*b?xS`5@& z??C!rFXPM-g= zOzDhdEUnjD5vzj=0g#C`gGrC^u* zvw;!BuyY*4lI{b^nqTTnESukGRvc%U+iv(yQtkQ#^Pcv_`u=*9e&g}V&r1@m42q-Q zjwtLP6R>IXY_CWSZ21eOlSt58@L6Qg_H-?*QmLPS%Es_Wz4>g4+Vb&dYmVCC;r07r z5{)>3AEy}pzKk5z!3T7NinyWlZCZ{Aht(o~Eq z=FDR;h#pnc-%ua?}HK}4O{Mq2P}grylS(879}RrTMQ6(wuBTmYa6yxa&iM`E`}J`atK}ni=0_8E`8&lPgiChE8+H&TlK5bOLJF^0 zQsf`2xqOa(?*EEe|-zAmOm0mmozRb>--$1i?2xvSgl&$l2N?fxP;GAI4B>@UT=CEy0ar5P7- z@78($$D8Y$(_WaeSXS5*h8n|rJ6=t{93(01bXI;*BBoAY2j*1#a>95tHbr&)Tg!kj z>_sAm+mcORi*wP3N_;h<&k17|eRG}NzYb@`eh~k7g=X2U2&RtaBMV%Wt2+^Q_dr{7 zl|eEQ?k6mv>V&=!4p}9Uw@N=sU#dBCJrwmjx?-@ZA`6+S;@9{dN_o5EVKx39n2#l& zg)K@mQze0z;}5f7o+e1+GTeW;{f_6?889Gnz3!qW8V+JJTOJMhWEs~n=nAm7?1JqR z7*&`1QEcsBsB&a)9W83iR}B<19(k0q1n6PpN4C>)Jdd>}izU2)fz;*)Psfz_%#Sby zunMMAP2(qz17;srR!l%ldT=E3kC8BeA!}=!OgN^1HSPohnGr9HM~tPXtg0itY`!v2 zr7NH$TXy`&@RTviqMN|@Gon1VOpFJ?Gv8~u{z?vf_Wgok0dNy7-YtUbuJz_ks&}haeV&#nHGforo5R<-)8_ZD>68=1yLee&gwyO z8$@~9lj}Z3vk|(<6l-)BX`LW1USnE9Df=_aSHBVE9G|rxh^@g-+LaoB@G3o~u;Qnj z{pVeE`dr<80`oe&M$5bxQrIEX7(4mOn?Vy=p+c+ZOj6kTEaak?OeY7R zm2tum8#eV%JE&RFQ?8Ld$S8MejEs|EGZ|>pX0^m2xIX>n&O;5qk7QNMe_W$hdye}c zb3}fhQQs)CSk80$$N)WagC!Rh{>@>%ryUj<*(-;*`;ii^3?_X`RVq8%|(-m}&kXFyO@+2#W?Ggr3;?<9(EczX_R@DEy9W zuR{doAN;v)QVZLx;s*=^p)wK-6_s0b|4f|^vgS$EOyaOaQn~?j4;H^{C_)3MBeu=% z#|(8&&-c)B!eq;Soc!9-ID^Q@+<5Fw|KH{d3|ehlVRE-sOt5*IO<1ul(+j^mnEem z=Jek0Mvgn=b?(7$higBp1M7XCmV z<}tG7_*RZ6g;3jwzgNh?(qzUu&S#~@Rdd-g^vlltNAqBnLP zQC2LT%W`}bz7#s$@P_H)P;7^R5?7-Xl*VfvmgTE!tE|wqI{+LD0V?^1-|tg?Z>tUG zhDSPgh3|{r+{L^NdhKrBoDzUi!r^-&fRj^>8vLszJ%x76QJ07j7L7uY-nX2&YX&EWNh|Lu zY&|-EUPrJ0s*qUl9uw1kFuz{GfuD7|4kjrkBYmk&K!#y77W2awVO1&L(xqkX;Zx3w z54{tlE$sN z*lddltg*}_k*&J?S%cjzX$Xeh z?^=Yucw8Hm&q6GMpKzEnYl(=kaoKtL{b5QJqs?+&+5qFCdS>BFPt2=lkCN-??^2Nh<8#=7 zPx#xi%Y!P3tw=|CB z%m&^4KtTEt4&rd_{#2XgN1Yyx-*sk4=jhm^PBz^-C8g-g1IN36cS8JF~?V2{vZ?+S(%OCU+O3)=w*S-DD zPxNlA_e#x($q5trju6wA23*@}I6)<xlw9A32z_zRa5( z+U07gpe^Yc;NiipolJ+RyZNYzNDs7#;xVW-DsqeZ>@uQkD|hE8-0qGvk#pD(q>4^A zS`!+T68MXP3f6WD`;L%9Px|gSccy94=pJxCu7$AmSF*mgX0khLy&RTNHJ-;>Ne-jY zK3}JTcsETZ-;ev0oXmKP0R39VdG=!{o$>~wUUblsc5FpB><_OU0$i2;1B@xy!}RnD zhoO^_=U_4(A!kSJnpN1qncu6AU>a<=BN5p``uZ2~_37Ms4meE=JGtlFq<`z}7eI0K z%f-hBDSj@wFPaN}bNmgXjH%l_2@+$1-vlCg%2zt1dnuH`563R8tj=Q~&lYkgd(V=B)H(AB9pP#-fZUpjm}cg@gz z20CFr6EQzo`12(r2jT($ehg8%yt-2)$`W~+;=K4*`M8wd_te&!aE5z}Jw+V}1HJ^P z+1}qh38%J_W~erz`3mh(l6)gxO}UHa)XZl)gUAmIpVSF)xbQ>2W;&L;`Zzt7Ao-PN|IsW}fL_9`sY zMzjhzq5u=k&$~#^X0g1LcibVc(VF)WL#OqXS6KFSt-)i)vvHkWAZV+G7;Mka5Yvlc zl(08WT?2+y)S?pMaU*51G2z5z%Od`#`@^djZ|pB@@uRQc?P>7UKMAu|Fi~mNVylC!lym_hM!%CR*O@ zbfn$1SbGaw^w0$_5MQh3hd#m!v-gYz7z&{o64=YM%z5n%Uzk&1(<1Ljy$*$;IHYOv zKO;6Tb+4J4q_Gr7)wOH^9?%}apff}YQhg-O0n2t&j87P$`*IAInK95z+Z$OFl5KW) z?{>Sd=V&({DIDIRd^^q2r^0oEExPXlU*)BbJAdRc*=kH3`^ z!upM>7#f6h<2)oMEKm^yoUFi3!e~*_0CzCL1mxzAU274vA1(^?$ShAkeGDxZ*Lr@E z*+JMcWpYCyMJINZ9%m^kQ_1^#O*pHGn*?j4*|PI@t8SsxjDi!%Zh*w-CoL3=Rf0z( z5r?h7Gz5M*xs-zhW!&&Q9sA6i8aLF6#<(@)9bVqV`u@)|%Q)Ct`!yJ^>Rg-@PHV{oDZ(+cZwM&RS9nBSEV zOhl?xM|wnLt>b7Cb~OB1&)MOypKu>70-Ohs8A9>QS0Wu8RxCgH;8a+DkA*^>61p7) zk5`#)>6mdU>{7u^IQc>!hpJggn=J^S(%eWgRs)R1qRvbPvqMusOnEL9`ftMCrcK$# z6bNH;F7lNfmfU?u08PO2y(o3{>n=jNsJYJRsK(6}lP8X7H%F%$mJj?dEdW>#Ezqt{ z{~}GzT+pW_ZT`K1uU-F#5fUw>tfB9Ur!_#S-HF1V3ES`|vWDK7U#&OuUEqM}8z4$_ z2%#y&6&{lWTgfHVk+SV6XN~A+UCmP_eUX zK`~EIF(=Fq=^P;=Z-$!gu|PKQ5Txt4+Car3?H3`CP^wmFCG0ZQun0$S6~9_GY1UIW zK1&mPET>xjTWYH)CY@dU!y5+Xm)rBPD*5kKd1RO?zSKT+5-W%VZL^gQmJc2e!m!>(lB*C@7f^h z>AT?kvjS{Q7azL#U&dF6!aQG8Gb(em^F9&@n7x;5WC5YmP|BB;VuBsFImd8Uet2fu zlusWYtJOtw)g4I2od>2-vQA+3@sYod>*33Bbcp*%)#g%fi;fJDe{dvZt;JW;pdbG@k@<)V{i>ghR1OarX^gw*A#qeR{ev+% z+WPq0D1znr+P>k^aO3tjS(7Tj=s#arInf{o*1T@aa~gl|3$l87nyQ@I(o~96zA=jg ze?GxOhH*%-tm*ob)WOubGK}~!%J4|F0n|i961gF}JX#6Uc2lj5QzQpLYwq-aS?a5Yxo1%a?8kXNdB^mZi}N`qc66oPSL8Q!}8 z5N_I_C)LVQy;P8ng&1s0%Mgwe7fr-Ev`#0>l=YMp$tcmnJb9nwfr*p@QGK1B4QV$k zTZtzRyDQMjWra(K@6%l?iHTJspX}RaQG{@6cJrv2A_rh-2eM>+F8z3!9Rt%S71az`@w&%e<#;Tly*GNU1381u>+6GGx0JoMQ4YVq0oBb$;pFt|A z^=E-e@%TR;v*Zwzh%GmMk`v4}W@#Bizr5nl7X5;ZC>GR!^b+=IuS?Xsk%Bd6#Fpf@ zUMwYN|30SBkUiuwme#I@fN_nG8n8#cANyZ|vLOdm*0Im9J2-K##8qpb75o)?6m9!R zBBtMjn>USn<&v!u&DNv6FBX#Yk#jHT!3TG%wj^b7{>{gFg_s_*Ineo30_3CElAu_T zv7O51pyw33Q>-{YnS2Tv3x42o%ngfT;`J#Z3u@>QNg zf4M`{4Bl@+4s~w-T45?kg?t2BO}2G5D1XFXY?ZyYUhWcBR`8+^j?^MNoah=o@+y69 z+bH?GW793}7nuwm0*)n(9hTmiOy0k^>0;zuczl|jkg~`9jyC1w?(}BGRB9(^-%=5? zIew^wwfcY%#89)W?*{c;dwm3U%zFnjvHEQ#S8};s!!_w`R4KdgD*$2<#uu~@OMbB6 zgQP9}?bR*ql#0zAFR5+Lu|sExs_mlJ-jnOIU@?OMytf=v0sAGdF|OC}6GSc?{2medWtKSaCSlQk;pod?aPyl)tp~K(2oBK%CU}o$M2Af9tZE z*y}TXm5_{(Ts0QxJGT&X!Pb~fjM{M@(mse;j=>#M!rr_}<4e3Bn+|mQhR7;@pUcA} z+)nWwOxZM0REJH-oTp;M-g~kvQeo7X+l#raKzRf=+B@6H`|RQ^?}CQY=a68PM-D!A z_;LJ^A@T!r&OX{|PmzEEW&`Cp-GgrjN|@?^4-kJ1O#YoGTgl8S|Ca&>kCawo#%rqb zxeO+$F`1c`p>~Pom%`O*H@5nJKzGPwjM@MyM6R-G+!4CNj@z$h;u;{Qu!L12tLM2#eY52SYLV(+0UoakI~MKB zSuv|pciI8nDJtemjRd&rBcwN>s%B|3t(>8F7)Lug2X1fVPGbDuQn@yTCTUXjX{7BI zVK4892AWleS*DZ+oB&R!&}6sXJznnUX--@N@{u=;jI>d^?`c%tu|W|}9*J(Q$4V^Z zJX+1e*?EuP_FZJ5t&8O@UEF?;VW}Zch8$(LY5~5AjWsg5#l4Q94%>LODs*8&&GFBj+^SCWotVRY>0&1{hz9vMCB~EeR1@RLRmVn@r1y17#1 z+&&_SlwW@R9Q(4JM=RGod{EI{<<$r!37xQaaJKcJMc7^6Zd=QVCqJ{Bf@Zwb<-pwF zHxTh++LCL86e7Vdx_F~s<{D_g@TK{&JdrgnkBLTQUhf{A|y&N574D4D`;r=nqv zXZEX5Or(^ZPDplED94ZwhdJbl-Q%a?H#<7eJ)?MF?9w5GbZcDfsO!+dR>6uJOc5tF z+)*6RbogkK$wyi$vzC|q5p0cb*gBqyaeu^9ee`?(Rrc@GjA!rlxMvcGdR6H58wD;9 z4_o2D1-SBQ3dXN5-GE75wCttwiPdAwS*pTLi58N^GjRzvW|;)ydB^~N%mRhed|e)vflQ4F)*u>=_rH^YDP2}%uQGgYT$&&jlJXmWu9&s$wRZkVswj>s znN_xoMjjX3QgMry)TRanJi@%CSUZJ7N1=~v)}w?8%P+$4h|2c0x72D-r1vO`AK5<8 zn6Loi(jDx5Nh+V@NFBfY6B1-%SbyucegVmR06M1QhN{&OCAfG|A8vp&aOKSWA&O{f zY8j)CV5K5>sIV%!YXN=f3}_SJ(Er-J*m21Sj{_xi(d}b*d z`k1t;NW?UHt_cm?p}8@9C*B1`Ffge@b5Bk}tt(Q7^#yS{Lnu_9 z78WN+-{cShR63XjxH5Mes9;pCpWB~&Wd#336Mscy2{!F|7x_otZGHfrz-iI+b*4Ls z|C7ECL)ovz-G2#c^1lRi%|_Ly3j>C;ene)unMtpjA(Jg-p{#bGldgdj8@0T*^;U+8 zaY)!pCgUx1IX@zbBZBBlD6+0N2;|OG+IPNRA1om_)DOj9A~wE05a$2%qJbkg@BI6F zILm9290P0d_yt149K0L_>itM5T)DWBQaDODE;~HUz`C%0jzGH1Sm9+US6=xra_Kt` zd^po1p8;XZA=_76nn56XH_cXLglW1+-qA@&?v@x-UMox_TEREQKCsHwg3i|Hk>;O9 z;4O+&VA8`xFx+g-`VP+l9;vOG_XVJJ;;oxR;!BT_aFU1MTMOtAu#~tB`MZgRU{%fc zh684}OKwBt!7jZ)&HM&aSVUh1V6721FozuFugEwr<>aV(gJ42~_& z4MhHIheiTH5KKp80idRZzJs^oC;von4;BJGhQL$D4KYS+;vaS{d}M^yjG%uGy@e-` z9ZDAiKQmVBv+T6^A|nY})o~{dzu}(A%*hJf{5c?lDY;p^BrO*F0dXAREUmj0@+O-4 z*YdS-I;0VHJ?O9^MpL*Pl`%iusZQjmSQT7x@HQ8P1c|@n7EPFkOHW!qULb2&I$b6h z8<^o!y$XUXMheutP9Dl8ils4KX3mCFZ!EiWHjSI~L&k>(c7}GjD%WrUNcsOuiu*kh zEE_-@(+aO;91XVwQFwghB(5wnTRJd_b)|8><4|v5qMrrBWvCA$Z=^^N0@nm9*l$p6 zitbU|k9o}HDPyY`g>wwen^+`=By=)C7FK_3p6mD7coo`b{_;oe;`oh>APESyvdeR< z7sxtqbW}L{d3-2>&G|!x~R4I7jBQMT+1X)T3zRbum!AO1rcQ zbM?x)AFpGqp{PeX21QFy|p#N{bzyN;S)+_{KEzBC z3C&mMj*$xAK!xgcj>|xq_*eMyJWyA>FBIE+1`?T|)yX3;XU6bJ-=R~uVH$@=k;q$5 zyi2F+gCRLNPH<)1msvKJMVtF#X;JudO_Obv&jz)m2p!klTK<0}XQVV1;G(W7 zbi1ou_>~t*DTxWaeoffMNMD_Ui4idT+5HtrVP)dT(Q=pU#|5E)&lCk4h(=(Qd+SI@YB=<-rO8{`;0X5*4b-9GE zGSVr4fMMx+%LIe{_2Dn;pR^BESAU`}2xKm`e9w#og44RczpMJ7Yzsi()o9nQKa-2H;kY|LyxiVSr4E5zcS&U9yGCP8aDu%e~Beq~$lV;uRCe8#N5?BVzxW7!F}s=Wn!T z?$H14^o6RJ6uhHLNJ7DxF0fxaut-}3v*lQB8%HuW{S%o;DAAY5`{X2#_N?vxCd4w; z76IGc2!EQx2*=!Z$Es)w2@ZC*jOX=`^J>z0cvaF>krKvl=i&Q>rrb#6BBS>7G|0|~9v z5dl7E>YX*z_?@Yp_a?Qd+=XmVP$T@0ckMDS+v5644~G|zvMUL6wAkvsV3sW<<->0O zEo%wz@nU^hYk>qC4Frv4U7!u-j`e3e-1wW}Ei}+C?5L{jwRW_gc^W*VcuJ;zwsGGcd z5=@SJdzmV+#OaLzps)Z)L+*cP{m-ia3sjg|06yUhf$=HdNwk=U0~qj!`2*#(gE@8X zd(}nPL`bb_5y|+4@IYKY3p0{90AXKW3qyJ9u%i@ErFh6Xx;qK5bDTBo0H;KxqJl`* z7U5F$)z|F8yZJ0kiF>xYyz*d!;;z&Jn1|5ERu$#|STT*D?hg{!2 z%gvS=qD<|eP%~w{j$U72W5;Yod4;SDTP2C^(I8bFiSn0`2qa5g&3_gZf@h5ClJgziQcl1-^7+kkIgfKO0dIZnS0?>I zJ38(=D0>WL+=*Qo1KMe9g0fv@y4oLPQDIOusd97ZvdzvQ=yUg2d^QFQ@f_?J{A-!B z3a}{%V9TDFasr=x2ww)cF8?;N9+}^oNKz&uTY=-fd#~O{ttQll1oo{x;ylGR_y-D| zr>=Zsz5`KDfw1yV*&yfVm>djJTt^e&&FsFft^^H`{vVFQ|0~Ovji?!!gWlScy?ic3 z&O&F}ucqgVqwE6>9(3(K!j$y67o&u_e>+v^D=!;1S1EIw(wR4>x~q6YvjTwocQuba`<8V7GwIp()!lX=8~(2g%}|DHk+gOc@N3X7oW%q4^)LDfSXe$T|-uuPkRyWTC%#r6RK; z4qZtRov<3}5*GXRxPNuuj@JvDzQ?+wIs;x8@iI(HW+?U~^+lp3kP&$n)-|W!d&o8w zQ|}o0O~Lx4^oT$aS@(^Qw4;Tf0e>RHJu>HVKVs`!7PKg>6gEJfLMN(}-sE885b{D7 z-5ZBx(E)J%jvtu%AFI#_W3;^is78$c0ixUi@I1*lS`KY#Q`rUQjrt5f{O^-{hvVPx z(TnWcoJ0Wv!dSazR6AjbMx!B%A6=}dFb!s+>l^I0PFP479&PN$k1f_|M9*IXHIt{I zkQKwG$ighq-p(?LXHom}z)}deY58b;+H)h#Sp;Jt=0gJeJy-(a4=*7k;~9cvDJ)tJ zvyWWxu;wG#CIA1#Kj@nNO;i|D;wJQ11!_zj9kH!Fx3|3b+AZ93m?>)CNkuU2pfv`O zF&%|h+N;g&1S@LZl3ghLfmvns*FG^2BK+02k680K_Pb8V!^U>`jq=G9eT5RYAU$m0 z!;=HCqQQ*eYFTdgwd1&rQA-{HuXUWsn;(=Q(0U@;;GP`COK0d{hG5KGy_?yY%KX9; zz<3#(LDllcX<12KpHdV~ic7>{33gL-vAln`Xsjbr_bl{VeYl=Dr@OVIrUnMQU71#C z=|c7tpJM+~BVT5YYvlaApbVNWiW$bf7FHJVf6wv=D;AJsf74i{IzGjVa!$Y8GjZ)s zvV+A>Od)brfNVQ4Rx2@5uxH?2yX|m};3!nZ8VVw5C#M1G2$c8CS-h`rx=7LiBoi4_ zK98!`%%yUH_K^l_{~^8rOgjdaB~^$xkqatw$kXU2(ymX+v7@{$@hp?IJ&XHO?EtcqAf4wZz4H#d1oa;bw5VpaJh5s z#rQkkxZ+Rtx7VRO)Go-ngac_YA3l62>RMdiM!a;{$<;kxpKh=sWY@3#P^H|T#5R&6 z`KtEEkHyVOlXJ5PX3K9g8a~tHU?w6GxNk)R!r$K*C2((fBTH-fGK$=3fK9Kug{7h) z?%j2JD6ZFb>VS`8G^H@v4yJ%XlhdzRNwr<=0y(0K$R3bL*Y>v}RlGM@#OW}_T z>RtNZ?)2us*qE-$l*<{9Nvbj?%_48HhG4e(!3%llk=hLgjx{-AgoTBgZv>Uftr2mK zLNCqE&-w=N?85hFm(sj7l2d>Q%!vw-b)Qw9GoJg-x=V>7l)n8iA50JL zPv*#T-Wt{U;mkCc#h-tX097T}C$zkXyM%{Fb$ZdhGQPXLIX_$QQ>U<31n7}*RcWDu zF54Q{e}CHxI4nLQM^2{!gCEWTX=#GDGe=W|2AeZZGl7ADj*Nev#9@l9 z<)3bjs8fEoo1000W|wFJSSJz$M&3lesbq=~zqar)1_O?s4uv+P!3h=iV-l}h5ZpMj zB%j-`3a};e=ZUva^Lp?Rkve*qcLuD~XFf$YxEf5PVQxtp;{4mz(9_dgS);b<2@)o* z+;$hz#-pybch3391wD_xYYo$0`&JigKBWO_L90>$0J026YsJ{rL7gbF3n_c~Vy%mz z@x9TG7GVd0s^@NH!m#exP1Q_h>Cil4;`D#G05)Ps1`dz2J<*}w2r()zs!QyX)sS1L z73*ajZ?+{T&JQB{-UEXb!m@Nr3xJIZWU8c7{}1BN`atU2!7j$vdRQYq_!Q`OsTuFN zy+xA#i*2KcFhmakc{QS-zD}4g+Uw)vPCYIGKoxYYFY$2RYri0Fr<+Q9@y{>rk9@Xz zr3?1I|DLHEwKV!PfXE3WDowgazq>H0+xwpE-;woc7yEmi?Y;fE&5Kb-f{a8M`osr2%ljyN zw!-t2jKEMKg^RRY@0&!U=jo#OmKdOm)pcanKU`!_1*n`+_4f9jAIFFu?tk_hGoXZQ z7igyOP5&^9m}TD!S^t?4v9#YHxgZ~ZIAdM0ga(WHGv6rKzBW<#^SD^8j=-a;Hdo;n zSFPt7GoRh8|LtS6Y?W3C0hdc~600t9EW1!Nbv!&XJSw8|cl&%-Y~HKkbcmg?vGKv2 zTZH4)U$$!N-%mQ_6I!awkhETp^NHYZVd`Mzu3rf*cy$`Wk~Wa2eMnBcF(JK>NK@%R*Er}Z%pUuWAfbS zr`6@aondXX9Q`u=_;bFoZSJjtp#~*Qo5A4Ap1B1}7wn%bu)b}c+zJGkg3Eg=zNyQ( z88T)kl@Ir)zNch3QvsBW&DdRVl+%*yyBaHbc8R?RqMmT%Um=hUbY5}&Y$}AkP&6dW zzHoLr-)*nVz*+{Xww>I5vb2aypW>GC{nPiNnO_RfY?i5K2(-qW0&(CCFZb`IG&!h=Mz&RbG6+Zmdo~dtG1C3y&Hwd zwci2#!3WW1s@9OJ^N_`#Kf6nKyP8nIThlp@&4)5WdN!ev-fsCQJPQM<^y+a^eFHPR z)^t73Lmg}llVv?6ub|v4e*5l;B;ZJ1AnYfHQFlOrr8E6zDp0Zi}`NrvU z>5Tclqi*W6LBu6W*$6hN7iTps=0{pXz(t`EQ8m!}N<{C(i%yCD4#~+rIpMM!p_C$7u{n<~&*IK{TcWnSJ6U&yo za}4Ql`gzo?O;YR=xex*bf^BiMn1di0FGya+wpgz@D0m-TCA#c6CrA zxG<2$XC_(3VItCBBJ@tl#^R$-3~tyQeP+=glI45mG4)GktfFWNsYEiDt*=vx^MV4# z`EXvjqs++0uo-keZw7h~bX+pJF)0P0gRZ;xvFXujFH>QeaXs9U+3UMXa zVt`0URe#+WER>4+=n6m-GIhVc^}nfR&h9BxOmpNuL2F9Cq@SlR{*aIWt--u|Qn~-l zdWt&)V%DFO*Aw1(^l=8PI0Af>(1Q(9%!$^PC;Sze3Lo5@Y!vhev3wqs9XO(%ueiep z=8TislF)`?6=IU9ob-OIG*LUH2QEj?m1*RUohX+=aC3A?Zclx(u80W-O3Lubi^U+k z)eoiG6-u!j2Bxd>0FlHB_ z0_9?3W3@bJfmq1}noA3H!XTVVOau`>&{h^S+hw^#h!mx4HLxT5M=if$rxZW2^C35A zB3P0RJxMfeR|vTGat8go@^8Z5p9(@Gx&M4^-TvA`m09NoQ;O2M`nwaM1(tm~ zqm(HS00S3LQ>sOJpBZpb@P5o%C;%sMX89!T35-dAVw1*-l&QS0cAs^Cg57-<#Zo+v zx~cr~Uy76$^#K0~WLy1pc+mP7!A=^0Cwl$d>@Ks>Q#}7SrLgCK4HWX^X=nw+sjYpC z;_kYU;&;tm{F=4=Z2V-YCU&FOS*|rD?U=>r_pLFD9*pGSVaE5#PZ7?HwUAt;$R?`C z=uOdr36o!U_ial6%@$HBHPa|d%`z>?v%R_JR-<%Zb7Xqs=*_U=^=|TmtKhXaftT(F z2RSH`r#llcjd5C==`SMmKbhods_Gv9zu7b7l9>t5dH$dD8MsS(shcu2K%aSfLkI`B znCJPwHT4VScyu+h4goxeilV)=5$QZ7Qj6suiRKG`zS#HwlSR`pZh0D{G&TIOOUTjS z#cWY2PtfZ*2GKZ@lT5Q(_J;`f0|nH{)sp+1q7Lb9j@ZFW!)sO43AgjFQT)i$mw4Lg zWD{sj8+$E&${6FF*Z6;(D9$r~gtQnv5#Ndj==V0sORh+YPS`-pAeORf1@U+SnMouv zXQ~Zm&3n~#P1Vw;`ZJB_Kch^BpBbVT7(LQ|-59mn+#JCChZUTtC$3u0!t)!`SL#(u z!Ct@0Qzq=)OXVErv(W7ck6~CCt;ZRGiUd^uHD1WxHqBy>UNJ^)b~n%FXR3hp6Rj3e ze7m3X{(D`jmacFi0clRwsP0s7;gK#U=fuA};1 zFq6~m2`7*J+&rb>Qz5kf$`dTmFBaWe8lRP#G{H>9tYbUy5r~&zMF`45WSOiI^BCAf zE+Q;jw+4@WSB_~aZGN7TQ`Yjf{g73#j|p62)GQK;Lwclf$Iq1d_U01T{pK`)Nz?N0 z?(dkj{^SC|q-qtZ{54A+y-Q>zJip@b%`jr4KT=&~>gp6(AaI@3difZWEliA*_5*$_ zB$?f)E##QklsSSEm9D%9Zj}$0S&_}&egO$7BDwh0pj=qBFnIH~q?(u$%E7^bDG^)| zUimYflW@#JAvu%5w#VM|_jg;S--QY(fg#w$5|(B*NudzP%K{At{G{81AfXVezR0a+ z7|K9GuR2uCbX9%A0l6es$z5Qso?sd@#qZD}rfVxBwXOF9fIJ>Z)m;nQA>eSkyQ zEyF)`S(Wo$ZuTrLF+KP=LA1D6+UZ4MuM*tz*s95MJ&E7khB>Ot^l5(-(HCOWfe^^H z1PZTowL}P0+7e}=zn3jD?GL#}eLnS)(x$T&RFS`JS#sJs7P7~;3;cS1&Yu?S)W~Fc zjOPpORae9~;C*)0B(y?OQG z$H@PptgvNzk|-EzqF6egeU6u(l(y6>wRT6{%zwiTy?Trl_2Lcb46hL_i5Yxj0 zzsaVkFB^2rNF?-3GoRcw$9>~0zkYuJE@|AVCi#I*3aWbCzZsxlUcUU99O?q`sQ`_w z0R06WjX#6K2~~p^#myDVCSr-Z>A3D1GWP6%*pN_;!)opauX${ZG%}2%;d0wrV-@nk zAaCOR#$dch35`z|36oP`uBJ3TejPAg3sRM%e{p0g{W4NWk)e;EwT;CDO`P!UDD&mt zg5sxnBc(t;7>Ix#ijX*eUt3?l^i^53{VbxnJF!eV^T(6eZDF4oZ5@e6%RHpHh`5>{ zbiA%tR6cY8fwf&3f_I%wK3=NHefWTpOuM||(FBJV0K92gAJ4PaWFsF;qpWL`p!wKX zF36FTdl8(gudP-y|8e8p?Nx%Fv!d1zlSc7#y&5Z+^yg+7s`#;@p~Z^kTPX(>e5BYj zGrhRzJx#VbAg9F#if&Gyer2(=Mw|YOSJ@8<8j?G2ZK9df$hi8RkGw7s`@5W(x>TPg zA?2p#`Y2O_Rdg`MCg^DFR;p=}F4(0wblO-1!|!t)&8#ITSoTg zp0$gW0sXiD)aL1Kp9@Gf;~N~l8@1GItZjZ)bOHv{=50HOHlI}FC=h#kYL*Kpn5C(G zB-6|w$fUE&1ZJ?HB}$;zAVp-~y0C)JDrB?3=zoQ%b6hhpi z%;J};ky@*<(F0Vg#Xz8&12Uu-EF$J*P$IJ7S6AG@;bgB76z|RPEg0Pgzb;*7Dt+eX zPy;B0a`trR48cR8C?}V6U^Z5$SS;i7H-DTY*3fu{S*tYIP}nP1Wk~`|;grQZ|Ea4p zf_RM`GMevqcZ;Gcwk*$x#Pj2IQZaq@7Cxf+0<$cFIF=-iZl-?dy!B znPVduH);{uqM4O$oLhQEZU3RqHb=Cc2ocz-QY~j&UFzpc#{<#^g!e<`e@3fld1Q`S zt&4f>qa~ms+8d{MIyfk>h>?Zt9uw2Nz1dI^sb#NFH)^Ckp+^CeqEChTn0-q#1@S@@ z^kp9#glBbR+^n3PboE>+@h->}Enl{s?19Z+ypM0MN-gX2E*Lyg~T@NPWRW zO-Dsw0KzmZf$weQUTaP>|E|dCNEs;0&!3GCzrs8WQ-j1YU8o*t+bf#)9**!WA;GW8<%R9<_AvT=v6=|HI%*j!NmtB*xb-YI5cCj210YSIRqq+b8ai9|HmJqpX zi!)~FG-|+PfH+cc$t+gi58)5z#~7tT1zcjW43C*gl&t(Anpr@zur7h`Gxj{C;KQW( z&LAb#(P`U4DOs*Pk32w9%tE|ZEkupQl_dVsL{r@eW1Z|i{8 z#@#ZhZ~_cgQYfu2?3bRZRVSI%)4B=9n(l~F!LTP3Nmg95tVIAwFN6hStqHDW)LQ)Y zzsOMqc%lCv3g|U;ZLQmjl{zRH_Q;%%w$#S<*fkA<;Ul>eT#%oWhUO~4D4l`ex2(DBt$+qssf?77O5lp{E|iu)qJ zOJEn5Hi}UfK04t%%NDMo=+(fLPVm%3#fHW?UPktf5hDs8=dkKhT-JsSQ!b#G?GDP! zG(9Sv_DYcek*26s6Mz*j$Lemf>m}(uLaeNvgv4Vns#rO%9)~*)2VZ0F zj^KiIb3b&IKVxbGkd<&=raW*pn7bK^_h<~fF(*!&y=t4S#3xa`WQd=&p#-D z$%lx##mNI~yXWBEHG<`K-2jU`F)bCTNV$Zs6PCd*iX{s3;g%p1!qerDm2Wa7peO4u zofxOy@iP4mPwU|UzZH^OI5+dTi2QD`Sw!P`FRdXR@geQIKn#?ZVUS}!)AU}797|3e zv_ZTA-eOyJTfVGz_A!2i#Bk!7(ZHbFmi(9TnszC4dLcVZTDl)@O|U^Y11Bu$;EgLO zO%jqoNe6AX?i`U;L%4z!^ijc}VaaD4UCEv{Xa=OfO?&X|qj+mQEcH``|5pi6j=oMo zVC{4RIIe+<-{_}|Sq7WGD)t?(n2ve{llD__AgCUQovT!r)N|2s-Q%PglO4 z7hrJwl|8IEwd6mK&>n}Qny=- zl$1HoMr}Z|fF`vVPuT?D#|%xX$^+m*y+{{{CqF&^$K=on7yvt%Lm{7EZ{)UQ^o2O) zDLq=g5gO3LF$9>>E<(@f2j_Up`V^!yxWJt9cJsY`|5mg{-!=CYdGcXJ8Qd0MwYh0w zRlmwQ-KNkc19Ht7q23V^cTnVePCk7M$mC){p;g&DukrzMK95^`@*k^?l4bFaN{4f9 z-v6RY9C2a`#c$HcX$X1K8iVkU9$mDXuvLiwagvnu9$oUoJ;e3XcZ7XK9+Cz?z@!NS zsgERT!PVoHIo_23Q_7b{7Z&s!EPgzhE@JYFsJHPSPeT-Il^$wb>e(rmsHP~<6N3FT z3k($Ek`n|6?ooZOHF&I0s-`-abHna$bEP=NnMRDFKf7RkS^3XUTnEVzp_ zLh^HWkE_7>4|WW2evqFDHX<7=fB25U#>Z?402+zxMhBE2W{0Q6PUFwSA4F!zrvdD z<|0;2nak3nk`fZ&uT*1o4%^)@09_Kgm$!R!UOJWU*q%@c#ztkjYd;(efEx$w1|i~{ z80ycDh9~`|Hx3T3jQ~=~B|aZ%#NXuzj$ELo4v&iJ?EDaMaCq9<7J^;knT5r1=1!_e z&L8knJgWKbmR!*FPmf?kN(GO>gS}WvM!VN8xkr<&OrUXj;ank*7-M66s*0qW^Go;k z{{9c!1WsFAT}sykWLDAEhVm-idG3{vbKlk)E&{Xjt1RlkY#F=M%JKJhmy7?%e_t%_ zpAaLMl-rf{@9tbghM?PWL9(GlozvR$_v;E8pY=(D&~V#6>3+p0ri!VV_r_K|5d#{B zl`>xT?j94f`nxrGle}=E^S$*TQpyrB8ogxKQn1Cmw zaD=Yk)^2a_#FVv}wTyM95&nFpP#jQ{G1<;{tOfL(e*FCtk&8sX>Waj_Y;0mGnoAH{ zEV3$I!Yd+jp|0kVOG`zN9UeqHC$nAsl8%7^KfgB&85LW$2XfodB}L0ggOr;aizp@b zP%Tv!vENTPBv%jW;0%AqORy=M0d-&9UPm($ZB95Wq*NC=EsvdA+uNh5kcX8>b(s%N zmp5Ttpa9XsVm0tsI2FnpNz0P}{BLRL?a^08D3qi$FK*mCxQUSoNxVtfn}ObSD2D?o;L^;eT%SJ?aqw z7?eqkz3v@Vs>!?(Q-1fR_b97JfH(C`2W_?O7?zLMnbcOcnv9%W+sF#zm&>UI$K*%w zX^Y;#7f>P{t_d4ym}uLMFm@kSB;YUuRsJ|(Mu)ib<3SoWiUD4HO&T&uiL6b)~Ot3itEN;7iT zKl2z&m*QSxdJU>%;82oeFejRUAUT=KED0*%=0->5M0_R9IjMfw1%LO5IKE{|S zc0Auy{bbmTiAO0d_t9i)pvpM_QRk4S&~UZlUdOR zbETzC%>j(lpkvL1yfEGx>MMv){jOm3>31z=zu#rZfI95~LjZj0s+pOVN5Xy%(DVQ} z`l=%%=Zj;9?j)okA{^@OoD|xC>N(;_rtLN;jOmD$^8GqToQl~VKetM~7A~ENS*qaM zB@Cz*7>IiW-tP%@DQ8CagyE@W!#QoG&*QEeO^D6Ch0~~IM6SPBieM3)yy9t13PaJ9 zQ~g{cSI{wo+iWs1g9~UJ3BeHXqaoxbFq@jxp4;xFV#D2*0NwESp0G2fQZu1|c=IFK z#a+R-D8}Bg3sc0g&camQd`LBRA*sBs6s?5+7@Dh6fc^Z74oi@uHy=n3Ks_d294(N? zz`^N&gZAa1qh)UPmYZL#ZZ1!q77JBOXKN32zMAt65(X0kGXgY9^)ZjvfA;r|E}Ep@ ze-S|VGG#h8yQfDQYPF=~^bF`O7|(?+te#w65sPJIa;$vw^)U_Z2tz?t$`lGWhGCmr zoMF>6o%@Mw$?Mm;r>L359rPBvjnt|>PVuE3bqFq!Dc{!QG+W-_>ND;+P^~foEgh;A zMU$NFIc#wr_15+h6yoQ#T-z7Qw@+<-U4Pp@Y0IPn9OI|)76Waa^4fIpI&xQXbtu~_ zDc@&8PB?&+O|mZ|{bR(N$&(VN2K(E6AFO7PEMtflFxtwS*ZMOGPbU^pi#Ng_r0AXj zA71xFv2RM{Qk8Cma~jk;#(&@DTpAlGHY~^DyQw4MZc4G8oUZ$!Wat~VXl;S&1O)h? zt00J--5$Ow6?b!{_*Tx@aEZJH^6j_7+pGON;}8IjGX*BbgARN)hifpZ$c12r*~K5; zO_UnnUSDuktv0Iezg-E%6>th>`LedBxjg-f8}LNS(<~of{iFObEe@#AHDW%UrL2F-d6^y5&Jz*23{r=9B6_ zJHOsny54jph}@q2eZBdL>BaBwcM(?HO|pR2gqiugn`qBX9FyB?sY;u=Y5&mg~K_`YjqU6NQgZF;B=#*FSJR+Zk$h_9rwf6O#udFhcQC}yPM>kigh4qg#P;`X*C$eS)p~Q>>jv{i1tPhM z6v4kt+~yk-$>>J>fT>wkyFYiBFs?MMSVP)3;g+Lr!8kv(Z>zbISpx9f?pw82@ew@l zW@dG#P>hKGGfs;wO~Oxw!?-0uCa0vaRKmv7Z-f?p6ez@8IA5EVyyZzGybzI6NUWZ%>t(m|hgdLI4AB6`k?%g$u+ZeLTUCt}R}Q zN7aBaTu8Y?UDORv87qy?{!jB=@<=0~+py$J+IOzXoQXX}u8>d-TI)C$vEH z`jK+!2L^BH$X(A?Au)jBMkJ=Z!CABg@W?`_4w@dPn0c~tzX1Fx?@{^KG8@n7Sm&G3~ z1OM3^Yq=z$sAfdaC`$H_2+LY_2J32z!-0hR6MICe6}pv^-7#OYOe5dBbEm@Y&1 z04g)XhwD2P%bibl9aqeu(mq^Dfq{!H%jce{G)}85rO00|hS)|unjMzfNRE3g5mnQ{ z{i}zuAn=H~#;fFLTeH(t9k~e)`;($td;$qoQnK++hPd`md>?=99b1|FnYJa3fFC0; zq7Sot;V;3zKu(8o3g7DP76U$!9Xr(|t9+HlWrY~UI2=9UWK>(-Jd7{aZ^B_vCc%!q z<^JQBhf%Gc1cHn)D2tf{LelOo)8q&$c&z`lktC5nyqqt9;2CZr9-BVENflr75USJJ zHzS{K11U@k6S#*3ko!#vOJni9_HE+f$>6;cOeuxT`1>{%W67gm>>t4E;o;%pDWk0f zkWbfU6q9$iuR>L%o~_7TMNx5+CHCTLuD-?Igbados)B=Q2@3~XZg1|)Fkn(tuoAhS z$%Nf4{8%J1rF)9S;ROm+5@<8Z-T6G!U%ok#o!uF@pCk0Y&%u+gk($y-(K` zF`ZF%=fiUY^u!Q?rl>YKEwSMlHjb(KS$P2M+G#GV-R)onzsx9*TLM%T(Z%>*`^au5dfMA*K7g7LW*dX4!xD16^{U**rr1qlH0kASwx}H$W14{;wKh z`0%ICd_l*krlk*A-8I2m)Mxj`5zyZI|IrJRe$QtGLJhBwZWY#l#f0wio|!p`=Gjtk&V9%TPe zJ=B432KXk-1(ZRr!*bQ7iWZ(S+520(bO>zds)Gcage`8g))#6WUDz?o7Tmyn03APEBU&`zTq+#xxyPL=22ZFvE(TLyxL$(XY|(z4o5r zrQ!|5KkR~)#sAucI6b7l;H4=k!~4^Wn$z>emH$A0P39!SfMw#cMExb1B8&9$Z?@K> zGsVq?_TLL)Dmf^@A_pz$Y~s^Y#xfNiH7hO&C(11b2riGxL4yv)k}q#wQ}a=lRZ2hTNf(Xd_y)gvr~PT(2uE~}J(g>}6ik|@ zq>|%X2dz#Y#?Q3Vi`;X<(DKj~;oow_!WE4H0wfjjgoEl(B>oa$ zSn00O6im(1eNZEu+V_x!j#g|@ur6pKzsA&PP}vc=c@`RNG#QfmNcLW_jS?va5Cs#@ zm1b&f=YP!pracFu>c+z4KMJ~t+fDscvVoAu+1x~pl2sdov! ze{c1yem$ap$?)U!4i{owxeZV@Q|aLk&;Ch&UCsZ97{Rw01Tg)j z*46*(sL;7zI`FR7HP!B0+-p-}1AMDqP*!o}X*PPZ>CTtHMz1>kxT?lyL$RSxm72 zu~4K-ybngtXvvL5y>(cWQTH~gh*HuZ zT|*8?H%K!uGz{Hcf+8s04MPqMg46)gAl*urbO;DYmvj$xMt$FNedqgr*E!euk85~h zKWneG_KJJoyE*u=+WB(1pU~24Zzbt8t01ntwu#?3UILg!;=BFFI+zh%RgBu26`t3k zMenW@{g9}GQbQ)p3Rba?-^FicTQp;6Thtlyq`0I-b)?RV4OdE3!yxv0qdRpDi?5|o z1(Hp?pJUFe!8UyXe>kj$|6e$){=-}4@+v)Mxq?ZAVmAAuvuOuG(BSm$*Xi%<)*}-m zhHnvqVmg&1_Rur=A{iG5!AQ1n*k<{HVTt!a_fD zO&5{dhsFk(Jrl?(pQeu+(n?GAh8Ep6KfG_SE*biI&Cg)PVyG2^uaqtOk@9L)qV>{} z@z%XsvRU2ApaYK&S-Nv<|1>~4&q1UzD6e4!<}pGCNARUno6h$3aT79vyPm9Mt;{k=N<+=9rG`-~#Upc){L;0NDanj;xL} zrzc8%IP#KUe6$1rrSo{uguW1# zfhXoFZOLVOMORC)j4HE`-4RT*63Wdz8Fr>NKhs*l<>{@#?Vao^6p4VLWs$&)jYNfn9Oc(%UM3A5XEA$3z}G?k zW_YawaaKGGbQk1)UUx4QiTTZc%+@(?mYAA^!}hQqJ*ERuf}vG8yJfaGiQ-`6iJ8Xl zimKc0(Euc$2Ey{yona-f`B~>~al=g_-AY8{W#^9`?HWdqp5{6>0e4->`o>xM84Tbb zw@?W25Lg1xJ!@zSpiUC+f`hYdQjhfZl(xn8-4M!ga`+56yP+MpB$^q3`nyXz%0OGu zPx5iN6zX2FjEldNjhp2ymR*F1eLj^DxHRiV3i?tsa z8ik!{q5h@=anzNBd@fs$R32%h`qP0(A2Wg6 zd~a!jZohk2O7Y*iR*|B#t{rcswVk1;$TTNRYj*e#Fb}lh;X%3s;poc<`?ydxlwbMT zU0~*Jic6iAT!?ZQEPiKcGE^h^OmH({v)8sGY$f{v`WXzxHy&Zd#^+f3XpB(SEIB&q zNen-}r6iDR!wYC8wm75(ZHjf^j>9#0PUB8K8}U%*gVWBLv_I`!YsjEpkyfovi(Ms$ z=%l`73*EI|pu{Z`;nE zARBRCiSl-ap_&#Y7NQpswkh4w(B{tKDr{?K(EeiiGu=4Y4xs?iQCg2R{7jD~EX>1K zp^%46$oLB;Q?ZMVpN~UvOl6M>^T90IsHq4(+1$G=4Zm?WyI_=e+jS%9)V320mGFpS z7dAWcOBs}cUcG$DG`n9_%K0!0oo$s6rdshgpLOMSFSo`X zi>(Q{2a3DCFCg6-h9(Gn)W0*&LW>$g6^qm zPsu|pP!bXox2yCERBsT7(g<_ao|SFFw=ELF6-X7fP3=ip+lXXo3bUDB)2I&-yceOA zmRPQmO;lIJy|m^c)w23>uGHX)#mvM&3j_uh<=tvjj1O$xjHSKev>yTe@w$lsajo)= z>zmOWtb(p9^{MV-w)?ByIF}!8!w{ELLy8iiE=JF$vjd>Web2ml0ZAvjC`7i1f8~@p zHix62D%wOZMqEBa6bu`rbC#9Olw>R+dVl3ZJEPeRK4il8aFjD3k z#rWGbhm`h##=VFfZqTP^7v(t-6g->hVoIUNJ~dA2(0?3*(Nm-gf9c+dv^;%H1|%P6 z_JaYnpk>~ad*$qn5h!XGqXfOXg3vFmy`D!E^lakT4vGMGD~VO+zYqS1e!{=HZtdh# z)BZ}~5s}PX=WNyPKB0a6`qE^ehm|6bGTqbY&JVd@9L;jj*QAW13)W6mfAcc z=U7Y|@*QDFW&3z?vTd*HvpK|yqT+*7K;uLxa+>17u#z{Ql{IM?zI(E2w&7`}&nw#T zuk3w${Yg^bMm|Yc<3UEVMyOivjMcguONp zar41arf7$}SLKxZ*bF)#fH1_LL=|BCTd+NtP^zm1vvgL5lkv(-=*yqwmL>qA1W7u# zJ?ZRo49`c>wNzknDa7(Qmnvm`moK5jJQGS5#LrQjTnZ}scE=nPjg6WKqI#S%W$qLs z8}au-9R%w>Lqzo37%0SVsEMCG*u>@A8SuyYFk&k(UYXwoO&1$2&K%7?_ z8a{bptX=}0*Gkpf%e&-E&!JlHH?OzfEKy+rS8vq<;{no8A^+Kdh@gNcc>O@2i`lv_ z81o`LEKjoRd)aJmx6_S=R~NU@feso5V-OzVI}_+d)ks8n{Oj&uSD4-x^};@00t=Oz zR?2vk!ih`C1$!bSO(Aw$I;-3wfd>Cgf&lotDi@6bmP$33-FyMD0lz!tQ<-iB0LU*y zx9#oN%r1C`FT0D>^Vxi!^{+`M%+(I6XPf|!R+{Y4Zfnb&HaCOvNuwf)Ve51vGA!Sk z$0hSBnDQ}I5p3pWukT5RWqsgyz&vJ1h(aP_JaP{c2}oq?8^!V9ITU8J+`|}gSGZuoaERe-0rvdN}R227+pGPRApFp z!Bi^hu%0HhVI0Xf_b%Lb0$9!d>NK|W(P?6IIaa~?U zkj|K^CX0bM*!^iojBxP>`A;8>srKB|t@>|@)Ca(5$(buU0GvfiyM2`u?^VnH^j?q2{67CGOf{4!K*0_F_X}_2*ESLFk zI@tKLU8G>PtX|e0P7lh<(3O_;R;(OYZ=?s~=cfSJ5h|dQdYW9Z=A{I~!3+SLKZxnh zJWVi2@nnWBcY145E4!KzbavT+^8SpNz#>aYE;S-5o^|Y!)FG1SF$ih}f=)T2y~%F} zBg`4vzK`jHVJUHmmN|9tfXfddVMzSemUv~JYOMj)ut~ctA7crtuyVxD{T*Iu==vQm zyV&1||5ph*I?$qtw}Kql$@yBja7s@n185(H_xM|k0!#rb_=pWgpgjmTJH()&Y+28b zokp?>db2VlMoV(H3Ueyk$5vfLq^x5?uPC@nw)mgh5eEAsS?r^hH4v^MxzoSF_@$%{ z%2U{mnLf(+)Rr$o&G%KY3w~rm-jiN=8fU0IvH<#S-H@o|+Sj4dfiQnb(ZVC*0Z*&; zt-w;Whv@4eM8dO8&$Ls3VbJUfZ4uJlA<;Wd?jN}FriakM$(gU5Ok^ugALwAy4|pes zK!#M#Fv2GvX}N9_6tl-suU3xsvUtS~BF@OHhf5p6>&-dgj_GJ`ru6Niv;zuv=ox&P zpY<-Xt!P)nO2jP<69iS@;3)ZA42S5Xj^e!N22T61vtXu1%GIroN1QS)De#CHPCSI) zq?u6NlMH%)DZ`*VNCs{gEL1m=Xk4QkT5))j0_FGCnHcpOt0l)I)Xo`?CoP3iHx2QF zLWl-#Yz@5d{)7x)wegX$U!4N%x8h0rgC(8g-H}AWDNJMG!j$e6!WsDCGes1Mw~>6^ z1QCXJl-A1WL%}Mk5r~fy-XC@ur!i+j-^*SRK@}dOCw5Vmp%{)4Q;hl91PnvDKf(e6 zklN}bMP`E6PlYlE15n=gYg-33P|6&iudrfo+wIG|EDMf2?8&{w!%WbSFx zgmwBINw`zZ%TA1dd2%Q*%3T=1j(Xgg``VmcYq59+8^Y<^-$SYm47Xn|tH~;Bq&dlT zdR(c&)%i&|no6-OAq=NyWLc(kb_c$c^DeGtu`M`A;>z4NV^jnFBOx3DJW3E*P+`ba zK;ecNc?-HSNihRwRDEH*;!U<`$(L>xNJ>OPpw@UHYdjHJ*La8d&$>*25}#tDHW*(a zdti}Szk=Ye5>5y8=E|O^2$neGcdmL?I>qeC55`x5}5X^77)wks} zgW1;^Q1#zp3I_Blm8mlt5JsOJAMLG}S-+^~t9zamtxQZ|q!iQ5vBF_x$ZyR`OW|N!PKyTp>RVwH-bMj{i05j^e011 zM$96!Cl0ux&P4wfALG`} zj3>0RCgDXo)o2o4RWOkP)!IyEc}N)hiW&Rp(Ax1~`TI?W^3z&8R->|y{`Lb!bt7tb zpZsiZcpp^v_SH%(4m%qyxs@5ZOR&q;b_AawGaf2Cr%X)^f#TJYXhIlg2_NTWGBKUS z7UJ{^FmtEM;PA;|c#@T3he#tuf_P$T3-j#X?ETj~y3k~ABLTqypfKU}$Vt03W~RqP!I7k8hDSUJ8}KF(jz+ogdDV_cN`zkN5*36-FD9mLg1oI1q__+0J%d)rhw8XM& z#SAT$#n?I=S+tRcS~bY8H`4w}_+vId7Az?4z5-=ursx(vd^Cz-frBf|5~Kbbpr9cG zdgQ3q-&$omNJjB`6l^gvBxWv7lX8Z{7ozL7Vo1;gFx$+8jejsi8--aanUc}}wT6>9 zJk*~A$eVwz*CR`BOoEDq|1G_dA%~89@wQrc+)@PdK}*2Ro@v2{EC!>v^Ik+3hhCq-Ao20jEe86|J~KP$V88Uf+PDU6AVhvHpT!ZWN#}j|1C+OqaeA){}d)N ztG-)Bp!~T8xzxV985j$aJV3frhRYwq=ZeUGV>Ucz`d0`1<$;trQnbe{ie4WW|NWhO zkv|N=>*q$kaGkUyNK69^3+geIBl#!!e%`+WN!U_hplam%H>e2;Ehc7ktFT9jfP*n| zn!_EO$>C+;5nmC1*^6bB&1`P2wF@Gx0! zfbHM0F=RKSec=2vHpzSXUw^Iiwj-M-=W3tuF#K!F zadKvRDJnR|*}POb$cmuX9-Q}Y*~y6dvF$vmE=oQv80Ljd(M*8KliGqB=-c8hbGVNk zql1Ng{N%QX_G2MvVZ??XHidEAE$Lr-=6_2=v!-y;am6_l^5)^qUKKe6g6H>6u#;7H z^quk3wqHT0hP^NTF1nh3r3sHH`c1C?PnyDi{0fsTugi%3Qz<9|L$|Q4GY^#3EI2?G zO2mc5(4z5o$bVuup-FRM2*cr}(tl!~EabytoEeRf=2Osul#kj!`AA%*p0WR(yZ^pT z^KJ2Sz~5hnXn!eFtnow@Mj{PF(OqUUAscC<$Uw*Mfb&1XDMDU?bba_mKOtnYf8U)d z^~d#DzhH+)uq|SyD~bQJ!0Xl?xc6VVozOhC6)8h%^TS;d{=W%l{5#?Hiv<7EYx)II z-BdlemJx1NeKB#DAFSLD=4O8uo%$~Q)tiCK1>h5Ol&7%)KhjV-o(g9NgwLgAa=v;P zC4w+KaHrrKJ^AM}VzO9j@KArt22joPTKZL=mY@jv9?b?2Qr4sB>5qhcm_Q(_2Xp)J zHOMj1+M-9q43Mcl^-DpUPebXOvO$_wn7%gUh~ALcBmd!G7$lcZzM$=k_}g zr&Jay4b(C#aQ84IfkBqFH`zOC76mMy0+k^9!35 z|FMl3<}MPBCT5!b#AmsvEx)>o@gP3 z@D#%qQT@jm{8!nXxqv(shuqJ>TV~`cVU_WNiC74mr1oZ1`Ak}({XKy z9`FsuSCcE0;uEAkSwX0J`;kzCFE;>4#__dM@{- ze(lG5lte(XV((g;b@HUqi`263#E;ilKF;RNV>66VUTns{`(pcDKWhlyznKrJ@-Zyt zD*{bmrCc#o8sS3!A)bouf zU#CVDY~#~J8ygX0cfMUcz8UFKvhAh0iCPOzCN>vvIPi$lE&o7ia_9^Na9H3gtPH)s z=ZG@xcV5-`ApxRt&}YX~02-9dnLeNN$9f`P40rdD0X|2Z9~7x`zI?`w;dOhZ1{_|r zb8a`7ZhXw-W>dx%S0ri_ki7)aw5IdI)pH2qj-{&p?O zTd0~lZ|!{d`sT12@L8(ENlTb~Yv)?bT)~>M-Hgsb8p>et>XO(?Q*7ZugeW>Z!(@Of znNJkLP+4E2xmfB^za|_)q}q8r^f(QnM2fQrNdEGrRFg(DD8i1$nz>PU$jwFtn#SGu z9d!1FIxz3?fRGEF`t@^W0Lm1lrv$Qz_0mfK${=bB;bam=2tPO8GtF;v7CF!5_Sdxc zxo{x8ZH@7`4xD72k65H@SJMPG^9DMy(kux1iN0{;2vv2hSZiqOIet2~U3T;#u?P}d z2ozwF=OVsUKq?s~_0$3{GGR?V2peXU_>;O0z`@7T1B0Gz_(gq6>k(RP#BqzVNj~TD zo=NN}A(3~n_>t;Q{V7@e!n+Vd6fH?zoz0XnY&~Wl4iiZc9rHpT#L)@2o8vnNJp4Tw zk4O^{H1zU?e4B4rKNe;`!VJ9MDe(QFVAbn>_M*gM0JU}U234G1-gYAv4+QmjC6pO~ z0X@1BOUnEz%U`6sIr}w*9yDH~5HiT^@9W3k4Iw@Jcor6SIxp{Qx)lzkfq7-we&4zZOTD6+BtI?OBKo@;*Mm6?4h4r#wPggV zNP^4M&s_fm+*?N$2k~6?1oZ%L4&yU+5ES0HAhceuV;Lv?Yf< zQ>KhN@Wu23>>>9Mv4-kFOjHR1PmEG)SP0^S=y-Qa_AexMhvE>3AM?7Enn&jX8yQ3c z<@@Ve88oIpqnwpWSQ2c_N{6yI8+iO(?I>vI<)@yI&h30|I^oEXo~T-G<5rZq~y1UjwtBr@%vV;&+X zSNT38dwYa|$aaUo8hk|mKvyP>+-zkerKMGCi59=)5`zq3ahO1Q zcKpJOZ^)7Q6zwQsqSdB<^Re^eR(#>Jh8g~fwKY0<=Lfjl*~ZTVEb+C0E+Ln3Q;e3m z_MSCC0gCN6zoM3>;pk{e44~O(FxJY<_rV=S?e3W@W$4e|#;}5bwr+dXdG-kN@ZCAp zt?|3AFfd(s{6dZnNhDWew23AKE5vFSNs;AekvR2pL%0ivWg=)x?8~10R8d2O8Ua}s zDq4qdsVUvFQnyg6Mhps_=w2?DUqa-YE=hvz#-=ZZ>J3le%X<&mUWw=A_#896ArCaJF4H4WSmBuUG5?iv8ciV+Hf3XC%H2Bbg*2RDnrHTLYF?S^Yv>e>Yz1C)_acX}hs<)}NYuv8TZn2~thWz;iwTbw_J} zM0h+$)~x@dzp6~2!Kch6U^NFr8T>d$5@8g1wK$GaRsHjc>NJUyNAqfSNLst)L#M-T zTZYz~Q}&O;cdeKG{vL?Zd6sntb?G)875w_;okK!-eV!$;etENm7<$mBbZs{6enGZZ zP9>j}M(r==)2G+sKMVO&K&d0uM|XxlNx{yCRxJ8uZ(k#vUoDaHn0{}fMiXAhl8L*2g1ArqqN&0Y@PoG*U4bqH~vdxFdZSN1sI=>D;O zhIOb8Gk1|{;@L39kOHOT&XNMG@s{O$A^(+5sx2G$S1mU+uXg}Gr;D%3ZarNyG?h|V z0(&HU;)=pL0!9mc0~9n1SJ3ep9Q;h6%%41Q&~T|#-{1dEpLD+J*YLTWBbmdtzdS~3 zc9U9O60`q_?`Hb(KB$mW>Ua0vji%9{ZDf#uY_pPKl*@H{(8HuP z=EkoQrBlj1JCSy>=C4L0ciQl=NJOGuRSz*{b04(a!5F!YFI9aF#wS+kq^tNjzxW<| zjYd579Y8^VP@^h^@-tflE9#GnQ!ll_#li*Pk*nE+3O=zI)F!y$hc>fUZ>X?tof$KnfcwZrTl#p7W#l8yw_BA4 zkSTpP~n50q+gB3=$;uGOTCmXT*mA@tqlin=TYs_RZi=R z+s>pQK}SMm|9?P7o;h6xWAF%VJ8d;&ftvrS^UfARzv`j{eaE`Sr$}OdjN@RT-yXf7 zlRd!V+k0_s7}tM1*M+mPes`{jJvywnc9__%!0vI4~AZ zM>No{xv6Y6(hlq}>UyiBeO^FYAvk5v^7|A@U=ryRq|@Ex*IweDy`H@Li8UyTe0FT_f+qkY@W zpLsarj%q2J>)9I-H%0=wA3%72Lg@SB$%Kt7`yChlJIve-XSMQ-E7$MMzf%(Totd2O z=bEvT*|epHRS?v|=aY_=&OL<46rBs0kUaLOyCD5T;gP9os^{w&F`|jx zq6;0m4k8h^CvO}~8OH=PA3Rk!Mblj#> zh@4aQ*RQRRkup9kPF;4LBB^r_$d%0U)NTB;FOt7I?=v~m1DcPHu6+^QX-5Gju+H{w zci(pn8Nl!gsQoCs4d3s>T9$(9-3()@$@_dV&c*e1d_L+fF_)GTyye`cZ#_lYfYN?u zq^9PkH`@d6dkO%Rs2LSFJ}1PhXKz`%m?srq{(1j2Ek=&v?qa;$P6lv;l^o>$fD5a2 zd|6wqn?v)8Fmk9@QVAXbZGN8|!W#N95Ta*T>=Qu?lt*-#x0| z^KF8Y(>C&6R_?DvNs;l|CyEQc65Ud$#65ySO^lmV4DkwL1_!%2^zR%K^h8SZ-2&#vwM$*=Z zy9Y*fr3M*PMf^-Cr%TGS0N&j^1F2L|_rG7BQj~$7*-_@Y#C!Yvpq-}kNdjZK)lz3p zfD1;EE!8sz=g0}yTkv*m1bLBVR%sd-!C3D^a(($Na6pgOi&;*ic~qid!uRU(Pt{@; zjCaxQtis*C?5udqZO*5yQdO@O7DCUoq!d}>^7cd4m|oqpx0!40o}Cwb(xvrItT%iu zvLQo^XN5n#_6)yL#{j_KX{DWvGEax1&ewq|!e$)21B^KDn=68@;s?{n=*{A~yo$9M zWwqHOC$JuRjsEthg&!UBtu>ZKWv*|e$>)K&v=DFQ9@*!90u_lnRh zbW5HD{fX%3R6kkjz|kE7-t7)Em$I)`UdDgwcc;fGEL^GZ^+pqaC=c>l`5H5OZ`Fcz zmE=bvi=RlTV9~~Tn_zwI;C*z|_kxP^ZKjUM<@J-KFaw%dCoiOBS%ns9OD^JP+v;w2 zQBx2a)^o**&k;;VJ{P{=RT5nkF8NRgcNxV zfJV6|=*z25pZKa5dbe3X-d}CO_iI>bsswXt-ObPdc*D-7oG;AfHS#bOj;}Yz`c{^k zU8Qmqc9`Km&6$U-_a2>lCp1fdu3VtZ1xtGSkElJ+Hc!!VfO7Uf3wAcNhKWfVhUtPf zqC<@^UOxMIgIaK)zO$c(o;LD3sJ_>ii`{GBB&ahA_2%OlTIXjGa~HsHpTM`)L)&EW z3`XHKfh8q{Tmt!f=C7_ODx;-SRjJG#eSD4vKW~i}`-*n=^q3PHOWZ6p5qZ9a$eishP{`2uM@y*c-R+To z*!hWXI(mH{dzK!3P$~xd!@c>JGfbpV%jUT#_lPBT<;wEy*GOaO7kDN`36&Wm)m)EW` zLQF{RG(`*{>)J>j;GoVj=6JhBZ33V#G_(8>O5}%!DqW)FJ-L$xP>Kt;b&tL1`c8p878A z^47=lV6BwXM*9^Q9TyO_b!yx9j#0{Kl;G)>l7Z)eY7G)`10e(7Y92RcBP@u0U$|Lw zH)mE1Rj8$9W;&t&SgWEYpTPvVeUdurr58GOAt74w#4NZMF34k7Zuk1_-}D5Nsy*VD ziaboc1fApDK0=xZ#rXdN=J^9-{YZ_zZH_l_WjX|sp^NlxLNyd&R7yGQ5ORbYef$aX zG;d=ORFxRFF~04mUD>jKxD!h?XzY}9!kp*q?0iv>4he|hfe83L`LaINKvS4$`P=9@ z6^vzD^l9OwsJT#8ir)8=qqpa97X$3Qj*wI*+S)eeiR%S3p)(S`f)eRv8zcmw1FQ0* zF3*&)Lfi45is}bMH2>=Nk9_HktE3KM`samTyx-a|)(!$gGA;V2?Hf;igvZ^>6RSRV zO9Z?$8ysi5XQ)LC>|!eRS$+_ZE+q!GS))WoFVxEhKhp(b^Ko(#k>WBP^l2=kjXup& z`A(s@p6Ob5buRsHsW03gh7ysTe+43em&O?N?|YhINg~=!S}4tG_BkfdceRYVh2~Pn zV8ul$1)$PB!#h#O3$b4xO1~$OpKdf`UcHH9>`BQFmS!oq=prU2t{g-;AW;a9s%tNs zwsoXW{L-0tn9R)Y?KnKg!4K1$!rj<%?A-W-9ZyLaP}THc(2s`b^#1_nCG}}lf4%WG zjm3D=f=1E(WFl`qMEj_a(}+2&e(=Nt83}5dVc5}l(L_cq2W|Fxg1V1duk?FOe=A$r zroEcQy{1vtNQJc?JH+p0^s3qg1MdpAJU|r`qX(gd()8PgIMRb^mEYK4;IjkE2ry7a zVACPZBf2n7Ql`GA(WRBq`22p>Z04HQddLVMd3N+xEa}-1XySJ3B`37Ex3O>tJtj9y`q+a_hRdL-<$hU`F3}y^Rmv?BL+J6p;Frq){2?^eMqJ1r1 zAs*kpQ_G~iAG(Z}!sL2WdNyNEm5ll6&Q>@hACw=c8Q93c*-0_JR_n)n_Ro_p@6cw zRHgG>t|qpN>cBNm#`HqXAAoRv=MFD7d+Dl0ssR#H9xgBn2gh6xZH$Lzc5NMkW2*fg zqqXHu{@(!M>9pnp%K_m-9?qu(=;TQ&UjTR(OLEKmSD;Sp~NuS@$4#A-%U_pj7otiL&Es;K>b|4RKiO(l+|h#eUW zFt@T(h1QDoAxV>>tNB2=Ec~{f2IQ6{C0&4*>C;U78gFGqsoTUQl9tk|_zA0jGfw-K z(`U}BS%oXnJi>)!ZLU-txvNqnQg1|n2{~KiE@KI8U_CC(=Bqt>h$ST3Ru;_VS@FAj z&R5oId-4Z{@gopA8d31^V5H$FIr|(j^rilTgdOMa(271GQsmK|8_P6WM1^79-_9>P zqPr_;!rS#cJ{q zjN~P$Ml|^dvm%bxZjs2T(lzC>GNY3xf0%Y0W-ChfXsE_$-WW7=^U|AWtp`eg>|0NI z7mCx6Cn!-QnAq{>-@J|?QczIPfHBppsG;uW^$aDA?FKI%^u^1g{aOi>fv8=t=Oeop zXA-S)=GFnn6_$oInFHa3U!Q&EVhV8%jP*FhLaDl@pPM!*kmds z9c3MMa`bL6Tv*Mzgv5eX(-5Pa$wy4@yQV!HOej!kQv+ z$<^G>et5`Xm`oA(H}C$J3@?32GD@{V6DbpOXP~BJ?%Q#U@a`> zCZjAvUO4D&(NZGM6J3L`L6qzp}NDI9L*Z-+dXd4AZ7 zN^#7vZGs|p#ic<6oFnL&yX@G^=&|+GFn2lvZ4Xdwm8%?Q%g~+iY>QIJ@qdNQ3o~lV zPXAV#r{x#@=3~dcVIN+6WMP=A{k~6wOE!}MvM%p2o!{`fP6Q(IeTz%(Q((Ov+11&{ zpev{FZ&B#fBg75FW4x1wLhtpNK)uq-jsYcZiJcnsFIN?Nr=~JbEF-VLbP!oJIC>(J zg8y(W-b_Ph#rFXWxPryFq=IQKGjT9w*)smkL^=)VG8gf4SOoi4%}8paQjqTclZ%jW4#w*k zrZ+5JIy}cdby7`Qx!U4>Ug|Z?$~o2CLf5P-hs)d*5vFYjm=#V9}a;xi!G z#CzRM{Uar2ozzhS>o&rO1}Ydh69Lnu+PQXVaTCMz;^HQta34O;JVdl|IsyYwAbazVw>3e}h?no3M{iH-M5~}qJAAP;sJSHDK{s{k##!8e#PK$z5 z4$ELPRRu*%*Si`WeXWo6IOE^h)?99OlT2#n2@0e_0@#5B)2#%6c}*`BrameuC}~~N z@}d)KLc<;U{`mQzz1AP(e`n|WFi-l=3{F%82EO8&5Ly2RHZFNnI#_Fy6=`H6dNGPG zE@tW`7#|t8=)l3>-Nq7rm`vc(D-=oE(t!-bRXK`hq@h12@yVf93Yj;pP?41}Ti#Fu zhv-Pfu_z3fa{j@qu|GJh8+r89BVQPVy-DlvT+gZOhXy3svH@ylyBwTJhfeeoMYx*# zL2sf;0Lert(%qXPSyF!qWM1IWhwh*FB@%0E4E>zpQ}P*I72 zohgg;1wC`M6DP;Y&86cnzQ~3`dJta$xV2@E0!nnus+C#tQ(0y;u2M!``|Xe3G`5D2 zLb?Uwk_tI^>-`EY-ovCJ!eW~;(eDv8(dN=bz+|Da zw1ovhJ7TkCDzXNbZ>yAyH7g7w$~5I6q>`m4@pcfBEVlOz2VFn3;z6fO<7@$n86JPkH zmBX9XUZ*WZgtDKX4ifmK_MyN@>T57we`J?e#e3|MmzvLsC5%g>(-6oL!j+z1bdArp zE>X{i zwShz4QrBwO<}yC@$Htf@!zl}NzEt$kc7&IVT9E@MRyFLvbrKs+$m79PnpRX0QZk($ z$ET(NsdU0f=>8rFx^IU)SLXcV@34*>b}1*ZkN?}g2Sro{pQ6+A;KFJ3w9hCpVaudT ziteq3lt`%Jt8FQO5|U!UyaZZ}bXo_NU{MKrGcT6why*`os{W;B)_<)IU*kR}J+J21Vw&3>tXFZR@b zyE$QuRXdH_(Ga~27vxl*Q{{)yhXFzYE7qbU)tyPf{o1xUsifH6n#8qsC3*E<^SBez zpXI~@t`THz)({337CZ-k6FEkYWoW)G?0t7*elH=EHSv`LhvUMY>!KLQDZ2xw_&dcvT)umaWobco^Mvk=3Hm zmyfjs$K;NEVPK77wUgH*^zNt%5Re8pbJm~XSb=iBgp*TI<%dAnbf0&9CXxGPC^Bj95Q_MSj>@~9BSqba0lDM&8a{E1>g=~O%8$uK*#c%~3=QAsB zCSh4oVy2qnDp#>fJ5tm9u}S zJ7fkFvJ4B-o4>kchI}S}p89hdc3SL^?TLsUsYDWBi{rd$5@FDi&x`c_oMaw+0KR|E z)RrDKoIs=j1Jd#5*bAria-d9tSOP61z5*af&*f6IVbaKFC;qd+Y!g+5kGj8t8HzGq)CP;mKdU+ssm*5 zidTQUg*!gLApQwj#5^z7N0NwgYiZteg@2xy^X;yJv)pv!NA}j-1RhD$Fo9V5Whm4s z?e5@T=r%u}a^VkDlusprVfdI&@PNTgagy@dZ}jxKWr^QDC%XR3-_1txXZy+NfD00| zuQV9z%6@8eHRh2k-bpuQtheGWTKV+g0fiN z>yuq2`tf>gr2^{#lnSE?0g>=BS^ZDd8L)f}844 z;Oy7Cc5&)fcUTh|ol{$>WTf+hC-8Ce;!MlZm@D4e74^+(gbX2jrZ=oPG186A^z~()J*|F2&E2(Rd4uv)=_xNkI$x3HPjsKu!ALB8qiNrI=l zGtTg&0FUrXdHogPg8lTyF!^?1D>$SvgdPD?0x*>vO&Wxwr&}x^RAZ}gnE&=nVKgkz z2qVKPOHtBel;9S|-Mmq@pFVBUG`0qVQpw{MxPUChq~64g zoB-OLV&1%|bvHwLdu_bzn4jGtmXOJLF}}lRcN%Y@%$HPy^CY|0wI*v+#A46_WYn2hH_<0JLD)z|Mpuyf~FLu@2NLqy+ zoR$8ajPxez?q=f?XLTDu){P>+(>DPq6M=#AcIhjJs5qtMQ~Ue9mG`+L|1bU}`#m-w z@z%PtDLkA`@k{w1xA9Z!*5;(k_YWNnSp03+x5}66Uy8 z`f(8asV|`G7xLZu^;&qemk+mXzZc-h1^w3>3Mrp^oLQY@O6EcYyIi8QYPT;A^M+<_qgWkmz;{eKHXf!BLCZ!lK>%!4RD$+`lRg$UB4%2XB`%RRFZWSS(jMs5Fnj#X3c|n!M~&Z z^75p>vd~j2rLii?XmS`jNl#DD?6a{~(7bG9Z0SL{ykJZ9XIcXu#sm9_>B$Rjb&(x@ zrj9yVf&TzH^SpHV&`K+AVstjb*qHceDXEZwgzV@>R|eShh}E?%R93K*qX27?Tn0ci zN%E#Ky?*NB=ez&(@y3fc-{<)fx~R_}jdo)Vpr4QpBa8sC8;POBP~X`Y$?78Gq=Xex zitVrqlo6aS;&Vt9jyHy92J6IthmNccAUYD0{~qKxHc*H(PO{IjplcTmDrFfiSs zgjE4!8f@$5!+;xs_hdC6Y>;mG6=18dX`t{nCUjDnCec68l<#LIlQQ~>% zxB#yOm>jl@NKl&l+W;)Pe6kgO2Rm*Y8sTb*P}gDoxP*V471w{rtM7A+aL-;2%Q(;E zRkxpwQYRh|%{nDF!AN|lKsJ~j@I9OwsevC>kX~pT|CKo~J#~I@8qo7!?RXw!3c5TE zE4j8MWg;;w23sI@gRYtTZ{US~^{#ua-1rm#NqHS)Z^RS)|IYS=V2z z`~vl2D#Ul(%kV*EVpGWz%gWmA(O{NlI1?j3U!5oVM#(x25umdq^no5VkpN^CGSH#J zf@Wq5yr-DLSL*g+Bqhl``-xT?o)_atqxXs~tll}W0f7&$=h#33H1yA=WbHS0`T&;p3aplIMb za*7C3PcQA+8bP?Y!z3`(8u)^OT3P0Hr9^aaE$gea8n({qDY-gBO!BRRR6H*aDMl}W zg=9>0>FfLZ`wMFJyn~ldqSn{Eo|TR|kh^OeNb*ps;HXc@l)TU%rq#%$in+IFHmt=T zt`^+0SMbjBA2O5Q^&MJRvD&JOHl}oU4YB4Jg#BdD<3djQ>RD<28p1TADZr~Yz|9g2 zJU&?NIR>+5Zm3r^JcmOR_X<1K*I8laf?*}bCC>2P^#e{JYMV`xdH~_ zFJ-FX`mnL7+sjf2?u0jI-A0bOMAx@Rbl*}rDUmvjKjT9rf{q#5WjB$3S4Ls-YS6H; zf+m!B0{@-335jD90VnT`0|@=?A2}c#bt883f(4CThy#FW0?&_?`mbUFAQCmo$~n<* zz!dl^-rxQT#Sb(P43BL@^LTi&Fzq1YA6ybcW33b#zU_%%^=Ywz+Oqz`jMlu)J;H}a z4Pf7{yYFZ45N`ciqYYCGm@|-Eye}jIo2)`*p`^zzmf>~r;G~o#kYN>!9|Iy6-a4wj4hSZ*4!BqQQ>J82sW1e*YhSzv z?FRHv(uqe=JVF8*Ntk0;Nj17K4#S-`PPod(Rc!LwLf0fyaXV? z2sb@vaJP#0no}xVJ?dxKJL4b_5LW-;wWK;=P^vJF3lhTBw#` z5&U}05YLb|O^y|{G2zTS9|Y;3{woHEVWu}sBfI=PmxcgzRK)W$YD~_c zV7m{aw&Jrv_ni|1p&H~<)VSo$bnnR=q__%)FSkP17JNCzd9y%KLdiI6G$k<68VVTV zNy@FzkhYWh7Pb4Yyg{IO39 zJ3AJ|J!!$i2SwO>hWT|(3(mTtR1ZxaYU;G;gayYql_Nc2B_Q0`{{@muAlwYoNtdn% z4VdH}QGZCju|bf^mDc^J)9|R<&%a{xp13UW4ut;woR{}4SY|#Ilrnlmh;ozv{?Aon zaP%*2ppx)L814I+5|5MqLMK)Fb2=GSfYn(`+i)G<@CQNk8HfPDqBnw1SRWizOPqhR zPnYY@tul!Jx>G9k5wH$C?)$vz5>3?JQuUg@uJq^c1}K`$l}Jd=V@ZVM)|ZYw3`lzT zRnlA7DE6X9_E1}hQjv)1_&Kf^)ud?acTB;MU)PaPU&chm4#8HHWlk`)<{^@5UVq=0 zu8`zxq^KoHYz32-BRdH<+?5-0s^^wC;_l2_$G3N%f|X7?(?DdnS>J}RjxN{3Rmg2Y zJ`^kk!AT2+$w-Z4dR;~0K%nR*;JW-U=FwO&>4ZkjoD7pS(X}JzW1m+;FRd_^N*`l9 z(!_2TA`tpwHf-q zI>6h&t7&RNN%|8(1H11sC(d|6?7u*dimi;jJ-N(y z>#1un6oPC`H|9317;Iw3nGC9`MJ6b}p?cN4LzlJK?4D|5JimSk0Gkl=^`Toz!u!|0 zkC&$>K|d_rF5N#WveEQN#@XY}Udx&9*vRteNOVUVi9w;T;WA&az>)CpZkr-r@H6NO zkhOT-E$2@)ld`W)0_4VtsTrf7;rMwTQrK42cz+D?mx3v^)$FLcwqV45oN=7zCOvw)d%?q=n~nU5L?s?xix8cWrH1C>v z!+D;TYdxjAzgg03brxUb62`s3ofJ!IOM=QEO?bF^U=n5*_Q#d=g%<1-@(vyShg$li zJdaS@6daUhAX8CpO+_c$I-c?e&oJPnHd`9Qdr$zw`J-gq?F|h97a|ah-H+I z!YBCiUo!rZorF7=eeJ-WRD!BBx575$!Gm6MaC$Wpd9h{6T&O}SJv57+b9JfQYIf6e zO~3__Xfq=IVKte0OMyK=3W1h63Q3b{2fIz)PP17f&g2yrsamMi394X6Or2aOIZg1_ z0S8Var=^+gz#oP_aEWcz1aOdu_z)~>QsF+HZ-~Nw`EO&WrDeQzs3$UoWU)PJ8A4;W zyjW*GM*`gS^QR|Q&(ljviooTG#Gs7b zFkr`)HHUaso#-Q14O^TG}|WU4!?-ZV>}i3QbW%g3Bc zl>9~(NO14WliP^)=bD8I(mlR5kyOGX>tw#KS@^GzJ(URhs90xexrA%Z$zqkaR&b(| zV7^0+gJA~k)+7iBNu87mw5{c|VZ{~k5h6{HSgp#;JR|A)qH+FSMq`QtS9|09%~$!7 zTf*NrrJ?g@^!5QEw)lKmEx9-iyBKdBbW1kYgingvN?X6rbdxUK0Apv}nPl)r_Rb}p z;>uo(y(2Z3i1=td;R^=|u3vj1Iaxcee|+VPZZQJ#&ccD=Z9T?#q49%lV1F!yLYUKw zitA-O9fv=3#_6NlnS&6fF^8ia!S+bLZXC5{^CvFC=;Y)Vk_z^bK}onTKevFF^REIc zDhzgAzTCMNeHam10G1H5k>@PLvbkHb=o6{@uz;;Q9kE7aLA`R}=z1Cc?v-MwB^|vD zKfg)(Z)~EkDiPt!Ys@7J9cC(Ty1V^*KQ4yj`$qO?MhRC(&qOZo?7c{=GM=a;)AaIJZ8hDn+yht^hRD8 zgK~bDjNcJl8eSa6YBg-sN#426oyGt3R+8SEejVB}c26V0;MA`z-0wUNcn3UCKju6Z zeta!O9HQRtSh6aqJZU4NQz7t+m2x# z)8r{?eMvu@9s&?L`wpD6hP3U2|0)L<9x2?Og@rnf#(vE$TEy2MLZsaJyK-DS`l9J_ zgv#y`YkOy92%}zy>))DfK+&AL;=cu7;n2-BuJrFaSsyGjE0tyf0JO(UK2+<9Yc5ce zJC`A!Ha0U(gizUCSSS@)g%4reJfM;81~{#}#7?5|SfJ9v=OuKrdndH8`S zej4fO8lorp-i%WH_1$7m-1oj-HpRaKz3^m0QF}v-Uwa$yj`O$N-K)D$=;O!e+l065XYR)$=2thhwQVeqb%NwN{v-ljrQt)_C8jmVIhHI zjsY|74)>IBGLQmmX}&XKGbFTtqEV}|{Fd;tW;cYUv@QFIfQfQqw1MEL2n~1e7(9#_ zRmX_HV~3bKzD}k`Iluq`D@l7fQv9|COxB^YA}+Slh;a!KB6}KiNNn3}_<_<^beYZ~dQ50H{8~I7WUQix zR$=OdI!Em%$w;JAxe<6L>AP#tE6jO}EDXBS;F7EGT*oXQ>-@jRH~*aw%H$G0mjY~d zU7P1u>EjKCVFQ?k2XDcEm-*w!qEiR2hVv1<{J1z`et7jDqlXF+Y;{6DlO0^>10EuW zl&Yw-Eu}IRuX5lw21#40ew>6>NIy%>ufv!d(Jgd{)klRfx{t)edr_Ee^Bzkl^SoE- zLRb7-CO=2{Rd)^4cs3Qjr{bz;Ud>PKa3QpL(Ryx9Y9hxg^1P5`kVW1iX*{~8n;FE9 zbeXbX?&sK%`>{IT)N=8j0kYPxTA6vMg&N|-m_2sqV{2<<@aJp20~OJS{D$R3U15}y z`?L-$?C@jBt@k;ucvgX*#+B(+Ul+R(O`8bKY z@}oPLJK27P>i}_WlLGrq6;BLUrK9q}Vp|6@FpzwHvWw*XjSCAcYym~sehbh3%RhT4 z{{CI=4}_(U!=LF+;$x*Pj@&3V+uQsK3|-8@3_@GKV6-N^P%=KRe%aA}?I>(My9no> z@YUE(OopSC8!YQJME{9p*`yRJff$v!kI}aJsC5^ zxcyFl)FD*Tc|Sz6Ye%{x7kSS1uVCGs;ymBX^?sj=s;i-ct|Bs1G-&0R$UEmf>$?$F zxJ1$Rmzdu341)4?UhN>MP+RD6qsl(mz862R%L)PVh7Xx14qTx+T%OH5g9}rM|TcJ3e5Ze+LvJL6~uudzDQk{0mrs=ZpvD4*%)L>)`Es5`aKorO(kD)@$ zYI^xw^hm5x*sOX2KXB{^pQ2&PM|M>tc{!OPV}j`E296l;YrLEH5EA|6la{=YpFDwh zFIdHi4sMxRL$*A-z87^h{OM6pTi8VtnP@oQrlK$B75z- zF^zA&=kj@DuBwgz1QXBIK13#lUW{el?|;!Dpyk4(vGVohgV>2A$y%eHSH9V+o1ua+ zlM%@?OmWtIQm&84NOA<<5r@*pNF1G~Q9gW+rM+uWSg2XOAMqqtHVAvm$Q%x$v9D z!Ma+x^4R*kLBZ$QSm7=VIh)=n^efRQ4^_Hpv8l5T{_9ER+^ip5mRwODW#y&$<7p#7 zn0Iv6LbS5?f$``D<#ih`2WEgBHhJg@B%XoW>?hYp+f0dfp*SLHB4E_8%-KMGi&tv> z@@@&0*0T$U>KDEV%|EfRzmpZpl?%m5=)%I4#`hmlI;$#PlEnA3(nC7&ocSg_;aVZ< zZN*6=-C>d#M)Hl`+~CuiSETfmNIKTKoU;3B zD!~bFrFp|8scE(H&@GP|%u6BpXV#04>+nPTq9;7wqe$)_{KWUd&XIeO!L5Z@wUM3a zj54d|%Zb61$d142NpjFJdoqz*Ndb%Yyl;8Iv~|>6WkKLC62|+CSkACB@@(U2!ozLl zMU$j3t-YO&mai1kynT79anAK90#2e_as*ouQ*ZThKC-_kNRaZTiBTK-#P%J}$WZ^9 z^t-sB0=|{J0NmQ_hFgp*cZ=@UuEd}A{?;*B>Te9F#@%Md*@#CMgFQ{Ps zy0XcxIWpQ|3WR+m)T%JfGh{m(wqL^Mr4R8QDO?7gNe0z6B!EYLm6X^EY*?DbS&by* z`j3FlnOL{^6L^0!zT(J*sGmmkaO1u03u#nQ^`;$OF{uz)WAF^jYE^V@m#VY8I$_iJ z9fAABfrYWolwU_YPtN2UjHqZ0-qO8V3}Z<`k5UAKP!MC8-2@k%L~1O~##+$jvJ+UY z?v0$vW8xN@|EUgoZp#~8qKK;XPloAH8|~xy3?TZiVrel`z4||`Zx`TZFbUQ}BSP96 zVK{#JQ*MSi@j2+A66Q*%8efX?oPH+Vzwess1c7`*U)Oa?tZ)<})cbLZg*B;p=hFCy z^Kn%hf9?xY2-WHwloZ_NHeqqaPkl`f!tOe&e#EMc&M-XH6}>ao!WrqPbjIg8Pva@f z7?n}I9^-8Vq>Ph0e_+Llfu>mgV$yOACpq*FvCeEg*UsyX1DEDDB;moucln)}*+LtAFr}bG9mO*WC}wilZAA6;f@K^>H4Z%(w2#vd znWQauMkRpd^q)i=vW<^S8XtOO0OjvtEawH_2!qBA5k;h@)@xuF5d3J7z`#=D0b+(E z3Wec(dyuvvz3KBNrhPp`(ym`4A&^N`i|}@O#hcI5lw3ZoQ7;T+Slg>rJUIS^R3lO5 zNCdlJP>8&s-rX%NQk~F~;xSU>)DB{(%6q#YrW@$XfBh^K}cJHGwnWkuwN!)aIU0Y}4K>Oaf*s2(|e z!@~_Yb9p`UFFFAKaxFN^U>4J57AyGYM^PGyfY308Rg8Sh?SkBf9VdTKlmQ;G@god| zyJR6%zT7MUbX`h1VZo58d|tBtt&UE)!1)(_@y(>i!eP^Q zj=j}I@me;8v5tGQ^UB3hsciQg=r9o;5_6uE9R2(gTE9@>^tOUt#QKoD_4e%ulxpBQ zfa`L>we*VPETi`8wU12CBnv~06ux?zpYkzxZEdA_+Y+X(VG^PLnVU%P4lv%dngYaN{JGQC(xaY}W1Lsu zn4OJIE5HNz;-g*S;CxngG5fnvG@mc~A;KznZ~fDh2V<-A@K>U>yfq0-I8RZtApO?2 zKd7gVl9o#&s$!MQjD&BeGJ@yr(THku?XGhozp41kvb832#AEhlRxMx)dhz?I=t4!0 zS)r>({+X6TxCD?e8aC?k(6D4B6I}@Ag$9iKm?unrK z*pGB)2?7Pih0$uZEaALEVS4&MnAD~N#ZfuJjbu$a27V#&;9j3LRYpa0TEwX(4vdr< z88HJM1Q^Kz@LAB7T#u`|VRqRZw!q-m1o@Sm&#D^PB)4>EXAIr+5$w6gzv;ZP%VY*u zvkYFbiH7-)G(2c<;Sw3qLA&FWk{qQri0leBs*CbK19B=3n;iVIShlZVsq!TfFs)g~ zU*!estRxHrr()06s{j$eUxBrs2Vc_m3asQJr5ZGHUmu#(Xy6Aatm!u6MrRiaPUP)E~6 zb4iW34qk`&rFJ%4(<;=-8gk}gut#%R_I1p9^R-TlzuJ(0-?suFp~@%Qy{|q$S^e7z zGg*kVf_sLKJ^*HiMHRm1PeMR)sg8Ffak^ibFrsnt7GJ;4=1qQLHx3IuaypNiRlWD@ z@_4@abzOZI|6(SW&g+&)qtp0mrDu4V!mBk5b-_BtRXA7R~+D>oH939t2+jhj8f zGhs?b(i?-Mt!2?01P7>-l786fSFS8g#|umC_41WNX`~#}mE6VYqTtNomkBXNRQ$X% zijZ9IkQq-21x*H&kJQLzag%`8X( z={0v`M7Er4p_f$aOV-C0=8Ka z;}&p?E~biQJ88JU-Go}5s~|4Ph~-hU>%^d9bHP}~@5||xO8I4RUE{Ck!iK*KOn-_w zcaDLYiDs~^t5CaCDT`of0a@gJZm%_O)Lt}&KZw>*q}zD^b0cXaiANm8Pnmjz@w9< z6JNSy(KzVsFUD40Rp^e+U+}8LIWeU94=C~Ol}I)Fc9Q9oCS1Z=b2=QYO+cn4+TExj zGfTdlY8$J486ZJv2=uMt*_3*e%rtBt+mvw8nYBMHK?Y;jn1l(0onr=j%hY z9Nv{GgA&~!Ya?-S_4bX7qdS~5(cJV()1M{;D6yvaLVXf-ksi~qV~Okvx9FTYu@ure zjWo{OgoFeyN`;;6JXv1wyVoZRl1qMuT`r@C2KnhS32OfK5w@%Rhw%rb+Lc6jfd4W?31zV7&y-*pR`+#?uq@M0L2cLZEvqF^pH&D zO6(@V1H1Y!jWEefuX%_ZW?zUQ*_)(z$|mTK;51v#-8V>PMWC-Jb3#+$#Ul*){VHs- zvPK3leGB5D-^?^CPAX0EI$Df26Vkzkc-chfjNz{fUX)T2T~-;Nwz!F!e{vC|>sgSfdInSmfUSgMi5^DPm-jxqy*KPn@tdYyd>X#WdN zxSWc4xUY#n=GHHgXizT=bO_N>sk6MY6&@^sk9Cbh?eEa>iZnPjpo2d-3Up4;~S{if+RRB31}b61hT#e-qN| zCx>k%M|du|6u8q*XMTB)Y~|*@H)BosE8R6g4x0?3=_sjRqXEwDb`dDvDBt13!7mp3 zy22ay(scLo`ORm!gZfS2VWKFP!z1KNB_~4r^=&7J^a54ylb_jv$h2t^)3-fT?p>;+ z11rrt@5qSrQYb6r_K*9*R)XZ79f^EN%@nPA^QTN$i=NqwKo#w`^ASqE_7S| zE@w|EM6;+f{9~8r_7}O<8Sms`zOQoFonljK@(LZA7<3Bj#hkxihbO`np=jf1sHVNO zr}$-ik^~OR-xPrf6u;9N9bU$Q6;g2YC{i)H%=hKAlvU;Rm1jRG z0`-$6Y4v1G@W2X(1))6gc^t3M3+_t{7psHgX;b$pU~jB3M4uFwCn_W%Dt}XAkV#V5#Ns}$(>XOY!Rq534#WCORR~VCXJF!Ib@WzVnJVtN0{8i1BjBug< z)ceHLuUEF0@oy+xBy*qC`@6|03dM6sXP=}3X;gcv%Gj*$BE7$VC}K28kDjA~NEnLF zCVu%g_Kv_vD|}F-3jCY29XD9#9UDXfjA>=gpFIvY7^sD-(jh_9TsMg>6)IHB_9BME z+=1RveIgJyObZa7hr~x|t2I@#=Yk-&nl9>gA8s3dnCsW0^tPN)*FA3W@$VkDSpjtj zY@ChOPjWI&20AbJ96lFgZG0S7&jpIhY+q@*Gdwxi1M&M@j|M2v(&OvPiSa6_hC79i z|J!Eq{>6v5kjNBuIrKh8onPy0sY)}is1~IHa=w*5o~JLLk&(G1t9o52@Zl(SWUF`TOxI0G zh}^gf&MpCF5Ce&G1If@nun(ijQE`#-bzu;gxOQ|Ni@IjJZVH_S-mB5c_@JT`}|KPPhx%& zop^r5?jjMChLy_b$mAq7BU!|!whLlW9h===S@Qp#RJOf_wbx)o3GQ5?)SL~J2>(*5<-bd5Dpk{p>+CIvk1N+VBN|>6F`eFUU0WrJhCU zXskqX|KiriDX=stHeg$pw>(hqBi1S1x57>gz1<$MX10|-1WP9ig@rP{&Ld4|ZF5C_ z_bw&V4|;nc`E2;!jagsIwBs(;K@>DWZ)^J*1R1_bHP)6G569V&mg-7Pe=%M_5r6iH z^-*Wr{Xk#4o%hN0KGdObaN5t;<;i7SKYfVQZ)VrooX<1xG+FDi%+K(r5y}r5X}W-V z0ko*bNv^xmUR{fU0AcHI)5-}@XTZ1*g(|nVDjCal(;zAqO!ec(_EbBC_5LV!zJygC z=BtX!{ly3hZ{1*jf6jn_(vCfHw{`6O1(Kjziz(MUpPfI=|30-YF6n@Xy#X0e*)71Y zZ&+Jae@wJ-cqc!nBSxE}S-m}PBc?|@gZb29-B}p>YRWg@C(ZogT!AIp3;}Au(X=`v zPXKk0i~V*a*3n^)VEdvjt#qhju!^zs4MtjrR_3&^sLNtVU7AsWT!Tw(z zK@^_B_kXVpUdmGjl-F8LppXeVbynxUuCiHb+jnSk-0@p%{TmJCd7)Eh-BW+IWpEi) z?zmQxhqSew!r{ijV?7%jfJ*Q|rNL=$@;jZv3%xqh-te66UTJd`(R(g@oE698(H{~Q zW0i)IP78~z9;i;O^ej*40k+Eis~t70W48j9XGY~ZniEbU`} z3>(A>2=nK|9ur2%s@cl@-|Jftdz%}V*RFSxyU=GRq`>1no|iqzMP{J8Ztc$`nq%yxp70%FoYV$(LuPg78D8beFvU zT9FF5VsTqcb|)Elhcxghb6~0$LGji?%-u3><>ZxmrrC{;uaSnB-hY8O`(l+$B>cabRYhy6({&m-mPB{MS)PV7LtgMuignRs`h?k(boiZvs9_ z2F{nW{9Orp8PGUSJ@r&?AXt_s(UB3!l^A&O!V#5ex4>S8Mm*ShmSik~a=8nT?VhZp z#W{QeZdxdy+?t*vr}yNi#;bL>t{;e?Y1PotUd*y2{vL$nJ8V zf4atuw?HW^aqn#7=VQYzqN|oGAyf@|(uvACT18PUA46i@0COPty)S%+Q=Q@-m_#Ni za=$V-uNa{;>=5Lt+D|zW0Vtt-H;2tffB5sM6^y4V|Gp`-)=L+3!C3OS625$_r%Xry__+da8pXc1;AzSx#1Z2T;LtH>?wc$xDd$bOmgyb zr2YLx>cmUyD1`(@!$03tgXai>N`IAFLQQaDBvA1^4YE1DdR&p4PiMEGq?P08pax-* z^{)1Wu~}Z*##1{D4C@J=+-zl)=z7gll$b%sp(oqlWUJhMesBc$C@CnQh}=8kD`yIQ z)))53u}@&U-YsFBNI#I0bCu%LuB$vKBNKF9t{D-5^Wia?whfpH!KDw*yA8D!EU_g$ z=|Jk_!zW%!2F81njE-0J+{&;wXGzLtslG(XFz`B8Ir4P;1y*YJt?^JW$ z%5cH^c-p;9Uuo2XVmbRAGIdc33W+QazFJKCOj(?LKJPGMxcjGw&+C?}H-aQ+?R?F9 zAXhriq$mhcRzyy!lLq{D5F{7MCVsjYPPD5{CkIU8P?sgIBnkaoHoH}+meawKP$t_y zy-^euo7#oSdK$l@yUZlII*)t5^Hv(JA#mADqHT>BbW9oelm&;S14Y|JK>D1rEh?`Icrp5!9vCHls1MDQmAtx`>;h z-Mu=WubwWFrD*E%*7R+PT>$8J)*MX4Z#yUAOhvT$F2Fp%`B(H{=UQ4a^qzQgky|T9cSi_*w{`o zjVJl$;cuv8C14p~WOOVF?egS2A}M|J5N>kX3&bE3V2GtN10-ycA^U3%6aotVmT%kV zA3Naq$SEr1lG5{#N}Mv?cOerRadb*@H})maHa=)5aK5Kib+$=j1I>)9DmKER*Ymd7 zRGirI)v=M>=^wkkY_^GsPxj}KV$^GLEPC_zQJVl62s-_>m%)Gt-xCK2I$o!By221D zX@&lX*pEQXDltIF-y0u&zYJ`-$MusieushevqxV+8TdgU;MK;D`Wd-#0`I1*tP)@@ zT$TdL^YZ#MVC9(DgpIiiY? z3;rt`-ce=TcYHP?y456NqZ|{0o7H2}ejge}z!KeL!bPW;9PRaRAQ@C_a;Z~i>68ju z3FBXR^@`q4(ywwgDnYB!Ub@W!2?O~@n3QLWWO3}-_etG6xr<#wY4}KClc2K%HoMci zvk^${kHyni@D~PNWP0(st$RZDRqyoN%FGQPrV;5-wiNcy@!a#o+@He5zaXq`BpEoT zf{L_ji%|>*`x~GV{JuEzZ4zF(4X&!#l7Phy!25IHGixW4ZLS|4g*=sZYVc5z_wn<6 zi}gOJmgf5;qRlJh@$-FBGtu>#hawlqz@A;O=?n4YCJ8Z1MdYRh?+?a8AuashQGVrH zY!a`Q(IaL%efh+K`FEQn{_ASxntgp!9`$H`M$3ox09xtUXvWo?pz=%BRr#Sx+ZFJ< z&tvdDBiG*4qY@Rh0l##ptybiKNdd)j*dL(w$o5=41+9KY>Yh6w7lct*yah%C1GG1D zG(G{0h(X@b*5KuOcS2t+DR#OE8Ylv-uw^P1XLeBu;l0w#Tdz>TPGQGAks4jM$`D-g zZ)SK5?y+xlrz~P_I9O~&H5hr&hP>^4)2XGIGA$po72GYaEI)iWxR57zWxb$UCgbFJ z(?jqnJe`V@|8WQ~K z7Skm=MNc1O#Se(0%0me7nG1?l>{AaX+FC&M;c>&$c*r-gb#d__MF-D~gd|9i%mciV zem+uAqHXYi<6v2g{BD59QESxX$6vg^cNbgjw3;XJMU3BuTGH1JnuDd3RmpKRdH$5E z1;xfh=BCrBsfWBDPB_7jp-az8_!~*75hncmlQPsF4@W~z`o|5wpC9bWox{jl&ATkX zludG~MTI{B?0GtEXKc5AjLoD|r&y#iTW?eGhm=39Sst4%?yzM|x#gjEFBpkc$z;@6 z0n#;yJDkyJ8qaU{3YR+_b)!FqTC3Uwc`)Hsl=VV06g*|4K^~{q?7Rj$oAX0j1yG%8~ty{q=+!#5`1FOz~1biB`1?f za>Z(L>|=~g|3Z)m*n9CA^tuiTV@s@1N6zvtc{*tDFQjj60%1j-Jz7F`w%$TEK?_#B zp|_>+j3J(mc?v5s9t;!+yj>9i3++yp1(`6uyc5>&o>3A#Y-GO~tuQb!fj)!_tBW*f zD_(fYW4G!@H6OLf(vktzKcSxQnj9g!s#*0*?CJqYe4pIpWBU8$@~giQ>EP0`6yh)(Mh&h#d9&P`UO#pI&sQ@o4J#7G1ENT-e zK2v)}vK?u_@nV>hdPpysv7nk=FW_2t)#WA`h)xnXJw2^E-tGudrA1z7ataen+~D;3 zZaMRmCaY_F%4@^~2q?hQddWIA^BIC;po4FDs@?@vyXW;QA}Cz3C%I@aJjk`5tIB>E;-M!IYE*2DJb_i6+dGd9s+AX#n_ey-xxFpR}8 zz|)&nKS)Xr=ius8k5;4F;7|70T8OL2*&X#S1t`S<4@6Xb;RluAlM(j#;u@@KZ&bCoFU8|X8r_h$8}MF6l1Sz`GQ z#HcIr)V2H&w`G$s5z<8HhGBj?oS(uElZj$gST6kJ>aiU50xWEM<@7=LcSow@v+6+p(#2O4RKo<|I1;P2Z_ zZ!+piH-&bbs@tc}2lmmjsqAHjJ~DPJ6?zo|4d&bHkb!tbCR|l^k1v=TFtY><*p# z-vOOmCIu3x^sb`mkyA+$wf*GHWZ)j!9D(X}nNJmq0B4oP_B_BX#`vjB61(}rTor{t zX)eg_2tQ^K9>zdQ%rcyHF~M_l9Y_z7o^azNpbkw>+`m^&|6Fj*742y)gHYxn_;17Y z${Kq|3F}xI$SbZ_^?(F#&ZTEcKIR*T>2b#wOmM*`4H}yC9w4>_#L=rTCf{Bjgjp{% zQE_wQJsvz_u3)cRU#~^wOzg6`_P?K>ZiD0C;5_c5@L3)aeLUy+&XF1QkM9rl|nR7IA+!-^~g6%!Z8xHtRQ^3^A~uRdE-v)y#7G5UR~%@P7*=mJbjs`wOT-vSkH z>$$``mVm7gHHpJ-6tjc|5{tl-0wUDvuat4Nw4ranYL?vRj$JXC4aQ}`ji5Rlf$8o< z_NCcWxt?l;zOZy?%iZbEWKkc$>|>!M(&=cDtak5DFMXEh>g&;;x-H?rXw#>WMp&># z*n13Nb>gH{Rm_h%i-j52E+8KAOBvN5n(Y{u01`N8Oxb;1t9jm68|5{%fC z+3_Wdt2c9Pc(xY0;gS!1C4!;VP?bB*HBe2+21vu=f z<&%#w%urcfA@5^9tKXe=rXj6m{P5m$>Ff37QRwylNV4T$ERu}KqA-i1M+$PI?&CD& z9OWKIG`IRjF#E2$LKi{QerG58Z!H<;e6*Rk->p$A5(<==cf~(6JPKg2=?%hX14cA8 zX-{cTOuNts$F~S$n8XQ1w|39;795ROb)^-Dueg8#DD-c6PqId5GCvkk5eMeB_#*}^ zm{kQhaNJwTsi^XUL2f9RBG*_L6e96t_;GQd6n0~T0_6+^lR=^Y)tb$r-+vPqUGFc7 ztbZs9KvIB7w<-*6w;#en7%rUf@^2@{9m=bRa{o# zzwIjsf^@t{*GqSIh;(;Jmo(DS-QA6JcXtU0NQZPch;;X!;D4Xb+Uu;d?~XTmgUn~n zr+?ou#(HbZEU8GHhQ*a;fA?rBrECRHAH(0a?Uq;{ppTJl^8a}0VPFy8w<9-?^CLHV zQRc$FTEuDARtetk8wozmQgL({%~0oy=QDrCdfdjS0sB`xe%bh-7^d7mNjH(q#EWE1 z!}#?o!9LmjS%2wU_>K3#Ir@4t`&@E|*f=LS2C}ESNckKmIkYZ+3$EXadE_Q$1*JS( zEz3_G&^xx~zPOiL4$_vde;1Lh!f_|4?9@7>Lrv>7+Agm&Z}xhkY}UFUdV72IF7_w@ zmCZ#Yj~+8lwavOfKVS$!*bMtwTQB*5m=ZB6 z3}1VP;0;fAk7|-1=VUJvD?O)KSu0XQ(JvaTCVjb06-b~-TG9o)M?*1qhSo31*!1ho zZDu11Z8Z;|mbh}cnlh_U?5`>gc=z8KZACNGZnhauzH5^-d=wt7Y*(R5^I3ZXFBV2CHs=Fw8jceA5KiZn>-cbul zM?d{Bz**lDcq1%MPVO zT^o9+VJ@C^@_`T-8d3v%z|>sd1k{He>DM1&uCn`w%0t#>Osu_O6@3v%$Oaxdsn;Q? z-ky_)+-y}6EQcV%NNt9xs8pv0pYQI>{w(2Z*e!04IPw4;Yz*oxPE0oQdu=4|mUq8Kb zdWbzzK<^O{AWQjIJa_5Rr8t8;8?VHMKF~3GJ~;m_)kH?-zsMS-ip_}e5hHNHN}^w| z3tbW{i3V;>)_agYDi6k1Z}u6S=7<0aiCTtF4ECqYK%oRgLZwLG?VaQm{xhGIuP^po zEh%qAGlWvVJ6m#|wvG4V4JuiEwSii*7GMuZAQ!Xwxg{Qz!Bdw4lh|POqueEruMY?5 z+PxQz!D*i<9*@^HoemKy$zR?`vVHq!4h`^7o(PIZUtVvdp}upJ;8$541kp|NVxYbi zbrCM+1r{cMmY0e_NE^CdQTo}G`h)C6>YHW^}vzZHx3;Aw(veiq^}HgkDms|v^FzsuLM8KFj?FEnVp+=qcEJ0kMw9k*|0Dh0V zEVt_;aVe>u)6M?usr{PLF$5e|SgXY|DP2U>GA*A~ultcCy`*N)+kc<8CN*8s)3Co> z=`qaNO9%$(-3AZif?`ENc{aX#g@Hc@&YUm63%Z@4I?ia-Q&*D+csU#|7xTU^}D z(=k&XY&Dt2NSadbkN8SrF zL#$t)M`?n-i2|Gb2hZ|R1J0jgt509U{#N$2lHRU3G5_9)@2vauv*YT`Nrapi~4mrMu@Z211Jqwu z#E=ig{QBs!kr9SFOk9pN74F7dtZZYz>3WVvjd4xe^)t})WDHc@!gq`{(CJY|lvI4( zzI2i!948|mgzY#pH%k$T6MUIP&dK7(sKO7x8 zzL;=`mofee z_xcFM@{?3+GTiQx{`hd35*(*Pi2eR&RGaC(JT=&!mHyVOoh3v{VC?c0;`8~9vQ>sE z@%_m@t=k4?2O#q=oS{rRL?RB-8wZFR1#MnMPwqx{nWEZoSVn1WSgryU#BM zNh0R{qhQWn~)4 z-an&6(B;kA={;va9r?E-Xo8yu!sE93Fc&AwXS39%?2}oyS)5NpURHgn{2-MK%6FZ#FzJKP*I@2?H&7$g|zg0qj0?a+cG>aS1AM5$A* zHLnlFL}xH+6vT)VF(uw}J@}E+&xajF6vyJ0m!3nO|CN`-s9_hl%$a7vC9{aM9yr0=Vo_t0QI9fs0 zQ|Ap4kI6MMxj?cq(m%PFV|%H+1ga2o(*ySY`H~5YHfsVeS6;AG7$s-nwCX2s8@?_p z!h*J94Zw6+nGsK@2m8o^_okmPc3>wcZ zj)+A5sL1vVkp_*JX~Kp1LI0E+CcH8na0y`r}HFkpyuunZC#T5HTld<7sdAn7JsZ41NOAqP1J=gOb~AGLgT2?8S-Uk(cNbLE>psA)l~Bl9TBoRrJX= zcu3=DKR{_!Gx7fTZe-Z)l-c#Op}OdK(g148o{wQ(Ul&-LDMCQS*JpBreT)z>wb}9{LOIB&=? z0qjWotEh$h$r3>NomPxN19cWj_!_ki`;&r1L`hme{5sV}9}Is`o-~eo^vcFI;qiBl z33G*bFuFBQIJ5q3($;pPCBv%in|5*0bji`8_I7dmO-}0y_AV}wjBL{UtJt=ylazGp z72rVTOEcr(oUMJe*ib3n@xVdF!g>7bc+9%nty8ssES@(3H_6mJ>p()faE#O4_{W@; zx&W8VUosby$JMV7_C(A)MnyvHQprpPx)s8uT>ZOfeNh*@kxx^c$03JeRAX_|L=OeE zPGRRard&x`TO2;B?)O_rw1r!BSJ8O~+b?}=3M1&!p{XU1F{X6_G zMw*|{jaz>dg8e0H#Qrx6aJ&i?7_8?{$PEMkv(%IYK{(V>eoI25{0y34Oe(eMPnE|1 zA=28Zv6Bv0_apHxc+^{ZAc3TwAy?dbk2T|k=yC94915!2)%h*$^Ju<*(nW4m<`+aa zh|88qOftNg^M1WYCnVO8!gyK@x3PQ1=SvJ$#8x5nPwQMJNL@8YN_zPqnhwqujAy`i&4_fJTFoY^10^L5VE;zL;8_62 z+-XT8HnxH@zc~E#Fe(wcRn8xG&2@U}=N6rw-7|Im$Ar)z)@8!qsu_fJ<+mC!FB;m$ zOr1WpLajJ3JZaLf-f^8)w9BkkvF>%;Dm`Ftr@}{OxV_s*bJfiswYX{)n7eDa9<7Du z%)ZTvEs*e)UU7b{Ee|$mtP1hYtd=gl7U9v2s~DT`p$T<+Fy}Z1IDm`1^z334NyF#2 z`0`N$(SCBvzI&NYSxXr#^XBkE`+9fVfoxxcI7#Vxgfgs%Kh_o{eAh7)I< z$=)xxxg?4g71)er&V-3Q!dK|k6`*KUnzH|!Qmg1r`FzoPG64eVG;bWY6<=WW`G>0k zChM2dw+VaAvF;ysE_G3U*bR$T_@hF&Z9alpgp920AZhy>1T;J0X;&lb+p}P^s#@8d z-mp>fjz_;g@NujKCl{_o7 z)lh!u{7O?v-PtBL7}MWrT4d*dRh%lILlK8RoF6}YQTx$QS+PBG%fXJ9YZqN#(WqC3 zf-z4Ul1w8aU%1o>t2(SDw)@~S8SCmB=I)sD^*m<7Z#?&qqi5vbstoZ z=y#KJ0r&2&P+GR?*SwRcF=z=8e(V9 zp)s6%O=MtkNc{6dQPUowY7;?*p#BtADrzc&kV9CRgY1E@>b@tV!RIP&6FhgV=NlV`2Q@Cs+7q( zz6!RBtagEL5YEvXU{#O&8fZ3qETD`4$-|$Ot~ynMjEaKy?yxIq{{fNl@D@Ea)G_Or z7p+f(frx0^vcpBK<~R|!Cj1GM)e59d?a_|p)D|*^^2O;UzgzymKO7skCcq6@E4q^& zwU#GQ^kh`vGttJNEsXB1S^o@*#flQH!IhK8ij1)AnB;T_Lf7`HYr|2g3Q>l-6k3+e z5;RK0Nt(t=$E%lAPAp078w52dS>AI({Z?^fI?Q;CH)VsjrmZNx;g`+x2#u#k-3y&{-R?ut5GoBs?FS+g>zlWxREM zIzl_XCfUsnf~ZWq44#R$qtNj4*yLlEJs$(fV!9J&M|}e&zwOqcFHpjDHe1zzXGcyK zvx`^Y?vSp#ZXThajLo<+cl)Nv6h(C|^VJ>SQpt(X{6EaBCFsHd_PBCOdla!BE* zE?E*YZ#|A~T%V%XAE0o|$A=m%``uA&SI8}wh%J%ZAlp2X@27IjH` z+lryb%bjvDWLk-~ED{yxaU}NjZ|Q9ZgyB2M$^_B&WgO_^Ko2u#6FU8rDa%|U>L;gW zTMy&~^F|BWI67U=?+67Sno)R9Y|({Le=(<&pt6=G=A%r^msoIrC$~Js z4RGb(%zXzX$x0%zJVw`(W~hENt=}#Y`nZQ-kwcMt6=MGaOt~++b7M-AG8D z514pvM?pvywz1%casyvi(tzgQ*)?15;6j!>z*;IU)imIAVv(jy)q1p3;bZ6D*}Qn^ z_lAfn=Xb#whv`MEoih=Gn=4|!lw7n_iNErLd{Ts6DdZ`U8*Qi&hqrhZ@pqJG;$+r% z$t^Rr>M^r_kh@+Heo7L>RLLj@lu#S^CFVU6+UH8_XE$0cPoqeMK%#4wkeb!#69wo2>SlA|3b0hgc9>< zbrJ7H$P{uXG}P@rlh`jVM4WL4SRQ=7WU8ZR6mmL{VvJGjy&2<>3@FatTD#NiBetJ` z-5cs7(i>1VdOE=?#)_gwsB`2I6mzL#rs8E~EP-`UUIHwz;Px3G{;;oh}?TS$dtjCw1c`N)kB zS7KmjJ}O56&mZY~=xm91=|{_0#TY#bn{m^x;WOM-T*DWs;XNj!SJpmtlBh^gts+#4 zg)EPP_~B&?1P;jzy+9ZMpp|E`NKP#rq!J|N*zp&tvb@UxYg0b8o{o(7t%yg`s2FXe zlll-3+?azLaNr?>ynMq6b-i~UP`6QX&2*`;r$K!`85C;x;L?a4gMHHVdEU)j_3W2t z=upW)@*o8jd~ymE0EK(r-$~$dZ47>3y4+7n?*n4 z5s`_vCnXA4Gfvg2M=i@;3kIw@X~VcEi`SySva7W z#}WBs;(mdPH$!(cMhlDUzblq5hevT^4Tv#df^g-`Rb+4dVGzy>exV<#C=Wy!lrR|biER{= zV}A$S*uhbOk;y)F0XHBseR%t;SeW9rMNEpYgWJZ_X7Yc=KlhGm1YL-#*xppIo8I7U z2j-ZNp^xoqDv!w44faQ^OwFv@Hb#Tvm4xkQrH$w^kq%D}n-jp6@Ulk%31@QEioG%4 zfgPNL_Nob0-WfXF=8_=$bU2YBk#YGwT54`u7NIGLNEuHO)g<(UV|Kndhji#(DZ8k^ z7{xEoh=IN?joNZJ-1-=>Rkq=z*ON2uXCX{D)Z45j>EL(^fAq1G9bQQ?mo)jD>3#r9 z1E!FkRENaatr7CwnBcIzh4EEMJ2TZ#?|3k9ErZx1DD~^ArUN_TjcZ)7cnlKB0NFHf z<`w13A|{jC`P-lH$3K5eHCDr7IHg1q2_1}tzJB|PsP%Wu0G7jREHBVHC)IUipvy zwI-g|z!Nrt#Bflu+HhN}5@{JEtDjDQ?Jtlw25ArfH|Y$HV;Gr3qyY^9ml95FF0y;1 zHMEY>k8dLt&t`b@f(yW8$48IhU=c|0ph7}gW6bUH)VM+dZUfWI9MX85QLEteba4Fa z>J#^5r&l6cM<0z!aKdzCx>T=uO~9fJ^UOmkQ2ooiMH?6P2c71(65F4WzN!c|em#u*gru+^*y4*u>kc@Q z8|gm@jHs5}g$w12-@9dJmp%4PD=Uyk8}uw91O%dO=8t(m0{+fEdBNE*b);=<-*a9|;K$=K@Tzqm7o^(7ACz6wdMF*pp?@L;e!#YD{)ufOUT7W5HF1N89u3IA?}XfXhz$Gj#W@VAE;T!v9;)lPnpO_4_nz z+*t7_oEE)AF-PT_xDu5yuctt*dsHjQ1oc=*?Q`0}3Y7MyW^gdoTZ=)i2Hf&7$0c?-%PPUcs8h@hY^Pd zEm281HYu(FXDS4AD=(3R`Z*vtwiSrsz$g0edY%zUR7ivP`(P)`cR3-ffEiMD;(D-JX7+9= zQw=B*>1)ihEeENF3VUG5aB^{8O9W%3sF66D3f>~zX5TU81%;Ff@uvS0k_0N;{X_$v zaKdN{N{@l^RR~7N&dqm$r9r@bAI-&7sF+!=5GEe6nmofhK>V9kIWADkRn~t4{xZHJ zyH`|#Nb#XsJ^&Y;im<-G;ftX#)yBl(QI)+yC{7*v z2}Z>U`mRQx8}Jfmk@6t%8fWp@bvX0%Zn%!0U*T6o`G?myi_zU=%Paa@_pk1JV+pgp zn@sGyC~DYQf4v!%B2maqod0%dW(K7s5Xbkbkc}83?73#>9yQ10x_@u~iJl*f+tD={ zK(w~`U*tLH$^RF5jsjN-C9i+xa%3crH1nUF2>nGp#c#b==_a^64T6|m>r_TCDV*6{ zJay=-1eHl+L;L(R0SM&*R%nZG4NMOlm6`npxVhOjxbQIyOCO`~$6ZnCm}Fw=PefD_ zlkck*KZgZW{mQ_dZ#|$Do=WP#5e&VVTn60Q(OyxT)2*l24rqv|7tyLY3C@6vAtvh> z@^xGPZ)9z95_GZ%MzXBT$O zNR$V%l?h9pM-uT%$M#w7-47ql-bz6{>Uz6OL8{ZsHw%|AW?9%{wlh5t{&XU2RH3el z>gPng&5=B}dllbQbW*1MOiO?O98(9s$67%902TOJ_C8|{OQ>(Mnl?X;=OVv+lf z@o>!a-to$$@$okGx=HAFI_Zl20v3VaZf@Dq7q^^l&%akBA9?f}100ahdAY2lWYc0Z zBNQ?(UEvbrfG}xB87reNd)$0bn~4F8$2zi-sA;iNUz4n`=3vtxC7eFiGj&`b0vyi& zi0+u+sYW3lN%qromQ^?$9NCXB(Pf*7hFpMi^krnd&8CnCUFwsb>7s9_Oql@*O*Hsu z1$8o$$i@Spl=|AQSBHs{%fAK%_Lxvcg?w41#%iD~K#>N({?j8y-W`o80Kl;?Cv!V* ziUzL;YxYsgz9LL{oY$G*bg-ZoZUY`sy90B&d>p8!uYIGhd{gIood|k@TZn7hq zXJXr3w8T-ZbLb2)C|*}V#q@i*z7J4vFN}IX;Aku69k2nAL_PjWj4gvgi3E^NAecV^ zSX0PW(!}y7b7TO|kXJyew4vLRP;c*vHz?F25#{G66u&S%pO}#dmrD#!oL|JsM)ou! zE+?jH+yY086h`^onj^4G`oyu!AvBmaH(tJ&N`e|hOWWqKJ}rktJ|Ypx!cs&{R9t@Z z6NADGi5^4aW}L<3N3-nc3-K6pU{pH9{D}Bk?Z>}-QNG5Y{c~kUeJP|vowT_W153Ph zw^Mnw`*+aoLv_#II1z~(HhCPzZrt0Gu_t-JeE9=ftYAgGup=)S6)FP)U%;osxYNOI zb=q4FP}B-ul-Rvi_e>9}v$JY$>7BmfR-!Qllhw`VbQw6|N-7z7roVVQkvt*(TYBLS zO-#cdDxlOa`Vxv2W8=oT*%8s-X$#~gOB>k{I);`AS& zLg9fHgu%OD_P@3P74zCVogOw`;1yC&+j*tX7^w1s%k5CrTw4@vk1cZugiKh)G>p60 zh`%KCKTtU3=p;zHpR0+qH4rU)QOr9&D7P_OhLY}lW-J!PdHEOOZ;5Xlb%teM6zN7wxN z<4Y1=?|d2qV0b`=3D~@oZLQn_yIry^DLAScBPHnklW{XTQ*3)YLSA=8)OT?mVLu;K zw2tO|74_GZpXLjS#AVxrNqw>N1-Z1yv5ND$i!|5~@o`eCjJ>|3cbYbZf|wMT@4_#X zG01x)_L{>TRufGsC`EL>hF<&@zOef4%WD7Gk{?t8qGUz&pPWkp#Tphc-7cWus5x=9 z1$l&qU$DZhG8J*z-yl7wO%rE>0(tE?)Ej>$c3gw7t(;VPs@6XJG1}z5a3!C#vY$8+ z0?OwA?xpd2-|kah8;?eHb{18ymxo8PUtBzQGV@6|K=Wi~66fY(m&np(_oIJO%|?og z;|rP-YNUR?0HI84*tbP!aC%rmG>q?tRc>x#Ff&+^e5y3Bl{fJ0u^_KKMM;hycgz*m zl2D7{1cuc_R!Ei}Bh|b?0Ae#rGP-9CWs5cE&i2`huu{Es$$$2kLJ~YSF=t@AM-E_; zTz!ZAQ5trzvDd69PJ$sG&5qBo@36*r zY8+tCoJ)x=YRmmQ90bnoOdq<`$b-!sBW5GNLkF3*qVq%stUn>+P_zBIfRRIeA8US) z1Pk(r3?>u_wPe*lhJpFLo6Bz@KpiihPw(P+qOdg0h3)k>yxac#0AuIF5Zeo_2r&4! z%>NaqU1uTlY#o4n#h7j0Ls&0hC6Vu}#{nHU7V};0yyQA-eU+t!2&s09x{=~m$Nsdf zNf3+VNK9h>&tT-#HFZcvm%UFHUlYE`~j8_A@5L*48jg7#qOH&**lC zCPkHuW2-i}UptAghDP?QC1Fr}Q{3vJfcec#m@Xb|Ldn?1hOyF*}F7W!L$=ZryDMF5-4sr!#+{ZLx2$DX1Mn4 zCIHw@VT!(HlGP>T;l4glC^Ez=#tT~YNQ`;Ko`IF2&CD>=&?B;s7MQd6Ca5cWl2iOe z(4U1yOwo-ii~ZGh#6T$^{rrJ@WCB4oxRDgGX|sZ7Ep$KmkFMQ@tmGCz0Z(q=q2R4`b5 zN8WVZaxgL@vwefE7da z?BpJ!`gFu27`EPEqmBE6VzIigl&Uxsj`B} zd}56<69p<^1UGSr>heVZFtVca#9MKBn)g45bG%~KT3#>I`*%&u!&j2OafN&TmE?!W zd?oplx+sC0OyA3N(|RyxtGQJP0*m$1dle7kADt7)ydQC-$oq&Bshiy!c+sXjX`>3* zm>I1f-a{!(Dw&jyU08d<#!(iEcjv#kaLFf+rDFK=e8d^HzFeX0(FYid9n^go7!?0m z$?ybIuIjhDtK4<%l_0w4x}VH*l(zs^hHz`*g{6a4hx~Rie=XC47>lbGE=LNt`tMI? ze>;g4F6CIK%J?n1K_?(dSTGhW0-;^;suB=Dv0?ZJkJ}!%#{sA{(1lJMU%HF?`>Mqw$+_}ru>dz8ZcSuM5&KqROnD!GWPHe9!q-{yFwOza<;o~%#eYYDgWJzq-1 z$kx-C+)#@O?Q6Wd-q1L3BVJA21$vExjKlhp8e~J#!d{e5@l7%`=pSDAc%uJ2bIju_ z>ECr3@FF*1AU+rZG#nQ{2HKl|AWP}BzN=ezNumu||Ba~xCSff9;xQpV8Rx5po;`UE zAiFH%p}Lk9sDEe6<|E{TJ~!k;^1C^6q)vPkeP&b3zNvOxE_#68l(#n56@E2Y#*4qZheI?Brz; zPC|$XdPDJ8GKkCNlN^-ThYVZ?xaCwW0h|~*d$l0Lr8l@C=WG2DMef%AcTVRx63!2a z&c7?uMf0LQ0IYIv>&MxypTCEsqZzC+(AfVCBz;ZQf)_I=->&I@^O5kkf4ZAlOvsfw zrVjry0Q2qeSJB_?ey=nXP?#e^_ttY62Lg!hAjXeXp4X|xjyK7}K%4Tvprq{>)d7SB z(csY|41i&N(H~@rbfqByaXS31h%ezkz`W-S^)f)CXtScfzsNz>w3>zmhx=Q5u5;{j zmGg{EqrZ;l2$~rP6?xn{v99Q73q5+ne>^hJ>HL9w^pSXe7kZ!a6dFe=8G^QvyDzoP7>Hd+vNhuMlYWN7BccbqLgnp9RKdd zR(Z5kcN>B8hN9rta$v`_CHjl?b>c?>wzR(@y#2=poHkrvlGr$6!R@Kv`}2Ol*lva$ zRwO-=9DtxgUuqGdh_18mfahdu+p>IpM?g0a5{L)qfKHobsL<_b{{5;MM6&PiAy))} z|I3#t0_@rx<2QKOs0`HllphrB5^Lb|9Q03rUzd0$bK*W&=yp(qVF$$aQM zqzy~yobjF)d@F$t^?(AjT5>=JLov^Pi87_&UlY7ZUQYqS9r#ZX|1<+D9SlelG4G_c zm8D|9W60e8ZwrM^H?AGCrZrBd{L9rlI}tjxw6Ouvz(%>-_2#rl^^KtkfXgmA=(4AERQ z4YB|AsYsIwF=#9>da|bgPakbt*#HF?l|TbV09gAeDz(Va2jas6+qN$6g@oZ>&JRA7 z#hEfelADjKC8e9?=467EwHvE%zf>f((;l>qqSz#WB$~3{MP8c)lPh@z@%M-e=gkls zh`nQf8&+mcKL>~Sz3|t0deh9Q7JjP$oVxka8`gb98E0s9rLmqCYYYLeI#x`J>4Nbk zR=7kiQb1fKm0;{*477MGthX#?c?~zd> z0==TWpT?1~p3D6cRDowa0*Kr2BkK z^Q`yx@7+yM#o@vpB>Ac*ify6bshSpcJ~@|^a2SBq=%NDeFXX=?lWWv9J(1Jv5Hc84 ziie9buvzDI+_(z+e^0e2cqD*V=;XT-$fNgkjhifY_;yfLNH0jA@%Ropm9O&?`V?L& zeN^|!&$s5Xyw7M8=~`Y2vl~{5{<{{$ioL>l15e9~3e6faduM;+aw;TVgFJz5MCl22 z(o?bHTl6aGC48VEgBi@VenQ(yb;R(WWkBW58`vEjjT|9TIqH0#l^5l zzwSS(k8B03VC#i#5M1C34yE?Sm_^_$QcxrWZ^sL;x>%d9Pe35nSB&FX;ze{rj^@CC0 z62&)Evq@1@@RD(Oa1S2sKuI*-`@hxPb_m)kBRXxg#w^tt_hEn+}Oo;Bx2 zz`gSii7GTk?sT}S6k1$KxlF&hVR^YRc{y8L!+!EiffYgIK54;(nFV@oLuy}dV|B>s z^q*jjoM0@_DFoc#n$~MTqChL}chF^ZtntFXl&ZlRE78 zoC)PLzpMd;_i~bMebe(gCjQ>Y@?GM4Fl2_%mbg@GeF~D}J>Va~sCe%YQXzIv%NZ%g zN7V18Z18SbXi0Vim^AgZxZxhBMi@hsiB3N!rhal_G!qbq3Quch zq!Yhj56{_*IKV>|ReruR9&~$e7{OtZ7Yq{$%a~(EKQ}08!*ve{=5`Qv7B*UhP<=wl z82bTN1z9G*qaq+29KX~W=JwMm`Zo_Wakf61_w0T9Y~+O=<1G*;*hb|^0g z2W|=jVmW!sNcM(mh>ECZuUNw7&qKbg^P$>W2I6N~6xFY?pOll|wq|gJ&}EY9A*)2D zj6WlFu$)qV%h>bZZM-Vs@Yt#R_<($74YU5`3{;(pSe9|lHM%9T_7k7)maYq~P6`?a zQe>2#AgE}wIhfyp08>p`BxsXM{KhHL-Fe!NjTv^U`Cg%k-2@9Prz_If z>G6&Yj9{W>>}-WOo>wg|EJpzIMVQ<&9%nNI5|u;yDCleG=j>ppZ69JrlLy#}r8paW zH%xP76ZOf&uGSpNeOhPaJEgwZIItmb z725LXitWI<%OCUJJnj-kfwrF&>~zPgU}^Q)`&t!wPk*t5Zgc2`xU*(cRO|KWo-p9x zFF)n`c75zl*ioxe{SK#G)zySSk=fDg;3oDBoO!D+ARP~kZ*JJEg{9gZyUvPbZ)m#U zpkg7(!?1sR$_|$M8@je8f2;lc#nnqs*~y3!O`L|mYIjh+cT9duEeg1S62Tw-6P#%& z`ANMBp2lQH&)|8nM)_!kh3RIwf^?2X@~l9qc;(BK9je4VKKCkWqZDm$gw5a|)=QUA zQqjdK^PMjUxpp1f^caLwr=7QA$nlAdsH;9*o`h$AkA)y~vxDgpv-)aSFI@B~d_(_I zrvFC%S^RzCVB3Qkyty+#>dr(4?UAtxp~8~qHIN`CDoI2t^K81YbCtg~4D$u{Ta_ez%Z--nFmIs6-khdL-#O!KN4o z);4JEIUCXK?l`@-(;a%atU7#P3vZh`W6&;$S6O^d?SkI^ zrP}ytbt~OL(ff$dfz_+__};sRXGwG=7Ne^*_m`&~GL4=~4gQg7IN2;U?piC?l?FzXVB#A|3c5 zR#|ByZW~8lNc_mMexp3m*Zjz(-Y36+AQHq0o9fKU*hlOAX`cmr*311BBHlAj&s4Ut zxPDIA{Qd#>7qQLoW}xN0rIgSkT4@}OW77FzP&#{*Vw z!r{Kl{kQsIVO?*n@e->9Zo-w>6zP(gV6S9jbQUdG49W|_kmUuAmk9sFZ^!eWlhOv( zPR4b^l3Pc6D(R&!Ba)H7m(*~~RWUrXYl5Rk1|2WCdPs?AfV%Mb{B}r+86BN=4Qd3b;wC_CBfBk6FP5ig_YC*6W-t(0>9R z(L%-LP|t9F42Z2Q)cH%EA(7@z=TDc6DF=WPgFF#(Z{A^7cgW~>K+$iw{Wv?pams@Q zh8R8NBm?4~lV-~2A?9Q%VRgZnYIv&gPmV${PjT7uq+yST`OJTW{n2oD^dM!vIhj_& z(jZk`q?DBEyva$`w5qHh<_U270z_xIKN$l9$G}aUS(9_N3)9+ ze}13Ur=UEzcRTKXO8p5HU8F2|r(>-`-QFDLkpS|`5_nJ9N0gXFHR@EWTxv2%9NUX_ zd#8e5X*L-<_+~TojO$iNXo;+`BZxy89Pf&-}*gyO%m9B58)9Bzl% z5<5{63`Hdo`Xk}9pM}+R&_oGVoGgZP9Y4Ar&IyW7awOvshTzZwJcWuMDw&gv1Z1eQ zTqaY1u%L?#@$ZVa`th+T=fz%v_}u7`?FahQRAuO)0|W6lAWFksrB#LT^J3CUMk~ie zRFI2IBAKW%*eBLSd7^+rUI%VA;O)4qW$pl4evL4(5b8&I8-5I6@d364Z)nE5;TS+oI69BGgUBET14G}w$(hw!47Cj_B-geVr%Co#gP7)gc(e>k;F9TKskPf;Y%+IEzQ zSADFBFBu3%F{A8uR{lNy;oi;S`cEM-_c@cIplF!Y(mV8p;7DnMNTZUH z7%?DzI>-8;=VJglSZJVEMF8~_lf||TOZT$6*%5K;0^6&?f*$rfoK$Z^<@)6r&o^6pgDhAOfcUIVBa3s2>_Mv0o+#Re4 z^?eamEsUu$G*U*5W6sCZ78B_W^)b$6fuA;NA;tPA6uOx7cNmp!qlFqmJ}ITy_--)V z*wrP-2-z2D{R7FDCi2HyzbMlr?NzelD0yfk&u475DlY{&^qwLc}1qZ@8+RQAdYek9%L39iR(IP>AQSi_#ZuYJXNUgvQh=W!9PrlNQkhXMx$1?BGJM{>_lP|zVL zD5$I;OyG)k(LNpu3LVO0Ihp5P$y<%v+C*b*CjmE)U&+pSjh<82TTp*+cQ7$v-B z85;FY>Ct>KnQG(HyY618I=Qhgnk$ild8d^X#Qr^4GZ8&l8V@23S_$fAgkZ;(MKtV< zoSc|4L+Df~?nyVNRY}@Dj+>}BQE@77-fCRE2?Rqy5ZLW6M%>G^=wg)Le*jku@yVe7 z`tkt}jP9@7fM1Waj6pJgo`StDYyk)VbDwSy1pS{D%28!Of42@Z$AE+XZUEGcg9rJ$ z0dO42|D!JoeM$rsx0b?F2h)L2@oV}W+}u-xSW4fAgVFB zKsqV~W|o4}Po|*Yz_yB=P}M?3%D-32j*J`|GHr?b)-YFV733l;L2>N1bio|LNgt&Zn4A1o<=vi56M>K#O-B zarR53^ZC}(+N0L3AHDd`dLIi2M0o`#_Q8m<&*KQxR* zdHD0vhB6@`x@M{a;)%|g3treb2l60O$%rSa^Pe3p*1_~vZFd^`v6N-Lo$EPgegdCm zqLihRy<{$mQ8nEbHprJsHHvDtEP7<%UVi8j6+bU4j=%X8rsX8wmlsmFb zelB9gZs;2jUKeiG92Votfr4xu%+@Ip*8LAxb(Wx($gH>lZ)V>6dH+ve5jbZEOF|3pc zYdKrkr&1N0(R!v1(ZC9_&(sA5uRWE&C+HZStA=Ww?x6 z8LUIcZNQ*rspy_ShnAtw zv0w2?(UH;-$7cwfqPGxr==B~RG92=@zf=!p67e}CclDqk!ff2phT7Ge?`Z+3{W*qdqJhof-hl z|HP3&NKlhgL&*AP`+J@9b(&N3j`)ZDR&R~A@OCEF{(y4_a*UVT-Oa;NFF^a~qf4eP zU_%`jvM>S`4teKA?j;4Xb>AV+Be~OKL-|pKPV|MbH%=HGOBU25X|9nOchT+4<(HIW_{Rj%}rNw!I zzjQi*St&-kn_b!kUUYi!ep=n+=~a{^9^{!6R;ZT^ZSQak3psi=49o_Jo}D--;Wqe8 z{dY7=O^O1B_#yg>iM?J zj^2+jyLCYO=FISMzO34b_#k)F?W=+=4(7jd4siT2z+F<_{EDT`d8iGM|V`LR4MmIdjqWhr{z6VQD;;h6(Z7chbB1Mh4J zh@Eg*PbxS`6z0VjsbgoM9?;k3-C(RPy_XE>;6LIYbyr2O^#ACVfc%PO5ga%F2YXO< zo)5sh7WJLPy4u?BIq0Q0UHCfH+gmvb2gNPBL_w21O3JCSsve4b<&fM=rRB((rj})u zyqhF>n&$rGd^o^)VUzT2Ia`*R*L?>+G^Lv7aV{qjXpf?7&4gBWgUjY)a4ZQ5y*;D) zD4^e}6V~lHJHjz)o<(O=aRdzU!G~Y6UagS4#e==!JrFr65Jkd12 zLw0wPGK7VfQiV1#jmdfP!ztrG2VYVA`tnRb^5VJDC4>esz@t2K6=030F5 zYt&2$1bPak`_nsoQc^F;W%jMdwW#E~oGRS>jj+qo!JQcN=w;}i;Y8hHJ_w9X)_U?6 z#Kl&tMDq6YFSN?#Pk=dr$CvYFCmIE|wV^JvoH%|}T<<$;TityW=f!jAB-BZtYpo%I9DRIY&H*$4x)}YlyK!a z*VtI)!n+%ll7e)N#6B%Cv2uYSpQ}xVR-^ubAa+!`jbfPpz*IxSe+(Hw!T%2d-Owl) zI3lxU-L1``Mnj1$`}x?q8$B`3%f;`wD4TMu@z0cmvWBdPRdQS#xtnjVcbZbpN-7zdXAQBQUtEk` z{qs=i)HbDm&|gm!ym^G~QSS#l(Qy6jBL@G`#S;*On+U*`Z3{fvK${7?8juc!n#k`7 zGPgz;M}r4p&5r-h(F+d#Ui9ELr+6F-3_U{)@eCMsZ(<(UG;2zJy_fEUy?)B>fC`=K#=va$4~^y#}}f;ug%H0#+~F}buC?;>^mOtm|qFcH5x8I;=49I zvRq#L;qHiXvqL-Le~fRE#>lXG&f~lOzA=|tFHL7ZHY2)uzPOMQD~b=#J*2c~uWrGo zah$oE=TVBVXleMl#De#`FE8g5m8`3$_rRIEmJKW*@cqQdloFDq9|wJ8)AQH+o}){b z*&b1aJ`;Xc*Jqacn?D9zw>6e=P-hD^ruGKVXGHmcH0|}_*GHg?{EZ5cjV|N}pNpgL zYZl!-qv|0`(b>_VyCLT77-`29V?$xujO31o;x9yO3pPQL#qZ0OsueGEu`_yw;9^R` z+vTJ+?L=ghO%#XrJCD3u1w>J|2DN^wZ3!?IMP~&p&o&35g%` z8Co9$%{};{vioz?kCrWaf)7~9kDK$k9Yz>;+9-|Yle^L1cB5+?k^34lLcwwk+GkW_ zzubRB*Qv^b9JSLO8+&(zLxn=cefJ};E2e^Cs#V6}e0zRDO{KpFHckwIjaeWC^Kg+@ z>dCd4S4`f*XAQxTKyMz+oDOA4t&}ds#zjfZ9Df@~2NsKwAAdal44mnTepBbrDVRk* zWn+KptTPltd$iC~M00r-Opcj_5#ZpKuFmaKn}a11M~)>rbDB}+x=@xXv-KqP2|Q!; z&ICV9h>2W82!7OBifS86eZi&on&Cs)wyBV0{pM5rc>8L}t%52##ke;bBcb;qvD)+N z%*8&wsA^89rTl(jJsvtxtXI~@+HSnnl2$V5%sce?&7Dj6xP9abME}c3v=n*Y*Srm= zb*$sM|H%xp`D5LlVisP=P_UH2cKf?G0*68QP|YhVWf8^4t0>2m+Sm|rt_JJ)vK$ti zFEco@?z9w&t7$dvvrnsE_}J;B8StV^J-bT9gG|@D_^cln4;zIG-tU!V{bJQco1~b| z<;AV2K9uOv-+_m3dA^&qaWIcusXzUJ!H*Y59`NvJp0--9Q9{@oSnFy6(%sqifaf1f zcsz{fIEBuIT1mN;*3WCLp$OT8g`~umjt+EY=Fi|=(Qt`il>HlnF~il0rOBGGQb$WJ z*mTOc=Ni^S0>+-QrAY$dnl=|YgtUHEEVxIo<~o^xy6UCy>7>ds&X@73U7|=v1(P+O=!#&*%L@ZS>kz-_WkgA$`tlgrK%c z?rMGX{a^bDk{JY1a4zdcZO=AwiwYeY`+*xW1douLPiL>4wu8&mVP$Ct*g2t;DDk=U z`J)G``_8ep(@pF(@?m>A`7?LW+SEDcP7y4n&@|9@fBhl|Gtmt7ox%wj4!YTjZp*_| zd&bGIx)UA;I;mKyBxo6pU14gSTpM`;$hs$)#BkIR~ZCFAbFq|i? zd3Cx{ejji9yfbpHfjvgwkStJ5sirB38FpF#Q>mx+sHZ;O5ghhEyN@o@aviCsOD(k( zLbtr2_L2a8?l6BKf!Y!BuC#z%w4X$lSgzq>;J%xOVP}F52I!TdQ(sZrm_FPfI8Y*O zEXy$$D*^u}Q<_GYO_l3vV|eqGFYf#I{Nvm>;9ru86{d*vlT=($n4}{! zTniHFfu}nnZg@xO8?Qk!<6*R-&vWys-(dl~1!0rThMeV(#|;lQ+>h^OY?~9J%XH*0 zV__fpjYi+c%!% z7Eg$pxbD$`N|vSsN%FmMksi3KZF|H9yoc*Co$`@Tu@{EB0$zoRP=qryz$bu{g*h!T3ny%`LdhMpyGL*8C7!l>QSk zjUf;{kqp&ingaS|8fY;iLyduqFtJ?A<|tP2$pSX|;9h}X%Vm#L_*WftqNOFPgU}%l zBN;lfPMu4LDgRpp49R0$(MtDWzv-!NIrTxv7>d5cq$KI9Q8MN%GqOmP%--)9A?96J zf*5y7C~w%hc^;n6ry}U?Q7f8NkYnbNTFyK<^m!OF7$V$dW&+D%$Jg%RNyMbX(%K9` zp-AH7d8BnYQ&7cwe?Loy0Alx~X+ZL_z!1LB!{dK&zOWaQd6*ex|Fqp{y`+o@ijb6- zvXF$877gygy}6TrEFqpMFS=AD+wIz1y|Y>>*f#m5+ySQcId8;+Ga%%kRyJjAbh`Wd zU(qvLrS*2rS|ku-OyqFNti4!8p8Met?*Np5*XDMPjj_^ngwVqU7Y_I%M$9n@O1!uz zPalP}ZO_POb=G~)L1inVhwG3I(@u%;8+RhOECe0Z{&dIv4)i*~ioka4337rS)OP2& z2xs@If215?cn8?!B>l(tARh;A2md!%GG1smTj3BYn)ceG2g|th*IGhREyj28u~A_s zw$1_c!H=HHALP)ZFEpz;a|arq-tUpS(^fy?1eaAK9g`q~nwz2$y`8*iE&g}{0ntm= zZ^+Nj4hYkMz)}q{#vH+qIB*<|SVSj%cyi(Mh5n?$uVc$!n7~5rcqJWzGd~jq1!CmP z64N1!=4*76>zhK0ZG*l}tvU-0hVsj!qVH?y<67TH#SS+S$bi*sC=}?Nu;z9M>9)>L zSn^92j}5q)Y5Eoy4#(jEvuo$S(VSVkEC@M6vt6hS({BiN9(LvgqcyBHoz*SMG zW*Sek7#U7f$XXw%1KIzn1hEi8pNl#_8A+vWvJ8`n zE1T;A;4^6_z*!UfMSrdqtgQO5*GU7I%&OHf5{!cm23NZQ6Hu$xX#{+Uhs~{J$R%sN!ce_yVFSXH3 zi5ec*;M8GPo_P}L1}9Z7DX`v{&47ztnputA1kmJNpa;{X4f(ZBE`v%$R4 z#d8}eB$PsV{VHqoUwJ`9W}!N_f1yyjQyDFZq~At8ckss-20V{E_uF5i%9D4FSok@K z6jBSBSJ(#R30}(Rk3VCKfmqp-QQyjX&@0hS{`F ze#*SKr>YD|FZL)zeQ704iC42e;ByacjBr|;_+gb>3!VFdYtC%f8^Y(FcvDI^h zJdZ3cEpPA^U0wH1tkHI_P81UCkR{=*1y5R?(neQOsAtV@X6k-m0HHtjJgqn^leP8@ zRXq2G=Kwe&nh&pv%dKmb=Y%!0kNAr?`a%9xf|VJI>I4}CW z?Z-=g&l}FmKiF~|uK%2A9t)Ft#OJbmn!ze50b4_soF5b$0w1XT;B%Zx>lT84VR>WK zEo_ruv3oL%d@)0tY4k?m()vPdF8QELoxOHL`)b+VtKp?9HKKu^)SY)@k869s2jY_2 z41V90x7C$IU$~pRrQFAq=8a71S$qJFp)!9)c}y*)+9H>Iky`^hY)^VGT%B) zMf}5`6K1t1yvkHdl!2IHYJP5l%`ISyIkO)iF!3}RnV2=gAOVQ zh!p$xct}YJ#Uq$^f80f@rwQxo;`vNjF9p+PBELDQ#)`;H|B-p6>4W4Bv8oe7#B#l; z1Vd?GfBaY}a761?Hzdec*Fz_Y7nx0onMdUKG0eGly^CP1evek0+UlqX0wbe=rZO(Q zE4bo0^5HogZgB?#7_nO5uzgr4ihoSZ__gTXeqivF{iI7^V+w=SCZ%-uJA42nj?b(p zr0uSIe8M+G%a4fV?%{cUGJjzx^l@i$e-eWn{)DSCG~N;y(%?W$4us(gbunR74O?!H z=fI7V&L&@*ZD^-GkCzDIqU`Vbc~cevWLhddM8T<2Vf6SC(cg@G^9Y6M9iIyY=1>mn zUR~t`r-=4e?ha+whtFKw9;xAc+M6fx+Xh9=S_BYrVGT#MXz(*A)ibeYC1!XZlE2z>h zR3bQV>_#hmrCM;<&j-}mnU?;mxcoDCQKtz7QbN4?ai?WPSI6_r$36|-eC-CnGF;(b z9sq7?5zBcoxJwD`y8t5F)A*6f^q)OKtoJbxSX^zztfku5B)|?+R8pLtT@auSA`GrL z_Co|Cgkne2v$L^DV;b;fz9PfiWkJRFq2pZhgZ=sq9<`X9)Dmmu!wciHa)D+0X(Dz0 zfAZ8paHj0&4nl1akIPp@^H2hZ%1VP6MsId{4JRpiWMNltjtp%j+Gt#@&m7{_Y z&>a74#pbH17C`l58xR;}Sd=O^3GM8ujGo`9zvTUxXKjtQ&*ur)Z9x#!HQ^JFpG7Wvd51=K>~;jN*3p}B60f(B?p>W zQMY?f+ac&et(GyxX}4u>MhU)q(5RT0;>Yfnp5OW;x|HQ~5B14@RJbPkgzLV&{#y$m z95lbis_>47nMS;A=?gN^PdM7j9JP6%Z(+zBl$DhQih8=Vutl{(Bh}_6*Sa>2M+1B% z^L(Ti*W}j_aQP|yL(zyKb&@xESY8h=$Xs1x_t#Fyqr#3v3%%{YWpW1oY0^C4&X6x6 z;;G?`o3v3XORZVD+XAsP#_a0vDOwMAC(B}Klo{^fnJu0m6MZg08Vfm7gsI-JFJHnE zK{3p+Y2JI_irA_#@hDYO<&m@(nKTRQ$i$=z>ZOgvCT%c9?9$K@(6}Gs)QhZj4Ua}5 zwS6muby(nVZhRPR`&6;nOqAlsY{?ulgUdfnR>SL|P?+M6g`5p=xK!8lG+M{7+=u4P zmy#`Rj1hT?c`u7+cU7xAv#-7Lqa!bz@P5Ru@(9%oDiXCG&M7j%)(#g3jHF8x!9)bW zb+PDDLvAJtY~oXJT^?ORz`i7}WNQ8C5q-Xy7BffKiL<`=lOXgkh+ zgB6R}mYDbop?H3C)jSZzK=p`TLh^DpRcji4+lJsn*ey$Hq#z^?e2}d9eU%KV1~8bq0R52tLi?Yz z?b2WBf5DeZrp5mM;!AH?Q6=s7V@66f#X#*VH4WfkZ);$>sml5fwmrmFR#sTE$=}bp zWB)esjwNTH&+%Mlz`U20@hVxvf0L=L;9#I1edPeFJ5%?2y9D$kz?~Mlz!uocSybvu_#Al+6wL5eNM1L}*9 z`v(9miyi{PoN~5HKv|e)y0TOf%K5XR!mvbXjVCNX61RQ#O4x$Dt8C70+$7#4w{q#3 z+fp;@?W$~U!^6Oy0WF3=v!HRGOo=nE)$qo@ge0(=#-y`W{R__$S>KDfwY!*vc-|&8 zl^K14ut8=rt7mn|f8HYqQ-haj#FZ6w6L|J4LDER)j$+y=#R$_U1xh5HsTbgCDQU+m%DX`T50t z#k8f`VD-vo(Bg}np^SXB5r@munCnC}*v&SD^meO0NGvveB8N6-Al^$=&zFlkmcvK-R!>QAB9+lWOIvi|1lh$lT&bgU+Jz6z_S6^j8U(sF7IA?tQv={a`U&3-VbX zdlr{a{jF(F@SNd~fvJ78V{BCX)Pi;bEF)P52QEV~H+*|72Gop^gEUd|&mu_x_@^lG195>_CR?7K`yzBC zC$k}sXbMP~rqGSN0b_T-pZhYAjD2Z%~n54;cYLo=m+JKn3PAmC}L?T?rI z+u4!Ih@cK-1lzbcyWUJYD<6=u7oQz55jl@@c$&N}6kd4}Ptsa8DW_KU9!&ppd>-V% zf)LOFthxmzRXqsI)FNz;5niG#K&2<`;h@ z3+=aO_>F%^5^L_rT*IqFRnfmJK#}2S=hXDE=b@5eyr;l37}j$;F-mK9fjmADNU_A6 z_5H~mFpgXgwXJ2^g_ zT=s8{RnH=)Hbq3g`q8sB6};~(bxfIt54mU3V#5!SrrP0{Hk9&;KmS#K%>dQ*19!S8(w7OB`}D?!icVYTaFHS4a3SM_CLsvWCO z4No0E!@ze)f=0RDa5sc#tlq%I7yO3tFw)pdwx`A*Ao)|vIrNnk@!Z)o5aiNIoE{36 zZ24)jU3H>otET&k=tK(-xNPXApMJ%7jDs2xb+RH0%G37g_rsuNkwu^c4_RMcukkVy zV@>w^A;e`m!nEN+zI#eWc)uf-U0c1`p^0Y|K#VMX%P(Vs;-mKcgNbB5x~WZBT@AGu_tz3+UG@@b{A%% z(N=ptWk41sIGY^;R5ic%Q9)TF$_0z&%u47Mo!(;IaYU0O!2m7hSnXlXTZURMobjw#l{X)8fySz)35->6?Vy~&D4jP%3O+~KsyzD!3wBJJL znqu`7!Ah$1u(hELp29Hj+%)|A5z+DPbokZW!}OvoTu(0QRvHNH%crwdCj{9KewSCx zLSzxbi~G)%9w%mwMe_AOtGd5RN4-4?TUOs;mwM$ec?HPrRbi%7-TtLn|{3aS>?q@R~y0a&H( z%WllAr6_?i(5GuJGf)=Vd!4Z2b7VnGfz>6)(%{N$vW;SNA1FEL*M2m#|6>J751(Ln^nW zhY4>?oz?;1&QD}!4^00sT+ua_mq(>#S{W*u;G=$tw5>(c@9tmiYfdv9Xr>Jd)wOeuAMC(SHGP z|A!%u=%Vrzfjk2&FU>7PoYWPf7|SbkLRLYrlt}esfR+lm>*{*yC!Tvng`k%N(71*P z>-m{~z#)K%UA->XAd7F!p1@h+C1d{sjomUsYin!glRlJpNpFHqexWZ14B<7`_5akU z!}w3o_ksyVmVZHO@5aLy)(5 zODkhr&-weO>stR=(06zTV9E2!|LDxWW8{B9!?x9f{~KrsNCDF0EffI(=76dK6cOFz ze(%O%v=TQeA zy}EGfuI~P7O=D0+yWaJi$Nzg4gfu|=GMoG~LL_ZNdgO2$$`}z;EBA|igSR9iaU@9J z9}j3Q8X$7&o}g_S10%A2=c}_)Qu%lH?f99Y2yA^DzIL^#SS3%8_U?43O!;CWcTDXq z-rzqLW7Z;H4%^dpXYmj^GWD?m@zR6}sACPV#*BUdaB~R;)xgp-`vaKqT^0M&)wjjJ zbBWkKTBx$T+Qj$hZG~ICfLO`h41xSc4{_m$th-uv{2$ATM&Y~D=SG6@CR_35#JT{u z9*vrr86xS;0OI)A20y`Mf)hUwH>bD!K97ZAp1)?$-Fx%Ey_8D+tsn8|-or&e*BzWvj+Hj@`5P?p4NT*&7(VT-u3 ztC|i^1PK(8ODnHHK9zLk#C#3~7QftOYHj6D;eHeZ`J}Q{b2_w4sc6-jfOd;Ow^soW z_QZmUDp3Uvp7Pgt3u!O^d7Ewz%twNuzJoSMF(IG*{yxLY00Ea@bG9FTmg#{qBpi`U ze%&3l1q33`SYo_KZB-HVrw)vPAtRp7!~D@+zTsecNsO9%Z6jhclgc2bVs2#VJcB3T z8tPOJd&d1)J~c{iJpIs^o=~O?TA(duP*nOBj4^%O! z3p>!l5ELvR zgqL)0D7sB*JS>?Bb5Cp;WpbP5a(T2_8zwQH1VVq02RWQK?SpinvzL4@vD#}%@l_^( zd{n5Ca{BbX3aDGv+7s3y$F20FbX{=pxgFe|GwAFC_K^CPP!G>=^e6rKC4}lz zt6o;+Nr&NT05OZPPcQ6$x{m)zh6_df?3q9(g7D5AdDRPsbq zNH70Jict)qp^XTx5>OcKJX7a zmQO#bQCS{7&iYOi)JNJ<2HfJ#;M7$m@Bu#Qum1}+G&vR9=deInqiu`}J#Y!~})xrrz>nDr~E7{nv8p3G#r z%76$Jzw$?A+VJBkJUH&{KO-kv!WAkT9=7yYo8!Jex5&Tzqc^`HGNh3~*h<+K>jS)K zEQVUaJ}uwO)9&k=oyGc>31(LOGHDmpX%8R#$>rw3^u+;h9)B6D?S^N?e7*dJa6&;A z&j11{0Nl35V6w22`01Gq#tu-3zF`3N{hhAX*;0?`XZ#Q?)-ZqxFeu=joZ&T8$ysoF zr8Y|$=xRgZpFlK~tzzHRQI~2-Rn*A9N{gT)P7Bs-D!|~@cPY#MGo$-|iSN$iy213F zr4dT?C)U&%p}l-#6R$1NFP`4tCLqt_XC561t$BacRcww zDc|2w^@S*mtRiz`nJt-(Tk%V=xlP!E_kEI7KmZRO=cgiat88Ip+VG_ziM}6I_{`EV z5{B~xy#JU|*^+{{^t*^DgHvtSXtrPXfkW^ByWb!9@&|6z|CB}iqI6=Sjcj#a67O-W zEguWxrBo)_RvSG%AD3q6>3zDU#axACM)Ekxwte{M5LM(f4MYdD=+_?=fkyElg8xbT z9e3hD77+x)OV6JQnZCtO?0H%{q!ScDiQlnkMrM^4^jtkO9|xP{Xhw~B2|@61QCXfr zk785ZF+cG6NL=z`Lbr!m`I)Gink2cob$1kbVorly>YZw?#Z^+-0Ub@$l;+Rch41a5 zUU)MCKdq<|mGchB>TLU4%p*B%p5U3Ci?B3m4QoHj&CL&F97%sEoiua{(_O35KSQDN zp~rf?Ul|w6?mSGB3VmzIn8;z+!O~bdteu{ji9l?Xz;mE zSQgR8^&cdiUl|m^i}&#Tl5ZsGel6Nj&WdbMcaTE7whlN7Nf?XdQ8S8R-y~ZsR!A1n zAW-Cp@$$V_O!;#%UCbh6-IoFL(1~t^Cu4e9+D`q8b2fFHBoVy@e@25d%3C0en9byh z1fVgz&2y(|jsAtB6Wm+H26`f|dLc4u5W*jgrUz0NXeOoy z{?Ir=L)1IWf6H@u{`~oxlCaUspz_@5VIY`@1a=+hr2`#9WBcj*k)c+dE5ktdvjkud z&w68G({%|r-zQ`9n#!0xy=$Y)oS5I^oZl8v<^^CJOxuyi$s$H??84lx#VN3u({^HC z_LzdozWi~z9SAHxpNxj4Yk7GYZp3&C3HyMLjPS59Kt}3q>h2iB&$FHAUAjqO~)Wat{?hn?A^Yl!+WC1(MQTx&8_2Vm@f<6v&8XL@M zLE#JRe#td8(jD!m=95sc<)HAM+YRgXy-yzUH?Pjh$)I))zvEn?59kg`t1(z5hsdKo z<(3<*13tDI^AIH%j&CP%!xG&DGR41K(qSt4eYuaxp%=qDm{?A=q)bxi{Tl45J7|Y1 zsp+6^9mbe#r<_-5TY>+6!isODF6bA(K&jV}AA~uCtQL|nZQib9Dx%QyEH>g7C0RH( zAyipZEg&DWI&m~Lh;r3giQuW}j6ipvNF(Q@LdvZj?bF%yP0q;Phk+l&17X_Lwub*! zZ0iPyZEsIQzTPS)mqpYz@xGLoe^)(Wp7j(LU;n%-{)l<_`D0&ZF>X zwyC3NHqvjvAwLc{IO)aj6zeucfW0OS1ek)&i~`;-*h_Wsq?MUU-v!@J?^O?x8vf^P z2?8)O>yoy!15GPhUH|*&*_&*CdoIBJf5mM9j-;{9wEaWl1C2MJ0NnjUvEP?~$sxoE zop%xz^d)rx*3ylC-ANdX6Uyhj9y-$xC{paK{!F9J2~hbXuAOm^%Tkx4Cya`Y1|niM zcO#${2PEbWHIx9SeDX5^h!47Pzi~xf7#KectxU(Ry?N{Q-lQR`hY{D;*GEm4fYSTn zlixi6+6DCSj;EyJx390D2$$pILzsYMtUdlZNwWUt4Vaz^|JHNe$p4!-0qp62S1Epv z1@Mk%bx}Zqs-URI2Gl$L>dW7;2go1kVCFQ}#f1MVVQ?gv{Uap5eHj_vtx^Afy=;6O zym(D_P2bJK@$wyYGe*eX%%*${;}W;l&AC6e{>F3{{-t6Tn)XhPw#QiGoy+=whi4Vr z#diamjNvln>C1-3@0J=*6^roNLw&69F$oX1t>^UbL=xR zS_mkDJh?h8b0j8V8^y~fd#33{?dJt(l@$ioCVTz5Tm$BWA|fPdo0>;L0JR8S0@drZ zn&}}zUwuw9qo8O{oIoZwIFT z@Ao5DK#*b|UOwKSaAKqxA^J!>80xV=t1VX6XVq1$N9j+cRmtajvS0F<>v9OtQCH5Z zYF{|LT%PFP9vTo4;E#?3#4^uFWA56PR7_9_8*fO*0P1@v%k_70#0$yoFAJ$O%Rtug zM+EJ7XkxVSEkaMMsqjgPy-C-U1kUr3Sc?hxO>TJ$-L0;hRB4&;uz)=k2O=)(r2*(% z&BzR|&VI(;Ep%mn&?Zm(OVS zA`AEGRs>Ewvc82iR| zDnyzNMK$d{bXl*9hdi2&kEZj?`&L0ox`PEqbP;-kkzO28PR~0Rl*loEpe$FV*0*9z zY|EBRg&ogIZt?Z-=u>rY+o0TS)-!%xcv|mCQTCOLo@j|@v=>mt<<`;$DiS<0v?nmL zpog#NfFLJeK*IKA8>cOUE*L^`&HJ~+_9X#b9g*nRx%n)Wu}C1eg%48mFiRWuJLq|NS2WYPytT9y53HaQb}TS zCN=t^u`&Ag+0I}(4fOO7c_}yaI^S`Ur)NmH6<+B%I{w5scKb!nutrO_GCi&d4m<)lR9+{^Y=u zzqJ77WS@L$h52BnfCjnG7*`KZ zz$2G7hT8(T1HL^hZ1fw~wT8D^$-iMj4-o&&ya0(;iQ(AmfyelZ>xt zIXnjlnvE{ig|o3(pX6~aU8g~TD$_4JvpdVQJk?kC^^V;IduQZ57t4(mLx>WBf2baH zD-aZ~PyXJ!%S51vNuSfOiEw^gDrlsof4XDtPU}gd!^1?MGK08%r7Y4bNk0_Bso2R@ z!bClvvaDzDjPEhHve#89VuXQF(Iy;J!5_~lc6ojQ4z>X(o?P39XG6Bn{Rs@+KY&fW zK(By#C_Zi<-fbP!fXIQ4eFPimKkNr2VF41SsDq~|JddbZcW@!K0Gj%jQ#rT+^i=^h z!1fq?*NjcWS+FX?ldZaoq`FgCcXe9a9YNI{Vb-)x66?1DrWcM%iNlbeVV~Ug8|QLg z7%M|ge|Q?^^UAu0)53n#kTS|SHs_8IhH=jBaa&qdnjii- zMDQN}htVba$6gPEJx)LoQMTBSy8RR})TDbsBLamZdDg@k0O&4a{VR0G_7Ork)(w(9 z*lGiIX$;?(6MLTTzw*O!VdOU~qJC|^I=>DUTlz!Ho3 zrX;!!>*&DwWFEP7O0LUT>UUQ@)cd6dH$7_`=AAREvdY?$i&s0AMf+t~nsokEjUOFe zAD=Qc7c#YJYQOU+#qZy2z<0lNbV1#@5sN&n0B6R0eii%48Ga*S91y&WPjM=x;yBb~ zpME_8UIbF!8-iOmbQIeGRDdteG-}Q7M#i#Zh=MF_2B!=_L!ocFO#}xE;)FwM?4(Y1 z;oweX?|BhU4mS4B!^cZXh+iV&F822q zY=lq)u8&Bs-N%BCN&=P!ny)*WZz>{Hvfz3}G4I*-cBO9G(r&Jdz!sE!{Zjk4e+JwX zgml$VT^Ld82mE{$&Fu-kIdZ%_OYn;d(4~IpGk5b#)yE;FtHt(Xt^3N^+|8>ni=v>Z zfUD5v>r0lV!!+0E>NC~L)#jTHqkyaMo9mP2!AARxorde3=Ib`2n;H3fE!pk5kbopm>~LE)fpfouV% zmVa_s0{)rniIH~@nPEbkW6)YSuyg0l zlWaN+7lbZq=8qPoQ*@0x)EY8(xpX^yudUM%tzf7$2zP&p=uyO-YzZ%kXF8lyy}VHc z6k5mkoI<(MPl`hdTeHSp1!h~H3SQOSVs>+3{|RvBXl>9d&#?N0hgkXKw`m&TU-sPB zMm{}2Av7zk&RwQia}Mc@1wryZ1hHcbIlVWVZny^>*Tk`qL`x_%JIk-3VwfR7|K@?E za7EGE8U%(;%ZNN`p)P8vPY7JiJt~ct6{(8dK8#5mc)>Hp2|KvE%yGxWz-%a|Z3zZ0 zGR4;@ho5Z$$CeYINj6=9jA<=XTcO~`-)PfJ&%15cFXC_EFdkAB8gP$4?oA7Q}_OK2oUMonsp|VPN4&_~Ns61TJn_n?9nnlq`YOcJ&yd#<`q(g-2LJJmO)* zUiECu)Fr>?__xlA!2?))wR$tqogwR1%BKW&L$4x6ppIeTTv6Z1EzYCa21@;p{G!>m z%aS=oNvIF<1ofZ|I@r7czO#V_rBqcq$=TZg+C>n6!IPeFKBr+~<%4Nexx5HXyFZaq4}{@lIX} zro$fNV|bYLSJf5%n+X#&C5PgTJ4kmwPffCKEM@wAj*fjx50)2MGkS{{30;eYe@w17pOziC?0+5}%Fv(qpn<}&E z_pdp9&mgN~QafU`3!evm&eh%erxZ{vJV` z>X`kmPj8yx8`f@A)ltBI?85HJOZ_;ahS%7i0ftWwzno?FmI}bw1@eek(l*n2ITt=?2%@)>hxC)KNkAeY|&8S*q#+5~GgKhC=Ry&qCvo!p9nLJd_1^~7Z7eH}Vk={=9Xz9~plBYWe=T=Cv| z&5Pt=g&#Yj;@;R-BVh`P-600=aRCQToZ5G{CS5sT91m&ej-jcM6?B+u^3HL~+?EXtLDPsog_{C%Lv3@1A)DBo7=N zZ$=OF7be&F`AQhjgu$8)&r5y6U!}fFlae=N-9_Z?1o(!RnHRl}H6e~8e%_6~H7>#` zBI^egQJ_Jr68Z^}u^?w_SEI7-5ccgSn@wiYtq7Ym_4m^!_JPog^qx;-IhFdr+aHgJ zhaXFg?!xmh>>+M$#B}3%lwT<8#H85;L z&o+MCIL|#y@bwTXa8d9nY#S;{yV(3Hf|QjkoZb#E3C-rpF5gYu1*_&-I1=OaDINNq z)07|KG4WTR7>okv6=m^fOw<_*y&V-=noOA#$Q;Epc9v-wzFSkLZ+4TeKFCHWWXqnu z!J?LL#pl9{(k|_hZz`9u+zf-2c?FWa3tuyhrm3}{I^{V6wORs=J{#Uj|5G~hLo zlwePApGU|)dm?cT`u(2v;Hr@E5o}t})#j7i&Clp$y5pI10@}!b0&TcK+ONb<_H8mo zqXLT!C6@n@&u`}~@}h(;e6P=LD1BpHJo^!LOhVH}U&ZVl5OB>wozxl#&Dg{3@4p4* z#TZ_B;Tj(-JFnZ2e|-`i@fE?Z09kf zS#^X%s{g1mi809Mk!>VQa23(|Utch_J>+3sQ%Pwo@4L6=*vbM zl>h~$j|?{oRr!`@Fkko_-=tWA)p(g?T2@}0gl$UnecDXB*G@%v2Ii_>Ely?w z>ztCqSC05XXc4E_=xuDy=IVR1Vp*@y)QU!TImO?$_R1qorm&nlE4_9)(Iam8FI}-& z-#l;4f^S%&BrBwIZ=ML5$+I8#9pAIrd+YPBoYF!ISHFpSRm49KzS}oj5^BEoi6b+O zqUp=P8ly$@4|2`L?-9_nh?!^jpWUA~yI`Z2XflDElOy6bhQ)vW$O;m>9m~Lc+8e1r zT_qz;>-y{Qd|B^N{dSBk4_(?B;?WvQA6+6@E-Iz!xu#^@bZG0`TTsltxk5lR+aaA;&;d*u>}Ig^+dg2nI&8h@hL-fhsb@ubk>D5@+$LZ+%nJP z4MTk+c}@O2*II7GAP|%XiZEnqV0;rMWuXVXc8EP%Ig*e|sY%))xn0%>(qWmA>A|30p~7`Vbv^v&l0`M1ftrHP4;^ zMx5PAR28zl?9VsV-BIUE|0u96zVMZXTXzhIaF5@%9nt(W1JteDtImj6q$63w*0Ns0Xe_ z_!o|a_s3ueeY_V>9pS;5cGND+C6Gaa3ea-4tf(=uB1XTr6tVz|pbA^gS?+f0~$Q-@{U3JlFQ=H2n6pf}5 zYI;>aK=N$G`m-nFYkmD_Rg0)Rv7@p_K+Om^M`*7;Y7BQX?UHFT(z!1kBdExbz%ok7 z8_vSWK^v){J+9C&)62)eK2mL|ZJQgsePTyBl|xGzfLDPf(qw=SOKP9qU!k5w5m;jmt>Huz*GSK1op#;P@e646yl%kc!tQtN7Pq)y)1(K$U@XEgZ7xqB&SI_uX!#8Zaz zICrEA9AQDf9bu$m-7r~^OHm0Q;l|hx)?WLtMqh3u>GR-_w$1B) z1-Mfq=7Uylb*qDB*a{aYViM}(hN_7<-mz6(5k#eh>D>x`EsYhE@XVYyc6W+%t83=4x8*fs4!GqBO-}ps&fEwV z+IK3%XG?jBbrM9Hz4EA`J4f2Vy4^{EQ0EVn-)AmuXI|{iH|ozaId~uHfezo7wy(8s z$2@8X=Z)Cj+4H+MzxcN#a14gZ?3aR^iuSTGk_W-f5=Cst+>fpssNyh%y{l)gA$OKZ8xeW7WHdj{2SiWHEmCzzXY_IS(?wm_2^ zE6_i34rNNgsgx=m?_m20&{Us@8Egi-M}eHtEl%SIC{~ag)_sxYFOK*tUs(xZMh5yu zqS5tLX5x4-gG%B|yy*qpI||YevPCbBt87Oet}Dwo%nm6iL^bnUPQBy}|5kY?*)Un2 zSI^tx8{~&%OCL3ws01#iJkPFZTzN=ad{2WsPwe_7JUOo?C*c36mfv+|gLYwJ9 zsw$@0Ty%bKXrj|!sJ;Z(=H|MjuK2+gnFBrw#Y(_slWpQ`GonpNiegJI@tc15@d?k% zEr*>Ui7frK0r?qIs)W}W4(UODq}itR+$7HIYq7c>vY#7bb!!t2S>FcJwM*>cPH9rX zTC+SjIzxn4MZm3a=b=euId|RsvjZZ<5PKqR{O2*hOyQGARCCnJXzwhDu0Hkao9(zS zQTPjMd+Ojzrp7?ic4-%B!)k-S1P);8tv=1CJGlC@KWdfN7lt)S^BMK?@d7g=jTqwn zh!3@=&}qOh48b4=ff>D1U85h=Aj~s|HT5Pz@!Ds-F2JeoieiJ+zSS+5ZQr2}DcQh4 zO^)i)w_N`&!YX8tsYglBH2wO7E@CRh?mNOUh4IW=a3rRvH!IcuPIBl6AsL9j-U1GI zjZjal_+py|VweCIg;$rgF?))Md}%9Z=JE`6wUDw5l1DLzKus8i;0@4MkVX>MjC8$K zmaio&!{2d5DU=(3vp=9r%(z+^exW?qn5S=L*KcoO^r8&%{@>r2k}t$q=<&CLVIOC+ zg3!qy-A;t=6`|R^t42E2w{srV!ygi( z?hvMJTID1by^5xAH7NKz)v0=+3L_hBdnNJL}uh5x*C!}wcqhv${)_`6hD zu|4i96(HEo?}AVbVxwt0tck&m<-VK~RublBu0_0dWWq=890w-vF3E8}nc~o=6T-V9 zOiqku1Z^;im|Wv)PLUeRSPD~QVxNXMcL%0HK=<*xf$&fu@T|pR-5hlo^Src~&IIPj ze$%~$cvM{CcG_`kHD6B_Dk3()r=gnfhDbZE;8~c3VRK$If16W;p&0P)-w${P0$Q$# zXy5Gunpd1U^(&6FjD}b%U)f{LsJ?d_jADwE3D&=T(ASt$FuA7VZyXZrc!f1L_@x7b zdbiV02`{~t9s>Y$u+*kh>#$Nac!-t)?Tj)!cIUijOKyNX*=`Zox~bBpt*%~yn}3hT z73;oaz18u0DW_SF!)LtqOi}E`yVZO}@oQ$fJL5l;qv96`{UjRWwWBg88EcZ@(%M2Q zY3$Y0mCB7<^^N0efQfMKM-8qC9sVn$0R{Trj8M*g2|dPTM( zd9bf#|7Jv+_KL@}%6)qss>j#+xAIG5%1KJqpq;D=RNymo)@wxY7E?Y5a?-dY?~ zmsAv)aYW=aqtJe^bUYE3RvvUK@D-fyZsqgll%V-(N;>O@@_r(9AM6|G{*}`C`=Jdh zX^9|>mClNf+SqT~l@;*tv5JkotDDKJtkXbYc*}pu?6C=x+^{jZ20Pg&zeRSZ5p9KOW^eJr$tL+PMa>{0nfchoj`nF5__g5KhOI!m;_ckH@L=_wnpqr85=3{YhkX| zTy7Y0))SG*-9;70HaL$Sl)e2KknJq9R0~kF+tZk$`z7f0O!8Wxn>=$G$aqoNf0*WHCj2=+M@560RR8*xw^m z-dqb^PIBintk_@a_+Lo#V*{cC$BorMpjM^&VHdlmB$VLz2I7xGjdeSy9X@lImAt*D zz}WtsM!X;hDmCdD#FHqG6uYjR!;g4YxUw`u4cqRk1mEt}HhJX08S1(x1UnQeoQj{C zxS#6F%iJWvp#$+9BB?VBsv*5Ir71mXjs~Fr@>pwU=e47aYb9Tf2mNYeYgvCWRQ}aS zV;FrO>@$bBmq_kA9`xn=L)E6jV&dY<#)Y0Kw>L7-Vu7I@dCm#ro4C)UlfG&!0xY(5vYj32dZ~8=xzt9Ct2l+A3z-#E?qqDnH z+twEN7hrZTCe}@4PO)HbK3TKJt}M^Kx?;U%{Q&Z!xpUPT8M`z&b*t3B>o5>~>do$> z@M~?F62m}&D#PXabE!Y2AtS+Pr2;>F_r8z4Q1H3v6pO95vMAV5S{ZWMGop=@40LXB_Mn}-! zGp31rBzPI!S_dT?HG65we-|2Vd^bwt162JmQ=pzu%4YI)57&YtJ@s02N_tLz6GMn& zl>7oTwc`N-4ztPkaY~AB?#zM~DG9@h#P&*FG8}fr_mrRal^fTI!5G0-^V>tF4w7JhtuvAJ$pf2}rWajznZ1sY@h4O=5YZQZi}es<*!APdzy9st@c(x) z0c7!?GW`!!1E1=2V>^=$8C>+cWcAw_8co)h2g<)tp@^Yq8Vx&1-iL5g<8N4;~FSnM7-w)4`lh_(G9nFBkU_Lm9fvn{Uh zk>Lw$6rF5+%UXN9cWQ@ql9*PTdmQuBV4Y=os>YjUNvBf}POG=kDBj_|c1@8zgQ?rE zDX4D9{6AO6v=0K>N<=&tVWAL zJr78CJh@Q+J~+X;4RNm|#mXl^9eBzce&)}373Iq4Hy>`VjvBe@29kgJsB2-gyNAOg z5;EgNm8Rd43xuy;kO7b+ViyJsXqx>U#V^G}sN_*<>T>dzovnz_E`ZH6m$+fW>QGOp649c_WvwR4=T{;PJ+r4JHifx7L%sqj*r|f7GoQ>g8H>qZAk|!%~Fd>k)b?s zo!cgm?7aTM>dR$dY@g+x9qioHnB9-V!wfzfUlHvirj1LeC3jnk4(fSIZJzqoHPTp% z%jPv!LsiRjm+qFx%mDy^ArF5|mOMz9H==^Djc`#Ryd3aX}ZMS5f)m!`62SyyEt?o2yWxDe z4FOlh43Qc@Fz+hCU+_Q8+3ToDE_y)LYeV8N4r_Yxfkt0FVTr4^_j|WK!en{WnmK%Wx~l(%e;p=U z?cXPduO{D+PdwUblwmZi5q`W|H{Js$QoBUbMr-)Z%9Qn8L#dXp$ErfsRE%<=Q{QqO zukwfG6Q?EfR}$cLxVNHzlAx9kd2KN> z~J-t-f{FE(X2Qx|0-9v%OxT%s`h&WH{z8V1=nD0InF*aqab(c zwE^bwF=Gy;ET$lxM_d-!v$oX<+bI08oelywsC&+~a={K_PYl*1qyY!k1*MGVS-akw zxKoN3tF_|P&Uxjg#cR36Az?#2nCB~~a{L>Ved53-G|fC`?5_6BNygkc5L!f4{Q~8Y z^(r$T>}$uZj78qV@u{^x8?b2Rnh1jAx~N^bup@)4R3}(>B0wKqG^3!%$KZz=(hP7V zo67g|C1V2SzVQ{jM~Pacu;NP5%k9RqNaDj5SldAW+3idvr$x@RX%n(CU+je5N(Ph= zyDb$*Z-ff@77Gpx8Uk{u^lohf+CvJ$&Y0rUNJ!Fc_Oe1RZ>;-e?$b9)$mINQF5U84 zU3K3HW&;H02N@UDrSV;Ef6cQJBP37}d;Og07h95@wJYRIt|bJS^C29vna$OfgX>`J zJcz!+c#9wfgwk~0ESDbhvGpD?cBzT6k~hEBF+z^~XXj3nPRkd;mh0OYy%@N!JoM@@61 z8aHg+AxP9CR6mzw>#|2XufQ@ zm+kF9;U8@@(IxRqt5)b}JHOr=FHLTluC9>^H|Ja4R!%l<0SpD7Fi!Cd-#tEzU-T>2% zJ?TH(;*5%u%mFxN9B1kc9)|IwG0^|*Oo1g}nZr*b*gVH3Zh;jv7ZM8!-^}iHD-2Pnk}D?m2rP{Li{V=|l<8C|q1;WXJ2yU8 zE-~oLT&7GH$u-kOQt>P$mZc4lydrqW5R+>PJA6#j*bC0jj(9ak6Q?TJ)TY4|2xy^m z*7thGwu-8j1%F(vHTv}(K}syP9b&`pj=w&rkl0zfW4s7+Tyc1R`$_50U2(4<%jBKw z*AIU0$lo@TL4b-IEhsxD;{>_Hbs`5U?HMC{3qpKv+>iODa&&}tR6_!8 zn9yMJJaV_oz66JKFEXT>O2#Z`U0G<|aSFdzFIOEzQHq7xyed4;T^ar@L3u-08~;5@ z6|lkP5)8fRK#h#JT8n3QWw%>4*-~Lzxxj5{Z9%R*M!SOtIqr=s>K03{9+JBcMqGpK zt7@~?79yrBA;6&L6f%BvbI`UN{fftU08eh|;}4vid9{ipjaSzaL@)vai&~w_Eh`jL zHVQnV6zw9j37ndf9VH3YX1tcJf!4<&zE}Sycvpj=4OXUtk9Uo9&dpGssr5iOOqlT` zu4vJ29f((!EgRql07s4cAini6H^vmc6>xFajd(GNRxRnukpKd^Q*;j$7B*GbFfK$o z?Yop-loQZ8w<$D?;UaR<_`;aL|-oyaj=6XhWbbmlV^c(mJ z&?)a7R`svw)dcNI7awYstg6_!M_ao^TlW`IgEd!mx7*t`U#K8Km#Qy(jLAe~A}68n z@X64?S37N*wx5jl&L{Q1YO7xZcns)iVpz~HgABw=_p^nkQCO#1?oL_gZxp<`PMNUN zLs%`;G!2DsxmVEIxD8ch8_fe4OPN?*VB5{U0*wSWYKdF=PL@A~d6-g{+lsMRw;NF# zuZ^iCkgCJI%Sp+l3tMa5QweR~t`J8tZ{d8Ytt&`o3TbiZfzPeYKQr;7-B5fhijdKj^Ox{`rjUCC$ zKwN=cdgj0bXAm6!RrCx-(ZIF8Zc!n|&^h-Snd&@7pllhGnrmhSb&Hy)a;z zdf#USYE^ch=Fh~ig|9-AjZEB=VVi@tcUphW3d+jwO05Y$u%LS@Hx{{uyV)=OiRs=k z!{}Vk?(ZfnFqNHEV?SK4i6XAwnbZ$U+xW45$ZMD&|KC~5#^E0Qjf1|+fycnzv|*Rn_9Ht|k|jIU<*+{LOAXC#qwjqx0PpB7R{z+}b1bc!_@H z<7!lzgFW-sQ?lR}`aSS_(q@p{BACNg`AtV~)V=&;fgv${BC}WXx*^ZvNzY)lP7c|9g|y6hRP~OvP+i{K;MNyp+=`>&V6eN)DsL;WFri-`m;_VNRrR(P zMOGY%-I@S{l_`Ft;9Z?NnkLU3P3tBQ{tEiW!KT@0|B-s=bS>ijY40KoAr1!r7|S_% zZ>b$$ONjk@2ZFVa(`0+`z}P-aiMRhq>?^)u!s^I5A*p`xqjrkR{=M`_?9{|){fRI6 zi)gC1E!+kqfS8T#HgK*oYq-;@eYtU@WGbJ|zGebhe~KOaf&p>sSo@{S*TvmV^g!Xy ziKd@Q^!qkAMFUYD^L`SNJAaH#3Gz|b1Wwry;UnnN&ab;He{FK$V*HNrJX`Hd`%Hoc zYOO)uNGv+lo(q577%mxP@(&V1nEX0XZk{c(fe8hU&-uv=|3Hj?1q)Mf62>u>S`q&I zYg)=Md(8OrByO1a7rVZW%Vv)$Zhq)&n^+Z?jL78A0EQI2iU3QlOx^dsje~u;7w#*W z>@UzoZa$E#m5gffyJSBJpu>xQUHhz3`4_HO*8x2lLo9;8RX?)*5npb4K00mu;R|0B zx3F@CFH)Aj1U3V+5;~N9_;I5Ql5L>Xrks>VAo^zO>CXoM3;@^lKb}$`6!|m8YW93s zUOiXnN9(P?Aq433t5*$a7f%goim_jj?JROPsb!&v0al4Yg=iXSWBqnD#TGIuHMpwW z$?*-beAKL$9n^=-aNc*h?9wJ_m!sDJmkUtPoC2JJeSFCIKwelyF$;FqVYyUiZo>Jd zrN%QN4fkjr(B;{ISxZ*g z#q99r<*Rx{XBg#T-juqH@WAheQL;pS&(d&fiCv1U+F4&!lBo9*71Fik^wI@j@A~pT zk`c~JxpW@oWYO^WuWeMQI5Oa2VMYY%UBiwC9I-0mzcy#mOmwRKp|+r}EEgJCIenun zlmXTGpq4Yb-YPY4Y?@rp39I%`(JBXetzu1W2m+sa=dMA8WWcn0 zHcCsqqO1$8YiF$WV5F-9MKaL#UmRPoXkdmvQ&lC#v7Fk3Rwzk3%%gdLMC(H9j$bf( z68^m|Kmmb>kr{m&`KYcbocBUJu-a53^j1rOvYr`t3gB@A_@Or3$9bIKB0QeYQ>ZUh zff_R)DztybU0kc551kC?qcQ{I)F@JOM6Zh21`~ir0%aMoIzTaqJgv@BOD#jdVweob zl(q~vtsqnCwu-yicisRjg~#=y8Z^+V{qEN1tMZB2HidF~eQr))-1IogDj?Iu4hzMf zPkC;&>bYG|O7WqGa7KQ&Q0#x=L* zo6QC%tZ8##%!u{9B(W`UcXfSiI@pm$nwFs%Mf|Ios51)nD!ld+fRB-Coe53od&m-T zX3Ubh)pv60x7zbx?}&~vi1s>xH$5H`^}>i$CkdwvOq;dNTv#H7CDX(|i{DzU_dy%} zwq6kd>y`fG0x#9PgdLEkCLDS}{5Gsjy{w#>(tqL5NkD<2aznp74aO7;YX)M~+)qGW$RAq`->!Hg5lSd@&PKTq&rSe>0 zP6_hpg$pM8>-O_y>C4n*8_zHY4o&0g_z5AdCp56;pdQlkg+AfJ5tIY%#s>Ym_@=OG zO<-n1T#j;Y9V~WlMfDH!9ZJA@v^&b7Z3)IYzQV}^Uhooh&m!JKJC-=f#-$zh{UWcR^$NnH zpA4?apHT{x>R%q?d$Y6YRsDpEf*VpC_{z4Uc7DK)xrxC9G*m(vaDI8RJbcx-YisHM z*DaLtvQB{!l}JLbU}BLA?tBp$E{9VUoh#IK$z#`@cixu=wCYxys-sJU3STyVL^U_u z@pC6sws$9lCFv)dgYQ>Cn|hRiWz4C?JNCY<4b-f$KV*yUC1Nny}Ao+Idpp5_w}=QI?cSQ*jz{{?1K-&nyg0XQYFH z`&U(ouRu_RAt8O}qpEb^RrA6p_z>eO-Zn;GfLoT8pDgcVAr7K2B}oDk!aJfdgu`VtY=s zrIZkSD810g{VgIz7|4CedhsBB7>bqiY;Cb;zQVbh94V65S4Ww*!TR(08RY1l+Gy;W z#r_Q^|G3x^L1})9e6lveG*9KTxvfdicAG-=<45@&TC@p8jxn%}w0_YjXTojI&_TxQ zB4>E{a^5>EYp8g0A|OAZ`4b=Cmy;@(PXcFh<^y0j2BS7t+4u`INO=rQ6#yaCoC+~W zXT?Db`5Tl)(eP>(QmX?RPg=f&)~^MSk@W|{=Osg!6(G+_5Xay=2P{=!e?)`CMh158 ztDNzpDkRgQ1Ep>r28#T&zTf7xgEfzL zL2>8vW@mZKgd(gSC$sOC;;iGq&cz1cfLj5q(+R0d>Bd4UehJsiI||gNN}`lEi4dg% zqw=`A3>QEhO)lJM*DH&*O&hE&E*RpRz4ivUOa$9AXp!bhQ!id>bGR=j`$z|}sot*9 zZb;Y=9^AjaVXuGIf#PXBJKOo*(izyXnNgmK0k(o%|5mZ{DMSqP3NS;jdi}=hXsuRP zIMP>+`71|~sl1Yrq}QeH4@R9?CJPl$v~-217r^+OlEjI+p^Ndm9svBbF$+7bZp$>N zbrFjH05|IbQLz^r$t$Sl0L{qr7q=!iGA5TbIP`v-;kN9*b#xMKarWX#TcLKh?LJlW z<>en&b)HSnjdtTI_97fzr`7FH+7oIpa8GRvOsd>pp3c3|{-j@O?6TBKq!Ii>tU15$ z&dLHVcTOPd698`WHw|VSF9t)uM!Cv?l+3Gl7~h$Px-WBPZN`HbGnvcV%6waPF!^A^ zWG@u+tVI7rzGBPzmv{1?idO`|2gq^Jg^bNF&Id4rGs}2wSdlSk&wB50&kFm(84<%?EyEueXFuDLoT6q?1rN!w&ipP;&n?Yq zniWf|3?9og3)qX>S;<=@!=Q#+;cBh$H{denNojEYCY|GL7YyBJ6PgXYS(v z7n$xayk{+$q??6}0hR205@_$xxD2cQpnv?0R67Af0wAhc*tb%mM!rkJ3=D zDCbQ^(C`LBV@y8k*4`F>@{!wGn+vSKu0m?eGgTW{+>J>fT-(Mmo_2m94xH6w(2d>y z8`#JF2lfRVUozO-cM3n*c>Yo3dm@;V2oT!b*`00`y=uq{t&|adgCG}fwwv7_%(uWc z+oxw_jd+xG<;nmFYz5jCi#Bk1j&P$XE(#rT>8(Zk(Pr=67`(AsNcRA~k-(;Ozv_>|AHebUFdO#8DMd{p4M zyGNX4+&K|5Dfr42;o6m<87aL@y=NUb;0J`yCr0(ErSe%q zD^Jh~s~X~<`&?Vv#qEKgF$mYbc>wFNo;ADmpHrQIXT~Kaq0EH)uD(aBgJR$umvcY& z*@HPIdB^m%`7QDwA_LpCG`50+%JEaKzf?@%}Y?xKWqY1G@fp4(=jFzw^@H|jF}J8Q zuvB+{F;D9164{y5Ou)?UX7eZ6iVQE+sMJS)G`an8{FXojdoreZzNR0p06}%o#_hON z9L)9~EK~x!%L~V{IdzwI5_P+he0dZJ$V&o>_YAYY?rno|`3yLnSu%jV9AM3By0h2B z9q==}vD0lMo=R^0?)v=+ae)09-|o^%d7MO-e~MwQ&(&J`av?d$GVhqUGvW^}{$(&& z2<*Af?y=607lBhH@q`X6CuFO$r46Opnt@XPJcS`C4XUYgZbj%R9@G|brprN@~I zCg@-Ks3r_*B47P<|L`w=z|2XUR-Ynpqc+GN(D#N$&g2+C9Pws^iK2KffT$<$XXpeR zkL;P)px(M_hWm!S^b2biEEeDWtH+?#uj)HNv&DqZ*!@|V=%9qWsXY3vS%<9W^dLjI zemB0`rKkySVc)ukuYjDAF6J(N)VPsETn?@cMi2aQ3j9Ud@I2sIYjKr3uTY!=--fDkE~eYqa|-5-iQ5d6`uJ;O{9oDjjVF&>hMr@Td}-RS4;&4y1kK?X z+X3%PA_-@FWj~UY@pa`w6mZu`G{)vOP<%*b#nHKVxYygN(S%Pj5=qfaq$$JkZjz=f z->%T>os6o|GN!Vilb>}&_wl?Ikw@eGigE?M@p?LNw6(8#-P21U1;SvMnc<+td@uc? zwTlgB8ooIe zOvMHQ$pq||#tJEKN@bAy-UT;4;$48V{_yOQQi1I&p{-qijU6q$Jsj6G0QowNptt0! zQ}z`Xjq+WRRirOuO491%QpZry*BjM41E3%+!ry(kIJGx|nHHOZzeni#E%G%E9muEX z*fVR^-0u5OhFZ}GII~2PX@7EuC16^zuCUrr*sB~r8!>t)Kkv2K7!1vT)L1`MPZIY% zoe5LJTfewJckS^h?yaL6M`G;XRxir>G9}C0tJf(q6Gk%v0W3Y$3I8Dav&fiZw z9I2g9WecZ1YWM`slZd2GaD41^Es|cu>G6*9TU0cv6?ett>$Q`JgsarNGL}nEWc-jR z5EA6|6qV-OatHAM%3Qx)Ng=Ovn<(Xt`{eUF`Wo00d-_hI7ZA;b66)ltldx^$lNeOd%||P$u5;HyTtfzz+mU;m*_y^ zoHIo5PD=6)gcKQ1%BiJscw}vmVs;+D@ z?K15Kszw&!vb#J-6_Sb-j$%5iZ_ClPJ?JKYwX|!l($i8sQOsj%pzRQ6<`z>`pCxHD>u#J zEh(2B6|*c}_3iS@X|}iZhwqN(g<66-ztrJ z;nU(Z`IT>xs@{0Un3XNeBp#jB{ZDqRvLmXbqn%>Q<0vH0@=j!y;rZN94^uLzmt7wq znX(ZctO%8^F?od8b@1EmYIv#NY`eZii3x0_B4PWp~%AOVG zp!QOs4a*a1cn`U>QXl6(T+)Qspklsb7#YZ|2ec!fb}p0EK!CGUYb!?!K8hmcviUKg zcbXa(i;jK2RcrtDA(!1Om_DOae_SoJH$=o`^LYI#;`)+_BMdyFWQoI+JuUs(Fds|U zAWuc>xULG-Eyj^-Rv2&d!^^wxQPnEx55Z#`=6arcMJi3i?e34wQ|~^t;k9KRp{(Ff zkCre^`{y$XA?EV%UbJ}E`eWMh?mi*%Kejf1fGme2qy0Z@QS6KgUiB8!P!E&_ti!OM zKh?0lqM~UuGGsl#TAiSE?K5pliM4j~jZ95fxg!794Gc?EFxj@(CaLr?l@?V5DpqUD zvBpEdfQv=s{vfpbm}4jO3AlXTjnK4^%9S_JnQJ>eY}AHQEl&C=ZzO`GToA9l$u#pq zI*wW7U(DEwR}q8KWh4F8Fj>n1HT|i+ z*VoXxPIZ1Pi1*)Oq64Zs$qA<p5OmKn@ z-;DFjA$47AXyG1NrrHm=vMGnh&l(xB9#hLu_zsuiBL&e{R1b^GA#54H!@{leC*ahj zG%^4)liS4>JNK|o=C}sBuLMFXU5SD0jZ?_t=pSV>N}!Vw^#yWIs1TDVtw(gls&w5A z(tX!W44G1Mq4+0{B6}O8nm|p*)n7{n*$i=;rc+5b=K9PLK8zXJy&Tu@P*y1BllgRX zfbms@Q=j2op9||5cew7jmiMF+OVs>FpOxR<1mUsxd7?S_rR0eRQ%PWwIlGkKnr(mh zX?VF}lRl-o$Rl@O;;-KVHqyG!hSc!b7*a0oJJDQd{O6MA^Lbmphv+|^nfX1=1=R6x z0R^7(bDhE9tQ#Wd_lxRWI-Ab}&sqR89X(9v(x&Ia*{I*t|H-9};-KF*He!Hw%CH9~ zV*L5zR{P(_SKK;(*?j}h**ys8JwL?#!eKQW8I`}5vi0l91qZ(coROc_*+}B?nqS1( zFQ1Jgs)`zkFa-R$=>NALZXFytyiCYa6hwNw(`cx2)`Pwc$j$%o;_H<%$bP|}ruQHS zfxTFnaMmw;HoNADl(%+!sUHf+!5B=}@pHla5K()s#TqNeptu|hRKC7|QRahGMe7*+ zJ_>?Jn7-@YSvYX8MiM%;NJIm3y6P$B^>`Xic`S& z6(`D|kKgm_vtvAiZ{Xwk`ko%Jjk(jwFu?^1_?d+G)7~+EX29b!FOnTPuvEhFcIuNK(q z-1WqnT1`N15$LGd@dlj+gw(tG@|YHzdfyF?RhbuqA~9vXkuM}$-p4#AzrmL(q(Xs} zh6*^{-_zczN1RYP-q=K9l3yxHwn*$Cuq5mjH zX$i_@Z~Al!z&;0~zU3hG2Q9pxpP!@MIGqfIA7SF_4Nu=0ZdbRu)1vhInDewzZ3e~# z+RfhW&y;WRxvzgEfL&|HjhVsS*)XTp64)!_xb9oN%&Evp`z{*Sa)$h~(yk*LVy(4J zE{;wjVr9`I4}p%xJ?&?YZ4lhqc%qoYF2~7+93nxoy2x=>w(jUqC?W*HUvrnQUb;#` zxJQAZf)955G&Kx#R=mz0o}uf&!9&7NslYOc2MeVkIO!w2_ALu0D`;9zb%S5a!pQj) z65|y9KsV(@$453g6#L+Hg9KB>e!lF9s#QN1Mbv${A#|>3U&EBP3xMLJn>Jo zDf-MVPQ!@O4>hiaJyFbek@A=~x|z>XXll&$0}m!TfYKDeF=1VLRlryG>iN3_qk_$6 zR?F+dD;YN-6?MJkEoR0CM`WtmWSiD#P`cmN^t%WSc;3l6e*@5 zWK@W*S=ldXv@;R$-P*H!ZemjAusg+T0l1D-!T8&qQ`yq-0Vy%T>2w*Sug#CBsh6&b zRH8|(y2vLy#sbw~Y7*aHTm0hv&&I1>wp5W*@kH$lY*9iJa4-kS)+4fGmOLnyrcLiJ}obg%c0~qE#*=P zZ&j-)QV_A|Y|guK{DeX(XYEG{dF&p#blE;t2q@9G{ZO3Q-7)NLt7W6t@>1j>OsTa+ zN6(#;qsG+E_$g*B9~I~O?NEBMZ*~g~nZ4F$XJG895l~`qqQokD3B5vu78ATu zxT+Mtg@E#ADUaVC^1OBNdnH2_hIE+{W0c}0nRxAIpNyiJt$Ok6c$h3Ed_6kygZHfE z+b%eybryyo!{0NB?|drMMjbDx_*e|gAfpi%k`GhmjIs!GSd1)#*a{u9MSMayyR_e+ z)FcL4O!>XSpCveDWw|l=(Ew)*b0}Nqr5l`-an{P%fmXM${jNvM{M>C>TR)9rI(I0xS$2upI>I&~?3qgS6j1pRiv%FFWPDi$^0hC~KPUE)6 z5%^X>cV1|%uYn(HgVYSa{L`y0enxrYb{iis*YGo0)6wOyw1)=g2l?IIf&{^c@-xJRZHwVFOo4Q?~C(ga_=vsnLQ7#x{{r!-~%nT%L#j69K%2W zWV~o*l45H`U|OPSUjMuXT=Cu8LaXw^1$U{ElbD+w)B9dn3^$uEb-jUVP?zdvjSX`< zanEj#2s>n&isRh{RKAykZ?tu3}=YB98 z8LX9cqn$jk_&;Xl-HjjYio0>_*}IDdaWglSiZP^*oHE2RD0}5shF`49HEpn|b;?T) zgu0Pg&#T(6%ZnxZD@!(bclh}3ll!l@o_1189{8=NpL^YoL9RYi2L~4!enJ~w*G{T) zbUtCE0wIal?rtoPT}-7s&;sItOKYuK!+7yUF*-pWmn$(Jq?#$Y^`In|0ETDnA82#W>xxpLJSG#g0*k$k6z5b(L!L!y|?wd;b@EZy6SK`*w|5ND0y@F(66`NVg23A}Jlx-AIgtpg44i z0wM?~NO#B3Eh(J?QqluR_rAt>Ztv&6pS_R0kNv)%_D2tAhMDVk#aioJ=eh`chn>zt zjx!gFGbXS9fH}VcGS}Yi1L{vn|AxLIlMrb5Bp=ll9=2OS43?smBJRN;Dof zaf-$2rxhlAsT7m{fs5n#-|iB1=ob$-222q zk1AGv#p+hx1TN|34Cjy8w1Wh0mieCtT`AOE@@KV+?V~T-uDfgcsp;3_h?oX3cl!Eh z?7o8+AOx@AX4IN&uRGj6KH>K@qHzU%DAb2x^bD=t6A*a2@!W(7smw&Ep%dZ)L~azX zDw@C!ccq{IhrPPANH#-;c^{cwY^1|$V$yV^C+yw1!OpoiZPl3iJy*iC>i% zd~-L3D0*t&jwiTf{p1+Z>>F&me^mnU(l3l1Xfb|I*za5+#1D94#xCPBC{1l{N;rYB zKMKA@W2=d7>CO36LAhC4QfG2&UL19G!Y4Y8y?x6QKg8=qXy(Kt)>H9JCoTz?lN4FV z@7Q$igM_?(x)0&#;yeDR5&r*oT-^Q-7ymPT!L)&_a503uh81TZ1dhR+vs9K%c8NG{ zz+TwKGV%cT+l&LWMR~y)1O%#7*``B$ntM8`2Ta?zql_QHFU6ti^1k~)U{z9 zWE&kpNIHGyVuAN^NGqQ?3ErEN3?-pPxSQYX?PrqNF>G3Q#?Q}2!^2{|Lkrbu#I;{J zEMO61l4|W;zoCoX5V_3D=%tB^0kltGrJ5GWa}Qgv-9GL;);tS214Ws3@FbQuf71{U zq74XVF19Y#$sU0*->X9x%FbmXa~M8k*S=BW2S#`64-cG|uUhLwQTXv&XtMM&m$++r zF*b~@fzxJlL#>uB@5B^jL|yd))X96953M7d3jam_x3HmsB(mz4AGiDVlRTq@iq?0` zbJb=w-A@0e$4f)l2;z*p(=S0%OD3kD;Z;xNh0O4`p6CoRY*ZT;(t2 z1?m_vC3Q`_`B=UD8Cm5Ip;jp>FMA9qpU<_r4~-R5FF-ynv=1;VaoUm9#j7nL&Y_)D zCtIvJ=9poCWgHUlnBD$bu*3M^DOG28x=EHf`%gw3AdtTmp;rfb2#s&yCFPjh9e_s) zq5SCGwyBD3h1IXFcB2pMgQSP&c_1-^p+rKr+gV$X7WrQ19^JPO%B$`-+R1ML) zq3~$QkRweJhsLCM`$hM&j!Y8AY(m<$ogz9TP3~oyfagJ(ul*xm-TIJ8)!Rhe2Gof+ z*SU4QSE8=knkMfRqIX)W$O7O2?EjF7jWmffQ~LU?CWuVQ;d_YC zfv4&X){NRBuGE_%>iC`<7dI3fVb-ryUm6;sl0AFMV|9lT{jn3{zt_N>oAOI0w`2Ig zqPVa9ibPm)E!tZj#38@Z(t{mYsdE#0n6dgFM9KyFIG-klr#q>%4jw_gKDF8GT4Sm7 zKPj!9+kK|xAiT8|n$iv`#Z7_72^w&A;Q~aCM zp^fka+ied#q323p6Sk^|z?L;7&L<9sjs>5Wor< zbS@_Xu}|Tu*o50^P-a)^7V{BATQKfM_a57#9l7GScM4tcZJTv>NkP+@mer=00u~Z( zAl9I>J*_9P;a(}(gjVyNy@{u@;er)=p#!o*JT!A4mNNh6M4H*;(FEe5x5SA7aHpLe zs6pUMdLlNw?c?z_(5{UoR0-aeGo+bqfa-=pCH7tpcA*9;Pw11$T~Ex7I0DsWwl$#e zMDra?;sjWWUj~35TIcKJ6jVt=Jcl`ASv{=O_TGC&S3+v7(JhU&;$?tA-;C$>2a!Og zYY&S2>oxG5zYBezO#|w(24$s>>uL4k(9>aeyoK(sW$A%h1lZn$)>J<|3z=_= zu9}E~g;DnqaZYsn=%XY0ZRoXMi7&Bm_TLvXNTW{4I?y;y|QflG5u7C<-8FF3_f0m|M3EBR~$EP;6vc|QuLmtU3Y=CJrI~of+hLvRfx16VGpk$O*RVBEx59P zdL}IErbuX0JJd^KeC%KBDdS+%jk&fiq8nJtPb&2+9Lb|JiR1)YA*1{aH6vFxI`4xc zF|mAWNB}nzM$%JwrVH^yB;}m+xGZ9_#et(ySA{&Nz&f;1}~A43CW&nU!&{OUDei}(N*`n>sHqZg!24*X8~-R;_e8J_q8*4v}f zfpBC!P~;@$#qIegWisq+X+LulfeCZvBcx56jmTO_hbAG&@$*wp2}QuD2sZ4k|IzUjq;xD&r^+)TYyRaU=`$+ zy;v$Kh~Y}$&iTx(TYy{~52VrRq4;wk*5Mvg@vu?d6ne!sVF#Y^4(O-oTN@=e;EhLv z-~ZC_y}^wK`}$XXPTzVDZO~3z8M*<*#@OhNr(caR={EOe@v-{J7AbId6Bjj54o5qa zjP&}xO=JlQwB;YYu=v#923NOrfM9m^8sk%(xg*jyEq8ALk<(b6ca1D`>QK+vO>DuRmBzN! z^@Fzjg^+bsDM$jryhr*2UFP0lXXkQ~LWKss|Luc_I!tGCZ zjY>b1v3I{95pGSRhR(|qpXCzyZbeZ;T?#0bB*&j-GgvQDL<4=3&am9xNN-fp3>>9j zUi+);d!Q%XlP`wa<+M_PM?$g-Qe9DW;wRtFi+@IxAI*W$0CWn=Jsyx5_S2=Yust5o ztL?dstZv-NvWTlkOc`;cN$GSO^?Dx_f3T_=AXB7cyWq_W%D_f7L+MXiKIcf{P{wwY zC7$L4Rqm2}R!?847s4doF2x)zC2E!GiHfw(*t`pO@METX6QGMp^(4)ZNqua_8P$?beDMBZdk0r@8xkVQrZ# ze+i9k1j)}XCD|I@H8PU!o6(FY^x7)Dj9ohdVn5Hmxqu9WRF`_NNcwtRLg|3RFBeu| zY*e{-Nd}i9lHzRTA<#$gul)wX2^tAI8J2 z51y+yJk}lB`Nl2Hqrq1VPF4^QIMTX-IflD58S=W~>Bu_*5Jt55Wopaixft9s3hYOg zoB2ryBY!-zMFNvF)i0aCXior&s(popFsS#&@7D<8_hcaUrrA>Qr5`SwF~RMVvyrAbdBTrb-%20HE&L}QV*-;9QY zOS-e*z+;eb_$*Ccbju9O$Urcf{AH{K zu@K#=hVJb$C}mD`57(^XeL^U`yW_!}s?C}5zlx7*!1|y#=8f~_O{?B_CnLFs{9L-; zcEEsO0-zwPn3He+Khy(Nhv!6ux(hXk93_=st*LsNNA;lPwe^-u&$ z39Hb(4?e>^Qj|bo$n?r^hAKX;nBu$q7QSbY)B_;H79pLj7)FQ+LeeR)X^d`7-;*!@ z1_tg4R-htgOB$Y(09xncv?T$fu%HUG*;f3lQ8o>((k!v7mlGbz`z88QK(Tmr_=9&@ z(@5}MHZwg{pvIf15oc?Q7+IVpYf;1;GRLi~N+EhA`MCGBt($VUxhSqG)$1tYX4{uQ z#s)MX)@}D$!YU1KoLfFklf1}W2C@Og%Z$P;P?2}QRZvUI2)6qb8N=5t$ z2tb)EsKg?q$D|8Z{^I04L9#c>mh;e<>OSrHe*KHjrUkKm@7eeh&`=!WM0GtfDeb{bqE40g znX>A#)mKL{aWXGrT3t9<&O$v z%(E9pI-nA3p}y4P*~ZU}NR}MWOom*^(#Cz`6*v~+nuuC?gz7 zh6tXX2wsuirs^E~e%%foJ-gFJa|B{DeG6$C9&-g6Iuc3>1wShbKQ@?D5=)X<@P1tv zPfb$9R3gzZjdl7PU>%S^;695aoy&J)x_RXD(rC*Mk48AJ@yCp)CO$89NFdGAbRMlP zsB`8y<%Ji-D>UPbw2z&mZhSZ$;0tZ;DU7LWj&t|zQ-(#aHPk8Z5ko2BE>2@62!L$g zFZeJll~;t?(t;}WVaHksWBRHJ__O6R@;%i6+Mq_;>zlBFvXB06GoJg_5gxh!nnGKE z@Dd`6@9(u_ZpR`V+yG2j-jzBq#j7PHRz2d&0&&Jy%{6!rW|`RA@Mk7iggq@`*{o$f zTRznjdVb-BWA6DipoB0bj>_!uUO?5(Alrh~ZOI%G+&~qpDCn>nfmB~2m>VypehuV= z52E%9rO{1kh|?J7Nka239{HR!k2ayjuafF`A(E>1|p#XYF165R|^x)qanC78o#zS zuUdlS?`x#u$$StUb$M1QuhsNXc7cM-)S0)c0Dvv|T@8K-;ueO31<>_Yz2R>Wnnrvg zmV=z!HOZ1X5>5KuvUB&xJvrdd_AAm&iaOJ=+JRY($DFj#f|Oz?bm8hX@OcJC-j85= zM|tk8wLaJ&Oj7#6D^9m%fAScfCuZqz(^E1V>?WbQAFrqPil;wojf{TxV{1M=-pq zIE|ZF@F@lk{9`2?qz&uU1E{c|rGER3XGf*KXEwN)?3E2kJlKqHMO9pUILxiSR3R`W zoQ8`U4DI1dBgN}i#2B)-{FvCZQf8sa&0>?dOrZe0LK+zA5bvBCO=#eLgr|5O=KK$f z*r(aJH??1VzOkEiwdzxS)I>~zgn$12>18Unw%j`aoSX@YFADYw=?RY5tJV22Co#~c za}jYGX14~hy(!v4s3Up@HZ9rTPFRe!l3Hv((lM7on4N~s(UvS+bViZJgqK| zmDPt)`mIqC|Cf*swxykB5?P{m%s3YxNqF#=HawY=6bo3u#`BP@hd~4B>^9u7w$7Y3 zLVL@MNaSL56eQmaXxY~m$x3ZqIkU&=t7`RH!#Y!5+42A(&!UT<-jgFREV8yt8On@Y zCJu=GN}bPHu)Mr+>Li8>2r{=%@K*HT+y;w=|1Qcn3H*GEgJ0~W71$%Tk}`&mk1W#7 z!E^!wc3{fR+Ll}Di~jBibmIl2`DzieOdl5_he%w($?xF}LcTdZr3T&cG4LCcu4#r? z8$#l%6VyhT1pF3F{@6WD@<(5&Z0vZSIk1w$36ee%C0}NA z_J99sK2kdfi1d}#Fi=5dmo==AyodP6Xg{LqV5$|jZ3cvMy>)2J;w!B5 zxx!*MiG)S8BT8Hqwo zerhOx3jZSDhV?0`Ut)~2PNdZWz051ZPV%ku?dcgdlIt;8GVlK)2cS6dm2OWa7Np3! zSejvN#h>^=q**8%`X68ULX=Ivr1}R{QxE~kM{YR@hlL21FXZvzr1;Ws!x9v z3I5br|JSHJe|rQE(B3~<@>B!KUq7#o3EjyAZJ#*FLq|#;&zyt%2zD^jO@N4%dN~F- z2LBhB7XRP+AOBbcuYO7S2|hX2lDv#EepZA~``5YTabJQIEFsC9?WsbAt~|@vZdt&8 zXFcqDlg@Z=cFtf8nC{NB{~C6H)3DBaSYigu*yAl?^}z0n*A+wOJ?q!-tL)={e9G}% zgYQAMkgfixWwqzp0Jw6QA2`|>EqqQwXn?Utq7xWK<3?g5;we-fgWFv$tx|T8+Ady( zKgGYefq4yr_VJF|dgmj59(ZckXWsH10Ov>$(HoBaMWmZl+vr*ie>qpa@Tt5hN`H^T z27E>uE(kMk{QlBU1#Anzy(`rC**na-e8U#sgbnqq?CEF@E|yam<-%A1)A5Mnv>S2f z7UKaZdSsJ*@1((kd<7TAq^@kDorFpS8a_wft+j$p899DL(ImG*5d{0>l21dYz|N z`pYqOy#8Rn$~DrxVD+xHYX_#6oyo7)&>J?|(reora{BlKan&JvcG9KJ=vVpYK{dR4 zme2UTYADe9cCX3auUJp}hPxblr$S(_`)(_gQlN8lmwDB=Kb_rx$>fBq|6mc_Ufy zENo#Ea-wTCFN_D~-=;_~$()lVAdsq4?uamj++n7HuhywmTa!^#|X0@T{izCQoy#>DauBt7NCKoV*V8MGRv_a6Xt z0g-fombqnpmSj&w&;n3I*h!)Dw*KbSi!y>vJs`gAH2P*j_bsjmwy3_2y0JH9JCbV& z1TFVt)(`cZ=^vDKI)$#xGs@d8W33r9kzE=J#hCV>nu9oC&8#1*JmR7Ma_hUz^_p$# zQPfBo-YVev;V+gnAhzntCE2mBRb#s(@_Sqw{Z%%O$szP{W}v9o%F|Qw)%q45@G@2m z-4Ggp`((onMTfHC8N=~hD=?78_ggDW(vM%rCAk#D#tR_RTYnNz)13Rz7CKvN0lwPp z^um+zCk~18Yvf!H^UdfQnB|P8;yu4T#t zO~uGHmjbd!MrtB$YD?e(rdQi|OP3#WO2w(l~ z5h7J(BMQ8JqMsyTI?en4VC73KCoHX+k0Tc8*qS_Gg!15+YWfU2YV=9g*;q|Vh}%M| zcmv$t?C@uM++3QqjV?I7? zsR@h&E+tQ1CE0vA$K~opA-}#;w#6EmRUGFa;;z_t4`M*j1~?4Txq$n(9gs_lz$d() zny*9r?rPbH)ywIkgqA3t2z*#3b*1j;fwan}Kb@5U7``zl&iAuuo#Ib#A(9mfGKCH4 zV3NQ6G`5%jHTwr6(Ro@;@s{?Vy*$qdq1AWI`x?g^u+y%0fPhfs^#J)Rs}5pkTjxoy zeixk5u^^YW?i%~qtdUZ4twby&oToi)I5s!?7)_A4#T%#4?6O+uvO`?04D|QYQtw?k zEQI5wI^Dv9g98qd^&2*&iuqJV3`n>-!cV>KxTo>!CFJAt@-!3q-87R}tYHx4@|mkD z+TUlFcE`H)Y-iKVHx9(aZp@rx<_hb!29-#FNWL0 z?sQ)PrX~+h;NzYwXe!%KE=BHN2iDvCgs-!Q(6_a@cb~dlF1E%2j!;|vBn&>F`I!Q@ zV_RD`pm1gPU^87PVI8;h<7yFRT~JKA%YPl;U}xgVhaX68n1npb;-vGl#Vw^xAE5{T zHFb>V4?lF|C6-bQcOWt1UF6L-HofpL7iG5l6R4d0NB!`QwXwDw#yxEm0?FHkz_fM= zwbA6VE=Mt_B-VrW)@8Z{(DNgm9^?+B=!YhEwkx>I94xY7!)DKVt@!iQ{uGH->h~oCoXg@<4@N`tK9plGy(>!i(wk^AuGTf~H{YpxaKX>s$bxZ*7 z0ZeYxnfw*+9b2`|^d4S}b(}BBy4ar*n}}$diG)9+OQh6V;dIc);e}S9e%gn0%ZgP| z-E7Os2*%IqCVT37pDD)ob0TD{q;OGjEcS~Vd9p3TqQ-lzqsZHij=Ar+$bQ_Bw=&$D zZFrtHp?G%91hOdg-rp`|X)m5F(MV0vh;;y3x_1;yjdZ-F(WrkoPO01O``B}Ci?iY? z*-u+wL@(&Xfn~F80*(+!~Wzw}Y^4=ofv{O~2azRI%-nZ;)B!!fc1`$M1N&_aE``UrGrfxTfRtfyyn zx4D7oDa}h+@$DiV!v&IueUklM6%!u96Iy#^leU$*HXS`WgwCh~>II@(8VQRLYafg@ zqOI5>2Dm5pS$dBW+b6}u9e{1$V&qFlg{}+h)msSlYYDo{*u($=0@6?@P1(9_*D5x^ zJw;o5uhh{$NF6!$W{{_>oc7%Mx6N(zXJ_-NFF3t`XUF{yjz=e1V6Kf^g9vl|06~ZE zTCMf&2jNHjOAtk?s8MH>f6BW*t!n6OdHkQ9yZ@z|x-Ee)7VK8HD~}rJeH&!1EHKZG z38Q?RBzC>XqK_rd?Cq7?W4@kU@nPKA{$)t|Bi#mo%ZM5R*%>}Ce`|f7^Msq=i5|4t z~SKI4rT$bBN_ z5)5Fmv{r6Gxlzm@&s+LhiE25n5KawmN<`AT;Ubk&@p!13-Oe=q*DQv>V|@FCwB2~f4l%ypuQJ&B1=Fx_kEoJYFfCpUKpHg2c)qlF9?{{t|H|E z%P?H6sNKt1lM~bl)ru`c_`BK#+Jk}zP&F94x|@Z$Il(O%L1h_?`SHw^sv>e*Oz_>R zfqmcGwi!$i1h7;-l5rH-DDgC5s4AHdN%Xe+_p~SoAixF9q9Z;TOlIs%tTh`G<|H8# zhx<~27^Gt;Ja4zlxYXJ}tHD8N>0vS4z(;gw1uta;fiJ;OhKni$+M8ckTN!8sedH7c z?(_J5XV8))D+~OsZ;2@blM(dyn?~37{WI-hGPWi|xbOIcl3e>F@n*?gw_%p8=V6{=)zJ%D3i1WiU5{#sW>D_no z)41Q(_?^yh-ld@!12?fH36{Br88UdS0qaA1lxU+XQ`1 z?Viqckg}7n8+hWK$()1z&qwdC%?$K$&rA!oJgo{f+rIV|bV3!q9Q)DKR@)A6r2pes z){}|3JnrHw$v3W{Og&urNk$&01R#1L_UzPgVG)W&-MPwg1)r*Jj|xru`==TH(nmnk zGew^R9UVf@m3F`$g08Uh$uF4!Kfz@D45rr4Y7zPv0uFdz-HYGEeNH}xzR#8VZIiT3 zw?lXbjiGzraL&|mw_6amfzh!KmttSdBGl3hU~sQO>-;!~1+C3bjCo-47y(tm`fn|SHO^j~puGGj_OUA{*np39ZV>^ws_sLo3PtL&Dp(}A7O{@` zDu$~h@e1XqAY{VU_|EfSm6rOo7TxvQwWP;#nf3o+fINg^2@n7#RugYHEk`u~3JN-y zVYAr4e;Fx_;km$e1?KXgXc>MHwVfJm!c5LVv3%{M$Y14@tR{XJ0E8!##?I3(KHo4I zAj{t|VFcI2-cIL=v}YKpY6HDnEc4<9qsnEx4_1V7Zku@AV^8$GsjIBx5Qgyk=7ICZ z*r@jFy}R*EmJfjO$j|@TZTJ!|@RR$QME1(7~L#RyV$MG3YJ2 z>XUOV#Vri@4ZQ3Hf$^k=By!iJ%K|iZOpcaoF9Y%T>Ts$Wok^_|a~-JA!ETVi{7h$!_H9 zwFghfu|+@|hFPuvO;e`ZS8i1j)V{_>rQ$J*{C5%i^NkX;g;CDn;5~pq?Hd8-HfYy5 zn2)a$V;djL_P;ONoV|6>lX*{Bv0%h5MZ5Lc{?(I~?Rel%q|bf#nr)H5aRTHOZ2EmT zYwa3d6_@}`Sbe}ABqL>bP8HUOeNyzYa(tWn^d1x3lh$OpP3GqQ-tH7Pu!Zv*W5ysx z&GvOt3nxi9p@8i@^``w1KJ?yW>+^HSlmkeRNsWSHS>XKC?9qV*x3hL@&&Dz-fhYdY z)-VTTmzU2d3qf~cFdoHj&s?v;r?qXlSLd=2ws19I#IH&>x@pR z!Rmcb3WmRMGQ6iFCbRjCpnqkoIFlkA5bq>lls$A&zyd}J#=^TfNjdO>kiWwQ&d%47 zy-HN4DSKN!L3nJMd3u#k7dl!VYTmlN{M~6tT{G<=F)`6wMS4SJA|F}&ptSUhw|ZD2 zUon%;TqMQSqHORy^IO&K`goANzW-@DGj&7rDTi<)SJQKWZar^rQC(;SBV=!<%Efg< zU-x?NhTyaWClhdCiFQ1q#oj`IhVwIjW$1-^M}28*?k!85SMP4q`qJfLbJv-%5=@N* zd`GS#cgbq4PgNBgCicsB%j#}P=jI|$r4;gMCq1WY0@lYP5sA%h&Z);O?aPI?uBn=+ zILvgV=T(jjPe|{bp(v<pGDrf(u+9B=X=DNE#EC)jI{T%#-U+`+QE*v!-mk~?Ln!-Of23Q24UANyLMfX3ldl z6-d9Y?;F9cLC;V>$Jg5ddnM2_JiA$OS{eC<2N1#jTpT zvF>4%+TA2;2HxJFYtToD8G?1_EQNjXLenSs!I#exC>8>KzM*MgbAVzUo?rXt15(s~ z0t}yff4>7QKYQW-^P(uUSt_viaPCpyo@RIY)40GY#J#Y5vYj&9PPZFErHo zn4^97jOg#(H8v9C)0$t~Eg1&(YU6QX0e2X)3vcT?B+=URw=);$IH$wPICspO`eP$i zxU8*iIe!YCV|LJiO@Dg#t!Km{LL?l)GraS7xTY?lcw(bST?9M{n5gz!vuWhS{CW+| zl2lX8aPfGMK9f8~SZHg^wukE8aAVQL(d(zMeVjXsduJi` z;<`$Z#-FtZTm)0Ttwf4P)moS94NPWb-g{>7DUGqs%F5nKN%hO~u1}abMREL` zQF((q)-2#*tl4+2yFKAiQ8k(I#_m(SYsUIou-{`H>L5_Gzk%3S*v?LCO+F=>l|_i8 zUFy4>%bOoP-OFaVW|jB7-M&0JuX5U`$}9Q3rH1OUW-l#l+_f8C9CzZ9hwLX;@Zaav zL{*;G#N4G)8j8+S<0J02>_2fU57$Ubl{?O!x_KAJcF=YBIBTRYwDqm}`tTjzx=3|; zj|}8gSbx$Ui54rf+F{o9FJfVKgICWyPsKjLFT9vJ`9YMd#hx{CEE4a8&Wpdl?1m5) z6+Ia`KRMca^g?6#o@CSD>W^=AyP9%jJ!YlHOwHdceW{sLwK0oshZeWTgAPj*GG#K^UVYlc@MvhuP2HK*Vk5koqQ^5B4SWuQ&9Sbm+yV1m3^fF zw1juWryX`9fpm`)i@ap^Nt?=@^un+#Xy%$7_Kf%_omKf_hPwFISfl0j-&Mz(G3 z2JeO+U0cOa{g<0Bhu1Nu?dGK4`e#X!jbOAoUq!* z4PSXRJw9<%aAdgCl0wuN7VVUNFVyY^+q&3%QZznqqF{^}f|38$T|1$@N`1c?OwYE+ zC&J2K+bdHzz`)+$C$*lkgx&Vse?H1lqhMNd%*SU|hLY70oH}j^(}nLE%oI=M0U*RQKHlYlh}uJhU4R0d|)^Kc&z zb>;(L>0gu!#59AROYYrgYW@+aaiof8?OLP1@{Yj3I~ndcKe`wfR>jErp2=59g!AtSjQ`J8mVbxsiCc~JA+kKU)TCAYBG@-5_a=taIUM50(~{1qrvv; zR;-KR3>Cn%6Ln_FQsMG3dVo#)7$Yn|0x_U-<9@jFT=>c}W0K~kx#4s%j8L&|GMx_1 za6Zz#yyZ+H6FcBhS z^SWHGx%eO5tH*U?=la-NlW_!^sKJ*(O1a>5{l^9*tk=)@&*HxmQ({~lv2(nkox~1{ z?6{p~66$k9aPbvUqrKje6sk+Nz0dPS1g%xM*T-)uD%9EvrYmu}9hMApF?i9>0gXP= z+`o9%#~cx6a+YM4jPj!@ncce(F4;g6BXAV>#a;0avtQ=0<+Ko)T}Cl zj}vll7lUnMr>@2KQmaL`=K>te6f8Ps_o3kqZ}nA>LT?}WLwh?Nr9*gXQ{0J(5~dHE zHo!q2ph0D?t!vmC)TcI0-YbugW0U1KHgNe^>@ zifSq>SMFHuem5HpA2{P#Qnn((YGYTz6I)SQ%aUa_^9l1olSXydz%W zswytz&3~xc7f!Ir?zgw{=F6`C5%fd9fxFBp*>nN=iDQ6z>+3dZU74*kM*Q<0NuYS) z)fNK+^u7R&^9vUk>+_c>!sjX`v{7rEFP@%z14j?rAwUr+}kIlM~S>#l|g69(ocE2p+?mGMD~6Q^8jd*KYP%3cf{MW0iPr$4Du)vSM7VvW>+{2a(l=yk5 zfa!68>yj4-L|9!ro}0rTisMH{a(7maG=Al5w$~~qI16^_RbQ=EsinS%A-eSD9ra)1 zSVxo$VJrLCuBiQPs!$R6*vm*I(|VuWTT#`VJx{N#4YNy8Kj?u@82RSMNBV!T+Jy_D z7pCO`t>r$o&4O)cDxoxQ-qnC99aIgO$povuur--#una?R3qx>onYwLNl3B~OT)TW0 zqA``qcuiwS-n!bk9`^g)yc_A+RqvIX1DT1qO`F}+P=ZgZWSF4Xb`G*6V`p^F^>qgk z`w$s^o}&$|2NMh4nf)qvX#35VHDlQ4mGJ%NrWdrSP2@%hENinM(j z86+E|V?yT{-Q$}?TgH~$=2G&ktJ_8@6FxQWeVgQe)18uHNmQ`7PD)U#D|FA@cQSR6ro{EU3oQ^;GsR#nZyZ^ z+m{REBRyX9$bx6sUk}Zr2o+H=9H>#a4 zDx}Sn-{-uE)1C6K>3O0XTg1XvMsI@1NZT)%&eRPKxVEl_ScwrJ4c0Cn;10Hdv^c-B zcPA{aZegdEquwAnH^L@->$+Sqz)facRL$^Fl|Q;eVAm9zTabp4ZUoAZ-(wimmur3d z$JrrKBZXFMQKZ{_{buL#5J#fF*3AJz#^TAa8(71y$rx?!cD|eHMf$NYM#dsu&zn!h zPbt5n6d(!8w{mvApDF!d%jjbI(lD?CwF8$c+F&|*djMh_Am{8 zJpKC{=|HOoUAE=eZL@Z=dqzq~c*@kxCFSn^wY$9_YCKG3lIEism^GGPW=)}QKSiGb zj$pD}ptuNF%mMK~OZWw#gFb(KzA}_x7VxH@qzXN)iQ#n_F7Gp4(Jc4ADqCt;*YtZPs*bv7lGPl|lDnHVPJ z$69uytq*m78)fn8;RojP&F$(ds*9*yK>=Y_npJgUB}v8R?MfGL2{o?Jk-Gdqt zgCsGOpg;#XK3{2+I=!v+UBJE&i`GMmyu~L62ioh>`9x{Hva%-N7+^u{yJ}R5(CUqk z=xue>m?OaXkXi^x|B^*bN9iEdLG9Xri2@ZRhK5a+VEBzTjUTG|#DIv;h$*ZOMsHN+ z=SJ08R{7+LSO`;{Os(ewWWsDn0hd;BE^vV{cTh*}UGI*YjnYLErF=HA(l|Tq(wP1hDL|VQ%u%gs`9cYrk?mgD(?bk>vYE9y?0wDzWE;%pUO z?AeQ=o|AWIu0>rE&`~lYeehu^!zuY;)1aQ+w+c<7(Hd$PTnbH|)C>=`G|pd2xaaZY z6F7Ea-?!*4%K`oUZVL}g$`@T-qB^Z?Q?kB(JIt^BB3z2>BSNzq6a{?&wu3V?PyxG1om^n`q4q__{G}nD{7Mdt zNlb0T^G_q4@99KK#8sez0&*x(X3kn&=%lE)!-ih*OlYe_DT=PVcc)`hmTM=1&n6B( zK8|A-Rkt^@HBKHz4b&dnF}Ft!M3jKy%4vr4nrnHihG{+U;U(2NV#xMM?D*7r4R+;A zfd4*{H!CiDFa4v}u-?K^gKOEY8yYu8_KR)kBp>7OIg}u_)d(GPkr6SM^dB0Vv17#i z@JKky*~-Wa$|X*d#K7zLlKTN`!gj=)t&ne}C^C z8fgFC{5EZbTYIAkt`A#MJlj0mk0Q7}0tb(0SypkQkpm(weg|TXiY5>kKdo2{SANEY zGrQ%a%f{kR6IhU%2|vDfW{O=Xy7_Uc_%DLvIn7%aH#DlDps^i43 zytKwk%X36ADRO*3tta8?Rt9`&OlPc+gp0kK49RypM+p@bGX{Nh*io3)h!R_L77BBy z95B(j%mjZTuKYFL+BhN6CQl-G{y%=hP4I%jSR?DbDVI=(U~|Qi{v~9%eC(J5+w?)2 z*Y?p=a=Z3V*zd`~KB>MU33H#*SQt~5ePNu@ zQW#-kHJL(Bf$(^<2s+i|5AU?NAKgl6q={+8!E;Mp7oaoupac^uZA(DWnGA3tW?+F#ko+h^= z@>Xal*f*D?w)EI485LxBaO~9_V6Po}jjZ#27?!lEw&nNmQS%{NxF5B};aKq1_%O9O zk;mQ8t9D|Ax$2sR+I?Wwu2i<{bfG(#Aorl@wq)1VtbLw3fB(_T&06si&v7Ks!wzyP zjeS0Kmxbqf2-_GeXDr`}>#7Q|Df283ao8hYt9}w&tUaVQIv9GWzFY(dZU0G{#zd`H zMD&Da{itS!69-~sIDP>rPJHXbJ-p?U2Fg3{|4+sNO=NU%)_-v$cZZ2DpX35TM0}g( zb>0oTzC#|S=9KBR>p9wv8bIb*EpBZ>kpyeL=UKocvvEnk>7|k3eqNO*?w#T_bMI|m z4*KZv5v`*k{3@KgGE|glI663A&;S0FuG7?X^7cUxhcFWJEMT8UwW3bH`I}2@VE%-!Mo02vM?XbSdS4G4p3-OGyZ0p4xs_QR#&X7|jo*CDjTuQJiNV%ri4Q zMtU*39z}OP!$>D2CqfAF4L?IaMQ6GB%q;Snwa#|9dU@5a z%|{1*9(s21de!{GZ*3I~sWx-r8EGUslPaeTTd0Lp0ixN*sRKGZPeYb6ZHcXYZ~);mfIjZcN#5m*vi;rkHc5YTX2~ zV)6r9-IlatZH=z4<9l%oku=c=cP6sgamC%<=-1jC9ZpqQ@z^qE6u_z#4g6$>3E41ZRq;o)`~AUpnbR`GPNH$hJiH$D|y zI=Vs3x<|JeV&hS#F$f|^s&oASJ!Bx{^d~b(qf)$IIqJ*bIpqlkYAPR@kR2IQ82fl= zIV*8OgMn6)AyV0Es|FT^vRK44m`)1sD1F}trv^@Ret$J-e1%Wa6irx z7o5s`r(Sb%NR;f757$yH^vMGyo0Yx#rQn8&ftzL7Q%OlIkd?5K(64187)_Mbt(Zw- zT2R68EEcICJ*moP^5)z75+`ro5&pF->ik&Z!9=@T7Gmvj{Wzg2^;!E@#nNnhchyg^ zt{`l$g6y#?&F$5r`_lFb5 z%^xe*VknSVZVVfM;)TBSW1+T!&C7_w5LmY%|E!@Gb-FIYW_J7KOV_Npi*6NrEuT&T zry5aECGJD}?={PKuJ4_sA`jyD1z=HfaFSlwju&>HiWAT0*M(_%O}erDTqIj$X~ZkfWa9jbo4m+pYJQ|3kl);xCRexOrSOQ`MAwY$^UceDtx9Id2Lm0b+5k7l zoz|$lyEwj+pvv?=X(s;8#|xDe5)cqT3;ReP^`)A{xP0@q&;hKy+=sqVZj47(AYsj_zEhSfdnn+}JB$e1b60xx< z9UUDF#>U1OT^mY{CuuH-@v^~0=Y)oYCh6|MhlYnO0{RBJyT8wU#=RaHKj-Fle+#(c z^^mCE_K;I^6H0t1md(oG@%bS4F^Yo}10x1O0uJ{R;v>XIjQy`y{{jGC9bFPopqoX4 z&POJbB`Ku_Ij`|}R$!gUIKMvH(*bf~BuIbd2orwfmIp+9u`WIGrW`aJZ2nCcywN|d zKa(d)sc@g~X)a&)@pA<=M87mGB~Fbb&9yE^7iS}|sryF;pNQ1GAq$3MaAy*R;ZMgN zH6M0H0cOrKBzxk`r^b{2-6-Jjp61{lbYVaJQ{maBCN!$l6p0i{5pWpPe0oWA4?HXB zXPvj%%;KzrLv*1pDHp-MJ_`11OY^u4Uu2SFUppGD;WU~-n0E9+ZgicwqWS5O)v18+ zThX^32yKJ|c(2H)Bog+uK$La)ENTi0Qx8#xMks=HNZmI3eM;>PuOwRS&QWH?v*PNk zZI$MDS*rhYS^w|5i^m1g1p`(YErZr=`)i}rsi6LrYvm4IXIE&-GkV(RTYWmn$$NJT zPYOfYvZR8x*9@*1LgdZ_MP~dZ>a6nBL%qDl$Ub?klK7Mj@J(8>+A$ zJv-KwkA8Js4QkmqR&j6*Yf+*6z1gCX`2d7FMmy)(yp=Cds{FWwSWREy+jHQtIhM1t8(*!tkd(FB>aYzzT|*N;=f0jII=&nupfaE_$)=@ zkh7&+|Ip;g8x_o&&s&z9t&5(jp(M=W8elaQ`$}wnX31*kW0P&U@J0W}V)LDYDe9w;%<*FbC~e zGc1=*G$GA#=*lJGN}@1349%c8LpIiO(dN?RK!L4|JaEb7xq9?!BdeQb=H!F<{~?8m zWBU^e`uQt%W>YExRIE>LCi&KUuX4jK8|!N$MZEOaP<7@e`1l$5BLmeVq0w|j*AEhz zqqq;JPJ~|T+7y>&U613LI z$vWYQJ#OX_zC6zapLJel9b@#M^&KonDd$;KMuQoX?M6d5oBD#7jc}ZUH2*H-pQlXn zGj}x?OJgm~Z}pQUxIM=%Cj3uHSQj27T*6PeygDff_3?Zu>n^!O0PwVBoOe1|HNp}g zR%SEO*Qplz5>l(_2w6;0XAJVD?eUB9E0YR!JRy3HjgjCG2@z3BHft--bozQOfvoxD zaJ>EC@HHU38ZS7Q(H|CySW?n5jrSY#a=qEF$tGQ-RKb`K28PPP&aP0Yv|er~(w*FL z=_8TE5qB(>C#L8Sj|sTT?VU#3{X|%H8yrT}Qd1=_#97U-^eBIEML*X4V|RS%5c`jU zTntC+$yax=*;G6;brvdVWv}jZYP>Arf6ti2@?c0&KxC%l6cyDr6x!w)p1yYtV=@32 z9mBb|IPC=IimtaXI!&)k9O_af8`UxeHqb*cLo)oQJ0Je#s_Y_5)tI?_QPt7;dlK*$ z&pPHm7PEGmGE?12cxslFm6ztD@$C(k%hYQx?`jSXF8dro_M0nt6OVwMZE{*#^UPG(620BA2k$PtRO0sV>ng6hBE@Ch`6x1<3sM|@7pWkAH)b?_YfE~^`<@&-($&!t z)qKJO%(vJfsVu?k&JN*Bzi{gRKY;#M2qAn!5<>&4gzHpcubL&k2NU>I@ILc-0-#8z0!YvE~~WpeiOQP z`O;1`HymK-N_G_m7xKwyNxte9@Tq_y>uG8ler~PEMt>nI{if! zR@vByqprRx6t9h-eR%tD2ojQnKI}`_vkwM5bZjxpBa65m;K_XaX^eh06RTHe0Fp^$ zYG0<%h@)J(5*e?#G8ee~)v$lT)b=)`ir``CGP{I!Gglz9cYJ5!d|sA8TY3mjVSe`T z$LVp%Hy(`4jV_V(e^)&JH|L3gbqRyA_DhiJWMx+Q;p);*e-J!QIlRhXH!2NFO?N*{z|VR5 z-ANm52Z?qZ5d{f*1dKJH&WK8?(dUeRv8<_g3ncUN8przcoxSr3dR8rP@t*l0>$M@q z7ZP{~YOPd&S9Z$AX6U@_uk5*~ zP}~CpTbhM9c_n#ja&pJ83ON^%xBR!ldHH_Ee}fFevQ{~noTjtm=*^=;LprhBF?hU? zeU{Ltiy}<4U~2ClvdLP)PE^Fie%b~76u$lu3k|DwlxjI3ul8pJQDnGtr|H+P>MJzq zj?m?_TV>9erKugD0;O`%N(<#KCTWbu(3%0Z<66B?YmbM6|3d{}3+q2E;HPYmPG!oH zMsM<$hVv_}YQuY+P-Te_O@)(3W%3jY0ek8+@}fkr(JGNO0fyVxJ!YvIPh6Gu8o9O; zzZ)SEQ z(QbwP@{#n_>S(|i;302{DlX7AbNhdzO_YhnY`x6Z1;(7*uJbwU9M36-LqI(}!Q_q! zGbtwIHT|_)G4pudQgqP??@33m*1q6bO zP7iBx$&M|Us{_sN)$^vOjRF%WY&$?f|Hk*##RK-&OmiZvkVFgbITq>}UQZAR3>=MD ztZZv5{K{yKcBvk~gumYI%!NnHpk12E%Fyb`P7HVhdwH)liDzanwqs70{R4^~(q||0 z8qq|b(*CDCrF7dD4aCaaT->oJI`=%wM&NQa3B3A2-DfrYU%;wyi%R(4g(e9XXc(BH zMa#|8k=(+*Js5kcxU7+&7ac{QFk6s{t$RhUYVc$1C(~SNEQ=)r>c#5$1h2q8v(c}2 zr$c{u_LV>Qy2@|LOm#8e17FhFaASOxCC&v z>xJl@?(b8Hijy1=*B?1RzCPRaxR7)#iY+a%jX0sEv&UpRCfs7wG9oRiVs;4ClU9Ry zD$P6E3pr0Qf6e%GZFaVqbUvgGFIq>-Rp;49A7j*d3^f3O@QM@eE{e1$1 z5N%zsXb3yz$U}065~wG=`NIqO+X(ep(-{fKhFm#a_&uJ@wnY!8^Rv5#WadX5!U2Nr z9p2KFX{@CvO%!N~#IpMA@&MOCbu zAi|zA?wOMj?%yC-*awn}z85mu9Me0dwRwfVuIF^W?};A|9Vktce{@t?C+oVKxSFho5;wPCw~>S8r?T( zkE{=~cG<+4Ex)E^)6DWEu_i-e@Z%Fe+TkN>cJyav@T$u?l>?VE)d@IRZHH+5wU#PX zEJg~&=C)5OnpS^NZc6XYrYn?Aia%Q{7euGiMFtaWCmssm4O+*~@Ll`bh(KS(b$ZGM z=#o5%Kj!kVe&H*V0MH8=jmKu9x!?1xYs5e*vVroyU)(y2nTFx(^yODO(%7t7GQZxv zGTP8s2m(MsN0V6z7tYOfA=8b0I{wre?`w=@(NJ-FKV^74;EkoDi&3S!k@P~=NLW}d zmk3F(JrwMge-Ti*h)N6{$P_#o$Cdx&&ZdvL9p!R~f2B5~k-w*`)0m2BI^Di_UEE!w zRLiSb7NDg4?CCCF^nAOYmFk>`&NfZKS64Y0p}ItiZ9342Q(0+=8038n6Yv9E!Fmj5VoO5BR&>bhZika^p3zu*_iQft^bfZ3*c{RQC ziK~ea!(_pb0)RX_+=Vka8VWB~>*qU!$McoZ0c^H9VKJuVj-73d1J5;1T|W0J2s^y4 zmr>KAQjE(WttX3>OpS(hP~}J!l4~Rkkn~sT4RXL~yq;}CYe_~x?+}!Ct+%15j{RrG ziM+Zxom;r^Kv<+bD+RjkUIfNtsr)yITcDe#Tc4r!XN6xrJc$Y6*5@jd=GVRXvsHoT z#ZLAGlUOR2Rq&P_S4HX>Ha0`zP$GWv#S?$#=MzVf&7ZQ0A1*5K0K5#dfTOO7D#48X zX7|C!g&HRlkCzvS$*k3gtxiv=rzhIDtL~9*%OOQfwns+eSX6iCWt-($QIDA>1cXFXnJl}X=?tk7>d62uv-r!`5t80T83e>jZHqX)chDTi^%_6% zcou3}zZ=8J@wxO8wZ~pOVIc&#l#kqVy~!-%<@6$`5*759i-Wx}vjFF0YZk68R25s> zG4!KI^r658&H_vzTNfB$Jq(h>1gv!C0w<$|HUzxmCIAczabN)X054GGd2}mV_mB|E+}S4W3^5A7zvoSr`;S z@^1ryyl;CfPCLzfo3{uA{5?}3h=@h$e}=PDZg86}66C-07C;RMxm<^p;5U8zo)Mv^ zdQZ+$PK) zsS0)A3_ecLBAFPrTIh1KZVUo|h}U|?*47TLjAXLuMf`3n*dUw-KOmMF7hpdnvtyB? zCo_q#D%INL5OzE!*F-$w)H)#^F2yI){uUh5=_m|eef}Lbd*;4mu$9obc%H%{Llf#$)n9y4>>Q%h(&+$8er^_ODuQfbH~r7wHg{`e&)cPtpMhLLgs~ ziMwyUYI%C{qKodmr%B~Z7)zlM^lahDZ`EOlN;30KedjpBTaeF`%#AN!50xj=^%13* zPS?10JU2=9t~ z&g){6derFUk`1xz{Cf?93!3bOy9MQDdxEBT1l!P9`Z8>swNQn8244-+z^s+cS|Q(u zboSRwf=;&+%^S09|LkQJt@mu9GUl!e*+3RgT2pjjzQg3ot>=Eg7>>aRc&H=s$z;gzb@%%ilbA9SND-zs?qlZJ*n^A2}2)hGZ3os)I!T z0j5elAfyX^=d;J-mppT)>q26p{gC`8Y z%bOgZo{w&4hQslfOiNcucDZwZfwkqo$fwISQl2yxPhcF**OV7tF~U6ohocePLoMgy zCZua}nGB8umx~SQD9ok&5bBorK*L*lkspK+#A>!O1@B*<@8T3ot~6-Gq=Zaze=h`UBz0U<$HCm z@h%o*`&971-W`ydnv!kFJrpSVX69CMJ_*~~F8e^?u{i~W#9)dRN+uaC7n*=j{n9bw z_52EOx!t?nnN6t0)Twn9oN%v3Va+ zTdy@Gczx!zoxxDM-}j}V2hyyZDb{;1kHwQ9t22&z-aY)mVRs3D!(|uG)i_Ir@&`V0 zqV8jGY_?gAw6NDSnoJXp1zXrZ30HJFSurQY#ZQ+2hPpLm^k-OVa+ahV_of4-a^BOR z)9FH*?(qE9hd%JhMT-rP)1l5bxkXA0mQ+R5vS|d+LRoFrwx7VSsdeAG$u^#`?(&>S zfWANHGH(2;u&x+f;c|S!&vz$!eL}$Ot+n65*&}y|wt-D+ls@n3DQURKd zJy5CT_#&J41|woEBTzP6d>*bBEgP(laXlUe8g3vQ-+~B0eoOI-)rc!}m?1KxpzLqE zeesdLrO@f-Mrpdv{IHi`iE4WJ*+AD2T*r|(hg17ZVP&66y4R_8cwBrtPS;BO=@rZ6rI!>h;g{mS>Nl6>ImeDxp?V$eYvr zclW@FG>ztK0eD=lf}xERELN+Y>8#*zZ7}UtmrR7Whl5oB`LV%ozXnjviOR>br6Le1 z{LBpOLC&wCZ=2blg7pNmTecA@g5rKC^){i@+;D-wY(QH{cka=qrBYje{xfpY?EX)=B=r0VZugEgu?ceHCq@9(>U$e)1 zH(fpM42U~EooxyL6X}=EGf`>ZE9xAUM{Tr`bUJ$MFjz01>+6J2_YTHlEbc5BJGS&( z1M6|DwP;%T4x<_Zf6Lv??J{@8GL=T8?qMcCRD&v)i_GUE>*c|-mflXWt9~SMQn>CA zFYpl-{K;%wyeX~hxT|hV(OaYk!O~)YVjrw^a=JsIYwn=r``m25r2B3%W$$KIqrEsa zNQDiAUOd$An_L-f-~4O~rvk%eo%ykT?02g`u0AcrFCDc=_u80`o=r@YqMG7j^Qk>% zQkH723r#`%Dlm-C-$68-bZaRzX|fdV`X!n*avnD~1W7w7jV!a$Vjz*|%lf1Yr>T$x zSxdZrj?1+@ztL>Unnw@*+@GM(?JVSJyzIoU6e@ZKYVYvS;fh3OlcGJ6%fPub*bExf z(sTOmB1L7fX?sNr)7O+v7MSd{$nRbIUl|HxOG*vmw;qS%*0NeA(~+vG3ag`4C8S;` z11`hoediPZ-5Yf9Xwhvdw9HhTCJc;g>GqE2Z^y=A8e3nc-0YLdo-)#1q}_l(Kl@%o zF&>eg`GX*Rtk=orp)x3wR;60fRoQ*QX?x5V$!G!-mS}EucuRJ};n0j^tkIr$BHXI| z^<^=hh}H3ela!#RyUQR%KZaM&T=JeU>dS*9A)xOuk#sYor_t>2dp8HR$D{szQ&nH5 za5GRO9@7;lym_;s)}TtQ8(k!WNmXI?1`TYyqb`H=F$2K! z_U4vaiko1LL!x}?<2(cfA$;oS1sjSqv;8qaA|0D-wuL8Kwo<7A0|iqNC?9zz0V5Pl zM>B28l7no+ZhY${`(XF{+x$dA-;t$y{U&b%@LR1jft$z3HT30Q zF-g@5{k=^Y+cwP2RtQJ31#kWa#T)G6>I`mQ{~?*I(pQV6MEj45st+5zb8=h1UW4oY zeNme7Wm|*Ha3+uH;Agxrfk(ykRT-*%J67-kVw~cJk2i@EG?Y%#-(%l zAP(ETs6UM*U>I2NM8h%#9?llG7&N$-|LA{3W3UES>2#OAPA#uXMxOssB)bu@{Szqd z6~r2POs$1xP7>879-i=f5^J(``cJ>_^;ckR8X2r|-46T(|0RI>R zN(cG^EFywO7>BUE|521}$GvZbJk6T%>{rMV;w|%kC4$hFF1nkXT9TfkuJN|pqG?eU z71}gj#g1yjJB}G}Ezi%ABC)YV0#F(qw$Qm^$@1paTUu-$o4OV3h-##3FgDYsiN6jL zU}-h4EV2c=0Uf2#DiMdsw4I0xMG_`uiiAWs9Bm<+0FS%81e)#(5Qr3<+RU3j5_^a{ zvS%}h9}_>FA1;FlZ@UI+A-L!DTGrEoQMcd0U-Z=#*GF0q@vDGbiKOk}@R*qC{TmJZ| zGFTY+&=E;*V>)4U^<$9g1RGf~mwW_}H)@@W1dM}mqn za^bOs=sU!@2WK@%soDmHyx(M?e~+iB_3JlQzPr6jrCM?b>>1q@7Oyd>W*gm2RV(`H zebwPpWj7#&MoBxRO3Soi@exsP0UnULy&?^d#;f*^Y&uo4Sv~AG%ot&Cck$5Ud06mT z+SEPQZ~KZ+1W{!~KOfa~B&Y{yX`97L_GcG&ieC1tzq9(F#64$L!6VKA0ROL2G5CxJ7RB?5y+SIpV`oqw7ztO(nLl$+Ci zt-tpceGT8I80dO@%k{%(6yBrL0VZ>gq%mjdn_O~zPC_+ZFA%|gbH2fzf00wa;SYgs z4$n+#GT37Onxgx=m<%6KZA`(@*8dp&%$9^)wH`7@1jHl_WBlma5%;johpvk?AXB9u5TB8xJ z@jk3Ng5v^IIv@V|i7fA;5(`5^XZVe)Q~)mnH?r2g;0unM*|y9sKPW%`1PO-Y3PR-w z?IN#(Z|eIxqkQ%YVNdGyh1~=3~ou+$X zu!kJH%KNV3+{P2v2d>!N-@?9gcXPelZ%0vs9j(9>k-K>7?uHXg&r9Yyb3;gfD*=kJ6?48Z7S-e@~34RPF_kx}+| z_-}SwBaH-HBYuT8y`BtowhM;!s-B-=jmN*9c!VN|txWofOc&RpE*c$VtjhG^{A#po z`@l<&s|A^{c7~3~6}w_wLAWgJ@I0(Dvzsznq-o)@gR1pr!O-ChmXATyvCYNiKQ4}( zLpLcb>mGr_$1C0BhHSHR4S|SBfkieGVS!<6jCjZ5>e-?&8&g1tD$F)Q(g|r-kW3sV z?IZA2#w}jSooA%e*v`)Fgxy{j+`UehIS?YP+7#5=sM@}AE3&t=y$l(@>N;arI~$9D zp*LG&w)J}#$3K`F?I;A=U|H^Y5atLHB*NvraM{o7wK@~$QYZqxp+7gD%xvjn@K(Z4 zo;T80EmeshY2f8}7dDWYDkbb}pHnUOH|j$@JhhNx>@b#A!J{=??x%RwfY2N2NW+kX77Qajq>Uo?qJrjRdJ=0utAum;K+kop!`&ggtGcoT=VUtF z8%u>DZW=%A46+HjbPxlW=|SrxpS|7$sdkIpP8DJ)M8XSEZ(?-cok@UIx0b3na&@G( zvc_nCGsqPsf(1APy!$&={^9HqOPZM>nkt1#m?#7mExQy8xosblcJ4ft%@SR2<2>al zFFQx42k29(*>@Lv)4gBm!;nc9^E_~9h+}FQmv;pcW9l015|%A;nz2K@q6+-)c^Fvg za-O=MG&cOv6hUnx&~Q@}0!PZ+YFtz8E!bczbVKeV0?+kK5$faBs&vNn)cv|~W@B+} z7sB%OeiG2}SX^*OG=}Ux>t^1K7~=1!8`O0Yz5tq3u=eH=$yJ5**+hyTEm31X;bvUT z7pYKHK1Qs#6-Z=RX`WhF7w$sCD|vJ_rucAGcM)nRZaw8+7z3zGxIt7*UN`wji+?Fa zGT4I8c-|i2!;PRL_g%DLdjfu_nFdgJDKx)iIC)jsf^h&C&ofbSLLh zYrWQzdjn~<)g+0stnx!@+A9TaiVVld9|78;H0!83_wuUH8g#d`wr4Tn==@M~_yJFt z&l29BlvUma-?{k$P9+k-cy5N;r7=9lYMY)BuJoQre5ZfFv0(AF$$wa5$2E}pWE7^~(#2Uo*n}n*UtJBraQ>a1GDCGkSySS zD-q+h464p~(<&w|<|>QN+<#k|yCdP|Y31=Xxr6ab00CCP!d$X#ikm;N|J6!_k~^wt zGnaV`Y&6bUK!}}6c48D~9=EnY&F7MZZgv!anq8hf^6o_dd4i-Tb+T-;HK*y>p|-0* zy`bmasWz|^wqn0^cTB5M`}AyfOw0`OarG$K=D;6*sxS(>k@Wub5sdCQIq1mWs4VXl zsZn!+wbC3KqP1YTL^=k{t5P|#$JaT?jNl1f8&ydyQRn46u_Sj1!1yU39zx;IB$e5H zNym86>1s8XWZFjhRM9Hf%4Gf5)Sd;oa}R#Quq;U4V$lkQmGYlX)fU6!@iP4TpvmF| z2)2TPaitzn<0WsYK zX`ZMf0YF`Yq9CBR>vZ~AUV{yy<)D_ii%en&;qj* zS0Z}kbo%*1JX@iq%+Ua;HT)b~Qt zGu;0@9V*-;mv!Wf#M0PS4}=tixofhWIxq8|tPeQttr^m2c8IfcAMTt=3b1 zAJy_?qRNG$-w@zzv=q)nv4>Sp7F80m4enzNhJ|27%qB_XV{wW@Bos!9eGl|M6wC<>%;DM=>iXdb=2D ztbc-j48KAhi-46E|t?kf4H8v>?1lib9ZrsbWEj$^Jxjy2w@U7iQ%l=n>K*wut1Cd z1FGI`NV)-KWN|r=+ogqZ*k*J%)@o+1J+T~bpvMRK`+!4|hBTYhfOI*3P%D)?7KLR2j} zVT#lv0{W||7rSrj?uekl<|t}2wHOhXl59nT@fxg-^r3zAE+2Wh9g8<|Y~B|+cJ;xM zJ4$Gfj*`2?dm&OZWu7(ydO1tEytZ8nU!@^M68LIi|JEmxzrL?1_i$RiV-_jr#asua z5zQTQ-YPWt{JO`})c2F2!Pi&)E5O&(I-XLy^GlNSXzD z5gfqUk>o_PbcCSC<&>qxZa#6tFP~U|_}=BY4ZPNPT_b{j;fSyk;_REpA6L6t_A5pl zYz5E>p{54Uu8x?pUgRjdOOqdMxky=29k=^gAGW!RIA)(MobU03hZzNgm6mVMt$537 zob`7J>OV$Q6YY8G0M0#!GoHbZVp|aO^lUA#el${%3oQV;<4@ zhyLOil}xw8V^7ed_OPNsTHJZ@7L-TV2+i}21WCVPFUnL41ia*eGjGk&!sh(aT3F+e zV}`6p&5`-f%zFE-T?{c7P4H?Vq)k`~4C7dDt6Z+>ud=Cp?w&BTC;;SYt!SWFfZ}z7H$@6F z*Iqj;)ybX*Qoz1(<*)&}IB)if7t1Zs1m|1tRx5BYDH2f+A%zS3xQlC!=Ke=x5P1vQ z-V6oe*K&6%0!a_KSE3Ip?DY{Cid{Ct>roO=+EV%>Sa)KR(arAJ8=c9+us;)%1Vv27 z-E5Onx4}}r)N1y*75AGoKetT+DmPbK36A|KvG{4!(?L|!y-B*D=&$sr9i^nVa>~X^ zQ}Dk^s$_HN{8BYrw8{Pg4`r-H3gRhA!!26&p@2j(aCxo~#~nf6_RdJn;4U*D>UGp7 z*DWJ-m>|UiftnirWGHtc0w_Cy2}^tL>;Ir^5>Wb@$d4~h>_;~(VS-fP_!v}t?(cin zL(x+LE3m{Ul3KMt#o2IskZri|inEJq_+C<*8NBzQ;65a8Y*O9IRG_zOQl1hZmH$BD zZ}fD0G|aJ-ZbBG?+QA)ReCch6bo8N)K!ks2P~ZG;hal{8atQ)>rFg|Od}Q&$gh2l( zD(!VJY&$a8I%NGyt^&>oEy92dm)*FFmwMp5y^euJ${+>p71pXGEi!9oE~lWU?fgSL zVYPA^!Ic(F`v6;+hI{xEp!Sh(Uf2;M;G-&)>K%T5$}kZjbSsYt2EsLSy-64<)QS-d zAQj%QYB^;}D8@t*7PX_2R*Uz{aNQK=a?Gfxir3q7YXVhAmy7hjN zP1G4Ge!lL22hWViyIdq`DWX~GGnA6^@+D>`_^((y8d#??Fp>VP> zhQCvy9>%e_sWONe7aR?>1PpyFTXP=-)>TNY+X;rnobsL!&0Jk>2gLjRiW}Ml5g!%M zas)i|_@M4!H{FPB39BlusFgFzlDXDY@MNt~&m6reuj$H|*1d)i{nKK30}PbuD@7K^ z`d~2z(B1m`yhD?QbREO`%a5mn=y4=|kkIPpCn-5==fF+|4&A)XQTGrM0mnQS0*+x8 zEn_#lvA4a04VQKyz5?!nn)R=7TKLGofS0ba@wc2Um5Yxq_TUL4rCF?+dI33Ry)o#KQ`1#JcMG;#GH!T3n-~U$VU?Y}6}lu_!!tyDXKa`D)+6P= zo^K!A1UcDpk=avVTlt1V!B-O9k-)f$;$y+s2#y+Cx?CqR1%IkL%CC?uV>63fsmg(T@)%Cacl_Owu~^ea=y6lM!~lbH9bmhlAA@MT~kerSyr|Rb*jL!&1Qm% zo?&^J?ZNv`%^TYVTJZtsXgF5?Fnky&=@SjWsB@b?dbAwaQ%gVTtE)?O>_w%}5-V8p zJF9c)1(_J#3P}oX4v%S6RK=J`Dku3u!UBoBmCqY_&frxDPhSwFRf;c%rYj*-Q{&Rx zl}{3Xjx3E}LqJi*(y3`L=%TBf+-7?QC1IdibEa;?BC^MIJM=e#T40mWn* z1-G?cEoGv82K>FPON=s%OVs`07{8=XIu(zE7>E_z(Gc2oOA~zY?>B!|{G&;Qw}X*e z#nZk*-$9e!cS27i-gAs<5omvI?|O z-Z@~j8v*%2lZNSGgN5@?O-vr69Ff>E`EfV{#o?4&w(n(zz+;12&4f-6B?9siB*DxT zjHNty#@mzm%7i+G0d^zJhHsKINVGGcN}$KjZ|^NF!b!NXYC%zR2Q*7wc(iN$tRgqh zKjo%U-U8csFC?~FueTfExme`=L|y3iT^9U!w@3EA;!(g$4*nq+h%AMBWgtPGJQ|SQg>ozb9 z$Ez&fZ-mo+I6O{@q4ZX8?;P|PD66tE+Chx$R<_PWj&6Y#QB7^NS_97-);WYS)#hZm z#E>$^h*}odLunE`7sIU)!l>7~BgE64*m<;{iZSGHE@F9S814#jUwW~UZ^MaBhCNvA z6W@pRuPGw+W|Y=Jl53qQJQkck&@KaU04g$YG}Twg(P-)#99FgRSW3A3%@oE`OIKHv z(*jx7F|*?q=g|bgEx(_CLM}_+JAPrkV1{xIVsw-Jq(befLuMmA#OW+{FK2K3vhJ<+ zL>*ASF?t>tH^-;c(rVdE8tC%s=c-BzHlS}Xg7MWbQvV+ok}v=#ajn|i(eTGdB$>?xcAut z@X`T%2gV=L4elR)&E1c`&Of&^zn;{cYpd!fZ>)6<_?wOlD# z1Qu_My^mMU8m&s6b-2beN;;fU>Og-~E3y0Ht?m@U?A z3r&#T83oMb#_YLU)=}N+$?yj<8V#t)WZMZom{QBl(gn6$_qJtGx#D`@{xP+j5*Uz6 z&%eB(hTAA&$vBpC60|{YVHD8%g{GOi!>dpEJn9?FY&zD0SRtbwus_~e(og429=47G zPK*M$YRE`OrZ9+QmG@+b5xzo`0S(LuUvrNOPQ~#J<%#y0ZOM(FXJP@v7(U){qL)OQ zKs&BltqJEAXrj1A@A8q0MN0X{>1uOlSP4&H&^KM@zUd$_`Pk{RUo=u)Ia{H3OK7!} zLj!I9-uZllp+$s?@`D*aqaud+LI%k9VC;^1E zaOXLTHPMm8PHx1ae#IY&z@YyGV-fXElr;u%5IDy4BLi1Z^o45T#PMg75_v5s(eTK} zojs1}Nk362T#g3sVr1S-^$@t>7cL{;t=B9`&kFT=hkm16BKIinkGwv`lm1yfQqnu( z;>;}s6$V6(rOCzUdWZbT)S24AvBfn;HwZt;C5@bo<7zWE2$n{tD~(kpF%s+q594{{ zyvyU2P(Pem$Zwmm)^_-M4U)x-{JL20)`wEFEs=CE+r@W*w8yRMR?#%Pt&HM|e*4jI z-2T^8dsILy*rRq5jUt3blh`Uk@bK>j(!5B^ryV;yM!z&xYivWzf>g*Fh7Utd*|N+0 zYu1h&33RH8(U+N0Pu*D_au=@S{8UDt2Shyv)`9zs@N1?w(FDLwrIR8@_xdTb}5?&M<~lPZoRNo8`Im>(t}1M_#fG2 zhtr@%EjhDN4ZYjV3DoQByJFMCAM-z&3vyXJo-#~ql@mBJ;fX){85SEQ1kBb-yo}bW zN+6N@FbAK}M^dU4eCtiudH)>IApu35fjG`q%h7A~SmcmE5&_71UBf>O*KE&7#?X)M zq`)|`pU4GPM9L(}LOIyEHyXY38JFvzBb#V|5QpyCK0j3Pv#l{$Og1G86pS|SCRJ;^ zG)_;wCz@+c=+C;{9P6%OFAnz3c>8-fWOAvnWJ-PAHMf4@L@E#Hq)}hQMoQZ&jq^G@ zpwO$eZvJC+eo(dZ4L)yNwF+u3Y*6dbVv&u-F?I!vPuva!`_}~O;aLqip&C9+cWvK& z7ij2!iA40ps@v_V@<4s=gyz6D4p*MPV27`XG#Vkhow06*5jYNyhgL?q|9Y9jAoM~q zR3zxI)3Y)9UJwF^VkNhsC>(O0`Ms~EK=E`2DlztL(3RC-<@l?q_vc3mY_SzTw|pJF zzc!a|$O@Rh=EFrR%<0-AR=`IJwR~i_H!r^fXsa#Zb3@uY>SvX9dC@|&;fnn=19A~$ z$IO4Gx{`sZ*gXJ#nx8Rn%NH9O2<7nUfZS5mwwPvwG9G~y4PLV0tbl+22{Je*fj=Q^Y`0!hFi?%JK}2Eh(uig zESV$g>!J;)XoGg%S4*vd__jazoX(rzZdkejZ#~<}%Rt9+UQQdQRetzIcv>!DTdC7F2y5c};=#D`*fB(r+ z<@bPRF1@E<6b47waUu4enjjd)w)Xz>eTI8C)NgBR>j9B_zc25g9lSSmhoJH$4eKAt zg6rj~sAWslG`kX+a+%UXp1L9IYj7VYO8R1eM=SgVQB}-$wOVJi%hj47!mGsaJp>Di z-l529>oX9IMw7D-_SvAa9?}><){@cIDKI-k(dE8Np29=8I? z;50=e)yp>=e@3NuCUyuM2!W9dL$^Lr*QN3sS}*UJU@oT{z)P<2B^k^!?x}au@J7+$ zwMn~MS=$#sRi@8RW9t@HQ|mS+Q{L{0EQ4bX=WR!0&t+2zm%$O)mJYu^bLAEyaW1Gi zvDnUqX=!Ef!T^i>>>QZ$SGwogl;A5*LdyI!A1qQ+Br-rbt#r z0puT&qlH=D^nkmismvcq3T^Gd##mNVK-WTtUoQx}FOiKT2^T}-ZpEl!@EsF1o#|B8 zu~#jDRL*@3r#z`fKVYV5BMVy)%)DzEFSUxwDZG4@gzrjOR$g zlE&Ppt>6iP{(lI2r|3$$sP8vMC+XNuI(E{rI<{@wwr$(CZQHhOTi<@pIq%i`jdAwn zuDYliHSu3_&G}nkLH{~yWBY71>w=$A8pNn^r~c1xN~`x=pNR?V_2Kuu}z5K!L7+NgwlAwUgpj*w>N!Z%Md7aI z<%C)!^bO2p$j|L-lb(eOa(EF-2nrBDboxa~qoojsu__xbE>3!#67uFDOSY7!Bop!7_~UT^-WrHG-9d4oVG9WYaUx8p!lh_KGIY@$RhLmZ(oIzpi) zPJNq?KYpAaxkJ~cvbpWe=8J*mnZxd5@8T2e=Qr01VYH!;MdJwq`K%zV4?K&w}rS+(V7MacHG-{+Jky0^Gj+g+!BF;-Q6Xa z5dEBaqbbWdfNiL1IB=a=il?whMV{#h`yMthBMJWMCmSX;5SR(x`U-wBhc4QU#GDTk zTCiwl^DVV{b7-mcOqJK28}7%eZVcTCF28TWZZV~5LDzn@C8<=cjtmAmNRK*SDaO;{ z2%WglNZfx&ldObcV4x>~i?`;M8p1g_)6ncQ*Xo&$@y`ql35rM|qek+{`9L|S^pI)A zUarzgplpa$RhCZDAG!(yKcs0c$Kh~~r~UF^9;X28-BHVzyHjf)J6mD~Ot6enZNk;< z<=6Q3vRccEP>b&gNBR%FxRIu8xLl#G%&N%W^5+qIC?_5>1bO=kL27=pT5VB4y#^~q zj1H}-3HaJYWv(@ZffI{MR!6?#9bjI`Mpccat#N`4KEr7g0-AvNH(Iq@bFBLu4Ej`C zb-fw3`Q3;w-zHM_GqpV6!=-=?hBkTpSTGiAN?N0wr!^X73f!B5_*sY9SueA`-C;wlubtlR7zpVwAbNFnT%HK`m{TWiVJ5vT0G zi`J?ZkC*Fl-7`5VlWMnIeeU4x2;{|)_y!lDuc<4t=nlgH@1J&VI+Z$i8M5*#Q4u#& zbyrUppMQ>zig~Fh2<7(Yg>PH20KFJ^HRGi8%h98&waGL;r#h+dwZro*%L+Fc{;V14 ztY)Lj+erFwVYdDwGC2`<9Vfkd1$#^kzpc4-(xrSu>^6574Bt+Bd0)oHqM>aMrBh|B!X?vL4^SSLG&6eB4+2TI5IQl(GHM0-???VLuMnnj^)@hfRx^t5r%#yRA=+ z7_F&{)$Qp;DE|_$9>@6RP3KwhtP5Fn#&i2@3GyXGJ+*-We`~x8`)64NbLVE`R#h1G zPyPyd6$qga%Dl~e)Ms8$VVSawP&Zs@M>Z=eOqZm|Bhox>$y~Z7}lw9>8 zIIVon&$eWc))-M&!nwAmwjz# zA7ROKVG=629Nsb{T`N`qTA;YzLP;mRppO7D z8B2|Z_>C*z@WP!Z>#P*u8p1!73fa)cnYbk~+)N{WhVyAg-ofk9?K6F6Dhr+fw(3eu zV(_HJOQ~2$8fCj9?LpU_8%35A=k*6TnCh>7wN+(RsZSO)jsjb7c2}fM(BA{6L=jI3 zz$1OqG(DfVDT_Jtz)$PUYZ>Oe#;Z##GdBY+;b;sV-XZw~^7T@KXf|m=moMfr(X4vp zToOGjhMP08!tUBgUhP9fK8Po;o+Djw_6-#mQ(Rp5(eg<0@!udh8{u2Sg#ThqKJ3lT= z;8d9lYnU@&l^hbpBSWMQ_Wjd4j1a#wf(9(+tRJzu;?sGFtmA|2Ga*9`ecQ76e!rH0 z1Y(T1>r8_s``-U#I(LmN>1?%1RK|rhs-`Q-hB|pJcs=#7;1@7qb`;)Cy%;ASE0NTV z3Cd4Wer_l3tryg3j?Vl;!lTkNV6vX$(;jTkV~^qUiZK0sn%rnO#=YKT!D6+|-nM*njS)y6*bF%s9um(h?$Oh8$a=w}z+aLh^N zz_;s@ztkka|M7erPrXGb?j+^^F^hlyApNP<-F%VHweQ<^AV7w}JiFmg4i(Ia2|fZZ z;dPimilLY=-M?`&mTlEpJqR7ahwRk=5GcP^LR~cA?< z6r3My6lv!0qP*y(`h|F-uhYT0Bx;HqYQ@LKF@4EFd6IIuvFi}>Lq(Egf<{p|lwryR za%E)}|HFNzCyXnD0RPWHm$P{7Q{XT;qlbC zW?_yOfi`@N2^J_dsQh?OY)@^D46=#Yyua+PFE04JKB|hsQ8i{;qgcD*Vl{kUUd~-je4>j?61ViJ52j0|Hbun%6@G*nz^wc7zZe_P~p19#{C1FzwDk( zG)r<}-MP)_)#wPjQgB#sc{v(UdEg$`^J^R0hn6N~WBE7;IKoFT#)a|LH>QVyW;_2< zl48jJHvvWzY(Lmn4b1g>lA`g*9Bj+$Sjbr!4P~-?F!W1`R`pioy-7}+GJPu=0=`J95>U zBx#@O3lk|Xr`ugH`)hZg`;qxvkmpBa-!%XXjGWFc2#990r^NY+3HX=yIrLS}YkDO$ zW=?2~;Z*qsqG#4-nu7cS|5)kH?%w~8wP@G5^3ZVY^VRG?LPZ!Z|9wuJn~L^l`?*;P z(f(U3B`0omB6dAcUQczyxyPZ|?g;vRR$_g4p3bMLKa;t}5BZxKEf5n;FY)%49<9K> z;Cc(ap{O~%7}J&~daKbak|2&CnqVB4Q`$uTJ!1Q~|L$VB4d#N1x*3(KxtK?il#h|u zcD5coL3Bt7OWACY?0|_%y~7#fYKv26kmlpVLt(4kt5hmO3@gR>D#L1rC!pCfjUcp* zKN<8DvqL_CbRe)4?bo^Y^`^6WmwTfU~!cf8%l6LGH>DVm*(SFK~`(Z=wI2 zjN&UuU=0PRyscDf3NN_u|~hVr4~CEh8*LtX(N5tHUDnzIc{DekpT|%|);h0J$fh;H2!KE`*Gej;3q--qR?)e$Mh{hy)t_R-B%<=(e zu{z;f%D2@C&MoB8UM8TN%uC3{m36oCNXSptcSFd9)LGv=0u zYtV31HQ~Nxi8S}Xxf4YoGm4=sY7oEY<>T4Z+5Hh{KVv$T3N#k$b*L}{)}dU}tiNZs z_m{8m1M}DC_Jdsrg-rImf9AgC6`SS}0ED+()nm3;TCUi58uRH<6Wod=Z#~RxyFHm! zb@q5BCF$*=Fc$A5v{}F3T{)_C;Q6Fxy~87MFtUPHH&7saRglRZ5q2X>MskF-pP9rF zjir=@$JI*xJ)Km6!aI;RdNSaZWZ(x4Rtxc)nu0!q>&m8H)OrLPR@~DT>;U${2@Idp zXU5B1m4n9Vf)W~l5aT-fzahl#!v2d(1MN+J4X5DDm1&WeXydZSFgoCw{6M)s5fBL# z<8K(|9Prhn$CIsyD%&ab6!G~9!_X|}v_!F4A`t{@ji;t9DYA(-1Nib0Nh@%PBU5+y z0>okb*&L3+olB%k5ZmUZ0s?!wI<*@%9DtkAS_-YVydwa(Ak?y@M=^qYi)C1&lnWut zx-K!Zc|+urvbw?2GB=(=7e<4kma&2pqhdz@+6X`KdRdL5TA-(0l@#Qyh+ zcq3HwR)YZQnbbM|>zy9ShT~6(=*oP!{RlXSSzYj(L&x`H&hbNI3GQ~6=$UT9nx`Zp z1T-x1ZXRv@gpswOBx<%6N6laNn86T`2}Mb$ZS6(T6C{W101xX`iT>v~#d_S2f`aky zyPId9(b{bO>KWb`n|3o8_sVJoZG8cU}Yh0w@7MHN>)zlP&Ko zw^H4;T=ZhZ2pGFEuYSLy9DWHoDxm@LBY`)fs4j@5n2YM`n3pPhxndpa(}5!oV%#7` zj2|DIiVnhV0Avb1Lm>982&GOpJMwapoIGinvf^j3?Q$%k5jp*=Ostg3$|D1kuFQVY{Hy+5EQS`62`Wdj?S?p0ox9{G6L7F!5`G<=oKbhUmIL zy~Yk6!PK+I)6K`(N}F)hHiHE@5Q|ycy7s+%*~rO2x6gmt@nBetv{z+xtS`ucMkL<0 z8&5x#FL>tbC40W4G4EQ71UPzU@6JhkYU6?1D~A_eD&udq=hv56|Ki%?{nCXhFE!L{ zBeX%OebKMS-8qBvIUCW+8bX;^sMG+UPNRR4wQ8mY78cV*`;OLNCuSr3%!&voB$dNM z%tfgaJ%dPCNd4(3d4?u82vq(U3k}07o(8np1if(PKcWE;kEki;i{+pZk`U>RY6!b~ z0X{|UP8M?+EjOiBDcYo2CewVUD!|{}iBu-i=F5eMNq|!Ie6bkKvcwJ7w!%wyC0Tz) zT0H>#rwey__ssmYS&!-TQ-lm)xkQjk=S)}_k$fGWP`8=@7&sx9YvEDW0FkDH3=pKc zOW+(HSe#gML_NJE=@qIDUT~nf3=BXi6*v zso7O6OS=@7GY#BxgJpH(#x(`If zqF62({9}L&--D>}xj%%f{TE!JNSxOJ_JOhPbk;dVxoYJ48g+CgCu}&<2e9Y$?8E{> zh4E|Y)Ufe=)Sz6I09?bj!&}Nrfky&_a2Eh+crcdClP8IY;JgHIF41ViyndSj);6Vn zhelGu1b_ad_P>=}%~YK}X~1)Q%m^jSFu(j$W%26VRv3moE3-(6eiTTP|GXCO+y2-6 z*KrZd{r<77t>yLd#G}hc1c0hBk{f1hG??*DfYz5pjjDMY)}-(L0}>ep^;p%+>i`kD z%`Mc5{0kNe*w3%?4PWr8<9W_9H6tR5i`R_M7jVZXL5&OQJiFbxCCAsx+l;oD53i1R z1|`W-g-Qsmb~hoKltFRqFL|>Sm?)l*QEs%ze13 z-wCU`bhTpBBpL)ZkEH|_0ah0HZ|UuUQ_!=z<3pM+5OtyfDW^ip-wqeyK7&=pZqiTD(MGkGwB8>-PI^)qFZugP8zDwaOrhxbjjHB6}8Z-D3 zVXQee?4}!PK-g!bN4{sDoq2ygm3%V)`D5K+xx}&F>|j%ALji4DNti%3$OJ;bEChp^ z`_@ph@c+@6?mQs}Qb5(HRSEEE)YwvXXhhRW5_L)GxK}w|h<?{jks#`-PD!BA@%Kz+kl=lsKV>vNztA`W+JWk>o}q8+iY2-*vS+6+3tKg|?wOR8k}P)qn#xK-H4M#hduniW9-f zlS&7m^qR$fzYJ!Ox=@Ot^}(ABhGO+wVS=GwcQ2JUojmfF30`khsK77a`$QgP8SC(I zC9!Q765ZGwja#vO$=ZmgF(S*n=RLmO!L7GDA)SB-N77Ud;0ylB18hXeU9G=s#Xn!B ziS+#Ngwsq&YeMqAUw6b?u5A&^qfscUz;x&6M=8@xjw*3kYg*ayYG`=qm0isnRgW@P z)@XLNrfd~*Lc`EOab;Jy-mPa^xE79L!ooDSykK*9d(sdZ#i!q>h#jCz&ZNX~IHnFO zAB@MHrFW{yxszFKvZ+IP8O_LL7E5tUiPUuE0hasnZJuSLW83lBop8B6_^t}ai_(h~ z?UDhHO|auLcR0-~EQ__;G|#k9x&IBtvY6{T*ogTW1SE5@5F-4OG%0v*GQ0Kl&Pf8I zvJS6FrKT+bd3(6~ycSR}q07x^v3~g2pKz2I`gr_*2|TwSYZTj1^y}O_fN%IQlOpKL zz1^8#)H8)_Jrk3|RfP8yBED~74f)zXEt5k_^QGAJYipPNXud}Ux#)TIFoVYoN2yFx z4ry1=4A^ZUP!LdM;PN>}S$Ajlzvg-%;%xqe2=S8D%uR!?PiBa+(TSAbaG$HyTN)kt zXd-B>z3v}kS1OnE-|X`G2y~gTB3?>La!B$=;p-+!X0ckw@h1o9EZJ7>fJ92#q3|a( zvjj@}NV}KgSByQ%)53Z}fQk$z=0;v4W3)1z)W?ad>M zt?vFOwXlPr3>NQx@Ud#`E@b3o*nL<09M*m-kCp1RxMj`3TS_}!f<9TB>GY;t(VNHf zC2seJW5ks$hVWeUeP1~r%io3*%A$ql{O3ggk|XjT?nG9Q`(rv81L2zjuN3Y1VC0$C zcQ(x^J<{Mt^9;$X#QxC-RyXK%1 zqPAEHfLH+d*FGY&8%3C}8I*2<&BTqxSw|-OA7Bvtb&v&8KgHkpauLL zh>tQ6*h+deDHM?3k6v=8;8z<=4*17cSSROe!Uqlen0JrrQ_RzqJpYaybJlyrdT2Nj zJ?qI;y*uOPH-SDWO0u;*HwrzcHQbZiOiOtl7&XG zh&_8@j2&F9;S@qpS2iX_)Nc5MgN@_ige8Cbl`GU>FOh2le~4*yjS~xnzrTUtghl@% zFr6|bbs9JtBas3_q%IFN40`cu?_AHyYT(I^u{0M>?oTKap)|_V2)ptn>Ba7@p{yj> z$UYDM9kcvD_!r>k^;UsM!4I2OK?v}A1mtX*dT&=24Ni}5xnsnu_*k|Bp7ax4ev-hv z!G?{{Z&27q7)5J6BiSXVr!euow<}!w5z0J5a$Ce9&9DZ9~iUUYNO$~umezgw2`GYmsrS7|lo!2O8y%w1vkaV3MeWdkMKdTrMl zx3vmpK}ZF$;n{|m*Q+b;F)YGa`P%t=Tx1a2M(4eeR$JA4d14r}@>CZ^V?sTzKCCWY z)3J%90Ik?82XA+IQGrd;3(r9^7(1S@XIe;tQH^&}XeMGJgFY1J@q|6!dA^=vZyaIC26y;FFV8=i$Uc*OLg0kAR3%|~LgR2UX4P(t zquABp^HS33B`H#tkK{n@l>kToP~=!72wmZH?uUvph6%BZl7u!f&S^vhwRrcN^^F8U z&BIdN+#ki5jYOYS@^fd;*KLG}cQ)NrECxJW-^1V!Vu1&u(V>ux*esgNR;Q@TDCtUg z+?9WEji0>s1p}dECouWl6%R{^$W|N=m|bUgIDR*yvoiuiSdPVe{n_!QH`ivSV|Udq zWRK9NGfY&)mDy(1i|ZVqW%k)#;s3tl03 zM6!IDevsMlVpu*BU?-^%u=fzg1E~+3*R)*uPwip^>#{Fas1q#b_C-V{Ghbjt`l0wY z7g}f+2W-VZ7;pu&SqyG_4CYdej4)gJC(OV8+1x&Qw|z?&O698Aq>_87(*+}?7AMk* z4emy2~}& zhgLfuF5{V9kKv09LqVk=Y6Hbk1!M( zZyv?d50FIw&}UjrJ2i6+?&+$-#W8Jb=QkeD_(Kxo4FS#YS4fN--milXu!Ni%^rF3} zNM|c``8RvsT6s%##O=GCtB%GH@abu-PnDZtAr^X>ej#+%(Z3`i`&#!uI}6b>ayKaVwhafRSV zarG_$opSDs$wciBpfydU4=;z4bA2u+V|mDR>-W|>mZCCxVC;wJcc)va*TymkF}jJ# z{qtQOl}h#8^VY{%-$BX#yXnq;5X`J4TGawx#X9Q>sR==4E9)<``d;XRZqS#laMW>V zRK3T74VP<1mXNd0qKZye_mzDg8j-S?n{D^`5_SO!-Z$N%?Ys;)me%xoekfNo?-h*oPX!4-m^8fi=Of zn_U?X^;9isjgZ()c4%YwL-rExMuEq38 zt=9~&&j~^%kaFf2a$kI)jMu#&xlS{ze6i$j2PFH?%}tkG1m_!0*cycT*Zb9QJ%g|* z3l%WVW)N>SmpR7DokppzwOdRM{Yh8L^-d-30CQQSf=09X(!#VAo9+JbCTzQ-b*Ub$ zwD(QMC-yPOW7vVqK0TobeYlGyzO;FgFpXa%mD;mxJocAhEH|rCGssul2Waaj61D_z zBcQxw5Wg{l4^bR8%7qkAie12Z9A3TG+f4AAuhwsDxG?PTSk17MtF$A`6A3%j5`GAU z?hRf4z0i$Z1wX&#zodZMuJCTme^jw#YH7-z`0P-5rgCgY9$oG4i$AzoMB?!T#;=h2 z;nF;UFRMG97H>X8xecE_Y|6q}uBk!^()-av?-oCm6N*)vr?x%)+8=I|R~ECbJkZ?g z$#t9#G}YpvIi|bx^YS=;Z9@rpVShs(YKLheC2IP9t;s76Q#cZ-6ugYYWUY0&FsxK# z%GA%hShl7KqCl%)0MPA(uP`M~Pjr@Zd5EkF-WHjRvV z>l;G$QJ#rDL2uSSTd&&N0AJHcB+iu)eJxsQ62Vt236n7k-bQSt~6R8J#3qmra^!sx(Q_Z^X+dD z{9zC`u^$|Ce!*%}wy0*wEVrNH8qtiqr<%{E&TQjPXBp=)145deGc-c47E)gxJ5;T9 z5PZ6rXBDe_%AN>i8Nf$GFAyz}T*GgaZa7k6a9ii9NBLVSy7lg`P~*nW_5HH#J&Wu^ z+Yk=p(S=w2A365v8Dj^qfbbmHWAJe5j9+CgU^YTzN86|DLD%jhI(n#IZ3fJ|mC0G= z$l(5PATDs~6j5L?ACeUU@y=9*V5}bhDI1 zIw2OzC}jV{il&~KreeeW4yXJDzxwKR7hUPu8QZ@S`7sqW0;cixSRC!Y1)o zCR&XEY*{*+CxEbE_`}OE66iQez~M?ulwh#nKn8;o={F`5*g8C#oR-Ir6b#Jt`GYTr z>uPD;=~h7n@AZ51^c?@-KX>D^A`^e4Uasu507AF=!c=yr{Bfx1s1b4nI+4l51!wN5UoX$g8QsYw z5q4%gtQT7;*!W?%HYMGx%NX`McE@irX1U1Tcw{$4ZKui0ZqerDx%J$4cS z?p+BtGO*?GvgBZP7z^wO|9Q%M;CRgy6;kKNBal*~DaHSmgeBpA5U6y;@j`$0*8c$| z4wS*M%|G!m5CV8%eF9f5(n297>(A;1biKEiZ6El7DeRRf?_n^`+am$OTV$v}F`yL6 zbo}Tg4gL4$j>NAtp}b;{w;t>4?a}o4=y75r5{YU3$+RUuQl>ja>Z^Sa>lb-Z-kOl^b*(3()7mZ3R4#b;DNc#%BlXBS($=27feA>h z^5T(iDHz+s!?m0hJ@$J#zFu4Ye&jhK#q=QXQC#=Fhrmdc_Lv+t)KVbh3!8&rr@5n< zXLAtNXu*ZLgrD*hZ@|ezO7qm)A=-=-^uUw)*PvnH`Hq_uiD@Y#=KzLqQWA5aaVzik zGlv@ePu?Iu0KX^CpC@wSOs=sWSFg7%@E@_(ri4N7+>*re(qMh=u!xs2o;j7wBPzW` z#p?)-DVS!NI-`d4yCiFx!eXr9gzju83kX-8Rbgi@j7MYov9cu?#|__-!dNap#cwo` zkY*SbUogVG*%118Y!0Jmfhv)X6@UaPA)VQ9zA8G|(PMTSO{IlP`fFAK1`)BMjN4Hm z#L;X#5@7&H@5vQB_HSu#gONkr5j)9I7X{8!=H@>cW8ha@Y85g$>=mRco?6MYnFY<9 zPd93l+O>jr`gdxnjGaPsl9Zzq!Q~X}I`h zGy5>G#2v8|4$~HAH_kSij2M$#XH9Dr+A*tKu|h;GARUf>iL}k9av4PN{awj^bFo~&X)0Hd14$Xd+ClEb z(W2L(ZM0a@04~+~ZAQFhi%BAXkv@J>DH7zYZ_`(E0%CtQ z$=qm#72J?m{p-=ZiYNEmS`ja+hof1IKKUAG{tdyD5O3@7%5;+WQWjUf8y&_k&F?H; zm*TpQ8#~%Fj7Fg2nOD4Y4htS>2JCljP4&MRLNjBHkDrGo@&fMC=P=@VUee*v@ynKT(?@P_GXc2q$&Sx}Tsov@D42qES z?gk_AmBO{jJF24dR?83>h^Dz%Vuzdru^MM0Ev%!{GDxpp zNDu%aAm4OyuPNhkY zAEt?)$^P+W^Qi`F0b{A!B`KABLZ{}}gxy?PgJFLN%~Ruifh_c$86*aSRD7vEJ_49` zY3u1$u6Tr`O$bU6^50f9M5jxH7l3$H@HyufyHJg-WxnwFJEuQE0b^TzQv9tbDzr}m=wW5*F5%l$a;xNT^M6(E%L zo7p{%94$-U=WJ%7ehJ*+x9g9NE&}pqCTKLIHpbBq#K17~FaZBpHT>7Xa=kd=oo$zh zs6+gv$YEA3rd=6pSe2Un*EFJE}j z$62(A4NsqcMAHXpq<-AR*-@0=&qP?F9oJlo423w`U2J@AZANxYjiX^sRo|WJKYK35 zmbV9dgMr{Vz-e9nj9g^Ui{Kpf9pe>Ynh$I;+mwUW%q%(H;Y}mi{mbbREM|87I-Opz zTzTB-=*@g9*_xz$73|ai_t0e{+(Y$l-p6RCVMxm*E#x9hrFX~p6?=5M9+h#*Pa88w zZl>95$jGtf3(_jLuxzLmE{z=QHtv;HRm}Yke@BKB(7{MZvb3M_`mLpr2%bb{#pT9i ziC0Zq9tgu~Kx0q6${K%^RE5A5hj&4>498w?6!T)Tx*DI7QfZ3(Jx9&q<9t(5dD+LD zy_!D9Wb*PHWzK}AKuxp?vRPz+y;z|@HT$qHHf)JxZW*RpuMejzyU9RCTi?(;I9-Lk z*bVU;JLn4%{>Ro8O_S{Rm6BZ+_nEq8w>$Uhs@1k1MW)uMzEbq2dkEZeWr&hFvus^Q zaMTPhvf2jvOit0T;M4n*;%6Bi=;X$4O!nVoKTh{A+|BNe`Ra){3X=wH?q9{;IT?VI z0z5EJjrBa|y5H>i3S1>tnV>8)g1Wv#v$_3PJA8^%xH{Cvl&eM#A#9JJ4JYt0ePjAVfrquOVo9_R5?g+ zSL3tBNTjI@@PFe9PpP+UragnYDHelc?s}jQ3=FbC{l5n9 zdf>{4Ox%nWLJFF9tMztJ12XBiJPl8H=^UWQ}{jDtEfO&Ea9Z&Tv7KY#DZX8)~W ztJm?6#!>*~DLp~+0f@mrbozE}RZ0g>;UZP!*xT&18x&_w4%A#v-plyk8S;xV&T3i_ysS`mC$XJHb7O=?;w5gMr?@w5( znLjZ}Bv^z$o|(!n=jM;H(j zUX@DLs)yakNSU$Qi$r^93#I0)80|M$eeDK}*-zt4B|v{?sZnQgg0edpjzHUE;-6!8 z0CEtmzkXvfLb3sW@rTPynZY zn8@J_(XlTBpyT%ElPq{2Q^4ioKHccUD^E99-zSk>0r%VxV?_lN!5EhZDsqh(DsPal z!FzzJDjb^+yvV2mzHpt-46Qdi5S!V?dsN1rU|7v0`N3ZkYZl8q)ZX{5!up|jRwS6N z=S0zn1gN?ZzN%oF#p?k|-+=aK_no&_&zw82!L-~rvX1HVZGtNblRhu;T$9M%JqK}- z>^~32Qc4~8JjVIInxG_s9-0%;63~tsZ=)U1Y31kpLj0mVp67Rk`nC?c7~(qF{4Ee^ zeBp8u{Gja(ax^@D7ju!#BowV=l!Kn`feusuN`3bP%nGm`T2H#}2DMLO&X>MgTfY-U z0VED|NP{eYsqe?{i3bvTV9RsY1EHR0D+-~)nxw!#W>4TF=Q+aeV;{8j*6@=NrQXfIg z>b>3io~+1N@WF*WWML$lqip2aQiOzYM4sW;>1vmB6i3Fk$-h6^PYzJB38bv`!VM(j z(fWaEnk7;h>P81gseA2B7NrIl>SYHbQBg)P#$`b@V+$sFN9j-Nf!Xid;hNN(ap3+z zBpMB?Ul|h_iU7tbQq60QEBH`G4kz{X8xFvNQotF< zfj>nsMLxG`QqHTb*PvHjx~I<+if$d$@c!yohBL!O0392!8H$GVeR;f3=zaz74I zzC=N+R9=>mo-zNnX`VN8s>!^y#!%fx7dQ&)nxqe~NIZL9Bm|Mb3PI2zK5Gw%DX*B)*jLD#w zp;5?Ap!PLbQ#W{cPx{7y9GU%3UWkoEV#EJ!UUXG0Y%dw<3x0$>@(MY6LrVQmPE4gX z&@XnrX+|OTc50bsGYoH&)n_4u!h-0b^npjyuA0k@2F9mH#suTO*-+s{k%C` zM`#y^#*F1y>=d9klu)fVXNAibrI)Yw3I!m!5_pupr>G-F|HKs!GIDR$nw}-j}c*523rCX`4Eb&sTZkCR+taQn>A3r|y`lCm^JK zzsBKMI%#^TsV9;s@$!L;(M=)4(-vvI_DFowz)f0cWr#ZeYKeqIo_(R2teFp`4Xs77 zRf4E`oCpd4V5t;-nqr4jNegrZoF;()#;3mytf?qS>JED*nXmSx>1HVpmh2f;vp(c9 zkvh3v1eBxXIkf^#nI>|gv{91xA=8u^ez$-PVm z!pbWXC|!jd4Zqh^}xl})a{`Si^^BvArktci*N@WWKWD>5+qfpnu#=OsGcdi_2-hCnx?ff zpxC!<{H0>$%gC^8*vN-!pxLAK~s`{OPf`n3%-APfRCv+OeAdG+4|^D=9ZQoG%2N zO!2`e3tP8OpeRZDqO@YyP}f$`5c?w~`u>ne+<@3S9H-Z74x6oHe~oi|Wis~gc-*Hl z9z_>awzBtI0vn^NJCD(*tRoVKz{&Tg7+9}ey`m-ExxT$KYjb(+r*tWy_omkp#7SeS zpG;?#SI%|j_C7hZb^g9FxEiiX{Cf9@WRNjuG?5H2LuQU>Vqh43cM64?*1V}VN`O$b zE=N@R8U1RKlPJg*$K zZBKaef(=7~rg$k7%jsb(iB)5SxnkjreN9}-(d&mB!i^w~O6R{kg&E#+ z3nK>9(DX#5Hh2>2L2uG!6xR`OT?Es(I%J(YQ~KN1puAyClYq==?MO`fib;tn>HKlmko@(6Rbv5Cu#lUWhNSRCN;aEO`w+y-^~O1900Z6hKkL3@5e90wrA=i`+4)*A z*|pVdbtD-S8m#5f@fY_uI(LPku{lP=0=67wZ#9WzIM8WE1c?(OkOWa}33oPKgHkpV z2b}0LQQOkM0(E!9$gLB{EF}3@VlPVev*kaA{4HYb%kWiMxFe&8>_=_;HcX{j%VB>~ zyvp3s>iTw%7Y*pX|9GJzXBcDfv|OXn?j*E7Bp32u_?<#~Rd97pY_lD{+U0?!-Qyi- zzSLe}aJ9-1uy3|gZa^xY_&bTxskgzTrPgA_(tc~)f36^A|MhMum8FV#zGx!A{z#ol z#T2d161Tai^=KrfM*rtq=&zou)EbUe;_6X13Y9WGCKFmA&uZ+`YxVo~R0i4Njw|oY zHup$2cf-=Nr!|AYut3nStEAkWdLtq!6rT5nP>bY;n#VRc;TU!h?2p9Lp40rA52gs6 zYW7dK93GE+qoYjQjt+bWw3_<{S&`-5xP#C1{~W@$Mu6DY&4b1{X_J&f4}okEdJOK; z=gGXhy<-z1VS+qmm%dmikp3WSD-rr97b7VJnwkQAB|nqZLA(`Eo(G{#bPY8CX&Zza zd9lx|*?xU{h>LbnjsbqA$tut&TbqiWDEeDMJxe_;@C$jba>9cm4~;hjZUP6hez^fa zur+>b2;H4D_@hw_oBCIJ;&Y>G=3h^HTkw}2tAsYj>XQ}$e5E5u*+ZSN6xc3GviNEHuGD%)$l9-`y?{>}) zYfPjSH4v~gv**&~YaOUqTK{DFjRlMq_hi_5X( zZu`&&Zt*j21k__a5Fj`Xf&qf#f9e-6IWs$ysf?n{-+lJ;){+me(*E=8&rJZ*A*@a5L^Qvpo_J+ zwb_~*GdenIN#X#|>rTnUq#?yF{BnO3AZ`h`f=VL(S2kBwa5xlk1AcupZb?a=s`|#l zCI^Vy9fiQoQ$>oj-k2uZ541(0K3w8-sUj9>^6OoWX23#(!Bp0bq|@U?yCASSN{X5{ z#i;rAo@XS+<{z3N>$(lU<4rdXCgY(3-8h}j=HfHnVLO+Butp|#M}}tk%k0Tpo!NqG zrREqKA&lcCTS}mZm*ox*+(gPx74<9!_me`8hkM^ zlRXhab~dgv9@1BWVXLH_wFGW1q6gn1k#E7fb9-R&CrfK)S@y#~zn{n6HvElwoP%+i{z7eEh(cb3C{a7f&8 zSu0P8WYpXkij;yLYjm9n-L0IC8=g)tdO*1VAW7m?3kKyV@q*E0P3Pi+U^=W%a#K%T z@F|4T!HiVF=`~(gX8VCn61XLmd-DoL7T7z=8F1to1<(!(LVn9S>7+?Luw<1@w<~j| zlU-AbBG0widKp`^ zSk-$aB(*F`xK?aeRaaE%8%+dDUR)XD{tn4*+w{LjoE+kcX2u; z+mR1^7CTXy?rlYz&u0&Z`ZOMj0DP9`<^E87=Yq~^F7L&cP;vSs9Ls}iXZP+}I@zH) z+-UUFw?vo=l2`+%0em^}1TDu#^d=)0j6SBLotaWWH9VQTiqlB0n_rvVljb!o_e6Fy zjR`&bBiWAe=q=wFPY{OOHvkL%|B(0AU2%0y`Y?1LXn>#z?(Xi8;4Z=4-Q6X)ySoK< z3pDQT9^Bo%k+*aIX4aaS`}qcM|94h*pR-TduDYsr70x0(MX!jo??p&#cHZ$DV($$Z z<=;S-C8)WzdAQzTLzeExTjEzorC*LdHel8kowrQ!8~z01U#FpjTK&~(57UBKAbDX^k$ka3^^} zG(^5{BczdwGfg^b?H*r{@U`+SKGaj1SY9pF-VI^5M@Kh?KCj@4MOP3m9(|L1#H5t} zgvULW&+kh-ofQLBjiH_rLuvo^uu)`YkQ)Bn39nj>pSPZ}1!?5!v#QE|8UIYaNQ* zk3fFF)TI~i+Ev$RJpSts)3Jf+9g2Cr-rDfjA$XM_i$4zLMFUFffhQLqIpAu3)$y=U z#3=6t;m2wcFP6+(-hUJ!EtCkN0;E#p{-B6dq0h)HYDDY*&#tb@xDZNw717Xd`NZ(4N1ZxN zu4`Xrag(k;Kqv3@V$~615pl$tl+e|@NpN|k4rWBE?13B2l=4qCa%F50v4UEo1GI9_ z!5Q#j#GAeFWMGgzsDAx`82ZLw$dCV6b)V1ip4ZsDnP@8~Y@!o#o`+tgkTH5{37gBs zAr+c2W>10CAOe%VuujkQVqRC>>^Q#2VR*z@G8B4Iapo}-+FY8e{_wZ zJexf#d-q&kj@{cfd7mgfTs=V{v)R7N4>GP}YdXc$R7dNNi3n1Haa+vxR{QM)?M~B9 zR82szTLh(;Fs$i+Vv4g+xL?bXHNd!$qD26-oa|`$;wi-U;23}M=Eu*ctjJ;03b7B3 zg{*2?q1B2qDd9Ap$%4#r$bHGfp&noOMQ#tssk2d|!{94mp8u#OZIJ#a*_x-uZrGu} zdtf1YVBLq6{30529J{;~c!$$mD3UH`VO4LZzj)wMnND+s6$cK|5;D_VkNaxNa(rD* zBn;2uQ6Jj6Y2i;Tm#uZ|abp1gK4E{V1qjoW z2c!z@JWV#h6)1gY?C3NZ&yHyaA?=*w7>o9L)`K z2#H~Gp0-nL4?*X#ka z5yEX}pAHe5Td}<$9D}CJf;{6o63*pvG~_!WDqNsC#EHtLXk$5{_ZD|*-4>wbo91+c z%H;Og!ia4R5hO>OI+B`?rNKhjtR(eAj)ka-^m@L=!CHoR$SBtHW9`}xTnw2YR^rcxM^f{X4hO&xLnKU9C9|ZKa2Y4EC1-BPD zXq;{jrxQVr&D<^apk3~Yl^UUn&N#Q;m*Wt4^Y1;c$RmKUg*7(I$(w+*cow-rR_dF8nupf4Gg|BJUV-9;m;l9DhiVwql;o2QO zJDA&jQ2|~pj*436IAr9UTqcv;jv|~QS9!y z;B&vafXmsj@>G*?0-^Tr>slX`9XK5k~_CR z=QTT1UM^D(&0c1SUmAYyo#601W-x-3S4Srv$fF5+c2+7($fhHH#Nk%h`Mi8Y74cZ; z8$8P+bV5Qgw9V9Gen$xMmr#l&91d%d zAMn1R;*b>&mOUjz$JquEbN1BAyAlsF88$AOFjxr4CNKvvMhO^1TYPFG-T~~)eCzUz_R%BbLEBd|n3hwbvx6C_% zib^UHH=w(yPxs{Zn%NZ;j5ICn41Ud5X*HA- zJNTNEGw0OfBNPMuZioeaxnpS6!{el$*jC-Hzp@)Cn8Ke1kI={Any%Gj_kVmi30bt= z5Zktk6B2<2WT?=oz}c`{7kyC*XZcitQJlKu@BOYw@RfW)|0F6qEm=32om8jg6iM!_ z#VWi5P<7!53s()^=4i@4%CUZ6=a zBN_Z)WKJ0^@v56{t%Q|P-s4KNwPslzSEgSiTHIH5*;M6X6Yx;6jF9XcxTKnGs~#){ z?V>tv;MHT;JM9%%X)n-X@Ulzx$FhSkDGd{7O0Zgd`3KYLv1*J#HjOpg&ET=Al1}yr zvbtNs`{nOI>mf(v2DeOi(bI5;qW zfeV@pcaqPJ@nM(d_(UJD!KvS_Xa4v&&PtiV(FB?hRJrwa-O`V@KX7@yw6v?c>WYiy zGQeo+w3F$IQSeL#>wDE~{@6S9S6NOGP<@%cU#_W*Kz5`{&Wn z_2eWU;XK+AQGF>&4rE#xwLB+eCnID|dnVM^vyQarwOgW{=Tv?0Yk@9d`9Uw>Tvh>j zR2&kx|C=*k@c?$rG`v@iA}X`$F-Td`tucIHJj-(fZQ{tw!{w|bI|}zg!MV>rIx` z8k?|7-*3F&!tDhiS8Loom3B^4^C^=CBE{|&wdW1cV?w$r?g#7^V(`EvykO|~!SWwq ziw1iT_m6IcIHU*G^3LaWDVH<8+;!8JY^J@hhPP3KIPm_kq$oCkRM1krqvh{GI=?;7 zYAPDWly8bmdbst^cNq>*_zR>sR^z;kW_s!#{u>H#MGX#u{M7VrL$Q3~>8yM$0?mqW zg|~g5Y0~ADAR_k$HIlqebQ^=tL1?Nb+Fy$Y;6zo-aAuDAhRGh9X-9)YYw}(CC!r6>0 z#aSd1$z)(*A&Cf~q)AW|QE6xIvH3T)IbYASRtkL9RxIMmY<3p5>J678P*4CqP(8{J zrs4^x-jqxOm-CBTG6o4E<@>~y>i*ip@LJraUJXwqd@Z!reRIPyN%N}JccbT>Sv>WP z4g9}kttFN-uo4g)rIVb(A9{%sMzQWLI=?R0am9<0*z$5=+^BHwwaj0nQhj&cnSTGtCNXtB-oTuGiq?;gu5!NPWRai{ z>XNxmi-5Bxu%h=sc>~-YqX5;S7J+q;=HaMbhioRD4@jc!XFB~fmRm84r~L5<%s@(_ zF^M`PJdIz>TE5MGzC}|fZo3Du!y43>_|-EPwjeM?Q4wCS7Po~Hy{zTv0|povC( z5iXCHGonO*Bti*-yWCdi_2jYpX!iEb9i`FLPiT|0gS|#MTLJTm!@g^)RH+0R5|hWhvz-+7eOX!=pxAXb0 z)s=Myf`A0NsR;v`A>2Oh&@E-y+y?N$vlNp2*T+jn>+iPtDW$aS8}WrZHA-% z(^b(R0={f@DjIK=3de#xoD5&GDEc}c=Z1+a@dJ6c0Rm&hQUun+Q>&onbE_b-@OU~O zCDVd@-FY-2$EkUVR!f59LZitzBL;=mZ#!#NOZH&Y1>QWwY4=!uZ~ndHapTOTPdqZ| zTGWs!;QEGVPjj!wOD*-E>Z>;!>8u1|=iuo8y+>b@@jL)LI1?{p*C|*i4NDur#w;Y+ ze~cqDbIGXV{t;;Mu03)Uy0mgF{T9-pz~LXtUisINc_0C*mQe@qHIKxlu$`KgeOp1* z+Y%W;4+f|}Ka@}{KxaC{{7O09nfvgASwS{7;TCQT&#`U9<0-oic>0(01Hq z>YR3$c8I!;5t5Q#c^YQBfJ#mOBi}Wu0Q*+brZ0kIUi@Be!9)QgW!UYROldfpo?Ht} zI_;3huE@x$7(1h9k5|r#T4f0iQs?X5U;9Da&)RrR`1L5!1OhE1HDf&udfgU>E6$~5 z&|}VS%WLUqDz#+yTfL)+HD$S|L$4rP#k4do8Yh21k_3dUynRO-K@$Wxar0Rw-OkEZ zHR-FzT5BBXNJ73$hIt}eYq)Lau!a=oDl&mid{FbJv-fa^gnhM*&m?8jZ^-3v);j|Q z@{JZ)S}hKteO}(i)B7E!M5DKUZ#Y*g%Q(F%+93y61W|aVKEIMaB#B2#Rv=bf2+{<6 zu;1X|+4J>u8(D_)-v|&~7(+@VO1~z4B(HNQ7FNKeuq2>KmLwjC(k>X3P8GFpIPgWL zbV&Xy*#5A@m*sGJ6DTZmmQ>)!p zaENf_bd6@=$dTVp2_lV9ufoWrR(3(1x~OqHKtwJ4p)7rIxs@bghp&9qYZbItC!rM% zZsX&K9smpjz}B@Z@ke#;sP`#u~RE&V#H=Xve_`31#B!QJmU8 zteW+P1CdgLIWog7_*3tLy}3l5R4sDc(o0TgSQoxOE6YIT>b~l*zD`$ypyQU!r$bos zNu6s=Bo!`mqDx)!u3?EX#Zs!O>2zLoRAry=`inXQT#6X*Np`v1;ncTL>D^VZG@}4M ziwMev4}cB|t%;IkB1(J?L39cgjGW8ZDGS?unxiU}$ja9Zq31cLy09-Puz{Tr`>E{I zOw9H#0;x?P=+sXQRnKyzW)2d}*mh49)&RZJrW298Eu z%s$$NCtEMXbplO2)5(s2@r=O)nj2U$X|CjycN;^);_d5OD6KXEdTk^9?gfiz>w5*z z^)G`hFWF4}1Od}>CezycOFM->b%*nl5x%WJp7K|RFtTW=^Eqd@aEvPdO4DqE`K{tm zeIfN6sbb-wvzGLwoZW zL#n`PeBn#o930b9dMWDndNWcQMpLKz`)_S(m|x@tSPTXkivxeiY~Eg&kO{W%qL_*- zNJ5#b7e0AvG?|T4kK|mjzi_<^3~nM3_y`)in?QOU&3vnScChBctV#4Abrnd@{ne+a zr5H+ENBh%sqAjdalcID+ten|X&JT-B+uoGoDeJIH|*}W#iJ_lDLV%SSkl@pCvk(}l}<6?*@|J> z^>O7@$K`7<=DWtq`@R{>WNEuq@CQpRT|{-k-e%-34OMsE#YvDnqxg`|3|*I5xApV1 z&~hNyfrp0Ov6;ZU`gs`KcFv$hb~{Ju{ccwr7E z|9gG^m^N}0eSjKP3&tqA*qTY!lyCP})S^?&ig{=gsgg2eX#s7%b_Fh9VpbRF0IX_! z{hr5Qx0l2C99WZ&L~#0a-O2mx<2~%8SEHavT5vobw3g4MuR3k;X{z*w_qgCIxpha- zXiTQQ)Yoihgq8)4D$q$l+&F^X+041I1{#^F=K>?ChI* z-WdzGK~K8ln^vAPnRI+AvyiVyRF8ywryF&f4+!xGCChDP1_f1|vKEG`Wn}KBv!ZZB z$Ou5`Z8p(TqTK=9d446q?{y%4i*D3bWL^z4R?~%_5F2UO0`ajLOmAt0zv4c z(N%WsSv0jPdhbBzBO6OZF!BVxnLIg5UB5@b`D;iS;^NHzRe13F2(6%qMIaop(E1`G zz$lb{FElc4%O%u3QzZban-nR+I4q&dzmVsa>ISMXIw zRaK5s*2b^#!91fY54WdjJn&qs{&uXYk!#R=*Y)W3LqP-uu4A!qr55Jlv@7F!$GhHG z=@9$>q02u$AHZMyb62aSZE!;=lh+X87|$c>fo*57H=>jq4y>Sn6l2(C1(iX*Ouv)3 zk?p7AdSH!{xow-9&)_2Vn0<#5rD_tVV!wlo#TK{#FsQou0qb`Q7m4P*qS>?qK(To2 zCru2$LH9b0+s*JO!&Z{+cSh9C9LgO>{*XSiAJm_pk@3F=O%X_~R!gX=bddhbI6lS+ z7Q*WB(=NX4Ax?4CbLR>evu3v(Fww7hO0oH|eXih8rbt0EjN@_g@}yy<%R+sc8SEXD ztFATZ*Tdy$3U{hTwz4vKo`+^<v=BsaG14m=2**MOD+MkEfqmR+$(~~k05mXHXnPQY@a`-CGRWA}y{V?htmCIK1 zx%8KGF&3i8Wq@KtCc8f>KfTXn_+ijMmw~=B5Y@XJp-Oh7%!%Z%ob+#1Ft2e?KJnq` z6a}DZL(xdtZSbqPAM+t)`9>}=RVpi*X)BeT4wIrh6_+2V7Rnk$aEl~RSu%FG>tDQK zEY+JLB}uhP?X{Jj*~TK8!1L>uK>;Phxti4tj>x%fmXL%r|iTMT}q^Z7Z%Kvsx{Or9Jn2MBygDV zzcje(LX2<*nvrBd#O|53l(EED4%gQxm<`6JXJP@>WJK~*K!_D6?CEBn7JFkHDzg`_ zNURLNar3qBo!-H*zuZ(@?R3S|(ZR2&YY2vZoi(&Mw0G$P@U_;n(fW45gbyk)1P z@N{@xDKZVKQ%y8mwO|e<{6OnCxM&|t_RZP4XHj)eW%_XtoeO!VzY7Ork7>36OW?n@lQSH=Ejg_5c@UjH4j#qE_w61ThSj=HhBh=!Jy zpyyJk+UunKN;aaAy&zgTYevWYPgZN(aNy260qx!ZGP_~U^Ax>^4iM<(ziR=|Y}`FP zw`jW8$5!cOBtW+npZctme&#S{)g0;nZBT`nkH?2nQF| zPIp**Ty^3Oq;gEAlB%27e!vZOSopVIhf-YrfVS(JE!V0d#b&b!Z(m%k*_rdk_+Vvd z{I-TIt*ggXfuQd~a({WPurP;yRT;}7gS+c09_kdvTF%(aVN0-mH2Vj91{f)u4;a-< z8YLA{7hC zFKs}h9K&&6lvvKD6X;VFzteyvwPl}o<26QyzovJ4(jUjhd~*eQDZ~o3jxRj-cu|iu zv||6-0l}7DWHSY9=b>5M`~f{kipncTHVLybR55}s9i-(AV8XLt{N;x-wBy1aEF^FM~x z{G(H_Qb}RM_vZI!GRywG-?YvCEgy=GAO|SR{M9jKbND93;4Udc{_l?TzdU4=Fesm|kYfi{YQ!Zbd(0*3_4rk7?1KXZu9p+b zADAc;>RQss0~`BP(%ICg+}{T2XKy(eP_t-xTRN(O+*$h~%>4svD^VCQ-|Izjd8GOp zY7584Fl!1)l}mRtx7*7(bi6K!7cCe#f$m!Y5mg5GGcZZSY3wi-OLLO9w~Ry%Wpn^n_sG*~ZSTU7&%kkHd#op;vlqk;E447z zVHI}IM;>7-JBRUS0^9idmvA>L=5O~S*5s-czvc@8(Fx_Gg8xfpFv+`+p?uUKty0mc zg;tbGwA+~#xpoH{Q#R~2R}CE`Toe{G=~?=S=j9M-_$rbVn5|mf<`V>O}BHXL!IjN^k-9JuWp zFE_1qUgTfx0Lcg1?#7sN<^Su+gz|vSHi!jb3Qf08nw37dojmEV@05y#oT~+c13ye1 zIoCXbC~PyY!n6vPi7O)X>D~KmCRY(FJ70iIn0k$Pcp1%i=(S#YS9^G}*}Tz0gKzz#i?*+N5%a3&y#HI||1zWc8=)ku9$wPC2i>i*B=E_bbknCKMZ(TEHW2?QMhyTZSnn{Lr>Tb-zE1wuhas_a4rx927IzLBK zmV30a7}v)oX*lgBfFm)@+wfl0DW$o}sv7%{aPoRXm?2?P5llq~_s;Pi0_T|%Bv$qM zErmzYW-_U2=Ky7j&cDSZR4@_jf2u~(0r~m)eS8i4GsvBpcPFx;&1VWlMp%zF4KY6u ztU+?vN_pkdPE_;%E+y5VCk^LoYolUHMplpTx2JP7m<&o;y1qad!L%;WO5f>g5Y6Xo z3PtP1Wg2Uj_~IL|tf~s0{f&%Fus#T;k^TELi*H)yhkFUp)PHeG5cY)|D!&3^;j=}f zUuj{i|Cjwq+Oe^&s+ptNLc#FeVHB`__r>HuxGxxt>+B+w5le7O# z695Uy9(0YC%D=ey*N+)ML4mYFBwH5!mt`Y_%IAgr+@U(N{ny18 zAwj4brbHv0|L`iI*WmStJxNhg{P(^7fsFs_;{P|V8LHAGnPod*MfvAH@eCz&1S&tN zR7(@ePO0PPjO%}(BV)K=L;PNO7z8_flGVTC9Tb2<8u$lizd|9RM^xpX>Hmvy|C89F zpTRPPPQEPupJa;ruS~tdOTPbyK)8z%Fnx_-kB((lAU`bnFR=nA0FvPTd9K`lelA#c ztXQd+|Gi6tWtsW!bDxeSHvZFd%>cxHQKDox@R0wah@cWVA%K%wm+uJpAJqGc3|Jzk zON@m6^*=CtKJr&0_sS`}|1bXVmskaG!sS}UwR4c{*eO<&|AC4Mae~RWRG&XBV`EeJ zt!O4M86Iq#HAh!;y>?IhFYEj%MK@hBx=fh1yGQPU zMhE)ELHQ&@m`K$)TW#K9knm7v!2RX5j{u;v96~me_mfUL2%UU`=W`dapKm9{$DCT& z&5fH@oYf2cXh=-R7tffyjjdB(@GY9WtUh;j_EIJ|q65Bn3IF{+QjC`pv7ZP;hT9*J ztLiX_=xr><$TchkyDyL{UFaHe{S~QvTCmjq(&hfUDj5Pkg{KT+zk=&|1kVi-h>)zj)2&W9 z!bAWk_GgJSO7_#UimUSkn(X#G#H{JZYI0V4e|E@pFA*>+Ho^pzP`XT}3%ZGvQTw8e zrMQGz3`D1tS@1jELW-*err2-SVUO27%ig&DLx5t_{s+fT#W;r#fe!?nmY=)c{Ua!g zQMRDI6Zu(k?F*J$1jSO?NN-3WT^{y(j;XnRftg$@7?!@B3e*4G_1VXL4+1O#!qxzA zB{>a(W1%#z+-$t0m&N$_EP|YFyV$kxm7b+_>Fe~vjqUBt)u`*`%Qf4hY18K$Gt5pp zi$vk;z{I)BjF?V-DABj|gcP-=v)?KUl-$Z6U@N}buXc5q=-UJb+8gwMPE^}|L1~QR z{vgsA)OYOUb9=@HM(bXCOH4;l<04~|1*e1wlI*OWT2*YGZ-rGWTCl#@z4t6;5Qwhp zwrz<}t;;lJ2NION?`IP$K>X2A&$av@#<@QXfn$k~*?J9;pn~5s`k>Ut_cOyV8+^Vx z7v17E8*4i*{6I29V$GuT>=F8EJBtO0b8X;fW%1_u6ItH{%&Oj9=>8JuLWXwLg?nxz ziQ$D9DiXcxgJ!bW9cm&*7KJ?P@Kx?`5?hpKW4N3(X4oe5pUJ7f;5U;B5jChw24>ho z95DG_%AmfZcJ(`&3a9;4XS*`jb2pCT@tIb+wNl@Ku^&6|*qk%Q1=@+t2I`~ab1@eR zRx-Oo64;*U!k)eDV5zm9ebM{2u$^lGN@w(CNTtJ*#2Q1?LD_tm6EjtHYikcN6Z%C9 za>-G8n5lG;O=h*zU_nhQcj_I70k`a>#zp1(A%F}$ zWzfQ$Z>5hfzp=Tq6Cg)#^BeR?hLqC|sfwIVdF=;hT%R}mJ^r!Q{{4u?dPXoI@bTWo zOsNz$fA$>d)e}0!Mj)?qHe4J94fb617pp|*6Qq%N5_;nZW>>xp%vCzYN}iUtoTN9E zDk;umF|e58oZlnt!@EuZ5bKj3+5|%)C$Y~>j#v8=RDF?DaJlPI`m>I$WBuW=2Sqd% zf~t)Gy!|(7_a06&Z6Lbnn2ub6jFgkvCCq(J8@T%bLC~`YN0kGMm$hqTt>1U(B$#J#&T>y}lk0AgLI=_Uli-Pn1_xm$oQ_!o4GlvSdVvsCKd335 z*=fqj)o7aVySHUvF1!2j!gdC~6^mlX=eg0}MV?$wI%KxJt-5`t1#n(hH{&Y&wV)z| zq>!hni;&SzxZ+;%>`XNfHxjZsZ5V4B^S>sSn58~q1-LwJjB<`$*s#BkJh{*#g2_73JDkLI&W5&a8Usmw~Knne!D$j2qWG6N*qu z(4kg!J0y3&WVmc1Op%8oP{l{hwI6~E?x2E$w1b13EDs+lU7A3cA_QNt?%reDUnINy zVgz^Fv){gp)D?*?rqK>-u(8UJZ8oXfi4}(0Cw9e~RtqXY%H^ymbB`|NH(C+Q`Y^ftWs zX9e8$1^eBf>4x1R0^7;=a$7#{)SS_C&qaAtlh5g~6}t9$fS#<K;Ajcj)>KcWYE_Bu_Pe1s#KjZLNCt2z9AryE){wrXU%Ru9PT`U=#B*y z`f|WmLx2ByXX(O;rcfscbnpvy^Cum}>pKxts^GdrI z@j#eE#nHfC}}cd~2j^ya!9Q zSdT6FoeXlLhA_8Sv;+CjkH(Pr%s zmh>NvV1EpoK@Z!`RX$@*tuvzG|NRu6BJb2Bf8QXUMM|%7k(-39oA;+Gnq)$!_1pJ3 zR}9gxrQDqoR>(|GePYa%^bVXP~zjFsXOx8m7d>xXAT{^PeYzSnoMxEz@2stmzQjtkFKHR{_jJ!_>ItR(bQu9uEi zk@Auu*17)maWA^(PGvUC8cyXNYCi1c3v; zS@(p;m@DE==BJ8i8D7LQnJbd?JrtuCJE?V26dpUEJw5T;LW9KS>9Kz!h(T|D-O*yh zYyI?l`+XPmT^YhL?^8Xv2CvD{*+?!0onScqaPKVYJb}F@a#jDCjX})*SMB9-JIerr zKxp~HaDuo-9}4U@h+n3KTc8RjqCt35t<);k z%Q2eB+0y{p6NT|l&(+83pU0U^3v79ruD8C-ZVD?>3J25zmR1&!gx)Fwo-yD_lC$XO zwS4`ucapb>fuNa&qotYdC6_~5_2z5h59$)GcziL#qb>&bn@#9#cv#5U?E~)~GDM@h z6l6#dyJLQ(ujxe4(B7SHH;~>GRbA(3DMBuApZZ&#;5Pd+*dn;v#}X(SR2P0zMX-1G z&%#6pIS^?+?~ZI_f@&XjjW<#|&CJy6Nh^Z|gxRm74mNLboD`S~rJ?H0Ha5T2cC;p? z7{YYAxo;xSrQmY8BFOH3OwDX!P~`-sL$pperP%WI)ZR2JdD$^t-z`GhZTE#uXKNXV z#d%g>d7IhTK#FMuA(zPoFY>{)Y}P%l`)s05Oz%G9M3`@=G|9W{j;04cAAeBga824Z zn$5czN}=O}-xH5nVzRzGKBKVW@j_yt3a+8OOQOpN{&T_QjM1*CJa~%%yt>~pb+(3& z_2t(LGp$}j0DoH7-DAns0bWIFeLOKbddS*B7$44PK0ayT-k8GOPP;B0aU=1p!M@dg ziCzQ+WNFejQcsap`*|LAtN8_-no(M$0dE_#>N@9~SkUrKyz}@dU?<#-D z8oYz)3)X07Zc(VVvT49+$0iT}8j5E~CPH43>|1gBW0Td>q?lvI1=Sa;*~&;@WoWyP?x_*n^B;{J*1zyfnn`?V`)b3RpR9j zMINM%e@XlGY|-|Z@lzYS*Ev9%fjiHv|sV@=cqf+~;na+@?%E@WHjkUnC&l;OrX0wuXB>E6X9~OaWOk-1CeiEI@kOE|OKW_G zVbRT}uv~N6k-1|t7%DzvDR#cSK`~a6_eJC3ut^;Rxi?g&HhWM|r_lc_4BIwbn<%h* zIt}+)p6#vGLz32Q!KosR)?9EBUQJzC@_gaV?(~UqCCF5Wh7tqgmul^=H8~I_ke+WN zbaj4fDgm)EH>L&Q4X}1dDODTFDybinq&63N4>-lollrfXzWRK&lgUI$Zo{e z;h$DW(`rZwg5~&BSrU26o|5742CL!ObPAW@4U-DjIf~3mQ(kl0_jMhMG4aR3|#0D zl}P%CtwI&X29(`=i$LyJ{Id_bdprCd!8I&jt_2yH);RLuk&*YkcGXFyvc`qNv2m{I z;hh@By8bw!5j)UWzgB_-Z2%=iEl%oM(-~q`?D!KaO`q7y7M&3u_RRW+_tnONDTTICZuzE zsMbk4p;P!M$M(jB6a=2!)~WOd#kJe_f24%Sqb!N%-ddV)A{fnX{ zD`g7I9=y@_@;I7TxXsN8mXeMeCU7^&ChE@o%#S}7aq~<=PJE4#ZcehrU;&)!FR4q+ zRZ*zTNq=GnXch_jt+OMC8Jl&z;SZjEqRPN@k472*-L}9XX0_*9k?G$E9qw<0&cobb zBrd9+>pk>)pthr9e0~kDc}Q(LmcEgBfYMfBLl~Gzc!Jcw?Q_39C8cZI*Jbu4F9W;` z0oxtF>?mp>R!zU&4d~WihV+Fp*jN$l_+6g&Q)Jrlagotc;p8F>>xTQ@Kq;6tw@s_x z0}%B?*q3U;?XPd1C{d!NIIR$epi$M<)$g&J`*a%xrHI>5sTo|g ztl>qLawOUB2>P?W!2Z#rxgz*Tiesme1x}B<8L&Jw=yu5+FmmkKgGP zW7`UHA-tLlCLS`o8uk8Ed~)_Zf??buWspVkYv(&ul)kRNN|CTlcve$i`daaHoy#&o zmFvJEle~x3syS zPTdo1HK7P0{=PB^HnA5Wn@yeF>l3Vva~#$6xPkX&DO$hAs|&0_o6Aka(YqLFNUKLg zT=B3X>cxodtaY^#QdhpL^%1{oNm@@N;gLihIXeDHR1z%*9ICq{}m8-y*hXE&~nP z)FD*gESp^TO3rfLiX8&@o$vBG53Kb7sm;ca6PO0Qzcl^I?=s5`rj~mwQ{A$mFR#~R zm)x&gpEcH)TjYz>*vUrjRN`qTy)%-8L{R&K>8HB0Oy#`~yg#CMStXroRgEU9#2BrZ{N=-#RCgitpyIB?%<%4GCr+I_Ny|GIP>-iL?j>*hW5D9 zZ4DvEbRv;;edhL!^@j#t0>FK-O1QMTVx=p83JQ~U*Aab?xhWGtS>z9%L03^(5EsQy ztYWZLV3>XAF;1F`bF<$dTNn@Rk+kF~=^W#5{8=PoKw5=Ax^=Hoi7 zaA?2&31G%L=sOD`<@IJc8HhHI_ym;Gdpvb^^2yw!Idv{lgTNY!hrdy^4MD~moL`g5 zphOh{sofvSCcGaR?WfG#TXKxEED@*r7&@@}1 zKI{g2y@k{JSX7LxAA*GQKdC%8_!W zSi#rHtvGY&6{r{<5`?WBI_=a9xr4UQ*a4rQK z18F~uJikOiF}76W*w|WHMy%6On@0jZcbOzkl?r!A@AizIH}Beb9wEtUFQ5^TENtCFGK>074Z^h^p$PZqBFqCQyni;U*+n9odNVFuVBXyDe) z5>M8klEzEww`jIO02w&MN6tE0#jFKg4g*5;(G#c8g}~!>Z6knvN}Wp<2B!V z^qu6+Orz$AGnY#y=PrAWY>QwvhNWcfZ+FTqZH{nrZQes)>MHh{$SGRR811%@ z_j*@MJw;qi9R8*4^K%qJ6o3{i)M9S;+S(c(D(+8BJ2-lxKs_RV!fybg?f@XDt_HAr zGjD_3-p;bd0<6y<%6!fNz37|%0zT6nJs*qH{qaa`bB|u;1JXF-b`DfQ1Y=;(Pn;~L zS1{y#?t1>B_u3c<_{~Y%g-d|wYH@aST+8DcH0dBeS{H*E&i-MnfM&$d7NISzT_h^^#yx-_ zp&>))&gC8Qf+vAjK(?ab3|=qcBfRv_eoH+L6aN86G2_7#x#gkYOSQn4Y{Oo&E!r!$ zq9=v%TvD}fgE^cd_$Ph67LyoXK8yj}&Y}ftF`dQ%EzHw#&S*bryJCh89)!m#GqP6uWw2m;hua^wpy*`h#rBLR`>CGr9nIqY_Lt=tjnh1k$!i$C9JswWS62L z{1kZOmkD|6=mLEC2?bzeZm*c(Xji zt4HA6maAU>`0QeQXEb~;7CfP5wLBtk9ke+YMX0Ilv|G8QHBV3= zX+oV)A5YGvu%ct<`Z!V~F)4Ev^|n%Bq2S`(Ap>0EQ`=E%F~c`OPgA)G79HirP-3R= z_B7o&s6*`{drKK@XrC>VlmJ^XXFW*zUgy@68rcD1)qChm*9$1SoA7RSS`T)A2!3hb z98<{1Pk7qC(LFk!z10|P*IQz$R(%Au(^U>qH+P)2SB;x)pX={BTSu(U2XUfhI%tbf z{h!d}>LejLY4A>x9V8)ubLT55B$RL}*TVMZM>XWEhG(|N;<>k(OBQM;;io;ojHWtI zrfo0Fl()oZ+4pRlT2~P;2&7yBn1EmBsOFhJ@02&bn;2i%aQ}cqsc$|BSPk9rwM=>w zZeicpKOrQ4#0B;g%f(UladoL+>X||_R?M7m_1;m-dIa^U)>urQ{z#d8ea+G?lKWT> z!Q(N(hikZ7at?+w@-GIP^X3Hz3O?XoL@phoo{AzdVE;CHu+>l@!^#*rpW@?EU;5VM zL!f8#{9dJUYM7LwcO-XeP15fSkcHJ#L()(ku4cFTz)}5^!b13q6zLn!_aqNl4T(W| zez${heHD^0NSF5ZT`aJ#>Lm|F3(Xk)4L%uK<4=_dGM-bO%Ti*K;AZU{ahnS%JvTE0>&+^#~@)W?Q zf25gd2=pJ{`eo|JeO1#9U89V7=*b#k=qI2rrCUjFc+~AE5KTubRREkXKHXcHY6s&G z>V8=$T}O(=g`Mm&c})Su*Y@;clpc|(N?Da=A&-yQ5geQ<6EauhVBJ{WPE+GlF=_4s z!=rYHhmhA-F~U#F?ak8Nng1VqZy6S6v#gB*fdqoPLlPjk1$T$w?(Xg`gS#fU6WrZ> z2mulZ?(R0Y3_kEp*4}%qwcqug-{-r|b^bB*Og&xQ{d8B?eODDb;No>Wtc7ib2#aub z+LmiaLy`1vyeoSgJ_FH9e_Y{{qvW?1u;Cn?s@F`Rf(rTw_ zAOXBMK!3+VCw?pcY2HIdpdrpL`Cnd}XlW)tU@Ya5vguq43e1T;Ce%H^jE~-e!@n&< znHJC42I7hHTr8x=rDM6LsfUh(osGw^^z%RGzJn!+8^-%3n=!i|v>tHxgzN73W6_qU z$MwZ9dzRAxu0pj3!&}0?l2dT1L|&{`i*z;MI(c=~RC(xO*Xkir{`wlX!M4+*E1^GQ zBCN-5Y0WQ0k1(lG*NY7ImG9$M^kVsxY$A0gIa}_JcOUXidM7l%`h*ATfOa$Pn=wx1f{3L-048Oia>^7!gUT`}ud>MCGfHcwsgS#PGRP~}B$dcwO32e+tBx66pKbJ}HsoflcO?4+N@K$45N#5S9hv=$pv@@W& z=ln2ut)fT05euX7p6ywU(vl9ELGt9vOmRqz9jkM)H@~oyX-YKrmKtm?;%qXo;kpAU zU%pdk2);)YuN;-b1lF{sJ&8hXN%ZKzW|*5$(=QE^hScMed8JxPm0;bU*w!Y4kqTgL z&oQ(yXE!K|9*5E68+g&c*#(lDkkqEJeHAdC-7C|2y0+hVh+RkQMuNMAkT4f}Vd#og zRW8eeG*=Cz)N*hSYQX~D(!P$F!OXEyUX7NZWwH#F@Ypdh-J8B(JH8xFHN}1PyS`ye zEARp$>fJCEx+YJ9t{ePSz+)u0@CRI;K37P?39k-69}T- zQhB1Zaj8)WXete}BPkfmpdLA2bP6#S$_Q2<2Jj~w>erJpg$II-1HV`qYX!3;dN#}Y zy&VB`Zb@hKv)4J@KUhPKFSFR4Kj5u}sSR>wPx^#no6T-h*nW|GLeMoEGw2yLVM3SJ z0TPyJW0ao-C{Nq~D34{vosraKchr#=rH%)^9=>yo;f-p4({w1d)BfbLRkT9qtOP?X zx#YV84*{e$wj#6xI$e6Iml0T0%7{Jt7vL_fThzKnl2f+Lw`p4CX6|u1FG4hB1<6LN zE)oV~b?0d$qqMKzVc$HVcJi2dka-08TWSwk1Z(?d4Zx_HG4GykmMP4!0-b_93}AZC zZ%W`vsB^iMMLULurtOyM^G>heu`~9QKqN=mADs2Z;!g^t}wcWns;tCuzlCM?Uvf>*dek%Y|9LXP)9%eQ0s?Z z-~lefvqKfMiXnWi~K$IzYO?-mb(EKRKP|QJ7$d+0v1+kVd=K89km_fEg7R6c=cu=?Rzm^-e#9dwjy#^!jAM^)?Oak*9y4W{O9(D zHnf$B89CoJ`w3K51mWWQnd7YV-SVZ$I5_8pYz_3M4Jp3&cT7i)ox7 zSXx4S+abn4?J2Pj1S=@#LsPGW;U1|%m(qbF+aRdRD3UHq~u%4I+9oU z+&91HyO?NnAt|@Pjc!AZ%NM*qlsV74#R+LVnxDgs1tPge7U zY~N-smG)ruW!;h#VqWnGMRwnohReX8`z~1*E&Xv~;XsY@Y-(A$8=29O-%)v9hp{>28klLb+j&whlwAEDO;LCxn<-IXFBC+-k4*lzM$#oZTq&^A~ctH95fUz zSgcG%g*S0@_=LYRw%Qlo2a@3=ix1U&sE*>*6rd}i~LsrL|?%cQ{*PW~#?Jr83 zWt9SEJ+iL>3!Hd$BKhW0Xg-4WuN#^(E;c|Pa)pQ%L;tB3J82+68d^MV$B)Er zmV?o8QU9KZl-Hf-Hyk&qFHuXCK{n@0SHjaeuny0RWp=gKD>c1KXG~q_+}_+=+f{;+ zchZRrobqzn=#68AULM=j`bZ?I9pY|46#uEZ^DN%DH}M~|D|#sHDpUhznWE61q%utF z%TVebg2~zAhrpLdh-@yDPZ-34S%(9Z+}2_FYRgiE@Q5Nwf?OEVcw{9XN}nJRg2*M< zeR&g7YW!tjj*OK0G=`=BV|L7&&EhkZvOZ?KlU;i}AUW5B{d{Iq7&aHGs_b)?&@;2p za__HM)icJElb+Oi?F5d>)~u@Q(@Nu?^ieQqiXAQ|FK=Nz-x{$X@tPVS8J&2EOA((z zyF}mpITy<23v&8kL>t(D*aK=9t0`Zd|LsXU+=rbxO&=awEzR?G>~_Ov4DH+PhH_DK{yQiw0cT=|nw$hm zRwLI-8hHgx@NoVNB^HxBwAdH~CmdtrTfL?Urn&Au06Y~p-99eZoK`j>8r{|>(?dM} z!FOw^=FfoA70(2qBJv$YF@Z#UnBw_o5@*}Y#og;e8m@*ptM3D`Ej5WPTN+=jX!5lu zVw|JEy`(}}sQcAJpM~AdLM@%X==_89%KrrzK^Lf6^y{-Hx!`OL=*VX~5(W?U*r)cM z`AHQ1JRl!e>;>f%16ZF3&opHyfQw1;kov{Y=TlICEDXh?)o*ce^f9kbq~%$E7@r%4 zROk6`H$s0+s|W*aeW0X(x1kMx5T;;yVK{ukcK;x<&K6sW27)%m2=LterZrgI4P`j_6kg$1QXG11HO1qLDh`)x2^1 zSQ3}D;vWj$dgJD42`C!I1N-Og^`}!T;Mw7}Y;#!PG<@Q&$3vyV{fGEruYnjM%wC5+ zT6`!68yXC}A%+Va7NY^C9UO9e=(Qw?vT*LH%VC=6((sN}YxgkSAA@~9yLs>Z33`J5 zm3w`cfPF_}Y7?zyG$>NMQLEnuNRj@Vz~$o)n~dG5pBwL9o(?$v?p%>8vp8dJh_% zc1FXxt#VCiO{?=%)R(!tm;q_B^s<-v`i`@C-7hJA&BywYANa_+Nd_x8e)qHs6HUSx z{s6c(JEV0?~Qz$1BIMe79B=4lKP)S5zpTg`0rj7r4 ze8Rkx$<8#PlviYSH2enRNZB7%R71+9&iOq48PxNvczO;tP}wOnz+n_|iT=v3T4!sG z>vW?X2e~-O;@SahqWkpUe#YbCJt1CAKjrrp8F&pS?IGfNw8WwEVF0h!@E2D{v8Ekidv0TywE_1laP2)|H6J)x!){fU*he$pverQL-aPFPoCUPJ>~YJ^#FG(w zb?1u?Fqp=FT3l{*{1t(q1iX5qR{0sN!jK)`Tpm*q@Nx}?<_2C6SbCvRn#t$J0%B~| zYGvaMr$+0fJtkjTe3q#%lqz0M=&~OAMclL{htqV*EO{oZGeSL z7B?D#6V*#QII>5`Kcr+4?GKx#>WU(ucHZcLUV8bcFQm$vlzS5_V5k zPm3p%S3jfWol+xk?Quvr>XTgwcNe!#-*d|Taz@VU zy31L8sGl>J=PikSv#JT#=Jd4B-l^~1akr2Fsx`)cqaOsb#&a$!lg3Ww4mrew_^(PK zZS>)OQVl8KvAQ=@v;y_L>07pb5n^|~!UUIC zM3ZYyRC6ROKY^N{$q;$2@lTGGvsFIEisiJf6o_&8Eqr*)%*|bsjp0)-8W)n07s>`m z8lJS{Ta|ZuW>_@WelB(`e(%`Jbv>V>c^%%H$83&*S3hYrcg8^Zg4Tqxj17ck&P}`> zD4eN~BcuARTqAf<+Q|$@Bi2R35ZE=-dsNddGtNW?&8K28=_yd58eZglU=Gyf9U0%m zy=OF6Bnl~LD0V#ydo!~?Pc74Sgm6AeT}$H;Yvq;`Ha;NLlgw-lE$l_f#JB+FqEgJr z?75?1g?J2P`9Yq_%u2j)rs?VIxxwj!$G&Bt9Z(~$%@o;7jBI(qqslM6!voxTay;+q z-`v+<9I^#LQ*4>;q?!nIx4YZPl+n!9r>Y?;RFTDZx$WaCT9uZvSV>H4-g4S1AB#A; zl(7up?v^OXTfR#b5-3wN8u^P%QXn|_{-CZcQ?{C%e8YZ}KrM3Oobq&PP>^xb^R1zM zx*{&x72WSJ<;8Y5cR|+vn_j?OFt1&wqG$K3gHhW6BAtnt9)>R&XodipoV&9+C!xpv zcPYQV%0%4}k3W?^FWK&lj59*X-+yTC|J?0^0uuhzUaC0ph2W49=zZP#abD0Kz+Z4L zMgH}ypBQKU@%0JuYHDd?-vM-Ik&R(ozp^5C(#?0RFw^}`-5FK>MY z)(1e#dWj*kfTc)h0&nWL*lH!tw<~l=*@z-niaP<-uOlh;S_3qh6dEQDJSvWxeD|$g)3%bi9ppSPypyPn^SY>pZ_VPCu6EFD8_0Howru=d?j;&Lxp# zP%eun2ewsNPpPFGy;L6=g9v3z9|TLlqpr$RUiDT7HM&jyx2%_!-oncfT;Gb0Q`b%- zh(Ybe|9dW>M%Eb?wCvE0uV2KV#%Bp!p;7UGb#Liv&Q-OV7Vu?p!6sO+G;d6()VOy= z-C>mHiFu-d3HK0o2wqdiKgG}CSu9Ldyu_Qd_g%n^2xH>`mO#KwvL7>fVaRr-N>{qU zj88u<9=af>jH4f*%umIUXuhaubaplu;qI_}-O6V~MeV(#F$wT4xdpc#&ojm`Qb3CBSPYRmS|n(UB0qO7if4cDfcVvYzgUB z%Gd7fD$J!=^7t-4=JsHBKqs z(NDbo%CnIw+hRkm|=z2SxGjDEcg^^68O6Rg1Ce~Jar#3+MWztc4 zZeR2ZI_qrNO{g2iJ7kX*085X!hQ14Qc;kJ#^w6{`O%0YD4|t5kdFyv`oh?vI5(?C)Yp)1-s}jjhRG*lRVAS zWs^WLL?eaknHJ#>AQjqx$R9=+da_G+g~8e?Q<@AlbL2e-myO}jGFN+qigjL|YS(ag zw7M>U#b6r-4F9_5-Y(a#Hs%TP6d?R!WV>odU=2|68S{N$+({9VQMG{NagQu9x?ur| zqr>zq#I}MCPv40(bonyIw$#eIa-7DnWQYCgTukSQntZ+wVcW=TlR(XGpMB(ixBxtc zAD4Xh!Y@Cz(bkNA8vRRXR>B7i3)tAwD4$386LO854~?S7jTa~opN+bPjqlM~sjGRI zNzri5d`(^^75CblI{wfyF6pg7{$vJuQ;i4?aMXx8{ZYXico6U4Quao9Z&{^CF3FX8 z0obR9Es+OT6<2puE%#akD(X)LI9qj^QS5YI=f~5!tbt>~tr`IDVW!1LsX29~nmfPc z@?{02jcPjx+3=iWH4W@aID*q$@-@d0Z!MqS;;yAT{J?KGl1xi@WT}A^0wc4Zrz(^P z&GdO`HwFL^f!0+tkHyFa7(N`}!wt9FSHYN<*uADo;e@YM_P=&95Z?t3&EKV0IQ?c$ z?2Owk(x-{!x$W?c_HYRZ--mn4=~h=y@z*^bcKqE29&D_*!U)lReivcVWO$+G;rSsw zdy6#ElIt$QkZ%t*|7Ra{7La@9Yzf1v-(_N^!kT!ektouUU)<+&k*|-C-yAH2mVl_6wP9=*z2oKseVr0MNTal}BGQHwv!ScT)fc#h$M4FSO0|JlKwE8?1WQ;F zFPvG-;haw`(L9!CR_Yp0-U%Pc(N0BA2>T6e{*t9bP!7%k6ZpAdhPzP+T=gK-akIgb z(|#d5u!gqZw#-NpP{|CNeGLL`4AT)`ijF0(BsQ{Bd~C`+Ez2rOP?%DDRWXe%s8dct zUTvm+jAWEO?&GDUt}uoh*J0l+@up_6^~d{s^_-?!E2HY~Zd>u_%`0y73nv)c#{owS zIoV4x+HJaaT_QuZy!&wW=CEr&v}^SNa}$Ug6a3r1e8<{_b#q=FzdT`b{Ju)FEJzqY1| z^2Sw%wg_o`nrMc_Hh+hBvW{y2v<3eft@!Qt$j(Q4}&0<4(Q zy+DUFYocWV4Xa6I-h#mEsKyV93~8~$JJO1}ij7C$wNg;$=fT|}?FwV-_>?^gaBEX- z%|y6^`J(wF5HB*Zdt#X@y%}BfjQV)gVTXvgsh|EE{hY{D=%pi05f*nzeGo<#l2LR`>gtq~74-`5JUEi=;x>L^zPfE|Gi1DI-AjM=RLy`r@ zQo|%q0N=(Kb2XSS0l5NH5RZq~U>*0++}`Wrd4_k>^*?o{s_BZQadb(8LJPlK553Ev z>T{8VDa@_muPl5WHX(Pj!w#8wk-fA8>-hZO?YKIi#idaRX5vpczJ%J(Bmfkr1c~0M zRMWmjdfVQ(7iT1Jo@4H6q5a7v9sZ?z?~7PJ7YUWndK%6uJ&}9)laP%rofCy9Ht_DO zHNkPBrY4Nmzv^HH(ka$-^;bJzWjwBty-n021>nm= zy`DKNrJB)$hC%r{KW?dU64b9!qQ^qRMcitQMU%Yh|tt)DBiCnrDT z&|B29;@HjnB%+NaS$M`1!%dxOp%`B2mZg8c{=i={i`syN)gmwC6p@{0X;M9!oK&`tAHo4~d~);6MTeZ0wQy9p&rhCx*C=>o7jW zgR$wfWGeFyGMLP~Ilc$7CwB`UNxmj=^G;@0l+%c9XiA_-w#1;ZiJJB#y6F z=6iYHTo>D+3sdMYCRl0R_$XLHMr*poBD56kEcWbBP*PohffV^?IE+!B7Px?)-CJC{V$$yL1e34%tYr zRAlbwOrzV!w;N;i5nLa;UVTu_XZWS1+*?w*CYUUs{-G7wXa%3O%T)Gbk;)=grEgxx zv#@!`SjI{6pUpx5dD` z%u-VaO-&X$4f{GVreBtJ6vZWxSwQTqIyS>;pGt<|P-6;vxF4%5P-A_-jG4&|AEOl% zxsxu!rxmRa4HL9~B0LYLSh9DH_qAx#$S5^XH=aQpPZ5@fsMvm#q~2pG?}-~kFAI*n zg^cbAm3aph^_c{M=PNTP$T&u`z9bGsNumSb4$?-}ngSUwP}>A_FPhnrS^U|)X{l6X zu=R|>#r9@2Cu#d`Ojh{gBvf3yG&lhY>*>PHZ#8>_^lmoM5~e~QW#`8eX%gPF2@>Br zhbPNP&Nd9W9$*>|DhOi3LGhS>yQKiT;aBJaS9Lksmm-9L26zYPo9(-Ve~rM8^nyl6 zQ{=XD}J^_3il(9f-IQ`GN7aUiMEr%Ku}#^XG4tUnytac?M%h*TMgBDF3B9 zInapw&ZH7O*?;fkfA^R_H4xD#!Jer6@6vd*B|#fKr;=^|5jFn5-tEx9A*dVuxL%$D z_pj>zk?i@WQ6bZX@vpsx3OUz;DlX7sU1ajV`}vO^Z74t+SEW^JsNnzdJg8n|e@0@6 zGfqwJZ!}qvhBoq94>$kk??i#7P=EW)Ldnr`OeHw(m*ar7j;n&doly+9T*+@gxAhqUEpstpkF6Ogz<-k;1-2E7=JHxI zI{B^<1fAn(b*BFr8DOUHOj{J~#=Y1P^Dx)Hv~I;H(`G@IkjePijcC-mksR}HFWG;u z-_XEPtTK)E4-$0B`I(4DiuUiz)Ba`}+rogQ?F~^d9>~(|k$=|jJBbe}$sUO(nju=~$A(W#b8 zreEwl(GZVjetQ4I{pkr(?l-$++#x8w6}&ioupB09bri2}+>y!`!2f(??6x^&UNf&U zJu(E6$y#Mv%OQ_OxnSaZ@%m)Ee&?z-M`=w8yR->ty)vs}c?CiC zV91^?`(gF*p_t|?#dJ*`r%IXu$snpu^QrGr=gX~I%vrkM!(%hKyBXXM(UyCC?Mnli_2jJu`;3& zoO1TB<6#UFu^DEt;G_SO7l>){u2+*GQ+AtLv6MpUMJ?d!!dsf$d>rHfyHaDz+~K-k zb8@)WLj@)Cw7V)EZRoNVNR=9_@=l`bwuDzYIX5Scz1=7XL!QLn9hum`EVOSWnCj)a zzrU{+PTvFBuiilX1v-_o7wWC=4v=1?k=^>>?#ood8rc12yawdp>z1LhkjN>_s?j=} z_McBWuGMl;2d4_8U(xASz{_WUN;(zr5=OY(RVQY_F8Ph9y8Dia`uxe`9>g(nluT!k zeCd~+R5JE3ciCxSSce6Cc(fu8#Q=WwP6Bf0wW|aGa=!C&iHa-a2_*PGo1-INajP}l z?a$Q9BZGv@C`li-(?|S1S$tNEJDSfYblroNa8uNO?!F00XEmAdMBY~#4Id>nc;)_* z%601T+`zZs+0|{R)Zu2ms*<226!-?h(gYY;qiC{UOgRS zkP@x;W;RpA!&xu7h)hsOg1mM)Xn-SsjdP~h!%u4#*M zZ((|Dsf2G*3FOlUNUAGg!@EajsW%|dM@MTSlfA66>Zj&H z$0zSWl1?~H-3=Zr;AEk%avGX_nOu}fSDTOM5f|k1g1p02MaYt}0lR01Pq`>gftg&M z0;F1|I(!GRg#c;uM~EZ3MTPj^p=Sy@qd*>(1s~WQ$%eC8LtIR=zk?qrehv@>_wwjw z%3O7u3`9%sGwT&BUg6Pt?gjyTl%O2kGT(I(kRVTkWg$}61PJKhI`6oGGWWf0yd^K- zy&VqpU8`(J{I0IGEIxs}f%7W~6Yu3^hZR^2qvlq<*IemGmHdHsDTVpVCL z4&O@e&39Jqh9bAe8`7Q^-lcBO-jn?Ubos?FT!&T7#Q|rg&f*vMtz`2@jxyDxo+=e( z?OrCmuA&FbrB$uprwM{YLI(V&SpR5x72n~4@Wm-9SbQ&s& zQtW0uJ<;uZYu#VMSV5{hzS8b8RX%N5E>rxrBA~|LrMo)U`^vAXs^~x!olLO6J0`XK zIo4zk&R&D7l2tk1&bq>|G#rF|@M87mdWf!>m=1qIW0Y96eToWqnPTX`;9M`Y+wtA{@R7KoBs#gcbP{ELP=7DlY%k zxPh&9wl;Em6wKFK!z)&HO1^Lefb(C|rR)w<>`NEhK1AHdwxE?7++Ol6S`iygMe|?D zU-!l{MR6p-~BG2Px#8uPsWm9>OZ745e-e7Q*)8C+`85BS^V}?ND0s&eH8!x zp&$chZvIs+r!H5u@>#+XM}>0qj`X7Jp+TLqVakv-DOmechu3}dr4sO^6+~W^T<8s) zb)L;!$Hnz}20Y%xUAl?p^^ROc&-(T$zsM(Y*RR$G-Oo?@t{y`o>u;UMNLFf?Q{F5N za}dw?QUB9n-H8N^1J7l*D8kal5O&JQ75@g;a2F= zTqf~Y^Ip%Q8G&r;=Nj;gr)?uO=a}g>^=vfdQ}|Og-^Xoi5cszDB@&v8-H6) zTo$|f0HGO-8>wZQgTQ z{4m;0ZL=F7>hOILH2xZKLwq@_h1(c$0~*dkA@-txbso@eG%Mhl{-~^Kz`xWuJf0&M z<-gcH-|}wY3cMjP20c6vW-?qEwp_{(X1>%8mfe}RN!@^^zP_%f?u$|_r8NzAgUA0p zZTZ5A3p~`S3siTFZx8+4=Uz`6c}S!l zX8`ADI-em@VjIbPR2U2A7bV5WyeL)6hPqY7`-KN|Ta6JkeRY8>E(c-DF-Sk$1v8!6 zJ0Voki7XJOb+vc|1+1Mq*R{HoDICC>r!$Gub~?(z)eBCPyyRj}Vf0}%nI?$dFLS2c z8dz6*K-G9K+5Adk>!oo&)sC|zR}fJ0z{?5$8U-?Zs+XRtuR579x&Gdu^>n3Jt56Hc z$ZknE`FBQd`j&I7<#6(^!xbTXFI7q=d!5E?ou(s`MwqNPsX~}Rg3Rx!KhC&bia39> zPzx6sqluH#s1|VBuXKfR!5cUmg!M7VFi%u@Bdhbxm){q=bW8H>Z{6f^`%uOay`Vw{ zw3l8!M@w3fIMxV3v>pPk1+`EvG?Q=d#f5fRm!ZW^ILb$R!xy>yq&liSd3x7V`c3b!!_`J%DK)qG8du z$bvWw2bkNqIL9JOT zB3;CYhQKDxcXZdceV&|ET5_&<3>u>IzY&PGz*8yoGF`kBfmxgtQhD_Rpalx2&6r?< z?_~N*s?EG{v!W<9QR+wR4cduuOvf0!wrR|2qDND^l^`Nw4JKuWVBZ^3#EVEtSbp!7 zc?OGd+L$5@rtAp{sp{Sa6>0I$PsLsX|Vog+H5u_Sid*QcGB1@|^)Z`w1*N*fCKn)ZXb9d7(_U`Yx(f0F-~W8@tPqIet3>2x>S z<}NDz>mLYuX5e3PM#@=(!7{E~bGeJZ5qPDy#G6h#CFqXm@HS{pae$fU{U)zt6eCgF zejn;*4%H)IF?H6he0%qddpiDergD6&%25n@#^QZHVesGdsKlptVhls3!lQITS4g5u zamfqc{XqzeVjGmE>9(eqZdC~fity2>QZ{VwBg6*{4xlrPV|3Ns86dmthrg4&vGawS zqzTkydQR1-(jGtkwruYnc=RdsZPoibk{DUvITw2T8<%WwtHUVB&RR~oa{+|HrP%fn z6f+AsK|-@D_%?O}+KGjc>|ScIE8$eEa}rl6IpSK2qBlE+#BrggHq7c9P8cXJ&f;(X z(5eC<9a%OH8N#Ks)=@3W@p=A#$;nt zD=u>;DCF?iBKrcbzQtGbd1#(q=ma&7*x2z<1cJMo?7-(0!Yid2$n1J1x{Z~bpSah% zee)~;ox-DHH+c6J+mkXdNBhDvxcN9gZQ}MLe3`2Dobp=c#|~U+RVhoK?O@SkU|e+_Qr;>`B0Gko{~_$HO4eAAhNCHKbaa_=;nZzq zTE!g;0|D5?d~e6u?P3a7r^zmCiADJM0|VFCTO%zEBiy5v#@=e8%n{bAo*R#cRmQ-{ zHLbc)!>$#LH*I?&TK%I$cpFJ1S+6Tw>b08lZU8@=zo+0{WDWY8y9dx4TURAPm9YPk zvO0WGrGb!29%-(X5<5_pTUW$r$ep$KTes?gdiK-OeiQG9{qq*1g?;>&oDC`3Zv- z!d>-U5(C?&HdGykILXNRwvIZmdXKjI{P*z5{pt_F$oHTF?pwV}EP#XF>sK=QP5jvr5 zcl%*HgwnPi)MUk2_h(qvNZ$e$;ZA=m_RK*(I)e;WRdoi4@~tk18;}Bn^~z>E-#}8ovo*>4(3hO zFF$IDU>1hAiTc7Vq*W(VEDB6VV8gw4#>9Jry2yw*UW;VZ1}{c%O~xWOP$J5rkO9OK zh<^!#k*s3F)BfC)!Xn~_D`Xc78$Mvf8sipuWO#F|j%0-480n>sI2DNj48qIunDLxI z#J!COrQYr#lj%>V;KWutCZO&=7owJ)_#0ngH@mBBrO$7ScN>YnBqEL z+lwIP;2xlfz_Qe3^z3J|jc{?YK*E~)s;U*f?|Vc~(1QLCCzI{hzkZB4#Wv!-l&NbC z>|B2E#u~!eB1nZ_so7m<#;z~40E?rX7u8dg>zqgq%Fwn-xVqsh^ZfLhu=P;3evxO1EVdK!p zAJ+1K+S*bkdN#ibms={OG8brmD2Gmf{-kJ8LjvZmmxUm zn*XM)yvW17RKUDeVPGeosg|Z)pu%GAw9jsOoe}hPQNxfO*3RxV!=>{L72f$PAJ0;f zu8jyP^8pZ;-A~Cd3no14`kjH^chS3K=#7}0b{-~Ps%EuL;wQrd9vs0Umu{Vw1d6>} zylv;t#XL(ur;>Tl;3*dti*?P!XB-aGDem33fXnL)quGcuukVX?NsZj{BjAqTTL}9% zHV!L3^}!O@iOzi|L{Y8p()$qM2r?>4W632ZwfxS^ZV#pXjw6*}wg;VBZO1c;*qmP5 zQDU=M1felGVI77}r^{7}zYTRM>343v(Z#cB<0@3NmT;X7PkS{elKPuaJ@o|nm?LmU z`e@;Ug9U6$MOFq(I8C30iXom2K|*BTKnY4indgo?AtHcsPqf6;PE>#YPA66o&}lnv z%-M2IN{`G^mC2aJVSzu3!eG{YIPtZRu7nIiiU79zd4;+lM)^L8a1F620tv3g9}KYOMro|WB> zyUl#!{f;s*;?MVizd`9S$|R%I2bSBCsH)qTS!Ayk&2`Rr0@piaVG85x)UHB{)|`J{ zCNRu+-9l+ug=F!2u$qIoYpUDM3H0ycOkV*;CVfdAZY|EF z>{LDwvvab298b58LFKxUzHj|+94V*{!zl&^O%~z%QL7~W!Fh+G7St*Hn!9N}f_3 z5mxa76kbiz5d(errvm@N?KUN$Wg6P@Q;`4rr2IFbp@G!UEdIyR)$iT^2Ec@dj6j3F zRwjnS{)**86$2(ALLug&xi206deT3&6>fuyC2_FY{r=B?{Rx=RX4-pkMy~-gKfu!q}i7MXf=1 z!LsLR`16NL+4mcp@PAz0e|*}70nfXe94R1g-k?9A*3o>eKzF8!&_4$i_zE#p8zzlb zJCyHu2*6iqe(lx4@az%$e?x3NXDT++T}ZghI_a6sCvuJ}=PRxy z3PrO=y`}3nq%75{R%DznrFj!~%KhbX#YFk{?aTh#4i*lTTJU;SLwoM*UO%jOpN8t4 zx|f%Bk!RZ$?niQ+y3v^&NXRX?W^!LZ%}3WK*N$b@S@GA`i>@QA_^0TY!^CZu$73rd zgIuPE4^VI2Y1ZMGpMYrZmE#zB6gE{s5THY~g(1WGG??moyM=V7N*PdL(2OPEcO9wY zc}$kiP~|XJ=fFs(v%>~j=uUXB5s&k&^a&fI)Ma3?^3drbM{3- zFT9v!3Fe&^V+jqDRkYY;P~dTA|BSrER|3A0MSbFYJD_u2a>rNhSlQ;#b#7swG#t2WCRPMl9-AMB2#<=0sL8-zAu`y-Mp$H)ChT*z+GMzc-F z;N1bT1}VD6;vo2F0_y)hxJWAPgLf+5lAs+Q;;{x*InK`NmG{>B-`USYQ5dMN7>7rt z2wJVZg)wUi@&?^{8(nv%x{9}_vFrPT07YY+!P)v#cjXDGGV)tZgBIgmOA>MoWNrIb z-wel@-1biaI+v>z7(&jwna0%tTK;FJJ}owLk*BKx!dU@JWT`goyRE0$LeO**BI}IV zVjRSr=<2IJSNwS_B5*_xU@h~L(F_Vcc_KCyr1h*;hX_#SQi2|7|Jcg07#8rq=E8N4 zv4FJGqq3IjGe#a=Dzg~acK%z&I#Us9mcLtxwkVj?^X)wyI@T-p6Fx2n(1lw z(aHq_G{|yua{YL8*BBG10lDdIGMKqV-FDSI{Gudp;Nfpp{3^B!>>B6{2#)JRN-CY+ zt(;#`7g%<$6O6^?Yne*k+}yfR@2bBSC^xnhSUF-9eZ<#K86rmzvgR7QTIiFuUw zlC;u3gJu}AXRqHK>n8+<*yj5DGnXUgQt-aPVOwdIgn5ay)4%wS=hEL0>Yb`kEhK6_ zp5RcMpMLo{%X<79RS23!9wnj9|IO7P)Msox(vs81gn%B%)MdSr%oW$)fw=`OVvGYc z-Zi>;JU6dXBlDdf|B@ZPc+iU+en1dTYTud0j7`dpUR-PT#GZYF+WE zO3}mGb%igI)VXid-MD~=nc%!`W{{ff_nDgxhpNZ;Q%Ba3lAsyzuViiJ>TGUZ++nf{XkqE zo2IhsP{!(j9BygTj|#;VDRgB63eXZt2V1-J?9Rh-;1^|oz20ESxW{mRp{F=|rs{jNkS|1?B|0+zNS+ zp^t&2vq<=|iQJe_Yb;vu7lgGN@F+Q;YQpt&IBm%e^*~-j(Gb1$w4Lp%M2(t7VJ?SN zm6!=u>=K%}i?*Db7ytB+av5VM7#Ibw`gW^u=Nt776DxA!Ngk6d#`Mb=p6&ooUKca# zR{@!6CPVQON8b4UvrDKIIa%ywvZ%UEjRJ-h$+T9J*@vJE*}9RoL6nes)n$z)kL`~( z>lHi@_e&g9hz$ckxrW_1_;V@)?P?Dof(v18^0fO=opkgxZhR8`hMZSa;w|ns_HvcU ze4+SDaKJYMC`Dn4Qd-RqJiq;s_K5qf9%F}xovgRZF69|M^FpCfmW$YY&2E|EqOD`) zGsx;wU%J&|6J`pncDBht>@UC#x38ugb=yOba>U%|B3)ZZg&Kn*bmvtA=&U;&L?B8< z{>Xjhl*eq)ggE-(5u}fQ@Y>yGDoveE#mocJ>vVx7zsCxPX91Bua$MzW)dYJFI*jCk!PhWB3c$ebf0r?44yp9L?ITad(1SfFQx$B?$q7hY&2dySqcM z5ZoOS+}&LVcejB+@WEy9IsNRt-}4^(35RdcO!ZWCRdv<9u6xz+l(|i6z88=6JhS`$ z6hJ7bHY=Z$mLqtiJ4uL~-HxoZkITm*kRcwpoaJ zNrkClprL)Hu_lA!y&y-{F^Ez4_$Fm-Vhq#Z2iTm_+HS z6pUKH$3f_5PDAu528nC0=7yDc&OE1{ghS_j%qh0!G;q$y=kl11gVh^~vdJ{o)QMc_ z$du{=z3!JHv8i+LPmtd(hQmh_{Q)gL48!$&uSAp(sE{*RR=1;Ev}TBOsj%G~Inmzi zFMB0_n4>3YGm+SC!(&^W`THECsBEN*o${BH-Cd$P9LV%U6G~qF26b}rmhfw53Dv68q)%S0J)8-)yV;6l zjL`<9j)@{^cG zW7{S=p2(3U8coW(KAfAqzap`k4;eY43g3o2u31xlK*f5t z#_EkjcgP41fB7XhXYsc3*S=jAV#5u(K;BRk=?Aiw7)zCoGu5;B4)DSF?*fad>}GL} zy^V!q!7wy6{>;p%v!`9wrLr0(j}$H-1fvl}&7CG~OD!@)1+$3Z4_O1V8W>QA>>;$^ zbIwcdj5I6-{=VKj(HYHV4QG!jrofE<*wM4Z)?@hzEuW_O)R5a-irrY^`Hf)X3FR_= zaHpat-u7c~SgZyipL=*_-KXk7dk@ce(Y6>MG>QjU9$;`b_@Z-oknt3#agqc6aYrT< zk|M(&V${M45ia_fU5b_RP9$L;D8B0^UI@)FudXFIH zqpH-!-@#swa@QJO2zd^WK4eO>>Tc~%q*V};;-wvT>nNHqDybq+AY&H0TFp-X!q5MX z&BZnka+DMaxr-;VIXHcOM1nq0Kd}Yhw---lsXZeG+o9oV{qU{#3Fc-rVRHta&NudX zJR5QbdDA0M-Y{qp{cy@?@e%Pk57Ggxq!Q`rZu(&j31IlIK7ph=0xXF-SZjjjvP>4aor2hj9e>#I9;+NUwCuND?Q09Meb%LIxvg2A zOq0k~g6lRqHQ!mddm^RqlsR7_c~0vOOX?IcshT0-4Fg5YB}*8)>-mZMJwGXuS(`lM zVv;O;zbAHp7&=vOdc#93b6l@I*p$bSxSaXfGI*n9t|*%yo1d-6{ds}h*ZKThz2o%q zE7S*CpjnOaC~H<@GWn8m&dpyPEhY;7qSOYW5cjQfOf#JA&{ct=nvpPRHO$=dxaB43tSVNfw=Ulqe?cm^(pwR)qZ@Ee@R ze<*`tmCpcTV*Rz6xY2Smxz1vOk`1Lr)Pcu{7MB>8Mtl!D31dD_PU;_2z{^Fv=Et+y zls>tr75V)|R^UtM#DPGzPl%z}jlXuSB?r5)QLLAk{ko7fdyv-#xG1@nMyC?LLPFN8 z@t)l7WvA`Tav&|jH7*+4YOX*dQs1O*@`rbQ9EUag@ z{5RrP$?)NiGu81M+yW;Py9Yz)+MoOe!$L7Tax7O%s41$tKHE4{BxVTO|5_{?ih&L8 zaQsV)-;Y_m{(CrwcUA2~&4pnY#c8odWg|_x8FnsmGu5qvhsCY6A7!o@(fIZ#TA0+v z63vseV;m%i#i9nfB5!iSG_(8=R7h}E6x|`ftD``kJ0_&xC=q?ZAGCIfOkpB}b6EZH z@O)-RT|C<_K$I7!Tc8xd zt@a`Co!DVytr{r}8|Ilrz!;(4y|vq`&w!~b>UKX}t@Vgl*<4HE#A>mgN{DF7;tf$DAsw(U|c(6tx7+{|{3M~eC+wsE5q6O8pdM5dN?85Vm{=zSoe7Tq@4za&n^=Ldx0 z^=PGit(^OG0?sp(y#=4CnVG#i zvtNf9l)DEDbq!GC*Sy#a#$&qP+G<frdiaW z7uaEuRacVq#O%q*1~e1&*nQ(u)yG*yAv=v8By{i4tlJN(4KaJ^X?#5lOd5Ge>B(>c z;5DHs9dyHbC$YHwUni0kyU`uh3r{9&Aa00dRLkrppgNn|)rASRP%cnlj!${guGGqI zeMdyD)k$M2U$C+jwrCLxQDv9p*+enF*M{KK4_uZ9r#$)r9^0+ab59Y004-{*8<}xm z8I8`wp_5nrs5Q0`VNb{VR;v?dGjW|>Obed~%#%g~&(0x8Wo(=YoWA8ZF`K5+irf4*veQDwEF(L?SZ$TZH-1!rSr_`B%`0JmYlpy#YPrRqunZ#}<&<1-6>obC$Uc=8Lsn%`tV z=JA{4`eLO58OSqwIX?*g8gZbhOKU=Dn)56aZjl;e+lC=hsioj)QuM_ffwcWbX;}$5 zIugF!`b1_o@29Z?m!WJIL4crm@=UU`LKhG^Z&7*hK-9>RgxX!1y}TaAK^ua#9h z#Yx+3-Vz&MmQ#@X*MJ{jIa{lsgF(~KR1V_M2ZGp*f`Ba&#q?4BWX#OY-e1*f4-Hl; zvx{sWzob)jOiLkfYw2aB&(q@2y5De6m83R#!9m?SefZqz|A6$nm80?KUJ=gx>z!R7MV#vx>?%2z=`N*(yZ@RMb%yHidnz#+dS$c)nd zJ-ru{T-rhW16}fI_A08*=fELe{m<_^D5}jMYE`$Iyzp489|7Xq1Umm_bQk+{*>R+H z=+maXr+X9)y9B|MB{5>upzTJ+!b)3ig8RiJgRW*xgxO-Q;YvSJ)WjPTZVbcv3u|A0 zNDhaILkJ=&qBwGcaYqsGvR@~Uqz?m~wa&_(>&PxGEY&aXhbocL&G)mdiJj*E_fT8r zdmG2ei3!#bpd=-6Og9(>lYq95o`U`|JI=@kgf?Qd@2)M+A-4|#Dr>zzAg)hry{?keBS5?jpFqM$Bk#WyS|lp8yzUv?9Mwae;->dfFd^XL_I9=YbT7dLNS= z`oe)lf3W}|l}%bDMpwifx1XF#i9GX^OsXkpZii><-u3I@*&%qy z+EQ8}6DO5J{E%!4oT6;bZf`fdS(n~vF0xswc_O|Qlp;O>Vn?|6sFe%7%dti`4H0~Y-QH?UMJqAe9$69#dc-POAk{c!hq%#W;d1GI+`*H* zW(Yxl?aEyN?C3U5Dv9tw0xKtsE?-X?^87je| zz;FXg*$G47t}4pU95g|+tFORZ2EN*YiU0&wA`qa}^D-b}xR`YDHC(z8Fc&2K*I=Ut zhyg9oPE5@K2%qTDi#u}5veQbJ2C?D{ZMl^OP~)vPN=0>QtHMaJhLgfR3jbIcD8R&z z8W~lGk0NQxKVBy6sj=PpLWstn$zTf zT(Qau@G{l>wl%;nxy#lD0*qDbNmH6-4I&O})k3EpzTk4icZQyLo1$`r<+5%Of}Z8q zfi|#ZhoVw!f+!MCbs_pd3uWr!?SmUSQ2HA!t1rcL1K+l!qtiU?bxK(i0sZKyZvR2Lm?Q|)gAU6Dc;sEG&^#a`Gg8rz2r<3B3Yu_qOFQ!U0Q)5Qu zZ5pli0H@UoIFJ}F=Ffa+7_Z-|ez)tJz}k|qHOb59^*_@T@AzfSPD|_tNha zh^AA=0`jlW)~1}0buvc%7C5npcMH~BUMKIl!qOt$PXLyntt^2Pt0cO5|Mcx#U`K8J zM8@7@ZqmtEO@x;#?s&)CzT({YvR74mSO({R(HEY=nWY3oTg}G~sdsD95LdKt2JZ!t zxUNwI?D4*s>!Mn^ROMep-@`B7-msFe24hr=h(BVh9+Q+e7C1eLI0r52G~XaBCqtXd zcWNXk(neD`N*koK*m^uc2p#Ye03cF`_$NJomu5z?dtn`E;?E2M=|v8cO73qO&wU~U zf{Uh4TXPk5OuHD-8|qpGTa1C(^Y{=7>O>O~Bk_-~1uJxZG|oJ&)@FW3dRxOoG@cvl z?Fhj){(A9+vqvuF+~HN)Wqd=gI=rnrl@eV4f+cvn@KrE7SwG6PD!L{f@18tXP3_A! z^HDm8e`t%MmTdGX=-W`>Cz%e83g-t>5+Ap|{i|gvjEFw-DT9g_rK1tHArPyi$m3H-3us5TbSznQ{K zeK;eY_$_Z+J3AD?n6Ut3_Q+*PGn{A!Q||=$ zDMH}eq(-YUgcwtSkQkgVRJvFV(T_>RTczd>0TiNw&0AQN`?izD37K+RxTmR!liABV zPsEV-XYl=BwJ-(Bi)wsCJAz&Z($3=_#}0V@Fj~5#wS1E4Xv8ZvOLYr^|IOIcI39g}y-NLMam8%1)oit7yh@Q)@PjN4bK4~E<&~6XaI9W0T z>Sdc`6ZHToC!Kd?jj;ovK}polMuy_*Y>sq;D#)@ru{t2$d$bUkcGR>wR{- z4^p)ju$C+{9fm@pjJC=`#9AT| z!ashsKa~s@Hbw((=QbHAFhYEEq|A*~Vr!!dyr{BWDifZH4cf=;zah2n8df!81Nlc` z!4d)0Hc#ic- zO#)j%@yP$I1V3o(kx?#&Nc8<_qFnr2{K2+pJS)Egdi~7KXF_=F>{lz8npv61mBJWJ zCAT2ti$SZo{5eC!C`!IBYCa57|ZCMs__{D)N7QgTX!$MJ?j5c_7fmOcTh;>6gHsT0TvW)ps z*AE0ijkO?~tsW{2C$kno0wB2XMPzcfzU^AI_7s-i6a!2IaKZf^qB zw>gO`q4#FN(Fi|`Aj3w^jo*Y`v%an44VX-P%pZzfFs>oR%*^hF;Lrxv{tgO-)19vk zTp9ad$sx%~pssbpWUFDcJvC^rxI8$RmeZffY52?Q)4;Z;*S})rw&s50VEEe@vAI}b zE|0Gk&!jvimXtQYE2I8cWE{cHLa~h{kZK~){EA5o^)*J#c`r%~adqWMU*AoI6vZSZ zkWck634k|WDOMv7U4ZwYk1_qLs^6b*kd{=hxjRUvWrw24i*z?%M4W!&rItfq_mT1) z3u+)NTT{~8xDE-hCv6RV*hPxvd=vNK1KSSiOZt!!5bdrkYlyR(=ZlVY9RcF|;ek51w-8p&-z8=AwyrA!1h<=|~wLEjS`B9ar-bpU~Tq&uh-b7<_-1n^dFKT4o!0I_uAGT)V!4=ffP#p^Hj$NvdZhYlmy z@htv%!AiBT_5b~jYwC}X;@{<<1NMQKpRL^nSN49qG#t(p~k(xzJtyAx7%~le*4pRRH`6j6(E(t;aN+{S7Nad zO?~F)%D36!nY(p`xagdHoPP*CkI@_{3M*>)wJudap4V~A_aSh>+B1Si(Bli`{OkVi$1&0jlFtS(U)m6^}2 z6+GoxD8wNG{c~4O-Z4zLV5>MHNtNY;D@(cm-1NgR8UzzbYj{sFbE}N@2?x?O-E`d$ zG}xG$^0v+cMRt^f-Vo{50AU2FHKB0F-$5Np>@rRE0@qh>TS}lj?8PL{c< zWrbc-6g+gg*-;^+$r526^Oswjc!^57xu;{Yb=TFPZRd%jH$Cz<;6|?;;2mydN}yH zOE()0LY$24RN9hXX+_29j{%Wx0Ssmco>NeE$)U;dZNL9TdQ@L4!ox2pg9hyL|1!(B*C>r69Kf!v+?k^XzDd!#A zbqc1A-8o+h?!*tnQ<$1I3`wIlLQ4iv#ZW7|CD&NAIGdA6RX<@DndI?Ftt?- zFV+uvydK!Rw*Cy&y%_l%pfBmVg}Pd8%4am6yrHq%AcmHf#`xH0jJwobCJ*7zFt176 ze?`HjNlcC%X@XMo+Wr!QZIAI-yyWqnIgZcBjx?a>Z!C8Q>`1-sGzoet9yJJfK6&VC z*Wk#aSCNE1NvsL#tv07*i+YU4#hc7^h~BpOpZLr@QKg);-^xcUfOB|zK^A*LpU@SD zQ`H*PgCB3>*lB!AO#Iw6_%C3WU8)l5of!*-=g~`Y(GNU zw=0gc7sv&Re5q8XzlU6L@>D9l2>*qi@SeawZbd&ed9O98(7W}478D9>s$c9U8d-ht zmWz?Ol!rA90_evyE29g@%qj>sUM~!~8Q}M58hEw7;&jivh6oBJB>QbiB0RRiO@8Vo zW{Wc@Q)l5cVN#Ai>w?jaAvy9)jf~c66w9dJUzS&!-LzqA-=`IvWyg16w0n6&3_2b| z(6@qJ_EQAdGlt6=p%%>N`vKHAOR_qWDUHW8Kb~8?cQG!(d+e9%5=U4c(YNXf6+WGW zO?dP_4CMxlR(HRoTzme2_I8R}e774NcfvyngS(5vH~A|?#dO&DMK50oF7k~@=J#91 z(c(6sd7Ljo_s2>u66e+mZ|@afJ1+kY9~~btDfDezt!+0lI7ckDtYP9!RC>&ZyInh? z33wVoa%7BJ@jD@YY=EPlZqJM?N`s4`79bi+Nx7O5mG!=+di8Ad_%W)dizBeU%s|bJ z#SX2IA#TMlnfftRA3iJnc?nq7c%6o(x)b)Kd%-GNG?U=EWO?8E5Am?B)<|w#z3gH( zkXLk~Z*|Tejw~1b>Wm=h@i|n7)WQhf{i0QbhGehOAlC%^V%Xu-MiF{cnn*%AkML57 z1H|%SbxmEy0Bcv@jWARbGntW;cl(ps3f}~6-lQ6MM?C%Boe}zC!lab=``KqCbU&A= z`}rj^vTe$sL2*&?E^fZ7x$ISIYYnCMFzw|wYxSsMGz;wMij#nE(YM(Fu)wSJq4C<^ znBZWM(V(-K%;M1DHimq>cYUEJ;(l`2Xm$;tUvZ|9_D0Z@;d`ZaO-S` zleqAoyPe%khi$35{0 z`*=)ESz_cy^<_>u-oXD}otV>Lx6VG|WpaY>VsDcrm6N_ue*G<~_5FPcRMOG!eUaqM z=5w@J#~X4)Q>0k2Z8X7{susu>VMvXX+2JUEo#92@GW%$9mkz);FriX928zA>o%`13 z*2$BdQiPOoF<;rH7Q7Mqec46E+R$#@udn34+P`V>KnqA0x^mH%I zvE4#cjOEyy7@B0h09-%wCS5w_lE7|zL z4@I>Bto%C1-Oi=#<=UNf^(2tijgDQ!q3_Nr96UXlU~iom$y1@$m$vd*_2QxbL=Xp_nd(9s( z%&gGmb6-fJFjj=Uk>-6>>9H=f()D~5!Z2-wAY{2i;}1a>)L+?iE?7NGj@%pVe6Xj1 z=@3kIE@P-QJ1JaDk;&JPg-3wirA^%F?cXFh(eKU-bke-J z-ZGKM6pOh&o+T=In$~a5YhR;e8kFPtpqzRG2Ms{FXZ(gseB)|K5}$y8}_@K_r~DWM9b zkQi2*5~Hafswiwe)-~^7xZF99f6{yf^OV5TVeNzH=1KHXhu-UG?}on_qbpM}s(tAV z-&hufLh7@+g{@ZEye`xC|JFrvCfHN04Xeshz1@6#65hkG@h>F5S%;D@lrzMNUo>Re zpi;TU0Vy*Bc1nL?IKp>^+BK%FYzzFk$Fq@~^W1ua;*qT)W*|zhzZXm!-GhWZN;)2K zt#gcT#KZbebED3B9=9UdzcqarP3AaUjL~!zx6p&_E*a>F_WRy^e6h}ZF~;%of7O&x znP8jVs_yp`*B*m(bFBw8F;uR!e2ge(hPH6&L8eg2_rwk+@G-txSsA11XMda_=5v}Kgl$?#*?Zz0LWqJ`Ng+;Wb@nPVA5)qDA zNrsN8^B}(hxpJJz_#vZR-XFT7sFLc%h7$>1vo<}Sm%7wcgja;|E^ghovZ(VXvs2+^ zbd|{jKdfEmw9}B#2~=a8nYRh@d4}HX;^`qdtumEe`40RESLpKf+TDOQeah<&zmV96 z@Md#YmOh4Y)m;n5JRTO4{CI?J0;9LG)W{@okjQAGaS4tnD3fyYt%>ZXY!Lgpz81JP zndhM3eS9<6Uz0xFSNhj{Hg2ih?R+t@Md%Wh?FPBF$@)l z;^dZOmI=ui5RZ2U{IvoGe5iwd8g`>RMtgAR9NB9(Sx1Xq5AWF98Xk!ENB@o)qR5Aw z_!V=?Vx1m`z~_aA@}xU8XYy7<74}3`T|Acq!8~8~ap)*j1=X{Ck??U$&oM9ziHlOG z+S&r80KBbW`esQk)<0Nx3)Q0XyT}?**-`{@XI)#hmX>zS(t5Wl$%slp)oFS=Bq6fE ze{Qi>z;-@xXgKni$O-J}0EPNxv0`~oEvrZ0izv4V*)AC(@!OxR#3+100+oE;j zFnzvn?QBZkIhJQqVDrEJT&RI42z^2jvYm8}6;@-iG;}UoCbu%YI2^)lu$j@ zX>e`E;@ZJAy2wExl*Kt^+AUl7i410pBB#TZd+aO3goWA?h()zq6#3?zE)_FNg| zyW%EFLDN{3lxaqqW?V$w6A#M!=o5Hcc6FJEqS1-j3nCvB1EF->Ot$lQKfPiq5N)uc zz31nO!-pTIROCa+vqfogy^e#QZBRlL^w+w|XgqvFl8{MgQ|JjbQUytn-Obd&j00n`-|$ zIXmuSxDTy5x$yQ~51cA+OyBZd{tn}d#C%6c3;ZakN3ZYoj4eo9Gxp5CbrNlHwsJo7 z($Vf!Z_kvz=eh2=!GD>CqKu9beoxoih^RyMM1i$j_Fe1!dXE)APR^E?=?EG;YtHN9 z680daZEp{VQeNz((DzDTppA!w{wgv6oyhEcry7s#H>5M%)) ztQ33=wVq@ug0)#~<@oh2-|a;ol~&hi6iwwYS!8>)DN>4$BOjkj+GvzRo(5A5{FJI% zFEN^_)l2j>k#BLGkh%6BYl_~8h7oQ6@O*&ssK=Jyr>JO6no$1l@8b8HqvmetM>SRc zRx=(|8`co$DAid9KAd$Q!^hgWVX6ip6w77Hu&?7mF%6$$ffbRq$jt$LcWH{{LPxyL z+D@gQ6(z-EKQ(<^0vt{gfze&BERC>HS_K>Q({F99|TW=G?~ zlfTWm@7{%qX*-_De?>SUTWcS)F?cyf3%}W=j=$J^5{jTTd6%doAY#84v5n$ zZer&Yfy z(GztqbVc&P@_BS{w$;MG>rbJk@h1zLnwTwkW#ta>p0T|t=lJJGL5Y^kbM(x52u+6! zY{~)g*^d;U_j=XT4aG`&$?C9?5YdxTD!-{sitgJI<>?iEY#ptIaIgHKYhHgtMTe6q zkE>8O5qeWYil7Q6Qb&k(+5F{|xx8Qct_S~PNi_NF=87lh@mBN2;RIZGbdag7(D9s7 z8_G-V6)sc3A+%&{DkjkSGu$JtvdvOmDT??NV53|9SI?v6hMYUIVj_kqa72jUqam9& ziOtcBEY&WH-IHd=r4)=@3HjTy5C+E97I{#9tkhV>-)@f91B7Pt>7^epHLR9H-~T)8E&eT&Db20r3rPjRMNrpx}Df@+M`$s{`rWblwP$ppbW(MAgXSY$0N+)s;m z^XU3EsS_S9@qu6S2o6k#96MTfHel*Xo(wyp1FR!M)aooAv6x3P_eT*=3m>0}RDk-9 z6_WqF0jA*xj*BgH!?N+kYAt3vQRuW`-|^`}X-+z?T}S!oTA`d^`zm$PCkvYt?wtP7dTXn6`dxZO zw$aeU5jesV`Zcv8`H2mgRgik*#(Qnk!)Hw`gD>CYWkLvPy6?7GHF*@@(avo4dtQm( zX)vpOqc^?(OFMz2>aPsqo7oIjW0)cR(cJQo?eYSPVn_P!5sJRGwN0}aaMj?;DHJoD zQauYN(@$)t9+*wAN|O`^5*-vHgQs*oVDDMl_%9aVd*R4M%S)k4@a>n;Plh3hVi5>F znmjukcUh)g{m=b-j&blfLXj2SA&WL9X>faFN^Tq}rMmroS)&*axzAsEFCAXQ%O8HS zX*)IAnWDMSWa&&wTwyh%c{8ZLAoCwghoBomHUSeJU9wu(_3ry`dbR51R3$$nEL2+d z!%(T+jpsRi`}S<(bubiSD1~=!;URfQTsBC`7)*&xv(8^wOz!AY%RER{k-?jq)7jm+yXIV2?Bt&#B?afZO>+hxwc z{wE>HIZvC0+<<9w=}yr#ae^Dwr0!&O|4%$@d0^Jx&x=Qi*ew1li^=-%ig8pre>QXe zKm&$<(J@~zIUl);EV?wg)=D$l;yUt}q;cc9!%Tg{JzakEFgA5)m0ngIv5sq6teJ{Q z3aAE1qZ>|D;WHQhoFwe|`inh{Uz$}1ykd7ue5R7uhnZERy#>Mb$$BS`;JN;a7YWJa90(QsT2!$+sz%n{@$-mVS|xfFNEa)&KV-X5P}#U>uwe!^cG@wj>I*| zJIRnPz>^G?AkUkCY-krfz7N)%-l*WY{B&k!o*Vj$k{PY4kLc@A$5R>s+B2dW8}?m3IfptkABd*B)C1Q6%*x}-u7Ag z!2SnLu#gBetKM|G;;_o{h2`tjml;=ddGcJqW!izApLt}t_Jgmv<*8Aw{BDu&vDPFrZLus`KW_tRG8 z7-yrQ!ZmWOe52S0m@i1&3i}echtjbCcaTVN#(V@)9K=StJsdrY4!H775KW#kF{;G< zm|y=bTsX2pCzfLx_Ryi!I!zu^U!9<6+Th>N{^dfJz@3$pEs;!S#He5)x4m_(Ts+EN zIov7-RU6lNp`Qdjca%uUE8c&)JFw36%wXl8&tJql-Pz*d7+Y$z5VcLOIi?M@HyB~+ zZ#}2v&8t+XMc3_A&db10K7nd)gK#iEJs>-#(d@&T|J8rVGl`7$!J6=jC_?%)()T*5 zCW86@^x}lWx!0IaY)^ud@rKpD<``Qf`rhh$%DJxzi^u1!vxjsSUR#i1%{y-bgL0e{ z1jT9(;OUa;5dJC`Z0>Q80?NS7Xank3O}#sGdFGGpyanHeyuDffbsM=tJU2*wnkL}k zEn}d;EW7wuc0Nn6$b?2%iQD9h-xR@c4cs0cEoDtpws*^{8F5woH}cykbK*JrK;Z&7 z#0jvjLo6U6-->-sY1W47d!c^aYUt=XWKS1&_)Vy%chkKRdqmPBG-c|7CyIOUaj*Vk z#4w86>BF#QLrvRHq0xYmlkR~xyNVY`SSLw=@NoaJ zH4oE@Jzco!t$|x$5seAEFzzZ8CeW1G__}tL&PW$f4J)$c`FNqM$m~ z8!mypHzZ~Wl=7(+a5$^oTPojZNhhZ}uaZh@_nQZ@2XzHPT1W0cIe1*hGakQWvI7#o zwGEXY*foDrXD2Z^4l;lXpU{@y$2;wJt-eIWl{~`HZ`I@d4K`9==EE`XJ>8x4n@URa z@d*?U&tk)!M2E>VMMjFJB)a0RDtM>;!OG?pZH!8lC*e4wL~}URTws4oW+u0nhG>R% z?)aK629u$_LOtRZj_HA{Kri6TSs*7j*4W{1Y1>q}OS{G?-s@`D>;p-4M$?s2zN3ZK zPK>V;5(C0Wtcq~5D^V2JhP->I#-h!uUmi*{VYK#kmj*_VFTgPs{ie18+RxbD%OpB6 zS^>32p$!>7#N$rduM?n69cPpBr1Q<~*VDBS+=Fv!RRkexN@Qd%_gq7?_pY~!1T911 z=Qy#E=qh?sM)DDiKJ%^17O@61l~S1nzW8VQMocU&66mODs=EmX(1ZLv5mW~P%dJ4} zCRV3A{2&sX-oEai-()QJz+%Y^+FTl*Bq8 zwSO|7XP(8iR&mh*OctRCQFR)6CCZ=>&47$DI#6NWtRx}bS}3rQA)J_-op+i zYchnGzYnO?&c({qzoyV#K3JmSyxJW=zWyqdL*b6WSA5k77~A3g9NEF??=vcZAQUG> zeu>{fP6W!yjAZl@Y`Ak5o@x^dEOa;0?ntrl4#CI9`dwdu1)yi4}a-g5ThK zZc`y)OWe%hPX)eBy2;<eD1fGghW2JPVa@{HzHZeG0oiwR-zawXP`#E$nI_6;O2&6|cWtL&TP7QbxP>vv*xa}KuNqPvsD8Nq7jopoDD4r$T$caMNbx3}?D-{!wBP7` zK~&RPS91U%7kozmw7b)f5uZynS?)Eo$L&B zppV;8{+|Q@AiVeZzwbdh_n(=#P56K4>V^o*p#NK^??Ho*080HC$%ZYb)&EKq{71+K zZiV&#Z}o5B;{P|`|0G2I(=FmE(I}mVY3p2u{sm{$tG8Fy{%>8+Cl}bk0jCa5rCiX5 z1DV>{0Z+8jXB?@sYg8`Rsyudmmg!=CDeK)Azmrarb2wwEBtAF!U6ul_sEpzU3P<&* zRGz=Y8thy7Z01zK%h&E-HX|NBXOpY%0!79PWVgxs@$CjUEY?&}y3MNsvBl}6v)%6Z zrR}Fl?U5wOZA#zFj{Km1CouE^DjTdQJS&f_}Y zg0(4l6sgUvnV*xc4a>=1JLO(Z1^?EcIQnu2IxdiTF1qx{`ZY$Bsz(?6c#}jocs5eO zF+S~A)p~?+INO!X=ddOxvD&62P^C|&=W~;~Z{RB|1ywjpC7#MYT|7pm_Gh~+_reiX zTx9E1DO<9GEUx+O9sx_>r@J{79^>%=ze2f{BC6gC65G2GrrkuZIVSmg>&D&k>h2MN zGc)WB7bKoBSj=VQ^VEeaRtAGgPJi834**;F=6<^VR!Syj!{sx5j_VRtvqCb4S@u*4 zk&U+bjg`W-FW+=NEkWN5FT;0t7$NH zT>{=;mHKMWspXJb)CZR zy1p}^vl@szpKe0pzr_X~X9<$2WX@FIUz5qHCzbobsOpuVn@WiGqB64@h)tz zO`@YCQ}-6gl&rf3V8>3Oj8ym#vkQvk42S@e*fjxm2G?9X)^?nQ0?C0iE} zG=ABg|6~kvc>)BBb_0)s=4aIoU_S_*U!Ssu&(iiI9~7X6<-A2m8}2P$lN=kqf|j3| zhM9Q7E|F&elj=^oz+xL2|CKWSy1kd^-_I$q1~s$mxR)Hwv`Dd@8KfdlC0U)C89=j;!miRqR`h;XT2px*;JR%RDB~JqxBQyMN!k#&w zTBmL;?XEsGd9u482u=bV$ff-S7I4`NxYp25WT^vq7Ie%;p~1&~MeDAd8v{VI1mmvG zR0J5`5l#vpD{4}ym3?RwUrl0$hd4wTz@Y{^rEk1kqiu=vL+ii6oz29k?DyB{!lknM zHGeI=QxU%2QITN(hz=-fy~%PDfLty7qkOT-1E$XfvpRKP7}bc+4Y(gn{&YjZr<>#T zBAt5p(eUZ_%r+}W`&S%M$Y<>~=V-P&!7rJt7Rsdnkg)EpMk{dGKt{_1-A2bdKs7HUE(65+*2Md`;!cnnfwW3oSg&W&{h)t zgxZXWhvVvQ_kLevFkuMW-oL<{m;2(1wew#o-zSvkh;r1F?)&uy?Nb4rc?PCP8iosZSI~tX; z$vSyVp{v7-L9ZgadZe~ElQr(a1kF_ zuNeQPsB$~mc9^r6iWKE1sI~lBox)0Q&K9RG{7^!#w=xQ#1ZSr%PfkN}<>uJC#%3^Z z3RJIM-|NOLorl-XT}<`y8Jo^T!stlRYrE89JvZW|cg4mdb1!Kp`p`3qz$*UTVLBls-@=EpBQz{GfE~ zf#={I^+_-@m%ydreV=i}`%f6yOLtAo_SzE~^#}2Bcx*JNi*&s?+}8V1FP+~Z=&?CZ z+CKi9h%D|@qHIpUp_yji6Y$W{eY|Zf_ehI{nl=2N@?5%=cT(&pQ#qW9F^=>u=Ts!y zeJEY0gPezZ!&`XTHvM6G%PccRUWBcH6wG&g)2W!ruR;y5CeRhR{P2+hD_%WqmD)A? znW?il<&DPz^u_oY*8d<*JNFqPYr$@qNNYqgDrt0s4IB4vU_0AWU~*#BVfETigZwm*#=oS+GkV1W?a2^?I4LvVsyu;3Ql zAp{8SF2UX13GM`!;I0RE4%6KG-v7*f->msQYt35c+lKDys_NZUwSW8BkGvjB)<+Lp zOd7Qd_ht)~LGr8Ps+OWFp<-NozdqN$twfo9y;LFzRJ?S)ks`)@ zw^_r5s*Zl_w29(zlIc!AE z{XWp{{~T<#dk@mu;!Do{PyiVy0#HyOOF%5DM$h$8;{|;-#|IWWQqk zVv1S*tDzt8hMn)j>o2?yEd7ivHy$tr>>hirwnkIvYhH1L&uRPG%vM}#yLI!k$!#0P zCS7c933K)xCi!oWoYcEldNkReBBB%S_8ee~6CE9N0cy%Gi`Ns2qh8vsC;r@yg?$Ys z>6;c@FW#MiRGUpoypDf-T|XL{Kx?%9VzT?)$_j*VOkB523+|)Jw}c*4jXH!e23ax$ z_6Cn{{6`Qn-3ACky62*oJ@1BF!s==bNYxh5mYrKd(s>!IP`=2fYKHDj+nsIRk$Og8 z^3U&0SHCUcu6LuXj0{``gsNhm_a{{GG{!}k99)FS10Dqu9Y^IDE8@=T8_u;mqXLgn zp+$JoNW}2nF;fnzx-?~NH*sHnvD!^*mf|=)f8lF4>vo{O?9-Xzp;hCYHeZZqwUj36 zsCl@(Z*5^`F4A#-qb+vRDk^QzN%l))$Ab)z6|I+E4b7B$qKCb^b!eIQIsmOdOJ?~? ziK7)^y`Gda-XN}PG8jI_6)Z2w-g^RXEc+Yl;6B^4=*46HcT~8`D(Isb!!7qjFzn1H)>Ms?=RC%<ZTwR43Qrp<* zn@YdmOge5iR+(*gT-{Y!*OE`NzB44oUjy{>r{i>G{ou{xPD}wr79Ni4<{LR4(V10U z2W|Du!q+b1(~(Q?&;@9%-7l@}Cf2yM8c0G`cwFwY{l1D`qV+=Biq{q{$ooufkHZO; z*{#RGswSr^RrG>ie4qPHW2p4o&El*+xb61#m13?k%FSI_o00$J;DHO;BF|kq?(_Dv zqjpY=+H|gzgV|LsKx|o2t(+{lu&hkVr&^j)>2bF`5-&3e6|sNZ1_JX^Cda>5Xl=UpicxVg&EdMJpXCWLN(IN;Z=Y7-dCA)um&EZ zI-@x!FPTzrXbi&r>CV7qIjxn7cB-C+^4Z} zh12Tq0*{+OapYFm_u>PPy@9mPw>_2EQE@+Kd7*Gc39JQ^2<#= zC^?XmPF+sKk)+P=2|v_vlRSJ?Yyjd%1y#J_H~i$GDq8E{$bxk)EqeL@(lqgOmuia# z=VUgkz|TE|zGktkbgDIRnqMDO34+tK=ZgXbgme_(zwdNKHtwAcY6Y z$V4m2a!dB?ES&@?84n~~G@0~v&O@xxEPHD_JP;_R89XCNQmm|{rTLLso*+G9cdzh9}H-jVrN_wahV>&>R#sT`_#3jK~>w;sML0|D`-kiTJI)x!-sviNE`hC7naxghVX|XUp*_&& z4F%=&x-B0OIv}NTOD;~qA?d7(4s<@e^Dmg-WimoeR0@S1w$&)I)ywt78o;uf<9EhV zUa46N{EJ6KRU#a)RQiHtrKLpfBObvU!DX#c=~ER?%GE^H26cGG+l>eN2BKEV`{{yL)!4BN6sfx&``C9M$6ZK}6f9Y1`^d!levKr=S^ z`Y+ARZoPF*M=1Qc*R0Ak?@@qkQh#kT9ZX<@`O$VSUuTw-C?F)PkYcYb$Y*0J)Mu~CL4SJJ6)p`&wilGInkjTesOUm;FbGm721d{o}$xWzoP-wt0sUq!9r ze1CUkXFtC%Ei70ay;P<(HLoa0*9Po&G8p&?_ph&R>91dpW3|WZ1Ptpwx`_;5h@9>us(j}ULvS{goDOQnCRu#f4r%+j^~$p^r2uylD&wGQ(=quU zEx`69Q7Npz0iAHVU|+*_zCfWTYUY($%?-%IW(RjpXu8<>FlTw~;elCG zMHBPP;`a0sEJpcGgK3t7M#ONG&n!NZFJf6AQ5CTv&tswIDdGx*8Uhu{A972y$C6L3 zE}N2#V(g5DDagD4eI^SmQEi-m$-0H#vw7SePkEStUGRM`As{a{2lMl(ZO*nT{>WsNSj}3`?|8`FVuhf!ic6sLKt*f?_dw|M0a=)dv4=k(dv{Pp=CF zlXTI+!2<!V6YR<~MGF*@?mQGMS_630MwP zW_!fEiXZW%Si>FOp@F3l!thl#b-+_#S%S|*;^Zd;TzJZim08HXr;TI=-U$}?XXp#N5Qx9#UVp-invK^m z^Qq1dl`qB%NXh<^j|6!zP39`4Ly9_#O|?yNf-Zpr>n?pc0XO-BPMhKse_FMm`j+l`>Ea@Yxnw%mT7;XlugVxDyU2ch zv1F_-gF(bk8z*!%|MOGGkNv5~^v?60yUaSX+7AftW(vFQ7w^w{s5ZH;^1-X^>=+A; zw*!Np)Zg%jcXBILVaxGe6ua@yZ3862Cb!5Bcvs*kG9TS5m>5Ca=X}aDZAx9PTV&E{p0V@DJ)A)i59&Kdf z1JGld4ito4zD+rx5@uvOOQ*3Bm#l?|*_&<~|M`(Cks3qw{mLf;YZam1i|R1_6m=pY zJZ)C8e&m&v*J^?2m2Le*j=t>%e8PcUJx%VSn!1qhi|Yx$GBVG zr<{S_TQ2qF?=8m9#5cT-S3h29`5FgVV1KfTKn%dTxJJbn|fQ_+|P}dO3P8b zDPSzjT}!HI^!{kWtlL75fJBZ%PqA<8@Mi=GcJ)HY2K5)KT(386Nn78`G zuU~hhtewUScG6owZVa6wBKEzoK3)il_9_W-e(DaZNjb+xZy_bvLJnyT`sCRomoHLHep9c$~T_I?`4M?P3&fr^x3c;pG^uBieWf2@# z`X%U16di~cSrDha|2v%$$R?Ao9h?=+P7Vq8HOYn9f{Glou+p1#;8Lm&Q4gL}vLb^N z4-CJobG_;qA)i;$CYC4CCF0I(0gH45i^k$SOHoL1VfBq6zVR1W4x;jI@d@h;&mV}T zyRyoopU|22*yf96KTDvnLIi^|co{p;IdO4bPZhpby+TD6k)7Q9qQsiFB+3I(JsJBU z%@hy2DI76fpfGHth+-jcwi_EQA0;}+fyRrkpjR27(-z>dga)HLRtQUkR@$iH*!ziF z4xb^@(P{sOY+9D=`7_&|7Hqp1EA0{?cqw@C@MQXT>`lHCqnY;wV%3DN!uLE&GqOm# z;S|I-up`^MCCg3HTpI05T}VM`RK>hu9WH`#l*JEF+b&_D8%}apKm)~CU#{VY8P7#^ligUWI!Em9$^&8KEP#Nd|(VKQ9!bL0FkL)!H(boC*n{o<-yVzq0U9*FqC zC`KO2b`cHPYn^BzE7VObw0p>&cZXL=1!-G7$idIivA^Vferpwhii**EB89T(KIR`c z037TwwTn1{u>JM2*puAuda33ViOgi{D1*h-b7wFCc-g%=Bi-mU9Fb8^cD%aZezcqb z{*`yKA!ruJlh_zY@6)qc9a=+6@1?kthWNu`8Xw!$M) zvnfc-3;IbtwdNYc0J}#pu?=Qa)$uGqU3yHRmCB|`O)W{>KR@jyQPAGdB_IqI*yDih zG3D)De)OCTyPJ%Q0Th5n=D(-mEgvmuGq^TA{Xb$VPY5D$&``kDYY*l!5{UM^c0RG_ zB6LjFqvuFFIS68W++GjO5_xh^2At}24*@)is9u8~I2*myBjQaasQa(tZ6_Sz^rJ6e z=%$4qTYrnd5xBiyt{amncB(jvV93*;91%ZJlz%bPo-h!2cck}ISvQ-mOqSAC+ z_Z}Mt0mryyzn-j1#~@j!$l0@xTy`5WY`yB3$KvZZ-3pG(3U0U$e6!OT#5t4c84kx- zv{4uq=BOWO6iY)My9=&#-A`f{#swod3PIcocWVGs8VU%%Jeyu_IrReIGkA5+=>TPr zO{D=+Q@82WQb*ExEFci65m@>y_tE5-$akk(rEX(p{Qfu6w&N7jwGU@LpOI$Pqk9@~ zUTi|b;kmsVm*m`LhYQFVUHxrE-lZ;V6~NX`HEMI{9j7xG%~lajIX!#h=T<*jsN zkKAZTyP3iqDl-kml_>($9o3xku_)G-t*_5@Ik)Z`o`o<>OZwv@7fB zVqep(YIEYZ3eB^dAF%QUNo7R8Xa_HnYj|ElVEGM#4sgo&q442%I)I}8^?mAUFf5e^WFYLqz1i9A&<3VFBxt{TN2gRG zo3)r(C-9R zq=yzu4)Tq9(LS>W6|S{xj}nA&YpIaaGK`>BH3*50M5#hK!O%NJnztH{>ZN1fnaXxR zQf)nKn}vwxMz?m0A(lB4u9VkeIe%gz$T{t>$8ip?+KCnn`f)XMeo9p(bV>7Tl~w^R zVf#}ZxU6HanZg@og;@;wv+E^28v?UWC_q20Kg1~(H8kpD#h4sF2E-1t^}z!$6vqAa zuJ}LGsd+qbHo6Hi3k!wLrcI}LTEk0zw&FG)kCr(L_;rB=v<7Kf(nmYRs>E;tw}||h zUxg=RlXvkT@bhs@nd8I0>$$0#*J0H;vA|B>L`S$Rt7>)TNPH*(N#=Y1{1NK(86R%l zaJh^?UN(4^BEO@%Ej{xx^>7ATuka`51uUpU9@~B_T?7}csHsSZ9lkq?hWB)4 z`K=pL;V>Al+JZ1J0Ksss-8V9d1>DQ7SQz)*#*V5kxz`b!D@QzTs0eucNmlKRvcVZi7f^? zL3yOrZB@)+h7NsUt~HR~ql3z)d?2{BCd)h$M%s|~EQ(hz?XH!`VP(F14Ghhdy4Q*4 zIUbc$4rngE#--(;rs|fYdMVES^;C`sUt|Pvcqoc;jT!wd8|)@{boqh%&`7F+BgzOLtCX6k(@KDGlo$_U!sY^@ixVc~4h ziBzLWMjdm!57JxO#d2^avS=%4YtstddKIsqWqHA_;khe{zjNoL3ad5R!h?ZIN%^k& z{2Je3OO9{z4QB_oA})Ji`wxy7!MZ6vD)4>jy^JWELYW@TCjvAkx)1U{@3@#Sa65d+ z={^|2uDe8hC#^Jf`mNJN?7M1&$QNg*hg-9}FuLUtXIm{>l}hyUYv5V~K}At%{iG4N zCAyBVH)K&# z*!9Bm#YZC}tVF}nWHT5loy1qQYkPEzPE*(*@8$=3D6sHFOt2W+PhPT9!2+XczYFa2 zq>+Q6fO75=UHE$G1hvjAr%_1B7ql3+_phxB;;iVmy@N$gsi98BqVz6!d5qyqF6dl* ziI7*VMCijz7RapH%N`5rpaaE*Li|6e^jDfj&c>D^83Ga;lrIC~#%a?lXCt%hGqg{vC^`gDQWL1#zrPB{L?{^X3 zu`J6}_zrG1QeZDvFIVI{y{=%8q>Z@rLOhxd7J8QS*AvoH96IL1*1JfoXzBB#)?nBz zJ{>!GuO83_o;Qcx=cVmU6BiPxNuTW|;Tu!*FJaUF4Csqxi%0C1{VW{^3WJ68#zTI34M=NfsJRNtOLwRZcL=WH-7$XzJR9X%s4;VM z3Eppf&wHm?4T2P}lj%F*q(rp+-W9$Cq!@~-#WmGuE91sdu!aqfif$y&+Z8Uq-L0>a zZ4@y3B;)U3gb7R|4m3WVpkdgUIO@f#Qx)i;CbtQBz4>L5conoYab~t|HEk;v5mPgm zs*oYuc6E0G(n4up8^u0Y-sI`+aq~<_b>jbl8myny(`2s*{&MPALZ<&f&Xe+3J@LCE zx%|RI1UkU4 zXFGT)kCp3;Ra7_ISJj9@dU-x^qWq>bBMqXc&1PAe?Q{dc6#nyVh6v1>-M~rHJ-O#} z#2%{%{{q(Rw0I4gTMDqE=(u#7LhlbD_I-aHdYuW`Nz;tdwtAI&YZB5?eu=crZ@$4@ zoBieoTj3s|fa;!5hfWTa(Ot@mbrm?qF%|*UIuWevEj~RVJ@Q`=n7bL)cnhiWFs~ny zZOUxz#Wl|+x4QyXJ}tln5U)dwx}SXLEHj=X-ZQB{Fl?wD>f2$%#rW^<4@HA)L)6Fm zMeZ|#cZe8*?2u@8q5&R>Q_-rHqykR3W&^(3CYvOWrWiN;rZg`W=x)(n%Q59UqNc@YO;Mhz?6C z1}*Y1=Svc+WEVoFpXZ%6J|`;-Q9}1-s{4nyu!o4U0jD}v-YZG=QB&yd2aJla6^%Wk?O#>5I%bssv9Yn!vs%ilH+nto`YQ> zJ0wsLjf4QZ#~1mfQGp>zOR#^Go$M`XUQH7s;|}gu8p{6I8h0+|d=a&~_1F|Zm>c5O z#yOBsSY)(qR5TqTYHi!hECKcnc?U7nogexn8bs5RhD*~RXXAdxuMb%g5v6Nu2=diO zzrFKA2#GT4q8VLz;BxNgxel)Q67(I*6F#BEDTc{ahMFNqcZccHSg|y0rzrckO&|)g zjkip2&$E=zU4&HNo>kU>!fSuFfYeoImNHulYyeMSdpM<955LL0llH?EX7> zkt%_dn5i2e%!{kFAxI5}2p&cD$$;5vD&_&?zd~?K#Z*L&cH4X}QlCj0u2)1VM@3ZV z6)Sr9oe^BRSdZuxVex{D`YNM$uPok^Yj&;14k1A}y}3>r?EG0rST@K%2WShyc=iSL zHg1&*BtiJjch--x?HPTgQuaP%BnNwWodJ^Bb1$BNy{)t0iu!McBkA5R3uoWRXK;NQEj>6A5FoOGLHD(u3PAjxdz%U>&+NGiJ zQ*Ya2ZLH5(@7%TveGB|8;uvB1{$yU7=JTYR^C8B(0&Vc8JVEoRA;t$?K(P#}z3v8q z2+my3uW1@dENu<^mwPFFPOIKpOz*i4HQAQa!}f|CcFLmf&2+Y~{cJ4yh*UGvrAmGW zmt@hf|bzAYrO zk`{g|#R=MmKHIaW%wkKRQx;$C#CA5ZTsJiO@&cBo=gVNOMr;<+l^p>d$E)QKL2+I$ za)O}`?4Bo`O4#iogOPrBrU(`R3E^U*gr0=v{;C~VDOm;gPEv4S3QXB*IckclN(dl| zjc5Sf2PAtYO7fUMCh##teuIlFwZ;D!o_=zGOI6;BCh;iHTGgVog;ib=%|-O!WZTwI ztU~c-Bj2h!k9rV~phV=D^i5o%90!0BVn5UoBTL2=Tq#wnVH_UiI?*uvQm{i7Y!;7= zj6*gd{3ekB#gJ{*m-z!5R*cu25ugxGqtb%|v)I?pl>2|T`~U#V&Yx~XqS5aaH!#6U zDP3>pB72bQ8#XH2WV3Zz-9-35%FzFjf41{W z0cvFad6sGVKm2c>7NBBgi_cpe{sSNEQUNet{R*ov{=;!9QG=H6GZm4Q-k_vBCZ0e|L9zOi&8J0_OgxMzO6d_&x9qj7 z`JsIKr4RjUo1Gs4ePPQ^eY#$csXqWkhcn5|ZeBXux%OSuzY%E%uRxcLF#jj=OXjs* zw^4lGiYH%=#EBd0re~r{H0_IlfzTOUx=_v9!J!4?Cbz%KVJ&8$4;3A+RGA`6TW*^g z8aYcD4>bozQhAK}`YPPkPv(viofd7I^sEb~tqA5Ei2#v3UIZYuV7r`KTI3#h0`$b1 zPlw+_Td#e(?eloSX@1GIYedegS`5&2{EGSufm;Tx=WkcA?^;G!|{UZ(@{>v_EMS zzY&nf0(z`Z%M41VjHcrmVai1l68v}f!7bdz2dn??>DD-5?Wel7EKFA-XeC~`N0YV<7sqD z91ofh&^F?qj0}3CAU7EYsZft zv5n$jmZBYL3eoZno&OCQQ&>KM5?AolTZb*n7>xm`Ow)^E@X+E?3FI`T3|HNhhsb>rTfEoa}V|jOzp3wmD?gOAc zdz)^td;}Wweof*3`54e>G0O3sHOI+@MG8Q#**?7LK_@1AMdB)A)lv`=yj? zS+>mP%ZlwMO^i`KO~n}xQ-l3>)cn=QSaMGMxc8V`B0BDyDul&}=jmQh$|JXuNsHZ^ z?KFmG`_nNKXwM@^J?|Ab_|NkzwTmfryc(Q_?PmonX><-8RiUc2=Zls9;wPQA(aQp| zMgRO;?;lx?29Y`#?hPqRZBpHKNBrReH`Oc5#SLD5bUZ06rXgrj?O{cF(23v6QZXfK z38m_;>F56zsdlqlrn6h-E}3La7N~!)YP&E#tP|MqkJpW~jm{ke;9gt&UI#3_5~W&P zHKUC3t-8`)hY*1NR$n%Z zGqe@M<;SD7?(BO$%FV83sy@JRzIiVmX8%~$>j!1phCVnyY0Yz%Bd|{a;bP;7-CrE8 z*oR-ITbhvi)+GSMRZls#OWf38w-wW{lb3bsVwi#Xf*n_bWTtJK$!iUsqV;m~U&cxVsO};x_ z5eno|M4q3*Xo6|9haI{#&;a4-!fHYdC z_2yDjJKChTHbQyYMYXUi)h=TRGu`y-h|xXh34#g`JM~7ffDGtd7x6+EJ%!?_40U>V zcl#f&vQ?_Y_71M1KUlZzr!eDnTX`UYPhK`-wS(FDZl6VA^8en$^Z!O`SU71$w(NP; zA_Fj{mOQWcs95VY_FK;Oe8&O&`_*zFtw@{zJg1X=t#g z1ZDu>fuiDo9ERQ_kLpE8{}hn=5a@CF*;oWvYuBfBC#910=YlzIq?RLezo!(z`&uC5-!$OZYC@jb*Fx^5x3F>s=sq zK^)w>Me!o=+;o2{)PPV=WHgELEIXe2+i0O6_#!4+`uq>cM`50#fW$gIaArF)jUv)W`-W`_)(3AF6uBMg6Z|B`=M8cbhU2oQ}9@ zl5Zzcd9Nl9-K`sP6e~?|C6aob2H~c}YuiOmTF-M|w!V6I%>HH48DDK@si0(kIqd<7 zhlSH*5A=-ogKc7R^l2(Jpmq8Mb)jp8k=>rP%=vi>q*_Fgcp!28a=UmD-;YFUsX}$p zB##k@Y9RzDs1^ZwFrdT+QXFb*c9Y|JAKz@N-EwA5laY5`80jw5 z4S;>(%u~0z-IZ`kdOZ7bE1hB8eDu;Zj~@nh03dxf)Oe-bqG-+Ryqqo2mZnjysV&!G zqq@T+rU~bV#%QX3!#tq)py6P{kCM2V)To-A0n0zW#X#Bz;c?79kvqWrYw`9D#HtMw z9qR!oGg8UU87srYNgZOosP?ircQ3#ME44Nh-)L)<9uB^Q8)t-Qb7uALdLB z)zJP7JGFkmfA5Iw(3Q2kK6@M{cuVK)N7N@3QS&)h!M1e8O`+E5FjiG!{o|p5uF)v| zA&q)#l6`I2#Am0)9tMNQFr}u?Bg#}q{diSZLG(^djC|{t?_I$wT9!8}@2O^+2X!42 zme9-F4y)ZBzWa~Y+GD!hOwBAF7GNa+`VxCZ^JPuZs;upL>gMfyc57wbBSzh+hbvQB zDHHQIBvhLg4Eh-Ra`iWm?koI}G+HH-5nEyYP?(Pao||h8BR-ARt2o15kI%W-_Dv2MOwe(@t#-|^%GO3vk|>;;uU8zI|?NzwpT*%^|CspuiQ~MqkrrDjyY!O zYMao+%-HiZL0_@j&}A-XPI_r(bbTaKRI41ZqX*1T959MSbX;0~I&?m?IzsEpQLIty z6We+U#5ND6ofL?`5xv%$Sb-ro^Px$-a8k33B0C02{^(&0M0+7&6B(%@?eq!ny1BOR zAH~hTT_4%0XgeUNs-aZ3F=4%WO8wXJuQ}9wMr&x;e0`|jY){M$$U=m7nM{DmPWrhg zc_72NmKrP+jolv9V|=W$Yig2t)64e&2maTr?r<0zr8f)nM_t+0k(kX30@>JDa^DTH z8UEb)p{N4CsO&KoFnjA_rsSvk#Df|>ABAVl7Yfsdn?*}<8wD`1)UY80R%IQkzVg@j zpiY#&PrCa60F1V;S&(m(%y~p#i>d9hF$7>ws<^)nvt+W}z%e8J7Z=))+eZe!{mewx z5nJ_9pCsn)H-N-pyu)o?L(%J+cmnni>Q#1hzz1>^!Y@=U>+$uU_-BJ`c#%fU#gA{m zYla;C+-~^32jUD|Zx{MI2qxIy-=B>>-lPANZv0%evMP~F1wZ6O)5Q3tvqpm)Aa<7Y zxa7Ep(ouW&+ieZRYTlyXm%TY`22#UNvcB~_;gwGJSWUkYU7Zl6eq)&DW|1kd$&_hc zt_WQ7HmH!OT7wq5(!$L$3G?L{Pb@$VKGw=A6Z_~E-19ZH&=K{kx#VmcR+^HotpGr# zXNRNCaI+A00LmbZZ>omfL_I@KN2B_l_>X^ zj>)>LC0}I-B<)@^sZ_WgH~?ZI1zq_OLQ3zf9u>6(y_5rINkhza6g{ux#IoS{GP^l_ z27PUb>2Gn`JIE*?2XOc=yL9q8x=tvN zq+Lp8_0i;yQE}U$F70a4WiS}Y_`s3k-Z%fMyuK%W16GQ+@p8)Qyp@K7G1Ir|G zykq6Xmo#b??S{``gXPew(Yo;GOiDCyp`z5KYG9r?2g$eaDI~Bmc!3gDneW5F%-{Gd zfnovnM%~ch2QlL6>cPiFfS7pGk18dMgh6_k*>knyF=rAl0TYd#tz2cg@5S1sr6Wn4 zIO;4MHd?;J_%R?I{TP8(Vvpm7sc6gEt(-Iy9P)}qg6(tJfXpJ~`RHy6uVekf;HKzY z)+Njx@f+4$KwcP!IINjRGqt6@i;efhW2qKkBlm8(G9tC4I<)Q)YOXl+U<5+5IKP9k zzH$FLt%Bwn%0EqzOmv&s-xTl{xkpYphD%;9iKFE%co3}O@~gZzX{^1ie%~6%V9662 zl0smNt;*wT9D1!PjB~{Syqor|FFG?483MeJ0#W{_ep*HIB(K~L>}-X0w1iluzV*z!9~?2-#(Z$aBN|M~*M0tJ-`Bof{Vzlp!NuU@2KMB}=^ zP|E(jP3~8VPFc%IE)T)J;Nt$Y#+C0Hy=%_Tbq6nqu}3Xc7dVAh?KT#e7RpXhN9%5q zm^o|A!GKP~CXt^pvpEHo_v2tZ^!^N!Pf)zt-87F*lbFjYlO)5wcxcK(1eZZ+%LY?K zR)FvK1~!8|Dv575^v8??>DE)e3I9~-El=Lf>1HUvN^`T7M-%98UoyCivSY@*`!*LK zRsK2>CU^0}-b~!7kyHbpXOJg8+fJ95Z9BFBDY?-=3|Cz9K8DlhDZ$0FE;eukl1ZT7 zFT2n3ew}_;H-L~5)fgH4HH20FQr`A)LRk=)$%(RkdEzitWo*R)Ss-T06L?n#2e443tuH&d!% zk^})6Sc608Hk06IxQWf3a10CSMcYIx5>+2SLZamn=(cLQD?3%;H|P%2nzayear2C* zyTe)}wX3jzx%2Yc$Y;{V&0ps_fzJ?w@Nre!=~MC+PtBgUA1acm4NF>!v?xs8_=w0E zq(htpfK>+YQB(n33nDtlg_1_=w!#Io^I(#&9{sOFuRtvSn#a6N%1T8>YewD`Xeo8= zP_>={Cm5Zv3rSHJxtZnU?J>qJF~-IBa^L0_;6wQ2p62#FqD}l|$wr#gyWc?mhT-Ni zybMnTtf41O+uLAivTwnKjA_G-$MtFW5lVE9U}}ivB4oHR6378w#6z!DQs{oCI`a*n zXA4Q-(Q7x%&yoMN5hL42&VJ))``#7+lrd%)=&DsBC2-OWwBZewTuPgx&N z(ZRqnfTY4l18%cetQ{tPUVX7{c~oMMS7~PK7!MuwLS=uH#f$N)z$$#A*#JkRkx?*P zX@LOd&a5f=Gj`rV@&-u!vRM%-)6e!Z8tn(G!WFB6MhI?LUlvg!pAfP!o?~SE^q}0tSzR@;@1UAF~=Mo?tC0r3rmIctQi_Bh5=*hwJMaE?y3kQ>7 z8r3M%tqiev-tF!7KnHQ_iKf4?d4-VNeyi$~oNCKQ1_UZM08ZHC%Mmv6kMBOX#dV(d zLHkUs)e2`rxb4a3B3nH#<%6!EP^WKPvCl<EX25IJqg+YxbIQ#rHlCN$3Z>v1P-U?228sIx>svP&iZCr61D132R z-&s!Le68?;c`92YRm|$1Y7gxIH!l>Iy=$89bT(QRe2c)$+iBsdw$M7$D)-lPKA6jV z^+j&$iR{B_>R)ZGA2A09j&=OW^6UN#$ZJT8R0moRrXPJ>a%o;OziU#XV1B{Ovo$Ep zx0&L=P%P)i4{Jd6YhJ|WQcaugKJNp>nD;^e_+S_JT3}wQc=36k(au6wQC5221rl;F z&3D~=$yx3B@FwY;!L>=S-4VqJR4B3zJ4Ipyd-CnAvAD?dicX>TNrHas$M>?ix?}5z0BUJAAi|3 zOz-8$baso5erWX=`FB$;`JU>P%uyM(_7&Rz7`X_~%*1}vTU=`BGMmgcL)H1ZAvV(I zo6nmX7mL=ECYv>FXnLLtQSdAG>M+j9Fe3vBCRZGAVq`ox8SIba!HgkyMWDG8kK*CK zHeMb;36>Fl4g44Md6V&SPu-RJ=uz3@{=%U#k2ms>A12fwCS7Dd` zYSml-5PdnAP@Pu%!(}CW0ORwOIn_TEnz?%_ZsTz~pz){6(mWaAc<&1TRKJE47`Q4q zU3KX{T^0c_DtVje{;Agw-UDH;%UwG2f9_*Yo}V!Tb+J=>HEU=>M@d zvmN$Ew!e+;j(z5j@0b{w0SKdhuSXMj^+QrU{uFqv#P)$NZOchOS+SVZpH}|EE8a)o z18>z_Qjf9{Qc-37r?4*vxsBlJf;8X^#fXhR{OPp}!3Jm8{A&8}e`yBn9U;K(Q2%oi zz<^66G%;Cb|AV8o5CPt5jy-zwKYEfBz(0jlRayVZ>v50+{_>SW+`B*dXjWO^vORNi zoPTmbudo5<70NxB^e4|o_!P-sKR8JKlbZ>B`eulw8vVJO06fi~KMjM}lLOBh zsm%S;qx7Hg|&14*K`><q1H-|%(4j=Y{P$1roNOib@et>E`>(9h1Zf;H z*#G|dAY&cVs#QNnumQoGe*AA6@TWdILf&v-*GXJ^Nw_zH|NX-fg46N;9-E5*_Qi7H z`S05Ttq`1~5`-nX*bn4-^S67#;sk==p0`KBM27#pIe_UF1Sp?9iCF^vem_CDNI{@6 zIAo{T|1>G2!ywp9mQid){IiE}kmX^-;Y9d-|7qI8&43BJb?73B`dh!jpoqZ1midZG zpYQ+;jrvnV=bswt_`vM+&(=hWw9_qXcALV6y-9FK|3lYMuEcV9yhUBf*Ay5c{HOg5 z_AxE{HYw_ggl~WE--i@vnl{jV3UyWqZ2ufEi8ny62QlAJ|I?H&4Rqh$^fP<0{~kzS zT(N?HhoQiJODg(LlLHFSeT$9yBY&To-XQWwpx590+{pT;DU%WQ>G3%K_;@%#uZtwO zKmX^GPf`NSci8{NMe)x`Bl0w9kfX!N|7mJ`8VjpMW|KdRg~ZdO(LYuAr%56HY0{Lu z+6wvS%)ohiYH}I=@BcLI;W!(^x=kRBfMtf zNwGI>6ImsW>DLWeu{tx)CSl zr`>W%hMv#7nbO1xNxEgqL`%^dhD4jEZqk*m$=&I;^!#Q`v6>ta_WpXKtkOi7E*f$w zE%zPLBCgPiUWe&U=VA6dDwpzXV9mp`(&Disg7=ODD%8AA741xTCURq^W`qR?K6_BA ztneZ}!E}9NgqQxsg$q>ncp^Y)3xE?{o6Cx@b>dmK@r`&8j;Hpr6O9!i5c*`0e#`E$bCj4b<>>5hS58 zz5efx3d{uQ)Wdk*AN!z4JwI^!;D>_{2q0>WQ$TB}^d;ACJ`@RkZ${?^{T5zfNY6HX zqw{TS`y=TRW(3dU{aYP8T`ijbXaQJ0NoHz^UZnpRwO!(Z2JoUEM}y{2C5o>l>5Itw zt_nfgJXDyFo8VThPm~gGZP^23QkJ(*(QU?trE$LOM>TAptc&AJP?aLyOVRMtut|g@ zEXlQu#@x)Sqg=jEOb31X9!nO~N)_A{l1w&v5$=1`-$F-4c|G#MrPw6Wz`2)WG%S@h z8rtN*%vdjowAh?KV;oa&svCaXF3#lbPq#SJve=S22?7%%K=zgZE?X*AJ#R=KW0?oymdV8XYs;rvFs2rp(d?6yD9y6jubUE22oWz4evZNL3w zL5UiEKDsMXehh3)r?7ka{oAQX_e4dBrr~X)$4xic#Kk5%sqQVBf)s(^YMRH~4OhxU zkbpC_08s;(z2iY71N?r{orO@jO)mS&(DLcZh=a@3A(3L6vrd03V~}%E`eDPqXXP2> ztnyY_1|`DFztAIb;Uhhn3YuZ`x#YTJ`-9%i#WkgR^|G!kB9Lol0m??bn?z~OxoYap zRz6aFBb1_McXO#d=dcr1%)80J2~XNs?1jAYI<``B-N|n7`$L`4>D4x6)2Jn(CTBVd z^sD=PUXkl%&HVQXIX=u!9zt2a6{$5f2yYfuI+x?_*fv}(&0x$HLytxh}d>L>O>syxv20jdTC!S zemJ*Y+-pkS3Zi;g{$JF+Wm{ZLx2}ylK@!|OxCZwGw-BsxcX!ty39gMxaA`caLued= zySuyF+gWQpd%bt=Kd|@5*>!aHF{^5fSyk6L$Hh$PtNujZLBdDXL)cCw;Z(@k-86ON z8!vpePY%F5vd}J0j#H2wWZs@~>fviL>_fdq6pNCcS6NVtx4P#X=oaEJ9X;itnke#M z{pSNo^c~HaIDFOXfNwn0j*#YjZM}(NswfPZAdqVIBtj{&FP_ts_&ZLIoEupOi?91K zZsS>Dhckftri8*>Z3{RlJZkR!YBy!OU2&9YpXJPwzO~Ot-nwNOsKAQa zo@opFV!2O`Go?hA5pgYYUW7HbT#Cbmm!a%FXU%|8OB+qk-bO07;ZZ%ZY72wkEg)T9 z%PF7=yr?wCv^dF|JsoOW3ybG$iunccv>07(WXyEanKY17f?*U(q>1s=SHGIzD3T^m zzCJ~)TuI0mj-kO=X8D6Z(mr#yh<6 zB3X-ZQ47FG0)IB8Us0A4O;hgVEti#8O`{b0&S`}e@Y0HJak1n5`a}M8dw|dI5iY{E z&Eok*?+^{_jVY%B#Evh(o$Wv zozGR{!B&LMPs%^8TQh!WNl`6HNxtbvSCgV;YCQb{Xkat#(d@-T3`pz|PX`E~2tb^o zr;KnTNxZN(ONf-ow!vH)cl+!#^HRjrS#L20&qfhnT330lNB-^)0b?X>CEe5pXIWj`7+r0 z{5DPG-YoEhj3wEA6XweS4;NOY!ICa^!W-sHNsk2b;#Msk_VUWJ}w(mh73wE7W>OG&DDJYPA0dcs@ z;>_P|ihcJy1o;TH#!<^*_QCC>-7liw`=1v$Jf(9KI8qp=p4`pDQw<-(vkjtl3BH7t z6)w%OH60%k$wDRTImq*H+(<9n>D3sD3ds=9F8a7x-@fvEvH=Y@1XO0k!Y^CNR%@sb z%+RR?l-jLZZh^yJ&Rz7!8o`%BR3cH9EQ_!0r0sKJNk>=)U^<=jp@ zmml$FyzMDrr1#rZK}!9r%EGv?w#dihtgn64-ZmohzfX0UC#g!BuTr##UZWJ@lh@aA zIHWTv`SN#fA}*%M!c2XxL0}s1UpK}z+f!8M;RKAsjZ`X7h&e{!YUmntqR-GoNs!RZ9nJh2-aw% zwIz)L;#rqG$z6qoNGSc3-)A_Jei5vmVoX!<`z+_IRL8Z5YVb3G_HdL?u92C~5255N zjHs8cUuov1l5SpwE^$CaKUwLe`S~5E4Gh;{f+)f)BSVLUW+xHWkJP``VtRToag+h4 zB{XkN8Y?F9yxnQE2R*!IIJ2;FFmoMFZPQpw&{St9NxOHktZv zN&liRcn13;EL+kfXYuWa%4lTq`P~E#%EmrytW6QIg9> zcib$GgZV0kN(=2zC?*QFOqsO}FAU76)XD92tH4u?OwO(%VwJBOP5DaY-5hx8r>m86 zlT2b0wHMYKL=O72cK5pVWKHxK*o6?#PiDD(u>W1B1J-G*26JuF1(6uvevvg8CR$W$ z8r3Ae=B@ic?hZV)X*`@2g$T_Ho>KoI^65}fn-!s)5YtW7-I&#VbfT|NUiFLO>#KRH z4ZLUZ@m3W6uBptdm6fF*Qvq&fY(Uv-v*@dv@aJZm7R=J68<;yqgV=W@jXGvOE2#@0 zm>YW7v&r!7YZgvJ2Nv$y?FAi&`kA7Y?aSt?-J0Ex3z&cI83Qfk$iKjy5x72k7EP$Fo3MTPc{3JFKZ3(x7`bT}xK-_ny|!P4_1r??f_xiarb)B}*hj)KD(V zjZxKc(ouZ9FCRYDQ3&6ar^3O_jy)2iGw~~ut&wK_mB9T>X|~)OaOs@)!OFDtx-w}z35q3tPHD%b*klw}Lv?&Ng*-sS@AgAU1y=Gb$yJh} zwLj3WU{Wq(qO!@BZRn;C(Ng6{pOzzW?R}5NO7Eq zx@>B@#i8u?lw~gRl~^|Y8qHGXAbxr88e;lKf1r~aJ~IUii+(VQdkQ?HfR*RWdcqh8Kf_Qgsjrl zZi?7PBB4lgVD7Au44!|Eq=Z{4Ty1q}zs51^AFHFR8<8aMN#e=ROeL))HJf zYqBpqJNC^6I&#-{u>n*Pb76I^Ky+BabgHL&>G<)|QLYA_G(k@gAv%Rd8-Pl02H`UBi0J*!e-PBouL=k{UMB?D9>Nltg$n84uLaeK3SRXILr}|T+ zztBa~)%rD)N4)xB%SU|wdrz*H0u{Pl;TP(?Be=Jk44Xf)6Y;|eR-ET<1B;KXuKd?$ zvb`Ciu_5RvAR4qMq}$ndv(%8YNwp3@RKU8Yk37$ z;agc#oMLt8Xma)2=n6*1R%4;-5^A4_+w)WrabHAyv8stj5}?AfRa%ZF4Q?^&)vHKb zaL^iQN1n(~Y1W5)gL*DWYLaUc16SQ%-G|mKvBCSv`ti-_62O!?w&BNx* zP)xI@qb&12`gCq|utLm0U5!lBEGI!18g2AFbK-;?(9QV-=6Dn)63Pm)O;5C0X|DnG zren)}wRD~Lk$hB^$BETUF(fXVE-1NbUFW zf#xt=*Mq|@-@M;}%qKG+()Xgv*(zSEv)}rnMs_nW;SOW{Ht2hoRW3ZoP`vc+eoW~) z>Qo>IRqu3fkhnb72wrtCJ5KIS*)M^)#D0(-HpKhJ7ob~~IlK*JJa;Gi5a;s1yt-he z+h%|#IIR46!5r>~*W4k5LhNK-hh zA4$&@GvbY*|Cu2I5HUS|z}&@!w^-uD@82)~^s2aSz0$jGSwe1Q#hB*LVD}W)EX_uh z&1P!9hr<>QF_A+u;A+rQq)+3_^y7FB7+v+mKk#m3XCa9t69LitK|lCvJ}*U&NX(WB zQ=C{8oF`zcFjH$h!{on2+HWmnl6$WC%Y7-3VVq2FE!epG{<#L(z~`VS6`|xnnZ8n| zb)U6-*Pqec9<4HU6T!| z9*+2}VV26X0iZ|!Vn#}E-Q(Kicc(!QD+c3aDHin5R8;=;@bEU4 ztn9GP4`aU9+*(&NfFjqra9n!U>btPddf^m7ho+B@&(`!)@0H+bhu!R`2fRM-dlB>s z+CZ@`T7#6f&JQqrV1m@eA3;ma-ugTUMqz*x+p%z>Bf500ZT4#p>s@`0&Gft-74?3V z0YL&2#lFD@0&3QxY%!D=NPaxQShj3%PUAip^!ewNvBEoBN(`-QRW zs@Cp`MY047hQf{eM^+LH?L@`t%*ha}@6RCIr*^*ZaJu!YBIYj&%=T%ev41cDJ3S<5 z!Fc;Rva7ODA*C!}mR(1rhKpCdhl@hN>gQqUZ}pllkdAiQQL6g9&^~6ZR?AKbKQysW zDP8gNJ7hClb;ReZK-wG0Y;P_@D?-{v4bMTt**!uVaLzQ68_ArhI=CfW!7>oDz1DPS zwd`v$+C=-?9=nHsQ7jKl|NM0pou@jc|H#Uc+Pf5vws?BKtbOOPSyP3M`&MVhdeNSb z6^|=+a*%(YMk6iQ>83gRh|g1P1N@ze#OV* zc4b>au#ujMKB#UrFI)_?)kbOe0QeEAN^Ds28N^kBfS!F< zW`p<~bzZd2!259ffQ;4+MtbbN*)d!ij^xq%=R&5XOOu{WP3F$V*+;`1rix5Gr$RXf zIlq?ooVN(UCN$Njj`yYdrkAUu!F6f^>-K-2!zFZbq8hwwPzcPQ*e~DOc`8zSXQ3mI zYhzUsFZ4sD8cV-dr`AU%-)08xLYC5=%1vpdnN>SxB~BsCH&csulKLA>_JgPOGo909?Vy@27JC9J#XyCsGIYIM z_(^S0U}rU0xhS3Q`Gqg9(ds#vI-e&4I zauv^{Cx3Zge)?*^FOjKGoS}YE6vfzcojz94j&U3f@Bh~+?>AvMO6q_-CH7R6zaBP_ zOC^XvbhOVLu>IGU$e}SPAT1O)BSwGAG66*p!RF=)xAP+5FTo}t3=`548*aw_w}{p` z2|3F5_Chtd|5wXLh%)3YEm52D*Q}vl+lL4WLT&I>PycG6_|uY~t118Y4V}3_^ogt$ z7=YiuS}-9kq+iCFX#bhep^!cJp-~K!?4g-N{?&p6X~8J5z)ko^T7hh$1T&%FtBM++ zfZ6|Q35K+Usd7d9ORURM41k%N)P@>T`sY!HC=97Mq~#++TJOJ9y8l;)rxj&X_-5|o z;NZVz52U}@Afg^8h67XUKyf11qJ>qyu15Z2yw6A(x$0f1>TvhuYY` zV@ebf9yYN5{*)9VKF?8=riT2hgCPQ<8PUJR<1?f`fu=mdME!T4$3nrgE&i1I6}=RyFa1LqO`ZyXB2w}HXPZ~HR^UdCKl?f-vbs1i9QqdL?1%q!wb%Pw-S zZy^Ub0#D;)wS^UfOvtP7(eo{GaI$DHoI{olpUF((`A%jGnFvte<)y~_RKLbyUY5`O zMcm^O`{Z!ddRj-eT}4%^-d~?oXjgHv-c)5EfwAa{^vay0A!{pB5{y0X6 z!*~Lqg0V@f5c3%qWoL{oEQT~8AVBmo!$y;1=qWV;VjpB#b9tzX<;86uO$t}2L~Ok< zb)hu-DF!W!BKg%c+mGNr1iE@ru2ijpT!C;ZsnC|cxozepsGo4L`+DNN2m4%`3h0~5 z$vDs87K@-QiStljUZ_k{>8WJula!kzIEuK`**pM^?AfH;B)iIQ;e30x#&q$`rTOrx z@XE^0Dw(j)`{YWUBy{cifd_@`5PI#K+r`y@8^^u=YBnJ%2E8lFhsQoG`#z7f?Y_NSee z-L$dcR1S+rzjv~9HhOJ3eh=3TNR=APrb}-EELFFAC90-42!# zm4f&iTP^9C;ne(I@67F&=bT+FFbBnF@>l-we#79$glOu@ogY_K}d+@AlJKZ5D($f(8 zrW9ZVJy&3(<3|6Wgmb=Pf;xpru(|SKKWAx`Uz{&L<&)md%{>T)w+39lHwuIx0<+}7 z@4%gWsL6v68!&Oxxm2huVefXI0+?TP^)c^!IJ41?CO;OAWZ@Nh5??|*RK}85eTWW( zAbf9Lohft8L(3+y!L(PF8WbL@7C<)HLrT(DkbdjDV1=Hx-AZTq=Cj6P)+l-B=bne0N{9L8hfr=}Io3+)ym0K>R9lKyLGlvBDk zlVZ_m29YeFv2EZhi$ex%Rv1);N^RPfy1ke;G_fwGHu743M&Ed$|MTFJ)TAGSd`~wf0AM6-)FAa;cSosxQ9>jGq$s zv5B8V52h<9a0ZirZ*;v|eAUr>@!W!Bi(3F0yw%s51M-$`uU8R1Y)10Z0~3WZ%*LVq z4)o9&#ko|RA1VxXf~bNyq*g`3p7`~H^Ljz)=jBu`QQmA zF3M$BI8dGVVJqiZX5e@E1o1)|Y@8=o$Yzst^SO?q_pTtGk0P4VSss60-_`HAYI!~x z?*H+1_|be!-{vG_?Qo^3Ej6-IuZ@<7+dg4rv7XU=_x?K>Yu0cow-`shzl4wPv-mN2 zUldWFgNXM@t0Tri@pa+{XS4I`OO=K_d(+<1I@;5dgWrxu0grf~p(KVxwT1_&i`%Xq z4&zanrV0TMfrg4?F^DDiwwmi=wv!H$BHue!JA$HV#86WvWoC@y6j>9(1fA%O)V+##8oJ{~@cvvRTHqev$^EHcXxQV;=2C^)+srgqOBRhQFD z$5klM*^kF&wbQXpc-%6+UJ0BYVi%J0UZ{Pw*Q|D^w^?{-0%^Wh!WWs(Mq|^t*>Jke z(M7K7?~TXS6v*OZ&_pKqxt}x=YsXV7GPSk1#)B3@-ySvs$;F=Njvrq)^=?^6@*y5p z6qWeG`5o0320AY9Ix7|s7Ct85*t#w)Fp(_Q$3G*!84M$fLiaSwCe@YKlswRhOr%kf z)P$HNLd?eAn^3hB)iXx&y;aN6oUU%Ew;LNYi@HC{W1qNhR7hu_rNd~nTIzh>BJ-lS7Z<0G;ue+aG>>{6Il3xWazZqn*61^Jw% zA1m6n!bdx#4Y4}ON&rYRuHE0*-)_|jHkmHJk-0M z>}4U`j!D~0u&*=KD@7wm-hbs7P^a+h9@DsfogXX1w;I=l?nFluNHpJ8p4nK)f=QhJ{0Rc zTJ*!z>)uQwpr6y6SoiyZ)hPg%if#;l@&w9D020*>^rW-)f-d z=N)DEK~Za;xa|6)$6O1sOV8cM{6^75rcTTb$c*Dg1qy!+Js?l|T@Ll~a2d5jydPXr zI~;Jc-YL9M@Jht}U|jnxo!2Z_ew<`PA=}rEwgsNE2wyn}zC91B-b-BqXE5quI!;mO zAw@APu+$^28{%1*Q>63N=H71khxL0@wiO2p$ZQU#1_)1iKDsG zf@=B7(|k0GljNsmPcs9cnSjC~doYRRM??mkWHGf|+AsN_O`B876TcrCJ^~YI&YUKs_A*ziM8M3Iz_38719TuYYn}Okd+4nC zlUg?A^F*Nnvs4TTMv^bun)>O_j=SgR<6(azEY$I2Cd)6AcE7<48ccN0VUfQd+93yF zN>kr`^Eh~I7hYyp{p=4;yL*S4b38t39g6>^HCR6hdI@VTEsx+gAG_aaSq`e@mQouw zihCIop%dpWvbq0?bW$+p_!Ek5x_4h{lXlQi*P-5G;WH0DgPg8w!p-^l8$9biepX2F z?5mRnO@zbw>kbUkc&1d&v|ip(P@UDxT!zSMt$jzUZgCC)86lTFU4yT$fr~{j&_ezY=jL+`q zId$s2HJ+iJ1ImOw_b+fR7uWM%@fmTrQ7BrgJl8!C@UNTwwy_B~9m5IoVyixnqzJdw zCny_rkV|&3YLw>NJlUkPFr5sfV13-`AKz^5*SnhHx&s}TnAHtVfRueFXW6pygvvGB z`-ka@l^%ne5fGVLt1VrWhiuh4p1s_Xq!^^D#1JVi#=~GoTEC8vUiDU?7?hnOI`5~f ze~k2AzfhX#PqLnkJgcU$u|g+WQhM}puBDGahiAIzSh&u#3uWR$-MY?ZiW@(e@s!~y z(w%1CK`N_%L$T2a^-)Bt$tx4`-k=ubsgMt2UwkyJ5N7H16B%`?xz1{jZ?62}y5bbx z7Ad`a4)dda^N&k$g%R_^9ff?&7DY4kYMDNs;X`~8Hc3CWoEW>gmfo3amY zxI=ZXy9ybq!i(QaJS9r;vwY<|z%w=gJSOHrf!jWY#>92FP$541zeEl|YCpIOsdy>Z zS7_7sxYn-W;bhFUN_k7RIC3Kb%6)Z^4Jz^VfR`i(Lw$X8iSYQBLNk&8djo}8m3fSD z$D*oi7l4pcy0Y0Jl+58E7k4@kOr!NFG40~4?ns?4A45e#hNg|?*^zMF zfQGtV2JCVIm>|Q5sTwo6Y^E$mvXbjJ3DIgn2Emw~W zkM$_|qgsCM1HvLFa1O|Ik$B^8j9+!CLS6ICp3UqIe+#pw1b58UsN-!=ZQqLAh7K0m z27xzb>&g8pU7d}~d*STl0P>V)vqf*r%k`$A-d(z!D_5KOa#HZWK?6WVlX8D@$0Q0n zf|O^;&(M1JTXIbjmWL~Yr*DIvY2ZBb=2o=7t2@GZr(p^uDj5CFVk5H(9>^sTy6fZ9eNv zC0|;8M5>Q(ftFhiFw}i70<=1-Ka0KCpyDv%Suhb!mc-f?^^>|**2gz*+7$3C%KjUWrtLKFYMh|1Iu$pwbWDqL-|Z8 z_7`z-12ohaD7WD--^Ko0FTGSYug0n3%A-sGn7!Rjr%hhcB8PU^xN5X~s)-o*<(uDd z62AY6?VR|+9?Y`UQk~V|qPrgsL;C2>oz`@z^rYmqOI}$y7OaFCT(>bA^8He^XL&Ph zSQZsqQTm27Yd@x}leXK5E3(ZnFuTxplhV(OzDgrqagzlD)_O?s*27F#;WJ`cwZg_!_Nh z(`Q!^s)xaIPkQhE%`ul{JhhpfGp;>YUD&;=A3p(7?u6b#tdR_X!abLk!c@nX&%U_h>rdmRf`P6V{DF*j&d_& zw)oK&X3p<(@Y;LTHHF$kYdHt9V8$_yIwym1^*STZfqa(L>gi*lzOwn@T+(bx2V(rH z^NBpUzR&46DLKzm1w^P0jc~@hB+7l2I!$Iv!Ni9+o>g8&z5;UP6-o}85k-XURjT;*^6Pj=cz{N9R% zkp#mV^>zs}VACZ{6v!yp;H?`T-zg$l9)TB55f&?;=>V%$Yv=08u0NSS@r4Pb8tXgE zKsJQmkA%@5odAm;F4lgo9*kb$H5&#R!~WSRCNs{^gyZ2LeU8jDG__ge5^Y6bf;wvY z=wgrn)@*T~CIdZe^~!1FmxV8Ap{Iwn_Q^u^c-4Mdw93Ohm01zwgI9jF1sX{~qqzfY z@D0%d<=El4bz(?VJ}tccWG`ciMiCMsfO~bb%V&G)1hRHFMvYEmQayd!XiWKBLWDJk z-(|$o3Nxp+*txnap&e??uX9=N)BaKT!63&GEA)_u+fgp*y;-9;Q!|l!`NBh~E73=_ z@3nlSrliHF6N7bxf;0#=&TtoIuLa0}C`T6+t0~P z9(v@4QNME(ZLb5Q%T_+Le3+Z^*-Q$F;?nSisYqVGrwoQDg#v~j2)T>1<+FtQh_4+Z zVQl>o@Sj0p&5v|SS%UI$?d-3{!c`=1yB@37mF3%(*Bp(=<}f>sr_jyef`YX<;HsXV z4(8mK${lsC#Q-(wJQbDTs0*`6=pbULZ?WAAMN7yAk9GJvNFI`6_=a(B8r(E+4a(|b zlA!9-P9bf>?sI6>7>XzwPaFj+?4(wsa8;aL7G-1_OUvci=kimq+|f4lf-rN-jb?Rb zD3wrdIzz_Gnw4$}&OhO#d~qx9R9|KkNX`Gma{K5~o%5qRpj@|`GJxdqzn{!GRY(SX zo?W{4wuG>KWaVHP515t-zKVs=7I%U2HKZr@2?+CZWYpOOL)t}Xz#Lw-TaD?`xso(@ z4oN6EkFAghlAw(tvBdp6x%W^}2P1(4wq&6?&b9P5y(~^|4nd?{ zE#I5#XJ@-xU4B=EmkttsfW5D_e0qIP%X%EW*^fgqV+JdlQSDVqeO)97VcgNn~ zZ5VcVaOu#aKSeSR%7?$pXH_a%Z(P?)mjzyyOO=eC0?YIvui}4<&TK>t3ZX);((6*dbPhk3Z+{NL z@5b*Vf>Z`HGr~5A?jjJ7f+iln2_C7dYZgO9Wdj{^Cu{ZH906uez_@TD?9X3z75X+g z90HFkH&dP)w+_&%)E1E#5VC(se0!FcJh+^la7D0B=DgKV15P=HB8l@HH1M3v3(md&ocKDYp z(Z}Q!p}yUzT#egem^SKSP>i)@!dNS;;=CvZt$21z4#!|ExI?JNF>*eHF7ZYD+wrh3 zGLKO$tk#WAfs#bQ@QqfPk`!a2{+$aj8P%R^ics27VTQ+F&q75t7hLxZ!Rb{uC1*$m z+HKv9Y@Z+BJiMDh8l7=fwZ*=5gCfkT49e za&B`IggpXvgt(u0kiyLUiH%JqAr=eBNx?Om{-sLMf;57*<6kng)KQxut@eRD4IIqfA65GC7mZ~S;A9lHO z_mT!^jh_uKT$ZluPJdOQb(&&C;4gh0fX7A7hzJpAWL{^&S@L;ABer7l!M`eu)QA9P zNkM=gIK%)(LRzav?JibQffgU^)4_@GD29cCc z!jo%qZ3sRFv`j~h6u%>n(bzyGRTH8)n?CezZVm_-yY_6IEkwa2M9fUnsT^igoyK`1 zP5K$hO{Kfj4l6U&<@o2k-f5b9K9#790Hkw;;U2FW)RvMEE>X#`myg4Y20{{0nCVcV z1t5nmm>u^F=&m>HK_8z>pk1oc@!!3(;dY5#i~a^r4wIVmR2+k=KqzP$6|$H$EnsU3 zpNFxDWZrA+Hj?Nuq_;#GV; zpGe2tuQO0gW##G^aKuN&1&Fw+q`N%De)2UwY%Il1i$ZRbj(vC^Tp-KS?rI(~%TLtlqQ2}OEZctc?C$KLMoRQv!y zKk!4XBVO;0@-;(JDAA`cXXyBGX1e)RH6*wrx z$XylN>(QOYrGj!b9r6b}s6rUNXs9H0`;b$=yLpe#DVNv$bVgBYyofpFe$ks`EHg$G za1Oq8!dfHl%Rk#|EIanc?W?G#uSvjDpUneY+kZ)_baWjY7qBbX1dfDSd4mfTJ>aUQ z=XULmL!i9o0zM7DyCMSYVMW?!*irKnEmAs<1iKQ!v>35;?zXQLta%{Jt?(aMKudai zl!?B?qW453vmQ#`8x`q!I+Q(2&2GuL=!OLwd{uXL2h3i00L$u7cho$l3?|{lTpS~d zC%wx@c0kM!77?zhrKu+q$_>QXSC?GNy;1RWL)bIT`~AkafKjKMY^iN=-s=OUe}oHk zs>7ja8m9hsqqA(f1$9jj13iD~imD`|m zxn$CtFi;EeL!-mX#o}pU^!f>U8KHV&F)CX9H#;4r@-ob0fQ8tW*b^loH;4o?T9^MP zdjvKUf+Gu#E$p}iyQb=wt{}I_HC2eAG!N1H8{}K_;_7Z8Fnth=_;HL)O3MZrzn7zrZgryC+3 zt71o<&^@wzmbJP3Y7tnQQv!$6m1l=qHy^rB@Jxo^`aK|p(6-yB0550g!y2`w?9Z5S zm4=?$MH}?3xCX7P9FJT~(d(A8dkx-oq^P+4MY~X(1F6otKSy7VXVq<41#Qt#<>h5P zr%j1*og*9eFz_EU*uk`D+|g^4;qM1is>b#S+$|H)#il_1;1N( z2QgYIjrivQkF#rL7FM>0;pa;I)?d()&20!N#kR;FgmpmUyHyrextAzl9viUXlep8n zPW4SC032J^_gV*hIa_nP^9CAc^OR1joAHYBgE?L8hRU~)!}CaFRN7CkzwijzNH>QW zM`QWk!s2IZ9fHY?6b#yVe{6DsCh?1Gkt6QuuCJ&)sIfmGj-GJaoKr(laQl+WvymFT zgt&TDMBjQ;s%1M2zXgj=QS8v0cXvTnkdNcDJ9}WfU+r!1_}d@FvmE5N8$@nO-G@yI~ez zeKS9)qUz7-+OtX$$*9ODX{fMEUDhin;^xqA8I^B|K_+w0y^5T)f{R7cdKL(;uTJI> zbdNqwkI$Y-(Beaxhj*7=JlS%8xHRQJD4m~vGYZ^~V-yn9`ha|6SX4dI`Zd2wYX@eZ z2L#F~b}Oe(E4|(_4RH!V! zkt`ydmwcx_o)p^Q&LduhTWy>A<&r|jV0B`)&N&X2WGi*Dynz|(e8xLbRHkow+j!y^ zBWr4?_lNsgGo^rHJiw27x7z6HeW@_eFI%PFg%Z7qdDjh{JG?2d?BHoe8JL{fd3m71 z%E_t3N(71~S*Yj8zUx7t1eNe&2UTkEftCE#FA6_wE1X zvI1ZK5Q(V6f2bb!aGW^E>`P<(QYg&=>*bzITxpij1Yt~ONCaLJP`rT25Si%{?r0Y6 zB`$N)u|S6(Pztb8>()zodBoar&+;WJlTPDJ>Ic(SRgkh0Hubkxoy%x6DYq9}ObAlM z*zsH~1@v#G{n8k`OEK0m+LM4+W=+*C%zxbl0VgZ1>Ncq8AE?HCtsjYFvITV&Gx-kdj|`j0LH994bkSJsu4z9}hK#o*P}cfOFVBE{ z@&-pND2(3bW4`0QY>>6AJoHk*M{T}xTmQvq){iy6TODEfZpIw%)p&HW+)=DEL(C&{ zq5M|rz`Oqkk!_@e6xEP~7W6*wm_OgHl+uJ2#+Y@x_A>+Hif-^+pAu$3fX+ zh&WU#w3(XHc30xI>n!mD2mIML421s5j#mO%s4zNKtTt|tD{dBhI1F!YUH9YvnYmd> ze}J^x(PJ9NjZYj#!@;q)_IkD5fJ48#dkvX?a}@pN+5UzVAs^nVquJZr8!x8_8b|9i zddL{{-LT)j^We;eE5q;Zwg)eTC~4|W<}1=bA~LZ7WhWUCgS3BF->1N?X(+?VLZ>5o zs#H(HKv&RjBi|Em348s^yu#3#i|80eqynFw_b^0(TM4RXihM$Q@zy+U=YYa!P{{=cAmiD{bI!DcaiA1dWCFk z0)Z%`Apk|}A101UXpu+a^1g57d7@nbwM4V7=GR3uO@sa8;7bQae+sfnf#kI8m)GSq z7+gBVOdzs~S(-nkt?ujhKe&(I%Q41~`KA`*o4Yo>W5S7iL!tAFi}+LjI~fSECvP^Q zy*CBFfMdN??O$mZuf3c(mf1qS>eHZIs!{S@VbSHC6tvCI<9_X~$?zEl981ou{Sw!; zpvfOn6RHIy{<6!oFyMZw2a;wg%z{rmbfcv~5-@YU^Ql zXVdvr@%A7P2;Nj23AaSXc#r+sWLLL`K~&8@*9w$FA8v zpy$=q*NOo>j|Ii>tpT{1Q3!}Y3xOBoMe2^nrhM)n9%KLyIXL>>>bBb4Np}Y$flqke zkIb$uN(R5S<8iXnhRy_9guk&m}u#lr({4WC5YL5*S- zcB`%6NcihvK-?D={dR^tuo7@cqk{jC1?aj{`rJa8r=x5CwsW&+IM!;AR}Lt@P^pyK z)C2BU^VJ%`IstP$!idOaJKGSI&DzF-(GO%6N0+ycnl5+F@#&ITQ)nXUgnZi$y_1b` z@Q;?7^$^fW=ufR%loH=7r|>Lhs1v_R{|D;Eq=gw%gEAgR5#yGU5X}unrm&ACHeZuao2zcAGU%(Paf28kcAp87*DFbs&Ag{VXCFPU?y6g}cp8qDUvE`H z=rx*yH5*T!9<+5E>DbMs`xG)tcQ^bnT$yo!WHH1HiPSV^Cw6!piOUZtmYi-6VO`2H!QGrIwFr8;q{dPF;dLL~whA znqAl^t^a7!n>)-nKa=uZFKH)0x^%UjVIJMxc4t-NlCe`2%4&Z|CD-Zan`)Aaj?U%O^js+%0xqu6L zHI#N8nbfU|`@Q`%sG3;VOaA6)k<}iL;XT=#BP#T?hJ?lTc1gI~gBiZ5+^GYvDMP2J zxS8_-74zXjIjQA*%ZcW%OXs)ln)+i4k|c`;fJ0&;G40v%#Pw#!>j;j~*cY7ICI^Ug zUSt}2==h+a7Z>{T`JApAhtoQwB^>7# z-&}C{@0h6IVQxy#A<1QO6u2C7{(fpuBXgN0JJJ;UB^uzz<`a4Jd}uF|%pK)`op$v|SuUP)Qex+_K@M@PmPFej((FLm^$(^_ zR5JzkSM->7jCR~VnjknYhv5NJZD1gG^aBJ<+24G3axh%_ED){S-%@sXy3}Mm3bi@> z1W9Ht&gbn{0z_w?P2D$i!d2v)UGZw>L#(PC%q4WGHK@z!rKGn=%M zOQeZKFC9~ZRnjk&mPEDd`&Jc`fy->XZcoAU!;K#MH9F%8DzyJu#{}-mtu>*nu~P}h z0vM_aN7Lva>N**}#rWL!3$V54@P-S-e(z#7@T(!qbMcR_ z+gtmSH4gh7W4}iDoLd<<>7qE*OYA#dm2Ft+tB7MD@@eU;HL;NDvE)x2x>*Q|WXw9A?&`MQ@=>|R^VGx3NQ5wh+T#~TW=?XV4N zIe6~^eXiC;jnO4L8VJiALW$6-EQ6x({&(uUhITsRbUKjP7F8tBtkN@RROoQp)nc}n zB{Q>~{A!rWoCO*zXK*`L96dhfG)vAVGvEx#4X3c1OfN)%T^HCX02n$Js1W2G`7Lei z)&9glbY(lczIO`n)YSkG?v;BAD?*%C*k|N+fr}-#>b!whR5F=SIEpCYe zx_f(;R?UrE<+=y7=LsnjY*f;#C0y$b z(Dhh`4n?XdM@!V{ZBIbid^Epx9Fjp}Qe&5Mgz2DdGBgT2xIBOd*WQCQn-Z=o2hD|x zDHJFN{42(Et-jOYAz@X09kYYKRA(q=u@S)L5mui({`4qy1)ZkxTqv=xyp~4q%#70w z_gO8p&*0G|UIxv6Gf(m5Y?Tv0TxXqy8w4W#c-q0HUIDwM_oXxCF96n_qvUyWS&zuz zSKSarP!pxFjYlmJ{F#Ay7oMULbqLF>ftQQlN8lnf6!90GAJ{}Xxrhs`QlGp%Io}*E zsXHQe(#~vqzW6+qiGH`FyRtW#EUkvdox2z!WMaIQL}AZtVQZ@3Y$`Rweyt^30FA>EdAVp)&`GU97|1_e*EbN$Vtld_Cg)Dc{N>< zSQ9{V>qzIry4QHh!yMqfw^|Vb31H8=T$&h1(OQ zf$IVEd)mZ1b4kU=VVQ6z4yfQvuqDJ{()Dm2fcul{Ne-z49D3pi9~V`G2f*ve|B4a} zAd{t+K_$0zo2#+1G9otnBo#}o#}D-IKragRRdj z_u038dA!}OFKt{%s8_Usq`@dHbtvolirCg>`{`AZnp(NsTp$X>@!*hg(2FDSc>{W0 zCUJ0u9K$}`Q9UTl1Je@&i$xwL`jDW=*z;WYD)?<{T?PtGUSJQvp0ZC$7I-1pYOYtR zRM>S&zTkRhIBOs>*3&XY$=>U&!G`H29AXp=1I{Yz8>t(uBprln)bkZ}uVC(5;VRUk zGFFAwLPjfuk=EOnyatLEk)ZD1p8bam>$u#gNnJ5yh-1%jhTzrVIEx8BO4gDyZ^y3V zx8DmEO-#@j8w$C@hAltjM9V4wkhxI!%OqA7#O-0#Ozh@VRndb+A+zoNykEExEX6q# zXK9D;7s&mQ0!G@wn4u zr$YVMH7v2HJf}Y^@Igi>p%~o(5ZQ1bgK|I$qWgkNXiT%q?csO=s}#~(X`iUwZpj=m zmplUe{dvvZzn%mAEWX4t;g(~!N1$ea4qYiE@-sUpgfQ3}C+Y*dxkv3iEyRqo5J~4F z5xdQd5XS}W`^pDPf;+-}H_UyHqdmuPX{M*#iB0dy z3x|sJ`9#y12v*vxfP{9mq37K7MDXMwjUI3*7@rBiKJ^D&@M{i6P;bmhCA|M9zZC#@ z!eW6L#zxr4OA+}Q*V~Nws~qHS8karDD)U8 z>LKxy%T58I->QH6gW=+@n`ND|ADWePcVnWr=7d$4r<>%wzi@{IDP*aZtlelC58d;& zkEeq$$J7pLgivz1KEx)sZD&N9@|MoxZ%<3;uhH!vq9IRX{~+H(5~Z{l9uuBbYU1eh z{*DLrnzB(%JVH*Po1vI*W)PHr-bA>4@l zJ57x;aJY-AaQ^=Mk+6Ba`ON5Og%{mPF|gSsFh5SI$iVU~zORZwjY5>5my?))wUBQH z9Z9(!>uML%ql%#>F!&Q*6MW{63#!yRGXb+zGlx~-{KDFhRQyn0pSagVu8EH0mbsrk zpyv)jQfC)15kP?6T?3-VQB;?BlfO%!hnhupT!vQ7386G=u3+go;*^1+mHZs3a|pEO zwC~&XE+%U66gVa)Thk3JXqRqIfsQ~?^)-d+)rPvz;0e8V2+Rx@hy%0#(Qa1Ib&Ayc zX`U)csspRy<54eG|IC!xE3Chc*zWs(cEe1s{ma0lME@3?Q)NS-nZ`?^aw1+$zK)cq z?q&2&Eqh?;*8@*Z|2Bq(u>!fXVMMF9|NW4^?Xe?( zi`Jn!pXJ@Z9jo-&0G`M6GWOyh% z2T|mp`x`BX_o**^#c&vD4|&rchHpeq;lM%GmyI~Dxdon zd9gNOCe$4i?oR8PZrP_Oo!0}j$OafgU$|%?l6XyMwiKJ zc1Fp&n;oqKo6&Ej)%Ih*3%uzwZ$oioH15)Ba=_v|k-|;vP;$DHSH`3ncXTA!5FS4X z5%1GvbaeET-EWA&OcDKVwKNt{*y5Q{)%5?e41aIVbB!weBj<0(OSK{AUSLL6{9cKZ zUAz3L#b-al=T;Z8b8+v4i>=%3&inVoN+mow>_?sMnKLAMqV@)Rv*iBnPaS`>x^;}q z^cp~vANGCW_xk=|>3>;fp*Vud>niWsge(TV8(ijefA>T@QC=U2y&jkio{z9D)M4X3 zaWPw0nV#ixe&R1_%%?8obKX!4f&H{?W%QIj$_~kO{^a&%yeD3UR(m_${4<;OOZ_G@ zs2rWW2kbVR6lb?+ssYH_^{wVAKv96iyfFrxS{mi@_jb5_~=c32_4y&!W-db1=QcIiH;B2t@U>7(X;0M%VTlsI@>FClhIx7PJz0%$i3kN`-TaF|rr z{;(!pUr0m}&^5Fxf_=~Vk$sCD?(7|@J_VG+`VIDyK!MiJmo#&t7n|&VY${rb_c(wy z7Bl3j1^1RbcVh|cyPiJBf1XnTNy&ebPrO(NI%?&I@U3#InDwL?`%tOlp8LlJFt;8a;!(>%i3$P9A@m{_yPDl;oTZH`38dv5w-pWIfjUUfDDxv|f4DaH zyK1^YXw=>G2TcZlgf`dEtGauVro+}A~#y!e*Wzq_SSfd{r3oC zOP4LZNg(?Uz|82;kms?pc$w#w4ilw!z}P?8&T4-(aW=Fx{_BA&<;--L30~q|$pe$V z{Y1q4T6hxi=6}qq@bW;CS`R>07Vd3OA{cMk@7VahShp$kHLI=xXFyAo;qLi>^_%hf z7q1Q$Qa-b|yln8kDvYF*)aNp3U@Ln!zz9HCacnhIF9HAQS`bPL^QT5u#Q7Oc0i77y z#yhGSZ*_o0&}6sJ0+7$|oe@;JchgNndR4c#2ZiieP_oU0r=R?3bx^V%hQdKJ> zKvwbPK;f6jx89w}4;T(+o8N_0D40P_uY-9jcaU_C?^Er`>y+xD>LYyj6>hKw3HjqU z-MN&hSiV+A^S5K%e1IjA#A6~i#3`JF{l_H&59}c{cz<^@N5^N-7abL*GeD(0^NKmL zYb$f*$=maru5JuKoZe*pesPB?qhPfYK+w&8shp@kM#}F223i%G<(c@NsD!EGRh`6u z?%$18dkTNdrGI-LwHyEPK2q?TS>;QZf7uWkNL8Y#+4t-@)=|E*ovAwD*5W?@nGRCW zzrNW1L4_r-i;ov|3d$;H=pz>EWw9$G%v_hjgO|y(-IoeS$(73=9nY zS`jgj?H@4lGhoH7(Lojz?bKD8PZ(%f0(~gs>|sc0QqKF%<|060^s2^OWGrJ(oWSVI z%tRI7&nF*^`HvAbUNXn-9!kdf$6TAx1off-Cwu)}Kj?{1pG=KIf?C0phv zYU^EB5((@<$VNbpQ0=FqhlC|1B}G!)1-uzdkS;~kKgAz^WZE0X`@_Zq=!$Naj);H# zR4YXSr_RV`o?aV(%qb`Qbb$z@99SNY*zkSPl(qTw0NHkJq%Q_H@i@h^4t|ssoJD@W zBd4*lWm`VWS@fR(xO+5lw4Sx#7*+4MlI+Fn>OAUtJhLIHYN(RIQLuGi>&W}!cjsu6 z;gg?*E3&`kK0THWyi~s~t9_vtYx~qTWn8V#;AKoWfXc^Ei#f{`T4#2Xqv3ziwiZq{ zEZLsS@Tg!6$<2$FCyy^RYWcx6e37gD@nXPlNkD`E!!}mGtxvPc|G?T)R%O1bcTSGgIzSn?XvR52A^MTj6y`8f&0vqRSD+y+i3*lp>Z#*=o6Xm~{b>&Chy_E+cc$ z@UD8D&t#0%6IItLbuUQBCu zP`K**+u4cSg3u}hDz75`G^!;|?lOS}XNxBasd(3Li3R4UJ2dqyW035s#Qp9V<&U{% z0ZE4iJ#=4aji0|cXwQ|cgS=~2 zqo8A;X*!Feb9*vK;kH;cRiT{Z`Kr;y=E<#qBC-g;K17c<_`5^x>wFH_{7(w}L!>@r z6XFs$cI`Lxk*nTGxV((Qq|x47*UlN_5h)0b;$rLNfpyEN#qp+0;ddzYN9un*yWU|| z&oJ`suxPoSv=xKYJ1|K5edN36T{LyJnr+M(LQA_y6nn=JNnI2gR<|e!^}WeA8*T0D zx=SXbV~R4Y6+Q#SHuAoZx375~6%_}X`h-v{>P12}t{?+`_Q09w=h5xy3HR#AM_Pd$ z^^#D|@m|-?)7w#xqj!<|%Y#$KUM0nbt#Bi)ha}Bdg6GhlmuU=%a zunU@7C4s|ZN2h_d?7z6M79)8VOS;#Tyz+2=O6&agCZa!CkUI{f#+4DUJ}QKF@5-?& zLG-s4pvnF;e(oBS^J|_$>+P>sM#L7l41!w&X*b3LI z1?}WiBlxY0pv73Cl3HU5A1?q+$bSkhSJWh9kf`i8q}4N;=GqcpTsg)-}h z3Lp!c>W4e)qC(wd!C;~3M?H}OVlkQZn}TJBzfVv{(q5xbzwZ|;G%=*rVi+$~R!6wN zEii`Ma#Qg75r;JH=|gD}7Lmf6kNgHah9EuNp_hgv#CPbQQ?Z`eFNzW6%1}dG!esg$ zMcvKiho8BQiq`I`|RYoqB7Xili%jwzpQ`lAaL_L@`{4XOmlZjltSk&L?f5L|zBpbN zJ!m>F89Q7ehIawIL2@KQUxZk>L}j7lVSseGQY>(jcs9|A;9;ZzyuT#W9Lt2?4B1Va z8STC5z((h~d$=NfYasYtHE*AV%`A#i(3B%2pl=K1KdbHYl+VG0BN{M&K7SM#lrL$O z$|d~Mr;LIa;2!p0*qT{gtX_ZdR5e7Bz?EJcrDURD@k#!rCJJ~hwPZpDcO|TIAH>zt zCk`nr#yseKd={z4&^C!^5rVsN+rL8RX{XZsK%VFsOy7QjHnhJ+3O^s19u~6Yfa!5VP8o4;@TU;rxu?(4s9fA1|4Q;1bXVdxj(>qo);tELbsv!>gg+CO zvwvFB95uk+d8mXJ^zm7_aQS)Tx+%KDH)_*hZP)i>V$yf!PS~c%W#hE;-n4NS`h@k)o1~~fUwDEkU*|N-{M?L+0HpisBH}lBnH4@Y) zuYB#2a8Iw3-bCTW#24FbgO0MU772iB+_v>K1~qxcCh6YuK0(SWP?>09<^B1bw4ie* zb4pp;X~~p(HA02;1d+)a4ENp)K)Tr7n3U&8E{<-7i{KhpRQ)wuq8}o|2(Eol_4* z%tU-1%-l`wykpp>@g}|JsXt-On8L|%(TC3PmMqeCQ_kzN44pgt$Nri;1XHFYLmdZ% zf%pAm>R*)}$$=Qe8a7 zSfoBmWd+oO*LaC20>efpx=KVlR( zm2ffcGSXj|&j62vZZZA5+xX>+%8NXoANfR16Q3FV=W1+N8U&tDF#Oa}jz!x&Y@ZeG z>*Wo?s+T!yblM)@l2d9HgQq$_n)QMYqnp2})qz1umVcV=vOFXBJ!9Ar^ieUAzf3<6 z9P0kE5ENRkR~Sf5yX5s+&(JLLJT)+BcqfHh9wd7h`O3aGg6%iwktrEmUF^F2!6yas z=81VH|8!bfBqkYTR*{y20U*TAY5K79iuI~muc(4KWX$-B;L;Dj@n_ClXG!9h&sC@@ zeOHj7AD^B1p-y2h!&P$VZ27SK%xCqC(V6I~xk%6)lyNm_W^8P-6XK>ZHI@*P!bV-< zRUJ*Hg1AdXCBM~DvPQ$zP|tydW^3PK#vIBgOv6^1)yR9-yVSoVPwRJk;i|K)U$Wwr zsXauAGYUZ>>SaC>6)WYuSq7Q^5TQcfy(*DvKzTykG ze+}yR97U~Tb4oB78b#b(-kT*i!r;|J3?z4hR$AcNf_eDzr5d1~3^ZU%=N5Ex8ocQ; zC}(Xs)!li1Oc~GUzufhHTnN8FUrx-89kEy7)XJBs#Z%Fk=28)I6zWYu zC9*-2Sb55~O5|W>XPPAmf-JPW zZ(|`N%kWxNl}*b6kqiA~MGq-gqNc*6C2o`1e;QuDJn^=dGq}!k@%P)xwX?cvy#&&o z5gE1KuU*eNj>4^I`EeOZa-!!T^zj#=&(j6EcUpi*k4DGS_FRcybK_cXuImWyJd5*q_p^a@|>`M*KS;+ z;Ct2?m`X9BS8m{dHou{m0L~g)#&uoEqgHBB*TC2U9X^!4y+Sf;p_LWIhv zjFsx2BvFy!FP7qZ>W|#Y2qFgw-uIzJvZBdHK`^?n;sfE&&;vPuL$J7j7b`J3J3wb2bmQ?Bz+1LbJ5AY8N z1q1sh%$?m!@UBTRgd^!*b98%q8HOwilte~~X@KQ|Gqd@gqo1m$>@=AkIcZgpiHviL zT|~}!(>?c|CMK^6htC{z6xnkpfw~3#8Nw^FMtQ=6q*obL8f=wIMtu~0#}IVhrxjlf zFLubK{Z7ZJUHYq>tyrZ5?Ot2;AnntqKFMhKG`b}Qx-FVT!?arB!<_VfEJDMGtECN| zVPi@(H&L!Qz(}XCbwErv6bwU&j_8;KuM-t01GH;qMIgHu;htbS)M?;!f71KZ|EQsi zvT_~GWY|xp05!_GDA$5SWDSW=&C^B5`=eM#O^b)Cl!DX6=JvxK?#NBOg7vuFc>6_* z2D(GO*uwhf0^hxj))sUgE?_g7G>AM(G<51SYpKg+7nqfaf&xp^!(aFP*@2~Ul7PLk zUaM7l=pMJw$v8q!v7*9sJ+G?l3h@_35^Df{906)IFqIBlnqbj|cC1skw-Z_E9=FhU z-ujSGoKG>_PEA?k2i%pFg>1n1!1M>is5lUzRd{y2vD?`s-KY{_^Wu{NyinnBB5 z5finjk@!I(LqRfWES1o=x}PwG8oS!12S$5hw;@tkeit|Y1mXHiq87XaLBTg(=t~v2 zbn_FZUoK^+_vS8X=VO-5Sog zU$Qhmh^n!#F{xy7I-~0Ht79(>BU532i_p0N_68DsDe^b0{0}Q36%LR{X^f3=!qWdG zt^S&kC3!%VA3-4bFHt^`(w|^eEji(1mVbDve_k~IQQs5(-uUZH{-&LPU!VSAp29a3 z7SaDT41Y2}WzQ}1&&K!9yD8Dj1KFf%gbTf?e}9+%5>SVLqI*|9Ec4%V)%QOUs86%0 zJRbdf7!Y9WE#M>Qf8Xct!!_}rHlOm&O!oiokqM6gB>ZFyzH0xPrC3Jb3+IK|t*ZV* zmi_a>oe=OSFm?|8o7Q^;x#2l@QGH z=Y~>}P>GF)N3Qekq+#pzdefVRMMXMajq9^rMzaNE@4mQXh<872x@hkZ?1l{|kpq9L z4g+VN;cRC-mgs^c-nz<&9Y*tven+^KQCX)r5xOyWC9dOip&dov8+|LDQ*ry`yKS~Xz z+9fP5Jb$qq==KXZm{!`YtfSi~;L|;h5j*w2nnUEN{VYTJ#jBRJaw!|Hw^Ge3f9=U~ zO}U-jgQe3-Dhjn$GXLCpkw4|g>mIJd%@x3u+Zouc&JxZJAB;*vbMjP7qP$qQz_ef4l_pa4r z<=V+@gmJWF2>$KiT1_{G3qem(Ii&W(h+H@^7pr0nEx*^~v_5nIW>QMJdqQz?UGRi9 z9uT9W-{L+zOF^FPvP~mnKBW>b!#sL92zEh;@a}s2{&BeK)soRJ*m|*KmNfJ(p3WKfhvXe)2Z+fe2U)Hl| zv20Biv=r;Z7~TZQ%pgn?oZU@7`g4$@VT#&!@4=bl={CO#b+~H{D^cqSdh=POyUvrx7F$RnHDPo`6cF> z(QmEVR+IV6;}wfaM#@s&lY0r~4`bh79D5QStC|EzD%r)M%TBi;?qk1LPo_4hs-YNV zyYqe`m(aL?YW;!oUId8RCB0lT5wJM_eqMGm|1%2d^uRPM_q)W{{6233QmDZLvV8;$ z8e(mfKNSzao^K&HudDF8?lwYqX8@)q>CMmMiQ|Ry16gsSVFbSGy)_xUO(H0$HO#M7 z35A-i!tV%4(2+XD6@MqI@Jn?2sKUUB>sKN{Fa`;vW_+|5Svpq#7Imm^oB8C;Vs>sf zzr$0`@qxqKw7$DJ+{S>OAD*3?N284%7W#E&RR?CY{UWBIdSodh9{^EbU9Sl0nB1s-Dowa1E0X}9TV^DX-mw$P0UOZQ=&!ozG+&T@kpzT7CVZ;Y|z(qn-iaWyn#iFb{SKYwL#rdHI#ugO$Sh~Uc>j2Q8(MYQ(|7m}}p@7{<&*Na62 zn%(hsCix(%3)=%}Jj~r?@G~Mff1aukeh?rqOIc~R4u!S6ZpnCnpC%?`BxLJhoZ-{> zofvjucc$i|rHnKgZFPY*lufrZdWdlwN+M;lfAsXlG5JwQ*O;9VF>UWm7P8ba5-W+9 zmxu4)e#jK*5qBf`QtryRww@-k79;yHGK3bNxf&UP06L)p0VSUi_sS9!b_v<&EvT9YY7$MllttiZo!lZ5+} z*M9wq60zgyDZeJN_+hALSVOvzWTRh2sa_-E+mE~Q)46sd!@~gJ4C!4`tNBu|*|uk_ zW?A|#1ncgKbqz!O4Zbg9AhpD+OuWx(A}4ulgQe6{DA~F5v5wE@?Bi)feU;!O9E1v5 z^nSi$7pZm4W|3fURQqj>{e)3ssS&4bif|lv>z%@SzX=C_HdC(Amsu8$3fa_kPlQOM z?oDLqB2#sPc2zfxQ7i}KmzfNtgCO4j|b170eE#Gw>O zVS>~dT|cDcqH&gZGjSKxYf|SOV4Bu?Kk}s1qJOb&fO0b4$|`*zRwBrA;66cJ@_tk< zH29bAQn_YpNBc@_!kues=DBq%@qU=Z1M8`m;RtA*z9kPG8Mn!rsCN__i7G3@`lR7O z^OM{RPZ^}dV6c?oNngp(?$nk#2zF|&&ws%_S&b;5<%;-B>pPMa9 zB01=hj`!VzewUr$Hk+wkQqIc z>~E9r)486cuY;~ogw)_notl0^uFYCk^&U^`yopnA5G%P|PrJu6tX2-*`9TFm_x=&7 zxiWLRZHzQTVvcZ~kaC?-q3#jGH{IlJr9dCAsXH)cH!9|CSDJX(Tt|=64r&cmJ4eDN zcGhxAGBJ&`c0tWRjMDSw3}uo&7`@=Y$sTA--QXemq0!eix<`3_%O_{wR#| zp`kHn3yhJ2VTA#4h@ET4g_g$9pT^hyS6g|R12tq#8(b#f>bcp~vX~>UBGoYR(l`{i zpFd&h*o=FmT>1=1->WWi%Xo`2ZLORr%Bdn-00PC|Jea34S;+QEzory2ep&fuuoxLQ zG?3!AJMB2+gSP+EHVU^ohR+K}((Ady=5%dt!iW#;I^lV0O`)z3!?0d_F)uj7UCj`0 zh0UTnlBE%+fZ1-Pv&eoA+P-rw+q=J=m1sVC(vajLt`Y(p8&-YwAGUhnuWxN*h{FZxd1Q1>Xl z#x=Mi%h1KFdebEthj(e16^QZJ^%wdIF}w=?Vbf(L7{T;-ZjU0W)$aQW@V{m8;wjrg zs#*yEV3UfDG^rD>H3rRPwmpM<<8@WZAw(5Na~#0m^lho4OsyEYGib2vPnPz*dMhdW z?NL4{Xx`7x{e7;GPRn*KM>F-A_>|rZTLD z!U8tUP6f$(`68K#ibplV2p#L2$B+DCJ~GmZaf&+g_M}kozfg#dN)TT3oC$deaSScRUWuQXx_6En}Gz$wu#JPsDR>KTB4z3ws>+VsD6iVgvPE@!*+Tev^FZEyh zfA~fl@L64g%eJF2HH!GyrL<}PIn!qBNr*-b_>8_eZ#jH=*L-pWLn9rQgKduFc^tW9L7TBpM9hKaNf0K$wBgjpbE#7=VHoIt<)7Ik~gHrOzL1?!Px?Lmaa7!7SNqGm*$r7XgRh6^Ne=~ zBT{TyYPop<`H;^fWZM5wT2Ba#!PB$5l=@dj@BEtYwZsWn9%le?!=rPj~KzB<*5>x6(6^R-vr+j z3=xD`lWPDATETdux#NVqTeQwGP(0oc@f`Vc=elgn5)&7Xr!c2m20@!Xa6_(T0)@160KkOV3=*6P{}=0(3f8`}AnBZ8Bn(bx`o(MaYJ!-(I}^ zsYsY5dgLiuXb4r_qi7Q#e&4tXXiGVT;6pN67wd~v2p1aX6fOsgi*$?M(F{aAdeu9h zF_Nn+{&eAa?bs3DD;gq%6{V&`+vUCM+{J_Q*LKKEDPYu_QWpKTG@;Yo&&Bk$4m6N! ziDC@{t;>C7uw0OLo87-kDcDDlsRA$l1Iu z4mJ91meb7~zE>AaA5J|JQLbmk2?=}<{|4Z6$HyFwXd@6_F)Cr?EF^^!XR5VSm6q{9 zumL$rt1d=ERsJgp5-#XC)vGFLD9Puw$SExI87qPSR?0Q*4d`unhytuTo0& z{?hZ3bPEcTb0WAM6c3Xj(#3|de5NMFXJxmU9!U=MT_=XWFgp-?mw&rZ`Jv<6hUKdU zrr+kPOLxbwq8eMlpy0?13VoX)pp5tJPDpmo~;1q}HY+1-ldG5ELv^+MHBejk(G zt`v4DNHIMJac-!xHUG|5{f;5DxTQU>9+_cxyipQbuI%UM_G1QKj?q1xws-9qb9EIS zQWZte_G4;qK5W{N)C=f(5UMcSFNlf5jk0^Da^-lD@eTd(wy`ZZ7Ve2{e>97i`ew3O zzWY7tHWYWGdi_XeZO`?dCsLv?j_X`-^fz5GDD-`$J)~l}%ScLj3B{Gz#91O~ccpwO z9pgFlNR|u8ZMVND2)wBs^nh#>B zM&Wsk?OqOjT3VW^|7^8q0WKvW!-0>(k;pslz_%BmIShv!&zkD z4J9%^z`o8_eF?X%6{n$j`q9c|jCC>;$EChOu%G=I81hHM=f~1QFYR|i_8Rc6F!l-FXAU%XhKO@b02a&n=S4pcwhF_OCr*I^OkWg*=cNw$}!45U|Ydx>@>ceP?4bU++)5yV)UF0xBL_&zVp{5QZ(StjVDS z5IGgSy;m6JU(jqm*}H2l2PiskS`G!e8_EEs@LPLKmk0xeBTukJhvT7B)o=$BUbeN$I*cM z(5~Fk8w_#xUM7^ON@iMv@6Eed>8L*TANdHr4?X&&4Du4!B8YnwiACN$$l7A>PQYQ2 z*0m^d5hRi)7(*Dh;(8B0QY$OKxpQ(4B7x^sBRHA(ODR@BiyQ*N!0p1-c47pX>X;M! z{CG_8tI8Wn+{e!{=1v}2tA6tWzl9MNf@)19*NuCGIKMmXg|>=VkO5ea7LUkv8+hsa zeodM+H#HiL%OIl*_SMcEkdNh+e~phuF`7l65ch6f9W+#=6Znou z1aZ97?W&Od4Uih!xY=yEL5UUgbW+2MSNnU9*vY9DOCi%ZwZ$&UlcEulg0TEAOWj*x z3fT4HIVE6;;)B6=2(5-aKcJd|M(TH0N)5pQjV^>E;Zi+7*N6rE**dd7VJn_`7zt4VE7mlFKc}_Nm6eP4A{EDc5$O=` zBHAkIGcs~LISZC(L42X$UnHYxqQQ$IRMA0&F1!_0s}oZQ0U3OTf*b*(YhcZ|aD`nU zosUAbg{)+P{|FU;un{=t0f&FHq{!WSWntp z5pEI?!jJm^Ux(u}IX>i;qL4n&<&^Mj+GX?F&(SIb2H)8^kfwhZ6RlV|HM*LpZr($DDQnkLi9|;2%b6A74*%*FV=zTFqV>nzeXBtf3e|-2 z*z@8d`}Cu_bEXzh!<}H!Yd%d19q64nAgma+sDpaho&pzbiXUUgiU)Q2E1J#5%KR<{ zRLz>!V!)xv&pp6Y;Mfw5qXWtbbos`p*M@BxM%v6~<=*+sf&+-htzsZY*>(N1b!dRG zAuQ}&m_D)eSko1mLz_;4-yeHrm`rYfDZ-}CpL=bETh~R;N^rRItw8) ze%aoyu=w9b@%D4qxscxm&!QL$l8jgp!|z-l==LH$v-vNtAAAF1;8}>(+X7M88Jz^o zwrYgSrs%Vl&}m0mFM~8hY}zXbkm05xw0h*h6)7Fzs4uky5x8X^HVYT)#2TQfc>c`T z>(;&796lR%>(+eM%#E}uTAuAH271p|&cq9PBc!CsIa*m8kJHy5(pOu|=V!foA^VMh zD9k$Z8H-VeczZmDe+lq`hmVSv0lK>N(oR0TK6TtW>PCOH#H?N3%9j(OOB4=LfCveV zxlG`UvJ`)Ox=jN7A!Pii)fZ8(bKF-i&sx<}9cFv;lhHG1iD5Ev;a0$IO!NzU3*RXJ zQ#!Wy(s~@CY>gJdescB{Rm_W_l{XHgNOW-|_c8=1K4^H^`?IT^IuaB*h3C=kPR4ee z$jQ#nv06^a^aLYoc#si~pfp!mg2BG^q?NFo#l(QjIg-Xww)BOG&juCa1C4&%hI$V{ zEcB2Bp4wR5wKbGbGN*V_2U#|hbrL5!)i7QE23NJRp95$&0pZX7Y$RBJZ6vaL_H|dE zs5e%ZqOnc{2DldrXCVi%E@p=>so?_j3R+ z%wGnR?d4)*Ti;6ggqIJ4F*)P^rr3I%pXndS-%G|_m^BVYvKLshV#m_sp)IP0c?TO} zU3;;jlJ_qR?$wOo2;6hNgA5USb2nf(@N87$sMjHd8w%J2dOp}Z zCFCFjs@xW(OstdBuh}54i$x$MC7HAr4E$jnBf5#7kS(@?$6TB1` zkw7CG%XNu!vwW&RRNW}U8e!mKK`o$nx$ElL?;pz<_}$vC?qf0eFHH8D_}+54I?wwM)o1_U>)u(Ke7NqnzwXZy{S;O#y$$Hbc}cD%jN!*1czbh6 z&@jlEE^3pO8zoXASQf{ECUgTPdq=y^_O(_T1W1m1;2^m# zYx9(-SO?5&xrVibJaH(e5Ru>y^#3PMf zDVi?GNW-~~slpbJL%~)xjSm^#y^y$^Zq6L>G~tv{K6@0JQ{SCiV9Jvw0+Jn5pbw0WZ z-C&ALvbKjDn%3QQGGg#zA4R;(t#WZZ#pdj3M;#K8={=%%(+N1o4(NUsL(bb9TxAiz zsM}%085gLE=5$ufwtDU*>+UX!hYWod_`Y2hM1q$dl2MHKrX+_}5*f`K6!oN2oOD%Q zS(h>>9N4KG>17CW{f|DP;uH7;tQ%0?w(0_aC^_^zM+>xaqA?>H^EKh_p@1Y>OX{^Dwtg^@!f?k{zAwd6&;$PefJ#`>Ly>eVHFDcP2F44g^A&Ds|R(U89TkR zA9I;TAk3%(D+s#G$_qkAj-L#i8JD{^9C@~djOGQPDl2W+5dj> z0<*&!O_}W+ogfW7)Lk{tjy}6X8@OOEwYijD5%b~o7_Xpb*;Jqrj|2B)_-_a*Ii_NN z<{*uMHABUY3NJ^$ha7fWa?pCM5C)UK*<+~@HSz_Z4`E@!n>-^7oAkv-mJHXzg=x!;X3j%1 z>Kg1Jb87T!F^%!WIVkBA4bTc_J!-0P(_84$a3z-OwQ^BJ&SJ+M8kUNtkr&B(%RLMv zZ``}dR~ru*V=CW|@W@g0XTW-O%Q~YTMX#Jkc5mc+MuQcavn+-deXegZY#G&eAJW&| zs?(#`khGi%cQ;R(5!1+yaD&}ft7Ns{N=hhc@7dcWjUJ-jcYD3%?s2&%>*$(HP2b^J~Y%n0E>TD+xSEdGteMb+g@%>{!~|Bt(~ zjEk!4!v0VKA}J+}NK1DkNJ)1O-6=?SqcljDba!_t9nxLWIdsQ+xcj-E_tX2~t#6~h z8P3c;`|Q2;TG#borP{Nq!$o91U!~gzey*Oo^yj|3TZ~dXDtHCL7rrr){!u7ibwzz)L%AGY4mT+I_wO6xWOn29l$9ws~Ltm$a%q2e9Y2D)~O% zEzx_&>_q-g-Xh41AzlN`X%P5gtXTra1t?Y7Z4SP=z8W8SW3JJh!t0_y^!8(Vwbkf* zzWU^i96O_pZUT;8%5)D>gV&UMP9u1CY=uf+U281FlUU8xOPrQs6lD2GN5|Ks5YCR? zd2DRyc*Yh~u<%91@@cZ~U{9$$Ux?DFG#a9r)^;l4dRR|*Rp~xCXSi=p^yLq!=wJFT z1r8r2T5mUp1FE{sAzFaU6%#`#^8p7d!|W`bDM~Taln{qs>2+3a-&6fC?roxxs8aS@ zaO($^vUw7t5Ak2=3Fkkg`*f|(Luw^I--ZnIcH9rz+#~AN8JzEr$q(yrG8m9$z0sbl zX13HNzWz7@{+!Ci;SeFU#P{!ke8b|SMD5LDJV=GFN*4z>R{HYNz04vvn|CM@@p0%j z3Mb;=m41d3F{$-`E!*u{%yXmUa=S=DZ$PVV@?4;kA7ArG2UN7FM8LHjc4kCN`@Z)5 zo+}K+osi|f{Y9%@|4D?|i49fkZ~4>j>a~Jo!9vXT2K&XgA;vxZ9LrXx0jvhN>p-!! z+H_j|3pVvvanR-V!aI@_u}~t0(=`Lboqo1%9?Kdzpoph7ZQS?zqatO01yGL7s4XN3 zy1d+<4au0Y{BLPopD>B?b6tNt8?6>4jUWeQ*~7H=Z_uF+&gSMsEGGOBt^tbzvq?v^ zBzF5GjdJ8~awrrc(yifC$u#hW{9kwNuNN5T;#ko2K(AiAqe}sI4lkg)tJ!RI#yTLh z3MIg&4niS}bFW*Z0V?cYhcuTMx!SFv>%k?v3adZ1ay;U}CtFcu3Z?t@xsl4>uOvL} zy%)okv*q4-*x35Jx{ve*Aid5TNr`h>eiT2AFu-um<8u7(hlM^&un?_X=Kc8EmMOxi zxfx(#!>*>unT#(3c()HCK<<>@run`!4hgCE!(ML(7czi3` z3yr%vg5dJ7k|jH6^qQB)cuegT7li`<&HA|Hp7ul1zbCDDyBLWG(h6-$`nWmOMN-b` z8?Ba~M>m;RO_$cMo|K>>5BCwmsyB2;H-C-PA1_u40pRf+vD4)J4@fNb4Zl9-icsv1 z$L{CwWR|BQ!ZESVE7|`7ZBPU1MBDyd*(KzE&)P^q5U`#S;QjZ#E_hO77H%6a{ZG5Z z_xz<0{p*Eb;geL9rZJI2;@=bWjUdz@(?67+e_Sn+=1Cg)#d=fv-}Gh>u#(%q_)91G z*Ng1uz_%^POm>O+?=KAe44D7^-#>oFX3-->m0{o8ya#^rt>N^x8=KANO@4c2Z8G6R ze2xLySPVVHP#0J|aDNYw7M>3#tv9jPIw>MCHwj6qQPEWYEwSg@EU_1H%o{~uJdykJ zMG+*)PwTk$DM&cdcIUENXIQ=jI%(2|Yz;;N_&RZ*b=*ts<;|LbH^4&s`C+Nl9`zcip2WKgJZ?ap zEPE!W@Hl}z=Ps)t%qk3Nv=EQ0sQ01icRJvty@vSVkocYBstv$P(X3xqu^tmKFb`>k zG_{(?(um(q4duK$tv%U$ST3E}lR?CZ100^r0{nmi$dm%!>#^%JuGGKvL*Aa;bh)F# zNng*W)Eh?i&E@S?zxAjfBF4+d%K}B?1uNHc2lYn%n&DgfG_4e!Uch|yIhng}umw4} z&j0RK&QtDp{h@qjy8BsQ9v~h1?sdQ|)L>i&;Xj@s1JWR-t3uJ#iWG#&ZOJBU00inu zqqw={yd)KxL;=VkqgQN2o@0GAi|LWb!agu8vuZ)vOaM>EPK@M*5*wuvO1P---W>Uj zm6_lm?k$NqLawO`;@g*_ew%?>t4~VMK+Zux*VmE$x32HndCz3ihEgWwYo^F^@+Oe= zLZKf4=T+0fCj%5SwYps1hu*HSYzMLHwV$MYF+A}rtM2On>y*hY?e1=%EP8Jz4Wx;XbXgFN?q{2|&J?H%Z=xwqM!{i2VX!;rl=y|-~=5(1f)al zp%oZz(2(I@`E8BfQ-4)%kU*bX&nfqIuaAMQ6J3qDBsG##uuG?#6WtM2> zT~r$1KfB&dh6p{h+`}{KhmUT3k7#_jvOsH}ENXrOKt0H>t_EkT?7(4;eGY{2pI(yQ z)jOPaD>S)cskd1BHQ(H5+TDHs*uhzHq_0lqPbn47B!(mcf_EE4qi4x3W4F;-=JlIy zZKlp%UL8C0TfI#`Lt{9v$mExDA{vtx;GPH1`8z0%9I8*FLqpCZnl8nG_Gufr zfFAW-7a4}Tz|X+-U0laQRW6|D{3GwF%TZmYAEp2Yg>(_~4jg z09D*8Ub|0~4shKo8C_m@5e1XLBS;E3`eT5`Xq59V(RSYeDV;>qFrPM@t@3$Xu0Pi& zoeDRA#v8?KCzWlvbkay$stadJ1>_eWk2wBZst909X`oW1e;8=jw402?4XHV`U0Z9) zy#O3~_0}L=wm?o1&Xa`RK7OC)5Zva7qwk%xTzVfuj~BR;v7oJR+7S!_L1~zTw7{Mc zfN19U#ny`>@-#QuaCCoXOs=cncBy__yo%|2?x;Cn3H!346Pct;D{-jBF@P#?7*`P` zzxg=2QgFDC5!Q}-6z^)ZWgWP<>l^mxE5nSA;bwB6cNH7k`C2l_1QHqT?* z2QO0+d8o;x@>`X5m?ussva&hmTF#smTB^0Y7kwWZkGGj-*Z*+;o3M?)s|#s_j~2-L z#|}KY_@JVBV^U$rm8DeuX>^ftfw`7`JmPm=NiT(?GI|! zLCATZ{3PlFWI7Ef{uHlSKP9=|(ZPgk5?}Ew>#}`&vArl=X@T&NUMuJ3e!0Hvh16X# z&1bOWfMh`nci3BYpP~$?NajMO@mPf8EI#Xgg{K-@bj4YqHvm38s0~ zRwEuf{vG6=q(iQWZ4%m~@up%;(&?#t;g&1x<6j|()3u))@V?(|E-t-~S_{N~10F~G z8HCIVP1Ypp?-OcSlj_Iyj`X5-DD-H*>Xm~ChBVGX*{ zL4hVUAAXz|r*_ROXZyam*S=e7n!H^Y@~?h|2g7;QxPdg7bo3yWe$}n;&EfX2>5F)t zW67IktGa$476N$vQEUhN^bLv1Y40*voB*fG<{i2En)|QJstN zR8E}q#!%gI3{JY&6mDFQxe_p~c#R)|96U!WV_VrwufDZzz6xV|{gbn2;ro@>%ERs8 zT|kFJe>G>r+J!r_aC#jOqqFa2PIK>FynX&DJlp@;%@M8b_pk*G!>8y2NH(1r{N#LI zAYrE(QkFZI-Am0gHxbkRQwsnjy?X*s*^;|mkm8dfck&Ulo}2^}Z(gi=Jqf|fi9Ci} zNQ!r-OX;QA?uM?>o-|H0`5J6irtG)U8cvM(VZnMZIgVM_C&|{03mS@x`@#ec5T0Il zWc*H4{#lw+9J<-Ljo9t-AO>K0e)xR*MWP5rJB%>}9g7+uWc-XQ^rG7>+;k0$=A%Uu`WIaXSM{w5i?8(W8wF+Dwra4RSvx^;i zvom7n0utw~9SDA%rHvgD`X;}`wQ|w8S~#IV8psV0YO8)!_@Gj%UG{q4X6O~f=A<^u zU@Z*yQ`0bWj^qcN76?B~P+#4$6$k!gl;3SZWcn{v&|1=yvT63~{mGuEL^^-VU})kS zvL4ZXe4Cb{%oE2~0_F+Tkg);FC5j0A9BAf{Gd#u#|I=9d>ug}8ydTTxN0LLO zh%oIaPU>9U7_u37hs87@WdhTmo+fwHMpvbABF3`^|74b@&c^EfF90%PPR02)cH-N( z(hqe%Y^#j~Y)EGdy?X0h@cu%Qv3JV%GB!-d_HtXS@>k?wu92j=-uHSdjWqcrkcFbQ zeLz`!wmT>Pf&aLki~R)`qxr;Gq};&E&m&K3f%0{Zo%zJ`cn0O|3{-s;mwu?^))(&f>DJTiq87yM2-qwJafU4qu6<7;tm%dWOEe<1FSuK#;H@9H z&jE5#HqD@R`Fl?uXU2C{Fa%uy5kmY)Pqq0e6wih6VwJAv#OqY$n#wBg+Xt-^Kan)iqIGtv}>y zuur2@?)_b=F(D|lW}My|ChYXayxv{v)T8PARlda>9JS+!_Q@=cj>J0;8BIWXG^0B; zD>#xVxP@RA)Xng_BTNe$NZx}2%hj1V=%HYP5fLcMHaDPZaXNf^1)Z7MH%4g!^*;6p zPnq|U6S148%+}8(lY7fcU-~}8Tqh0EU_0fTu*!%`qPR$f*oBRiZ}!*VQ_P{wMHpbU zC1vAl7O9QekMLTtR|Def6Avu>XdnZbZ+h>ww3(Sh83uk<^k3;JgV%OTfV)D`7Q37e#VbFDETjXaX28^=!_4t3Q5J z+z0f`m%UtYEb#W;nm6|m`bPKeIjMgbyM`oNIA+_HwE=569xMf~HqxYDFfwCv2V=LI z)em2F8Z_gAyxVUU#QT%CfmGG$s67Zk&GB41KHMr49rlOOSdOFxEDn2EJ=mnn*+Yx( z`sgOhXhQBGtOy%F3k7Iz75pgyAIGYhZp}gJ8sA2@?&G<_4v%v^gBNjIYSu5*XPCIs zwq+N`-p4Sq`_J!*@%+i(kA2_XF(z8nt`45P(va$$tBwA`wwL@k>|_B>WFecwg_SX% z{8(oZcsb?y_KrxNh{bp)md>V`F8QpHw0QY;ML*pwK#)uWc1Z!@V_B=YQd=!=Zf1ja zd>a4R$XC}7Va!(93PaC6AC7xkQH=qu{?2wKU}69xMs)sTu>dDvS#V*p=?*8*ckV=j zl)VEjmx*%XrZT2IOx2hi1WI>{`*3}!u$huM@6B)tgF+w$^4*$s^6q=`_vxw04q-sm zcW`lyQszxP8)H!X)D9F1EB_r_eC0dE7j?4kFbBh|>;VC6wBT(Xit zgSA&dfxK3OFs!^bKT(Hi?ih8AdLx%`j$igOmDszMAfx7g9Brl73+vIC2c&!GN2X8g z43S3N<{G3G!8HPx5k^Cj8<=j|qFFdwQnuPAzP(}x_McT$Ke?b~*gb#W(2mN`>&;;q zi7IKa2iaHaRs5V@WJrSPFrgN*?BT1_iJ4rRX9xA|jTr)?g!vF+&fe|4{a}QstEBgE z&<;7t3w$xhfkfq914vodBq}=3?zB0+=pd_(%zgIi6gnnUyF<^MuX;pFM`#Z;+)RO^ zFdQ?VvE^<_xq3kqeqxj!Gd~#rsvn1LjQdB_M zxx`+kPV;1w(%S(F3_SJ(EJ{%Om`DgLCGt7ZDl`1%osA~Lnp8R-_a)1EzKoL2O?rSi zm*I+ZeJmZ&hESHG>t&(osQ@05i!hAuXTqopWxkh>zhFpzAmpTFrLlNH;}We&<86NF zFShpZ=32!Js263B-*6bA8pPyq$b6n0QYJN5D1`kC!z&Oj?`Jjp5iaq?os%;rY4obY zF~`!|E}Su_edP`^rT2;D?raF05G-iN#EYS%bNnHPi@jN8nIaDOXV_Z~8IL^GW~7t5 z?Ci@mAxi!lLZ4t8js0hN;KJD)N8tfS73(Om3Y&T!sJlfKu3)xmhK}`o@ zK+oV|WxwY|2_t#d(Hpe=P4H=27K63BqC?$Z&vV^vfOy&>p8uRSZN-3% zWAVqE4yI`?S0iJ6xn$)gj6l+PiS{fI+Y*75m#C%5A$k>kO$to*{%FuFCJaQcwJozI zkuTR`?dz^dKuo0TAN4wAZ0Rkk?UO>L&Bs=&#yPyA_p$K0p6ZPOD%qz^5D!OhAD#E~ z+tj=aKQdn0&e}Ul0(XFu63A8hlFJy-73CwMcV9tQm;;$pMqaZ3)`j6+*)6q?)&K(o z+Q6TfEFClLv!Dk^&zTFB5gh9~?SH0R3wE)T$uM&{1`?*{E>`=O1g6caPRSGXW13;w zjy~*~Me1cLK1~|PXz`MuuAd-?{WlB8C9=aF3{Hd)plflWM0$BBgCo=nvi9by0*seD zl0}eKvrKATPP`n_V}Pjf4X{|6V*I`1*FKPp>?lRca9BzzvYMsTFTIz1s?HAP+A}8+K*85x+3(c&|HtOUvHrhk-H&@ zg2>`g@bNLhK6Mr&vI1r(a}K#Pn9pawZTJ7;s%Tt2G=6?RGvDI0oP)(9CN7QHH5TSl z4vjmhOgsk7r_H*Bj;z;8r3(l3q63-ft|71@6NG?wLaQ^1%w>mh+>&+=pS&RG9QN_P ztnIpXQ$)m^skqFja1%9G8S+VWXk!rIVb~}lmc8Q5qLPA+xQ=Y)Bd^-L(GV#IPWjEP z<1c@tZJJ#%fMcLhqgdc)4y7HexmTc^pD-R#7f%=uR%412TT-P{$srqHd8z2@J19#N zS{Hgo<}LpMKAY=G z>j(xZB=A<-y-XB%pw-%=*0t21TdYzOC8&3)s2)fW&z3%_E1zbd%X@cf4io6swRZ3b z@#cIUlLaCTA=xkJ zfRXMnJepY6d(bJ`Ue9-?Ro94BQIOj?R#5)A11-e5o*8Ix+~@jn@!3TYCG+^9Oj{mG}Aj8 zvdbi_zPIpIVN7K`M@$}LNDAbOM|-R2}~DTWfhftJ&b*558O!ng4fG}B+ko;Q3emE5%Y?b8M+H}3O0j%1~cTo9`GhweUCyNt~n_8^nC)Tr}^7Q3pRZ8tf_bvK&#I6#fn&7uvkSA;)gcYTSit-ba3v1Vlx;a7W`wT_MYt z`y4Y1Fr8}hL)apPXld3q`L!WJQt%GKz6(|WCuJm#ozw@s+Rj)=f(Lc)0O$r@l6wzf zvrhuci59$&%6#nvO{>#72lRPQ{FqMX^zZGN5z8QQp7$JE z7>5gqAHcV1v+%?=ZT4|cWCM}(VEx$e{JA?q6=|sK)0zT3bC3j(J3yGQ zXTp98nLVj(el#Dccknv3Ip(iNY6;Du4t zt9hedhIA@#zr+OjGxaY;OM&bq+i;CUFirYVa23a|mfrj7s`^?>qQ$ z8B01%fpw99Bf(&

e26620B0n~QfLp9ZBPqz<{A1lb^&50?8KmZ`u9x7S{=HVB?u zEK{QU4_epV9;`wD=wZ6x#6MmN^yB03?w(fjb5$-`|4uThR(~{8%)$;@=0*!J#~1rq zBo*xwIPfOS)c}-Csp9KtPB|aobR+nY-9Ij<=yHl?U0F&;o<&MW6V4AAOxP872OB-6 z+UJF(dV$_y8jHOu{B=MzskTG(?^=yD0KVYjSHOgF#?auf(HC+fojVGjojzw1K1y=i zC;>~5&;#jD$iM7l?Ig1ldz}% z3HAX}#9Bb5$KLs`I?i7&{+A0n|F_nq3Vhnnr*$X+D1jt$UBBCZp!a>=po>>PUmc4P zMIU9rKntnYnwK;`uJ$mye%GZ|Y&DNwxxO8J8Nv7Zsd$_97taLeGPQ+!CeuCn4kbc3Wp?WeriPFvWEqMss@*`~~T)<2gDQj!6Sr|TiI$Yqo zK4^dUR09F3QbO0Ky-|iu(*q9QnnJMSfZau*Rv($mV^b<~d_i@eXa~qHFGTVsKQ;4o zyszJ~)9%M|TX=Hc0a)Tz$PMG>T%9#N(911W=khVGcv?G0-^ENWFZb^La(VNrZ*(kA zmf@)l;FE#ZdcZAYXN#fjLB)75Dfyc~y6c^M0XQcUlm1g4U~~ar+?~Z(&NPcW)#0~B z(l539fzFzew<<$$25VGHTJy^ZE7V9n{}tyGX(9r%KRp0;!+jK-?r+-?ztB-Az`&xloDjYx-v)s0d`e z*jzDD3jSd^3>+ZnxIBN=ueXp#C^=UYqj$cf=t-~#tO|a7xh;F7-n4B>GD+3DBs*g{ zG46F6u`&mm0}WMM*}yR}BLd@IWYeNF>iU>Tp#&WB=AQp6u?yl#KvnJlAUPQLwNWI* zW%=d$utvSIw|GY}+t|;z)vb~2@!+Yf^oHG2rt(YcLW6bOHMi58!y)N>+j8RD7c7S2 z30jZLRXZPRkv+E9i8 z6ork$b_e2@-D&TGLRnwq+7t5fUpW^I>QqbFt@l24l;sG_1GE+~8%Z#P*-vDRl@&nrNLs9;F>EOslX$|r|VFUwtpN|fDvic!UteL5 z7f`J=lv@8CI>6p+{s(jbU}yVNGo73=v{7)|=wKl_Vb=>M)g7$6NIwP9;XCBsbn=K$ zp>B;beAYM+hzr@9DXW>ce-;kZD-Giad7NHBW{0%}`o{q&4B;GWJih%p<5DTh?q`d9 zy}1>`JmDtF+CIdw^;O4fvFx&TkaC^7#=eTI4WC2_U^cEtmo=t~=oU#i^_j(;2HDU6!4la^naw55YRIok zT0U;4$R-Gl{`=~-XAH+MmpCyf+HSY^yg!@S_kTCukDQUdrUHJQJmkz^(<|8DTWszZ ztGk>|6_IYKVgFZopf+5z)iN>|g*r*bXQYvmEt@_JS%!GS^KvWnD;HSZ3|sO0>;+Cr z8vX+kaRCt^A?uckyl*39yhO0!dMz-v>*VxMK2WUuRGqiy`-Stj41|OYy}l6k2rzi( z*mm$pKMLlv+Dvm%F?>q~5#jJpAd~^62RwNUHofXW?fUQjO!0K5p_^Fjzt5m7oxzc{uopfWwgEx(9tO0%C?>wWA>Wp)UL&J6#k2q3P8*t&dPnn_6G8 zBg3bmV--x73kPVWq>LU1yH9c~yU2bhl-tb|%72VRH_x7>2Y}g#%XUy0H~~Vbqj}HD{?E{L&LrqpYjN_wgB{BWxa<%5Bf-0;IfH;74!~f z`b*@;(7m*qmQxz79#PR(9o$b6G5IhafCEB-*VLOsJX05hZf3gOG?S0`1e!sXWeslC z;MKbwFdV?C7WQ`3ktUaF5EF^;iQzHG{vaTPY6j6RW{0tZt39Raj-2(u~O|iO;QuNjUEGh;nKHD$?$gL~zUK5K4 zjZj5ckI0?)AlMawP8JuI(Z7>R6P?%{K3RQT3^;fT0rOIW#5+pB1?bOvuA8Hbs^q#h z8>s8Eh4~an5yxSh3kr7CSOS8y8x*3$fvE1~t$gtS@6OF-YVQ_Ln2Z_;;n>xTnv>EJ zi}wio2B>@qB*fQ=3bF;JmSnN!>Ey(ff^nN&YPDPLupvQ#eAawC(g zo3UCISp?1eUg^$YkPCkp2(1$zgpv=I!%~?$-V^)Nc$1d*gcB5Z-qv|{Q`Na38~CIW zhO$U*{gAAx)ocBw^;-&fUw0qy4>{kF4n{pY-k4s#vZnmGd;pCb(6q2gviY*!aer$5 zy~4LxTFvftv}v0u(IxPPw7Y6lC$qyZTx!*taJyzYT`bc)_?bO! z+XKLg`EF;Qgy3aH=TVBj`;)`7QobdIvHaT#_G{P_tftjhmVmr)nOE!1*hl5Q7DrUb zd6z|2fV`x-T`?be215^f0ATjt){CN-)EB(mn5lS50pDE5i>??Hb0!0F{MLEX`uZwd zypu{&b0*?cp&=KkP$YlnCaip4T`_0(0h9;fZ%t0t480b0L4sWt{C2ipFBJr|gaZzg zGY_U$*vlBUaey0w4u#fy(Z7%OeVpwD(UMUUC@`ZyZ!w8RDxD=T05AshkHuPqLiH~{ z-MlpvE$E?l+0>j3+&xeaO)51sb{0##l|bBM6fLSIs8;p60P6Q6)m?hKGMV?sK2%eg zH+J+@7WpTC&TFbEgpqfh&!exL-?-I#tfc*@t{)!-;5Zze;Cx8_# zzgluo@(ix2JiR2=LA7kz^l&*He&&FqXwp7(L@!%#rmUp{Ce+r{%`+FvT&sfOyUWTn z2^ZkZnLY%{V+1c&YgxAF8M}Q+@7)rcKOnF=d&}qGF6p{e@wQ_XPP1{fT?BsgyE}VT zwR!yzYHJ%z?LSp(F)L+fhCWfEf@!~^SQhosxgj99h;)Q8?@%6T$CS^kb%Zn9a& zEYslaahA|yJO=RUGJ-_3oem{;%6rWTMfn$&SRIu@Q3ulwMXl`A{KnBz)6)bQ2-tYM z1I`Dpz^4HSVS>MKmK~C(hdZ5tgZeGo>vUfI8NngF!<3a8nTxhO>6j@TXylAtwsasH z?%;X!DhqCpq}5Noi5G|CKh`|7Cp`dVteXOyEw#tAIs6cdznow>Y2(44S^)W1mS>Xu z*9m=^=UeJbu~uw0j>mTEyDb?FRbp=<0^dy+Yp4?`K=e1}kca4ClVL(3&)lSV@Bxf< z%+o}(M*zD1u5*w!_Fj7wEFg7veZFiJQqo-`;?HiIu$Y@$|N5&X2i)e9cX{D{o&EST zYLl=Ru!b{ePK$NVX=y)f&IxhFp)E{-2 zV&WI7meFF6+#rii65o$}n8jy1+r70;o}5*Yt7|>7rsDQyP_zj8im(I1pf$qw-W{Ot zX@y~5%B+74kG*#)=}$*gMjBVyQQO%nlMz#yiu@H`tIk-mEPeMM%f(DF;K>j5|Br%}=uGFtV%o50XeM}UlCCJYzG>8sH%|OcPrNT;1hyf(m>vs(y5ct4I z$LE%Ji&kJVC-wp&UFYlwLILYtIFc>*+%KO7(^EJW*DoRJWo`WLP|D}s0UBU_5j<`b z8Wjq>4C6DBBz=GpP0{nuY=`*DBalm(RMa1Vszrj+^#v7b7A37u2`L<*SU(YsxAA+s z{ApU)id5P0&j)ERQOzd}gGrRaYnHO`z5v)=So=Xqtae5WRx2gh$dF`pkxA4fug@uZ z>w1~1r@`ocuo?aN-V07EjEbbw2OOL-JSF)dyA4!n{;w6N+>HtaEk=p_$9`#-i`BHt zGAe)jNciwY*G0Q29v=5KQa~=+Lm0F!rA!*@y+y#b(AN%&FEp!e7l$mXW$9kmHRxP= z8l$f~!t{l03bq79MM(W|PFO5Sb8<9i|oG zQ2_6l##yYWy(8gHJwz&l1ebRgKz9ITgePfqUXVJkj9fEKD z_Q+Wz=;q@6@kMa8s|LZYIx^CT!|4#k{^3KaZ?`eCB_jYWn|F zk_|{T++C5ON?iSff^u`7Evz|t2qGTXM)%8+x-N|8#WxQoHd^%?|_9U_0 zx<~aO{td8-(|(>@69qiII&POxV3F8BsH?mpC3!S-sCOcQ=&-b}5fpO75nEt|5XsTF zGcG}-u;Qi}mlz1J?~-(J%k5BXdD+#c^e8Xp-dkV#*(Iy7)( zr@^A_O|057lpcJhsK3x(R`seSRe*K@cIF(PBl*$;Foc}i)Znwnhs4uMq-sq5$n(_h zyA%X-o!p}`e>`D5ZPQy58;BwQGO$4#Ka_uQqCARG^)Y6}`ELI9LsVzL#$5nXrNeDg zrJ=}IY7@~T$lR!G=2UlZTY8y$jZ^vyLN@wva^D;`5MYCY!lj=Dxi zItxQV>lZiqETB zs&29bxi%U2kmqPM=)!+Lz`)FBm*!pt5zM?n(*Z2DPdDI?dy(zwqlD#6Mn=)M7J<#S z%VE8M)<*AR2bgc>t5)bhLBK({!?y2)N|Bk5&eHeEE~U?I8Evi%p8Pf=(|Ac}x|DZg z5t}0t6F4^2)`S>6HH3xYb$gI`_qlPat&XDPZoPl9XspQ%$K|dfllwWLCA67h`psCW zvi-5y>@Yh>r|sjSe>-w=ZU1o$Wlqa*4IRMA7^~1^IHgDEM{q60*oHsZj0&jAleh|< zt=u?pk}@S=v5W*<1@wtcwgrgo9c0f2=n2`t&6cru?l;vb0$!vtZVNDs7hL%|vZo~9 z>?2w?ecpAsI=pece>VFtd~5u^-f_tMBlOWl-IV!}rx=AyVks(S>A=r#{LwOxEbjZT zeaTy%Pwb%ggGpq`wbt?bzymKB3XgUO<@{>~o!R5U{qvXbC}0vql>@3y$b%oV)zktf z6eqwBWVY$XoW1`+v8Ube<9=}v3dnMQ=E_EsO`GY&&Lf2nE4=G%d? zC(>+1Q;*g!`8A=9_PQY6XDi-IF#2Mg$IzjN`i7q*rM`w&J{yoh)|nydfBg0~m4ihd z3YRQ#>R>ceX02Oku*Pl;@U4C1uK=D2o&3R2DUL#hp?SwIFTK<0G)22nh~L)Wv&9stmL+x- z=8}ymgG+!OOySW9`Q()!PuT%1bPd0Mea&fQ%zfWF%6|?PCXP586er+;#Avb1FdRvv z!_Ih&jH=wL8nKd(#_+y<<`^@W$TE-s(7=FGwcSQP7MI&$x^jg5R;y~ROtO)0g~O=| zw8x`IgVFiewXuWYbg+X045O%+g|eIUbF&89xTea4sG}qs*3q#o+GA+jM=;b};9I;2 z%5Eb4WBrJMP-;?zDo;g4BCEO^HfY=X#+pwK8=e$~n#kpfuqzm{m@!N5gkKVR7pauy z8!cN&ZTB!44<__+HrY5rUB#X-?3#XJC;*R8%78@MQTBI$-TKuAbgiGO?jwnppj9x|@^Wri(`m&FRhO?T8-8V?g_~H`iJ8>{XXjl+Qso``86 zXf-)5hF<93xN1V%$45d>2nNWDj( zYk|l*Ope`YK2`6tJ}&Z2?pd?TyrVX&MGc~C8g%*Xbz5$T03fICeS3pBK`Hme;`;db zC8Yz=F5WBtd>u=WXd-LBD-!Ql9h_|LGNg|p5|P7V))UPoh}F2WnA%!MJ>F$@yPFUb z&p-^*(8G)8+m_HeYTsY5sN!UGKX_VYmzPq61vD(E`p8HjR^QV6oT?>vg2lbjyHcgOy*sg`{^yMFd4s_D8bsN#R@*Ys0((>2 z@{z_Z>-$%Wyh@7Wf4$R7!W-&J$JYcTL%<7T`zz&&=ATc7TsznsYGx_8?2n1|*LLT_ zO41HWc_#BZ`JdPQZ9lw#e$jp*>JIl;fb!=gg@Ssv!fJ~#3;Q2e05;Ha99>W?$1mFd zSd@UjMS_gL2+H$`>81GVx_|7r-YvjwZb8?1_a8ej@Gdh!ZzxXWl=tjDf9=bEe0CoW z*ZUys>iNGfE)D~HU$d1rm56_CY z(N+Q;QgvpND5SP~N6qDU8&Rm|+0BC8p|8ke9xhK}X{p=n52OAbQ<6StY7B23&tn&} zD^bFya44EdSd`20m%rs)qxMr&CGdF1(gzEH{H^zI?F6OkkKW!Ubjr&-CF8rLu)1nakzd6S{noCFPg5!X^!ES zUK<-YInq7Wk2fxopS#8A5-FojvHNQYAvxaI|AMWY(cG&Y2h(rOCl`xT4 zbv_X0%CTE6CB261nNb4SoS4iA%s4(BNZ9>xFDcA=MW#r0qD_zHMeEElu#~SKjY4YL z7^1)45iC>RPq`8d;d6YA*KvK<2zyb}(k+9_qE$Fi2sw86yf{L~_i=&i&pBA9O)?8r z-(n+awmB}SQVgbrc-4=?wlM>HrDKU^@AU0Oa`Ni@E8le5%g~9!hol$8EFHQ_1yIhz zXMN1pzcB5`zZ|SWqxSjsBA9JVt3TYX$=0=ytsv`oY#33W8zLq$^PT9pJbv{Y=b;AO z)|ipz$vnQcX{{m8Np=xC7{T*~wC>TXbKB&ynjYf2g;EoG$1?TNiXq#PK593}8@wHBul>vhZpYy?I?6KRG0TP62v^1ft_i1#8r3uBkH&vY+GKK3}4 zY@9K)_0OH-$GE?6`p{NGB&P32OT^3!qP+fkiu1?AWCkWthq|IhmRx=5Cq3hS=@;=! z7i&V0!>L<|&_SJ~Xu8E^o+O#oT^MMFMbRZ1(Ut{s6v#I4rX2EZ26Q)eI`RQRq@AsI zT3a_nQ_?n?is?NLG+p*Trv z#!0F=R|~mI2kM9S6`W94Ds6cdk5i!ihqMl|pal8LWW@Hmy{niL{uk{MqrWWvT-a@K z#8p5jyW?G7?`j}(<5`x=?bZ~bwFj6a&UniWEoI@}R z{LM=yyZJ_!m+z=oD-0+N~IZBUf+xSk;409QtXZL|K^G zxSt9@3rsIB(!Q)-$0Yx$XfhZFWQk&h0*K-utvs*)JYZeYsox7|*kZWD=Ant@Qlx0uN^9C!xJI%Q*+OEsnU^@SX$ATwZ+yWT9BJio zS27+)c4hC>3dJ%F1h~Hf^(KB-&yneV4|?- zGuhBZ?ZHBF3=C{~;==_aqDV_mw;--ZS>A_)Ymcv)zf2DCmtMxgDATmOzFhFAyNKXp zes^hq{ENH;L2j6UYp~)gouUTd#uc0TZW)OsKU&e$am-;eCJvZ7@+J|8Ex0Zvfdi#= zGlnUFTrr{E4L*2y=BJGY^4!f&r5#$@Zyhd3I45*+&~LhdJOdn@7dFXvZBiI!!GaD}QRZ@uo%^Ac6iGqyIA z?_boalmR;aZMNOZnOxlm$gr%_fLhCvZc#>CP|zn_tOt2ozPMsF!rP;trKqv&v1~&_ zTiZAe$$VZFD{2+$Fy-g=1ni#Gyy}_t!|z((wmo{zp80em@AWkz+w>K(J%)a`d~p>2 zbUxKB`A}g!<(WKVAtcoEc?9DIv(&1z@Y@~gX3RB9S5A&fEALkU9p8g0q98VqTa$6U zD9|1Fc^p0AoCG~x%%kD7H6n7l_1gu%Px_C;&inayVt)oA3Sokk(6)x(-*DNT!KY4h zP8#^3lR)3i4_MUTe@M(rkN&w5#q2WoRC_j2<|M#m61+47ecoBfR8%*oiuo$``clYFq8*HQhFCDD|OYc8@j$&c&{0 z_-{-`(qaJLVltddcc4_b({M4zFdeIS>yf4U4k4@3!`&W(OQGS%>ysjzU-#iwpsBUK z+^u5Z)JlP%43sFIT_Ar2vS_`p_=xtN-O^y`MAg_>e;tS~6F=(husfRX+T|O8T>;=Z z<`N#|?j=50WvPVd6rS3yrh+^f84bQ?6YWH-pT6!39F-t48U&$^*%PfYf#4%>i%|i( z_im-~$?48`rfDtIjOJqv5C0`--%97cn)t3@3k_9Du2aC=G}66{6w{~2L%6BRXu#N) zRETu*TLfzAYvMg&w7tOckcNCf8o~G&3jY$W`h&r*uL#$sTX_m<#4kh&O*m4IB`HRWO#<%YlwNvKg>%KH`hmi3|bGVJP_>F1m;UL zSw{u6g=vZ1&oS??wi1YcM%LS2up&+escJ5H_VC)`{hjeK+uuS!wQQYyfS4s?5z+9l z{%rb?{c>Cfz3>?_aS`fg&nS-F31-v{t)6McEqnoaDS;Rby_3^|@spImt1P_6V?jjJ zJ4PBSI-kSbX#oNba71eaKezLD+}S)2%=Cg4bYa8bXVoL;P~O_aCswmkDDH0Jtuv>w zygH@DFOYYEuIDw=LB?AzU$iqO0*OUl)=yzTfo`I*AmaMPFCV30f?1=J;8Ms`N*pS)1~VWErxR5FskdNF>YH$`WJW zWlNKc)YDiZ8Id9k*)os9&MvL8KkyH-xwcozftlCOrCRu-_M9oiTu_F+WQedTQ{5TY-aPlu zla0Ns;Z34&1-a}huh!MhT!u7jJLaa-r>&1ji<9uD-w~z7XKP!YDUN()CKTWV$V0SN zu5HkQy!&fTFUI0Z)h97n_t3k7x2=kR>+z7C=2ukBs+o`Wb#BjZ=+L+BZEt>rHjaIl zYzfqdkvAlm0QO#!*H>}IBwy}nZ0D2sf@S>FS0b)@LiStMBwh2X9zIs5>L6aQSjDYF z`b9>MMn3Jab}9WF9H=K{tY=LvM5J_LL?Yg z(dW(sWp;H>g0533V*^k4XCBLy#xY41_4;q*Og%&w=JCOdAcJ+&O;L9Xk|VP5v3Uc4 zU0t>ltKmImulI5+t*zwD6-J8e)r=5`CL#THnVmKjmvRVOuZ~6GwZ-$FJQmp(u%m%P za)2hrY}FTF|d zxiX6%916xHC*$h@S$~JJicw?VzgdK(I^`D%cNK zTlAExaaUU?_>q&u*%tF#7myz0IxG*=i!`^)PjgDqvHc!h{%zgC1wG8yhio7F8kJ~Z z3vsq{{dKAKX%R0AtK|zpJ5Sl7!594cgqtqgbO{t?JA`?Sr1snkasx zr$Q)&NLG?Kw*d^eliq7@#qH>Bx-t6Uu$W`r9F6zP~n6-Ib#CAc>pY z9~88gfh!eM09D}SA+7f8p)zGbZwp^+ceFrxEvIJ4)DbxdG+FKxVP=jElUm_W2c=Vv z-`q^jct}2>e{Kv>J8lI~?CrYbdNPyZuPs6MxJMNV}ZY_Np@^2<|kq#b4_rJNS@>n2()Zl zKzyJ$@kj;zw27K2)t`TT2xFnr;P#R4p;lyE1FI)8U}n*pp>^e@K+Chm-3r%U zfforb3fr|ekD&JkULYIDquZ0BQFq=@BbnL4e%P9P?eQ;6VIK0wvIE=>gcsIjhv_Fm zQ}@O`*b0>${GK=$hx~IMO;p4pH>CjwLXHLg&Wwz)0J&dC)LSOF`485 zloj$`45oj27Pt@dwiY9h-P;#0CKlSjjO)r0E7o`v>GtFAnE?7ou*2}INxzVJAkwn$ zyZwi21)#iqwc_Ad6)^@hV`YcJQW#a@K~EIp*P3pHVM``Y$_k2W?^|BFZU3|~;dtg` zVI|m>7@ruDzBCVSiB|)*=k--*f+}RiIn|+g(Ol$>;^#gwF;0s*YD9dpb6U()U07hO ze<0Q{(qi_u7OC3%lE#ryTjkx1AHMDYrQ?*56M}O<&0K6bIlN(rpJ6b%U8Bq}P+FMQ zwO*eUhJ|J_JVcuN0IUuINxC)5e4EjINJEnfKR_zn@f}wti8sUPnf&l))e(3-ht?P&I{ zJ-V}A^~}p?7#Xfhu}PS6<}PEiwcus6AabQ-RM_^#TK z-b`ww>D;|#>XIR|M`De!b(?)LYCCe>esa!#7FasLnMs{Mzvp5|Oxiy3`aYkha$a{L ztYbz2XjKdvJ6kmRJhAS^q@C)K!?pze<{Aj}2z_E9+#XLgzg~7fx{LA6)8bv%WwZJE zm!-|B2r7F6Wz>I~)k|6lWy?k24$PTk zP4-~61E4NriKZxTr5Vh*N}jxdw5fFPFf#Y2jaFNobh!Tt$8D4;k4^J+;5~cU9O4_` z*PpU-P@>XOWbr~Sm{KMTl|ffTo2=-9a&BmD)X!dlN^(ix^>KTj+e3Tkox}~HOC1iC zz6qDLM0q!C+5EnJ{?Of_Cd}unxo3C9QC}D<3&zgTrCRo5L|JtY* z>UD!L)$SOGjPJl_ZhJy~p%cJwGUHEzkOlcHe2sBrKLXT{(yMH>0E;xT@o1+Z~NJyR4_j z6j2`E7VRu$sU6#|c=7!jH}&Xy+lGbz57Js%>scanWg6CH9%bWo;#NI+jk^|mF~I{;u-X^Z zpC^3Tq4~3!JaHI|^Bz?fQGA4n6mk9YkcnvPVkYWo99U7!W&wNA?c8jS684V>BJSvz ziC%BL%8caZK%uF8QCE9?Z$_4Q-N-OAK*a2=T9cxBGp+GIBQriVO!;83{ExtYi_C(v zfY~^ElJ3?`BZ0jn%qv1yI(V<2`-QjJ&+a`=AI%=Ck>M&ywR^&A#i~Rq7K&l}(%vG3 zQwXG~kU1Wd^Iz;S+MkI18aTJ*0ZjA|!GPGG`mo*j4*JM@K8Ch)PG5NrwO(&AS4NXT&~?)H>F3bdvn zNJZqXWzh@%13tkg{XqR66AGy3{(1HP;6bbvDCXw`6n-%Kz3Km@LkfW8BP5Iy#rVA; z`Bgdm^MOAD`_B;l=1%`a(VyA#Kb&aN;|Ux*tQj2TWzK&yxJmoC9f&^Co8GKOE&{;E M#L(yL$we;O-vWeXs;~cXxM(!JU}|cXxLgnBgTk=RD84 zYrWs@hx_H$THQ0fcqry{kjM$%&)AdH)6u4h~IH;)^029Q@GpCi@!k`HVEP zn#J=EvYmv6BODxh-=FP80zEn*92^;(A)-=tI?3Ppzw)PZ zMy3+&7xMu^ARekz1o$d-h!|Jz1gR!*Y zY-C-Mj9pW-6LNlv%7#+EMD7V+O!rGaC1sD30mvdsARHdr>$K?aq&sFkEbXR0q~Erj zI)baKypJt$$^Rq=$#aj6C8tSQCnqQEqw-*{@2J2zg14A|QwvUbH3KJESnzYwE_DJj zU7RbR)c!dN4u1Vz6!%Z2mi&Ey&emoguJJ!*FsJ+({xLiWZ5~#mD~OLzUaPNZ*?fayTZtf678Q#v`l%8Xhr8Wc~fG) z2_1rLV-)i(4-%>F?Pq)qzj*Kd&WL7dpd7i0)xJld@aZ#Jk>?nx)aO5yp%nUT4+PB5 z0{ZZP?132ExDJoUm+F<}(VMaXnT#=ECrT^+OTByi?#*ihce}#PDW}H9(J?WiVq&;) zrnq&N`uuQ4W&(Xz%;>UQf1i&jFp`4#0@lbTB;ZoxNY2I)SpI4rKW_LaXqS!3`=yb1 z)DI>@<7vP%S#Uz2bCaaA!x2^3%S)&!f^>9fQryjP zQTXi1x^fdiMA`EU6D&H=I_S7uPI@t`b-JFELy(&}r;))pq(kKru2dvvPxrVVzpDbX zm!imD&%5l^6VAKG3YRDD!6 zfZ2;Yns7g(>w1!!uULapFs2feLc5y=wgup$P9=mW`AK5{$wy*yVSlw}O-HWdj&g7n z7Q8;|odlL8?F~BIwLg+EZc&6e_1-q~ZGQ)KLYX;iAJi7Ws0s$bs5KufM7eCz`-PuI zh0o72_O*Ss?N@Gyws?%}SB274m>=0OWLbI~8;t^UHO1uaJ`j=s(a<}G2{Sjti3Bqj zNmsfS2y|?ZbyMysblukNPvl5ZY=OgN&Zn%;eLbf0@RHup=_+Ae*w zXpw*y;$h>{9RE&9NLqe}Fm2A|Eq)597sJf(Ds@vJIUwebaDyd?gl>sri%eJ^F-$n1 zM|!UTCtBKRmp%mO+BXd?+Lza?>DF^HmzF`zkA=+6jIPwaufp4@BG#%hH?L~w@5U-n z?v@w_%@?6`J7%4I#Xtxyg-0cGt@ch+c40UM>_L#JZJl5HvY|}4Q5KiL>hmvufk1*N z;qV8#wLKfyNt<*r?+fh|&?d9M=<;lo*~wyO3zU|bY7bE2_tPD2B)|Ai5Andb(>o}M9BdtqLWuik*`RiB7R(U?Cam3U zBCB*a#%Y9appm@JuQ3{`c~YV0@K^zVwsNTLJ=!rR#Em%0$BRJqf$a(r_{x3kcxj&m zxvQHv?Nc{v*FGQD@zoEQFo3P;h6r>&M0jKs%+b<0n7NGf`HA=eZOO>@&}Mt)@Wq0K z+qEqDaOdp+i2$6D?eyOajUInE5qK%+ zG~boq5o42d^SWteqvCAUNBJ?_>sBH=gMuFxvwVsc@B2qVLuB?|DL+nyx}Be@BbcF^ z@-2mzfQL7MdNv|wlx9yjkeza%E1YK|<5k9W5!~Cgv3;_)TUIPCO+!NtkG9c~qVsQK z!pzRJq6e4oVYGQJkwo`KO*FcLFt>P@rSPq~C7yvEzW39gJf}u$if5*k1|uiY!?&ac zyk>gdyX)}i6AxFE!2+68ueHzBD+!Hy`S3G#Fe6tJp126aaN|g__ zB~u7DqQ%4hs(rZy4)Rxd$MM%)Z|rV-WUC`KYGZI`vhvlf13 z7LRiODiq?;A!WC|;d$P8t4*<~+Z(fbl3l5GXvLqYyPC32#tAU(x>JX*qQ=C0~ zc3Qfk!U94WLG7HO3QgfJgj$R5-?iYN0Z=YTqwH{+17oyZm+=|O4uhr#v|V+0P=!Wf zgm2txouConH4Nx3Abx6rQ`Sh5x@s|!bsjr3J16k>#N$YkMLx}@rogs_Ik6_($xH7I z5RGxsT%8Anqpdei(gWaPF-n|q;*xmFMJW7zzsK6+|D(yS7PA~7kWu%a@G& z@RUBxVU`X{>40@JFS}lh<^gZ!VWaOnH>9@q{ab|iE*eiA#1%rqpZ8#mQHeW3TA5#k zG@b>2-=TMY026P%--&6yIN6>d4s*ZcV1cNfj61&g)%m0Xn67JZJu*J&@WzgUL3p%N zAg4Szh{h1B7UJ{k zk}7sU6=5yzM;u(R146f`^bNYCuo?ooEiVZ>&S2WofIF?sb-&h}6h zxT3pb`KFBqhOSYt>WSe+p+$IyJ7ybz^BuS*Mtiq4(^9PGw~nyUQ%NRJX~`$ddg~z* zs6aFU>YNr{Z;H#>N~35ioE&89`%S*YyL|nz?M856SKuLOMQ$ZB4?dsr59?%ceUEr| ze}_7JN|uJy6f1lTPzBaz<%JJ8UtWg`IsfpkDmOi;Z?W=ji)x(6TXf%AiEtwrpNlz8 z=WETbI~soNge-9Wp}gQ=7Rmsp43x52GL85CB7X|zhav7`JwFZ%ERYemX_e&-zsPJu z{pZSaVsiPH2m5mWQr*fwP>6{s`Y-n-aV%Gbd3pT{h2-S^|K5|yqE!#?{_bBW{PG0> ze`aB!R9x{NSiC4H`X8SBpPIqF`41W4Ui}A^zAyj7PLUV?foV3}U(kHE>5CbVxiOsQ zbvrw_9!ThRUX~ODM6EuV?rrCI)C6$tJBAZpCFr6)Xxu^*9(VFGSAG0WD`*W4=DKwj zhnwh1kXOcZxb;v@1xBI5bGk6VB2N)#ru;nRr z)VJ>F$(zCwJ)@A;jR3?d`N(3;vB?z1j3+E3y*_v?3%4Y^?l@;{&xCJ1rDr#|HLSgO z|MTnMJo*A%(wS?T4E577+R;-#z(%t@(z9wA44xH~zV^Gl8*Pm?)$ zSl7Lo?Lgv=SkD-_E`Rt+d1US)p~wK1`5P?9iwFF?=Mw37M}2`R<4SZ zeTS_cxo6qp;+`KLg6zz}bw>a*hE?6@Q8Zs@;;V8EH%~Pdn~d$F`Coc=bMNMS4SN00 zK+J9)N{po5-Y?_@W5h@Jfd)`VP6Xe$X~KE+2NL8}27LqAwVUp${M&$-USAB|oO&mW zQ!iMXK#eJ;4?(%9_ddOs-ATc}uU`neG2;*{j>di8IEq;q{#Q4wNjN`(Uc<|gT#uW~ zyT{z+sq|;6Ff7Cq_%?N#l{#d9cFsZ$iV764xJa;{jgE0j#Li3OwHwJ#LDzh8OYJ(N zPXTOhdl~d?k2T+X3|kc*Ua!(6x%C947*(1^EU&Hm@b~mSx%|jlh7~w2{&ICWzr{E@ zfLKYJt%Ji_x^W?HMkfJdW6kN2g}e9rZK9PK9BC|`dlT9Axr)abtY)t`IX#7HxlVHPCfXXQ;XL)j>;OX zw+duJ?oq=>#o3OISUb<}tshV3+K4DJFb>c$x5OOGV8Wdq*DPYB6*)Fqgm5&svko84 zcN^1(wV&?Mh4}ZybYVrBH(BjrM+&>D|9Z1o9G`K?XngLebzA32U|U63Nl0_ZT^e$Y zTKa_DAGMGYUzu5RVfpP8<1Y2l2RhCitg$V=USmKG{3;&wQ}EH|k_B|3(DsVB$n8Q; zupA-KS)D~d0>#S<-Y=pf;?;fA+j&K+ycUvbxN67ay_odlJzorYEI6zI?csTJ6#QY8 zJk-~Kz7mjM=aIJev>jhLI#Zk17xU^017DM$MOt5ANN1wkQY6Jk+N`rHt-hX}_OI$s zcJU4~x3A#`?>^$A?mFV1VLm-5ytT?}J{UnSM{hnjP!Qn}5rSd9U5oG;+iZeE@UwKg zh5v8heM}*2b&ci+{aRTefxXSobL=sp1eoHdzjo+BKwa}$w0K1nS$w1}2s_?pBg!H` z?5#5F&d^&+T>pXiqK=`GFUV@9{q}<}tV%f6>t}Z=upLH}h+604cdqy3q1qQp4H<*ewu;BS)z$SGR<*hv<|<*JXsd5zWMrjqS=Nw?6)tvFo&C}H?w$L% z)=|~c&f_JcyLmTs5WRcLFb zs}Ro!EGwycV_(gUJ5pcg@BF@GF+UB1%55Vz`6C^} z`oz3pe2L!ka)&Xl?%9x!oV``XH?nG*!H)N&v)sXk-#U8eAN;JTn?DQ{?Swp&CB(g`#O_hqNvnU|R8Z60I6H^}Hl&Fp^}h(_8S zjM+;dgj$XsR%hm)-tcL3v1b$stjV%8AhE~-N~X?{2Yvj!6m|~5PghmKrVc_Ef+3m=P7jrv2+H1h|{3lbR4^G^~f?vyy95oAFGtrejhBvX^h7?hu5r9~ae# zQ5!ZnpTU4apVoza`s#}SBd);LsHA=sRnUKjW;2_!RnbO}VdE_-J|igg_=}IFbNUDK zi8SX#{i_RNQ9eBrL_UA&<7HC}2O%KHX`KO-e4M^->k#E7p2$mxI$`GG39`-T4qrK8 zr#77$@kp}2swGa}S8XQFFd;6cU58CTwH*h&PN2B$y7%beseR){{AyFTfPW%u_w3wv zj6)6e;C#s3T9{Qu4U z=STc6t@{d>!QHc@?JRW@yFPDqGn*ZA^Z%$RMm`=hAZ^KjYn;|t99v)7XdOh8vK5?q zFiFVGTBMI8>ucTfDN|1{q_2B?EvrFQ{#Al*Tzt7UTO6~C z4HIL9C+YTy3R(^Z7tJd|uIQu%BkEHRQ^vWkC|qob$ENOuFCrFG)T#;e^gzdc!q zh~PQadFK|aTUQVBcw-e?rMu60Eec(fXw$fD3tIOLcek<%7U9C0;Ofx=SaLNM=- zt}zkFLXb}~$33x>92q?^bdO}b91sq;>soBc`}YUB*u{B@YRbtvF5NhxvQr7Ry9oi- zZ_V|UET{;;TiFAif0{W)zEBiBx_e!2P?8bJPb>=0N0%-~cSh)ayJ%P7WJ)-A_RBA| zpeUJ79rA?dB&bcyi#qxI6tt-vvk7(9o>b1ArVBC>5-u^Baq^;-{2*0R;hjwmVHhK9x|gp17H$6Tu@?ONtD!rlBZR@AoG+S+Cxem89H z`{F)j_=S@-gaqC13NP>^oiiH%+9HAqv&gb=}7 z#qE)o@>aLxufV)sqQb~@LN@J-e!vK?IGsA$=GB9^;i9E98?pICMn&6Wgr*BIY@7Y& zccgkv;F38KnGIJq#+A7^*12Qtsrk>iIlpN%M!VC0-`JyGl#(45z%5_+dfbisQk1Y! z-?y>QLzh-(sJ%cXW4X0E$_)B)hhas=Bp|9$?OKXZHo<`$nc=dY03IX1lgHyTAXj=d`e#-ecYOmHp z9o+LZ?FT1Ef5$2QIm3a>YjAt zyEND5=^@0k>aVlFj7n5pzf40w#xm!XFxmekRSMzbiyaysC4bSS*1gk#H}`wNZbRzL zlQ4cZW2D31xJr!lno@eKD$>rJ zu*dPEmAWA7uNFB-a0tcB^!=N<1CfHBa~&@4a~crORa6~#Vh2kVr7RcW2scq?Y8^)r zxdfgB$_fkMUcBc@_-$5>BtnjzBn%F0!S2aAHfEY124!d^pQ0z&yGznGSi>P3<0RA^ zUJD+%n-GrHDpkLDv5Ky0b&XX=sdcNUs3bPjuM=3 z6ft8xpWf8g4ULRYcCWrqZEB|z2v*19{dy^ham(-0>_9t$a(jF4N|Vmn3vx z?ofVh$*;w4YYN_d!`XMSqKwl}mN0GJZYgLb-;p=sR8#v#N+*$i-@n!J$vZEi&uIq? z{xB81ASP=<+~JTKJAM?B;Tbj7R>x0@<7O$4bKjAW5fDaYvMg(wf9QNcdBOJigRPRY z38{NM>jz-4WDc?PMZQ2SIb*AAj8Q3noN?{$&X0>0(HL@e&h1f9lJ6_e1l( zuW{T<1dAusg73QWhw=6`tv2Rcqi+ zfS6r@smI>@Kx8n2T0!bdN!{!*w&k>0f1FG8S~M%kl-k9!YBq7>pwmY&BY!TN_H{Qd zX@$&>flB=uJ-vb4uR7L!utK|`<&ECiH6r7#%{Y0XW6#0FFcTElYeB{j0l7V?#eUBc`{!GLkmpsGKVZCtZ6)#27>g!4 z^Cg<>FPC4^MwTyEsC^Lz+CJsPTKc1CnFw~9k_rJas<@X%2(Do@^90KX7QE`KW|m|X zk)2qT0nd3JPzsL!~( zuCKj!E5}zoGwjchS{G)IBQwX-(2vA;^l3yafe};G03V*OmLAH}#s{p=2HrnY?N=M&o0 zx?Dwx=7`p>sg3Kto3ZY$$PrOEd#cI7cjQV7zhK9@TaY~B?qav&A@{47v;@DNLv0F# z$43<0G@D$dXueHz8d!|{awK@c+i8vj-tt1Vt{I*m8>cnvuB2Wl9i2-}^n-^0-oi&W zM(fDS9T*u~{e{?jM;6LcGWh0+(y}a5U!tW|ht-Te!BBf#H$Z(8q^p-t&Iz?-l zZ}&Sb*POoc?Ql&_O?9}lV>$IF`i~OW0MYLDZrI0Q?=v&Gqj(*6SWox)WEAbhchEe} z?^=td_5|?(!t;TX(|J$VuOzz@uyk#k(;V@zfj(;$N0kqc=tcC8owj>sO|22v+qa5% z^B@EoK~FhX*4)OHpNO`%uGO-(I=gU|E=g@_uD98yvu(l5gVHp z1!-}l70+pR8(?QAw92NHT-}?0|4!Mx-Pa}Rang78dWccEeDw!Sd#5VcMXE`BB?d&v zZONj={aiMPl-e%(VqAqI4URf!6pz(%L1)Q+5LF5hzoM;-)b*{Nj&e%)C^e08Fv4Mz zLTeK%$GBB~X?^&@P?uH<@A_)qiI#&Zlf`HsOE(rKU{XaI9X}~oGy77`z0SPxPm24-Qdz5raGMoP@!@ofCFfaU89;UVoUofS z2~i5pmV6f?LRu=sR#3>6nsJ5i-~a--T(eM?VEW^YI+Wn&GR=tOhFvL}?^%U3tRHb* zB)}&vA~zuM18Z6)T9GVZh-ZS+dW82M>C*?O z(<1b%%ffE%{HexVZ$U-g?I>FJp9&LP^{U2Gq`UiudIRmZ-pS?xelvM>2OO!h1cV~M z*D=0LUEQH{1;_~p)aWE{9er{bMVbG->j}myjaaDdpSoe6&g=+X?hlwR(funz&}?)A z*=M>FWJ!grjQqA%B>7<`yx)$`Z=RsPPJn$&*?e`aZ#gn8<(xmlOX?d+8iGmOT9@O` z`55@+)NJ;{nlre|UsKtU+ZZK&nbHiW4Cs6*XeFIKfiI=Q!;uP*mJ`cwJ?e!YRb zguy457o%KOYdKdrZrofclJYkCDh6EGidfay+2b4%!CUtCUm(X&qVDB9_%# zRKq%&b(yxX9u-3MjM>}XH|)Gg+ht)xE>wndU8eGeUaB9;)W%J;r(UApdZ}8gk1Z2y zO4fePe)h5`2h5hoH_$9o4&S$P1KU^!V$`DFod`ZhN1jubYA?fREt3oN7WkVZF9wKd zlT3e9b2yV~AO5c@pLNNKX7JzFTthTL{}XTd-|&YA(tj&y-~P+^`v0TQN!AtIyi!j% zziD;u!0NH(DMUj+^EYa};`ti!lD+trEnA$~n9;rqMh=x`iJKi;Sn1dcRb}zva3oq= zlGO2NQ9Czm#~rJUGq}12kJ7XHK;dK(uJN>yErPJQ#rKXiqH9Hk#^_2#pzM6p?9B?F z-}kl^Zt*4b2Z*#jSuTKf73cIr+Ld-!+PXqH6OhMg^w#%cG;0`A(~4E4TQmVxX1C;# zzq^L8C9Zr>ScO&x*6|sn`Jmv=jmhuu*L?=f?~TPM`%0QpFYw{r-f63WYK@b_RmbNo zTSR$1x}Y`puvX?&ft2Am8g?TP`OK{LoZqzGJ$DjDzx$%heSlI5-zgD@u`VVxwKo|q zA}yKQQV>t|@awGYERRK<1*3%Lut;vQ^c807GIBXOxpMSMs9@fcHiFj4MzBF(TQ$&bg8uUmsk zoe`;tXM+QL-=P}iEBBOfSV11kLf;QjFJ?~ic_w+l93ESGh%r&2;|UxYlWf#03w*I} znyO7YErTyO;{*AgvJySm2i$pWm@H>^*iVeWlizr=E{$K$vgdE}XZBcE1)UO;`|!ID z2~yHOB>y}OyE!rdXD*j#9A`J?hdZ`1hAKIL;;d-jZ+)^XFC2-H2Pg_AoQt(YBv@6R zp&4f5>j1sAcl+J(uZ}xK0#dWOo2y=iBM?<=$M;*&hE!s>)a8(cK;F?8-{HSkV|wfa z_q73Dgwe^=CRrKW9#&O5T7O7kOw(wt&m9cNkRNsS)TclcmW&&C_PDq_&EX~NSlfz| zB{xx1M@fxy24!(|1sJXC*K_SOSW|}exlRh|jR~Et_3>$q-!U3gE@FBp){Mx@X%afG zsA_8JfBNk}B84H&0TOsav|Y{&UQcPCdf{l6FGtR7L@0ge6`g{$%QdaQXGRZd07s{} zC5OhUSlvRp5rXKWeo8yw&u%VVd5+T3G7j!?vr2wwGe>ru#70`l3{#2BC_A=&Fx)j0 z-PCpoJSA!sN{b(xixgbUZk)*0A9Y|$qyMPUKrCMt5)&`l9UGL4ProX7^LaSDV$MOy zqQo-4fJ#JBj&<}>+ld)w`aM%uRKr`#oN%d5Lt6m3&JfeYSvI-T9pNMeUAQW{<(=vn z^0(?z{304LchBW~P8A0hYbyGHRc7yuHd|5a$BuPzPYRO_#d|zxeZg6~{O@2MKeo_30 zSD6dfb*0d0$iAIv`WWdHs>;M0baC~K&4~V{9Y^!K7e@m^$~X1kG8g`Y2-*5*(et=V zdw$TZ+li-e{`+5=w;a;amKN->&vE-c1>K*H)9hQ+pB=|1YpGd6ec2ZgtM0Z5CC&WFN#C`4^Cmq4| zZi0@gh(pQ0LT6{iq|-9ObGOIjUHj%>tv0(xARWL++qQ5{me=$(Pn2Ux7B<)(Tg4V) z6d&ZC9Quxa{(w_bM$#y?ETlG3z=c`zv}IahTKVhhE(Udkr?h&@co-=*R_j6Xuk$!b zbmu9~re9c2iq%%g*l|#|rmF1xTx4u)tO?qWOr{%MNpV8p(T%a<4re!P6xH_(D{M)9 zJW;Fa*Pcyz7r9w9{rRec3N||iBWmTwZFpEp+QwgXTplWm9*>Ugg-jc-^`5?ra6^dp zfw0TX`TF?hs7H7o4z)4WOXTz8J@b|8F*;WDMiZNlJW-INJ^PM1mRZcr_Jb#nnN`>^ zP**Srl1CV@HO7!mwP1040R)u4;wWyR&h^QNAt&<;44G4#e#R8rQA~x@js)^Mk%unKE2s9v zu0&2T8Ue@4N##g|!loUMfW6HSZjz?L)!W?bN)wG!;G?heZv0>cx14&SNrP4p*NTy> zk73rd4RI~k3j4ChQNyoK$3a}0x3WGx3$r#FGi`(wo+s%R74trP9LM7{<@*@z#vQgA zi49M*mJo_64Vo37c@JZV(TpX{r$d2io5Jg%(NnEN=N^xHKmLlr74y@?e)vOEP4-!$ zJy#Fghw`FAVf~J)PLl@Uc{AsB&20IvQaSa989|#4x9r`EQ%&X-?tTw}`ka~lzxA#I z@fo943*wa##N z&`O*J3@x~=;vCj+%LUzz%2+P@**PeT_APW`GYcCo^Fr+p8;0tWNNY~g@8cUz>rFIf zURW-V@mHkCAEQ`r`f<*TNu&y1k_ZJd9Qrn#WTwnu+XhOtK%cuqyimZf!;3tNS$2zibLV19ht43_a)v^Qq;7@BT4N?8sp7eQ2FHhaQ}XRM z$(&F>yw8gU8I3oBoRg_7rod^N1}$5G6?rITo;F0DSq$dEha)BI#H2B^?=7#vZdO@` zj@k_Uy=!#)I0#a^ayTd9*10wmBzaouyQq!@k)?=D}`DU^e#7Did+4KYvEJbg@0mbo*RxHA-h4ro5nQMKF zrj(XJgZS6-%J(kBq^uKy^}k!qAe*XtzmSPHU2jzMnt%p^Bqec>CFo)6?4?4Mrw+4W zx*Aj$Y^IS?L=v>LL^h!%4{=QG^mUwJ(8`QCahvV|bf zvFdRi;+)|uoAeAYdmW&Rg}{a{jj?yZf`xViz_!ZYl>H1pIQp=u10> zpT)yuJ;-u9)q2RP@;QF!8SP6hdZs&=9cJ~bO}&Y0YR%C!ju;>imz?smtR*r~f*U~%HzfoPadU#k7yQ}CNbnlw z6BsLoPuuyWs8lqtLF^TyzdF$B6{PvIH#&QC?fddF~W0R*Lnlw zl(~vXO|8!{t*A3AQI;YBdEDM=@epd2q_RDhOO%m8H51OrpW)*3lt8T(w6h;!ow-3v z&I0fzv#>r+Rn=sA0Mm|~ko2Qd+fp;+<;d-`y~NpLB}d-~7f3n9?OXL79TNkKn8dwG7zm9YuNeLZg}fj1wU}66Z{Be3z?#XHxqLs#2$!Qvpv+Q{QX{#<8FED zhYOk5cU){Gujj%06X6au{R)jmrB$sGT9@Bs!Vlm$Dbp^`Xq+^LR6{6h8* z1Y|K=#uV`@?j&I7Nzedad;ZTPR{W&6$$6=@Tjh1fomlLX*qHQ$fJv>e!ROaiR-l0- zw${;}_tPRP>!Pfstame^!qs`4OznCRqiKP`M#Xh32P^%Obf2h4BVk=m<->!N_kNu= zqSPtT#cpuA^qQU7+Lh-y7e+l)VRw_)+6=tC!E3WYkC9b`yxSN43me)OvSmt%Rad87 zeo14GRpwer%}vnNwe7NDYjf{`frZ7dklcjnQ2E^h>2KA8wh) zl@rSQHg$VqLj+p|`iAt(fyO~MVKGuJm2InhU02EzYh%<-gfViBqtYhJ?pJ88&BMsM ztiSguSt}teKnVLtGXoouv$BUwm%L5`hMFoLRQEShn^4$#&tb&M;c*$@J7)?nsZ zc0r+kYHvj{I=8#@P8>%GE$oqV@g`Z47l=UTMI#&^ySFHn0)5=gvN z(>EPZB-4~eRIAcLmJ1O|^xW}W%Mq##q$Q}>ZFzt0@7{L$uV;cwdn&9JJCiHuWfa*^ zKGLO5<%Km!8jX95j9^UQBAiW{yEx;7nt3v*^4>Ig55V2;X9axmyaW2FKBDvAfGiLL zF=3rRuiKG=j6M+iZ@*w;F=w^F6^Q89S@N$?3x>vm3MaHv7Q8O;I> zzHrgrj0=inw}|udRP)O`t|t(n^GEVv$oB@1IBxmuDra(q7gwQbO}WhT;RyjZTY%8F zS4Mn9I*X?gM@vO85ntb;cwY9A)>^qYDeDlQH3#nV2U#yIJQgEQwKt}QF9GSkzbmY) z5m+DS5{nxipwy8+iaTuOy9^-6H%$^_4g?=NIxlCn&p)DY-LtUTfpkU>&PA?Rjq!QH z$qIRY-H2yI?bc@qCWY-bhZG4s=3Fnd&7?)A!*zB}!Xfhb$b4^1tm){ainsM)r!@Jp z-Tm8Bjh|YveZu&#QI=t43IW9MCUlpb_5S6G#i4lnwOH1*=hT(-hCoQ!lEoX5NqEKgfCP)X6oIm`9heX$y=DJOYOAMkus2nz64ZISg)Yp{HHxj5wy>RoIa4%TW7bUs?9#Er5Tk5-IcMVnpLxV^aA>CiZ8Hu@N{c zF09z)Ehc94S5fwz--zpAA-A2^0w=a;LGTp6Wa!hCqK|A3WArEv?#wImojO8dQYKwf z;g6$uHe$l8f596E^+p1x z&m`rN*QtSIKiv;U?fLS;7Q_}dDp9(BvP+DokH(I*tO?89hxW&-HoH?p=oYj^B`vVy zxXP($=6!b@NYY(xHmP*$9gfT%5;3B)_RPDj(5~cgyE21&S8=Z6hvXgWBy$C8p1f|c zvK!b*Zm?M*Y`FFG6`R~&CEQSzFTeHR+oeqr)j0jpN>JR6lpy%5H>AgbdW=LsY?puEcNJTgR7cg@*Vkpo^J%wE_?NSi;qz)0A^PCG&6B>ZSvwIv z`dJ!)Jn5uy=S3#PAdkk!9&Ut4$Wc__298*~2f?*Xh7j=!C5t zVgZTF_z-zbdu%G-8DAZ3q)H5`sP{}3N)`7f#L}!sl>+;1epLWj%2m7J#ATP&v){D- zrm;1%X!V>DX}^<>wn7O&hA~D?6bbvwE8tVuj9uaS_Z86s?kxM?j4Opn z7uUMlmyQqRuZWRd9y5y{41MS$3Imkkg3@vuTHNrGzG-fnN`mp4f*?Y-Ml5?e<=B&K z_7J)fbd0bWZIuvisyO5r%j%-kQd2l=c@@FtrToIem_&8?ud;VI*Pe5_wa8%Jn^ehk zbqSJftFl{+`C#ve?J)KFWkRXdm~i&rWOJ986~F}F7#YRf7kB5%%D;^v5ALyxP0zs= zsI^}CBM%l)^0;iyn;8KaYj5Gr-lD>oo#MRQ(swKt zPg7v}>GBz%OScnO;rv!R2x0L>s_*c6s8s99%b~vgitJk6_~s`&UaCV&(E5h;+KAm` zeN${N^$$c8_te-9c!3XWR`_=hdzc1mBM!e6Rfy%l^0GgX27kzG5cOKvO*~IlSlE&> zPELZaZaw+ha3P1K=hUtES#Ft&!h4GZ%E}TI>A>z7>dvvQPCdBBTncOc6!y_JwS=3*i01ia6$g#04<6!$)@j&2Nrn+Jp5=$bE3uCh2bha3x(45jXh^ zGtr>iTHn2&mU;df8qAm7(E2iq9>ulER1QzWhBTpJyyiB{z*pEs#}0Pw7*^}S5e5*11YA&KC^EmEorPmsN%;J)nT^?fub*X7e$$|sSf87lBv)|>Z)9ilJ-peyyXJ~{M^H1y9 zAX4-*?OK=1DLE3|xzjx3XZxs`68U0_IaAhR_@!xrUkJSG$|r}<@U@wvBg3>Kg}HWv zybRdOulOmqPuLpAjvt8Yr^>a{si?;2Zs8F_Dv3fJJd`sw9g>fAWroXnDX9yh6NQt! zPT!2+CTuce`;m#=udrzFxBcZw7?483> z)sprO+06Auz8WgAJq(kfLtM?r&W&ZNCPmos*evz5C(;@9%c~~6UMt(aMPnL;b@KRJ zy3L{zLU~FN`CZPj#tbLt+YLU>?z85A-*3cW?}Cz4Ctn9-sD+B(jLWq~aT+0R#K5T? zC)sf;6AI7|ZqHl02@OEbJIaZLus4m14LcI*JTQL6;O79nvFiFmntuB!{(51Sz|+8% z5qfT>-yx$K;uC4(m5Ghuv4EUn&EcL_EPwb8z@*?JxgAS9=gDke()+oIM(XUFutD6b zAWxcW*V(Gt(#_HdFR_A~3S70PsFCBwfeQdQl9*qlVdLuV+_R!9?i4uXdS?+qO7YgB zoJ~H#-iiH}Td0UUO=-W}XeD*Ir7Dd^p-sMh`Mr0of8DU8zC&txlT_PWn%z79D_0OJ zho-xLEiHOwif}mx=OR8S_ht#CS7YwPtx?RqWtH!-&mNvDQhtW+zH>@b8lbFQVN>WY zSdRqvwSVWFRr%WDht_hHrnLR_gypG$lakWvft!N(=>6#?Gcdfs@Ug@j=v+JkNTAoW z=v1`3(pgin3_f4`Fi`hCR5Pls|CtH6Rn?#LXEp%m`uv-z{?pUrH8YTRYWZ}LLXVjM zxmQL!a!G?v$CgoM+jywGEJ781wJ`xiQrG8^K3YtVj}wrK8KYQ{2eN!;&}->b?}!&Sf+R<>|gYZ%G1nhuq}-*bRMN71_$OB4;@uNl zX2lvV^gr(=Shyz_1$*x&)qC6lBlbbL2;E}CXKFIM4M^U}~)K%ma((v}v z>kmJkcjp>ZN$Mzn|32@AUTXYv`oj-6V?TyJ8U9>?lQ;5v9G1WDJ%v*FJeqHh3QIz% zfKRovgyv{!E6`sogi~6skZl+Q0 z5Q3T~r>y_O-CMr3^=*6Kw3O1KE$&h%?yiAC3&q{FKyh~sR-kw(?p9n<+zAwdySqbh z3mza3-M_uhea^YA=l%okx4CB4%A9MAIo24T@0dZy2KGEZT>{+;Nh0=V=Wpv`1#f%B zb_AibxBbY`lwx;+(FiqUFx)ss41RNR^Llk_6|wk|1pE@6(t`LFM#=qfopZl2d)t86 z$adV-(ju_n^9@pd7o2r$0bCOSHc0uhbacC7kt-in+}u|PXo{(P%zn?sHISGPGe6Te z7=w|kkGe|foIAQqMbs#phZJGbwMm*cTH>@h^{OgEF%OE@mR~fl@rVSrjq2!o(f@q6 zIjC*A_lFh@4;fv&mY}O^R;N}Q1OM|VLxtSj;F9o_+%6tHYEnR7RYH7^d;(l}u}Ue~ zAB4~QC=@uxBZ!A5huiju+*ko|{w6JzD*vQ+?NGb2R6z+LS1NJ}`DcMPT=r5~ejs*0 zh_txuw5FSr{o5-oG3rMsHoxnD%{?n3WOZl2qkUxc{*t^M7tRTOIC*5;9NoL0 zhd11=_#-e$j>I;_?oXvfTpuYA*A56AbZq~R*Qox(h?`~qpqBEFm=!?X{NOFWWP!DS z`{=hpjD-2g!j{TBIDtT^o+Eug>$#WD{O2D|6^U{uo>e=hQDhN8YR}A@xI{iYwh($+ zB;)(JXGjKr$Z)`{8k|+&N&U5X{-#o6Tfq>MbJjPoLAN63eJVzej1v+fAkyB;)#R`-g!Sp4El-V9GU=P@cg>^ZOqHbMyb`j{14Qm zf&;m0m}F1il@8L^VF}AJxgS$;^tM*W{TVxm1pz1@AQ{$wpSb;k{%Qxq~aM zZHhQ84h8+xya++< zFs6zb6CH9zVO>73FLB+nnh0}iL{d~-eZvMT0a{saq$sa~Dtl5_y*3skuxPy5l}cPi ze4ZNJ?B7nOeUUIiRd$FNQG8rWPB!woSvMMgPz%V0eMSh5J~-=4MEr36w<=I2&|t<^eDIb=Yk`Y_d;V^dDu;v;qe;F%;`T*Z#!$^ z`7N`rg38U#Y_idK;`Vixnyf_-Vf?Hc1tZ$%bhFo|^(LeGjaB#}&rAkAiiXA*8VL&< zFBILfG`txVrRUicL0?aS>Vf=JQ?utmt1(&dG${Ep7ufQ@qivF`;DC6kPG-u0a!Dm;M)}iPlny^#mW&< zvHK2fiy_`}9{?m}Eet20p@j8*VB>?7W97V!rB(50E-^auLTSm*x=_z++!^i-mrrJM zt91A^E+R>5sEcVMLx;Rc%PT$~7!+Dqp(v(gyTxD{zCju>ANtkFpp+qJIRDu~>q|Oe zO_VY7@Q;%@gsXb_hd!l~(W3a&X{<9Le57<71oTGD^1|flYyfXrIh@pfHiPPl6OMc) zC1*<8e;d+`i5DIJ-d*8?S18ascGLeZe#4*~tT9U2^!WDFDOyi?9s%+XjuS)38QzcP zz%)oQM{BNa%ET-R#!bIC|BClrMH%saxKX8vy80O5QRVK+F$dMIx%56kTKO38cx97v z6z!RQNW1flWS8Rb9g)CCi&w7d8RWf|8qdfY$#Gx!VErWZ3yukeRHQo9HK(FojZq-s z;ivcZ{y^^IUuSx;camYcE5V=jIUsAqCdE#8Z~qwLW*xNdgqmOG?_;T((tSOF3~2+uQBTfd}Tb%K_f0fWZ>gj3(+e&Q{+ui+?CDWA8- zRDSbda=6Y#>qq^^wvF_w#R>i$pQ(SymH&H-mv|*k(D$E@Ur_y*SHF4w1Eu;uVe;Ak zUkLwimqgN``mcx|!1Ck&k;@w|6861=Ga6{OR9xr&%EL2t&SWL zkBnO~k(t_)?1sK2Vfmomltt&TK3xB{>?=Z}wGhHs94``Lqiw6JaEQ=;YR2M~-M?3s z3BG@2KN8V07}k`7Y?ZgEGBE)2Eow>i7Oy(|xczuV$HEbmX+_r95zuRR=91b+ z6gR_fSqJp?;y&_C#cII65ZUug*oEhl`PlBTf^omrkWR*b%(p_DIpGkQ3!J>?ac=#& zvAc2cn{fJ(k(TZs^SV*Dg+14Sj2}Xti3d%2Ce)f(XxZ58@lt^s#k1%+feFe2pA0LC zyo`zbYw*WX+uqW;@+vYFrbb4;%}9BdIH|&dC1L=;IxJ<^Gt-bo ztv=&?j;o@Y>cuhdyF;&PmVIL2J5C}r_6n&{(e@LhJJwF+dcv6}AQVEK>nX09mdlY;?Z z>{;&v4!fk!41H!I3icH8?)0n%fV(A4^Il=%#w288I@j-#dobVC6a5y`1u56wAh7A3vgTEh|`7f1?g19?$7JpIt5s@ zbFUYq;{|;DisPvISFL&<3H^tLOsQaiE@Z2hmF|f^7aU!dMbIPcAkv5*u9g|Rh!?tT_SaBtgAkAlF-Vhoj@tBG4}9qH124b>iyGc0%lMSgN*+PKp@#4I6pM`7CChX z%hSP(-6r`Dd-Xs80BKv6zUdOYRIlQiIVX?XvkD@$f3^-^PSKiGDltVxobe@B*On@4 ztGv$FI6}MORKd`EvqQgD5+S)TMw#7@KN{=ZNxhw;I>)bN^ja}8Df7CL)*oQOQSUD? zC#gxz&9+2UBa$a`VXliiDQMALf-Nc|HQ$snH*}wi6iMoz3Np4*8aKKMmIpom^;&6U zoQLCMwj4D-_XmzN6xW}dMJXx$CU$2o-W>{bIPZ}=u#n6_7+m*;XllJW5+E#NIit;~ z&)@0@&v%+QouiCv1KNDP!}0-XpPlVIe^ezX`WvEBHfu@VD9InteC2SO;}fsjMiapWcnStgHqxJ^=E2gJ^lg8QCt;&N!T0P}>dp zX9{NDExBEAjj6_FrM~mDO(3>l2ZG2&$=~xd-Kk!_`}C|@rE*wc_Y!VdMbHR0{Lzos z!J;JPy8N0EtEsQ^R(aQyHTh>> zn+-6FUDq+CUw_IUa=%ENX+oO#I!bs+Z|fO zn3W~>HgiBcGb~1v9y21oGRa2XsHIbWC9*-pXrA#MH|%!}wow@=_nL8NNhjk|RYK5l zE^t{@-!Ih`i=`6_Zc^q17#&d0qSB_gO(GYnnnx2c2kHJ`0P|5OJ18mkRYo@DM?(du-gq#uli^hJ@z& z7w?M%t{!KAu9;CE`;9k*k;CSp3d?KK$za6`BcH7<&aH)^`F*@`Vw2w zN|mvITSmn;Ja#)cr?ClN*FcC5wcNA0FZC>K_#YbBCKhOFM>dbwy=@c7_lFhSz zdSC#Dk_L5_7)^##qTh2#%tL0p&jimyw&mU?!KHKn1dEdMDz_$w7a8Xp*owuF^A&wdM;~0AqK<_9h~6eJKtQ{{U$a2ROh=VG z%Iaq{ia&-_)8D$c8ky#SId->#G)q@`c0ZAHymI8FW#$vI>@m?^~eS#g&wlO85e z7rlMrL$E%us=^H|wPM9u4`N%1d_J_zaOG3Ig%KY2ki_(vtJ=&l>|| z%!Cwje|%x$8FHjjy~}j=0*H8$9;_YHc76^rJAc_(=CtE6cjnD}ztULxQpj761Ak&^ zlodR);g>}oi!1-a;fFlk_ZJ}NYbSEyHj4d*9|P|o?YIq#(SzH6nra0?6{bI+l$PN) zyyjYe6MshAKSyLbPNps5X)wCRW9df|&9`QsqD=c?qlako;Gr0Z&-#{{3@iB|@<(6L zLn@zj5;IGXgF(l1oSeB}Y@?*J5R6t(>ppGWNy3KgBp!w8Lp`aIu7 zR;F+)?kg)Rs|))5lRC8D08A}@d~m|#*biRY5(p04DX9^OZRrZL$ed2uIOp`n2-2b_ z7SwEwy!42<6VSIXP{xT-B$NBNa?4M_qzAgC!{0CO#LJ9z) zcO(McJ}JKi^@w&I?R>9o@budxefdeL?tuYuEo{wg!?cp)1t@v>4k;f*`?|MYh0%4G zd5jBm^$C%_3lJwABi62=YQ#nDwlJ+oLD4+-Vfb7Tj?peXkz1_ zp$ZbPu1wEyb9@_xUu3=3sKByrcGY)V7ZdwzaLN=<)B87BY#;g!!iI9|KzYa3DXGXC z|4hxjVk}C=QWCvh1p&j|){lL@9VdZR!+Lih+d>_?za<>s$*#@$C|h)$Wtw7;Ip#Bw z_${kN>4)P8B>kCRH}w?%!Xco*AP|yYryGGbf>MIbo|(Ee5kAjklwfbpURDl=LJkV zU+48>z^1-bwd|eW&b@C4{U?vy;FkPvsbh9i%l|3)j)wlX4Df%|e9LKk3<-56=dN?z31~pI&WT-@j+ebuVg`!~G2s?^6n-(DzV$?UJ3V_R zWHfdC3S04*ju7j2Wf{8~UDoGPFKfx1?&lZCB5?-Rd8x zYP-yNsyuuC{DSzkJ^!;vFw9<(MYryQNs-~!$8vA88~Mvf+aPUOWGYI*0Xdp*1^YFb zyF{tOk0tE`3tn)zj@{AuR==%-zcB$fnXQk0Ns96|(4c;_Q6Kzu z(~f!bio1Ok<~l;fOn0$Iwcb=zeaSV-?RXh>e;OvX6()8MNcLtOii&zOe>l>wA7nM$ zRd$l`HQ5X9Vs)9dT|L_LbjmCN$z7vkZhELiW~`fU?*6US;*7iNdW$as$W4#0-pfUW z?%f{!tLlF$I94x?nib^<&qB2nbpTL3*3hyxLYr?I)H`$Yq7dn?s%hLBO z7r}1V#Dl$y1U*L{<~TD)bNNpZsM#Nzxr(U^|!+Q+#Kz+-Al?2J64KM zLP^dODdEok7Q$DlujWOfE`}z3R$@hoX*uG4AsIW5ZNqBHKIq)G^{7ZyP-DF}@RY$B zHA~@lTeBI)!J_Xs+o^KHbn(^_o$q^%RRH(wRZ2X!qU}|B`+Y}wh%c>`&-~9?i!YKi zgiEVbdQA1p^G*&c1?gU?NQdu$E4T02q-34J)!6{W zzDZ-mgRLE!jDgWbo&OsQ@$ib&vUK28G_J+tf4oNZ9lUY)%4zmW+WG;2?uBDYQ^1w# zceBlMxd?vQ-Sb+f~l{wn@y@B%~WQIQve7r{EQ85G2#{6J$kqKrfL5= zu}jT!%T?JPinf>fo#K#wx~i2M)GNK4;p(^^ty!!M+V&Ic-}?OHvlJ?xZPv4UKenM7 z(~GE)$y#nDCIc$1;{5(60T)|cIR%-Oar`{c_5r#?viK#X~?X43SfybY;?lgJ^C8 zWxjHWxMOhadze;EolGnAOztB?%W)QMf0Ujn;(TIS590ODv-YV>s5}q80Po8CtI!zhG^;aX^=g6ql%qx z<-n>rv}^*P>}i(JkC$SHC4#>Ibh}^leEc>S?w(hVHRT#)OWkYg!?-gP4JsvMzw_Rl zB!PakFdOzIF-{poExl+cTEJ$4jBm7fGyUnSd(~eax_@Zy*(dkl#IP~!#7ndp0Lm_MA$35hE~G%`s{7j zr#mwFc8JBEV7K<`zoV~LT%@YLUq?myc#!&xF7rkBx0@fb+QITYj5rrYmN}!Wx8bJ> zrbbT}ossO~AfOR z%x>#5#Q8^w9?`KFU5zf4!=7KOBq*0TR{$>Kjcv`xVy%q{K!t4on?NVCQ4?WSA`inw zo7&740~SQYj)>JEV_obQ5gvOZ5vx`|2bZHp{n4l23BMw-u*YwxKV37}?8~C*xqO=7 zQcL3$TWHn!2|eqm2{2;1-FV5z4peorA=;(gXqsW8R|$&+2w2rt?6pW;`f6D<#IE>3 z=3KU#&*J_rb$U-~TT8Sk>9nMd@J!MP%4S!C5$9ET`pIHXQ~kz4;zE@PT+=F6nqP^; z4$e+;O@R+~fejg&A{MbV>FtRcA{K#WEVGlT>6D3S2aQ!l>PqMhBSbz|Z8~J^=#(T5 z$E&7f;M+cip6Iq7h>s1wK^-EgH~Jh=IblKhch$(fW<7r!6ZPaj-LLKM%2lvPLYj5I zbT+y#`PXD3y|kasRGl|HTmh%dux<`*G?q*N>U#19 zHgg272(I4}P_){R&9^NI0Bi09ikpnoEoYC&D4$HGg(voDZ`$m+G@;_K&$i*dN_s8> zdFl=|N^G&vUuqzVq$F|xSFg??28cIj{`waAW?frvG&Y4Ompujhw3d#%VP$rr=82?w zmP={vpp?s;kdtEzv|hL2di+u=YS|}gadX7RC%T@yAsS^f?yU1{xu;(*@<`|EI?RCt zes#z@l6XZ^8eKGSTg(N}YB(>1mTADn(XXTUui1~0E0_@bHx29eO~y+iO^b7F2`8~p z9!B$~WQeu(1@96803|Uc*^`AJjGZjbvz(s(LSb_lJKI34m_XVgYsv1=FiIiv#P8G* z^0Xg$GLbrLZ@RD7J5^R__ozZhLA9BjGd$N3&KfZeqXUyIGRdk+2jVm(WB97fBiRSP z3e~jJLReG5+O)Lp z_=O)KEupCm_PvEOp2raA@0cvt)e4mWmwxGr&P+P3lZU27hLx!oq06;*OyK`2jo&dT zRAC{Ql1O^4Y@yl@q3O1O?Uu&JY&I4hxmR7ZhFC( zbg;B=*jZ(`X`gW7wx~d#Ib`f${|C+3zOb%e|4=x+BrM|Ao~58!;z^ec2BsW*oNca~pEOY=l##!7!#*je}dOko;{_5NA%Eo6u8 zpobGX0PpOVYdCgg)$zART9+t&^mIY!Tt5xPU&h$$gti{-nO3w?D_G18F|h`tH0 z)l%DA`ow7!lGdAt;c~1a(&+Vp?K8Z;E}K}$3u%ov4|~p_&0;<@+9GSE^E(CFZ!>-O zAVjLqPoP1HYW0&5HUS7yJ;|LnTvE5Y)Gi>mww^8G0FbfP;vqkC4@0S_mDJ*8s~C(K zRG~_pq0W9+QhVy`7ivb5BImTa#RLgd&|L^C=7Xx+Cl4_7b{=Ie@->M{qi3o52&9uz zXa3p;QR5@gXH86#CH7AC+-f`cR`#zvx!wj~Y@!|?HA~6{le4V;w&td(r@)uLx#HJ} z`OJ(QTqP$c6e@^4@$Z zk)Q?o2vfAGo-f>0v_P&r63>FNtsdC(&d{)qrM)!YN~pAi<>z#&vRia7#346HV*`sK z|KLY7+4h(x2|0?-DvF`qvqq)j0~84)VRz$dAuG|NqIrz@Td$q?58exsEJe0mZH;OL zr3Z>X)A(YoHIq@3^YWNrmJ4^QYU*Dh;_3+#Mrimicki|*YrXK?1Pvf&y3mOW=jnYF z3pRihgKzd9Q>17?Kd%!_mHmN%hK$kwp@CpCz^ZLu0A#-hzVF_WubgYwC16pov4MC6 zz>u{Xg#`N&-;$@d5N10N?rSbM0U`@$R2nXVWHX;;Ml#LhCOnYOu)pB$U!I!`l~&QZ z2uwRyC~%*Qc*wCAOr|S)Jwa;gU?pOo;NW%(FC~V(6sCHLmbnuL_zmiZt9#60mf8A1 z1^)E8T~D2YM+Jb4fNMy}kgt=C4rYOAaP;(?|DY8x(u$H#hm+)0*_v`gdkYwLY@~EWPwP+VWP!+u*E-J8`0G;rk*PUDC@i3VJK6 z!a=kJ*UOX!b*#3SyXsQ)VYl5>)q?Wx{Ai`B85Wvl>Z|GLk)=?J{43__4RRq&t;#nd zc(i3gr&u?UV(3f_okW!dB2%eM2(vO<5vJ0hJkU~>VjU2?vNJ08bZ&?=i@w_Zk7 z9d;{saksW>vQ7~T#5dJYac4P+uP9BH-Bfe)`mH1%Kb2l3KP*1UNirrQRtEg7LdMDt zYQkbwo75RNC)-$>{tm!-KW#@xKDfSL49uys_Vq!#4lRYK8Bhhw!o*SIB&qY3BT=-J zH40qus-|ASPuJDAb=y42>8`GLcp3#nFS9My_V-sMlT<6YRiOJD6_dxj(W*xQ z-%4k4w|SGCi)<{t$@ev5|j^W#@tJhc~i<+28H%9UzUv|XjFC$r*F%yp?S}~XX8x| z)amgF<Yc4s1#Usw|;SK$EWnYY(O59*4(wk{6W+M?o#v8g9O62A+qw^7Ix}!@E4>Hb@s1 zQ`mel`A@UkJis4lq3&f%Bce_!rq6U4S2?=i9JN2v7@qXUs;&zOOnR2T=lC`cJw%(J0r`@=m3wF1#N zTNc@Y9doD}An1$RoQm2cEpGtJ_-E%}WupR$IuTd|e&kcNhl@BoZoJNIl!|2#_el$= zy*E?#B!DWg?kzup{SWoiDCo7P%Q|j`_90Cvev8g}Ri#4(`2p#C30-(kWcCEKurZF= z&^xw2f-#%A2>*bExJ7SZ@G8mTD==d&l{#q(Df3X>^&x+0`rIHcXjw(cn@OcS-Z!Jq zbq{Ba)ea;ghIP1LU;?obPmNaZ^GKCF(%!oqILckKbpF}&mi5vhvxyXh+gLRMF^+h? z@X`*+GELE-4F!J;YX3%tVAPdhZ^*_5wNG=Q#W`EUkx#Ji6AgsRN~R|UlPh&bDg#Le|$u*%(P=ka#r@XlyS;gMwp?4-}D92e!2*Q2Z+OKR>H;9DOW{r$Yssl zdT?=C?PC#d#_>cT2CGah-e7Gv9%D@~)TSJi27UJx6-{>!!+iUGY6_?uG>iT6`}Q-u zq57Bd7?% z&W2w{N|xBBcYa4WIqE^{6^0T6vND*WxiifU*#t7C@=f^4wwxm~ZM>U&%hV~9(g%C* z>bZ>Y{qGWD5`j3s-iHsFHC&GL?alGHKte6d>0;ZQj;w4mbiBHx$9;<>r`gj%jY zwD<5`YAB7Yzl~>oKEsNM!FmZN>)-=q5A8!v(%*B;b^WRgHt9Ve&GXD|z-;ILLFZT= zFC)$=NPOy3vbyV|G%!9azRCDpG_#mMn6)MCx4q-MKg3&I-c=Cwwd<8}{ha0DalSCG z#O_C;7SP6w-<(0rlRR_a*ALi=8KBW%|1?Gr_vx5O>=ghu^^+x00@*NDzs5|Kf`qa_r?ShEBB%US19 znnFJ+8+R`Si7EDe8C02Edpf3WrVn}~_GzDxccj01I$8v?rtPgmd}jCk%f+W;f!V(K zWg!t@TBc||sB1AwE?VP3w!po7mbnh3n=2}AceSpB8u6evt71#>GIT~qcK-h~9-PgF zH0ri}d>*zNl~N^OSm@Bv_1QRKHWPa0%_1M;`tzivW4;=yp>YJxLX*)57ft9nbcD)T zra0B!5j!*eU}x?ML368nk7aoL`$;x6Qac~iwvE)b0)G)y^qsr}n63qx4~k?cp&PwR z{^O9F!IWs?pSYZA7u}CG(oWqPNcE5j2@WODVt@1w@pdWjR&t`j3!>(axuiQ7;(ck@ z__8BL2;E(axrn_s35cyDDEj0dbyWM_7oAzbTT-hz`KrL;C7|4`N@lHheiVf@ z{V%mB4P?o3UtOh3&cjkwifrhMz$|wOb5eyBy8X$!^F+>cjf&OTfBDr1m^dYOS8%Pg zM!6z8MY4qIY*|cj+8s(=?SW=buPmPjO@@$^#Ypdbgwj+APV&fg<)IdHkdi2yPpAze zd%H==(QBOM>UOsc=O;D+z@a@~xA)n|_(e!Zl~q2ZM9htrxz;yUCb7yR~@z9;; z!D(p2)B>64$Y-CFo%Mv$t`=P;=5QSni|=j^2;D( zEy2QZ(5w z(cjUd-iAN_h4&P&n|w)d(iO$BqvBXZyLtXWZ$~=& z@vaK!&=9xFmgW;fEglG(F#Yr!e~0JUrT;~AS?04dlwF*JU*DN@?b**I2`B2dSv0k7 zr!laPn!^Xp4|AN9vve2$G+8?LH)M-DjSza09Zg=CVbxxJOQrH;<;vBu_;|SFyJ{XL*J>4&_27=|59@ktc{( z6HNz-PUW~^qwM&QwdEPGrv8$gL$Ku(?yds1z8Vh2c4pb@mW(i~6n}<_+yz{kc@cOe zv#*O+n2*+$th6~I^(rHqw%}PrNDrG>SUO=c7m9gL43|*mzqZ=!odBC{S>^1O4;+q( zAD`htLVNi?W~(iKe9*|_CVa|TKC2>e2=1QW&QCub=J*d73&1L^iTr?I+fSqoykbsi zJ~A`0a&97XqYx{CXB7XN3+kQ;$6&=^dRb|!c)Si0)%tDZ8LSEG$%K}-){tFlPZX;rHWAGHILhcPt+dHzTTK>&7r4%m+B%S%55s6*Xx=!J$A_sDAk1m# z1rm-o$-yPdVt5I;( znZ$J&T6B!VSvq30_kIia<_d95)9e5Y5wrg5^t(kFt+zDhj}#aFH)yMmnX5ao8LQg2 z4`4W>|BZ#q{Q}}%=?r0=xZDV0YCKw9Ytj?jq%PN`LPX8^H;;y(ikUw1Jk|nc=K5bA z9Nv@ME9`&-aS%_PwS@lR4#Mpa7ynDO_J_=gyp{-%U)Ml8V!fB__JriVhhN+C23PUn zmdwL#jnMz~^@-@{kB8(n+-R}eNVxAwQFez|hs$aybd^8-7F6Z4GzJ{G$iBx9dptTh zMO}317Jo&}H#%pJy~1;Kv|^#(+VF&7f}9S9C`_*(`J=I)+B~%zzh=zCBF>JbpV~3* zI|Qn4R-Z;d>)NCin->3~I&2Unr+Y&tk3E2;-Q%RLt*1Tm`U&kBx3>AmI#u6_Zap`V+{GAZHY}b>jNwrz8$_>h-L!Yp6mDV@IQyR@wa}mBc-N zhU0s(HYte;CWso?vv^k88-6oAEXwW8UfrVhEW)oz2u~8vJs-YTwH!4%J#;=TUToAN zbRnvZ@Z{-=ivl&;paNF{M5SmZ+Qat0pwPcKqMqx2I3lkGeEpNDQ3<7JE3kX6?K;B= zu2O=1xNLVQ>d`Vsf86%OF8wN<#TIf_59e(%nADUWFk2JDn>MAETC4*t0S!v zF#a(S^y-lBs!j85MS3=x#^;LEL5!ocXY^l4QF?_pqHC|-$^HZ}x&lXqxNW1hXM2Vo z5W5`limFYDs#$Sy52ueS3{T8!U9^h`CE8WLjYtI2q@tyGOHAP^Gw0I329;ORcj{5w zy-rXad{3SHt^UP;l>5vayY*=0LU>1A&=3h-8J(9kol?ce3$qvf#b>(9++AO}^lh`R zd+l-pA5os`)Q=WL{A`A=xQtvw1)*6kC(G0$ON#wsH6D-xKjH3iQuBvv&@t{JmLa#_ zPA8_5Nw15^Vu_waIo-)J0Gxvg8-t7z!)^~*ol3pOJx+|om`bzdl2>PT5OP~-ZLDlZ zS;;nxx6p?n_rcxXl3SX5e-Ztx^md?U?(w{b(s#cWk4V4%$D_`=U~{(N3HG5ydPYqt zF`4(KE!Ew2?GL9vTN7(f!p%r2^u<`}-yfwrc;)7PIa}%*)tsT(>Gpqwf!_!_jG~XJ5Q}D_rCAmW%)c*zCx!40v;vLK%f=;b)&TU2N>cGS;fUh>Q&qudP6w6 z3T(9q!XEO*WT)Noe)IPY%;=zK>CJz%0F`4&o-iMO>Z=(46xGY}SJB_P9sC?r@AKbC zwEAn=`g1cK(=N8a!VqQ@*Mr}7A3z?E7BJohr2``IW>)ew^-kfZ*=rz`AsM2G=bb`0 zAv+?`^9TydM#wA?-JO`g`$mWO+9?f+q5k)F+V=-1%eWpp@&>KK7szKz{&L@qM&5UW zeU4B!x|N>hL>VF6@F;t)X`MR1g(LAz8c3A|cM!vsxR=lHhM{gC?%?yk7~=EJVi87X zJ5g`IWQg3G3NbMIqjYtKhcuAEy9j`1vP1c4lM>;-vCK2`^E2&F>Hg5A;Bsx*k}*8- zPU|}3`7JJxC$naG67hzR@%*1bhj#fyOz{scLSv?95cqpuZ2QRD^tx_Ykz8cRRF+SC zJ(^3Rl3Vld9$finXToncblGnpp~5juZ=3E<)ShDNP9Ot>g6U92BF^kUgD|mwmE~BLM^u8gt~y*r%8gK? zA78kjTdsh2NZAbkZcyCUHl;ZK=fD^eJ`3*}uLYYpQ2ulSs6o^WUS45&oSx~;n9`2|2czfXx*yODWA6Nw`!!rqF?C_0@ zbQkRHnIbbBJg<(f7X$8TS{P!FXh_sD#>9Nfi9|D`+$Z~~2~$+$^OQ;mf0Md7%+u+k z)GKIfu6K;17Up7ugV9ZyRiijjaNp+_HX-y)cZD0Jt|n0-nmryQ&WnEd+tBZb0{le= z7~N=1qS|^26%KFpmJ;{sJhRA-Y}$U__W9QoR2c+dG;- zITVfUq=br!vc9Lj>Euy*iI3VB26`c37bPaFj}8N0vyJUeTeN- z@7<(^_#=eD%_huelScORs z(539O%X@aj8M~mb(bwc8TT@vdpyvtHcla!EtMm@)Ukq2MW^;#iwu##bsBH<`hRl89sgLx9fY^Z2zXsIUuba;*25pcCXO5^nJmK z1pf3`DyM&^YRWy3F0_(Bwb7Fxq%^Sdz!+spB7%S|Q#~}0 zfIo-9=%GM*)*@*jr?_|kqZ#WB-I!lUu8i6{n!@}kHnQ(&stV7{)A6B(iu^|F)9sp- zu0(Uo(Y3X1-R!N@sMRK0$Jf_?0773p+wS6^GjIWKZ2FO4_%id(nZ;Yaj?TJA4y82Gs)P zXMR$sQ5d(AwqdF%Oo$D{Wv6|!@|bSKPu@NA7IeZz12g8JU6V|&?KZMeoX_c_P}iub zb38Zl2mb>7(t;oIS~2H?aGk>)`IFvACFsC5pmn*+zKwv5`S1S30FFQ zTSHkGzwvs&-{;YA+31uWaZ5n6dauDWVN3mZ1!mdyyy?9kk5-8xLHj!5aCQQQVIWP4 zkrV~fGq^Di(zTX|bOnl~tYSU9Jy}I?qOLxY-q-g9sX&~_4)_!T6TUfA>hJ-Z3DuDSMkkfh2wAf3yCz;1rvQF?8Yov(1dJWlw>bIaQ~iirYj_jO7)$GasbSv-!HvA;!AHh*cq@t>vD zW6SEYQKKR-Mo_rSe^No?z{tF%E{yy9rWcJtTOFlh?;X33i`ZM)S;9eMDQPWr&8T#A zyW%^u0d3}ysLGtue(F#_JemHp&_H{VL>}<%yOHg$76yua(WL}=y>6~Q zu|qjsUGx7x_TDP2t*34KhEhtQSaGM6;_eQ`Demr0(Gc7z#oZl>7k9U!Dei71xD(t0 zZ~DKV`?2?Ux4zwPBS(%TYptwIu9>-J&flDasloO3+Kp9taj-RVH$rC7NZkDf3>R$b zj%|NRJqbc~X_&@!xscT;)*1d9J0UqdI?AdlyrZIo=f7k<{h*SUvF6BLyY6iF*KQey}7?o7=@Q;P#MwR?WJ{RL3)=jD9E^ z`HP7q*8bP2;X6ZY+209Kkr@87{$|T8vU`^!tcNs3a{?Ds_^W2mGg(# z=!M$)K-YwoV>~rwr@YT=-2rD{$KpB+3DIfC6A{+>r z%ZKCN{PQ6(B*r8_0r*2o>g^F6+naBj+aJV58Qj^IM1Hlv8?#RN~ zdpO~6?hW_&0tkz~rUjY+{WI9uBwmuF?tPHTLJ8ldC+z1@e8h`ZNGaM&)saG`o{+|v z**p8v1l_DjY6VCj5y+l$M53W%*0$3%22>H_;OVKbkz?VZW@=s6v%Tl-jqeI8m75Fc z%V)JR7p8gHLbG(9MU%wQ!HQDK01bpD>JeO4(nNOK@g6+UrfwAGSI7(Vc4Q=V*cg@h>8=(X0fGTeC@w z_i8;lRcu_CoGW>utxi9ayR6xXmydB$XTjyu2iHj9d4DD&!qJ1}eFsC4WBR`w=`KAL z|CUnmNuXOx5)$N10b0bF(x6KbqGmFHYx4rHsxNgCUouz53xX(jQ}l%7oj6lGZxwPp zMKaf>?;!~{=2x+yqd;0~3%C5h4{GSqrZ}7>z1qfUe3dxFOOL?~%X*tMaznF!bB_o= zUbS^yW?;^a(8(Qtd)FOVDAG&dl+C59^o)ov`HO%E_{{$#Q++~-C_4AThiaNg7*YW6Wv9Fyv^p$`* z0?#4*>g7ShOgoFzV>7c6cs?p3*=VAueV=Q+tsUe<7&WuqsM~L6Ftf$9Mr;mT@@k&4 z9ZT*)P;)fPox( z5oEy{Mqc z>~7dr-R_HDkNthjGXjDu3(-3&DmM{P%eJ>o>{E$hm>S4wLtZxYe!tL*0joG)r(bk! z_or~}s=UxOaD&7m1h3^*bo66F4XbdP{$$4bX5t%-@IKGKc|b+LL0V7Y1~Rb<50@LL zxM}hNs(YzZP{^6$(K#@Tg*}@azXahzI=L@cL?WM4jE4=rB0HPM<__`l9_m4sKMy5{ zuyCiJ@M<=blD^YTj^!@-Cfus+45*AP+Z4YGvgkOrA0)o0FWE(7jA8HCK^L>Z*Q>un zBRdpAa3Nh3|M5Fwm$`^{;ioQOY7xAxEltW5fffo18ez{WUTz$y9cxcrRz~vv`cR{t z?J>fcB=JD!+~p}!4y#N6lyqoN=m;>NjE}BmCW!04!Fhxl$!h`ALV@aX`1d4>`I&Rd z!%)65;YtynRm_Udt8F)>l2Vp@ybFJ%zEt zKRI44qRRGw)=-AL3NYN2>q|hZWnZH>SaJF`N6)8?VQ16r;p?MEojWErTXgud4DRFS zZmu{xGsepZi~HE=RV3;rK-V`{A$u|BwGErT=fm z65yKqA$De_CVfnAg^)ABh_J80acy*WY~_F;=Y?JIylBjBy(9NCqvyDr$R^huAtlaR zRuVmY_<1BD`5MPKNMXyMlYkzNqou!7aur_H5hQxk^iw(vtO#rDSd?pWqho5(MT z;oCk^J$zqESem~(W~T^U(e2Bj6nfV*ixgYqd1*=XKs~L2(2soUTGKsV;pja^w(Kp| z&!a8;pW$$EV4h9$8%FJaOpC;fq3(_d2^)nU#Y}&h4$J7)c5n8nlpN}C>t}$YLC^!hoR!nlWSt_tN9mn-T0?KPu?sQD9$^(IvEG}z5FvhQ!DgeO ztNl%ig_yax9Z)Lso#2;5+CC}{{~8WUj;!4|7-t>U5Kzt{hxeGZmu5Y#}Tpc_xpV+>UFCeeq;sfX^74)hnaBL?RTV zAEeHUD(%+Wa=QQlyqh_0L|>cgJTEnycu4YCI(V06Ktb>9m)kl6De*(X;Wz8Kj*q(# zqMRS@D;qFavZ+9?9+x^i8KfWZ3n`DQO)hu&nI%#h4akd1t_e=6L&k8;&A#>2v!vJA ztq1wypmVAOn`kF>nSJfC~l50|Ui?V5lk5a*0R#x`2tgNWCGO<|U*Y;cS zbi8PMt}mQrKax8?uZ#$1e9b(+FLPp*<|KhiRJO?dyP-$`1-W)3>A1E{2827kCe4iw2oV=t)0BrDqaF!V?#N@Q7_8)2x{nuvAKg< zIx^dp=rPyP1#?Z1Ug`ja4yOl_vGF3?Zte*@*>}5dF@jn5@>SmSA=h~S)L(j{>PKoj z?-mMgeEzhyMq@K?NpO5(`C;r^X=@vQ)TUkjfJ5vtUuuRP!i(~Ot)~#(i&n<^4T(mydTW;YvC#O?I5$x?{UXVt z1{`jC!RySniZ6H=hFb8zO$y+SmrvRhT}`T%YC`Ha*W!=w^N|s)Ml7C>#}YlX?9|Au zK6r$-zQT_dW??RQ=QyG`jI!Ip!D_mWuMejj*4~9;1z;Orrq4oT<-)W47`nb|m78+m zb)(thv@j25{@yx7TPm>jE<2ht1sCh&s7NHoWYBiM-;B+)mSC$-%Y#x7Nm4Ou-~dBO zDXJ$%h{VGz0lXIr>^L;JJ^8Pop7@w+^ztzhkcHe|r zXFOqzz>@hFK80EnIlm?x+@hx+*aw$0LYUMkX=cp#_9lk*Q(yLfjbfgxgpO73?go4u zq=Aq8rg<%>`-jsEDA`g@pO&jjh%N5oe$7UbZEERIE71oh6mN_U+kXQ8*SB3~mf3Vt zT=$~P-guJ`G5(lRm13t!?R0M`>r%TsDsYK=P3nv|T=3#ZrnUX0YTfqo=WnIF#sQ#uOP9lM6TvNewumae4Gk4eAMI`kdxO+0Bc0@Nf~qOk<55jU}n;>zL68 z-`i&7F2~mgCW6s(Zn?m!&bH1u+CLCplu4{cBxAhoov*e3$qD|p_7&l1X&-`iomKB{ zSo4g-kV(|PqG)sHEm2^isA2}?%W4@i6ifX~jp30}5rj#MW6@O3fo%wmJA9t1bgJ-z zcjH|7MWb2j?>=X3o*E9;m^CZ1&-%hwUrJ`lMj312Be;`rx)~KW_5XPJeVIk3kfWz9 z0UsyR504x6{*>H8bxop3;Pw!<$OgUu{q!}qd&?hCTz)5B_Q>0^;^MZ2KVZFz1x|Z z_lzjFu0nO*KXLdL!>Oj_O%+NsqJoPkN!Oc~%&2&HDM44c=TQ>TM@0kr&)&xT#O}9u z9Bw75bPtJHf!U}I7bo#&HbrR)pqbffI>Tq+PRphnS)a^vqVZQj38M{Ke&hc9sG~Q# zhMR=>eL>%8QbgEv3i4OcIZVD$s$hkG32BQ3jFOvUh5en7n_ilAi2`ZMh3z`_EM2qYeTwyXav4rtEkx3KtDJ z98Lp!sOJ#_5i?VFqwv7>D}^1mx2}-sT48W<wMqApVv*!EIaeBs5fr5Fe|XtB}iOXgu~0ZjT6!0=lJ{)aVtxJ&B>sI^Lh^6qivlSO zV9^$5K}2%ht{G>g%|zY5(*J+{t$E_s0p0(s`LGkY4=D`(GxT8x`t<&#WC3{ZM_ z&39a42}C39lQRk+ZdC@!^$=jvwD@ym@=UzgTiC)f$;aL_tA6Cujp6v7t227TPv5&O zMFJNG!)i5Qqq5n%K60~8j8c5FZ=0I{)BwmkPR=XVE=BvOP$Xnf;tNJs|4qy!z1(Ct zYRIBfV(hJ8(rT%5l|boD`o4+M8sbM{bqz07D8n3?$@u(no}(%B>#$NR-HE46`_8A0 zi%UTVaj1D$4A;Pt*JT*k4Y&VQ`i09~?Xi|{c*RgR`O=+<V_%%;2%gXPu*!j>~ZY*drIxIWr+%6I8W1=aCzkGC~7cp3m#dr6*Hm z!A7`xQ(y^Zu>r5Pdd=@8kMeK+Do0fkk|$L8)`=irCFji@aUI9;uJq#1-z5bY)r6aiv!uwPHqcL4aUj@{v0Vm?D<1~F{6%_h3b&3vIgOn@i4F<>sM$el~v zp+E83nPdL_oO=S_F6r}eqayva@UnL=vFT;3h@uFe-7ni5RO&bF=eHqW;Bah??I5*9 z5)^og6L~e*81H-4kg=>e$uBpX0@!Pr)a*J8= zgW$_FNAkE?s7BW33#DJ(wZD>ZML-ZpX0qoTYvwC0QI;kRtQ*N%%@-5=E$6CLlkJ0@ zn^?F?4`QCrN6j7B5bDK2iD)eQK27;=79dM%!*KPorz~`zZ+c9bGsFZi<1;Ef5b-&N z&8I2obn5$(<({IhuO6+Y*qv>ava-ggy7jlxQo;&Da*!=o5-b2+#+40;Xs{GmlW7Y( zc6hxFN*(PLry}jwPbrE~5hH;#p+0)FDyY;CP?s(uQBXj>Gtr7+p&03)KjSZR{heQO z91Yx{{bP0O&Q%Fy*oflpfHb`qPF)(8sf(VIE2?`JMe-V*8mT~DK|y670_YfO-8Pus z3Z!%irDn_bPO}kKpbU6VH8~~sfka%(puwd{#bm^sCg}MF{Y?p~7}^P^8=2Keha%0x z;s%k`nXUI!!1)qUjKopvQv^OSf6xh9lzLal1b+a`B;6BNxmLAl1{8_ggy_%Q9Lt7z z>s-Y*r-=R9@Tc;O(!%7YH_F?q;nf!F-4C=C>I8(!)*U`sD6U*y zPtCLjFUX))Zj^Sl6BR@pO!CfOav-U+DB{IVdxobE-MpheK&X(qKW8Ib43+Cz!)Gy8 zzk&PTy_X>v@_E|FNnVVfr!GE^1N0wwdA{8bH&>J`et3>C>_uipMU>WfXWyu(4*t&U z^6A80wA{W&t0;ZXJgh$JzLQgwmVIbDDkz(2M*;ysf|@3MCgb3$wKk3-mT}0n78jtG zhcpA)#H!orv4A|(;ZqvCSQ78b7+~J+q(Z3I7@YIaML_!vu7D5A{h7ivkj?rA_t-dP zM&99(lrjOmoQb0rc~3){>4iWM-ta(pNoFEnVY{9;{84z!-TM;olaG9=JOO(bBX&Ai zAJc~s%~od}c^%U1zbt>+x=nxj^?R~9p}pHcflR-Ll29aW;MDUbmc?7e`N2Qs!Y+VK z@kc>o*IVslq8zHRi7X|Kdp*XQT=Dlb7KsR}bVu817V8s3(@HF`i7`Wg0(k3IyBh>* z+sLiCt4Bhp6SD2ZMyWF{;tkL^Kb*&ilZL7`c*1j$DVyA!*l1#<;L5+i`pR&naVRV@wWx+Gl=Ih@|N35y24VyjuWVyo?++=QCNvs$_ApKnf)RXWeg zT3EhgHYp^Q zp1Tq&c$t)Ce1?{5E{yEW>rR+f7-W=7{IoQ(M2C zhv9n~Ui0{|%ps7j{wxP`#mxZA-6|OKFS@n1(!WVOBNnCyo^9IeKb3PI1Cp&`hBlwz zRc~O6t#V!a9Tu0~9%PpE$B^y~oS1jcl{hd>MYi~B9G44cH1r?%M%ijU!9%frb{(uc3>8-IO%k=Kl1< z*&9RHiKKWu#i=VtIUc^Z=z!-Y?a3YBT%=c83EkoC zsR_?(xE_N=+yhS$PB>K2Cx88*d3t) z(Dp-*q$OR20coH~_g)G@v%?YwuT>xIHJ;sD3qtghv z_T9%Y9l+V4aP7$-SICE>+XLtawJyB{!Is|RSnH>_vD5pTSkFiQ-K|rjHJT>U4$GKq zOUFpL_FU{0#WgIQOB+0YjxFdAmeuPK#R$zi*D78p+g0wyU~odI!5PzUm@qqHG}Fr#}@#Z@)Fqpjp0ILz~!I^6Vf zT0i;E+$m-&x9|Zr^a_oTcP*w7*_uu)oy3HeQ*^cF&$4%xuKoSA+~0YW!phzRyRLV( zf;|`6B4sndTtw7wB>LDQa;qhfrNhiHk(KgVN%l8I^JC~chU9j+WAUZUzn?#?zpKPj zs(tm7mtk1mm$_UT&|8Mq8_Q${2vjpd& zriBoNsW030D+=X>?4>lJmXb>Q+qNY|yiPXAy($Rc_r0=I6ZlG4F|V-SpW?JS4fg#7 z`HBk)aJ+xkzzlm)M?(Z4j4-Pw!s8#_Wf5jDqcoI^)ZCrY=5WmS!wGDK%HV5eeZ6fZbY~GqEusOu5;pHKL+oS9fs81$Bpx#*OR7BRmoD&tGo&6mESim z_lW0qL{9Rc)e=Yjj`o>`6G!s$lNr4RSNd=^EWC2hC~+dn4R^;9^=iza!a?Nb!|q4v zNE}(Un_HobZWAljLL^@LPda&Oe7q#O{B1T2t6THegzAxPKjkGQH7q9+ zrSvZJ@*=+OkB$=Thl@VB(qX8xqBgX^Oa7n@rrU|1SEkY!OX6|?P=O0ghgg77ZqLG* z0`MrbwDf}p-dUClWz!3oCqwr8<7b6qv>8F9P1KP%SG$uN< zpa1e@e#Ln(vhG96x3Wu5~dH@0(Fzv zg=iVYxLhuMaAt7~@Z(w)N@-=c1G4+O8DR{d)59up`HHRt2kjMTPs!>vYv zZC#9hD3Q~OarI=Wj_sF%RfVP4MjPc1-Fj zl@T)1P>w26bjWaRgw=v@i}1dknO~!xtXzim*N$Z)K?UyLYg7VVt#O7iR9;155M|7; zrEIIa)~?zC(%9i)#7#m^)mOwW#UO_2o5^JkWOR(^u1@tu*`E~+PSziy@(58SNj!W; zuEi|<)5BS2s!cQ4S8fTPK9~NEJDcagu;dR$BNH*N^?vq))_@L*4N>r~^L0^lCHSxE>cz18$M!b)s*oX&PUAc7T^|)H13>rZ0m~o-HdT{DK>^4R`t)V zfn+Ko>he@*9VraXnm=`0G&BdsbDtgYfh#|7br#^zM%uH;*h`XucJ`&GW0mUep@$$O zzU%J(jSCBGh19W?wXj>D`Gg*CIlbokMN-P>)(@Xug(ISprQwl!fA3Z8TjaWb0corV zbCXliVzc+~tyT4LA(k#Kl0`Mjl1ycV_ha}vfFqACB?+~xS)S!3AVol5{2>ZrQlnpN zBCc&FW=Uz-{{^f?B%6so86?`ZdZ1S;1ZoFBy{8RwT>eZK6QIPtmo8WWf38)+Btplg zb5<$(rmHQHXG>E}>R#=1PGDR(vzJhSD%MGgiqix*&G)3@gy}<53W*GyaQmYK!=~(0 zR(LckfB8DbMF8Jd6$&rjfm5$6Wbpy4(_WFoKUb|=NwmhOWG3FM?S2}r&%>s5b?L9$ zbS0KO=lkNCvs3c<4RGG{eTUsNf6XFS)HS_gB@Rgr0h{+8K;$z?$?+=dS_N#`}Jm_Hpp_uLp-BjcL=1X?5Z1&QO~-xD)N6T(@fgx@L0iu5qH=2O~izFDohEAhaMOHkq zA?}fk5z(N|sU{boC4G(N4c?IW^H%!dqvd@WTBxLn!~JwJnUz$nNn@JUVsDQqHJZ>E zO6oUFOB$lL>^qaRQldcmD8!KT8QEI+zknK+`3K9Kiddv`BLc(ytf+I$AOPz%pXDJ? zhpEj$S=&x>z~{FptDPYl=esaA{?q1{B7$9JS9D!oyt(SFJn53Cn$cW7UhTS-{ zOd?1YaXypN@M0pG4XzFs)Bc!XT$wNa;mKM2CX|2&&Lt$sWLEVSrM1qCwP5f3o1L2~ zit;3W6)JO&W(3e7?U#05X}KvHNImXXVK%!$AedctjuqjHKR0#Ae(p5wL<5&{qggYb z%|$Zy$)PE4PDw6PJV)eu1Q*EzLC|{yRssz4nidASNdKb731^%JXPQJP!jKml^}_`C zY{G0eQ7%@lY{)cLew#GZvV9LqW!q6!)+W z_*OMrRLq~YjA|Ea%ZfY3ouf+wf6!Hv?e^wrKIH3|+LK;*&kH8VmgQDZqu1~B;MCnZ z;^~tiZGL7EA8FP?z!3nj4jXGDp_+<&4w|6Au4=ADIo&6BB1%1K{%y^K4M_+Nw$P%I zqOHBpI=Kq99gqD^4nSz}HSCWu32WNhCg3lTZ#gHAsD5#D8ml6C)J(Y45l^wsq{$bxU?w;Jj`di++!#&puM3VUlvy{t+-$>LUWX(>e=Pd1SlTj(PKZp zThkw}dFftM3+_8BVg7-Df;T1?>8?Xh`~Lvw8b1MkW+Z+S5YkRm3T(7<{^5?M!fn(& z7FlgU;%|%K8v-AJ;3!9o_rWq?pond$Q8hP`wxz7&H5BRRJKdVE6Em~Nd3_s0I(yyl z13lDoag^Rq@`Gq3*Pv0*QY->D%?*s`YNH7!)};4kl50jSW_P@uC-Q>rU{jtWt}(E9 z>$*h^YCF@dK;_$7>EV8mm{mwevWpW9VGdJSr-1Kr` zysadA5nGaH#g*&qdq@6ImKhVB6ZQY3|1G25vV?OM5DH8eC3U`9u)@MZ9rgCI{P4eT3>!@C8##Wb@pyi{V_1aS% zxGl3ilI<4fEF^R{2ctgW>Xp_#_}7`&L~kNsdlu*kGyH13O4AKbF^w%I*`Xd1KuUD)rxC3mjRC6u)_$(NQl7!tIb`q1w3aP?GWxm3bXH!wWUcqzFe40{ z7PpRdC=?2B!3NZyhbF7>h>y~cfOVq(^bLm#rO>U`rza6x&ui~eG}oGvVvNYS@Md}O zFNG_bS!D^Meyznlm74#P)STXl<{ALxK>eD0l9G?_1rqhk%JCd0Cjy0_+Lh?^!wt9w zX6t_E%j;41G}%HpR#ePy!jil%yn`*91l8k(&&malJ(!H<=VKQ;2%m({AVyGCXoc9z zr9_aQp{stsK>|p%{;;^VDOP9=-mpbm4nX!?fBLt=MU7mXY>;vI!CVN)G%RZW_@PUT zE*Qv=A@$zbdL_hG8{N!!V4!7xGHU;HuWo`mqk{dzZs17&Q^LeYor^zKaK1I!LgLB# zf~Vt7BBc^_q7vh(3l;^JrY8^8ynb1N+|JQ6^?RHRhJ^=eMaDyvJGGEK=@D4B1p~uk ziLtLvO7qrMBb9tS0%|1tC}1+`kQK2|Z!!-xUAb&`r|w4`Eija%)HD3o_xtTDrx$_{ zaqq0$nMCr~QvKRzEkgP$)oY!MIT^AX&}=R_*HQOhbxP0@XUo3yL0?&`HvkzZ) z#^J)ZIilE(OUB82Pwlr_E)%czafWE{{!PxQX#6GTH1A~#LGd8PD&$v>7)}<0lE9MN z+Kpj)&ry%#r~9qVc!&QV|0rD1{u?*^am%L@?4@3BflZbez9Snd8Snn;T#zdk!41~=yfsg(cf#^M zK16S;*{ejpc>dY+^mx&(^dlFK5?yX~u)N&0@JAD3F!X%V=I}GgGtz$tIsdSk#ZsqG z>nTlhW8F&L>;r4tHs=z^u!h+y5Bu zVd?p`U1X#ph>ZHpKAIFcFa6@1Evf(ehI*mqMk`7u6g!Fj2H z2zb}5$zb%h5NfuXA9Ju_+4LmBBOeYxm7DKZcAX+Kx6a$!yF`#^Jdmax&FaWG&TMlA1Rd^8)3>y%|0u# zF5YL8?fgi90NJoChX_5_-Y6`uS|UVkq8~nRj(4ge_E|yPV_Abum&cp&Z#(=Mrxu>h zS(@ZAG(N*arrve9*nJ;rG3hER9171EdYLtO0=<$S)Ijgx6h9i#kb9F_en~U(tz*6J zb)HOCDIKjn-*}{)OKXOkIAf6E#jW^fj45DYW}Y=_AGr8FEfz%&uboLmsK9>|^d*c= zya&8GM6rP|3&sl!smhaxGdZ*Z&rv2N;_oc3STHLlpfsn`h3X3_5)0d z>`G$s8SMB*CP<8Qp6Ii?z0F)^(f)Kjv9A|8N-)n(!Gx6}bi+Y!-pSHQuU2Ha!KXOk z*cIv6Nz#n|uv3%bdrslz@$)70Hfe0jjm_0Bj?k34r4Amj(?)x(v(4K{azy-;MmF)|AyXWzU zYuBXe|I|ZKzDe(+kL5|D*ZNO`7!*nqw|zj8xvKqMmw(!LTkLaNyo}ybSPoQj2uNI) zW}0fg1-vW^Lspv#z=H^v&F!gf;fL5f0~IY)iuT@$$6YR3qcAZdh!}j{vqx}CRqe1Pd0?vB{fV<`Pse?_SU zPkDiftbdOG{q&l!MnRFijtdc^l0_d4b-Lr=wf7m=#~c)f_yrFeETc$S}PV7T3Zus;N8@yZbUy9WCe=Ab;Bf1$yIaJ&o)aaVIm^>w8vA2#{?`f*m z#&o+|yuTbTH;HF?EikS$B-^;d3T;en&U9n$QEasvcKjK3^#+%JtN+Q5pNdW1tzDW8 zHli4R)t|k7m}sKld1i$B*hGrAP$H@Mf_;|3pJAwSNAz^CPE~u<2DR8?$VtGLOG~)~Kz1_}TIdGwvV@I|?mV*ciL> zwe)ltd;EqeCclAIoy*JOplJ0hY_>YOj#W~IZ}0T-prQg@?Kn|u@ijbN1{jXo+C4m& zsQBK6q$!ReEInC<3vrOAPAUE)+?4cJnw!kY6d+skmU!%Ht~gR8pR8+`5C zK5*(w)8Afid2i)Lg110JCj4S{vL+A>391i)}1zW#=Z-IU3o3iV!X>+%x=Z?;Kl0fIS9;u zCb-cJLM_QZ0h+mMy%K6NF0heuw!*pA&MQD$bpI?Mr5I&J!d_7HmFlb1zGX00P$%A! zXp7WzIK3>t|Nd88kBhjVxrPIbJNav1blA6-hw{)jt$)TKLv?I z8$Em03BT-5fJN?f1j+ng$ieu}SFvCt*^_4Xn8(v<@^^*A)f`d8k)WdEGh23&mv39T zKEIbr{7ZZ-d7m3jT$yh9-gUfxnb#LEyxOoi1I;@b=xg)Y?juDOj_i>eL8YEBp0|P} zHoRYGAX?Acau5*@NObUZ7W*kON;n5D19JQs>A=X`0o;rseXf1;NH$0zb|FS&VW_se)J_zbiWYxG>t zGVpSBk?N^FRePF3|I|0w$tEsobqjm^mX!5dmqxR`Zl`=q@KfZ7iU{H5GTC~tH zGr$0e7M~<9YUJn=oenm>-msm5UdLB&f;CEb{Y~+iQA!;Ilz^V#gZhKZMDp+i8w;uJ zWz4M{6#4`u3H>4qkG?+r%*QTqSyzD*rA+RLL=Fs(44w$ zwT6DTdt40<1vva2T;Y%6l;7)_Znxi3rsS4wZxI*#Oo({;5Jd57r$4Q&_s{vK_bb6K zf7r@8BTL}wMnO)-?20eOabMo8?o3SU>m>2{Bm9!qxftqhFU)${6cyt(Mj|8`FX`xy z#w9UcRg<)E{<>nI8BXI8{AabaOU;M@pr(2NLi}^1Y^~kTsOjK8qGRjL?wdrDOHX`% zpEl)W+GK~eV_0jbX%`Ay(NIpY4!awU#D+4=cCY%EVA}JK?BD)QB#t_DXpAXi9&CK_Vc=~5F^-02U0bjU;qrC9 zU&r^&;udzk@=fMEABQZ%2BQbST+jwF6|aN%CyB|Qe;9(*UV{RMFdYS;cUkTt&*nGW zR_KCbGfERLj_xCvH|BA+DY3)-$o;g81s%p&o0HR9dLOo0vbs7MH`W!NEQAMH48HiV z*xSXuZ~uOgta$Ex!o0@Yb(aKNnATh)sn{#{cyOxms@)D0 zipYNTw_fGVJ`(Xb^nLs)x_yHA-VxCc-xx<#WyfqFpK3;L=9-dj&7(7aU}2}?)OMQO z|K`3j>3J1UB=R3sXh{|*(v)%p?sZw1#K8OFo=u9OsG@9`piOAzQA!IiGhd>wxAzZs zGfJ_(O}k^*wfbF8s>SY*div0C2;gmZYgW&=$r*#*XH-$jP3Y;=dZ*W0Vz*&^?CxM} zE#p+Vy=mMWJzLivfnI@r3u&8@TK+80&WX3Ngs))TPF=k(KVaWe%IWKGU@{GV`Q>WG z$_gMb9+-|QtbLnu@C&eqfY1k5lTN~~;C;3tft}7_W7Sn(Q?b~~PDow+zE9TDo?sV6 z{Cl*;5<$#;B`W34MsYd`9M(#-`&@mym7medPXBPzYVBK1mw;b6n@Pv^9q)+?o<7hV zwec@gS5 z&W-%y^*EvUcE5A%8sthP#ke@!wRS>RME}FZ!KWP-x?$^C5@otXty7CFc>8RWJUcihKf2zN6ioI8Q6*=9G z98XMj+EM8E zs5P&4CK-3yh_9tiaXdR%?)wI^wQY;h z*2!s>5Mj@zs~pW^;vZ>tkdoVL!Lom1fk^CzxG|?VJ%l?bZ8hp@|)UAi-4&w-d zEk@V&2f|iuJn`68w4J8$omyBcOOv>b-=nXz5PX{CAE=7qreAyW-P?2b^DfA*_~2KB zwsze9&!%7t0oMAiO-@z?1O_h}#N*$e-WNDceYW_+j@I!gz^l=^uS#&blWsSB;$*_l z@KfN0aikOLM~#cfSkYq-Q9<(#Yo)KSVU;Y@S;=Vr+6?am{HNA{r2nH!ad`1O{F5u; zh0z5;SzH2pVgUk$*v;Gf_A&rMN?&+icj~EGk=&b$c8~CVQijHEi%K(ZT?SzG;ecV4 zKi_E7$!-klNuLXU4Q%h?{s>l^%$8~2oK25k(cNwD{kax5;a`R7?q9e8C)-!|tRN*v zJZ4s`6|G2i0T%CTWm@es_Lx|D_=S44MZ*A&gppfYu+}zX8DCjjHKe>bH_zm)CwBdfmPAtYH`;`D}H(L&YkoZXZ ziP$+ePTB8I8YLVwGuLK4ZZ?BQRKVXO(ZnOe>PANp>a*i%CI2VxzQC&!*SW1xEIOb~ zQ}%_?VBM`5&Af|2)`n^2LT>UUU*tm8J8JA}yI`~Q#4qu#j~u{SChuo5Dx!hjFE?Am zvMWsfzIAV6D*g$^TI!MJ(9{uCZk-v|{(jaTLr4cxv|5;Ct-RH6&`8mINvE$%CuU5<6&al!^GyvhdQ`wdDnZr>DBJm&;KeN+cb3 z=mBvU9CxCx^iK@^p1P0ys66+~2sLkS&{!?>hG-G)8zb`h?z0NXrGyfD$oa?{94gs`j%^pEzSYn8ZZ~3}EnjQ< zy(`cBw>jbgau$VkkGUhZg3!3%-A&o3nT2 zhq?ERYO3qng+UaQ zDxwr=D$=Bc-XWq0(p8Y&d+!iRAPUl?N$(&cAW}l_y(IJ&qy-2Ndg#4#qTcuOp7)$H zzJKQ%XZ>Ofve#aF?YZZi*LAJ6X4s?!{+ep8qbjM3^^{__0>*_uj>8vg!n3%<;0JzB z8jB95nAHn6-~U>}@a}4wXp}kX2t~GmmF@vp*NLVkG|pgOyv|SE)G(IHhbbv5I%hLB zuwd~e71VZF(V$&TBSYU%ycv=Nfuhp$n_Lhx1dc?EYyY-j9u@Oxu6lHj(4`VQv$%2g zQUu+x_L)y8zKfqP?m~fPZ5yru(bu!;AI}u$)3fwt$itss)U};}gY**FKO8Y|?zT$2x#K`MlEKqPuMFZN%dx zLHW{Gy3am`2GTgcg+$6B>jodyE84JOh)Ns>LCz2COdXZEu9(v4B+*MhXq60c)iwu9 z9KjEJIkV<#7y}+rGcb4@4!b>SQSX4MxeDy=bM#(4*C7`SwzU%V`jDqW*c4rwh}k_R|J2swRI z=0G!`t7U@l$X%QH)r`DSr}-kA?~|5Bs$8?hA7Q&V@Z&>cq>!vMjeCFK+|RzUX@Hum zC!pw~_fbVaL@4y^?t2z$^Y@-NaE}gjK78!em4CVPE!QxPJ@cnHedmtGyCu8%os8m+ zSgFLQl$T32JR{4^cIFQf-pI1*N8&$RVJVx57Z3_37ioxMK;pN*G=Iro9KVh{$Q^CJ zsz^1rfzZEaKFKbko8XssJuW|4;jlQ|%zvzAtZBFI!!aGxrlrG}nymeC7MJmGDh5XNKw- zn!HvuR}o$nK$Bw^Pw|V#euMW>B=1M&ZtTptM(%4Kaf6r7!hvXC+yO5!HZGn1sr@HM zjKwTYe9=;}Qp^$kp~4ZC4NPnbKyFJb04t&bgwwA1G1Kn_v$^dBd!Ewa?N0O4gNlvE zWz7-GKNZey9B!<+MsHsdo@08f?$E6;qs9{yA3&xyRo^AYY=PBuY#Rr3)tdP)v?Iy3 zZXG&*b2;_1tik3Zh1?{w57$3O-JPf=;77geEWS70dpXuCrUy*0tKRUmFP3ol9_^9V zQy~Rvb#7F050cGze`Xy8^!1V4^!fN~1*9Q7!1+ezmjOTykHC`!$XJaE9(;gLONf|> zN-k*R<`(m{ZMy1n&gqB0clxqEPf5D5)f&H@ZIVjBggDb3Y&*{{oXV^Y3Myl{aqfZG zdiM2u*{3$=)XDeZ9Bc3bpo)*LPOnJXQIjdjNHsxOee<9j2c$n;x0+SJOR!0)Zz_ znkB|s$VrJchMWrpdbcMnyBWTjg8-djenJXTJung1xujWP1xq#MhxO}HeZv;6$I0Svd` zjI{HLE7Wf4?{cix(CjXuxifxJNgG z*nik9Cjrj4^>Z~}o4C3+EkSc4e4q;Qq(uWcK*BV8RsyM{r&R^+jC0tKMnW(qp*-a4Tmuq zNA$JPG5#K!f>gyA-KIP9-1OC_qwGedS4!)dQO-5oeY#MNa-#MQSF9^SLsG@mXjW&ipuEBVroYQps3mdXf4SqnZw zw?AuH;WP1VvPPM&mxKsv>Qm-XA%^ejzy`KIlYV15mc|UPP5N6-f0}n~KqS7frcV8B z+#ut-cU0yjy)z;&U&(M+jy&9RJ+Tv>nV}y|X{<=QV}g_x)0Nv1$jCXjBXGZ^_Ng%5 zwF+P7PI#hA!@0!D;F!r#m6OHKIG7la)R4Xy{tq)zPB5d#dzXO+&f5IQtAqkMcSWV0VkLsR{DTJEbm-Sx1H6ucL1ZQm%f z$URu~$C|p}osHOK9%nyxQoA7ubEPjnEjJ}%*cAtKral#a>H+|=yKs1RHBU;QB>bYH zO1Bx8nq(egS&RmlLh{sKJ|}w!M+rz`Ip{K!>UUmo%IcC+Q+OM%WeH}lB|}BfmE5y7 z)tSGa_rnE`+S8Yz(8+AAY(2heU*k=J$RqGlCl7;J%!{AM0fgR`!dPkM#p^h0oJ0!K zb;5x5SQ$I2s{r_qqla3pxG>50>MW#`AZ_N1p$GmtD}TS18`ELTV>r2Z@abj}JVa8b z3cg8@HA^BpQY#^1O-Z|A!^vcdvb@{~@VdRD@5%EjPTF?f<}72gDfX9Fp^a3F$-Ni6 z)4aCkY?et`#U9?WxfE;K#$5pIT)O0He*NW(GKb($Yu%3jg8JgT)~p#fsha}Q3NZ_M zgT{3_c7zJH)>adNG-2dKRb`GK9|e;8Zyw@S^kJO@wke2|Gm~OVG?H%aUyI9gE zRzkFV*5RSL0sE$vOCiTiogkPQgheVX<$4BH5fP7IXT-q$hVmOJF;6HaDI@ml~?Nq)G|G& zqRXuugx?9K2!;S=;0oHi+5vxGKlH0ldB+stNajUbv7p53uB9d8@r4ND26Ka40(_cs zT+W~~|0JXWJLkc?@u!bpZ%uq6I8P?JcB*rh%}uJhcYc$g*q9lyAMcsGwXOKw@^3

A3PG_k3)Rco;#Qm!m$l+x^gawHGj>n3fsgH7wLL_vxP;(iKIb_u;?~# zyK+rrVGj#^cqefytGJ*(rMJt6{b&SQ&AYI-M;C3V&wYVBlOnAozG)dBia#2bX~ zeV^5c92jr4bJ1C4J~3HQ8=iPh&UvRrZz)3Hla9!rsAK&n>a>2C!e^Az zJt{#uq1idww;w9x>i@5)K}TkvnYY}rL_{Ew<9nulDZD5D<~sXtO_wgZ_o{W!-5qOkq zpdzF>f9K`|!WI{w+mV?hKG2AAWP(R_Zb!=7j+U4#o}|A9=Lu7qExn~RQS{KWz4r^Ag14A z$^+6wcLWS)XF76T`JT;IZjbs2DE*1kniJ++@7B30C1w2a3TT^QDud(K0DXna?^OX6 z{%aWif=f+Gu(fa$@Jb{K=ts4}RY`wMc={FglAJu+@cr?l=T*0x+(MWx-wb;uTpu-V z@1h2T)Z`iENYhz72e%zyYnTnobpy-T%F(@vPsPNshMaZfcJ z)2y=|yIyIdzFk+{+1Pqg{qxJ(ynJq+>7u5POW{;l>5sYuD1oL4%lh|M=FV~RZ$7PA zPmDQ*TV8UPz*p@>Ra9^5-7@GQ91$p*wG_F(_g3Q9AhHuKx^APaW-w9>C0LvRgwUQsVu?0K@1ja=GEwesWY5agBM<~af)Nb1=H_(qS@DfndOtN?1{v1co$ zbPhP-)L9uUI_I!ENba78QLF>)3wvZ0_g0DT-E#7tL=JUvAM<=f`+i~?Dg(%Fc3bqs z)<+%+3}=iqrRwKtLi`doucctR@6O$s$Jgt3DjJpI#g#?Fh@bclsxflr#25#)Ba{Zc ze@IR#)ryCCE3N_Il9pDC8Ep)}=Nqa`N{dU|YTifprg8jqmd)c-5eBQp6*M5v{e{ACmMdy^jt;n#+{_7~?e(Qq!^dm{4y zuF}}o-AH<-TbDHBb!0)wmz-5_V6k3r*oaPvY%Gskc3Ezcr8Z& zP|=JUKYH%|Z1&39M5dPmxBYp~o5;c=Mod;E@NJ?ca@~oHgfFx;CbYB*r)bmonF`C4 zX13+0BiHt@$X={=_E;oC1e7&zO-RIa6OL>5qSd;=k8JEY2N%;V0S`CqBg)46Mxq;I zlQBM#+6t!WjKR=^Dzi7n!2zH4XjfN%XW*;>y>!4>-Bm3u{5A&b( z<$bFSfI;eGnV2|Y|2-Fg5G8`Axol$>{*jywd(>w`tLvsxLgx4S`qX_(+MNh8a-C^? zL?snMH5rtaC4MR1(Gnsp|BC$R4eLi+smP2??0mCzs%=(~uduPBd$tZ+4zlk?p6PJkOaI=rn;fzW34O}W+HXzpNB-akt`h&3N?yG&!n52S z^qAbDy1N`AEj4+cdls`He~>^tXM$Zld;S6XhLaDQ0H+CMf#Tr7+h}l%X}-Fv&9{Ip_G)-}+Z2dfz8)ka)^`>c}KgwU<* zgguH*c+>_xpJx;;a<_NlxYCyl$M!Zkd_~KUz&($Ukm?)FL_CD~KlZo`HO9GB(t)qu zFMQoOlhB&)`i3*vqPt=IOoUYF-owGXvXM?tt9!S}>5kuQ1kA-h`tMr#_~_O>xM6Zy zkB65;O@ioESLI`vcZRqAId*@B_O^IUrXOOCk#3`)!j>o0vQ z%a&DmJAA}q0JNbR&L~Un7bWc`c6q0#rtyy)JzJy5W;oKkNxbRgYyRGl$V?=Yn-wLo$me}$M zr5EbV=f!W;=wyp|4dpm|p@W=xyEV$=wfuBa z{I@drY-q{eZ5i}Wy(TCYe^w-EUu$?V#LWtEx~V|QZ1ILk+8bF>#m=M5mnL*QoA|a`##LVsnCsNqp_&w(#gn0L5Kaso z;!7tj{2KU*uchjV(i98#zgTvBNuxzi+55jBwo;=m(J{GIx{0P7ZM*|sTcd=lQBL*A z!=&ZuKJ20ETK9Y17P@LsQ%SGtMLg}O2ug3KTYt-U$GHyGS9BD!T)DQEGhv6kPF`zy zVnIvfuVWN(Xk?OPly?)UA(G&gSlHv^NG;1e$2H{H+*UZOJWsD{FX@{uNW%?voww_5H+%i~m+&zaP9rww2L`dNikKFTT&n zbh`x3(7C`|a?5i)QrdRZ=52Faoo@Sd1 zdR3G2VmVrQ31#gRNFU$|wWo6(h^JU%UiV$#dI*$x=wIRaqeJf#K)b93eUDPxwsI4 zhgEo3oAInj$nLp#d5IkI6#k_Na5(*a@suVt_WXGCz5X|<0)dZbYyOX@XO9zmBZ`B3 znrmvnEoEXpUxt3dRF6hp8)X?xv!)7$r0qPwhY{^?8T?GjXBbi7WTj_(&8=PeTUaXh zR>i6^a&*c@6eWiQYvL{!t9wTrPO@ZY=^R8Y~?E+!y8y z{*CFxEQy+USh6ddhcULJH}%Y4s4D*I5jL)4dB48VX8wwokA6#hcFsinAtc9lt+q`^ zs_u{xV`p@y1}Bf!((JP}QOgq%C+vcAnsp9+@c}0(R-aU>b$N!wH5i&NNgw>}ue%nk z%rnP+x9ps`6M`>LZx#oRBtPD=^o}c5Tk5p>1okT8}w}M zEH+!&IdkzkSCabG-QTx|{}7HB>S2PUzGXftNafG*(sw+^Y@WT9(SE5VLp~+S@|3x= z*3Z+5O!CA0!P{}I+MmI~wqii*b0GWW50(O#-1OCfQ58%AvK5;`Nl9|~glssXWpZf$ z)uK2q;$n#)@7V*2&L`+`h-3ZB@KdOi#h{}GdRKgVx~lhzekw0p&Ov{E2fP`~kfJ)B zg_blIhbOc+8|+=~@-1l@`?R-LiC@x62nJJJiZ3a@w?;nZnWdUb%L^F!7P#44-yFT3 zfODu?^}>($SHEEB(&`qUP0yKi5%4*bpV4tmh!9%z#xOe0WBQWwigRG4d-<8fM;sq- z3ddDfFAnP;dZVBDBT?@`Q{XA*3bwLbXUEX^V*dMY|5sVF<$mMG53|4Zk}}di(h+d= z1^CBrUdH(zaC}cXaS4y&Y00_Lo~66gY8klelYxn9K`NU57e;Cyz-VEbChByL6jWl! zYOs}1%>Ns4J;Y$k-!7s#|IvJ`@hDpr$4ew<`?f=4qtbVBT#3b=<-c?K&6Dkwx{xJk zg@MCsd-98D=FME>p=wxN4i z73xp>f15b_{~lcn6cr|Oy~}tVot#YLw;N_S9k%%Q0T(qVpxAmdv5ARr#|xNap<^8; za;!Y>wrz4KQ5-IHlU^`Go>FUt&g2O={gC;?P@;y%= z+L;xnma|uwu!i%%XC4!pYmHade$5-g^Oo1oMOF;UozqFB|FETtnv=n%_@WG!YYfg~ z?oY&4{Hi2&&%sw$o!U?}7GUE*l!HUoP~*pQ;PKNasO1!>BecG`MRWSOgo@dMT)1!D zm*6c!XSu&NrQJ$E`v{KiSh*6up1-iX2FD6FUBC467AJ6M58^Uh1Xb6}&F~sPF2%NE z@Ty&%t_QNgSC4D_c6~l=H#2gW?47a#qkP_`gkDg_&o7gmY#j!lw5O+b;kE%!xPe}) zWRtb?B-lDEB};y(T|SiCO~=+vJ1105v_{Ge17v;|Y7Tg!#e=)6RK$KRhm1Am*Wu01 z5c4i~|W=~F8PlCH8GQcK8v^aie z_>j|}ZnUZ&J#BScOl?B7gkR3+947%ARee~N5@W`uyo^HzoyapfI@d4D5E6kpy`I_otae2iVD9}v{ ztT^4+zLp9M>R-g5EEi_d!CS7}EKHe}E0+2)eo0F08FLYgP4EQPOfv+&r{jjtg`uO; z-jK>%BPeU<_;f~f#VAUD5dhg!lR96`^V)7Cxi5M4G<9om{%G;|G>lRC-9e3y^{LdQ zs2}{<oA~vYDsNcihmjZK};u`DCp_xsOYgP2{gMtQ|-O#`khKAEjBW9h8c`rs-q6 z{t)KzIFp_2>(KrqT0h?I{!E>Q^RriN-I5z=Bo`N%=no$;(yYf^+GX^?$ZeNPA4qFQ z`k;%`d9#wW%EGp*c?fIogDAXX2%)7zn&*X-ROw@abE<8MYwe_vz38_v*oT`gScC$wryW`itQjr7guo7wfJi8MQ^5mnkpK3=wqkDqio0O-{YnR7dz!FZ$p5mgWzR;+POygS>mO+nX5H%FF?QFF0tL`X+0Oa)MK=> z&<=NWNdG1Q8WcG{(6=|;SA^Xka(Mjd+KWGP(#Un+@j58qpRg(xuleMa!WBERsX2L& zdS_NO&uj2h7tF`N+GItU!_siNSYC(-5>!+-tt(^#?-uCdI;YQ~vXT}^`1?N;O>4lK_vOpftVS&BT$ z^*pwA8hi=86P?t3iLFGL5s~TiWj|2vWDNspH*7X-**xz;X|%B}-#`f9x|A6yUN2uL zGc;|x<6p}qsXFlR($R*%A<;2o-*U!luTutr_m&AD2)Wx`&R0T)o;y-5OkQ@L`-Bkt zxHoBa_RdM;*UL~ZRssjqF}p|HeJ4Y(O_M}^P6HsbKlPeb^ZcB~Rm9V2Ux@Ik+4f@7 zo%L2elC^gUyrU)~dv>bpmq>q$)^iBGxZZ`|w3B~c(eO7un8o{XH4Q|Ml0i;hPH&kT zJYzmi>Oc6k&AUF`-8|DUAHW^{*I!6dkp`b$tN@!G)_g_$2(-5bd?14uJRr;Z1>H5q zacxNt8;`Kfb~o!PnYDW)XmF|9!EpC7Ahnq`_h!&^u+tpmA3^(Tx68?Md7CTAEhycUke%v+nVd z^1kD}Qpb_X7ft+*2If!dZ&KMaqW4On!+w(IzT2V0LRTjfwjE^>vr7{cnqK?(X1bQ3 z{-&O8Xf;3K-THxF!)!Rh2EN>3RgC5b>+U8v-m~nP2->e?;6^pn3utssv}S3pPY^m?-jmeSB%kP%t=(B? z8?Ns^Zs$G}(fqab=gZleg+hjIeYnGI*wh(0c>ipvR<);wna|f z`6f>0Y-KqMrYyxYOpSGueZx^$(PfVXsD_OaGR;X{VXL&Wi)q zM?9R$PpvAciWrEnj^yo0)wfThP4AQ@7T;!H$AHR)OR$&v$5NS!?C(u9@WPf>)h@56Szc3uDB>*}6X@-}T}_D_!T$ z#1}KH;JaY@R9U1oCLM>MV?yS=FMU*wdVfS%K63o&PmB#K>wx|WOes9#m$Ja-bcipS zkDi{Y_9Lzbw{8I@e{xGt{eh-6@K^h%bfWSv$Lf-Y;=(TF7)(XKohAQUhnYJ0gDjhr zb&ol4c?59lV>+$9g$e(3xV>^(z)~bgElyY*DI)xkiK+|vUha}2HHm(6!E9W&qs!c5 ztaSiSS)%jS6u0VKUktT=q}ZN!WPe`ibnU`3)@Em#m2A>){BJEB+Ds3XB`U4C!R21% zo7h!~2S8V=dg+4&B5)Ci0&wNUm74SwQ>(I<;;}m>j4~PLh}zRwdGFA{A`-1RXz(F5 z(HeL}O2NtJz^0F47Gt3z%};HVeZY7jITsSz`6v zWhcNFPI4C7HBn}m_KaUq(X%kIBK`5PZ zFjLQxDavT9R_O+ax}YafZw|(pnnJq!KDhr^tRcEB)yLZVTZ){w&%}s2oYVl_QLDRg zb`&PD{AqQ`RASsKep6XIso+~gK2qF7FC)SwHXVGfTS-l!F9F))qY%%W^M>DI_;D$8 zm>S+uc6vS9zM2V0s}1k(n9%wqGjk*nqQ5*b?n5)99Yv8;TNw&G*Wgld7&@H3;|<;Z zI)-CmS4Af(6VYx_aY^f@@8?gIC~9=x@9L(sF^5EX-N=(v7!U0Ym#Ru^_z|0ah*~a< zz(4vG3ocrDCLRTjUoUEGIGP~0sgkX&8L9QY5iT21_PN{fKl)>gwzcPVmjt9|%aE-TDkglDMTlk+yo9x?yTh_nYSs>!!$3Z?P zxqH(K)zGDTq~T%q;IZSvFn#r^=lsoaZ1xgKFYalV-5Q~Znjh;BPdix-?64^3!6bcD zZh^^7Y-pva#9_8OCiK$NLT3){D<6jL&A900t#sHLQBMdvkR!?Q=)Pdg5X+03)rfAq za(?S(4pDwy>8-K67-0-)l^rC6Hk+cv**`f#H+IRn3|-pqR&?-c`28YL3#{MH1&3N< zP9UV8`)ql=gN?!~%IOhJxTvrr^Y*W|789l5p>)pn<<0KN+J*=T9v^yS##|AGf7%K% zKLFA9j(%as61{l~78WNvzh}`wrSU0Dp>u)>1dZveHFnh0rFSegiwc06syHy&Di+Id z`bdJLN~*COQw);`prJinvNyF_Xn!H!XqVlnT_I0DLzvzBEpMLanl|KU{H$y!lo zu$MT-`bNzFI8)vyGJ8VUUPv-w1L&nY8FTzF)XzPDb~qNiU)hmqVV|nZFC?N>Yd>o| zr#DY0RxPDq;7AMT@Yq?6q~DmRl{7sJ{hc0ht^|;LG1aU+&}uhT99Nd44TiE|U$%x^#7^;+Mp5A5E9U)4mC%!|KQ# zttn#rVvma5F($xX5$j${Q%@+cwqe7gJZvvX)g@t?n4m&nhdu{0YR+J#FyPIScvP&+ zO~Zkxjh7RFuZq8Qkg7;8(xpE*igb|#1@%YS`xE2tE!b(yvMe#Sj3NPF*8U#C-%ur5Kx!z_?G@Bu;cVHvX}^b~f$zBatVl`E+kUt=gieI6eEKu9 zLxU;BcrtDX7W5WqhA!C~!zl#mJfB5@WG%apWucS9<1vod;(y-}}{<}U#OkSjOfA)WWYuX2+fR_AV%%aCQeLV-R$E_oeO3k+Ww6YXI zpRFR^37QDiOnz|*ewJN{&*4wYd)0EYQax8-^fP-PUFYW*S3*~gz6>Vag8J)g_ zFI*ke-A=FKn&Q4{8o?dZJfLs@`g9gp_YuFoRGvo+jd^R%EQH!#IbM0$e7?UKWkJS; z5LIVa0{;w)=E&ls_=;&G(OcsV0g*#46@H{iaaS1J!4JwWn7r<01@CnmS8;o*pBphH zvCJvJ1uq2kvszG~oG@gun}uAx)Wh~p2~EbL&8&?5N;OT8@jDev|mg@lSs@6RcV8n;QkHY1K&J~ z{@;1?qV*9q=u5D*J%fdx^w=l4$M)L2$&hc6WAo;mj7a=)UdKs^6kCXL=Z2?6tz8HI zjVjLt$IQ9$RF!*F1l00{&*VEpRKJ}jjh&hL25WY=EPTErxWG)aIJtXMYsQ>eGzrimx|Bd=m<(e z{L?gSgzU3<*+WlvT|<51#79kIk}{=~Hlbujc9ROm##FzSkRs+EXc86P%8z|dZ`{Fz zWq+qpRT;J^R=-ZM&$BZn5W&&`1p5h=!&>K3;8Z(Qs46MhjSlpl*bkV7JkIgPw{xQX+Av)~dLFq7^0{N@UxF z_s0(u*4b1|DzHT^8Hb*zkM!fI$I-^!m#KwSg|sbjsB7AN>!c*8(K0AYoAcOw$^WQY zBy&9_-R>trxSNK(eBgY-opBkADLl2n>AiYM{!DA(_u6p3p!sJLJ$q3$o{&^&I+n=7 z7YeyQ9X%yc#Ell;%Q+Poi%IqQY^x%Oer+RO(>Z@&s{X<$Y5HgNG~$4%x2!N(X{P|% zv=B&TkktM3I^=X!6dBBADotLs6AiqrVIw{pd0N03VrqxQ>|;!57_D(f)t9y+Rl`5LITp)49U}dQd%ciO zS)*Tsd%sTn3xd01U;Jk!>Hjqhd$ODT`T*2?K9l_$N-stw7*i+Zp4R+<+3G$|arZK> zPcwm^&Hf?lVSNY7g$$+tY`~EI&-ng-Sm`Qpgi{;g3(<$MU!yrbP9kOHuGOLEqVJC= zgXPzj zN@GW;HfQF}=!(qR`!}anscgq-%GqZISDm6CC^nONR1DkRu%JDkm6BOeGMDlU^3^3B zrpa-J?d4zx(HK=_{q*t&9N{_1@V*WKbrmVM7lxcBLfUm58y_64*gr#F%-Ngt8eR!P z_Q#M7mmWKZB*6nb&i4=0u8#nxy=7`L45##T-r{jvhS$u^biKAjhvZ{X+pK4G_qX02 zb~AokE2=eaX8P@je7x2{U(TCFTGu{K7(yh{7B#?qQ=(DzbZS1>!~16r2xxzb#Ow7< z3E>gfSu@MHtAX{J{^FLT1mIHN3(-2K!ebGbJp zGt+EuHm}vKAPnKe$xgDgOMWZLyvR%4cMon0j=V6wh`dWqe)@6;4cGs`n;z_0K)M%$ z=LrrV_C&B1YpDkLe<lKT!sDM1+4h*W6&!_rE?t(ouUSQ|-*}lg=p{ygK!n6zMm3 z_^d#L-wKCifEmNyui74&7|9er>W5|}ecgwAoqsMtpyIQW0YKL@rd86&mT=A-8bcFf zh;L3smYjPEWfxkX09{D~JV~(|YV1$1=*jcw((`J$gFAlf^|8qE2S| zg61Oqa6|m6b3!mocKT{g+3b%#qJ_!^bi(MmDZA?95>5}9j zxS*%Yx6Vdw8-o@!dZ@@=t;QOihr0>C(O%AiSlu?@B#q49(OAPSlzLBbNp1AdtdQH> zJ~w?f*O!bvDlrlrKkAV(aodQcN!r?)o4um+d=nwU*WkH8_`?(61HN!$SSa$=GV!B-GW~>B1Wm_Jd9<9C>haMPuPvk7BvAx41|dG-2yaz39GB8IvRFz{U*&k+*Of zN0wS+Z1uiDkQ@uOpBUzNcu1(_%b@I42I1bybH{e6pDIyRGrji{q0FXVrS_(8_Fb_& z<4C3cR8keGcPz6{T#piqFfEP!FxWfyp*5yR-1Bs=L&*A>sA?-PE(SNr(qn(@6nvE> zkethfTvJlPo_pRh6*V5S^TmroH$8$4ZPoT6nSuWUN~vX&8tW-?0VM!#%U?qdD&S#N z1L+=Y&UDwAR17(Bd}K`*wt0eow(E&Fd7sfLyh5;g>?x1bYCR(clF(Kml8>GQ4F-c+ z!uBKRH@ZkN&w0ZU^xN}Weq9gERWihBJR`T!o_UOTk9eaZa%#U*^LQ@bjc=|EzeBxc z_*SRxQ%7(FM1t50pC{q!bKljz8>tsH&#aNE7k8*>GgNk!VTUI!2@aiZOxvbw;g9S3 zNv7ECakdt&&d@gH+|@gW!#SzLkV1rV@Ar-BsKb`o2@xG0Pw6`KX1a<@-@!cpoxYg# zm+Y?$s-o95Y_~CtTKyo--a5A-om!J-_pL~C?J>y$_iaL3&0fjgI`2N6{VjP+uDN!C zJG^dm#7@7?R9iEusMG*8Z8uZK*;`hu4Ie8iB{eK7EP#(`r>f2p=Ro?;z%yc)3Blev zkVA8&i>v9*nGaQwDI;Cgz)Wf3SR+)|N0%wiZsSl~V}Dt*$Q@p+bNst2hVro@Q49Ub zZz~VB268Mgi?u_7pp+sqjg9I7>;U!`Eo}Se6n-(dMXf9K>MgYs z%x7$8Y>Q65cGj8Blsy!NV#id;iCMTBvQ^VNchK^3%&3^vFC7;H0kmd8sL7S1>%)U;_Q+%{qayzP6+BJv=^Q_W8V9I$ifUOH)0>+NXLZYXY1L`y52;9lTWUdcB)JAAgd zUMe_NkV+eHJY8=_Z%{rW24-*QchreU9oL4-?$`aI-l(STaowKwvo)U(k*WseRMze$ zJV?XiC<>rrjYpNea5d5VLH2Elehga8trHPJ1z+x1!Mreq)tS-j(L6&nQreDN`I13t z7+H_GwS&hC%OmwG3vDx@c++eKfV| zby&wAbD~PUXYV|KlvkQuzv?Y>&{lErkiz`Tj`Dze#y*j(nUae92w88z`5a9OT`QW1K~VR^ z!?R)yj<&Abv-|6qu^vI&LP6UxEe-?7j1K5z!BcyyLdQq5!8X0YTKkxLt6JmJSfQ1J zpktNB29T;wSVvN~s1X`f>f}=~ zwZVkCuFQ4@jHT#vWw~u@Q;`+l87Tez#^cep+L%_d!a=}Hs`o|Ivin*|<=&ybMlU@! zxhohe6>Jr%6pwGBFUgTq=mvbZmJ5@t3q9B&pGy8#OkneK#wQ^R)wDETuh! z!l+jG;G~VuO)PY*K!Ct-GXTjYp5E4$WlMDwiKV}MWD?8P<5=k^0-q_`R!ju(n8r;; zzKFH+k3q3id@G+kaATa4X2Rz>DVPE8U?9bfJ1Tua&w5gbi5rMd(od9M>owejkMX<3 z%C;ru?Q&@;1{u$(enO3IELRvCok%8G$bOR3d})7wQ>VR~Xfk_Ax!pd^xP{0xRWU=Q zt`S?OUg!-Kr)UuGCn^{SK;TWI&~^JTIK3iqhI)lD#*x#UsGh~t8K3oMRf%KkJxVix zk+sJYHz64=EZZDLb@F4XE_JJusLS9>e@t9xJ%adjM{GuBDmHA4mGlwwe&^gk=sZjN zW?nvOa6;qrT2{8tmybWWOi}YB)GGLmWPri1@PO!DSvGcYYXB?%P6WZ8|6zAhMZFY@ zXsp1wx>tZtp$RG7Wu!x8i1H0h(SBvJ}wUj9+Tm9)TP?MCB=?S zlZ8u1ClBN{d&A}N#x{N|Y*yRA40-t2uz~l^2Up%4)2Ln_Yh-nNS&$?+Ez`fcC^T|W z?=wZ~>ps)c+Nj*E%7#SBm+{$S{J7y}eDC}>O{$UdDnwP;^A!PWjD`@t7n>M2w2%t# zTwp0VL$63gZ4rEB!06b#A)|L=cIf#krR>JbxwVeiFXU-*6WxB$8#^Oz5@#o>DvG4b z=+_<5R-eYCSwkbq@#TUoT^_a?o5PotSeON1cBJCVAvBE=ckSTAyw+q9VcV6&9t&E~nB?4I=`DX&Yr|p)06(Lz&JZVCR z9I2~`!Kr;VB+Bxk5%(M-E{9$ZSi<3_r9fHXG0)OC-YRdA#Em&bpR|~G^Y_s>$Hqc*XId?Q+iZ*M8GG+(9n zQuK9%j2X|nK2gB#eAvUTZF?&i2Os{-EV4UNkrP5AsmskA^?8sIftqYRMaZ#~U z+lF4+M!^C$Cs8dQDc*o9{E5X6#;HnKgAhY3gG*~;l3T4YuT*AuLik~Tl%s}Fb;}T` zNEX9{+Gy3@az>?vk80IvW&n4!$)N}!YOXg|h5Dfh2H85-C(xLrOkb$lo91m#&E?YJ zT_x!>^HL+lXf`&CLD8^tdW>Qv(zR7X$^d9B5h)L<|_Y*N_#s&92EE8+)w zq4jCf>~>&q=$GH#$IBarm2orPsa`zRx4`OIgTxDIvGNYm>;=W-rpJ-7Q<7< zMSy<5rz|(|m>rQ+ZmG)?my=->C%J1kEpHHMi4pKz-n<~44#l6#L-z@v^t0t8t?M9q zh10Xp5Q6&MB=)DlaGP$Ln&2rBMzI<=YO)1e0!(FBKI3KE8&(EL2}AmdWL8BUcXlX^ zsbqtjfWVOa6Pn4>LR3<)b8TvCa9saW&nNC`zO+{z0%iMSWxT+TTLbb0PRt@s-oB>J zpFZN|o_>+yrP-ikRGVR7-C8UWh6kl8RR;s6UgUctMf@7@9Eq3Ym0V3d3`x`ZHuCl_ zaJHysIyiM^jT28UaX0RCi{O@DD^5vROr+YyM&F^oOV^wc`Nq@U12HfEw4L4;V^va= zq1K4cPNUcb(C_W_BV%ynu}6KOvV8HK>?X^KxV+KbW~RWKJ|)C?NS4TU0@>zy7N*Je z(;=Dtj45~mdPZ&hfAIDeKyAHWzb^#}ZE<%fQYgjUp@m|_3beQccP~LgkmBxcEm|n< zF2%jYf(Hoh?vNXP@_*;fy>sS0Gv~Z}CNm@x_I|QuJ8A5_#OBAi9x4C_UCe@Mi?(u zC1nq_i&!pat6rAzeW+E2cQ7|YK_gfDHQkpNb@C1qcxj$Wjuy+*J1^ZsTC=01CBfO&l$sovs@XZu;_=iCo_nzn%r)28Z&1#PWfh+!(VnmC<6-7QNWpI{T=HLsstA zb&esJ*1m;g|{u`oovPOwAC+v=hFEHhj?-6v=;j*c83UrqsNa#b*RX~rK^ zt8I`avC2o}ksDnnEDt)XB!;W2XYHY;J478Z6iaeJ;W~^$(vgIgdV#nrGd(E0T zslYtjg8L(PB3&hiVDA8vvNqASBDsp^Lw1RRujyt7ii!0d^!*3Z?Ow?ymip@N1N^{- zxC!j%OEC4MzW&#yCOWTf`7=5@0um(oH3Zbe$OqyeUE57=HBqCq1@LNKD;%D0#V?YYy=v`@vl3ynWeR4;t?WUL6bGV!% zyYT5WK?XOqu;_p(vC2}~2kJ4m+tvQirqh1Jt}n2t7#PfB3@Z{&`94ot_;jy^xbVcb zL_YnbVVC~{o6{iAQI?$9JfX=a1?>WLm?v?sjKZ{I)Aanpb}z-qjOCSsl^CBc@YE~} z#ZAw-BAPMWY^hsqlljKE3Z1&Lx1+KlA^P;mA<3t6-geNp4Qp1W_jNF11W zT148z%SjOwkFK!}fLA zW3abY8-&mvu;MV!o;S-E>q{8>kb0+x_i9@~CL*|Yhh#4N;I&FqNqk*~e<~2STeRX{ zPfg-w+G6p;%K4+#9V%MiU%9r4GxTPE*1!IwQxVwzS8hZU`9JZv|7(Ta9nmz>Igm1a z5aB==V#I$uFJ>(oL6-+G_MniEe)auW)c!HC%Y}c!c4;H#patp2xQqWuGxXkGW@3W= zU(EA=vVh&UkNRc33&2c>%}+Mje-<(txQoNw`{rLSr36UUdee2xZBy~}{7JQX5?fN8SBvqse<-p( z-=3%=F*KKDlBVn}&c42c?U3jW*R*DRsNDqFODIP@nHGVf=MGS9>F&LX=wk{xGf9JU2)mZx908Fdm&CGm8&ytUi6 zbH*T9abGa=z(3E(X}b@8!RY_6)jQKA`bCLTj_q}~>&{k<_|;!|ro)ZC=w>97CTsUX zYG(`dt!A-dEWCqy5&n1~h6a-IQSU%XVkGtv%Rhl1)#7^gn@}cQpK>Ct zCaZpmlNt}8yJ`5SITBiiXN$@SOIBBllfvKs)H468bh$)T!Q5JR_SmEzcxDEarP z8xijXYc40>Tg^PLE_<%>ddD+M9tc-Q1byqbfT=p-;;wn;gUFD58iT0a6|ibc`a;9A z?NK*?fkQ#l4PjSDNbG1aTi~!;x7H={kMJ3Ek{|b5sAAv69oLAf%~HdUHqLAL$9d{~ zb3T3%T`*8MAE4&!=)nnQdEKneCXz~<24MlJjmYPoZt*1T%-s0+=(0lo(UTKO&kuqLX$+KA z^0>{h)OF`a&)?Dz9luIgKRLSA(8J`5-Td(FXB3L7A;HV2SUd_LX){(8KE|lnitC%~ zAh_m3typ9`w3&4#Tdej@-%hmol7mUS1WX?l%fi>;2)- zbNvVKbU>qCQCWf0m(q0Ij_Fm_RV>sFB~G#%MdAZ*^CUg7)pwT2JUqK zTZ~Zj)pqOUy`04oWgoc*bwbuCqaX{mO@NWw5#EN9tDaT^kuI1`vkK^RG?EAC_%n|3 z79jXm&6}*}6h`}7@*2wbJ5l{t&R0tEpznDM!B=JEZ|v79+~9PSDPN{+S1pG`FW4!d zL%bXr%a#zYi=Z9vm5wbwT#_yS40!)T%2#ia?J}fD0pt{V*U9&TZhPPdPBvMJ)X!I! z2@MedFtogIH{STgc;9?gIlJ?1Id(J&<5>^qhzNcDEhBg;az=y3)TgP_QGu^^A0i*^ z5K?p?#&`IB55*9KLZT;)sKI)AD!k9uwa`mMte2{1b=Z|i@gfbyqNo%jrrk&4)DG9O z9H4F|vTbHWBYvgxL(IzLd}Yye)~hC=eW*V{cMJ^;LIy zEVSUfC>B2fdGdpmAQq~&gHAo(Y!-cpli5gSj3;!!T4yuq>FyFlP8#;qi~Wa~Q~E+X zbc_!DN@sBP)BNZiH>74L1zr$-(e^ok&Fzn7J#*0YMy}AR9y9II=F7shL+u1pKpo9; z<_*vp$dSe?)4REwRwABdRrcN0ooop9z3?3Qc<2J3dPgRchW*DE7 zC@3@n$k@p7Z78A(E`jr4%^x$f{(07-~q^LQ%?KOB=&QQ)vicbVZn{{}Qj>Y03ukVKg&z=kJ;j_g0^6;#A{j0%x zRT}FQK@(CMqw}^ueU56vE_O)RRm3Ct2S$eK(Jsqr6y%ZE=+!boT*rS%D(}tXc`o_c z#28P5no|<1Df^1p?NhMX_2lVn&I9fpJj+m1ba9KDZG_BTz1745AD{LDd#GF{LM3K< zIR7B8S(;%ANc-?uwMl2NpcNhe{;2yd+z5brL&`PLcM>9MsL!g4Mr2W5eK&$ssxQAr zsJPepmJ)?7pclDQUSbXspyVF^S>>Lzq!72^!8b-eD};VS zlli?NLgH<|0$HjZTdhzG6TF(0BjN2_$zNNWwRxHEFP{5^FFeF6ZH3Eir|s7elq%(h zYFt))ic6}zjhEItZ0dlp)wURBE6;XL{pso!w(+j*PuXVZ^(VoTze=ipPoR7+SC0q-`arRt2mH$d z-2E~ezH!A6E22MZaMtGg+##Z!SIfYtp6u#bP|tX!6Q#zJG1R#j?zo)mvB_BG1^KHg zX-&jq6=$3KR!7hSNE&P-F65B(ak)uZGdps!k-urKS<>NMu#he&uI#mJXH-O+Di)^8 z;w9j9Qd;8ZzB<-f#FE5TKjd@zPg&i1V#-&HvwlWTU;M6o*9P3#VUM7qBeYfMtC{l|{DMWYU445c{H3~l z9Z6)@)3^jwBksF$5nprG6PwT$vi|C4D#=!^!!LQc>JYapQfew3`R#_F`9|C(iQiLl z`?DVpx**4?Z(G8zb~PpKHer&xiIqrGXVTQVvC<9_^kDHQ7AC94eYzL^JL)r3^OZ0GUnG)IAReb|4%(&3=~Qe_)vTeqE=0=O{s!gA;bj`lpSghy z18t@oZyU*%xE;jV0Vtg1^%F}1+|(ve>fX(e>{%w0$60diiOMv#Gpfv;?GJc}QlwKS zR`V5d*d|%ShMn29EMH6e$V+SjSq<7(omk_~^-ed(HJjtf2erIgzZyc>SL1($qA$)= zg)yH_sa5Y&A$NpurI$=KYbTO>#Ye2X^lpd^JE6D=LSZ0E;({VA=>`7G`Kq*!ZT@Pc zClPfSuyn#oZUeQjFcGaLSy$tPzdoO`kY|&BwJ7>ly7Aq>f#in`s&6;m$cJ;ND;|181nKbT8-RoAR^G+2}H&pq+# zHEAqU?dJ2$^D{;|QSx@$dbo}Ex#3A={tK&K#WujIB5KZY?b=sFU3iFC$prnyli@Tw znB@5_FFvI})PiIcz>xGJ1k5QxWE=jPwN28shf&AY$v1rc)zA|fi=WU!7C0QR zdnZk}R-;ypSh35?4@YM!=)LYBw=ep(3fvMI<8qX?YyUDnLaxl%I$+x&=gOsrnB}H$ z#I<%ks{=B2te2p~=rdXko-FeG6oG;IpOPJ52~W)R-blaFChcf3JGCsk=Oe0yrLI@u z!DA}MHa=Kr==06nzS@gaTS8YhjN;YYiGFX5shs z0aF9S^-~|7*X_+op@yFSajC=6o%V{0SY}?NnXN;`F~v9cE<@cao*j^fumd?jX>i&y z@twM<)tRQ`^*PB$f+BVKWPPaRY+QjSX^EiSUo?KWgSD!Pa9A#cEBn_k;2Z1FxHi5d zABQ-j&n!8_8YkNFsnnxlUn1HT)C z->EXN{OwtDn->UJoQM3Q!uDU|`yUWjTb6$obHB*@*?wieerdI|{voJ7Y*28VKja$4 zbP?1Nf`#Rego$85C}<~+A@>d{e)`R_=a4QlbeysXQA~T(agrjhf-?8P=i6l3a&4I>9rr9Z@Q zk(xfO_xHSstv$NZ!CNVwU%>*42x?+)QflMieP-}d&ff5(+k0K6LKd(6`*(pOZirha zR*u@mcR^+1U@^nFWTV3(`*_v@-tnh&7W0$cru!uh9$hr~UkC_}DcSycVL*F)(2a6| zmk616Wb8>TBaUJD2QaN*_mfZ$3g(gO2?QUq6q$|YpWBJX zZ+lsFJmJOeF#Ew`ZirM0#a)y!T$8N_^dO3IkCLKLrxq)L-nEziy()~y9}Tdohd(@| zYxsV>!+4)x$rAaosBA#Zs<1>N4lqXHYZU$%;LB9m;2jvnnnakpI9u(0M|x3 zNhws$DFydCL2VJR3uldaWm(oPQXh0#>$$B<&`f4SqNK0i1m&CEULM|VIUO#VBy(7| z%H}bc^6(7(^uw@;34#le(TWw3?OS`ch(aBNe|nYJoP3&z;vR&reQv}&t4wMuB54K| zAO)-zd^;1XBItyAWPtm|U`z;?S42S|DL#9n&}s-MJYmpHO8!fPGvK%vIOwv^Yd8DB z=eV#0=Y2W`V=Gqkb;Uq5J#B1_sYD_8`mQT#xI!}hjDIh8r-o!zhLp>opuvlc4Cs*H zrGDf_ZQ(ZMF&u!Z7Kf!siKDpt0F(Z7W6-@M@phy4#Ysf}sfj2XdZ;~!4l*)_=4b%JOZs6;m|!rtlVY7Frz%cF69noQZPy2cA%VkdvAro&OuX zk(ob~e&JSPu{s%D6J)krbc2=Y%^_vhXVf?M{GIa}7k+7Z$DTt@RaNLaQVtZ~Sta## zk}vLPq+z;mt$IAU8Bt;P8FQDk?PL|PG0Tjdl#yQao9kD`tHP;VxK_hKDld$6C}`#$ zQ10DZtnS{7EvKKNoPk>M>`DOOAh8cO@2T5or3f}a9uMjl&*KpfRCjNh(dJlo^!1$X zNO~y|XiWP4y4B^jH1RO2#$G4MOxx`-p|6up;h;U8?>{|AbX)3zpgXD#v`hcW^B-tW zPnk@oRqS%q^6DlZXd&L&l#E0QNEI2>MwNO%ggqt@6o#%vE9eA)d?c6nvq)5=9V)WF zyV`Xt*%&F;*+ozV2Z*SvzLta%(---|eohC197;OoP4I zu9DN4O5F^x5?7AWj(HCe3_`iK1ywV7@$H7pE@H6Lt>M#^IM}+I2MaaIZOy&Hz$tPS zixIBfV%I+Fr900GI|NkWaiYIF^#|B6Woc*NGSg)Gbhr6>%~C|KTHLUHR2Vo?RR(Sw z^}P4r02oZa+Fc$T(SWfbP!h0xDd^H=Hw|%=(r^tESkG@hNXZ!FkyOe2GV(}EgxyaI z?H0J6EGAArxP0et1de;UJr2K>`6P{#lWx=Xr&D$9#!>$7;qt!ee5v4oS^hi%M{+vR9E7fJS88td(Pcaa*M0xG1Kk=@z z<#4OWoCQQ2C$dpj1Ge$;RyG}@p1gE~A5=rvnqip<*Tzo;F^ z@3N8fkRG~BJHKv9obLRMRi7qNVPHr`sk_2hV={S-_hEO{-%8A@txgAINYgH04fiS+ zx2nBpYw8uIEZ)uB7?}>c@6;9(?`7Ay)r=^osAuQbWz%HBuJ~ay(@MPSPjpM8#gvoG zq+|FL67Z+4VYUT2H|5U8%MR3LtN(gkckm)I{HUt-pjN{cd!z@HT+(G@P%CcP$kWsC z%n&Cxa@O$=q_?syqxjwsr%VL_7g=8~f3{JwTxo_>v7CYEb#DIj9(G@|Bh~>vlm!Gn zy{pFuFHy|5qVZNN{HbwddMQw8ifiI8oVih;?j2YRg)4O^q=Hmv-V->?v#e$`^Fue< zF_|N)J&nVaT@m2V6OJd6=9YcjTx7wsBO(9A9JKz$9K>+dsjl|$09Fm+@b7F^!}DHc zJ^2SH$hXRi-KNen>KI#&`HRNL{7mm(OGMW3QZ;*zcducw6LTM1M7dsM#vVuk^g$xv z$U5*w^SYgJWON@2v09~maX|jcJTDOFWXB+ke8uEL^yi@CkD-E@HcHSFDFcZEq*#&B zv)@9?=1wwO!OT{9PH53222n|xR|RSbEg2l_wBOs}*!-TdYR8Ox%}pU287fYUP{Z2dS$Z1TI_Q~?A$v9Gli3?*q{v8H?FqKO;stVKM zl5&d~#Se^ErleBtT#k&t9ISyZbDW%a)QUXxS7KgWp(1Rb0EH;QLjC<~lCo(SD6N>U zEMm;j9phRBBj+3#pwe4-~) zFC;6daz~;&Kk8WFsIYJgkbMW`UW{!CA7|b$Jkkx4kokROMVFI2$7*-K=;G4mZG#ry zy{EIR@~MKfIb}u)xu009J-F#F6NTPyzU5YsvWrd8{UG#KASQ!M$A1q7qq7~x2I2rz zZa-T_%G2|VQ0o}xM20)6N6f0KmqZ=}PYX;wFn6BJ?*ro|zU~%2A{2cYboVJ6kq9Fy zhZ@cI7Ff_w2`@mwNzDsvJviJq?MU^rD^8DWKsVu`kNg@fVP@sPM762n^6f`f3kuEg zue_l)h~^gE(*POrpW?*;`Mhjt!g<}=?L?lW;eAtLA4RK;Zp~XUoc0M&Q&{nL(I^ep z&d}rnHtFa+$ATXo`D?1jv&J_fB7#0Q&t5Tc&$xVHi{5)T&~OZQWuF=B+ih1-W+VkL zY*xcyUW~n4nUr&Gz+nvklI`g}sCt_hxr|fT1XbPu$zFe{NRK+TXsDt<7GV(eNjQcstSLpx(=7WrI|BL2ie%3|{K1D5M;Q3>B$X}8I> z;U)FSY_e`4ruc=gY8s8`TW2YxKolroiz@4qJ1eA6IW^+FS2AKDirb}BFyBRD_x*jV z9i_w)*EWEKX)`jF`uj{T9#XISKwgoosNeI_)#=zObY%7-q4omin*yCp>5G)m zs%Rbq5&q^-4qVn4=!DW<-w5jIj_odHD-QMAaIB{=4KZ$@u}8avuNW;E6X3!}KE039 zM@md+NnpX00VF8l`CG?_X|X{*{Maks(gUk*%B2|c@|DT+>wFuJ*~8G8WJdF0GfvKq zjGNq$ZeD>60mA_0L%wZ0VaW+Mp+Ny5l*^A4n^F|{52I*N8DyvvDjkO%nU+Z2!lPdP zP~LVZy3lhMInpg`svm3luWx3p;D?3F7xTM3s!Ss7k$Vo=o4J%wH%M#2d zJSs&n3$musjq1DjlgPvN#0OFMs*$?*@G4zJ@rd5zCIU+_n;qY9<~%I5h)~X&PPaI9!uHdehM5_fk0^QJ}=05Px zD0pxTTK$rd;mYSYguNX=vvmS6Zd5s04M$@HnAHWWMlOCjU|vmN!*+}}Ov4GvY-#Z< zuCrhHB1xC(@v~pt=WB66c9r{0BkC)5^Yd|@PegX#XoUiY19&4k@@y77))0fg4Z_C9 z=jrFr8oW+>vr|1pPuco3M$&r)8K_BI*%|xRSVwZ}c%2yo-^^Q(sbF21!Q;&8ss|^% zoIrX%n=~sTWR6LFL6pBYOdxjO4ggXWb8_;Hl{DJ!#xpm4uicfSG;g`?B(wW7x*w|b z)@({6YzGO3SnlR^{_eW`xStwWBHkKYDqZNrzyJd>p$+li7)=S_xY6OUvZ4oyb#6o#F{E6;D;ZM!cNFz zeN0=*DwT@m-}Nyk0spV^n5$ESU3&F*)ZirGKe_j>|0lH9ePwZ9!ms)y%uP*A3*w0o z4-H}?Gf87~a&qEH+lWAa%(qkC-{0Rw!;dA*g{}Vn2HwF^tAdY@#Fzy9E~4P}v3Q6~ z39rH9l(DO;>+a#QJ$pOvA0a4a5)u+wNlE1A&!6+89U#IW{}k0c{N9RT|7UOild={6 zXC&(%D~P@T0KN#_DwDL0Tseck<4jq`K}JUlE@Q`q2$d?t&qbU+6ciLxHq~>4F16h<=q#y2`3U5A;IQH>&5!rdw-hMGQncYfl^Hoo5vHQA6`R?JK zug&r*E?r&EdGm(P{$9M7RqA@Fg@3qpdx87A99&UfUktw9ewTcV=mOFxUdpX#SE9@{ z=`-gIho6j{BR=|m-)@-x_!uApC?B&zsMZ`npld`vYioaf+OQ?y6jXT6>f(J(4!}D< zu~56}pE*4@qd=CRXL!-tG+iyO=9asj#fDakCFJ2v>qXBx&aM|hjxZlYn#>U|vC z;tJ}%k=@Q;m0?tUnNa@qMX5y+Zxig|D7J#s#Od3{+8 z_Y1_ZfWeCs%h3)^0M5_{bz=66E|smqb(*em&sS!wjy0?{cVhwkCobFVZ~`|&5C7y0 zUpPMeKKtNgkb>iQ*a1#a3T<*+x^%ugs9&gsM`Q#ti`qO;wA+cvLiK$uoLXyQ5*)gA z6XXtkaHf6gt{wEO#bgf`E!;OAz*(86F2oOK9ub|d?JT?$9Bf#U+X5{Ppuw9yy&MMe zo#Gk~KAX-iJkW=`WKsD1AAY~thoOc0S&EjpD@?%ntqMG{GrO(x*KDOXGD64(v7Ky* zUdWal;#~ZeeNj|RkP7n*YRh_efU>Z^zTkjm;JMG2bbmsGf6ad-Ja&ZX)@TFAAbwa) zUdvnBTzwUv&3^Z^eONv)%b;b2OcccnM6;>TzDy!Cbd}l~tsrm^oa{@H%x-kI$7cZA z=X-dwSxD-3coILE&2>Awc^#giDOcIWQ$Vu83aiyr>u@-UZ|`5Jg&4qU&5BYC?~~r` zHF)y}XWua-24ZXi+K-9g!h-1;kfh4JTC=-|@H?ABeRp$X9iGacH~Whg*Rven??$UM z9kC5^;Oy=`^Bjqp2#yOUao`+m9iyTNvF&nt(#xWIaOVF@Ky=UlfMpWE%zF-AVsf5hxW$*51U zPr&vUXC@6UPFlpnnc?^Fot2wI0=dTh9tV{UJPRXjC(%m_<*aMCq)5UT!gYi{8LA4o z#X%brrkY{JU}4AZ;=P8?Hp9Qw9f-g$$5M9mTzZsnT}`b62ohOSG(s`TavAyO-#14# zMsC~g-**mAE81_n?={gHMJ#?lPKa|F>}G@o@peu;&!k!qk#c*{*zC?UGds9VB2r{b zk*uLhS9bj-T$*Hv>sS2`FPCROZ-Y_MSdB84R~gFtBIc1cTgGlrrO20VGEP_Si-=~l zR;SlQG#FM{O*}lwH*OD=Hc7+TOx71??>0u*y=!mmon18Jlhfa^0o1a+%1o355bA3Zcx|T6n{)FpNCnZ!5!!MZ|2x(T zreE}o+BSBq;XNU2x}C*{-j*^@`lQ&LL)IZ}@BHBS^82hBUQ!By0Z#|uZTSZ19F(-+ zRpsN7^&9lFfrrr4%aw~IiEVlx_P3>`8C7DAAsMF3^XWJBT0@18y9d1Nbj1FeDPwi}@QM3PP;dLRT(jw& zK#mzbl|i4yHlMW}u3*?Kt&C_!pVUnahKbnbMUK60DtNI*)-!V!HSFS0nN@i_HT+fh z0XozOz9w1{^-gfHvhoc~l*Vxeu||Go=@UF1f_GL$x~cF*kPclBr|I2{whSJNv(!T~ z$G|_m&Jb0C+vu7V&Q<9UIG7CQ?lay2k;Cu%9g#e)=k+8`aEoL^wrBA~{oUbrrcX~S z9*l|ZJCm!P{>uVbcn^fmm*&l5a;LP+k?_1&E4r8!ha+W!VOR!WzNLcZun!Gly;J;R zF(R8P+5fs8j>TqamX5OKFyA4)7sM+JZA#uG#^hCU)wTc>C1M6M5q9L z31Xmq8lIlQFc?fB^ARp(nnOI7kP>Ydo?i&`^l?)J-R{?u@MYQmr}F#he*{C3{}mDa zufzQKPlvuw{~6kwe@BBv^q-bVFaFgUefz)M-NKuv&UxWrpG$#H^}+TAclvCo#GWnf zf%=h)DMcu&rBDSMPS!MIc#7aZ(UB@LBK|cRhxt4$lOA4YscmS~Ham^a zW6R;fZDuLr$Vh|8$h>BPOeufZ!)v+_6QkF7%Cmdr=*FW&b)Vw9vLN~S^Ye?4=#9;}XN)J+$)8o%op7^u z(0Tf|ws7%4Lbaa{-g790{+<}`#`7V>06=Tvi^mmPs-0(Elt$Lvkrwnhad@Bs?iy}IXpTo!OfS!?NN=tm7UT+6dCkoT9tskwhOOgU~91}HF zRfk1SI~ZnW-!BI7GQZBfQi$w*u3cPQH>K@dI z*gN*@0k@6Z4_2}PLHh>W3bya*@qS66z53kD>>^pQE0h+k6j>c^*UZA4HFbo$RKO@K z1xQWty>qq(HdPjSMe;Ob)me_aMXkZ&>1g6wlofc6m0P1SX3c1!g5;-p;PCmNCZkLsT#YiiTXb=lAd_d+j&g$|ihPa`^A z`#vL#&Kk^O0K;?w+9SU(N!$#`4ZJb&t|MyTMD&(GzNEE&ftj-e-rLzLEU`A1x5N*f zIr=1~5Zcvo##hxk5?nYcuQ?>|TDNMz> zs1nU;aVmmi@4M|zM}p9rVqe&m@RrlTa?c<#r_@!8kqkzi+QH7Z=DesEnuHv*K_#C> zK^>v*Qm7X`iSK^z@O?YPuG5lF`I@EhM{eZTxy**`f|dT)=~-fLL$TSfY-*kb@nX$$h-~` zUpZC_zVvc*n2+IMqc4hreh{W_7uI%$x953jU|*#dQJ+-6-#+J8yc?OKydbV@|MIn8 za&DH~Y{(CVP?vVc=37%w@XzUy;T!s%;qQgj1UA}jxPVarv_&MTTNJVK93K8&Gt@`5ftF59ATbu9DdoZ@0Yd40+;a7(p z74hhbahHbp;X#WcXYym&r)~2=a3-Rn&3D}j3eAaOB)g8f^zOUuT>)(3sTPsCDg@AD zl4|%{GGNXbFJtcrk4oGh+K9;7JywL}A)lG@#8=789OaK6C&58Bjm1+GG$)A?D=7C&fMPM1atZPlkV{cNuM}#ctTC-< zDb%vhGpEh2xG^XdBT9 zn@9u@o-TcXtqASxN*(hjyF2PwwBU?fX2qR}jk?}DJ;wL0Npt#ALIyfjKP;+zcyez1106pVl#c0uZ*>oVS8 zd#LrCJxTg0m2JFGR=0{WT55$cA832?!}MBI7fD8Z{dPB{6+qV0{M&=`H05a)52$Gj zijBhZR0QW3=IHApCLYCCv%=<+lot1sM&Nx*uobq$>PP+O{B&RTe-`+de}(*PW{d;# zOkHU)E2pVc9kZtsxD>lY%nE5o>=vX%JfX3@i`a(Czu9hqZX56V(ZHVH2ti=^MNR%n zx0mV_-xT8`-xYgLiak~xogCNYHEYRw^*vkDblU16@o?HPOblPHJRq|XIpxfKpPMSU zkA|CHIIl990r=HV+eh7oeOTxX2 ztI|9?LxCqQEAz7RnaYfJ-oLtC>=q$%ml=MQB!a0&ZcM;@{^!8j-$cA5)5^gZ7BjLc ztFo#-Ol*rTZVR=>waT1nS{G4hD92tQzb9rxX++rF$Pz{Pjn2@YalGERgQ4YR=`w?c zg6R8RlFHfYQ=h<8>O3l@!tf&TY36V{0bZ`0R^qBm(xWe#z@goA;ySvZ4IjIi%o(Zs z(BqKbE>#j%qZi0b1o!G-vK}Z;z{EOgiB<@{e1t{2kEKlZnM!*>&N~S_S@8=?-!dSL zD(K0<_zPgd>~{9VktJ`~)IkSY3N20Ba`&C9TND9kMuk&2QTJ$$KaV_{@LJEI#ZFly z7U0w3kSmsP2JJ7@V7}?SLV~&J4{Y9l{H*|TBTcU+9h-hLnE8F%%a_7OMZ4o~6H3Xp z^1?YKUf(Ee$ie~B%r#lnD=#sAr4)i=)bM(7Qu(wE?7j~S6G()KLu6bu@jlNl@bZ4H zhM4zdIrKFye}+)Rr<&v!Za051?nIv9|GZlFu0}8$FeIMlVSMo>sycz&hW;D`s+iYL zuse4w%TEQmvGtU3vZ)9d@0ES88dp)jH;5tw=)9OwUGD{C8P1iy`ec7ParK2Svs++$ zPSv(gc%`6vy?Jl9CSJWN^klWGhR?Mc{6sg9qGx`_=|G6QxVcbZ`%Qi4Kx$vZo1!DUa*5CMyT~8-v7?7$$lh z?M!672_iu%#(=LT6e6Ph9UqDc{gc30SCpxOY(mG`C|dg|OzD=E7zE_Cs%`U;Q{+A3 zo&kkF=V2^4LH>4#^Ug-~%1m&FVwR%D#KrUVd|cNGJ=+;!-prdNjbC+D@x1$`1rzp6 z(3NiP`eH>s@kNh>NT5NyN&%Uo@RGVfr|#mq?KyvyLpe#a7){{>&?L~ds;#rbCHJpe zrFDY3pm1NPSOm7;WiUEQ=fB-XR&SvuX6~nKTeq=$5_H zPQqwY()w342>R%BF8o^ZzO|b!)vdQYPVyqL!P8bm3lQ-*XtvX0B~a87P}4r84Tq^9 zhX=~J5!}vo{6Y<~L2s@Fym_=hp}9o=IG5LQI(tNGuNLzZ{!UD+X?*{W%lg0VivBk} zTO_X?b5!uwnWL z{%;P&_kX!NtsP{Kwb#w^!{W~-vom;H7N|J((kuH&QxuI|E zH+p&!)t6eY>xpx6S<95-Cf9c(I3|OdcUan>NjRXf`72axqhUEBy++Zy0PGrt=>bZlavmCZ&-ylH1>QAs%I5 z(aMBHh3z#hR=TE7!&{TqFE!`R6CY;Cz<j4klM;u8bB(6_l&m%6l zT3PjS1U54r#R*_8Tv?gevkV+*BskM2T{gZjf1o`SweaNNbmU66lUV2qDrsztblk}o zp1Wap=CU>!y4;zqx*@EE3QAo|92&6!vVOoQEb5NNK+f?sBc?}|R1%{1&m?~Mr0kJ7 zMIV$IIc}=VdYPl6bBMmr5_)U8hD<*@{{vd>R}wqXa;As@E_llL(&m&vwDy{sRJ8YW zjK&NXMG=8Jfv%=K&CkX@wAESpMzx7YG||LXTCnx~9Id#{zO3*riH`E;aPsQz;5Ldo z@2{V&&X0+$BNQ6m4xiwl$;*dye<0+!-QAn54xJj_-eeNsyie`vXZHRC`8D7BL1Sa% zt32HXX)A|B*HEhoDbj4Zhw&JrdD3_DDj+fTk=iLUS|8evp)#X+Ir=e+dtZ_|Qywq6 zYf8k;)K@8%@NRAOSr^IjN}6Zgg2^y-{;90c)tzb(76!o|%r>pYU-%YmzcpN*oLRMp-W%Z!p)fpvL<%&v$g_Z0$Y$ zf~x^*T5KX|DwS>25tUEe*9u!IrhVHc9PwUITznk0!hX1aH!6C@b7AYZEVu>Vr>Xv)V&^@4+gqjf}eu?Ilv64?O=kRgf zzE|9dPd_Zu&q1|)oqDugluwz-Qke^#v=NB{`}EWI&Y8+ZuhT^Fy1mrKEb-w#oAaD+ zyazFMu}Jrpj}L3dZzq^MR=>k|Ee=WX^sRSwN4j^8V>(r&d3Jp`TY~L=4r2}JfVH4rZ}aSujrWU}{XeeAun!W>A|Ie~9Q3u(6E8YYgPgdWY^>2d zb`Mw5PQH9g_DkILpi><-BPugn9|Mt@v&Hny{UWniBaXA^Hqowj)~13Z|71gP`PIU& zk{fd#dRqMg5_f+3g#BZKFIw7rknYtIlC4Nf;1r~&s2W1dsG(76I-e5}`EDAFQ(d+H zvN;#$b<5)8RgWI~9T17Xi|;<8VX5P3d`mC^OZn`jY6_T+`sbmY4BAq` z!Ew~p7$blVMyE*Bzwveu$f#SG?S@U-SfUi+A|pdwAhanDaPeKj@DSzwyim@b7ejy< z(E(<@;riUntzm8i6jj+*Me)aDk1*rnchfPOslcjptf)ij@(rgqS(CP)an3dIsa3(8 z7OzR7A3NMgMW@;5#KJl04@!5#c;rhEYl_Zsl74NRN~T$tN;J|&UH6?pHWv-OzAYY1 zRt&?IOl(Wms|<#x&VxT75)NxQo%D_1FO)P09th_Mb9ZNi_im3C4W#0-ai#EyN_z+= z?M3Hn(|H#xQBjsqt|;)g2W?i2?afeaLo+e0E(~baDK7Bv4;gKIZ9L8qWjU8y2l4Eu zW<_N&pO}f=ba#6f{*=NWx3@3|rI_=bM^<}7Y8Mtxe9tpkx5IA^2k!)UFRE`Dc2^3o zwr`9)LD1z-HdwOGmyTBhwF31Re@$lMzmmM;%RV_n;@pl2E$~Hq-gukb_WuEIG%;1b|`E_k+TQ`gJM*4M966mk8JZi?Q^^E!tm8;WP;TD00i)YvI6UYPqSG7Ljs;^Gqt(%(FVxvv3alZd zCMN$6cW)gOSJ%A@Vu1ugNN|ThkOX&^gdo8Q?(R+N_0pqO$t}nvLUO)%DQJVm{tIs*DDr#?vDjPQ&(5KEVJ5aLV1UuaeMjlYY=hyCJw!tZ~54o ziHHhkKUUHu$pdK&S%a+YwBy*S!FH|pk!U*b=5?|FhOEy`_PGGR!>JqTnl+5RMP1VZ zI%|RNy>)ksZ%OC&M40`t%3gydP@1mdQr<1^poY-!!BoAD055*s+MO;kD zl0l7{6$@gvfJZV6Zo^>mH?{G*I7@oxN4JB&G7bLO5YJ5u{*SBET{5(>Qvy(3eH#=ODh5Q;3|8yTaBgZbY9! z1mQbq57|@K&Pa;#hkuYqKiFOe$obq&m1{Iuz#dEdw;|j4Vi}HqaqWkO=KgyV>HnC2 z>wk+T|KHkm72AmYM#E!d=H(4HPv@d+|GQ5-{Rx7*!*S@Kqo#s&Kke~4ggfmv5GKqL z|0Lw1*DQKr@n_&+jxep~$F=9Nwv$dNdR)VqQsoF-mkGN0krbvngFaN8zlm`u92Ds_ z8zXV(RP1igcSNJw_UHx^5)zi3m#ljYYWm*%MWszafzV~$w9>d2bG4di8mmnFPq&Ll z9S8i&AWiolXW)O_m2m&{XL6MY>r@MMjFkboN0J-^*x_Cut9dcqRNd33MWin5us#3E zfRJ+fJUy$m=ay9Ur$zfv>J=FlXg}KYgFAmc-`=w1TaZ6tPJtG=zot26LrQ{j4@d3xt{ARQt50f?maY1GAA~TrPn$?-%)3s9axU&Ofqe;2 zxIid6_Od=Jt6+c98DGmY-A#gZ?BES%g0RMHhgJL9`c3Dv(RBMLQw7oOFX*>b>6_C% zFzfev>sZ|mhiu2p=wvlL=U)jk~w7jysSx zP^Sh04On^HlDVpuMIiaIlW9iKF`u2Wi=9(Znt!nXJXVfH7aFIS%WgE081_$+Z*&Jq z!4H-|n#U*ch14YEE%?@_Bd*uaM~L`}d1K_ZStP~l6XNzoJ&@HQ;&igUQ z#)wOi{u_6<9jjQ6&dh#IQ<-D0O9hA5%qSfX2buv!9<|@LP*o$N`0vbc%`fUrK2Q46 zB^bGNj&}5a2ms!_0Fr5lJA+{5bKEY^b@p5I7@dykzH8sySoNsGCsq#u1JolkJ7kym zyP!B~j}5L%AeXb@6Q;A4C>K`2Y>)sES)ZFYVL||K6AwtRon2+5o3WO4a~^cK_Ri5e z=&DRy4c9ecT@5~G#8;~OJu9l@KZ|fsd^Ns`T#m%&D)QSZj6x`8Ln<;x>(@OjC*j?@ zgnk$^)~d{14f)1AD(lk)|5jOqIzij$2~(8)&KP4bR@`X4;}f(PUp>sVW~3+5sC-ju zWUH)gM78|GmP^kAOC!SMu~DHlL5qzxsNi^Wu3) z1AL>3+8QgBV>p)7_Al!Vx^FX|bO;v?fWyJ{(DC9$qKsiWgFrdFlx; zWzdC+j-JJU1+7K*&eFl}Y+}KF*LF!#qHW7!i5|xJ+=&N_=IH;esRJr5j5CR5=4pw) zG3}3}YLOik^A^m6=Hz3qT4EA+2DCSfG_d@Qi}c)HafivT6lhPOW33kQ>(6)l=$=kq zvzY-fzB=xHz7*7!$1Ho5Dj*hqU_GCD8>Gq}q&`V<>swM#_<4~e=wU|{yeeqr@R1>^ zUP)@e+(rJ>j-U^aGe?sCxU-!Z;kB2vmpIwX31t>|HuSv=fizS?N3lC5KdX>+Z-mC`ak^%n7LMlJj_W3<$ z?Ibk;ac+be(F6MmXAk9|7f?LTqbDeL}dNb|}odwv7mzz^enQ%PuwixB*GJ z+uh15?PvRC_~y*!kMuV_oc3kaTXkx3z|WT#G1TG0bU7WsP$}D|c-4FKRIUEudr~79 z-YExjE?oWCU?V2`@*P1M3v_GBnEN5r?>C4dIdiaQy^EByb z9vf&+Fw^+BB?^*{UArCYHoP7Q&AQCya-DIFWzuP~#;e?AV;eE18ybJc@EnK%tXdc= zKY49GZ8Sab>QTDvo`tnrm8md0>~aHlN16ds>PelMOyEp{O@Zw|IU?)w=8mUfbQMI-g46CHQ*-3M3>YHCbtO ziomsnJij@wAcvUf$4^7~+TAu?zFOU!r}*TJwfx=vTU)bB1(qKRR>o4ARy(HEJ=qJ^ z#t?NoJWA?d2b!>tx}(N_aMZ~#6wN;>S`)&5cJlvfQNRC_ez;3UR$cU?Utm zyWim$jK^isJRtrX>2v}b69vWPdT{!>x7ZYsOb+8->>n38kB`x zfMloZ>HA^M&l@(_3V;_~D7B#kh z!AKYA#lYTx(glY_qgm#>3A&tsk}x$!sZeaZ+;~r0Qd&4_4u_kmNyog1F{NCa^ZnlG zdo7-#)rp>2-iX)}HK`@jW?w6UdpaTHrJu0@LZ;@=l204yBQlx!9cTEDBJU_vxcDsT z?9@eEGt&1mdAWd@=~*_1fe=~Tsn?SW)6y>UaMD&(NlHmLdQng_8?(Z-YQu4R-&c)6 z*KR&+|5xmdi4sa)r3o+MqZ(m)%`qdg6t<5CWmf0=U->G-7C^bQsjk;{poDR%hbTp^;AyS6T=aGLhzvzIoc!cEln3@d<1ckB>&2@RhHPCklhl?v16;OZNkZ< zm~N{o`dGo@*TJ!6RsUq5HsGsq#-rX?ZE@j0Gy9`(*h-%@1$tm{yg1#r(!xYC)8{H9EvLrLr zU5L&PgWt#6Xm{K2;AX2_Ksb#fmi;DX1qB1PmdYICmaZK^Jj`K~Sqf_yf|h$TT+o*N*%7 znFTrZB(zjG%Xdq|9fy{Xer?V8yA;tb*h&h@f~C{T=lY$h2aBDAL0_z2Io^kU?H0Ug z>e9mo%Uvt#b3n`&Np0u)|8LNoZ=`ICtASOy$%q`zrc3pls`A$;#{G{QArv(VVCjE}M;ad)fHE=(&5JDpV-6 z?|&Y{z+J=9H+D2>N#oyl*f*OTy_?XVr^9jdoNx>e_GzTyaedyljdYQPemB9GnzAi! zHo&$Osm0$xBSK>f2NwDnUXz?{lE?nA?i19Aj;w_&ASTX}Z&nny?hvDJ^1jMO`%;tO zE!6Dr1=_P-kF?j+{IMZGXvZ@{)?cDGxOiV(k{G$D3KsAt$nVsLANX>~f=6CIM4oR3 zUB^Egb+qvyX06`LC4Sip`{a6^cNx?YiV}m4pd;ig$CLJ?vLC{KC?xNXj^zXJTn5_0 z;7Rq7A|d?qqi_r}+Gr5HUxH*JJdDTAE%W&1yGG54tb9na*LqAV+mEfuN9 zhN7N6rmr@x-vr+QxE*sb`Ka@bm9}_?e|n+a(^&=b-PD$`4M(6@RExLHH;qeGmt*EL zELb+7&V8kOoT%Xb1s|Nr$c@)U|FLL|>=y(?Gp`cGRUB+;nT2oSo4nss-}YvshLy7E zrS{P7v(vy-*a$%(fOdFB?ox31fdi32$)o!f(o%Z-uFi&5m(rhf;aEic>i?uck`?k(5Q@9&sE23v>wAgS{U#Vu)gWldV$A4Q=524j zUqwNDt>G0hUrqHAyul)7wNL(_ z^6QWh^>7941VFPsD7S4DYt9xb`&EBcw<-&J0OeH%!vxqQ7U0L6x9bJP5*KCQ{PnJq zF=R1fFo*jK`98c*^GNt<)@!}iUzeH@9~+R&zu|1PQonTK{4KD*@%xFOOlfEl_Y$if zuZA)%g<&nIV?}OSIk2KGr<&*UxS60aQ3y9~=;j8of+~;muemhavxE7=-xHI*bIi;? zK2uApddjL>abI91g^r2AQjI4J`uE#vgfI8>bMlMoFOG|zx%#_4I`i*v!d%*aqqj2m zsj18Le{H-kzt!9lF~pWv(xXZ|bT@f!@YWWJ(p>L({7RS01gu=P>zGGh}KtA?3kB-Nh=NGT}wNXgsQij*@ z$JHqa$FWJ9((=+YLA$84o-bI_ns+_Ote$phcB>Ss;|x6DLf^hD8WeyK6~N4u!O7Ob zoX?#a=`wm@YYb6wieh7awLDFX_n1PNOzByZl3WAni!T$$1gmpBpJz;Ch3slySP7gO z@_!ZrySK9|yHuO|#A~*K3(Q%_HwB~tu2>=alGX3>EOj{^KN=n*mt(7v=32}$47_XQ zHSvCgZ(OLsM^m#-FJ@7U^c=pKQ;26xMQoxQW$}R<`I+!t6}~%~^zKn4RdlJEEs;XZ zAjnG4B#_xgE6&gnnO_MTpKFyfBZ4A&{UnAtQ89AFxG=v*t_zbI*!wC_vB@hvXBOOU zG)t|*{CK80k9QnklVG%djy<)!OKE_y?&A7WV!ABt_|qFDkWM371LJ9JFyeTmX{>3j zEj`tRIg_9ND+G{?Rh@&iAAj959{bz5gEb7U5Sz<)?mfIt7w4W^7T@fzrH6Fd^klbx z@1G2iA*&Xm!Qy#+fKlF-?~GM;S6-i3*c4V?RHIp6d1ewGkCedH8p(N-F!RY`YR6WeokQzRcb-Rt%_j}*?$%wC9CMUfRJw|y) zN=8pMBupncYBBm=yPKc9F$CalEog|gumuV&FaonnSQ?x_VH%sz`85dpY+`W{ zAk(o;?|`|#{~=W|a%!-cyDrDsHV`4ju$v`bcTM(eREbVxF{y< zZva=fUm5uq7Y`wo6s#TvVcF&gP%f6s)0cR-QQ8SJYS}jUuMo&J76(my`LvAsJXBlA zC0CEKFMov?a=vwnZAis({B+#=W}CXZ61UZ#x)FhI;z_UFb_@=DC)A}g#mQC312!{9 zm#-djYG9XKnLlXKhZj60W~GEahIzla!D1)bHex*e!Np(6w(z~(x!Vr5mDvvP?H6>J z#Gd$PJCk9zR8xV_u0J#ub0TJb8Aj#?PrY zspezxu_gbDtxK~D7EDA`X?-|o`@{a^+iPh%E5nchWbZDUw`MlEmh950GD^ye-4?|T z{{xhyOi=wBcwo3*`jgyLRm3yM8Gba|q_eJr>MSWJlfh}4Y5_7*4HjMkD7k2C9!Oj} zIO9^Oi`uK5adG|T$=8lHBZ$5eyGA~m&mHNvAu-&riC-T4OLgOThES(=MSIo5c+uWdY|usz zFP4py>E8U{60Bt78A$*-cL$AF6|K}H5qHtrVcMK2WUAG=*i`(QnjT&CLJl^MS6Aud zLw`Vl;h@j$at?jJ?&=@$1OTw#XrAo8l1gQQY~% zbmKtR$^i37;IgeR)S0T+nT&;?Z30^pN@oea+BhjZjNO~Lc;~cY-2e2a|5#TXcQmm4 zu+5u6KrO&E9l*3-P|$^}K!!fE;_9sxpy{FsJ5wK&xrEuq{{#?83BdxHo0=uKWaOIO zIVLNXZ9?-I=7*+2?(LIRJ#%S7(J6;pii#m!{>BKzOGji4k%jiRkce zFZhrDWBJp6VtD>*#Q)dX@V~`(;VZWinS0WCe?0aQMhSRcV~menWX|YB2#d`<8ec_w3|f(ee7V%H#HF-*9sYz4r%{9 zv_uyqAataRv4~UUJHM*X9Nb#aE+ai14Y!0q@hWsXf`JluLgEueN$B=3$G0P59}p>9 ze2+Q?TY|HXnO)u$hdP@5)C^p-+*1!c7G1XKJqTRR;7`vc8>=9bxrUGx7)jz@^-vCc z+r2@>}flQ6104u z2lj|jmL2a6ibJ>w$N85*Ch>J7SlgsFrnL~_S=kdXqeHuobB47y7WGgai8TEYhwaFR z`xrp`Jw;l;*r1nl`b2bu5t+id(H8MhPR}o+#%F9rzT^&f;Qb@u*~>eu4ZvZZ!#uLx*bc<22c;J$f5)YLKA z)JHoypWRA90a-K&Tzef3!M=B)(Zxsv?e551@2Gro#12|U961i{FG`=>^t^Qbblw-w z9nUR$Q$4IckyB~1mS}ywLU05ByW>_Q^8BlEgLRdye-RJ*BYK?pX zImp1>A1eI@yZUSjmrvxkVLU&d@a#chs>_rUk3Rv~&Mxb8MTOt9Inr0jgA(Lcb#QbVW@O`vlu$P+kGSk;DdSNqM4l_zN=#(fh?}o`?FBgx;+k zCal>+F$K8O;;?KZ6x&m;N6wxI{Wfc$W8JVK@zHtFcM)T<%T+}A1tnM1{=97^UZx8 zp^JQblL)x7#BP{oxyzoUOQ+h=~~iaX!J-nWL|&{CEH zDy@Cgr-x-(cpE}RNh~ctZLGfg(dwU+Wnkv{Zt18WtXyrM9svEnRu)3+aHv@VTeHOm&GL5+&%PIkZ6)&09JP+a7A!Vn(q32snKw$9&q`Gi$$zkW<&Mx#pXL5!@w<7^n4 zR6dq^`$D}?VsppoMP970GvCu=CZLOd;OP%62F~Wk&Otb^0c_eZME&x$U}0D z3T3=HSCkDwe_ENo8@<_obmfnpVG?iPub9tSGhz)LbT~5;D$M5MnfqZdjy{nU<I)59%r8-Ws}U$z{#vlGFW50&Kp!H+V4!$F2uuz#PGC z6zFq(KN>W`U^Z{WCBdnhO!>}c&W<-HsZF_gJTy4FiRkDd4%T$MKS26=58T0kZupS{V z9XsIsJ6$V6OV}Ig@9!AJ;p^bK>0a-n&K|1s+U$h(msXA7eCx-WcG2Fb&6CfJVr!|E z?&|QWNJnF%zw>Bu|Bm93=2#k7(q#WDRbS9Cnh`OXdb6M%QH#)AxCS8Y7{fN@8pJGL z-JVHgE;1%#*Y1=3JL(Yyy&N(t%i?U-0qOSZj6?mW0EN z;>=z$_8TA*j*L2DB&eY})aHqKIpU^fDnQ!ZqjN3d!dzlKbGJE*O5R0l|L7~$D;DSR zW{`nq=4@~Cug)uj_E2}Ngha1NV9v;A{TDauJUTPemexMA&T@3&NXupoiC>P23tO}J81C>_W2Whs9gz0Z3Ejs zqJ_Ywsl@r=H6Yl*I-ak)=G>KmnmcK+7P>kWTEi&=vglDARX8Q8PVKRI6+41^isDp0 zx!m|ji+#qHFl;~skIgpbSrX<=hW?jTUc$5 zX-I7gNCWo#F8O*J#i6Ds<@$r6`EGYGZ%ap_W^y^`bN1It2^bqi|6@#9xYz{Jv-{*N zy_<{gs-$!g1o=2aJ$x^B5C7>rL}8{ZKj|F%oRfzwV!I4U_^4#RH5B-NM06U+4Zg%95 zDfcusX^}Ks7@_I>a(5$=vy6P_OW3q-5yjAKx|ykMT~x>;0pRvU-Y&aHZ8~jI9WK~I zdJx47I=Am=Z6dC2;cwu@^)usMjK8lTdD;h`iamLIB@!X z$7LYyOB$`UY8zZWn_Mo;U0k}M>PBLP|{I$LnkJsio=!$D!H;}f+z zfE}Hjtvcl_gmA9m^_{)lok_KA?4Z`GEm~gdlqyV};dpgv`#cZWTU5iWRw3Q%dOY1h z2fqP3#KEW|Y%8yAk>Dkd){BO1F!~muZA`yfh~6jH5#TCfWp>&ydlp*WAX*s}^Rmt4 zEjjb3QJX=Ia{t8wyaR?!y6G#DSgj@Bq?OqBOTDYiwEW!j!L6}vKTqA`XN)x+<;b)d z>YUxqC;i5DVwd8tlUw$zeo{NeKG4XKoMsnk5nGW)$$$eKn`4S)2)UNGcLsGuxe`-6ZW z$p0B>0{L{$`*7)kegTeCYUowG6ld}cQl1IpNcb8pQ$z#6=wb(BQbjNVGIQpN{!qvskwg=$zJP=Uzz`H1)k!xt zsSKTco7=$9|H?<7vVt{Aq*ao!PU-1qXJ#%?Xz1MH-N;T)MRH7zdYrkfV4Y1Pw7=D?_I#TzN%76qu-mBVCtaF(9#%Ju zU>~3ypjJISEaCFJbPG1+l!-o&j-lxPDZMNYg5mV@MdYgmxs| zl{lF@Hc1tE92zcNkCzIasJSfd=oi8ln^%nK((%FPqeisck^Q5uVrR_%<_ z%$XxSSY=C&BzHtQLhNj5TA*;n@mE9`%Mt^Wuw`!9>}ic?MW#*ta}IU_d1bjqa5Gt z=gz)UW@Mhu=__t2ak2D`+ErGM%-O}=;kSrOK;o!QcRWupZ5e!Nx@Zu%wUx zQ6IxdhK+YUk?ov*Fn2!RX?dB`icAY#Lgv9LUr9dj%F0KujoQV)vc6yy6!a+OCh8-{Ow(^aq5s$vBD{^%-FFa4lM(8~$%cKhn>Z3B z?xLE!XMyx%Y&o5OY$1@ymiCK>Ugp6WPqqu4Yd!yz$RoBC)nO5-7$KZy@dT-Hv+jFm zMt7gShT{FlYr?C-#_2sn&8DRyAC;?~bSEy{_MDJ+bGutMe7KVwtT2*+FCk|by1Bq@ zaX`!OYY&3Q_t3Jthao~h@a$}uk8A32Jz9#~0C0s1rPNP9hHcBT2Zc7|A(0x_Y@gm% ztBed1z~JinUL*BAQ6;~tw9^)6G5%h5UgaBkPsjf2R%hM6c2wfTHGAR#oE7LE>tFjH^>w2W>b$J8cHxd42P4d?V zL<^BU;~2dUgfhfu@JR8$*q9GR8u&}O)Ma*fq5jvKU~(j7^7BBBZh45~tADM~n6Uq0 zhW_udPXDJd%kK|&d!YNwo8xu8@R^40U&Gd_+L}mI;SKv3B1WvwX#iR5IJn08J~sjP zuPVbX)z%q6XasQGW9@#`ujrmHdW#z+o#ON&=Q&eO=uycZ*3>_OG4L<O9oDO~=U@ z4Dop?JmvM_zn1iwF(n2B^WPF<;r{J~K)4UW|9KJItJt8wOZxIs7~wy~BK-gS@pT2{ zL5M=O`{t``*S~%~22Wm-I%^n|!Xj#1sb#PAqs@)KfktbTcoMTnH%n-;*Oh9a%q3p> zMw{cOy;yRm(y`*kI z5c1A@OsKzR8z2hO@|Kc8W6WABD#RSky^C|GSg~N0G~ZTcOKcQM47d|*ER0!Dw~3ZZ zKqvSbxp?*I@A(1U_i%)-r4jx>s5c~idVN${2AIVh8nQQ;bdxMwKPL*5yPU+igd2fn zuxd6BZaLk;e`@iLjy8UE8J$}^kT#UQ{%Vqgm~wN87~YhLwD9Bz2ab{0J3MHEjIG&z zls_yFzS1~6S5T1c|Jed zEa2sWBGwf3^zR54)(IjBb>V*cy`1=2^+2&Xz{}hJ#Uz^e9wWA*@I%5DTfqgDRbRxr zq3CsC&53|xlQ1Gm@5 zpq>;PyYFi*9H@V<;m!|&V2@ZC6Y+a|xr%jLvh81LOk+kZJp5f>kGso8QBkYKOsM?` zj;UrVMf9`7hIq;umiDa!_&r{(za7_U{wk-8q%Hx9oyxCof>xJZ>$Y-somLQ6HUgwO z7X!F_67nWKEHMn~$iAKs%IfEA#cyN&l48Rmv@$Ml(DJFuZFh?B$S{Q)@5+Etmd%|3 z1^e4;bbB_$ytr?SSA^y5B&Mz=7oA~g#_1l&5LDVk++qSbWpJ-d0b69*C1*ldVTW>4 z>5oso9sN308@APxz4!g!k{;?~w8(KQXlUrWcRy2WKGLc zs!fBIn)=g*tQX|bCYJDiy=ea8r9~Kht{bdjUam>Wms4_C!w*=%ISqa(^|xmJzE^b- zOhk?c{>E7O#gM3Df?O;&DIx3g{zqn^3?I9D$;dK}CO|EfaCJqLooW}pEdpEwsW1=*WLd};dKs1K0~+yO5u`vas*nzak+viago4pVUdwn z6d|*N#oy_z56j+~34OC97ry-Zl1qNnn$fsp;+v_Wz-^kj$r$1LD)k>~^xx?j6VlS& zcc5O0Vcka^l}pEueuCy_eMLlOpb_Wh;*==PGdO7>ar&WMfuw zWB54u3p{oT#!7LX*?S5<-r3pa#K`Fdy`HswX1-jMYV?a~9NLB4%9DfA z!!olS-UW@fqWKNQQJO1L(sHJI%SGiunuwXrPR~wRT+-#mL60gK4Yj`r*BvTU1A|Fl zCO@Yw8S;H1)Yy?ilY!r7XRmnBs6cGgnyakxEX(`3V>zr*xPqj_ zZyG0*;Ax*7$6IiPA=A#uFFTkiRa#Lm|$K`N3hp~n1}q+kZIjE*xmmlm~| zzu7ll{Z|2Tz+xc|y)eL>zZPs^opI`3O-$ijg4JO`bmiv}tKH0ztM;p&4x&yiN_3hy zqVy(SMl$K#AU(CrS3G}J`OWEQQGyo4x^y_&zo=_A3CMRY3VB5X@$iT*c<%OZ5$U)L z)S?ad-#q`p7gQFjS6octPWTC|YHDuHqdE!u_1)4xnPg=d5@scvFg4j2e`DM}!$)06GvBSC zb{}`LR*zp6=5`3}H428DsZUpny?4u6vbpV$09WW&~3$PBlU-&c#}OP-fN*q)A6krTDuy<;ahdcf{@g9+IjSH5L?< zoJFz)Fd-i8_=}>5GY`;w>yrbZ;ptFH%W3MZN#(%**4Q%#e!DTsZtyy3@6T$YX{m#B zP~ZK^Ks2hyH2|yNljZ1J}jjy|P;CmObn2^ZbnIJqP#I6(4@5_4fMZ)-Bt zcAO6GrAF~6CQ}Xeo&BNQTFsN9h`AvmuC^-$@^cc+>fTS^{?eX9*N}l*+|d`!Y-h^y zPiY^MOlhhnspJ56=WGd?0)n!F%w17&k83>)|0o{kx1MB^RK0jv+835qP+uCD(PDpeoU4gM+U?H4#*k7a^?b=3Er zFaL-3`aiYQH~hklsYgEHG%$^>`#F2xbaohaCe6h*g5oj#IPzA=J^bt0dzYq^Z^bFq zH+AEaNF*eR^a9)OE$aryjOTR~YJuvvO?5D056`~dkJ0^gD6Z9yB+qmet-1ozK+gj2 z0B;kJ!*z+`hq2Nd2RxqEtBym_Xwn?=8=_rDxlRkO!kWavm(0iwuR7ysSR^9{g}wEVNTB)X}To zl+lyot>OJRK0a|5blZ^$*P%N8?u>u?c;sVI!tG<0BT;L!V@X!PbJ#Zj5Cl62QSN5l zl>*$nXvu$U<;kIZQx*bA(N#+S{9Bhip@DN%1GEZXSP$ta9JOXffRc%m_Su>hw@6WO zL#YG0Lwv$L?e&AdQVBnO8vVSR#dF?IZmSc$3F8Orgo0sN*7X3JwyR`ikEimKP5x^y z*1=><7jkreER#^C;DJ*%Ij7VJtV|M}T)jnC%792mf}g@HUUATE1S)K77$ILx0#Xxl zjTDw+WX0sNS^P+qyhcfJi%Vbve3HQ?wii!8(U)*O8AC0|_iu8&X*#s}h^0c3w)EkZ zCio}K!OxS%KeDr;E#uShjXgVkqk>mwrRc3#c`|eLN;3u9hP%opWIk6VNxdbLi*2&9 zY7g{4fuNdIv-d$*g8a&~&4%hSLCB%8RNA!F`xg0J8Xw{Yztfg)3b2eylwpJedc})} zDt)c#p!prI8wr$wBbr9eW{EBFGDU`=pqh6YSQOfMZUcj-;} zcEgsr#eZiS^LuBFqSA(^$e)mF2Wxb?J9bk{)_5*;mJ!=ghfs&4SjnUlP=l| z=_MI%&R^dIM4r#EyUVIDOAg~RxIwf5%iJZZN0xQ`T(X|LB10;_Be5>~G|c5^*T!oR z)+c!;i1HggcP|_A9Xqwb`nWiy&GjO(Mj>Wr4z_U6RoilYX=Q&e`RYZhLdtdUxE~Ly zi1NOD_1y4i=)LM35U1DDG@qsrEqC8yS6H#%kLIoS$2cW2Y#TXZhhDlWwx$;toSwraz)ncW7Qu6v42MeH#Kt+MpVimL z?;PRhKa^D-MmnS5JUI3EMyRI*J|Tfi_6OoZgg9ip32^0rgn3D_*=#$^Fxl>mF=H)&C9&H^Dp=r9;H%J}ciJXRE>u-NyC^a>gmQ#||< z5h!Ze#*S9$<%OHGJ$twq!?M3!7{*HlWL=(7d%)@HB{MoO0}A@#;ze8h9DaZ`<75U1 zhXr3~_{;V{BofYW8Sqop%G_SF-o#;t%y6U~WQO(-vdrIb^LR*wnQu6{Eqt*b_$XRg zQGd4e`O#ajahLArbaq0cWlm_rt(I419ADe$XJ=~AnYrx@f6J(}3t13|j-4tx<=zmD zW67;fw+{N0b9OH7)5qm=vsAygM*V2Y>{{S=veqJVU;O;>dEn&P-{-u_XJ{Pw1V8?? z|F+5p1v<67O~HbiKNy z$ezP>J+B#_PEVe-4Rmh9zPt}~H3Lyze9zuI9T>WRXywNH^@n%h zpr%hjE%$yG{d85T*Cpo=xlFtq?>;x54p0u?Zu_~;E%Zjvd&KPwf|r%UFCRw64bJhN zbUSXq7#?`orU6CB37xc`oe3^&435a&%I~y#)wX&nADs?qGI5K8eAcFXP3uAGTkVY;l8% zL3~Uk_SrsLh6A@y25=B16VE}L&)x9|C=R@4C%7v9M<~gyx_9%OFQO=`YxroBa*aRl zQG&DoeEEc%N$@fL;#k{M5m1^`>hov}j>0&xw(etC@Tiy!j^0}K znsd9IcLP7htU2gtF`cZqWTntOwwYve-u`xbY#DBL5p-U4-Eafn;_2A0wyBmx7&7sk zEO&rCPZwcg=k{jUtphe*i|#(Rd*Vb++Lksy1;ERIRgc@Dd#BSgBG82#=|U=K%(U14N-z^ZV6>I80~tl~ad=>WGs569gb-miv$4#vssb=*#l zqYa&HuWpDE@B4C;`VR*{M6mlHppWgyazp2eCXspj{bT}2>ST3E-|B?jgcuw!7i~S7 zLj;Je6M<0-%^g}ZdJn)R%+-^!%>X5M&E=Tq2HflL?wE(H(|OeG_zGiW$MY5v#o~Ih z1zS@&<%u2 zEW&4d9?^a=8kNIyQpp=#*SOz)%QOjE^I$t!hON}+$Aui;XFKmc*!l6$L(cOs&sp8` zI(PKeLmS336Zm9hkk_`-bC(;GezEGg=;pBT3?McgyIp(k13H2pgmRQItK1*|ls{8{ zA;g#jI6X=B-hJrd5_G85yr2wxYcNjQBht#xE{B>|IE5ifN*hKnMiF-~Eg6d7dAddXFU<}n<}C94u>28$9Lmtd1Wu*HGn*NpFo zhW-nfgEMjR+oTkAqs4Dd*Z3~kk?EAW<;K?(-REaGx}mtX+0r%{l1lvSqMrsX*{3#j zsZ*M6mf!4V5f_pE@O$!;jawG(Ul^7LB3rGI`43ix}aYitG6;2 zr^_hH4WZ@A5<3_~XKc7-wk;mI?+K(cp74KvX%M`WwA2eb`?+7JQE&Giv3wNpZ0TSaOALucsapEQ-lTiEkIrceEY(}8>9EFZ`>8Fovt=bTcWBNytKoJv zrW)oBhwa!Cqs)H7bTT877?HbfV`o^YCY)_0yM!MQ&h&Mp@&@g2S?4aTOzQ|;Y4=)W zZxMB*O^*5IBOG$x@TV++oQ#|H92r4P*rLMDva3T0$^r*uo!2y7FZ2)>;0H!x0wQ)m z%37)U*e~^!Y#TNCR3A2(o&|tVzmQ#9#5E|V4>ZTeB?VLEp{s|?`^K`13(6-1#dUe^ zAx+k$BYcM1CMiBYt(~9h&Oc}8tgMW5!|XaMFbjQ+ihLOe)2Up4Nw1=^Hl3t+Yj3-M z&8i(qM$a<0a8?l*m+4=cI0YxKz&4jga6oNij&IG8tWl}SV4ysQ z{^_bT%2>T?mTKtAb-MHjyIO^T-oy4tPrZz`)E)Txs#4~*b?wcJqei-QKVAyt96NO! z5@_%VTe>`nXLEq$l#yNQ+tdnYt=UC z4cw~XXFQ*i1vu_L=~|5iHJIqz5@zg+Er#32qY2D43$k@JC=l6JC#oCq^K@R$+g|JZ`~SbaOLNxiAmK=;W!Fam0nwY+ zZLD3vV@vg7<463Pyo+Y|>zoF#<11Lqn@xit!U_NQJ;;Qk$>PdFeml9xc4R^=&r>IR z04CGLpFVcCbtcIF^ja^w^+t4+LTs<`e)6$OWoL}Z4wB4=mN%N)Vrg=%Y!jn3n57t{ z!KksZdJIn?JTRT}Kfi(}m|W`;QTQiFR{tznr`%oSt%AmjceFxE+>8%$7buXyD24e?#Z*cpR602U1))93o1@>CM01v^MNh?E!r8+IcumB#D%Q!A2_xyO z?mn@%zC@euGAsSAs#V(eotBgPVfy=Fe#aM5w$mf+NzQDoyY0ebTCNB_IMOKnMOa(d zqle1cfYw8_D>t(42 zS+n;CGKZ%I86fDUn5xyJTrk`sy**^~%eJ3jH4a`=({lytr8dy?qAS#*8XO;5(Q>T@QM(f_oea2kq6vkaD{+?z*A_u1WyIqY)rI-6%X z4oUc0R~xlnw1v-e832F4p(3C%gtrvKooN$ggX!Q=!}u5XrO!T)bbRiaOnh$LigOJP z8C>CzYfq#+GmV@3=4xX%*>@Ie^KnleSNUa6w0BxY6-v%pkYjqZMKEM7DcOS5-_}E-} z?DgNr#pYU?FdiP%g%cyX+*@LghNC9rz;}j6+DKQM)&S==g6_Wyt-gQ@%?Un#tk_4W zIH}lnzCqT{rN9x!;fzF<7W49Mpj^yZ1`iEdy(fs#`QGUo{i6XTbH`NdE+zGM0%H!u zuFCRF!7N;-Lmd26*OjzJ0GhHX*RtP238i_xl#YEhr#=~gfBMO7X;{TvQoY{QJOxS? zU%vf$YRWeQJoUNGunCXB>ED6#o8oY|vguVw*E^9V)3mAfaoRpiD|~g@KE1wuG}l?$ z!+@aX+lquxDBhu15S__z7J#Ayv?R6+7tr=?fL(jpg#k<3fb-;w7#dOQZdfhQO;?6M zFtg5ER7ou-=lA67x(x%eZ{0@x?Nu2^MHIf+ehZHCjQkfal9HOOO7y6CP|~;#G;LR! zu7EhymDPf^Ej#$*`HMe1tj4s~T{=O?^AAg(Pr7Z)pOPi%?_$z&6W&t-1 zg<7IZAew6qeb{Bo1dhB8U?U{W`mcTXyv}~(nLdnsTg0PII7nR5LGD0zW^4(u9ncs% zT%-`#V3|Y;CdrgarU>OJuhBykom|^q`U(+{87?u&y8wn#g+{thIkY65^>9?N_@J~A zx!xM2T-hCIqR^gX^p%;}YJ z7-Y-KdGAS&TCqD1^)luXD3x+Bgbi>jV&|g}ZHv3#O8?!#YtNuZV0$iJMI!Y@X1|ll zZhDFqS(zf7l{Jc(Y(!rkKd`cP)JYDv^rW0M7`mb&zYx8x6GkY`QA11wK7PR>Y}grC zO{Pd0Q6_^E+6J0`sODs1`m$kV_x{>Aylcf@u>#dIgBO%N5k_g)SlJz*i`o9}V<B-s9!s^(`ir>^U*U)TbSM&5AH=qByqO~1!AEfOlp?0kkObzl(Z-p}F&(=8sUj3aE*Z~NaD|Xf;<-7Yj~U@p=Y}p` zLq->51m6rDb2K)*<^(KZBDW(HoPJ*wLJLZlZ2b|MN+CoevQOln zlk|`qJ^nT#g3=9Jy)nF%H@KkqIAiL3&^@|_SiS;^rBe9Jw7c(dZtD z%y_FnsC}6DvTlZuunbMT<-K=M6=ScAd4Po3BAp zLvEr;PaP7B?S3TlthATEe0FcCzSJXu%$!6qgAa4VQSV}1vr!y2ZQ(H~;a3QXy$xV3 z3Y!ITEu>KRyD^5`85)DVHaq_doRG>Fs=|Oha_w*YpaAa#uWXGOzqj>Q5jP9`doh^y zO=7QWZ9P`tlPxZD!DRUFqf~7BAJNKE;(Hl=g=oYd#`~}k?k-n|q*-tpxxpJWL(_!# zUkx}hNjut{nwf$;G{tAm?_j@<;OsIV9{m=fspc4Q$$dv2S6fZu7@2L(67HEVF~TiZ z+xVf#h1$?rj}+byqg#gVM$bya?+=?*SX9WOqvP5$xQIIfJ)(0wbRQ8&vtCLj7{ zAH4TW>v=KGlMnXMLzcBimz2)3Do<*t@n6N$c>5~$w6icYo)piWZc1DKMdEPR+{|Bs z_^i|MF-$o6KltRIMCP{$=kB@s|6)H)|C5~jAJ|Xgo-&nt$MBO{2`i}q;- zl&YczW*`qapKQ+njo@jslk);|hhceYfdCMC#3rRO*@+VYXa7iCnIYMnVTLFiC z!Ry{0{-o+b{@=F;zEkA{G5+5bLBLeIFnq$$8Tmh}1eWvV|6k6Bz5YM$PBJqXDXB=l zWDGdDLLu)TNZ8H&eK=MXmF7@d)`f>@=Yetw|m zd+VdNtPS^<3-5OUSy?3R$LF1yBAJH=v0JT|#~spk@Asb*SzX;>NwlEXXT-YwzkUYb zl6c3k)h?lK`>TY2#r0qoSC;Sv0>2E!lM`|>81t6KlgAJU+2xC7YQm5-ne5$e{T1Q# z#`m8MOPY4xaKA683PSuzaJW!qf`jcm4w=k*gQN>W<63P|A<=Ds+-CcQFA{k=lt>NF z$!LV4^HVg5hFX;Os5XnQ3v@e3>+$yUO33@|YC~nRYD50|!na4?NUWUY^$phx5-Lx7 zN>TLN0^d_pk=KUJ`n{h+Mn?vM=8rS}&UF6HLG+D`{`IjSoNMA6HkEZ=(k~>a(r7@+yHj1Lr zvY_-k^X4|+aIv5a+VjRfM2a4N$7W%vsegJPhMdc2>uh#-grm`Eq44y+-me&cdjJPQ zNgo3UT>29)kV%Tq5^6SE-XEx|JeMf~GLlX*WwA6U5BOgDt_v3uWxvd>cbeD7y`YN+ zbgIN)G$w;S1;e$Kr2+mcNaBPHwn#GN>ZWx?6Pa5NAqs3xFOcJzZ9cd> zY=PoEE2EXky!9XUpk8cIAkkHWoGy^^L+KC8aj7AAptSzU#>QqM8Qu6#^xK;EE!4fX zS4?Nu^*a_ZQapwXG6H*uYQ{+NDiqe5K&Pl~$b%!o^W!z?xK6YG4ynxcP|S|Y)s1O9 z-KI2&^%wptP%Sxil3@KkE9w3fBDxs6Y#Tbxwe-g!G^BTfq#f1>vH{FyKXx%~% z##q{?uvjw?Vo4cNTwbz+@4oz?-$uK;o7KA3X^+`hZnuNhLb=Uqg(1zuGY?^q9jOnpK$=jPZv@(_$D77`%Bd!q^R1yD51o{bX$U- z!hWRL1_|us*lA}#>U6ygm&5s@=VZb99~e%QFD#ue43NpTMf`xjL}3>f7qfZaJRXXy zEaNFPzBe{D<}5&mqFOa&L2dTFMm3Xl9x|o3q_hN+I?~)VvJ4R@=U=%t<2$>lu!Vkd zOpxO)W&Ay%xAr8(W^+hK29ps1ge6~*MKP$Y7=~}P|Y%m=nunGTmxG%|) zeU^~O)bo+lnao3b1K>ol+LZ1N$5ei_9R=AF$V?*=%6}GIfE?4}EV0i)gMDNq<_)n3 zi6Ie7pTw0DzKJUu*9A=*O*?UqG01Hf zCrXUe^bRVz=uGKXMZgi1M3FhR&zo@z=s?L;ofnh`mq~bhTK^lWWL|Bw@)h#)=kK9@ zRlmU{dBK3SqWKKbB=brVZ*Fh@3A{bYvCVrDjb*bvWYP|8mw2vh?^$ZY<+YWfU(zpi zk*6=}zWS31D@)@nPyXsVvfk+#WJIZ=cbj_q@N{b~*(t>7M1r&f*ecYvDIEGAdxVpvI=)^nWX@Oeg6>NAD%-OuQnIvC`M2bVTcnx(xTkh5!Jj4Ku5tJx>?*}9 ziY3jU&;;|o#C1CixdCpX)kxTHqCWj`zTFRYBuH_veUUgC>ZWEhr9vh>S`;C6$`)g1 zZ7(DPR%1d=GE`!mCHrC^S#&$nIO&rT@qQqkf?Z?K^rkjo^A58ueHaM`2<}3I(M%w= zk+N^V-)GAr?kqKetS00tSeFx5oX!grCC25)Q2OJJwdJl_dM%HqG5`KK zZ@n76xp^oiX;w0UG7$z_{NbFxePLDEz)Bfet933Wd2N;>^DJA&igd&s_o&vW)HqAd zGu**N6dy;m`h)eF_ejLl_bmWFe@~kH?Y?{0MHgT1*mM z7RdCSKE9&Jv&noph{cr^iJjaT`?4sWxL6JKG_^Pv`85p+2!$?HipfwkHJ}6~(rA!d z9(X=marG`OXF6tD&msfq$g#YIltkAKygwA9Cs@yqm-%q0^X-9HKUI5cvY{!v+s2&9 z98Ja{i#)nrHBoR{Tv4+qnp4hty}f^ke#cfe-ct{#Tiq^zmxccxr2g1!(dcdji06C0 zxsil?dO5m>9P^9n+kfyL&!(Pyf1Mg@_~9?UmY)z;bR)%?N4?Oy-$T5>HU7jGgJm&? z15=VWq*j4SuwLmzH6WE7D3Zzgw~w{&OXr&`=+mzt*{Z>*Op+bI+kdr3=WyvWISVn- zkFhrG7X`X(*dvmzM=v9T-C@V$YhM&alktec#;zQ{li#=eT~oS!Y66c*`qV~kF)KbI zN=dgZk$@UP6i2Z~TG8i;Olf~}dn-cM>4Avi{dJ(I%J%^YDfk|YXN$Dc`voOf7hbg? z@8hpGLTf$~kz0>K zWg)eG19@R(d9qICLr>SOXD!vDoNXig+xK5LL@uObcJ;gq*K_itREzy2IIMUWKF z$k6zJyNM30t~3}j-90^ETI>xXWf)_Eywwr)%k|eUl;l$ds(AG7d6q0yvmoB09!~k@ zVCv>Y65P6yzPLtTh1w~1TArQ#xKFmVQyb+wVfx6ij1&JDr56NIG8buyQiWes$Y}!{p!eo6RP)Ae3PkT5kmR`^< zu+*oLnr|Dv?gj6j*6H=?KasVubCMMGfbw+9XE^s3(4Dn$d7_d%oA1%0Y-4Yq)Yo&3 z>1=bp>crL;38A6E(cDagq+>OmRQC{yNsGMQ_ZUYgHlD|~;u$5lx)d?^*8J9oE3=XM zn_oUOz)SAsTI?dAwkymoj1GTFxoh=hk>U2u9I-XnQpdfQbpP^@!|u=~@v zI~C6hB#)os*2F$@$n18&OOgmUXph9)@#t?*lFQpEhIU75)V zGoBfYcJsYlXc_~leRUn5WevCz$!`?$=C_k3>u*Gjpu5u*Yw5qcHFRKg_&`atu!2JL zhxI4rWj=DdKMlkfOBLnGuZMuY;{rE=V`Y^<;bDObY3G0RH_1)@E^u~x0^RI=0iMa( z8G0~bEs=Y4qT(&E=HIq13qn&18XvC|O<<>#FTCMjcK8)NMc5V0Az^;`O(#tE`ud)G z^QPi{TQKW!7X4pF4?6W|p+Nd#)O8z#7pUN-Q+O2a>?^AR%D6H$earO@KUhZ<{t0Q8`hj&4oVit z83SA!_AWN>;Najd4$O?l2jZcmmJq?XJRwMOkNH*qQs4<4Q%?!9Vkv&{?+O&MHLOg4 z+q?{Lh#{r@B^N{K%%BKMV6mN!IeiHTJDe)ZLQ@x?|e&yoZq`h7&%uAOj=);iFs}dyWk{7)*(-H=Wu~y;^+?og3Tn`{4SKaWb zpbB|enSs!pqCq>P!t)jd(Oe?rppJYrnSv-NkM{tDrWc!sV-4~qMF({YckCl3ZLkT* zX*%r=uZYNuww=3-wy9rK=V<_n0hVKIPw9duiRaHdMG!z|IYPw7!6D)5UmSgL9#%C5 zF7qAvMT=WTes}DUB;kG12$!d`*A+S2^KF%d)5Av00!pakAw0ZoUAdrxeozGRfPxuV;R~s2Rzk@n#OhUU}$n3N!XKBcS1Y|5Ow;dIGP@m@q zWC0wB$_fJU53E0u$?PU>$v?P$cDenN6pr)1D!WLbR--i1BT7SQUsB}#ccDW6nLMAZ zE>*+n1eo6g<>hBPmz3?`+tj^Gzb2dt2SRH(QUG%2(uhtos29~`yv`A9A(T7M(zb?nt#LrtQ^ z;tEATu@Q3Zf&w*4C*O}WMLA=F3Fy)1FjV>)9V_;IZ-&zgDxEKuf;wNJ@efsQxQgV) ze4Y)!DL(RynlAX1X!q0;u`7G+Fax#el?1&s+GGy#FtGf?zvu zOp%x=!ePo1@yPWH%$Ir0pwkmFc!9s$C35QNjYJ&IZv^ZP#}vf#h6dpC{6KbSST)To zQbP{LW~JGmNb%MDWiPsuo4tuZnkDl1?MO&fGrhP}j!r0_9Qr3$d-zxyiFnCp{nUOY zz|~oQSK1ZdI_r=-D+&tt2REg=;TQZ07T?kmusBhk$kO~iACcBH*=i}`ag~%c%T&mv z!>N5j1o$`m1;+&YcUU6P%|M~+1H8K5B&KNC{bAM%0V;Cb1aNPb^6Ur<1>p~nYhee@ z)s|&VFyI@=27Z19wJy0qe^9JqgG<%QWbz4)GuaYawl{akxC~{Pv)UZ8eNH2bLl$bK z+&vyH=|{4R&ZA)knE{`clS+TCGXt;Rt~cD$ltqzLCsuWS!MY3a;0A2eBu`$&K@oz9 z`>K{E=T#VSGPr$HfM`HXgFF7M48K7M$NY;uC0lFkx_% z)QxV~iIUVtN%yxMK_p`ue|hlSq@jfSJz5Y+@H~q_|57QplH-B|xKu811gcI*;ro^1(JtWT@k8M}I;)daol0B89s$-qa4 zY+!|s$V7sgt>AcVJOOlp_&r-EePSgYNx3xU%@K=FIYdcwLh0gyU|X29r`^kQf42@W zZ);Qv+nW+eG8M~<@ofEs^YW>=EQP`L(qy;>!D`^p(X*mQLqA=8Ccyr+R4}SCRch(( z@ovTa*eUrKUSoYi2$=Wj{MQ6qC@es_=kZG3}&oU-xERjo#3MCLDIUcGf%3$g_ z*?7M-<7SF* zw8rbqq=sL&g`OgjCiAdU-fqnMdpK`Q?rps>Ws!fGgb>~1Tu_$e+u;s?L#*CxhY$`aC>YZ*ucB>@zug)YYs5RP zxm=tOnOE9(*AO0qx__6Pd+HI!W%W{HRYZY6kE7c3V_oi-c&5t>RG#8mv+QSsPink|Ked~ey zJ>0bo7q8oY&zsC!b#MeLn$$0iDKN%hKyU8YvDF$wrw3C1qbSqw3WMkjFu+2sQ;E0J zPX*g&@>q4~ZFknl$XjBiXK~DFwbiX?wq*1?-`~_iE!iFIJpcV6x38ZE9Hu!m$%F_h zUSTPzdLQ7N?47u}XPOE};m&n``>i)H;QO_~1B~93P`vFghuz|TZNp#dF@NSZOY3ZvgVevE^iSP(6u&4johChT@addGq0mwHy>HC zuGkJqZf*O`TSOBU%^C2Ut&hjg%V29gs9C?4t=L5$-9eX&mM9WeLtJaJ*;Hb+(|#eo zDb177mka=F>5KkYq{?GwuaTu5w7ZWE(A!Ck>e)oc5qji#mMJx3a2w}ax$Ro;6cWOmN5Mph-2fx zx;&f@oY8f{(l;2D9`TWE0f9&U;;l92FjA0KNER16n{`j->+~@?#Z{;HvXF;aqG0-zN$34%CaUno9 zD&@WUmkTLdm72l}jU}D+i_(tQ5e;k7JMFdZFN7gDGSHp&O?*a`4d(6Q=9{yR=q4qJn;`g1LfapNC7IDMj=|^ zvx~$pr}6byAJ=VSL-8<6YrjY(#$JihkXBafpCPOA5um4A2!*fs0}sZaeAlvA5~-l` z4rKz<>6@+dtufNK-DdIWM701w*-zOX|? z(ewgta`T42fL^|bvCH~f+j-=$HaC+ZDYS+|#TI^sKAd^|v>>H){Z$_ZQ1}!cNPGJG zrP94Lz@sFgdS5Ry7tJzj&VF`6f2Mqci8;h20v}QcUJlji@)F8;iU1u>8T3Ev1xa?# z0=Xb1mF~I82Kg#fl(u(&eMRRqV?{l&ZA1kAyJ1Z2`ty2Q z6#F|9N)XmVic%`$Gb1$+orQa&>(uGp-EW?g^|k^fm&Z3}_qMk&M<_DWp$b)9Tn%tV zc_PZXOR=5$9R7Ybe*svTN$^HoUsIDHy^T(NC(|63+420@+V-#q4LmgVw^L~>-?9Bv ztWh$XYiYo{OwUXm6OehR&LXcoa)A`t3ss|gPDMU`bb0HnYWol}{8V@rX{Fy!Zg6#} z;TVKS-4kjAp~fb}o7Jzd8%503h44K>c*(A!SLBd4px<}Aptq_Xs3;Af-!_ih8eY@hldnWUb6txzPe-05v zx(6|f3smc^nbheUSo!IJ@}DE4eM(ilzfmY!;GS;-Er;NjSx-nP%4d%m=s!8Pb$BU5 z5Vv<{9Ew#+m{~8cj);j>y5PpV0NlY^h5X6?kC4th5K%md3Lod>XWcnVW+?Snh2#uN zDhHIJB7vZirtVPAGr^eC@* z&Q`pUwA^pzy{kQlQGp>U2et3i>$%nW0irRbtxpWw_% zBddD01Gw@ve_6Bwkup6d`U;04JErcE=MoaQ^}Ukk?F+zH(ErPcEGx;M^kGjan8m)> z@a9c8_P)N$$n{@JAqV1_0ZQr4v<9-BG*Td81ij#_6}ilMYY%#6HjFa)7ruJDOi*>f zak2E;ON$m8+o}&~cz+yN^;_HQ{QTE5j&Y&&u2K^wk`8X?dk9$;JK~7r4Fv0C^m?fd zqZ6kaTqZ@a`_nL3vX54ETXZR>0EJAs9%g?6wgk25@do~s?R|tuVJx12rZtRR_l7{O zX{AY8x6~OTW{`Y{=vBQ`0YheBP0jsz@o>f(g28Qf#)cP~kSqXf?~nYnS+LUl@q0ym zqtyaX4l|Xfxt{gGLs4`=`DD^g#wCzs?hlcc*jt%YSioQ+GDd$cB=nua5|nX9ubR%A zdvSbswZ|2Xt)*mWv_B&n$nYCvNLItMpg?lvE8v8uRvVozNpb!D-G6G^pWIVrO z2yHHUBX|qh&Te+8Zhs!AkosUnO&@EW;qjtbq|7WfYQYpk_crI6R2^?h#Ej>P6~D(1 zWvc#l*4;!5$JIcM!quV|%bMSe?~i+FOCPTLq)_v zpYdp2(2BJMp{ky4cc(46Z%bIHvVVZ35tG#-hLO;@4=}}3sQu9Kdg=8kSdfyh{4VzUO=7Tj@+@d6%C8LY*kBF{vYDSlj}HrmMM ze%@{urz`Wngg#ZAPenxqSx@a(EXMpn31lK}Nyw0QWj4`O;l5wDRcTnJaqQ;29uJ$j zi((|?rt}QZ{VWcgP@AXBfE)dYxBB}Min9}86X7Ul7(MNfuLEePlji3tXE`gpP z)$v$@`EoJYr{x3b&^Z4Y)N_LT&QctdF;#V8H(4sAu6|9)fopiei3n#hQVs`|@k|;ew zVS}@$h!JW34tg*wz}tp>2BoNzeDd-L@6Ogq(BC?q4pHCMymUarZbZ&}w6?9|fsq&` zOQ$K8HgBs={m*sEK~$OXUDuCSDgr^$*UUe9xhZJ>TMIB#dMar9be^LcAV2caSi4>C zQ;#T>l0e1O(SzB4a27w#!J~RkVd_ohA>%WB7$^{RJW(fJ~FeqU=cm}h-=T!8Veh=1NWFR0@UR!T>^+y&M z-5NyP<8GnkzWjC=4Mc}kYF-{=U<9X6zSxYZL$!k8`UVBVC8beDsUdIX7b};8gCINf zvXG4^T=5oT9?5PKAen~?4%;>i2ZCf`88j^Q#zT4I5}j$qbQEXpR>q z&hD{Ih!`~5rNKH*y^y-`Q@B4x#d4!4MvBE;H%?<2h)Mm^cOtJq0| znEq$nODR*>g}-DUFC3+v+OrzZX@6LYefeG}3EFJbzb)|rGSKT2!iaJ?g20z|p)M`Lbj}{5^{7dauio($fAr5l`ana!e z$CLP%?YCM!tC6W5T1SjWuDJxE2W65md}4QHRZMRuJmJu#YqZ=b`Hxw`KZxCLW~&1P zuog?r7{Ks%YrgK2i}jt7LnIo}dRJzW!>+oKPS=xxZWn)cezHa3M+fX+F~>C+mG#Yl zG#zD_aVPMNF@Q5djgmXKU1{G>bfb%FD}|vl-m(2@<2Kh=e-$2e513ZAASqyphgUU;f-Alxg?>^% z;1HL|{)d%=r0B}EI$0_I8NrHHXFcvupPyes2z1R*TJB^%5T%gvh^&gwRyWN%qUmf6 z19LM?YkzMCuXv&-p=0DC>Uy|*2_v&O16a=3kLW2n{b9*ufJ$^Fxn%H#Fq*{C>~u-2 z#Y|rhPCKs z`(+@sYwQUE1bQ-uH-4dX8vY6?hc0*^fD;VK=sVYQVHQJfAVt2O^X2-(+8!=zlyhDw z);vy?&e+7H1=`IPuN=lGU0(JGeLP9b$CKR3h>}czAM)6g2@h8FB|cm#=}Tz(a)C$+ zrn3$2`dpsRal{iUh#I^6^1NbK^OS&d4Ck7%NOd|jv0gYFYa#U?N;O;xWyN5xREQ)9 zm?+bfA+F{qpXn{lP(R}a0EQI8w`iz*x>@;DMJ2?{o<(~sn2C8yu$St#{6|{LeS0(K zubq~iJBcn5;P0Qew!^3+K4nzr#W_U@{tB5gx29y_g0sMR)6p#(A@4T{|1KvsTh*4U z%5y5p3Y^f2m9iZg{_~N}=F$maf%c`-fT)6-d=h`pg8hurn;fJZ; z${)nx2>}U%R;j^n0|UPTf*4%l8-)?OLT90(QY_|Gt@dhE#-b+qQuw<(QsDA#e;9g< zxZJCR8&3#*h4Ac9_z&q{1Swd ztwxMD=Sx~}NEi6v{ocVowgu%f8UHRtD^nIsZ-zz)=8t0KwW@KsKA-abY8(qi56q2PvCxS{l z#rAC-`rp#4Y|T-D*mgMIZ3olK<2sig$iSRp9-3o13rM`LYAM?zJp#`7o`Ia-D@8&d zdJo|GFoC8D43Io*E#G1nFZdY1O4+_I7X8;Wt6ChqM82T!Z4Dpvtq!0^`k$|&WXpIP zF`y)`!@vuVSv=M4H9PAEDbz&n^VK+oE^x?Xt4Wp}lk@0<;|P+L-}SeH8|@zRsE)Lg-Ds#XC8gNx-dR{0zp;YihuAYofPoXmMcXAs=WBeElJu`E zkL6u{V0t2%$&LVzK@+k*Yp%?D~$P$w-A;hGCXG zRUYDQWDmmTvRl6sZ0cj=%;c+b(x_kXwOGYFd4N|rEZrnWHLDLjJbV?)1SdcCgI`(VC>ClBI-ux zaMek{B3{KmWI*-NwM9c?mCSHP0gNH|p#@Cgg@fy%?5M4USsluM$aBSk zUjaF!l=~3@|-su zzgGghKu|(Z*3fw+fba}uP;m!k(goA*GK`)Lpe1=RKLQm7G(jEe6BkD~p2-OZ4Gmq6 z^lpla@$O2g7jJG{JM>GS<+tKT6Z7S#tR(FHslaF8B!*4$MW)2!TQ;X&aw4gxBH25D z`kEBkRfT_}raf?3N*9~V7BqW#c|?T@jqi)XCE;<zZb8tWX}fY3AC{HH zX{BFYhR*~YPoHkbp?SIvLT`H_!#@fwn^mF7-gzdN!GJj&c7Yvtgn25Cn5KaQy$srO z-vFef7~rSmN43^$+p~M$&t-*`@d1EyjwdUchK`AiUJf>AGnEtj2|* zs*T(320vdif!IMd{-oso4<(>fvp%VeS!@Kj{)?YHuA!kyX2}cru1pvrz{UI5@9BB+VOBgLDZFN*6&Hd2)YYOF6fiC60oQ$BDxWUQK(6L$vZGx+*^fjrgxsIUU;_(BAX91*d z^U4FlzOmM5axpkD{;JBH1Rd5N*RmSIvy&}Ptyn9x78nZgqpF|p>#zB8Np-Y|RG0

)e|McvUR$myJYD--f3jQhq2(B8Z5xuuMC&& zlYZah`T~+hgW=wm>5ce*7qd;$#)gvTC?k(23o?iEzbL)l6IG})t<&v*eJ3B3Czny& zIp0WW+B!V^aeOsD^9f+W66ONjI*W{{S2j<7y&)08ld(pAs9n6+%Kz}5D31vtIkQ4~ z!1E)YhM{e8uqj zHeS%G#SS-trKlz;hvd~=Pj9~j`cLLI18{uccu<@!IwXnAkFe4N%B{d5Lrx__Cgt9G zba3s~X4c4`YB~PycR3#@0nS%(QR)%SQm$)D6roBS4enft616rzG^k?5DSM+EA1*3& zjUG7e<%=q^@0kWmH=)62fYthbB10B;+g2OwT#7}qZaUPx?E>P*vNaZJ8q8NP0vXD; z3vTMJ8yFKzBvL>#=ekY}$V?=&990O4a2CI z-1NfwF{s}nZL&HGl|TI_;)QEH>mZDPWGA0k6ubU(w-NkLTZmulDJ;2PeXXM%uFMhYK2)42elKk< z`((Aw_H(7_QI&HdnS~ESX5W3#Z0MO@H^jirl{E%&=4NU=)7_r7lg2`dvJ!`8NOLN;V{qgpI%SY$HNAS&Wr{7X}nT%MTZ{*8@Sal&kq#EY<3F z4QaOv8`3NHvMUb!`t|vEHO!>7|I~`YZ)xLAIxPVZ^q#(dw!X0z!v;yGH{B4dA zp`l4L76LmqpYJCY>rDy1{?rWL)Ritaq2oV`ZO{lT!LR! z4^gt$>j~X>>J{Ht+P@zjv2?1J*SH`?lB~lxT`9~W?%hD!G~*d7 zk+07O5|q08#xusNX!i_yht=cjo>2krd;R1H=Fw0ksDnL#W^Id$+3+MY0+vh&0DJO8 zOHpbl-#FYL-zwE`STiAYkCk%JzUGPH)hy5S&ii1)3+1D%{ zZzPRCYMc9WH9wEVl|hVLOEU2!t5W-dupi#9Pq5f5;eT@kM#}ppk9F4D6QYSF=uO=j zq|;rd%@%+d>AP-6T&TpEmhk_I(}`(1v-c(ASqu4MmwG#MSG7t#C7M`?(_*n1%P%M* zekXK=!Pn*^uM6l+K^l);@*Twz+b9#Qrxg)`GUNQHYs1R>uws7^TK#Z`3}q{6+U}dU z9en%V?=QkS7D-g;ZO5sFwnD=wR4!?lNUNj7WWgrx)^o^!A|sJ_gS=uYOz zBGBfHFOVEY7|A$njrq1t4r?FHnxiY{Q zPvQTDZ;mSZ6PF`JpYcHqy4}XeEAb+CE+z%$H-~1~?%7dtKa`rRB=Van1kQ$H_EZ}! zvZpl0>cthylyT#!me{5fSj2y}8I2nL;BM!feqPR7pfH?}V|VyYD_B{CtY^oy1iY?N zDrmcTY=Iav_6fHOQoJh(nR>CYEcqw!VnX--JH-${2Hi^H$$wOBuo@HavP4?G%++7E zm&Y3A?4?@aviMWt-oyg^oWs1o((6+$MrjF#_Z3W^Cq&Y>b7nXxINS`O5^2tH@CVf! z-13AYvCThpUyucvL84jQFWDqsfQ;_!`Er_J^HoAEyrR6RPc zG$%&cVw((E=d8}pITyWU(;I7=KV-SOINq*AvqA16Jn#<~{&7tk27tEf;ZEWDk}ofo zVALg&sM+O+;XAWs$%X7AJ4yCOGwY_e9i~s=i=)9xU=Vn-=yXopnCXgT_1!k(bh5xq z*id#QFwCT~>(6_TQBYR4=~BIH5+8^2OBf*7GP6`Jk%vYWwA8$kTpq!u&qdMhn7&ZN z=#V9qWFuB?VlqF+vcG7w${@hmh#LCP7})Ma9yKT#ioVBF=uT#%Adk1`{f#M>&8fhr zG18J)NhXyE+=YcV|7D*jG?7VZ__#3tuvjyv+FUJ?@0EaJ36J4`*-|-w$OX+l$7V9A zOny|Hb9ZxuP*ba{b;6?UX{$3@wx;r=b;5K_aOKvVW3=Re>{Tomfxr1o`)}D5_r5Ra zN5ULMJh;+z%isHTPhe2JFu8U0e?8{e$y(r8v7{O_3x70I(mKV$+qF#KC1x>mWL__H z$&-^lE6}!3f#u89_B+TvhJHt9I!u_WQEbCYaX~KoA{yVw!OCdrHi6O^1wq_}#Vx=i7fIr|(Ilrn}dOT|bUzuDz=vs<&*m$g!uzyZ4K~5YDH>*&6 zke~EbzG%GgLH6)wf3v4RP#ofn-tB05FIKy)nG;gcWY3XTvd`LoSCn+~E5bk|bXZfnm+gNwn)8*#(O%G8Gp$~}j-xN0RREfAd zvL>&NGOiF^-7uI2I)u}RC7wc)k;jPs=w-xKUxHdJWPO?|edWqW_Q&G>Y6+KoH4dJU zb8?Eo?O)jA$<2y$Ib3FTZ?2$3jC$c$v|yaCkUKks)E$gWLH_ojmB&?Jbhzf;Ajf@c z>Y!*?R)iY79Io7EGABWv=YZViJTZM#srMIIf37NH{KP?vPLCf))+4Pofnx24RBFV+ zL(@i27oWy);5W-11T|Y!U_QzZRfC{YWg_10aSK;4s>ITVpfd{T@G*==Mb-gc)Jf-b zlkGDm>J~@7a1ia|D)}d5u^?rUDRAJ#D+s*%RkZQ`YBOH$#OAEb2&?mS(^4=8MtnM! z7NqZ(ZIfRae=0LK6-T;2?_knm^NK;Gs=%&gEI!kyCHxpys&ryJV%6|e_)w*xS3Agx zO8Ydu9biq7hn{1#W*4e!GN*ts9Y^ke;s>21*jYZ*4`mdR#jux4P-6^C9*&dgiWI_v zn`@K_yd;f?Qf{J2utNT%`cHL+?USz^6YRDQv z!Oioxef4haeE%^>*De9~(MP4*0V-XkCL4l? zhzQl{J4{hu$&ZAF|45SFi1rvi{}JbWlr;4>S3xvuK3uT&8}d|`{nn(uatL?Itc2(I z{w5@JdFL5He|y>@uPjaInLT+_9)ij&Q-grhDiIU^>FK7*3t>-axzkhqkVj5_5(++( z48`C+@)V)d2F%Y(ZAg4}rZ%VXKeP2L5Ro(je_ zoZR9OkDMr_bfD#Yz=dP)K%3|fT9yxL1JHEfId}3ueT}Fx_#bwatPrKy_4W@NvT>NJ z`_Jw2i>#fE4k2(Z+8AD$$f-a$%MB?E+DDCTqbjSN!K_aS$Fd_VR_Q*LD}};`(j_x0 zdK}s90{7<`3l9e|g!h#45;P1fXk}(&`EJik4dxj0m9KGzF$25? z^bMwALb?9QKweU8Hy4+6+Z%aU!V2~`;v^X7pimzd z-eAmxqWcMI)dm}AN!DbbqFl$*uhKge$he!jf3jX>BVfo_Sa^_Aw7@jOmRLMvEG=R+ z2xM?XA$;D;gG|&LEsm#I`!bd)CHvy6tRlHKnZpq=V)%24_itssTL|?zw|-fgWQb*3 zi+(|h^f9P0V>=3t<0a~&sYIhn?QT&RM55K!q(TMT5s^Zp;}-kT(TTHv=(y52Bb1}L zhjJYgjmL)^BX`BWEUhs8llvFlNbi4Z0otjEkG`1SToooYlS{40y%xhLF0hcYhX|8S zD+)g*U{JZ3)hZ&CdKF5UM@l5!nS2Rh7>c7)neOy{rve|S+gzy1hFNnuZ|9vgEH71U zx;}75cl@ys@RT=ArI;&34q`HSL~tn#ri2QIhV&2y#D(bC931-K)Aq+H%t^Hct0|PI zbcEo@g%mbuC2;CwaizK=yMfKNuh9eL-q$l3ZG#gbyRN57*Z*(YU}c zSZIXiTF9k60x}kGRwmw}#1Fq2e9_MF@?Z@0)U3}1u=ksWNI z!`&(Z)pXi>ksxcK-c$vN#|x#O4(azcP6~O;wh(11m-~Ky5TZB3+W~Ta0Ee^I4|d33 zMQ7Sx4>Wsj+lo-3Tm+}0@E?t}D$rOD#Tw32C4WIlgty0PSo%JVm8;>3D5iHr?=0@-y#Z-g+e=DK8FHT8r47ol)` z3iQWA|K^xehOQm7W9&GWm6@(X5V3J)xh;m4TJyj+6=Blj3{#Jf47;YGv9w(QQY#kr zkYZx`z*@#|Hm@=xG^X*2s_u7V&!hdyUp+;FuOSSY_a`dfE;hO*UDL>R?iXtYc^waS zm)+#btb>Y|Fk>1ljv`QqzYm`Yo4YTM=UC!c7COMeXrX31z{a!SmlI2;tIr~HmINnH zvIHhj2I+2eKB@;{0^()-e-nTD@-_1$H_)gmqsSA!IgG>)G`rpU2qy*fV>p}F%vD%< zWqIM1l;v>?z<2Bq!~s0(HTtkn3uhSL=7YW;z~M1`!(t55N|uRvtxgxg<+XdEV`*k4lpq|$n8kT(^0(*fAjGQR z3)7FMNGOv~T5XBsd>>4Xg87|S&~oN6tFonE&|`}g}}gdIrzfKVV$7$?5LNc0Ga zjGAAS5D)RdU?}GoC0e93J9CAfk%?CJO*c=-_xK2SZaHdX0--=y051? z*>kK34cSQ@ZEahF?T9}${}_!vVgE}x&Xj9Mx2(c4tJm5+TSL0hpEFV_a}ru>g>cj| zo}6H{ObxEkAe=BmY)Fz|mEumZ{HNeEW0aA=o05*SKC5BIxt;52k7$)<)=YKWKeFV~wA&Vxr?K zsF4Jnwz_Bs00`FpPGF#iRh#X>bZ2~}M+tucnJYtj{w#fYRDR#s)d6#Virlt^7Tx+} zIEJ^xt_NPnuKB1$(n7=q|3Pgg-$<@h+>Q!a6DF?qmv442rC$|hinl&22|Zox6!hJX zXU#~Wq{FIdVywuMez@Yo+?gqE2o}kI(U4=VLC}#l_BYK;vRPLDpe@DqU7Na)yjvj*yjWltznX zgIugW9tg)`)RL$&)<9fHOnd}MdszeHo`z&=@U=pVbz%iQ%eMk<9$~g+LrN0r%*Q*i5LgNzt{|yVkni)IKobdxfE?KEeQ?tn% z4r+1E`yA_4CZ>?i&e7f;iSQ*+v^<+P3d`>F?BSZSCd7$u8d5&6M(5R1 zB$tX@Zww4EVX@m&&N*EZOm4K>?vy^bBI=N)7gH=AiJLV+HK<~IXtatgx+AN@MLi+Uy51?J{XZH54zHC%={YKi<_$n{~E@J+AczLoc zrP7j$jOTWE{nh=X6B|$g5Kb=U21)U0oVdU>n<#Z;>iN8BP2Vtz?=0a8M$Sj<(xLvd z2>g)1vRwVm=XJYJ!+d_LPwcp0qU=V!UxwVP6pn*RE`guSV>x7-sjR0)X931edOB*lOOnGGO%$~j ztkel^#n_-a%$Yq-`n3=h7NugBNC&Tr?N*9Qnki96B?AMAn2X!%BdK_)vQ#Z9CTgrF36jmP4nePOXz0znk1IN5SoXh1nU9*O7|?m6n$}pF zX4~z;Sb#|?!8Mi5AF(E7--0DRuKb&bXSuIgw$-S64fhTcu0h1SyPj1o*nuB*C5uSKK2(3#z>tABL-*JYzeUlKT&zV z+_O`QWJDftJw@Xdags!C{k7ed`u4xZZ3O98=J)awX;Vv2a8~`47sDzae8t(dT{CK) zg(?NvU);I=qdYRd=%9>eRaNu$-}go$Ue3yYc_RQyY8C4!zCYZNJ3b7d0N%>p7e)uu zIA%K)iw{qOa=jBPiyyz=jG8ZYF8;UxiVFG(HJP}6iS(S^{FS&?6hlue)^#E`h;oN- zh=7c8l_f*_<)v6n!cGz~3&4~A&(ta{fgjg48f4y$<-BCUGuGs}+d6v6)BSDoEGRs> zJc+;!Q zAmp^SFDJ4egrxvTl?YPQDB4f17qDu-wMaDkQdV7RTtUHa_Mf8KC_J}syDn>}DuET# zLcq6|SJUYHSw?mdbDenmIl-S|YRG?UYaEF>wFqh<#cL-NZPk10*(#+7$sL}T=1K%ZX&)zzLlb)k4O)l`>w0@tMvPG_~)jv6|SeBA#3@)Z( zVB0>q1t4j3KuVRkHK&!_)OHJ1z0okz9_ApP1NDft9_;JBN*8dvXa`eP#%lF)~ z|3%dvl>X5vD!->@vg{P1?2tto!MD#ZqG$gt15U~3t>OMc<)>Csfg4ZVT0rAm+kl6F(+Zm+HXYMyzgs;@y(5!TeHgx_VLL{&G%Qz%+_avoA!pR zX5G$uQdCkMhGic9{~Z~`a8Qv+_j@Hb-h67!2vWGpNI-iM8HvWt+y|fW=a0xX*ihW` z`)kqvS371vuwAZ4O=tJ~c3Q-vP zZF6}uKHDRP%q{^gJ(bHVBh$ETH5!JtrKwoDhfSv|5*44XV_bVr(nJd1`WNqv0SF+5 zG{{<=aSPxPJRHu|O~>CIdXnq2?@r~7J`DS?AwXt}DbidRKJ9SJ`fU}V9*5_QmkMAA`& zlTb}M+S~g&v(8GXG)oKC+Y_nO>ze(?8zn*&z-P|RVVGo?Cob{WO~LJr8-7~C<1vMa z|L@cbQ%4Wq+75OG#dRyd#xde>lCZ`K(lm{icAx%vd9T%AT&?~ohCb2s+%(%gQnpsf z3O6}|-DRHzk_A}Bhy=f>S9|w#X4F*haKmzmd=1DqD6C9%X zKQz#QGd9 zsmuKkmBkn>Fi|wIITgCMY^UVN6f*DjXRSzT%^335e>4I@N~KZ?}l{a(T4M@eMuq^MzX^1VC2Yua#~>$ z3pQ*18n3sz{eDu@bzG|438H`F?#hmbcYN;_!kRvq_9kzV*{{H+u~9;pbNSsBOjeq8 z*u6H2oe-`LnxKK11fi|Dyr68zJNfG9Cxw=owtVNg=!6Ml>XFT?oSaN@CtVtJ`nQrj zKnv%GZ(9?&>u)vQ|8e^M9$IOeI}@4bJQwo?TpB2=pDl0*V!Ie2Ia&A$e@4m>9&Xpk z2w!B3fB)M76mUycYm8b6L1W6{yglhasW_4X z6)xO?+HX!KS-`_|Al`?kh4}+;hvXUsd3jtOz{9b$}$r;Q|wXLSI~r*@&jm zaj=Y282BXp|AK-#tZWKhC?AKI(+FMiDR`_OdP{dZfcGzs_1=WtAYctCkF4O6=hk2% z!dP%2LBuMa{9OK#zu4sYfo+%5w2VORHk&b?(jtBGUWGoT6S+zj(Ke>R)IK)%n`7<# z$!AC(cxIp#;`UX96-eQ(diwCRk>2J2X7V}0)|d* zb5$@EX*zY{aHNhKinx3msjy$JNPNQGy{aFko;KFb0PY*A+`n#|{Y?u7d2dV-@HQ3& zI3f{i_SD<0j-}6`?v2~4_Xs|IN`Oj+%A-n;jV0$oSnu?WhJF``xQT6AC}mF*CUTC6 zGSyyWj`X7lo@8sA*;Cg|(AreAk@Nif@f~9Q$)Em~9RS`aBLz0lgCnGjDO{wkIObEX zg9GdfCeBJfBIyImf*xQm%QI7mso)oKrA__Ke!|z=%ubwqhIy0pF{|>ZW8-&uJ-N%Y z>ykgM!C-Vo_zt5cBb(YyH!KD9TONR3_CHwtDo!m0r)uU|3zfnHoe|(5qfm`(&Z`Uz z^3SV6kbSv3Pkuwj;(;wifT*x(p0wkeIdr3-y{_)2U;d(y+Vb$28dk!lOC;&4B$vlN0UA3RniaBeL z&EAn_-$z*KPrsS8Yd_>In?XaLo^1vdhr2jC<88^6vsD1ELhyHRQQ$I@WsPYjus#C{ z9@zI*1Fe(zkGJdLfO}`__H@13d5;R{kHh-=k7@A$)$DeH4oosCbRNaf7h%)J&Pira$KB+C1}GyW|Ced}(^Y=fF-D34 ze2S%CYCOhghjYGchR@c0%9vA06kAQLC3%l`z#^&88x88U{UcK={oPW;?Y{6%ubuU@ zSMJSH&r?8TztSA>`I?Bxm$aE2>(iS#N6hlP0aq;7?kHt{u_LP9Y{B;h=jlU2m#fq= zJl6lX4)QYTcv}olpS-$;wxQgx2NG?K>dk>%n z)Yz}$pV#u`ySrm^sDZ|zlF&o+=*601VwjIlOyo}J&wd%q&aN*tP&#f8A=O)Ppxj?B z{Cvq8sP=!QP{uV&lk|5zLKUZux6;9BmhZ7$<|egWWY^wnE|za&*u@7%1#Nf6-yN)X z(HV5jkK)Ycb|a{jOmeH?PyXex#Yg^Z2eL0!wdfs+e-yW`B+YX^oB;(;8B3RNS$_J8 z05YDQkU5@QiJ*^JU0cJTRjkBwCJg~v?MK9IhcKE8rgx90opf5&#T!q9S&;~I^K{jk0JJi0s!x6-=fAV zVms`7|BS%=oLx?<;rEl7>NgUZl}By+41Vub$NjgM8arZ=)b$=#GX!v=QkXc#F`A5F z;NBV^WS=@$*bxf9ro%kCJER)?21Y&n3Gu!Vdj4I)i5>AE8!7I4$Zh8IZUz0lmAn*GFEWu?tuH^9etlz4)zvvvIh2a<^W_8t2hWF7Cg~;5n(UlL z)Q&zcPq?9IRfQ!R6NycjpWXG#*;4-3_F3!4jO0NhvW#>qIbMICyyg4Dh_)G3wHM`lbqZ7?JRzz5xlV8*djt1?`x+c6RM6u$f zD)L;x9QyoDrZ@tAKJrJC$hhSp^A*0F17GrOHvT}o5JmI_X8lRHl`{RfZTnH$AJA*3 zEy|Voa2ZCN?uXSmEmu~wc-}@Q0`r9vyN8;86ro$r-^)~E7pJ{SI^$$^ zD?K?@xh2e{W=Egq(!tn|@QE~8@fseM{8DDKp~17OZJ>VH2{DX?Z5T}L?TlSQ?kdcN zC@V%qPIFA9-W5DW9RmPsK&5&uOrp)lU46W?dQpxyQFzO zBL^Ewm?>J5gWBZUCr1;SZ*QYRLMI_MfEmHN)|9u|0aX97?syW5xZ_+Q{(c8f7qOyW zBe3-&e=8<{E~@l(4I_4Fy|Eb`L+WJ$S3MxRf>PBC>F!Y@X3)^_O3P)>cSdYLUBUXX zRK>;O@b`O?)|h3!BXh^MgPm5llko3|A~Ij=ZFp3Xgis%Q;vyjQ;v&yUkW7to{OCFg zi&QUT`Cks}okxWpl-KIqNLT;nnL$)kb1^V&gE9QYG zccSZ>1cyg`Y`u_jGzI!T@y6|HY=*NxA&sGE>&z7*zoQ2_o%dX7a1K8{I8gamWw5Fi zKjlGw{$uR_bAQLFdPP8Oaq@Xo61rx%$X;zQ_HYqgqhjpcUh|g*4HZ?g)F~Mj%goPz zCpuzT=dD(mcdqg*) zi*`PIF5(5_fhH$uj^A#Hn2?d3O<4dV6<|@L*jZ61w`FLzEq4@suOk{y;ZPXpD^yB# zqi_?I>n#Oil7(9h#X^%Ju3B;_27MpOQJQ+VyxqL@TI;0>;tm1tf=M9PnORzUVJDMt_C{&aY7jAT!V00){Y98fd^Y*%qof|;L))kF zFSvyY#PDHp#A0FNs~_yf7dW7`fkXw|GZ)m|U7SF3pL5%DAPb1vRT{f*C=&y=R`a18WFM7RFFM7u6kD{sH}hW#a`Qs0@3jI8jh zWS8Gj5tcJU0Vh0A@6DB^RThQQ4)aJXJG7RomjM%++Q00Z)r&S+&A=Y73G!d9JMA#g z{u?7c;4B=rbghmm@h|DT##J_~r{=N!3n-$lRFO+fw+OWV=m@C$g-hXE%LbC(WCDgX zK^N-qm*@Q{oax5G>D|L$*jo~#nXOQ-4_kN-terIcT+%bsR!S7Q##UvqjmMTpu`!6^ z)WFlAER*rbF86S1DJ+<-EI+2-B@DStbu4F{y!*uIUXCAg}AtT&Eq> zJkgZK6Sw0#O@xw&yb?lAe3qSc6}!`^;i-ceA~tt>3w>TOe_u|)*)Uo zMksAGyA5il*amGpbp{^r*tEVm!X(1|?a$xFNmD1=kWW=_ZB8F}1FP6zM*Ug%DcOVj7I6`DTf}eA!UOQ*Y zpS2EMzl<=ckX8Cqf}WAl#dHD=xDnF6C%2EM1xa^aTQTexV;!?BbzoJ+HNLjqa1T#o zdLvIr42|tlC*}XK0L%;Cr_Aw>^x7;b%4-hRTLX)wo6)Zipq$Eh{&?Lu>a`@7qxpN8 zVQCin%%btd^g-j5b2AR?p1@Wghayw1 z5An!Y1~dUZ>O`POD}qS&bO;I>LCl}b91Gy( z!O+X9d{n!(J%xm)>?hx=-R!+sTP3&YcWo>g#dWbKL-~F5HCBdF4TWl%`B|GR*qu`L>Dm zH2bBQjTkZxgGA2jdKcn$Mx62eU6U$ya(Bnt0_|l-Z#Du?c?uo^acCmHWkTY2X!QnKPcKifwn`d*& zM%3sjE2H(Dvyy^2&TTu^JS|A(N~VNf+zi~d>Yy|$ekIsqFzce`3;7Ndc@&}wPqgK& zcUFvc|4osMCaeo*P`A&{mG}SGDMJ)Tvm!M*@29(d`{kBhZD~0MnEEcQ-=-U7>LuID zLH5%R<|pW?t~U{mafs?OqE<79l~3-ad)QX@PecWl#J|M0p&zxKoi7*Et>66& zTj}P@7GmH&+-Wd@1^m5_CiCWu9g6b~7$zR_+C4k^%Z|b@+rfi|r0j)Szv0I&eE-{N zZpX&I)k?JmcCVN+&Y4ue30#nojbKNiHhTblk})2y(`&!_b!SO%L?HX}7(?U}tFN1} zc2{Tit%kEkK-dLYI5KS?b zae;va8cbE&pl3W$tMP$Ceiu+vVvIz>Q5gkz?xEH3nNuDeu`N?EX+G-K@)xh8O<+-c zcsTm`;p1idulf|LmK=BZ9KlEHz`A3PltBNX3$*1~7Tujvskk`td@j-t#HmUXZFZO4 ze;73t6e^I?C+#PKezZV0+N*z)>+v{U%TdYT?!{!P__zMbb1s?MXz&DAxN{=y7aA9x z{<*<0;W-_0j^ca9u|xc2B0gBCz5_#)p)ZNDE$};au-_0tZl@tS== zVkd{!`Dh|&?^0gKGsR>o-?85Ju}3YcQ9V0h?KYa*?w6eZ)4A1e*M0eHhA4vcrnO%g z8^FKi?ARB6!42j({X6cktliZyFfC}SRZ5kS;&yn2>iSRMb2rPD9^NV0TFKPN)wJ9x z_0o?gMBfV;jv7j@0n|bJ88_Z*TwQi8L(M>v$%T;#i@W#HqMo%=dsS*=FG3Fw%k)=A z4#+AWDVw2Tk7b}POch({blqW{Oea_@axS*P6?ey~VA0Aezlqw{4my&sQ0Ew-`x3;E zkfLYi!p&a)+@%J7YH31Ycl$WrQJ$?9GKVuyQ^+0O(Yqg2dVDmo6jrxAX-+VYVWfaT zFZDObO90t{>3*0o5tB*qqH+<7MquJdrjmWF!uxR61TlMynr^LXf4(9Z=ImkwtHf^E z=)C_dG^t(U&o3?xOzg1?rHk6MYxdLx4#jqh`EqRwtRb}13NG)PWtX#!L$xkN-uVV= z*RR#RcSUkxebah-uoD-ysw-cnCMKG;w8hp!A$R9vPAPHj#kUt1^3@G64w`?KaSJVQ zlZgK8G5Wpu^JDe}uWLO!9q_ff@w3mp6uI@Dxe2L_@WkB-Ar_?AeOB2PGfSCOEyFW} z|B(b7AfLEJ$S{782fw$P!RchD0T$FPu=qNl5d#ynCIAgUt4$27&KVKDl zh}qiJnq4YPKZ#{Kd)xBi^V%;QyGEF+_My&_ax1V!q#JhaIj`}826bHOSrk8%8+Nhw zD{NO$N%!ro?g~HG?;!8As8GjCaUM3o%GDEFtdU)AgYC|1z8U@Ev}*gND&R+-Wa4(V zA*?dZq&bz3vt4Tdc^9l%@xT(Hw)B}sDo$ST4LFrm(xaFpB^0b2U0l7zw8XB zhYUpdT01ohtn(&zjbHR(CePb!53Tp_M#*D_!@mC6*4*$6-5JlyK#X*89b-M?!E%j4P6wwbS!7I0SW@^e4G`D>wqTaj9Ir!6>y<{NY189UAs-3bi`~=vREU6t_@C!aAqWS zuMX-)ni85uIs{b2JfNo?g`%IVEjwY^cGlj4D3U$;(f>;5Ju*R;nPvyps zZaw`O+4~ZQx?u2DyZBYUbJ z0VJhPABiF+?HrzgiSM=dL-BKk!CEYS1rBE$^fIR5?t|v%h{$c!M^|S)ny$|hR!>jQ^73IWN!VYg#fZisvvjsU_R`?C zR&Ds`e$i3y27^tP(?)XX)(?_ZCVclTM8Ji+g2?RRMTw0~u@6mKsL9?xkfjzOhPXw9 z7=7gvm|ahn$%8wRI>4V-m$j^jN>SkQd?&T7FFIK>A%caTMwM|Lj<+8&l2po= zFqBG*&f*vA&b;?rVB50h=PsmPw#MCEf!8Nwr3(DX9#0Fm+F1Qon$_<#8mv>8nwo0l zM7|9OSOqr9aV$R0ezHi8fuQA6^DB7Qzv~b)>qc?8d@|}mUx}FY+-m(Ish{tkE#C;2 z`wf4+`$R1#o@>xrU1EUXz>#vOQZS%B3LQLB3r*M(_5TXIr ziek>(&=2Vh=Dh~8f3i|ffm}YBm*d|P@}N=O?(;#z%f!U#R)!}lXrljIvU@XbMj#YR zSg9x&zGDWg>GzO0Aq2wluN?iJP6q{>L;>Zg5=k}8MhyMZ4a_7lCPyuzr(=o~!V<u5jh5idfF3CY>D2G(IhXshTGYZW`B=}L)^s8`a*Y|O@3XS%hSPB?!z^kPGXILor79%J>9*^EM-(!V`|((n{m#Dhs;xItvXR#M z+~a{e?RXp^yLTNy%@doO-J;TEpy4p*n58CCjMrkqCf~7NR*0x@3YF;Q;61F1ct$>_ zW-yBMz4prnKAY~^m+Zlwhil>K*pE>OOrZ1f4R}(fRQ}P+Fl>Bs9m7ZzEi5?=C%bQc znF8Z5HsBn{--|jdntFN1``EZ|_s5rGGAY=p|C$wa6=6ZcObtZr{1yqiSlC0!G2>ZX zBCFolF{g&s6ObdaTsR;jBur8cvqzjQ(+%^>B69aQG(Hb9ih>cwXZqxEZ~wKad5fmJ zYQ&hMx2kjB+IdaJ={q0d@J z?yOq2wN{UgR4Z{562l`a{AChpTkjYPlqg6z{76`nRxR+6uU3KBDDei+%oS-)JKMl~G@8M=h_P|ncU zf!Q`pqC3$C3C?RIiMZ{G;|tao7#Zr9|G<(d!lAOX7JvAWFA+KUOP#ULVORTLJ+Zs~ z`=hHF(o0p+q47Fs)A$wCx1cEep&$qzux+IhhJ4AM%{@;0e8{seBW9r3+)dYHI!`G4 z*>NYEBIb}amJPBMO(N{~^@QKGAmERP#IOW8SuPc@F%meHQ;ZPLiqqRYY4*^4Yo3Vp zTawT96Dy2REY&j)Q!l^%VP#-Qpz&SHhUs@o%4Qi#%+5FS){Tm2`YilnDxXm3_Yz`U zBif~O7s;a}jP8(sk#G|yJW*uDVZOK~vVsW102GO(2t?`!sUnTGiaQfE ztSNNa19b7L7=u(c=CltY#H$H+$NUPh*}R=uqd%rb-g{2V71}z`(q8$0_A?2*M7=*K zgQSK#yb4qe-NMjD_}@5rUJNJdZ&$rn8LV9GZypRyYm`EC{|#iug*0}vMK&-ogtH(% z;lXE`c58pKXJ@6wo#1wR?f%W~9kBYgkCq``A5GYL#2D&5GmoI&Pg+57@D2CH@~?tH zmb}^>LMo4NceGdGnjf}*gJ>J^ZUXt+=C6wt8j!*Ka45b(H~-|CPtz!pbJ5Y2!hvIr z{3qQ2F>L3(6Q=9G*)K1}f<|C%qz~%CCw-b`-nFAA4ZGxQRst#z>QCR_fLJT^mBKuU5A4t^zuB91V8A(0jUKclo;G zc7@P(zF=C+RcH&!gMS~Z;F5lsZoNKYcj$LIS!zgXw0j(5xh~S6+otCdrT6d9jf*QW z0l6oxRQoKTEcqO}Js>xFCHO1fNi%6bVvowWi;9&7Nn@hLO-`^kPyqk_KOnhw!DHwA zI|cjM)mCxc@7lkXfbnLf@LI}tePS@BvCjE}t$yHPioAyb{^=&i-d>aCYp1XsJ>2b+ z6x2mhXC5%?w`|sbW19-?RN$j1a#N8n)T}c8uNVIX~kGCbME)IqV^Ni!6_J6Gc${Afh5~EYvpG@mRSo z7V+$2RhThV`Nij+?rzP5ueH$AQXx~T?FSr!yHg4bs6YCnBAaJG|^(6pvw_-F*YX|StWqlkbNi1m^`>Er#5PhbND_fz3`Na1V-FtOnWbChcD zMYhwPyI-6A>yMyD9&Go(fFK|-Atr`Wt8#!L?Gz4$yYg0dGv3t^{_LimuAfp-dNw-q z_n+Ai*AxbePx#p^ebqEI5$f$6&rWm$$%QGA@LJ@?sxtESqSw4;U$5nZTmSo3U&R)| zRO^S`VxFb`li$L(srQ`s-X~oMMnn=TX1FjvY3sxZpX-r-0NVfL1vPT1ZTd7ebqWU! zvmh;rngkT14I(=q2xpMl`&X;TzG_xHB=KZlIKMW~!Gr8}V zZ%xBhL%e;-a3?H;Z6=~0ahMqt{c&F17M3sMwCU*Lk-6=mOCk(b|8M3iWak>LV@weA?w^GfC z5YcRvSc6_kU&}war$b=+&1jm5{PDXzOnoGuT&;ai@k{X^R4lnmBZ$RHS z@KXBl2}vax2t(>CC8I;IK<`6F4DLErU$6ZV&W^8glqN7DJsC3$)VaE-$>ObL`1I}| zM}2+jce2dwE*typ>;s&qtZX=Sm;NKhY{%Yf;hC;syBd#v_zX@BVtImQ#^L)?&EB3` zY2t@6D($2l1mI_sQj*FFrP???W?Jto(*<$&hx>l-#F8VygGu7+q+qMgzjvM-Vkt_@ z3>v&WS*Z!feY$}@x5Z|m7*g#~{$nwBZmaqX*OBl6O{mKLH+~b(DP8JTUvd)Tv1CDi zLS5qD39H*|->U~A2XNEz_a6ZUz)rm)AFdi z?TzCNC&oy2sD(Q1d~J?__CFat_;}Sjng>zyB6f!M^m?gC-~hqLcz7Emi22>eo()-g z8tDJ*+2gw4eQvhkyRQ}driAW#w3rH98}(A5CjWv49mCE99Fs<3QL%iHBKJ;a{i74C zNgPtBNQnMSSVQ+bUfz25f_nRQHCTLI-AQ*yADYRyXNbj{?DZR^=342oF0kCK=OnPB)fNX%eg)9ZxUm`dibY zkRBX{=&YY9-RZZ=^kCDUN--h6Nc!_;KWf_Smv(k$7RQX-s&Eo`GXkqO{c_FO-LhN5 zKfM67-Oso0(8ww?C%2o@uaI{4p4p&P56qy1i@=)%1l_zl<(4VLb{=yo6cYSfxV6T_ z?yEt!#}ljG)32_$pqVB-&@8QwKSS(AOI=$()9kX#t^Lob8ruCF?H%w;9YTkY4{q{B zMHbcC@mbjo{A8=xaNK(m?<#IaNqNSd#OoJLB%J8S|{ceASEa@nukl5Y-YHfld?%2?&zd zFfjC3LlhU;=3g^Je`_y02LH}{#_ZnEQg_80Pb=NPhR7rjJ9 zpMW)ebkcoCX=ok~Vo=wevU%<*7Vv~@Q=d1S>d`%)R|yMxTIW0`>u7)#S$XIg%2xe1 z$WXj5KYBg=6-qGQK9B4?2m;~|siP<(iby~cOB&BD?QfM9Oh>POqUS-jkEQ5sx8(*c z?Xyi*HB=T5Z3ZEi?+s}o4bRQg!r_=p?E8wrqYJ56zhQp z<`gsKc^qccTd|C~2y%CmFOm6J8Tt=;LZW6JHk6R!{_K_)Kagf1@*{h)8%<7`4Pp)@ z((;UDTw*0NtLkuz#}Lz14r&v}Oet>{)R!qMktD{ixSsd;=}=J}w!YF2imFt*Q4S|6 zf)8hJlOwiOYb9$7J&t}fz`yHXc4<0p6ok{X&DwJL_w=5S$~?2Drw2QlBoYSN4oIf0 zI9M!`yAgrQ5hI982-GU9aTZnmkWUrQakFdNPN>josx44!Xw`tLZiMf(ODragt=89s zt?s8Iut`YDAEohSvH@*ZTHkONNmYX{h`(=6F#zjzT@$#UY(d7D{)wRYd zFg6(IhGDp{t_V4t9r&T=zY7JT1G}E|6nO{w25||gg*<4f0b-8kL0TfgUl}FOe6s#7 z+tXUVA|NvYl9ij-Mk3g%NVM=Ooxweh>#!qO?O$-L7KE`)FNKO`z3PVFV8t)6sNX}d zy0x#R)4&?gn1#@IWSf|%#p2VTt!%BrW={%w2ah&IM7bsro0v7g8aYP;1Y_>4K#lZZ zkrXCv%cUfT63@Eg+CeGSuqomi__&U>aM|c&=RDr2COwQ>>+sy$NnkD(6q+6ab^7l5WWlh{q0niyY8Nb6{yI#4YnhkQ) zd*3!ydWQ3LIe41|yIeHkm!$lhrM*d;I-l2qoChi>&uNR5N$Yo*9!F!FSMwRYrV}1; zM!$J?g!b)|tOa+1FNz^!rQ@z0blw_!*hf1%?SgHo({PRk*(9-EQ;7ne9^0Veu}9?* z4KYLBnZB?)dtPF3-PrYF5ZjI6-t}-|*4l|)q`>Od_QNf3QQt@v?T9m$A8G|3y7Vo@9RI&ylh??z`WnmY0}8e)e=>}w^H zotc?g`gQTa*m)#dtxm&Y_!n1({B-?4CG^#fS8=YSOnjm0BHpDz9+q_mvQOb_KHh~Z zuvmBq0ZflbF*#9Y2hbyjzGYbWL$&><2Dqro0cr&pGMM| zoqx~XF?S@=HcH2Tc6V#)6(63u=zC-X&O(U>Yj;f2tcc5BDs6Yt$sG`;R(azAw&NdO z(|sopu_7t0j|{#W8%Bg&H@@-fp<}G7QAC~gBtSg9>?0JMBL{eGTEgppx}2tyP&M?% zG!W9?m)wSlx`e!k5bX%vz4hDwV*x^OE|jBw-)~`stJ)ybrsN3Jq$}h+q>g7VmL4v9 z#r^~Vy`WN`5J@$lHiEqKcHUw5Nl0;jy>T{JuTJ&jRM2~nye^u{*LeoYF^#k9(;x7L z@I<=QjKvFC3NTkU$P!Cr1r~+@1869~63zvPNFs3BETwh67-P1ywSkRqBE$^v!h=FS z)}a8_$&3 zW>(LuH9JByvSzXPm6@fQlVw7aIpOkk=)g6&^K}4)^dui0E13BpI83=hLJ(DG5UDv#9P@(Y^0iOaMD@pE%Uzq6y-zk03tQndoB)!nMpHWWc z;<`ef+UK`&3KRWle6pTlpeX5-JzH-dMfrS&Gq|A_^i6?qX^GY^t_mo8rqXVO3T<8% zl98Z?p`m+$#UfxS-2WMmc!mqtYe*{UfJ(}Mdh43tuvLKp?khusTfCNzt^c%BcWIq6 zF3%-V>*yC(j~G&v4V;fImjl|Zo|l<-m&EVi-%n-zJUaMn!%BJ4X94!yWt25AC>m-5 z)_IgvVz}%3)-Ya;@ur{)TQsU+tK1LKY+}#zQKKk^_a&e-M@SRBXS#hiY1F|oc->@6 zP6`gr^(YWX6Yz{gDZh}B|M=WsGsR=5kPq`7lA_H5FPMA3{PgkV9iL<7-PtA~MO?9p zBihAyhG4Ie&jnSaXs~$5S_=zi+Pj07XQfE&h=a_`myK@ydyB85s*#vPo=(}QtnjfP z+tS)QMuz-zggUZtS)PJx&D@h8>04TNaY;S5bNKqh+Pn>h69;vX5o^_s|dgMrQ&9`g}ZKl$DFw_bfE+is5ML@y`d&?g0e^I%sj7%ouc z0`|_XJpyY$xh!RD2PKogPQf<2S;MEK=Ey~7tHsveem;XBba*`!{r6^Iew}`X!xp5^b?c#$fXvtt!;ds5@o9Dd2@e-Htc2OKDE?kL{ zxa1w|2cWVv4gZvnWll5M=*swTaR4^Rc3Krk2!LqLK3F^hP{G%H0KUBr^bKb&ztRC59n+dqAVMwORT z=-2_K6M8aekcDZjjeH5|uT5yOaJ#_fQ>7eQDN(;U760i-%>XBWrD{6Zqg!0 zF<;R87SzDIf(AqOO#*1kY(l}nQT`P4=04|MJDPoM(Cj-W)iyizaK9+xcbKGq{VsN$ z;_TtkjJp8+wcB_!!%kKql1MQ( z(s1F1=9QG}0CoD!FC9cU@ogcO*LUY857$j0S2M>g#zE61SJ)92B2d6-g#V80n-7dc zBzE!bV05G+-5yDuz;gqSh-|QSC895*l2HvTKI8Gh{*L$6R_jRUiI?NKn@Q8dn%Wnt zZQV+g4DOkxb@`%z0FmAsqL1&O8xX(k%Gg0l&|uYQlt6Cs@o3j1KnDA{bGMF%!V)MF ziht5^3?-%xVH{DccX$m zzATY$y7`b)D)NY_0F_Mf1opbUz*P&R0$FS5WGnh@Bx(l!-n*c~)8vuT>+mlxr`4c^ zD&r5X4?EBdD}#5ksTofd9{z@SZTy91)P+_ZN>((JUeD0}{?g-0Yex;IvzV4n)AAex zC@xd^ne_Mx^a*^aA8g@EE&EN3YNJ3tjBrEM(^z6<#E9nVKf)jpYTcwi@4yPKHK5u< zg3@mlYi!48f9f2aT)*V|RpQ2G9(}o2`e-x6e&7e6Pp(S>c598_hfZS5Qrw7Wxpq1G z#qUIrB9mJaj&TML+XVv0^qL8gYVV#9=NA-IIU~BgpGE0VuG5`Odv6=f3cmb?@K`Ts zW)u(D{4!Op4YRYY7WF55wU`$t!nDtI+PDZ$NGN7+@dsNeU0EzV_PEPMKr{t3#nGFP zVHTQU8A4>T%S452y~l)rx;wr6)2>yGcOk+is1x3mU&?Mj*vlDUm{L;_GLvfa&jtFy zE&MbBD$n;jd(GlUG}qM{BziLsyVsdQyoINq1eVm&G=_*8G=FWR>cUWUmwe)7Rc{{U{#3Y@ZD&{5yI>!vT5Us_NJ`eH|CmN< z$bGw_@UcBzut*JG6P!|Lw)6QV4=v||vBQnVOqQaI3;c})=5Kj^Vjbv&?7Q0 z+PDeS{#0z%LXe|{rmXu=`ogpBUz|M?ME z%ex5x!}?YF+qe9n`oe!5r=!9&<b zm_7BJUrM5R9r`gP>_H+abri&&SO^JTyr%-8FqEUISJB6z6}J4-sd9p#2NCq#@E#qu zcUO~uK<#gmUuDQ137L#0lNVNhXN5$uMRKO%-Qo)nZFgpcp1;{ZkBA z7kDs7A9@xVDaE1uSSz&zspO$R3Ma7uLeNJU~pC?R6%^GwVKbUK|To2+V zk8PyC8WK(BUGQ|g%736*W&s6z^WnK=?Qo07#p2-kOTL>Q_@~;oijE(*P03aUW$DYf z4j!AcR!rmymSa~@Fp8CLZ9mNw=P&F4QlBfaH1pt}9TEM0bHgIdW_>Iw^l&ji_(u6- zedD7q1I}CTKbpU+lMuW8MnkSFIOiAriA?P2rGD+l_CwjpR&uU4_(R|(y9lRd-$jv= z79R<1U0pM8oO!+X`D*J@7O=a#sgu*?jhU9hmv{G4w;sm4DX)4-Q#aEDSvid&v18s= zU{{4%g|@xE#T`@+4VZdu-y&2h0(;wH;@QJ)#p{p|*bvt>$p0+yb~ky^US7jUR8L%0 z!^l(j7i$)k+G9G~h2(9lIzCHh+-D~x{`@Iv_DieUxXziWx<~r_2J{GN-A_gZ#Vi(A zMp9;vR?xXS=+`!GBDcEb+e2TLhU76~#j`bXj+;ctrkm@l&0z00(YZbvkl!y267E(cqV-8lQ-`-Qt`zJ&kXoehw}@77ANwdFWG2Rg&Z?@7}j;>RKv0d!t14v+d{U zk4{lesuBrZ-Q5*aF9EcgNO9|ZW~~1H=$`Pi`f7_}7Yh;i-8W*Z*{E*HwT!te*E+{D z_1^XeEjOi%T7Ge)ov{3N@d)C{zSy|=Rg*8@lX7i{6^)AN{Q0Q!wfZY^W<@^4 zhq=q6g>oL#cr%If@9&|z>mSNB{58sseQ8yTP$$1BltT{9<N1Q%8056Us3o`?+()$PY~3GkQX3FAx@~$Sn!54!n_#YNzp-}N(APuS+1W*xcJfc{ zFwg`hGQRqK#~bGQRW0{N$Z5&Ft0ZhX8d4M;qr)P`uCZa7CtrROor->?i41@BH!Bcc*~1S zPOf!&V7F-t7W?=d6yC(k<3edv%L=RMbk1%1@m>LnIZF|i+ly%{{9tUXK_vP z^UJp_U($9Znr^ulIQM-n6z)Kw?lvsE;pM^5*1!~#%fCMpmR=~F=NCnG&6oW`PdN#H zYF7V(duY&tj9=7W?|<{Cad#+8=!1xDzM}R_n3{HL8}|9&^U0mX=b$2$5X-|y!mpC! zvrvv4hYwcob=KGy*NJLcZNfGdIdJyjVFB<-A+M&y@?mbf3Q4P;s}d8+a1E(u<@R&j z&|gK>CsN$dsnm2^D^i%LL}ot4m|?5m{;S(xs&2Pm95{QB`#j%KED*L)-ILy%CrB-J zw9a_|W2Ccjxx>T9z0JU#UE&R2lW+7qqcq<;6PhH5-ySJa`Oe zDz%xtHd4pA1aJ0186a)YI{l0ng?kZV8~UP`s}>=a4#NtHsyN%bHjMXvWeTQneoA*- zc>XF>Vn5ULb8Yft7}%&YXFpKDE9LF}`>-M*k<=Tag*1cy&yMry@io7MF<+rEX_zFV_H@M_$^@=eg&iZjiJxdbFRaBCCa0> znFb)+qmE3Mo^f_PFW^r{F7);L-wF6pL5CWoU4FcM!~FK`w={DYt;y5?NbtlI{PPL@YN&%=P%jQG>rv#yw-sn%8W%Cl)y%r6eSrIdi(jO~id z32cD#{UottEU)+)+;fLdDM$=Ad?7hFyNnG(; z9gb~qpA&OvayPc!(vT`laQpz=fLY=&{TIo-BO$I|xtc}4u|NW`3frs!RrOc+VfyZc zD508*j0}5Et|f*BQ6Sel??lYok!5IC>5TVnlPzSID-X)6#uQO3TxVa$FA(3AAiZ@&7Ah}Di+a7Yt?UvB8AU@iQ?@3#9U8^&v<+BPX;?NrgNaiI957CCb6@?`<$CRx0~;Zc)(0rOfyi}z9mZ~BhPnl z*F|4g(smzAUhs46oe^^sbQFHhM*R)L)rRZT`_6VH`{rpot|Qc}_26=&1vrGFsngq< zbE-Y~)nm<638U6m0=Ivf7VhEfnlCVN=mTo?aF7t3U+Fl*KI+#9_NT1gs4Yku?BKL!ZA0CjYlNrXKDf8UpC(La0>n4NLY1iF<70XfLYOIA zl{k4cWR>Sew^JDluJetI`;0;}r&p>-rkJ62D+Tj8jvzuJ79P(ZpZRg(PoSD&`c1-; zH8mPYj**j|I2kVtA8x;+!l{KD3df)gZPNs2qxH`y0m0Nsx~y&!LvB3HXt+y#QJH`+ znRXZfv82(NNiBO<#Kj^TlvHB=A6HdC3ym2157XlE@=ha)Nw|tkh=MW&krB=8Z2D1g z7fmunuzDu>&B7OPWqHP{9mOs^V>3-YRaWQkoqW`wR#W>(yekAvlKy^^lrjS19Qbe* z<(wvX(y6~M76VyTiC!Tfy$*sd%jXECp-aaV|3+VhfQy|NX8PE8^|@LPVvwj}c}WAg z%cfk%PK*R$DRt!M(-SaIk4TMc&hTToRD|X=FNnwhhWych2~b|&O9BsMz?zn%P{ITV zawH`8qy-GNUzdvP&bXl>A9O7K8k#)__P88zc0EW)H9`9t99$dw=k% zb)9M=&7+g6)!wB56b(i*m4r1t7@pcsl18rgAS5yIHefJ=MdsHQQ4eBLHynNv_s1_KT_&Sf7$?A!ddfG=qCWSq;-?I?o$)#_nVoU(~DU){&8&Q|yUki=C?jY?9BgN)Sg#Oj{CxlaS`OeHH9Ce|_n}1kePh6j;?z58 zFDw@@wLfP9(kU5Mss7|rX@T&X?d3`x0^F`0`m-Q{J>#JT#Z?h0N<#j{)!*B6yF2+! zy>I%F%1Va0$H{hgL2oUV2~kfI9HS=OBe-mWJbr0YYIrBW7;v_}TxpW=YMZR5GS79h z_oInCW-IFR8cfyH(ymAPl{U*hGi$phyEqZ>V-iY|$|g9M!M}pd^+7jTUm;I@3l%&g zKgs!r7XVM(#;b=nLr8?yw&_F`&GMTA+@X_q?>>CZvpI(XOsG6D=hblSS4Z=@_{P8n zSrE}Q2t7gQ%^3sy-n-Q&OHSIX?f&v5+D25}VJN-e=Bv3I0b8*qDnqR}=Fl(RUaSop zGn)G!c!fHC2dy(2R+=YZ)+lMvWvrmN=sIlW=Xdmc)I83(q{2$uwkh*AZ*5_bu+!R1hPL^S4wI0)P zeTJ2ro}?#DE@FP}b5E-ijx3RKZqw>}T@%l4z0_**ZZgQ75>>g?P$wblF%!_VxAo8Xf-Hj$|?GYaWbg!d>w=U)k<*Nj!H@tBD)PS|F#&tS_Ts^uiAcz*!%n6ya-|*l9?3}q_~HN+(jG&rM-x= zCz(%+rr(og^uriMR&HLUT-|?@i3%a19*Zme z2B#(pbKgIW+I`=1XkGTq@H=o z*!N~=4?=1bK(EpcEpY6rIN7DxTm2Rzk|l9P^^>$ihxlE6&Q#bP@-G*;VT=9Q6^w=~ z-HrAYX)>p51|XLHS^x|=uSuY5@vEw;O4c5RlLrT<=j7yIhCxT>m34~%9XZzKB!$%w zX{VhsYR4^>BYuy6&Qt}vZWbw$EupEXg}iW2^rpP~g*2a~&)csbbaBXmK)GG_a`IXB zMoMqTotJORTcZn)f;V)U*=aRCUT78ZSg@~uq2xbiaR!nt=Xo*yTDrPpsIBC(N0WEU zAb#uUls6_)S_ZuAJAVBQ4P=}{R-_6FRJmN&goBBINiGA&Db%&b0d2Z z!|4Ed@TJs%WRHZx1ua8Zjul?pesIn6C)fE4#C>fAec8f>`OBTs#><0+OdV1`RCuT}~d5ng= zn(@>VE%$p1S91hMx`*12Q>N-431m|k@H;(A1Q}=pxn}i}k?>u0H8L3arAV2O?j&LZ zKjFRh_OGHll95ZB_5iiw}2v3wdz;*n|#}htTUm)c(Gn z3W@~ef#MW*(fY)cw!clvKE6x9nRl9H87R$q0y43 z=P8PYgzRht`0h=~=G{T>FMdN;&hOaU=W*6GU&3W_xC9C)0$`a$F;2RohcwDpG01mC zo3|={f~i7F3rEG%6MYw}JFb^-@Hk}7lwBUU^ZGWQZDWzQ{o^j&?dZo9-d#BK&Cles zlr6erq4@?3eObiob!4Xg@hboqr6aPCvN7JnS-fw&5f^bL#@+yLvp?( zNNuSGa`~WU?)p@~CQ}v@j#`elWYNtqx@xXNRz?nS+MWrM2`abBBoDpuZc>p^l8B@} zv)4~voc!2Ha9(?)$H~c}=}@4x|i`QnH3^gW$l!5S7roPmvK2dr~HjScvUKC!i4N zQJAQ)s&OsgOK&|sUVzrFu4O&j{Ty30Ac`>@redEmtF17ULI;XY+mmu~H1LGy3SJ}` z2jJgaGa0V-?j`<0f43P5@;Hbhymfmm2Er^+@pR)7R2Vm8P zF#)opLS+6!6|1NHwUV6p2gsEohP_$%IjRkKly!9P<>Y7xGjGbudC)ST@H26MA47;M zzlQZ7;IB;>{)i<2k$svkPb}dE=gT7`S;$~gI&32p;Kkw5qxC<~BY>^DtJ0OGmYm)J zJ{C2O;BKF_)lzZvbgTxAni|eOzjMPcP&iHt!_DMDhN3T>$cel;C5%PVj(BnZvjO{b z!?5brUA)B+f037J2GGTw&?}N~(-_FVU4z@*E%RDXDGjy_sMPPmnSXs&bow5TtR;zp zG6a!cLBECIA7UVePZiRSPfi%h$?*8iojeM%Dqw!-Q3*If=Ix@O{Y^vdM8b|34UQ2*9HsApVl%rKqjeE0N6=0d=5xI93^Fs zS-GKo(%K2a_@3+p_~qqfz(}1g)xS_p6P#9<7sod(eRw<%5Z7dYaj2}yv+~R39)wG! z3Gj4202<~yC-Am(5-Z(KA|R99WC6keHkT1-(Gvo_UKqT2!x+u_?!P+j-)gH4-g<4N z<+e_Z?UgfnYk=<`=ebHqf$nDr zPZnKC`j=XJUk22=R2$uJs)l^D5Zyu#=!Gc(4;F5SJ``I$;DS~c>uBTETkve9 zc>khUNy8oqNH!CkDJLMT$M%kmA;7ED1|}%}Qzg9exkKBNnII%3l>vyCdT3}UJPJH( ziaFDHjlal@DJ9I#l11K~Z8r6-E<;~-1<$vbBtmNNPAM-b_%G4Im_DP58OvufpM1T| z4NYAM#cG1xaA*&X?wQrirU`0$tyNs@LAYy_pT$;lLwR+QxIn!(G981Qc;z^*Nhd? zXTX&S8O_pPfQ=ef?#>y@Vx2cL&hLnN4*&PG%jZnMt zqipbyoEp9a#2}w{Y$pQDdOo3MU=m;sh}&hsVQGF;(i77I#XAxrtWxQFlMAcoNI2%> z!wn5e;h3T#8Uk7;ei{h*Zyd^jA;u(8fU+tR>NWmEv82T7-i?aE4J(rY7YjBMBl85!Biz(H+ zO`7ur9b?G~6#TM(aX@Zp9`2RXcEKwXjK-V6h{AjUrziHBW%hWmDE|to5k?C3aNx&!utx-ed8QxJQRqmmRXJUo|8NWoO4W=Ir-K+SM)px4Wd$Y=&mLL}{b z^K%dPH>w1#b**DsX;Jjq8eCBLg52E*{ob*HG^O3u-((p>!CT4Pg_y1dOEIg~Okfl; zEZ5H}lPuK{`9Skm4iuQAj1l3Nu+AT|!&W~ZB+4wku%(?Hp+h<4+_obHsvux~045r` zaH)vq%#FL&Ij>WZGph1=FMU?8ufA0-K)IgI9~I^J<`;*;jeSn7499N}w5cdX_LT*L zb$O3cpoNXHMjiH+Y^nyT-3w7owAmOp3@vyi%i1_R@Q#Z`<)`d{$LUe5*z~G{8duZX zhvj_?{bm3V3-5%HHHvE2cbd*Dx}MUrvKo}?wi=mWHYz$M9u@5{ooF3-o3>evJCAiJ z)jUEi$;VQyo9csO2{l)0$qEgKI3NGyV34qqL3U@9_d9(Wv^F386xW@?Tu#dWUz=4Y z4aFb!vV@dd>eYT&%%II%Ex?A$+zX}?&sLd=*X7UQL+~r(-)5@-78KS(I382m^W?Zy1M#=)LTxvegoc$!FH(rZ8?b*%cct;up00 zN7=i@?gdl5fae0VYP$UEg|NrwjOiCV=ezaN8YPbL;n>`)3qDi7=5;9AhOQCwMxu|G zhApl2d&UlSmRENted_$yWYtt;l3UZpKA<2-Y4=o&)Emq*fd z$K2qyy<6`=Ict$=0wZVi_?ld(ptmG986;fum<0AFOK#HuKn9R(|GU|acvk=_-#P7X zbS4JtB8T6ksVR=sV2L zz@h6kS*vZzGg?2LHK(=AofhrSg=h|5vlPcdgypc5cZ_uwS3i^+$oQ@8%53-ccNpJD zx`Q#;IuFyAP=w^*@$v%=SumLht~YMn?HtX`%X4j&k*s@Qm+Mwf^F(E~r6-r~+h>n2 zGY96a*Dnb}v)8kKiyf8FRPN*)3$5IIef!J04u2vO;+})RtI{P-wafx)9`;P+&oP1wex&!ofH$x>;2HEV zV5g>C-u9-Ms8pQ}!mYpkq~9-`MoPSJp;Ur`N|DHbj#80=FOZ!7d8RN zd-s0aY685l-ZnSKfy|wlk`fNHj-24mu)`zHr5Ja|yw7vX0jX^SP{Tepfk6Z&w+bIZDA%WFQnZMv%6+npv3#E8`Xw>i zlc{N$-r&+bSGh;&w7(j9a^8qeZ@29*i6Ii^kM9Iyas|I-{_Nj!h?ge`PME2rO%r?( z^3mz7GM+cY#-T)jTv8RuoOPA3w0Eq7$I*Eid4eu=)vfulD3G%i$ecP?xv(f{)QN1o zFImq-hB=O9TfSc7xqZhopRV5illzo}Lv|2+8FtQSFddUG!uV{|E;sens_KbGV^>~~ zM~6xpIow{+h6T&t>Qn>y-Eo%Dd!QnI1eyWP-vsxbOzT?Ts%O6Q7_9 zOm;&WofF$;j%7*FvEQ2lwWau+u!=-T@GL%Zk8?Fs%W)c z_rK=1)O!7pgM(9;5&83I-?{SZ^D(gTp>*08w@Dqsh{lKBiXE^|V1M(6yI5@R8;kdf zH5TeAKPD?(%E`TtVs2s-`I4Uf9w@G@#)q#9C@s74D1h7`OnxIF9El|}Att1`o~s7> zK5nsJ2G)m`;rr0-szMUcbC z+z!i516uZLb*ZZD{A~qMkn$Whq`?im&9NAdVD)*B?3ylb)0QT< z&}Ck$90_rjlX1FCT9!b7T~!o+WRX@;{NPC*H#C;4{Ff3DY&0}!ScB$u%pcm?uONv7 zy@Xfy)`Jk>i4x^OnDERlPFDU zz&A$?xy%Gg;?mP){0@Dae*`GbE|%>A%y)x|mClGLpD7W@uv8bhWk8%J<-;aFlZFdk>(5+4+`a3LB6$|Nt zBv-s1rs=ykoH#SFcuLRkQ>6NKF1U-yS~XzJFF%xTbpzH+c$!nCpM34`Ld=&a;K+@6m%vNX z({fu+yTAK0qC~;Z>@rqQzIZfDb36mpH_i<`Zgn9Jj6O42 zM-US7>7M0oyJ?852HPso-Ul`X7D3NLVyxZ*sKL&EsX?Ww=GkjN^FfLW8UC;%>3=Uk zhFj2>6EL9<%n_YdjW0NJOB+*Q2|igvCnki_*|3s&scNlE0$|_1G#ltlnAFdGH8IGztK7p0n^_1aZ7SrjBuJm7PW0E;Zg8 z?UeVfY3!5a&VStg=JS%U+u#+1hhvBb3sr#1o?op<5&f4}y50q6PKd*%5tN$J3@b$J zIC4Q*sMFn_{+IjTi0M0wv&V2;HrTELc}QEt8v0)d!yK2`_;hs)RJF-lm9 zulHvPBWBmN&actE^<3g}K%zgn_W)OS?8RqtO65->S#c0&AL6fHL=qwO>$|k}gBe*; zj)RY;qnO`5gN=3j9^e>obew}FDuN8rV&?|BN>}+j=S8u?1uH*q%E3mSW;b&lW%3&^E?&_yw|n$Rw5t=6B@HBr!RpWclWk^|Tx1c6 z%SN_KWD6RXKsk7Fe}}YE5X#`@Otm>86rlif5yV!R!ExwnZRwzT4-ecgT*deA_pR!D znNMnitdBGDpb41WZz}=7jwlS$-SSTF9>^yLEsL#H?sV-bttq!;8Y+l|OcIgrm+6Dt z3=y6gu<0|1iZzO2^{PN%A^-ikd!SfI_M?hYGu@?ct zH?orMG1e*3ULkg;kz(Gvm|r6{(tWmsS@l@dAtN6<(Vr!zX&tm%Jl&{?H7)Y9p_}Uf z`A|=#Jya-H_C+W;uf_XsPH6(`r?RrL^XT#dkfs@S6VtBPe9<(@XS)lcwbx2SYBkM5beXAY~LO z`h=CMpF14sZwoeE|5Xs5v-A6aY~fUQlVelHdp8(k$+WHLxTusuyJ7Tw^g#Lv?2VGW zk2wgd>gLOi7=RID&fJ3#AVLo6T(pI)eNC}y&=Y}L);bisu}%!@7CzQt?UK54lUvG2 zxKpq~_*37nD`jX>e#>Mk@oWvS&u>X~q8?%vOIL%(lhou@mz41A4v-nSTSJl&n0 zxMy6O?N;TO>W*%DK(aRT0+r7XN1&u+j^dcnmOW!)>AYFy$R!Gx)mb5A575|R19@Rb z(fbcN-`q>Uh(bL&L%=*ZKELz9|G-)yF;~!9$0#^C7UC=+5bKt1g)@KStN2k$M)Onb z#WiSwQXPuX6p6uh9UgAv6oNPv@9svxSTw{w%XIQ`1pxuMgPxYUIZozL50}eW^Z9z` zxfrX2hg%Y7TRtw+#nRd{shK$Qa#QU?+wOfkpop#d)55F{N&3ew9KtpsED$wdS{_6r z9g(L9R1IW@59|CrZQk@N7xa)VAx8oU;``FRPhDlPdOqBe?onVjpX3)A$`4>cRX(~w zZtrMv^B!9A1T!ApXccDC0@;tHXL(ms1j1C4Q`nSs#;b4gXXkC92Fl9&ZyAHl37xw} zW9TmjCWhuK>ym$M@o3Yt@6XIug!T>q-6J!p$iE-pY*=52n{0fsLiwCFqnJh56X=elqxJ)!KQ2y9wfx#FuH0tlq+gWW-=;zK1NL#3M zC64K0l3S(9Lsk#>SnJ%5s95BDuhws&vm&>m1#)3l4J-0iwf-S9pU2*vqT5`VTm&~m zRCad7590GtgqpFolSZF3cl*kBp1?-Ej_c6AJ&5cQ+n)_;$cr5JW12sCywz5PX+R5g z689sdy9E7rB7|GD94)&SUVZBBJig^BaPY-?NwihzZEafVXCQHF!eK0$fHAXA)nD@X z9HL*pE}ucRl;DF5jQYH?vhvnYDkj{ksba9J zly}+xrpM?E6m5B*(~ET{C=2ON1>1tt*+WIe8Yi*{ z+TNMO(4&~_c>Y%FmVMLo4>7BV)Nf2MQ{C0E?ZSROu!#l4vM)n$YP-q5h>9o=q0k^1XN7oR?piCD9EHoVT0(3;fa z1NLJyrR|w@17S4!hv`_{qvV z1zC^1+yQs?X`m%kbf@O3ZSTO$x#g)WgC{VleVV_0J|#tH{Ib-=1+9u9x<^82M*A}k zk}I|OYefdz%VBQf@P^nN0a}vgPukpdjdy3&oDRsV;`H1gI8Dq;UK0}zMq{0p-kqmW z!2tQ+(D{Bi4yuIcnz5OUflMZf_8DrZ$-+daU>|;-13Xp#`=Kn5dSavi-R|?$5|*Pe zHbBDZ_iKt}-<}7W)FWc|yDgEqg0<&ojZQ!TWTJ3GeS85IU>|<}RY0sN7A%I$U@^2; zD4}P?*FPpP>-E11IK0>O88I2@jylyq{vc-Ty5_!Ai1bKjT0<#u(O$)* zU|Itq=6Eq;^ivoPtY)-SGv|mZcxk|FZ2fs-+_neN)>AUWhi?I%E;UYk@?i!I>D&3# zTp-+Q<>? zq&-r`_zdefhVmygs405;CO_L@s&Y;0J4S>t&a)x@lXD^0ERhwZ3yAqzb!sBwcAJRP zl(E8zTdQk0o{;^IL(c7Ahv3}EH{No!PXb*W%r`uI;el&eH`iNy4^FL{TiOhtjawgi z8mWc9`$Ci`p8boOdK7n@SNCL@5*2EOab6#hInmli@BW^eIyT=%XTxV{xrX0_2fDz5 zrnjsiZXV0I67)1s31S~bLZWesc+{G%`NJqo73nkWGXpgU>>dpljiDMuJ8$LfPCUxX z=w%-l7gCDLDv}_gnz+-q>l{-Myk$>A17)TW zQx8|OAi`8td);VY-j-pmXQG9EJ4Z~aMMnc25xBMq!8qq5o=K6$qb|m0bEy@H5N?}~ zD+o*{1wKuhqDTghV6Y+q#4lrPM%{Wo-3DB8>345`I#eN_{nmg=|W%94}I!^p^&vH#nRi!U=pk zrS+*m7n1DbZE=BcJCksPmYCF>p9@*d^66pTB`Crqn0p(mtQM{&L%2=vR3QdL~xD zCNXvcQZLtjYvUHA4L*dpCo)W8e&$mkRWh9kss;1&>oearbfHLh4tgs#qn1jVBUf)FoTTA+d`$JIbs_R@|bkabDT zC5Gp`nwyW)UcM3^+aA$->c`n~7`WD_2eD9XgRs&=VQep?OuvKe5arf)p-jf|jq=WZ z`}>~qeNmv*>nV1N>%u(KsA83jf@g=CwgRd{oO1UCky24sn>$3Q+vvHFwXogyGRLzO zM`xQuCt)1K;HBIwIzs;3r0|`U*bm5!m6+HI`!#?WPkG+i-DyT<;Tn4LJ4|iwURSVC zMcmvTLY{_@NS1u&>`wFMHeY6J2c3~@%Ci+@r zpoOE=1)5)1zYt-ZU9UkOzj#+09<*VH#5Wc@87YeW{nk(Wt}&|Zwp|}W$whY1RVj$< zs$zt*W=jJ_)?NKTyMWTTo`eUI%Nc*-RtpD@O58^tk9yO7Q}D09B0=B0f6kBXuYWCi i9{xWU{_ky^V+tY9C`4JP;yD8Fqo-}8^-|-0bql#-RcBsY!}k6Xq}m^VgvF7*A6s%}3n6`h(p+caU< zlsVNR*C#$Xa{UDLk2e+U$*-8wU5}_0EZXP7bBcELPozJCIekYaJ>cR&LGMI}_Xa(^ zPmj6Sf*;<&|M>C0%LnaoGi4<;VeE45m9{OHFJDeKxBU#lz2Y3vvhbsmY|x9LMsK{} zb}Q_=eF(TZD&o<^^%m8*gy{hpznzbzpC=FgaXf0kBW}2vmx)}thwOg*_;IAR>78?j zi+1ko?uGCR@U5zGhUPhfyd+<$!qfIc_zBXtEw(_o-`1grEmcV{xBjsK-LOcF02w%s zgy`K2_1 z^Core}B&&K71G~n_-jh?qR-(g!fr29^`&*6lF+B>otu@Rfh^Gmaqm}`sBIVuIhd-Q)Ix(fZ8YP2sFHm41GneJfT zpeJ$S_cuE=;5kx?abvUhsk8I+`F9{J3$Wa1#NyynMxF zMs};<1>;GfaicT~T`0Za5J9uWlP+RYDcid`JFldg(q{^!Ns6a^yI?TK>uLD$+~`dW zirm?N?Q9>S2k}U=gubHE9G`b|f;>~vzpW?9SIA4ut~VY(KUzw+Rm?hRR#dlCsneJE zH*WPnlL%i*vJ!$dP1M;uLMZ-7M;f(rp{=nfk7MB}IEZMA0Vr}KnJMhe6d<6Yfsi;tP@T~KP{zL#dy@|!&^%D#OA6}Q{dW}+Jj z!qwWYW}KpFe`;m3qhqp=k4;d_KKI}L*o;G9Wm?HJ!7-Fai%sH4*8IdZRNh$Cqh816 zQ0fP!991sWUZ}BXXh~!`!m^8`4YJ(Ev8G6Ger(VXu?8LSzCy4G1JT$NtynlbfcwEB zWwMkoH_7Ze`+ft5w2Q(bD#I9iB*qnnkD4EuNadjJ8E$;JkWe<~QPoUxk7!(M!49p? zSrkZ*Ho@ZB?Xh#6Pa4JZ+8*u*Jq%cztmM>?Vp`I6amjwe8{7wB^TAy0lwdFW5xHT9+pqpzuCEO;t1Q)MiyVE^xtGVubad zDy1KS)D!=Oh(oqYDHa^{St~7Fn8l4`STqWc z6Wx4^*ZK5|^MqlsskOY5*uY8^eu2iRh-sDyr$?C0L(D+ZMLkyHzbf`lyDTR=nw(#5 z{!Xa>QU!x*KMU!ol~yU=(M%-73(ew!wY=HY**TxW+L_Y8%r8vmJBy^$PXo38lsbc; zSxE?dR(;IeXb9<`h1Fbj|WxXn!V3Tj^P5*BKyovNx9-Vb^( ziWOgWBSFqcn_7N(e8y~Ve}mR)vCIG&&8uq=4j{StMI9*DmClz7yT(=R2`lot;Uhwp zO}S49TOU?PYjdf)o0;*36>63|X`Q@qJ$G^y;mss|K>_{!{bZz?ja0V}C$^UcYV8V; zk`wDTzi2NZ^63hH z&6FPvtHrEy`hC$XGnpP4)u&!~7DaY3fh~s)i+W9s3ATIp6leG|N0wu^nh^H1!ttvO zt+uz5WTL~NmZ&K~dV*&89GPLi{KA&Wh8|X&l-*dB|A0voRGUC^+YE~ba&noSBEwn{ z`ev(^{P4Xs+(tdvZq~U;h|SY!i3iD(DdxG%20A`PI@kE6H$3(*Y3XybEkKFcKywPi~oVWZq{g^@m0EZ_D6feU=gi3Q8l+=`Njpxh@alw1sh)1*xUPhdy zn@jQ{0f($rHoA~Sv+$@CDUrC3=C%i!U|9$8SG<^Az*3kZb3+8I`L5(M@>$IlM-?kPsi?Em@xC zE;LF#G|RcWi3a3{{nl^fw{CAXIGXrH)fTNpQZ#+1HDeh*^6*j9*aLHjz@A`B;godm zqDbPDp&})G(iIh-=9FnLd&JJM$tGQ561Rt{o;Xg4@IPf;h=oO_j1ev+dTaNY@)pj) z)J0&g4R9T%u*QSs*^AKQ{U;b}(gqw-K6jz*n4%R9SMNcUqr_FF(-6E6#$^&hANJNk*=yK+{#m)fREGNhE1Hn#*%$3CqkgthP=&J0|9k z6h$uN;YEe^AU@%uw<+@9#YEzygcNH`IM7N{9Zy8h^R;s}*<}CjD)q1wcD%p4d)@Sq z+GbP#5=sv#P7n#kG|~JZyz#UR@JETzrIYl$cHLRw&{;EnMj`v=7r9nG1ORbtUp1-O> zBQ>tSI@i4e=&cAuCu8z0#evnRs0+yYh%kg78a+A+DUm)q4J31X1NL}jrCH&a zT`{IjzGTA7lGVw>=SC^LV!wgWAxbKALv4d?)V?uDLrG;_)=>Qx(Fi-gFCMx9Cmf*@ zaYGID#h4(})?G8*S@NNW^_ZS|=Mvr`2!|7$Z(>c^o-)HB1(GCJH>Xg#AJduKW(;!U zOcLionJvaICggiq-c{rLfzcT3)>}h1&*~1<`J(M&OghuA-nnJM0rT-4!q0X+e)efh zc!WnK2EBDyykmr&?vdXhc>L^Ae6wBgP}6SJsa|T4g!Rsf zI6O!AUm>XBXIy1!IAg^ZJr6yY7f+mz6=%&FRSE|us-nWfSu1k+!)mNYW&J0P8GnU&(W(W^Rb`cqeQm{EO+!eYKH6833tgi9>P_<0 ziYLa>4*mYRi!m(*L*gByb;^{Yc+IX7c`%rPM{_7LCh<8Bk~)JP*LU;%)7l-=UAez* z8W~25Q_*)hBz)9dA8`_0X<@9oe#UgJx2n=u#D(Patz5b;kGlJ6T_|LH0GglYoa8JT zkH*?zMBV9q_ioMbqL{SXgqPmfCcB1vXPbZG%#$L#hxx0p1Bwj+ZcQdXn^O_W^>N?f z-0kiIM-AoG%RM+v;!bYuV9|~d9M-N1)Sh)0ucU}Z4iUnmE+Fb7e5pgDMsV}+g`y_P zRjBc0Y~{T=BCg(aBpWkVc^M<=p&v_`fwTgce{T)uv%p2dZ8yjQ{avy+>yKvl8CTh} zXQx+Gs)2z4GdJJspd|h2rqxdNrvt$H-o&?+qT{I`U1;ZO`%H;cTgpg-S?p+O}<5W0Z(&E^@FtbSQmc zVW9v{f~nPN7u#pIb#UaqgAL$mhp8#+o_n^ny?w4rQF>X~CvN@GrG1xzBO|S|Ed#oj zmzT-f)s6eEfh1Q*nL+oSJ$rOb%gV}5A`qz1P#1EPaUO-j931rCvv;q}p+gtJTmWW& zQ!}U^0tPry)YrMR6lIB|A8>0*^*|s>`YuiN-*X3((BaI!FI;4xYiMX_mioy(K;xif zZEFh>!X7%Is?)^wJJ^p;TmWe`T`HyER@jBz2VW=Dyid8&|s!ae6>;9{65_XZm&zX<^-eyi@dX8T@Yz>9dW(_QNU%qDx zg%-LL>D=;4df(O$Argr?uTM<{7Z(?UhK0GgJAl_O#m75%d3og)6!f&;G#udbv2VAP zxH#3ddF$5D@bCi}85x%k@6651Bbx^#?@V#gxgEsDlP6CKoZ|XRH|CLbTlGm%eBwEU zLQzsu;!1wFS*B1}T|RBZ{`9iWMNp`_?jEwZ7Uk>nQolg`U!*mEHnTvx@)T_-Ls}t7E5^}nOBvJjZHOo&N7OPlgbQ?yXC!em(c(dFwPD! zve1Wt2x8Png!%CtS!Laz?^w;9qW!L?XdFS2{S~aAFGSLPnnt-3knfcbClL?pJNTmX z7hYVDW5x>P^+TNM@%~(AXPn|IoJC#lSbt-gg}A}w6!FDr2S_CXjrOyP3TM!afaBka zp{}BMK$b(|vNTF}dX>lJ$~pnh8GzZpXC<~x{C8%RbsnOf+k0O;n~1{DAOXn;nn>VG zuq&wpWR{W&D8g?P@{pDC+)NaX?FB2`@nSS*XedSGF+ zEu99P6Z?5pV7gPE#LsL9;EXt^G-3-s$6E2@$FtuN84O5qh2nI56&4|^n&W(*h~Bzo zwzGH$5TUA;m1D}Qht&-|FCx9N~}_NTMgzj<*#JX8V8Mi zJ4cgkHXfy<67W-gTfkx*Wwbn}Rfr2}_V|Kd<@U<_d z%_vYaULV2|TWJHgvt_$DLlj?3P`#;1_wzfLK#j%aV{62+`lU-WbOXVmpXck2R!xV) zzqcA21yYHZYv!C>Lu6ck*h~EAylNU_fAAbteW4Z|5LnHkSI19m=nm9AuIX*Q9*V_A zeWa?#oFI&GlM65$N}IE6u=-HB*jc{@6Ew!v&&05XJn9DRB;XiVmI4&eJsf~+V3^yP zvNcX!&riR|aQuF5;&;2$40=KjAHJ>8XqJ|ij+3+QfKtoyPdC?q9}2x`%64{kj+1jx zxOr~lt(24yfNqnMljOVNXRFj^A+wNC%Yx-+>_q@h^wM$Sfe>$nOeR=WN_F`8^yyK{ zfF^Stt(-g=3$GTt=x?43M11RVU1_~iv`NVC1B`BTr@Bj|? z0zs#H7W)5`#dO>M+hlnr#2d0R1+c%BD#_i=_ws8_2X1+_q631@&LfdX;B}kdmkGFq zpW2rc3P49|+e&qcvrbA%+F@kG0JI2L4KSm*+wdJANr2mRv2o?f!MzB|;qt4+fWnWR z?=Gd74goO(u3G8l7S5pLzH<;n^iG}A5v+a?mt`$)qWpi3pMIA(?=>_)P%KKo>vzMF zS`=$~P+(_+_R~b#cSpC>qR9Oc&>malWfHFog3*3Z78{!Zsd?E^g zggt0zEn6vs5_J{yge8tZ^VKU)>wVu-l_*lMS!YpxW(YJeC_F13ECxZO?ZU2mNSnwCRuC68K}sF z1cwxmMZLC3IXV%vsRRDi%czwftx68rtWGxZ#&)CN*cE&7@)4{cMv^hp&?ESRTkihG`%q_o-_$T&xCS)E+1 zs9;K~r(I-i{9IMj4Rf1q_RE78G*g`wK)-|RGK^lj-mJSZ+cf^=i;rizNUL3f;Awx& zWK~5PG+iqm6qp+>DxtV+BEj6u?RuI*=&VX4Pne^qgn0Q#m8sx@S=WoxiQ4iprMkn) z{PNTU*0eX-Bq2V=dl=bc3X45#8h_;@1K^R18opun&kNOAOnBM(alAFj0aC7w8fJG; zx~WvR{#aXWqNXMpF)cE$hT)w|SLK%iJr@1>4;sbr!ttP2sa&6NrldDzhQ_DRc)T0t zMJyrS#EEPG8_BmC%3tniKiGOktV{GBb;U^#mPo0bLRc(IxX>}F9Ci(4 z4s6Q?iT`$~Y&LeP>sqz;saXjs&DK(|a5Y0Ye~#Q|xOk%?Lbwg?MCEv@&%wT*q=M+V z!KF_=07G~wvA_dJs~H&UwGezqFN;&>BGU<*z?K}GkO|NtuuC*hV(22nYSadNO^iub z2Oe&xV0B2xU96S;7ho~Q5o51!HF^hXAx7+=pdfqvyuS{P2TBmac0**(jLNjTT03sQ zn_gMO3o}j*O0_0Ovf%ME36|55l=#&y@s%<7>r1ts9%HuK6Ql*emG!~FauyX%eTy~T zy0fdx*T#-D&rNJoGC3}LGEUkBGJ-m&U6O$0F`||aq}q8vP+y0{RC*GD?gIG=t6MXD zeSIxU{q8zAY7~%mMZASQ72uYpgZHaV*Z}`KIkhN5o(~Nm=pwz!HQ(Va^q8=HNPk#f zRh7HCxabge5#(?aH6g=ryO37-F#olfdOdq$rNMqjk|u#kf#zo;6YX0y+5FB?tHiw! zl2YZt(Un?d_ufMKbK~cgJRhQLhwt`Fk&ws0u6pN8f_)H*8SMDFZw-kFAx7<5(nZ%#eot~00hENPwMHuYyuMCFV^MnfY0bY{>P7h_~0LL@VjSWMf=YEnT<~0u+9&GL!;+* N?9|b!&oBJzzX1tR#r*&P diff --git a/docs/source/setup.rst b/docs/source/setup.rst index 63985c3..146dd93 100644 --- a/docs/source/setup.rst +++ b/docs/source/setup.rst @@ -1,26 +1,16 @@ -Setup -===================== - -Creating the database ----------------------- - -* create the admin user -* load an emissions factor csv file into equinox -* create Project categories -* create GPC Sector categories - - Installation ======================= -You can install and use the equinox platform in any computing system that supports *python* **or** *docker* +You can install and use the equinox platform in any computing system that supports *Python* **or** *Docker*. +.. note:: The current User Interface (UI) of equinox is desktop oriented and might not work properly in smaller (mobile) screens. Mobile clients are in the roadmap for future development Installation via Docker ----------------------- -Installation via docker is recommended as it provides a streamlined and fast setup of an equinox instance. If you do not want to use docker scroll further down for :ref:`Manual installation from sources` +Installation via docker is recommended as a long term production option as it provides a streamlined and fast setup of an equinox instance. If you do not want to use docker scroll further down for :ref:`Manual installation from sources` -Install Docker -~~~~~~~~~~~~~~ + +Step 1: Install Docker +~~~~~~~~~~~~~~~~~~~~~~~ .. note:: A working docker installation is required! Docker is available for many operating systems and platforms (Windows, MacOS, Linux, running on Intel/AMD or ARM chipsets among others). Follow the installation instructions `here `_. @@ -33,8 +23,8 @@ Once the installation is complete, make sure the docker service is running by te Now we are ready for the next step. You can either pull an image from Docker Hub or build a local image: -Pull the equinox image from Docker Hub -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Step 2: Pull the equinox image from Docker Hub +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can pull and run the latest image from Docker Hub (This method is recommended if you do not want to mess at all with the source distribution). @@ -44,8 +34,8 @@ Start by issuing a docker pull command: .. code:: bash - docker pull openrisk/equinox_web:latest - docker run -p 8001:8080 openrisk/equinox_web:latest + docker pull openrisk/equinox:latest + docker run -p 8001:8080 openrisk/equinox:latest If all went well you have now a running instance of equinox in your local machine. Access it by pointing your browser to ``http://localhost:8001`` and login with admin/admin credentials. @@ -53,8 +43,8 @@ The API endpoints are accessible at ``http://localhost:8001/api`` .. note:: If you want to work with a different image check what is available at our `docker hub list `_ -Building a local docker image -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Step 2 (Alternative): Building a local docker image +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Alternatively you can build your own *local* docker image of the equinox platfom. After you fetch the distribution from the `github repository `_ (as per manual installation instructions below), in the root directory of the distribution issue: .. code:: bash @@ -68,79 +58,99 @@ Again, access the running instance of equinox by pointing your browser to ``http Manual installation from sources -------------------------------- -The manual installation path is recommended if you want to dig into and inspect the equinox code base or if you want to contribute to equinox. +The manual installation path is recommended if you want to use the latest release, dig into and inspect the equinox code base or if you want to contribute to equinox. -Manual installation procedure (Linux only) -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Step 1: Download the github sources to your preferred directory +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Step 1. Download the github sources to your preferred directory: .. code:: bash git clone https://github.com/open-risk/equinox + cd equinox -Step 2. Create a virtualenv. It is advisable to install the platform in a virtualenv so as not to interfere with your system's python distribution + +Step 2: Create a virtualenv for Python >= 3.9. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +It is advisable to install the platform in a *virtualenv* so as not to interfere with your system's python distribution. + +.. note:: If you do not have Python 3.9 please install it first into your system (either as a replacement of your previous 3.X version or as an alternative). .. code:: bash virtualenv -p python3 venv source venv/bin/activate -Step 3. Install the required python dependencies (The core dependency is Django and its own dependencies, in addition the Jazzmin skin as the admin interface) +Step 3: Install the required python dependencies +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The core dependency is Django and its own dependencies. In addition equinox uses the Jazzmin skin as the admin interface. Numpy and Pandas are also required. .. code:: bash pip3 install -r requirements.txt -Step 4. Install the required system wide dependencies (to support geospatial data) +Step 4: Install the required system wide dependencies +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Equinox supports working with geospatial data and this requires some specific libraries .. code:: bash sudo apt-get update && sudo apt-get install -y \ gdal-bin \ - proj-bin \ libgdal-dev \ - libproj-dev \ spatialite-bin\ libsqlite3-mod-spatialite -Step 5. Make the required django migrations. The project is setup to use sqlite3 (spatialite). This step will ensure the database has the right tables. + +.. note:: These are various C/C++ libraries that get installed system-wide (not in the virtualenv we create above). If you *don't* want to modify the host system you should go down the Docker route. + +Step 5: Make the required django migrations +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The project is setup to use sqlite3 (spatialite). This step will ensure the database has the right tables. .. code:: bash cd equinox + python manage.py check python manage.py makemigrations python manage.py migrate -Step 6. Create a superuser. Suggestion: Use admin/admin as login/password as a reminder that this instance of equinox should NOT be used for sensitive! +Step 6: Create a superuser. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Suggestion: Use admin/admin as login/password as a reminder that this instance of equinox should NOT be used for sensitive! .. code:: bash python3 createadmin -Step 7. Collect static files (to ensure the interface will render properly) +Step 7: Collect static files +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +This is to ensure the interface will render properly .. code:: bash python3 manage.py collectstatic --no-input -Step 8. Insert some dummy data (optional). Without this the database will be completely empty. +Step 8: Run the server. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.. code:: bash - - python createcategories.py - python createsectors.py - bash load_doc_fixtures.sh - -Step 9. Run the server. The default port is 8000 but if (by any chance) this port is already used in your computer there will be another assigned. Be sure to note the assigned port and use it instead. +The default port is 8000 but if (by any chance) this port is already used in your computer there will be another assigned. Be sure to note the assigned port and use it instead. .. code:: bash python3 manage.py runserver -Step 10. Login with your browser. Finally in your favorite browser (e.g. Firefox from Mozilla), enter the url ``http://localhost:8001`` and login with admin/admin credentials. +Step 9: Login with your browser. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Finally in your favorite browser (e.g. Firefox from Mozilla), enter the url ``http://localhost:8000`` and login with admin/admin credentials. .. note:: 8000 is the default port, if that is already in use, you can select an alternative one as follows: @@ -158,4 +168,23 @@ The above steps are typical Django project installation steps. If you experience .. Note:: The project uses an sqlite3 database for good reason! If things go pear-shaped with your database simply remove the file and start again. -We welcome your feedback and support. Please raise a `github ticket `_ if you want to report a bug or need a new feature. For contributions check our Contribution and Code of Conduct docs. \ No newline at end of file +We welcome your feedback and support. Please raise a `github ticket `_ if you want to report a bug or need a new feature. For contributions check our Contribution and Code of Conduct docs. + + +Setup (Initialization) +======================= + +Creating the database +---------------------- + +* load an emissions factor csv file into equinox +* create Project categories +* create GPC Sector categories + +Let us insert some dummy data (optional). Without this the database will be completely empty. + +.. code:: bash + + + python createsectors.py + bash loadfixtures.sh \ No newline at end of file diff --git a/portfolio/Asset.py b/portfolio/Asset.py index 54b3e56..ffcfce3 100644 --- a/portfolio/Asset.py +++ b/portfolio/Asset.py @@ -24,7 +24,7 @@ from portfolio.model_choices import * from portfolio.property_collateral_choices import * -# To classify assets, the EBA Loan Asset Classes are used for correspondence, but not all of these involve collateral assets + ASSET_CLASS_CHOICES = [(0, '(a) Residential'), (1, '(b) CRE'), @@ -39,11 +39,11 @@ class ProjectAsset(models.Model): """ The Project Asset model holds asset specific data for each real asset, facility (plant, infrastructure etc) that is part of a Portfolio or Inventory or a Project - which may or may not be financed. - An Asset will in general be associated with one or more emissions sources. + A Project Asset will in general be associated with one or more emissions sources. - An Asset participates in only one Project at a time (if linked to a project object) + A Project Asset participates in only one Project at a time (if linked to a project object) - An Asset may be part of the Collateral securing a Loan or Other Contract + A Project Asset may be part of the Collateral securing a Loan or Other Contract """ diff --git a/portfolio/fixtures/AMS_Multi_Polygon.json b/portfolio/fixtures/AMS_Multi_Polygon.json new file mode 100644 index 0000000..3b92e2c --- /dev/null +++ b/portfolio/fixtures/AMS_Multi_Polygon.json @@ -0,0 +1 @@ +[{"model": "portfolio.multiareasource", "fields": {"name": "AMS0", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.881969 52.394135, 4.88192 52.394225, 4.881783 52.39433, 4.881699 52.394356, 4.881663 52.394402, 4.881588 52.394448, 4.881546 52.394514, 4.881506 52.394534, 4.881427 52.394545, 4.881353 52.394533, 4.881275 52.394491, 4.881188 52.394467, 4.881063 52.394398, 4.881019 52.394347, 4.880958 52.394332, 4.880725 52.394221, 4.880682 52.394182, 4.880675 52.394143, 4.880597 52.394103, 4.880576 52.394054, 4.880595 52.394009, 4.88068 52.393949, 4.880774 52.393929, 4.880894 52.39396, 4.880963 52.393941, 4.881161 52.393779, 4.881274 52.393747, 4.881347 52.393759, 4.881596 52.393879, 4.881658 52.393943, 4.881733 52.393964, 4.881936 52.394078, 4.881969 52.394135), (4.881534 52.394129, 4.881337 52.394261, 4.881145 52.39416, 4.881331 52.394025, 4.881534 52.394129)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS1", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.962693 52.316502, 4.96265 52.316405, 4.96253 52.316333, 4.962074 52.316185, 4.961894 52.316149, 4.961791 52.316148, 4.961303 52.316244, 4.961135 52.316217, 4.960988 52.316241, 4.960909 52.31628, 4.960743 52.316454, 4.960702 52.316381, 4.960594 52.316315, 4.960356 52.316244, 4.960203 52.316251, 4.960115 52.316282, 4.960049 52.31633, 4.959758 52.316646, 4.959622 52.3166, 4.959901 52.316296, 4.959943 52.31621, 4.960026 52.316113, 4.960175 52.316008, 4.960404 52.316135, 4.960499 52.316157, 4.960602 52.316157, 4.960697 52.316136, 4.960855 52.316057, 4.960922 52.315972, 4.960922 52.315904, 4.960853 52.315799, 4.960681 52.31571, 4.960577 52.315685, 4.96043 52.315688, 4.960329 52.315711, 4.960249 52.31575, 4.960162 52.315839, 4.960082 52.315767, 4.959948 52.31571, 4.959795 52.315701, 4.959642 52.31573, 4.959405 52.31588, 4.95931 52.315988, 4.959295 52.316063, 4.958994 52.316407, 4.958993 52.31647, 4.959057 52.316554, 4.958926 52.316694, 4.958908 52.316868, 4.958943 52.316926, 4.959009 52.316974, 4.959096 52.317006, 4.959191 52.317018, 4.959092 52.317129, 4.959078 52.317221, 4.959142 52.317306, 4.95924 52.317352, 4.959085 52.317536, 4.959085 52.317599, 4.959119 52.317657, 4.959227 52.317723, 4.959705 52.317882, 4.959858 52.317891, 4.960055 52.317839, 4.960092 52.317922, 4.960158 52.31797, 4.960814 52.318198, 4.960966 52.318207, 4.961062 52.318186, 4.961142 52.318146, 4.961211 52.318076, 4.961247 52.318017, 4.961247 52.31796, 4.961397 52.317936, 4.961506 52.317871, 4.961896 52.317445, 4.961932 52.317386, 4.961932 52.317333, 4.962065 52.317261, 4.96243 52.31686, 4.96247 52.316797, 4.962459 52.316708, 4.962649 52.316597, 4.962693 52.316502), (4.961034 52.317466, 4.960941 52.317486, 4.960838 52.317486, 4.960642 52.317429, 4.960459 52.317616, 4.960824 52.317735, 4.960869 52.317645, 4.961034 52.317466)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS2", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.98693 52.357148, 4.98703 52.357311, 4.987418 52.357584, 4.98768 52.357656, 4.98787 52.357614, 4.988181 52.357436, 4.988393 52.357457, 4.988531 52.357418, 4.989571 52.356841, 4.989694 52.356912, 4.989985 52.356979, 4.990243 52.357004, 4.99039 52.35698, 4.991131 52.356585, 4.991225 52.356495, 4.991375 52.356455, 4.991886 52.356183, 4.991945 52.356112, 4.992176 52.356025, 4.992249 52.355927, 4.992221 52.355809, 4.992486 52.355756, 4.994 52.354945, 4.994068 52.354859, 4.994198 52.354802, 4.994351 52.354662, 4.994389 52.354577, 4.994546 52.354606, 4.994736 52.354564, 4.996512 52.353618, 4.996583 52.353488, 4.996787 52.353533, 4.996976 52.353491, 4.997119 52.353356, 4.997329 52.353302, 4.997494 52.353214, 4.997601 52.3531, 4.99781 52.353046, 4.997975 52.352958, 4.998082 52.352844, 4.998249 52.352807, 4.998456 52.352703, 4.998561 52.352588, 4.998809 52.352511, 4.998875 52.352427, 4.998829 52.352294, 4.998866 52.352274, 4.999018 52.352317, 4.999216 52.352296, 4.999392 52.352146, 4.999572 52.352101, 4.999794 52.351993, 4.999883 52.351917, 4.999954 52.351759, 5.000209 52.351748, 5.000422 52.351613, 5.000468 52.351515, 5.000417 52.351407, 5.000618 52.351298, 5.000677 52.351267, 5.000822 52.351339, 5.001005 52.351342, 5.001081 52.351395, 5.001023 52.3515, 5.00106 52.351589, 5.000689 52.351785, 5.000521 52.351773, 5.000383 52.351812, 5.000256 52.351908, 5.000219 52.351985, 4.999994 52.35202, 4.999676 52.352225, 4.999471 52.352245, 4.999194 52.352372, 4.999105 52.352448, 4.999085 52.35252, 4.998965 52.352543, 4.998772 52.352642, 4.998672 52.352787, 4.998483 52.352881, 4.998341 52.353027, 4.997607 52.353417, 4.997349 52.353476, 4.997183 52.353561, 4.997117 52.353645, 4.997139 52.35375, 4.997079 52.353804, 4.996778 52.353749, 4.996588 52.35379, 4.996297 52.353985, 4.996272 52.354137, 4.995664 52.354482, 4.995224 52.354705, 4.994906 52.354703, 4.994781 52.354756, 4.994695 52.354866, 4.994467 52.354906, 4.994365 52.354989, 4.994364 52.355109, 4.99422 52.35517, 4.994154 52.355254, 4.993899 52.355396, 4.993699 52.355445, 4.993585 52.355557, 4.993194 52.355763, 4.993021 52.355806, 4.992911 52.35591, 4.992746 52.355881, 4.992556 52.355922, 4.992458 52.356005, 4.992443 52.356107, 4.992309 52.35613, 4.99219 52.356192, 4.992122 52.356327, 4.991835 52.356482, 4.991635 52.356504, 4.99151 52.356557, 4.991437 52.356685, 4.991312 52.356709, 4.991145 52.356795, 4.991076 52.3569, 4.990871 52.357009, 4.990804 52.35711, 4.99065 52.357118, 4.99051 52.357178, 4.990444 52.357324, 4.990239 52.357273, 4.99005 52.357314, 4.989565 52.357534, 4.988594 52.35805, 4.988345 52.358216, 4.988269 52.358327, 4.988303 52.358449, 4.988493 52.358542, 4.988696 52.358543, 4.990055 52.357811, 4.990265 52.357867, 4.990486 52.357808, 4.990546 52.357836, 4.990408 52.357949, 4.990265 52.35798, 4.990068 52.358081, 4.989964 52.358199, 4.989657 52.358364, 4.98946 52.358431, 4.9892 52.35861, 4.989026 52.358636, 4.988796 52.358767, 4.988539 52.358778, 4.98811 52.358998, 4.988045 52.359082, 4.988054 52.359176, 4.987952 52.359282, 4.987964 52.359374, 4.988147 52.359521, 4.988271 52.359575, 4.988423 52.359583, 4.988562 52.359544, 4.988646 52.359488, 4.988685 52.359387, 4.988913 52.359555, 4.988789 52.359628, 4.988748 52.359718, 4.988766 52.359807, 4.98889 52.35991, 4.988766 52.360069, 4.98887 52.360207, 4.989464 52.360453, 4.989616 52.360462, 4.989733 52.360433, 4.990073 52.360586, 4.990083 52.360682, 4.99017 52.360759, 4.991071 52.361142, 4.991269 52.361164, 4.991535 52.361112, 4.991631 52.361233, 4.991934 52.361372, 4.99208 52.361397, 4.992227 52.361373, 4.992421 52.36122, 4.992674 52.36114, 4.992839 52.361033, 4.993028 52.360983, 4.993118 52.360908, 4.993473 52.360812, 4.993679 52.360711, 4.993781 52.360605, 4.993751 52.36049, 4.993837 52.360444, 4.994138 52.360495, 4.994328 52.360421, 4.994466 52.360412, 4.994653 52.360338, 4.994863 52.360307, 4.996388 52.359623, 4.999157 52.35813, 4.999245 52.358054, 4.999376 52.358015, 5.003778 52.355674, 5.003877 52.355592, 5.003891 52.355507, 5.004938 52.354974, 5.005031 52.354886, 5.00521 52.354821, 5.005305 52.354674, 5.005197 52.354534, 5.004713 52.354369, 5.00456 52.354361, 5.004422 52.3544, 5.004303 52.354465, 5.004237 52.354549, 5.004049 52.354598, 5.003828 52.354742, 5.003553 52.354865, 5.003488 52.35495, 5.003344 52.354981, 5.003096 52.355109, 5.003031 52.355194, 5.003065 52.355315, 5.002869 52.355278, 5.002675 52.355322, 5.001467 52.355984, 5.001196 52.356053, 5.000864 52.356251, 5.000803 52.356327, 5.000552 52.356374, 5.0003 52.35653, 5.000177 52.356655, 4.999711 52.356892, 4.999618 52.356971, 4.999314 52.357063, 4.999215 52.357161, 4.999042 52.357203, 4.998825 52.357315, 4.998725 52.357465, 4.998613 52.357518, 4.998422 52.357539, 4.998139 52.357663, 4.998043 52.357738, 4.9978 52.357791, 4.996367 52.358518, 4.996265 52.358624, 4.996289 52.358731, 4.996107 52.358675, 4.995955 52.358683, 4.995271 52.359018, 4.995399 52.35889, 4.995928 52.358606, 4.995996 52.358479, 4.996212 52.358439, 4.997155 52.357938, 4.997257 52.357832, 4.997476 52.357783, 4.998067 52.357467, 4.998133 52.357383, 4.99812 52.357293, 4.998287 52.35732, 4.998482 52.357276, 4.998696 52.357119, 4.999073 52.356913, 4.99924 52.356872, 4.999968 52.356519, 5.000033 52.356435, 4.999999 52.356313, 4.999532 52.355981, 5.000132 52.35566, 5.000198 52.355575, 5.000167 52.355453, 5.000408 52.355323, 5.000816 52.355595, 5.000983 52.355621, 5.001148 52.355706, 5.00135 52.355707, 5.001536 52.355641, 5.00252 52.355106, 5.002595 52.354994, 5.002583 52.354902, 5.002217 52.354626, 5.0023 52.35465, 5.002594 52.354863, 5.002834 52.354904, 5.002972 52.354864, 5.003139 52.354729, 5.003462 52.354625, 5.003597 52.354533, 5.003621 52.354382, 5.003425 52.354262, 5.003407 52.354174, 5.003242 52.354006, 5.003123 52.353932, 5.002976 52.353907, 5.002974 52.353807, 5.00291 52.353722, 5.002257 52.353259, 5.002031 52.353194, 5.001998 52.353093, 5.00221 52.353066, 5.002626 52.352848, 5.002969 52.353063, 5.003148 52.353094, 5.00328 52.35308, 5.003455 52.353005, 5.003557 52.352899, 5.004236 52.352533, 5.004418 52.352452, 5.004684 52.352461, 5.004758 52.352562, 5.004736 52.352672, 5.0048 52.352756, 5.005773 52.353451, 5.006028 52.353695, 5.006174 52.353767, 5.006352 52.353928, 5.006476 52.353981, 5.006665 52.353989, 5.00687 52.353903, 5.006915 52.353759, 5.006849 52.353672, 5.006701 52.353586, 5.006701 52.353467, 5.006559 52.353361, 5.006851 52.353206, 5.006983 52.353295, 5.007268 52.353387, 5.007421 52.35338, 5.007584 52.353308, 5.007775 52.353279, 5.007924 52.353176, 5.007911 52.353005, 5.007801 52.352892, 5.007584 52.352818, 5.007864 52.352835, 5.007972 52.352976, 5.008216 52.353018, 5.008392 52.352958, 5.008655 52.3527, 5.008669 52.35258, 5.008569 52.352474, 5.008099 52.352329, 5.007946 52.352337, 5.007777 52.352403, 5.007791 52.352278, 5.007727 52.352193, 5.007099 52.352003, 5.007063 52.351901, 5.006955 52.351835, 5.006638 52.351757, 5.006411 52.35182, 5.006272 52.351715, 5.005896 52.351684, 5.005767 52.351592, 5.005294 52.351441, 5.005046 52.351454, 5.004913 52.351547, 5.004772 52.351586, 5.004455 52.351755, 5.004307 52.351763, 5.004117 52.351848, 5.00399 52.351731, 5.003779 52.351667, 5.003539 52.351498, 5.003761 52.351402, 5.004029 52.351477, 5.004227 52.351456, 5.004377 52.35133, 5.004342 52.351202, 5.004188 52.351091, 5.003989 52.35101, 5.003721 52.350979, 5.003531 52.35102, 5.00336 52.350978, 5.003207 52.350985, 5.003205 52.350829, 5.003143 52.350761, 5.002983 52.350688, 5.002831 52.350679, 5.002692 52.350718, 5.001839 52.351174, 5.001713 52.351157, 5.001566 52.351181, 5.001363 52.351039, 5.00134 52.350926, 5.001883 52.350637, 5.002082 52.350686, 5.002309 52.350623, 5.002392 52.350483, 5.002294 52.350332, 5.002394 52.350279, 5.002605 52.350353, 5.002757 52.350362, 5.002896 52.350323, 5.00298 52.350251, 5.003156 52.35021, 5.003275 52.350096, 5.003246 52.349983, 5.003393 52.350007, 5.00354 52.349983, 5.003991 52.349748, 5.004065 52.34963, 5.004003 52.349504, 5.004608 52.349181, 5.004814 52.349222, 5.004967 52.349214, 5.005496 52.348937, 5.005744 52.348871, 5.005874 52.348724, 5.005874 52.348662, 5.005785 52.348538, 5.007036 52.347867, 5.007107 52.347837, 5.007227 52.347895, 5.007373 52.34792, 5.007632 52.347865, 5.007988 52.347612, 5.008002 52.34752, 5.007915 52.347421, 5.008117 52.347311, 5.008334 52.347288, 5.008599 52.347168, 5.008692 52.347089, 5.00872 52.346986, 5.009349 52.346653, 5.009538 52.346727, 5.00882 52.347092, 5.008727 52.347171, 5.008726 52.347293, 5.008946 52.347464, 5.008777 52.347487, 5.008375 52.347696, 5.008194 52.347684, 5.00799 52.34775, 5.007886 52.347874, 5.007748 52.347914, 5.006937 52.348345, 5.006824 52.348468, 5.006695 52.348505, 5.006114 52.348844, 5.005822 52.348946, 5.005757 52.349031, 5.005764 52.349107, 5.005637 52.349167, 5.00557 52.349266, 5.005271 52.34936, 5.005132 52.349488, 5.00497 52.349511, 5.004399 52.349779, 5.004227 52.349901, 5.003341 52.350374, 5.003271 52.350489, 5.003357 52.350618, 5.003582 52.350683, 5.003729 52.350659, 5.004012 52.350512, 5.00422 52.35047, 5.004379 52.350373, 5.004418 52.350294, 5.005149 52.349902, 5.005368 52.349855, 5.008274 52.348307, 5.009301 52.349053, 5.007321 52.350149, 5.005777 52.350954, 5.005612 52.351012, 5.005464 52.351117, 5.005428 52.351239, 5.005529 52.351345, 5.00595 52.351457, 5.006127 52.351538, 5.00628 52.351546, 5.006433 52.351498, 5.006688 52.351712, 5.007735 52.352021, 5.007913 52.352101, 5.008066 52.35211, 5.008198 52.352075, 5.008265 52.352171, 5.008354 52.352215, 5.008992 52.352415, 5.009403 52.352419, 5.009528 52.352366, 5.009699 52.352173, 5.009664 52.352051, 5.009479 52.351958, 5.009511 52.351853, 5.009628 52.351802, 5.009703 52.35169, 5.009858 52.35161, 5.010059 52.351566, 5.010148 52.35149, 5.010149 52.351368, 5.010019 52.351267, 5.01048 52.351019, 5.010708 52.350976, 5.011126 52.350743, 5.011161 52.350586, 5.011284 52.350414, 5.011272 52.350322, 5.011205 52.350246, 5.011424 52.350229, 5.011696 52.350088, 5.011775 52.349973, 5.012235 52.349544, 5.012334 52.34942, 5.012348 52.349332, 5.012477 52.349239, 5.012591 52.34898, 5.012561 52.348864, 5.012791 52.348742, 5.012965 52.348738, 5.01312 52.348659, 5.014184 52.347571, 5.014229 52.347474, 5.014189 52.347373, 5.014116 52.347319, 5.013949 52.347269, 5.013797 52.347277, 5.013671 52.347329, 5.012825 52.34821, 5.012441 52.347937, 5.013629 52.347311, 5.013665 52.347185, 5.013613 52.347075, 5.013461 52.346995, 5.013528 52.34688, 5.013458 52.346752, 5.011933 52.346177, 5.011781 52.346168, 5.011606 52.346229, 5.011393 52.346043, 5.011103 52.345953, 5.010903 52.345953, 5.010842 52.345874, 5.010667 52.345767, 5.010399 52.345735, 5.010209 52.345777, 5.010193 52.345664, 5.010085 52.345573, 5.009368 52.345329, 5.009029 52.345329, 5.008813 52.345397, 5.008632 52.345529, 5.008455 52.345492, 5.008308 52.345516, 5.006501 52.346423, 5.005623 52.345785, 5.005911 52.345578, 5.005998 52.345398, 5.005964 52.345276, 5.005806 52.345195, 5.005653 52.345186, 5.005515 52.345225, 5.005412 52.345303, 5.005362 52.345415, 5.005169 52.34555, 5.004764 52.345375, 5.004536 52.345381, 5.004054 52.345036, 5.003671 52.344982, 5.003435 52.345078, 5.003395 52.345168, 5.003444 52.345266, 5.003335 52.345299, 5.003132 52.345181, 5.00298 52.345172, 5.002837 52.345213, 5.002735 52.345319, 5.002763 52.345432, 5.002594 52.345523, 5.002534 52.345598, 5.002373 52.345629, 5.002238 52.345558, 5.002059 52.345526, 5.001779 52.345528, 5.001628 52.345561, 5.001465 52.345667, 5.001473 52.3458, 5.001143 52.345882, 5.000922 52.34602, 5.000714 52.345985, 5.000561 52.345992, 5.000389 52.346079, 5.000192 52.346101, 4.999911 52.346246, 4.999863 52.346343, 4.99993 52.346492, 4.999751 52.346502, 4.999588 52.346583, 4.999363 52.347126, 4.99919 52.347208, 4.999104 52.347378, 4.999167 52.347529, 4.999097 52.347839, 4.99924 52.347963, 4.999437 52.347986, 4.999576 52.347946, 4.99967 52.347867, 4.999746 52.347626, 4.999878 52.347646, 5.000031 52.347622, 5.00014 52.347556, 5.000236 52.347437, 5.000495 52.347379, 5.000674 52.34744, 5.000826 52.347432, 5.000985 52.347352, 5.001025 52.347222, 5.001197 52.347284, 5.001396 52.347263, 5.001801 52.347097, 5.001866 52.347013, 5.001859 52.346934, 5.002006 52.346979, 5.002204 52.346958, 5.002357 52.346874, 5.002402 52.346782, 5.002616 52.346806, 5.00279 52.346754, 5.002879 52.346678, 5.002894 52.346605, 5.00307 52.346641, 5.003295 52.346588, 5.003383 52.346512, 5.003386 52.346394, 5.003482 52.346355, 5.003842 52.346371, 5.003974 52.346317, 5.00407 52.346172, 5.004161 52.346159, 5.00435 52.346197, 5.004566 52.346153, 5.004676 52.346087, 5.004715 52.345988, 5.004812 52.345942, 5.005005 52.346041, 5.005184 52.346045, 5.006012 52.346657, 5.004439 52.347468, 5.002378 52.348892, 5.002305 52.349053, 5.002225 52.349099, 5.002061 52.349088, 5.001923 52.349127, 4.998904 52.350737, 4.998839 52.350821, 4.998873 52.350942, 4.999391 52.351316, 4.999518 52.351372, 4.999523 52.351482, 4.999322 52.351414, 4.999243 52.351285, 4.998961 52.35112, 4.998808 52.351111, 4.998651 52.351156, 4.998425 52.351173, 4.998311 52.351241, 4.998265 52.351365, 4.995615 52.352775, 4.995447 52.352801, 4.995288 52.352892, 4.995076 52.352934, 4.994987 52.35301, 4.994978 52.353112, 4.99464 52.353293, 4.994462 52.353354, 4.994311 52.353467, 4.994146 52.353508, 4.994044 52.353608, 4.993764 52.353712, 4.993676 52.353788, 4.993206 52.353459, 4.99326 52.353368, 4.993557 52.353257, 4.993632 52.353139, 4.994032 52.353008, 4.9942 52.352789, 4.994633 52.352635, 4.994988 52.352455, 4.995138 52.3522, 4.995314 52.35214, 4.995453 52.352144, 4.995591 52.352104, 4.995929 52.351874, 4.99632 52.351671, 4.996426 52.351457, 4.996824 52.351182, 4.996977 52.351096, 4.997275 52.351067, 4.997405 52.351013, 4.99758 52.350809, 4.997547 52.35069, 4.997672 52.350616, 4.997729 52.35051, 4.997625 52.350372, 4.997377 52.350332, 4.997224 52.350378, 4.996397 52.35084, 4.996272 52.350863, 4.996039 52.350965, 4.995947 52.351045, 4.99584 52.351241, 4.995542 52.351396, 4.995261 52.351438, 4.995107 52.351556, 4.995051 52.35166, 4.994813 52.3517, 4.994581 52.351861, 4.994398 52.351941, 4.994281 52.351938, 4.994138 52.351979, 4.994031 52.352116, 4.993889 52.352213, 4.993753 52.352222, 4.993623 52.352276, 4.993556 52.352406, 4.993393 52.352412, 4.993077 52.352495, 4.992968 52.352618, 4.9928 52.352684, 4.992737 52.352767, 4.992536 52.352872, 4.992308 52.352944, 4.992195 52.353061, 4.991964 52.353125, 4.991779 52.353277, 4.991486 52.353428, 4.991419 52.35353, 4.991282 52.353569, 4.99077 52.353886, 4.990514 52.353965, 4.990444 52.354052, 4.990454 52.354137, 4.990307 52.35413, 4.990076 52.354187, 4.989937 52.354257, 4.989821 52.35437, 4.989629 52.354431, 4.989495 52.354687, 4.989507 52.354784, 4.989595 52.354861, 4.989732 52.354901, 4.989885 52.354893, 4.990035 52.354837, 4.990177 52.354879, 4.990375 52.354858, 4.990489 52.354791, 4.990525 52.354673, 4.99063 52.354582, 4.990748 52.35456, 4.990878 52.354484, 4.99111 52.354488, 4.991306 52.354407, 4.991414 52.354283, 4.991579 52.354198, 4.991652 52.354097, 4.991843 52.354019, 4.992025 52.354059, 4.992172 52.354035, 4.992793 52.353731, 4.993153 52.353974, 4.993176 52.354071, 4.99303 52.354149, 4.992815 52.354189, 4.992617 52.354368, 4.992442 52.354353, 4.992304 52.354392, 4.992211 52.35447, 4.992207 52.354586, 4.991828 52.354786, 4.991642 52.354828, 4.991536 52.354936, 4.99116 52.355144, 4.991041 52.355141, 4.990902 52.35518, 4.990796 52.355317, 4.990136 52.355688, 4.989729 52.355436, 4.989374 52.35543, 4.989235 52.355469, 4.989118 52.355592, 4.988833 52.355682, 4.988727 52.355791, 4.988762 52.355912, 4.989122 52.35618, 4.989015 52.356336, 4.988647 52.356047, 4.98847 52.35602, 4.988291 52.356046, 4.987744 52.35634, 4.987664 52.356422, 4.987664 52.356558, 4.98789 52.356724, 4.987733 52.3567, 4.987543 52.356741, 4.987 52.357032, 4.98693 52.357148), (5.01142 52.348917, 5.011092 52.348687, 5.010943 52.348733, 5.01079 52.348724, 5.010786 52.34877, 5.011069 52.348987, 5.011069 52.349103, 5.01142 52.348917), (4.991835 52.358729, 4.991573 52.358544, 4.99135 52.358527, 4.991232 52.358602, 4.99098 52.358649, 4.990972 52.358753, 4.990879 52.358831, 4.990592 52.358895, 4.990472 52.358892, 4.990438 52.359062, 4.990217 52.35916, 4.990152 52.359308, 4.990019 52.35939, 4.990299 52.359589, 4.990603 52.359443, 4.990842 52.359455, 4.991071 52.359303, 4.991019 52.359189, 4.991089 52.359074, 4.991461 52.358874, 4.991769 52.358783, 4.991835 52.358729), (5.011087 52.347881, 5.010438 52.347412, 5.010175 52.347546, 5.010399 52.34761, 5.010815 52.347903, 5.010882 52.347987, 5.011087 52.347881), (4.991715 52.360499, 4.991495 52.360346, 4.991221 52.360492, 4.991135 52.360575, 4.991146 52.360598, 4.991422 52.360655, 4.991715 52.360499), (5.010564 52.348559, 5.010553 52.34851, 5.010414 52.348433, 5.01037 52.348316, 5.010009 52.348064, 5.009903 52.347947, 5.009744 52.347906, 5.009623 52.347791, 5.009399 52.347714, 5.009299 52.347767, 5.009595 52.347949, 5.009629 52.348071, 5.009484 52.348194, 5.009227 52.348223, 5.009138 52.348362, 5.00969 52.348749, 5.009812 52.348795, 5.010266 52.348567, 5.010428 52.348541, 5.010564 52.348559), (4.993139 52.359742, 4.992985 52.359701, 4.992862 52.359617, 4.992561 52.359779, 4.992779 52.359931, 4.993139 52.359742), (5.008809 52.346162, 5.008803 52.346127, 5.008651 52.346084, 5.008508 52.345986, 5.008315 52.346093, 5.008487 52.346217, 5.008527 52.346299, 5.008809 52.346162), (4.993614 52.354514, 4.993462 52.354407, 4.993055 52.354617, 4.993057 52.354738, 4.993167 52.35475, 4.993614 52.354514), (5.008636 52.351528, 5.008367 52.351347, 5.008244 52.351462, 5.008031 52.351569, 5.008367 52.351671, 5.008636 52.351528), (4.995191 52.359059, 4.994993 52.35908, 4.994855 52.35904, 4.994181 52.358559, 4.993937 52.358467, 4.99385 52.358338, 4.993647 52.358237, 4.993581 52.358156, 4.993288 52.357971, 4.993324 52.358058, 4.993467 52.358114, 4.993595 52.358262, 4.993903 52.358477, 4.993961 52.358575, 4.993947 52.358667, 4.99379 52.358843, 4.993449 52.359037, 4.993477 52.35915, 4.993375 52.359256, 4.993877 52.359616, 4.994611 52.359226, 4.994766 52.359181, 4.994965 52.359196, 4.995191 52.359059), (5.009797 52.349789, 5.009531 52.349613, 5.008928 52.349924, 5.00875 52.349946, 5.008625 52.350018, 5.008329 52.350077, 5.00801 52.350248, 5.008141 52.350346, 5.008175 52.350467, 5.008359 52.350404, 5.008582 52.350436, 5.009797 52.349789), (4.996387 52.35724, 4.995579 52.356687, 4.994474 52.357265, 4.995301 52.357853, 4.995398 52.357764, 4.996387 52.35724), (5.007733 52.350857, 5.007455 52.350688, 5.006674 52.351111, 5.007029 52.351237, 5.007733 52.350857), (4.99939 52.353092, 4.999191 52.35316, 4.997004 52.354347, 4.99614 52.354771, 4.996315 52.354792, 4.997381 52.354246, 4.997603 52.354164, 4.997734 52.353998, 4.998657 52.353485, 4.998788 52.353447, 4.998841 52.353387, 4.99939 52.353092), (5.006268 52.352767, 5.00604 52.352605, 5.005813 52.352726, 5.006013 52.352902, 5.006268 52.352767), (5.000305 52.354837, 5.000075 52.35467, 5.000041 52.354548, 4.999913 52.354557, 4.999242 52.354923, 4.999309 52.355009, 4.999272 52.355135, 4.999428 52.355089, 4.999566 52.355096, 4.999605 52.354995, 4.999765 52.354915, 4.999967 52.354916, 5.00011 52.354983, 5.000305 52.354837), (5.00447 52.348514, 5.004105 52.348259, 5.003851 52.348438, 5.003856 52.348513, 5.003791 52.348597, 5.003663 52.348652, 5.003596 52.348735, 5.003291 52.348919, 5.003225 52.349007, 5.002836 52.349216, 5.002973 52.349311, 5.00447 52.348514), (5.001853 52.351732, 5.000983 52.352188, 5.000836 52.352212, 5.000553 52.352185, 5.000563 52.352268, 5.000497 52.352352, 5.00029 52.352416, 5.000057 52.352559, 5.000026 52.352706, 5.000181 52.352724, 5.000656 52.352477, 5.000855 52.352456, 5.000992 52.352496, 5.001357 52.352749, 5.001422 52.352887, 5.001539 52.352866, 5.001129 52.352575, 5.000996 52.352367, 5.000984 52.352274, 5.001086 52.352168, 5.001354 52.352106, 5.001406 52.352019, 5.001528 52.351935, 5.001848 52.351801, 5.001853 52.351732), (5.001844 52.354964, 5.001739 52.354885, 5.00117 52.355199, 5.001275 52.355267, 5.001844 52.354964), (5.001193 52.354425, 5.001113 52.354309, 5.000843 52.35412, 5.000755 52.354109, 5.000347 52.354326, 5.000298 52.354397, 5.000484 52.354423, 5.000787 52.354605, 5.001193 52.354425)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS3", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.973887 52.322147, 4.97382 52.322031, 4.973568 52.321932, 4.97337 52.32191, 4.972879 52.321746, 4.972687 52.321719, 4.972631 52.321649, 4.972426 52.321555, 4.972165 52.321566, 4.971305 52.32129, 4.971293 52.321191, 4.971206 52.321114, 4.970166 52.320802, 4.969696 52.320554, 4.969405 52.320559, 4.969193 52.320659, 4.968871 52.320609, 4.968326 52.320734, 4.968186 52.320728, 4.967948 52.320782, 4.967911 52.32068, 4.967803 52.320614, 4.967265 52.320432, 4.967091 52.320427, 4.965977 52.320027, 4.96583 52.320002, 4.965641 52.320044, 4.965313 52.320223, 4.965237 52.320344, 4.965038 52.320386, 4.964825 52.32053, 4.963549 52.321953, 4.963456 52.321875, 4.964295 52.320948, 4.964318 52.320797, 4.964537 52.320708, 4.965025 52.320174, 4.965122 52.319872, 4.964979 52.319747, 4.96275 52.318985, 4.962603 52.318961, 4.962456 52.318984, 4.962347 52.31905, 4.962321 52.319203, 4.962208 52.319227, 4.962099 52.319292, 4.961565 52.319904, 4.961577 52.319997, 4.961664 52.320074, 4.962278 52.320289, 4.962492 52.320328, 4.962335 52.3205, 4.962279 52.320509, 4.961446 52.320237, 4.961205 52.320276, 4.961098 52.320385, 4.96111 52.320478, 4.961198 52.320554, 4.962027 52.320844, 4.961858 52.32103, 4.960977 52.320755, 4.960779 52.320776, 4.960643 52.320874, 4.960629 52.320967, 4.960729 52.321073, 4.961542 52.321369, 4.961377 52.321549, 4.960509 52.321266, 4.960268 52.321304, 4.960158 52.321445, 4.960197 52.321535, 4.960305 52.321601, 4.961391 52.321968, 4.961722 52.322026, 4.961788 52.322147, 4.962175 52.322302, 4.962082 52.322405, 4.962094 52.322497, 4.962182 52.322574, 4.96232 52.322623, 4.962558 52.322664, 4.962747 52.322623, 4.963092 52.322273, 4.9631 52.322374, 4.96323 52.322469, 4.963167 52.322553, 4.96318 52.322646, 4.963332 52.322802, 4.963471 52.322861, 4.963656 52.322889, 4.964181 52.322849, 4.964347 52.322882, 4.964551 52.322865, 4.964661 52.32282, 4.964774 52.322825, 4.965131 52.322936, 4.965323 52.322917, 4.965688 52.322963, 4.965835 52.322939, 4.965944 52.322874, 4.966775 52.322007, 4.967118 52.321594, 4.967171 52.321661, 4.966682 52.322195, 4.966646 52.322317, 4.966746 52.322423, 4.9673 52.322618, 4.967116 52.322667, 4.966971 52.322643, 4.966728 52.322678, 4.966549 52.322665, 4.966318 52.322759, 4.966248 52.322847, 4.96626 52.32294, 4.966347 52.323017, 4.966555 52.323113, 4.967214 52.323306, 4.967361 52.323283, 4.967497 52.323209, 4.967657 52.323219, 4.967788 52.323194, 4.968002 52.323013, 4.968243 52.323071, 4.96854 52.323072, 4.968678 52.323033, 4.968952 52.322754, 4.968966 52.322662, 4.968866 52.322555, 4.968625 52.322471, 4.968377 52.322484, 4.968217 52.322461, 4.968418 52.322324, 4.96851 52.322159, 4.969771 52.322569, 4.969837 52.322688, 4.970046 52.322815, 4.970293 52.322829, 4.970456 52.322741, 4.971714 52.323165, 4.971537 52.323364, 4.971523 52.323456, 4.971623 52.323563, 4.971867 52.323626, 4.972094 52.323563, 4.972245 52.32333, 4.972832 52.323518, 4.972984 52.323511, 4.97311 52.323458, 4.973372 52.323129, 4.973304 52.323013, 4.973157 52.32295, 4.973184 52.322826, 4.973121 52.322741, 4.972856 52.322596, 4.972608 52.322608, 4.972512 52.322439, 4.972388 52.32236, 4.971331 52.322004, 4.971146 52.321981, 4.970874 52.32189, 4.970722 52.321882, 4.970583 52.321921, 4.970329 52.322135, 4.970153 52.322182, 4.970068 52.322249, 4.9697 52.322127, 4.969885 52.321925, 4.969901 52.321849, 4.970072 52.321725, 4.970051 52.321574, 4.969943 52.321508, 4.969725 52.321479, 4.969525 52.32138, 4.969348 52.321376, 4.96903 52.321276, 4.968721 52.321159, 4.968606 52.321069, 4.968835 52.321007, 4.969299 52.321084, 4.969437 52.321079, 4.970576 52.32148, 4.971478 52.321747, 4.972513 52.322119, 4.972798 52.322145, 4.973413 52.322354, 4.973566 52.322363, 4.973704 52.322323, 4.973845 52.322239, 4.973887 52.322147), (4.966878 52.320921, 4.966799 52.320851, 4.965843 52.320525, 4.965748 52.320594, 4.966826 52.320967, 4.966878 52.320921), (4.962726 52.32193, 4.962154 52.321733, 4.962046 52.32185, 4.962625 52.322038, 4.962726 52.32193), (4.966615 52.321397, 4.966353 52.321319, 4.965716 52.32201, 4.965967 52.322107, 4.966615 52.321397), (4.962945 52.319469, 4.962652 52.319368, 4.962637 52.319448, 4.962373 52.319749, 4.962617 52.319833, 4.962945 52.319469), (4.965365 52.320967, 4.965254 52.320928, 4.965124 52.320977, 4.964776 52.321357, 4.964796 52.321433, 4.964754 52.321525, 4.964665 52.321597, 4.964527 52.321636, 4.964085 52.322114, 4.96429 52.322184, 4.965356 52.321015, 4.965365 52.320967), (4.963624 52.320936, 4.963219 52.320963, 4.962886 52.321046, 4.963374 52.321213, 4.963624 52.320936), (4.964502 52.320002, 4.964265 52.319921, 4.964226 52.320013, 4.963944 52.320291, 4.964167 52.320366, 4.964502 52.320002), (4.963813 52.319767, 4.963462 52.319648, 4.963131 52.320017, 4.963421 52.320117, 4.963813 52.319767)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS4", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.962669 52.316491, 4.962626 52.316395, 4.962518 52.316329, 4.961972 52.316151, 4.961819 52.316143, 4.96166 52.316172, 4.961552 52.316029, 4.961056 52.315848, 4.960884 52.315825, 4.960523 52.315648, 4.960142 52.315614, 4.959894 52.315644, 4.95962 52.315735, 4.959421 52.31586, 4.959259 52.316097, 4.958555 52.316864, 4.95835 52.31695, 4.957889 52.317453, 4.957888 52.317576, 4.957994 52.317661, 4.957634 52.318041, 4.957656 52.318236, 4.957492 52.318342, 4.957495 52.318517, 4.957366 52.318637, 4.957399 52.318768, 4.957321 52.318888, 4.957372 52.318988, 4.957159 52.318926, 4.957022 52.318931, 4.956955 52.318823, 4.956831 52.31877, 4.956618 52.318768, 4.956453 52.318839, 4.955858 52.318645, 4.955615 52.318646, 4.95533 52.318733, 4.956814 52.318293, 4.9571 52.317934, 4.957061 52.317844, 4.956953 52.317778, 4.955474 52.317258, 4.955411 52.317119, 4.955144 52.317013, 4.955361 52.316803, 4.955402 52.316714, 4.955334 52.316598, 4.955135 52.316519, 4.954983 52.31651, 4.954808 52.31657, 4.954523 52.316907, 4.953421 52.316506, 4.952753 52.316303, 4.95255 52.316302, 4.952425 52.316355, 4.952255 52.316534, 4.952214 52.316624, 4.952239 52.316695, 4.952153 52.31679, 4.951926 52.316828, 4.951817 52.316893, 4.951435 52.317311, 4.951421 52.317404, 4.951484 52.317489, 4.951609 52.317542, 4.951865 52.317528, 4.951903 52.317613, 4.952011 52.317679, 4.952132 52.317709, 4.952321 52.317693, 4.952447 52.317712, 4.952565 52.317792, 4.95278 52.317843, 4.952913 52.317946, 4.953101 52.318009, 4.953254 52.318018, 4.953513 52.31795, 4.954197 52.317214, 4.953893 52.317549, 4.953817 52.31773, 4.953829 52.317822, 4.953682 52.317904, 4.953642 52.318028, 4.953743 52.318134, 4.954356 52.318349, 4.954599 52.318472, 4.954861 52.31877, 4.955101 52.31881, 4.954697 52.319046, 4.954481 52.319237, 4.954414 52.319344, 4.954355 52.319601, 4.954367 52.319821, 4.954475 52.320073, 4.954675 52.320295, 4.955142 52.32056, 4.955373 52.320631, 4.955539 52.320619, 4.955603 52.320756, 4.955803 52.320826, 4.956038 52.320819, 4.956234 52.320866, 4.956526 52.320844, 4.956663 52.32078, 4.95761 52.32074, 4.957797 52.320679, 4.957926 52.320548, 4.957963 52.320629, 4.958071 52.320695, 4.958558 52.320864, 4.95871 52.320873, 4.958885 52.320812, 4.958964 52.320697, 4.959079 52.32063, 4.959232 52.320458, 4.959414 52.320374, 4.959862 52.319879, 4.959891 52.319741, 4.960238 52.319372, 4.960276 52.319264, 4.960404 52.319193, 4.960445 52.319103, 4.960375 52.318984, 4.960092 52.318879, 4.960267 52.31882, 4.960359 52.318741, 4.960438 52.318583, 4.96037 52.318466, 4.960148 52.318388, 4.959914 52.318423, 4.959781 52.318376, 4.959633 52.318368, 4.95969 52.318225, 4.95953 52.31797, 4.958912 52.317736, 4.958758 52.317707, 4.958659 52.317649, 4.958669 52.317525, 4.959746 52.317897, 4.959984 52.317888, 4.960086 52.317949, 4.960772 52.318186, 4.961019 52.3182, 4.961196 52.318093, 4.961187 52.317959, 4.961349 52.317952, 4.961503 52.317874, 4.96251 52.316772, 4.96254 52.316638, 4.962629 52.316581, 4.962669 52.316491), (4.961937 52.31655, 4.961839 52.316518, 4.961616 52.316561, 4.961568 52.31661, 4.961598 52.316725, 4.961482 52.316869, 4.961641 52.316973, 4.96193 52.316662, 4.961937 52.31655), (4.956443 52.319292, 4.955903 52.319449, 4.955709 52.319562, 4.955669 52.319744, 4.955873 52.319894, 4.956443 52.319292), (4.961321 52.317327, 4.961118 52.317262, 4.960676 52.317736, 4.960966 52.317837, 4.960968 52.31772, 4.961321 52.317327), (4.958678 52.318597, 4.958246 52.318449, 4.958153 52.318538, 4.958221 52.318654, 4.958136 52.318792, 4.958188 52.318886, 4.958314 52.318906, 4.958443 52.318759, 4.958678 52.318597), (4.961044 52.316263, 4.960877 52.316204, 4.960827 52.316215, 4.960695 52.316362, 4.960658 52.316464, 4.960519 52.316561, 4.96021 52.316894, 4.960393 52.316957, 4.961044 52.316263), (4.960298 52.31605, 4.960279 52.315987, 4.960193 52.315977, 4.959918 52.316063, 4.959854 52.316192, 4.959449 52.316634, 4.959567 52.316675, 4.959791 52.316606, 4.960298 52.31605)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS5", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.983957 52.360184, 4.983889 52.360068, 4.983744 52.36, 4.983425 52.359886, 4.983105 52.359859, 4.982712 52.359697, 4.98261 52.359575, 4.982231 52.359454, 4.981912 52.359231, 4.981578 52.359115, 4.981421 52.359096, 4.981284 52.359032, 4.981096 52.359028, 4.981007 52.358992, 4.981041 52.358909, 4.980998 52.358808, 4.980758 52.35869, 4.98051 52.358703, 4.980268 52.358905, 4.980063 52.358967, 4.979995 52.359055, 4.980003 52.359136, 4.979868 52.359248, 4.979757 52.359202, 4.97972 52.35912, 4.979579 52.359037, 4.979459 52.359014, 4.978902 52.358759, 4.978654 52.358745, 4.978529 52.358797, 4.978328 52.358983, 4.978312 52.359079, 4.978376 52.359164, 4.978898 52.359386, 4.979024 52.35941, 4.979161 52.359495, 4.979317 52.359521, 4.979433 52.359506, 4.979874 52.359684, 4.979374 52.360131, 4.979257 52.360081, 4.979154 52.359948, 4.978958 52.359891, 4.978857 52.359823, 4.978356 52.359623, 4.978107 52.359635, 4.977847 52.359833, 4.977811 52.359954, 4.977911 52.360061, 4.978403 52.360266, 4.978524 52.360289, 4.978666 52.360374, 4.978812 52.360399, 4.978931 52.360383, 4.979044 52.360431, 4.978752 52.360715, 4.978604 52.360831, 4.978447 52.360899, 4.977634 52.360563, 4.977173 52.360486, 4.976998 52.360547, 4.976356 52.361128, 4.975724 52.360871, 4.975429 52.360883, 4.975173 52.361047, 4.974727 52.361458, 4.974697 52.361587, 4.974831 52.361708, 4.974817 52.361798, 4.974895 52.361891, 4.97487 52.362043, 4.975 52.362138, 4.975232 52.362163, 4.976178 52.362552, 4.976187 52.36265, 4.976317 52.362744, 4.976437 52.362776, 4.97663 52.362764, 4.976671 52.362862, 4.976792 52.362935, 4.976916 52.362964, 4.977093 52.362956, 4.977228 52.363043, 4.977392 52.363067, 4.977032 52.363419, 4.977066 52.363541, 4.977229 52.363628, 4.977376 52.363653, 4.977523 52.363629, 4.977641 52.363556, 4.977799 52.36336, 4.978016 52.363311, 4.978115 52.363409, 4.978259 52.363451, 4.978412 52.363444, 4.978524 52.363398, 4.978856 52.363519, 4.979097 52.36348, 4.979368 52.363495, 4.980312 52.363012, 4.980378 52.362928, 4.980367 52.362841, 4.981022 52.362509, 4.981163 52.362407, 4.981201 52.362338, 4.981402 52.362318, 4.982084 52.361961, 4.982361 52.361925, 4.98256 52.361821, 4.982673 52.361695, 4.982639 52.361573, 4.982081 52.361318, 4.982086 52.36119, 4.981981 52.361105, 4.982092 52.361004, 4.982261 52.360999, 4.982416 52.36092, 4.982467 52.360821, 4.982411 52.360715, 4.98244 52.360688, 4.982677 52.360786, 4.982691 52.360862, 4.982826 52.361, 4.982609 52.361211, 4.982629 52.361362, 4.982837 52.361452, 4.983078 52.361413, 4.983506 52.361025, 4.983507 52.360902, 4.983379 52.360772, 4.983916 52.360274, 4.983957 52.360184), (4.983076 52.360287, 4.982904 52.360215, 4.982682 52.360219, 4.982561 52.360167, 4.982395 52.360143, 4.982262 52.360071, 4.982092 52.360065, 4.981726 52.35991, 4.981735 52.359959, 4.982024 52.360079, 4.982237 52.360098, 4.982957 52.360396, 4.983076 52.360287)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS6", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.971714 52.372586, 4.97163 52.372459, 4.971383 52.372307, 4.971209 52.37226, 4.971096 52.37206, 4.970909 52.371931, 4.9707 52.371864, 4.970214 52.371904, 4.969505 52.372278, 4.969342 52.372179, 4.969195 52.372154, 4.969048 52.372178, 4.96892 52.372243, 4.96885 52.372358, 4.968778 52.372311, 4.968688 52.372247, 4.970152 52.371467, 4.970218 52.37132, 4.970154 52.371235, 4.969764 52.370967, 4.969511 52.370915, 4.969423 52.370726, 4.96861 52.370154, 4.968421 52.370111, 4.968232 52.370152, 4.966011 52.371334, 4.965908 52.371439, 4.965971 52.371587, 4.966278 52.371761, 4.966526 52.371749, 4.966704 52.371619, 4.966742 52.371747, 4.96691 52.371855, 4.967057 52.37188, 4.967338 52.371848, 4.968614 52.372751, 4.968317 52.372908, 4.968108 52.372965, 4.967934 52.373057, 4.967864 52.373173, 4.967932 52.373289, 4.967534 52.373594, 4.967303 52.37359, 4.967118 52.373674, 4.967052 52.373759, 4.967075 52.373877, 4.966855 52.373846, 4.96667 52.373908, 4.966552 52.374024, 4.966573 52.374141, 4.966403 52.374097, 4.96625 52.374104, 4.966112 52.374163, 4.966049 52.374243, 4.965716 52.374222, 4.965425 52.37438, 4.965359 52.374265, 4.964911 52.373953, 4.964392 52.373859, 4.964119 52.373643, 4.963978 52.373578, 4.963546 52.373581, 4.963269 52.373644, 4.963138 52.373737, 4.963092 52.373858, 4.963107 52.373993, 4.963234 52.374516, 4.963323 52.374596, 4.963435 52.374839, 4.963765 52.375343, 4.964181 52.375788, 4.964183 52.375871, 4.964247 52.375956, 4.964744 52.37617, 4.964942 52.376192, 4.965119 52.376149, 4.965236 52.376035, 4.965191 52.375886, 4.965023 52.375765, 4.965092 52.37573, 4.965289 52.375854, 4.965478 52.375897, 4.965671 52.375855, 4.965784 52.375744, 4.965989 52.37579, 4.966182 52.375748, 4.968595 52.374472, 4.968684 52.374396, 4.968699 52.374322, 4.968815 52.374324, 4.968953 52.374285, 4.971582 52.372886, 4.971691 52.372775, 4.971714 52.372586), (4.970581 52.372334, 4.97033 52.372319, 4.970219 52.372426, 4.970059 52.372466, 4.969065 52.372993, 4.969106 52.373054, 4.969296 52.37296, 4.969443 52.372937, 4.970581 52.372334), (4.968814 52.370849, 4.968608 52.370705, 4.968383 52.370652, 4.968112 52.370795, 4.968045 52.370899, 4.967911 52.370967, 4.968232 52.371153, 4.968814 52.370849), (4.969505 52.371334, 4.969286 52.371238, 4.969197 52.371136, 4.968877 52.371293, 4.96908 52.371437, 4.969231 52.371478, 4.969505 52.371334)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS7", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.906105 52.407473, 4.906066 52.407383, 4.905927 52.407308, 4.905844 52.40717, 4.905719 52.407117, 4.905546 52.407111, 4.905437 52.406977, 4.905206 52.406934, 4.905162 52.406846, 4.905338 52.406748, 4.905381 52.406653, 4.905276 52.406515, 4.904885 52.40641, 4.903983 52.406481, 4.904039 52.406407, 4.904026 52.406314, 4.903935 52.406207, 4.903762 52.406145, 4.903766 52.406076, 4.903702 52.405991, 4.903385 52.405807, 4.903196 52.405764, 4.902749 52.405419, 4.902611 52.405378, 4.902494 52.405381, 4.902018 52.405087, 4.901839 52.405044, 4.90175 52.404963, 4.901196 52.404672, 4.900948 52.404684, 4.900487 52.404893, 4.900391 52.404972, 4.900389 52.405093, 4.900162 52.40511, 4.899947 52.405243, 4.899736 52.405285, 4.899629 52.405396, 4.900095 52.406514, 4.900198 52.406599, 4.900176 52.406701, 4.900549 52.407548, 4.900437 52.407724, 4.900297 52.407753, 4.899501 52.405969, 4.899348 52.405889, 4.899195 52.40588, 4.898895 52.405931, 4.898749 52.406031, 4.898756 52.406195, 4.898844 52.406272, 4.898968 52.40631, 4.899087 52.406568, 4.898964 52.406728, 4.899054 52.406971, 4.899164 52.407089, 4.899333 52.407131, 4.899361 52.407197, 4.899257 52.407303, 4.899307 52.407494, 4.899419 52.407601, 4.899563 52.407658, 4.899618 52.407766, 4.899631 52.407809, 4.899367 52.407869, 4.899265 52.407975, 4.8993 52.408121, 4.899429 52.408216, 4.899628 52.408239, 4.900742 52.408055, 4.902065 52.407104, 4.902134 52.407105, 4.902166 52.407372, 4.902067 52.407433, 4.902026 52.407522, 4.902106 52.40778, 4.902396 52.408429, 4.902514 52.408519, 4.902552 52.408609, 4.902519 52.408725, 4.903093 52.41001, 4.903244 52.410243, 4.903398 52.410323, 4.903557 52.410332, 4.903732 52.410271, 4.903802 52.410156, 4.903762 52.409943, 4.903928 52.409852, 4.904654 52.409283, 4.9049 52.409244, 4.905057 52.409088, 4.905255 52.409026, 4.905324 52.408877, 4.905447 52.408756, 4.905462 52.408663, 4.905361 52.408557, 4.905453 52.408477, 4.905481 52.408386, 4.905426 52.408247, 4.905626 52.408162, 4.905693 52.408056, 4.905681 52.407957, 4.905547 52.407857, 4.904976 52.407737, 4.905848 52.407751, 4.906003 52.407672, 4.906105 52.407473), (4.904167 52.409045, 4.903655 52.408862, 4.903567 52.408785, 4.903552 52.408713, 4.903147 52.408568, 4.903188 52.408686, 4.903153 52.408768, 4.903266 52.409027, 4.903437 52.409033, 4.90362 52.4091, 4.903754 52.409344, 4.904167 52.409045), (4.903301 52.407764, 4.903221 52.407697, 4.902682 52.407684, 4.902908 52.4082, 4.902959 52.408225, 4.903301 52.407764)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS8", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.833711 52.348009, 4.833673 52.347895, 4.83352 52.347815, 4.833009 52.347779, 4.832485 52.347783, 4.83248 52.347593, 4.832584 52.347487, 4.832551 52.347362, 4.832136 52.347162, 4.831974 52.347122, 4.828049 52.347095, 4.827859 52.347136, 4.827756 52.347242, 4.827737 52.347615, 4.827581 52.347625, 4.827456 52.347677, 4.82739 52.347761, 4.82736 52.347937, 4.827373 52.348192, 4.82746 52.348269, 4.827567 52.348303, 4.827526 52.349108, 4.82769 52.349386, 4.827843 52.349466, 4.828097 52.349454, 4.828236 52.34934, 4.828565 52.349343, 4.828573 52.349629, 4.828553 52.349741, 4.827817 52.349735, 4.827679 52.349774, 4.82759 52.34985, 4.827575 52.349943, 4.827639 52.350028, 4.827539 52.350135, 4.827505 52.350766, 4.827601 52.350909, 4.82761 52.351136, 4.827675 52.351225, 4.827799 52.351278, 4.827952 52.351287, 4.828175 52.351194, 4.82822 52.351097, 4.828228 52.350796, 4.828111 52.350635, 4.828124 52.350441, 4.828318 52.350441, 4.828308 52.350879, 4.828346 52.350976, 4.828417 52.351032, 4.828564 52.351075, 4.828716 52.351068, 4.828823 52.351026, 4.828836 52.35115, 4.828977 52.351255, 4.82925 52.351273, 4.829437 52.351162, 4.829458 52.350477, 4.829651 52.350477, 4.829634 52.350957, 4.829741 52.351069, 4.829937 52.351113, 4.830142 52.351069, 4.830196 52.351201, 4.830365 52.351288, 4.830586 52.351289, 4.830722 52.351234, 4.830796 52.351112, 4.830815 52.350463, 4.830977 52.350462, 4.831155 52.350415, 4.831244 52.350339, 4.83126 52.350243, 4.831196 52.350158, 4.831029 52.350077, 4.830683 52.350055, 4.830622 52.349976, 4.830498 52.349922, 4.830171 52.349907, 4.830283 52.349755, 4.830292 52.349396, 4.83023 52.349282, 4.830249 52.34918, 4.830352 52.349274, 4.830489 52.349314, 4.830657 52.349307, 4.830845 52.349236, 4.830952 52.349128, 4.830912 52.348956, 4.830965 52.348861, 4.831028 52.348951, 4.831225 52.349027, 4.831699 52.349043, 4.831744 52.349194, 4.831874 52.349289, 4.832071 52.349315, 4.832219 52.349291, 4.832211 52.350147, 4.832315 52.350285, 4.832504 52.350328, 4.833265 52.350333, 4.833528 52.350292, 4.833636 52.350155, 4.833608 52.34931, 4.833658 52.348965, 4.833623 52.348805, 4.833664 52.348716, 4.833642 52.348469, 4.833711 52.348009), (4.833052 52.34833, 4.832893 52.348306, 4.832861 52.348373, 4.832866 52.349174, 4.832934 52.349199, 4.832998 52.349186, 4.832957 52.349052, 4.833052 52.34833), (4.828311 52.348318, 4.828145 52.348316, 4.828148 52.348977, 4.828264 52.348977, 4.828311 52.348318), (4.8297 52.348332, 4.829534 52.34833, 4.829537 52.349065, 4.829657 52.349066, 4.8297 52.348332), (4.829648 52.349584, 4.829568 52.34953, 4.82953 52.349429, 4.829351 52.349424, 4.829234 52.349465, 4.829226 52.349675, 4.829612 52.349677, 4.829648 52.349584)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS9", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.809291 52.391328, 4.809289 52.390844, 4.809226 52.390759, 4.809052 52.390697, 4.80887 52.390697, 4.808731 52.390736, 4.808628 52.390842, 4.808653 52.390954, 4.808442 52.390976, 4.808297 52.391097, 4.808091 52.391158, 4.808025 52.391158, 4.808008 52.391077, 4.807921 52.391, 4.807732 52.390957, 4.807499 52.39102, 4.807429 52.391157, 4.807167 52.391135, 4.806913 52.391158, 4.806471 52.391146, 4.806278 52.3911, 4.806052 52.391159, 4.804849 52.391157, 4.804785 52.391065, 4.804629 52.391006, 4.804758 52.390884, 4.804761 52.390719, 4.805098 52.390755, 4.80528 52.390755, 4.805405 52.390722, 4.805617 52.390755, 4.806005 52.390734, 4.805997 52.390898, 4.806097 52.391005, 4.806286 52.391048, 4.80654 52.390998, 4.806643 52.390892, 4.806609 52.390722, 4.806759 52.390699, 4.806874 52.39063, 4.806898 52.390479, 4.806723 52.390371, 4.806486 52.39036, 4.806538 52.39026, 4.8065 52.39017, 4.806392 52.390104, 4.806269 52.390078, 4.805909 52.38966, 4.807664 52.389662, 4.807702 52.389777, 4.807855 52.389857, 4.808014 52.389866, 4.808123 52.389839, 4.808337 52.389865, 4.808542 52.389779, 4.808583 52.389606, 4.80851 52.389415, 4.808414 52.389343, 4.808277 52.389302, 4.804297 52.389298, 4.804107 52.38934, 4.804 52.389476, 4.804104 52.389615, 4.8043 52.389661, 4.805236 52.389663, 4.805593 52.390077, 4.804095 52.390077, 4.803911 52.390188, 4.80389 52.390355, 4.803625 52.390366, 4.8035 52.390419, 4.803434 52.390503, 4.803445 52.390635, 4.803575 52.39073, 4.803827 52.390753, 4.803886 52.390882, 4.803829 52.390986, 4.803888 52.391151, 4.803599 52.3911, 4.803133 52.391174, 4.802869 52.391135, 4.80175 52.391129, 4.801749 52.390698, 4.801796 52.39063, 4.801827 52.390246, 4.801739 52.39011, 4.801615 52.390056, 4.800843 52.390101, 4.800686 52.390014, 4.800497 52.390005, 4.800358 52.390044, 4.800156 52.390191, 4.800115 52.390281, 4.800141 52.390354, 4.799411 52.390353, 4.799245 52.39032, 4.799053 52.390341, 4.799054 52.38959, 4.79899 52.389506, 4.79881 52.389441, 4.798657 52.389448, 4.798532 52.389501, 4.798466 52.389585, 4.798462 52.389668, 4.798355 52.389765, 4.798353 52.389891, 4.798459 52.389977, 4.798459 52.390255, 4.798357 52.39036, 4.798144 52.390357, 4.798142 52.39007, 4.798211 52.390005, 4.798225 52.389901, 4.798162 52.389816, 4.798038 52.389763, 4.797741 52.389762, 4.797586 52.38984, 4.797545 52.38993, 4.79755 52.390316, 4.796745 52.390348, 4.796747 52.390193, 4.797 52.390152, 4.797138 52.390005, 4.797105 52.38988, 4.796952 52.3898, 4.796758 52.389791, 4.796624 52.389828, 4.796347 52.389839, 4.796222 52.389891, 4.796156 52.389975, 4.79619 52.391977, 4.796423 52.392203, 4.796423 52.392465, 4.796338 52.392562, 4.79635 52.392658, 4.796479 52.392753, 4.79667 52.392791, 4.796911 52.392752, 4.797014 52.392647, 4.797008 52.392049, 4.798416 52.391596, 4.798481 52.391691, 4.798605 52.391744, 4.799034 52.391726, 4.799189 52.391648, 4.799233 52.391493, 4.801225 52.391492, 4.801365 52.391471, 4.802351 52.391496, 4.802361 52.391859, 4.80253 52.391972, 4.802725 52.391998, 4.802915 52.391956, 4.803005 52.39188, 4.803019 52.391783, 4.802944 52.391692, 4.802947 52.391534, 4.804317 52.391508, 4.80432 52.39163, 4.804383 52.391714, 4.804608 52.391805, 4.804755 52.39183, 4.804908 52.391806, 4.805018 52.391741, 4.805058 52.391651, 4.805029 52.391521, 4.808993 52.391506, 4.80922 52.391443, 4.809291 52.391328), (4.801154 52.391044, 4.801154 52.390721, 4.800677 52.390718, 4.800554 52.390801, 4.800406 52.390825, 4.80022 52.390785, 4.799859 52.390783, 4.799685 52.390721, 4.799412 52.390717, 4.799384 52.39113, 4.799636 52.391129, 4.79986 52.391068, 4.800006 52.391092, 4.800208 52.391072, 4.800419 52.39113, 4.800697 52.391073, 4.800991 52.39108, 4.801154 52.391044), (4.798687 52.390729, 4.796785 52.390712, 4.796785 52.390858, 4.79702 52.39082, 4.797177 52.390829, 4.797302 52.390882, 4.797369 52.390999, 4.797328 52.391113, 4.797189 52.391197, 4.796784 52.391221, 4.796783 52.391557, 4.796976 52.391539, 4.797145 52.391595, 4.79847 52.391169, 4.798671 52.391065, 4.798687 52.390729)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS10", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.938477 52.376478, 4.938409 52.376362, 4.938235 52.3763, 4.935619 52.376196, 4.935248 52.376224, 4.935123 52.376276, 4.935053 52.376392, 4.935092 52.376491, 4.935251 52.376575, 4.936212 52.376597, 4.936711 52.376636, 4.936495 52.376804, 4.935515 52.377024, 4.93539 52.377076, 4.935324 52.377161, 4.935295 52.377309, 4.935388 52.377491, 4.93528 52.377556, 4.934428 52.377718, 4.934188 52.37779, 4.933903 52.377811, 4.933877 52.377665, 4.933687 52.377407, 4.933517 52.377336, 4.933143 52.377328, 4.932969 52.37724, 4.932755 52.377231, 4.929857 52.377733, 4.929731 52.377785, 4.929666 52.37787, 4.929146 52.377887, 4.928626 52.378043, 4.92828 52.378076, 4.928056 52.378047, 4.92722 52.378191, 4.927012 52.378188, 4.926751 52.378258, 4.925158 52.378538, 4.925041 52.378586, 4.924866 52.37859, 4.923488 52.378842, 4.923029 52.379123, 4.922885 52.37956, 4.922898 52.379653, 4.922985 52.379729, 4.923122 52.379769, 4.92455 52.37992, 4.925246 52.379799, 4.92542 52.379814, 4.925618 52.379781, 4.925789 52.379681, 4.92735 52.379408, 4.92751 52.379439, 4.927769 52.379401, 4.927975 52.379308, 4.92997 52.37903, 4.930294 52.379008, 4.930461 52.378936, 4.931079 52.378826, 4.931283 52.378737, 4.931516 52.378774, 4.932858 52.3785, 4.932988 52.37852, 4.933213 52.378485, 4.933368 52.378426, 4.934786 52.378114, 4.935929 52.377915, 4.936105 52.37781, 4.93647 52.377733, 4.936582 52.377667, 4.936618 52.377546, 4.936566 52.377321, 4.936399 52.377214, 4.936879 52.377089, 4.937382 52.376697, 4.937393 52.376853, 4.937523 52.376948, 4.938032 52.37698, 4.938206 52.376957, 4.93837 52.376816, 4.938477 52.376478), (4.931983 52.37818, 4.931846 52.377927, 4.931643 52.377964, 4.931477 52.377957, 4.931175 52.378014, 4.931108 52.37815, 4.930884 52.378219, 4.930909 52.378258, 4.931415 52.378188, 4.931552 52.378228, 4.931635 52.378301, 4.931759 52.378217, 4.931983 52.37818), (4.924273 52.379419, 4.924211 52.379295, 4.924094 52.379258, 4.924013 52.379188, 4.923877 52.379242, 4.923728 52.379259, 4.92355 52.379366, 4.923706 52.379399, 4.924273 52.379419), (4.929096 52.378702, 4.928995 52.378566, 4.928511 52.378457, 4.928319 52.378486, 4.928411 52.378684, 4.928407 52.378782, 4.928652 52.378763, 4.928839 52.378691, 4.929096 52.378702), (4.92694 52.37902, 4.926615 52.379035, 4.926437 52.378926, 4.926263 52.378903, 4.926109 52.378818, 4.926247 52.378999, 4.926146 52.379134, 4.926392 52.379165, 4.926657 52.379068, 4.92694 52.37902)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS11", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.842076 52.365433, 4.842008 52.365317, 4.841834 52.365255, 4.841773 52.365114, 4.84184 52.365001, 4.84178 52.364865, 4.841848 52.364753, 4.841786 52.364617, 4.84185 52.364536, 4.841838 52.364417, 4.84165 52.364256, 4.841525 52.364203, 4.841235 52.364215, 4.841096 52.364285, 4.84103 52.36437, 4.84099 52.365464, 4.840518 52.365462, 4.840457 52.365372, 4.840349 52.365306, 4.840203 52.365281, 4.839993 52.365293, 4.839867 52.365346, 4.839801 52.36543, 4.839813 52.365525, 4.839913 52.365659, 4.839323 52.365652, 4.839284 52.365452, 4.839124 52.365342, 4.838935 52.365299, 4.838653 52.3653, 4.838515 52.365338, 4.838408 52.365475, 4.838473 52.36564, 4.838197 52.365638, 4.838212 52.365117, 4.838562 52.365092, 4.838729 52.364997, 4.83877 52.364907, 4.838753 52.364808, 4.838666 52.364732, 4.838529 52.364691, 4.838297 52.364699, 4.838289 52.364584, 4.838955 52.364524, 4.838942 52.364846, 4.838981 52.364938, 4.839143 52.365023, 4.839348 52.365024, 4.839533 52.364915, 4.839558 52.364609, 4.84009 52.364556, 4.840245 52.364477, 4.840282 52.364342, 4.840182 52.364235, 4.839993 52.364192, 4.839643 52.364191, 4.839532 52.364219, 4.839421 52.364148, 4.839274 52.364123, 4.838931 52.364124, 4.838801 52.364159, 4.838004 52.36415, 4.837817 52.364174, 4.837536 52.364132, 4.836619 52.364219, 4.836509 52.364284, 4.836425 52.364463, 4.836437 52.364884, 4.83648 52.364952, 4.836692 52.365045, 4.83692 52.365021, 4.837065 52.364898, 4.83708 52.364572, 4.8376 52.364532, 4.837614 52.365285, 4.83739 52.365284, 4.837214 52.365344, 4.837143 52.365432, 4.837153 52.365571, 4.837206 52.365631, 4.83734 52.365688, 4.837603 52.365701, 4.837616 52.365869, 4.83775 52.365969, 4.837905 52.365997, 4.838463 52.366003, 4.838432 52.366609, 4.838201 52.366637, 4.838077 52.366713, 4.838007 52.367142, 4.837604 52.367196, 4.837735 52.367054, 4.837751 52.366841, 4.837712 52.366751, 4.837601 52.366682, 4.837455 52.366657, 4.837308 52.366681, 4.837116 52.366825, 4.837004 52.366692, 4.836815 52.366649, 4.836625 52.36669, 4.836531 52.366769, 4.836514 52.367013, 4.836562 52.367135, 4.836715 52.367215, 4.836948 52.367243, 4.837253 52.367261, 4.837537 52.367219, 4.837427 52.367328, 4.837413 52.367812, 4.837476 52.367897, 4.837723 52.368009, 4.8379 52.368021, 4.838046 52.367998, 4.838138 52.368049, 4.838284 52.368074, 4.838432 52.368051, 4.83855 52.367985, 4.838727 52.368044, 4.838961 52.368013, 4.839016 52.36808, 4.839184 52.36815, 4.839671 52.368193, 4.839934 52.368146, 4.840173 52.368183, 4.840388 52.368096, 4.84053 52.368139, 4.840678 52.368143, 4.840905 52.36808, 4.841028 52.368159, 4.841174 52.368184, 4.84138 52.368135, 4.841665 52.368118, 4.841775 52.368052, 4.841816 52.367963, 4.841816 52.367598, 4.841716 52.367491, 4.841578 52.367451, 4.841409 52.36745, 4.841204 52.367535, 4.840964 52.367573, 4.840788 52.367461, 4.840603 52.367439, 4.840439 52.367462, 4.840459 52.367389, 4.840612 52.367416, 4.841793 52.367427, 4.841998 52.367341, 4.842039 52.367251, 4.84206 52.366507, 4.841992 52.366391, 4.841852 52.366334, 4.841859 52.366086, 4.842054 52.365872, 4.842076 52.365433), (4.84146 52.366679, 4.841355 52.366644, 4.841267 52.366567, 4.841258 52.36626, 4.841127 52.366164, 4.841117 52.366037, 4.840974 52.365989, 4.84069 52.366026, 4.839088 52.366014, 4.839075 52.366368, 4.839734 52.366401, 4.839925 52.366475, 4.840062 52.366412, 4.840225 52.366404, 4.840407 52.366468, 4.840485 52.366592, 4.840439 52.367084, 4.840567 52.367049, 4.840796 52.367049, 4.84101 52.366993, 4.841316 52.366999, 4.84145 52.367036, 4.84146 52.366679)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS12", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.856541 52.347057, 4.856903 52.347111, 4.857135 52.347112, 4.857273 52.347073, 4.857402 52.346932, 4.857415 52.346628, 4.85749 52.346577, 4.857532 52.346483, 4.857465 52.346367, 4.857255 52.346272, 4.856925 52.346262, 4.856654 52.346199, 4.856505 52.346206, 4.856251 52.34614, 4.856544 52.345312, 4.85651 52.345191, 4.856357 52.345111, 4.855613 52.345009, 4.855503 52.344963, 4.854245 52.34481, 4.854319 52.344716, 4.854681 52.344626, 4.855005 52.344447, 4.855299 52.344172, 4.855625 52.343352, 4.855652 52.343084, 4.855583 52.342861, 4.855388 52.342587, 4.855007 52.342372, 4.854438 52.342252, 4.854115 52.342248, 4.853849 52.342283, 4.853511 52.342386, 4.853218 52.342563, 4.853021 52.342737, 4.852865 52.34276, 4.852755 52.342826, 4.852425 52.343722, 4.852463 52.343812, 4.852606 52.343902, 4.852672 52.344119, 4.852882 52.344407, 4.853252 52.344614, 4.853667 52.34472, 4.853453 52.344718, 4.853216 52.344779, 4.852591 52.34467, 4.852379 52.344704, 4.85213 52.344689, 4.851991 52.344728, 4.851902 52.344804, 4.851823 52.345054, 4.851813 52.345207, 4.85194 52.345325, 4.85186 52.345422, 4.851872 52.345514, 4.852115 52.345896, 4.852387 52.346006, 4.852626 52.346002, 4.852767 52.346136, 4.852723 52.346227, 4.852762 52.346317, 4.853178 52.34652, 4.853862 52.346687, 4.854015 52.34668, 4.854166 52.346605, 4.854268 52.346736, 4.854393 52.346789, 4.854617 52.346786, 4.855302 52.346917, 4.855455 52.34691, 4.855638 52.346831, 4.855696 52.346902, 4.85582 52.346956, 4.856541 52.347057), (4.855041 52.343212, 4.854972 52.342909, 4.854825 52.342757, 4.854584 52.342648, 4.854442 52.34262, 4.854145 52.342625, 4.853972 52.342655, 4.853804 52.342731, 4.853539 52.342912, 4.853432 52.343063, 4.853271 52.343121, 4.853101 52.343527, 4.853097 52.343604, 4.853192 52.343715, 4.853195 52.343868, 4.853272 52.344058, 4.853412 52.344223, 4.853657 52.344338, 4.854031 52.344372, 4.854281 52.344338, 4.854497 52.34423, 4.854762 52.343989, 4.854768 52.343887, 4.855041 52.343212)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS13", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.959945 52.396253, 4.959906 52.396163, 4.959798 52.396097, 4.958626 52.395771, 4.959212 52.394962, 4.959226 52.394869, 4.959084 52.394745, 4.958166 52.394485, 4.95856 52.393761, 4.958574 52.393668, 4.958507 52.393578, 4.958283 52.393513, 4.958194 52.393432, 4.957706 52.393284, 4.95794 52.393007, 4.957927 52.392914, 4.957818 52.392828, 4.958057 52.392472, 4.957939 52.392318, 4.957765 52.392268, 4.957612 52.392276, 4.957481 52.39233, 4.957297 52.392517, 4.956886 52.393076, 4.956871 52.393203, 4.956931 52.393285, 4.956499 52.393873, 4.956536 52.393999, 4.956644 52.394065, 4.956607 52.394126, 4.956366 52.394089, 4.956048 52.394139, 4.955893 52.394217, 4.955404 52.394875, 4.955389 52.394968, 4.955456 52.395079, 4.955322 52.395151, 4.955125 52.395417, 4.955065 52.395515, 4.955083 52.395658, 4.954903 52.395748, 4.954861 52.395813, 4.954873 52.395906, 4.954961 52.395983, 4.955181 52.396045, 4.955358 52.396035, 4.955531 52.395957, 4.956183 52.396135, 4.95617 52.396273, 4.9563 52.396368, 4.957302 52.396647, 4.957455 52.396656, 4.95763 52.396595, 4.957664 52.396707, 4.957773 52.396773, 4.958637 52.397008, 4.958836 52.396987, 4.958964 52.396896, 4.959167 52.396932, 4.959389 52.396884, 4.959506 52.396772, 4.959708 52.396687, 4.959888 52.396444, 4.959945 52.396253), (4.959175 52.396384, 4.958631 52.396235, 4.958436 52.396501, 4.958536 52.396525, 4.958643 52.396441, 4.958781 52.396402, 4.958934 52.39641, 4.959115 52.396464, 4.959175 52.396384), (4.957227 52.394687, 4.956996 52.394625, 4.956734 52.394965, 4.956912 52.395022, 4.957227 52.394687), (4.95842 52.395004, 4.957967 52.394888, 4.957952 52.394971, 4.957742 52.395243, 4.958153 52.395362, 4.95842 52.395004)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS14", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.885994 52.409695, 4.885955 52.409605, 4.885808 52.409492, 4.88567 52.409452, 4.885517 52.40946, 4.885379 52.409518, 4.885308 52.409634, 4.885161 52.409676, 4.885058 52.409763, 4.884565 52.409993, 4.884474 52.409935, 4.884437 52.409904, 4.885481 52.409398, 4.885522 52.409309, 4.885482 52.409216, 4.885326 52.409112, 4.885188 52.409072, 4.884947 52.40911, 4.884835 52.40925, 4.884714 52.409314, 4.884581 52.409309, 4.884438 52.40935, 4.884331 52.409487, 4.884025 52.409639, 4.883837 52.409516, 4.883617 52.409488, 4.883373 52.409574, 4.883306 52.409675, 4.88315 52.409682, 4.882605 52.409269, 4.882468 52.409228, 4.882315 52.409236, 4.881608 52.409564, 4.881535 52.409657, 4.881549 52.409754, 4.881705 52.409874, 4.881903 52.409896, 4.882046 52.409856, 4.88214 52.409768, 4.882364 52.409661, 4.882725 52.409949, 4.882674 52.410058, 4.882746 52.410179, 4.883091 52.410399, 4.88328 52.410442, 4.883025 52.41057, 4.882957 52.410677, 4.882712 52.410649, 4.882765 52.410514, 4.88267 52.410404, 4.882496 52.410342, 4.882343 52.41035, 4.881832 52.409958, 4.881707 52.409905, 4.881496 52.409903, 4.881341 52.409981, 4.8813 52.410071, 4.881367 52.410214, 4.881189 52.410148, 4.88099 52.410168, 4.880809 52.410072, 4.880606 52.410072, 4.880055 52.410324, 4.879989 52.410471, 4.880115 52.410597, 4.880304 52.41064, 4.880452 52.410616, 4.88065 52.410498, 4.881142 52.410893, 4.881111 52.410955, 4.880948 52.411028, 4.880833 52.411159, 4.880867 52.411281, 4.881169 52.411503, 4.881032 52.411562, 4.880886 52.411722, 4.880816 52.411755, 4.880668 52.411637, 4.880725 52.411533, 4.880654 52.411414, 4.88048 52.411352, 4.880327 52.411359, 4.880159 52.411233, 4.88038 52.411112, 4.880422 52.410978, 4.880283 52.410832, 4.880094 52.410789, 4.879899 52.410833, 4.879797 52.410938, 4.879576 52.410812, 4.879365 52.41081, 4.879239 52.410863, 4.879174 52.410947, 4.879207 52.411069, 4.879743 52.411498, 4.879756 52.411585, 4.879864 52.411713, 4.880094 52.411781, 4.880343 52.411977, 4.879693 52.412287, 4.879502 52.412288, 4.879384 52.412337, 4.878921 52.412188, 4.878852 52.412065, 4.878728 52.412011, 4.878594 52.412002, 4.878264 52.411736, 4.878313 52.411666, 4.878301 52.411573, 4.878225 52.411499, 4.878101 52.411445, 4.877898 52.411444, 4.877768 52.411498, 4.877586 52.411655, 4.877584 52.411777, 4.878351 52.412429, 4.879432 52.41276, 4.879635 52.412761, 4.885886 52.409832, 4.885994 52.409695), (4.884083 52.410221, 4.883548 52.40987, 4.883491 52.40996, 4.883918 52.410299, 4.884083 52.410221), (4.882315 52.411047, 4.882257 52.410968, 4.882262 52.410896, 4.881662 52.410417, 4.881435 52.410352, 4.881347 52.410459, 4.882171 52.411115, 4.882315 52.411047)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS15", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.881024 52.394044, 4.880984 52.39395, 4.880876 52.393883, 4.880678 52.393861, 4.880539 52.3939, 4.879862 52.393553, 4.879923 52.393473, 4.879908 52.393325, 4.879821 52.393248, 4.879689 52.393205, 4.879531 52.393196, 4.879355 52.393257, 4.879108 52.393445, 4.879078 52.393579, 4.878343 52.393235, 4.878047 52.393209, 4.877857 52.39325, 4.877754 52.393356, 4.877785 52.393472, 4.877423 52.393306, 4.877296 52.393177, 4.877056 52.393136, 4.876613 52.393296, 4.876454 52.393517, 4.876452 52.393639, 4.876544 52.393718, 4.876753 52.393773, 4.876842 52.39388, 4.87695 52.393935, 4.877096 52.39396, 4.877267 52.393936, 4.87753 52.39408, 4.877395 52.394103, 4.877132 52.394023, 4.876968 52.394054, 4.876869 52.393949, 4.876606 52.393824, 4.876434 52.393795, 4.876159 52.393804, 4.876008 52.393734, 4.875795 52.393726, 4.875619 52.393786, 4.875392 52.393963, 4.875364 52.39411, 4.875403 52.394199, 4.875351 52.394358, 4.875415 52.394442, 4.875589 52.394504, 4.876272 52.394505, 4.87641 52.394531, 4.876414 52.39464, 4.876502 52.394717, 4.878532 52.395766, 4.878786 52.395855, 4.878948 52.395864, 4.879525 52.396116, 4.879647 52.396232, 4.879888 52.396273, 4.880124 52.396168, 4.880282 52.395999, 4.880297 52.395924, 4.880476 52.395842, 4.8805 52.395687, 4.880413 52.39561, 4.879563 52.395148, 4.879321 52.395106, 4.878983 52.39493, 4.878995 52.39484, 4.879448 52.395068, 4.879597 52.395094, 4.879744 52.39507, 4.880185 52.394732, 4.88036 52.394676, 4.880489 52.394589, 4.880592 52.39447, 4.880548 52.39434, 4.880668 52.39433, 4.880794 52.394278, 4.880983 52.394134, 4.881024 52.394044), (4.877821 52.393533, 4.877753 52.393716, 4.879519 52.394634, 4.879654 52.394534, 4.878057 52.393723, 4.877821 52.393533)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS16", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.918089 52.406548, 4.918047 52.406443, 4.917915 52.406331, 4.917636 52.406246, 4.917603 52.406089, 4.917441 52.405941, 4.917299 52.405878, 4.917092 52.40587, 4.917236 52.405788, 4.917276 52.405698, 4.917231 52.405393, 4.917127 52.405236, 4.917142 52.405098, 4.915707 52.4031, 4.915553 52.403016, 4.91531 52.402678, 4.915133 52.402615, 4.914883 52.402613, 4.914632 52.402681, 4.91451 52.402762, 4.913749 52.402974, 4.913656 52.403053, 4.91364 52.403149, 4.913316 52.403078, 4.91312 52.40312, 4.913031 52.403196, 4.913017 52.403289, 4.913337 52.403738, 4.91354 52.403826, 4.913756 52.403801, 4.913923 52.404032, 4.913905 52.404175, 4.914208 52.404592, 4.914361 52.404672, 4.914557 52.404673, 4.914726 52.404908, 4.914712 52.405047, 4.914978 52.40542, 4.915073 52.405507, 4.91519 52.405543, 4.915403 52.40584, 4.915511 52.405906, 4.915657 52.405931, 4.915939 52.405863, 4.915851 52.405988, 4.915952 52.406139, 4.916126 52.4062, 4.916325 52.40618, 4.916295 52.406346, 4.916593 52.406628, 4.916372 52.406693, 4.916268 52.406788, 4.916254 52.40688, 4.916606 52.407203, 4.916832 52.407268, 4.917022 52.407227, 4.917415 52.407048, 4.917517 52.406943, 4.917929 52.406749, 4.918047 52.406643, 4.918089 52.406548), (4.91659 52.405604, 4.916433 52.405375, 4.915947 52.405501, 4.916069 52.405682, 4.916041 52.405791, 4.916197 52.405731, 4.916319 52.405721, 4.91659 52.405604)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS17", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.970017 52.319155, 4.969913 52.319017, 4.969625 52.318915, 4.969444 52.318911, 4.969353 52.318822, 4.968993 52.318708, 4.96884 52.318716, 4.968715 52.318768, 4.96842 52.319087, 4.968145 52.319006, 4.968105 52.318904, 4.967999 52.318838, 4.968261 52.318834, 4.968522 52.318743, 4.968621 52.318598, 4.968554 52.318482, 4.968429 52.318429, 4.967172 52.318149, 4.96702 52.318157, 4.96688 52.318223, 4.966773 52.318187, 4.966686 52.318109, 4.966868 52.318086, 4.966977 52.318021, 4.967037 52.31791, 4.966998 52.31782, 4.966869 52.317745, 4.966682 52.317706, 4.966508 52.317622, 4.966304 52.317577, 4.966016 52.317464, 4.965863 52.317471, 4.965738 52.317524, 4.965661 52.317622, 4.965677 52.317727, 4.965448 52.317827, 4.965373 52.317947, 4.965477 52.318085, 4.965659 52.31814, 4.965832 52.318126, 4.966156 52.318319, 4.966256 52.318426, 4.966585 52.31854, 4.966469 52.318671, 4.966459 52.318772, 4.965945 52.319352, 4.965569 52.319226, 4.965281 52.319196, 4.963279 52.318506, 4.963031 52.318519, 4.962878 52.318652, 4.962941 52.318799, 4.963403 52.318972, 4.963438 52.319075, 4.963546 52.319141, 4.96523 52.319718, 4.965433 52.319718, 4.965581 52.319645, 4.965736 52.319735, 4.965772 52.31984, 4.96588 52.319906, 4.966084 52.319974, 4.966279 52.319976, 4.966395 52.320017, 4.966492 52.320117, 4.96671 52.320201, 4.966887 52.320259, 4.967135 52.320272, 4.96726 52.320378, 4.967412 52.320445, 4.967724 52.32049, 4.968272 52.320668, 4.968514 52.320666, 4.968652 52.320627, 4.96916 52.320097, 4.969336 52.320087, 4.969461 52.320035, 4.969767 52.319683, 4.969746 52.319532, 4.970017 52.319155), (4.967978 52.319366, 4.967795 52.319303, 4.967347 52.319797, 4.967418 52.319945, 4.967508 52.319976, 4.967913 52.31955, 4.967908 52.319454, 4.967978 52.319366), (4.967276 52.319125, 4.966934 52.319007, 4.966422 52.319575, 4.966462 52.319614, 4.966744 52.319712, 4.967276 52.319125), (4.967929 52.31882, 4.967822 52.318754, 4.967785 52.318673, 4.967255 52.318552, 4.96716 52.318657, 4.967676 52.318845, 4.967792 52.318815, 4.967929 52.31882)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS18", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.870753 52.382649, 4.870712 52.382551, 4.870559 52.382472, 4.870365 52.382455, 4.870218 52.382479, 4.869865 52.382402, 4.869675 52.38242, 4.869344 52.382362, 4.869338 52.382342, 4.869468 52.382334, 4.869779 52.382217, 4.869864 52.382074, 4.869965 52.381993, 4.870021 52.38184, 4.870136 52.381809, 4.870423 52.381849, 4.870629 52.381763, 4.870675 52.381651, 4.870637 52.381561, 4.870434 52.381473, 4.870401 52.381347, 4.870248 52.381268, 4.869992 52.381279, 4.869883 52.381344, 4.869824 52.38145, 4.869686 52.381467, 4.869561 52.381519, 4.86929 52.381983, 4.869111 52.382072, 4.869073 52.382184, 4.868799 52.382198, 4.868559 52.382163, 4.868434 52.38218, 4.868314 52.382128, 4.868181 52.382116, 4.867954 52.382179, 4.867883 52.382294, 4.867872 52.382746, 4.867441 52.383312, 4.867434 52.38355, 4.867314 52.383639, 4.867263 52.38385, 4.867275 52.383943, 4.867394 52.384034, 4.867366 52.384241, 4.867417 52.384343, 4.867257 52.384581, 4.867183 52.384792, 4.867371 52.385125, 4.86746 52.385204, 4.867659 52.385251, 4.867987 52.385265, 4.86815 52.385236, 4.868336 52.385278, 4.868975 52.38528, 4.869253 52.385241, 4.869381 52.385188, 4.869452 52.385072, 4.869384 52.384927, 4.869187 52.384855, 4.868813 52.384843, 4.868822 52.384822, 4.868852 52.384777, 4.869451 52.384857, 4.869678 52.384794, 4.869748 52.384638, 4.869602 52.384512, 4.869622 52.384456, 4.869781 52.384415, 4.869891 52.38435, 4.869942 52.384233, 4.869903 52.384143, 4.86975 52.384063, 4.869139 52.383974, 4.868977 52.384002, 4.868867 52.384067, 4.868825 52.384162, 4.868851 52.384235, 4.868598 52.384129, 4.868364 52.384164, 4.868252 52.384091, 4.868212 52.383956, 4.868239 52.383882, 4.868543 52.383921, 4.868709 52.38389, 4.869001 52.383916, 4.869108 52.38396, 4.869607 52.384025, 4.869848 52.383986, 4.869937 52.38391, 4.869969 52.383813, 4.870159 52.383767, 4.870261 52.383661, 4.870231 52.38353, 4.870049 52.383445, 4.870121 52.383327, 4.870351 52.383288, 4.870458 52.383173, 4.870424 52.383052, 4.870218 52.382943, 4.870391 52.382967, 4.870581 52.382925, 4.87067 52.382849, 4.870753 52.382649), (4.868942 52.382788, 4.868721 52.38272, 4.868658 52.382635, 4.868666 52.382557, 4.868484 52.382525, 4.868464 52.382834, 4.868309 52.383047, 4.868481 52.38307, 4.868675 52.382876, 4.868942 52.382788)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS19", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.842716 52.376828, 4.842336 52.375915, 4.842245 52.375834, 4.842053 52.37579, 4.841866 52.375819, 4.841752 52.375886, 4.841589 52.375863, 4.84145 52.375877, 4.841287 52.375958, 4.841247 52.376086, 4.841406 52.376442, 4.841259 52.376369, 4.841106 52.37636, 4.840797 52.376449, 4.840556 52.376447, 4.840379 52.376513, 4.839262 52.376691, 4.839171 52.376444, 4.838996 52.376335, 4.838736 52.376336, 4.838573 52.376424, 4.838389 52.376395, 4.838218 52.376422, 4.838109 52.376488, 4.838068 52.376577, 4.838289 52.377092, 4.838347 52.377305, 4.838307 52.377331, 4.838122 52.376913, 4.837993 52.376825, 4.837805 52.376802, 4.837735 52.376658, 4.837613 52.376542, 4.837475 52.376502, 4.837249 52.37652, 4.837124 52.376573, 4.837053 52.376688, 4.837249 52.377157, 4.837356 52.377223, 4.837519 52.377247, 4.838032 52.378509, 4.838165 52.37861, 4.838401 52.378639, 4.838648 52.378572, 4.838788 52.378448, 4.838827 52.378349, 4.839011 52.378325, 4.839137 52.378273, 4.839256 52.378088, 4.839354 52.378178, 4.839491 52.378218, 4.839763 52.378231, 4.840022 52.378157, 4.840089 52.37801, 4.839859 52.377433, 4.840147 52.377412, 4.84036 52.377904, 4.840536 52.378016, 4.84082 52.378005, 4.840975 52.377926, 4.841238 52.377927, 4.841364 52.377875, 4.84142 52.377808, 4.841629 52.377863, 4.841871 52.377813, 4.84196 52.377737, 4.841974 52.377645, 4.841726 52.377052, 4.841849 52.377085, 4.842011 52.377079, 4.842199 52.376967, 4.842349 52.377011, 4.842508 52.377004, 4.842639 52.37695, 4.842716 52.376828), (4.841593 52.376922, 4.841463 52.376603, 4.841397 52.376693, 4.841272 52.376746, 4.839738 52.376988, 4.839773 52.377073, 4.840657 52.376964, 4.841018 52.376964, 4.84133 52.376883, 4.841593 52.376922)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS20", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.801679 52.374843, 4.80126 52.373185, 4.801161 52.373078, 4.800972 52.373035, 4.80077 52.373065, 4.800077 52.373296, 4.799391 52.373536, 4.799281 52.373601, 4.799257 52.373752, 4.799797 52.374351, 4.79964 52.374454, 4.799504 52.374399, 4.799346 52.37439, 4.799158 52.374461, 4.798843 52.374442, 4.798665 52.374549, 4.798421 52.374484, 4.798274 52.374507, 4.798182 52.374558, 4.797918 52.374531, 4.797742 52.374591, 4.797672 52.374696, 4.797401 52.37463, 4.797248 52.374637, 4.797118 52.374691, 4.797053 52.374775, 4.797065 52.374868, 4.797186 52.375007, 4.796947 52.374995, 4.79673 52.374763, 4.796556 52.374701, 4.79636 52.374709, 4.796202 52.374787, 4.796031 52.374726, 4.795836 52.37473, 4.79571 52.374782, 4.79564 52.374898, 4.795738 52.375268, 4.795707 52.375355, 4.79574 52.375509, 4.79584 52.375616, 4.796145 52.375705, 4.797102 52.375602, 4.79722 52.375669, 4.797367 52.375694, 4.8008 52.375353, 4.801102 52.375274, 4.801309 52.375163, 4.801465 52.375151, 4.801591 52.375099, 4.801659 52.375012, 4.801679 52.374843), (4.800989 52.374751, 4.800799 52.374026, 4.800813 52.373934, 4.800662 52.373574, 4.800005 52.373831, 4.800422 52.374293, 4.800645 52.374382, 4.800989 52.374751)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS21", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.796974 52.377474, 4.797033 52.377708, 4.797096 52.377793, 4.797221 52.377846, 4.797429 52.377854, 4.797549 52.378103, 4.797689 52.378166, 4.79784 52.378181, 4.79784 52.378339, 4.797932 52.378444, 4.797829 52.378554, 4.797809 52.378978, 4.797877 52.379068, 4.798001 52.379123, 4.798076 52.379248, 4.798329 52.379322, 4.799493 52.379338, 4.799396 52.379441, 4.799389 52.379666, 4.799191 52.379667, 4.799034 52.379717, 4.798833 52.379728, 4.798635 52.379823, 4.798598 52.37996, 4.798703 52.380132, 4.798928 52.380197, 4.799151 52.380155, 4.799974 52.380163, 4.800085 52.380206, 4.800242 52.380215, 4.800428 52.38017, 4.800621 52.380044, 4.800685 52.380144, 4.800873 52.38021, 4.801077 52.380204, 4.801202 52.380152, 4.801359 52.379871, 4.80149 52.379476, 4.801428 52.379328, 4.801304 52.379275, 4.80113 52.379268, 4.800974 52.379183, 4.800484 52.379166, 4.800449 52.379019, 4.800296 52.378939, 4.799709 52.378916, 4.799706 52.378704, 4.800289 52.378695, 4.800489 52.378579, 4.800513 52.378428, 4.800449 52.378343, 4.800275 52.378281, 4.799741 52.378266, 4.799733 52.378065, 4.800274 52.378054, 4.800426 52.378012, 4.800535 52.377894, 4.800472 52.377746, 4.800298 52.377684, 4.799675 52.377667, 4.799664 52.37728, 4.799577 52.377204, 4.79944 52.377163, 4.799234 52.377172, 4.799058 52.377257, 4.799011 52.377356, 4.798994 52.377666, 4.798537 52.377655, 4.798521 52.377265, 4.798433 52.377188, 4.79828 52.377146, 4.798042 52.37717, 4.797889 52.37729, 4.797669 52.377218, 4.797253 52.37725, 4.797045 52.377358, 4.796974 52.377474), (4.798967 52.378149, 4.798902 52.378101, 4.798471 52.378095, 4.798463 52.378259, 4.798939 52.37827, 4.798967 52.378149)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS22", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.918194 52.344477, 4.918156 52.344387, 4.917982 52.344276, 4.917444 52.344144, 4.917496 52.344023, 4.917458 52.343933, 4.91735 52.343867, 4.917177 52.343841, 4.917077 52.343726, 4.916355 52.343551, 4.91641 52.34335, 4.91632 52.34316, 4.916375 52.343063, 4.916363 52.34297, 4.916188 52.342861, 4.915981 52.34286, 4.915826 52.342938, 4.915668 52.343196, 4.91568 52.343289, 4.915783 52.343373, 4.915747 52.343434, 4.915612 52.343346, 4.915423 52.343311, 4.915233 52.343353, 4.915109 52.343464, 4.915071 52.343587, 4.915194 52.343745, 4.914915 52.343795, 4.914716 52.343994, 4.914494 52.344418, 4.914302 52.344673, 4.914288 52.344757, 4.914096 52.34501, 4.914087 52.345199, 4.914174 52.345276, 4.914379 52.34534, 4.914591 52.345363, 4.91475 52.345311, 4.914962 52.345425, 4.915338 52.345489, 4.915559 52.345449, 4.915668 52.345384, 4.915897 52.344983, 4.916187 52.345046, 4.916091 52.345237, 4.916159 52.345354, 4.916766 52.34552, 4.916464 52.346012, 4.916353 52.346098, 4.916349 52.346224, 4.916524 52.346333, 4.916785 52.346347, 4.916962 52.34624, 4.917433 52.345474, 4.917447 52.345381, 4.917304 52.345257, 4.916774 52.345131, 4.91714 52.344867, 4.917158 52.344766, 4.917095 52.344681, 4.916802 52.344601, 4.916612 52.344643, 4.916516 52.344732, 4.916304 52.344681, 4.916511 52.344358, 4.916604 52.344449, 4.916734 52.34449, 4.916887 52.344499, 4.917049 52.344446, 4.917508 52.344547, 4.917609 52.344607, 4.917836 52.344659, 4.918083 52.344622, 4.918194 52.344477), (4.915625 52.344328, 4.915259 52.3442, 4.915178 52.34442, 4.915076 52.344503, 4.914982 52.344657, 4.914973 52.34476, 4.914871 52.344842, 4.914782 52.345045, 4.914969 52.345005, 4.915187 52.345042, 4.915625 52.344328)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS23", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.8052 52.36346, 4.805161 52.36337, 4.805054 52.363304, 4.804266 52.363129, 4.8041 52.363032, 4.80371 52.362963, 4.803483 52.363026, 4.802168 52.365446, 4.802202 52.365568, 4.80249 52.365795, 4.802633 52.365837, 4.802814 52.365821, 4.802926 52.365893, 4.803096 52.365918, 4.803205 52.365987, 4.803322 52.366014, 4.80349 52.366002, 4.803727 52.366031, 4.803903 52.365971, 4.804297 52.365276, 4.804242 52.36509, 4.804401 52.365011, 4.804687 52.364492, 4.804809 52.364403, 4.80488 52.364244, 4.804841 52.364154, 4.805155 52.36363, 4.8052 52.36346), (4.804016 52.364372, 4.803602 52.364289, 4.80345 52.364572, 4.80387 52.364653, 4.803957 52.364549, 4.804016 52.364372), (4.803506 52.365296, 4.803063 52.365196, 4.802953 52.365399, 4.80336 52.365506, 4.803506 52.365296)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS24", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.795436 52.361436, 4.795332 52.361298, 4.795063 52.361239, 4.795038 52.361099, 4.794885 52.361019, 4.793651 52.360773, 4.793498 52.360781, 4.793372 52.360833, 4.793307 52.360917, 4.793213 52.361243, 4.793264 52.361394, 4.793145 52.361719, 4.792994 52.361823, 4.792544 52.362631, 4.792588 52.362762, 4.792137 52.363422, 4.792142 52.363571, 4.792242 52.363678, 4.793216 52.363887, 4.793368 52.36388, 4.793516 52.363813, 4.793638 52.36371, 4.793654 52.36362, 4.793749 52.363538, 4.794006 52.363046, 4.794122 52.362972, 4.794299 52.362676, 4.794593 52.362131, 4.794531 52.361985, 4.794675 52.361787, 4.794823 52.361705, 4.794892 52.361587, 4.795238 52.361607, 4.795364 52.361555, 4.795436 52.361436), (4.793893 52.362272, 4.793505 52.36219, 4.793338 52.362505, 4.793631 52.362565, 4.793698 52.362479, 4.793808 52.362431, 4.793893 52.362272), (4.793281 52.363151, 4.79304 52.363094, 4.792857 52.363366, 4.793116 52.363415, 4.793281 52.363151)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS25", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.84411 52.356322, 4.844155 52.356465, 4.844117 52.356954, 4.844181 52.357038, 4.844305 52.357092, 4.844494 52.357101, 4.844633 52.357062, 4.844596 52.357666, 4.844701 52.357806, 4.84489 52.35785, 4.846091 52.357854, 4.846238 52.357831, 4.846341 52.357771, 4.84649 52.357846, 4.846766 52.357865, 4.846919 52.357842, 4.847139 52.357756, 4.847235 52.357601, 4.847222 52.357505, 4.847374 52.357398, 4.847388 52.357288, 4.847214 52.357117, 4.846952 52.357055, 4.84695 52.356458, 4.846788 52.356259, 4.846607 52.35621, 4.846471 52.356136, 4.846325 52.356111, 4.846138 52.356149, 4.845978 52.356118, 4.845495 52.356122, 4.845327 52.356179, 4.844407 52.356143, 4.844181 52.356206, 4.84411 52.356322), (4.846229 52.356643, 4.846088 52.356519, 4.846002 52.356512, 4.845704 52.356564, 4.845418 52.356489, 4.845257 52.356541, 4.845246 52.356573, 4.845346 52.356607, 4.845433 52.356684, 4.845675 52.356589, 4.845877 52.356598, 4.846 52.356651, 4.846229 52.356643)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS26", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.805171 52.356136, 4.805103 52.35602, 4.804888 52.355891, 4.803782 52.355672, 4.803527 52.355664, 4.803314 52.355573, 4.802259 52.355358, 4.802106 52.355349, 4.80185 52.355406, 4.80173 52.355475, 4.801702 52.355614, 4.801602 52.355718, 4.801614 52.35581, 4.801841 52.355994, 4.802713 52.356175, 4.802597 52.356202, 4.802481 52.356183, 4.801487 52.355955, 4.801136 52.355962, 4.800981 52.35604, 4.800827 52.356315, 4.800687 52.356412, 4.800614 52.356613, 4.800678 52.356697, 4.800871 52.356763, 4.800999 52.35685, 4.801248 52.356871, 4.801515 52.356968, 4.801668 52.35696, 4.802113 52.357155, 4.802449 52.357196, 4.802654 52.35711, 4.802944 52.356582, 4.80306 52.356584, 4.80324 52.356539, 4.803411 52.356315, 4.804504 52.356538, 4.804665 52.356549, 4.804985 52.356457, 4.80505 52.356373, 4.805041 52.356285, 4.805127 52.356229, 4.805171 52.356136), (4.802112 52.356541, 4.801984 52.356486, 4.80158 52.35643, 4.801467 52.356382, 4.801405 52.356435, 4.801424 52.356515, 4.802055 52.356635, 4.802112 52.356541)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS27", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.841636 52.374859, 4.841552 52.374511, 4.841444 52.374445, 4.841297 52.37442, 4.84091 52.374422, 4.840149 52.374492, 4.839615 52.374503, 4.83944 52.374539, 4.839121 52.374535, 4.838699 52.37458, 4.837238 52.374651, 4.837055 52.374748, 4.836974 52.374889, 4.837015 52.37517, 4.837067 52.375244, 4.837093 52.375711, 4.837239 52.375814, 4.837437 52.375836, 4.838241 52.37572, 4.838386 52.375649, 4.838578 52.37567, 4.839701 52.375497, 4.839855 52.375427, 4.840065 52.37538, 4.840154 52.375304, 4.840169 52.375212, 4.840068 52.375053, 4.840131 52.37492, 4.840942 52.374858, 4.841014 52.374987, 4.84124 52.375052, 4.841522 52.375003, 4.841636 52.374859), (4.839197 52.375159, 4.839117 52.374971, 4.838598 52.375003, 4.83871 52.375265, 4.839183 52.375191, 4.839197 52.375159)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS28", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.841016 52.373309, 4.840942 52.373181, 4.840717 52.373116, 4.840112 52.373254, 4.839603 52.373299, 4.839531 52.373121, 4.839963 52.373048, 4.840111 52.372985, 4.840176 52.372901, 4.84018 52.37276, 4.840124 52.372653, 4.840016 52.372587, 4.839869 52.372562, 4.838801 52.372729, 4.838638 52.372819, 4.838525 52.372771, 4.838372 52.372762, 4.836768 52.373013, 4.836643 52.373065, 4.836572 52.373181, 4.836631 52.373747, 4.836719 52.373823, 4.836907 52.373867, 4.838699 52.373759, 4.838837 52.37372, 4.838934 52.373625, 4.839023 52.373675, 4.839169 52.3737, 4.840505 52.373646, 4.840932 52.373458, 4.841016 52.373309), (4.838798 52.37336, 4.838696 52.37313, 4.838562 52.373191, 4.837766 52.373317, 4.83752 52.373277, 4.837394 52.373352, 4.83725 52.373385, 4.837277 52.373407, 4.838379 52.37334, 4.838798 52.37336)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS29", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.802654 52.350527, 4.802615 52.350437, 4.802482 52.350334, 4.802188 52.350267, 4.801961 52.35033, 4.801858 52.350476, 4.801188 52.350354, 4.801019 52.350386, 4.800793 52.350363, 4.800618 52.350423, 4.800542 52.350523, 4.800378 52.350582, 4.800311 52.350669, 4.800374 52.350816, 4.800544 52.350904, 4.800707 52.350936, 4.800351 52.351653, 4.800145 52.351808, 4.800129 52.351904, 4.800192 52.351989, 4.800448 52.352098, 4.801247 52.352268, 4.8014 52.352261, 4.801806 52.352134, 4.801905 52.351988, 4.801913 52.351831, 4.802339 52.351056, 4.802272 52.350902, 4.8024 52.350874, 4.802509 52.350809, 4.802654 52.350527), (4.801842 52.350857, 4.801457 52.35078, 4.800971 52.351726, 4.8012 52.351777, 4.801329 52.351686, 4.801727 52.350944, 4.801842 52.350857)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS30", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.961233 52.392155, 4.961162 52.392034, 4.961038 52.391981, 4.960892 52.391972, 4.960741 52.391837, 4.959966 52.391622, 4.959813 52.391613, 4.959608 52.3917, 4.959411 52.391966, 4.959248 52.391955, 4.959073 52.392015, 4.959003 52.392106, 4.959015 52.392198, 4.958733 52.392129, 4.95858 52.392137, 4.958425 52.392215, 4.958348 52.39239, 4.958491 52.392515, 4.960321 52.39302, 4.960474 52.393029, 4.960612 52.39299, 4.960692 52.392927, 4.961233 52.392155), (4.960479 52.392209, 4.960057 52.392093, 4.959804 52.392428, 4.960231 52.392546, 4.960479 52.392209)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.multiareasource", "fields": {"name": "AMS31", "asset": null, "location": "SRID=4326;MULTIPOLYGON (((4.960438 52.393108, 4.960419 52.393169, 4.960132 52.393536, 4.959942 52.393818, 4.959736 52.393998, 4.959657 52.394038, 4.959562 52.394059, 4.959396 52.394047, 4.957362 52.393485, 4.957285 52.393445, 4.957221 52.39336, 4.957221 52.393297, 4.957287 52.393199, 4.957352 52.393151, 4.957461 52.393112, 4.957375 52.393035, 4.957363 52.392943, 4.957428 52.392859, 4.957507 52.392819, 4.957638 52.392787, 4.957741 52.392788, 4.957911 52.392832, 4.957988 52.392871, 4.958052 52.392956, 4.958038 52.393049, 4.95795 52.393125, 4.957828 52.393161, 4.958215 52.393266, 4.958537 52.392934, 4.958561 52.392896, 4.957975 52.392733, 4.957868 52.392667, 4.957825 52.392576, 4.957839 52.392483, 4.957926 52.392407, 4.958065 52.392368, 4.958168 52.392369, 4.958294 52.392393, 4.958836 52.392541, 4.958913 52.392581, 4.958964 52.392635, 4.959164 52.392643, 4.959302 52.392669, 4.959866 52.392825, 4.959955 52.392857, 4.960037 52.392923, 4.960197 52.39293, 4.960292 52.392952, 4.960399 52.393018, 4.960438 52.393108), (4.959658 52.393199, 4.959386 52.393586, 4.959 52.393479, 4.959085 52.393405, 4.959137 52.393322, 4.959139 52.393275, 4.959219 52.393221, 4.959295 52.393097, 4.959658 52.393199)))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}] \ No newline at end of file diff --git a/portfolio/fixtures/AMS_Polygon.json b/portfolio/fixtures/AMS_Polygon.json new file mode 100644 index 0000000..8d38f47 --- /dev/null +++ b/portfolio/fixtures/AMS_Polygon.json @@ -0,0 +1 @@ +[{"model": "portfolio.areasource", "fields": {"name": "AMS0", "asset": null, "location": "SRID=4326;POLYGON ((4.884161 52.393708, 4.884142 52.393753, 4.884083 52.393788, 4.884009 52.3938, 4.883936 52.393788, 4.882431 52.393002, 4.882333 52.393039, 4.882258 52.393042, 4.882189 52.393023, 4.882047 52.392947, 4.882014 52.39289, 4.882034 52.392845, 4.882072 52.392818, 4.882166 52.392798, 4.882267 52.392823, 4.882331 52.392796, 4.882397 52.392791, 4.881892 52.392523, 4.881882 52.392447, 4.881929 52.392368, 4.88197 52.392337, 4.88195 52.392327, 4.88185 52.392366, 4.881751 52.392356, 4.881602 52.392293, 4.881548 52.392234, 4.881349 52.392162, 4.881296 52.392103, 4.881078 52.392019, 4.881048 52.391977, 4.881054 52.391931, 4.881221 52.391805, 4.881316 52.391785, 4.881389 52.391797, 4.881796 52.392007, 4.881918 52.392014, 4.882048 52.392083, 4.88208 52.392154, 4.882391 52.392315, 4.882434 52.392354, 4.88255 52.392359, 4.882645 52.392404, 4.882676 52.392446, 4.882676 52.39254, 4.882569 52.39264, 4.88273 52.392719, 4.882763 52.392777, 4.882743 52.392822, 4.882668 52.392878, 4.884109 52.393638, 4.884161 52.393708))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS1", "asset": null, "location": "SRID=4326;POLYGON ((4.882284 52.395405, 4.882245 52.395465, 4.88213 52.395498, 4.882123 52.395543, 4.882055 52.395593, 4.881957 52.395603, 4.881829 52.395561, 4.881635 52.395446, 4.881548 52.395415, 4.881501 52.395374, 4.881428 52.395353, 4.880917 52.395087, 4.880866 52.395031, 4.880762 52.395005, 4.880246 52.394737, 4.880198 52.394688, 4.880064 52.394612, 4.880031 52.394528, 4.880054 52.39448, 4.880162 52.394403, 4.880256 52.394383, 4.880363 52.394393, 4.880504 52.394459, 4.88057 52.394471, 4.881079 52.394735, 4.881133 52.394791, 4.881328 52.394864, 4.881774 52.395097, 4.881824 52.395139, 4.881897 52.395161, 4.881953 52.395202, 4.882026 52.395224, 4.882071 52.395265, 4.882232 52.395335, 4.882284 52.395405))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS2", "asset": null, "location": "SRID=4326;POLYGON ((4.876771 52.336115, 4.876736 52.336172, 4.876639 52.336209, 4.87662 52.336254, 4.876565 52.336287, 4.876221 52.336298, 4.876222 52.336404, 4.876415 52.336391, 4.876555 52.336411, 4.876617 52.336438, 4.87665 52.336514, 4.876616 52.336571, 4.876576 52.336591, 4.876497 52.336603, 4.876418 52.336588, 4.876269 52.336587, 4.876215 52.33662, 4.876141 52.336632, 4.875791 52.336632, 4.875697 52.336611, 4.875648 52.336557, 4.875636 52.336407, 4.875325 52.336405, 4.875231 52.336384, 4.875188 52.336345, 4.875164 52.336244, 4.875115 52.336212, 4.875096 52.336161, 4.875116 52.336116, 4.87517 52.336083, 4.875244 52.336072, 4.875383 52.336078, 4.875461 52.336117, 4.875478 52.336223, 4.875506 52.336223, 4.87551 52.336134, 4.875561 52.33608, 4.87563 52.336062, 4.87579 52.336062, 4.875859 52.336081, 4.875902 52.33612, 4.875907 52.336186, 4.875876 52.336236, 4.875922 52.336264, 4.875955 52.336082, 4.876006 52.33604, 4.876084 52.336013, 4.87665 52.336009, 4.876752 52.336053, 4.876771 52.336115))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS3", "asset": null, "location": "SRID=4326;POLYGON ((4.881903 52.393383, 4.881855 52.393459, 4.881741 52.393491, 4.881636 52.393464, 4.881589 52.39342, 4.881495 52.393419, 4.881408 52.393383, 4.881321 52.39341, 4.881222 52.3934, 4.8811 52.393336, 4.881071 52.393297, 4.880485 52.392997, 4.880393 52.392985, 4.880298 52.392938, 4.880245 52.392872, 4.879787 52.392636, 4.87956 52.392544, 4.879508 52.392475, 4.879563 52.392397, 4.879656 52.392347, 4.87978 52.392354, 4.880043 52.392501, 4.880127 52.392532, 4.880429 52.392728, 4.88052 52.39274, 4.880618 52.392785, 4.881288 52.393141, 4.881335 52.393157, 4.881409 52.393145, 4.881487 52.393159, 4.881688 52.393287, 4.881763 52.393284, 4.881832 52.393303, 4.881884 52.393338, 4.881903 52.393383))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS4", "asset": null, "location": "SRID=4326;POLYGON ((4.902149 52.393233, 4.902126 52.393281, 4.902048 52.39332, 4.901973 52.393324, 4.901847 52.393301, 4.901915 52.393395, 4.901898 52.393436, 4.901925 52.393489, 4.901883 52.393573, 4.90182 52.3936, 4.901757 52.393604, 4.90147 52.393715, 4.901397 52.393727, 4.901324 52.393715, 4.901243 52.393656, 4.901125 52.393636, 4.901032 52.393552, 4.901022 52.393476, 4.901115 52.393421, 4.90119 52.393417, 4.901275 52.393446, 4.901348 52.393451, 4.901445 52.393509, 4.901572 52.393459, 4.901555 52.393418, 4.901573 52.393377, 4.901425 52.393216, 4.901287 52.393181, 4.901237 52.393127, 4.901331 52.392885, 4.901396 52.392838, 4.901526 52.392833, 4.901603 52.392873, 4.901619 52.392933, 4.901566 52.393052, 4.902076 52.393154, 4.90213 52.393188, 4.902149 52.393233))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS5", "asset": null, "location": "SRID=4326;POLYGON ((4.880561 52.395222, 4.880528 52.395279, 4.880547 52.395323, 4.880504 52.395447, 4.880421 52.395488, 4.880298 52.395481, 4.880193 52.395421, 4.880183 52.395345, 4.880141 52.395313, 4.880023 52.395267, 4.879494 52.394969, 4.879461 52.394911, 4.879481 52.394866, 4.879564 52.394824, 4.879662 52.394825, 4.879768 52.394796, 4.879846 52.39481, 4.880509 52.395153, 4.880561 52.395222))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS6", "asset": null, "location": "SRID=4326;POLYGON ((4.885878 52.392994, 4.885844 52.393052, 4.885742 52.393097, 4.885613 52.393091, 4.885548 52.393043, 4.885534 52.392997, 4.885558 52.39295, 4.885463 52.39278, 4.88548 52.392721, 4.885202 52.392107, 4.885219 52.392047, 4.885302 52.392006, 4.885425 52.392013, 4.885489 52.392061, 4.885776 52.39269, 4.885878 52.392994))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS7", "asset": null, "location": "SRID=4326;POLYGON ((4.876659 52.335715, 4.876623 52.335798, 4.876545 52.335837, 4.876444 52.33584, 4.87636 52.335812, 4.876297 52.335828, 4.876219 52.335825, 4.876209 52.335927, 4.876144 52.335975, 4.876005 52.33598, 4.875928 52.335941, 4.875909 52.335892, 4.875931 52.335678, 4.875975 52.33564, 4.876125 52.335612, 4.87619 52.335565, 4.876296 52.335554, 4.876573 52.335577, 4.876637 52.335625, 4.876659 52.335715))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS8", "asset": null, "location": "SRID=4326;POLYGON ((4.880158 52.39594, 4.880138 52.395985, 4.880013 52.396101, 4.87993 52.396158, 4.879836 52.396178, 4.879763 52.396166, 4.879617 52.39609, 4.879581 52.396033, 4.879516 52.395992, 4.879498 52.395947, 4.879517 52.395903, 4.879596 52.395863, 4.87968 52.395859, 4.879822 52.395882, 4.87985 52.395855, 4.879768 52.395798, 4.879769 52.395736, 4.879834 52.395689, 4.879917 52.395678, 4.880031 52.395694, 4.88013 52.395751, 4.880146 52.395812, 4.880105 52.395871, 4.880158 52.39594))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS9", "asset": null, "location": "SRID=4326;POLYGON ((4.878211 52.393384, 4.878191 52.393429, 4.878136 52.393462, 4.878063 52.393473, 4.877994 52.393464, 4.877903 52.393483, 4.877825 52.39347, 4.877647 52.39338, 4.877597 52.393326, 4.877628 52.393255, 4.87759 52.393183, 4.877616 52.393132, 4.877666 52.393091, 4.87773 52.393064, 4.87783 52.393064, 4.878145 52.393219, 4.878189 52.393258, 4.878181 52.393329, 4.878211 52.393384))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS10", "asset": null, "location": "SRID=4326;POLYGON ((4.878743 52.394385, 4.878723 52.39443, 4.878596 52.394524, 4.878527 52.394543, 4.878452 52.394539, 4.87837 52.394496, 4.878351 52.394451, 4.878457 52.394318, 4.878367 52.394346, 4.878256 52.39433, 4.878169 52.394359, 4.878066 52.394347, 4.878012 52.394313, 4.877994 52.394268, 4.878063 52.394144, 4.878104 52.394113, 4.878173 52.394095, 4.878313 52.394117, 4.878411 52.394107, 4.878503 52.39414, 4.878551 52.394214, 4.878531 52.394259, 4.878457 52.394318, 4.878554 52.394292, 4.878647 52.3943, 4.878724 52.39434, 4.878743 52.394385))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS11", "asset": null, "location": "SRID=4326;POLYGON ((4.914456 52.408768, 4.914433 52.408867, 4.91435 52.408913, 4.914243 52.408924, 4.914242 52.408985, 4.914162 52.40904, 4.914089 52.409051, 4.914015 52.409039, 4.913869 52.408931, 4.913851 52.408886, 4.913885 52.408828, 4.91399 52.408792, 4.914103 52.408809, 4.914157 52.408707, 4.914216 52.408671, 4.91429 52.40866, 4.914363 52.408672, 4.914437 52.408723, 4.914456 52.408768))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS12", "asset": null, "location": "SRID=4326;POLYGON ((4.879702 52.394064, 4.879643 52.394138, 4.879555 52.394168, 4.87948 52.394164, 4.879411 52.394132, 4.879324 52.394182, 4.879226 52.394192, 4.879157 52.394173, 4.879107 52.394119, 4.879114 52.394073, 4.879184 52.394011, 4.879165 52.393961, 4.879185 52.393916, 4.879238 52.393877, 4.879307 52.393859, 4.879406 52.393869, 4.879649 52.393994, 4.879702 52.394064))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS13", "asset": null, "location": "SRID=4326;POLYGON ((4.878557 52.395234, 4.878537 52.395279, 4.878426 52.395352, 4.878235 52.395363, 4.878166 52.395344, 4.878029 52.395272, 4.877986 52.395213, 4.87798 52.395167, 4.878093 52.395063, 4.878212 52.395045, 4.878505 52.395165, 4.878557 52.395234))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS14", "asset": null, "location": "SRID=4326;POLYGON ((4.877139 52.394098, 4.877105 52.394155, 4.876831 52.394342, 4.876707 52.394347, 4.876582 52.394283, 4.876563 52.394238, 4.8766 52.394178, 4.87664 52.394157, 4.876721 52.394146, 4.876917 52.394016, 4.87699 52.394004, 4.877064 52.394016, 4.87712 52.394053, 4.877139 52.394098))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS15", "asset": null, "location": "SRID=4326;POLYGON ((4.879215 52.394628, 4.879161 52.394697, 4.879026 52.394772, 4.878953 52.394783, 4.878875 52.394769, 4.878751 52.394704, 4.878699 52.394635, 4.87879 52.394495, 4.878836 52.394472, 4.878911 52.39446, 4.878999 52.394475, 4.879079 52.394535, 4.879163 52.394558, 4.879215 52.394628))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS16", "asset": null, "location": "SRID=4326;POLYGON ((4.914013 52.409522, 4.913992 52.409571, 4.913915 52.409632, 4.913788 52.409665, 4.913714 52.4097, 4.913591 52.409694, 4.913515 52.409636, 4.91351 52.40959, 4.913541 52.409548, 4.913609 52.409519, 4.913669 52.409515, 4.913737 52.409456, 4.913807 52.409428, 4.913882 52.409424, 4.913951 52.409443, 4.913994 52.409477, 4.914013 52.409522))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS17", "asset": null, "location": "SRID=4326;POLYGON ((4.914556 52.409327, 4.914536 52.409372, 4.914473 52.409427, 4.914399 52.409447, 4.914324 52.409443, 4.914261 52.409416, 4.914219 52.409375, 4.91418 52.409295, 4.914188 52.409245, 4.914297 52.409178, 4.914421 52.409172, 4.914517 52.409227, 4.914556 52.409327))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS18", "asset": null, "location": "SRID=4326;POLYGON ((4.878062 52.394031, 4.878028 52.394088, 4.877852 52.394179, 4.877729 52.394172, 4.87766 52.394121, 4.877671 52.394046, 4.87776 52.393978, 4.877839 52.393944, 4.877902 52.393937, 4.87799 52.393952, 4.878044 52.393985, 4.878062 52.394031))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS19", "asset": null, "location": "SRID=4326;POLYGON ((4.878028 52.394976, 4.878008 52.395021, 4.87796 52.395056, 4.87784 52.395074, 4.877724 52.395058, 4.877657 52.395029, 4.877627 52.394987, 4.877622 52.394926, 4.877683 52.394866, 4.877802 52.394847, 4.877976 52.394906, 4.878028 52.394976))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS20", "asset": null, "location": "SRID=4326;POLYGON ((4.879223 52.395593, 4.879188 52.39565, 4.879088 52.395704, 4.878988 52.395703, 4.878896 52.395647, 4.878907 52.395572, 4.879019 52.395509, 4.87915 52.395515, 4.879204 52.395548, 4.879223 52.395593))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS21", "asset": null, "location": "SRID=4326;POLYGON ((4.8797 52.395525, 4.87966 52.395599, 4.879547 52.395631, 4.879439 52.395602, 4.879386 52.395533, 4.879406 52.395488, 4.879452 52.395455, 4.879554 52.395434, 4.879666 52.395467, 4.8797 52.395525))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS22", "asset": null, "location": "SRID=4326;POLYGON ((4.881021 52.39406, 4.88098 52.39415, 4.880764 52.394311, 4.880625 52.39435, 4.880465 52.394338, 4.880546 52.394443, 4.880546 52.394506, 4.88051 52.394564, 4.880323 52.394685, 4.880153 52.394707, 4.879904 52.394887, 4.879903 52.394942, 4.879867 52.395, 4.879753 52.395068, 4.879606 52.395091, 4.879459 52.395066, 4.878991 52.394829, 4.878981 52.394909, 4.879352 52.395111, 4.879475 52.395121, 4.879563 52.395153, 4.88041 52.395614, 4.880497 52.395691, 4.880514 52.395752, 4.880495 52.395813, 4.880403 52.395892, 4.880265 52.395931, 4.880162 52.39593, 4.880084 52.395914, 4.879949 52.395948, 4.879931 52.396009, 4.879878 52.396064, 4.879799 52.396103, 4.879694 52.396125, 4.879591 52.396125, 4.879446 52.396095, 4.879322 52.396022, 4.879239 52.396002, 4.879033 52.3959, 4.878909 52.395832, 4.878869 52.395791, 4.878788 52.395808, 4.878685 52.395807, 4.878548 52.395767, 4.876458 52.394695, 4.876371 52.394618, 4.87636 52.394523, 4.876335 52.394512, 4.875784 52.39452, 4.875589 52.394497, 4.875494 52.394475, 4.875415 52.394435, 4.875351 52.39435, 4.875352 52.394262, 4.875389 52.394203, 4.875358 52.394148, 4.875351 52.394066, 4.875394 52.39397, 4.875446 52.393915, 4.875573 52.393863, 4.875668 52.393772, 4.875806 52.393733, 4.876007 52.393741, 4.876154 52.393805, 4.876424 52.393795, 4.876615 52.393828, 4.876878 52.393954, 4.87695 52.394048, 4.877037 52.394018, 4.877139 52.394008, 4.877285 52.394033, 4.87742 52.394099, 4.877552 52.394081, 4.877282 52.393937, 4.877129 52.393961, 4.876968 52.393932, 4.876851 52.393873, 4.876758 52.393776, 4.876673 52.393766, 4.876545 52.393719, 4.876458 52.393643, 4.876454 52.393526, 4.876585 52.393329, 4.876711 52.39326, 4.876827 52.393232, 4.876912 52.393173, 4.87705 52.393134, 4.877203 52.393142, 4.877291 52.393174, 4.877471 52.393338, 4.877752 52.393451, 4.877802 52.393506, 4.877819 52.393568, 4.877813 52.393646, 4.877766 52.393713, 4.879488 52.394608, 4.879602 52.394521, 4.878589 52.393991, 4.87806 52.393734, 4.877886 52.393608, 4.877836 52.393553, 4.877755 52.39338, 4.877796 52.393291, 4.877863 52.393243, 4.877951 52.393212, 4.878053 52.393202, 4.878336 52.393232, 4.878627 52.393346, 4.879056 52.393567, 4.879057 52.393504, 4.879093 52.393445, 4.879342 52.393257, 4.879422 52.393218, 4.879518 52.393196, 4.879676 52.393205, 4.8798 52.393259, 4.879864 52.393343, 4.879864 52.393466, 4.879813 52.393536, 4.880538 52.393914, 4.880623 52.393885, 4.880725 52.393875, 4.880826 52.393886, 4.880914 52.393918, 4.880979 52.393966, 4.881021 52.39406))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS23", "asset": null, "location": "SRID=4326;POLYGON ((4.918431 52.343878, 4.918413 52.343939, 4.918152 52.344362, 4.918199 52.344432, 4.918181 52.344531, 4.918129 52.344586, 4.918003 52.344638, 4.917902 52.344649, 4.917794 52.344637, 4.917636 52.344596, 4.917541 52.344541, 4.917027 52.344429, 4.916865 52.344481, 4.916712 52.344472, 4.916592 52.344433, 4.916521 52.344383, 4.916332 52.344678, 4.916553 52.344731, 4.916619 52.344683, 4.916708 52.344652, 4.916809 52.344642, 4.91691 52.344653, 4.917187 52.344729, 4.917252 52.344776, 4.917291 52.344866, 4.917226 52.344997, 4.917117 52.345062, 4.91697 52.345085, 4.916851 52.345071, 4.916704 52.345113, 4.916551 52.345121, 4.91579 52.344938, 4.915711 52.344898, 4.915648 52.344813, 4.915662 52.344721, 4.916108 52.344026, 4.91616 52.343971, 4.916243 52.343931, 4.915751 52.34383, 4.915623 52.34378, 4.915499 52.34377, 4.915367 52.343735, 4.915259 52.343669, 4.915225 52.343611, 4.915225 52.343548, 4.915294 52.34346, 4.915419 52.343408, 4.91562 52.34338, 4.915774 52.343402, 4.915795 52.343368, 4.915716 52.343313, 4.915678 52.343223, 4.915814 52.342969, 4.915866 52.342914, 4.915946 52.342875, 4.916041 52.342854, 4.916144 52.342854, 4.916243 52.342878, 4.916322 52.342918, 4.916386 52.343002, 4.916385 52.343065, 4.916333 52.34316, 4.91642 52.343348, 4.91632 52.343544, 4.916343 52.343568, 4.916785 52.343669, 4.916857 52.343559, 4.916924 52.343511, 4.917012 52.34348, 4.917165 52.343473, 4.917334 52.34352, 4.917416 52.343584, 4.917709 52.34365, 4.917792 52.343633, 4.917895 52.343633, 4.918285 52.343722, 4.918392 52.343788, 4.918431 52.343878))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS24", "asset": null, "location": "SRID=4326;POLYGON ((4.882481 52.39278, 4.882463 52.392841, 4.88238 52.392917, 4.882312 52.393015, 4.882173 52.393097, 4.882028 52.393121, 4.882108 52.393193, 4.88212 52.393286, 4.881959 52.393492, 4.881879 52.393531, 4.881717 52.393574, 4.881615 52.393585, 4.881514 52.393573, 4.881422 52.39354, 4.881273 52.393447, 4.881235 52.393357, 4.881293 52.393243, 4.881128 52.393069, 4.881034 52.393005, 4.880951 52.392995, 4.880863 52.392963, 4.880799 52.392927, 4.880748 52.392871, 4.880476 52.392733, 4.880274 52.392675, 4.880188 52.392616, 4.880154 52.39256, 4.879803 52.392399, 4.879739 52.392314, 4.879753 52.392221, 4.879868 52.392127, 4.879956 52.392096, 4.880058 52.392086, 4.880212 52.392113, 4.880463 52.39223, 4.880505 52.392153, 4.880398 52.392116, 4.880332 52.392068, 4.880298 52.39201, 4.880312 52.391917, 4.880364 52.391863, 4.880468 52.391808, 4.880563 52.391787, 4.880716 52.391796, 4.880804 52.391828, 4.882377 52.392642, 4.882442 52.39269, 4.882481 52.39278))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS25", "asset": null, "location": "SRID=4326;POLYGON ((4.914908 52.408965, 4.91489 52.409026, 4.914845 52.409076, 4.914874 52.409151, 4.914848 52.409221, 4.914853 52.409296, 4.914788 52.40938, 4.914628 52.409446, 4.914502 52.409522, 4.91437 52.409545, 4.914153 52.409651, 4.913989 52.409702, 4.913924 52.40978, 4.913794 52.409835, 4.913692 52.409845, 4.913591 52.409834, 4.913465 52.409787, 4.913398 52.409738, 4.913348 52.409621, 4.913366 52.40956, 4.913427 52.409499, 4.913256 52.409535, 4.913094 52.409526, 4.912963 52.40947, 4.912819 52.409338, 4.912802 52.409272, 4.91282 52.409211, 4.912913 52.409131, 4.913169 52.409044, 4.913499 52.408896, 4.913715 52.408787, 4.913851 52.408697, 4.913987 52.408637, 4.914205 52.408574, 4.914405 52.40856, 4.914543 52.4086, 4.914869 52.408875, 4.914908 52.408965))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS26", "asset": null, "location": "SRID=4326;POLYGON ((4.886982 52.393153, 4.886942 52.393242, 4.88682 52.393326, 4.886649 52.393395, 4.886507 52.393403, 4.886522 52.39346, 4.886504 52.393521, 4.886387 52.393624, 4.886261 52.393676, 4.88616 52.393687, 4.886058 52.393675, 4.885971 52.393644, 4.885872 52.393556, 4.885728 52.393499, 4.885678 52.393444, 4.885658 52.39338, 4.88552 52.39334, 4.885455 52.393292, 4.885416 52.393202, 4.88546 52.393049, 4.885549 52.392973, 4.885741 52.392926, 4.885898 52.392936, 4.885988 52.392889, 4.886135 52.392865, 4.886282 52.39289, 4.886399 52.39288, 4.886501 52.392892, 4.886593 52.392925, 4.886655 52.392971, 4.886738 52.392972, 4.886833 52.392994, 4.886944 52.393063, 4.886982 52.393153))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS27", "asset": null, "location": "SRID=4326;POLYGON ((4.876256 52.335863, 4.876237 52.335924, 4.876185 52.335979, 4.876106 52.336018, 4.87601 52.336039, 4.875648 52.336037, 4.875471 52.335983, 4.875332 52.336022, 4.875198 52.336021, 4.875099 52.336002, 4.874975 52.335948, 4.874912 52.335863, 4.874892 52.335685, 4.874911 52.335523, 4.875 52.335447, 4.875139 52.335408, 4.875247 52.335408, 4.875393 52.33544, 4.875472 52.33548, 4.875529 52.33554, 4.875587 52.335471, 4.875666 52.335432, 4.875762 52.335411, 4.87592 52.335419, 4.876008 52.335451, 4.876074 52.335499, 4.876108 52.335558, 4.876109 52.335703, 4.876217 52.335769, 4.876256 52.335863))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS28", "asset": null, "location": "SRID=4326;POLYGON ((4.876084 52.33649, 4.876066 52.336551, 4.876014 52.336605, 4.875889 52.336658, 4.875671 52.336683, 4.875386 52.336686, 4.875117 52.336642, 4.875029 52.33661, 4.874942 52.336533, 4.874926 52.336445, 4.874966 52.336355, 4.875076 52.33629, 4.875224 52.336255, 4.875311 52.33625, 4.875438 52.336267, 4.875562 52.336234, 4.875673 52.336231, 4.875893 52.336268, 4.876017 52.336321, 4.876081 52.336406, 4.876084 52.33649))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS29", "asset": null, "location": "SRID=4326;POLYGON ((4.878083 52.337517, 4.878066 52.337454, 4.877989 52.337383, 4.878043 52.337281, 4.87804 52.337167, 4.877989 52.337094, 4.878005 52.336999, 4.877901 52.33683, 4.877837 52.336782, 4.8777 52.336742, 4.877538 52.336741, 4.877443 52.336762, 4.877335 52.336827, 4.87726 52.336941, 4.877188 52.336991, 4.876947 52.337387, 4.876918 52.337569, 4.876866 52.337623, 4.876848 52.337684, 4.876888 52.337797, 4.877023 52.337908, 4.877112 52.33794, 4.877325 52.337972, 4.877384 52.338045, 4.87754 52.338114, 4.877635 52.338136, 4.877786 52.338129, 4.877876 52.338098, 4.877964 52.338022, 4.877978 52.337902, 4.878019 52.337813, 4.87802 52.337631, 4.878083 52.337517))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS30", "asset": null, "location": "SRID=4326;POLYGON ((4.902679 52.3932, 4.902662 52.393138, 4.902612 52.393083, 4.902534 52.393044, 4.902404 52.393015, 4.902258 52.393022, 4.9021 52.393, 4.902 52.39301, 4.901829 52.39307, 4.901719 52.393141, 4.901688 52.393044, 4.901755 52.39298, 4.901782 52.392899, 4.901765 52.392837, 4.901714 52.392782, 4.90159 52.392729, 4.901388 52.392691, 4.901288 52.39268, 4.901188 52.39269, 4.901062 52.392743, 4.900997 52.392827, 4.901009 52.39292, 4.901118 52.393006, 4.901041 52.393045, 4.900989 52.393099, 4.900975 52.393192, 4.90101 52.39325, 4.901103 52.393311, 4.900968 52.393359, 4.900902 52.393406, 4.900866 52.393465, 4.900879 52.393557, 4.900937 52.39362, 4.901061 52.393674, 4.901212 52.393683, 4.901308 52.393661, 4.901439 52.393598, 4.901505 52.393514, 4.901493 52.393421, 4.901407 52.393345, 4.901568 52.393293, 4.90157 52.393352, 4.901605 52.393411, 4.901669 52.393459, 4.901758 52.393491, 4.901915 52.393512, 4.902083 52.393479, 4.902228 52.393524, 4.902379 52.393517, 4.902469 52.393486, 4.902534 52.393438, 4.902633 52.393315, 4.902679 52.3932))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS31", "asset": null, "location": "SRID=4326;POLYGON ((4.880943 52.39583, 4.880926 52.395768, 4.880841 52.395692, 4.879731 52.395089, 4.879584 52.395064, 4.879267 52.395067, 4.879128 52.395106, 4.879063 52.395154, 4.879027 52.395212, 4.879027 52.395275, 4.879061 52.395333, 4.879181 52.395429, 4.879305 52.395483, 4.879483 52.395487, 4.879495 52.395578, 4.879581 52.395655, 4.87967 52.395687, 4.879792 52.395697, 4.879858 52.3958, 4.880052 52.395901, 4.880147 52.395923, 4.880284 52.395918, 4.880346 52.395999, 4.880449 52.396052, 4.880544 52.396074, 4.880647 52.396075, 4.880785 52.396036, 4.880873 52.39596, 4.880943 52.39583))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS32", "asset": null, "location": "SRID=4326;POLYGON ((4.948927 52.304647, 4.948888 52.304557, 4.948702 52.30444, 4.948607 52.304418, 4.948504 52.304418, 4.948342 52.304466, 4.948252 52.304538, 4.948132 52.30469, 4.948144 52.304783, 4.948218 52.304852, 4.948193 52.304878, 4.94808 52.304864, 4.947933 52.304887, 4.947855 52.304927, 4.947734 52.305045, 4.94772 52.305137, 4.947746 52.305205, 4.947796 52.30526, 4.947879 52.305302, 4.948147 52.305382, 4.948283 52.305383, 4.948422 52.305344, 4.948487 52.305296, 4.948876 52.304861, 4.948895 52.3048, 4.948882 52.30475, 4.948927 52.304647))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS33", "asset": null, "location": "SRID=4326;POLYGON ((4.88302 52.392701, 4.882981 52.392611, 4.882834 52.392524, 4.882687 52.392499, 4.882526 52.392528, 4.882427 52.392524, 4.882439 52.392435, 4.882405 52.392376, 4.882341 52.392329, 4.882251 52.392297, 4.8821 52.392288, 4.882004 52.392309, 4.881922 52.392351, 4.88187 52.392406, 4.881855 52.392498, 4.881919 52.392583, 4.882043 52.392636, 4.882174 52.392646, 4.882159 52.392701, 4.882176 52.392762, 4.882045 52.392867, 4.882004 52.392956, 4.882021 52.393017, 4.882072 52.393072, 4.882196 52.393126, 4.882348 52.393135, 4.882486 52.393096, 4.88272 52.392931, 4.882949 52.392816, 4.883001 52.392762, 4.88302 52.392701))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS34", "asset": null, "location": "SRID=4326;POLYGON ((4.877448 52.394142, 4.877432 52.394081, 4.877352 52.394008, 4.877335 52.393947, 4.877284 52.393892, 4.87716 52.393839, 4.87706 52.393828, 4.876993 52.393743, 4.876916 52.393703, 4.876612 52.393657, 4.876509 52.393656, 4.876371 52.393695, 4.876306 52.393743, 4.87627 52.393801, 4.876269 52.393864, 4.876333 52.393948, 4.876711 52.394146, 4.876766 52.39421, 4.876985 52.394344, 4.87708 52.394366, 4.877183 52.394366, 4.877321 52.394328, 4.877409 52.394251, 4.877448 52.394142))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS35", "asset": null, "location": "SRID=4326;POLYGON ((4.919803 52.340802, 4.919786 52.340741, 4.919647 52.340574, 4.919541 52.340508, 4.919446 52.340486, 4.919343 52.340486, 4.91914 52.340545, 4.919052 52.340621, 4.919 52.34076, 4.919038 52.34085, 4.918891 52.341084, 4.91889 52.341147, 4.918954 52.341231, 4.919031 52.341271, 4.919157 52.3413, 4.91926 52.341301, 4.919398 52.341262, 4.919485 52.341186, 4.919538 52.341061, 4.919745 52.340926, 4.919803 52.340802))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS36", "asset": null, "location": "SRID=4326;POLYGON ((4.873926 52.394118, 4.873884 52.394006, 4.873778 52.39394, 4.873811 52.393883, 4.873815 52.393812, 4.873798 52.393751, 4.873747 52.393696, 4.873623 52.393642, 4.873523 52.393631, 4.873423 52.393641, 4.873333 52.393672, 4.873228 52.393761, 4.873187 52.39385, 4.873197 52.394123, 4.873261 52.394208, 4.873338 52.394247, 4.873479 52.394286, 4.873681 52.394294, 4.873777 52.394273, 4.873855 52.394233, 4.873907 52.394179, 4.873926 52.394118))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS37", "asset": null, "location": "SRID=4326;POLYGON ((4.885956 52.393118, 4.885939 52.393057, 4.885853 52.39298, 4.88571 52.392937, 4.885558 52.392944, 4.885433 52.392997, 4.885231 52.393145, 4.885195 52.393203, 4.885208 52.393296, 4.885258 52.393351, 4.885421 52.393435, 4.885516 52.393457, 4.885667 52.39345, 4.885757 52.393419, 4.885828 52.393367, 4.885864 52.393309, 4.885865 52.393248, 4.885938 52.393179, 4.885956 52.393118))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS38", "asset": null, "location": "SRID=4326;POLYGON ((4.880886 52.391982, 4.880847 52.391892, 4.880741 52.391826, 4.880594 52.391801, 4.880447 52.391824, 4.880369 52.391864, 4.880117 52.392049, 4.880076 52.392139, 4.880115 52.392229, 4.880179 52.392277, 4.880316 52.392317, 4.880419 52.392318, 4.880515 52.392297, 4.880815 52.392097, 4.880868 52.392043, 4.880886 52.391982))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS39", "asset": null, "location": "SRID=4326;POLYGON ((4.951697 52.314829, 4.95168 52.314768, 4.951594 52.314691, 4.951256 52.314602, 4.951153 52.314601, 4.951015 52.31464, 4.95095 52.314688, 4.950914 52.314746, 4.950914 52.314809, 4.950977 52.314894, 4.951055 52.314934, 4.951336 52.31502, 4.951438 52.31502, 4.951576 52.314981, 4.951656 52.314919, 4.951697 52.314829))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS40", "asset": null, "location": "SRID=4326;POLYGON ((4.886896 52.337014, 4.886858 52.336924, 4.886751 52.336858, 4.886605 52.336833, 4.886465 52.336843, 4.88634 52.336895, 4.886288 52.33695, 4.88627 52.337011, 4.886287 52.337138, 4.886338 52.337193, 4.886462 52.337246, 4.886562 52.337258, 4.886662 52.337247, 4.886752 52.337216, 4.886817 52.337169, 4.886896 52.337014))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS41", "asset": null, "location": "SRID=4326;POLYGON ((4.88038 52.393835, 4.880363 52.393773, 4.880277 52.393697, 4.88014 52.393657, 4.880037 52.393656, 4.879898 52.393695, 4.879795 52.393766, 4.879729 52.39385, 4.879728 52.393913, 4.879763 52.393971, 4.879827 52.394019, 4.879965 52.394059, 4.880067 52.39406, 4.880163 52.394039, 4.880241 52.393999, 4.880339 52.393924, 4.88038 52.393835))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS42", "asset": null, "location": "SRID=4326;POLYGON ((4.867561 52.337273, 4.867544 52.337201, 4.867493 52.337146, 4.867369 52.337092, 4.867269 52.337081, 4.86717 52.337092, 4.867052 52.337134, 4.866964 52.33721, 4.866946 52.337271, 4.866963 52.337332, 4.867049 52.337409, 4.867138 52.337441, 4.867237 52.337452, 4.867365 52.337441, 4.867455 52.33741, 4.867542 52.337334, 4.867561 52.337273))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS43", "asset": null, "location": "SRID=4326;POLYGON ((4.96954 52.319487, 4.969501 52.319397, 4.969436 52.319349, 4.969344 52.319315, 4.969138 52.319295, 4.969088 52.319238, 4.969009 52.319198, 4.968943 52.319177, 4.968827 52.319167, 4.968743 52.319121, 4.96864 52.319097, 4.968538 52.319097, 4.968442 52.319118, 4.968009 52.318967, 4.967994 52.318901, 4.967906 52.318824, 4.968058 52.318816, 4.968146 52.318785, 4.968212 52.318738, 4.968266 52.318648, 4.968285 52.31853, 4.968246 52.31844, 4.968175 52.318385, 4.968087 52.318354, 4.967788 52.318286, 4.967664 52.318275, 4.967562 52.318234, 4.967313 52.318189, 4.967166 52.318213, 4.967086 52.318252, 4.967034 52.318307, 4.966867 52.318321, 4.966779 52.318353, 4.966712 52.3184, 4.966594 52.318549, 4.966593 52.318612, 4.966628 52.31867, 4.966479 52.318752, 4.966443 52.318811, 4.966442 52.318868, 4.966311 52.31894, 4.966152 52.319138, 4.965905 52.319395, 4.965862 52.319488, 4.9659 52.319578, 4.966008 52.319644, 4.966214 52.319718, 4.966315 52.319729, 4.966417 52.319718, 4.966505 52.319687, 4.966571 52.31964, 4.966952 52.31922, 4.967014 52.319177, 4.967051 52.319193, 4.966611 52.319668, 4.96657 52.31977, 4.966464 52.319856, 4.966446 52.319917, 4.966463 52.319978, 4.966513 52.320033, 4.966592 52.320073, 4.966901 52.320178, 4.967002 52.32019, 4.967103 52.320179, 4.967228 52.320127, 4.967283 52.320069, 4.967299 52.319993, 4.967372 52.319961, 4.967345 52.320007, 4.967345 52.32007, 4.967459 52.320224, 4.967567 52.32029, 4.967714 52.320314, 4.967815 52.320304, 4.96794 52.320251, 4.968427 52.319734, 4.968475 52.319661, 4.968581 52.319726, 4.968963 52.319833, 4.969064 52.319845, 4.969166 52.319834, 4.969254 52.319803, 4.96932 52.319756, 4.969383 52.31967, 4.9695 52.319576, 4.96954 52.319487))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS44", "asset": null, "location": "SRID=4326;POLYGON ((4.792852 52.362833, 4.792836 52.362772, 4.792785 52.362717, 4.792601 52.362637, 4.792427 52.362606, 4.79228 52.36263, 4.7922 52.362669, 4.792148 52.362723, 4.792066 52.362914, 4.792017 52.362965, 4.791883 52.363212, 4.791867 52.363308, 4.791855 52.363316, 4.79178 52.363291, 4.791659 52.363279, 4.791577 52.36325, 4.791468 52.363237, 4.79154 52.363163, 4.791622 52.362972, 4.791671 52.362921, 4.791817 52.362645, 4.791819 52.362579, 4.791785 52.36252, 4.791677 52.362454, 4.79156 52.362427, 4.791501 52.36235, 4.791434 52.362315, 4.79138 52.36225, 4.791302 52.362211, 4.790404 52.362026, 4.790296 52.362025, 4.790157 52.362064, 4.790068 52.36214, 4.789913 52.362437, 4.789909 52.362479, 4.789862 52.36253, 4.789777 52.36273, 4.789729 52.36278, 4.789713 52.362874, 4.789556 52.362864, 4.78946 52.362885, 4.789381 52.362924, 4.789285 52.363051, 4.78927 52.363143, 4.789334 52.363228, 4.789458 52.363282, 4.791962 52.363788, 4.792114 52.363796, 4.792337 52.363738, 4.792426 52.363662, 4.792852 52.362833))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS45", "asset": null, "location": "SRID=4326;POLYGON ((4.97416 52.31463, 4.974142 52.314569, 4.974092 52.314514, 4.973925 52.314444, 4.973764 52.31442, 4.973171 52.314218, 4.973018 52.31421, 4.972923 52.314231, 4.972822 52.314284, 4.972771 52.314338, 4.972756 52.314431, 4.972793 52.314492, 4.972858 52.31454, 4.973045 52.314621, 4.973323 52.31471, 4.973044 52.315017, 4.972647 52.314879, 4.972652 52.314807, 4.97263 52.314766, 4.972729 52.314652, 4.972748 52.314591, 4.972705 52.314491, 4.972623 52.314428, 4.972528 52.314393, 4.972421 52.314381, 4.97232 52.314392, 4.97219 52.314445, 4.972094 52.314418, 4.972112 52.314359, 4.972095 52.314296, 4.97204 52.314236, 4.971961 52.314196, 4.971856 52.314172, 4.971744 52.314171, 4.971569 52.314216, 4.971491 52.314275, 4.971353 52.314432, 4.971307 52.314621, 4.971342 52.314679, 4.971407 52.314727, 4.971673 52.314821, 4.971789 52.314831, 4.971957 52.314908, 4.971819 52.315063, 4.971801 52.315124, 4.97184 52.315214, 4.971926 52.315271, 4.971821 52.315381, 4.971803 52.315442, 4.97182 52.315503, 4.97176 52.315589, 4.971762 52.315669, 4.971832 52.315764, 4.971981 52.315828, 4.972083 52.315924, 4.972398 52.316036, 4.972551 52.316044, 4.972762 52.31599, 4.972829 52.315943, 4.972934 52.315816, 4.973049 52.315758, 4.973174 52.315629, 4.973212 52.315568, 4.973223 52.315501, 4.973342 52.315383, 4.973379 52.315309, 4.973526 52.315302, 4.973614 52.315271, 4.97368 52.315223, 4.973719 52.315161, 4.973708 52.315075, 4.973893 52.314872, 4.97396 52.314817, 4.974101 52.31474, 4.97416 52.31463))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS46", "asset": null, "location": "SRID=4326;POLYGON ((4.806359 52.378124, 4.806293 52.377986, 4.806228 52.377938, 4.80614 52.377906, 4.805763 52.377883, 4.805432 52.377902, 4.805438 52.377613, 4.805457 52.37755, 4.805436 52.37748, 4.805386 52.377425, 4.805301 52.377381, 4.805206 52.377359, 4.80508 52.377354, 4.804978 52.377364, 4.80489 52.377395, 4.804801 52.377471, 4.804766 52.377866, 4.804386 52.377872, 4.804313 52.377886, 4.804328 52.377654, 4.80426 52.377558, 4.804177 52.377516, 4.804066 52.377492, 4.803903 52.377491, 4.803764 52.37753, 4.803698 52.377577, 4.803662 52.377635, 4.803643 52.377971, 4.803512 52.377993, 4.803423 52.378036, 4.803371 52.378091, 4.803352 52.378152, 4.803369 52.378213, 4.80342 52.378268, 4.803499 52.378308, 4.803585 52.378329, 4.803617 52.378385, 4.803616 52.378858, 4.803651 52.378916, 4.803716 52.378964, 4.803854 52.379004, 4.804012 52.379006, 4.804151 52.378967, 4.80424 52.378891, 4.80426 52.378815, 4.80424 52.378746, 4.804266 52.378676, 4.804251 52.378598, 4.804273 52.378392, 4.804269 52.378271, 4.804239 52.378219, 4.804398 52.378269, 4.804731 52.378276, 4.804731 52.378845, 4.804748 52.378906, 4.804799 52.378961, 4.804877 52.379001, 4.805067 52.379027, 4.805168 52.379017, 4.805262 52.378984, 4.80536 52.378896, 4.805379 52.378835, 4.805358 52.378765, 4.805385 52.378694, 4.805369 52.378618, 4.805388 52.378376, 4.805407 52.378351, 4.805519 52.378306, 4.805624 52.378296, 4.806061 52.378302, 4.806163 52.378292, 4.806288 52.37824, 4.806341 52.378185, 4.806359 52.378124))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS47", "asset": null, "location": "SRID=4326;POLYGON ((4.959431 52.392828, 4.959392 52.392738, 4.959284 52.392672, 4.959161 52.392641, 4.959008 52.392649, 4.958845 52.392712, 4.958778 52.392759, 4.958244 52.393333, 4.957949 52.393257, 4.958035 52.393201, 4.958315 52.392823, 4.958333 52.392762, 4.958307 52.392691, 4.958384 52.392639, 4.958427 52.392546, 4.95841 52.392485, 4.95836 52.39243, 4.958235 52.392376, 4.958149 52.392358, 4.958046 52.392358, 4.957907 52.392397, 4.957808 52.392485, 4.957239 52.393253, 4.957144 52.393222, 4.957043 52.393211, 4.956896 52.393235, 4.956787 52.3933, 4.956743 52.393377, 4.956615 52.393448, 4.9565 52.393602, 4.956492 52.393706, 4.956382 52.393772, 4.956217 52.393988, 4.956203 52.394081, 4.956267 52.394166, 4.956391 52.394219, 4.956579 52.394255, 4.956726 52.394231, 4.956835 52.394176, 4.956922 52.394075, 4.957018 52.394026, 4.957069 52.393972, 4.957085 52.393894, 4.957172 52.393819, 4.957186 52.393732, 4.957281 52.393672, 4.957342 52.393592, 4.95735 52.393488, 4.958449 52.393787, 4.958602 52.393796, 4.95874 52.393757, 4.958832 52.393677, 4.958849 52.393605, 4.958915 52.393516, 4.959043 52.393463, 4.959098 52.393405, 4.959152 52.39332, 4.959153 52.393276, 4.959229 52.393225, 4.959266 52.393164, 4.959255 52.393059, 4.959411 52.392892, 4.959431 52.392828))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS48", "asset": null, "location": "SRID=4326;POLYGON ((4.833766 52.379213, 4.833377 52.378261, 4.833326 52.378206, 4.833247 52.378166, 4.833152 52.378144, 4.832947 52.378142, 4.83285 52.378105, 4.832697 52.378096, 4.832469 52.378166, 4.832359 52.378231, 4.832323 52.37829, 4.832323 52.378353, 4.832422 52.378544, 4.832422 52.378594, 4.832508 52.378773, 4.83261 52.378837, 4.832576 52.378894, 4.832575 52.378957, 4.832489 52.379002, 4.832426 52.379012, 4.832326 52.378773, 4.832367 52.3787, 4.832368 52.378637, 4.832317 52.378562, 4.832254 52.378366, 4.832201 52.378308, 4.832077 52.378254, 4.831925 52.378246, 4.831714 52.378286, 4.831605 52.378351, 4.831569 52.378409, 4.831593 52.378533, 4.831557 52.378633, 4.831664 52.378912, 4.831714 52.378967, 4.831815 52.379014, 4.831948 52.379332, 4.831998 52.379387, 4.832077 52.379427, 4.832194 52.37945, 4.832326 52.379511, 4.832427 52.379522, 4.832529 52.379512, 4.832617 52.379481, 4.832684 52.379434, 4.832727 52.379349, 4.832868 52.379356, 4.833036 52.379329, 4.833205 52.379408, 4.833383 52.379414, 4.83357 52.379381, 4.833658 52.37935, 4.833725 52.379303, 4.833766 52.379213))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS49", "asset": null, "location": "SRID=4326;POLYGON ((4.820339 52.380748, 4.820288 52.380604, 4.820303 52.3805, 4.820254 52.380426, 4.820238 52.380344, 4.820188 52.380289, 4.820064 52.380235, 4.819911 52.380226, 4.819759 52.38025, 4.819671 52.380281, 4.819604 52.380328, 4.819449 52.380308, 4.819334 52.38032, 4.819245 52.380287, 4.819144 52.380276, 4.818704 52.380335, 4.818615 52.380367, 4.818549 52.380414, 4.818508 52.380504, 4.818629 52.380823, 4.818479 52.380916, 4.818438 52.381006, 4.81864 52.381528, 4.818691 52.381583, 4.818821 52.381638, 4.818922 52.38165, 4.819023 52.381639, 4.819149 52.381587, 4.819216 52.38149, 4.819333 52.381569, 4.819428 52.381591, 4.819531 52.381591, 4.819627 52.38157, 4.819706 52.381531, 4.819763 52.381473, 4.819779 52.381397, 4.819863 52.381442, 4.819958 52.381464, 4.820111 52.381457, 4.820204 52.381425, 4.820271 52.381377, 4.820312 52.381288, 4.820199 52.380992, 4.820261 52.380959, 4.820314 52.380905, 4.820339 52.380748))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS50", "asset": null, "location": "SRID=4326;POLYGON ((4.884302 52.393714, 4.884264 52.393624, 4.884198 52.393576, 4.882868 52.392884, 4.882921 52.392811, 4.882922 52.392748, 4.882858 52.392663, 4.882772 52.392616, 4.882842 52.392461, 4.882825 52.3924, 4.882774 52.392345, 4.88261 52.39227, 4.88249 52.39226, 4.882211 52.392113, 4.882147 52.392026, 4.882036 52.391965, 4.881949 52.391933, 4.881847 52.391922, 4.881465 52.391729, 4.881369 52.391707, 4.881267 52.391707, 4.881171 52.391728, 4.881091 52.391767, 4.880931 52.391899, 4.880913 52.39196, 4.880929 52.392021, 4.88098 52.392077, 4.881117 52.392154, 4.881217 52.392193, 4.881636 52.392424, 4.881774 52.392464, 4.881815 52.392585, 4.882044 52.392718, 4.881954 52.392761, 4.881882 52.39285, 4.881893 52.392947, 4.881957 52.393032, 4.882183 52.393138, 4.882284 52.393149, 4.88242 52.393129, 4.883812 52.393851, 4.883899 52.393883, 4.884052 52.393892, 4.884195 52.393851, 4.884262 52.393803, 4.884302 52.393714))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS51", "asset": null, "location": "SRID=4326;POLYGON ((4.835725 52.378894, 4.835676 52.378764, 4.835595 52.37869, 4.835566 52.378627, 4.835579 52.378526, 4.835538 52.378421, 4.835451 52.378344, 4.835313 52.378304, 4.835162 52.377942, 4.835075 52.377866, 4.834987 52.377834, 4.834886 52.377823, 4.834446 52.377886, 4.834331 52.377856, 4.834228 52.377855, 4.833822 52.377919, 4.833696 52.377972, 4.833631 52.378056, 4.83363 52.378119, 4.833961 52.378918, 4.834042 52.37908, 4.834205 52.379198, 4.834343 52.379238, 4.834496 52.379231, 4.834621 52.379178, 4.834678 52.379119, 4.834692 52.379027, 4.834642 52.378917, 4.834537 52.378833, 4.834499 52.378736, 4.834526 52.378663, 4.834481 52.378532, 4.834379 52.378449, 4.834336 52.378346, 4.834495 52.378331, 4.834685 52.378267, 4.834808 52.37857, 4.834859 52.378625, 4.834977 52.378677, 4.835067 52.378887, 4.835196 52.37901, 4.835275 52.37905, 4.83537 52.379072, 4.835523 52.379065, 4.835654 52.37901, 4.835706 52.378955, 4.835725 52.378894))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS52", "asset": null, "location": "SRID=4326;POLYGON ((4.841896 52.379639, 4.841454 52.378558, 4.841391 52.378476, 4.841253 52.378416, 4.841093 52.378407, 4.840981 52.37843, 4.840796 52.378507, 4.840663 52.378501, 4.840468 52.378531, 4.840375 52.378562, 4.840279 52.378644, 4.840263 52.378743, 4.840674 52.37973, 4.840725 52.379785, 4.840847 52.379838, 4.840964 52.379917, 4.841059 52.379939, 4.841162 52.379939, 4.841628 52.379858, 4.841825 52.379755, 4.841877 52.3797, 4.841896 52.379639))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS53", "asset": null, "location": "SRID=4326;POLYGON ((4.903963 52.41054, 4.903785 52.410094, 4.903735 52.410039, 4.90361 52.409986, 4.903509 52.409975, 4.903402 52.409986, 4.903313 52.410017, 4.903246 52.410064, 4.90321 52.410123, 4.903236 52.410244, 4.903131 52.410279, 4.903064 52.410326, 4.903013 52.410448, 4.902855 52.410475, 4.902648 52.410582, 4.902583 52.410667, 4.902605 52.410786, 4.902451 52.410804, 4.902279 52.410879, 4.902171 52.410952, 4.902123 52.411066, 4.902012 52.411106, 4.901946 52.411154, 4.90191 52.411212, 4.901905 52.411336, 4.901971 52.411505, 4.902039 52.411581, 4.902164 52.411635, 4.902265 52.411646, 4.902502 52.411606, 4.90265 52.411555, 4.902802 52.411462, 4.90386 52.410685, 4.903945 52.410601, 4.903963 52.41054))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS54", "asset": null, "location": "SRID=4326;POLYGON ((4.84049 52.379751, 4.840144 52.378898, 4.840093 52.378842, 4.840014 52.378803, 4.839891 52.378779, 4.839809 52.378735, 4.839663 52.37871, 4.839117 52.378789, 4.838992 52.378842, 4.838926 52.378926, 4.838925 52.378989, 4.83924 52.379746, 4.839308 52.37984, 4.839451 52.379897, 4.839459 52.380003, 4.839523 52.380088, 4.839647 52.380142, 4.839748 52.380153, 4.840267 52.380073, 4.840347 52.380034, 4.840399 52.379979, 4.840409 52.379875, 4.840472 52.379812, 4.84049 52.379751))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS55", "asset": null, "location": "SRID=4326;POLYGON ((4.893144 52.401993, 4.893105 52.401903, 4.892952 52.401791, 4.892754 52.4017, 4.892674 52.40168, 4.892664 52.401564, 4.892565 52.401471, 4.892447 52.401409, 4.892328 52.401386, 4.892258 52.401335, 4.892166 52.401302, 4.891934 52.401276, 4.891725 52.401293, 4.891496 52.40139, 4.891404 52.401453, 4.891281 52.401496, 4.891192 52.401572, 4.891176 52.401761, 4.891215 52.401851, 4.891371 52.401978, 4.891473 52.402025, 4.89151 52.402111, 4.89162 52.40218, 4.891676 52.402247, 4.891787 52.402297, 4.891802 52.402343, 4.89188 52.402434, 4.892009 52.40249, 4.89211 52.402501, 4.892257 52.402478, 4.892376 52.40248, 4.892515 52.402441, 4.89264 52.402375, 4.892692 52.40232, 4.892845 52.402289, 4.89293 52.402248, 4.893003 52.402146, 4.893103 52.402083, 4.893144 52.401993))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS56", "asset": null, "location": "SRID=4326;POLYGON ((4.944948 52.398718, 4.944909 52.398628, 4.944664 52.398398, 4.944627 52.398303, 4.944489 52.398174, 4.944309 52.398078, 4.944151 52.398022, 4.943998 52.398013, 4.943807 52.398072, 4.943688 52.398068, 4.943592 52.39809, 4.943158 52.398281, 4.943069 52.398357, 4.943059 52.398478, 4.943132 52.39864, 4.943514 52.399013, 4.943561 52.399123, 4.943627 52.399171, 4.943714 52.399203, 4.94387 52.399216, 4.943972 52.399206, 4.944162 52.399127, 4.944299 52.399103, 4.944501 52.399014, 4.944559 52.398945, 4.944685 52.398936, 4.944861 52.398864, 4.944913 52.398809, 4.944948 52.398718))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS57", "asset": null, "location": "SRID=4326;POLYGON ((4.882426 52.39541, 4.882409 52.395349, 4.882358 52.395294, 4.882131 52.395157, 4.881929 52.395069, 4.881405 52.394786, 4.881261 52.394734, 4.881186 52.394672, 4.880696 52.394417, 4.880471 52.394328, 4.880322 52.394293, 4.880169 52.3943, 4.880043 52.394353, 4.879918 52.394446, 4.879877 52.394536, 4.879908 52.394624, 4.879959 52.394679, 4.880061 52.394734, 4.880108 52.394781, 4.880638 52.39506, 4.880743 52.395094, 4.880819 52.395154, 4.881828 52.395673, 4.881923 52.395695, 4.882026 52.395696, 4.882165 52.395657, 4.882385 52.3955, 4.882426 52.39541))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS58", "asset": null, "location": "SRID=4326;POLYGON ((4.934181 52.405606, 4.934163 52.405536, 4.934064 52.40545, 4.933895 52.405386, 4.933794 52.405375, 4.933516 52.405262, 4.933422 52.40524, 4.932883 52.404967, 4.932848 52.404903, 4.932725 52.40482, 4.93267 52.404758, 4.932441 52.404607, 4.932268 52.404561, 4.932086 52.404416, 4.932051 52.404355, 4.931929 52.404258, 4.931841 52.404226, 4.931688 52.404206, 4.931587 52.404216, 4.931461 52.404269, 4.931405 52.404326, 4.931391 52.404418, 4.931486 52.404582, 4.931604 52.404689, 4.931814 52.404855, 4.932067 52.404966, 4.932208 52.405113, 4.932375 52.405221, 4.9328 52.40545, 4.933328 52.405682, 4.933592 52.405773, 4.933811 52.405819, 4.93392 52.405819, 4.934059 52.40578, 4.934148 52.405704, 4.934181 52.405606))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS59", "asset": null, "location": "SRID=4326;POLYGON ((4.902306 52.39324, 4.902267 52.39315, 4.902201 52.393102, 4.902114 52.393071, 4.901759 52.392999, 4.901776 52.392902, 4.901741 52.392844, 4.901676 52.392796, 4.901538 52.392756, 4.90143 52.392755, 4.901291 52.392794, 4.901224 52.392841, 4.901098 52.393107, 4.901115 52.393168, 4.901166 52.393223, 4.901337 52.393298, 4.901414 52.393379, 4.901259 52.39334, 4.901141 52.39333, 4.90106 52.393278, 4.900972 52.393246, 4.900627 52.393225, 4.900479 52.393268, 4.900413 52.393315, 4.900371 52.39341, 4.900386 52.393482, 4.900503 52.393619, 4.900673 52.393693, 4.900791 52.393775, 4.900763 52.393824, 4.900762 52.393887, 4.900826 52.393971, 4.90095 52.394025, 4.901104 52.394034, 4.9012 52.394012, 4.90128 52.393973, 4.901345 52.393889, 4.901346 52.393826, 4.901539 52.3938, 4.902021 52.393607, 4.902087 52.393523, 4.902078 52.393414, 4.902235 52.393356, 4.902287 52.393301, 4.902306 52.39324))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS60", "asset": null, "location": "SRID=4326;POLYGON ((4.877009 52.336056, 4.876992 52.335987, 4.876942 52.335931, 4.876817 52.335878, 4.876716 52.335867, 4.8768 52.335783, 4.876814 52.335672, 4.876755 52.33556, 4.876647 52.335494, 4.876501 52.335469, 4.876213 52.335472, 4.876118 52.335493, 4.875891 52.335578, 4.875824 52.335626, 4.875785 52.335709, 4.875707 52.335762, 4.875666 52.335851, 4.875702 52.336043, 4.875786 52.336119, 4.875803 52.336232, 4.875782 52.336457, 4.875754 52.336531, 4.87577 52.336596, 4.875821 52.336651, 4.875945 52.336705, 4.876131 52.336716, 4.87638 52.336674, 4.876504 52.336693, 4.876622 52.336685, 4.87676 52.336646, 4.876849 52.33657, 4.876864 52.336458, 4.8768 52.336373, 4.876704 52.336328, 4.876754 52.336272, 4.876968 52.336146, 4.877009 52.336056))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS61", "asset": null, "location": "SRID=4326;POLYGON ((4.931004 52.40478, 4.930987 52.404719, 4.930926 52.40465, 4.930762 52.40454, 4.930747 52.404473, 4.930489 52.404192, 4.930419 52.404036, 4.930292 52.403913, 4.930205 52.403881, 4.930052 52.403872, 4.929934 52.403902, 4.929847 52.403903, 4.929621 52.403946, 4.929447 52.404011, 4.929313 52.404143, 4.929242 52.404279, 4.929259 52.40434, 4.929335 52.404439, 4.92943 52.404788, 4.929517 52.404865, 4.929655 52.404905, 4.929808 52.404901, 4.929946 52.404862, 4.930013 52.404815, 4.930053 52.404725, 4.929982 52.404431, 4.93009 52.404563, 4.930131 52.40465, 4.930343 52.404858, 4.93052 52.404956, 4.930667 52.404981, 4.930814 52.404957, 4.930963 52.40487, 4.931004 52.40478))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS62", "asset": null, "location": "SRID=4326;POLYGON ((4.882036 52.393404, 4.882019 52.393324, 4.881932 52.393247, 4.881831 52.393209, 4.881733 52.393198, 4.881647 52.393125, 4.881549 52.393076, 4.881454 52.393054, 4.881351 52.393053, 4.880865 52.392806, 4.880656 52.392682, 4.880461 52.392618, 4.880291 52.392503, 4.879847 52.392282, 4.879751 52.39226, 4.879599 52.392267, 4.87951 52.392299, 4.879426 52.392358, 4.879376 52.392473, 4.879393 52.392534, 4.879444 52.392589, 4.879577 52.392657, 4.879653 52.392677, 4.879997 52.392853, 4.880127 52.39292, 4.880218 52.393005, 4.880317 52.393053, 4.880428 52.393076, 4.880961 52.393351, 4.881002 52.393393, 4.881147 52.393467, 4.881242 52.393489, 4.881365 52.393486, 4.881504 52.393519, 4.881633 52.393574, 4.881786 52.393583, 4.881882 52.393561, 4.881961 52.393522, 4.882018 52.393465, 4.882036 52.393404))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS63", "asset": null, "location": "SRID=4326;POLYGON ((4.838834 52.355101, 4.83883 52.355036, 4.838795 52.354978, 4.838688 52.354912, 4.838541 52.354887, 4.838375 52.354916, 4.838018 52.35491, 4.837956 52.354827, 4.837877 52.354787, 4.837782 52.354765, 4.837417 52.354759, 4.837315 52.354769, 4.83719 52.354821, 4.837127 52.354902, 4.836925 52.3549, 4.836863 52.354817, 4.836739 52.354763, 4.836272 52.354751, 4.836176 52.354773, 4.836097 52.354812, 4.836031 52.354896, 4.836029 52.355042, 4.836093 52.355127, 4.836217 52.355181, 4.836386 52.35519, 4.836477 52.355235, 4.836573 52.355257, 4.838588 52.355277, 4.838683 52.355256, 4.838763 52.355217, 4.838815 52.355162, 4.838834 52.355101))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS64", "asset": null, "location": "SRID=4326;POLYGON ((4.840591 52.35734, 4.840587 52.357283, 4.840553 52.357224, 4.840432 52.357153, 4.840368 52.357064, 4.840246 52.357005, 4.840151 52.356983, 4.839177 52.356974, 4.839082 52.356995, 4.839002 52.357034, 4.838936 52.357119, 4.838927 52.357376, 4.838944 52.357438, 4.839037 52.357519, 4.839163 52.357557, 4.839178 52.357641, 4.839247 52.357724, 4.839326 52.357764, 4.839421 52.357786, 4.84023 52.357797, 4.840377 52.357773, 4.840457 52.357734, 4.840509 52.357679, 4.840591 52.35734))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS65", "asset": null, "location": "SRID=4326;POLYGON ((4.970213 52.372737, 4.970174 52.372647, 4.969881 52.372428, 4.969738 52.372386, 4.969585 52.372393, 4.969496 52.372424, 4.969251 52.372581, 4.969157 52.372613, 4.969015 52.372691, 4.968951 52.372772, 4.96882 52.372795, 4.968545 52.372939, 4.968421 52.372948, 4.968293 52.373002, 4.968227 52.373086, 4.96824 52.373179, 4.968291 52.373234, 4.968415 52.373287, 4.968568 52.373296, 4.968663 52.373274, 4.968769 52.373297, 4.968935 52.373369, 4.969037 52.37338, 4.969138 52.37337, 4.969327 52.373288, 4.969742 52.373063, 4.969809 52.372964, 4.96997 52.372941, 4.970143 52.372853, 4.970195 52.372798, 4.970213 52.372737))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS66", "asset": null, "location": "SRID=4326;POLYGON ((4.882132 52.394135, 4.882093 52.394045, 4.881926 52.393936, 4.881734 52.393852, 4.88158 52.39376, 4.881423 52.393692, 4.881328 52.39367, 4.881225 52.393669, 4.881129 52.39369, 4.880879 52.393835, 4.880721 52.393832, 4.880625 52.393853, 4.880502 52.393921, 4.880437 52.394006, 4.88045 52.394103, 4.880598 52.394262, 4.881225 52.394593, 4.881362 52.394633, 4.881521 52.394626, 4.881647 52.394573, 4.882091 52.394225, 4.882132 52.394135))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS67", "asset": null, "location": "SRID=4326;POLYGON ((4.841515 52.376511, 4.841286 52.375942, 4.841235 52.375887, 4.841156 52.375847, 4.841003 52.37582, 4.840883 52.375833, 4.840758 52.375886, 4.840706 52.37594, 4.840692 52.376033, 4.840861 52.376469, 4.840669 52.376033, 4.840619 52.375978, 4.840495 52.375924, 4.840342 52.375915, 4.840221 52.375941, 4.840107 52.37601, 4.840071 52.376068, 4.840071 52.376131, 4.840277 52.376626, 4.840319 52.3767, 4.840427 52.376766, 4.840522 52.376788, 4.840653 52.376796, 4.84076 52.376785, 4.840886 52.376732, 4.840942 52.376666, 4.841096 52.376715, 4.841254 52.376707, 4.841445 52.376627, 4.841497 52.376572, 4.841515 52.376511))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS68", "asset": null, "location": "SRID=4326;POLYGON ((4.91512 52.390354, 4.915103 52.390293, 4.915053 52.390238, 4.914974 52.390198, 4.914792 52.390149, 4.914691 52.390137, 4.914589 52.390148, 4.914203 52.3903, 4.914126 52.39024, 4.914042 52.390209, 4.913984 52.390138, 4.91386 52.390085, 4.913725 52.390072, 4.913585 52.390085, 4.913469 52.390125, 4.91339 52.390184, 4.913354 52.39011, 4.913289 52.390062, 4.913081 52.390008, 4.912928 52.390015, 4.912839 52.390047, 4.912773 52.390094, 4.912726 52.390171, 4.912726 52.390234, 4.91276 52.390292, 4.912863 52.39036, 4.912974 52.390398, 4.913079 52.390411, 4.913181 52.3904, 4.913306 52.390348, 4.913358 52.390293, 4.913425 52.39038, 4.91358 52.390444, 4.913849 52.3907, 4.913928 52.39074, 4.914063 52.390768, 4.914216 52.39076, 4.914736 52.390564, 4.914897 52.390541, 4.915049 52.390473, 4.915101 52.390419, 4.91512 52.390354))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS69", "asset": null, "location": "SRID=4326;POLYGON ((4.958998 52.397223, 4.958959 52.397133, 4.958893 52.397085, 4.958756 52.397045, 4.958597 52.397052, 4.958472 52.397104, 4.958335 52.397274, 4.958001 52.397504, 4.957674 52.397413, 4.957637 52.397314, 4.957528 52.397248, 4.957382 52.397223, 4.957273 52.397234, 4.957148 52.397287, 4.957096 52.397341, 4.957005 52.397475, 4.957017 52.397567, 4.957104 52.397644, 4.957286 52.397703, 4.957978 52.397896, 4.958079 52.397907, 4.95818 52.397897, 4.958306 52.397844, 4.958812 52.397494, 4.95898 52.397284, 4.958998 52.397223))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS70", "asset": null, "location": "SRID=4326;POLYGON ((4.879334 52.394628, 4.879317 52.394562, 4.87923 52.394485, 4.879045 52.394394, 4.87895 52.394372, 4.878859 52.394371, 4.87882 52.394288, 4.878755 52.39424, 4.878667 52.394208, 4.878666 52.394161, 4.878632 52.394102, 4.878519 52.394033, 4.878396 52.394005, 4.878171 52.394001, 4.878137 52.393933, 4.878071 52.393885, 4.877984 52.393853, 4.877882 52.393842, 4.877781 52.393852, 4.877692 52.393883, 4.877535 52.393996, 4.877499 52.394054, 4.877499 52.394117, 4.877562 52.394202, 4.877691 52.394258, 4.877838 52.394267, 4.877875 52.394354, 4.877983 52.39442, 4.878083 52.394444, 4.878185 52.394444, 4.878231 52.394539, 4.878297 52.394587, 4.878389 52.394621, 4.878542 52.394629, 4.87856 52.394692, 4.878611 52.394747, 4.878794 52.394842, 4.878945 52.394868, 4.879092 52.394845, 4.879293 52.394718, 4.879334 52.394628))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS71", "asset": null, "location": "SRID=4326;POLYGON ((4.914677 52.409276, 4.914638 52.409186, 4.914546 52.409117, 4.914459 52.409085, 4.914306 52.409076, 4.91437 52.408997, 4.914495 52.408952, 4.914584 52.408876, 4.914604 52.408811, 4.914573 52.408706, 4.914507 52.408639, 4.914428 52.4086, 4.914333 52.408578, 4.91418 52.408585, 4.91405 52.408639, 4.913992 52.40871, 4.913902 52.40872, 4.913814 52.408751, 4.913747 52.408798, 4.913711 52.408856, 4.913724 52.408953, 4.913846 52.409066, 4.913975 52.409123, 4.914127 52.409131, 4.914052 52.409185, 4.914016 52.409243, 4.914042 52.409377, 4.9139 52.409339, 4.913797 52.409339, 4.913702 52.40936, 4.913471 52.409465, 4.913405 52.409512, 4.913369 52.40957, 4.913368 52.409633, 4.913403 52.409692, 4.913487 52.409755, 4.913575 52.409787, 4.913728 52.409796, 4.913824 52.409775, 4.914088 52.409652, 4.914154 52.409567, 4.914156 52.4095, 4.914254 52.409534, 4.914355 52.409546, 4.914457 52.409535, 4.914587 52.409481, 4.914652 52.409397, 4.914677 52.409276))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS72", "asset": null, "location": "SRID=4326;POLYGON ((4.966991 52.375244, 4.966974 52.375178, 4.966923 52.375123, 4.966719 52.37499, 4.966571 52.374946, 4.966638 52.374877, 4.966656 52.374816, 4.966639 52.374755, 4.966588 52.3747, 4.966509 52.37466, 4.966414 52.374638, 4.966254 52.374645, 4.966117 52.374703, 4.966065 52.374757, 4.966047 52.374818, 4.966064 52.374879, 4.966114 52.374934, 4.966193 52.374974, 4.966289 52.374996, 4.966191 52.375084, 4.966171 52.375207, 4.96604 52.37523, 4.965746 52.375382, 4.965678 52.375469, 4.96569 52.375562, 4.965741 52.375617, 4.965932 52.37572, 4.966028 52.375742, 4.96618 52.375735, 4.966269 52.375703, 4.966517 52.375571, 4.966582 52.375487, 4.966717 52.375463, 4.966921 52.37536, 4.966973 52.375305, 4.966991 52.375244))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS73", "asset": null, "location": "SRID=4326;POLYGON ((4.840567 52.354899, 4.84055 52.354832, 4.840476 52.354764, 4.840497 52.354699, 4.840481 52.354598, 4.84043 52.354543, 4.840306 52.35449, 4.840205 52.354478, 4.840098 52.354489, 4.840024 52.354514, 4.839576 52.354514, 4.839438 52.354553, 4.839349 52.354629, 4.839301 52.35501, 4.83939 52.35512, 4.83952 52.355177, 4.839621 52.355188, 4.839732 52.355178, 4.83987 52.355115, 4.839964 52.35517, 4.84006 52.355192, 4.84024 52.355199, 4.840341 52.355189, 4.840467 52.355137, 4.840519 52.355082, 4.840549 52.355029, 4.840567 52.354899))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS74", "asset": null, "location": "SRID=4326;POLYGON ((4.918667 52.338326, 4.918614 52.338215, 4.91842 52.338083, 4.918295 52.338044, 4.918135 52.338035, 4.917634 52.338188, 4.917544 52.338237, 4.917459 52.338247, 4.917125 52.338359, 4.917036 52.338435, 4.917019 52.338532, 4.917058 52.338597, 4.917165 52.3387, 4.917289 52.338754, 4.917442 52.338763, 4.917601 52.338721, 4.917744 52.338728, 4.917939 52.338672, 4.918005 52.338625, 4.918037 52.338576, 4.918147 52.338536, 4.918224 52.338515, 4.918313 52.338524, 4.918414 52.338514, 4.918559 52.338467, 4.918647 52.338391, 4.918667 52.338326))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS75", "asset": null, "location": "SRID=4326;POLYGON ((4.886018 52.392991, 4.885937 52.392728, 4.885624 52.392036, 4.885574 52.391981, 4.885449 52.391927, 4.885348 52.391916, 4.885247 52.391927, 4.885158 52.391958, 4.885087 52.392009, 4.885051 52.392067, 4.88505 52.39213, 4.885319 52.392712, 4.885309 52.392792, 4.885393 52.392928, 4.885371 52.392993, 4.885397 52.393075, 4.885448 52.39313, 4.885526 52.39317, 4.885622 52.393192, 4.885725 52.393192, 4.885825 52.39317, 4.885947 52.393107, 4.885999 52.393052, 4.886018 52.392991))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS76", "asset": null, "location": "SRID=4326;POLYGON ((5.010914 52.348007, 5.010897 52.347946, 5.010843 52.347888, 5.010432 52.347598, 5.010303 52.347542, 5.010202 52.347531, 5.010064 52.347552, 5.00995 52.347504, 5.009797 52.347496, 5.009659 52.347535, 5.009542 52.347626, 5.009528 52.347719, 5.009592 52.347803, 5.009671 52.347843, 5.00977 52.347867, 5.009873 52.347867, 5.00996 52.347849, 5.009913 52.347962, 5.009952 52.348052, 5.010329 52.348323, 5.010453 52.348376, 5.010554 52.348387, 5.010655 52.348377, 5.010809 52.34831, 5.010874 52.348225, 5.01085 52.348118, 5.010896 52.348068, 5.010914 52.348007))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS77", "asset": null, "location": "SRID=4326;POLYGON ((4.956437 52.299571, 4.95642 52.29951, 4.95637 52.299455, 4.956291 52.299415, 4.956072 52.299346, 4.956101 52.299295, 4.956102 52.299233, 4.956067 52.299174, 4.956002 52.299126, 4.955811 52.299039, 4.955708 52.299015, 4.955556 52.299022, 4.955409 52.299084, 4.955275 52.299228, 4.955257 52.299289, 4.955271 52.299341, 4.955173 52.299467, 4.955185 52.29956, 4.955273 52.299637, 4.955937 52.299867, 4.95609 52.299876, 4.956193 52.299853, 4.956302 52.299788, 4.956419 52.299632, 4.956437 52.299571))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS78", "asset": null, "location": "SRID=4326;POLYGON ((4.880715 52.395225, 4.880698 52.395163, 4.880647 52.395108, 4.879974 52.394757, 4.879878 52.39472, 4.879776 52.394709, 4.879493 52.394737, 4.879367 52.394789, 4.879315 52.394844, 4.879301 52.394936, 4.879372 52.395029, 4.880011 52.39537, 4.880027 52.395437, 4.880077 52.395492, 4.88027 52.39558, 4.880423 52.395589, 4.880519 52.395568, 4.880599 52.395529, 4.880669 52.395442, 4.880679 52.395308, 4.880715 52.395225))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS79", "asset": null, "location": "SRID=4326;POLYGON ((4.840318 52.377949, 4.840098 52.3774, 4.840057 52.377354, 4.840043 52.377273, 4.839993 52.377218, 4.839868 52.377164, 4.839767 52.377153, 4.839508 52.377185, 4.839298 52.377243, 4.839231 52.37729, 4.839195 52.377348, 4.839217 52.377465, 4.839304 52.377542, 4.839461 52.377598, 4.839638 52.378024, 4.839688 52.378079, 4.839767 52.378119, 4.839862 52.378141, 4.839965 52.378142, 4.840122 52.378117, 4.840248 52.378065, 4.8403 52.37801, 4.840318 52.377949))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS80", "asset": null, "location": "SRID=4326;POLYGON ((5.00219 52.346577, 5.002173 52.346516, 5.002035 52.34635, 5.00191 52.346297, 5.001758 52.346288, 5.001615 52.346329, 5.001526 52.346405, 5.001512 52.346498, 5.001578 52.3466, 5.0015 52.346573, 5.001403 52.346562, 5.001316 52.346514, 5.00122 52.346492, 5.001118 52.346492, 5.000991 52.346526, 5.00089 52.346486, 5.000729 52.346477, 5.000633 52.346498, 5.000554 52.346538, 5.000488 52.346622, 5.000488 52.346685, 5.000552 52.34677, 5.000676 52.346823, 5.000837 52.346832, 5.000952 52.346803, 5.00105 52.346873, 5.001181 52.346926, 5.001407 52.346939, 5.001503 52.346917, 5.001625 52.346862, 5.00169 52.346778, 5.001691 52.346715, 5.001839 52.346757, 5.001992 52.346749, 5.002117 52.346696, 5.002172 52.346638, 5.00219 52.346577))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS81", "asset": null, "location": "SRID=4326;POLYGON ((4.901445 52.338918, 4.901355 52.338263, 4.901305 52.338208, 4.901181 52.338154, 4.901079 52.338143, 4.900972 52.338154, 4.900847 52.338207, 4.900781 52.338291, 4.900829 52.338749, 4.900687 52.338772, 4.900577 52.338838, 4.900541 52.338896, 4.900554 52.338992, 4.900641 52.339069, 4.900778 52.339109, 4.9012 52.339095, 4.901295 52.339073, 4.901375 52.339034, 4.901427 52.338979, 4.901445 52.338918))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS82", "asset": null, "location": "SRID=4326;POLYGON ((4.839576 52.348129, 4.839569 52.347917, 4.839547 52.347855, 4.839496 52.3478, 4.839417 52.34776, 4.839322 52.347738, 4.839213 52.347738, 4.839118 52.347759, 4.839026 52.347806, 4.838974 52.34786, 4.838955 52.348008, 4.838871 52.348027, 4.838791 52.348066, 4.838739 52.348121, 4.838722 52.348178, 4.838601 52.348223, 4.838535 52.34827, 4.838494 52.34836, 4.838533 52.34845, 4.838605 52.348505, 4.838743 52.348545, 4.839102 52.348568, 4.839255 52.348545, 4.839364 52.34848, 4.839442 52.348328, 4.839552 52.348243, 4.839576 52.348129))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS83", "asset": null, "location": "SRID=4326;POLYGON ((4.842038 52.373861, 4.841806 52.373291, 4.841755 52.373236, 4.841631 52.373182, 4.84153 52.373171, 4.841367 52.373191, 4.841278 52.373222, 4.841189 52.373298, 4.841175 52.37339, 4.841211 52.373452, 4.841276 52.3735, 4.841365 52.373697, 4.841318 52.373772, 4.841318 52.373835, 4.84136 52.373936, 4.841411 52.373991, 4.84149 52.374031, 4.841585 52.374053, 4.841688 52.374053, 4.841842 52.37403, 4.841968 52.373977, 4.84202 52.373923, 4.842038 52.373861))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS84", "asset": null, "location": "SRID=4326;POLYGON ((4.878521 52.393519, 4.878482 52.393429, 4.878346 52.393355, 4.87835 52.393262, 4.878316 52.393204, 4.877984 52.393019, 4.877892 52.392985, 4.877739 52.392977, 4.877601 52.393016, 4.877527 52.393066, 4.877458 52.393154, 4.877461 52.393346, 4.877527 52.393433, 4.877721 52.393536, 4.877809 52.393567, 4.877934 52.393578, 4.878023 52.393657, 4.878116 52.393692, 4.878217 52.393703, 4.878319 52.393693, 4.878444 52.39364, 4.878502 52.39358, 4.878521 52.393519))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS85", "asset": null, "location": "SRID=4326;POLYGON ((4.878689 52.395236, 4.878672 52.395175, 4.878621 52.39512, 4.878334 52.394968, 4.878166 52.394944, 4.878103 52.394858, 4.877923 52.394773, 4.877828 52.394751, 4.877675 52.394759, 4.877586 52.39479, 4.877504 52.394848, 4.877463 52.394937, 4.877522 52.395064, 4.877592 52.395114, 4.877679 52.395146, 4.877841 52.395157, 4.877844 52.39525, 4.877879 52.395309, 4.878105 52.395435, 4.878252 52.39546, 4.878362 52.395458, 4.878458 52.395437, 4.878619 52.395351, 4.878671 52.395297, 4.878689 52.395236))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS86", "asset": null, "location": "SRID=4326;POLYGON ((4.794561 52.362169, 4.794545 52.362108, 4.794494 52.362053, 4.79437 52.361999, 4.79422 52.361972, 4.794118 52.361971, 4.794022 52.361992, 4.793942 52.362031, 4.793853 52.362146, 4.793643 52.36253, 4.793655 52.36263, 4.793742 52.362707, 4.79383 52.362739, 4.794029 52.362765, 4.794131 52.362755, 4.794264 52.362701, 4.794343 52.362599, 4.794561 52.362169))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS87", "asset": null, "location": "SRID=4326;POLYGON ((4.921038 52.33831, 4.921022 52.338249, 4.920924 52.338135, 4.920817 52.338069, 4.920721 52.338047, 4.920619 52.338046, 4.920398 52.3381, 4.920406 52.338023, 4.920343 52.337938, 4.920327 52.337859, 4.920276 52.337804, 4.920198 52.337764, 4.920102 52.337742, 4.919994 52.337741, 4.919856 52.33778, 4.919789 52.337827, 4.919732 52.337916, 4.919732 52.337979, 4.919881 52.33817, 4.91996 52.33821, 4.920059 52.338234, 4.920162 52.338234, 4.920294 52.338198, 4.920301 52.338302, 4.920361 52.338369, 4.92044 52.338409, 4.920636 52.33848, 4.920737 52.338491, 4.920839 52.33848, 4.920968 52.338426, 4.92102 52.338371, 4.921038 52.33831))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS88", "asset": null, "location": "SRID=4326;POLYGON ((4.906154 52.396539, 4.906116 52.396449, 4.905559 52.395925, 4.905471 52.395893, 4.90537 52.395882, 4.905268 52.395892, 4.905143 52.395945, 4.905077 52.396029, 4.905088 52.396127, 4.905662 52.396677, 4.9058 52.396717, 4.905953 52.396709, 4.906084 52.396655, 4.906136 52.3966, 4.906154 52.396539))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS89", "asset": null, "location": "SRID=4326;POLYGON ((4.814026 52.375664, 4.814009 52.375603, 4.813959 52.375547, 4.81388 52.375508, 4.813785 52.375485, 4.813532 52.375464, 4.813443 52.375469, 4.813304 52.375508, 4.813237 52.375556, 4.813197 52.375645, 4.813239 52.375856, 4.813326 52.375933, 4.813393 52.376104, 4.813501 52.37617, 4.813596 52.376192, 4.813749 52.376185, 4.813844 52.376152, 4.81391 52.376104, 4.813951 52.376015, 4.813907 52.375806, 4.813985 52.375753, 4.814026 52.375664))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS90", "asset": null, "location": "SRID=4326;POLYGON ((4.904144 52.396401, 4.904106 52.396311, 4.903996 52.396243, 4.90385 52.396218, 4.903702 52.396242, 4.9037 52.396178, 4.903666 52.396119, 4.9036 52.396071, 4.903512 52.39604, 4.903404 52.396027, 4.903302 52.396038, 4.903168 52.396094, 4.903116 52.396148, 4.903098 52.39621, 4.903114 52.396271, 4.903205 52.39635, 4.903293 52.396382, 4.903394 52.396393, 4.903554 52.396364, 4.903562 52.396439, 4.903493 52.396474, 4.903441 52.396529, 4.903427 52.396622, 4.90349 52.396706, 4.903615 52.39676, 4.903775 52.39677, 4.90387 52.396748, 4.903956 52.396707, 4.904022 52.396623, 4.904017 52.396547, 4.904104 52.39649, 4.904144 52.396401))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS91", "asset": null, "location": "SRID=4326;POLYGON ((4.828247 52.349309, 4.828208 52.349209, 4.828143 52.349161, 4.828055 52.349129, 4.827954 52.349118, 4.827794 52.349134, 4.827608 52.349201, 4.82754 52.349289, 4.827539 52.349352, 4.827566 52.3494, 4.827531 52.349481, 4.827561 52.349559, 4.827526 52.349642, 4.827565 52.349732, 4.82763 52.34978, 4.827768 52.349828, 4.827885 52.349839, 4.827986 52.349829, 4.828112 52.349776, 4.828183 52.349689, 4.828191 52.349411, 4.828247 52.349309))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS92", "asset": null, "location": "SRID=4326;POLYGON ((4.842395 52.37473, 4.842224 52.374298, 4.842173 52.374243, 4.842049 52.37419, 4.841948 52.374178, 4.841789 52.374198, 4.8417 52.374229, 4.841611 52.374305, 4.841597 52.374398, 4.841633 52.374459, 4.841697 52.374507, 4.841764 52.374665, 4.841741 52.374767, 4.841806 52.374855, 4.841885 52.374895, 4.84198 52.374917, 4.842083 52.374918, 4.842199 52.374899, 4.842324 52.374846, 4.842376 52.374791, 4.842395 52.37473))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS93", "asset": null, "location": "SRID=4326;POLYGON ((5.002599 52.34561, 5.002558 52.345518, 5.00245 52.345452, 5.002304 52.345427, 5.002142 52.345454, 5.002058 52.345495, 5.001984 52.345588, 5.001887 52.345649, 5.001728 52.345671, 5.001597 52.345726, 5.001545 52.345781, 5.001527 52.345842, 5.001579 52.345948, 5.001688 52.346016, 5.001839 52.346042, 5.001951 52.346031, 5.002295 52.345931, 5.002544 52.345773, 5.002592 52.345692, 5.002599 52.34561))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS94", "asset": null, "location": "SRID=4326;POLYGON ((4.899086 52.39437, 4.899048 52.394279, 4.898979 52.394229, 4.898851 52.394077, 4.898773 52.394037, 4.898677 52.394016, 4.898524 52.394023, 4.898299 52.394107, 4.898194 52.394166, 4.898128 52.394251, 4.898117 52.394366, 4.898202 52.39447, 4.898326 52.394524, 4.898445 52.394534, 4.898518 52.394571, 4.898614 52.394593, 4.898811 52.394587, 4.898952 52.394538, 4.899068 52.394431, 4.899086 52.39437))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS95", "asset": null, "location": "SRID=4326;POLYGON ((4.9833 52.359962, 4.983283 52.359901, 4.983232 52.359846, 4.983103 52.359791, 4.983039 52.359708, 4.982902 52.35965, 4.982673 52.359612, 4.98257 52.359612, 4.982432 52.359651, 4.98234 52.35973, 4.982295 52.359866, 4.982334 52.359956, 4.982399 52.360004, 4.982515 52.360052, 4.982661 52.360077, 4.98275 52.360149, 4.982838 52.360181, 4.982991 52.36019, 4.983138 52.36015, 4.983259 52.360052, 4.9833 52.359962))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS96", "asset": null, "location": "SRID=4326;POLYGON ((4.96589 52.315724, 4.965873 52.315663, 4.965822 52.315608, 4.965688 52.315551, 4.965535 52.315542, 4.96539 52.315583, 4.965323 52.31563, 4.965287 52.315689, 4.965287 52.315752, 4.965346 52.315832, 4.965263 52.315833, 4.965167 52.315854, 4.965088 52.315893, 4.965036 52.315948, 4.965022 52.31604, 4.965085 52.316125, 4.965331 52.31623, 4.965426 52.316252, 4.965578 52.316244, 4.965667 52.316213, 4.965755 52.316137, 4.96577 52.31604, 4.965701 52.315949, 4.965623 52.315909, 4.965737 52.315883, 4.965817 52.315843, 4.965872 52.315785, 4.96589 52.315724))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS97", "asset": null, "location": "SRID=4326;POLYGON ((4.900274 52.394569, 4.900257 52.394507, 4.900116 52.394366, 4.900082 52.394303, 4.900013 52.394252, 4.899915 52.394211, 4.89982 52.394189, 4.899667 52.394197, 4.899579 52.394228, 4.899512 52.394275, 4.899473 52.394338, 4.899465 52.3944, 4.899504 52.39449, 4.89944 52.394557, 4.899425 52.39465, 4.89951 52.394753, 4.899588 52.394793, 4.899684 52.394815, 4.899787 52.394815, 4.900046 52.394754, 4.900204 52.394684, 4.900256 52.39463, 4.900274 52.394569))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS98", "asset": null, "location": "SRID=4326;POLYGON ((4.995864 52.355336, 4.995825 52.355246, 4.995702 52.35517, 4.995607 52.355148, 4.995504 52.355147, 4.995366 52.355186, 4.9953 52.355234, 4.995264 52.355292, 4.995276 52.355385, 4.995089 52.355453, 4.994931 52.355612, 4.994917 52.355704, 4.994981 52.355789, 4.995064 52.355832, 4.995159 52.355854, 4.995312 52.355846, 4.9954 52.355815, 4.995594 52.355635, 4.995612 52.355574, 4.995595 52.355513, 4.995714 52.355491, 4.995794 52.355452, 4.995846 52.355397, 4.995864 52.355336))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS99", "asset": null, "location": "SRID=4326;POLYGON ((5.006787 52.353724, 5.00677 52.353662, 5.006716 52.353605, 5.006591 52.353551, 5.006439 52.353543, 5.006242 52.35358, 5.005923 52.353735, 5.005857 52.353783, 5.005794 52.353934, 5.005833 52.354024, 5.005936 52.354101, 5.006024 52.354133, 5.006177 52.354141, 5.006272 52.35412, 5.006386 52.354053, 5.006425 52.353954, 5.00656 52.353918, 5.006717 52.353839, 5.006768 52.353785, 5.006787 52.353724))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS100", "asset": null, "location": "SRID=4326;POLYGON ((4.903579 52.399869, 4.903562 52.399804, 4.903512 52.399749, 4.903395 52.39969, 4.903263 52.399666, 4.903225 52.39958, 4.903123 52.399496, 4.903045 52.399457, 4.902949 52.399435, 4.902796 52.399442, 4.902672 52.399487, 4.902606 52.399535, 4.902567 52.399598, 4.902566 52.399668, 4.902644 52.399769, 4.902758 52.39984, 4.902859 52.399864, 4.902949 52.399866, 4.903001 52.399955, 4.903115 52.400025, 4.903267 52.400051, 4.903422 52.400027, 4.903539 52.399959, 4.903579 52.399869))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS101", "asset": null, "location": "SRID=4326;POLYGON ((5.010056 52.351786, 5.010039 52.351724, 5.009988 52.351669, 5.009782 52.351528, 5.009644 52.351488, 5.009542 52.351487, 5.009258 52.35153, 5.009174 52.351571, 5.009109 52.351655, 5.009125 52.35176, 5.009176 52.351815, 5.009435 52.351994, 5.009572 52.352034, 5.009725 52.352026, 5.009813 52.351995, 5.009986 52.351901, 5.010038 52.351847, 5.010056 52.351786))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS102", "asset": null, "location": "SRID=4326;POLYGON ((4.8439 52.350358, 4.843861 52.350265, 4.843754 52.350199, 4.843607 52.350174, 4.843444 52.350197, 4.843329 52.350266, 4.843288 52.350356, 4.843145 52.350403, 4.843078 52.35045, 4.843038 52.35054, 4.843076 52.350648, 4.843141 52.350696, 4.843279 52.350737, 4.84365 52.350728, 4.843746 52.350707, 4.843826 52.350668, 4.843891 52.350584, 4.8439 52.350358))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS103", "asset": null, "location": "SRID=4326;POLYGON ((4.886381 52.334191, 4.886364 52.334097, 4.886313 52.334042, 4.886189 52.333988, 4.886032 52.333979, 4.885937 52.334001, 4.885857 52.33404, 4.88557 52.334046, 4.885474 52.334067, 4.885394 52.334106, 4.885342 52.334161, 4.885328 52.334261, 4.885397 52.334352, 4.885521 52.334406, 4.885623 52.334417, 4.886108 52.334405, 4.886204 52.334384, 4.886284 52.334345, 4.886362 52.334252, 4.886381 52.334191))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS104", "asset": null, "location": "SRID=4326;POLYGON ((5.000224 52.346658, 5.000207 52.346597, 5.000056 52.346416, 5.00004 52.346346, 4.999951 52.346267, 4.999864 52.346235, 4.999711 52.346227, 4.999567 52.346263, 4.999487 52.346302, 4.999422 52.346387, 4.999434 52.346479, 4.999668 52.346748, 4.999734 52.346796, 4.999872 52.346836, 5.000024 52.346828, 5.000154 52.346774, 5.000206 52.346719, 5.000224 52.346658))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS105", "asset": null, "location": "SRID=4326;POLYGON ((4.962392 52.329016, 4.962374 52.328955, 4.962324 52.3289, 4.962199 52.328846, 4.962047 52.328838, 4.961909 52.328877, 4.961842 52.328924, 4.961802 52.328988, 4.961801 52.329051, 4.961856 52.329127, 4.961722 52.329122, 4.961626 52.329143, 4.961539 52.329186, 4.961487 52.32924, 4.961473 52.329333, 4.961537 52.329417, 4.961661 52.329471, 4.961777 52.329483, 4.961878 52.329473, 4.961966 52.329442, 4.962033 52.329394, 4.962069 52.329336, 4.962069 52.329273, 4.96201 52.329193, 4.962142 52.329198, 4.96228 52.329159, 4.962373 52.329077, 4.962392 52.329016))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS106", "asset": null, "location": "SRID=4326;POLYGON ((4.905975 52.368734, 4.905936 52.368644, 4.905828 52.368578, 4.905682 52.368553, 4.905566 52.368567, 4.90564 52.368517, 4.90568 52.368427, 4.905663 52.368364, 4.905576 52.368287, 4.905488 52.368255, 4.905387 52.368244, 4.905286 52.368254, 4.90516 52.368307, 4.905108 52.368362, 4.90509 52.368423, 4.905107 52.368486, 4.905158 52.368541, 4.905237 52.368581, 4.905332 52.368602, 4.905499 52.368591, 4.905425 52.368641, 4.905385 52.368731, 4.905423 52.368821, 4.905489 52.368869, 4.905627 52.368909, 4.905779 52.368902, 4.905905 52.368849, 4.905957 52.368795, 4.905975 52.368734))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS107", "asset": null, "location": "SRID=4326;POLYGON ((4.87986 52.395525, 4.879843 52.395464, 4.879792 52.395409, 4.879649 52.395352, 4.879667 52.395291, 4.87965 52.395225, 4.879557 52.395144, 4.879419 52.395104, 4.879308 52.395104, 4.879212 52.395125, 4.879132 52.395164, 4.879061 52.395252, 4.879073 52.39535, 4.87916 52.395426, 4.879274 52.395463, 4.879254 52.395563, 4.879289 52.395621, 4.879354 52.395669, 4.879502 52.395715, 4.879655 52.395707, 4.879743 52.395676, 4.87981 52.395629, 4.87986 52.395525))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS108", "asset": null, "location": "SRID=4326;POLYGON ((4.984734 52.315326, 4.984695 52.315236, 4.984587 52.31517, 4.984441 52.315145, 4.984279 52.315174, 4.984198 52.315105, 4.98406 52.315065, 4.98394 52.315063, 4.983845 52.315084, 4.983765 52.315123, 4.9837 52.315207, 4.983712 52.3153, 4.983799 52.315377, 4.983947 52.315418, 4.984057 52.315419, 4.984153 52.315398, 4.98424 52.315472, 4.984377 52.315512, 4.98453 52.315504, 4.984618 52.315473, 4.984694 52.315416, 4.984734 52.315326))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS109", "asset": null, "location": "SRID=4326;POLYGON ((5.00387 52.346272, 5.003853 52.34621, 5.003793 52.346145, 5.003638 52.346038, 5.003501 52.345998, 5.003348 52.346006, 5.003232 52.346051, 5.003122 52.346074, 5.003042 52.346113, 5.002977 52.346198, 5.002989 52.34629, 5.003088 52.346381, 5.003224 52.346439, 5.003366 52.346462, 5.00362 52.346451, 5.003716 52.346429, 5.003829 52.346362, 5.00387 52.346272))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS110", "asset": null, "location": "SRID=4326;POLYGON ((4.998198 52.356352, 4.998159 52.356262, 4.998051 52.356196, 4.997904 52.356171, 4.997757 52.356195, 4.997648 52.35626, 4.997612 52.356318, 4.99761 52.356369, 4.997438 52.356392, 4.997325 52.35646, 4.997284 52.35655, 4.997323 52.35664, 4.997389 52.356688, 4.997529 52.356729, 4.997638 52.356729, 4.997734 52.356708, 4.997843 52.356643, 4.997879 52.356584, 4.997879 52.356529, 4.998002 52.35652, 4.998091 52.356489, 4.998157 52.356441, 4.998198 52.356352))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS111", "asset": null, "location": "SRID=4326;POLYGON ((4.827038 52.342163, 4.827021 52.342102, 4.82697 52.342047, 4.826846 52.341993, 4.826716 52.341979, 4.826575 52.342001, 4.826443 52.341997, 4.826304 52.342036, 4.826238 52.342083, 4.826202 52.342141, 4.82618 52.342275, 4.826243 52.34236, 4.826322 52.3424, 4.826417 52.342422, 4.826525 52.342423, 4.826664 52.342384, 4.826806 52.342371, 4.826895 52.34234, 4.826996 52.342256, 4.827038 52.342163))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS112", "asset": null, "location": "SRID=4326;POLYGON ((4.857977 52.344433, 4.85796 52.344371, 4.857909 52.344316, 4.857785 52.344263, 4.857672 52.34425, 4.857571 52.34426, 4.857482 52.344291, 4.857327 52.344271, 4.85718 52.344295, 4.85707 52.34436, 4.85703 52.34445, 4.857068 52.34454, 4.857134 52.344588, 4.857221 52.34462, 4.857337 52.344633, 4.857439 52.344622, 4.857527 52.344591, 4.857674 52.344614, 4.857821 52.34459, 4.857936 52.344522, 4.857977 52.344433))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS113", "asset": null, "location": "SRID=4326;POLYGON ((4.803058 52.356491, 4.80302 52.356401, 4.802954 52.356353, 4.802867 52.356321, 4.802766 52.35631, 4.802659 52.356245, 4.80256 52.356222, 4.802407 52.35623, 4.802319 52.356261, 4.802252 52.356308, 4.802216 52.356366, 4.802215 52.356429, 4.802279 52.356514, 4.802394 52.356565, 4.802479 52.35664, 4.802621 52.356682, 4.802809 52.35667, 4.802948 52.356631, 4.80304 52.356552, 4.803058 52.356491))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS114", "asset": null, "location": "SRID=4326;POLYGON ((4.821279 52.372244, 4.82126 52.372179, 4.821173 52.372102, 4.821072 52.372066, 4.820861 52.372039, 4.820688 52.372054, 4.820595 52.372086, 4.820528 52.372133, 4.820487 52.372223, 4.820513 52.372304, 4.8206 52.372381, 4.820688 52.372412, 4.820887 52.372443, 4.820994 52.372432, 4.821171 52.372381, 4.821238 52.372333, 4.821279 52.372244))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS115", "asset": null, "location": "SRID=4326;POLYGON ((4.975198 52.322536, 4.975181 52.322475, 4.97513 52.32242, 4.975051 52.32238, 4.974852 52.322322, 4.9747 52.32233, 4.974611 52.322361, 4.974545 52.322408, 4.974506 52.32247, 4.974518 52.322628, 4.974553 52.322687, 4.974661 52.322753, 4.974775 52.322781, 4.974927 52.322774, 4.975016 52.322742, 4.975156 52.322627, 4.975198 52.322536))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS116", "asset": null, "location": "SRID=4326;POLYGON ((4.964228 52.389692, 4.964186 52.389598, 4.964121 52.38955, 4.964033 52.389518, 4.96388 52.38951, 4.963742 52.389549, 4.963569 52.389641, 4.963502 52.389728, 4.963501 52.38979, 4.963565 52.389875, 4.963644 52.389915, 4.963807 52.389956, 4.963914 52.389956, 4.96401 52.389935, 4.964095 52.389894, 4.964204 52.389761, 4.964228 52.389692))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS117", "asset": null, "location": "SRID=4326;POLYGON ((4.981923 52.360719, 4.981906 52.360658, 4.981855 52.360603, 4.981642 52.360507, 4.981542 52.360483, 4.981389 52.360491, 4.981301 52.360522, 4.981209 52.360592, 4.981174 52.36065, 4.981173 52.360713, 4.981237 52.360798, 4.98145 52.360894, 4.981551 52.360917, 4.981704 52.36091, 4.981792 52.360879, 4.981883 52.360809, 4.981923 52.360719))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS118", "asset": null, "location": "SRID=4326;POLYGON ((4.9681 52.321784, 4.968083 52.321723, 4.968032 52.321668, 4.967799 52.321568, 4.967698 52.321544, 4.967545 52.321551, 4.967457 52.321582, 4.96739 52.32163, 4.96735 52.321694, 4.967349 52.321765, 4.967413 52.321849, 4.967645 52.321951, 4.96774 52.321973, 4.967893 52.321965, 4.967981 52.321934, 4.96806 52.321874, 4.9681 52.321784))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS119", "asset": null, "location": "SRID=4326;POLYGON ((4.83675 52.369477, 4.836732 52.369412, 4.836645 52.369336, 4.836557 52.369304, 4.836405 52.369295, 4.836156 52.369332, 4.836068 52.369363, 4.835978 52.369439, 4.835964 52.369531, 4.836 52.369592, 4.836066 52.36964, 4.836153 52.369672, 4.836306 52.369681, 4.836554 52.369645, 4.836643 52.369614, 4.83671 52.369567, 4.83675 52.369477))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS120", "asset": null, "location": "SRID=4326;POLYGON ((4.959032 52.317157, 4.959015 52.317096, 4.958908 52.316952, 4.958829 52.316912, 4.958734 52.31689, 4.958581 52.316898, 4.958493 52.316929, 4.958426 52.316976, 4.95834 52.31709, 4.95834 52.317153, 4.958403 52.317238, 4.958554 52.317303, 4.958681 52.317336, 4.958834 52.317328, 4.958922 52.317297, 4.959014 52.317218, 4.959032 52.317157))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS121", "asset": null, "location": "SRID=4326;POLYGON ((4.884311 52.410482, 4.884294 52.410421, 4.884243 52.410366, 4.884128 52.410274, 4.884004 52.410221, 4.883903 52.41021, 4.883801 52.41022, 4.883671 52.410274, 4.883619 52.410329, 4.883605 52.410421, 4.883639 52.41048, 4.883786 52.4106, 4.883911 52.410654, 4.884063 52.410662, 4.884202 52.410623, 4.884291 52.410547, 4.884311 52.410482))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS122", "asset": null, "location": "SRID=4326;POLYGON ((4.880403 52.411489, 4.880365 52.411399, 4.880299 52.411351, 4.880161 52.411311, 4.88005 52.411309, 4.879954 52.411331, 4.879726 52.411439, 4.879661 52.411524, 4.87966 52.411586, 4.879695 52.411645, 4.879763 52.411696, 4.879851 52.411727, 4.880004 52.411736, 4.8801 52.411715, 4.880333 52.411605, 4.880385 52.41155, 4.880403 52.411489))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS123", "asset": null, "location": "SRID=4326;POLYGON ((4.966155 52.374497, 4.966138 52.374436, 4.966087 52.374381, 4.965962 52.374296, 4.965824 52.374256, 4.965671 52.374263, 4.965583 52.374294, 4.965478 52.374362, 4.965442 52.374421, 4.965442 52.374484, 4.965506 52.374568, 4.965636 52.374646, 4.965773 52.374686, 4.965885 52.374686, 4.966023 52.374647, 4.966115 52.374587, 4.966155 52.374497))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS124", "asset": null, "location": "SRID=4326;POLYGON ((4.915434 52.404981, 4.915395 52.404891, 4.915327 52.40484, 4.915196 52.404795, 4.915095 52.404783, 4.914994 52.404794, 4.914806 52.404854, 4.91474 52.404902, 4.914699 52.404991, 4.914716 52.405052, 4.914783 52.405131, 4.914907 52.405184, 4.915016 52.405197, 4.915117 52.405187, 4.915327 52.405118, 4.915393 52.40507, 4.915434 52.404981))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS125", "asset": null, "location": "SRID=4326;POLYGON ((4.803376 52.35703, 4.803337 52.35694, 4.803272 52.356892, 4.803133 52.356822, 4.802974 52.356794, 4.802872 52.356804, 4.802747 52.356857, 4.802695 52.356911, 4.802667 52.357007, 4.802705 52.357097, 4.802771 52.357145, 4.802859 52.357176, 4.803077 52.357211, 4.803178 52.357201, 4.803304 52.357148, 4.803356 52.357094, 4.803376 52.35703))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS126", "asset": null, "location": "SRID=4326;POLYGON ((4.846123 52.356379, 4.846107 52.356308, 4.846056 52.356253, 4.845932 52.3562, 4.845831 52.356188, 4.845663 52.35619, 4.845525 52.356229, 4.845458 52.356277, 4.845418 52.356366, 4.845434 52.356433, 4.845498 52.356499, 4.845622 52.356552, 4.845723 52.356564, 4.845928 52.356547, 4.846016 52.356516, 4.846083 52.356468, 4.846123 52.356379))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS127", "asset": null, "location": "SRID=4326;POLYGON ((4.841254 52.38025, 4.841237 52.380185, 4.841186 52.38013, 4.841107 52.38009, 4.840948 52.380049, 4.840801 52.380048, 4.840705 52.380069, 4.840625 52.380109, 4.84056 52.380193, 4.840559 52.380258, 4.840622 52.380343, 4.840739 52.380402, 4.840834 52.380424, 4.841008 52.380426, 4.841146 52.380387, 4.841213 52.38034, 4.841254 52.38025))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS128", "asset": null, "location": "SRID=4326;POLYGON ((4.951379 52.322732, 4.95134 52.322642, 4.951275 52.322595, 4.951033 52.322533, 4.950881 52.32254, 4.950792 52.322571, 4.950726 52.322619, 4.95069 52.322677, 4.950702 52.322769, 4.950757 52.322829, 4.950836 52.322869, 4.951028 52.322912, 4.951181 52.322904, 4.951269 52.322873, 4.951361 52.322793, 4.951379 52.322732))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS129", "asset": null, "location": "SRID=4326;POLYGON ((4.935694 52.373568, 4.935677 52.373504, 4.935588 52.373426, 4.9355 52.373395, 4.935348 52.373386, 4.935246 52.373408, 4.935081 52.373485, 4.935016 52.373569, 4.935015 52.373632, 4.93505 52.37369, 4.935115 52.373738, 4.935203 52.37377, 4.935356 52.373779, 4.935451 52.373758, 4.935624 52.373684, 4.935676 52.373629, 4.935694 52.373568))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS130", "asset": null, "location": "SRID=4326;POLYGON ((4.962588 52.389271, 4.962547 52.389177, 4.962481 52.389129, 4.962374 52.389092, 4.962221 52.389083, 4.962083 52.389122, 4.962016 52.38917, 4.961954 52.389269, 4.961953 52.389332, 4.962017 52.389417, 4.962096 52.389457, 4.9622 52.389481, 4.962309 52.389482, 4.962404 52.389461, 4.962484 52.389422, 4.962567 52.389337, 4.962588 52.389271))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS131", "asset": null, "location": "SRID=4326;POLYGON ((5.007953 52.347062, 5.007936 52.346996, 5.007885 52.346941, 5.007796 52.346881, 5.007658 52.346841, 5.007506 52.346849, 5.007417 52.34688, 5.007347 52.34693, 5.007311 52.346988, 5.00731 52.347051, 5.007374 52.347136, 5.007468 52.347198, 5.007605 52.347238, 5.007758 52.34723, 5.007846 52.347199, 5.007913 52.347152, 5.007953 52.347062))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS132", "asset": null, "location": "SRID=4326;POLYGON ((4.977365 52.361653, 4.977347 52.361583, 4.977259 52.361506, 4.977122 52.361466, 4.977006 52.361466, 4.976867 52.361505, 4.976801 52.361553, 4.976738 52.361655, 4.976738 52.361718, 4.976772 52.361776, 4.976838 52.361824, 4.976932 52.361858, 4.977084 52.361866, 4.97718 52.361845, 4.977259 52.361806, 4.977345 52.361717, 4.977365 52.361653))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS133", "asset": null, "location": "SRID=4326;POLYGON ((4.801442 52.373888, 4.801425 52.373827, 4.801375 52.373772, 4.801245 52.373715, 4.801143 52.373704, 4.800963 52.373722, 4.800874 52.373753, 4.800807 52.373801, 4.800767 52.37389, 4.800783 52.373952, 4.800835 52.374009, 4.80096 52.374063, 4.801061 52.374074, 4.801246 52.374056, 4.801335 52.374025, 4.801401 52.373978, 4.801442 52.373888))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS134", "asset": null, "location": "SRID=4326;POLYGON ((4.993739 52.356814, 4.9937 52.356724, 4.993634 52.356676, 4.993486 52.356634, 4.993383 52.356633, 4.993288 52.356654, 4.993146 52.356725, 4.993081 52.356809, 4.99308 52.356872, 4.993115 52.356931, 4.993181 52.356979, 4.993269 52.35701, 4.993421 52.357019, 4.993517 52.356998, 4.993668 52.35693, 4.99372 52.356875, 4.993739 52.356814))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS135", "asset": null, "location": "SRID=4326;POLYGON ((4.961912 52.389456, 4.961873 52.389366, 4.961808 52.389318, 4.96172 52.389286, 4.961561 52.389277, 4.961423 52.389316, 4.961356 52.389363, 4.961288 52.389466, 4.961287 52.389529, 4.961322 52.389588, 4.961388 52.389636, 4.961475 52.389667, 4.961628 52.389676, 4.961731 52.389653, 4.961811 52.389614, 4.961894 52.389517, 4.961912 52.389456))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS136", "asset": null, "location": "SRID=4326;POLYGON ((4.837301 52.348231, 4.837284 52.348163, 4.837233 52.348108, 4.837109 52.348054, 4.837008 52.348043, 4.836881 52.348045, 4.836742 52.348084, 4.836675 52.348131, 4.836635 52.348221, 4.836673 52.348311, 4.836745 52.348362, 4.836832 52.348394, 4.836998 52.348409, 4.837105 52.348399, 4.837231 52.348347, 4.837283 52.348292, 4.837301 52.348231))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS137", "asset": null, "location": "SRID=4326;POLYGON ((4.836508 52.359513, 4.83647 52.359423, 4.836404 52.359375, 4.836267 52.359335, 4.836136 52.359331, 4.836035 52.359341, 4.835909 52.359394, 4.835857 52.359448, 4.835839 52.359509, 4.835877 52.359599, 4.835943 52.359647, 4.83608 52.359687, 4.836211 52.359692, 4.836312 52.359681, 4.836438 52.359629, 4.83649 52.359574, 4.836508 52.359513))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS138", "asset": null, "location": "SRID=4326;POLYGON ((4.820249 52.372272, 4.820226 52.372186, 4.820176 52.372131, 4.820097 52.372092, 4.819995 52.372067, 4.819842 52.372074, 4.819753 52.372105, 4.819687 52.372152, 4.819651 52.372211, 4.819655 52.372317, 4.81969 52.372375, 4.819755 52.372423, 4.819893 52.372464, 4.820051 52.372455, 4.82014 52.372424, 4.820229 52.372348, 4.820249 52.372272))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS139", "asset": null, "location": "SRID=4326;POLYGON ((4.96296 52.389758, 4.962921 52.389668, 4.962855 52.38962, 4.962762 52.389587, 4.962609 52.389578, 4.96247 52.389617, 4.962404 52.389664, 4.962347 52.389751, 4.962347 52.389814, 4.962384 52.389877, 4.96245 52.389925, 4.962538 52.389957, 4.96269 52.389966, 4.962786 52.389944, 4.962866 52.389905, 4.962941 52.389819, 4.96296 52.389758))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS140", "asset": null, "location": "SRID=4326;POLYGON ((4.804528 52.358066, 4.804511 52.358005, 4.80446 52.35795, 4.804336 52.357896, 4.80422 52.357882, 4.804119 52.357893, 4.803986 52.357947, 4.803934 52.358001, 4.803916 52.358062, 4.803935 52.358148, 4.803987 52.358206, 4.804111 52.358259, 4.804212 52.358271, 4.80432 52.358259, 4.804445 52.358207, 4.804497 52.358152, 4.804528 52.358066))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS141", "asset": null, "location": "SRID=4326;POLYGON ((4.991126 52.360408, 4.991109 52.360346, 4.991058 52.360291, 4.990944 52.360228, 4.990849 52.360206, 4.990696 52.360214, 4.990608 52.360245, 4.990541 52.360292, 4.990505 52.360351, 4.990505 52.360418, 4.990569 52.360503, 4.990678 52.360564, 4.990774 52.360586, 4.990926 52.360579, 4.991015 52.360547, 4.991086 52.360497, 4.991126 52.360408))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS142", "asset": null, "location": "SRID=4326;POLYGON ((4.912759 52.391545, 4.912742 52.391484, 4.912672 52.391416, 4.912548 52.391363, 4.912447 52.391352, 4.91232 52.391367, 4.912232 52.391399, 4.91214 52.391477, 4.912121 52.391538, 4.912138 52.391599, 4.912189 52.391654, 4.912325 52.391713, 4.912426 52.391725, 4.912563 52.391714, 4.912652 52.391682, 4.912718 52.391635, 4.912759 52.391545))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS143", "asset": null, "location": "SRID=4326;POLYGON ((4.987972 52.315774, 4.987934 52.315684, 4.987868 52.315636, 4.98778 52.315604, 4.987628 52.315595, 4.987525 52.315618, 4.987446 52.315657, 4.987377 52.315729, 4.987363 52.315822, 4.987427 52.315907, 4.987506 52.315946, 4.987619 52.315974, 4.987721 52.315974, 4.987817 52.315953, 4.987896 52.315914, 4.987951 52.315856, 4.987972 52.315774))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS144", "asset": null, "location": "SRID=4326;POLYGON ((4.9656 52.374989, 4.965561 52.374899, 4.965496 52.374851, 4.965408 52.37482, 4.965276 52.374806, 4.965174 52.374817, 4.965049 52.37487, 4.96499 52.374929, 4.964971 52.37499, 4.96501 52.37508, 4.965093 52.37514, 4.965181 52.375172, 4.965282 52.375183, 4.965384 52.375173, 4.965518 52.375116, 4.965582 52.37505, 4.9656 52.374989))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS145", "asset": null, "location": "SRID=4326;POLYGON ((4.846891 52.356428, 4.846852 52.356338, 4.846787 52.35629, 4.846699 52.356258, 4.84656 52.356244, 4.846454 52.356254, 4.846328 52.356307, 4.846276 52.356361, 4.846258 52.356422, 4.846275 52.35649, 4.846326 52.356545, 4.84645 52.356598, 4.846551 52.35661, 4.84669 52.3566, 4.846779 52.356568, 4.84685 52.356518, 4.846891 52.356428))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS146", "asset": null, "location": "SRID=4326;POLYGON ((4.846202 52.357677, 4.846185 52.357595, 4.846134 52.35754, 4.84601 52.357486, 4.845909 52.357475, 4.845808 52.357485, 4.845682 52.357538, 4.845624 52.357596, 4.8456 52.357673, 4.845618 52.357738, 4.845669 52.357793, 4.845793 52.357847, 4.845894 52.357858, 4.845996 52.357847, 4.846131 52.357792, 4.846183 52.357738, 4.846202 52.357677))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS147", "asset": null, "location": "SRID=4326;POLYGON ((4.847253 52.357324, 4.847236 52.357245, 4.847185 52.35719, 4.847106 52.35715, 4.847011 52.357128, 4.846903 52.357127, 4.846807 52.357148, 4.846727 52.357187, 4.846662 52.357272, 4.846661 52.357356, 4.846695 52.357415, 4.846761 52.357463, 4.846898 52.357503, 4.847051 52.357495, 4.847139 52.357464, 4.847212 52.357413, 4.847253 52.357324))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS148", "asset": null, "location": "SRID=4326;POLYGON ((4.874376 52.39637, 4.874353 52.396299, 4.874302 52.396244, 4.874178 52.396191, 4.874077 52.396179, 4.873966 52.396191, 4.873834 52.396246, 4.873782 52.3963, 4.873759 52.396368, 4.873776 52.396429, 4.873826 52.396484, 4.873951 52.396537, 4.874052 52.396549, 4.87418 52.396538, 4.874268 52.396507, 4.874335 52.39646, 4.874376 52.39637))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS149", "asset": null, "location": "SRID=4326;POLYGON ((4.781793 52.350771, 4.781776 52.350709, 4.781714 52.350643, 4.78159 52.35059, 4.781489 52.350578, 4.781387 52.350589, 4.781262 52.350641, 4.781201 52.350709, 4.781182 52.35077, 4.781199 52.350831, 4.78125 52.350886, 4.781374 52.35094, 4.781485 52.350953, 4.781587 52.350943, 4.781722 52.350886, 4.781774 52.350832, 4.781793 52.350771))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS150", "asset": null, "location": "SRID=4326;POLYGON ((4.780726 52.350027, 4.780709 52.349966, 4.780658 52.349911, 4.780534 52.349857, 4.780433 52.349846, 4.780332 52.349856, 4.780199 52.349912, 4.78013 52.349978, 4.780112 52.350039, 4.780129 52.350101, 4.780179 52.350156, 4.780303 52.350209, 4.780405 52.350221, 4.780506 52.35021, 4.780631 52.350158, 4.780707 52.350088, 4.780726 52.350027))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS151", "asset": null, "location": "SRID=4326;POLYGON ((4.961827 52.330546, 4.96181 52.330485, 4.961759 52.33043, 4.961635 52.330377, 4.961534 52.330366, 4.9614 52.33038, 4.961312 52.330412, 4.961245 52.330459, 4.961205 52.330549, 4.961222 52.33061, 4.961273 52.330665, 4.961397 52.330718, 4.961498 52.33073, 4.961632 52.330715, 4.96172 52.330684, 4.961786 52.330636, 4.961827 52.330546))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS152", "asset": null, "location": "SRID=4326;POLYGON ((4.970428 52.320997, 4.970411 52.320936, 4.97036 52.320881, 4.970231 52.320826, 4.97013 52.320815, 4.970029 52.320825, 4.969904 52.320878, 4.969843 52.320941, 4.969825 52.321002, 4.969842 52.321063, 4.969896 52.321124, 4.97002 52.321177, 4.970121 52.321188, 4.970222 52.321178, 4.970347 52.321125, 4.97041 52.321058, 4.970428 52.320997))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS153", "asset": null, "location": "SRID=4326;POLYGON ((4.965844 52.344933, 4.965827 52.344872, 4.965764 52.344809, 4.96564 52.344755, 4.965539 52.344744, 4.965437 52.344754, 4.965312 52.344807, 4.96526 52.344862, 4.965241 52.344927, 4.965258 52.344988, 4.965319 52.345051, 4.965443 52.345104, 4.965544 52.345115, 4.965645 52.345105, 4.965771 52.345052, 4.965826 52.344994, 4.965844 52.344933))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS154", "asset": null, "location": "SRID=4326;POLYGON ((4.982395 52.363587, 4.982378 52.363526, 4.982327 52.363471, 4.982202 52.363417, 4.982101 52.363406, 4.981992 52.363417, 4.981867 52.36347, 4.981808 52.363532, 4.98179 52.363593, 4.981807 52.363654, 4.981858 52.363709, 4.981986 52.363764, 4.982088 52.363775, 4.982189 52.363765, 4.982314 52.363712, 4.982376 52.363648, 4.982395 52.363587))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS155", "asset": null, "location": "SRID=4326;POLYGON ((4.840394 52.350313, 4.840377 52.350252, 4.840326 52.350197, 4.840197 52.350141, 4.840095 52.35013, 4.839984 52.35014, 4.839858 52.350192, 4.839806 52.350247, 4.839788 52.350308, 4.839805 52.350372, 4.839855 52.350427, 4.83998 52.350481, 4.840081 52.350492, 4.840198 52.350482, 4.840287 52.35045, 4.840353 52.350403, 4.840394 52.350313))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS156", "asset": null, "location": "SRID=4326;POLYGON ((4.906737 52.3925, 4.90672 52.392439, 4.906669 52.392384, 4.906545 52.39233, 4.906437 52.392318, 4.906335 52.392328, 4.906201 52.392384, 4.906149 52.392439, 4.90613 52.3925, 4.906147 52.392561, 4.906198 52.392616, 4.906323 52.39267, 4.906431 52.392682, 4.906533 52.392672, 4.906667 52.392616, 4.906719 52.392561, 4.906737 52.3925))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS157", "asset": null, "location": "SRID=4326;POLYGON ((4.993538 52.357612, 4.993521 52.357547, 4.99347 52.357492, 4.993341 52.357435, 4.99324 52.357424, 4.993139 52.357434, 4.993009 52.357488, 4.992957 52.357543, 4.992939 52.357604, 4.992956 52.357665, 4.993007 52.35772, 4.993094 52.357766, 4.993241 52.357791, 4.993342 52.357781, 4.993468 52.357728, 4.99352 52.357673, 4.993538 52.357612))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS158", "asset": null, "location": "SRID=4326;POLYGON ((4.997196 52.356264, 4.997179 52.356203, 4.997128 52.356148, 4.997004 52.356094, 4.996902 52.356083, 4.996785 52.356094, 4.996696 52.356126, 4.99663 52.356173, 4.99659 52.356263, 4.996607 52.356324, 4.996658 52.356379, 4.996782 52.356432, 4.996883 52.356443, 4.997001 52.356432, 4.997089 52.356401, 4.997155 52.356354, 4.997196 52.356264))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS159", "asset": null, "location": "SRID=4326;POLYGON ((4.996847 52.354081, 4.996829 52.354016, 4.996779 52.353961, 4.996654 52.353907, 4.996553 52.353896, 4.996452 52.353907, 4.996318 52.353964, 4.996266 52.354018, 4.996248 52.354079, 4.996265 52.354141, 4.996316 52.354196, 4.996444 52.354252, 4.996546 52.354263, 4.996647 52.354252, 4.996772 52.3542, 4.996828 52.354142, 4.996847 52.354081))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS160", "asset": null, "location": "SRID=4326;POLYGON ((4.996489 52.353385, 4.996472 52.353323, 4.996421 52.353268, 4.996296 52.353215, 4.996195 52.353204, 4.996094 52.353214, 4.995957 52.353273, 4.995905 52.353328, 4.995887 52.353389, 4.995904 52.35345, 4.995955 52.353505, 4.996079 52.353558, 4.99618 52.35357, 4.996282 52.353559, 4.996419 52.3535, 4.99647 52.353446, 4.996489 52.353385))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS161", "asset": null, "location": "SRID=4326;POLYGON ((4.890502 52.404913, 4.890485 52.404848, 4.890434 52.404792, 4.890305 52.404736, 4.890204 52.404725, 4.890103 52.404735, 4.889977 52.404788, 4.889924 52.404843, 4.889905 52.404904, 4.889924 52.404969, 4.889977 52.405028, 4.890102 52.405081, 4.890203 52.405093, 4.890304 52.405082, 4.89043 52.40503, 4.890483 52.404974, 4.890502 52.404913))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS162", "asset": null, "location": "SRID=4326;POLYGON ((4.917555 52.339048, 4.917538 52.338987, 4.917487 52.338932, 4.917363 52.338878, 4.917262 52.338867, 4.91716 52.338877, 4.917023 52.338934, 4.916971 52.338989, 4.916953 52.33905, 4.91697 52.339111, 4.917021 52.339166, 4.917145 52.33922, 4.917246 52.339231, 4.917347 52.339221, 4.917485 52.339164, 4.917536 52.339109, 4.917555 52.339048))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS163", "asset": null, "location": "SRID=4326;POLYGON ((4.903903 52.399306, 4.903886 52.399245, 4.903831 52.399186, 4.903706 52.399132, 4.903605 52.399121, 4.903504 52.399131, 4.903372 52.399186, 4.90332 52.39924, 4.903302 52.399301, 4.903319 52.399362, 4.903371 52.399419, 4.903495 52.399473, 4.903605 52.399485, 4.903707 52.399474, 4.903832 52.399422, 4.903884 52.399367, 4.903903 52.399306))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS164", "asset": null, "location": "SRID=4326;POLYGON ((4.96863 52.373711, 4.968613 52.37365, 4.968562 52.373595, 4.968474 52.373549, 4.968328 52.373524, 4.968226 52.373534, 4.968101 52.373587, 4.968049 52.373642, 4.968031 52.373703, 4.96807 52.373793, 4.968144 52.373847, 4.968232 52.373879, 4.968333 52.37389, 4.968434 52.373879, 4.96856 52.373827, 4.968612 52.373772, 4.96863 52.373711))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS165", "asset": null, "location": "SRID=4326;POLYGON ((4.952133 52.32244, 4.952116 52.322379, 4.952065 52.322324, 4.951936 52.322269, 4.951835 52.322258, 4.951734 52.322268, 4.951609 52.322321, 4.951552 52.32238, 4.951534 52.322441, 4.951551 52.322502, 4.951602 52.322557, 4.951726 52.322611, 4.951833 52.322623, 4.951934 52.322612, 4.95206 52.32256, 4.952114 52.322501, 4.952133 52.32244))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS166", "asset": null, "location": "SRID=4326;POLYGON ((4.971689 52.372696, 4.971672 52.372635, 4.971621 52.37258, 4.971488 52.372521, 4.971387 52.37251, 4.971286 52.372521, 4.97116 52.372573, 4.971108 52.372628, 4.97109 52.372689, 4.971107 52.37275, 4.971158 52.372805, 4.971291 52.372864, 4.971392 52.372875, 4.971494 52.372865, 4.971619 52.372812, 4.971671 52.372757, 4.971689 52.372696))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS167", "asset": null, "location": "SRID=4326;POLYGON ((4.99531 52.354869, 4.995293 52.354808, 4.995242 52.354753, 4.995118 52.354699, 4.995017 52.354688, 4.994915 52.354699, 4.994781 52.354756, 4.994729 52.35481, 4.994711 52.354872, 4.994728 52.354933, 4.994779 52.354988, 4.994904 52.355041, 4.995005 52.355052, 4.995106 52.355042, 4.99524 52.354985, 4.995292 52.35493, 4.99531 52.354869))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS168", "asset": null, "location": "SRID=4326;POLYGON ((5.008591 52.346722, 5.008574 52.346661, 5.008523 52.346606, 5.008399 52.346552, 5.008298 52.346541, 5.008197 52.346552, 5.008071 52.346604, 5.008012 52.346663, 5.007994 52.346724, 5.008011 52.346786, 5.008062 52.346841, 5.008186 52.346894, 5.008288 52.346905, 5.008389 52.346895, 5.008514 52.346842, 5.008573 52.346783, 5.008591 52.346722))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS169", "asset": null, "location": "SRID=4326;POLYGON ((4.976229 52.361688, 4.976211 52.361627, 4.976161 52.361572, 4.976032 52.361516, 4.975931 52.361505, 4.975829 52.361515, 4.975704 52.361568, 4.975652 52.361622, 4.975634 52.361683, 4.975651 52.361749, 4.975702 52.361804, 4.975826 52.361857, 4.975927 52.361869, 4.976029 52.361858, 4.976158 52.361804, 4.97621 52.361749, 4.976229 52.361688))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS170", "asset": null, "location": "SRID=4326;POLYGON ((4.992632 52.358965, 4.992615 52.358904, 4.992564 52.358849, 4.992435 52.358792, 4.992334 52.358781, 4.992233 52.358792, 4.992107 52.358844, 4.992054 52.358901, 4.992036 52.358962, 4.992053 52.359023, 4.992104 52.359078, 4.992231 52.359133, 4.992332 52.359144, 4.992434 52.359134, 4.992562 52.35908, 4.992614 52.359026, 4.992632 52.358965))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS171", "asset": null, "location": "SRID=4326;POLYGON ((4.918018 52.407668, 4.918001 52.407607, 4.91795 52.407552, 4.917826 52.407499, 4.917725 52.407487, 4.917623 52.407498, 4.917492 52.407553, 4.91744 52.407608, 4.917422 52.407669, 4.917439 52.40773, 4.917489 52.407785, 4.917614 52.407838, 4.917715 52.40785, 4.917817 52.407839, 4.917948 52.407784, 4.918 52.407729, 4.918018 52.407668))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS172", "asset": null, "location": "SRID=4326;POLYGON ((4.978266 52.362399, 4.978248 52.362338, 4.978198 52.362283, 4.978067 52.362226, 4.977966 52.362215, 4.977865 52.362226, 4.97774 52.362278, 4.977688 52.362333, 4.97767 52.362394, 4.977687 52.362455, 4.977737 52.36251, 4.977868 52.362566, 4.977969 52.362578, 4.97807 52.362567, 4.978195 52.362515, 4.978247 52.36246, 4.978266 52.362399))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS173", "asset": null, "location": "SRID=4326;POLYGON ((5.011431 52.349714, 5.011414 52.349653, 5.011363 52.349598, 5.011234 52.349541, 5.011133 52.34953, 5.011032 52.349541, 5.010906 52.349593, 5.010855 52.349648, 5.010836 52.349709, 5.010854 52.34977, 5.010904 52.349825, 5.011033 52.349881, 5.011134 52.349893, 5.011236 52.349882, 5.011361 52.349829, 5.011413 52.349775, 5.011431 52.349714))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS174", "asset": null, "location": "SRID=4326;POLYGON ((4.856268 52.346778, 4.856251 52.346717, 4.856201 52.346662, 4.856077 52.346608, 4.855975 52.346597, 4.855874 52.346607, 4.855749 52.34666, 4.855697 52.346714, 4.855677 52.346779, 4.855694 52.34684, 4.855744 52.346895, 4.855868 52.346949, 4.85597 52.34696, 4.856071 52.34695, 4.856196 52.346897, 4.856248 52.346843, 4.856268 52.346778))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS175", "asset": null, "location": "SRID=4326;POLYGON ((4.870252 52.382838, 4.870235 52.382777, 4.870184 52.382722, 4.87006 52.382668, 4.869959 52.382657, 4.869857 52.382667, 4.869732 52.38272, 4.86968 52.382774, 4.86966 52.382839, 4.869677 52.3829, 4.869728 52.382955, 4.869852 52.383009, 4.869953 52.38302, 4.870055 52.383009, 4.87018 52.382957, 4.870232 52.382902, 4.870252 52.382838))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS176", "asset": null, "location": "SRID=4326;POLYGON ((4.869583 52.383049, 4.869566 52.382988, 4.869515 52.382933, 4.869391 52.382879, 4.869285 52.382867, 4.869184 52.382877, 4.869058 52.38293, 4.869006 52.382984, 4.868988 52.383045, 4.869005 52.383106, 4.869055 52.383162, 4.86918 52.383215, 4.869285 52.383227, 4.869387 52.383217, 4.869512 52.383164, 4.869564 52.38311, 4.869583 52.383049))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS177", "asset": null, "location": "SRID=4326;POLYGON ((4.935019 52.371228, 4.935002 52.371164, 4.934951 52.371109, 4.934827 52.371055, 4.934725 52.371044, 4.934624 52.371055, 4.934499 52.371107, 4.934447 52.371162, 4.934429 52.371223, 4.934445 52.371287, 4.934496 52.371342, 4.934621 52.371395, 4.934722 52.371406, 4.934823 52.371396, 4.934949 52.371343, 4.935001 52.371289, 4.935019 52.371228))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS178", "asset": null, "location": "SRID=4326;POLYGON ((4.815128 52.38075, 4.815111 52.380689, 4.815061 52.380633, 4.814936 52.38058, 4.814835 52.380569, 4.814729 52.380579, 4.814604 52.380631, 4.814552 52.380686, 4.814533 52.380747, 4.81455 52.380808, 4.814601 52.380863, 4.814725 52.380917, 4.814826 52.380928, 4.814932 52.380918, 4.815058 52.380865, 4.81511 52.380811, 4.815128 52.38075))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS179", "asset": null, "location": "SRID=4326;POLYGON ((4.966442 52.315313, 4.966425 52.315252, 4.966374 52.315197, 4.966247 52.315141, 4.966146 52.31513, 4.966045 52.315141, 4.96592 52.315193, 4.965868 52.315248, 4.96585 52.315309, 4.965867 52.31537, 4.965918 52.315425, 4.966045 52.31548, 4.966146 52.315491, 4.966247 52.315481, 4.966372 52.315428, 4.966424 52.315374, 4.966442 52.315313))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS180", "asset": null, "location": "SRID=4326;POLYGON ((4.889837 52.404821, 4.88982 52.40476, 4.889769 52.404705, 4.889645 52.404652, 4.889544 52.40464, 4.889442 52.404651, 4.889317 52.404703, 4.889262 52.40476, 4.889243 52.404821, 4.88926 52.404882, 4.889311 52.404937, 4.889436 52.404991, 4.889537 52.405002, 4.889638 52.404991, 4.889764 52.404939, 4.889819 52.404882, 4.889837 52.404821))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS181", "asset": null, "location": "SRID=4326;POLYGON ((4.963913 52.330021, 4.963896 52.32996, 4.963844 52.329903, 4.96372 52.32985, 4.963619 52.329838, 4.963518 52.329849, 4.963392 52.329901, 4.96334 52.329956, 4.963322 52.330017, 4.963339 52.330078, 4.963392 52.330135, 4.963516 52.330189, 4.963617 52.3302, 4.963718 52.330189, 4.963843 52.330137, 4.963895 52.330082, 4.963913 52.330021))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS182", "asset": null, "location": "SRID=4326;POLYGON ((4.995841 52.358439, 4.995824 52.358378, 4.995773 52.358323, 4.995647 52.358268, 4.995546 52.358257, 4.995445 52.358268, 4.995319 52.35832, 4.995268 52.358375, 4.995249 52.358436, 4.995266 52.358497, 4.995317 52.358552, 4.995443 52.358606, 4.995544 52.358618, 4.995646 52.358607, 4.995771 52.358555, 4.995823 52.3585, 4.995841 52.358439))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS183", "asset": null, "location": "SRID=4326;POLYGON ((4.992368 52.355573, 4.992351 52.355512, 4.9923 52.355457, 4.992176 52.355403, 4.992075 52.355392, 4.991973 52.355403, 4.991848 52.355455, 4.991795 52.355511, 4.991777 52.355572, 4.991794 52.355633, 4.991845 52.355688, 4.991969 52.355741, 4.99207 52.355753, 4.992172 52.355742, 4.992297 52.355689, 4.99235 52.355634, 4.992368 52.355573))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS184", "asset": null, "location": "SRID=4326;POLYGON ((4.966834 52.374462, 4.966817 52.3744, 4.966766 52.374345, 4.96664 52.374291, 4.966539 52.37428, 4.966438 52.37429, 4.966312 52.374343, 4.966261 52.374397, 4.966242 52.374459, 4.966259 52.37452, 4.96631 52.374575, 4.966436 52.374629, 4.966537 52.37464, 4.966639 52.37463, 4.966764 52.374577, 4.966816 52.374523, 4.966834 52.374462))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS185", "asset": null, "location": "SRID=4326;POLYGON ((4.919819 52.340463, 4.919802 52.340401, 4.919751 52.340346, 4.919627 52.340292, 4.919526 52.340281, 4.919424 52.340291, 4.919299 52.340344, 4.919247 52.340398, 4.919229 52.340459, 4.919246 52.340521, 4.919296 52.340577, 4.919421 52.34063, 4.919522 52.340641, 4.919623 52.340631, 4.919748 52.340578, 4.9198 52.340524, 4.919819 52.340463))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS186", "asset": null, "location": "SRID=4326;POLYGON ((4.861989 52.341401, 4.861972 52.34134, 4.861922 52.341285, 4.861798 52.341231, 4.861696 52.34122, 4.861594 52.34123, 4.861468 52.341283, 4.861416 52.341337, 4.861398 52.341398, 4.861415 52.341459, 4.861465 52.341514, 4.86159 52.341568, 4.861691 52.341579, 4.861794 52.341569, 4.861919 52.341516, 4.861971 52.341462, 4.861989 52.341401))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS187", "asset": null, "location": "SRID=4326;POLYGON ((4.962754 52.330541, 4.962737 52.33048, 4.962686 52.330425, 4.962562 52.330371, 4.962461 52.33036, 4.962358 52.33037, 4.962233 52.330423, 4.962181 52.330478, 4.962163 52.330539, 4.96218 52.3306, 4.962231 52.330655, 4.962355 52.330708, 4.962456 52.330719, 4.962559 52.330709, 4.962684 52.330657, 4.962736 52.330602, 4.962754 52.330541))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS188", "asset": null, "location": "SRID=4326;POLYGON ((4.917656 52.40798, 4.917639 52.407918, 4.917588 52.407863, 4.917464 52.40781, 4.917363 52.407799, 4.91726 52.407809, 4.917134 52.407862, 4.917082 52.407916, 4.917064 52.407977, 4.917081 52.408038, 4.917132 52.408093, 4.917256 52.408147, 4.917358 52.408158, 4.917461 52.408148, 4.917586 52.408095, 4.917638 52.408041, 4.917656 52.40798))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS189", "asset": null, "location": "SRID=4326;POLYGON ((4.962779 52.329905, 4.962762 52.329844, 4.962711 52.329789, 4.962587 52.329736, 4.962486 52.329725, 4.962385 52.329735, 4.962259 52.329788, 4.962208 52.329842, 4.962189 52.329903, 4.962206 52.329965, 4.962257 52.33002, 4.962381 52.330073, 4.962483 52.330084, 4.962584 52.330074, 4.962709 52.330021, 4.962761 52.329967, 4.962779 52.329905))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS190", "asset": null, "location": "SRID=4326;POLYGON ((4.916757 52.4078, 4.91674 52.407739, 4.91669 52.407684, 4.916565 52.40763, 4.916464 52.407619, 4.916362 52.407629, 4.916237 52.407682, 4.916185 52.407737, 4.916167 52.407798, 4.916184 52.407859, 4.916234 52.407914, 4.916359 52.407967, 4.91646 52.407978, 4.916562 52.407968, 4.916687 52.407916, 4.916739 52.407861, 4.916757 52.4078))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS191", "asset": null, "location": "SRID=4326;POLYGON ((4.960724 52.329144, 4.960707 52.329083, 4.960656 52.329028, 4.960532 52.328974, 4.960431 52.328963, 4.960329 52.328974, 4.960204 52.329026, 4.960152 52.329081, 4.960134 52.329142, 4.960151 52.329203, 4.960202 52.329258, 4.960326 52.329312, 4.960427 52.329323, 4.960529 52.329312, 4.960654 52.32926, 4.960706 52.329205, 4.960724 52.329144))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS192", "asset": null, "location": "SRID=4326;POLYGON ((4.890205 52.405671, 4.890188 52.40561, 4.890138 52.405555, 4.890013 52.405502, 4.889912 52.40549, 4.88981 52.405501, 4.889685 52.405553, 4.889633 52.405608, 4.889615 52.405669, 4.889632 52.40573, 4.889682 52.405785, 4.889807 52.405839, 4.889908 52.40585, 4.890009 52.40584, 4.890135 52.405787, 4.890187 52.405732, 4.890205 52.405671))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS193", "asset": null, "location": "SRID=4326;POLYGON ((4.989893 52.360235, 4.989876 52.360173, 4.989825 52.360118, 4.989701 52.360065, 4.989599 52.360054, 4.989498 52.360064, 4.989373 52.360117, 4.989321 52.360172, 4.989303 52.360233, 4.98932 52.360294, 4.989371 52.360349, 4.989495 52.360402, 4.989596 52.360413, 4.989698 52.360403, 4.989823 52.36035, 4.989875 52.360296, 4.989893 52.360235))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS194", "asset": null, "location": "SRID=4326;POLYGON ((4.952158 52.372537, 4.95209 52.37242, 4.951827 52.372339, 4.947514 52.371862, 4.947557 52.371672, 4.94765 52.371662, 4.947989 52.37179, 4.948708 52.37187, 4.948855 52.371847, 4.949176 52.371878, 4.949361 52.371855, 4.949562 52.371931, 4.949709 52.371937, 4.949822 52.371909, 4.950302 52.371955, 4.950941 52.372027, 4.951145 52.372098, 4.951319 52.372108, 4.951524 52.372022, 4.951586 52.371819, 4.951519 52.371703, 4.951337 52.371634, 4.950491 52.37154, 4.950232 52.371573, 4.949469 52.371481, 4.949317 52.371422, 4.948995 52.371384, 4.948818 52.371319, 4.948099 52.371243, 4.947834 52.371301, 4.947655 52.371281, 4.947504 52.371213, 4.94738 52.371199, 4.947233 52.371222, 4.947113 52.371302, 4.946901 52.371322, 4.946755 52.371446, 4.94659 52.371223, 4.946343 52.371084, 4.94614 52.371083, 4.945654 52.371231, 4.945229 52.371002, 4.945091 52.370962, 4.941816 52.3706, 4.941602 52.370625, 4.941005 52.370554, 4.940942 52.370472, 4.940818 52.370418, 4.940308 52.370353, 4.940118 52.370395, 4.939948 52.370552, 4.939852 52.370856, 4.939956 52.370994, 4.93981 52.371104, 4.938848 52.371, 4.938695 52.371008, 4.938569 52.371061, 4.938504 52.371145, 4.938492 52.371581, 4.938287 52.371511, 4.93808 52.371502, 4.937905 52.371562, 4.937813 52.371663, 4.937807 52.371491, 4.938002 52.371467, 4.938133 52.371373, 4.938147 52.371271, 4.938047 52.371165, 4.93791 52.371125, 4.937553 52.371116, 4.93728 52.371189, 4.93714 52.37112, 4.93695 52.371094, 4.936264 52.371085, 4.936062 52.371111, 4.935937 52.371164, 4.935713 52.371104, 4.935822 52.371033, 4.935863 52.370943, 4.935883 52.37017, 4.935844 52.37008, 4.935736 52.370014, 4.935589 52.36999, 4.93541 52.37, 4.935285 52.370052, 4.935215 52.370168, 4.935204 52.37067, 4.935142 52.370668, 4.935153 52.370202, 4.93508 52.370016, 4.934904 52.369907, 4.934634 52.369898, 4.934459 52.369958, 4.934394 52.370043, 4.934377 52.370784, 4.934181 52.370845, 4.934111 52.370961, 4.934151 52.371114, 4.934338 52.371199, 4.934331 52.371526, 4.934431 52.371679, 4.934659 52.371765, 4.935468 52.371818, 4.93562 52.371889, 4.936095 52.371936, 4.936311 52.371908, 4.936863 52.371958, 4.937219 52.372012, 4.937358 52.37208, 4.937731 52.372117, 4.937883 52.372109, 4.938038 52.372031, 4.938375 52.372022, 4.938336 52.372264, 4.938083 52.372305, 4.937994 52.372381, 4.937975 52.372455, 4.937838 52.372494, 4.937764 52.372552, 4.93694 52.372451, 4.936699 52.37249, 4.93661 52.372566, 4.936513 52.372839, 4.936417 52.372918, 4.936345 52.373228, 4.936285 52.373248, 4.936092 52.373275, 4.935859 52.373238, 4.935583 52.373313, 4.935412 52.373253, 4.935155 52.373281, 4.93503 52.373334, 4.934973 52.373399, 4.934772 52.37344, 4.93468 52.37349, 4.934187 52.373582, 4.934078 52.373647, 4.934037 52.373725, 4.933971 52.373738, 4.933934 52.373663, 4.933826 52.373597, 4.933679 52.373572, 4.933551 52.373587, 4.933374 52.373694, 4.933384 52.373839, 4.932955 52.373914, 4.932822 52.373811, 4.93257 52.373797, 4.932415 52.373875, 4.932385 52.374012, 4.932274 52.374031, 4.932055 52.373971, 4.931902 52.37399, 4.931747 52.374069, 4.931711 52.37419, 4.931904 52.37439, 4.932145 52.374431, 4.934203 52.374082, 4.934532 52.374011, 4.934649 52.373935, 4.934813 52.373991, 4.935028 52.37397, 4.93519 52.374049, 4.935342 52.374057, 4.935797 52.373983, 4.935979 52.374, 4.936204 52.373963, 4.936346 52.373896, 4.937575 52.373742, 4.937807 52.373861, 4.938016 52.373861, 4.938157 52.373921, 4.938418 52.373964, 4.939054 52.373867, 4.939157 52.373983, 4.939397 52.374023, 4.939616 52.373971, 4.939719 52.373865, 4.939705 52.373768, 4.93956 52.373638, 4.9399 52.373662, 4.940047 52.373638, 4.940192 52.373515, 4.94016 52.37339, 4.940785 52.373472, 4.940778 52.373572, 4.940841 52.373657, 4.941467 52.373901, 4.941648 52.373889, 4.941774 52.373836, 4.94187 52.373912, 4.942007 52.373952, 4.942159 52.373958, 4.94231 52.373911, 4.94315 52.37403, 4.943589 52.374053, 4.943722 52.374155, 4.944049 52.3742, 4.944315 52.374139, 4.944479 52.374055, 4.944779 52.374075, 4.944966 52.374004, 4.945133 52.374022, 4.945051 52.374284, 4.944936 52.374351, 4.944899 52.374469, 4.944727 52.37455, 4.944583 52.374736, 4.944609 52.374908, 4.944784 52.375017, 4.945139 52.375014, 4.94534 52.374951, 4.945426 52.374877, 4.947615 52.37514, 4.948942 52.375256, 4.949147 52.37517, 4.949247 52.374944, 4.949213 52.374823, 4.94897 52.374669, 4.949042 52.374601, 4.949085 52.374478, 4.949067 52.374285, 4.949235 52.374124, 4.949263 52.373924, 4.949224 52.373834, 4.9491 52.373763, 4.949134 52.373653, 4.949084 52.373493, 4.948954 52.373398, 4.948753 52.373376, 4.948218 52.373494, 4.948027 52.373417, 4.947742 52.373448, 4.947714 52.373312, 4.947561 52.373232, 4.947052 52.373171, 4.946804 52.37317, 4.946609 52.373063, 4.946102 52.373004, 4.945959 52.37296, 4.945747 52.372968, 4.942938 52.372636, 4.942748 52.372678, 4.942489 52.372891, 4.942038 52.372669, 4.941724 52.372596, 4.941407 52.372559, 4.941168 52.372566, 4.941046 52.372598, 4.940364 52.372523, 4.940246 52.372444, 4.940048 52.372393, 4.939633 52.372344, 4.939476 52.372352, 4.939362 52.372397, 4.939138 52.372373, 4.939177 52.372283, 4.939119 52.372177, 4.939196 52.372103, 4.939215 52.372014, 4.93911 52.371876, 4.93915 52.371739, 4.939089 52.37163, 4.939095 52.371401, 4.939705 52.371471, 4.939806 52.371654, 4.93998 52.371716, 4.943472 52.372104, 4.943625 52.372096, 4.943821 52.372013, 4.944028 52.372036, 4.944263 52.372141, 4.945016 52.372221, 4.945206 52.372179, 4.94559 52.372215, 4.945704 52.37229, 4.94585 52.372317, 4.946078 52.372284, 4.946195 52.372334, 4.946348 52.372343, 4.946815 52.372191, 4.946799 52.372303, 4.946863 52.372388, 4.94714 52.372477, 4.951185 52.372919, 4.951655 52.372873, 4.951765 52.372807, 4.951805 52.372719, 4.951961 52.372711, 4.952086 52.372658, 4.952158 52.372537))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS195", "asset": null, "location": "SRID=4326;POLYGON ((4.967565 52.326165, 4.96746 52.326027, 4.966504 52.325681, 4.966952 52.325179, 4.966983 52.325017, 4.967289 52.324693, 4.967226 52.324545, 4.967045 52.324476, 4.967277 52.324254, 4.967321 52.324161, 4.967178 52.323952, 4.967174 52.323839, 4.967084 52.323757, 4.966688 52.323617, 4.966568 52.323536, 4.965853 52.323316, 4.965605 52.323329, 4.965496 52.323394, 4.965432 52.323509, 4.965335 52.32357, 4.964127 52.324879, 4.963965 52.324868, 4.963814 52.324914, 4.963962 52.324795, 4.964968 52.32367, 4.965119 52.323568, 4.965155 52.323446, 4.965089 52.323356, 4.964494 52.323139, 4.964271 52.323109, 4.964045 52.323172, 4.963899 52.323326, 4.962715 52.32292, 4.962517 52.322898, 4.962313 52.322984, 4.962263 52.32314, 4.962167 52.323199, 4.961563 52.323866, 4.961303 52.323775, 4.961833 52.323191, 4.962058 52.323089, 4.962184 52.322948, 4.962185 52.322826, 4.962008 52.322677, 4.961154 52.322385, 4.961001 52.322376, 4.960826 52.322437, 4.960734 52.322547, 4.960746 52.32264, 4.960627 52.32274, 4.960618 52.322851, 4.960496 52.322874, 4.960387 52.32294, 4.960328 52.323025, 4.960333 52.323101, 4.960206 52.3232, 4.960205 52.323323, 4.959979 52.323393, 4.959884 52.323535, 4.959989 52.323673, 4.960544 52.323861, 4.960671 52.323973, 4.961136 52.324135, 4.96059 52.324743, 4.960584 52.324871, 4.960685 52.324977, 4.962812 52.32571, 4.962963 52.325813, 4.96328 52.325864, 4.96553 52.32664, 4.965753 52.326635, 4.965853 52.326747, 4.966662 52.327025, 4.966864 52.327026, 4.967019 52.326947, 4.967431 52.32648, 4.967415 52.32632, 4.967524 52.326255, 4.967565 52.326165))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS196", "asset": null, "location": "SRID=4326;POLYGON ((4.772472 52.354118, 4.772539 52.354234, 4.772663 52.354288, 4.772966 52.354307, 4.773133 52.354211, 4.773289 52.354353, 4.773448 52.354379, 4.773595 52.354356, 4.774524 52.354005, 4.774613 52.353929, 4.774628 52.353841, 4.774829 52.353756, 4.778512 52.352283, 4.778657 52.352308, 4.778804 52.352284, 4.779392 52.352048, 4.779475 52.351978, 4.781557 52.351139, 4.781653 52.351049, 4.783337 52.350349, 4.784395 52.349927, 4.78455 52.349956, 4.784697 52.349932, 4.785766 52.349496, 4.785666 52.349559, 4.785516 52.349745, 4.785501 52.349838, 4.785801 52.350131, 4.785848 52.350271, 4.786021 52.35037, 4.786223 52.350371, 4.786434 52.350284, 4.786506 52.350124, 4.78638 52.34998, 4.786499 52.349975, 4.786584 52.350083, 4.786736 52.350143, 4.786888 52.350152, 4.787064 52.350092, 4.788741 52.350434, 4.788916 52.350537, 4.789076 52.350548, 4.789189 52.35052, 4.790061 52.350719, 4.790261 52.350724, 4.790711 52.350829, 4.790887 52.350835, 4.791026 52.350796, 4.791118 52.350716, 4.79112 52.350594, 4.791022 52.350505, 4.79098 52.350354, 4.790827 52.350274, 4.789435 52.350003, 4.789237 52.350024, 4.789112 52.350107, 4.7868 52.349641, 4.786738 52.349619, 4.786621 52.34942, 4.786432 52.349352, 4.786425 52.34925, 4.786326 52.349162, 4.785975 52.34909, 4.785796 52.349011, 4.78547 52.348984, 4.784999 52.349077, 4.784866 52.349132, 4.7848 52.349279, 4.784907 52.349405, 4.784719 52.349481, 4.784351 52.349152, 4.784205 52.349127, 4.783965 52.349166, 4.78382 52.349226, 4.78375 52.349342, 4.783574 52.349331, 4.783378 52.349394, 4.783312 52.349479, 4.783338 52.349591, 4.783145 52.349574, 4.782966 52.349635, 4.782827 52.349643, 4.782633 52.349757, 4.782472 52.349733, 4.782325 52.349757, 4.782184 52.349834, 4.782148 52.349946, 4.781917 52.349937, 4.781663 52.350041, 4.781562 52.350182, 4.78137 52.350164, 4.781169 52.350229, 4.780952 52.350027, 4.781005 52.349879, 4.782198 52.3494, 4.782287 52.349324, 4.782288 52.349202, 4.782197 52.349122, 4.782059 52.349081, 4.781907 52.349089, 4.778729 52.350376, 4.778688 52.350466, 4.778727 52.350556, 4.778934 52.350648, 4.779132 52.350627, 4.780173 52.350211, 4.780393 52.350243, 4.780681 52.3505, 4.780643 52.350622, 4.780805 52.350855, 4.780532 52.350674, 4.780292 52.350633, 4.7801 52.350703, 4.780034 52.350846, 4.779838 52.350846, 4.779662 52.350929, 4.779638 52.35108, 4.779855 52.351368, 4.779748 52.351447, 4.779005 52.351704, 4.778903 52.351809, 4.778722 52.351883, 4.778646 52.351852, 4.778547 52.351716, 4.778378 52.351586, 4.778241 52.351546, 4.778042 52.351567, 4.777893 52.35165, 4.777852 52.35174, 4.77789 52.35183, 4.778036 52.351948, 4.778012 52.351975, 4.777852 52.351832, 4.777728 52.351779, 4.777576 52.35177, 4.777427 52.351808, 4.777317 52.351873, 4.777278 52.351972, 4.777055 52.351965, 4.776892 52.352035, 4.776827 52.352119, 4.776859 52.352238, 4.77673 52.35218, 4.776528 52.352179, 4.776349 52.352247, 4.776279 52.352363, 4.776085 52.352364, 4.775923 52.352431, 4.775852 52.352547, 4.776 52.352748, 4.77596 52.352789, 4.775756 52.352605, 4.775609 52.352579, 4.775411 52.35262, 4.775301 52.352685, 4.775263 52.352793, 4.775049 52.352789, 4.774858 52.352882, 4.774821 52.353003, 4.774952 52.353197, 4.774791 52.353063, 4.774667 52.35301, 4.774515 52.353001, 4.774373 52.353037, 4.774264 52.353102, 4.774225 52.353213, 4.774048 52.353216, 4.773842 52.353317, 4.773805 52.353438, 4.773869 52.353523, 4.773739 52.353547, 4.773063 52.353817, 4.772892 52.353821, 4.772616 52.353894, 4.772527 52.35397, 4.772472 52.354118))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS197", "asset": null, "location": "SRID=4326;POLYGON ((4.949712 52.401451, 4.94968 52.401226, 4.949551 52.401131, 4.949404 52.401106, 4.948884 52.401125, 4.948708 52.401185, 4.948643 52.401269, 4.948672 52.401685, 4.948168 52.401702, 4.948012 52.401751, 4.947808 52.401759, 4.947766 52.401652, 4.94761 52.401568, 4.947457 52.40156, 4.947195 52.401619, 4.94705 52.401742, 4.947047 52.402124, 4.946979 52.402209, 4.946982 52.402334, 4.946667 52.402371, 4.946156 52.402361, 4.946054 52.402255, 4.945814 52.402214, 4.945675 52.402253, 4.945497 52.402385, 4.945322 52.402398, 4.945197 52.40245, 4.945131 52.402534, 4.945132 52.402614, 4.945039 52.402658, 4.944974 52.402742, 4.945009 52.403209, 4.944111 52.403239, 4.944095 52.403168, 4.944 52.403086, 4.943863 52.403046, 4.94371 52.403054, 4.943438 52.403165, 4.943373 52.403249, 4.94334 52.403433, 4.94338 52.403864, 4.943267 52.403867, 4.943075 52.403823, 4.942459 52.403844, 4.942396 52.403764, 4.942222 52.403702, 4.942069 52.403709, 4.941904 52.403769, 4.941799 52.403837, 4.941702 52.404006, 4.941739 52.404512, 4.941492 52.404521, 4.941318 52.404485, 4.940811 52.404502, 4.940708 52.404393, 4.940423 52.404294, 4.940408 52.404226, 4.940319 52.404148, 4.940113 52.404042, 4.939966 52.404017, 4.939757 52.404049, 4.938697 52.404461, 4.938669 52.404433, 4.938745 52.40431, 4.93867 52.404152, 4.938538 52.404064, 4.938344 52.404041, 4.938247 52.403984, 4.937928 52.403888, 4.937761 52.403733, 4.937837 52.403598, 4.937803 52.403477, 4.937714 52.403407, 4.937576 52.403367, 4.937342 52.403402, 4.93697 52.403055, 4.937009 52.402932, 4.936886 52.402756, 4.936762 52.402702, 4.936566 52.402701, 4.936339 52.402587, 4.936163 52.402582, 4.935425 52.402019, 4.935501 52.401986, 4.935745 52.402056, 4.935898 52.402048, 4.93608 52.401967, 4.936145 52.401883, 4.936323 52.401944, 4.936737 52.402213, 4.936926 52.402255, 4.937297 52.402158, 4.937739 52.401973, 4.937809 52.401857, 4.937716 52.401717, 4.937491 52.401652, 4.937259 52.401716, 4.936947 52.401466, 4.937268 52.401336, 4.93737 52.40123, 4.937336 52.401108, 4.93708 52.400902, 4.936881 52.400879, 4.936568 52.400963, 4.936479 52.401039, 4.936475 52.401153, 4.93625 52.401271, 4.936189 52.401348, 4.936052 52.401282, 4.935849 52.401281, 4.935356 52.40148, 4.935267 52.401556, 4.935253 52.401649, 4.934742 52.401882, 4.934672 52.401998, 4.934762 52.402132, 4.934871 52.402181, 4.935829 52.402926, 4.935953 52.40298, 4.936143 52.402982, 4.936336 52.403201, 4.936461 52.403254, 4.936669 52.40343, 4.936672 52.403542, 4.936834 52.403699, 4.93704 52.403766, 4.937527 52.404169, 4.937782 52.40425, 4.937816 52.40437, 4.938408 52.404858, 4.938545 52.404898, 4.938698 52.40489, 4.93981 52.404463, 4.939981 52.404624, 4.939792 52.404665, 4.93969 52.404771, 4.939703 52.404875, 4.939791 52.404952, 4.939827 52.405291, 4.939694 52.405344, 4.939558 52.405491, 4.93955 52.405648, 4.939638 52.405725, 4.939775 52.405765, 4.94059 52.405812, 4.940816 52.405779, 4.941133 52.405637, 4.941291 52.405667, 4.941439 52.405643, 4.9418 52.405497, 4.941866 52.40535, 4.941728 52.405205, 4.941487 52.405165, 4.941308 52.405223, 4.941106 52.405222, 4.940527 52.40544, 4.94044 52.40544, 4.940404 52.405037, 4.940687 52.404992, 4.940791 52.404869, 4.941132 52.404857, 4.941306 52.404894, 4.942112 52.404865, 4.942481 52.404814, 4.942627 52.404691, 4.942596 52.404471, 4.942738 52.4043, 4.942752 52.4042, 4.942873 52.404196, 4.943065 52.404241, 4.943751 52.404218, 4.944119 52.404159, 4.944264 52.404036, 4.944234 52.403817, 4.944285 52.40376, 4.944481 52.403696, 4.944549 52.403591, 4.945381 52.403563, 4.94552 52.403524, 4.945715 52.403515, 4.945841 52.403463, 4.945911 52.403347, 4.945875 52.403158, 4.945927 52.403104, 4.946093 52.403076, 4.946202 52.403011, 4.946243 52.402921, 4.946227 52.402751, 4.9469 52.402729, 4.94745 52.402666, 4.947593 52.402701, 4.947775 52.402692, 4.947952 52.402585, 4.947933 52.402337, 4.948093 52.402197, 4.948132 52.402113, 4.948333 52.4021, 4.948439 52.402058, 4.949127 52.402019, 4.949353 52.402045, 4.949504 52.402005, 4.949606 52.401899, 4.949576 52.401676, 4.949712 52.401451))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS198", "asset": null, "location": "SRID=4326;POLYGON ((4.953555 52.344299, 4.953516 52.344209, 4.953378 52.344125, 4.953055 52.344028, 4.952856 52.344048, 4.952106 52.344509, 4.952048 52.344578, 4.951907 52.344633, 4.951335 52.344993, 4.951112 52.344859, 4.951474 52.344676, 4.951675 52.344677, 4.951891 52.344579, 4.952082 52.34441, 4.95212 52.344304, 4.952472 52.344026, 4.952508 52.343905, 4.952408 52.343799, 4.952167 52.343731, 4.952211 52.343666, 4.952199 52.343573, 4.952014 52.343458, 4.951766 52.343471, 4.951378 52.343684, 4.951626 52.343515, 4.951649 52.343365, 4.951555 52.343282, 4.951359 52.343219, 4.95138 52.343102, 4.951317 52.343017, 4.951192 52.342964, 4.951008 52.34296, 4.951069 52.342853, 4.951001 52.342737, 4.950757 52.342653, 4.950604 52.342661, 4.950479 52.342713, 4.950397 52.342845, 4.950017 52.343109, 4.94988 52.343292, 4.949654 52.343335, 4.949073 52.343626, 4.948987 52.343583, 4.950766 52.342444, 4.95078 52.342351, 4.95068 52.342245, 4.950432 52.342204, 4.950189 52.342309, 4.95019 52.342223, 4.950126 52.342138, 4.950027 52.342087, 4.949873 52.34206, 4.949641 52.342123, 4.949521 52.34222, 4.949507 52.342312, 4.949175 52.342523, 4.94888 52.342626, 4.948771 52.342707, 4.948732 52.342795, 4.948409 52.342891, 4.948233 52.343052, 4.947909 52.34322, 4.947272 52.343643, 4.947082 52.343722, 4.946805 52.343949, 4.946768 52.344019, 4.946347 52.344281, 4.946274 52.3444, 4.946313 52.34449, 4.946399 52.34455, 4.94661 52.344593, 4.946614 52.344701, 4.946702 52.344778, 4.946844 52.34482, 4.946996 52.344812, 4.948124 52.34413, 4.948234 52.344009, 4.948358 52.343973, 4.948564 52.343844, 4.948649 52.343939, 4.948415 52.34415, 4.948401 52.344242, 4.948464 52.344327, 4.9487 52.344397, 4.949034 52.344607, 4.949267 52.344624, 4.949253 52.344714, 4.949317 52.344798, 4.949511 52.344873, 4.949806 52.345073, 4.949953 52.345119, 4.950031 52.345226, 4.950131 52.345278, 4.950379 52.345292, 4.95059 52.345173, 4.950763 52.34517, 4.950922 52.345253, 4.950706 52.345387, 4.950644 52.345465, 4.950492 52.345522, 4.949219 52.346342, 4.949205 52.346435, 4.949269 52.346519, 4.949393 52.346573, 4.949587 52.346575, 4.949577 52.346655, 4.949644 52.346743, 4.949869 52.346807, 4.950059 52.346766, 4.951324 52.345973, 4.951394 52.345858, 4.951327 52.345741, 4.953342 52.344471, 4.953485 52.344415, 4.953555 52.344299))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS199", "asset": null, "location": "SRID=4326;POLYGON ((4.988208 52.315644, 4.988145 52.315493, 4.988037 52.315427, 4.987381 52.315204, 4.987296 52.315131, 4.987112 52.315063, 4.986914 52.315041, 4.986349 52.314852, 4.986196 52.314844, 4.986058 52.314883, 4.985754 52.315194, 4.98552 52.315125, 4.985368 52.315133, 4.985409 52.315067, 4.98558 52.314985, 4.985708 52.314827, 4.985696 52.314734, 4.985594 52.314599, 4.985315 52.314479, 4.98416 52.314098, 4.983984 52.313971, 4.983644 52.313879, 4.983497 52.313903, 4.983318 52.314012, 4.98283 52.314529, 4.982524 52.314784, 4.982197 52.31518, 4.982099 52.315241, 4.981734 52.315629, 4.981693 52.315719, 4.98177 52.315847, 4.982009 52.315966, 4.983542 52.316484, 4.983761 52.316508, 4.983953 52.316442, 4.984292 52.316075, 4.984287 52.315941, 4.984223 52.315856, 4.983811 52.315713, 4.984029 52.315459, 4.984276 52.315554, 4.984484 52.315556, 4.984609 52.315503, 4.984945 52.315177, 4.985222 52.315197, 4.984901 52.315557, 4.984887 52.31565, 4.984991 52.315782, 4.984715 52.316087, 4.984701 52.31618, 4.984753 52.31627, 4.984639 52.316404, 4.984632 52.316512, 4.98447 52.316626, 4.984469 52.316748, 4.984599 52.316843, 4.986425 52.31747, 4.986576 52.317495, 4.986852 52.317462, 4.987121 52.317294, 4.988208 52.315644))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS200", "asset": null, "location": "SRID=4326;POLYGON ((4.883397 52.309174, 4.883293 52.309032, 4.883029 52.308975, 4.883276 52.30892, 4.883379 52.308814, 4.883316 52.308663, 4.883192 52.30861, 4.883047 52.308599, 4.883165 52.308548, 4.88323 52.308464, 4.883167 52.308313, 4.882942 52.308248, 4.88225 52.308293, 4.882247 52.308175, 4.882925 52.308198, 4.883152 52.308135, 4.883218 52.307984, 4.883154 52.307899, 4.88303 52.307846, 4.883231 52.307782, 4.883301 52.307666, 4.883197 52.307526, 4.882982 52.307483, 4.88318 52.307412, 4.883269 52.307336, 4.883284 52.30724, 4.88322 52.307155, 4.882995 52.307091, 4.882261 52.307144, 4.88218 52.306956, 4.882196 52.306315, 4.882337 52.306429, 4.88263 52.30646, 4.882774 52.30642, 4.882869 52.306329, 4.883019 52.306355, 4.883244 52.30633, 4.883353 52.306265, 4.883394 52.306176, 4.883307 52.305913, 4.8832 52.305847, 4.883029 52.305806, 4.883137 52.305669, 4.883032 52.305528, 4.882843 52.305485, 4.88221 52.305493, 4.882194 52.304952, 4.882396 52.304949, 4.882566 52.304984, 4.882719 52.30496, 4.88285 52.304867, 4.882866 52.304756, 4.883031 52.304697, 4.883096 52.304613, 4.883084 52.304517, 4.882964 52.304426, 4.883079 52.304314, 4.883016 52.304163, 4.882843 52.304101, 4.882265 52.304099, 4.882159 52.30389, 4.882729 52.303875, 4.882855 52.303822, 4.88292 52.303738, 4.882869 52.302117, 4.882806 52.302033, 4.882632 52.301971, 4.882226 52.301973, 4.882063 52.302028, 4.881684 52.302053, 4.881549 52.301988, 4.881392 52.301979, 4.881254 52.302018, 4.881165 52.302094, 4.881152 52.30227, 4.881216 52.302355, 4.881441 52.302419, 4.882275 52.302407, 4.882298 52.302713, 4.882094 52.302665, 4.881846 52.30266, 4.881774 52.302539, 4.8816 52.302477, 4.881396 52.302498, 4.881251 52.302622, 4.881417 52.303285, 4.881419 52.303488, 4.881482 52.303573, 4.881593 52.303623, 4.881558 52.30371, 4.881598 52.304892, 4.881554 52.304983, 4.881602 52.305119, 4.881622 52.306085, 4.881559 52.306714, 4.881594 52.307122, 4.88152 52.307211, 4.881486 52.307722, 4.881525 52.307812, 4.881662 52.307888, 4.881618 52.307981, 4.881636 52.308497, 4.881598 52.308597, 4.881463 52.308717, 4.881455 52.309162, 4.881598 52.309287, 4.881903 52.30935, 4.883151 52.30935, 4.883326 52.30929, 4.883397 52.309174))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS201", "asset": null, "location": "SRID=4326;POLYGON ((4.972583 52.342032, 4.972544 52.341942, 4.972436 52.341876, 4.972288 52.341842, 4.972089 52.341854, 4.972192 52.341691, 4.972301 52.341604, 4.972422 52.341321, 4.97241 52.341228, 4.972323 52.341151, 4.972162 52.341102, 4.972149 52.341014, 4.972062 52.340937, 4.971885 52.340888, 4.971732 52.340896, 4.971578 52.340974, 4.971454 52.341201, 4.971522 52.341317, 4.971739 52.341393, 4.971431 52.34188, 4.971245 52.341964, 4.971049 52.34228, 4.971061 52.342373, 4.971373 52.342813, 4.971139 52.343184, 4.970998 52.343192, 4.970859 52.343256, 4.970339 52.343133, 4.970137 52.343133, 4.969982 52.343211, 4.969781 52.343519, 4.969657 52.343555, 4.969569 52.343631, 4.969378 52.343655, 4.968543 52.343936, 4.968308 52.343926, 4.968162 52.343986, 4.968072 52.344093, 4.967374 52.344241, 4.967192 52.344216, 4.966878 52.343891, 4.96674 52.343851, 4.966542 52.343872, 4.96599 52.344186, 4.96554 52.344589, 4.965318 52.344652, 4.96525 52.344741, 4.965272 52.344846, 4.965119 52.345087, 4.964963 52.345093, 4.964819 52.345163, 4.964543 52.345096, 4.964367 52.344984, 4.96422 52.344952, 4.964068 52.34496, 4.963891 52.345067, 4.963901 52.345212, 4.963748 52.345453, 4.963591 52.34546, 4.963446 52.34553, 4.963163 52.345463, 4.962987 52.345351, 4.962842 52.345319, 4.962689 52.345327, 4.962512 52.345434, 4.962521 52.345579, 4.962354 52.345843, 4.961922 52.345737, 4.96172 52.345736, 4.961594 52.345789, 4.961514 52.345888, 4.961524 52.346048, 4.961265 52.345887, 4.961484 52.345544, 4.961471 52.345451, 4.961381 52.345365, 4.961185 52.345298, 4.960987 52.345319, 4.960841 52.345435, 4.960819 52.345592, 4.960579 52.345459, 4.960794 52.345113, 4.960781 52.34502, 4.96069 52.344936, 4.960494 52.344871, 4.960296 52.344892, 4.960164 52.344985, 4.960129 52.345166, 4.959889 52.345029, 4.960101 52.344684, 4.960089 52.344591, 4.959998 52.344507, 4.959804 52.34444, 4.959606 52.344461, 4.959461 52.344576, 4.959439 52.344736, 4.959202 52.344604, 4.959421 52.344223, 4.959383 52.344133, 4.959222 52.344036, 4.959017 52.344012, 4.958812 52.344098, 4.958763 52.344177, 4.958775 52.344267, 4.958652 52.344461, 4.958533 52.34456, 4.958532 52.344682, 4.961194 52.346362, 4.961281 52.346501, 4.961455 52.346563, 4.961608 52.346555, 4.961956 52.346362, 4.962091 52.346176, 4.962479 52.346264, 4.96272 52.346225, 4.962809 52.346149, 4.963015 52.345822, 4.96351 52.345943, 4.963662 52.345952, 4.963863 52.345869, 4.964024 52.345863, 4.964149 52.34581, 4.96439 52.345454, 4.964986 52.345584, 4.965133 52.34556, 4.965234 52.345502, 4.965348 52.345505, 4.965486 52.345466, 4.965575 52.345389, 4.965781 52.345063, 4.965872 52.345005, 4.966098 52.344724, 4.966594 52.34432, 4.966746 52.344517, 4.966922 52.344634, 4.967094 52.344663, 4.967338 52.344634, 4.968395 52.344424, 4.968595 52.34433, 4.969574 52.344022, 4.96981 52.344075, 4.970008 52.344054, 4.970139 52.34396, 4.970407 52.34354, 4.971021 52.343673, 4.971168 52.343649, 4.971261 52.343598, 4.971456 52.343577, 4.971588 52.343483, 4.971935 52.342947, 4.972092 52.342907, 4.972197 52.342796, 4.972134 52.342648, 4.97184 52.34256, 4.971716 52.342383, 4.971776 52.342244, 4.971866 52.342191, 4.972153 52.342257, 4.972305 52.34225, 4.97251 52.342152, 4.972583 52.342032))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS202", "asset": null, "location": "SRID=4326;POLYGON ((4.990209 52.363831, 4.990061 52.36363, 4.989676 52.363368, 4.9896 52.363261, 4.989196 52.36301, 4.98897 52.362918, 4.988504 52.362577, 4.988366 52.362537, 4.988213 52.362545, 4.987849 52.36269, 4.987911 52.362547, 4.987809 52.362435, 4.98762 52.362392, 4.987361 52.362424, 4.985981 52.361459, 4.985844 52.361419, 4.985684 52.361427, 4.985409 52.361568, 4.985369 52.361657, 4.985408 52.361747, 4.985584 52.361861, 4.985828 52.3619, 4.985809 52.361997, 4.985876 52.362084, 4.986026 52.362174, 4.986221 52.362196, 4.986215 52.362275, 4.986279 52.36236, 4.986448 52.362476, 4.986634 52.362519, 4.986668 52.362637, 4.986799 52.362731, 4.986937 52.362771, 4.986961 52.362855, 4.986714 52.36309, 4.986713 52.363212, 4.986653 52.363324, 4.986151 52.363805, 4.985928 52.363917, 4.985849 52.364051, 4.985362 52.364502, 4.98522 52.36451, 4.985069 52.364576, 4.984778 52.364803, 4.984739 52.364884, 4.984435 52.365082, 4.984359 52.365201, 4.984371 52.365294, 4.984629 52.365503, 4.984978 52.365548, 4.985131 52.36554, 4.986013 52.365314, 4.988534 52.364566, 4.988649 52.364499, 4.988687 52.364423, 4.989012 52.36438, 4.990009 52.364023, 4.990168 52.36392, 4.990209 52.363831))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS203", "asset": null, "location": "SRID=4326;POLYGON ((4.921226 52.338586, 4.921159 52.33847, 4.921014 52.338411, 4.921024 52.338314, 4.920953 52.33822, 4.920829 52.338167, 4.920648 52.338162, 4.92075 52.338024, 4.920669 52.337894, 4.920545 52.33784, 4.920367 52.337835, 4.920341 52.337699, 4.920211 52.337604, 4.919744 52.337482, 4.91958 52.337471, 4.919359 52.337525, 4.919224 52.337668, 4.91698 52.338407, 4.916878 52.338512, 4.91689 52.338605, 4.917065 52.338714, 4.917279 52.338714, 4.919713 52.337912, 4.919786 52.337983, 4.919464 52.338142, 4.918121 52.338631, 4.91747 52.338835, 4.917238 52.33885, 4.915745 52.339343, 4.915563 52.339336, 4.915421 52.339197, 4.915181 52.339156, 4.914919 52.339245, 4.914853 52.339392, 4.915239 52.339815, 4.915363 52.339869, 4.915515 52.339878, 4.915987 52.339776, 4.916155 52.33969, 4.916349 52.339664, 4.916606 52.339541, 4.916787 52.33952, 4.917058 52.339392, 4.917283 52.339353, 4.917419 52.339359, 4.917592 52.339313, 4.917631 52.339434, 4.917721 52.339513, 4.917859 52.339553, 4.918012 52.339546, 4.920329 52.338788, 4.920237 52.338924, 4.919393 52.339186, 4.919263 52.339275, 4.918582 52.339489, 4.918219 52.339666, 4.918178 52.339756, 4.918208 52.340014, 4.917912 52.340124, 4.917746 52.340347, 4.917893 52.340622, 4.918077 52.340821, 4.918181 52.340868, 4.917937 52.340941, 4.917871 52.341026, 4.917884 52.341118, 4.918036 52.341236, 4.918234 52.341258, 4.919465 52.340852, 4.919554 52.340776, 4.91957 52.340703, 4.919854 52.340583, 4.919924 52.340489, 4.919942 52.340329, 4.919842 52.340223, 4.919679 52.340176, 4.919437 52.340207, 4.91928 52.340341, 4.919024 52.34038, 4.918935 52.340456, 4.91892 52.340533, 4.918771 52.340569, 4.918654 52.340436, 4.918839 52.340388, 4.918987 52.340311, 4.919107 52.340175, 4.919942 52.339875, 4.920008 52.339728, 4.919934 52.339633, 4.919841 52.339588, 4.92001 52.33953, 4.920099 52.339454, 4.920828 52.339181, 4.921226 52.338586))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS204", "asset": null, "location": "SRID=4326;POLYGON ((4.840629 52.361797, 4.840625 52.361706, 4.840559 52.361618, 4.840334 52.36155, 4.840478 52.361427, 4.840527 52.36074, 4.840494 52.360528, 4.84032 52.36042, 4.839703 52.3604, 4.839481 52.360425, 4.83936 52.360476, 4.83918 52.360423, 4.838783 52.360387, 4.838621 52.360408, 4.838391 52.360385, 4.838216 52.360445, 4.838047 52.360421, 4.837812 52.360459, 4.837673 52.360419, 4.837473 52.360434, 4.837348 52.360487, 4.837282 52.360571, 4.837273 52.36094, 4.837359 52.361112, 4.837158 52.36112, 4.837051 52.361161, 4.836894 52.361109, 4.836753 52.361113, 4.836793 52.359836, 4.836755 52.359737, 4.836643 52.359652, 4.836706 52.359571, 4.836695 52.359442, 4.836608 52.359365, 4.836471 52.359325, 4.835962 52.359306, 4.83576 52.359371, 4.835689 52.359524, 4.83577 52.359636, 4.835944 52.359698, 4.835955 52.360171, 4.83607 52.360266, 4.836177 52.360301, 4.836156 52.361237, 4.836189 52.361484, 4.836013 52.36156, 4.835383 52.361554, 4.835162 52.361638, 4.835096 52.361722, 4.835084 52.362108, 4.835116 52.362238, 4.835204 52.362315, 4.835392 52.362358, 4.836072 52.362346, 4.836292 52.362376, 4.836468 52.362315, 4.836603 52.362135, 4.836999 52.362188, 4.837192 52.362155, 4.837375 52.362193, 4.837631 52.36216, 4.837818 52.3622, 4.837977 52.362175, 4.838101 52.36209, 4.838356 52.362167, 4.838632 52.362145, 4.838977 52.362171, 4.839143 52.362117, 4.839373 52.362217, 4.840302 52.362215, 4.840473 52.362169, 4.840604 52.362044, 4.840629 52.361797))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS205", "asset": null, "location": "SRID=4326;POLYGON ((4.97064 52.310821, 4.970533 52.310679, 4.969969 52.310451, 4.969767 52.31045, 4.969612 52.310529, 4.968749 52.311465, 4.968213 52.312137, 4.968212 52.31226, 4.968387 52.312371, 4.96823 52.312538, 4.968014 52.312537, 4.967873 52.312595, 4.967784 52.312704, 4.967812 52.312817, 4.967498 52.312878, 4.967388 52.312943, 4.967245 52.313114, 4.967269 52.313222, 4.967104 52.313262, 4.966983 52.313351, 4.966945 52.313458, 4.96678 52.313575, 4.966793 52.313724, 4.966614 52.313785, 4.9664 52.314006, 4.96636 52.314095, 4.966399 52.314186, 4.966256 52.314215, 4.966147 52.31428, 4.966083 52.314408, 4.96615 52.314529, 4.965893 52.314811, 4.965639 52.314843, 4.965506 52.314936, 4.965469 52.315057, 4.965569 52.315174, 4.965355 52.315404, 4.965349 52.315516, 4.965158 52.315616, 4.964925 52.315877, 4.964918 52.315984, 4.964816 52.316094, 4.964649 52.316175, 4.964341 52.316512, 4.96434 52.316635, 4.964513 52.316751, 4.964927 52.316861, 4.965074 52.316838, 4.965183 52.316772, 4.965382 52.316552, 4.965385 52.316427, 4.965582 52.316332, 4.966081 52.315779, 4.96609 52.315671, 4.966227 52.315617, 4.966507 52.315312, 4.966507 52.315178, 4.966416 52.315097, 4.96664 52.314852, 4.966817 52.3148, 4.967196 52.314895, 4.96741 52.314873, 4.967591 52.314748, 4.967571 52.314597, 4.967778 52.314535, 4.967998 52.314517, 4.968171 52.314391, 4.968219 52.314321, 4.968209 52.314238, 4.968387 52.314176, 4.968484 52.314075, 4.968489 52.31396, 4.968618 52.313843, 4.968596 52.31368, 4.968712 52.313658, 4.968976 52.31353, 4.969099 52.313362, 4.969072 52.31325, 4.969232 52.31321, 4.969374 52.313078, 4.969308 52.31292, 4.968774 52.312701, 4.969034 52.312425, 4.969343 52.312474, 4.969465 52.312446, 4.96958 52.312378, 4.96962 52.312249, 4.969804 52.312133, 4.969818 52.312035, 4.969722 52.311931, 4.969829 52.311845, 4.969846 52.311746, 4.970033 52.311622, 4.970021 52.31148, 4.970173 52.311375, 4.970185 52.311264, 4.970321 52.311207, 4.970384 52.311144, 4.970386 52.311019, 4.970561 52.310947, 4.97064 52.310821))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS206", "asset": null, "location": "SRID=4326;POLYGON ((4.909904 52.369845, 4.909878 52.369647, 4.909814 52.369562, 4.909207 52.369282, 4.90906 52.369257, 4.908913 52.369281, 4.908795 52.369351, 4.908757 52.369428, 4.90781 52.369028, 4.906134 52.368379, 4.906149 52.36828, 4.906089 52.368103, 4.905953 52.368006, 4.905353 52.367896, 4.904792 52.36806, 4.904585 52.367995, 4.904546 52.367857, 4.904444 52.367774, 4.904553 52.3676, 4.904541 52.367507, 4.904411 52.367412, 4.904238 52.367379, 4.903997 52.367418, 4.903893 52.367525, 4.903824 52.367885, 4.903847 52.367986, 4.903928 52.368059, 4.903818 52.368155, 4.903588 52.368146, 4.903406 52.368255, 4.903427 52.368406, 4.903599 52.368506, 4.902667 52.36889, 4.902455 52.368947, 4.902009 52.369166, 4.901943 52.36925, 4.901977 52.369372, 4.90223 52.369588, 4.902404 52.36965, 4.902557 52.369643, 4.902715 52.369583, 4.902804 52.369507, 4.902805 52.369385, 4.902714 52.369305, 4.90329 52.369071, 4.903424 52.369092, 4.903571 52.369068, 4.903687 52.369, 4.903725 52.368893, 4.903955 52.368804, 4.904669 52.369086, 4.904883 52.369106, 4.905545 52.369359, 4.905719 52.369469, 4.905896 52.369492, 4.90648 52.369711, 4.906319 52.369769, 4.906129 52.369955, 4.906128 52.370077, 4.906257 52.370172, 4.906513 52.370188, 4.906824 52.370065, 4.906941 52.369969, 4.907069 52.369933, 4.907148 52.369964, 4.907251 52.370097, 4.907482 52.370141, 4.907531 52.37026, 4.907407 52.370353, 4.907392 52.370445, 4.907508 52.370614, 4.907688 52.370677, 4.907929 52.370639, 4.908081 52.370484, 4.908273 52.370477, 4.908399 52.370424, 4.908534 52.370273, 4.908462 52.370086, 4.908626 52.370064, 4.908784 52.369953, 4.908992 52.36995, 4.909165 52.369856, 4.909132 52.369971, 4.909195 52.370056, 4.909321 52.370111, 4.909474 52.370119, 4.909834 52.369961, 4.909904 52.369845))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS207", "asset": null, "location": "SRID=4326;POLYGON ((4.982108 52.312902, 4.982003 52.312764, 4.981832 52.312712, 4.981634 52.312733, 4.981594 52.312653, 4.981502 52.312593, 4.981498 52.312533, 4.981599 52.31238, 4.981495 52.312242, 4.981325 52.312191, 4.981127 52.312212, 4.981057 52.312105, 4.980897 52.312039, 4.980744 52.312031, 4.980606 52.31207, 4.980218 52.312323, 4.980152 52.31247, 4.980023 52.312534, 4.979965 52.312604, 4.979804 52.312553, 4.979652 52.312544, 4.979447 52.31263, 4.978974 52.313189, 4.978884 52.313246, 4.978434 52.313745, 4.97842 52.313838, 4.97852 52.313944, 4.978369 52.314126, 4.978176 52.314187, 4.977917 52.314469, 4.977903 52.314562, 4.977998 52.314689, 4.9782 52.314761, 4.978479 52.314758, 4.978545 52.314881, 4.9787 52.314945, 4.978848 52.314953, 4.979089 52.31517, 4.979747 52.315399, 4.979945 52.315421, 4.980083 52.315382, 4.980216 52.315257, 4.980263 52.315132, 4.980723 52.314662, 4.980726 52.31454, 4.980816 52.314476, 4.981043 52.314521, 4.981269 52.314458, 4.981616 52.314041, 4.981967 52.3137, 4.982003 52.313578, 4.981861 52.313446, 4.982056 52.313214, 4.981996 52.313069, 4.982108 52.312902))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS208", "asset": null, "location": "SRID=4326;POLYGON ((4.844047 52.379303, 4.843938 52.379155, 4.843698 52.379114, 4.843464 52.379188, 4.842783 52.379273, 4.842432 52.379366, 4.841746 52.379471, 4.841501 52.379468, 4.841359 52.379532, 4.841199 52.379558, 4.841046 52.379488, 4.84089 52.379216, 4.840651 52.378617, 4.840498 52.378537, 4.840266 52.378535, 4.839884 52.378622, 4.839739 52.378746, 4.839798 52.378953, 4.839676 52.379036, 4.839636 52.379126, 4.839874 52.37972, 4.839592 52.379116, 4.839505 52.379039, 4.839367 52.378999, 4.839214 52.379006, 4.839037 52.379114, 4.839001 52.379106, 4.838971 52.378974, 4.838755 52.378858, 4.838557 52.378835, 4.838412 52.378875, 4.83831 52.378981, 4.838308 52.37914, 4.838685 52.380039, 4.838914 52.38025, 4.839022 52.380502, 4.838948 52.380569, 4.838902 52.380764, 4.839408 52.381846, 4.839533 52.381899, 4.839692 52.38191, 4.839859 52.381867, 4.839962 52.381761, 4.839821 52.381363, 4.839926 52.381163, 4.839824 52.380901, 4.840927 52.380923, 4.841132 52.380837, 4.841173 52.380747, 4.8412 52.380098, 4.841183 52.380028, 4.841096 52.379951, 4.843795 52.379507, 4.843976 52.379418, 4.844047 52.379303))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS209", "asset": null, "location": "SRID=4326;POLYGON ((4.816822 52.375071, 4.81665 52.374426, 4.816592 52.374363, 4.816465 52.374308, 4.816248 52.374305, 4.816063 52.374414, 4.815848 52.374294, 4.815645 52.37427, 4.815469 52.374331, 4.815393 52.374419, 4.815164 52.374415, 4.814982 52.374526, 4.814768 52.374401, 4.814562 52.374377, 4.814387 52.374438, 4.814311 52.374532, 4.814054 52.374534, 4.813881 52.374636, 4.813769 52.374529, 4.813574 52.374483, 4.813345 52.374532, 4.813234 52.374663, 4.812854 52.374633, 4.812556 52.37466, 4.812505 52.374511, 4.812381 52.374441, 4.812331 52.374224, 4.812358 52.374137, 4.812534 52.374076, 4.8126 52.373992, 4.812572 52.373829, 4.812509 52.373744, 4.812306 52.37368, 4.812191 52.373604, 4.812044 52.373579, 4.811327 52.373651, 4.811149 52.373758, 4.811164 52.37392, 4.811104 52.374025, 4.8112 52.374234, 4.811425 52.374299, 4.811734 52.374251, 4.811869 52.374765, 4.811818 52.374897, 4.812003 52.375578, 4.812067 52.375663, 4.812191 52.375717, 4.812344 52.375726, 4.813506 52.375587, 4.813638 52.375691, 4.81388 52.37571, 4.814132 52.375628, 4.814245 52.375515, 4.814585 52.375481, 4.814717 52.375585, 4.814915 52.375608, 4.815263 52.375522, 4.815367 52.375404, 4.815666 52.375374, 4.815798 52.375478, 4.816055 52.375495, 4.816344 52.375415, 4.816448 52.375297, 4.816672 52.375249, 4.816782 52.375161, 4.816822 52.375071))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS210", "asset": null, "location": "SRID=4326;POLYGON ((4.964545 52.329631, 4.964493 52.32951, 4.964259 52.329351, 4.964121 52.329311, 4.963985 52.329316, 4.964012 52.329206, 4.963948 52.329121, 4.963788 52.329051, 4.963635 52.329042, 4.963381 52.329131, 4.963015 52.329355, 4.962945 52.329471, 4.962738 52.32949, 4.962286 52.329663, 4.962269 52.32968, 4.962199 52.329811, 4.962024 52.329966, 4.962009 52.330048, 4.961666 52.330032, 4.961061 52.3302, 4.961059 52.330163, 4.961176 52.330065, 4.96119 52.329973, 4.960956 52.329718, 4.960707 52.329644, 4.960479 52.329705, 4.960164 52.329686, 4.959989 52.329746, 4.959847 52.329996, 4.959723 52.330071, 4.959683 52.33016, 4.959707 52.330266, 4.959389 52.330183, 4.958911 52.329973, 4.958714 52.329951, 4.958418 52.330079, 4.958208 52.33038, 4.958194 52.330472, 4.958336 52.330597, 4.958902 52.330759, 4.959057 52.33084, 4.95946 52.330923, 4.960008 52.330991, 4.960186 52.330955, 4.960734 52.33099, 4.960881 52.330967, 4.961039 52.330997, 4.961499 52.33096, 4.962288 52.330796, 4.962445 52.33079, 4.962856 52.330662, 4.963559 52.330263, 4.963709 52.330222, 4.96387 52.330127, 4.963935 52.330043, 4.964471 52.32975, 4.964545 52.329631))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS211", "asset": null, "location": "SRID=4326;POLYGON ((4.908532 52.39689, 4.908423 52.39675, 4.908286 52.39671, 4.908133 52.396717, 4.906078 52.39748, 4.905888 52.397641, 4.9059 52.397734, 4.90598 52.397822, 4.905673 52.39797, 4.902399 52.399228, 4.902292 52.399365, 4.902362 52.399484, 4.902487 52.399538, 4.90262 52.399547, 4.902605 52.399642, 4.902708 52.399751, 4.902845 52.399791, 4.903028 52.399775, 4.902993 52.399898, 4.903093 52.400005, 4.903231 52.400045, 4.903383 52.400038, 4.906716 52.398761, 4.906832 52.398643, 4.906819 52.398547, 4.906686 52.398449, 4.906491 52.398426, 4.906539 52.39833, 4.906471 52.398211, 4.906732 52.398172, 4.906839 52.398035, 4.9068 52.397945, 4.906597 52.397732, 4.907116 52.397531, 4.907295 52.397546, 4.90744 52.397505, 4.907559 52.397361, 4.908425 52.397027, 4.908532 52.39689))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS212", "asset": null, "location": "SRID=4326;POLYGON ((4.787331 52.357674, 4.787264 52.357558, 4.78714 52.357504, 4.786905 52.357509, 4.786507 52.357428, 4.786308 52.357449, 4.786176 52.357543, 4.785904 52.358044, 4.785551 52.358232, 4.785433 52.358457, 4.78553 52.358212, 4.785486 52.358108, 4.785312 52.357999, 4.785103 52.357997, 4.784948 52.358076, 4.784837 52.358271, 4.78467 52.358293, 4.784561 52.358359, 4.784387 52.358661, 4.783252 52.358434, 4.783443 52.358292, 4.783421 52.358115, 4.783592 52.357723, 4.78345 52.357598, 4.782889 52.357481, 4.782649 52.357505, 4.7825 52.357621, 4.782485 52.357713, 4.782549 52.357798, 4.78238 52.357887, 4.782338 52.357981, 4.782376 52.358071, 4.782498 52.358141, 4.781545 52.357978, 4.781305 52.358048, 4.781196 52.358273, 4.781296 52.35838, 4.781534 52.358442, 4.781439 52.358655, 4.781502 52.358739, 4.781626 52.358793, 4.781965 52.358801, 4.782091 52.358749, 4.782173 52.358638, 4.782667 52.358733, 4.782819 52.358725, 4.786302 52.359416, 4.786455 52.359425, 4.786593 52.359386, 4.786682 52.35931, 4.786752 52.359175, 4.786733 52.359018, 4.786777 52.358937, 4.786925 52.358833, 4.786963 52.358737, 4.786932 52.358656, 4.787028 52.358597, 4.787089 52.35847, 4.786981 52.358322, 4.78645 52.358192, 4.786642 52.357839, 4.786954 52.357902, 4.787107 52.357895, 4.787262 52.357817, 4.787331 52.357674))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS213", "asset": null, "location": "SRID=4326;POLYGON ((4.962269 52.32968, 4.962286 52.329663, 4.962477 52.32948, 4.962507 52.329338, 4.962715 52.329276, 4.962811 52.329128, 4.962948 52.329134, 4.963092 52.329093, 4.963187 52.329007, 4.963194 52.328898, 4.963473 52.328857, 4.963806 52.3287, 4.963899 52.328622, 4.963929 52.328538, 4.96389 52.328448, 4.963633 52.328313, 4.963111 52.328161, 4.962992 52.328079, 4.962768 52.328038, 4.962599 52.32807, 4.962497 52.327945, 4.961813 52.327713, 4.961445 52.327716, 4.96129 52.327794, 4.961238 52.32795, 4.961069 52.328035, 4.960551 52.328644, 4.960223 52.328865, 4.960164 52.329038, 4.959979 52.329205, 4.959978 52.329327, 4.960128 52.329436, 4.96055 52.329541, 4.960896 52.329541, 4.960908 52.329633, 4.960996 52.329709, 4.961281 52.32982, 4.961549 52.329977, 4.961701 52.330002, 4.961803 52.329992, 4.962047 52.329895, 4.962188 52.329718, 4.962269 52.32968))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS214", "asset": null, "location": "SRID=4326;POLYGON ((4.920921 52.406485, 4.920817 52.406318, 4.92055 52.406167, 4.920397 52.406158, 4.920152 52.406246, 4.920035 52.40623, 4.919888 52.406254, 4.917283 52.407431, 4.917194 52.407507, 4.91717 52.407592, 4.917252 52.407721, 4.917177 52.407718, 4.916902 52.4075, 4.916755 52.407475, 4.916592 52.407499, 4.915995 52.407729, 4.915911 52.4078, 4.915746 52.407841, 4.915661 52.407912, 4.915501 52.407952, 4.915415 52.408024, 4.91525 52.408064, 4.915144 52.408194, 4.914971 52.408272, 4.914821 52.408279, 4.914659 52.408343, 4.914556 52.408449, 4.91459 52.408571, 4.914934 52.408857, 4.915059 52.40891, 4.915338 52.408902, 4.915496 52.408852, 4.915699 52.408904, 4.915929 52.408863, 4.916211 52.408735, 4.916277 52.408651, 4.916264 52.408558, 4.916107 52.408422, 4.916181 52.408388, 4.916332 52.408512, 4.916531 52.408534, 4.916674 52.408493, 4.91683 52.408391, 4.916871 52.408301, 4.916797 52.40818, 4.917005 52.408278, 4.917254 52.408266, 4.917586 52.408095, 4.917655 52.407971, 4.917809 52.407963, 4.917961 52.407913, 4.918133 52.407788, 4.918354 52.407771, 4.918769 52.407586, 4.918885 52.40744, 4.919194 52.407348, 4.9193 52.407222, 4.919506 52.407202, 4.91969 52.407119, 4.919747 52.407054, 4.919978 52.407039, 4.920397 52.406851, 4.920503 52.406727, 4.920851 52.406601, 4.920921 52.406485))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS215", "asset": null, "location": "SRID=4326;POLYGON ((4.841005 52.350295, 4.840968 52.350069, 4.84086 52.350003, 4.840714 52.349978, 4.839522 52.349972, 4.839384 52.35001, 4.839271 52.350105, 4.839006 52.350056, 4.838422 52.350054, 4.83814 52.350172, 4.838044 52.350085, 4.837902 52.350044, 4.837144 52.350023, 4.836804 52.350061, 4.836676 52.350114, 4.836603 52.350204, 4.836578 52.350414, 4.836626 52.350583, 4.836638 52.351063, 4.836736 52.351148, 4.836874 52.351188, 4.837072 52.351181, 4.837198 52.351128, 4.837275 52.351007, 4.837281 52.350545, 4.837247 52.350457, 4.837488 52.350442, 4.837475 52.350998, 4.837545 52.351127, 4.837643 52.351178, 4.83779 52.351203, 4.837943 52.351179, 4.838043 52.351121, 4.838218 52.351225, 4.838426 52.351226, 4.838552 52.351173, 4.838617 52.351089, 4.83866 52.35045, 4.838892 52.350451, 4.838892 52.351047, 4.838941 52.351139, 4.839055 52.351209, 4.839273 52.351233, 4.839466 52.351157, 4.839636 52.351216, 4.839912 52.351192, 4.840063 52.35109, 4.840085 52.350773, 4.84012 52.350771, 4.840128 52.351056, 4.840192 52.351141, 4.840371 52.351207, 4.840668 52.3512, 4.840793 52.351148, 4.840859 52.351063, 4.84081 52.350858, 4.840859 52.350787, 4.840854 52.350627, 4.840996 52.350505, 4.841005 52.350295))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS216", "asset": null, "location": "SRID=4326;POLYGON ((4.822443 52.373765, 4.821836 52.372284, 4.821749 52.372207, 4.821597 52.372157, 4.821331 52.372166, 4.821247 52.371992, 4.821139 52.371926, 4.820941 52.371903, 4.819767 52.372086, 4.819645 52.371939, 4.819405 52.371899, 4.818596 52.372026, 4.818408 52.372127, 4.818353 52.372277, 4.818475 52.372505, 4.8187 52.37257, 4.819192 52.3725, 4.819412 52.372974, 4.819541 52.373069, 4.819688 52.373093, 4.81998 52.373055, 4.820106 52.373003, 4.82017 52.372927, 4.820345 52.372948, 4.820815 52.373116, 4.820975 52.373476, 4.820766 52.373515, 4.820634 52.373608, 4.820641 52.37376, 4.820771 52.373855, 4.820969 52.373878, 4.821313 52.373825, 4.821424 52.373974, 4.821672 52.374018, 4.822293 52.37392, 4.822402 52.373855, 4.822443 52.373765))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS217", "asset": null, "location": "SRID=4326;POLYGON ((4.937212 52.406513, 4.937183 52.406333, 4.937076 52.406166, 4.93656 52.405753, 4.936376 52.405684, 4.936134 52.405723, 4.936236 52.405584, 4.93612 52.405432, 4.93592 52.405387, 4.935582 52.405418, 4.935175 52.405263, 4.935172 52.405161, 4.935096 52.405031, 4.934907 52.404903, 4.934769 52.404855, 4.934436 52.40483, 4.934131 52.404909, 4.933546 52.404634, 4.933608 52.404573, 4.933622 52.404481, 4.933481 52.404347, 4.933286 52.404302, 4.933085 52.404337, 4.932609 52.403952, 4.932485 52.403899, 4.932332 52.40389, 4.932157 52.40395, 4.932087 52.404037, 4.932099 52.40413, 4.932508 52.404487, 4.932076 52.404708, 4.932032 52.4048, 4.9321 52.404916, 4.932258 52.404992, 4.932461 52.404993, 4.932901 52.40476, 4.933504 52.405086, 4.933919 52.405258, 4.9338 52.405384, 4.933799 52.405506, 4.933886 52.405583, 4.934135 52.405659, 4.93406 52.405757, 4.934071 52.405853, 4.934159 52.40593, 4.934347 52.406013, 4.934923 52.40615, 4.935229 52.406133, 4.935541 52.406012, 4.935744 52.406126, 4.935896 52.406134, 4.936008 52.406107, 4.936396 52.406394, 4.936443 52.406471, 4.936387 52.406578, 4.936011 52.406756, 4.935941 52.406843, 4.935975 52.406964, 4.936158 52.40711, 4.936296 52.40715, 4.936449 52.407143, 4.936842 52.406968, 4.937074 52.406797, 4.937212 52.406513))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS218", "asset": null, "location": "SRID=4326;POLYGON ((4.859831 52.324448, 4.859826 52.323622, 4.859726 52.323515, 4.859537 52.323472, 4.859305 52.323513, 4.859202 52.323619, 4.859235 52.32398, 4.859187 52.324094, 4.859233 52.324255, 4.858298 52.324281, 4.857993 52.324341, 4.857861 52.324434, 4.857859 52.324561, 4.858031 52.32469, 4.858034 52.325026, 4.857896 52.325049, 4.857787 52.325114, 4.857749 52.325298, 4.857849 52.325404, 4.858094 52.325447, 4.858038 52.325539, 4.858025 52.325816, 4.857904 52.325867, 4.857834 52.325983, 4.85785 52.32611, 4.857997 52.32621, 4.858025 52.32652, 4.857807 52.326583, 4.857737 52.326699, 4.857754 52.326848, 4.857913 52.326952, 4.857775 52.327006, 4.857709 52.327091, 4.857707 52.327479, 4.857771 52.327564, 4.857895 52.327617, 4.858119 52.327626, 4.858294 52.327566, 4.858365 52.32745, 4.8583 52.327307, 4.858481 52.327284, 4.858591 52.327218, 4.858634 52.326984, 4.858843 52.326999, 4.858846 52.327229, 4.858988 52.327353, 4.859134 52.327378, 4.8593 52.327367, 4.859478 52.32726, 4.8594 52.326725, 4.859197 52.326637, 4.85868 52.326619, 4.858621 52.326502, 4.858594 52.326196, 4.858708 52.326096, 4.859075 52.326114, 4.859294 52.326175, 4.859448 52.326152, 4.859557 52.326087, 4.859596 52.3259, 4.859496 52.325793, 4.859359 52.325753, 4.858624 52.325731, 4.858626 52.325686, 4.858684 52.325609, 4.858688 52.325332, 4.859098 52.325354, 4.859257 52.325408, 4.859417 52.3254, 4.859595 52.325293, 4.85961 52.325141, 4.859546 52.325056, 4.859422 52.325002, 4.858629 52.324968, 4.858639 52.324641, 4.859635 52.324616, 4.85976 52.324563, 4.859831 52.324448))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS219", "asset": null, "location": "SRID=4326;POLYGON ((4.91592 52.40638, 4.915852 52.406264, 4.914879 52.405455, 4.914755 52.405401, 4.914602 52.405393, 4.914297 52.405507, 4.91413 52.40553, 4.913004 52.406041, 4.912938 52.406126, 4.912944 52.406266, 4.913234 52.406516, 4.912993 52.406629, 4.912722 52.406419, 4.912481 52.406378, 4.912245 52.406465, 4.912178 52.406618, 4.913073 52.407392, 4.913411 52.407502, 4.913564 52.40751, 4.913703 52.407471, 4.915813 52.406517, 4.91592 52.40638))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS220", "asset": null, "location": "SRID=4326;POLYGON ((4.952908 52.400491, 4.952864 52.400392, 4.950753 52.397751, 4.95059 52.397651, 4.950585 52.397541, 4.950171 52.397034, 4.950047 52.39698, 4.949894 52.396972, 4.949449 52.397097, 4.949295 52.396903, 4.949187 52.396837, 4.948853 52.396749, 4.948605 52.39679, 4.948502 52.396895, 4.948514 52.396988, 4.948657 52.397158, 4.948882 52.397222, 4.948919 52.397261, 4.948834 52.397334, 4.94882 52.397427, 4.948994 52.397625, 4.949132 52.397665, 4.949285 52.397658, 4.949416 52.397603, 4.949485 52.39749, 4.949805 52.397395, 4.949946 52.397571, 4.949972 52.397709, 4.95017 52.397955, 4.950314 52.398032, 4.95043 52.398179, 4.950288 52.398203, 4.950172 52.39827, 4.950132 52.398359, 4.950171 52.398449, 4.950282 52.398579, 4.950407 52.398633, 4.950559 52.398641, 4.950757 52.39859, 4.950951 52.398833, 4.95076 52.39886, 4.950651 52.398926, 4.95061 52.399015, 4.950649 52.399105, 4.950824 52.399212, 4.951077 52.399235, 4.951247 52.399205, 4.951634 52.399687, 4.951487 52.399694, 4.951354 52.399749, 4.951288 52.399833, 4.951322 52.399954, 4.951503 52.400068, 4.951957 52.400092, 4.952152 52.400333, 4.952 52.400341, 4.951869 52.400396, 4.951799 52.400512, 4.951851 52.400617, 4.951321 52.40085, 4.95128 52.40094, 4.951295 52.401081, 4.951363 52.401171, 4.951589 52.401235, 4.951885 52.401183, 4.951974 52.401107, 4.951981 52.400999, 4.952426 52.400821, 4.952567 52.400698, 4.952795 52.400635, 4.952908 52.400491))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS221", "asset": null, "location": "SRID=4326;POLYGON ((4.91489 52.409151, 4.914853 52.408873, 4.914578 52.408632, 4.914404 52.40857, 4.914355 52.408492, 4.914247 52.408426, 4.913998 52.408412, 4.91344 52.408654, 4.913748 52.408479, 4.913784 52.408358, 4.913699 52.408243, 4.913538 52.408131, 4.913401 52.408091, 4.913226 52.408105, 4.913299 52.408017, 4.913312 52.407895, 4.913238 52.4078, 4.913109 52.407745, 4.912847 52.407757, 4.912047 52.408116, 4.911958 52.408192, 4.911942 52.408282, 4.911764 52.40835, 4.911657 52.408437, 4.911641 52.408536, 4.911682 52.408604, 4.912562 52.409329, 4.912699 52.409369, 4.912849 52.409362, 4.912996 52.409478, 4.913134 52.409518, 4.913477 52.409481, 4.913367 52.409578, 4.913353 52.40967, 4.913417 52.409755, 4.9136 52.409829, 4.913848 52.409817, 4.91399 52.409705, 4.914281 52.409577, 4.914542 52.409506, 4.914801 52.40935, 4.91489 52.409151))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS222", "asset": null, "location": "SRID=4326;POLYGON ((4.956834 52.39237, 4.956795 52.39228, 4.956687 52.392214, 4.95615 52.392129, 4.955387 52.391926, 4.955239 52.39195, 4.954924 52.392111, 4.954665 52.391988, 4.954349 52.391986, 4.954224 52.392039, 4.954146 52.392149, 4.953862 52.392243, 4.953791 52.392359, 4.953929 52.392574, 4.954078 52.39267, 4.954086 52.392771, 4.954189 52.392867, 4.95443 52.392908, 4.954924 52.392775, 4.955066 52.392919, 4.955048 52.392949, 4.954893 52.39294, 4.954667 52.392994, 4.954376 52.3931, 4.954287 52.393176, 4.954286 52.393298, 4.954411 52.393419, 4.95452 52.393468, 4.954586 52.393585, 4.954958 52.393707, 4.95518 52.393702, 4.955539 52.393785, 4.955686 52.393761, 4.955795 52.393696, 4.95588 52.393576, 4.955846 52.393454, 4.955958 52.393407, 4.956169 52.393405, 4.956324 52.393326, 4.956587 52.392931, 4.956549 52.392841, 4.956428 52.392745, 4.956417 52.392592, 4.956651 52.392553, 4.95679 52.392463, 4.956834 52.39237))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS223", "asset": null, "location": "SRID=4326;POLYGON ((4.901916 52.393978, 4.901877 52.393888, 4.901335 52.393321, 4.901118 52.393192, 4.90082 52.393143, 4.898446 52.394037, 4.898357 52.394113, 4.898343 52.394206, 4.898443 52.394379, 4.898817 52.394698, 4.898941 52.394752, 4.899315 52.394796, 4.899476 52.39475, 4.899572 52.394657, 4.899854 52.394549, 4.900128 52.394655, 4.900376 52.394643, 4.900848 52.394453, 4.900915 52.394306, 4.901126 52.394303, 4.901766 52.394132, 4.901875 52.394067, 4.901916 52.393978))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS224", "asset": null, "location": "SRID=4326;POLYGON ((4.851271 52.380547, 4.851197 52.380421, 4.851054 52.380351, 4.850242 52.380331, 4.850148 52.380243, 4.849885 52.380142, 4.849349 52.380119, 4.849188 52.380083, 4.848927 52.379948, 4.848404 52.379927, 4.847818 52.37973, 4.847189 52.379727, 4.846981 52.379823, 4.846909 52.379913, 4.846943 52.380034, 4.847101 52.380116, 4.847679 52.380123, 4.847809 52.380219, 4.847992 52.380244, 4.848182 52.380322, 4.848664 52.380327, 4.848786 52.380412, 4.84919 52.380524, 4.849642 52.380522, 4.849656 52.380629, 4.849737 52.380702, 4.849687 52.381725, 4.849787 52.381832, 4.850097 52.381929, 4.850255 52.381921, 4.850411 52.381843, 4.850447 52.381716, 4.850375 52.381605, 4.850948 52.381608, 4.851087 52.381569, 4.851168 52.381508, 4.851209 52.381375, 4.851118 52.381274, 4.851228 52.381135, 4.851145 52.380989, 4.85125 52.380838, 4.851149 52.380694, 4.851226 52.380642, 4.851271 52.380547))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS225", "asset": null, "location": "SRID=4326;POLYGON ((4.964838 52.390285, 4.96468 52.389741, 4.964458 52.389623, 4.96416 52.389549, 4.964123 52.389466, 4.964015 52.3894, 4.963811 52.389375, 4.963628 52.389421, 4.961297 52.388797, 4.961095 52.388796, 4.96094 52.388874, 4.960916 52.389025, 4.96112 52.389183, 4.960971 52.389261, 4.960905 52.389389, 4.960944 52.389479, 4.961058 52.389551, 4.964394 52.390469, 4.964536 52.390484, 4.964683 52.390461, 4.964793 52.390395, 4.964838 52.390285))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS226", "asset": null, "location": "SRID=4326;POLYGON ((4.798356 52.358082, 4.798318 52.357992, 4.79821 52.357926, 4.797414 52.357716, 4.797168 52.357688, 4.796935 52.357783, 4.796821 52.357955, 4.796765 52.358168, 4.796592 52.358275, 4.796578 52.358368, 4.796621 52.358434, 4.796471 52.358513, 4.796442 52.358655, 4.796345 52.358733, 4.796329 52.358828, 4.796374 52.358897, 4.796223 52.358974, 4.796193 52.359115, 4.796097 52.359194, 4.796081 52.359289, 4.796124 52.359358, 4.795949 52.359466, 4.795935 52.359559, 4.796035 52.359666, 4.796219 52.359744, 4.796589 52.359809, 4.796919 52.359755, 4.797366 52.35981, 4.797541 52.359749, 4.797627 52.359628, 4.79759 52.359502, 4.797431 52.359406, 4.797202 52.359355, 4.797227 52.359307, 4.797614 52.359349, 4.797819 52.359263, 4.797881 52.359136, 4.797843 52.359046, 4.797681 52.358945, 4.79745 52.358894, 4.797477 52.358845, 4.797864 52.358887, 4.798069 52.358801, 4.798126 52.358643, 4.798021 52.358533, 4.798187 52.358422, 4.798356 52.358082))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS227", "asset": null, "location": "SRID=4326;POLYGON ((4.908101 52.39304, 4.908062 52.39295, 4.907302 52.392208, 4.907095 52.392118, 4.906897 52.392138, 4.906666 52.392261, 4.906502 52.392205, 4.906304 52.392226, 4.905202 52.392659, 4.905099 52.392765, 4.905213 52.393018, 4.905359 52.393102, 4.905952 52.393689, 4.906126 52.393751, 4.906324 52.39373, 4.90714 52.393421, 4.907422 52.393309, 4.907517 52.393218, 4.907696 52.393251, 4.907921 52.393207, 4.90806 52.39313, 4.908101 52.39304))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS228", "asset": null, "location": "SRID=4326;POLYGON ((4.836487 52.366098, 4.83644 52.365882, 4.836326 52.365813, 4.836182 52.365788, 4.836201 52.365585, 4.83627 52.365466, 4.836286 52.364922, 4.836247 52.364825, 4.83615 52.364762, 4.836146 52.364653, 4.836065 52.364557, 4.836054 52.364282, 4.835967 52.3642, 4.835844 52.364147, 4.835742 52.364017, 4.835563 52.363958, 4.835411 52.363965, 4.835285 52.364018, 4.835218 52.364113, 4.835054 52.364102, 4.834878 52.364162, 4.83474 52.364417, 4.834758 52.364652, 4.834821 52.364737, 4.835075 52.364843, 4.835321 52.364806, 4.835554 52.364849, 4.83557 52.364978, 4.835689 52.365069, 4.83568 52.365339, 4.835613 52.365427, 4.835589 52.365718, 4.835504 52.365782, 4.835101 52.365805, 4.83497 52.365899, 4.834937 52.366507, 4.834976 52.366597, 4.835184 52.36669, 4.835383 52.366669, 4.835512 52.366579, 4.835653 52.366642, 4.836009 52.366701, 4.836208 52.36668, 4.836428 52.366549, 4.836487 52.366098))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS229", "asset": null, "location": "SRID=4326;POLYGON ((4.871657 52.336395, 4.871641 52.336306, 4.871567 52.336236, 4.871564 52.336101, 4.871408 52.335997, 4.871498 52.335921, 4.871569 52.335675, 4.871553 52.33555, 4.871416 52.33545, 4.871269 52.335425, 4.871093 52.335444, 4.87087 52.335426, 4.870704 52.335481, 4.870513 52.335403, 4.870361 52.335401, 4.87021 52.335448, 4.870103 52.335406, 4.869948 52.335394, 4.869801 52.335418, 4.8697 52.335476, 4.869481 52.335436, 4.869253 52.335443, 4.869058 52.335549, 4.869001 52.335902, 4.869089 52.335979, 4.86939 52.33608, 4.869246 52.33618, 4.869245 52.336306, 4.869374 52.336401, 4.869597 52.336431, 4.869718 52.336583, 4.869826 52.336649, 4.869973 52.336674, 4.870306 52.336666, 4.870531 52.336715, 4.87131 52.336709, 4.871515 52.336623, 4.871657 52.336395))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS230", "asset": null, "location": "SRID=4326;POLYGON ((4.832928 52.359161, 4.832824 52.359019, 4.832686 52.358979, 4.832523 52.358974, 4.832319 52.359016, 4.832213 52.359151, 4.829911 52.359129, 4.829557 52.359202, 4.829449 52.359339, 4.829533 52.359469, 4.829482 52.360572, 4.82953 52.360771, 4.829593 52.360856, 4.829717 52.36091, 4.829948 52.36092, 4.830086 52.360881, 4.830175 52.360805, 4.83019 52.360706, 4.830107 52.360508, 4.830105 52.359962, 4.830245 52.359938, 4.830359 52.359878, 4.830424 52.359794, 4.830432 52.359676, 4.830663 52.359681, 4.830665 52.359798, 4.830757 52.359906, 4.830931 52.359968, 4.831089 52.359961, 4.831266 52.359854, 4.831301 52.359511, 4.831547 52.359542, 4.831731 52.35951, 4.832608 52.359508, 4.832763 52.359429, 4.832804 52.359305, 4.832887 52.359251, 4.832928 52.359161))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS231", "asset": null, "location": "SRID=4326;POLYGON ((4.824782 52.354583, 4.824715 52.354467, 4.824563 52.354386, 4.82433 52.354369, 4.824001 52.354294, 4.823946 52.354226, 4.823822 52.354173, 4.822823 52.353996, 4.82267 52.354004, 4.822545 52.354056, 4.822223 52.354628, 4.822235 52.35472, 4.822323 52.354797, 4.822511 52.35484, 4.822786 52.354798, 4.822875 52.354722, 4.822995 52.354448, 4.823327 52.354517, 4.823437 52.354648, 4.823714 52.354714, 4.823552 52.354755, 4.823463 52.354831, 4.823282 52.355169, 4.823344 52.355314, 4.823236 52.355561, 4.822822 52.355603, 4.822644 52.35571, 4.822643 52.355832, 4.822757 52.355966, 4.822894 52.356006, 4.823266 52.356012, 4.82345 52.355975, 4.823808 52.355975, 4.823983 52.355915, 4.824079 52.355749, 4.824039 52.355656, 4.823948 52.355596, 4.824082 52.355334, 4.824009 52.355157, 4.824038 52.355103, 4.824312 52.3551, 4.824559 52.354987, 4.824782 52.354583))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS232", "asset": null, "location": "SRID=4326;POLYGON ((4.89188 52.389999, 4.891842 52.389909, 4.891734 52.389843, 4.891561 52.389808, 4.891408 52.389815, 4.891253 52.389894, 4.89113 52.390147, 4.891011 52.390236, 4.89103 52.390392, 4.891211 52.390476, 4.891192 52.3906, 4.891107 52.390698, 4.891079 52.390886, 4.890994 52.390959, 4.890986 52.391072, 4.890904 52.391166, 4.890705 52.391207, 4.890498 52.391361, 4.890015 52.392435, 4.890049 52.392556, 4.890157 52.392622, 4.890107 52.392777, 4.89014 52.392858, 4.890106 52.393027, 4.890169 52.393112, 4.890316 52.39317, 4.890518 52.393171, 4.890696 52.393064, 4.891144 52.392046, 4.891118 52.391871, 4.890923 52.391784, 4.890985 52.391649, 4.891218 52.391654, 4.891396 52.391547, 4.891867 52.390506, 4.891775 52.390261, 4.89188 52.389999))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS233", "asset": null, "location": "SRID=4326;POLYGON ((4.807522 52.379791, 4.807455 52.379672, 4.807137 52.379576, 4.807036 52.379448, 4.806912 52.379394, 4.806607 52.379386, 4.806526 52.379317, 4.806388 52.379276, 4.805727 52.379263, 4.805537 52.379305, 4.805448 52.379381, 4.80542 52.379635, 4.805363 52.379741, 4.805401 52.379837, 4.804596 52.379827, 4.804636 52.379738, 4.804624 52.379386, 4.804495 52.379291, 4.804292 52.379269, 4.804117 52.379329, 4.804051 52.379413, 4.803962 52.380019, 4.804033 52.380113, 4.804241 52.380193, 4.805666 52.380218, 4.805814 52.38026, 4.806354 52.380269, 4.806493 52.38023, 4.80659 52.380135, 4.806834 52.380095, 4.806934 52.379995, 4.807185 52.380008, 4.807338 52.379985, 4.807447 52.37992, 4.807522 52.379791))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS234", "asset": null, "location": "SRID=4326;POLYGON ((4.979208 52.316433, 4.97914 52.316317, 4.978846 52.316127, 4.978642 52.316089, 4.978217 52.315921, 4.978015 52.315882, 4.977916 52.315823, 4.977083 52.315537, 4.976715 52.315463, 4.976517 52.315484, 4.976283 52.315624, 4.976072 52.315928, 4.976106 52.316049, 4.976214 52.316115, 4.976642 52.316261, 4.976924 52.316318, 4.977029 52.316382, 4.977612 52.316554, 4.978198 52.316781, 4.978523 52.316846, 4.978729 52.316861, 4.978904 52.316801, 4.978998 52.316701, 4.979013 52.316625, 4.979156 52.316536, 4.979208 52.316433))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS235", "asset": null, "location": "SRID=4326;POLYGON ((4.912749 52.401416, 4.912655 52.401241, 4.912487 52.401064, 4.912573 52.40092, 4.912465 52.400774, 4.912324 52.400733, 4.912047 52.400728, 4.911964 52.400656, 4.911826 52.400615, 4.911256 52.400577, 4.911025 52.40064, 4.910959 52.400724, 4.91096 52.400801, 4.910798 52.400937, 4.910816 52.401064, 4.91092 52.401148, 4.910841 52.40124, 4.910844 52.401339, 4.910975 52.40146, 4.910916 52.401518, 4.910901 52.40161, 4.910949 52.401714, 4.911077 52.401786, 4.911032 52.401853, 4.911045 52.401945, 4.911339 52.402199, 4.911476 52.402239, 4.911651 52.40224, 4.911924 52.402133, 4.912027 52.402027, 4.911994 52.401907, 4.912208 52.401828, 4.912279 52.401712, 4.9126 52.401603, 4.912749 52.401416))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS236", "asset": null, "location": "SRID=4326;POLYGON ((4.94998 52.317283, 4.949942 52.317193, 4.949828 52.317094, 4.949426 52.316948, 4.949272 52.316809, 4.948993 52.316715, 4.948821 52.316709, 4.947377 52.316238, 4.946071 52.315753, 4.945612 52.315694, 4.94546 52.315719, 4.94535 52.315784, 4.945274 52.315954, 4.945416 52.316078, 4.945723 52.316192, 4.945876 52.316201, 4.946002 52.316168, 4.946126 52.31621, 4.946227 52.316246, 4.946266 52.316343, 4.946374 52.316409, 4.946681 52.316523, 4.946933 52.316509, 4.947187 52.316588, 4.94729 52.316719, 4.947639 52.31685, 4.947792 52.316858, 4.947923 52.316824, 4.948146 52.316901, 4.948184 52.317, 4.948291 52.317066, 4.948598 52.317179, 4.948851 52.317165, 4.949086 52.317277, 4.949187 52.31737, 4.949488 52.317483, 4.949644 52.317511, 4.949791 52.317487, 4.9499 52.317422, 4.94998 52.317283))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS237", "asset": null, "location": "SRID=4326;POLYGON ((4.83718 52.369366, 4.836898 52.368611, 4.836817 52.368517, 4.836831 52.368426, 4.836703 52.368003, 4.836528 52.367894, 4.836124 52.367881, 4.835999 52.367933, 4.835933 52.368017, 4.835764 52.368044, 4.83556 52.368156, 4.835489 52.368271, 4.835507 52.368507, 4.835611 52.368627, 4.835582 52.368765, 4.835774 52.369234, 4.835882 52.369301, 4.836028 52.369326, 4.83618 52.369301, 4.836304 52.369228, 4.836334 52.369304, 4.836081 52.369342, 4.835956 52.369394, 4.835849 52.369546, 4.835861 52.369638, 4.835982 52.369736, 4.836171 52.369779, 4.836833 52.369688, 4.836988 52.36961, 4.83718 52.369366))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS238", "asset": null, "location": "SRID=4326;POLYGON ((4.983594 52.362122, 4.983555 52.362028, 4.98342 52.361942, 4.983273 52.361917, 4.983126 52.361941, 4.981438 52.362854, 4.98115 52.362892, 4.980862 52.363048, 4.980708 52.363095, 4.980606 52.3632, 4.980641 52.363325, 4.980844 52.363413, 4.981081 52.363385, 4.98244 52.363954, 4.982657 52.364072, 4.98293 52.364144, 4.983146 52.364119, 4.983332 52.363956, 4.983269 52.363808, 4.982774 52.363577, 4.982605 52.363552, 4.981744 52.36319, 4.983487 52.362259, 4.983594 52.362122))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS239", "asset": null, "location": "SRID=4326;POLYGON ((4.816359 52.380743, 4.816089 52.380003, 4.815915 52.379894, 4.815634 52.379911, 4.815487 52.380036, 4.815538 52.380279, 4.815495 52.380406, 4.815561 52.380549, 4.81566 52.380613, 4.815388 52.38061, 4.815283 52.380555, 4.815268 52.380476, 4.815181 52.380399, 4.815174 52.380054, 4.814995 52.379943, 4.814774 52.379941, 4.81461 52.380026, 4.814539 52.380511, 4.814252 52.380499, 4.814115 52.380163, 4.813983 52.380065, 4.813829 52.380038, 4.813693 52.380053, 4.813511 52.380163, 4.813497 52.380256, 4.813581 52.380361, 4.81373 52.380753, 4.813857 52.380886, 4.813981 52.38094, 4.81605 52.380977, 4.816226 52.380917, 4.816359 52.380743))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS240", "asset": null, "location": "SRID=4326;POLYGON ((4.933291 52.399361, 4.933252 52.399271, 4.933118 52.399184, 4.932878 52.399144, 4.932668 52.399233, 4.932631 52.399354, 4.932557 52.39943, 4.932378 52.399434, 4.930458 52.39795, 4.93032 52.39791, 4.930168 52.397917, 4.929875 52.39806, 4.929839 52.398181, 4.929902 52.398266, 4.930033 52.398324, 4.930185 52.398333, 4.930929 52.398901, 4.930853 52.39902, 4.93092 52.399136, 4.931081 52.399218, 4.931322 52.399208, 4.931643 52.399458, 4.931611 52.399535, 4.93165 52.399625, 4.931843 52.399716, 4.931779 52.399798, 4.931791 52.399891, 4.931889 52.400015, 4.932 52.400083, 4.932198 52.400106, 4.932369 52.400051, 4.932458 52.399975, 4.932467 52.399874, 4.93271 52.399827, 4.932984 52.399694, 4.933251 52.399451, 4.933291 52.399361))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS241", "asset": null, "location": "SRID=4326;POLYGON ((4.956226 52.308585, 4.956121 52.308447, 4.955974 52.308386, 4.955821 52.308377, 4.955683 52.308416, 4.955307 52.308693, 4.955162 52.308748, 4.955014 52.308911, 4.954745 52.309111, 4.954579 52.309188, 4.954512 52.309284, 4.953919 52.309776, 4.953815 52.309823, 4.953505 52.310161, 4.953375 52.3102, 4.953231 52.310319, 4.953194 52.31044, 4.952891 52.310756, 4.952903 52.310848, 4.95299 52.310925, 4.953185 52.31097, 4.953434 52.310921, 4.953548 52.310853, 4.953751 52.310628, 4.954013 52.310526, 4.954083 52.310438, 4.954076 52.31036, 4.954466 52.309968, 4.954659 52.309824, 4.9547 52.309745, 4.954826 52.309692, 4.955258 52.30934, 4.955732 52.309018, 4.955794 52.30894, 4.955997 52.308821, 4.956185 52.308674, 4.956226 52.308585))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS242", "asset": null, "location": "SRID=4326;POLYGON ((4.953133 52.395514, 4.953093 52.39542, 4.952982 52.395352, 4.95257 52.395239, 4.952404 52.395226, 4.952083 52.395323, 4.951996 52.395398, 4.951448 52.395565, 4.951323 52.39565, 4.951183 52.395585, 4.951036 52.39556, 4.950715 52.395636, 4.950351 52.395229, 4.950399 52.395081, 4.950291 52.394964, 4.950154 52.394924, 4.949961 52.394942, 4.949836 52.394995, 4.949684 52.395141, 4.949697 52.395234, 4.95019 52.395862, 4.950399 52.396012, 4.950536 52.396052, 4.950689 52.396044, 4.950922 52.395977, 4.951206 52.396065, 4.951501 52.396017, 4.95167 52.396158, 4.951918 52.396172, 4.952652 52.395956, 4.952754 52.395851, 4.952727 52.39574, 4.952855 52.395744, 4.952993 52.395705, 4.953097 52.395609, 4.953133 52.395514))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS243", "asset": null, "location": "SRID=4326;POLYGON ((4.915688 52.390433, 4.915548 52.390253, 4.91541 52.390213, 4.915257 52.390221, 4.914199 52.390652, 4.914115 52.390724, 4.913031 52.391099, 4.912771 52.391114, 4.912516 52.391202, 4.912197 52.391085, 4.911884 52.39104, 4.911664 52.391135, 4.911641 52.391286, 4.911996 52.39154, 4.912316 52.391714, 4.912454 52.391754, 4.912699 52.391743, 4.913059 52.391538, 4.913289 52.391516, 4.914285 52.391146, 4.914463 52.39114, 4.914618 52.391083, 4.91472 52.390977, 4.915223 52.390777, 4.915326 52.390671, 4.915618 52.390548, 4.915688 52.390433))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS244", "asset": null, "location": "SRID=4326;POLYGON ((4.868867 52.302868, 4.868669 52.302507, 4.868561 52.302441, 4.868415 52.302416, 4.868184 52.302481, 4.868118 52.302619, 4.867965 52.302539, 4.867812 52.30253, 4.867442 52.302635, 4.867353 52.302711, 4.867338 52.302803, 4.867175 52.302748, 4.866977 52.302769, 4.866863 52.302835, 4.866827 52.302949, 4.866647 52.302882, 4.866421 52.302914, 4.866283 52.302765, 4.866054 52.302723, 4.865857 52.30264, 4.865571 52.30264, 4.865428 52.302674, 4.865319 52.302739, 4.865278 52.302828, 4.865385 52.302969, 4.865638 52.303042, 4.865747 52.303111, 4.86593 52.303134, 4.86607 52.303334, 4.866178 52.3034, 4.866472 52.303433, 4.866764 52.303372, 4.866932 52.303477, 4.867078 52.303502, 4.867231 52.303478, 4.86734 52.303413, 4.867381 52.303323, 4.867348 52.303239, 4.867398 52.303206, 4.867529 52.303172, 4.867681 52.303251, 4.867842 52.30328, 4.867994 52.303273, 4.868176 52.303164, 4.868154 52.303009, 4.868312 52.302968, 4.868454 52.303039, 4.868657 52.30304, 4.868797 52.302984, 4.868867 52.302868))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS245", "asset": null, "location": "SRID=4326;POLYGON ((4.882377 52.392896, 4.882273 52.392758, 4.880886 52.392054, 4.880638 52.392066, 4.880518 52.392135, 4.880454 52.392218, 4.880234 52.392108, 4.880087 52.392083, 4.879862 52.392131, 4.879747 52.392225, 4.879733 52.392317, 4.879797 52.392402, 4.880172 52.392573, 4.880271 52.392667, 4.880514 52.39275, 4.880862 52.392956, 4.881033 52.392998, 4.881138 52.393069, 4.881298 52.393236, 4.881222 52.393329, 4.881234 52.393421, 4.881321 52.393498, 4.881518 52.393583, 4.881721 52.393584, 4.88195 52.393497, 4.882155 52.39327, 4.882143 52.393177, 4.882073 52.393111, 4.882252 52.393051, 4.882377 52.392896))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS246", "asset": null, "location": "SRID=4326;POLYGON ((4.976327 52.315457, 4.976267 52.315284, 4.976179 52.315208, 4.974732 52.314724, 4.974437 52.314757, 4.974282 52.314815, 4.974079 52.315049, 4.973978 52.315255, 4.974002 52.315372, 4.974089 52.315448, 4.975694 52.315991, 4.975847 52.315984, 4.975972 52.315931, 4.976073 52.31578, 4.975986 52.315652, 4.976204 52.315612, 4.976327 52.315457))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS247", "asset": null, "location": "SRID=4326;POLYGON ((4.840669 52.353957, 4.840602 52.353831, 4.84058 52.353533, 4.840438 52.353408, 4.840142 52.35337, 4.839615 52.353368, 4.839451 52.35339, 4.839325 52.353443, 4.839255 52.353558, 4.839276 52.354182, 4.839364 52.354259, 4.839554 52.354307, 4.839712 52.3543, 4.839867 52.354222, 4.83987 52.354258, 4.839868 52.354384, 4.839523 52.354388, 4.839299 52.354525, 4.839251 52.354736, 4.83935 52.354842, 4.839539 52.354885, 4.840215 52.354833, 4.840354 52.354794, 4.840521 52.354687, 4.840614 52.354548, 4.840559 52.354364, 4.840595 52.35428, 4.840574 52.354087, 4.840669 52.353957))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS248", "asset": null, "location": "SRID=4326;POLYGON ((4.838158 52.348265, 4.838079 52.347991, 4.838155 52.347617, 4.83802 52.347433, 4.838065 52.347313, 4.837998 52.347197, 4.837874 52.347144, 4.837709 52.347135, 4.837388 52.347254, 4.837147 52.347255, 4.837009 52.347294, 4.83692 52.34737, 4.8369 52.347526, 4.836694 52.347568, 4.836592 52.347673, 4.836592 52.347798, 4.836652 52.347879, 4.836638 52.348285, 4.836715 52.348398, 4.83692 52.348494, 4.837196 52.348534, 4.837828 52.348541, 4.838004 52.348481, 4.838158 52.348265))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS249", "asset": null, "location": "SRID=4326;POLYGON ((4.858307 52.344434, 4.858268 52.344344, 4.85816 52.344278, 4.857929 52.344241, 4.857681 52.344251, 4.857596 52.344236, 4.857539 52.34418, 4.857566 52.344063, 4.857476 52.343962, 4.85767 52.343409, 4.857887 52.343346, 4.857961 52.343179, 4.857897 52.343094, 4.857773 52.34304, 4.857351 52.343013, 4.857225 52.343066, 4.85716 52.34315, 4.856635 52.344597, 4.856647 52.34469, 4.856822 52.344799, 4.857713 52.344909, 4.858204 52.344769, 4.85827 52.344685, 4.858245 52.344567, 4.858307 52.344434))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS250", "asset": null, "location": "SRID=4326;POLYGON ((4.976835 52.323212, 4.97673 52.323074, 4.975778 52.322742, 4.975918 52.322586, 4.976068 52.322528, 4.976136 52.32244, 4.976102 52.322318, 4.975994 52.322252, 4.975717 52.322203, 4.975472 52.322104, 4.975319 52.322095, 4.975144 52.322156, 4.975071 52.322274, 4.974995 52.322314, 4.974818 52.322341, 4.974709 52.322406, 4.974648 52.322551, 4.974687 52.322641, 4.974566 52.322858, 4.974605 52.322948, 4.974712 52.323014, 4.976248 52.323529, 4.976446 52.323508, 4.976661 52.323405, 4.976779 52.323318, 4.976835 52.323212))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS251", "asset": null, "location": "SRID=4326;POLYGON ((4.89057 52.40549, 4.890467 52.405288, 4.89028 52.405136, 4.890521 52.405012, 4.890545 52.404861, 4.89028 52.404636, 4.890211 52.404531, 4.890041 52.404432, 4.889895 52.404407, 4.889747 52.404431, 4.889306 52.404608, 4.889175 52.404744, 4.888799 52.404925, 4.888758 52.405015, 4.888796 52.405105, 4.888887 52.405172, 4.889025 52.405213, 4.889069 52.405313, 4.88927 52.405476, 4.889306 52.405546, 4.889682 52.405825, 4.889896 52.405855, 4.890054 52.405832, 4.890491 52.405643, 4.89057 52.40549))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS252", "asset": null, "location": "SRID=4326;POLYGON ((4.904958 52.396681, 4.90492 52.396587, 4.904771 52.396457, 4.904634 52.396417, 4.904457 52.396429, 4.904498 52.39634, 4.904434 52.396228, 4.904433 52.396113, 4.904338 52.396012, 4.904109 52.395877, 4.90365 52.395833, 4.903293 52.395954, 4.903183 52.396019, 4.903054 52.396172, 4.903053 52.396295, 4.90396 52.397169, 4.904068 52.397235, 4.90431 52.397267, 4.904508 52.397199, 4.904581 52.397032, 4.904453 52.396913, 4.904539 52.396867, 4.904696 52.396876, 4.904845 52.396834, 4.904937 52.396756, 4.904958 52.396681))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS253", "asset": null, "location": "SRID=4326;POLYGON ((4.876282 52.336538, 4.876243 52.336444, 4.876108 52.33637, 4.876104 52.336277, 4.875981 52.336041, 4.876185 52.335973, 4.876256 52.335858, 4.876217 52.335764, 4.876114 52.335699, 4.876117 52.335558, 4.876053 52.335473, 4.875929 52.335419, 4.875771 52.335411, 4.875633 52.335449, 4.875536 52.335543, 4.875481 52.335475, 4.875357 52.335421, 4.875147 52.335408, 4.875009 52.335447, 4.874902 52.335584, 4.874912 52.335869, 4.874975 52.335954, 4.875079 52.336001, 4.874978 52.336063, 4.874938 52.336153, 4.875027 52.336324, 4.874928 52.336473, 4.874996 52.336593, 4.875307 52.336683, 4.875497 52.336674, 4.875985 52.336716, 4.876211 52.336654, 4.876282 52.336538))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS254", "asset": null, "location": "SRID=4326;POLYGON ((4.819952 52.378293, 4.819871 52.378029, 4.819769 52.377891, 4.819726 52.377677, 4.819612 52.377495, 4.819597 52.3773, 4.819476 52.377143, 4.819236 52.377102, 4.81905 52.377138, 4.818925 52.377196, 4.818065 52.377231, 4.817823 52.377298, 4.817758 52.377382, 4.817765 52.377474, 4.817926 52.377632, 4.818115 52.377675, 4.818414 52.377639, 4.818552 52.3777, 4.818783 52.377701, 4.818882 52.377807, 4.819062 52.37785, 4.81927 52.378345, 4.819357 52.378422, 4.819568 52.378474, 4.819756 52.378461, 4.819881 52.378409, 4.819952 52.378293))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS255", "asset": null, "location": "SRID=4326;POLYGON ((4.80558 52.357978, 4.80554 52.357883, 4.805432 52.357817, 4.804911 52.357704, 4.804647 52.357714, 4.804503 52.357781, 4.804304 52.357735, 4.804129 52.357761, 4.803998 52.357854, 4.803656 52.358456, 4.803676 52.358607, 4.803784 52.358673, 4.804277 52.358793, 4.8045 52.358822, 4.804647 52.358799, 4.804757 52.358733, 4.804946 52.358513, 4.805121 52.358191, 4.805453 52.358136, 4.80558 52.357978))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS256", "asset": null, "location": "SRID=4326;POLYGON ((4.875316 52.39624, 4.875212 52.396102, 4.874668 52.395863, 4.874354 52.395794, 4.874156 52.395815, 4.874012 52.395918, 4.873998 52.39601, 4.874043 52.396089, 4.873811 52.396269, 4.873773 52.396379, 4.873284 52.396759, 4.873083 52.396852, 4.873039 52.396944, 4.873078 52.397034, 4.873195 52.397105, 4.873349 52.397133, 4.873562 52.397227, 4.873715 52.397236, 4.873918 52.397176, 4.874059 52.397088, 4.8741 52.396998, 4.874061 52.396908, 4.873938 52.396837, 4.874393 52.39649, 4.87443 52.396375, 4.874565 52.396272, 4.874787 52.396408, 4.874976 52.396451, 4.875203 52.396388, 4.875316 52.39624))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS257", "asset": null, "location": "SRID=4326;POLYGON ((4.907333 52.396122, 4.907294 52.396032, 4.906359 52.395127, 4.906235 52.395074, 4.906097 52.395061, 4.905885 52.39511, 4.905782 52.395216, 4.905816 52.395337, 4.905948 52.39541, 4.906602 52.396041, 4.906374 52.396079, 4.906264 52.396144, 4.906227 52.396216, 4.905646 52.396434, 4.905574 52.396554, 4.905649 52.396678, 4.905823 52.39674, 4.906022 52.396719, 4.907214 52.396264, 4.907292 52.396211, 4.907333 52.396122))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS258", "asset": null, "location": "SRID=4326;POLYGON ((4.95213 52.322444, 4.952062 52.322328, 4.951938 52.322274, 4.951619 52.322288, 4.951445 52.322421, 4.950752 52.322184, 4.950592 52.322173, 4.950411 52.322235, 4.950316 52.322335, 4.950302 52.322427, 4.950384 52.322523, 4.950235 52.322531, 4.950053 52.322591, 4.949961 52.32267, 4.949947 52.322762, 4.950011 52.322847, 4.95011 52.322894, 4.950695 52.323092, 4.951005 52.323133, 4.95121 52.323046, 4.951313 52.322869, 4.951306 52.322791, 4.951582 52.322858, 4.951771 52.322817, 4.952068 52.322556, 4.95213 52.322444))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS259", "asset": null, "location": "SRID=4326;POLYGON ((4.838359 52.372367, 4.838144 52.371856, 4.838036 52.37179, 4.83781 52.371738, 4.837657 52.371638, 4.837404 52.371624, 4.836934 52.371703, 4.836775 52.371783, 4.836738 52.371929, 4.836784 52.372013, 4.836897 52.372082, 4.836879 52.372236, 4.837071 52.372425, 4.837112 52.372522, 4.83722 52.372588, 4.837421 52.372631, 4.837766 52.372581, 4.83793 52.372609, 4.838055 52.372596, 4.838289 52.372483, 4.838359 52.372367))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS260", "asset": null, "location": "SRID=4326;POLYGON ((4.957572 52.307434, 4.957493 52.307259, 4.957074 52.307104, 4.956872 52.307103, 4.956747 52.307156, 4.956645 52.307261, 4.956569 52.307236, 4.956761 52.307024, 4.956775 52.306931, 4.956553 52.306703, 4.956328 52.306638, 4.956169 52.306664, 4.95606 52.306729, 4.955956 52.306892, 4.95606 52.30703, 4.955894 52.307225, 4.955683 52.307265, 4.955567 52.307413, 4.955671 52.307551, 4.955949 52.307636, 4.956151 52.307636, 4.956301 52.307562, 4.956759 52.307692, 4.956906 52.307669, 4.957024 52.307594, 4.957195 52.307642, 4.957393 52.307621, 4.957502 52.307556, 4.957572 52.307434))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS261", "asset": null, "location": "SRID=4326;POLYGON ((4.956185 52.315756, 4.956081 52.315618, 4.955546 52.315429, 4.955053 52.315199, 4.954805 52.315212, 4.95461 52.315383, 4.954596 52.315476, 4.954659 52.315561, 4.955021 52.315749, 4.95525 52.315769, 4.955311 52.315849, 4.955408 52.315895, 4.955323 52.315952, 4.955169 52.315947, 4.955031 52.315986, 4.954897 52.316127, 4.954875 52.316251, 4.954914 52.316341, 4.955249 52.316482, 4.955451 52.316483, 4.955772 52.316398, 4.95584 52.316311, 4.955819 52.316207, 4.956185 52.315756))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS262", "asset": null, "location": "SRID=4326;POLYGON ((4.862384 52.341497, 4.862375 52.341389, 4.86231 52.341301, 4.861976 52.341188, 4.861732 52.341176, 4.861478 52.341216, 4.861352 52.341269, 4.861205 52.341427, 4.861235 52.341668, 4.86141 52.341777, 4.861688 52.341765, 4.861689 52.341876, 4.861419 52.341834, 4.861192 52.341897, 4.861127 52.341981, 4.861117 52.342077, 4.861185 52.342194, 4.861358 52.342255, 4.862059 52.342304, 4.862286 52.342242, 4.862358 52.342119, 4.862274 52.341973, 4.862334 52.341866, 4.862384 52.341497))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS263", "asset": null, "location": "SRID=4326;POLYGON ((4.853629 52.398069, 4.853562 52.397953, 4.852633 52.39721, 4.852486 52.397185, 4.852339 52.397209, 4.851741 52.397495, 4.851704 52.397616, 4.851816 52.397732, 4.852056 52.397773, 4.85246 52.39766, 4.852859 52.397986, 4.852614 52.398152, 4.852544 52.398239, 4.852578 52.39836, 4.852704 52.39844, 4.85285 52.398465, 4.852997 52.398441, 4.853559 52.398185, 4.853629 52.398069))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS264", "asset": null, "location": "SRID=4326;POLYGON ((4.839085 52.356709, 4.839068 52.356449, 4.838981 52.356372, 4.838843 52.356332, 4.837382 52.356298, 4.837199 52.356362, 4.837133 52.356446, 4.837145 52.356539, 4.837232 52.356615, 4.83737 52.356656, 4.837555 52.356659, 4.837557 52.356848, 4.837603 52.356924, 4.83769 52.357001, 4.837828 52.357041, 4.838274 52.357023, 4.838458 52.356954, 4.838704 52.356946, 4.839015 52.356836, 4.839085 52.356709))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS265", "asset": null, "location": "SRID=4326;POLYGON ((4.84522 52.349455, 4.845182 52.349324, 4.844979 52.349236, 4.844752 52.349235, 4.844592 52.349287, 4.844223 52.349287, 4.844056 52.349332, 4.843911 52.349455, 4.843896 52.349865, 4.843934 52.349961, 4.844087 52.350041, 4.844383 52.350054, 4.844773 52.350162, 4.845046 52.350118, 4.845178 52.350024, 4.845205 52.349813, 4.845063 52.349689, 4.844856 52.349666, 4.84515 52.34957, 4.84522 52.349455))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS266", "asset": null, "location": "SRID=4326;POLYGON ((4.876747 52.33574, 4.876575 52.335764, 4.876444 52.335857, 4.876442 52.336139, 4.876529 52.336216, 4.876715 52.336259, 4.87683 52.336335, 4.877032 52.336359, 4.877207 52.336298, 4.87734 52.336108, 4.877598 52.336099, 4.877724 52.336046, 4.877977 52.335752, 4.877991 52.335659, 4.877891 52.335553, 4.877685 52.335483, 4.877532 52.335475, 4.877363 52.335532, 4.877226 52.33542, 4.876992 52.335398, 4.876853 52.335437, 4.876764 52.335513, 4.876747 52.33574))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS267", "asset": null, "location": "SRID=4326;POLYGON ((4.878936 52.367085, 4.878868 52.366969, 4.878687 52.366905, 4.878319 52.366881, 4.87818 52.36692, 4.878091 52.366996, 4.878044 52.367076, 4.878026 52.367324, 4.877694 52.367833, 4.877762 52.367949, 4.877926 52.368013, 4.877963 52.368106, 4.878116 52.368186, 4.878326 52.368189, 4.878503 52.368082, 4.878592 52.367882, 4.878529 52.367797, 4.878384 52.367738, 4.878438 52.367662, 4.878621 52.36764, 4.878731 52.367575, 4.878779 52.367436, 4.878691 52.367306, 4.878851 52.367227, 4.878936 52.367085))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS268", "asset": null, "location": "SRID=4326;POLYGON ((4.839568 52.349096, 4.839567 52.348824, 4.839449 52.348661, 4.839434 52.348556, 4.839304 52.348461, 4.839158 52.348436, 4.83826 52.348435, 4.838055 52.348521, 4.838014 52.348611, 4.838037 52.348768, 4.838119 52.348887, 4.838378 52.348969, 4.838724 52.348967, 4.838893 52.348939, 4.838953 52.348987, 4.838969 52.349209, 4.839105 52.349306, 4.83927 52.349331, 4.83946 52.34929, 4.839549 52.349214, 4.839568 52.349096))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS269", "asset": null, "location": "SRID=4326;POLYGON ((4.913648 52.38957, 4.913535 52.389421, 4.912987 52.389264, 4.912751 52.389286, 4.912531 52.389386, 4.912397 52.389566, 4.912378 52.389747, 4.91248 52.389877, 4.912707 52.389958, 4.912759 52.390037, 4.912689 52.390218, 4.912842 52.390351, 4.913067 52.390381, 4.913276 52.390292, 4.913392 52.390047, 4.913356 52.389863, 4.913603 52.389665, 4.913648 52.38957))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS270", "asset": null, "location": "SRID=4326;POLYGON ((4.823989 52.359262, 4.823951 52.359172, 4.823843 52.359106, 4.823349 52.359078, 4.823283 52.358949, 4.823109 52.358887, 4.821869 52.358874, 4.821693 52.358934, 4.82162 52.359023, 4.821654 52.359144, 4.821807 52.359224, 4.822749 52.359245, 4.822815 52.359373, 4.822989 52.359435, 4.823786 52.359435, 4.823949 52.359352, 4.823989 52.359262))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS271", "asset": null, "location": "SRID=4326;POLYGON ((4.88699 52.393155, 4.886951 52.393065, 4.886843 52.392999, 4.886664 52.392974, 4.886508 52.392894, 4.886135 52.392872, 4.885917 52.392931, 4.885745 52.392916, 4.885546 52.392965, 4.885457 52.393041, 4.885423 52.393185, 4.885491 52.393305, 4.885649 52.393366, 4.885715 52.393501, 4.885889 52.393563, 4.886029 52.393659, 4.886176 52.393684, 4.886407 52.393619, 4.886514 52.39352, 4.88652 52.393409, 4.886654 52.3934, 4.886814 52.393335, 4.886949 52.393245, 4.88699 52.393155))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS272", "asset": null, "location": "SRID=4326;POLYGON ((4.805504 52.378177, 4.805395 52.378035, 4.804977 52.377927, 4.804304 52.377912, 4.803862 52.377954, 4.803641 52.378016, 4.803538 52.378122, 4.803514 52.378347, 4.803657 52.378471, 4.803926 52.378495, 4.804102 52.378435, 4.804169 52.378337, 4.804324 52.378327, 4.804501 52.378274, 4.804627 52.378276, 4.804977 52.378426, 4.805181 52.378448, 4.805357 52.378388, 4.805504 52.378177))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS273", "asset": null, "location": "SRID=4326;POLYGON ((4.856359 52.39626, 4.856287 52.396136, 4.856113 52.396074, 4.855561 52.396038, 4.855422 52.396077, 4.855333 52.396153, 4.855356 52.396457, 4.855507 52.396559, 4.855518 52.396756, 4.855661 52.396855, 4.855644 52.397039, 4.855819 52.397148, 4.856059 52.397149, 4.856236 52.397042, 4.85626 52.396665, 4.856196 52.396581, 4.856104 52.396536, 4.856108 52.396436, 4.856288 52.396375, 4.856359 52.39626))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS274", "asset": null, "location": "SRID=4326;POLYGON ((4.901327 52.338286, 4.901223 52.338145, 4.901086 52.338104, 4.900929 52.338107, 4.90079 52.338146, 4.900619 52.338281, 4.90046 52.338295, 4.900335 52.338348, 4.900264 52.338463, 4.900313 52.338861, 4.900417 52.338999, 4.900606 52.339042, 4.900961 52.339025, 4.901188 52.338962, 4.901258 52.338847, 4.901205 52.338429, 4.901287 52.338376, 4.901327 52.338286))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS275", "asset": null, "location": "SRID=4326;POLYGON ((4.805799 52.403301, 4.805765 52.403217, 4.805773 52.402827, 4.805632 52.402633, 4.805428 52.402545, 4.805133 52.402565, 4.805001 52.402659, 4.804982 52.402781, 4.80502 52.402871, 4.805176 52.402997, 4.805174 52.403145, 4.805069 52.403252, 4.805049 52.403604, 4.805153 52.403742, 4.805399 52.403783, 4.805575 52.403722, 4.805668 52.403564, 4.805656 52.403456, 4.805757 52.403394, 4.805799 52.403301))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS276", "asset": null, "location": "SRID=4326;POLYGON ((4.950661 52.319998, 4.950622 52.319908, 4.95052 52.319837, 4.949494 52.31949, 4.949237 52.319503, 4.94907 52.319616, 4.949069 52.319738, 4.949234 52.319844, 4.949219 52.319936, 4.949283 52.32002, 4.949514 52.320087, 4.949661 52.320063, 4.949758 52.320009, 4.94985 52.320045, 4.949915 52.320179, 4.950099 52.320253, 4.950252 52.320261, 4.95039 52.320222, 4.950589 52.320117, 4.950661 52.319998))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS277", "asset": null, "location": "SRID=4326;POLYGON ((4.868555 52.340473, 4.868516 52.340382, 4.868438 52.340328, 4.868469 52.340065, 4.86843 52.339975, 4.86827 52.339891, 4.868022 52.339903, 4.867876 52.340026, 4.867824 52.340469, 4.867863 52.340559, 4.867722 52.340632, 4.867657 52.340717, 4.867654 52.340807, 4.867718 52.340892, 4.867943 52.340957, 4.868424 52.340877, 4.868526 52.340772, 4.868555 52.340473))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS278", "asset": null, "location": "SRID=4326;POLYGON ((4.838816 52.363335, 4.838781 52.363155, 4.838694 52.363078, 4.838557 52.363038, 4.838025 52.363028, 4.837989 52.362896, 4.837836 52.362816, 4.837539 52.362814, 4.837378 52.362862, 4.837289 52.362938, 4.837288 52.363064, 4.837417 52.363159, 4.837464 52.363298, 4.837617 52.363378, 4.83821 52.363394, 4.838338 52.363488, 4.838518 52.363513, 4.838745 52.36345, 4.838816 52.363335))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS279", "asset": null, "location": "SRID=4326;POLYGON ((4.973775 52.315148, 4.973707 52.315032, 4.973532 52.31496, 4.973379 52.314952, 4.973241 52.314991, 4.972944 52.315357, 4.972734 52.315398, 4.972573 52.315548, 4.97253 52.315641, 4.972597 52.315757, 4.973046 52.315905, 4.973287 52.315866, 4.973423 52.315724, 4.973394 52.315609, 4.973734 52.315238, 4.973775 52.315148))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS280", "asset": null, "location": "SRID=4326;POLYGON ((4.931151 52.402315, 4.930992 52.401946, 4.930862 52.401851, 4.930733 52.401676, 4.930507 52.401611, 4.930272 52.401659, 4.930183 52.401735, 4.930108 52.40195, 4.930194 52.402182, 4.930282 52.402259, 4.930386 52.402293, 4.930466 52.402456, 4.93064 52.402518, 4.930914 52.402498, 4.931075 52.402435, 4.931151 52.402315))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS281", "asset": null, "location": "SRID=4326;POLYGON ((4.94428 52.398338, 4.94418 52.398155, 4.944068 52.398086, 4.94387 52.398064, 4.9437 52.398115, 4.943593 52.398252, 4.943417 52.398276, 4.943272 52.398375, 4.943257 52.398468, 4.943333 52.398566, 4.943235 52.398699, 4.943308 52.39882, 4.943433 52.398874, 4.943594 52.398883, 4.943895 52.398767, 4.943984 52.398691, 4.944003 52.398542, 4.94421 52.398453, 4.94428 52.398338))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS282", "asset": null, "location": "SRID=4326;POLYGON ((4.78875 52.361989, 4.788683 52.361873, 4.788559 52.361819, 4.788362 52.361801, 4.788187 52.361861, 4.787812 52.362514, 4.787824 52.362606, 4.787911 52.362683, 4.788156 52.362738, 4.788383 52.362675, 4.78875 52.361989))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS283", "asset": null, "location": "SRID=4326;POLYGON ((4.820457 52.379422, 4.820401 52.379208, 4.820188 52.379029, 4.819999 52.378985, 4.819745 52.379053, 4.81968 52.379137, 4.819687 52.379217, 4.819365 52.379284, 4.819257 52.379421, 4.819335 52.379563, 4.81956 52.379628, 4.819975 52.379562, 4.820103 52.379598, 4.820261 52.37959, 4.820387 52.379537, 4.820457 52.379422))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS284", "asset": null, "location": "SRID=4326;POLYGON ((4.886211 52.333472, 4.886159 52.333312, 4.885956 52.333224, 4.885095 52.333222, 4.884919 52.333283, 4.884854 52.333367, 4.884887 52.333567, 4.88509 52.333656, 4.886016 52.33364, 4.886141 52.333587, 4.886211 52.333472))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS285", "asset": null, "location": "SRID=4326;POLYGON ((4.905663 52.396063, 4.905585 52.395932, 4.905253 52.395649, 4.905028 52.395631, 4.904721 52.395556, 4.904574 52.395579, 4.904452 52.395649, 4.904416 52.39577, 4.904532 52.395904, 4.904783 52.396028, 4.905021 52.396068, 4.905217 52.396222, 4.905364 52.396247, 4.905511 52.396223, 4.905621 52.396158, 4.905663 52.396063))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS286", "asset": null, "location": "SRID=4326;POLYGON ((4.963469 52.390381, 4.963401 52.390265, 4.96324 52.390201, 4.963088 52.390193, 4.962912 52.390253, 4.962589 52.390689, 4.962576 52.39082, 4.962677 52.390926, 4.962872 52.39097, 4.963099 52.390907, 4.963469 52.390381))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS287", "asset": null, "location": "SRID=4326;POLYGON ((4.852395 52.398357, 4.852324 52.398238, 4.85198 52.398004, 4.851685 52.397968, 4.851474 52.398056, 4.851433 52.398146, 4.851472 52.398236, 4.851587 52.398324, 4.851698 52.39836, 4.851772 52.39847, 4.851882 52.398539, 4.852029 52.398564, 4.852176 52.39854, 4.852324 52.398472, 4.852395 52.398357))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS288", "asset": null, "location": "SRID=4326;POLYGON ((4.871125 52.380591, 4.871087 52.380501, 4.870979 52.380435, 4.87067 52.380375, 4.870517 52.380383, 4.870339 52.38049, 4.870249 52.380683, 4.870261 52.380776, 4.870436 52.380885, 4.870821 52.380891, 4.871034 52.380789, 4.871125 52.380591))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS289", "asset": null, "location": "SRID=4326;POLYGON ((4.954776 52.328172, 4.954672 52.328034, 4.95453 52.327992, 4.954377 52.327999, 4.954032 52.328151, 4.953965 52.328238, 4.953978 52.32833, 4.954065 52.328407, 4.954255 52.328474, 4.954503 52.328474, 4.954658 52.328395, 4.954748 52.32829, 4.954776 52.328172))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS290", "asset": null, "location": "SRID=4326;POLYGON ((4.786065 52.354905, 4.785961 52.354767, 4.7856 52.354678, 4.785359 52.354716, 4.785249 52.354836, 4.785261 52.354929, 4.785348 52.355006, 4.785703 52.355106, 4.785944 52.355068, 4.786033 52.354992, 4.786065 52.354905))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS291", "asset": null, "location": "SRID=4326;POLYGON ((4.885958 52.334341, 4.885903 52.334178, 4.885767 52.334076, 4.885519 52.334062, 4.885365 52.33414, 4.885322 52.334365, 4.885465 52.334489, 4.885657 52.334523, 4.885804 52.334499, 4.885917 52.334431, 4.885958 52.334341))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS292", "asset": null, "location": "SRID=4326;POLYGON ((4.884848 52.336977, 4.88483 52.337038, 4.884743 52.337114, 4.884604 52.337153, 4.88443 52.337156, 4.884283 52.337131, 4.884177 52.337065, 4.884142 52.337007, 4.884138 52.336874, 4.883043 52.336872, 4.883038 52.336951, 4.882973 52.337035, 4.882847 52.337087, 4.882747 52.337098, 4.882601 52.337073, 4.882408 52.336992, 4.882344 52.336944, 4.882308 52.336871, 4.877934 52.336865, 4.877947 52.336925, 4.878008 52.337011, 4.878004 52.337089, 4.878058 52.337193, 4.878053 52.337318, 4.877997 52.337393, 4.878069 52.337461, 4.878085 52.337522, 4.878027 52.337636, 4.878026 52.33794, 4.877986 52.33803, 4.877887 52.338099, 4.877797 52.33813, 4.877646 52.338137, 4.877518 52.338102, 4.877416 52.338161, 4.877269 52.338184, 4.877104 52.338167, 4.877015 52.338135, 4.876951 52.338087, 4.876916 52.338028, 4.876913 52.33788, 4.876864 52.337827, 4.876847 52.337752, 4.876866 52.337691, 4.87691 52.337643, 4.876911 52.33748, 4.876941 52.337387, 4.877182 52.336987, 4.877251 52.336938, 4.877329 52.336823, 4.877438 52.336752, 4.8774 52.336662, 4.877449 52.336561, 4.877514 52.336514, 4.877653 52.336475, 4.877902 52.336487, 4.877981 52.336504, 4.878427 52.336501, 4.878542 52.336467, 4.878642 52.336456, 4.878742 52.336468, 4.878839 52.336506, 4.879732 52.336507, 4.879833 52.336469, 4.879933 52.336458, 4.880033 52.33647, 4.880131 52.336508, 4.881165 52.336502, 4.881255 52.336471, 4.881355 52.336461, 4.881454 52.336472, 4.881552 52.33651, 4.882362 52.336511, 4.882507 52.336464, 4.882606 52.336454, 4.882706 52.336465, 4.88282 52.336512, 4.884139 52.336514, 4.884141 52.336181, 4.884182 52.336091, 4.884247 52.336044, 4.884337 52.336012, 4.884573 52.336005, 4.884711 52.336046, 4.884775 52.336093, 4.884809 52.336152, 4.884795 52.336245, 4.884727 52.336308, 4.884725 52.33683, 4.88481 52.336887, 4.884848 52.336977))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS293", "asset": null, "location": "SRID=4326;POLYGON ((4.818038 52.37519, 4.817997 52.37528, 4.817835 52.37537, 4.817739 52.375391, 4.817483 52.375405, 4.817565 52.375695, 4.817524 52.375785, 4.817416 52.37585, 4.817085 52.375891, 4.816985 52.37588, 4.816896 52.375848, 4.81681 52.375771, 4.816712 52.375463, 4.816599 52.375448, 4.816519 52.375513, 4.816349 52.375554, 4.816402 52.375807, 4.816336 52.375891, 4.816258 52.375931, 4.815919 52.375973, 4.81582 52.375962, 4.815731 52.37593, 4.815645 52.375853, 4.815572 52.375595, 4.815451 52.375627, 4.815213 52.375649, 4.815289 52.375921, 4.81527 52.375982, 4.815218 52.376037, 4.815093 52.376089, 4.814815 52.37612, 4.814663 52.376111, 4.814539 52.376057, 4.814476 52.375972, 4.814416 52.375747, 4.814376 52.375732, 4.81428 52.375786, 4.814086 52.375817, 4.814126 52.376033, 4.81409 52.376091, 4.814024 52.376138, 4.813886 52.376177, 4.813664 52.376196, 4.813564 52.376185, 4.813475 52.376153, 4.813389 52.376076, 4.813315 52.375813, 4.813164 52.375804, 4.813066 52.375767, 4.812895 52.375773, 4.8128 52.375751, 4.812656 52.375679, 4.812592 52.375594, 4.812593 52.375531, 4.812659 52.375447, 4.812737 52.375408, 4.812833 52.375387, 4.812993 52.375382, 4.813081 52.375401, 4.813566 52.375356, 4.813712 52.375381, 4.813801 52.375432, 4.813861 52.37536, 4.813939 52.375321, 4.81427 52.375277, 4.814715 52.375292, 4.814821 52.375285, 4.814948 52.375304, 4.815146 52.375284, 4.815192 52.375237, 4.81527 52.375198, 4.815417 52.375174, 4.815769 52.375192, 4.815911 52.375224, 4.816065 52.375185, 4.816098 52.375133, 4.816163 52.375085, 4.816301 52.375046, 4.816774 52.375066, 4.816894 52.375099, 4.817535 52.375036, 4.817646 52.375009, 4.817798 52.375012, 4.817893 52.375034, 4.817971 52.375074, 4.818021 52.375129, 4.818038 52.37519))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS294", "asset": null, "location": "SRID=4326;POLYGON ((4.940131 52.405586, 4.940113 52.405647, 4.940061 52.405701, 4.939936 52.405754, 4.939655 52.405769, 4.939508 52.405744, 4.939287 52.405643, 4.938445 52.404954, 4.93798 52.405143, 4.93788 52.405153, 4.937736 52.405129, 4.936006 52.405957, 4.935968 52.40603, 4.935903 52.406078, 4.935324 52.406357, 4.935047 52.406439, 4.934947 52.40645, 4.934847 52.406438, 4.934094 52.406244, 4.934016 52.406204, 4.933952 52.40612, 4.933953 52.406057, 4.933989 52.405998, 4.934054 52.405951, 4.934144 52.40592, 4.934244 52.405909, 4.934344 52.405921, 4.934836 52.406047, 4.934947 52.40602, 4.935101 52.406006, 4.935367 52.405879, 4.935394 52.405818, 4.935279 52.405767, 4.935128 52.405652, 4.934475 52.405468, 4.934397 52.405428, 4.934334 52.405344, 4.934334 52.405281, 4.9344 52.405196, 4.934478 52.405157, 4.934574 52.405136, 4.934725 52.405145, 4.935427 52.405342, 4.935575 52.405417, 4.935731 52.405537, 4.935787 52.405604, 4.937636 52.404728, 4.937783 52.404704, 4.937939 52.404733, 4.938371 52.404551, 4.938467 52.40453, 4.938618 52.404538, 4.938742 52.404592, 4.939628 52.405321, 4.93982 52.405374, 4.939936 52.405385, 4.940061 52.405438, 4.940112 52.405493, 4.940131 52.405586))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS295", "asset": null, "location": "SRID=4326;POLYGON ((4.961682 52.327567, 4.961664 52.327629, 4.961612 52.327683, 4.961478 52.327737, 4.961425 52.327786, 4.961327 52.328011, 4.961246 52.328084, 4.961229 52.32816, 4.961122 52.328302, 4.960982 52.328386, 4.960844 52.328425, 4.960693 52.328416, 4.960603 52.328384, 4.960541 52.328338, 4.960425 52.328315, 4.960225 52.328235, 4.960163 52.328313, 4.960325 52.328359, 4.96056 52.328457, 4.960624 52.328505, 4.960697 52.32861, 4.960709 52.328703, 4.960584 52.328878, 4.960325 52.328979, 4.960254 52.32903, 4.960144 52.329065, 4.96005 52.329153, 4.959816 52.329222, 4.959714 52.329221, 4.959619 52.329199, 4.959512 52.329133, 4.959325 52.329075, 4.959227 52.329025, 4.959163 52.32894, 4.959178 52.328847, 4.959309 52.328719, 4.959387 52.32868, 4.959479 52.328658, 4.959495 52.328586, 4.959538 52.328539, 4.959479 52.328493, 4.959444 52.328435, 4.959458 52.328342, 4.959747 52.328023, 4.959786 52.327944, 4.959912 52.327834, 4.960022 52.327557, 4.96021 52.327313, 4.960193 52.327252, 4.960211 52.327191, 4.960299 52.327115, 4.960437 52.327076, 4.96054 52.327076, 4.960635 52.327098, 4.961579 52.32743, 4.961665 52.327506, 4.961682 52.327567))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS296", "asset": null, "location": "SRID=4326;POLYGON ((4.90719 52.393454, 4.907149 52.393544, 4.907041 52.393609, 4.906945 52.39363, 4.906842 52.39363, 4.906671 52.393575, 4.90656 52.393633, 4.906545 52.39372, 4.906457 52.393796, 4.905873 52.394022, 4.905638 52.394061, 4.905535 52.394061, 4.905439 52.394039, 4.905362 52.393999, 4.904823 52.393474, 4.904608 52.393459, 4.904484 52.393406, 4.904381 52.393298, 4.904365 52.393144, 4.904431 52.393059, 4.904509 52.39302, 4.904775 52.392983, 4.905258 52.392795, 4.905245 52.392745, 4.905263 52.392684, 4.905351 52.392607, 4.905482 52.392554, 4.905578 52.392533, 4.905675 52.392478, 4.905771 52.392456, 4.905874 52.392457, 4.906011 52.392497, 4.906079 52.392547, 4.906195 52.392532, 4.906341 52.392557, 4.906448 52.392623, 4.906526 52.392725, 4.906525 52.392788, 4.90646 52.392872, 4.906234 52.392963, 4.906083 52.392971, 4.905987 52.392949, 4.905891 52.392893, 4.905851 52.392912, 4.905906 52.392974, 4.905922 52.393026, 4.905992 52.393063, 4.906217 52.39328, 4.906299 52.393256, 4.90636 52.393181, 4.906485 52.393129, 4.906585 52.393118, 4.906839 52.393144, 4.906963 52.393197, 4.907151 52.393364, 4.90719 52.393454))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS297", "asset": null, "location": "SRID=4326;POLYGON ((4.94875 52.305202, 4.948732 52.305263, 4.948655 52.305341, 4.948535 52.305392, 4.948454 52.305474, 4.948357 52.305519, 4.948255 52.305625, 4.948054 52.305718, 4.947907 52.305742, 4.947761 52.305717, 4.946672 52.305343, 4.946575 52.305285, 4.946417 52.305233, 4.946377 52.305235, 4.946113 52.305524, 4.946121 52.305606, 4.946086 52.305664, 4.945688 52.306101, 4.945536 52.306197, 4.945521 52.30628, 4.94523 52.3066, 4.945215 52.306683, 4.945098 52.306806, 4.944999 52.306851, 4.944875 52.30698, 4.94475 52.307033, 4.94465 52.307043, 4.94455 52.307032, 4.944461 52.307, 4.944397 52.306952, 4.944358 52.306862, 4.944399 52.306772, 4.944904 52.306222, 4.944906 52.306166, 4.944942 52.306108, 4.945138 52.305903, 4.945261 52.305834, 4.945302 52.305788, 4.945291 52.305698, 4.945375 52.305584, 4.945468 52.305525, 4.945506 52.305454, 4.94599 52.304923, 4.946098 52.304858, 4.946245 52.304834, 4.946503 52.304851, 4.946979 52.305012, 4.947077 52.305069, 4.947837 52.305331, 4.947863 52.305324, 4.947959 52.305224, 4.948058 52.305178, 4.948075 52.305103, 4.948127 52.305048, 4.948205 52.305009, 4.9483 52.304988, 4.948451 52.304996, 4.948647 52.305064, 4.948733 52.305141, 4.94875 52.305202))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS298", "asset": null, "location": "SRID=4326;POLYGON ((4.903784 52.393477, 4.903766 52.393538, 4.903678 52.393614, 4.902949 52.39389, 4.902798 52.393898, 4.902505 52.393857, 4.90238 52.393803, 4.902327 52.393743, 4.902247 52.393809, 4.902092 52.393849, 4.902077 52.394041, 4.902011 52.394125, 4.901886 52.394178, 4.901692 52.394186, 4.901596 52.394164, 4.901519 52.394124, 4.901403 52.394005, 4.901386 52.393944, 4.901404 52.393883, 4.901456 52.393828, 4.90158 52.393745, 4.901737 52.393697, 4.90159 52.393665, 4.901526 52.393634, 4.901327 52.393706, 4.901175 52.393713, 4.900964 52.393644, 4.900874 52.393563, 4.900862 52.39347, 4.900928 52.393386, 4.901041 52.393333, 4.900938 52.393333, 4.900801 52.393293, 4.900715 52.393216, 4.900703 52.393123, 4.90087 52.392781, 4.900922 52.392726, 4.901 52.392687, 4.901096 52.392666, 4.901329 52.392671, 4.901606 52.392723, 4.90173 52.392776, 4.901794 52.392861, 4.901794 52.392924, 4.90176 52.392994, 4.90193 52.393044, 4.902007 52.393018, 4.902107 52.393008, 4.902644 52.39304, 4.902782 52.39308, 4.902846 52.393128, 4.902885 52.393218, 4.902843 52.393311, 4.902735 52.393376, 4.902639 52.393397, 4.902554 52.393398, 4.902497 52.393462, 4.902419 52.393502, 4.902254 52.393524, 4.902338 52.393616, 4.902418 52.39355, 4.902553 52.393498, 4.9027 52.393475, 4.90286 52.393505, 4.903345 52.39332, 4.903441 52.393299, 4.903544 52.393299, 4.903681 52.393339, 4.903767 52.393416, 4.903784 52.393477))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS299", "asset": null, "location": "SRID=4326;POLYGON ((4.931367 52.401544, 4.931349 52.401605, 4.931297 52.40166, 4.931172 52.401712, 4.930281 52.401911, 4.930178 52.401911, 4.930083 52.401889, 4.930005 52.401849, 4.929941 52.401764, 4.929956 52.401672, 4.930015 52.401613, 4.930007 52.401545, 4.929902 52.401401, 4.929902 52.401345, 4.929809 52.401301, 4.929706 52.401179, 4.92956 52.401154, 4.929413 52.40109, 4.929103 52.400806, 4.929054 52.400857, 4.928932 52.400917, 4.928814 52.400939, 4.928689 52.400994, 4.928593 52.401015, 4.92849 52.401014, 4.928395 52.400992, 4.928189 52.400854, 4.928125 52.400769, 4.928139 52.400677, 4.928191 52.400622, 4.928355 52.400534, 4.928244 52.40051, 4.928137 52.400444, 4.928099 52.400354, 4.928139 52.400264, 4.928228 52.400203, 4.928318 52.400172, 4.928505 52.400159, 4.928605 52.40017, 4.928729 52.400223, 4.92878 52.400279, 4.928797 52.40034, 4.928756 52.400429, 4.928616 52.400522, 4.928649 52.400531, 4.928814 52.400479, 4.928917 52.400479, 4.929055 52.40052, 4.929128 52.400579, 4.929268 52.400522, 4.929368 52.400512, 4.929468 52.400523, 4.929592 52.400576, 4.929749 52.400731, 4.929829 52.400665, 4.929919 52.400633, 4.930071 52.400626, 4.930166 52.400648, 4.930272 52.400714, 4.930372 52.400851, 4.930361 52.400938, 4.930661 52.40124, 4.930774 52.401198, 4.930874 52.401187, 4.930974 52.401198, 4.931064 52.40123, 4.931259 52.401341, 4.931326 52.401401, 4.931361 52.40146, 4.931367 52.401544))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS300", "asset": null, "location": "SRID=4326;POLYGON ((4.95365 52.344401, 4.953631 52.344462, 4.95358 52.344517, 4.95233 52.345291, 4.952159 52.345434, 4.951996 52.345535, 4.951806 52.345617, 4.951694 52.345723, 4.951614 52.345772, 4.951508 52.345806, 4.951405 52.34586, 4.951309 52.345882, 4.951158 52.345873, 4.951034 52.345819, 4.950885 52.345605, 4.950885 52.345542, 4.950951 52.345458, 4.951405 52.345186, 4.951482 52.345124, 4.951541 52.345101, 4.951583 52.34506, 4.951671 52.345018, 4.951952 52.344829, 4.952046 52.344785, 4.952331 52.344591, 4.952426 52.344547, 4.952469 52.344504, 4.952808 52.344307, 4.953009 52.344166, 4.953147 52.344127, 4.95325 52.344127, 4.953345 52.344149, 4.953582 52.344285, 4.953633 52.34434, 4.95365 52.344401))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS301", "asset": null, "location": "SRID=4326;POLYGON ((4.909985 52.396626, 4.909975 52.396701, 4.90994 52.396759, 4.909874 52.396807, 4.909756 52.396849, 4.909605 52.396856, 4.909467 52.396816, 4.909381 52.396739, 4.909362 52.39665, 4.908511 52.396977, 4.908415 52.396998, 4.908264 52.396989, 4.908174 52.396957, 4.908087 52.396888, 4.90805 52.39681, 4.907528 52.396301, 4.907269 52.3964, 4.907122 52.396424, 4.906976 52.396399, 4.90678 52.396286, 4.906712 52.396215, 4.906699 52.396127, 4.90664 52.396094, 4.906589 52.396039, 4.906572 52.395978, 4.90659 52.395917, 4.906678 52.395841, 4.906785 52.395803, 4.906885 52.395793, 4.906985 52.395804, 4.907109 52.395857, 4.90716 52.395912, 4.907172 52.396, 4.907191 52.396006, 4.907522 52.395884, 4.907673 52.395877, 4.907769 52.395899, 4.907875 52.395965, 4.908489 52.396561, 4.909316 52.396244, 4.909412 52.396223, 4.909563 52.396231, 4.909653 52.396263, 4.909717 52.396311, 4.909946 52.396536, 4.909985 52.396626))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS302", "asset": null, "location": "SRID=4326;POLYGON ((4.89528 52.403737, 4.895262 52.403798, 4.89521 52.403852, 4.895 52.403968, 4.8949 52.404001, 4.894675 52.404118, 4.89351 52.40465, 4.893155 52.404718, 4.893008 52.404694, 4.892889 52.404618, 4.89285 52.404525, 4.89276 52.404418, 4.892761 52.404356, 4.892826 52.404271, 4.893298 52.404044, 4.893342 52.404, 4.893444 52.403947, 4.893589 52.403908, 4.894782 52.403347, 4.894878 52.403326, 4.894981 52.403327, 4.895076 52.403349, 4.895153 52.403388, 4.895217 52.403473, 4.895216 52.403536, 4.895181 52.403594, 4.895263 52.403676, 4.89528 52.403737))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS303", "asset": null, "location": "SRID=4326;POLYGON ((4.827382 52.341882, 4.827346 52.342178, 4.827238 52.342273, 4.827059 52.342346, 4.826918 52.342377, 4.826792 52.342373, 4.826667 52.342407, 4.826464 52.34242, 4.825753 52.342342, 4.825535 52.342285, 4.82545 52.342208, 4.825441 52.342102, 4.825495 52.342018, 4.82553 52.341886, 4.825418 52.341788, 4.82538 52.341703, 4.825381 52.34163, 4.825445 52.341534, 4.825553 52.341469, 4.825649 52.341447, 4.825897 52.341438, 4.826034 52.341478, 4.826098 52.341526, 4.826132 52.341584, 4.826773 52.341655, 4.826902 52.341692, 4.827025 52.341689, 4.827237 52.341726, 4.827343 52.341792, 4.827382 52.341882))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS304", "asset": null, "location": "SRID=4326;POLYGON ((4.961774 52.37383, 4.961745 52.373935, 4.961693 52.373989, 4.961568 52.374042, 4.961416 52.374049, 4.961321 52.374028, 4.961244 52.373988, 4.961174 52.373882, 4.960901 52.373859, 4.960736 52.373914, 4.960636 52.373924, 4.960503 52.373906, 4.960266 52.373832, 4.959982 52.37383, 4.959858 52.373796, 4.958979 52.373721, 4.958857 52.373766, 4.958705 52.373774, 4.95861 52.373752, 4.958533 52.373712, 4.958469 52.373627, 4.95847 52.373564, 4.958492 52.373497, 4.95858 52.373421, 4.958745 52.373353, 4.958868 52.373341, 4.958856 52.373248, 4.958921 52.373164, 4.959047 52.373112, 4.959198 52.373104, 4.959336 52.373144, 4.9594 52.373192, 4.959457 52.373314, 4.959426 52.373393, 4.960394 52.37348, 4.960589 52.373517, 4.960691 52.37348, 4.960791 52.373469, 4.96099 52.373502, 4.961521 52.373555, 4.961661 52.373609, 4.961726 52.373657, 4.96176 52.373715, 4.961774 52.37383))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS305", "asset": null, "location": "SRID=4326;POLYGON ((4.944579 52.307194, 4.944539 52.307283, 4.94417 52.307684, 4.944161 52.30779, 4.944009 52.307964, 4.943944 52.308012, 4.943838 52.308046, 4.943669 52.308229, 4.943683 52.308283, 4.943665 52.308344, 4.943493 52.308538, 4.943428 52.308585, 4.943309 52.308621, 4.943012 52.308942, 4.942934 52.308981, 4.942661 52.309044, 4.942558 52.309044, 4.942421 52.309004, 4.942357 52.308956, 4.942322 52.308897, 4.942323 52.308834, 4.942358 52.308776, 4.942493 52.308651, 4.942647 52.308611, 4.942904 52.308328, 4.943012 52.308263, 4.943057 52.308164, 4.943432 52.307756, 4.943523 52.307698, 4.943562 52.307613, 4.944063 52.307076, 4.944141 52.307037, 4.944237 52.307015, 4.944388 52.307024, 4.944512 52.307077, 4.944562 52.307132, 4.944579 52.307194))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS306", "asset": null, "location": "SRID=4326;POLYGON ((4.83567 52.378896, 4.835652 52.378957, 4.8356 52.379011, 4.835474 52.379064, 4.834696 52.379185, 4.834581 52.379185, 4.834443 52.379223, 4.833608 52.379353, 4.833519 52.379355, 4.833441 52.379394, 4.833345 52.379415, 4.833208 52.379409, 4.832384 52.379537, 4.832281 52.379537, 4.832144 52.379497, 4.831985 52.379418, 4.831921 52.379333, 4.831922 52.37927, 4.831967 52.379187, 4.832032 52.379139, 4.832122 52.379108, 4.83228 52.3791, 4.832375 52.379122, 4.832445 52.379158, 4.833236 52.379034, 4.833372 52.379038, 4.833462 52.379007, 4.834344 52.378868, 4.834459 52.378869, 4.834549 52.378838, 4.835088 52.378755, 4.835163 52.378695, 4.835302 52.378656, 4.835453 52.378665, 4.835577 52.378718, 4.835628 52.378773, 4.83567 52.378896))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS307", "asset": null, "location": "SRID=4326;POLYGON ((4.966998 52.371905, 4.96695 52.372011, 4.966862 52.372087, 4.966608 52.372178, 4.966471 52.372188, 4.96647 52.372251, 4.966405 52.372335, 4.966051 52.372521, 4.965955 52.372542, 4.965819 52.372536, 4.965768 52.372642, 4.965556 52.372776, 4.96533 52.372813, 4.965029 52.372758, 4.96494 52.372726, 4.964727 52.372574, 4.964692 52.372515, 4.964693 52.372452, 4.964758 52.372368, 4.965037 52.372252, 4.965137 52.372242, 4.96526 52.372259, 4.965415 52.372164, 4.965579 52.372124, 4.965846 52.371982, 4.965879 52.371932, 4.965944 52.371884, 4.966112 52.371809, 4.966102 52.371721, 4.966138 52.371663, 4.96638 52.371512, 4.966476 52.371491, 4.966579 52.371491, 4.966674 52.371513, 4.966751 52.371553, 4.966948 52.371712, 4.966998 52.371905))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS308", "asset": null, "location": "SRID=4326;POLYGON ((4.907775 52.397306, 4.907757 52.397367, 4.90767 52.397443, 4.90749 52.39751, 4.907365 52.397518, 4.907314 52.39757, 4.907141 52.397653, 4.907266 52.397707, 4.90757 52.397988, 4.90767 52.398056, 4.907709 52.398146, 4.907682 52.398238, 4.907594 52.398314, 4.907116 52.398506, 4.90702 52.398527, 4.906869 52.398518, 4.906745 52.398465, 4.906657 52.398384, 4.90662 52.398304, 4.906571 52.398258, 4.906442 52.398234, 4.906364 52.398194, 4.906258 52.398068, 4.906272 52.397975, 4.906391 52.397869, 4.906562 52.397798, 4.906728 52.397793, 4.906761 52.397741, 4.906835 52.397684, 4.906711 52.397631, 4.906593 52.397512, 4.906559 52.397453, 4.906573 52.397361, 4.906625 52.397306, 4.906703 52.397267, 4.906904 52.397194, 4.907024 52.397184, 4.907076 52.397131, 4.907155 52.397091, 4.907293 52.397044, 4.907393 52.397033, 4.907493 52.397044, 4.907617 52.397098, 4.907737 52.397216, 4.907775 52.397306))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS309", "asset": null, "location": "SRID=4326;POLYGON ((4.791791 52.360425, 4.791548 52.360902, 4.791496 52.360957, 4.791421 52.360995, 4.790906 52.361937, 4.790841 52.361984, 4.790702 52.362023, 4.790599 52.362023, 4.790504 52.362001, 4.790427 52.361961, 4.790376 52.361906, 4.790364 52.361813, 4.790928 52.360763, 4.79098 52.360709, 4.791055 52.360671, 4.791136 52.36052, 4.791065 52.360452, 4.791053 52.36036, 4.791163 52.360153, 4.791215 52.360098, 4.791341 52.360046, 4.791441 52.360035, 4.791541 52.360047, 4.79163 52.360078, 4.791715 52.360155, 4.791732 52.360217, 4.791703 52.360296, 4.791774 52.360364, 4.791791 52.360425))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS310", "asset": null, "location": "SRID=4326;POLYGON ((4.883905 52.39194, 4.883887 52.392001, 4.883835 52.392055, 4.883588 52.392152, 4.883438 52.392247, 4.883403 52.39235, 4.883351 52.392405, 4.883109 52.392498, 4.882949 52.392597, 4.883007 52.392677, 4.882992 52.392769, 4.88294 52.392824, 4.882753 52.392921, 4.882736 52.392992, 4.882684 52.393046, 4.882464 52.393151, 4.882315 52.393185, 4.882164 52.393176, 4.882044 52.393129, 4.881958 52.393052, 4.881946 52.39296, 4.882011 52.392875, 4.882195 52.392743, 4.882195 52.392652, 4.882103 52.392651, 4.882008 52.392629, 4.881902 52.392563, 4.881867 52.392504, 4.881868 52.392442, 4.881938 52.392354, 4.882063 52.392301, 4.882215 52.392294, 4.882352 52.392334, 4.882441 52.392417, 4.882585 52.392304, 4.882832 52.392178, 4.882909 52.392085, 4.883093 52.391942, 4.883319 52.39183, 4.883513 52.391769, 4.883665 52.391762, 4.883803 52.391802, 4.883888 52.391879, 4.883905 52.39194))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS311", "asset": null, "location": "SRID=4326;POLYGON ((4.970816 52.372688, 4.970797 52.372749, 4.970745 52.372804, 4.970548 52.372895, 4.970448 52.372905, 4.970348 52.372894, 4.970259 52.372862, 4.970183 52.372805, 4.970137 52.372853, 4.96997 52.372939, 4.969806 52.372962, 4.969737 52.373063, 4.969328 52.373286, 4.969137 52.373368, 4.968985 52.373375, 4.96888 52.37335, 4.96877 52.373295, 4.968633 52.373255, 4.968536 52.373171, 4.96851 52.37301, 4.968575 52.372925, 4.968804 52.372798, 4.968954 52.372774, 4.969008 52.372698, 4.969073 52.37265, 4.969251 52.372583, 4.969496 52.372425, 4.969586 52.372394, 4.969738 52.372387, 4.969833 52.372409, 4.96991 52.372448, 4.970122 52.372608, 4.970168 52.372562, 4.97032 52.372483, 4.970415 52.372462, 4.970567 52.37247, 4.970716 52.372541, 4.970799 52.372627, 4.970816 52.372688))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS312", "asset": null, "location": "SRID=4326;POLYGON ((4.864854 52.332136, 4.864835 52.332197, 4.864748 52.332273, 4.864514 52.33233, 4.864319 52.332329, 4.864246 52.332313, 4.862279 52.332305, 4.862132 52.33228, 4.861833 52.332167, 4.861747 52.33209, 4.86173 52.332029, 4.861748 52.331968, 4.8618 52.331914, 4.861879 52.331874, 4.861974 52.331853, 4.86221 52.331862, 4.86243 52.331913, 4.862497 52.331946, 4.864146 52.33195, 4.864182 52.331892, 4.864247 52.331844, 4.864337 52.331813, 4.864437 52.331803, 4.864536 52.331814, 4.86466 52.331868, 4.864711 52.331923, 4.864728 52.331988, 4.864837 52.332075, 4.864854 52.332136))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS313", "asset": null, "location": "SRID=4326;POLYGON ((4.83897 52.373526, 4.83893 52.373615, 4.838822 52.37368, 4.838675 52.373704, 4.838528 52.373679, 4.83841 52.373622, 4.838359 52.373567, 4.838306 52.373443, 4.838274 52.373285, 4.838252 52.373284, 4.8373 52.373451, 4.837263 52.373524, 4.837197 52.373571, 4.837059 52.37361, 4.836956 52.37361, 4.836819 52.37357, 4.836733 52.373493, 4.836689 52.373347, 4.836692 52.37324, 4.836758 52.373156, 4.836883 52.373103, 4.837114 52.373079, 4.837555 52.373002, 4.837664 52.373004, 4.837808 52.372969, 4.837929 52.372964, 4.838054 52.372931, 4.838245 52.372915, 4.838395 52.372877, 4.838498 52.372877, 4.838684 52.372924, 4.83877 52.373001, 4.838933 52.373349, 4.838929 52.373418, 4.83897 52.373526))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS314", "asset": null, "location": "SRID=4326;POLYGON ((4.848446 52.380853, 4.8484 52.38172, 4.848346 52.381821, 4.848337 52.38192, 4.848301 52.381978, 4.848199 52.382058, 4.848061 52.382097, 4.847958 52.382097, 4.84782 52.382057, 4.847756 52.382009, 4.847718 52.381919, 4.847735 52.381825, 4.847587 52.381768, 4.847536 52.381713, 4.84752 52.381652, 4.847538 52.381591, 4.847645 52.381465, 4.847724 52.381425, 4.847831 52.381403, 4.847849 52.381026, 4.847617 52.38102, 4.847479 52.380979, 4.847351 52.38087, 4.84734 52.38075, 4.847376 52.380692, 4.847441 52.380645, 4.847579 52.380606, 4.847682 52.380606, 4.847777 52.380628, 4.847852 52.380667, 4.848206 52.380675, 4.848301 52.380697, 4.848407 52.380763, 4.848446 52.380853))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS315", "asset": null, "location": "SRID=4326;POLYGON ((4.830678 52.355694, 4.830637 52.355784, 4.830477 52.355904, 4.830343 52.355969, 4.830196 52.355992, 4.828834 52.355981, 4.828585 52.355911, 4.828499 52.355834, 4.828483 52.355773, 4.828501 52.355689, 4.828656 52.355501, 4.828782 52.355449, 4.828882 52.355439, 4.830157 52.355447, 4.830252 52.355469, 4.830334 52.355514, 4.830486 52.355524, 4.830576 52.355556, 4.830661 52.355633, 4.830678 52.355694))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS316", "asset": null, "location": "SRID=4326;POLYGON ((4.933068 52.400521, 4.933027 52.40061, 4.932962 52.400658, 4.932834 52.400709, 4.932746 52.400814, 4.932633 52.400887, 4.932442 52.400961, 4.932328 52.401032, 4.93235 52.401138, 4.932314 52.401196, 4.932249 52.401244, 4.93212 52.401281, 4.931941 52.401364, 4.931845 52.401385, 4.931694 52.401376, 4.93157 52.401323, 4.931506 52.401238, 4.931512 52.401162, 4.931356 52.401068, 4.931292 52.400983, 4.931307 52.40089, 4.931394 52.400814, 4.932282 52.400378, 4.932579 52.400275, 4.932731 52.400268, 4.932869 52.400308, 4.933004 52.400401, 4.933068 52.400521))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS317", "asset": null, "location": "SRID=4326;POLYGON ((4.792716 52.362789, 4.792636 52.362967, 4.792586 52.36302, 4.792569 52.363092, 4.792518 52.363147, 4.792501 52.363217, 4.792449 52.363271, 4.792432 52.363341, 4.792344 52.363417, 4.792216 52.363455, 4.792245 52.363534, 4.792226 52.3636, 4.792173 52.363655, 4.792095 52.363694, 4.791999 52.363715, 4.791848 52.363706, 4.791566 52.363637, 4.791451 52.363627, 4.791365 52.363596, 4.791044 52.363544, 4.79096 52.363514, 4.790841 52.363503, 4.790752 52.363471, 4.790688 52.363423, 4.790649 52.363333, 4.790671 52.363267, 4.790758 52.363191, 4.790897 52.363152, 4.791 52.363153, 4.791115 52.363184, 4.791193 52.363185, 4.791522 52.363267, 4.791615 52.36327, 4.791754 52.363311, 4.791864 52.363325, 4.791856 52.363243, 4.792047 52.362923, 4.792067 52.362838, 4.79212 52.362783, 4.792161 52.362694, 4.792269 52.362629, 4.792416 52.362605, 4.792572 52.362633, 4.792678 52.362699, 4.792716 52.362789))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS318", "asset": null, "location": "SRID=4326;POLYGON ((4.905698 52.399048, 4.90568 52.399109, 4.905592 52.399185, 4.905238 52.39932, 4.905142 52.399341, 4.905047 52.399341, 4.904953 52.399429, 4.904781 52.399491, 4.904627 52.399497, 4.904533 52.399587, 4.904394 52.399626, 4.904243 52.399618, 4.904119 52.399564, 4.904043 52.399487, 4.904009 52.399408, 4.903861 52.399351, 4.903766 52.399273, 4.903732 52.399214, 4.903733 52.399151, 4.903798 52.399067, 4.903876 52.399028, 4.903972 52.399006, 4.904075 52.399007, 4.904213 52.399047, 4.904376 52.399187, 4.904441 52.39914, 4.904531 52.399108, 4.904679 52.399088, 4.90479 52.39909, 4.904817 52.399032, 4.904665 52.398891, 4.904653 52.398799, 4.904689 52.398741, 4.904754 52.398693, 4.904893 52.398654, 4.904996 52.398655, 4.905133 52.398695, 4.905286 52.398837, 4.905421 52.398833, 4.905559 52.398873, 4.905659 52.398958, 4.905698 52.399048))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS319", "asset": null, "location": "SRID=4326;POLYGON ((4.872284 52.344735, 4.872266 52.344796, 4.872178 52.344873, 4.87204 52.344911, 4.871865 52.344911, 4.871698 52.345001, 4.871663 52.345252, 4.871576 52.345328, 4.871486 52.345359, 4.871386 52.34537, 4.870487 52.345334, 4.870349 52.345294, 4.870207 52.345179, 4.87019 52.345117, 4.870213 52.345023, 4.8703 52.344947, 4.87039 52.344916, 4.87049 52.344906, 4.87059 52.344917, 4.870736 52.344985, 4.871111 52.345, 4.871131 52.344811, 4.871167 52.344753, 4.871462 52.344588, 4.871552 52.344557, 4.871652 52.344547, 4.872092 52.344566, 4.872216 52.344619, 4.872267 52.344674, 4.872284 52.344735))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS320", "asset": null, "location": "SRID=4326;POLYGON ((4.877141 52.336052, 4.877101 52.336142, 4.876993 52.336207, 4.876743 52.336239, 4.876588 52.336217, 4.876549 52.336296, 4.876441 52.336361, 4.876294 52.336384, 4.876147 52.336359, 4.87607 52.33632, 4.876006 52.336235, 4.876008 52.336132, 4.876038 52.33608, 4.87595 52.33607, 4.87586 52.336038, 4.875775 52.335962, 4.875758 52.3359, 4.875787 52.335825, 4.875791 52.335686, 4.875827 52.335627, 4.875935 52.335562, 4.876213 52.335479, 4.876554 52.335482, 4.876649 52.335504, 4.876755 52.33557, 4.876814 52.335704, 4.876797 52.335782, 4.876683 52.335874, 4.876901 52.335874, 4.876996 52.335896, 4.877103 52.335962, 4.877141 52.336052))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS321", "asset": null, "location": "SRID=4326;POLYGON ((4.956322 52.301474, 4.956304 52.301535, 4.956252 52.30159, 4.956174 52.301629, 4.956079 52.30165, 4.955928 52.301642, 4.955469 52.301483, 4.955387 52.301572, 4.955309 52.301611, 4.955214 52.301633, 4.955111 52.301632, 4.954477 52.30142, 4.954391 52.301343, 4.954379 52.30125, 4.954455 52.301102, 4.95452 52.301055, 4.95461 52.301024, 4.954761 52.301016, 4.954888 52.301049, 4.954994 52.301115, 4.955042 52.301206, 4.955123 52.301117, 4.955202 52.301078, 4.955297 52.301057, 4.9554 52.301057, 4.955495 52.301079, 4.956219 52.301336, 4.956305 52.301413, 4.956322 52.301474))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS322", "asset": null, "location": "SRID=4326;POLYGON ((4.935658 52.40098, 4.93564 52.401041, 4.935552 52.401117, 4.934858 52.401449, 4.934806 52.401503, 4.934666 52.401572, 4.93457 52.401593, 4.934419 52.401584, 4.93433 52.401553, 4.934257 52.401498, 4.934195 52.401321, 4.934214 52.40126, 4.934266 52.401206, 4.934376 52.401155, 4.934428 52.4011, 4.934507 52.401061, 4.934602 52.40104, 4.934743 52.401046, 4.934951 52.400947, 4.934773 52.40083, 4.93471 52.400745, 4.93471 52.400682, 4.934746 52.400624, 4.934872 52.40055, 4.934967 52.400529, 4.93507 52.400529, 4.935208 52.400569, 4.935619 52.40089, 4.935658 52.40098))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS323", "asset": null, "location": "SRID=4326;POLYGON ((5.010107 52.348871, 5.010066 52.348961, 5.009959 52.349026, 5.009863 52.349047, 5.009766 52.349047, 5.00964 52.349082, 5.009537 52.349081, 5.009442 52.349059, 5.009335 52.348993, 5.009264 52.348897, 5.009042 52.348771, 5.008998 52.348725, 5.008756 52.348629, 5.008692 52.348544, 5.008692 52.348481, 5.008728 52.348423, 5.008836 52.348352, 5.008901 52.348268, 5.009056 52.348181, 5.009203 52.348157, 5.009349 52.348182, 5.009504 52.348282, 5.009539 52.348341, 5.009538 52.348402, 5.009782 52.348573, 5.009866 52.348584, 5.009955 52.348615, 5.010067 52.348697, 5.010102 52.348756, 5.010107 52.348871))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS324", "asset": null, "location": "SRID=4326;POLYGON ((4.843871 52.379358, 4.843853 52.379419, 4.843801 52.379473, 4.843675 52.379526, 4.843517 52.379534, 4.843321 52.379582, 4.843208 52.379579, 4.843069 52.379618, 4.842966 52.379618, 4.842835 52.379583, 4.842757 52.379543, 4.842694 52.379458, 4.842493 52.378974, 4.842493 52.378911, 4.842529 52.378853, 4.842595 52.378805, 4.842733 52.378767, 4.842912 52.378771, 4.843007 52.378793, 4.843085 52.378833, 4.843135 52.378888, 4.843152 52.37896, 4.843238 52.379037, 4.843267 52.379145, 4.843357 52.379145, 4.843447 52.379114, 4.843547 52.379104, 4.843694 52.379129, 4.8438 52.379195, 4.843871 52.379358))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS325", "asset": null, "location": "SRID=4326;POLYGON ((4.919107 52.343364, 4.918873 52.343822, 4.918766 52.343887, 4.918619 52.343911, 4.918416 52.343882, 4.918292 52.343829, 4.918229 52.343744, 4.918215 52.343654, 4.91823 52.3436, 4.918033 52.34362, 4.917843 52.343589, 4.917669 52.343477, 4.917631 52.343387, 4.917649 52.343326, 4.917701 52.343271, 4.917826 52.343218, 4.917977 52.343211, 4.918137 52.343246, 4.918758 52.343176, 4.918915 52.343194, 4.919004 52.343226, 4.91909 52.343303, 4.919107 52.343364))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS326", "asset": null, "location": "SRID=4326;POLYGON ((4.900454 52.393821, 4.900436 52.393882, 4.900384 52.393936, 4.900193 52.394024, 4.900153 52.394113, 4.900027 52.394186, 4.900106 52.394247, 4.90014 52.394306, 4.90014 52.394368, 4.900074 52.394453, 4.899966 52.394503, 4.899871 52.394525, 4.899768 52.394524, 4.89963 52.394484, 4.899551 52.394422, 4.899513 52.394332, 4.899553 52.394242, 4.899638 52.394186, 4.899478 52.394041, 4.899446 52.393886, 4.899525 52.393704, 4.899578 52.39365, 4.899656 52.393611, 4.899744 52.39359, 4.899789 52.393546, 4.899867 52.393507, 4.899963 52.393486, 4.900114 52.393495, 4.900203 52.393527, 4.900267 52.393574, 4.900415 52.393731, 4.900454 52.393821))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS327", "asset": null, "location": "SRID=4326;POLYGON ((4.841826 52.363667, 4.841798 52.363888, 4.841722 52.363975, 4.841597 52.364027, 4.841318 52.364033, 4.841186 52.363999, 4.841109 52.364037, 4.841013 52.364058, 4.840721 52.364046, 4.84053 52.363988, 4.840444 52.363911, 4.84042 52.363751, 4.840485 52.363667, 4.840564 52.363628, 4.840659 52.363607, 4.840963 52.363616, 4.84098 52.363565, 4.841032 52.36351, 4.841157 52.363458, 4.841441 52.363435, 4.841587 52.36346, 4.841758 52.36355, 4.841809 52.363606, 4.841826 52.363667))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS328", "asset": null, "location": "SRID=4326;POLYGON ((4.982851 52.363815, 4.98281 52.363905, 4.982582 52.364115, 4.982614 52.36417, 4.982613 52.364233, 4.982527 52.364336, 4.982442 52.364378, 4.982346 52.364399, 4.982243 52.364399, 4.982106 52.364359, 4.981951 52.364225, 4.981913 52.364135, 4.981953 52.364045, 4.98215 52.363865, 4.981875 52.363751, 4.981789 52.363675, 4.981777 52.363582, 4.981864 52.363478, 4.981942 52.363439, 4.982038 52.363417, 4.982141 52.363418, 4.982236 52.36344, 4.98235 52.363514, 4.982748 52.363677, 4.982834 52.363754, 4.982851 52.363815))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS329", "asset": null, "location": "SRID=4326;POLYGON ((4.837865 52.38646, 4.837847 52.386521, 4.837794 52.386576, 4.837669 52.386628, 4.83724 52.386638, 4.837175 52.386685, 4.837085 52.386716, 4.836985 52.386726, 4.836885 52.386715, 4.836761 52.386662, 4.836697 52.386577, 4.836697 52.386227, 4.836716 52.386166, 4.836803 52.38609, 4.836893 52.386059, 4.837228 52.38605, 4.837399 52.386017, 4.837541 52.386029, 4.837665 52.386082, 4.837716 52.386138, 4.837746 52.386316, 4.837826 52.38637, 4.837865 52.38646))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS330", "asset": null, "location": "SRID=4326;POLYGON ((4.970552 52.373351, 4.970534 52.373412, 4.970482 52.373467, 4.970257 52.373586, 4.970134 52.373609, 4.970102 52.37366, 4.970037 52.373707, 4.969898 52.373746, 4.969788 52.373745, 4.969749 52.373845, 4.969641 52.373911, 4.969545 52.373932, 4.969394 52.373923, 4.969305 52.373891, 4.969149 52.373786, 4.96911 52.373696, 4.969151 52.373606, 4.969216 52.373559, 4.969306 52.373527, 4.969479 52.373524, 4.969481 52.373473, 4.969517 52.373415, 4.969582 52.373368, 4.969664 52.373336, 4.969711 52.37324, 4.96983 52.373168, 4.970111 52.373103, 4.970262 52.373112, 4.970352 52.373144, 4.970484 52.373235, 4.970535 52.37329, 4.970552 52.373351))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS331", "asset": null, "location": "SRID=4326;POLYGON ((4.783047 52.358172, 4.783006 52.358262, 4.782898 52.358327, 4.782802 52.358348, 4.782569 52.358353, 4.781838 52.358204, 4.781629 52.35818, 4.781487 52.358147, 4.781376 52.358077, 4.781342 52.358019, 4.781343 52.357956, 4.781419 52.357824, 4.781485 52.357777, 4.781623 52.357738, 4.781726 52.357738, 4.781821 52.35776, 4.78191 52.357811, 4.782902 52.358016, 4.783009 52.358082, 4.783047 52.358172))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS332", "asset": null, "location": "SRID=4326;POLYGON ((4.880589 52.395689, 4.880549 52.395778, 4.880408 52.395888, 4.880269 52.395927, 4.880167 52.395927, 4.880071 52.395905, 4.879873 52.395801, 4.879806 52.395697, 4.879682 52.395688, 4.879557 52.395634, 4.879494 52.395549, 4.879499 52.395476, 4.879405 52.395486, 4.879305 52.395475, 4.879181 52.395421, 4.879117 52.395336, 4.879118 52.395274, 4.879154 52.395215, 4.879281 52.395123, 4.879371 52.395092, 4.879522 52.395085, 4.879618 52.395107, 4.879724 52.395173, 4.879759 52.395231, 4.879762 52.395293, 4.879914 52.395286, 4.880051 52.395326, 4.880116 52.395374, 4.880153 52.39545, 4.880234 52.395451, 4.880329 52.395473, 4.880522 52.395573, 4.880573 52.395628, 4.880589 52.395689))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS333", "asset": null, "location": "SRID=4326;POLYGON ((4.807853 52.37829, 4.807837 52.378448, 4.807801 52.378506, 4.807693 52.378571, 4.807536 52.378601, 4.807328 52.378584, 4.807115 52.378579, 4.806987 52.378597, 4.806871 52.378584, 4.806713 52.378532, 4.806649 52.378484, 4.806615 52.378426, 4.806651 52.378121, 4.806739 52.378045, 4.806877 52.378006, 4.807029 52.378015, 4.807145 52.378064, 4.807584 52.378081, 4.807786 52.378173, 4.807837 52.378228, 4.807853 52.37829))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS334", "asset": null, "location": "SRID=4326;POLYGON ((4.868231 52.327648, 4.868212 52.327709, 4.86816 52.327763, 4.868035 52.327816, 4.867935 52.327826, 4.867835 52.327815, 4.867647 52.32776, 4.86757 52.32772, 4.867519 52.327665, 4.867502 52.327579, 4.867525 52.327512, 4.867535 52.32693, 4.8676 52.326846, 4.867726 52.326793, 4.867864 52.326783, 4.867963 52.326794, 4.868052 52.326826, 4.868138 52.326903, 4.868155 52.326964, 4.868116 52.327052, 4.868112 52.327462, 4.868214 52.327546, 4.868231 52.327648))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS335", "asset": null, "location": "SRID=4326;POLYGON ((4.877463 52.394142, 4.877404 52.394267, 4.877317 52.394343, 4.877178 52.394382, 4.877075 52.394381, 4.87698 52.394359, 4.876846 52.394279, 4.876807 52.39419, 4.876429 52.393996, 4.876239 52.393955, 4.876161 52.393915, 4.876097 52.393831, 4.876098 52.393768, 4.876134 52.393709, 4.876242 52.393644, 4.876389 52.393621, 4.876555 52.393631, 4.876738 52.393684, 4.876829 52.393685, 4.876925 52.393707, 4.877002 52.393747, 4.87707 52.393833, 4.87717 52.393844, 4.877294 52.393898, 4.877345 52.393953, 4.87736 52.394004, 4.877446 52.394081, 4.877463 52.394142))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS336", "asset": null, "location": "SRID=4326;POLYGON ((4.958299 52.397015, 4.958245 52.397122, 4.958137 52.397187, 4.95799 52.397211, 4.957851 52.397188, 4.957833 52.397211, 4.957841 52.397293, 4.957796 52.397364, 4.957668 52.397436, 4.957599 52.397513, 4.957521 52.397552, 4.957425 52.397573, 4.957323 52.397573, 4.957185 52.397533, 4.957121 52.397485, 4.957086 52.397427, 4.9571 52.397334, 4.957462 52.396844, 4.95757 52.396779, 4.957665 52.396757, 4.957768 52.396758, 4.958154 52.396859, 4.95826 52.396925, 4.958299 52.397015))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS337", "asset": null, "location": "SRID=4326;POLYGON ((4.957001 52.299517, 4.95696 52.299607, 4.956796 52.299781, 4.956718 52.29982, 4.956606 52.299842, 4.956515 52.299917, 4.956425 52.299948, 4.956288 52.29996, 4.956142 52.299936, 4.955824 52.299822, 4.955738 52.299745, 4.955726 52.299653, 4.955791 52.299568, 4.955869 52.299529, 4.955964 52.299508, 4.956134 52.29952, 4.956153 52.299459, 4.956244 52.299354, 4.956309 52.299306, 4.956399 52.299275, 4.956499 52.299265, 4.956599 52.299276, 4.956856 52.299361, 4.956962 52.299427, 4.957001 52.299517))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS338", "asset": null, "location": "SRID=4326;POLYGON ((4.804752 52.378038, 4.804734 52.378099, 4.804681 52.378154, 4.804498 52.378247, 4.804402 52.378268, 4.80427 52.378268, 4.804175 52.378246, 4.804074 52.378186, 4.80404 52.378242, 4.803975 52.378289, 4.803885 52.37832, 4.803785 52.378331, 4.803685 52.378319, 4.803577 52.378276, 4.803302 52.378269, 4.803207 52.378247, 4.803101 52.378181, 4.803062 52.378091, 4.803081 52.37803, 4.803133 52.377975, 4.803258 52.377923, 4.803358 52.377913, 4.803843 52.377922, 4.803938 52.377944, 4.804037 52.378001, 4.804073 52.377943, 4.804138 52.377896, 4.804228 52.377865, 4.804328 52.377854, 4.804512 52.37786, 4.80465 52.3779, 4.804735 52.377977, 4.804752 52.378038))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS339", "asset": null, "location": "SRID=4326;POLYGON ((4.837546 52.357601, 4.837528 52.357662, 4.837476 52.357717, 4.83735 52.357769, 4.836384 52.357791, 4.836247 52.35775, 4.836161 52.357674, 4.836129 52.357523, 4.83608 52.357444, 4.836081 52.357381, 4.836147 52.357297, 4.836225 52.357258, 4.836328 52.357236, 4.836431 52.357236, 4.836526 52.357258, 4.836637 52.357318, 4.836703 52.357419, 4.837255 52.35742, 4.837401 52.357445, 4.837508 52.357511, 4.837546 52.357601))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS340", "asset": null, "location": "SRID=4326;POLYGON ((5.014373 52.347192, 5.014346 52.34727, 5.014236 52.347384, 5.014111 52.347437, 5.014011 52.347447, 5.013864 52.347422, 5.013541 52.3473, 5.013404 52.347339, 5.013301 52.347339, 5.013206 52.347317, 5.0131 52.347251, 5.013061 52.347161, 5.013079 52.3471, 5.013166 52.347024, 5.013476 52.346858, 5.013623 52.346834, 5.013769 52.346859, 5.014254 52.347041, 5.014331 52.347096, 5.014373 52.347192))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS341", "asset": null, "location": "SRID=4326;POLYGON ((4.806497 52.377989, 4.806489 52.378092, 4.806423 52.378177, 4.806193 52.378275, 4.806097 52.378296, 4.805994 52.378296, 4.805899 52.378274, 4.805774 52.378194, 4.805584 52.378281, 4.805398 52.378288, 4.805303 52.378266, 4.805225 52.378226, 4.805162 52.378142, 4.805165 52.378021, 4.805201 52.377963, 4.805266 52.377916, 4.805405 52.377877, 4.80564 52.377879, 4.805827 52.37794, 4.806059 52.377831, 4.806155 52.37781, 4.806257 52.377811, 4.806352 52.377833, 4.80643 52.377873, 4.80648 52.377928, 4.806497 52.377989))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS342", "asset": null, "location": "SRID=4326;POLYGON ((4.960306 52.374691, 4.960288 52.374752, 4.960215 52.374832, 4.96009 52.374885, 4.95999 52.374895, 4.95968 52.374872, 4.959564 52.374841, 4.959409 52.374827, 4.959238 52.37488, 4.959087 52.374872, 4.958963 52.374818, 4.958912 52.374763, 4.958895 52.374702, 4.958924 52.3746, 4.958975 52.374546, 4.959135 52.374478, 4.959282 52.374454, 4.960114 52.374521, 4.960238 52.374575, 4.960289 52.37463, 4.960306 52.374691))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS343", "asset": null, "location": "SRID=4326;POLYGON ((4.919783 52.340805, 4.919732 52.340912, 4.919601 52.341024, 4.919528 52.341062, 4.919482 52.341191, 4.919377 52.341293, 4.919287 52.341324, 4.919187 52.341335, 4.919088 52.341323, 4.918963 52.34127, 4.918884 52.341191, 4.918871 52.341098, 4.919041 52.340842, 4.919131 52.340783, 4.919081 52.34071, 4.919081 52.340648, 4.919117 52.340589, 4.919182 52.340542, 4.919281 52.340508, 4.919381 52.340498, 4.919481 52.340509, 4.91957 52.340541, 4.919744 52.340715, 4.919783 52.340805))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS344", "asset": null, "location": "SRID=4326;POLYGON ((4.840078 52.378873, 4.84006 52.378934, 4.839972 52.37901, 4.839882 52.379041, 4.839574 52.37909, 4.839603 52.379178, 4.839584 52.379239, 4.839532 52.379294, 4.839454 52.379333, 4.839358 52.379354, 4.839255 52.379354, 4.839118 52.379313, 4.839054 52.379265, 4.838925 52.378959, 4.838966 52.37887, 4.839074 52.378805, 4.839735 52.378694, 4.839838 52.378695, 4.839933 52.378717, 4.84001 52.378757, 4.840061 52.378812, 4.840078 52.378873))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS345", "asset": null, "location": "SRID=4326;POLYGON ((4.93109 52.403251, 4.931072 52.403312, 4.93102 52.403366, 4.930894 52.403419, 4.930675 52.403437, 4.93058 52.403415, 4.930502 52.403375, 4.930451 52.40332, 4.930325 52.402997, 4.930249 52.402958, 4.930186 52.402873, 4.9302 52.402781, 4.930287 52.402705, 4.930377 52.402674, 4.930564 52.402651, 4.930664 52.402662, 4.930788 52.402716, 4.930951 52.402886, 4.930968 52.402947, 4.930938 52.403024, 4.930969 52.403105, 4.931073 52.403189, 4.93109 52.403251))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS346", "asset": null, "location": "SRID=4326;POLYGON ((4.852 52.385833, 4.851959 52.385923, 4.85188 52.385977, 4.851889 52.386074, 4.851853 52.386132, 4.851787 52.386179, 4.851649 52.386218, 4.851546 52.386218, 4.851451 52.386196, 4.851374 52.386156, 4.851281 52.386073, 4.851131 52.386069, 4.851036 52.386047, 4.850958 52.386008, 4.850895 52.385923, 4.850909 52.38583, 4.850996 52.385754, 4.851135 52.385715, 4.851285 52.385712, 4.85135 52.385664, 4.851489 52.385625, 4.851653 52.385626, 4.851855 52.385677, 4.851962 52.385743, 4.852 52.385833))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS347", "asset": null, "location": "SRID=4326;POLYGON ((4.964386 52.325866, 4.964345 52.325956, 4.964236 52.326058, 4.964097 52.326097, 4.963995 52.326096, 4.963321 52.325869, 4.963235 52.325793, 4.963223 52.3257, 4.963297 52.325586, 4.963362 52.325539, 4.9635 52.3255, 4.963603 52.3255, 4.963773 52.325546, 4.964283 52.325728, 4.964369 52.325805, 4.964386 52.325866))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS348", "asset": null, "location": "SRID=4326;POLYGON ((4.914024 52.408243, 4.913983 52.408333, 4.91382 52.408423, 4.913725 52.408444, 4.913622 52.408444, 4.913484 52.408403, 4.913258 52.408219, 4.913226 52.408167, 4.913011 52.407965, 4.912999 52.407872, 4.913064 52.407788, 4.913168 52.407738, 4.913264 52.407717, 4.913366 52.407717, 4.913504 52.407757, 4.913985 52.408153, 4.914024 52.408243))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS349", "asset": null, "location": "SRID=4326;POLYGON ((4.811461 52.400353, 4.811442 52.400414, 4.81138 52.400474, 4.811362 52.400645, 4.811309 52.4007, 4.811194 52.400761, 4.811047 52.400785, 4.810699 52.400781, 4.810561 52.40074, 4.810497 52.400692, 4.810463 52.400634, 4.810458 52.400556, 4.810498 52.400467, 4.810607 52.400402, 4.810794 52.400372, 4.810834 52.400282, 4.810977 52.400195, 4.811072 52.400174, 4.811169 52.400172, 4.811316 52.400197, 4.811422 52.400263, 4.811461 52.400353))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS350", "asset": null, "location": "SRID=4326;POLYGON ((4.839187 52.354984, 4.839147 52.355074, 4.839039 52.355139, 4.838943 52.35516, 4.838711 52.355161, 4.838536 52.355191, 4.83837 52.355157, 4.838144 52.355153, 4.838049 52.355131, 4.837943 52.355065, 4.837904 52.354975, 4.837923 52.354914, 4.837975 52.354859, 4.8381 52.354807, 4.8382 52.354796, 4.838996 52.354814, 4.83912 52.354868, 4.83917 52.354923, 4.839187 52.354984))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS351", "asset": null, "location": "SRID=4326;POLYGON ((4.80048 52.373569, 4.800462 52.37363, 4.800374 52.373706, 4.800284 52.373737, 4.800184 52.373747, 4.800011 52.373711, 4.799995 52.373794, 4.799943 52.373849, 4.799865 52.373888, 4.799769 52.373909, 4.799666 52.373908, 4.799529 52.373868, 4.79942 52.373785, 4.799354 52.373694, 4.799368 52.373601, 4.799456 52.373525, 4.799546 52.373494, 4.799646 52.373484, 4.799745 52.373495, 4.799834 52.373524, 4.799835 52.373462, 4.799901 52.373377, 4.799979 52.373338, 4.800075 52.373317, 4.800226 52.373326, 4.80035 52.37338, 4.800463 52.373508, 4.80048 52.373569))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS352", "asset": null, "location": "SRID=4326;POLYGON ((4.878326 52.395116, 4.878285 52.395206, 4.878186 52.395278, 4.878048 52.395317, 4.877896 52.395308, 4.877689 52.395222, 4.877622 52.39512, 4.877549 52.395145, 4.877449 52.395155, 4.877349 52.395144, 4.87726 52.395112, 4.877195 52.395064, 4.877161 52.395005, 4.877178 52.394902, 4.877275 52.394819, 4.877365 52.394788, 4.877465 52.394778, 4.877564 52.394789, 4.877661 52.394824, 4.877725 52.394872, 4.877761 52.39494, 4.877823 52.394899, 4.877913 52.394868, 4.878013 52.394857, 4.878113 52.394868, 4.878218 52.394907, 4.878282 52.394955, 4.878317 52.395014, 4.878326 52.395116))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS353", "asset": null, "location": "SRID=4326;POLYGON ((5.008227 52.34691, 5.008209 52.346971, 5.008157 52.347026, 5.008079 52.347065, 5.007984 52.347087, 5.007881 52.347086, 5.007786 52.347064, 5.007656 52.346991, 5.007592 52.346906, 5.007592 52.346843, 5.007621 52.346795, 5.007496 52.346785, 5.007407 52.346753, 5.007343 52.346705, 5.007308 52.346647, 5.007322 52.346554, 5.007501 52.346387, 5.007605 52.346348, 5.007705 52.346338, 5.007805 52.346349, 5.007929 52.346402, 5.007993 52.346487, 5.007993 52.34655, 5.007861 52.346697, 5.007982 52.346707, 5.008072 52.346739, 5.008188 52.34682, 5.008227 52.34691))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS354", "asset": null, "location": "SRID=4326;POLYGON ((5.010907 52.348008, 5.010866 52.348098, 5.010736 52.348176, 5.010589 52.348199, 5.010443 52.348175, 5.009921 52.347815, 5.009882 52.347725, 5.009922 52.347636, 5.010009 52.347576, 5.010099 52.347545, 5.01025 52.347538, 5.010345 52.34756, 5.010839 52.347892, 5.01089 52.347947, 5.010907 52.348008))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS355", "asset": null, "location": "SRID=4326;POLYGON ((4.913873 52.40358, 4.913855 52.403641, 4.913803 52.403695, 4.913678 52.403748, 4.9135 52.403762, 4.913362 52.403722, 4.913298 52.403674, 4.913165 52.403494, 4.913148 52.403431, 4.913065 52.403356, 4.913048 52.403254, 4.913114 52.403169, 4.913192 52.40313, 4.913406 52.403078, 4.913509 52.403078, 4.913646 52.403119, 4.913732 52.403195, 4.913749 52.403256, 4.913726 52.403337, 4.913856 52.403518, 4.913873 52.40358))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS356", "asset": null, "location": "SRID=4326;POLYGON ((4.970538 52.372061, 4.970498 52.37215, 4.97039 52.372215, 4.970243 52.372239, 4.970048 52.372209, 4.969735 52.372001, 4.969623 52.371966, 4.969559 52.371918, 4.96952 52.371828, 4.96956 52.371738, 4.969625 52.371691, 4.969756 52.371641, 4.969908 52.371633, 4.970003 52.371655, 4.970331 52.371875, 4.970447 52.371925, 4.970521 52.371999, 4.970538 52.372061))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS357", "asset": null, "location": "SRID=4326;POLYGON ((4.813034 52.374558, 4.812994 52.374648, 4.812886 52.374713, 4.81279 52.374734, 4.81231 52.374778, 4.812208 52.374778, 4.81207 52.374737, 4.812006 52.37469, 4.811972 52.374631, 4.811986 52.374538, 4.812074 52.374462, 4.812212 52.374424, 4.812462 52.3744, 4.812541 52.37436, 4.812679 52.374335, 4.81283 52.374344, 4.812954 52.374398, 4.813005 52.374453, 4.813034 52.374558))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS358", "asset": null, "location": "SRID=4326;POLYGON ((4.91601 52.40578, 4.915992 52.405841, 4.91594 52.405896, 4.915814 52.405948, 4.915635 52.405963, 4.915497 52.405923, 4.915387 52.405813, 4.915376 52.405709, 4.915299 52.405669, 4.915209 52.40556, 4.915196 52.405468, 4.915262 52.405384, 4.91534 52.405344, 4.915471 52.405313, 4.915574 52.405314, 4.915712 52.405354, 4.915776 52.405402, 4.915836 52.405486, 4.915853 52.405547, 4.915834 52.405607, 4.915971 52.40569, 4.91601 52.40578))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS359", "asset": null, "location": "SRID=4326;POLYGON ((4.931869 52.40226, 4.93185 52.402322, 4.931798 52.402376, 4.931713 52.402421, 4.931625 52.402497, 4.931487 52.402536, 4.931235 52.402521, 4.93114 52.402499, 4.931034 52.402433, 4.930952 52.402325, 4.930953 52.402262, 4.931019 52.402178, 4.931097 52.402139, 4.931203 52.402117, 4.931308 52.402055, 4.931404 52.402034, 4.931555 52.402043, 4.931742 52.402104, 4.93183 52.40217, 4.931869 52.40226))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS360", "asset": null, "location": "SRID=4326;POLYGON ((4.89965 52.406324, 4.899632 52.406385, 4.89958 52.40644, 4.899454 52.406493, 4.899237 52.406509, 4.899099 52.406469, 4.899013 52.406392, 4.898997 52.406285, 4.898896 52.406238, 4.898827 52.406164, 4.898805 52.406047, 4.898871 52.405963, 4.898996 52.40591, 4.899096 52.4059, 4.899196 52.405911, 4.899285 52.405943, 4.899371 52.406019, 4.899414 52.406135, 4.899499 52.406155, 4.899576 52.406195, 4.899627 52.40625, 4.89965 52.406324))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS361", "asset": null, "location": "SRID=4326;POLYGON ((4.804531 52.359839, 4.804439 52.360026, 4.804374 52.360073, 4.804235 52.360112, 4.804132 52.360112, 4.803719 52.360027, 4.803642 52.359987, 4.803579 52.359902, 4.803593 52.35981, 4.803645 52.359755, 4.803724 52.359716, 4.803871 52.359693, 4.804025 52.359714, 4.804092 52.359681, 4.804188 52.35966, 4.804291 52.359661, 4.804428 52.359701, 4.804514 52.359778, 4.804531 52.359839))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS362", "asset": null, "location": "SRID=4326;POLYGON ((4.999042 52.357854, 4.999001 52.357944, 4.998842 52.358042, 4.998704 52.358082, 4.998601 52.358081, 4.998463 52.358041, 4.998399 52.357993, 4.998364 52.35793, 4.998221 52.357874, 4.998157 52.357789, 4.998158 52.357727, 4.998223 52.357642, 4.998313 52.357595, 4.998451 52.357556, 4.998554 52.357556, 4.998692 52.357596, 4.998779 52.357676, 4.998939 52.357717, 4.999025 52.357793, 4.999042 52.357854))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS363", "asset": null, "location": "SRID=4326;POLYGON ((4.797984 52.377202, 4.797943 52.377292, 4.797835 52.377357, 4.797739 52.377378, 4.797319 52.37742, 4.797216 52.377419, 4.797078 52.377379, 4.797014 52.377331, 4.79698 52.377273, 4.796994 52.37718, 4.797047 52.377125, 4.797125 52.377086, 4.797221 52.377065, 4.797641 52.377023, 4.797744 52.377024, 4.797881 52.377064, 4.797967 52.377141, 4.797984 52.377202))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS364", "asset": null, "location": "SRID=4326;POLYGON ((4.853983 52.385866, 4.853964 52.385927, 4.853912 52.385981, 4.853787 52.386034, 4.853636 52.386041, 4.853394 52.38599, 4.853287 52.385924, 4.853247 52.385823, 4.853182 52.38576, 4.85317 52.385667, 4.853206 52.385609, 4.853271 52.385561, 4.85341 52.385522, 4.853587 52.385524, 4.853683 52.385546, 4.85376 52.385586, 4.853832 52.385671, 4.853939 52.385737, 4.853983 52.385866))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS365", "asset": null, "location": "SRID=4326;POLYGON ((4.933402 52.401608, 4.933367 52.401737, 4.933315 52.401791, 4.93303 52.40193, 4.932934 52.401951, 4.932831 52.40195, 4.932693 52.40191, 4.932629 52.401863, 4.932579 52.40178, 4.932573 52.401726, 4.932614 52.401636, 4.932852 52.401495, 4.932963 52.401451, 4.93311 52.401428, 4.933257 52.401452, 4.933363 52.401518, 4.933402 52.401608))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS366", "asset": null, "location": "SRID=4326;POLYGON ((4.963196 52.303684, 4.963178 52.303745, 4.963126 52.303799, 4.962991 52.303854, 4.962905 52.303927, 4.962815 52.303958, 4.962715 52.303969, 4.962616 52.303958, 4.962527 52.303926, 4.962441 52.303849, 4.962429 52.303756, 4.962519 52.303629, 4.962548 52.303547, 4.962612 52.303481, 4.962737 52.303429, 4.962836 52.303418, 4.962936 52.303429, 4.963094 52.303498, 4.963179 52.303575, 4.963196 52.303684))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS367", "asset": null, "location": "SRID=4326;POLYGON ((4.805917 52.358045, 4.805898 52.358106, 4.805811 52.358182, 4.805672 52.358221, 4.805569 52.358221, 4.805328 52.358177, 4.805177 52.358168, 4.805087 52.358137, 4.805002 52.35806, 4.80499 52.357967, 4.805038 52.357886, 4.805103 52.357838, 4.805242 52.357799, 4.805344 52.3578, 4.805772 52.357889, 4.805878 52.357955, 4.805917 52.358045))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS368", "asset": null, "location": "SRID=4326;POLYGON ((4.863075 52.340994, 4.863049 52.341096, 4.862997 52.341151, 4.862872 52.341203, 4.862721 52.341211, 4.862626 52.341189, 4.862537 52.341139, 4.862434 52.341127, 4.862304 52.341075, 4.862218 52.340998, 4.862206 52.340906, 4.862272 52.340822, 4.86235 52.340782, 4.862446 52.340761, 4.862592 52.340765, 4.862827 52.340802, 4.862973 52.340856, 4.863059 52.340933, 4.863075 52.340994))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS369", "asset": null, "location": "SRID=4326;POLYGON ((4.859892 52.325954, 4.859851 52.326044, 4.859743 52.326109, 4.859648 52.32613, 4.859491 52.326138, 4.859352 52.326177, 4.85925 52.326176, 4.859112 52.326136, 4.859048 52.326088, 4.859014 52.326029, 4.859012 52.325935, 4.859048 52.325877, 4.859144 52.325813, 4.859282 52.325775, 4.859601 52.325773, 4.859747 52.325798, 4.859853 52.325864, 4.859892 52.325954))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS370", "asset": null, "location": "SRID=4326;POLYGON ((4.906368 52.395255, 4.906348 52.395329, 4.906261 52.395405, 4.906014 52.395499, 4.905919 52.39552, 4.905816 52.39552, 4.905647 52.395474, 4.905548 52.395392, 4.905514 52.395333, 4.905528 52.395241, 4.905615 52.395165, 4.905705 52.395134, 4.905874 52.39512, 4.906025 52.395076, 4.906128 52.395077, 4.906265 52.395117, 4.906351 52.395194, 4.906368 52.395255))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS371", "asset": null, "location": "SRID=4326;POLYGON ((4.907509 52.389598, 4.907491 52.389659, 4.907439 52.389714, 4.907269 52.389804, 4.90713 52.389843, 4.907027 52.389843, 4.906816 52.389801, 4.906724 52.389751, 4.906661 52.389667, 4.906675 52.389574, 4.906762 52.389498, 4.906852 52.389467, 4.906964 52.389458, 4.907041 52.389419, 4.907136 52.389398, 4.907239 52.389398, 4.907377 52.389439, 4.90747 52.389508, 4.907509 52.389598))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS372", "asset": null, "location": "SRID=4326;POLYGON ((5.008459 52.350167, 5.008419 52.350257, 5.008299 52.350334, 5.008161 52.350373, 5.00801 52.350364, 5.007921 52.350333, 5.007677 52.350158, 5.007642 52.3501, 5.007656 52.350007, 5.007708 52.349953, 5.007833 52.3499, 5.007933 52.34989, 5.008033 52.349901, 5.008391 52.350051, 5.008442 52.350106, 5.008459 52.350167))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS373", "asset": null, "location": "SRID=4326;POLYGON ((4.927504 52.399038, 4.927486 52.399099, 4.927434 52.399153, 4.927044 52.399328, 4.926944 52.399339, 4.926844 52.399327, 4.92672 52.399274, 4.926669 52.399219, 4.926657 52.399126, 4.926722 52.399042, 4.927112 52.398867, 4.927263 52.39886, 4.927401 52.3989, 4.927487 52.398977, 4.927504 52.399038))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS374", "asset": null, "location": "SRID=4326;POLYGON ((4.846458 52.393663, 4.84644 52.393724, 4.846388 52.393779, 4.846262 52.393831, 4.846054 52.393838, 4.845916 52.393798, 4.84583 52.393721, 4.845814 52.39366, 4.845829 52.393455, 4.845895 52.393371, 4.84602 52.393318, 4.84612 52.393308, 4.84622 52.393319, 4.846309 52.393351, 4.846395 52.393428, 4.846407 52.393563, 4.846458 52.393663))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS375", "asset": null, "location": "SRID=4326;POLYGON ((4.874835 52.39729, 4.874817 52.397351, 4.874729 52.397427, 4.874591 52.397466, 4.874488 52.397465, 4.874075 52.397357, 4.873989 52.39728, 4.873977 52.397187, 4.874043 52.397103, 4.874121 52.397064, 4.874217 52.397043, 4.874394 52.397043, 4.874576 52.397086, 4.874733 52.397152, 4.874818 52.397229, 4.874835 52.39729))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS376", "asset": null, "location": "SRID=4326;POLYGON ((4.885974 52.393128, 4.885955 52.393189, 4.88589 52.393262, 4.885849 52.393352, 4.885778 52.393404, 4.885688 52.393435, 4.885537 52.393442, 4.885441 52.39342, 4.885295 52.393345, 4.885244 52.39329, 4.885232 52.393197, 4.885268 52.393139, 4.885447 52.393005, 4.885573 52.392953, 4.885724 52.392945, 4.88582 52.392967, 4.885935 52.393038, 4.885974 52.393128))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS377", "asset": null, "location": "SRID=4326;POLYGON ((4.804641 52.357624, 4.804594 52.357734, 4.804542 52.357789, 4.804271 52.357906, 4.80412 52.357913, 4.804025 52.357891, 4.803948 52.357851, 4.803897 52.357796, 4.803885 52.357704, 4.803945 52.357589, 4.803997 52.357534, 4.804123 52.357482, 4.804298 52.357445, 4.804449 52.357454, 4.804573 52.357508, 4.804624 52.357563, 4.804641 52.357624))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS378", "asset": null, "location": "SRID=4326;POLYGON ((4.836445 52.366481, 4.836427 52.366542, 4.836339 52.366618, 4.836249 52.366649, 4.836027 52.366672, 4.835928 52.366661, 4.835804 52.366608, 4.835728 52.366524, 4.835711 52.366462, 4.835755 52.366357, 4.835846 52.366278, 4.835977 52.366228, 4.836137 52.366217, 4.836237 52.366228, 4.836361 52.366282, 4.836425 52.366367, 4.836445 52.366481))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS379", "asset": null, "location": "SRID=4326;POLYGON ((4.907818 52.393123, 4.907799 52.393184, 4.907695 52.39328, 4.907521 52.393333, 4.90737 52.393325, 4.907246 52.393271, 4.90713 52.393141, 4.907093 52.393032, 4.907111 52.392971, 4.907163 52.392916, 4.907289 52.392863, 4.907389 52.392853, 4.907488 52.392864, 4.907578 52.392896, 4.90775 52.393006, 4.907801 52.393061, 4.907818 52.393123))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS380", "asset": null, "location": "SRID=4326;POLYGON ((4.890155 52.404502, 4.890137 52.404563, 4.890085 52.404618, 4.889745 52.40476, 4.889645 52.40477, 4.889545 52.404759, 4.889456 52.404727, 4.88937 52.404651, 4.889358 52.404558, 4.889424 52.404474, 4.889753 52.404324, 4.889904 52.404317, 4.890042 52.404357, 4.890116 52.404412, 4.890155 52.404502))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS381", "asset": null, "location": "SRID=4326;POLYGON ((4.963027 52.304233, 4.963008 52.304294, 4.962893 52.304416, 4.962815 52.304455, 4.962719 52.304477, 4.962548 52.304487, 4.962401 52.304462, 4.962324 52.304422, 4.96226 52.304337, 4.962274 52.304245, 4.962362 52.304152, 4.96244 52.304112, 4.962684 52.304055, 4.962786 52.304055, 4.962924 52.304095, 4.96301 52.304172, 4.963027 52.304233))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS382", "asset": null, "location": "SRID=4326;POLYGON ((4.8205 52.380649, 4.82046 52.380738, 4.820352 52.380804, 4.820076 52.380852, 4.819973 52.380851, 4.819836 52.380811, 4.819772 52.380763, 4.819712 52.380649, 4.819713 52.380586, 4.819749 52.380527, 4.819814 52.38048, 4.819952 52.380441, 4.820055 52.380442, 4.820165 52.38047, 4.820309 52.380479, 4.820398 52.380511, 4.820484 52.380588, 4.8205 52.380649))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS383", "asset": null, "location": "SRID=4326;POLYGON ((4.879062 52.412115, 4.879042 52.412184, 4.87899 52.412239, 4.878771 52.412337, 4.878675 52.412358, 4.878572 52.412357, 4.878435 52.412317, 4.878371 52.412269, 4.878336 52.412211, 4.87835 52.412118, 4.878422 52.412053, 4.878459 52.411979, 4.878524 52.411932, 4.878663 52.411893, 4.878766 52.411894, 4.878904 52.411934, 4.879023 52.412025, 4.879062 52.412115))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS384", "asset": null, "location": "SRID=4326;POLYGON ((5.000617 52.346293, 5.000568 52.346398, 5.00049 52.346454, 5.000212 52.346534, 5.000109 52.346534, 4.999971 52.346494, 4.999907 52.346446, 4.999871 52.34638, 4.999873 52.346313, 4.999942 52.346224, 5.000171 52.346118, 5.000267 52.346097, 5.00037 52.346098, 5.000507 52.346138, 5.000593 52.346214, 5.000617 52.346293))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS385", "asset": null, "location": "SRID=4326;POLYGON ((4.882278 52.410162, 4.882259 52.410223, 4.882172 52.410299, 4.881956 52.410382, 4.88186 52.410403, 4.88174 52.410401, 4.881645 52.410379, 4.881567 52.410339, 4.881504 52.410254, 4.881504 52.410191, 4.88157 52.410107, 4.881791 52.41001, 4.881887 52.409989, 4.882037 52.409984, 4.882175 52.410024, 4.882261 52.410101, 4.882278 52.410162))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS386", "asset": null, "location": "SRID=4326;POLYGON ((4.914622 52.404107, 4.914554 52.404255, 4.914502 52.404309, 4.914424 52.404348, 4.914301 52.404377, 4.914199 52.404376, 4.914061 52.404336, 4.913997 52.404288, 4.913917 52.404169, 4.913918 52.404106, 4.913983 52.404022, 4.914062 52.403983, 4.914278 52.403929, 4.914381 52.403929, 4.914519 52.40397, 4.914605 52.404046, 4.914622 52.404107))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS387", "asset": null, "location": "SRID=4326;POLYGON ((4.839629 52.380526, 4.839598 52.380627, 4.839511 52.380703, 4.839372 52.380742, 4.839221 52.380733, 4.839097 52.380679, 4.839046 52.380624, 4.839013 52.380528, 4.839025 52.380381, 4.839078 52.380326, 4.839156 52.380287, 4.839252 52.380266, 4.839403 52.380275, 4.839492 52.380306, 4.839556 52.380354, 4.839629 52.380526))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS388", "asset": null, "location": "SRID=4326;POLYGON ((4.792228 52.361537, 4.79221 52.361598, 4.792122 52.361674, 4.791984 52.361712, 4.791881 52.361712, 4.791647 52.361666, 4.791557 52.361634, 4.791472 52.361557, 4.79146 52.361464, 4.791496 52.361406, 4.791561 52.361359, 4.7917 52.36132, 4.791802 52.361321, 4.792037 52.361367, 4.792126 52.361399, 4.792211 52.361475, 4.792228 52.361537))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS389", "asset": null, "location": "SRID=4326;POLYGON ((4.838935 52.379107, 4.838895 52.379196, 4.838787 52.379262, 4.838651 52.379289, 4.8385 52.37928, 4.838411 52.379248, 4.838325 52.379171, 4.838309 52.37901, 4.838328 52.378949, 4.838415 52.378873, 4.838505 52.378842, 4.838605 52.378832, 4.838705 52.378843, 4.838794 52.378875, 4.838858 52.378923, 4.838935 52.379107))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS390", "asset": null, "location": "SRID=4326;POLYGON ((4.785241 52.358849, 4.785223 52.35891, 4.785121 52.359026, 4.785056 52.359073, 4.784966 52.359104, 4.784815 52.359111, 4.78472 52.359089, 4.784643 52.359049, 4.784592 52.358994, 4.78458 52.358901, 4.784646 52.35878, 4.784734 52.358704, 4.784824 52.358673, 4.784975 52.358665, 4.785097 52.358693, 4.785203 52.358759, 4.785241 52.358849))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS391", "asset": null, "location": "SRID=4326;POLYGON ((5.009545 52.3523, 5.009527 52.352361, 5.00944 52.352437, 5.009301 52.352476, 5.009199 52.352476, 5.00895 52.352399, 5.008872 52.35236, 5.008808 52.352275, 5.008809 52.352212, 5.008845 52.352154, 5.00891 52.352106, 5.009048 52.352067, 5.009151 52.352068, 5.009442 52.352162, 5.009528 52.352239, 5.009545 52.3523))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS392", "asset": null, "location": "SRID=4326;POLYGON ((4.807543 52.38956, 4.807525 52.389621, 4.807437 52.389697, 4.807299 52.389736, 4.807147 52.389727, 4.807058 52.389695, 4.806929 52.3896, 4.80689 52.38951, 4.806908 52.389416, 4.806995 52.38934, 4.807085 52.389309, 4.807185 52.389299, 4.807285 52.38931, 4.807441 52.389376, 4.807505 52.389424, 4.80754 52.389482, 4.807543 52.38956))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS393", "asset": null, "location": "SRID=4326;POLYGON ((4.906306 52.398815, 4.906288 52.398876, 4.9062 52.398952, 4.906047 52.399009, 4.905947 52.39902, 4.905847 52.399009, 4.905723 52.398955, 4.905631 52.39886, 4.905614 52.398799, 4.905632 52.398738, 4.90572 52.398662, 4.905875 52.398607, 4.905975 52.398597, 4.906075 52.398608, 4.906199 52.398661, 4.906289 52.398753, 4.906306 52.398815))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS394", "asset": null, "location": "SRID=4326;POLYGON ((4.962229 52.324714, 4.96221 52.324775, 4.962123 52.324851, 4.961985 52.32489, 4.961882 52.32489, 4.961653 52.324821, 4.961575 52.324781, 4.961512 52.324696, 4.961512 52.324633, 4.961548 52.324575, 4.961613 52.324528, 4.961751 52.324489, 4.961854 52.324489, 4.962126 52.324576, 4.962212 52.324653, 4.962229 52.324714))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS395", "asset": null, "location": "SRID=4326;POLYGON ((4.886887 52.337007, 4.886804 52.337162, 4.886738 52.337209, 4.886649 52.33724, 4.886549 52.33725, 4.886449 52.337239, 4.886325 52.337186, 4.886274 52.337131, 4.886257 52.337003, 4.886275 52.336942, 4.886362 52.336866, 4.886452 52.336835, 4.886596 52.336816, 4.886743 52.336841, 4.886849 52.336907, 4.886887 52.337007))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS396", "asset": null, "location": "SRID=4326;POLYGON ((4.899493 52.394652, 4.899475 52.394713, 4.899387 52.394789, 4.899288 52.394823, 4.899137 52.394831, 4.898999 52.394791, 4.898889 52.394708, 4.898825 52.394624, 4.898826 52.394561, 4.898861 52.394503, 4.898937 52.394451, 4.899076 52.394412, 4.899178 52.394412, 4.899274 52.394434, 4.899351 52.394474, 4.899454 52.394562, 4.899493 52.394652))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS397", "asset": null, "location": "SRID=4326;POLYGON ((4.867582 52.337325, 4.867564 52.337386, 4.867476 52.337462, 4.867338 52.337501, 4.86721 52.337501, 4.867115 52.337479, 4.867003 52.337415, 4.866939 52.337331, 4.86694 52.337268, 4.866987 52.337182, 4.867052 52.337134, 4.867167 52.337092, 4.867318 52.337085, 4.867455 52.337125, 4.867519 52.337173, 4.867582 52.337325))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS398", "asset": null, "location": "SRID=4326;POLYGON ((5.007103 52.352025, 5.007085 52.352086, 5.007007 52.352173, 5.006929 52.352212, 5.006833 52.352234, 5.006656 52.352225, 5.00656 52.352203, 5.006483 52.352163, 5.006419 52.352079, 5.006433 52.351986, 5.006495 52.35192, 5.00662 52.351867, 5.00676 52.351847, 5.006863 52.351847, 5.007 52.351887, 5.007086 52.351964, 5.007103 52.352025))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS399", "asset": null, "location": "SRID=4326;POLYGON ((4.879952 52.412531, 4.879934 52.412592, 4.879846 52.412668, 4.879708 52.412707, 4.879605 52.412707, 4.879467 52.412667, 4.879358 52.412586, 4.879294 52.412502, 4.879295 52.412439, 4.879331 52.41238, 4.879396 52.412333, 4.879534 52.412294, 4.879637 52.412295, 4.879733 52.412317, 4.87981 52.412356, 4.879913 52.412441, 4.879952 52.412531))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS400", "asset": null, "location": "SRID=4326;POLYGON ((4.915144 52.390792, 4.915125 52.390853, 4.915038 52.390929, 4.91493 52.390967, 4.914779 52.390975, 4.914641 52.390934, 4.914577 52.390887, 4.9145 52.390804, 4.914488 52.390711, 4.914524 52.390653, 4.914589 52.390605, 4.914727 52.390566, 4.91483 52.390567, 4.914968 52.390607, 4.915076 52.390676, 4.915127 52.390731, 4.915144 52.390792))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS401", "asset": null, "location": "SRID=4326;POLYGON ((4.8245 52.350082, 4.82449 52.350178, 4.824454 52.350236, 4.824389 52.350284, 4.824299 52.350315, 4.824189 52.350325, 4.824089 52.350314, 4.823965 52.35026, 4.823915 52.350205, 4.823898 52.350144, 4.823932 52.350018, 4.824019 52.349942, 4.824109 52.349911, 4.82426 52.349904, 4.824398 52.349944, 4.824484 52.350021, 4.8245 52.350082))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS402", "asset": null, "location": "SRID=4326;POLYGON ((4.916877 52.404947, 4.916859 52.405008, 4.916771 52.405084, 4.916633 52.405123, 4.91653 52.405123, 4.916392 52.405082, 4.916295 52.405016, 4.916231 52.404932, 4.916231 52.404869, 4.916297 52.404785, 4.916375 52.404745, 4.916501 52.404716, 4.916603 52.404717, 4.916699 52.404739, 4.916776 52.404778, 4.91686 52.404886, 4.916877 52.404947))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS403", "asset": null, "location": "SRID=4326;POLYGON ((4.880368 52.393829, 4.88035 52.39389, 4.880282 52.393957, 4.880203 52.393997, 4.880035 52.394032, 4.879933 52.394031, 4.879795 52.393991, 4.879731 52.393943, 4.879696 52.393885, 4.879697 52.393822, 4.879763 52.393738, 4.87984 52.393686, 4.879978 52.393647, 4.880128 52.393651, 4.880266 52.393691, 4.880351 52.393768, 4.880368 52.393829))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS404", "asset": null, "location": "SRID=4326;POLYGON ((4.903828 52.410225, 4.90381 52.410286, 4.903722 52.410362, 4.903584 52.410401, 4.903432 52.410392, 4.903308 52.410339, 4.903257 52.410284, 4.903217 52.410191, 4.903231 52.410099, 4.903283 52.410044, 4.903409 52.409991, 4.903509 52.409981, 4.903609 52.409992, 4.903698 52.410024, 4.903762 52.410072, 4.903828 52.410225))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS405", "asset": null, "location": "SRID=4326;POLYGON ((4.915117 52.404543, 4.915098 52.404604, 4.915011 52.40468, 4.914893 52.404719, 4.914741 52.404726, 4.914604 52.404686, 4.91454 52.404638, 4.914476 52.404541, 4.914477 52.404478, 4.914542 52.404394, 4.914621 52.404355, 4.914743 52.404326, 4.914846 52.404327, 4.914941 52.404349, 4.915018 52.404389, 4.9151 52.404481, 4.915117 52.404543))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS406", "asset": null, "location": "SRID=4326;POLYGON ((4.999654 52.357319, 4.999636 52.35738, 4.999584 52.357435, 4.999424 52.357503, 4.999328 52.357525, 4.999225 52.357524, 4.999088 52.357484, 4.999023 52.357436, 4.998989 52.357378, 4.998989 52.357315, 4.999055 52.357231, 4.999205 52.357156, 4.9993 52.357134, 4.999403 52.357135, 4.999541 52.357175, 4.999615 52.357229, 4.999654 52.357319))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS407", "asset": null, "location": "SRID=4326;POLYGON ((4.837134 52.349733, 4.837116 52.349794, 4.837028 52.34987, 4.83689 52.349909, 4.836739 52.3499, 4.83665 52.349868, 4.836564 52.349792, 4.836548 52.349668, 4.836566 52.349607, 4.836654 52.349531, 4.836744 52.3495, 4.836844 52.34949, 4.836943 52.349501, 4.837032 52.349533, 4.837096 52.349581, 4.837131 52.34964, 4.837134 52.349733))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS408", "asset": null, "location": "SRID=4326;POLYGON ((4.830056 52.362212, 4.830038 52.362273, 4.82995 52.362349, 4.829812 52.362388, 4.829661 52.362379, 4.829537 52.362325, 4.829486 52.36227, 4.82947 52.362148, 4.829488 52.362087, 4.82954 52.362032, 4.829619 52.361993, 4.829714 52.361972, 4.829865 52.361981, 4.829955 52.362013, 4.830019 52.362061, 4.830053 52.362119, 4.830056 52.362212))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS409", "asset": null, "location": "SRID=4326;POLYGON ((4.972074 52.368719, 4.972029 52.368825, 4.971977 52.368879, 4.971899 52.368919, 4.971804 52.36894, 4.971701 52.36894, 4.971563 52.3689, 4.971476 52.368834, 4.971441 52.368775, 4.971442 52.368712, 4.971507 52.368628, 4.971635 52.368562, 4.971731 52.368541, 4.971834 52.368541, 4.971971 52.368581, 4.972057 52.368658, 4.972074 52.368719))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS410", "asset": null, "location": "SRID=4326;POLYGON ((4.915328 52.404993, 4.91531 52.405054, 4.915222 52.40513, 4.915104 52.405168, 4.914953 52.405176, 4.914815 52.405135, 4.914748 52.405085, 4.914692 52.404999, 4.914692 52.404936, 4.914758 52.404852, 4.914836 52.404813, 4.914963 52.404785, 4.915066 52.404785, 4.915161 52.404807, 4.915238 52.404847, 4.915311 52.404932, 4.915328 52.404993))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS411", "asset": null, "location": "SRID=4326;POLYGON ((4.825108 52.375173, 4.82509 52.375234, 4.825012 52.375305, 4.824887 52.375358, 4.824787 52.375368, 4.824687 52.375357, 4.824563 52.375303, 4.824512 52.375248, 4.824491 52.375176, 4.824526 52.37508, 4.824578 52.375026, 4.824704 52.374973, 4.824804 52.374963, 4.824903 52.374974, 4.825028 52.375028, 4.825078 52.375083, 4.825108 52.375173))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS412", "asset": null, "location": "SRID=4326;POLYGON ((4.905563 52.398404, 4.905544 52.398465, 4.905457 52.398541, 4.905318 52.39858, 4.905215 52.398579, 4.905078 52.398539, 4.905014 52.398491, 4.904948 52.39842, 4.904936 52.398327, 4.904972 52.398269, 4.905037 52.398222, 4.905176 52.398183, 4.905278 52.398183, 4.905374 52.398205, 4.905451 52.398245, 4.905546 52.398342, 4.905563 52.398404))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS413", "asset": null, "location": "SRID=4326;POLYGON ((4.803212 52.361096, 4.803186 52.361171, 4.803134 52.361226, 4.803009 52.361278, 4.802909 52.361289, 4.802809 52.361277, 4.802666 52.361218, 4.80258 52.361141, 4.802564 52.36108, 4.802582 52.361019, 4.80267 52.360943, 4.80276 52.360912, 4.802859 52.360902, 4.803021 52.360926, 4.80311 52.360958, 4.803195 52.361035, 4.803212 52.361096))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS414", "asset": null, "location": "SRID=4326;POLYGON ((4.932492 52.405235, 4.932474 52.405296, 4.932404 52.405365, 4.932278 52.405418, 4.932178 52.405428, 4.932079 52.405417, 4.931954 52.40537, 4.931868 52.405293, 4.931851 52.405232, 4.93187 52.405171, 4.931942 52.405097, 4.932068 52.405045, 4.932168 52.405034, 4.932268 52.405045, 4.932392 52.405099, 4.932475 52.405174, 4.932492 52.405235))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS415", "asset": null, "location": "SRID=4326;POLYGON ((4.801438 52.373886, 4.801419 52.373947, 4.801332 52.374023, 4.801242 52.374054, 4.801068 52.37407, 4.800968 52.374059, 4.800879 52.374027, 4.800794 52.37395, 4.800777 52.373889, 4.800795 52.373828, 4.800883 52.373752, 4.800973 52.373721, 4.801146 52.373704, 4.801246 52.373716, 4.80137 52.373769, 4.801421 52.373824, 4.801438 52.373886))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS416", "asset": null, "location": "SRID=4326;POLYGON ((4.956148 52.298898, 4.95613 52.298959, 4.956041 52.299054, 4.955963 52.299093, 4.955867 52.299114, 4.955764 52.299114, 4.955627 52.299074, 4.955563 52.299026, 4.955528 52.298967, 4.955542 52.298875, 4.955602 52.298807, 4.955667 52.298759, 4.955805 52.29872, 4.955908 52.29872, 4.956045 52.298761, 4.956131 52.298837, 4.956148 52.298898))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS417", "asset": null, "location": "SRID=4326;POLYGON ((4.991772 52.358367, 4.991754 52.358428, 4.991667 52.358504, 4.991529 52.358543, 4.991426 52.358543, 4.991288 52.358503, 4.991207 52.358448, 4.991143 52.358363, 4.991143 52.3583, 4.991179 52.358242, 4.991244 52.358194, 4.991382 52.358155, 4.991485 52.358156, 4.991623 52.358196, 4.991704 52.358251, 4.991755 52.358306, 4.991772 52.358367))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS418", "asset": null, "location": "SRID=4326;POLYGON ((4.95074 52.395644, 4.950712 52.395728, 4.95066 52.395783, 4.950581 52.395822, 4.950458 52.395851, 4.950355 52.395851, 4.950217 52.395811, 4.950153 52.395763, 4.950118 52.395704, 4.950132 52.395612, 4.950199 52.395533, 4.950277 52.395494, 4.950397 52.395465, 4.9505 52.395466, 4.950637 52.395506, 4.950723 52.395583, 4.95074 52.395644))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS419", "asset": null, "location": "SRID=4326;POLYGON ((4.857963 52.344606, 4.857943 52.344678, 4.857855 52.344754, 4.857717 52.344793, 4.857614 52.344792, 4.857477 52.344752, 4.857413 52.344704, 4.857378 52.344646, 4.857368 52.344541, 4.857404 52.344483, 4.857469 52.344436, 4.857607 52.344397, 4.85771 52.344397, 4.857805 52.344419, 4.857882 52.344459, 4.857933 52.344514, 4.857963 52.344606))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS420", "asset": null, "location": "SRID=4326;POLYGON ((4.927001 52.399492, 4.926983 52.399553, 4.926931 52.399608, 4.926851 52.399661, 4.926712 52.3997, 4.92661 52.399699, 4.926472 52.399659, 4.926408 52.399611, 4.926373 52.399553, 4.926374 52.39949, 4.926439 52.399406, 4.926519 52.399353, 4.926658 52.399314, 4.926761 52.399314, 4.926898 52.399355, 4.926984 52.399431, 4.927001 52.399492))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS421", "asset": null, "location": "SRID=4326;POLYGON ((4.95643 52.308407, 4.956411 52.308469, 4.956324 52.308545, 4.956186 52.308584, 4.956083 52.308583, 4.95593 52.30854, 4.955852 52.308501, 4.955789 52.308416, 4.955789 52.308353, 4.955825 52.308295, 4.95589 52.308247, 4.956028 52.308208, 4.956131 52.308209, 4.956284 52.308251, 4.956362 52.308291, 4.956413 52.308346, 4.95643 52.308407))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS422", "asset": null, "location": "SRID=4326;POLYGON ((4.84118 52.379774, 4.841162 52.379835, 4.841074 52.379911, 4.840984 52.379942, 4.840858 52.379957, 4.840758 52.379946, 4.840669 52.379914, 4.840583 52.379837, 4.840566 52.379776, 4.8406 52.379683, 4.840652 52.379629, 4.840777 52.379576, 4.840877 52.379566, 4.840977 52.379577, 4.841101 52.379631, 4.841152 52.379686, 4.84118 52.379774))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS423", "asset": null, "location": "SRID=4326;POLYGON ((4.918771 52.34018, 4.918753 52.340241, 4.918665 52.340317, 4.918527 52.340356, 4.918424 52.340356, 4.918287 52.340315, 4.918223 52.340268, 4.918158 52.340175, 4.918158 52.340112, 4.918194 52.340054, 4.918259 52.340006, 4.918398 52.339967, 4.9185 52.339968, 4.918595 52.33999, 4.918673 52.340029, 4.918754 52.340119, 4.918771 52.34018))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS424", "asset": null, "location": "SRID=4326;POLYGON ((4.903599 52.399498, 4.903581 52.399559, 4.903494 52.399635, 4.903355 52.399674, 4.903252 52.399674, 4.903157 52.399652, 4.90308 52.399612, 4.902998 52.399528, 4.902986 52.399436, 4.903022 52.399377, 4.903087 52.39933, 4.903226 52.399291, 4.903328 52.399291, 4.903424 52.399313, 4.903501 52.399353, 4.903583 52.399437, 4.903599 52.399498))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS425", "asset": null, "location": "SRID=4326;POLYGON ((4.919058 52.3397, 4.919039 52.339761, 4.918952 52.339837, 4.918814 52.339876, 4.918711 52.339876, 4.918574 52.339836, 4.918509 52.339788, 4.918453 52.339705, 4.918454 52.339642, 4.91849 52.339584, 4.918555 52.339536, 4.918656 52.339502, 4.918807 52.339494, 4.918903 52.339516, 4.91898 52.339556, 4.919031 52.339611, 4.919058 52.3397))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS426", "asset": null, "location": "SRID=4326;POLYGON ((4.835146 52.341083, 4.835127 52.341144, 4.835056 52.341226, 4.834978 52.341266, 4.834882 52.341287, 4.834779 52.341286, 4.834642 52.341246, 4.834578 52.341198, 4.834543 52.34114, 4.834544 52.341077, 4.834599 52.340991, 4.834665 52.340943, 4.834803 52.340904, 4.834906 52.340905, 4.835043 52.340945, 4.835129 52.341022, 4.835146 52.341083))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS427", "asset": null, "location": "SRID=4326;POLYGON ((4.917369 52.406081, 4.917351 52.406142, 4.917263 52.406218, 4.917125 52.406257, 4.917022 52.406257, 4.916927 52.406235, 4.916833 52.406182, 4.91677 52.406098, 4.91677 52.406031, 4.916808 52.40597, 4.91688 52.405918, 4.917019 52.405879, 4.917122 52.40588, 4.917217 52.405902, 4.917294 52.405942, 4.917345 52.405997, 4.917369 52.406081))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS428", "asset": null, "location": "SRID=4326;POLYGON ((4.916894 52.40701, 4.916875 52.407071, 4.916788 52.407148, 4.91668 52.407187, 4.91658 52.407197, 4.91648 52.407186, 4.916391 52.407154, 4.916305 52.407077, 4.916288 52.407016, 4.916312 52.406938, 4.916364 52.406883, 4.91649 52.406831, 4.91659 52.406821, 4.91669 52.406832, 4.916814 52.406885, 4.916877 52.406949, 4.916894 52.40701))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS429", "asset": null, "location": "SRID=4326;POLYGON ((4.906163 52.396554, 4.906145 52.396615, 4.906093 52.396669, 4.905967 52.396722, 4.905867 52.396732, 4.905767 52.396721, 4.905643 52.396667, 4.905579 52.396598, 4.905562 52.396537, 4.905581 52.396476, 4.905633 52.396421, 4.905758 52.396369, 4.905858 52.396358, 4.905958 52.396369, 4.906082 52.396423, 4.906146 52.396492, 4.906163 52.396554))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS430", "asset": null, "location": "SRID=4326;POLYGON ((4.839374 52.361765, 4.839355 52.361826, 4.839259 52.36191, 4.839165 52.361942, 4.839057 52.361953, 4.838958 52.361941, 4.838834 52.361888, 4.838783 52.361833, 4.838766 52.361772, 4.838784 52.36171, 4.838872 52.361635, 4.838982 52.361595, 4.839082 52.361584, 4.839182 52.361595, 4.839271 52.361627, 4.839357 52.361704, 4.839374 52.361765))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS431", "asset": null, "location": "SRID=4326;POLYGON ((4.819871 52.380135, 4.819853 52.380196, 4.819765 52.380272, 4.819675 52.380303, 4.81955 52.380318, 4.81945 52.380307, 4.819361 52.380275, 4.819275 52.380198, 4.819259 52.380137, 4.819277 52.380076, 4.819365 52.38, 4.819455 52.379969, 4.81958 52.379954, 4.819679 52.379965, 4.819768 52.379997, 4.819854 52.380074, 4.819871 52.380135))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS432", "asset": null, "location": "SRID=4326;POLYGON ((4.933228 52.399331, 4.93321 52.399392, 4.933121 52.399469, 4.933031 52.3995, 4.932931 52.399511, 4.932831 52.3995, 4.932707 52.399446, 4.932643 52.399378, 4.932626 52.399317, 4.932644 52.399256, 4.932696 52.399202, 4.932822 52.399149, 4.932922 52.399139, 4.933021 52.39915, 4.933146 52.399203, 4.933211 52.39927, 4.933228 52.399331))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS433", "asset": null, "location": "SRID=4326;POLYGON ((4.8898 52.326115, 4.889782 52.326176, 4.889694 52.326252, 4.889604 52.326283, 4.889481 52.326293, 4.889381 52.326282, 4.889257 52.326229, 4.889207 52.326174, 4.88919 52.326112, 4.889208 52.326051, 4.889295 52.325975, 4.889385 52.325944, 4.889509 52.325934, 4.889608 52.325945, 4.889732 52.325999, 4.889783 52.326054, 4.8898 52.326115))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS434", "asset": null, "location": "SRID=4326;POLYGON ((4.875178 52.303273, 4.87516 52.303334, 4.875108 52.303389, 4.874983 52.303442, 4.874883 52.303452, 4.874783 52.303441, 4.874659 52.303387, 4.874609 52.303332, 4.874592 52.303256, 4.87461 52.303195, 4.874698 52.303119, 4.874787 52.303088, 4.874887 52.303078, 4.874987 52.303089, 4.875111 52.303143, 4.875162 52.303198, 4.875178 52.303273))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS435", "asset": null, "location": "SRID=4326;POLYGON ((4.906799 52.39561, 4.906781 52.395671, 4.906693 52.395747, 4.90659 52.395783, 4.90649 52.395794, 4.90639 52.395783, 4.906301 52.395751, 4.906215 52.395674, 4.906198 52.395613, 4.906216 52.395552, 4.906304 52.395476, 4.906407 52.395439, 4.906507 52.395429, 4.906607 52.39544, 4.906731 52.395494, 4.906782 52.395549, 4.906799 52.39561))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS436", "asset": null, "location": "SRID=4326;POLYGON ((4.872993 52.393732, 4.872975 52.393793, 4.872923 52.393847, 4.872797 52.3939, 4.872697 52.39391, 4.872597 52.393899, 4.872473 52.393846, 4.872422 52.39379, 4.872404 52.393722, 4.872422 52.393661, 4.872474 52.393606, 4.8726 52.393554, 4.8727 52.393544, 4.8728 52.393555, 4.872924 52.393608, 4.872975 52.393663, 4.872993 52.393732))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS437", "asset": null, "location": "SRID=4326;POLYGON ((5.006558 52.351324, 5.006539 52.351385, 5.006485 52.351443, 5.006359 52.351496, 5.00626 52.351506, 5.00616 52.351495, 5.006071 52.351464, 5.005985 52.351387, 5.005968 52.351326, 5.005986 52.351265, 5.006041 52.351206, 5.006166 52.351154, 5.006266 52.351143, 5.006365 52.351154, 5.006455 52.351186, 5.006541 52.351263, 5.006558 52.351324))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}, {"model": "portfolio.areasource", "fields": {"name": "AMS438", "asset": null, "location": "SRID=4326;POLYGON ((4.859706 52.32745, 4.859687 52.327511, 4.859635 52.327566, 4.85951 52.327618, 4.85941 52.327628, 4.85931 52.327617, 4.859186 52.327564, 4.859136 52.327509, 4.859119 52.327447, 4.859137 52.327386, 4.859189 52.327332, 4.859314 52.327279, 4.859414 52.327269, 4.859514 52.32728, 4.859638 52.327334, 4.859689 52.327389, 4.859706 52.32745))", "creation_date": "2022-03-14T12:17:45Z", "last_change_date": "2022-03-14T12:17:45Z"}}] \ No newline at end of file diff --git a/portfolio/fixtures/AreaSource.json b/portfolio/fixtures/AreaSource.json new file mode 100644 index 0000000..b041c02 --- /dev/null +++ b/portfolio/fixtures/AreaSource.json @@ -0,0 +1,35 @@ +[ +{ + "model": "portfolio.areasource", + "pk": 1, + "fields": { + "name": "AreaSource02", + "asset": null, + "location": "SRID=4326;POLYGON ((4.892893730912948 52.36095899880581, 4.892834722314603 52.3607657162122, 4.893183409486485 52.36072968038098, 4.893242418084829 52.36092296313223, 4.892893730912948 52.36095899880581))", + "creation_date": "2022-03-14T08:43:05.941Z", + "last_change_date": "2022-03-14T09:30:05.356Z" + } +}, +{ + "model": "portfolio.areasource", + "pk": 2, + "fields": { + "name": "AreaSource01", + "asset": null, + "location": "SRID=4326;POLYGON ((4.892565160308651 52.36103696675949, 4.892468600784138 52.36077816490719, 4.892726092849505 52.36074868105542, 4.892785101447847 52.36101075904578, 4.892565160308651 52.36103696675949))", + "creation_date": "2022-03-14T09:31:17.528Z", + "last_change_date": "2022-03-14T09:31:17.528Z" + } +}, +{ + "model": "portfolio.areasource", + "pk": 3, + "fields": { + "name": "AreaSource03", + "asset": null, + "location": "SRID=4326;POLYGON ((85.89087455269186 20.47623974701032, 85.89115350242903 20.47569699423022, 85.89185087677245 20.4759985237895, 85.89150755401892 20.47652117362223, 85.89087455269186 20.47623974701032))", + "creation_date": "2022-03-14T09:33:48.030Z", + "last_change_date": "2022-03-14T09:33:48.030Z" + } +} +] diff --git a/portfolio/fixtures/Borrower.json b/portfolio/fixtures/Borrower.json new file mode 100644 index 0000000..a8ece2b --- /dev/null +++ b/portfolio/fixtures/Borrower.json @@ -0,0 +1,92 @@ +[ +{ + "model": "portfolio.borrower", + "pk": 1, + "fields": { + "counterparty_identifier": "B1", + "portfolio_id": 1, + "snapshot_id": 1, + "borrower_type": 0, + "address_of_registered_location": "", + "annual_ebit": null, + "annual_revenue": null, + "basis_of_financial_statements": null, + "business_description": "", + "cash_and_cash_equivalent_items": null, + "city_of_registered_location": "", + "comments_on_other_litigation_related_process": "", + "commencement_date_of_insolvency_or_restructuring_proceedings": null, + "contingent_obligations": "", + "counterparty_role": 1, + "country_of_registered_location": "", + "correspondence_address_of_appointed_insolvency_practitioner": "", + "insolvency_practitioner_reference": "", + "proof_of_claim_filed_by_the_seller": null, + "distribution_made_to_the_seller": null, + "notice_for_procedure_termination": null, + "cross_collateralisation_for_counterparty": null, + "cross_default_for_counterparty": null, + "currency_of_deposit": "", + "currency_of_financial_statements": "", + "current_assets": null, + "current_external_credit_rating": "", + "current_internal_credit_rating": "", + "date_of_appointment": null, + "date_of_external_demand_issuance": null, + "date_of_incorporation": null, + "date_of_internal_demand_issuance": null, + "date_of_last_contact": null, + "date_of_latest_annual_financial_statements": null, + "date_of_obtaining_order_for_possession": null, + "date_when_reservation_of_rights_letter_was_issued": null, + "deposit_balance_with_institution": null, + "description_of_contingent_obligations": "", + "description_of_cross_collateralisation": "", + "description_of_cross_default": "", + "description_of_related_party": "", + "eligibility_for_deposit_to_offset": "", + "enterprise_size": null, + "eviction_date": null, + "external_credit_rating_at_origination": "", + "financial_statements_type": null, + "financials_audited": "", + "fixed_assets": null, + "geographic_region_classification": null, + "geographic_region_of_registered_location": "", + "indicator_of_counterparty_cooperation": "", + "industry_segment": "", + "insolvency_practitioner_appointed": "", + "internal_credit_rating_at_origination": "", + "jurisdiction_of_court": "", + "legal_entity_identifier": "", + "legal_fees_accrued": null, + "legal_procedure_type": null, + "description_of_legal_procedure_type": null, + "legal_type_of_counterparty": null, + "market_capitalisation": null, + "name_of_counterparty": "", + "name_of_insolvency_practitioner": "", + "name_of_insolvency_or_restructuring_proceedings": "", + "additional_name_of_insolvency_or_restructuring_proceedings": "", + "net_assets": null, + "number_of_fte": null, + "number_of_joint_counterparties": null, + "occupation_type": "", + "occupation_description": "", + "other_products_with_institution": "", + "postcode_of_registered_location": "", + "registration_number": "", + "related_party": "", + "sheriff_or_bailiff_acquisition_date": null, + "source_of_current_external_credit_rating": "", + "source_of_external_credit_rating_at_origination": "", + "stage_reached_in_insolvency_or_restructuring_procedure": null, + "additional_stage_reached_in_insolvency_procedure": "", + "total_assets": null, + "total_debt": null, + "total_liabilities": null, + "creation_date": "2022-03-14T15:05:45.817Z", + "last_change_date": "2022-03-14T15:05:45.817Z" + } +} +] diff --git a/portfolio/fixtures/Borrowers.json b/portfolio/fixtures/Borrowers.json new file mode 100644 index 0000000..2c3d581 --- /dev/null +++ b/portfolio/fixtures/Borrowers.json @@ -0,0 +1 @@ +[{"model": "portfolio.borrower", "pk": 0, "fields": {"counterparty_identifier": "Borrower 0", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 1, "fields": {"counterparty_identifier": "Borrower 1", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 2, "fields": {"counterparty_identifier": "Borrower 2", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 3, "fields": {"counterparty_identifier": "Borrower 3", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 4, "fields": {"counterparty_identifier": "Borrower 4", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 5, "fields": {"counterparty_identifier": "Borrower 5", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 6, "fields": {"counterparty_identifier": "Borrower 6", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 7, "fields": {"counterparty_identifier": "Borrower 7", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 8, "fields": {"counterparty_identifier": "Borrower 8", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 9, "fields": {"counterparty_identifier": "Borrower 9", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 10, "fields": {"counterparty_identifier": "Borrower 10", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 11, "fields": {"counterparty_identifier": "Borrower 11", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 12, "fields": {"counterparty_identifier": "Borrower 12", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 13, "fields": {"counterparty_identifier": "Borrower 13", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 14, "fields": {"counterparty_identifier": "Borrower 14", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 15, "fields": {"counterparty_identifier": "Borrower 15", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 16, "fields": {"counterparty_identifier": "Borrower 16", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 17, "fields": {"counterparty_identifier": "Borrower 17", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 18, "fields": {"counterparty_identifier": "Borrower 18", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 19, "fields": {"counterparty_identifier": "Borrower 19", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 20, "fields": {"counterparty_identifier": "Borrower 20", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 21, "fields": {"counterparty_identifier": "Borrower 21", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 22, "fields": {"counterparty_identifier": "Borrower 22", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 23, "fields": {"counterparty_identifier": "Borrower 23", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 24, "fields": {"counterparty_identifier": "Borrower 24", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 25, "fields": {"counterparty_identifier": "Borrower 25", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 26, "fields": {"counterparty_identifier": "Borrower 26", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 27, "fields": {"counterparty_identifier": "Borrower 27", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 28, "fields": {"counterparty_identifier": "Borrower 28", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 29, "fields": {"counterparty_identifier": "Borrower 29", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 30, "fields": {"counterparty_identifier": "Borrower 30", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}, {"model": "portfolio.borrower", "pk": 31, "fields": {"counterparty_identifier": "Borrower 31", "portfolio_id": 1, "snapshot_id": 1, "borrower_type": 0, "address_of_registered_location": "", "annual_ebit": null, "annual_revenue": null, "basis_of_financial_statements": null, "business_description": "", "cash_and_cash_equivalent_items": null, "city_of_registered_location": "", "comments_on_other_litigation_related_process": "", "commencement_date_of_insolvency_or_restructuring_proceedings": null, "contingent_obligations": "", "counterparty_role": 1, "country_of_registered_location": "", "correspondence_address_of_appointed_insolvency_practitioner": "", "insolvency_practitioner_reference": "", "proof_of_claim_filed_by_the_seller": null, "distribution_made_to_the_seller": null, "notice_for_procedure_termination": null, "cross_collateralisation_for_counterparty": null, "cross_default_for_counterparty": null, "currency_of_deposit": "", "currency_of_financial_statements": "", "current_assets": null, "current_external_credit_rating": "", "current_internal_credit_rating": "", "date_of_appointment": null, "date_of_external_demand_issuance": null, "date_of_incorporation": null, "date_of_internal_demand_issuance": null, "date_of_last_contact": null, "date_of_latest_annual_financial_statements": null, "date_of_obtaining_order_for_possession": null, "date_when_reservation_of_rights_letter_was_issued": null, "deposit_balance_with_institution": null, "description_of_contingent_obligations": "", "description_of_cross_collateralisation": "", "description_of_cross_default": "", "description_of_related_party": "", "eligibility_for_deposit_to_offset": "", "enterprise_size": null, "eviction_date": null, "external_credit_rating_at_origination": "", "financial_statements_type": null, "financials_audited": "", "fixed_assets": null, "geographic_region_classification": null, "geographic_region_of_registered_location": "", "indicator_of_counterparty_cooperation": "", "industry_segment": "", "insolvency_practitioner_appointed": "", "internal_credit_rating_at_origination": "", "jurisdiction_of_court": "", "legal_entity_identifier": "", "legal_fees_accrued": null, "legal_procedure_type": null, "description_of_legal_procedure_type": null, "legal_type_of_counterparty": null, "market_capitalisation": null, "name_of_counterparty": "", "name_of_insolvency_practitioner": "", "name_of_insolvency_or_restructuring_proceedings": "", "additional_name_of_insolvency_or_restructuring_proceedings": "", "net_assets": null, "number_of_fte": null, "number_of_joint_counterparties": null, "occupation_type": "", "occupation_description": "", "other_products_with_institution": "", "postcode_of_registered_location": "", "registration_number": "", "related_party": "", "sheriff_or_bailiff_acquisition_date": null, "source_of_current_external_credit_rating": "", "source_of_external_credit_rating_at_origination": "", "stage_reached_in_insolvency_or_restructuring_procedure": null, "additional_stage_reached_in_insolvency_procedure": "", "total_assets": null, "total_debt": null, "total_liabilities": null, "creation_date": "2022-03-14T15:05:45.817Z", "last_change_date": "2022-03-14T15:05:45.817Z"}}] \ No newline at end of file diff --git a/portfolio/fixtures/Building.json b/portfolio/fixtures/Building.json new file mode 100644 index 0000000..5704c33 --- /dev/null +++ b/portfolio/fixtures/Building.json @@ -0,0 +1,2146 @@ +[ +{ + "model": "portfolio.building", + "pk": 0, + "fields": { + "protection_identifier": "Building0", + "loan_identifier": 0, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": 0, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:39:07.076Z" + } +}, +{ + "model": "portfolio.building", + "pk": 1, + "fields": { + "protection_identifier": "Building1", + "loan_identifier": 1, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 2, + "fields": { + "protection_identifier": "Building2", + "loan_identifier": 2, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 3, + "fields": { + "protection_identifier": "Building3", + "loan_identifier": 3, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 4, + "fields": { + "protection_identifier": "Building4", + "loan_identifier": 4, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 5, + "fields": { + "protection_identifier": "Building5", + "loan_identifier": 5, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 6, + "fields": { + "protection_identifier": "Building6", + "loan_identifier": 6, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 7, + "fields": { + "protection_identifier": "Building7", + "loan_identifier": 7, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 8, + "fields": { + "protection_identifier": "Building8", + "loan_identifier": 8, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 9, + "fields": { + "protection_identifier": "Building9", + "loan_identifier": 9, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 10, + "fields": { + "protection_identifier": "Building10", + "loan_identifier": 10, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 11, + "fields": { + "protection_identifier": "Building11", + "loan_identifier": 11, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 12, + "fields": { + "protection_identifier": "Building12", + "loan_identifier": 12, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 13, + "fields": { + "protection_identifier": "Building13", + "loan_identifier": 13, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 14, + "fields": { + "protection_identifier": "Building14", + "loan_identifier": 14, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 15, + "fields": { + "protection_identifier": "Building15", + "loan_identifier": 15, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 16, + "fields": { + "protection_identifier": "Building16", + "loan_identifier": 16, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 17, + "fields": { + "protection_identifier": "Building17", + "loan_identifier": 17, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 18, + "fields": { + "protection_identifier": "Building18", + "loan_identifier": 18, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 19, + "fields": { + "protection_identifier": "Building19", + "loan_identifier": 19, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 20, + "fields": { + "protection_identifier": "Building20", + "loan_identifier": 20, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 21, + "fields": { + "protection_identifier": "Building21", + "loan_identifier": 21, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 22, + "fields": { + "protection_identifier": "Building22", + "loan_identifier": 22, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 23, + "fields": { + "protection_identifier": "Building23", + "loan_identifier": 23, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 24, + "fields": { + "protection_identifier": "Building24", + "loan_identifier": 24, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 25, + "fields": { + "protection_identifier": "Building25", + "loan_identifier": 25, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 26, + "fields": { + "protection_identifier": "Building26", + "loan_identifier": 26, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 27, + "fields": { + "protection_identifier": "Building27", + "loan_identifier": 27, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 28, + "fields": { + "protection_identifier": "Building28", + "loan_identifier": 28, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 29, + "fields": { + "protection_identifier": "Building29", + "loan_identifier": 29, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 30, + "fields": { + "protection_identifier": "Building30", + "loan_identifier": 30, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +}, +{ + "model": "portfolio.building", + "pk": 31, + "fields": { + "protection_identifier": "Building31", + "loan_identifier": 31, + "address_of_property": "Hugo de Grootkade", + "amount_of_vat_payable": null, + "area_type_of_property": 0, + "building_area_m2": 100.0, + "building_area_m2_lettable": null, + "building_area_m2_occupied": null, + "city_of_property": "Amsterdam", + "completion_of_property": null, + "condition_of_property": 0, + "currency_of_property": "", + "current_annual_passing_rent": null, + "current_net_operating_income": null, + "current_opex_and_overheads": null, + "date_of_initial_valuation": null, + "date_of_latest_valuation": null, + "enforcement_description": "", + "enforcement_status": null, + "enforcement_status_third_parties": null, + "estimated_annual_void_cost": null, + "estimated_rental_void": null, + "geographic_region_classification": null, + "geographic_region_of_property": "Noord-Holland", + "initial_estimated_rental_value": null, + "initial_valuation_amount": null, + "internal_or_external_initial_valuation": null, + "internal_or_external_latest_valuation": null, + "land_area_m2": null, + "latest_estimated_rental_value": null, + "latest_valuation_amount": null, + "legal_owner_of_the_property": "", + "number_of_bedrooms": null, + "number_of_car_parking_spaces": null, + "number_of_lettable_units": null, + "number_of_rooms": null, + "number_of_units_occupied": null, + "number_of_units_vacant": null, + "party_liable_for_vat": null, + "percentage_complete": null, + "planned_capex_next_12m": null, + "property_country": "Netherlands", + "property_postcode": "", + "provider_of_energy_performance_certificate": "", + "provider_of_initial_valuation": "", + "provider_of_latest_valuation": "", + "purpose_of_property": 1, + "register_of_deeds_number": "", + "remaining_term_of_leasehold": null, + "sector_of_property": null, + "tenure": null, + "type_of_initial_valuation": null, + "type_of_latest_valuation": null, + "type_of_occupancy": null, + "type_of_property": null, + "value_of_energy_performance_certificate": null, + "vat_payable": null, + "year_of_construction": "1822-03-22", + "year_of_refurbishment": "2022-03-14", + "creation_date": "2022-03-14T11:29:31.584Z", + "last_change_date": "2022-03-14T16:11:31.972Z" + } +} +] diff --git a/portfolio/fixtures/BuildingEmissionsSource.json b/portfolio/fixtures/BuildingEmissionsSource.json new file mode 100644 index 0000000..8c87c61 --- /dev/null +++ b/portfolio/fixtures/BuildingEmissionsSource.json @@ -0,0 +1,14 @@ +[ +{ + "model": "portfolio.buildingemissionssource", + "pk": 1, + "fields": { + "source_identifier": "Heating0", + "asset": 0, + "emissions_factor": 217, + "emitted_gas": 0, + "creation_date": "2022-03-14T16:22:42.708Z", + "last_change_date": "2022-03-14T16:25:14.850Z" + } +} +] diff --git a/portfolio/fixtures/BuildingEmissionsSources.json b/portfolio/fixtures/BuildingEmissionsSources.json new file mode 100644 index 0000000..f6e1f75 --- /dev/null +++ b/portfolio/fixtures/BuildingEmissionsSources.json @@ -0,0 +1 @@ +[{"model": "portfolio.buildingemissionssource", "pk": 0, "fields": {"source_identifier": "Heating 0", "asset": 0, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 1, "fields": {"source_identifier": "Heating 1", "asset": 1, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 2, "fields": {"source_identifier": "Heating 2", "asset": 2, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 3, "fields": {"source_identifier": "Heating 3", "asset": 3, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 4, "fields": {"source_identifier": "Heating 4", "asset": 4, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 5, "fields": {"source_identifier": "Heating 5", "asset": 5, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 6, "fields": {"source_identifier": "Heating 6", "asset": 6, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 7, "fields": {"source_identifier": "Heating 7", "asset": 7, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 8, "fields": {"source_identifier": "Heating 8", "asset": 8, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 9, "fields": {"source_identifier": "Heating 9", "asset": 9, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 10, "fields": {"source_identifier": "Heating 10", "asset": 10, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 11, "fields": {"source_identifier": "Heating 11", "asset": 11, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 12, "fields": {"source_identifier": "Heating 12", "asset": 12, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 13, "fields": {"source_identifier": "Heating 13", "asset": 13, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 14, "fields": {"source_identifier": "Heating 14", "asset": 14, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 15, "fields": {"source_identifier": "Heating 15", "asset": 15, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 16, "fields": {"source_identifier": "Heating 16", "asset": 16, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 17, "fields": {"source_identifier": "Heating 17", "asset": 17, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 18, "fields": {"source_identifier": "Heating 18", "asset": 18, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 19, "fields": {"source_identifier": "Heating 19", "asset": 19, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 20, "fields": {"source_identifier": "Heating 20", "asset": 20, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 21, "fields": {"source_identifier": "Heating 21", "asset": 21, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 22, "fields": {"source_identifier": "Heating 22", "asset": 22, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 23, "fields": {"source_identifier": "Heating 23", "asset": 23, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 24, "fields": {"source_identifier": "Heating 24", "asset": 24, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 25, "fields": {"source_identifier": "Heating 25", "asset": 25, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 26, "fields": {"source_identifier": "Heating 26", "asset": 26, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 27, "fields": {"source_identifier": "Heating 27", "asset": 27, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 28, "fields": {"source_identifier": "Heating 28", "asset": 28, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 29, "fields": {"source_identifier": "Heating 29", "asset": 29, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 30, "fields": {"source_identifier": "Heating 30", "asset": 30, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}, {"model": "portfolio.buildingemissionssource", "pk": 31, "fields": {"source_identifier": "Heating 31", "asset": 31, "emissions_factor": 217, "emitted_gas": 0, "creation_date": "2022-03-14T16:22:42.708Z", "last_change_date": "2022-03-14T16:25:14.850Z"}}] \ No newline at end of file diff --git a/portfolio/fixtures/Buildings.json b/portfolio/fixtures/Buildings.json new file mode 100644 index 0000000..f63d80e --- /dev/null +++ b/portfolio/fixtures/Buildings.json @@ -0,0 +1 @@ +[{"model": "portfolio.building", "pk": 0, "fields": {"protection_identifier": "Building0", "loan_identifier": 0, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 0, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 1, "fields": {"protection_identifier": "Building1", "loan_identifier": 1, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 0, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 2, "fields": {"protection_identifier": "Building2", "loan_identifier": 2, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 3, "fields": {"protection_identifier": "Building3", "loan_identifier": 3, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 4, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 4, "fields": {"protection_identifier": "Building4", "loan_identifier": 4, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 4, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 5, "fields": {"protection_identifier": "Building5", "loan_identifier": 5, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 6, "fields": {"protection_identifier": "Building6", "loan_identifier": 6, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 2, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 7, "fields": {"protection_identifier": "Building7", "loan_identifier": 7, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 0, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 8, "fields": {"protection_identifier": "Building8", "loan_identifier": 8, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 9, "fields": {"protection_identifier": "Building9", "loan_identifier": 9, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 10, "fields": {"protection_identifier": "Building10", "loan_identifier": 10, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 1, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 11, "fields": {"protection_identifier": "Building11", "loan_identifier": 11, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 12, "fields": {"protection_identifier": "Building12", "loan_identifier": 12, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 2, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 13, "fields": {"protection_identifier": "Building13", "loan_identifier": 13, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 1, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 14, "fields": {"protection_identifier": "Building14", "loan_identifier": 14, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 4, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 15, "fields": {"protection_identifier": "Building15", "loan_identifier": 15, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 4, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 16, "fields": {"protection_identifier": "Building16", "loan_identifier": 16, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 4, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 17, "fields": {"protection_identifier": "Building17", "loan_identifier": 17, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 18, "fields": {"protection_identifier": "Building18", "loan_identifier": 18, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 19, "fields": {"protection_identifier": "Building19", "loan_identifier": 19, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 2, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 20, "fields": {"protection_identifier": "Building20", "loan_identifier": 20, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 21, "fields": {"protection_identifier": "Building21", "loan_identifier": 21, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 0, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 22, "fields": {"protection_identifier": "Building22", "loan_identifier": 22, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 4, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 23, "fields": {"protection_identifier": "Building23", "loan_identifier": 23, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 24, "fields": {"protection_identifier": "Building24", "loan_identifier": 24, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 2, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 25, "fields": {"protection_identifier": "Building25", "loan_identifier": 25, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 1, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 26, "fields": {"protection_identifier": "Building26", "loan_identifier": 26, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 0, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 27, "fields": {"protection_identifier": "Building27", "loan_identifier": 27, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 0, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 28, "fields": {"protection_identifier": "Building28", "loan_identifier": 28, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 1, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 29, "fields": {"protection_identifier": "Building29", "loan_identifier": 29, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 30, "fields": {"protection_identifier": "Building30", "loan_identifier": 30, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 3, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}, {"model": "portfolio.building", "pk": 31, "fields": {"protection_identifier": "Building31", "loan_identifier": 31, "address_of_property": "Hugo de Grootkade", "amount_of_vat_payable": null, "area_type_of_property": 0, "building_area_m2": 100.0, "building_area_m2_lettable": null, "building_area_m2_occupied": null, "city_of_property": "Amsterdam", "completion_of_property": null, "condition_of_property": 0, "currency_of_property": "", "current_annual_passing_rent": null, "current_net_operating_income": null, "current_opex_and_overheads": null, "date_of_initial_valuation": null, "date_of_latest_valuation": null, "enforcement_description": "", "enforcement_status": null, "enforcement_status_third_parties": null, "estimated_annual_void_cost": null, "estimated_rental_void": null, "geographic_region_classification": null, "geographic_region_of_property": "Noord-Holland", "initial_estimated_rental_value": null, "initial_valuation_amount": 200000, "internal_or_external_initial_valuation": null, "internal_or_external_latest_valuation": null, "land_area_m2": null, "latest_estimated_rental_value": null, "latest_valuation_amount": null, "legal_owner_of_the_property": "", "number_of_bedrooms": null, "number_of_car_parking_spaces": null, "number_of_lettable_units": null, "number_of_rooms": null, "number_of_units_occupied": null, "number_of_units_vacant": null, "party_liable_for_vat": null, "percentage_complete": null, "planned_capex_next_12m": null, "property_country": "Netherlands", "property_postcode": "", "provider_of_energy_performance_certificate": "", "provider_of_initial_valuation": "", "provider_of_latest_valuation": "", "purpose_of_property": 1, "register_of_deeds_number": "", "remaining_term_of_leasehold": null, "sector_of_property": null, "tenure": null, "type_of_initial_valuation": null, "type_of_latest_valuation": null, "type_of_occupancy": null, "type_of_property": null, "value_of_energy_performance_certificate": 1, "vat_payable": null, "year_of_construction": "1822-03-22", "year_of_refurbishment": "2022-03-14", "creation_date": "2022-03-14T11:29:31.584Z", "last_change_date": "2022-03-14T16:11:31.972Z"}}] \ No newline at end of file diff --git a/portfolio/fixtures/Mortgage.json b/portfolio/fixtures/Mortgage.json new file mode 100644 index 0000000..6577a32 --- /dev/null +++ b/portfolio/fixtures/Mortgage.json @@ -0,0 +1,112 @@ +[ +{ + "model": "portfolio.mortgage", + "pk": 1, + "fields": { + "contract_identifier": "Mortgage 0", + "instrument_identifier": "", + "counterparty_identifier": 0, + "accounting_stages_of_asset_quality": null, + "accrued_interest_balance_off_book": null, + "accrued_interest_balance_on_book": null, + "amortisation_type": null, + "asset_class": 0, + "balance_at_default": null, + "capitalised_pastdue_amount": null, + "channel_of_origination": 0, + "chargeoff_date": null, + "code_of_conduct": "", + "comments_on_code_of_conduct": "", + "comments_on_covenant_waiver": "", + "country_of_origination": "Netherlands", + "covenant_waiver": "", + "current_covenant_levels": null, + "current_interest_base_rate": null, + "current_interest_margin": null, + "current_interest_rate": null, + "current_interest_rate_reference": null, + "current_interest_rate_type": null, + "current_maturity_date": null, + "current_reversion_interest_rate": null, + "date_of_default": null, + "date_of_origination": null, + "days_in_pastdue": null, + "default_penalty_interest_margin": null, + "description_of_bespoke_repayment": "", + "description_of_current_interest_rate_type": "", + "description_of_original_interest_rate_type": "", + "description_of_relevant_schemes": "", + "details_of_origination_channel": "", + "early_redemption_penalty": null, + "end_date_of_current_fixed_interest_period": null, + "end_date_of_interest_grace_period": null, + "end_date_of_interest_only_period": null, + "end_date_of_principal_grace_period": null, + "end_date_of_subsidy": null, + "external_credit_rating_at_origination": "", + "final_bullet_repayment": null, + "governing_law_of_loan_agreement": "", + "interest_cap_rate": null, + "interest_floor_rate": null, + "interest_payment_frequency": null, + "interest_reset_interval": null, + "last_covenant_test_date": null, + "last_interest_reset_date": null, + "last_payment_amount": null, + "last_payment_date": null, + "legal_balance": 100000, + "legal_balance_at_chargeoff_date": null, + "loan_commitment": null, + "loan_covenants": null, + "loan_currency": "", + "loan_purpose": 0, + "loan_status": 0, + "marp_applicable": null, + "marp_entry": null, + "marp_status": null, + "next_interest_reset_date": null, + "next_interest_scheduled_repayment_amount": null, + "next_interest_scheduled_repayment_date": null, + "next_principal_scheduled_repayment_amount": null, + "next_principal_scheduled_repayment_date": null, + "nonperforming_reason": null, + "number_of_pastdue_events": null, + "original_interest_base_rate": null, + "original_interest_margin": null, + "original_interest_rate": null, + "original_interest_rate_reference": null, + "original_interest_rate_type": null, + "original_maturity_date": null, + "origination_amount": 200000, + "other_balances": null, + "other_pastdue_amounts": null, + "other_syndicate_counterparties": "", + "pastdue_interest_amount": null, + "pastdue_penalty_interest_margin": null, + "pastdue_principal_amount": null, + "principal_balance": null, + "principal_payment_frequency": null, + "relevant_schemes": "", + "recourse_to_other_assets": null, + "securitised": "", + "specialised_product": "", + "start_date_of_current_fixed_interest_period": null, + "start_date_of_interest_grace_period": null, + "start_date_of_interest_only_period": null, + "start_date_of_principal_grace_period": null, + "start_date_of_subsidy": null, + "subsidy": "", + "subsidy_amount": null, + "subsidy_provider": "", + "syndicated_loan": "", + "syndicated_portion": null, + "time_in_pastdue": null, + "total_balance": null, + "total_pastdue_amount": null, + "trigger_levels_of_loan_covenants": null, + "type_of_reversion_interest_rate": "", + "creation_date": "2022-03-14T15:41:55.801Z", + "last_change_date": "2022-03-14T15:41:55.801Z" + } +} +] diff --git a/portfolio/fixtures/Mortgages.json b/portfolio/fixtures/Mortgages.json new file mode 100644 index 0000000..40b1d4b --- /dev/null +++ b/portfolio/fixtures/Mortgages.json @@ -0,0 +1 @@ +[{"model": "portfolio.mortgage", "pk": 0, "fields": {"contract_identifier": "Mortgage0", "instrument_identifier": "", "counterparty_identifier": 0, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 1, "fields": {"contract_identifier": "Mortgage1", "instrument_identifier": "", "counterparty_identifier": 1, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 2, "fields": {"contract_identifier": "Mortgage2", "instrument_identifier": "", "counterparty_identifier": 2, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 3, "fields": {"contract_identifier": "Mortgage3", "instrument_identifier": "", "counterparty_identifier": 3, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 4, "fields": {"contract_identifier": "Mortgage4", "instrument_identifier": "", "counterparty_identifier": 4, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 5, "fields": {"contract_identifier": "Mortgage5", "instrument_identifier": "", "counterparty_identifier": 5, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 6, "fields": {"contract_identifier": "Mortgage6", "instrument_identifier": "", "counterparty_identifier": 6, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 7, "fields": {"contract_identifier": "Mortgage7", "instrument_identifier": "", "counterparty_identifier": 7, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 8, "fields": {"contract_identifier": "Mortgage8", "instrument_identifier": "", "counterparty_identifier": 8, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 9, "fields": {"contract_identifier": "Mortgage9", "instrument_identifier": "", "counterparty_identifier": 9, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 10, "fields": {"contract_identifier": "Mortgage10", "instrument_identifier": "", "counterparty_identifier": 10, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 11, "fields": {"contract_identifier": "Mortgage11", "instrument_identifier": "", "counterparty_identifier": 11, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 12, "fields": {"contract_identifier": "Mortgage12", "instrument_identifier": "", "counterparty_identifier": 12, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 13, "fields": {"contract_identifier": "Mortgage13", "instrument_identifier": "", "counterparty_identifier": 13, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 14, "fields": {"contract_identifier": "Mortgage14", "instrument_identifier": "", "counterparty_identifier": 14, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 15, "fields": {"contract_identifier": "Mortgage15", "instrument_identifier": "", "counterparty_identifier": 15, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 16, "fields": {"contract_identifier": "Mortgage16", "instrument_identifier": "", "counterparty_identifier": 16, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 17, "fields": {"contract_identifier": "Mortgage17", "instrument_identifier": "", "counterparty_identifier": 17, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 18, "fields": {"contract_identifier": "Mortgage18", "instrument_identifier": "", "counterparty_identifier": 18, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 19, "fields": {"contract_identifier": "Mortgage19", "instrument_identifier": "", "counterparty_identifier": 19, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 20, "fields": {"contract_identifier": "Mortgage20", "instrument_identifier": "", "counterparty_identifier": 20, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 21, "fields": {"contract_identifier": "Mortgage21", "instrument_identifier": "", "counterparty_identifier": 21, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 22, "fields": {"contract_identifier": "Mortgage22", "instrument_identifier": "", "counterparty_identifier": 22, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 23, "fields": {"contract_identifier": "Mortgage23", "instrument_identifier": "", "counterparty_identifier": 23, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 24, "fields": {"contract_identifier": "Mortgage24", "instrument_identifier": "", "counterparty_identifier": 24, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 25, "fields": {"contract_identifier": "Mortgage25", "instrument_identifier": "", "counterparty_identifier": 25, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 26, "fields": {"contract_identifier": "Mortgage26", "instrument_identifier": "", "counterparty_identifier": 26, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 27, "fields": {"contract_identifier": "Mortgage27", "instrument_identifier": "", "counterparty_identifier": 27, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 28, "fields": {"contract_identifier": "Mortgage28", "instrument_identifier": "", "counterparty_identifier": 28, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 29, "fields": {"contract_identifier": "Mortgage29", "instrument_identifier": "", "counterparty_identifier": 29, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 30, "fields": {"contract_identifier": "Mortgage30", "instrument_identifier": "", "counterparty_identifier": 30, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}, {"model": "portfolio.mortgage", "pk": 31, "fields": {"contract_identifier": "Mortgage31", "instrument_identifier": "", "counterparty_identifier": 31, "accounting_stages_of_asset_quality": null, "accrued_interest_balance_off_book": null, "accrued_interest_balance_on_book": null, "amortisation_type": null, "asset_class": 0, "balance_at_default": null, "capitalised_pastdue_amount": null, "channel_of_origination": 0, "chargeoff_date": null, "code_of_conduct": "", "comments_on_code_of_conduct": "", "comments_on_covenant_waiver": "", "country_of_origination": "Netherlands", "covenant_waiver": "", "current_covenant_levels": null, "current_interest_base_rate": null, "current_interest_margin": null, "current_interest_rate": null, "current_interest_rate_reference": null, "current_interest_rate_type": null, "current_maturity_date": null, "current_reversion_interest_rate": null, "date_of_default": null, "date_of_origination": null, "days_in_pastdue": null, "default_penalty_interest_margin": null, "description_of_bespoke_repayment": "", "description_of_current_interest_rate_type": "", "description_of_original_interest_rate_type": "", "description_of_relevant_schemes": "", "details_of_origination_channel": "", "early_redemption_penalty": null, "end_date_of_current_fixed_interest_period": null, "end_date_of_interest_grace_period": null, "end_date_of_interest_only_period": null, "end_date_of_principal_grace_period": null, "end_date_of_subsidy": null, "external_credit_rating_at_origination": "", "final_bullet_repayment": null, "governing_law_of_loan_agreement": "", "interest_cap_rate": null, "interest_floor_rate": null, "interest_payment_frequency": null, "interest_reset_interval": null, "last_covenant_test_date": null, "last_interest_reset_date": null, "last_payment_amount": null, "last_payment_date": null, "legal_balance": 100000, "legal_balance_at_chargeoff_date": null, "loan_commitment": null, "loan_covenants": null, "loan_currency": "", "loan_purpose": 0, "loan_status": 0, "marp_applicable": null, "marp_entry": null, "marp_status": null, "next_interest_reset_date": null, "next_interest_scheduled_repayment_amount": null, "next_interest_scheduled_repayment_date": null, "next_principal_scheduled_repayment_amount": null, "next_principal_scheduled_repayment_date": null, "nonperforming_reason": null, "number_of_pastdue_events": null, "original_interest_base_rate": null, "original_interest_margin": null, "original_interest_rate": null, "original_interest_rate_reference": null, "original_interest_rate_type": null, "original_maturity_date": null, "origination_amount": 200000, "other_balances": null, "other_pastdue_amounts": null, "other_syndicate_counterparties": "", "pastdue_interest_amount": null, "pastdue_penalty_interest_margin": null, "pastdue_principal_amount": null, "principal_balance": null, "principal_payment_frequency": null, "relevant_schemes": "", "recourse_to_other_assets": null, "securitised": "", "specialised_product": "", "start_date_of_current_fixed_interest_period": null, "start_date_of_interest_grace_period": null, "start_date_of_interest_only_period": null, "start_date_of_principal_grace_period": null, "start_date_of_subsidy": null, "subsidy": "", "subsidy_amount": null, "subsidy_provider": "", "syndicated_loan": "", "syndicated_portion": null, "time_in_pastdue": null, "total_balance": null, "total_pastdue_amount": null, "trigger_levels_of_loan_covenants": null, "type_of_reversion_interest_rate": "", "creation_date": "2022-03-14T15:41:55.801Z", "last_change_date": "2022-03-14T15:41:55.801Z"}}] \ No newline at end of file diff --git a/portfolio/fixtures/Portfolio.json b/portfolio/fixtures/Portfolio.json new file mode 100644 index 0000000..3899e51 --- /dev/null +++ b/portfolio/fixtures/Portfolio.json @@ -0,0 +1,28 @@ +[ +{ + "model": "portfolio.portfolio", + "pk": 1, + "fields": { + "name": "PiDay2022", + "user": 1, + "notes": "Test Portfolio", + "portfolio_type": 0, + "max_rating": null, + "min_rating": null, + "mean_rating": null, + "max_lgd": null, + "min_lgd": null, + "mean_lgd": null, + "max_ead": null, + "min_ead": null, + "mean_ead": null, + "max_tenor": null, + "min_tenor": null, + "mean_tenor": null, + "country_no": null, + "sector_no": null, + "creation_date": "2022-03-14T14:54:15.669Z", + "last_change_date": "2022-03-14T14:54:15.669Z" + } +} +] diff --git a/portfolio/fixtures/PortfolioSnapshot.json b/portfolio/fixtures/PortfolioSnapshot.json new file mode 100644 index 0000000..2f91427 --- /dev/null +++ b/portfolio/fixtures/PortfolioSnapshot.json @@ -0,0 +1,12 @@ +[ +{ + "model": "portfolio.portfoliosnapshot", + "pk": 1, + "fields": { + "creation_date": "2022-03-14T15:01:54.457Z", + "last_change_date": "2022-03-14T15:01:54.457Z", + "cutoff_date": "2022-03-14T15:01:33Z", + "name": "PiDay2022 Snapshot" + } +} +] diff --git a/reference/fixtures/BuildingEmissionFactor.json b/reference/fixtures/BuildingEmissionFactor.json new file mode 100644 index 0000000..2c1064a --- /dev/null +++ b/reference/fixtures/BuildingEmissionFactor.json @@ -0,0 +1,4610 @@ +[ +{ + "model": "reference.buildingemissionfactor", + "pk": 217, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 4, + "Emission_factor": 0.0298651, + "Emission_factor_methodology_description": "The country-specific emission intensity per building type from CRREM Global Pathways is converted to tCO2e emissions per m². A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": null, + "Emission_factor_year_2": null, + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.401Z", + "last_change_date": "2022-03-13T22:14:22.940Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 218, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 4, + "Emission_factor": 0.0338472, + "Emission_factor_methodology_description": "The country-specific emission intensity per building type from CRREM Global Pathways is converted to tCO2e emissions per m². A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": null, + "Emission_factor_year_2": null, + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.637Z", + "last_change_date": "2022-03-13T22:14:23.077Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 227, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 4, + "Emission_factor": 0.0330308, + "Emission_factor_methodology_description": "The country-specific emission intensity per building type from CRREM Global Pathways is converted to tCO2e emissions per m². A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": null, + "Emission_factor_year_2": null, + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.594Z", + "last_change_date": "2022-03-13T22:14:23.043Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 577, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 5, + "Emission_factor": 17.1943, + "Emission_factor_methodology_description": "The country-specific emission intensity per m² per building type is multiplied by the average floor area per building type. The average floor area is calculated by dividing the total floor area per building type by the total number of buildings per building type in the respective country based on the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_2": "2021", + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.653Z", + "last_change_date": "2022-03-13T22:14:24.676Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 578, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 5, + "Emission_factor": 4.4614, + "Emission_factor_methodology_description": "The country-specific emission intensity per m² per building type is multiplied by the average floor area per building type. The average floor area is calculated by dividing the total floor area per building type by the total number of buildings per building type in the respective country based on the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_2": "2021", + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.904Z", + "last_change_date": "2022-03-13T22:14:24.092Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 587, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 5, + "Emission_factor": 4.57369, + "Emission_factor_methodology_description": "The country-specific emission intensity per m² per building type is multiplied by the average floor area per building type. The average floor area is calculated by dividing the total floor area per building type by the total number of buildings per building type in the respective country based on the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_2": "2021", + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.989Z", + "last_change_date": "2022-03-13T22:14:24.160Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 937, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 4, + "Emission_factor": 0.110241, + "Emission_factor_methodology_description": "The country-specific energy intensity per building type from CRREM Global Pathways is converted to MWh per m². A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": null, + "Emission_factor_year_2": null, + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.775Z", + "last_change_date": "2022-03-13T22:14:25.589Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 938, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 4, + "Emission_factor": 0.12494, + "Emission_factor_methodology_description": "The country-specific energy intensity per building type from CRREM Global Pathways is converted to MWh per m². A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": null, + "Emission_factor_year_2": null, + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.043Z", + "last_change_date": "2022-03-13T22:14:25.726Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 947, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 4, + "Emission_factor": 0.121926, + "Emission_factor_methodology_description": "The country-specific energy intensity per building type from CRREM Global Pathways is converted to MWh per m². A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": null, + "Emission_factor_year_2": null, + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.989Z", + "last_change_date": "2022-03-13T22:14:25.692Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 1297, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 5, + "Emission_factor": 63.4692, + "Emission_factor_methodology_description": "The country-specific energy intensity per m² per building type is multiplied by the average floor area per building type. The average floor area is calculated by dividing the total floor area per building type by the total number of buildings per building type in the respective country, based on the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_2": "2021", + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:54.038Z", + "last_change_date": "2022-03-13T22:14:27.317Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 1298, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 5, + "Emission_factor": 16.4683, + "Emission_factor_methodology_description": "The country-specific energy intensity per m² per building type is multiplied by the average floor area per building type. The average floor area is calculated by dividing the total floor area per building type by the total number of buildings per building type in the respective country, based on the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_2": "2021", + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.305Z", + "last_change_date": "2022-03-13T22:14:26.738Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 1307, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": null, + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 5, + "Emission_factor": 16.8828, + "Emission_factor_methodology_description": "The country-specific energy intensity per m² per building type is multiplied by the average floor area per building type. The average floor area is calculated by dividing the total floor area per building type by the total number of buildings per building type in the respective country, based on the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_2": "2021", + "Emission_factor_source_3": null, + "Emission_factor_year_3": null, + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.392Z", + "last_change_date": "2022-03-13T22:14:26.806Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4333, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.00746628, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.519Z", + "last_change_date": "2022-03-13T22:14:22.144Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4334, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.00971899, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.649Z", + "last_change_date": "2022-03-13T22:14:22.268Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4335, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0130981, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.779Z", + "last_change_date": "2022-03-13T22:14:22.370Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4336, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.015576, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.865Z", + "last_change_date": "2022-03-13T22:14:22.439Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4337, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0194056, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.041Z", + "last_change_date": "2022-03-13T22:14:22.575Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4338, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0232352, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.148Z", + "last_change_date": "2022-03-13T22:14:22.675Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4339, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0272901, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.281Z", + "last_change_date": "2022-03-13T22:14:22.872Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4340, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0317955, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.551Z", + "last_change_date": "2022-03-13T22:14:23.008Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4341, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0356251, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.728Z", + "last_change_date": "2022-03-13T22:14:23.145Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4342, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.03968, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.814Z", + "last_change_date": "2022-03-13T22:14:23.213Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4343, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0437349, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.942Z", + "last_change_date": "2022-03-13T22:14:23.316Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4344, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.00846179, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.606Z", + "last_change_date": "2022-03-13T22:14:22.214Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4345, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0113646, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.736Z", + "last_change_date": "2022-03-13T22:14:22.336Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4346, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0157187, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.909Z", + "last_change_date": "2022-03-13T22:14:22.473Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4347, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0189118, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.997Z", + "last_change_date": "2022-03-13T22:14:22.541Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4348, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0238465, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.192Z", + "last_change_date": "2022-03-13T22:14:22.737Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4349, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0287813, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.324Z", + "last_change_date": "2022-03-13T22:14:22.906Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4350, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0340063, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.685Z", + "last_change_date": "2022-03-13T22:14:23.111Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4351, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0398118, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.857Z", + "last_change_date": "2022-03-13T22:14:23.247Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4352, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0447466, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.985Z", + "last_change_date": "2022-03-13T22:14:23.350Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4353, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0499716, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.071Z", + "last_change_date": "2022-03-13T22:14:23.418Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4354, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0551966, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.157Z", + "last_change_date": "2022-03-13T22:14:23.486Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4443, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0082577, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.563Z", + "last_change_date": "2022-03-13T22:14:22.179Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4444, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0109089, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.692Z", + "last_change_date": "2022-03-13T22:14:22.302Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4445, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0148857, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.822Z", + "last_change_date": "2022-03-13T22:14:22.405Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4446, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.017802, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:47.953Z", + "last_change_date": "2022-03-13T22:14:22.507Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4447, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.022309, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.104Z", + "last_change_date": "2022-03-13T22:14:22.639Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4448, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0268161, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.236Z", + "last_change_date": "2022-03-13T22:14:22.824Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4449, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0315882, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.508Z", + "last_change_date": "2022-03-13T22:14:22.974Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4450, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0368906, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.771Z", + "last_change_date": "2022-03-13T22:14:23.179Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4451, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0413976, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:48.900Z", + "last_change_date": "2022-03-13T22:14:23.281Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4452, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0461698, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.028Z", + "last_change_date": "2022-03-13T22:14:23.384Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 4453, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Emission Intensity per m²", + "Emission_factor_unit": "tCO<sub>2</sub>e/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0509419, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity to get the country and EPC rating-specific emission intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.114Z", + "last_change_date": "2022-03-13T22:14:23.452Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8573, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 4.29857, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.819Z", + "last_change_date": "2022-03-13T22:14:24.023Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8574, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 5.59553, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.118Z", + "last_change_date": "2022-03-13T22:14:24.263Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8575, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 7.54096, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.428Z", + "last_change_date": "2022-03-13T22:14:24.505Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8576, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 8.96761, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.480Z", + "last_change_date": "2022-03-13T22:14:24.539Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8577, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 11.1724, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.524Z", + "last_change_date": "2022-03-13T22:14:24.573Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8578, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 13.3773, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.567Z", + "last_change_date": "2022-03-13T22:14:24.607Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8579, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 15.7118, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.610Z", + "last_change_date": "2022-03-13T22:14:24.642Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8580, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 18.3057, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.710Z", + "last_change_date": "2022-03-13T22:14:24.710Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8581, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 20.5105, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.818Z", + "last_change_date": "2022-03-13T22:14:24.744Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8582, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 22.845, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.876Z", + "last_change_date": "2022-03-13T22:14:24.778Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8583, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 25.1795, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.919Z", + "last_change_date": "2022-03-13T22:14:24.812Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8584, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 1.11535, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.200Z", + "last_change_date": "2022-03-13T22:14:23.520Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8585, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 1.49797, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.287Z", + "last_change_date": "2022-03-13T22:14:23.589Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8586, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 2.07189, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.418Z", + "last_change_date": "2022-03-13T22:14:23.691Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8587, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 2.49277, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.504Z", + "last_change_date": "2022-03-13T22:14:23.759Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8588, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 3.14322, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.690Z", + "last_change_date": "2022-03-13T22:14:23.828Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8589, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 3.79366, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.776Z", + "last_change_date": "2022-03-13T22:14:23.969Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8590, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 4.48237, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.947Z", + "last_change_date": "2022-03-13T22:14:24.126Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8591, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 5.24761, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.075Z", + "last_change_date": "2022-03-13T22:14:24.228Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8592, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 5.89805, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.204Z", + "last_change_date": "2022-03-13T22:14:24.332Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8593, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 6.58676, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.291Z", + "last_change_date": "2022-03-13T22:14:24.403Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8594, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 7.27547, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.376Z", + "last_change_date": "2022-03-13T22:14:24.471Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8683, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 1.14342, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.244Z", + "last_change_date": "2022-03-13T22:14:23.554Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8684, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 1.51053, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.331Z", + "last_change_date": "2022-03-13T22:14:23.623Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8685, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 2.06118, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.376Z", + "last_change_date": "2022-03-13T22:14:23.657Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8686, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 2.46499, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.461Z", + "last_change_date": "2022-03-13T22:14:23.725Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8687, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 3.08907, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.599Z", + "last_change_date": "2022-03-13T22:14:23.793Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8688, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 3.71315, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.733Z", + "last_change_date": "2022-03-13T22:14:23.881Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8689, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 4.37393, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:49.861Z", + "last_change_date": "2022-03-13T22:14:24.058Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8690, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 5.10814, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.032Z", + "last_change_date": "2022-03-13T22:14:24.194Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8691, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 5.73222, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.161Z", + "last_change_date": "2022-03-13T22:14:24.298Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8692, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 6.393, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.248Z", + "last_change_date": "2022-03-13T22:14:24.367Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 8693, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Emissions", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Emission Intensity per #", + "Emission_factor_unit": "tCO<sub>2</sub>e/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 7.05379, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the country-specific emission intensity and average floor area to get the country and EPC rating-specific emission intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.333Z", + "last_change_date": "2022-03-13T22:14:24.437Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12813, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0275602, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:50.962Z", + "last_change_date": "2022-03-13T22:14:24.846Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12814, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0358756, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.090Z", + "last_change_date": "2022-03-13T22:14:24.948Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12815, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0483488, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.219Z", + "last_change_date": "2022-03-13T22:14:25.120Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12816, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0574957, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.305Z", + "last_change_date": "2022-03-13T22:14:25.213Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12817, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0716319, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.476Z", + "last_change_date": "2022-03-13T22:14:25.350Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12818, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0857681, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.561Z", + "last_change_date": "2022-03-13T22:14:25.419Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12819, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.100736, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.689Z", + "last_change_date": "2022-03-13T22:14:25.521Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12820, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.117367, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.879Z", + "last_change_date": "2022-03-13T22:14:25.658Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12821, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.131503, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.130Z", + "last_change_date": "2022-03-13T22:14:25.794Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12822, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.146471, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.216Z", + "last_change_date": "2022-03-13T22:14:25.863Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12823, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.161438, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.346Z", + "last_change_date": "2022-03-13T22:14:25.965Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12824, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0312349, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.047Z", + "last_change_date": "2022-03-13T22:14:24.914Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12825, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.04195, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.176Z", + "last_change_date": "2022-03-13T22:14:25.034Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12826, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0580225, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.348Z", + "last_change_date": "2022-03-13T22:14:25.247Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12827, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.069809, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.433Z", + "last_change_date": "2022-03-13T22:14:25.316Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12828, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0880245, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.604Z", + "last_change_date": "2022-03-13T22:14:25.453Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12829, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.10624, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.732Z", + "last_change_date": "2022-03-13T22:14:25.555Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12830, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.125527, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.086Z", + "last_change_date": "2022-03-13T22:14:25.760Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12831, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.146957, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.259Z", + "last_change_date": "2022-03-13T22:14:25.897Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12832, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.165173, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.389Z", + "last_change_date": "2022-03-13T22:14:25.999Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12833, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.18446, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.475Z", + "last_change_date": "2022-03-13T22:14:26.067Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12834, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.203747, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.562Z", + "last_change_date": "2022-03-13T22:14:26.135Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12923, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0304816, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.005Z", + "last_change_date": "2022-03-13T22:14:24.880Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12924, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0402679, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.133Z", + "last_change_date": "2022-03-13T22:14:24.982Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12925, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0549474, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.262Z", + "last_change_date": "2022-03-13T22:14:25.179Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12926, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0657124, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.390Z", + "last_change_date": "2022-03-13T22:14:25.282Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12927, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.0823492, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.519Z", + "last_change_date": "2022-03-13T22:14:25.384Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12928, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.098986, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.647Z", + "last_change_date": "2022-03-13T22:14:25.487Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12929, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.116601, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:51.818Z", + "last_change_date": "2022-03-13T22:14:25.623Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12930, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.136174, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.173Z", + "last_change_date": "2022-03-13T22:14:25.828Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12931, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.152811, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.302Z", + "last_change_date": "2022-03-13T22:14:25.931Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12932, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.170426, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.432Z", + "last_change_date": "2022-03-13T22:14:26.033Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 12933, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Floor area", + "Emission_factor_functional_unit_unit": "m²", + "Emission_factor_name": "EPC Energy Intensity per m²", + "Emission_factor_unit": "MWh/m²", + "PCAF_data_quality_score": 3, + "Emission_factor": 0.188042, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m² to get the country and EPC rating-specific energy intensity per m² per building type. A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": null, + "Emission_factor_year_4": null, + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.519Z", + "last_change_date": "2022-03-13T22:14:26.101Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17053, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 15.8673, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.218Z", + "last_change_date": "2022-03-13T22:14:26.670Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17054, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 20.6547, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.521Z", + "last_change_date": "2022-03-13T22:14:26.908Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17055, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 27.8359, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.823Z", + "last_change_date": "2022-03-13T22:14:27.146Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17056, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 33.1021, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.866Z", + "last_change_date": "2022-03-13T22:14:27.180Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17057, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 41.2407, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.909Z", + "last_change_date": "2022-03-13T22:14:27.214Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17058, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 49.3794, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.952Z", + "last_change_date": "2022-03-13T22:14:27.249Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17059, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 57.9968, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.995Z", + "last_change_date": "2022-03-13T22:14:27.283Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17060, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 67.5716, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:54.081Z", + "last_change_date": "2022-03-13T22:14:27.404Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17061, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 75.7103, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:54.124Z", + "last_change_date": "2022-03-13T22:14:27.478Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17062, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 84.3277, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:54.168Z", + "last_change_date": "2022-03-13T22:14:27.512Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17063, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Multi-family house (MFH)", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 92.9451, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:54.279Z", + "last_change_date": "2022-03-13T22:14:27.545Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17064, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 4.11708, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.605Z", + "last_change_date": "2022-03-13T22:14:26.177Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17065, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 5.52943, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.691Z", + "last_change_date": "2022-03-13T22:14:26.330Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17066, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 7.64796, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.821Z", + "last_change_date": "2022-03-13T22:14:26.432Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17067, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 9.20154, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.908Z", + "last_change_date": "2022-03-13T22:14:26.500Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17068, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 11.6025, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.994Z", + "last_change_date": "2022-03-13T22:14:26.568Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17069, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 14.0035, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.175Z", + "last_change_date": "2022-03-13T22:14:26.636Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17070, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 16.5458, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.348Z", + "last_change_date": "2022-03-13T22:14:26.772Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17071, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 19.3705, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.478Z", + "last_change_date": "2022-03-13T22:14:26.874Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17072, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 21.7714, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.607Z", + "last_change_date": "2022-03-13T22:14:26.976Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17073, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 24.3137, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.693Z", + "last_change_date": "2022-03-13T22:14:27.044Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17074, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Single-family house (SFH)", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 26.8559, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.780Z", + "last_change_date": "2022-03-13T22:14:27.112Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17163, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A++++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 4.2207, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.648Z", + "last_change_date": "2022-03-13T22:14:26.264Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17164, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A+++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 5.57579, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.734Z", + "last_change_date": "2022-03-13T22:14:26.364Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17165, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A++", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 7.60842, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.777Z", + "last_change_date": "2022-03-13T22:14:26.398Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17166, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A+", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 9.09902, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.865Z", + "last_change_date": "2022-03-13T22:14:26.466Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17167, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "A", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 11.4027, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:52.951Z", + "last_change_date": "2022-03-13T22:14:26.534Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17168, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "B", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 13.7063, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.084Z", + "last_change_date": "2022-03-13T22:14:26.602Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17169, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "C", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 16.1455, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.262Z", + "last_change_date": "2022-03-13T22:14:26.704Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17170, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "D", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 18.8556, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.435Z", + "last_change_date": "2022-03-13T22:14:26.840Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17171, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "E", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 21.1593, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.564Z", + "last_change_date": "2022-03-13T22:14:26.942Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17172, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "F", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 23.5984, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.650Z", + "last_change_date": "2022-03-13T22:14:27.010Z" + } +}, +{ + "model": "reference.buildingemissionfactor", + "pk": 17173, + "fields": { + "Asset_class": "Mortgages", + "Emission_factor_type": "Energy", + "Country": "Netherlands", + "Data_level_1_information": "Residential buildings", + "Data_level_2_information": "Residential Total", + "EPC_Rating": "G", + "Emission_factor_functional_unit_name": "Dwelling", + "Emission_factor_functional_unit_unit": "#", + "Emission_factor_name": "EPC Energy Intensity per #", + "Emission_factor_unit": "MWh/#", + "PCAF_data_quality_score": 3, + "Emission_factor": 26.0376, + "Emission_factor_methodology_description": "The country-specific distribution of EPC ratings over building types from national and/or European sources is used to identify the average country-specific EPC rating. Based on the average EPC rating, the deviation of each EPC rating from the average is determined and combined with the country-specific energy intensity per m². This energy intensity is then multiplied with the average floor area to get the country and EPC rating-specific energy intensity per unit per building type. Buildings data is based on the data from the Guidehouse Global Building Stock Model (GLOBUS). A more detailed description of the calculation methodology can be found in the methodology document.", + "Emission_factor_source_1": "CRREM Global Pathways", + "Emission_factor_year_1": "2018", + "Emission_factor_source_2": "clo.nl", + "Emission_factor_year_2": "2020", + "Emission_factor_source_3": "Dutch Government", + "Emission_factor_year_3": "2021", + "Emission_factor_source_4": "Guidehouse Global Building Stock Model (GLOBUS)", + "Emission_factor_year_4": "2021", + "Link_to_emission_factor": "docs/PCAF European building emission factor database_Methodology.pdf", + "Status": "Published", + "Inserted_By_Users": null, + "creation_date": "2022-03-13T22:04:53.737Z", + "last_change_date": "2022-03-13T22:14:27.078Z" + } +} +] diff --git a/reference/fixtures/EmissionFactor.json b/reference/fixtures/EmissionFactor.json new file mode 100644 index 0000000..9c68f66 --- /dev/null +++ b/reference/fixtures/EmissionFactor.json @@ -0,0 +1,627587 @@ +[ +{ + "model": "reference.emissionfactor", + "pk": 1, + "fields": { + "EF_ID": 13932, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Albania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.45", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.194Z", + "last_change_date": "2022-03-14T07:50:22.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2, + "fields": { + "EF_ID": 13935, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Albania", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.271Z", + "last_change_date": "2022-03-14T07:50:22.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3, + "fields": { + "EF_ID": 13937, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Albania", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "9.84", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.338Z", + "last_change_date": "2022-03-14T07:50:22.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4, + "fields": { + "EF_ID": 13938, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Albania", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "9.84", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.404Z", + "last_change_date": "2022-03-14T07:50:22.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5, + "fields": { + "EF_ID": 13939, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Albania", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "9.84", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.471Z", + "last_change_date": "2022-03-14T07:50:22.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6, + "fields": { + "EF_ID": 13941, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Albania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.546Z", + "last_change_date": "2022-03-14T07:50:22.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7, + "fields": { + "EF_ID": 13942, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Algeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.29", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.619Z", + "last_change_date": "2022-03-14T07:50:22.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8, + "fields": { + "EF_ID": 13943, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Algeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.29", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.687Z", + "last_change_date": "2022-03-14T07:50:22.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9, + "fields": { + "EF_ID": 13944, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Algeria", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.762Z", + "last_change_date": "2022-03-14T07:50:22.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10, + "fields": { + "EF_ID": 13945, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Algeria", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.821Z", + "last_change_date": "2022-03-14T07:50:22.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11, + "fields": { + "EF_ID": 13951, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Algeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.887Z", + "last_change_date": "2022-03-14T07:50:22.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12, + "fields": { + "EF_ID": 13952, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Angola Cabinda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:22.960Z", + "last_change_date": "2022-03-14T07:50:22.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13, + "fields": { + "EF_ID": 13962, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina,", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.29", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.021Z", + "last_change_date": "2022-03-14T07:50:23.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14, + "fields": { + "EF_ID": 13963, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.079Z", + "last_change_date": "2022-03-14T07:50:23.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15, + "fields": { + "EF_ID": 13964, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "24.7", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.145Z", + "last_change_date": "2022-03-14T07:50:23.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16, + "fields": { + "EF_ID": 13965, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.14", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.210Z", + "last_change_date": "2022-03-14T07:50:23.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17, + "fields": { + "EF_ID": 13966, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "24.7", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.287Z", + "last_change_date": "2022-03-14T07:50:23.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 18, + "fields": { + "EF_ID": 13971, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.46", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.351Z", + "last_change_date": "2022-03-14T07:50:23.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 19, + "fields": { + "EF_ID": 13975, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Armenia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.418Z", + "last_change_date": "2022-03-14T07:50:23.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 20, + "fields": { + "EF_ID": 13976, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Armenia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.493Z", + "last_change_date": "2022-03-14T07:50:23.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 21, + "fields": { + "EF_ID": 13978, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Armenia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.568Z", + "last_change_date": "2022-03-14T07:50:23.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 22, + "fields": { + "EF_ID": 13979, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Armenia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.652Z", + "last_change_date": "2022-03-14T07:50:23.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 23, + "fields": { + "EF_ID": 13980, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Armenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.726Z", + "last_change_date": "2022-03-14T07:50:23.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 24, + "fields": { + "EF_ID": 13981, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Armenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.810Z", + "last_change_date": "2022-03-14T07:50:23.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 25, + "fields": { + "EF_ID": 13982, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.876Z", + "last_change_date": "2022-03-14T07:50:23.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 26, + "fields": { + "EF_ID": 13985, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:23.943Z", + "last_change_date": "2022-03-14T07:50:23.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 27, + "fields": { + "EF_ID": 13986, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.019Z", + "last_change_date": "2022-03-14T07:50:24.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 28, + "fields": { + "EF_ID": 13988, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.143Z", + "last_change_date": "2022-03-14T07:50:24.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 29, + "fields": { + "EF_ID": 13989, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.202Z", + "last_change_date": "2022-03-14T07:50:24.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 30, + "fields": { + "EF_ID": 13990, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.254Z", + "last_change_date": "2022-03-14T07:50:24.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 31, + "fields": { + "EF_ID": 13991, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.318Z", + "last_change_date": "2022-03-14T07:50:24.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 32, + "fields": { + "EF_ID": 13992, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Bahrain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.395Z", + "last_change_date": "2022-03-14T07:50:24.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 33, + "fields": { + "EF_ID": 13993, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Bahrain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.462Z", + "last_change_date": "2022-03-14T07:50:24.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 34, + "fields": { + "EF_ID": 14002, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.537Z", + "last_change_date": "2022-03-14T07:50:24.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 35, + "fields": { + "EF_ID": 14003, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.612Z", + "last_change_date": "2022-03-14T07:50:24.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 36, + "fields": { + "EF_ID": 14005, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "20.93", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.687Z", + "last_change_date": "2022-03-14T07:50:24.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 37, + "fields": { + "EF_ID": 14012, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.769Z", + "last_change_date": "2022-03-14T07:50:24.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 38, + "fields": { + "EF_ID": 14015, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.837Z", + "last_change_date": "2022-03-14T07:50:24.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 39, + "fields": { + "EF_ID": 14016, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.912Z", + "last_change_date": "2022-03-14T07:50:24.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 40, + "fields": { + "EF_ID": 14018, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:24.979Z", + "last_change_date": "2022-03-14T07:50:24.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 41, + "fields": { + "EF_ID": 14019, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.046Z", + "last_change_date": "2022-03-14T07:50:25.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 42, + "fields": { + "EF_ID": 14020, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.119Z", + "last_change_date": "2022-03-14T07:50:25.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 43, + "fields": { + "EF_ID": 14021, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.187Z", + "last_change_date": "2022-03-14T07:50:25.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 44, + "fields": { + "EF_ID": 14022, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.262Z", + "last_change_date": "2022-03-14T07:50:25.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 45, + "fields": { + "EF_ID": 14032, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Bolivia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.33", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.329Z", + "last_change_date": "2022-03-14T07:50:25.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 46, + "fields": { + "EF_ID": 14033, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Bolivia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.33", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.404Z", + "last_change_date": "2022-03-14T07:50:25.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 47, + "fields": { + "EF_ID": 14042, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.477Z", + "last_change_date": "2022-03-14T07:50:25.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 48, + "fields": { + "EF_ID": 14043, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.546Z", + "last_change_date": "2022-03-14T07:50:25.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 49, + "fields": { + "EF_ID": 14044, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "18.42", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.612Z", + "last_change_date": "2022-03-14T07:50:25.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 50, + "fields": { + "EF_ID": 14045, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.56", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.687Z", + "last_change_date": "2022-03-14T07:50:25.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 51, + "fields": { + "EF_ID": 14051, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.762Z", + "last_change_date": "2022-03-14T07:50:25.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 52, + "fields": { + "EF_ID": 14052, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brunei", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.852Z", + "last_change_date": "2022-03-14T07:50:25.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 53, + "fields": { + "EF_ID": 14053, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brunei", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:25.929Z", + "last_change_date": "2022-03-14T07:50:25.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 54, + "fields": { + "EF_ID": 14062, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.004Z", + "last_change_date": "2022-03-14T07:50:26.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 55, + "fields": { + "EF_ID": 14064, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Bulgaria", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "24.7", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.096Z", + "last_change_date": "2022-03-14T07:50:26.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 56, + "fields": { + "EF_ID": 14065, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Bulgaria", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "24.7", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.162Z", + "last_change_date": "2022-03-14T07:50:26.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 57, + "fields": { + "EF_ID": 14067, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Bulgaria", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "7.03", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.235Z", + "last_change_date": "2022-03-14T07:50:26.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 58, + "fields": { + "EF_ID": 14070, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.296Z", + "last_change_date": "2022-03-14T07:50:26.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 59, + "fields": { + "EF_ID": 14071, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.354Z", + "last_change_date": "2022-03-14T07:50:26.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 60, + "fields": { + "EF_ID": 14072, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cameroon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.45", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.412Z", + "last_change_date": "2022-03-14T07:50:26.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 61, + "fields": { + "EF_ID": 14082, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.91", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.471Z", + "last_change_date": "2022-03-14T07:50:26.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 62, + "fields": { + "EF_ID": 14083, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.87", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.544Z", + "last_change_date": "2022-03-14T07:50:26.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 63, + "fields": { + "EF_ID": 14084, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Chile", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "28.43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.604Z", + "last_change_date": "2022-03-14T07:50:26.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 64, + "fields": { + "EF_ID": 14085, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Chile", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "28.43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.671Z", + "last_change_date": "2022-03-14T07:50:26.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 65, + "fields": { + "EF_ID": 14087, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Chile", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "17.17", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.737Z", + "last_change_date": "2022-03-14T07:50:26.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 66, + "fields": { + "EF_ID": 14091, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.804Z", + "last_change_date": "2022-03-14T07:50:26.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 67, + "fields": { + "EF_ID": 14092, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.879Z", + "last_change_date": "2022-03-14T07:50:26.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 68, + "fields": { + "EF_ID": 14094, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "20.52", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:26.951Z", + "last_change_date": "2022-03-14T07:50:26.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 69, + "fields": { + "EF_ID": 14095, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "20.52", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.018Z", + "last_change_date": "2022-03-14T07:50:27.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 70, + "fields": { + "EF_ID": 14096, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "20.52", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.084Z", + "last_change_date": "2022-03-14T07:50:27.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 71, + "fields": { + "EF_ID": 14101, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.47", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.151Z", + "last_change_date": "2022-03-14T07:50:27.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 72, + "fields": { + "EF_ID": 14102, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Colombia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.24", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.219Z", + "last_change_date": "2022-03-14T07:50:27.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 73, + "fields": { + "EF_ID": 14103, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Colombia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.87", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.285Z", + "last_change_date": "2022-03-14T07:50:27.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 74, + "fields": { + "EF_ID": 14104, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Colombia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.352Z", + "last_change_date": "2022-03-14T07:50:27.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 75, + "fields": { + "EF_ID": 14106, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Colombia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.418Z", + "last_change_date": "2022-03-14T07:50:27.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 76, + "fields": { + "EF_ID": 14111, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Colombia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.485Z", + "last_change_date": "2022-03-14T07:50:27.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 77, + "fields": { + "EF_ID": 14112, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.91", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.552Z", + "last_change_date": "2022-03-14T07:50:27.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 78, + "fields": { + "EF_ID": 14122, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cuba", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.626Z", + "last_change_date": "2022-03-14T07:50:27.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 79, + "fields": { + "EF_ID": 14125, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Cuba", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.701Z", + "last_change_date": "2022-03-14T07:50:27.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 80, + "fields": { + "EF_ID": 14131, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Cuba", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.776Z", + "last_change_date": "2022-03-14T07:50:27.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 81, + "fields": { + "EF_ID": 14132, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cyprus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.48", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.851Z", + "last_change_date": "2022-03-14T07:50:27.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 82, + "fields": { + "EF_ID": 14135, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Cyprus", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:27.936Z", + "last_change_date": "2022-03-14T07:50:27.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 83, + "fields": { + "EF_ID": 14142, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.78", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.010Z", + "last_change_date": "2022-03-14T07:50:28.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 84, + "fields": { + "EF_ID": 14144, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "24.4", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.093Z", + "last_change_date": "2022-03-14T07:50:28.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 85, + "fields": { + "EF_ID": 14145, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "23.92", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.176Z", + "last_change_date": "2022-03-14T07:50:28.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 86, + "fields": { + "EF_ID": 14146, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "27.98", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.246Z", + "last_change_date": "2022-03-14T07:50:28.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 87, + "fields": { + "EF_ID": 14147, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "12.26", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.321Z", + "last_change_date": "2022-03-14T07:50:28.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 88, + "fields": { + "EF_ID": 14149, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "15.26", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.387Z", + "last_change_date": "2022-03-14T07:50:28.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 89, + "fields": { + "EF_ID": 14150, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.454Z", + "last_change_date": "2022-03-14T07:50:28.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 90, + "fields": { + "EF_ID": 14151, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.01", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.521Z", + "last_change_date": "2022-03-14T07:50:28.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 91, + "fields": { + "EF_ID": 14152, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ecuador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.45", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.587Z", + "last_change_date": "2022-03-14T07:50:28.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 92, + "fields": { + "EF_ID": 14153, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ecuador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.45", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.654Z", + "last_change_date": "2022-03-14T07:50:28.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 93, + "fields": { + "EF_ID": 14162, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.721Z", + "last_change_date": "2022-03-14T07:50:28.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 94, + "fields": { + "EF_ID": 14163, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.788Z", + "last_change_date": "2022-03-14T07:50:28.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 95, + "fields": { + "EF_ID": 14165, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.854Z", + "last_change_date": "2022-03-14T07:50:28.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 96, + "fields": { + "EF_ID": 14171, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.921Z", + "last_change_date": "2022-03-14T07:50:28.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 97, + "fields": { + "EF_ID": 14175, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Estonia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:28.988Z", + "last_change_date": "2022-03-14T07:50:28.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 98, + "fields": { + "EF_ID": 14176, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Estonia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.054Z", + "last_change_date": "2022-03-14T07:50:29.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 99, + "fields": { + "EF_ID": 14177, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Estonia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.121Z", + "last_change_date": "2022-03-14T07:50:29.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 100, + "fields": { + "EF_ID": 14178, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Estonia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.187Z", + "last_change_date": "2022-03-14T07:50:29.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 101, + "fields": { + "EF_ID": 14179, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Estonia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.254Z", + "last_change_date": "2022-03-14T07:50:29.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 102, + "fields": { + "EF_ID": 14180, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.321Z", + "last_change_date": "2022-03-14T07:50:29.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 103, + "fields": { + "EF_ID": 14181, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.396Z", + "last_change_date": "2022-03-14T07:50:29.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 104, + "fields": { + "EF_ID": 14182, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ethiopia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.468Z", + "last_change_date": "2022-03-14T07:50:29.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 105, + "fields": { + "EF_ID": 14192, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Gabon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.534Z", + "last_change_date": "2022-03-14T07:50:29.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 106, + "fields": { + "EF_ID": 14202, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Georgia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.601Z", + "last_change_date": "2022-03-14T07:50:29.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 107, + "fields": { + "EF_ID": 14204, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Georgia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.668Z", + "last_change_date": "2022-03-14T07:50:29.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 108, + "fields": { + "EF_ID": 14205, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Georgia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.746Z", + "last_change_date": "2022-03-14T07:50:29.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 109, + "fields": { + "EF_ID": 14206, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Georgia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.809Z", + "last_change_date": "2022-03-14T07:50:29.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 110, + "fields": { + "EF_ID": 14208, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Georgia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.876Z", + "last_change_date": "2022-03-14T07:50:29.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 111, + "fields": { + "EF_ID": 14209, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Georgia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:29.943Z", + "last_change_date": "2022-03-14T07:50:29.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 112, + "fields": { + "EF_ID": 14210, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Georgia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.018Z", + "last_change_date": "2022-03-14T07:50:30.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 113, + "fields": { + "EF_ID": 14211, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Georgia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.085Z", + "last_change_date": "2022-03-14T07:50:30.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 114, + "fields": { + "EF_ID": 14212, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ghana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.151Z", + "last_change_date": "2022-03-14T07:50:30.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 115, + "fields": { + "EF_ID": 14215, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Ghana", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.217Z", + "last_change_date": "2022-03-14T07:50:30.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 116, + "fields": { + "EF_ID": 14222, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Guatemala", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.45", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.292Z", + "last_change_date": "2022-03-14T07:50:30.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 117, + "fields": { + "EF_ID": 14235, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "HongKong", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.367Z", + "last_change_date": "2022-03-14T07:50:30.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 118, + "fields": { + "EF_ID": 14241, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "HongKong", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.444Z", + "last_change_date": "2022-03-14T07:50:30.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 119, + "fields": { + "EF_ID": 14242, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.36", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.517Z", + "last_change_date": "2022-03-14T07:50:30.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 120, + "fields": { + "EF_ID": 14243, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.18", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.592Z", + "last_change_date": "2022-03-14T07:50:30.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 121, + "fields": { + "EF_ID": 14244, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "16.42", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.676Z", + "last_change_date": "2022-03-14T07:50:30.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 122, + "fields": { + "EF_ID": 14245, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.33", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.751Z", + "last_change_date": "2022-03-14T07:50:30.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 123, + "fields": { + "EF_ID": 14246, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "24.15", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.829Z", + "last_change_date": "2022-03-14T07:50:30.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 124, + "fields": { + "EF_ID": 14247, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "10.55", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.920Z", + "last_change_date": "2022-03-14T07:50:30.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 125, + "fields": { + "EF_ID": 14248, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "9.91", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:30.996Z", + "last_change_date": "2022-03-14T07:50:30.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 126, + "fields": { + "EF_ID": 14250, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.44", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.063Z", + "last_change_date": "2022-03-14T07:50:31.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 127, + "fields": { + "EF_ID": 14251, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.11", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.129Z", + "last_change_date": "2022-03-14T07:50:31.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 128, + "fields": { + "EF_ID": 14252, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.79", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.196Z", + "last_change_date": "2022-03-14T07:50:31.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 129, + "fields": { + "EF_ID": 14253, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.262Z", + "last_change_date": "2022-03-14T07:50:31.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 130, + "fields": { + "EF_ID": 14254, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "19.98", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.329Z", + "last_change_date": "2022-03-14T07:50:31.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 131, + "fields": { + "EF_ID": 14255, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.396Z", + "last_change_date": "2022-03-14T07:50:31.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 132, + "fields": { + "EF_ID": 14256, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "19.98", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.462Z", + "last_change_date": "2022-03-14T07:50:31.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 133, + "fields": { + "EF_ID": 14257, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "9.8", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.529Z", + "last_change_date": "2022-03-14T07:50:31.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 134, + "fields": { + "EF_ID": 14260, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.596Z", + "last_change_date": "2022-03-14T07:50:31.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 135, + "fields": { + "EF_ID": 14262, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.66", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.662Z", + "last_change_date": "2022-03-14T07:50:31.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 136, + "fields": { + "EF_ID": 14263, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.77", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.729Z", + "last_change_date": "2022-03-14T07:50:31.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 137, + "fields": { + "EF_ID": 14264, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.796Z", + "last_change_date": "2022-03-14T07:50:31.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 138, + "fields": { + "EF_ID": 14265, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.871Z", + "last_change_date": "2022-03-14T07:50:31.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 139, + "fields": { + "EF_ID": 14266, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:31.937Z", + "last_change_date": "2022-03-14T07:50:31.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 140, + "fields": { + "EF_ID": 14271, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.004Z", + "last_change_date": "2022-03-14T07:50:32.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 141, + "fields": { + "EF_ID": 14272, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Iran", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.66", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.071Z", + "last_change_date": "2022-03-14T07:50:32.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 142, + "fields": { + "EF_ID": 14273, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Iran", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.138Z", + "last_change_date": "2022-03-14T07:50:32.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 143, + "fields": { + "EF_ID": 14274, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Iran", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.212Z", + "last_change_date": "2022-03-14T07:50:32.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 144, + "fields": { + "EF_ID": 14275, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Iran", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.279Z", + "last_change_date": "2022-03-14T07:50:32.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 145, + "fields": { + "EF_ID": 14282, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Iraq", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.83", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.346Z", + "last_change_date": "2022-03-14T07:50:32.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 146, + "fields": { + "EF_ID": 14283, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Iraq", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.83", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.421Z", + "last_change_date": "2022-03-14T07:50:32.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 147, + "fields": { + "EF_ID": 14292, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Israel", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.487Z", + "last_change_date": "2022-03-14T07:50:32.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 148, + "fields": { + "EF_ID": 14295, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Israel", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.63", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.562Z", + "last_change_date": "2022-03-14T07:50:32.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 149, + "fields": { + "EF_ID": 14302, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ivory Coast", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.646Z", + "last_change_date": "2022-03-14T07:50:32.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 150, + "fields": { + "EF_ID": 14312, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Jamaica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.712Z", + "last_change_date": "2022-03-14T07:50:32.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 151, + "fields": { + "EF_ID": 14315, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Jamaica", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.787Z", + "last_change_date": "2022-03-14T07:50:32.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 152, + "fields": { + "EF_ID": 14322, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Jordan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.862Z", + "last_change_date": "2022-03-14T07:50:32.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 153, + "fields": { + "EF_ID": 14332, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:32.987Z", + "last_change_date": "2022-03-14T07:50:32.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 154, + "fields": { + "EF_ID": 14334, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.071Z", + "last_change_date": "2022-03-14T07:50:33.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 155, + "fields": { + "EF_ID": 14335, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.154Z", + "last_change_date": "2022-03-14T07:50:33.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 156, + "fields": { + "EF_ID": 14336, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.221Z", + "last_change_date": "2022-03-14T07:50:33.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 157, + "fields": { + "EF_ID": 14337, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.288Z", + "last_change_date": "2022-03-14T07:50:33.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 158, + "fields": { + "EF_ID": 14338, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.359Z", + "last_change_date": "2022-03-14T07:50:33.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 159, + "fields": { + "EF_ID": 14339, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.426Z", + "last_change_date": "2022-03-14T07:50:33.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 160, + "fields": { + "EF_ID": 14340, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.494Z", + "last_change_date": "2022-03-14T07:50:33.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 161, + "fields": { + "EF_ID": 14341, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.559Z", + "last_change_date": "2022-03-14T07:50:33.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 162, + "fields": { + "EF_ID": 14342, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.625Z", + "last_change_date": "2022-03-14T07:50:33.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 163, + "fields": { + "EF_ID": 14345, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.692Z", + "last_change_date": "2022-03-14T07:50:33.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 164, + "fields": { + "EF_ID": 14352, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Kuwait", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.784Z", + "last_change_date": "2022-03-14T07:50:33.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 165, + "fields": { + "EF_ID": 14353, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Kuwait", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.877Z", + "last_change_date": "2022-03-14T07:50:33.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 166, + "fields": { + "EF_ID": 14362, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:33.967Z", + "last_change_date": "2022-03-14T07:50:33.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 167, + "fields": { + "EF_ID": 14364, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.042Z", + "last_change_date": "2022-03-14T07:50:34.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 168, + "fields": { + "EF_ID": 14365, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.125Z", + "last_change_date": "2022-03-14T07:50:34.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 169, + "fields": { + "EF_ID": 14366, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.192Z", + "last_change_date": "2022-03-14T07:50:34.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 170, + "fields": { + "EF_ID": 14367, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.271Z", + "last_change_date": "2022-03-14T07:50:34.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 171, + "fields": { + "EF_ID": 14368, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.404Z", + "last_change_date": "2022-03-14T07:50:34.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 172, + "fields": { + "EF_ID": 14369, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.479Z", + "last_change_date": "2022-03-14T07:50:34.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 173, + "fields": { + "EF_ID": 14370, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.554Z", + "last_change_date": "2022-03-14T07:50:34.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 174, + "fields": { + "EF_ID": 14371, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.671Z", + "last_change_date": "2022-03-14T07:50:34.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 175, + "fields": { + "EF_ID": 14375, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.754Z", + "last_change_date": "2022-03-14T07:50:34.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 176, + "fields": { + "EF_ID": 14376, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.829Z", + "last_change_date": "2022-03-14T07:50:34.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 177, + "fields": { + "EF_ID": 14378, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.921Z", + "last_change_date": "2022-03-14T07:50:34.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 178, + "fields": { + "EF_ID": 14379, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:34.979Z", + "last_change_date": "2022-03-14T07:50:34.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 179, + "fields": { + "EF_ID": 14380, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.046Z", + "last_change_date": "2022-03-14T07:50:35.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 180, + "fields": { + "EF_ID": 14381, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.104Z", + "last_change_date": "2022-03-14T07:50:35.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 181, + "fields": { + "EF_ID": 14382, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Lebanon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.162Z", + "last_change_date": "2022-03-14T07:50:35.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 182, + "fields": { + "EF_ID": 14392, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Libya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.221Z", + "last_change_date": "2022-03-14T07:50:35.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 183, + "fields": { + "EF_ID": 14402, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.279Z", + "last_change_date": "2022-03-14T07:50:35.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 184, + "fields": { + "EF_ID": 14405, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.59", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.337Z", + "last_change_date": "2022-03-14T07:50:35.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 185, + "fields": { + "EF_ID": 14406, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.59", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.412Z", + "last_change_date": "2022-03-14T07:50:35.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 186, + "fields": { + "EF_ID": 14408, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.479Z", + "last_change_date": "2022-03-14T07:50:35.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 187, + "fields": { + "EF_ID": 14409, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.546Z", + "last_change_date": "2022-03-14T07:50:35.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 188, + "fields": { + "EF_ID": 14410, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.612Z", + "last_change_date": "2022-03-14T07:50:35.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 189, + "fields": { + "EF_ID": 14411, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.679Z", + "last_change_date": "2022-03-14T07:50:35.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 190, + "fields": { + "EF_ID": 14412, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.754Z", + "last_change_date": "2022-03-14T07:50:35.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 191, + "fields": { + "EF_ID": 14413, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.821Z", + "last_change_date": "2022-03-14T07:50:35.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 192, + "fields": { + "EF_ID": 14414, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Malaysia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.896Z", + "last_change_date": "2022-03-14T07:50:35.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 193, + "fields": { + "EF_ID": 14415, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Malaysia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:35.962Z", + "last_change_date": "2022-03-14T07:50:35.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 194, + "fields": { + "EF_ID": 14416, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Malaysia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.029Z", + "last_change_date": "2022-03-14T07:50:36.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 195, + "fields": { + "EF_ID": 14421, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.096Z", + "last_change_date": "2022-03-14T07:50:36.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 196, + "fields": { + "EF_ID": 14425, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Malta", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.162Z", + "last_change_date": "2022-03-14T07:50:36.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 197, + "fields": { + "EF_ID": 14432, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.35", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.229Z", + "last_change_date": "2022-03-14T07:50:36.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 198, + "fields": { + "EF_ID": 14433, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.81", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.296Z", + "last_change_date": "2022-03-14T07:50:36.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 199, + "fields": { + "EF_ID": 14434, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "24.72", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.362Z", + "last_change_date": "2022-03-14T07:50:36.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 200, + "fields": { + "EF_ID": 14435, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.18", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.437Z", + "last_change_date": "2022-03-14T07:50:36.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 201, + "fields": { + "EF_ID": 14436, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "22.41", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.504Z", + "last_change_date": "2022-03-14T07:50:36.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 202, + "fields": { + "EF_ID": 14441, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.571Z", + "last_change_date": "2022-03-14T07:50:36.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 203, + "fields": { + "EF_ID": 14445, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Moldavia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.637Z", + "last_change_date": "2022-03-14T07:50:36.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 204, + "fields": { + "EF_ID": 14446, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Moldavia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.704Z", + "last_change_date": "2022-03-14T07:50:36.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 205, + "fields": { + "EF_ID": 14448, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Moldavia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.786Z", + "last_change_date": "2022-03-14T07:50:36.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 206, + "fields": { + "EF_ID": 14449, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Moldavia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.854Z", + "last_change_date": "2022-03-14T07:50:36.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 207, + "fields": { + "EF_ID": 14450, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Moldavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:36.937Z", + "last_change_date": "2022-03-14T07:50:36.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 208, + "fields": { + "EF_ID": 14451, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Moldavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.012Z", + "last_change_date": "2022-03-14T07:50:37.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 209, + "fields": { + "EF_ID": 14452, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Morocco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.087Z", + "last_change_date": "2022-03-14T07:50:37.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 210, + "fields": { + "EF_ID": 14454, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Morocco", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "23.45", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.169Z", + "last_change_date": "2022-03-14T07:50:37.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 211, + "fields": { + "EF_ID": 14455, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Morocco", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.63", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.238Z", + "last_change_date": "2022-03-14T07:50:37.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 212, + "fields": { + "EF_ID": 14461, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Morocco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.313Z", + "last_change_date": "2022-03-14T07:50:37.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 213, + "fields": { + "EF_ID": 14464, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Mozambique", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.388Z", + "last_change_date": "2022-03-14T07:50:37.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 214, + "fields": { + "EF_ID": 14465, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Mozambique", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.454Z", + "last_change_date": "2022-03-14T07:50:37.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 215, + "fields": { + "EF_ID": 14472, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.24", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.529Z", + "last_change_date": "2022-03-14T07:50:37.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 216, + "fields": { + "EF_ID": 14473, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.600Z", + "last_change_date": "2022-03-14T07:50:37.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 217, + "fields": { + "EF_ID": 14474, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Myanmar", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.667Z", + "last_change_date": "2022-03-14T07:50:37.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 218, + "fields": { + "EF_ID": 14475, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Myanmar", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.733Z", + "last_change_date": "2022-03-14T07:50:37.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 219, + "fields": { + "EF_ID": 14477, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Myanmar", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "8.37", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.800Z", + "last_change_date": "2022-03-14T07:50:37.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 220, + "fields": { + "EF_ID": 14481, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.892Z", + "last_change_date": "2022-03-14T07:50:37.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 221, + "fields": { + "EF_ID": 14485, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Nepal", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:37.971Z", + "last_change_date": "2022-03-14T07:50:37.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 222, + "fields": { + "EF_ID": 14486, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Nepal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.037Z", + "last_change_date": "2022-03-14T07:50:38.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 223, + "fields": { + "EF_ID": 14492, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Neth. Antilles", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.104Z", + "last_change_date": "2022-03-14T07:50:38.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 224, + "fields": { + "EF_ID": 14502, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Neutral Zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.171Z", + "last_change_date": "2022-03-14T07:50:38.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 225, + "fields": { + "EF_ID": 14512, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.260Z", + "last_change_date": "2022-03-14T07:50:38.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 226, + "fields": { + "EF_ID": 14514, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.337Z", + "last_change_date": "2022-03-14T07:50:38.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 227, + "fields": { + "EF_ID": 14516, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.404Z", + "last_change_date": "2022-03-14T07:50:38.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 228, + "fields": { + "EF_ID": 14521, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.479Z", + "last_change_date": "2022-03-14T07:50:38.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 229, + "fields": { + "EF_ID": 14522, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.546Z", + "last_change_date": "2022-03-14T07:50:38.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 230, + "fields": { + "EF_ID": 14524, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "North Korea", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.637Z", + "last_change_date": "2022-03-14T07:50:38.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 231, + "fields": { + "EF_ID": 14525, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "North Korea", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.729Z", + "last_change_date": "2022-03-14T07:50:38.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 232, + "fields": { + "EF_ID": 14526, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "North Korea", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.796Z", + "last_change_date": "2022-03-14T07:50:38.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 233, + "fields": { + "EF_ID": 14527, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "North Korea", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "17.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.879Z", + "last_change_date": "2022-03-14T07:50:38.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 234, + "fields": { + "EF_ID": 14531, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "North Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:38.954Z", + "last_change_date": "2022-03-14T07:50:38.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 235, + "fields": { + "EF_ID": 14532, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oman", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.056Z", + "last_change_date": "2022-03-14T07:50:39.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 236, + "fields": { + "EF_ID": 14542, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.87", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.137Z", + "last_change_date": "2022-03-14T07:50:39.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 237, + "fields": { + "EF_ID": 14544, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Pakistan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "18.73", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.212Z", + "last_change_date": "2022-03-14T07:50:39.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 238, + "fields": { + "EF_ID": 14545, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Pakistan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.287Z", + "last_change_date": "2022-03-14T07:50:39.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 239, + "fields": { + "EF_ID": 14552, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.362Z", + "last_change_date": "2022-03-14T07:50:39.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 240, + "fields": { + "EF_ID": 14555, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Panama", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.459Z", + "last_change_date": "2022-03-14T07:50:39.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 241, + "fields": { + "EF_ID": 14562, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Paraguay", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.546Z", + "last_change_date": "2022-03-14T07:50:39.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 242, + "fields": { + "EF_ID": 14572, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.621Z", + "last_change_date": "2022-03-14T07:50:39.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 243, + "fields": { + "EF_ID": 14573, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.696Z", + "last_change_date": "2022-03-14T07:50:39.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 244, + "fields": { + "EF_ID": 14574, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Peru", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.771Z", + "last_change_date": "2022-03-14T07:50:39.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 245, + "fields": { + "EF_ID": 14575, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Peru", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.846Z", + "last_change_date": "2022-03-14T07:50:39.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 246, + "fields": { + "EF_ID": 14581, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:39.945Z", + "last_change_date": "2022-03-14T07:50:39.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 247, + "fields": { + "EF_ID": 14582, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.029Z", + "last_change_date": "2022-03-14T07:50:40.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 248, + "fields": { + "EF_ID": 14584, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "20.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.104Z", + "last_change_date": "2022-03-14T07:50:40.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 249, + "fields": { + "EF_ID": 14585, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "20.52", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.179Z", + "last_change_date": "2022-03-14T07:50:40.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 250, + "fields": { + "EF_ID": 14587, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "8.37", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.271Z", + "last_change_date": "2022-03-14T07:50:40.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 251, + "fields": { + "EF_ID": 14591, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.364Z", + "last_change_date": "2022-03-14T07:50:40.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 252, + "fields": { + "EF_ID": 14592, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.27", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.446Z", + "last_change_date": "2022-03-14T07:50:40.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 253, + "fields": { + "EF_ID": 14594, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "22.95", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.529Z", + "last_change_date": "2022-03-14T07:50:40.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 254, + "fields": { + "EF_ID": 14595, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.41", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.604Z", + "last_change_date": "2022-03-14T07:50:40.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 255, + "fields": { + "EF_ID": 14596, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.09", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.679Z", + "last_change_date": "2022-03-14T07:50:40.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 256, + "fields": { + "EF_ID": 14597, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "8.36", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.784Z", + "last_change_date": "2022-03-14T07:50:40.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 257, + "fields": { + "EF_ID": 14599, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "9", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.871Z", + "last_change_date": "2022-03-14T07:50:40.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 258, + "fields": { + "EF_ID": 14600, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.93", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:40.946Z", + "last_change_date": "2022-03-14T07:50:40.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 259, + "fields": { + "EF_ID": 14601, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.76", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.029Z", + "last_change_date": "2022-03-14T07:50:41.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 260, + "fields": { + "EF_ID": 14602, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Qatar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.87", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.104Z", + "last_change_date": "2022-03-14T07:50:41.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 261, + "fields": { + "EF_ID": 14603, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Qatar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.211Z", + "last_change_date": "2022-03-14T07:50:41.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 262, + "fields": { + "EF_ID": 14612, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.296Z", + "last_change_date": "2022-03-14T07:50:41.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 263, + "fields": { + "EF_ID": 14614, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "16.33", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.371Z", + "last_change_date": "2022-03-14T07:50:41.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 264, + "fields": { + "EF_ID": 14615, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.446Z", + "last_change_date": "2022-03-14T07:50:41.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 265, + "fields": { + "EF_ID": 14617, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "7.24", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.521Z", + "last_change_date": "2022-03-14T07:50:41.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 266, + "fields": { + "EF_ID": 14618, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "7.24", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.613Z", + "last_change_date": "2022-03-14T07:50:41.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 267, + "fields": { + "EF_ID": 14620, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.697Z", + "last_change_date": "2022-03-14T07:50:41.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 268, + "fields": { + "EF_ID": 14621, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.81", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.772Z", + "last_change_date": "2022-03-14T07:50:41.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 269, + "fields": { + "EF_ID": 14622, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.847Z", + "last_change_date": "2022-03-14T07:50:41.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 270, + "fields": { + "EF_ID": 14624, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "Productiion", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:41.922Z", + "last_change_date": "2022-03-14T07:50:41.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 271, + "fields": { + "EF_ID": 14625, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.015Z", + "last_change_date": "2022-03-14T07:50:42.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 272, + "fields": { + "EF_ID": 14626, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.097Z", + "last_change_date": "2022-03-14T07:50:42.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 273, + "fields": { + "EF_ID": 14627, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "Productiion", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.172Z", + "last_change_date": "2022-03-14T07:50:42.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 274, + "fields": { + "EF_ID": 14628, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.247Z", + "last_change_date": "2022-03-14T07:50:42.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 275, + "fields": { + "EF_ID": 14629, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.322Z", + "last_change_date": "2022-03-14T07:50:42.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 276, + "fields": { + "EF_ID": 14630, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.427Z", + "last_change_date": "2022-03-14T07:50:42.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 277, + "fields": { + "EF_ID": 14631, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.505Z", + "last_change_date": "2022-03-14T07:50:42.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 278, + "fields": { + "EF_ID": 14632, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "SaudiArabia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.580Z", + "last_change_date": "2022-03-14T07:50:42.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 279, + "fields": { + "EF_ID": 14633, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "SaudiArabia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.663Z", + "last_change_date": "2022-03-14T07:50:42.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 280, + "fields": { + "EF_ID": 14642, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Senegal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.747Z", + "last_change_date": "2022-03-14T07:50:42.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 281, + "fields": { + "EF_ID": 14652, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Singapore", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.853Z", + "last_change_date": "2022-03-14T07:50:42.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 282, + "fields": { + "EF_ID": 14661, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Singapore", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:42.947Z", + "last_change_date": "2022-03-14T07:50:42.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 283, + "fields": { + "EF_ID": 14662, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.13", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.022Z", + "last_change_date": "2022-03-14T07:50:43.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 284, + "fields": { + "EF_ID": 14664, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.09", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.097Z", + "last_change_date": "2022-03-14T07:50:43.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 285, + "fields": { + "EF_ID": 14666, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.09", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.172Z", + "last_change_date": "2022-03-14T07:50:43.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 286, + "fields": { + "EF_ID": 14672, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.264Z", + "last_change_date": "2022-03-14T07:50:43.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 287, + "fields": { + "EF_ID": 14674, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "19.26", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.346Z", + "last_change_date": "2022-03-14T07:50:43.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 288, + "fields": { + "EF_ID": 14675, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.430Z", + "last_change_date": "2022-03-14T07:50:43.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 289, + "fields": { + "EF_ID": 14682, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Slovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.78", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.505Z", + "last_change_date": "2022-03-14T07:50:43.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 290, + "fields": { + "EF_ID": 14685, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Slovakia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "23.92", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.580Z", + "last_change_date": "2022-03-14T07:50:43.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 291, + "fields": { + "EF_ID": 14687, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Slovakia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "12.26", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.674Z", + "last_change_date": "2022-03-14T07:50:43.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 292, + "fields": { + "EF_ID": 14689, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Slovakia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "15.26", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.755Z", + "last_change_date": "2022-03-14T07:50:43.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 293, + "fields": { + "EF_ID": 14690, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Slovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.830Z", + "last_change_date": "2022-03-14T07:50:43.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 294, + "fields": { + "EF_ID": 14691, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Slovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.01", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.905Z", + "last_change_date": "2022-03-14T07:50:43.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 295, + "fields": { + "EF_ID": 14692, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:43.980Z", + "last_change_date": "2022-03-14T07:50:43.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 296, + "fields": { + "EF_ID": 14695, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.112Z", + "last_change_date": "2022-03-14T07:50:44.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 297, + "fields": { + "EF_ID": 14702, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sudan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.188Z", + "last_change_date": "2022-03-14T07:50:44.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 298, + "fields": { + "EF_ID": 14712, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Syria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.04", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.272Z", + "last_change_date": "2022-03-14T07:50:44.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 299, + "fields": { + "EF_ID": 14722, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Chinese Taipei", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.41", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.354Z", + "last_change_date": "2022-03-14T07:50:44.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 300, + "fields": { + "EF_ID": 14724, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Chinese Taipei", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.464Z", + "last_change_date": "2022-03-14T07:50:44.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 301, + "fields": { + "EF_ID": 14725, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Chinese Taipei", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.42", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.589Z", + "last_change_date": "2022-03-14T07:50:44.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 302, + "fields": { + "EF_ID": 14732, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tajikistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.655Z", + "last_change_date": "2022-03-14T07:50:44.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 303, + "fields": { + "EF_ID": 14734, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Tajikistan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.739Z", + "last_change_date": "2022-03-14T07:50:44.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 304, + "fields": { + "EF_ID": 14735, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Tajikistan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.805Z", + "last_change_date": "2022-03-14T07:50:44.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 305, + "fields": { + "EF_ID": 14736, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Tajikistan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.863Z", + "last_change_date": "2022-03-14T07:50:44.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 306, + "fields": { + "EF_ID": 14738, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Tajikistan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:44.950Z", + "last_change_date": "2022-03-14T07:50:44.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 307, + "fields": { + "EF_ID": 14739, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Tajikistan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.030Z", + "last_change_date": "2022-03-14T07:50:45.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 308, + "fields": { + "EF_ID": 14740, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Tajikistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.114Z", + "last_change_date": "2022-03-14T07:50:45.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 309, + "fields": { + "EF_ID": 14741, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Tajikistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.179Z", + "last_change_date": "2022-03-14T07:50:45.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 310, + "fields": { + "EF_ID": 14742, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tanzania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.246Z", + "last_change_date": "2022-03-14T07:50:45.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 311, + "fields": { + "EF_ID": 14744, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Tanzania", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.335Z", + "last_change_date": "2022-03-14T07:50:45.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 312, + "fields": { + "EF_ID": 14751, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Tanzania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.413Z", + "last_change_date": "2022-03-14T07:50:45.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 313, + "fields": { + "EF_ID": 14752, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.505Z", + "last_change_date": "2022-03-14T07:50:45.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 314, + "fields": { + "EF_ID": 14753, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.85", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.571Z", + "last_change_date": "2022-03-14T07:50:45.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 315, + "fields": { + "EF_ID": 14755, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.38", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.646Z", + "last_change_date": "2022-03-14T07:50:45.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 316, + "fields": { + "EF_ID": 14757, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "12.14", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.737Z", + "last_change_date": "2022-03-14T07:50:45.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 317, + "fields": { + "EF_ID": 14760, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.830Z", + "last_change_date": "2022-03-14T07:50:45.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 318, + "fields": { + "EF_ID": 14762, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Trinidad / Tobago", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.24", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.896Z", + "last_change_date": "2022-03-14T07:50:45.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 319, + "fields": { + "EF_ID": 14772, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tunisia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:45.962Z", + "last_change_date": "2022-03-14T07:50:45.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 320, + "fields": { + "EF_ID": 14773, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tunisia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.047Z", + "last_change_date": "2022-03-14T07:50:46.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 321, + "fields": { + "EF_ID": 14775, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Tunisia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.140Z", + "last_change_date": "2022-03-14T07:50:46.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 322, + "fields": { + "EF_ID": 14781, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Tunisia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.230Z", + "last_change_date": "2022-03-14T07:50:46.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 323, + "fields": { + "EF_ID": 14782, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.305Z", + "last_change_date": "2022-03-14T07:50:46.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 324, + "fields": { + "EF_ID": 14785, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.380Z", + "last_change_date": "2022-03-14T07:50:46.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 325, + "fields": { + "EF_ID": 14786, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.464Z", + "last_change_date": "2022-03-14T07:50:46.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 326, + "fields": { + "EF_ID": 14788, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.566Z", + "last_change_date": "2022-03-14T07:50:46.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 327, + "fields": { + "EF_ID": 14789, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.647Z", + "last_change_date": "2022-03-14T07:50:46.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 328, + "fields": { + "EF_ID": 14790, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.730Z", + "last_change_date": "2022-03-14T07:50:46.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 329, + "fields": { + "EF_ID": 14791, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.806Z", + "last_change_date": "2022-03-14T07:50:46.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 330, + "fields": { + "EF_ID": 14792, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.880Z", + "last_change_date": "2022-03-14T07:50:46.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 331, + "fields": { + "EF_ID": 14794, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "21.59", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:46.985Z", + "last_change_date": "2022-03-14T07:50:46.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 332, + "fields": { + "EF_ID": 14795, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.062Z", + "last_change_date": "2022-03-14T07:50:47.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 333, + "fields": { + "EF_ID": 14796, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "21.59", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.130Z", + "last_change_date": "2022-03-14T07:50:47.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 334, + "fields": { + "EF_ID": 14797, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.197Z", + "last_change_date": "2022-03-14T07:50:47.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 335, + "fields": { + "EF_ID": 14798, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.272Z", + "last_change_date": "2022-03-14T07:50:47.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 336, + "fields": { + "EF_ID": 14799, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.372Z", + "last_change_date": "2022-03-14T07:50:47.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 337, + "fields": { + "EF_ID": 14800, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.464Z", + "last_change_date": "2022-03-14T07:50:47.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 338, + "fields": { + "EF_ID": 14801, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.539Z", + "last_change_date": "2022-03-14T07:50:47.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 339, + "fields": { + "EF_ID": 14802, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Utd Arab Emirates", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.639Z", + "last_change_date": "2022-03-14T07:50:47.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 340, + "fields": { + "EF_ID": 14812, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Uruguay", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.714Z", + "last_change_date": "2022-03-14T07:50:47.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 341, + "fields": { + "EF_ID": 14822, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.08", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.807Z", + "last_change_date": "2022-03-14T07:50:47.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 342, + "fields": { + "EF_ID": 14824, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.889Z", + "last_change_date": "2022-03-14T07:50:47.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 343, + "fields": { + "EF_ID": 14825, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:47.964Z", + "last_change_date": "2022-03-14T07:50:47.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 344, + "fields": { + "EF_ID": 14826, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.039Z", + "last_change_date": "2022-03-14T07:50:48.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 345, + "fields": { + "EF_ID": 14828, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.114Z", + "last_change_date": "2022-03-14T07:50:48.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 346, + "fields": { + "EF_ID": 14829, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.209Z", + "last_change_date": "2022-03-14T07:50:48.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 347, + "fields": { + "EF_ID": 14830, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.281Z", + "last_change_date": "2022-03-14T07:50:48.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 348, + "fields": { + "EF_ID": 14831, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.356Z", + "last_change_date": "2022-03-14T07:50:48.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 349, + "fields": { + "EF_ID": 14832, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.06", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.439Z", + "last_change_date": "2022-03-14T07:50:48.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 350, + "fields": { + "EF_ID": 14833, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.99", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.522Z", + "last_change_date": "2022-03-14T07:50:48.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 351, + "fields": { + "EF_ID": 14834, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Venezuela", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.628Z", + "last_change_date": "2022-03-14T07:50:48.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 352, + "fields": { + "EF_ID": 14836, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Venezuela", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.706Z", + "last_change_date": "2022-03-14T07:50:48.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 353, + "fields": { + "EF_ID": 14841, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.789Z", + "last_change_date": "2022-03-14T07:50:48.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 354, + "fields": { + "EF_ID": 14842, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Viet Nam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.61", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.873Z", + "last_change_date": "2022-03-14T07:50:48.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 355, + "fields": { + "EF_ID": 14844, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Viet Nam", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "20.91", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:48.947Z", + "last_change_date": "2022-03-14T07:50:48.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 356, + "fields": { + "EF_ID": 14846, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Viet Nam", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "20.91", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.038Z", + "last_change_date": "2022-03-14T07:50:49.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 357, + "fields": { + "EF_ID": 14851, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Viet Nam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.131Z", + "last_change_date": "2022-03-14T07:50:49.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 358, + "fields": { + "EF_ID": 14852, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Yemen", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.205Z", + "last_change_date": "2022-03-14T07:50:49.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 359, + "fields": { + "EF_ID": 14862, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.281Z", + "last_change_date": "2022-03-14T07:50:49.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 360, + "fields": { + "EF_ID": 14864, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Former Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "23.55", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.356Z", + "last_change_date": "2022-03-14T07:50:49.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 361, + "fields": { + "EF_ID": 14865, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Former Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.69", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.449Z", + "last_change_date": "2022-03-14T07:50:49.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 362, + "fields": { + "EF_ID": 14867, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Former Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "8.89", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.531Z", + "last_change_date": "2022-03-14T07:50:49.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 363, + "fields": { + "EF_ID": 14868, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Former Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "16.91", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.606Z", + "last_change_date": "2022-03-14T07:50:49.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 364, + "fields": { + "EF_ID": 14869, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Lignite and Sub-Bituminous Coal", + "Regional_Conditions": "Former Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "16.9", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:49.965Z", + "last_change_date": "2022-03-14T07:50:49.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 365, + "fields": { + "EF_ID": 14870, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Former Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.081Z", + "last_change_date": "2022-03-14T07:50:50.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 366, + "fields": { + "EF_ID": 14871, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Former Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.9", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.176Z", + "last_change_date": "2022-03-14T07:50:50.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 367, + "fields": { + "EF_ID": 14872, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Zaire", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.256Z", + "last_change_date": "2022-03-14T07:50:50.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 368, + "fields": { + "EF_ID": 14874, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Zaire", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.23", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.331Z", + "last_change_date": "2022-03-14T07:50:50.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 369, + "fields": { + "EF_ID": 14875, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Zaire", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.23", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.406Z", + "last_change_date": "2022-03-14T07:50:50.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 370, + "fields": { + "EF_ID": 14880, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Zaire", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.481Z", + "last_change_date": "2022-03-14T07:50:50.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 371, + "fields": { + "EF_ID": 14881, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Zaire", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.578Z", + "last_change_date": "2022-03-14T07:50:50.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 372, + "fields": { + "EF_ID": 14882, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Zambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.664Z", + "last_change_date": "2022-03-14T07:50:50.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 373, + "fields": { + "EF_ID": 14884, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Zambia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "24.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.731Z", + "last_change_date": "2022-03-14T07:50:50.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 374, + "fields": { + "EF_ID": 14886, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Zambia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "24.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.797Z", + "last_change_date": "2022-03-14T07:50:50.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 375, + "fields": { + "EF_ID": 14894, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.864Z", + "last_change_date": "2022-03-14T07:50:50.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 376, + "fields": { + "EF_ID": 14895, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:50.955Z", + "last_change_date": "2022-03-14T07:50:50.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 377, + "fields": { + "EF_ID": 14896, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.047Z", + "last_change_date": "2022-03-14T07:50:51.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 378, + "fields": { + "EF_ID": 14901, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Statistics and Balances of Non-OECD Countries: 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The conversion factors are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.114Z", + "last_change_date": "2022-03-14T07:50:51.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 379, + "fields": { + "EF_ID": 14902, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.181Z", + "last_change_date": "2022-03-14T07:50:51.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 380, + "fields": { + "EF_ID": 14903, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.256Z", + "last_change_date": "2022-03-14T07:50:51.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 381, + "fields": { + "EF_ID": 14904, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.350Z", + "last_change_date": "2022-03-14T07:50:51.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 382, + "fields": { + "EF_ID": 14905, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "28.34", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.439Z", + "last_change_date": "2022-03-14T07:50:51.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 383, + "fields": { + "EF_ID": 14907, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "28.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.514Z", + "last_change_date": "2022-03-14T07:50:51.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 384, + "fields": { + "EF_ID": 14908, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "24.39", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.589Z", + "last_change_date": "2022-03-14T07:50:51.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 385, + "fields": { + "EF_ID": 14910, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.664Z", + "last_change_date": "2022-03-14T07:50:51.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 386, + "fields": { + "EF_ID": 14911, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "17.87", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.747Z", + "last_change_date": "2022-03-14T07:50:51.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 387, + "fields": { + "EF_ID": 14914, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "9.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.844Z", + "last_change_date": "2022-03-14T07:50:51.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 388, + "fields": { + "EF_ID": 14917, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.921Z", + "last_change_date": "2022-03-14T07:50:51.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 389, + "fields": { + "EF_ID": 14918, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:51.989Z", + "last_change_date": "2022-03-14T07:50:51.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 390, + "fields": { + "EF_ID": 14919, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.064Z", + "last_change_date": "2022-03-14T07:50:52.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 391, + "fields": { + "EF_ID": 14920, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.139Z", + "last_change_date": "2022-03-14T07:50:52.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 392, + "fields": { + "EF_ID": 14921, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.254Z", + "last_change_date": "2022-03-14T07:50:52.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 393, + "fields": { + "EF_ID": 14923, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.329Z", + "last_change_date": "2022-03-14T07:50:52.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 394, + "fields": { + "EF_ID": 14926, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.406Z", + "last_change_date": "2022-03-14T07:50:52.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 395, + "fields": { + "EF_ID": 14931, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "10.9", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.481Z", + "last_change_date": "2022-03-14T07:50:52.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 396, + "fields": { + "EF_ID": 14932, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "10.9", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.556Z", + "last_change_date": "2022-03-14T07:50:52.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 397, + "fields": { + "EF_ID": 14933, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "10.9", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.631Z", + "last_change_date": "2022-03-14T07:50:52.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 398, + "fields": { + "EF_ID": 14934, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.723Z", + "last_change_date": "2022-03-14T07:50:52.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 399, + "fields": { + "EF_ID": 14935, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.2", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.813Z", + "last_change_date": "2022-03-14T07:50:52.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 400, + "fields": { + "EF_ID": 14936, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.873Z", + "last_change_date": "2022-03-14T07:50:52.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 401, + "fields": { + "EF_ID": 14938, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.939Z", + "last_change_date": "2022-03-14T07:50:52.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 402, + "fields": { + "EF_ID": 14940, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:52.998Z", + "last_change_date": "2022-03-14T07:50:52.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 403, + "fields": { + "EF_ID": 14942, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "production", + "Value": "25", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.084Z", + "last_change_date": "2022-03-14T07:50:53.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 404, + "fields": { + "EF_ID": 14943, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.162Z", + "last_change_date": "2022-03-14T07:50:53.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 405, + "fields": { + "EF_ID": 14944, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "25", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.239Z", + "last_change_date": "2022-03-14T07:50:53.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 406, + "fields": { + "EF_ID": 14945, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "18.06", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.314Z", + "last_change_date": "2022-03-14T07:50:53.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 407, + "fields": { + "EF_ID": 14947, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "18.2", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.389Z", + "last_change_date": "2022-03-14T07:50:53.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 408, + "fields": { + "EF_ID": 14949, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "21.56", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.456Z", + "last_change_date": "2022-03-14T07:50:53.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 409, + "fields": { + "EF_ID": 14951, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.81", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.545Z", + "last_change_date": "2022-03-14T07:50:53.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 410, + "fields": { + "EF_ID": 14952, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.621Z", + "last_change_date": "2022-03-14T07:50:53.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 411, + "fields": { + "EF_ID": 14953, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.79", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.698Z", + "last_change_date": "2022-03-14T07:50:53.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 412, + "fields": { + "EF_ID": 14954, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.764Z", + "last_change_date": "2022-03-14T07:50:53.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 413, + "fields": { + "EF_ID": 14955, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.863Z", + "last_change_date": "2022-03-14T07:50:53.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 414, + "fields": { + "EF_ID": 14956, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "28.78", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:53.955Z", + "last_change_date": "2022-03-14T07:50:53.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 415, + "fields": { + "EF_ID": 14957, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "Impotrs", + "Value": "27.55", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.029Z", + "last_change_date": "2022-03-14T07:50:54.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 416, + "fields": { + "EF_ID": 14958, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "28.78", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.121Z", + "last_change_date": "2022-03-14T07:50:54.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 417, + "fields": { + "EF_ID": 14959, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "28.78", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.196Z", + "last_change_date": "2022-03-14T07:50:54.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 418, + "fields": { + "EF_ID": 14960, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.55", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.271Z", + "last_change_date": "2022-03-14T07:50:54.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 419, + "fields": { + "EF_ID": 14961, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "28.78", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.346Z", + "last_change_date": "2022-03-14T07:50:54.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 420, + "fields": { + "EF_ID": 14962, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "17.38", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.442Z", + "last_change_date": "2022-03-14T07:50:54.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 421, + "fields": { + "EF_ID": 14965, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "14.25", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.529Z", + "last_change_date": "2022-03-14T07:50:54.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 422, + "fields": { + "EF_ID": 14967, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "EXports", + "Value": "14.25", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.596Z", + "last_change_date": "2022-03-14T07:50:54.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 423, + "fields": { + "EF_ID": 14969, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.39", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.662Z", + "last_change_date": "2022-03-14T07:50:54.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 424, + "fields": { + "EF_ID": 14970, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.729Z", + "last_change_date": "2022-03-14T07:50:54.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 425, + "fields": { + "EF_ID": 14972, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.853Z", + "last_change_date": "2022-03-14T07:50:54.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 426, + "fields": { + "EF_ID": 14977, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.09", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.929Z", + "last_change_date": "2022-03-14T07:50:54.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 427, + "fields": { + "EF_ID": 14978, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "26.09", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:54.996Z", + "last_change_date": "2022-03-14T07:50:54.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 428, + "fields": { + "EF_ID": 14985, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.27", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.062Z", + "last_change_date": "2022-03-14T07:50:55.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 429, + "fields": { + "EF_ID": 14986, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.84", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.129Z", + "last_change_date": "2022-03-14T07:50:55.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 430, + "fields": { + "EF_ID": 14987, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.66", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.196Z", + "last_change_date": "2022-03-14T07:50:55.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 431, + "fields": { + "EF_ID": 14989, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.297Z", + "last_change_date": "2022-03-14T07:50:55.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 432, + "fields": { + "EF_ID": 14991, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "34.33", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.379Z", + "last_change_date": "2022-03-14T07:50:55.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 433, + "fields": { + "EF_ID": 14994, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.38", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.448Z", + "last_change_date": "2022-03-14T07:50:55.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 434, + "fields": { + "EF_ID": 15003, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.89", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.514Z", + "last_change_date": "2022-03-14T07:50:55.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 435, + "fields": { + "EF_ID": 15004, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.581Z", + "last_change_date": "2022-03-14T07:50:55.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 436, + "fields": { + "EF_ID": 15005, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.648Z", + "last_change_date": "2022-03-14T07:50:55.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 437, + "fields": { + "EF_ID": 15006, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.740Z", + "last_change_date": "2022-03-14T07:50:55.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 438, + "fields": { + "EF_ID": 15007, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "28.91", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.829Z", + "last_change_date": "2022-03-14T07:50:55.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 439, + "fields": { + "EF_ID": 15008, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.914Z", + "last_change_date": "2022-03-14T07:50:55.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 440, + "fields": { + "EF_ID": 15010, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "26.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:55.981Z", + "last_change_date": "2022-03-14T07:50:55.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 441, + "fields": { + "EF_ID": 15011, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.52", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.064Z", + "last_change_date": "2022-03-14T07:50:56.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 442, + "fields": { + "EF_ID": 15012, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "26.43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.148Z", + "last_change_date": "2022-03-14T07:50:56.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 443, + "fields": { + "EF_ID": 15016, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "17.94", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.270Z", + "last_change_date": "2022-03-14T07:50:56.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 444, + "fields": { + "EF_ID": 15017, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "17.94", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.346Z", + "last_change_date": "2022-03-14T07:50:56.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 445, + "fields": { + "EF_ID": 15019, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.8", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.423Z", + "last_change_date": "2022-03-14T07:50:56.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 446, + "fields": { + "EF_ID": 15020, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.498Z", + "last_change_date": "2022-03-14T07:50:56.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 447, + "fields": { + "EF_ID": 15021, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.573Z", + "last_change_date": "2022-03-14T07:50:56.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 448, + "fields": { + "EF_ID": 15023, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.663Z", + "last_change_date": "2022-03-14T07:50:56.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 449, + "fields": { + "EF_ID": 15024, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "28.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.737Z", + "last_change_date": "2022-03-14T07:50:56.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 450, + "fields": { + "EF_ID": 15025, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "28.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.815Z", + "last_change_date": "2022-03-14T07:50:56.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 451, + "fields": { + "EF_ID": 15026, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "28.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.881Z", + "last_change_date": "2022-03-14T07:50:56.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 452, + "fields": { + "EF_ID": 15027, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "24.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:56.956Z", + "last_change_date": "2022-03-14T07:50:56.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 453, + "fields": { + "EF_ID": 15028, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.52", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.031Z", + "last_change_date": "2022-03-14T07:50:57.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 454, + "fields": { + "EF_ID": 15029, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "31.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.123Z", + "last_change_date": "2022-03-14T07:50:57.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 455, + "fields": { + "EF_ID": 15033, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "8.41", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.204Z", + "last_change_date": "2022-03-14T07:50:57.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 456, + "fields": { + "EF_ID": 15034, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "14.88", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1998), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.281Z", + "last_change_date": "2022-03-14T07:50:57.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 457, + "fields": { + "EF_ID": 15035, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "EXports", + "Value": "8.4", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.356Z", + "last_change_date": "2022-03-14T07:50:57.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 458, + "fields": { + "EF_ID": 15036, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.64", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.431Z", + "last_change_date": "2022-03-14T07:50:57.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 459, + "fields": { + "EF_ID": 15037, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.526Z", + "last_change_date": "2022-03-14T07:50:57.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 460, + "fields": { + "EF_ID": 15038, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.612Z", + "last_change_date": "2022-03-14T07:50:57.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 461, + "fields": { + "EF_ID": 15039, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.690Z", + "last_change_date": "2022-03-14T07:50:57.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 462, + "fields": { + "EF_ID": 15040, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.765Z", + "last_change_date": "2022-03-14T07:50:57.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 463, + "fields": { + "EF_ID": 15045, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.840Z", + "last_change_date": "2022-03-14T07:50:57.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 464, + "fields": { + "EF_ID": 15050, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "5.74", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:57.915Z", + "last_change_date": "2022-03-14T07:50:57.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 465, + "fields": { + "EF_ID": 15053, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.038Z", + "last_change_date": "2022-03-14T07:50:58.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 466, + "fields": { + "EF_ID": 15054, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.112Z", + "last_change_date": "2022-03-14T07:50:58.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 467, + "fields": { + "EF_ID": 15059, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Iceland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.44", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.181Z", + "last_change_date": "2022-03-14T07:50:58.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 468, + "fields": { + "EF_ID": 15062, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Iceland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.85", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.256Z", + "last_change_date": "2022-03-14T07:50:58.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 469, + "fields": { + "EF_ID": 15071, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Iceland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.65", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.331Z", + "last_change_date": "2022-03-14T07:50:58.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 470, + "fields": { + "EF_ID": 15072, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.83", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.431Z", + "last_change_date": "2022-03-14T07:50:58.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 471, + "fields": { + "EF_ID": 15074, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.512Z", + "last_change_date": "2022-03-14T07:50:58.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 472, + "fields": { + "EF_ID": 15076, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.573Z", + "last_change_date": "2022-03-14T07:50:58.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 473, + "fields": { + "EF_ID": 15078, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "26.13", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.648Z", + "last_change_date": "2022-03-14T07:50:58.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 474, + "fields": { + "EF_ID": 15079, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.98", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.715Z", + "last_change_date": "2022-03-14T07:50:58.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 475, + "fields": { + "EF_ID": 15080, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "26.13", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.790Z", + "last_change_date": "2022-03-14T07:50:58.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 476, + "fields": { + "EF_ID": 15085, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "19.82", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.892Z", + "last_change_date": "2022-03-14T07:50:58.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 477, + "fields": { + "EF_ID": 15087, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.98", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:58.979Z", + "last_change_date": "2022-03-14T07:50:58.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 478, + "fields": { + "EF_ID": 15088, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.66", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.040Z", + "last_change_date": "2022-03-14T07:50:59.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 479, + "fields": { + "EF_ID": 15089, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.106Z", + "last_change_date": "2022-03-14T07:50:59.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 480, + "fields": { + "EF_ID": 15090, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.171Z", + "last_change_date": "2022-03-14T07:50:59.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 481, + "fields": { + "EF_ID": 15091, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.260Z", + "last_change_date": "2022-03-14T07:50:59.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 482, + "fields": { + "EF_ID": 15093, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.97", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.338Z", + "last_change_date": "2022-03-14T07:50:59.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 483, + "fields": { + "EF_ID": 15095, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "26.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.404Z", + "last_change_date": "2022-03-14T07:50:59.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 484, + "fields": { + "EF_ID": 15096, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.471Z", + "last_change_date": "2022-03-14T07:50:59.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 485, + "fields": { + "EF_ID": 15101, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "10.47", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.537Z", + "last_change_date": "2022-03-14T07:50:59.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 486, + "fields": { + "EF_ID": 15102, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "10.47", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.604Z", + "last_change_date": "2022-03-14T07:50:59.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 487, + "fields": { + "EF_ID": 15105, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.697Z", + "last_change_date": "2022-03-14T07:50:59.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 488, + "fields": { + "EF_ID": 15106, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.62", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.771Z", + "last_change_date": "2022-03-14T07:50:59.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 489, + "fields": { + "EF_ID": 15107, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.05", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.838Z", + "last_change_date": "2022-03-14T07:50:59.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 490, + "fields": { + "EF_ID": 15108, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.904Z", + "last_change_date": "2022-03-14T07:50:59.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 491, + "fields": { + "EF_ID": 15109, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "30.63", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:50:59.987Z", + "last_change_date": "2022-03-14T07:50:59.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 492, + "fields": { + "EF_ID": 15110, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.23", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.088Z", + "last_change_date": "2022-03-14T07:51:00.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 493, + "fields": { + "EF_ID": 15112, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "23.07", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.183Z", + "last_change_date": "2022-03-14T07:51:00.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 494, + "fields": { + "EF_ID": 15113, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "24.66", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.273Z", + "last_change_date": "2022-03-14T07:51:00.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 495, + "fields": { + "EF_ID": 15121, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.05", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.331Z", + "last_change_date": "2022-03-14T07:51:00.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 496, + "fields": { + "EF_ID": 15122, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.64", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.396Z", + "last_change_date": "2022-03-14T07:51:00.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 497, + "fields": { + "EF_ID": 15130, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Luxembourg", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.471Z", + "last_change_date": "2022-03-14T07:51:00.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 498, + "fields": { + "EF_ID": 15136, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Luxembourg", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "20.03", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.540Z", + "last_change_date": "2022-03-14T07:51:00.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 499, + "fields": { + "EF_ID": 15138, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.635Z", + "last_change_date": "2022-03-14T07:51:00.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 500, + "fields": { + "EF_ID": 15139, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.715Z", + "last_change_date": "2022-03-14T07:51:00.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 501, + "fields": { + "EF_ID": 15140, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.779Z", + "last_change_date": "2022-03-14T07:51:00.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 502, + "fields": { + "EF_ID": 15141, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.846Z", + "last_change_date": "2022-03-14T07:51:00.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 503, + "fields": { + "EF_ID": 15142, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:00.912Z", + "last_change_date": "2022-03-14T07:51:00.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 504, + "fields": { + "EF_ID": 15144, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.004Z", + "last_change_date": "2022-03-14T07:51:01.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 505, + "fields": { + "EF_ID": 15147, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.081Z", + "last_change_date": "2022-03-14T07:51:01.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 506, + "fields": { + "EF_ID": 15148, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "29.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.148Z", + "last_change_date": "2022-03-14T07:51:01.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 507, + "fields": { + "EF_ID": 15153, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "20", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.215Z", + "last_change_date": "2022-03-14T07:51:01.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 508, + "fields": { + "EF_ID": 15154, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "20", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.281Z", + "last_change_date": "2022-03-14T07:51:01.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 509, + "fields": { + "EF_ID": 15155, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.53", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.374Z", + "last_change_date": "2022-03-14T07:51:01.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 510, + "fields": { + "EF_ID": 15156, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.448Z", + "last_change_date": "2022-03-14T07:51:01.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 511, + "fields": { + "EF_ID": 15157, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.12", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.515Z", + "last_change_date": "2022-03-14T07:51:01.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 512, + "fields": { + "EF_ID": 15158, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.05", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.582Z", + "last_change_date": "2022-03-14T07:51:01.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 513, + "fields": { + "EF_ID": 15159, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.8", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.648Z", + "last_change_date": "2022-03-14T07:51:01.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 514, + "fields": { + "EF_ID": 15160, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.742Z", + "last_change_date": "2022-03-14T07:51:01.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 515, + "fields": { + "EF_ID": 15161, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.832Z", + "last_change_date": "2022-03-14T07:51:01.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 516, + "fields": { + "EF_ID": 15162, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.907Z", + "last_change_date": "2022-03-14T07:51:01.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 517, + "fields": { + "EF_ID": 15163, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "26", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:01.982Z", + "last_change_date": "2022-03-14T07:51:01.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 518, + "fields": { + "EF_ID": 15166, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "21.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.057Z", + "last_change_date": "2022-03-14T07:51:02.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 519, + "fields": { + "EF_ID": 15169, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "NZ", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "14.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.148Z", + "last_change_date": "2022-03-14T07:51:02.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 520, + "fields": { + "EF_ID": 15174, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.253Z", + "last_change_date": "2022-03-14T07:51:02.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 521, + "fields": { + "EF_ID": 15175, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.332Z", + "last_change_date": "2022-03-14T07:51:02.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 522, + "fields": { + "EF_ID": 15176, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.398Z", + "last_change_date": "2022-03-14T07:51:02.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 523, + "fields": { + "EF_ID": 15180, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "28.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.465Z", + "last_change_date": "2022-03-14T07:51:02.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 524, + "fields": { + "EF_ID": 15181, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "28.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.532Z", + "last_change_date": "2022-03-14T07:51:02.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 525, + "fields": { + "EF_ID": 15182, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "28.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.598Z", + "last_change_date": "2022-03-14T07:51:02.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 526, + "fields": { + "EF_ID": 15190, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.688Z", + "last_change_date": "2022-03-14T07:51:02.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 527, + "fields": { + "EF_ID": 15191, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.765Z", + "last_change_date": "2022-03-14T07:51:02.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 528, + "fields": { + "EF_ID": 15193, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.832Z", + "last_change_date": "2022-03-14T07:51:02.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 529, + "fields": { + "EF_ID": 15195, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "29.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.898Z", + "last_change_date": "2022-03-14T07:51:02.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 530, + "fields": { + "EF_ID": 15198, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.59", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:02.965Z", + "last_change_date": "2022-03-14T07:51:02.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 531, + "fields": { + "EF_ID": 15200, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "17.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.032Z", + "last_change_date": "2022-03-14T07:51:03.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 532, + "fields": { + "EF_ID": 15207, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.05", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.125Z", + "last_change_date": "2022-03-14T07:51:03.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 533, + "fields": { + "EF_ID": 15208, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.66", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.198Z", + "last_change_date": "2022-03-14T07:51:03.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 534, + "fields": { + "EF_ID": 15209, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.273Z", + "last_change_date": "2022-03-14T07:51:03.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 535, + "fields": { + "EF_ID": 15210, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.332Z", + "last_change_date": "2022-03-14T07:51:03.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 536, + "fields": { + "EF_ID": 15211, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "29.16", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.390Z", + "last_change_date": "2022-03-14T07:51:03.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 537, + "fields": { + "EF_ID": 15212, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.14", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.448Z", + "last_change_date": "2022-03-14T07:51:03.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 538, + "fields": { + "EF_ID": 15214, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "21.07", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.544Z", + "last_change_date": "2022-03-14T07:51:03.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 539, + "fields": { + "EF_ID": 15215, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "25.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.632Z", + "last_change_date": "2022-03-14T07:51:03.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 540, + "fields": { + "EF_ID": 15216, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "23", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.698Z", + "last_change_date": "2022-03-14T07:51:03.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 541, + "fields": { + "EF_ID": 15217, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "11.35", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.765Z", + "last_change_date": "2022-03-14T07:51:03.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 542, + "fields": { + "EF_ID": 15218, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "11.35", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.832Z", + "last_change_date": "2022-03-14T07:51:03.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 543, + "fields": { + "EF_ID": 15220, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "7.84", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.898Z", + "last_change_date": "2022-03-14T07:51:03.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 544, + "fields": { + "EF_ID": 15223, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:03.996Z", + "last_change_date": "2022-03-14T07:51:03.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 545, + "fields": { + "EF_ID": 15224, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.14", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.088Z", + "last_change_date": "2022-03-14T07:51:04.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 546, + "fields": { + "EF_ID": 15225, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.157Z", + "last_change_date": "2022-03-14T07:51:04.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 547, + "fields": { + "EF_ID": 15227, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.248Z", + "last_change_date": "2022-03-14T07:51:04.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 548, + "fields": { + "EF_ID": 15229, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.315Z", + "last_change_date": "2022-03-14T07:51:04.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 549, + "fields": { + "EF_ID": 15231, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "14.24", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.407Z", + "last_change_date": "2022-03-14T07:51:04.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 550, + "fields": { + "EF_ID": 15232, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.98", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.490Z", + "last_change_date": "2022-03-14T07:51:04.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 551, + "fields": { + "EF_ID": 15233, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "26.98", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.557Z", + "last_change_date": "2022-03-14T07:51:04.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 552, + "fields": { + "EF_ID": 15238, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "8.37", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.624Z", + "last_change_date": "2022-03-14T07:51:04.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 553, + "fields": { + "EF_ID": 15240, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.1", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.690Z", + "last_change_date": "2022-03-14T07:51:04.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 554, + "fields": { + "EF_ID": 15241, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.05", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.749Z", + "last_change_date": "2022-03-14T07:51:04.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 555, + "fields": { + "EF_ID": 15242, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.844Z", + "last_change_date": "2022-03-14T07:51:04.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 556, + "fields": { + "EF_ID": 15244, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.932Z", + "last_change_date": "2022-03-14T07:51:04.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 557, + "fields": { + "EF_ID": 15249, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "28.05", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:04.996Z", + "last_change_date": "2022-03-14T07:51:04.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 558, + "fields": { + "EF_ID": 15250, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "28.05", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.096Z", + "last_change_date": "2022-03-14T07:51:05.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 559, + "fields": { + "EF_ID": 15257, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.76", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.154Z", + "last_change_date": "2022-03-14T07:51:05.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 560, + "fields": { + "EF_ID": 15258, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.05", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.221Z", + "last_change_date": "2022-03-14T07:51:05.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 561, + "fields": { + "EF_ID": 15259, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.79", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.313Z", + "last_change_date": "2022-03-14T07:51:05.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 562, + "fields": { + "EF_ID": 15261, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.398Z", + "last_change_date": "2022-03-14T07:51:05.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 563, + "fields": { + "EF_ID": 15262, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "33.49", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.471Z", + "last_change_date": "2022-03-14T07:51:05.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 564, + "fields": { + "EF_ID": 15263, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "33.49", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.546Z", + "last_change_date": "2022-03-14T07:51:05.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 565, + "fields": { + "EF_ID": 15265, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "29.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.613Z", + "last_change_date": "2022-03-14T07:51:05.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 566, + "fields": { + "EF_ID": 15266, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.21", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.679Z", + "last_change_date": "2022-03-14T07:51:05.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 567, + "fields": { + "EF_ID": 15271, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "9.63", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.773Z", + "last_change_date": "2022-03-14T07:51:05.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 568, + "fields": { + "EF_ID": 15272, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "12.56", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.857Z", + "last_change_date": "2022-03-14T07:51:05.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 569, + "fields": { + "EF_ID": 15274, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.93", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:05.937Z", + "last_change_date": "2022-03-14T07:51:05.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 570, + "fields": { + "EF_ID": 15275, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.012Z", + "last_change_date": "2022-03-14T07:51:06.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 571, + "fields": { + "EF_ID": 15276, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.83", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.087Z", + "last_change_date": "2022-03-14T07:51:06.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 572, + "fields": { + "EF_ID": 15277, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.89", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.177Z", + "last_change_date": "2022-03-14T07:51:06.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 573, + "fields": { + "EF_ID": 15278, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.282Z", + "last_change_date": "2022-03-14T07:51:06.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 574, + "fields": { + "EF_ID": 15279, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "29.27", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.346Z", + "last_change_date": "2022-03-14T07:51:06.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 575, + "fields": { + "EF_ID": 15280, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "30.07", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.412Z", + "last_change_date": "2022-03-14T07:51:06.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 576, + "fields": { + "EF_ID": 15281, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "29.27", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.479Z", + "last_change_date": "2022-03-14T07:51:06.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 577, + "fields": { + "EF_ID": 15282, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "24.11", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.546Z", + "last_change_date": "2022-03-14T07:51:06.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 578, + "fields": { + "EF_ID": 15283, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "26.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.637Z", + "last_change_date": "2022-03-14T07:51:06.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 579, + "fields": { + "EF_ID": 15284, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "27.53", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.713Z", + "last_change_date": "2022-03-14T07:51:06.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 580, + "fields": { + "EF_ID": 15291, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.26", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.779Z", + "last_change_date": "2022-03-14T07:51:06.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 581, + "fields": { + "EF_ID": 15292, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coal Products", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.54", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.846Z", + "last_change_date": "2022-03-14T07:51:06.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 582, + "fields": { + "EF_ID": 15293, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.71", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.912Z", + "last_change_date": "2022-03-14T07:51:06.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 583, + "fields": { + "EF_ID": 15294, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.22", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:06.982Z", + "last_change_date": "2022-03-14T07:51:06.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 584, + "fields": { + "EF_ID": 15295, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.073Z", + "last_change_date": "2022-03-14T07:51:07.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 585, + "fields": { + "EF_ID": 15296, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "29.68", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.149Z", + "last_change_date": "2022-03-14T07:51:07.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 586, + "fields": { + "EF_ID": 15298, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "29.68", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.216Z", + "last_change_date": "2022-03-14T07:51:07.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 587, + "fields": { + "EF_ID": 15299, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "26.66", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.282Z", + "last_change_date": "2022-03-14T07:51:07.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 588, + "fields": { + "EF_ID": 15300, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Imports", + "Value": "27.69", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.349Z", + "last_change_date": "2022-03-14T07:51:07.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 589, + "fields": { + "EF_ID": 15301, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "28.09", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.415Z", + "last_change_date": "2022-03-14T07:51:07.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 590, + "fields": { + "EF_ID": 15302, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "19.43", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.509Z", + "last_change_date": "2022-03-14T07:51:07.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 591, + "fields": { + "EF_ID": 15305, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Production", + "Value": "14.19", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.582Z", + "last_change_date": "2022-03-14T07:51:07.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 592, + "fields": { + "EF_ID": 15307, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Brown Coal / Lignite (GHV: less than 17435 kJ/kg)", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Exports", + "Value": "14.19", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.649Z", + "last_change_date": "2022-03-14T07:51:07.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 593, + "fields": { + "EF_ID": 15308, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Country-Specific Net Calorific Values for Selected Countries", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Coke Oven/Gas Coke", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.47", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-2 on pages 1.16 - 1.22 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.715Z", + "last_change_date": "2022-03-14T07:51:07.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 594, + "fields": { + "EF_ID": 17138, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.8", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.790Z", + "last_change_date": "2022-03-14T07:51:07.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 595, + "fields": { + "EF_ID": 17139, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.8", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.896Z", + "last_change_date": "2022-03-14T07:51:07.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 596, + "fields": { + "EF_ID": 17141, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.75", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:07.971Z", + "last_change_date": "2022-03-14T07:51:07.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 597, + "fields": { + "EF_ID": 17142, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.049Z", + "last_change_date": "2022-03-14T07:51:08.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 598, + "fields": { + "EF_ID": 17143, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.33", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.116Z", + "last_change_date": "2022-03-14T07:51:08.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 599, + "fields": { + "EF_ID": 17144, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.33", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.182Z", + "last_change_date": "2022-03-14T07:51:08.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 600, + "fields": { + "EF_ID": 17145, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.19", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.249Z", + "last_change_date": "2022-03-14T07:51:08.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 601, + "fields": { + "EF_ID": 17146, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.348Z", + "last_change_date": "2022-03-14T07:51:08.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 602, + "fields": { + "EF_ID": 17147, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47.49", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.424Z", + "last_change_date": "2022-03-14T07:51:08.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 603, + "fields": { + "EF_ID": 17148, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.01", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.490Z", + "last_change_date": "2022-03-14T07:51:08.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 604, + "fields": { + "EF_ID": 17149, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.19", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.557Z", + "last_change_date": "2022-03-14T07:51:08.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 605, + "fields": { + "EF_ID": 17150, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.19", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.624Z", + "last_change_date": "2022-03-14T07:51:08.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 606, + "fields": { + "EF_ID": 17151, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.690Z", + "last_change_date": "2022-03-14T07:51:08.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 607, + "fields": { + "EF_ID": 17152, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.8", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.783Z", + "last_change_date": "2022-03-14T07:51:08.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 608, + "fields": { + "EF_ID": 17153, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48.15", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.857Z", + "last_change_date": "2022-03-14T07:51:08.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 609, + "fields": { + "EF_ID": 17154, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.19", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.932Z", + "last_change_date": "2022-03-14T07:51:08.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 610, + "fields": { + "EF_ID": 17155, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Coal Oils and Tars derived from Coking Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:08.999Z", + "last_change_date": "2022-03-14T07:51:08.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 611, + "fields": { + "EF_ID": 17156, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.4", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.065Z", + "last_change_date": "2022-03-14T07:51:09.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 612, + "fields": { + "EF_ID": 17157, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.132Z", + "last_change_date": "2022-03-14T07:51:09.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 613, + "fields": { + "EF_ID": 17158, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.227Z", + "last_change_date": "2022-03-14T07:51:09.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 614, + "fields": { + "EF_ID": 17159, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Bituminous Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.5", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and R.M. Rotty (1984) Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982,Tellus36b: 232-261", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.307Z", + "last_change_date": "2022-03-14T07:51:09.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 615, + "fields": { + "EF_ID": 17160, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Bituminous Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.4", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and A. Pippin (1990) United States emissio to the Earth's atmosphere by economic activity Energy Systems and Policy, Vol 14, pp319-336", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.374Z", + "last_change_date": "2022-03-14T07:51:09.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 616, + "fields": { + "EF_ID": 17161, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Bituminous Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "OECD (1991), Estimation of Greenhouse Gas Emissions and Sinks; Final Report from OECD Experts Meetings18-21February 1991. Prepared for the IPCC, Paris,France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.440Z", + "last_change_date": "2022-03-14T07:51:09.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 617, + "fields": { + "EF_ID": 17162, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Bituminous Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.530Z", + "last_change_date": "2022-03-14T07:51:09.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 618, + "fields": { + "EF_ID": 17163, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.607Z", + "last_change_date": "2022-03-14T07:51:09.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 619, + "fields": { + "EF_ID": 17164, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.9", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.682Z", + "last_change_date": "2022-03-14T07:51:09.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 620, + "fields": { + "EF_ID": 17165, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and R.M. Rotty (1984) Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982,Tellus36b: 232-261", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.781Z", + "last_change_date": "2022-03-14T07:51:09.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 621, + "fields": { + "EF_ID": 17166, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and A. Pippin (1990) United States emissio to the Earth's atmosphere by economic activity Energy Systems and Policy, Vol 14, pp319-336", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.857Z", + "last_change_date": "2022-03-14T07:51:09.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 622, + "fields": { + "EF_ID": 17167, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.932Z", + "last_change_date": "2022-03-14T07:51:09.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 623, + "fields": { + "EF_ID": 17168, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "OECD (1991), Estimation of Greenhouse Gas Emissions and Sinks; Final Report from OECD Experts Meetings18-21February 1991. Prepared for the IPCC, Paris,France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:09.999Z", + "last_change_date": "2022-03-14T07:51:09.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 624, + "fields": { + "EF_ID": 17169, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.4", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and A. Pippin (1990) United States emissio to the Earth's atmosphere by economic activity Energy Systems and Policy, Vol 14, pp319-336", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.092Z", + "last_change_date": "2022-03-14T07:51:10.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 625, + "fields": { + "EF_ID": 17170, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.9", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.166Z", + "last_change_date": "2022-03-14T07:51:10.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 626, + "fields": { + "EF_ID": 17171, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.4", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and A. Pippin (1990) United States emissio to the Earth's atmosphere by economic activity Energy Systems and Policy, Vol 14, pp319-336", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.246Z", + "last_change_date": "2022-03-14T07:51:10.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 627, + "fields": { + "EF_ID": 17172, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.5", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.313Z", + "last_change_date": "2022-03-14T07:51:10.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 628, + "fields": { + "EF_ID": 17173, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.9", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and A. Pippin (1990) United States emissio to the Earth's atmosphere by economic activity Energy Systems and Policy, Vol 14, pp319-336", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.401Z", + "last_change_date": "2022-03-14T07:51:10.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 629, + "fields": { + "EF_ID": 17174, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.482Z", + "last_change_date": "2022-03-14T07:51:10.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 630, + "fields": { + "EF_ID": 17175, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.9", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and A. Pippin (1990) United States emissio to the Earth's atmosphere by economic activity Energy Systems and Policy, Vol 14, pp319-336", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.546Z", + "last_change_date": "2022-03-14T07:51:10.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 631, + "fields": { + "EF_ID": 17176, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.612Z", + "last_change_date": "2022-03-14T07:51:10.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 632, + "fields": { + "EF_ID": 17177, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.2", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and R.M. Rotty (1984) Carbon dioxide emissions from fossil fuels: A procedure for estimation and results for 1950-1982,Tellus36b: 232-261", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.702Z", + "last_change_date": "2022-03-14T07:51:10.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 633, + "fields": { + "EF_ID": 17178, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.1", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and A. Pippin (1990) United States emissio to the Earth's atmosphere by economic activity Energy Systems and Policy, Vol 14, pp319-336", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.791Z", + "last_change_date": "2022-03-14T07:51:10.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 634, + "fields": { + "EF_ID": 17179, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.1", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.854Z", + "last_change_date": "2022-03-14T07:51:10.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 635, + "fields": { + "EF_ID": 17180, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.3", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Marland, G. and A. Pippin (1990) United States emissions to the Earth`s atmosphere by economic activity Energy Systems and Policy, Vol 14, pp319-336", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:10.921Z", + "last_change_date": "2022-03-14T07:51:10.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 636, + "fields": { + "EF_ID": 17181, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.3", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "Grubb,M.J.(1989),On Coefficients for determining Greenhouse Gas Emissions from Fossil Fuel Production and Consumption. Energy and Environment Programme, Royal Institute of International Affairs ,London, UK April. Prepared for IEA/OECD Expert Seminar on Energy Technologies for reducing Emissions of Greenhouse Gases, Paris France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming a 5 % difference in calorific value for coal and oil, and 10 % for natural gas. These percentage adjustments are the IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.014Z", + "last_change_date": "2022-03-14T07:51:11.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 637, + "fields": { + "EF_ID": 17182, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors for various fuels from different studies", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.3", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-4 on Page 1-24 of the Reference Manual)", + "Technical_Reference": "OECD (1991), Estimation of Greenhouse Gas Emissions and Sinks; Final Report from OECD Experts Meetings18-21February 1991. Prepared for the IPCC, Paris,France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.088Z", + "last_change_date": "2022-03-14T07:51:11.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 638, + "fields": { + "EF_ID": 17183, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for brown coal may be several times higher than those for hard coal. These factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.154Z", + "last_change_date": "2022-03-14T07:51:11.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 639, + "fields": { + "EF_ID": 17184, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for brown coal may be several times higher than those for hard coal. These factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.221Z", + "last_change_date": "2022-03-14T07:51:11.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 640, + "fields": { + "EF_ID": 17185, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for brown coal may be several times higher than those for hard coal. These factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.315Z", + "last_change_date": "2022-03-14T07:51:11.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 641, + "fields": { + "EF_ID": 17186, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for brown coal may be several times higher than those for hard coal. These factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.388Z", + "last_change_date": "2022-03-14T07:51:11.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 642, + "fields": { + "EF_ID": 17187, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for brown coal may be several times higher than those for hard coal. These factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.462Z", + "last_change_date": "2022-03-14T07:51:11.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 643, + "fields": { + "EF_ID": 17188, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for brown coal may be several times higher than those for hard coal. These factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.537Z", + "last_change_date": "2022-03-14T07:51:11.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 644, + "fields": { + "EF_ID": 17189, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for brown coal may be several times higher than those for hard coal. These factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.634Z", + "last_change_date": "2022-03-14T07:51:11.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 645, + "fields": { + "EF_ID": 17190, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.707Z", + "last_change_date": "2022-03-14T07:51:11.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 646, + "fields": { + "EF_ID": 17191, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.771Z", + "last_change_date": "2022-03-14T07:51:11.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 647, + "fields": { + "EF_ID": 17192, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.838Z", + "last_change_date": "2022-03-14T07:51:11.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 648, + "fields": { + "EF_ID": 17193, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:11.927Z", + "last_change_date": "2022-03-14T07:51:11.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 649, + "fields": { + "EF_ID": 17194, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.013Z", + "last_change_date": "2022-03-14T07:51:12.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 650, + "fields": { + "EF_ID": 17195, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.079Z", + "last_change_date": "2022-03-14T07:51:12.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 651, + "fields": { + "EF_ID": 17196, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.146Z", + "last_change_date": "2022-03-14T07:51:12.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 652, + "fields": { + "EF_ID": 17197, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.213Z", + "last_change_date": "2022-03-14T07:51:12.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 653, + "fields": { + "EF_ID": 17198, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.304Z", + "last_change_date": "2022-03-14T07:51:12.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 654, + "fields": { + "EF_ID": 17199, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.391Z", + "last_change_date": "2022-03-14T07:51:12.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 655, + "fields": { + "EF_ID": 17200, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for two stroke engines may be three times higher than those for 4-stroke engines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.454Z", + "last_change_date": "2022-03-14T07:51:12.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 656, + "fields": { + "EF_ID": 17201, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.529Z", + "last_change_date": "2022-03-14T07:51:12.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 657, + "fields": { + "EF_ID": 17202, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.632Z", + "last_change_date": "2022-03-14T07:51:12.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 658, + "fields": { + "EF_ID": 17203, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.708Z", + "last_change_date": "2022-03-14T07:51:12.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 659, + "fields": { + "EF_ID": 17204, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.771Z", + "last_change_date": "2022-03-14T07:51:12.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 660, + "fields": { + "EF_ID": 17205, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.846Z", + "last_change_date": "2022-03-14T07:51:12.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 661, + "fields": { + "EF_ID": 17206, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:12.942Z", + "last_change_date": "2022-03-14T07:51:12.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 662, + "fields": { + "EF_ID": 17207, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.016Z", + "last_change_date": "2022-03-14T07:51:13.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 663, + "fields": { + "EF_ID": 17208, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.083Z", + "last_change_date": "2022-03-14T07:51:13.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 664, + "fields": { + "EF_ID": 17209, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.158Z", + "last_change_date": "2022-03-14T07:51:13.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 665, + "fields": { + "EF_ID": 17210, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.260Z", + "last_change_date": "2022-03-14T07:51:13.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 666, + "fields": { + "EF_ID": 17211, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.338Z", + "last_change_date": "2022-03-14T07:51:13.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 667, + "fields": { + "EF_ID": 17212, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.416Z", + "last_change_date": "2022-03-14T07:51:13.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 668, + "fields": { + "EF_ID": 17213, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.483Z", + "last_change_date": "2022-03-14T07:51:13.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 669, + "fields": { + "EF_ID": 17214, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.558Z", + "last_change_date": "2022-03-14T07:51:13.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 670, + "fields": { + "EF_ID": 17215, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.662Z", + "last_change_date": "2022-03-14T07:51:13.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 671, + "fields": { + "EF_ID": 17216, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.749Z", + "last_change_date": "2022-03-14T07:51:13.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 672, + "fields": { + "EF_ID": 17217, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.816Z", + "last_change_date": "2022-03-14T07:51:13.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 673, + "fields": { + "EF_ID": 17223, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Brown coals may produce less N2O than bituminous coals; some measurements have shown that N2O emisions by hard coal combustion in power plants maay be negligible. N2O emissions from FBC are generally about 10 times higher than from boilers.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.883Z", + "last_change_date": "2022-03-14T07:51:13.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 674, + "fields": { + "EF_ID": 17224, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Brown coals may produce less N2O than bituminous coals; some measurements have shown that N2O emisions by hard coal combustion in power plants maay be negligible. N2O emissions from FBC are generally about 10 times higher than from boilers.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:13.972Z", + "last_change_date": "2022-03-14T07:51:13.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 675, + "fields": { + "EF_ID": 17225, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Brown coals may produce less N2O than bituminous coals; some measurements have shown that N2O emisions by hard coal combustion in power plants maay be negligible. N2O emissions from FBC are generally about 10 times higher than from boilers.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.075Z", + "last_change_date": "2022-03-14T07:51:14.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 676, + "fields": { + "EF_ID": 17226, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Brown coals may produce less N2O than bituminous coals; some measurements have shown that N2O emisions by hard coal combustion in power plants maay be negligible. N2O emissions from FBC are generally about 10 times higher than from boilers.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.133Z", + "last_change_date": "2022-03-14T07:51:14.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 677, + "fields": { + "EF_ID": 17227, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Brown coals may produce less N2O than bituminous coals; some measurements have shown that N2O emisions by hard coal combustion in power plants maay be negligible. N2O emissions from FBC are generally about 10 times higher than from boilers.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.224Z", + "last_change_date": "2022-03-14T07:51:14.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 678, + "fields": { + "EF_ID": 17228, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Brown coals may produce less N2O than bituminous coals; some measurements have shown that N2O emisions by hard coal combustion in power plants maay be negligible. N2O emissions from FBC are generally about 10 times higher than from boilers.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.283Z", + "last_change_date": "2022-03-14T07:51:14.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 679, + "fields": { + "EF_ID": 17229, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Brown coals may produce less N2O than bituminous coals; some measurements have shown that N2O emisions by hard coal combustion in power plants maay be negligible. N2O emissions from FBC are generally about 10 times higher than from boilers.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.358Z", + "last_change_date": "2022-03-14T07:51:14.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 680, + "fields": { + "EF_ID": 17237, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.451Z", + "last_change_date": "2022-03-14T07:51:14.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 681, + "fields": { + "EF_ID": 17238, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.524Z", + "last_change_date": "2022-03-14T07:51:14.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 682, + "fields": { + "EF_ID": 17239, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.683Z", + "last_change_date": "2022-03-14T07:51:14.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 683, + "fields": { + "EF_ID": 17242, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.749Z", + "last_change_date": "2022-03-14T07:51:14.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 684, + "fields": { + "EF_ID": 17243, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.844Z", + "last_change_date": "2022-03-14T07:51:14.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 685, + "fields": { + "EF_ID": 17244, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.916Z", + "last_change_date": "2022-03-14T07:51:14.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 686, + "fields": { + "EF_ID": 17245, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:14.983Z", + "last_change_date": "2022-03-14T07:51:14.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 687, + "fields": { + "EF_ID": 17246, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.049Z", + "last_change_date": "2022-03-14T07:51:15.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 688, + "fields": { + "EF_ID": 17247, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N20 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.146Z", + "last_change_date": "2022-03-14T07:51:15.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 689, + "fields": { + "EF_ID": 17263, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.233Z", + "last_change_date": "2022-03-14T07:51:15.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 690, + "fields": { + "EF_ID": 17264, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.350Z", + "last_change_date": "2022-03-14T07:51:15.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 691, + "fields": { + "EF_ID": 17265, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.416Z", + "last_change_date": "2022-03-14T07:51:15.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 692, + "fields": { + "EF_ID": 17266, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.506Z", + "last_change_date": "2022-03-14T07:51:15.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 693, + "fields": { + "EF_ID": 17267, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.596Z", + "last_change_date": "2022-03-14T07:51:15.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 694, + "fields": { + "EF_ID": 17268, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.666Z", + "last_change_date": "2022-03-14T07:51:15.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 695, + "fields": { + "EF_ID": 17269, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.737Z", + "last_change_date": "2022-03-14T07:51:15.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 696, + "fields": { + "EF_ID": 17277, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.842Z", + "last_change_date": "2022-03-14T07:51:15.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 697, + "fields": { + "EF_ID": 17278, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.921Z", + "last_change_date": "2022-03-14T07:51:15.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 698, + "fields": { + "EF_ID": 17279, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:15.996Z", + "last_change_date": "2022-03-14T07:51:15.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 699, + "fields": { + "EF_ID": 17282, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.071Z", + "last_change_date": "2022-03-14T07:51:16.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 700, + "fields": { + "EF_ID": 17283, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1500", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.169Z", + "last_change_date": "2022-03-14T07:51:16.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 701, + "fields": { + "EF_ID": 17284, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.246Z", + "last_change_date": "2022-03-14T07:51:16.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 702, + "fields": { + "EF_ID": 17285, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.313Z", + "last_change_date": "2022-03-14T07:51:16.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 703, + "fields": { + "EF_ID": 17286, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.379Z", + "last_change_date": "2022-03-14T07:51:16.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 704, + "fields": { + "EF_ID": 17287, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N0X Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The countries should , when possible, allocate the fuel consumption to road and off road traffic. Emisson factors for ships, boats, locomotives and farm equipment may be more than double those of duty vehicles. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.487Z", + "last_change_date": "2022-03-14T07:51:16.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 705, + "fields": { + "EF_ID": 17303, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.562Z", + "last_change_date": "2022-03-14T07:51:16.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 706, + "fields": { + "EF_ID": 17304, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.629Z", + "last_change_date": "2022-03-14T07:51:16.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 707, + "fields": { + "EF_ID": 17305, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.708Z", + "last_change_date": "2022-03-14T07:51:16.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 708, + "fields": { + "EF_ID": 17306, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.775Z", + "last_change_date": "2022-03-14T07:51:16.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 709, + "fields": { + "EF_ID": 17307, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.864Z", + "last_change_date": "2022-03-14T07:51:16.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 710, + "fields": { + "EF_ID": 17308, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:16.938Z", + "last_change_date": "2022-03-14T07:51:16.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 711, + "fields": { + "EF_ID": 17309, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.008Z", + "last_change_date": "2022-03-14T07:51:17.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 712, + "fields": { + "EF_ID": 17317, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.075Z", + "last_change_date": "2022-03-14T07:51:17.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 713, + "fields": { + "EF_ID": 17318, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.141Z", + "last_change_date": "2022-03-14T07:51:17.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 714, + "fields": { + "EF_ID": 17319, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.208Z", + "last_change_date": "2022-03-14T07:51:17.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 715, + "fields": { + "EF_ID": 17322, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.300Z", + "last_change_date": "2022-03-14T07:51:17.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 716, + "fields": { + "EF_ID": 17323, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.379Z", + "last_change_date": "2022-03-14T07:51:17.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 717, + "fields": { + "EF_ID": 17324, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.450Z", + "last_change_date": "2022-03-14T07:51:17.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 718, + "fields": { + "EF_ID": 17325, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.516Z", + "last_change_date": "2022-03-14T07:51:17.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 719, + "fields": { + "EF_ID": 17326, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.583Z", + "last_change_date": "2022-03-14T07:51:17.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 720, + "fields": { + "EF_ID": 17327, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "C0 Default (Uncontrolled) emisson factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.650Z", + "last_change_date": "2022-03-14T07:51:17.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 721, + "fields": { + "EF_ID": 17343, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.737Z", + "last_change_date": "2022-03-14T07:51:17.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 722, + "fields": { + "EF_ID": 17344, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.813Z", + "last_change_date": "2022-03-14T07:51:17.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 723, + "fields": { + "EF_ID": 17345, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.875Z", + "last_change_date": "2022-03-14T07:51:17.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 724, + "fields": { + "EF_ID": 17346, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:17.941Z", + "last_change_date": "2022-03-14T07:51:17.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 725, + "fields": { + "EF_ID": 17347, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.016Z", + "last_change_date": "2022-03-14T07:51:18.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 726, + "fields": { + "EF_ID": 17348, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.114Z", + "last_change_date": "2022-03-14T07:51:18.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 727, + "fields": { + "EF_ID": 17349, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.188Z", + "last_change_date": "2022-03-14T07:51:18.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 728, + "fields": { + "EF_ID": 17357, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.258Z", + "last_change_date": "2022-03-14T07:51:18.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 729, + "fields": { + "EF_ID": 17358, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.333Z", + "last_change_date": "2022-03-14T07:51:18.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 730, + "fields": { + "EF_ID": 17359, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor is for jet kerosene. The emision factor for aviation gasoline is 300kg/TJ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.400Z", + "last_change_date": "2022-03-14T07:51:18.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 731, + "fields": { + "EF_ID": 17360, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1500", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are the sum of combustion and evaporative emissions from gasoline use. NMVOC emisson factors for mobile sources from evaporation of gasoline vary with the ambient temperature. In general, in the warmer countries the emission factors will be higher than in the colder countries.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.499Z", + "last_change_date": "2022-03-14T07:51:18.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 732, + "fields": { + "EF_ID": 17361, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.587Z", + "last_change_date": "2022-03-14T07:51:18.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 733, + "fields": { + "EF_ID": 17362, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.650Z", + "last_change_date": "2022-03-14T07:51:18.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 734, + "fields": { + "EF_ID": 17363, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.716Z", + "last_change_date": "2022-03-14T07:51:18.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 735, + "fields": { + "EF_ID": 17364, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.800Z", + "last_change_date": "2022-03-14T07:51:18.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 736, + "fields": { + "EF_ID": 17365, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.892Z", + "last_change_date": "2022-03-14T07:51:18.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 737, + "fields": { + "EF_ID": 17366, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:18.971Z", + "last_change_date": "2022-03-14T07:51:18.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 738, + "fields": { + "EF_ID": 17367, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.033Z", + "last_change_date": "2022-03-14T07:51:19.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 739, + "fields": { + "EF_ID": 17368, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are for fuel combustion in th energy industries. Factors for charcoal production are given elsewhere.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.104Z", + "last_change_date": "2022-03-14T07:51:19.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 740, + "fields": { + "EF_ID": 17369, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.171Z", + "last_change_date": "2022-03-14T07:51:19.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 741, + "fields": { + "EF_ID": 17370, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.270Z", + "last_change_date": "2022-03-14T07:51:19.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 742, + "fields": { + "EF_ID": 17371, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.346Z", + "last_change_date": "2022-03-14T07:51:19.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 743, + "fields": { + "EF_ID": 17372, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.412Z", + "last_change_date": "2022-03-14T07:51:19.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 744, + "fields": { + "EF_ID": 17373, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are for fuel combustion in th energy industries. Factors for charcoal production are given elsewhere.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.479Z", + "last_change_date": "2022-03-14T07:51:19.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 745, + "fields": { + "EF_ID": 17374, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.546Z", + "last_change_date": "2022-03-14T07:51:19.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 746, + "fields": { + "EF_ID": 17375, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.612Z", + "last_change_date": "2022-03-14T07:51:19.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 747, + "fields": { + "EF_ID": 17376, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.698Z", + "last_change_date": "2022-03-14T07:51:19.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 748, + "fields": { + "EF_ID": 17377, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.771Z", + "last_change_date": "2022-03-14T07:51:19.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 749, + "fields": { + "EF_ID": 17378, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.838Z", + "last_change_date": "2022-03-14T07:51:19.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 750, + "fields": { + "EF_ID": 17379, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.912Z", + "last_change_date": "2022-03-14T07:51:19.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 751, + "fields": { + "EF_ID": 17380, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:19.988Z", + "last_change_date": "2022-03-14T07:51:19.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 752, + "fields": { + "EF_ID": 17381, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.063Z", + "last_change_date": "2022-03-14T07:51:20.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 753, + "fields": { + "EF_ID": 17382, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.167Z", + "last_change_date": "2022-03-14T07:51:20.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 754, + "fields": { + "EF_ID": 17383, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion -Dry Bottom, wall fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.263Z", + "last_change_date": "2022-03-14T07:51:20.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 755, + "fields": { + "EF_ID": 17384, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion - Dry Bottom, tangentially fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.338Z", + "last_change_date": "2022-03-14T07:51:20.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 756, + "fields": { + "EF_ID": 17385, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion - Wet Bottom", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.534Z", + "last_change_date": "2022-03-14T07:51:20.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 757, + "fields": { + "EF_ID": 17386, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Spreader Strokers - With and without re -injection", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.612Z", + "last_change_date": "2022-03-14T07:51:20.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 758, + "fields": { + "EF_ID": 17387, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Fluidized Bed Combustor/Circulating/Bubbling Bed", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.694Z", + "last_change_date": "2022-03-14T07:51:20.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 759, + "fields": { + "EF_ID": 17388, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Cyclone Furnace", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.771Z", + "last_change_date": "2022-03-14T07:51:20.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 760, + "fields": { + "EF_ID": 17389, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Anthracite Stokers", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.838Z", + "last_change_date": "2022-03-14T07:51:20.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 761, + "fields": { + "EF_ID": 17390, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Anthracite Fluidized Bed Combustors", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:20.912Z", + "last_change_date": "2022-03-14T07:51:20.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 762, + "fields": { + "EF_ID": 17391, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Anthracite Pulverised Coal Boilers", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.013Z", + "last_change_date": "2022-03-14T07:51:21.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 763, + "fields": { + "EF_ID": 17393, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Lignite Combustion - Dry Bottom,walled fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.088Z", + "last_change_date": "2022-03-14T07:51:21.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 764, + "fields": { + "EF_ID": 17396, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Lignite Atmospheric Fluidised Bed", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.154Z", + "last_change_date": "2022-03-14T07:51:21.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 765, + "fields": { + "EF_ID": 17397, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Residual Fuel Oil/ Shale Oil/Normal firing/Tangential firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.221Z", + "last_change_date": "2022-03-14T07:51:21.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 766, + "fields": { + "EF_ID": 17398, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Distillate Fuel Oil/ Normal Firing/Tangential Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.314Z", + "last_change_date": "2022-03-14T07:51:21.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 767, + "fields": { + "EF_ID": 17399, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Distillate Fuel Gaseous Turbines", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.387Z", + "last_change_date": "2022-03-14T07:51:21.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 768, + "fields": { + "EF_ID": 17400, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Diesel Fuel Engines>600hp(447kW)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "350", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.454Z", + "last_change_date": "2022-03-14T07:51:21.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 769, + "fields": { + "EF_ID": 17404, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Mass Burn Waterwall Combustors", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.521Z", + "last_change_date": "2022-03-14T07:51:21.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 770, + "fields": { + "EF_ID": 17405, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "MSW - Mass Feed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.588Z", + "last_change_date": "2022-03-14T07:51:21.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 771, + "fields": { + "EF_ID": 17406, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion- Dry Bottom, wall fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.674Z", + "last_change_date": "2022-03-14T07:51:21.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 772, + "fields": { + "EF_ID": 17407, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion - Dry Bottom, tangentially fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.763Z", + "last_change_date": "2022-03-14T07:51:21.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 773, + "fields": { + "EF_ID": 17408, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion - Wet Bottom", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.829Z", + "last_change_date": "2022-03-14T07:51:21.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 774, + "fields": { + "EF_ID": 17409, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Spreader Strokers - With and without re -injection", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.896Z", + "last_change_date": "2022-03-14T07:51:21.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 775, + "fields": { + "EF_ID": 17410, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Fluidized Bed Combustor/Circulating/Bubbling Bed", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:21.971Z", + "last_change_date": "2022-03-14T07:51:21.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 776, + "fields": { + "EF_ID": 17411, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Cyclone Furnace", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.069Z", + "last_change_date": "2022-03-14T07:51:22.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 777, + "fields": { + "EF_ID": 17420, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Residual Fuel Oil/ Shale Oil/Normal firing/Tangential firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.154Z", + "last_change_date": "2022-03-14T07:51:22.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 778, + "fields": { + "EF_ID": 17421, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Distillate Fuel Oil/ Normal Firing/Tangential Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.229Z", + "last_change_date": "2022-03-14T07:51:22.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 779, + "fields": { + "EF_ID": 17423, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Diesel Fuel Engines>600hp(447kW)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.304Z", + "last_change_date": "2022-03-14T07:51:22.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 780, + "fields": { + "EF_ID": 17429, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion- Dry Bottom, wall fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "380", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.388Z", + "last_change_date": "2022-03-14T07:51:22.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 781, + "fields": { + "EF_ID": 17430, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion - Dry Bottom, tangentially fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.488Z", + "last_change_date": "2022-03-14T07:51:22.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 782, + "fields": { + "EF_ID": 17431, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion - Wet Bottom", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "590", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.562Z", + "last_change_date": "2022-03-14T07:51:22.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 783, + "fields": { + "EF_ID": 17432, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Spreader Strokers - With and without re -injection", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.634Z", + "last_change_date": "2022-03-14T07:51:22.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 784, + "fields": { + "EF_ID": 17433, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Fluidized Bed Combustor/Circulating", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.700Z", + "last_change_date": "2022-03-14T07:51:22.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 785, + "fields": { + "EF_ID": 17434, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Fluidized Bed Combustor/Bubbling Bed", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "270", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.790Z", + "last_change_date": "2022-03-14T07:51:22.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 786, + "fields": { + "EF_ID": 17435, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Cyclone Furnace", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "590", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:22.863Z", + "last_change_date": "2022-03-14T07:51:22.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 787, + "fields": { + "EF_ID": 17436, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Anthracite Stokers", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.021Z", + "last_change_date": "2022-03-14T07:51:23.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 788, + "fields": { + "EF_ID": 17437, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Anthracite Fluidized Bed Combustors", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.092Z", + "last_change_date": "2022-03-14T07:51:23.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 789, + "fields": { + "EF_ID": 17439, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Lignite Combustion - Dry Bottom, tangentially fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.183Z", + "last_change_date": "2022-03-14T07:51:23.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 790, + "fields": { + "EF_ID": 17440, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Lignite Combustion - Dry Bottom,walled fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.263Z", + "last_change_date": "2022-03-14T07:51:23.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 791, + "fields": { + "EF_ID": 17441, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Lignite Cyclone Furnace", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.334Z", + "last_change_date": "2022-03-14T07:51:23.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 792, + "fields": { + "EF_ID": 17442, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Lignite Spreader Stokers", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.413Z", + "last_change_date": "2022-03-14T07:51:23.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 793, + "fields": { + "EF_ID": 17443, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Lignite Atmospheric Fluidised Bed", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.509Z", + "last_change_date": "2022-03-14T07:51:23.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 794, + "fields": { + "EF_ID": 17444, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Residual Fuel Oil/ Shale Oil/Normal Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.596Z", + "last_change_date": "2022-03-14T07:51:23.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 795, + "fields": { + "EF_ID": 17445, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Residual Fuel Oil/ Shale Oil/Tangential Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.667Z", + "last_change_date": "2022-03-14T07:51:23.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 796, + "fields": { + "EF_ID": 17446, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Distillate Fuel Oil/Tangential Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.734Z", + "last_change_date": "2022-03-14T07:51:23.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 797, + "fields": { + "EF_ID": 17447, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Distillate Fuel Oil/ Normal Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.828Z", + "last_change_date": "2022-03-14T07:51:23.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 798, + "fields": { + "EF_ID": 17448, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Distillate Fuel Gaseous Turbines", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.904Z", + "last_change_date": "2022-03-14T07:51:23.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 799, + "fields": { + "EF_ID": 17449, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Diesel Fuel Engines>600hp(447kW)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:23.967Z", + "last_change_date": "2022-03-14T07:51:23.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 800, + "fields": { + "EF_ID": 17453, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Mass Burn Waterwall Combustors", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.042Z", + "last_change_date": "2022-03-14T07:51:24.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 801, + "fields": { + "EF_ID": 17454, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "MSW - Mass Feed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.125Z", + "last_change_date": "2022-03-14T07:51:24.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 802, + "fields": { + "EF_ID": 17455, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion- Dry Bottom, wall fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.231Z", + "last_change_date": "2022-03-14T07:51:24.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 803, + "fields": { + "EF_ID": 17456, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion - Dry Bottom, tangentially fired", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.304Z", + "last_change_date": "2022-03-14T07:51:24.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 804, + "fields": { + "EF_ID": 17457, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Pulverised Bituminous Combustion - Wet Bottom", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.367Z", + "last_change_date": "2022-03-14T07:51:24.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 805, + "fields": { + "EF_ID": 17458, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Spreader Strokers - With and without re -injection", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.442Z", + "last_change_date": "2022-03-14T07:51:24.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 806, + "fields": { + "EF_ID": 17459, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Fluidized Bed Combustor/Circulating", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.541Z", + "last_change_date": "2022-03-14T07:51:24.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 807, + "fields": { + "EF_ID": 17460, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Fluidized Bed Combustor/Bubbling Bed", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.629Z", + "last_change_date": "2022-03-14T07:51:24.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 808, + "fields": { + "EF_ID": 17461, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Bituminous Cyclone Furnace", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.692Z", + "last_change_date": "2022-03-14T07:51:24.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 809, + "fields": { + "EF_ID": 17469, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Lignite Atmospheric Fluidised Bed", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.759Z", + "last_change_date": "2022-03-14T07:51:24.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 810, + "fields": { + "EF_ID": 17470, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Residual Fuel Oil/ Shale Oil/Normal Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.851Z", + "last_change_date": "2022-03-14T07:51:24.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 811, + "fields": { + "EF_ID": 17471, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Residual Fuel Oil/ Shale Oil/Tangential Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:24.938Z", + "last_change_date": "2022-03-14T07:51:24.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 812, + "fields": { + "EF_ID": 17472, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Distillate Fuel Oil/ Normal Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.021Z", + "last_change_date": "2022-03-14T07:51:25.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 813, + "fields": { + "EF_ID": 17473, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Distillate Fuel Oil/Tangential Firing", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, fuel type is specified as Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 1-3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.088Z", + "last_change_date": "2022-03-14T07:51:25.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 814, + "fields": { + "EF_ID": 17733, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.154Z", + "last_change_date": "2022-03-14T07:51:25.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 815, + "fields": { + "EF_ID": 17734, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.253Z", + "last_change_date": "2022-03-14T07:51:25.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 816, + "fields": { + "EF_ID": 17735, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.329Z", + "last_change_date": "2022-03-14T07:51:25.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 817, + "fields": { + "EF_ID": 17736, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.396Z", + "last_change_date": "2022-03-14T07:51:25.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 818, + "fields": { + "EF_ID": 17737, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.462Z", + "last_change_date": "2022-03-14T07:51:25.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 819, + "fields": { + "EF_ID": 17738, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.571Z", + "last_change_date": "2022-03-14T07:51:25.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 820, + "fields": { + "EF_ID": 17739, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.671Z", + "last_change_date": "2022-03-14T07:51:25.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 821, + "fields": { + "EF_ID": 17740, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.738Z", + "last_change_date": "2022-03-14T07:51:25.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 822, + "fields": { + "EF_ID": 17741, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.812Z", + "last_change_date": "2022-03-14T07:51:25.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 823, + "fields": { + "EF_ID": 17742, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.14", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.908Z", + "last_change_date": "2022-03-14T07:51:25.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 824, + "fields": { + "EF_ID": 17743, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:25.979Z", + "last_change_date": "2022-03-14T07:51:25.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 825, + "fields": { + "EF_ID": 17744, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.19", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.046Z", + "last_change_date": "2022-03-14T07:51:26.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 826, + "fields": { + "EF_ID": 17748, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "183", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.121Z", + "last_change_date": "2022-03-14T07:51:26.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 827, + "fields": { + "EF_ID": 17749, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1632", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.226Z", + "last_change_date": "2022-03-14T07:51:26.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 828, + "fields": { + "EF_ID": 17750, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Passenger Cars (M85 Fuel)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69.7", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.313Z", + "last_change_date": "2022-03-14T07:51:26.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 829, + "fields": { + "EF_ID": 17751, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.379Z", + "last_change_date": "2022-03-14T07:51:26.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 830, + "fields": { + "EF_ID": 17752, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.446Z", + "last_change_date": "2022-03-14T07:51:26.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 831, + "fields": { + "EF_ID": 17753, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.544Z", + "last_change_date": "2022-03-14T07:51:26.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 832, + "fields": { + "EF_ID": 17754, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.629Z", + "last_change_date": "2022-03-14T07:51:26.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 833, + "fields": { + "EF_ID": 17755, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.696Z", + "last_change_date": "2022-03-14T07:51:26.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 834, + "fields": { + "EF_ID": 17756, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.762Z", + "last_change_date": "2022-03-14T07:51:26.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 835, + "fields": { + "EF_ID": 17757, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.862Z", + "last_change_date": "2022-03-14T07:51:26.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 836, + "fields": { + "EF_ID": 17758, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:26.938Z", + "last_change_date": "2022-03-14T07:51:26.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 837, + "fields": { + "EF_ID": 17759, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.004Z", + "last_change_date": "2022-03-14T07:51:27.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 838, + "fields": { + "EF_ID": 17760, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.071Z", + "last_change_date": "2022-03-14T07:51:27.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 839, + "fields": { + "EF_ID": 17761, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.180Z", + "last_change_date": "2022-03-14T07:51:27.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 840, + "fields": { + "EF_ID": 17762, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.254Z", + "last_change_date": "2022-03-14T07:51:27.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 841, + "fields": { + "EF_ID": 17766, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "908", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.321Z", + "last_change_date": "2022-03-14T07:51:27.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 842, + "fields": { + "EF_ID": 17767, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1375", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.396Z", + "last_change_date": "2022-03-14T07:51:27.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 843, + "fields": { + "EF_ID": 17768, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.ii - Light-duty trucks, 1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy- Duty Methanol Vehicles ", + "Technology_Practices": "Advanced Control: Heavy-Duty Vehicles - Methanol-Diesel Engines - M100 Fuel", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as methanol.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68.8", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-46 on Page 1.88) of the Reference Manual (Estimated Emission Factors for US Heavy- Duty Methanol Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In accordance with the IPCC Guidelines and Good Practice Guidance, CO2 emissions from biomass fuels should be reported as memo items but should not be included in national totals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.492Z", + "last_change_date": "2022-03-14T07:51:27.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 844, + "fields": { + "EF_ID": 18143, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available to date. They include dung and agricultural, municipal and industrial wastes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.563Z", + "last_change_date": "2022-03-14T07:51:27.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 845, + "fields": { + "EF_ID": 18144, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available to date. They include dung and agricultural, municipal and industrial wastes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.629Z", + "last_change_date": "2022-03-14T07:51:27.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 846, + "fields": { + "EF_ID": 18145, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available to date. They include dung and agricultural, municipal and industrial wastes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.704Z", + "last_change_date": "2022-03-14T07:51:27.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 847, + "fields": { + "EF_ID": 18146, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available to date. They include dung and agricultural, municipal and industrial wastes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.810Z", + "last_change_date": "2022-03-14T07:51:27.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 848, + "fields": { + "EF_ID": 18147, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CH4 Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-7 on Page 1.35 of the Reference Manual)", + "Technical_Reference": "These CH4 default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available to date. They include dung and agricultural, municipal and industrial wastes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.879Z", + "last_change_date": "2022-03-14T07:51:27.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 849, + "fields": { + "EF_ID": 18155, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:27.954Z", + "last_change_date": "2022-03-14T07:51:27.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 850, + "fields": { + "EF_ID": 18156, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.029Z", + "last_change_date": "2022-03-14T07:51:28.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 851, + "fields": { + "EF_ID": 18157, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.137Z", + "last_change_date": "2022-03-14T07:51:28.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 852, + "fields": { + "EF_ID": 18158, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.221Z", + "last_change_date": "2022-03-14T07:51:28.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 853, + "fields": { + "EF_ID": 18159, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.288Z", + "last_change_date": "2022-03-14T07:51:28.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 854, + "fields": { + "EF_ID": 18160, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.354Z", + "last_change_date": "2022-03-14T07:51:28.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 855, + "fields": { + "EF_ID": 18161, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.421Z", + "last_change_date": "2022-03-14T07:51:28.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 856, + "fields": { + "EF_ID": 18165, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When there is a significant number of cars with 3-way catalysts in the country, road transport emission factors should be increased accordingly.These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.505Z", + "last_change_date": "2022-03-14T07:51:28.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 857, + "fields": { + "EF_ID": 18166, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.579Z", + "last_change_date": "2022-03-14T07:51:28.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 858, + "fields": { + "EF_ID": 18169, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.646Z", + "last_change_date": "2022-03-14T07:51:28.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 859, + "fields": { + "EF_ID": 18173, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.713Z", + "last_change_date": "2022-03-14T07:51:28.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 860, + "fields": { + "EF_ID": 18174, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.806Z", + "last_change_date": "2022-03-14T07:51:28.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 861, + "fields": { + "EF_ID": 18175, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.879Z", + "last_change_date": "2022-03-14T07:51:28.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 862, + "fields": { + "EF_ID": 18176, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:28.954Z", + "last_change_date": "2022-03-14T07:51:28.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 863, + "fields": { + "EF_ID": 18177, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.021Z", + "last_change_date": "2022-03-14T07:51:29.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 864, + "fields": { + "EF_ID": 18178, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.096Z", + "last_change_date": "2022-03-14T07:51:29.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 865, + "fields": { + "EF_ID": 18179, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.218Z", + "last_change_date": "2022-03-14T07:51:29.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 866, + "fields": { + "EF_ID": 18180, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.288Z", + "last_change_date": "2022-03-14T07:51:29.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 867, + "fields": { + "EF_ID": 18181, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.354Z", + "last_change_date": "2022-03-14T07:51:29.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 868, + "fields": { + "EF_ID": 18182, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.429Z", + "last_change_date": "2022-03-14T07:51:29.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 869, + "fields": { + "EF_ID": 18183, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes dung and agricultural, municipal and indusrial wastes. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.513Z", + "last_change_date": "2022-03-14T07:51:29.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 870, + "fields": { + "EF_ID": 18184, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes dung and agricultural, municipal and indusrial wastes. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.612Z", + "last_change_date": "2022-03-14T07:51:29.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 871, + "fields": { + "EF_ID": 18185, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes dung and agricultural, municipal and indusrial wastes. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.701Z", + "last_change_date": "2022-03-14T07:51:29.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 872, + "fields": { + "EF_ID": 18186, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes dung and agricultural, municipal and indusrial wastes. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.762Z", + "last_change_date": "2022-03-14T07:51:29.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 873, + "fields": { + "EF_ID": 18187, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-8 on Page 1.36 of the Reference Manual)", + "Technical_Reference": "These N2O default emission factors are based on CORINAIR90 database, the CORINAIR1994 default emissionf actors, EDGAR Version 2.0 database, National Communications to the UNFCCC,Berdowski, et al(1993 ),Radian Corporation (1990) and USEPA(1995). Additional research is needed to improve the quality of the emission factors ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes dung and agricultural, municipal and indusrial wastes. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.829Z", + "last_change_date": "2022-03-14T07:51:29.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 874, + "fields": { + "EF_ID": 18195, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:29.922Z", + "last_change_date": "2022-03-14T07:51:29.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 875, + "fields": { + "EF_ID": 18196, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.001Z", + "last_change_date": "2022-03-14T07:51:30.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 876, + "fields": { + "EF_ID": 18197, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.062Z", + "last_change_date": "2022-03-14T07:51:30.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 877, + "fields": { + "EF_ID": 18198, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.129Z", + "last_change_date": "2022-03-14T07:51:30.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 878, + "fields": { + "EF_ID": 18199, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.223Z", + "last_change_date": "2022-03-14T07:51:30.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 879, + "fields": { + "EF_ID": 18200, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.301Z", + "last_change_date": "2022-03-14T07:51:30.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 880, + "fields": { + "EF_ID": 18201, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The countries should , when possible, allocate the fuel consumption to road and off road traffic. Emisson factors for ships, boats, locomotives and farm equipment may be more than double those of duty vehicles. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.363Z", + "last_change_date": "2022-03-14T07:51:30.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 881, + "fields": { + "EF_ID": 18205, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.426Z", + "last_change_date": "2022-03-14T07:51:30.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 882, + "fields": { + "EF_ID": 18206, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "800", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This assumes that the major part is consummed by heavy duty vehicles(HDV). When a country has a relatively high portion of pasenger cars running on diesel the average emission factor may be substatially low.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.493Z", + "last_change_date": "2022-03-14T07:51:30.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 883, + "fields": { + "EF_ID": 18213, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are for fuel combustion in the energy industries. For charcoal production, refer to Table 1-14. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.584Z", + "last_change_date": "2022-03-14T07:51:30.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 884, + "fields": { + "EF_ID": 18214, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.659Z", + "last_change_date": "2022-03-14T07:51:30.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 885, + "fields": { + "EF_ID": 18215, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.726Z", + "last_change_date": "2022-03-14T07:51:30.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 886, + "fields": { + "EF_ID": 18216, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.793Z", + "last_change_date": "2022-03-14T07:51:30.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 887, + "fields": { + "EF_ID": 18217, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.868Z", + "last_change_date": "2022-03-14T07:51:30.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 888, + "fields": { + "EF_ID": 18218, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are for fuel combustion in the energy industries. For charcoal production, please refer to Table 1-14, Default Non-CO2 Emission Factors for Charcoal Production. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:30.954Z", + "last_change_date": "2022-03-14T07:51:30.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 889, + "fields": { + "EF_ID": 18219, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.043Z", + "last_change_date": "2022-03-14T07:51:31.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 890, + "fields": { + "EF_ID": 18220, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.118Z", + "last_change_date": "2022-03-14T07:51:31.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 891, + "fields": { + "EF_ID": 18221, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.184Z", + "last_change_date": "2022-03-14T07:51:31.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 892, + "fields": { + "EF_ID": 18222, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrogen oxides emission factors are available by detalied fuel/sector split for most of the fuel combustion sources. The aggregagted emission factors in this table allow a rough estimation of NOX emissions. These factors are considered the best available global default factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.296Z", + "last_change_date": "2022-03-14T07:51:31.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 893, + "fields": { + "EF_ID": 18223, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.384Z", + "last_change_date": "2022-03-14T07:51:31.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 894, + "fields": { + "EF_ID": 18224, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.459Z", + "last_change_date": "2022-03-14T07:51:31.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 895, + "fields": { + "EF_ID": 18225, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.534Z", + "last_change_date": "2022-03-14T07:51:31.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 896, + "fields": { + "EF_ID": 18226, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.609Z", + "last_change_date": "2022-03-14T07:51:31.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 897, + "fields": { + "EF_ID": 18227, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "NOX Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-9 on Page 1.38 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.676Z", + "last_change_date": "2022-03-14T07:51:31.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 898, + "fields": { + "EF_ID": 18235, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.765Z", + "last_change_date": "2022-03-14T07:51:31.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 899, + "fields": { + "EF_ID": 18236, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.843Z", + "last_change_date": "2022-03-14T07:51:31.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 900, + "fields": { + "EF_ID": 18237, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "400", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.909Z", + "last_change_date": "2022-03-14T07:51:31.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 901, + "fields": { + "EF_ID": 18238, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:31.976Z", + "last_change_date": "2022-03-14T07:51:31.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 902, + "fields": { + "EF_ID": 18239, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.043Z", + "last_change_date": "2022-03-14T07:51:32.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 903, + "fields": { + "EF_ID": 18240, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.109Z", + "last_change_date": "2022-03-14T07:51:32.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 904, + "fields": { + "EF_ID": 18241, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "400", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.201Z", + "last_change_date": "2022-03-14T07:51:32.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 905, + "fields": { + "EF_ID": 18245, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Generally, the emisson factors for gasoline vehicles are highest for motor cycles and passenger cars without emission control equipment.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.276Z", + "last_change_date": "2022-03-14T07:51:32.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 906, + "fields": { + "EF_ID": 18246, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.346Z", + "last_change_date": "2022-03-14T07:51:32.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 907, + "fields": { + "EF_ID": 18253, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.413Z", + "last_change_date": "2022-03-14T07:51:32.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 908, + "fields": { + "EF_ID": 18254, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.479Z", + "last_change_date": "2022-03-14T07:51:32.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 909, + "fields": { + "EF_ID": 18255, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.546Z", + "last_change_date": "2022-03-14T07:51:32.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 910, + "fields": { + "EF_ID": 18256, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.646Z", + "last_change_date": "2022-03-14T07:51:32.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 911, + "fields": { + "EF_ID": 18257, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.735Z", + "last_change_date": "2022-03-14T07:51:32.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 912, + "fields": { + "EF_ID": 18258, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON MONOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.804Z", + "last_change_date": "2022-03-14T07:51:32.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 913, + "fields": { + "EF_ID": 18259, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON MONOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.871Z", + "last_change_date": "2022-03-14T07:51:32.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 914, + "fields": { + "EF_ID": 18260, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:32.938Z", + "last_change_date": "2022-03-14T07:51:32.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 915, + "fields": { + "EF_ID": 18261, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.013Z", + "last_change_date": "2022-03-14T07:51:33.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 916, + "fields": { + "EF_ID": 18262, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "CARBON MONOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These factors are considered the best available global default factors to date", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.107Z", + "last_change_date": "2022-03-14T07:51:33.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 917, + "fields": { + "EF_ID": 18263, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.179Z", + "last_change_date": "2022-03-14T07:51:33.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 918, + "fields": { + "EF_ID": 18264, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.254Z", + "last_change_date": "2022-03-14T07:51:33.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 919, + "fields": { + "EF_ID": 18265, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.329Z", + "last_change_date": "2022-03-14T07:51:33.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 920, + "fields": { + "EF_ID": 18266, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.413Z", + "last_change_date": "2022-03-14T07:51:33.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 921, + "fields": { + "EF_ID": 18267, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Default (Uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-10 on Page 1.40 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes dung, and agricultural, municpal and industrial wastes", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.488Z", + "last_change_date": "2022-03-14T07:51:33.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 922, + "fields": { + "EF_ID": 18275, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.593Z", + "last_change_date": "2022-03-14T07:51:33.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 923, + "fields": { + "EF_ID": 18276, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.668Z", + "last_change_date": "2022-03-14T07:51:33.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 924, + "fields": { + "EF_ID": 18277, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.738Z", + "last_change_date": "2022-03-14T07:51:33.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 925, + "fields": { + "EF_ID": 18278, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.804Z", + "last_change_date": "2022-03-14T07:51:33.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 926, + "fields": { + "EF_ID": 18279, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.879Z", + "last_change_date": "2022-03-14T07:51:33.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 927, + "fields": { + "EF_ID": 18280, + "IPCC_Category": "1.A.4.c.i - Stationary", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:33.946Z", + "last_change_date": "2022-03-14T07:51:33.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 928, + "fields": { + "EF_ID": 18281, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery, 1.A.4.c.iii - Fishing (mobile combustion)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "NMVOC default (uncontrolled) emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-3; Sheet 2 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-11 on Page 1.42 of the Reference Manual)", + "Technical_Reference": "The following default emission factors have been developed by the IPCC based on CORINAIR90 among others", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These emission factors are considered as the best available global factors to date.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.055Z", + "last_change_date": "2022-03-14T07:51:34.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 929, + "fields": { + "EF_ID": 18308, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For low sulphur content (b) To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.143Z", + "last_change_date": "2022-03-14T07:51:34.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 930, + "fields": { + "EF_ID": 18309, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "? 0.001", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For low sulphur content. (b) Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.213Z", + "last_change_date": "2022-03-14T07:51:34.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 931, + "fields": { + "EF_ID": 18310, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For medium sulphur content (b) To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.279Z", + "last_change_date": "2022-03-14T07:51:34.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 932, + "fields": { + "EF_ID": 18311, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For high sulphur content (b) To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.346Z", + "last_change_date": "2022-03-14T07:51:34.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 933, + "fields": { + "EF_ID": 18312, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "? 16.1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For high sulphur content. (b) Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.413Z", + "last_change_date": "2022-03-14T07:51:34.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 934, + "fields": { + "EF_ID": 18313, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Heavy Fuel Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For low sulphur content (b) To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.507Z", + "last_change_date": "2022-03-14T07:51:34.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 935, + "fields": { + "EF_ID": 18314, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Heavy Fuel Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "equal to, or greater than 0.001", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For low sulphur content. (b) Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.593Z", + "last_change_date": "2022-03-14T07:51:34.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 936, + "fields": { + "EF_ID": 18315, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Heavy Fuel Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "a) For medium sulphur content (b) The medium value refers to the default for marine bunkers.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.654Z", + "last_change_date": "2022-03-14T07:51:34.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 937, + "fields": { + "EF_ID": 18316, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Heavy Fuel Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For high sulphur content (b) To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.721Z", + "last_change_date": "2022-03-14T07:51:34.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 938, + "fields": { + "EF_ID": 18317, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Heavy Fuel Oil", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "equal to, or smaller than 4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For high sulphur content (b) Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.788Z", + "last_change_date": "2022-03-14T07:51:34.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 939, + "fields": { + "EF_ID": 18318, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Light Fuel Oil/Diesel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For low sulphur content (b) To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.854Z", + "last_change_date": "2022-03-14T07:51:34.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 940, + "fields": { + "EF_ID": 18319, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Light Fuel Oil/Diesel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "equal to, or greater than 0.14", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For low sulphur content. (b) Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:34.951Z", + "last_change_date": "2022-03-14T07:51:34.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 941, + "fields": { + "EF_ID": 18320, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Light Fuel Oil/Diesel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For high sulphur content (b) To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.026Z", + "last_change_date": "2022-03-14T07:51:35.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 942, + "fields": { + "EF_ID": 18321, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Light Fuel Oil/Diesel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "equal to, or smaller than 1.0", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) For high sulphur content. (b) Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.096Z", + "last_change_date": "2022-03-14T07:51:35.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 943, + "fields": { + "EF_ID": 18322, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.171Z", + "last_change_date": "2022-03-14T07:51:35.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 944, + "fields": { + "EF_ID": 18323, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1 - 1.0", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.246Z", + "last_change_date": "2022-03-14T07:51:35.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 945, + "fields": { + "EF_ID": 18324, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.321Z", + "last_change_date": "2022-03-14T07:51:35.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 946, + "fields": { + "EF_ID": 18325, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012 - 0.15", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.453Z", + "last_change_date": "2022-03-14T07:51:35.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 947, + "fields": { + "EF_ID": 18328, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5(1.3 - 1.7)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values from Eustonia", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.538Z", + "last_change_date": "2022-03-14T07:51:35.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 948, + "fields": { + "EF_ID": 18329, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.604Z", + "last_change_date": "2022-03-14T07:51:35.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 949, + "fields": { + "EF_ID": 18330, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.671Z", + "last_change_date": "2022-03-14T07:51:35.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 950, + "fields": { + "EF_ID": 18331, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Industrial Wastes", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.737Z", + "last_change_date": "2022-03-14T07:51:35.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 951, + "fields": { + "EF_ID": 18332, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Industrial Wastes", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2 - 1.0", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.804Z", + "last_change_date": "2022-03-14T07:51:35.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 952, + "fields": { + "EF_ID": 18333, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.871Z", + "last_change_date": "2022-03-14T07:51:35.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 953, + "fields": { + "EF_ID": 18334, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004 - 8.09", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:35.937Z", + "last_change_date": "2022-03-14T07:51:35.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 954, + "fields": { + "EF_ID": 18335, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.032Z", + "last_change_date": "2022-03-14T07:51:36.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 955, + "fields": { + "EF_ID": 18336, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001 - 0.06", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.104Z", + "last_change_date": "2022-03-14T07:51:36.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 956, + "fields": { + "EF_ID": 18337, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "? 0.03", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used only if no other better information is available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.171Z", + "last_change_date": "2022-03-14T07:51:36.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 957, + "fields": { + "EF_ID": 18338, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001 - 0.800", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Fuels used in CORINAIR 90 inventories in the Czech Republic, Denmark, France, Hungary, Italy, the Netherlands, Poland and the Slovak Republic.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.235Z", + "last_change_date": "2022-03-14T07:51:36.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 958, + "fields": { + "EF_ID": 18339, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Vaues for the Sulphur retention in Ash", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Hard Coal", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.301Z", + "last_change_date": "2022-03-14T07:51:36.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 959, + "fields": { + "EF_ID": 18340, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Gas Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Vaues for the Sulphur retention in Ash", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.368Z", + "last_change_date": "2022-03-14T07:51:36.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 960, + "fields": { + "EF_ID": 18341, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Hall et al (1949b)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This assumes air dry wood and is based on 20% moisture content weight basis. (b) Typical values to be considered as rough approximations. (c ) These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.435Z", + "last_change_date": "2022-03-14T07:51:36.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 961, + "fields": { + "EF_ID": 18342, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Hall and Mao (1994a)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.527Z", + "last_change_date": "2022-03-14T07:51:36.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 962, + "fields": { + "EF_ID": 18343, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Dung", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "GOB (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.604Z", + "last_change_date": "2022-03-14T07:51:36.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 963, + "fields": { + "EF_ID": 18344, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Baggasse", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 50% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.668Z", + "last_change_date": "2022-03-14T07:51:36.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 964, + "fields": { + "EF_ID": 18346, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "USEPA (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.735Z", + "last_change_date": "2022-03-14T07:51:36.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 965, + "fields": { + "EF_ID": 18347, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Freshly cut wet wood", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.9", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 40% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.801Z", + "last_change_date": "2022-03-14T07:51:36.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 966, + "fields": { + "EF_ID": 18348, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Air-dry, humid zone wood", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.5", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 20% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.886Z", + "last_change_date": "2022-03-14T07:51:36.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 967, + "fields": { + "EF_ID": 18349, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Air-dry, dry zone wood", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.6", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 15% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:36.988Z", + "last_change_date": "2022-03-14T07:51:36.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 968, + "fields": { + "EF_ID": 18350, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Oven, dry wood", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.060Z", + "last_change_date": "2022-03-14T07:51:37.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 969, + "fields": { + "EF_ID": 18351, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 5% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.135Z", + "last_change_date": "2022-03-14T07:51:37.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 970, + "fields": { + "EF_ID": 18352, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Bargasse (wet)", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.2", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 50% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.201Z", + "last_change_date": "2022-03-14T07:51:37.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 971, + "fields": { + "EF_ID": 18353, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Bargasse (air-dry)", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.2", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 13% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.297Z", + "last_change_date": "2022-03-14T07:51:37.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 972, + "fields": { + "EF_ID": 18354, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Dung cakes (dried)", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 12% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.396Z", + "last_change_date": "2022-03-14T07:51:37.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 973, + "fields": { + "EF_ID": 18355, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Coffee husks", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 12% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.471Z", + "last_change_date": "2022-03-14T07:51:37.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 974, + "fields": { + "EF_ID": 18356, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Ricehulls (air-dry)", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.4", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 9% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.546Z", + "last_change_date": "2022-03-14T07:51:37.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 975, + "fields": { + "EF_ID": 18357, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Wheat straw", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.2", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on12% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.621Z", + "last_change_date": "2022-03-14T07:51:37.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 976, + "fields": { + "EF_ID": 18358, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Maize stalk", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.7", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on12% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.716Z", + "last_change_date": "2022-03-14T07:51:37.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 977, + "fields": { + "EF_ID": 18359, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Maize cobs", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.4", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 11% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.796Z", + "last_change_date": "2022-03-14T07:51:37.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 978, + "fields": { + "EF_ID": 18360, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Cotton gin trash", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.9", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 24% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.863Z", + "last_change_date": "2022-03-14T07:51:37.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 979, + "fields": { + "EF_ID": 18361, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Cotton Stalk", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.4", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 12% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.929Z", + "last_change_date": "2022-03-14T07:51:37.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 980, + "fields": { + "EF_ID": 18362, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Cotton husks", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.8", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 40% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:37.996Z", + "last_change_date": "2022-03-14T07:51:37.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 981, + "fields": { + "EF_ID": 18363, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Energy content of biomass fuels: default net calorific values", + "Technology_Practices": "", + "Parameter_Conditions": "Cotton shells", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.9", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-13 on Page 1.45 of the Reference Manual)", + "Technical_Reference": "Leach and Gowen (1987)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a)This is based on 13% moisture content weight basis. (b) Typical values to be considered as rough approximations. These default net calorific values are for use wthin the Reference Approach as well as for the calculation of all non-CO2 emissions as described in section 1.4.2 of the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.094Z", + "last_change_date": "2022-03-14T07:51:38.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 982, + "fields": { + "EF_ID": 18364, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Default non-CO2 emission factors for charcoal production (KG/TJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-14 on Page 1.46of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) Assuming 1 kg charcoal is produced from 6kg wood and the energy content for wood and charcoal is 15 and 30 MJ/kg respectively. (b) The default emission factor is based on wood input. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.179Z", + "last_change_date": "2022-03-14T07:51:38.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 983, + "fields": { + "EF_ID": 18365, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Default non-CO2 emission factors for charcoal production (KG/TJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-14 on Page 1.46of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) Assuming 1 kg charcoal is produced from 6kg wood and the energy content for wood and charcoal is 15 and 30 MJ/kg respectively. (b) The default emission factor is based on wood input.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.246Z", + "last_change_date": "2022-03-14T07:51:38.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 984, + "fields": { + "EF_ID": 18366, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Default non-CO2 emission factors for charcoal production (KG/TJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-14 on Page 1.46of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) Assuming 1 kg charcoal is produced from 6kg wood and the energy content for wood and charcoal is 15 and 30 MJ/kg respectively. (b) The default emission factor is based on wood input.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.313Z", + "last_change_date": "2022-03-14T07:51:38.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 985, + "fields": { + "EF_ID": 18367, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Default non-CO2 emission factors for charcoal production (KG/TJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-14 on Page 1.46of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(a) Assuming 1 kg charcoal is produced from 6kg wood and the energy content for wood and charcoal is 15 and 30 MJ/kg respectively. (b) The default emission factor is based on wood input.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.379Z", + "last_change_date": "2022-03-14T07:51:38.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 986, + "fields": { + "EF_ID": 18368, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Default non-CO2 emission factors for charcoal production (KG/TJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-14 on Page 1.46of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 1 kg charcoal is produced from 6kg wood and the energy content for wood and charcoal is 15 and 30 MJ/kg respectively. (b) The default emission factor is based on charcoal produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.446Z", + "last_change_date": "2022-03-14T07:51:38.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 987, + "fields": { + "EF_ID": 18369, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Default non-CO2 emission factors for charcoal production (KG/TJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-14 on Page 1.46of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 1 kg charcoal is produced from 6kg wood and the energy content for wood and charcoal is 15 and 30 MJ/kg respectively. (b) The default emission factor is based on charcoal produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.538Z", + "last_change_date": "2022-03-14T07:51:38.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 988, + "fields": { + "EF_ID": 18370, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Default non-CO2 emission factors for charcoal production (KG/TJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-14 on Page 1.46of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 1 kg charcoal is produced from 6kg wood and the energy content for wood and charcoal is 15 and 30 MJ/kg respectively. (b) The default emission factor is based on charcoal produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.629Z", + "last_change_date": "2022-03-14T07:51:38.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 989, + "fields": { + "EF_ID": 18371, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Default non-CO2 emission factors for charcoal production (KG/TJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1700", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-14 on Page 1.46of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 1 kg charcoal is produced from 6kg wood and the energy content for wood and charcoal is 15 and 30 MJ/kg respectively. (b) The default emission factor is based on charcoal produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.696Z", + "last_change_date": "2022-03-14T07:51:38.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 990, + "fields": { + "EF_ID": 18387, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.763Z", + "last_change_date": "2022-03-14T07:51:38.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 991, + "fields": { + "EF_ID": 18388, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Gas-Fired Gas Turbines>3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.829Z", + "last_change_date": "2022-03-14T07:51:38.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 992, + "fields": { + "EF_ID": 18389, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Dual-Fuel Engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "340", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.896Z", + "last_change_date": "2022-03-14T07:51:38.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 993, + "fields": { + "EF_ID": 18401, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:38.990Z", + "last_change_date": "2022-03-14T07:51:38.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 994, + "fields": { + "EF_ID": 18402, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Gas-Fired Gas Turbines>3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.071Z", + "last_change_date": "2022-03-14T07:51:39.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 995, + "fields": { + "EF_ID": 18403, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Dual-Fuel Engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.146Z", + "last_change_date": "2022-03-14T07:51:39.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 996, + "fields": { + "EF_ID": 18424, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.221Z", + "last_change_date": "2022-03-14T07:51:39.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 997, + "fields": { + "EF_ID": 18425, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Gas-Fired Gas Turbines>3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.296Z", + "last_change_date": "2022-03-14T07:51:39.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 998, + "fields": { + "EF_ID": 18426, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for utility boiler source perfomance", + "Technology_Practices": "Large Dual-Fuel Engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-15 on Page 1.53) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.401Z", + "last_change_date": "2022-03-14T07:51:39.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 999, + "fields": { + "EF_ID": 18441, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.477Z", + "last_change_date": "2022-03-14T07:51:39.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1000, + "fields": { + "EF_ID": 18442, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.546Z", + "last_change_date": "2022-03-14T07:51:39.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1001, + "fields": { + "EF_ID": 18443, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit Hand-fed Units", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4800", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.621Z", + "last_change_date": "2022-03-14T07:51:39.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1002, + "fields": { + "EF_ID": 18444, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Dry bottom Wall fired", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.696Z", + "last_change_date": "2022-03-14T07:51:39.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1003, + "fields": { + "EF_ID": 18445, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Dry bottom tangentially fired", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.763Z", + "last_change_date": "2022-03-14T07:51:39.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1004, + "fields": { + "EF_ID": 18446, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Wet Bottom", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.854Z", + "last_change_date": "2022-03-14T07:51:39.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1005, + "fields": { + "EF_ID": 18447, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bituminous Spreader Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.935Z", + "last_change_date": "2022-03-14T07:51:39.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1006, + "fields": { + "EF_ID": 18448, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Fluidised Bed Combustor/Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:39.996Z", + "last_change_date": "2022-03-14T07:51:39.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1007, + "fields": { + "EF_ID": 18449, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Fluidised Bed Combustor/Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.063Z", + "last_change_date": "2022-03-14T07:51:40.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1008, + "fields": { + "EF_ID": 18450, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Anthracite Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.129Z", + "last_change_date": "2022-03-14T07:51:40.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1009, + "fields": { + "EF_ID": 18451, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Anthracite Fluidized Bed Combustor Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.196Z", + "last_change_date": "2022-03-14T07:51:40.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1010, + "fields": { + "EF_ID": 18452, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.263Z", + "last_change_date": "2022-03-14T07:51:40.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1011, + "fields": { + "EF_ID": 18453, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Distillate Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.374Z", + "last_change_date": "2022-03-14T07:51:40.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1012, + "fields": { + "EF_ID": 18454, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Waste Oil Boilers <0.1MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.452Z", + "last_change_date": "2022-03-14T07:51:40.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1013, + "fields": { + "EF_ID": 18455, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "LPG - Boilers/Propane", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.513Z", + "last_change_date": "2022-03-14T07:51:40.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1014, + "fields": { + "EF_ID": 18456, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "LPG - Boilers/Butane", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.579Z", + "last_change_date": "2022-03-14T07:51:40.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1015, + "fields": { + "EF_ID": 18457, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Stationary Internal Comb. Engines/ Gasoline <250hp (186kw)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.646Z", + "last_change_date": "2022-03-14T07:51:40.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1016, + "fields": { + "EF_ID": 18458, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Stationary Internal Comb. Engines/ Diesel < 600hp (447kw)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.713Z", + "last_change_date": "2022-03-14T07:51:40.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1017, + "fields": { + "EF_ID": 18459, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Largel Stationary Diesel Engines >600hp (447 kw)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.771Z", + "last_change_date": "2022-03-14T07:51:40.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1018, + "fields": { + "EF_ID": 18460, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Large Boilers >100 MBtu/h (293 MW)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.860Z", + "last_change_date": "2022-03-14T07:51:40.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1019, + "fields": { + "EF_ID": 18461, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Boilers 10 - 100 MBtu/h (29.3 - 293 MW)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.935Z", + "last_change_date": "2022-03-14T07:51:40.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1020, + "fields": { + "EF_ID": 18462, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ Turbines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:40.996Z", + "last_change_date": "2022-03-14T07:51:40.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1021, + "fields": { + "EF_ID": 18463, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 2 - Cycle Lean Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.054Z", + "last_change_date": "2022-03-14T07:51:41.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1022, + "fields": { + "EF_ID": 18464, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 4 - Cycle Lean Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.118Z", + "last_change_date": "2022-03-14T07:51:41.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1023, + "fields": { + "EF_ID": 18465, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 4 - Cycle Rich Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.185Z", + "last_change_date": "2022-03-14T07:51:41.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1024, + "fields": { + "EF_ID": 18466, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Fuel Cell/Dutch Oven Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.252Z", + "last_change_date": "2022-03-14T07:51:41.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1025, + "fields": { + "EF_ID": 18467, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "590", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.354Z", + "last_change_date": "2022-03-14T07:51:41.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1026, + "fields": { + "EF_ID": 18468, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "FBC Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.427Z", + "last_change_date": "2022-03-14T07:51:41.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1027, + "fields": { + "EF_ID": 18469, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Mass Burn Waterwall", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.502Z", + "last_change_date": "2022-03-14T07:51:41.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1028, + "fields": { + "EF_ID": 18470, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Mass Burn Rotary Waterwall", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.577Z", + "last_change_date": "2022-03-14T07:51:41.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1029, + "fields": { + "EF_ID": 18471, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Mass Burn Rotary Refrac. Wall", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.644Z", + "last_change_date": "2022-03-14T07:51:41.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1030, + "fields": { + "EF_ID": 18472, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Modular, Starved Air", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.752Z", + "last_change_date": "2022-03-14T07:51:41.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1031, + "fields": { + "EF_ID": 18473, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Refuse Derived Combustors", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.819Z", + "last_change_date": "2022-03-14T07:51:41.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1032, + "fields": { + "EF_ID": 18474, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.915Z", + "last_change_date": "2022-03-14T07:51:41.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1033, + "fields": { + "EF_ID": 18475, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:41.993Z", + "last_change_date": "2022-03-14T07:51:41.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1034, + "fields": { + "EF_ID": 18476, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit Hand-fed Units", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.060Z", + "last_change_date": "2022-03-14T07:51:42.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1035, + "fields": { + "EF_ID": 18477, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Dry bottom Wall fired", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.127Z", + "last_change_date": "2022-03-14T07:51:42.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1036, + "fields": { + "EF_ID": 18478, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Dry bottom tangentially fired", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.194Z", + "last_change_date": "2022-03-14T07:51:42.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1037, + "fields": { + "EF_ID": 18479, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Wet Bottom", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.269Z", + "last_change_date": "2022-03-14T07:51:42.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1038, + "fields": { + "EF_ID": 18480, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bituminous Spreader Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.327Z", + "last_change_date": "2022-03-14T07:51:42.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1039, + "fields": { + "EF_ID": 18481, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Fluidised Bed Combustor/Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.436Z", + "last_change_date": "2022-03-14T07:51:42.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1040, + "fields": { + "EF_ID": 18482, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Fluidised Bed Combustor/Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.494Z", + "last_change_date": "2022-03-14T07:51:42.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1041, + "fields": { + "EF_ID": 18483, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.560Z", + "last_change_date": "2022-03-14T07:51:42.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1042, + "fields": { + "EF_ID": 18484, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Distillate Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.619Z", + "last_change_date": "2022-03-14T07:51:42.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1043, + "fields": { + "EF_ID": 18485, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Largel Stationary Diesel Engines >600hp (447 kw)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.687Z", + "last_change_date": "2022-03-14T07:51:42.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1044, + "fields": { + "EF_ID": 18486, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Large Boilers >100 MBtu/h (293 MW)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.754Z", + "last_change_date": "2022-03-14T07:51:42.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1045, + "fields": { + "EF_ID": 18487, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Boilers 10 - 100 MBtu/h (29.3 - 293 MW)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.829Z", + "last_change_date": "2022-03-14T07:51:42.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1046, + "fields": { + "EF_ID": 18488, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ Turbines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:42.930Z", + "last_change_date": "2022-03-14T07:51:42.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1047, + "fields": { + "EF_ID": 18489, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 2 - Cycle Lean Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.010Z", + "last_change_date": "2022-03-14T07:51:43.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1048, + "fields": { + "EF_ID": 18490, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 4 - Cycle Lean Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.088Z", + "last_change_date": "2022-03-14T07:51:43.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1049, + "fields": { + "EF_ID": 18491, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 4 - Cycle Rich Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.171Z", + "last_change_date": "2022-03-14T07:51:43.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1050, + "fields": { + "EF_ID": 18492, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.254Z", + "last_change_date": "2022-03-14T07:51:43.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1051, + "fields": { + "EF_ID": 18493, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.338Z", + "last_change_date": "2022-03-14T07:51:43.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1052, + "fields": { + "EF_ID": 18494, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.421Z", + "last_change_date": "2022-03-14T07:51:43.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1053, + "fields": { + "EF_ID": 18495, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit Hand-fed Units", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.525Z", + "last_change_date": "2022-03-14T07:51:43.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1054, + "fields": { + "EF_ID": 18496, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Dry bottom Wall fired", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "380", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.602Z", + "last_change_date": "2022-03-14T07:51:43.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1055, + "fields": { + "EF_ID": 18497, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Dry bottom tangentially fired", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.679Z", + "last_change_date": "2022-03-14T07:51:43.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1056, + "fields": { + "EF_ID": 18498, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Wet Bottom", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "590", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.754Z", + "last_change_date": "2022-03-14T07:51:43.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1057, + "fields": { + "EF_ID": 18499, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bituminous Spreader Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.846Z", + "last_change_date": "2022-03-14T07:51:43.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1058, + "fields": { + "EF_ID": 18500, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Fluidised Bed Combustor/Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.921Z", + "last_change_date": "2022-03-14T07:51:43.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1059, + "fields": { + "EF_ID": 18501, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Fluidised Bed Combustor/Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "270", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:43.996Z", + "last_change_date": "2022-03-14T07:51:43.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1060, + "fields": { + "EF_ID": 18502, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Anthracite Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.095Z", + "last_change_date": "2022-03-14T07:51:44.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1061, + "fields": { + "EF_ID": 18503, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Anthracite Fluidized Bed Combustor Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.179Z", + "last_change_date": "2022-03-14T07:51:44.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1062, + "fields": { + "EF_ID": 18504, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Anthracite Pulverised Coal Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.254Z", + "last_change_date": "2022-03-14T07:51:44.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1063, + "fields": { + "EF_ID": 18505, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.329Z", + "last_change_date": "2022-03-14T07:51:44.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1064, + "fields": { + "EF_ID": 18506, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Distillate Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.412Z", + "last_change_date": "2022-03-14T07:51:44.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1065, + "fields": { + "EF_ID": 18507, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Waste Oil Boilers <0.1MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.496Z", + "last_change_date": "2022-03-14T07:51:44.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1066, + "fields": { + "EF_ID": 18508, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "LPG - Boilers/Propane", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.579Z", + "last_change_date": "2022-03-14T07:51:44.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1067, + "fields": { + "EF_ID": 18509, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "LPG - Boilers/Butane", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.681Z", + "last_change_date": "2022-03-14T07:51:44.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1068, + "fields": { + "EF_ID": 18510, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Stationary Internal Comb. Engines/ Gasoline <250hp (186kw)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.754Z", + "last_change_date": "2022-03-14T07:51:44.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1069, + "fields": { + "EF_ID": 18511, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Stationary Internal Comb. Engines/ Diesel < 600hp (447kw)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.829Z", + "last_change_date": "2022-03-14T07:51:44.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1070, + "fields": { + "EF_ID": 18512, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Largel Stationary Diesel Engines >600hp (447 kw)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.904Z", + "last_change_date": "2022-03-14T07:51:44.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1071, + "fields": { + "EF_ID": 18513, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Large Boilers >100 MBtu/h (293 MW)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:44.979Z", + "last_change_date": "2022-03-14T07:51:44.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1072, + "fields": { + "EF_ID": 18514, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Small Boilers 10 - 100 MBtu/h (29.3 - 293 MW)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.054Z", + "last_change_date": "2022-03-14T07:51:45.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1073, + "fields": { + "EF_ID": 18515, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ Turbines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.121Z", + "last_change_date": "2022-03-14T07:51:45.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1074, + "fields": { + "EF_ID": 18516, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 2 - Cycle Lean Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.226Z", + "last_change_date": "2022-03-14T07:51:45.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1075, + "fields": { + "EF_ID": 18517, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 4 - Cycle Lean Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.310Z", + "last_change_date": "2022-03-14T07:51:45.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1076, + "fields": { + "EF_ID": 18518, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Heavy Duty Nat. Gas Compressor Eng./ 4 - Cycle Rich Burn", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.379Z", + "last_change_date": "2022-03-14T07:51:45.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1077, + "fields": { + "EF_ID": 18519, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Fuel Cell/Dutch Oven Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.446Z", + "last_change_date": "2022-03-14T07:51:45.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1078, + "fields": { + "EF_ID": 18520, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.513Z", + "last_change_date": "2022-03-14T07:51:45.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1079, + "fields": { + "EF_ID": 18521, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "FBC Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.579Z", + "last_change_date": "2022-03-14T07:51:45.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1080, + "fields": { + "EF_ID": 18522, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bagasse/Ag. Waste Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.654Z", + "last_change_date": "2022-03-14T07:51:45.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1081, + "fields": { + "EF_ID": 18523, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Mass Burn Waterwall", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.763Z", + "last_change_date": "2022-03-14T07:51:45.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1082, + "fields": { + "EF_ID": 18524, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Mass Burn Rotary Waterwall", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.846Z", + "last_change_date": "2022-03-14T07:51:45.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1083, + "fields": { + "EF_ID": 18525, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Mass Burn Rotary Refrac. Wall", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:45.921Z", + "last_change_date": "2022-03-14T07:51:45.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1084, + "fields": { + "EF_ID": 18526, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Modular, Exess Air", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.013Z", + "last_change_date": "2022-03-14T07:51:46.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1085, + "fields": { + "EF_ID": 18527, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Modular, Starved Air", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.104Z", + "last_change_date": "2022-03-14T07:51:46.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1086, + "fields": { + "EF_ID": 18528, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "MSW Boilers/Refuse Derived Combustors", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.171Z", + "last_change_date": "2022-03-14T07:51:46.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1087, + "fields": { + "EF_ID": 18529, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.229Z", + "last_change_date": "2022-03-14T07:51:46.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1088, + "fields": { + "EF_ID": 18530, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.315Z", + "last_change_date": "2022-03-14T07:51:46.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1089, + "fields": { + "EF_ID": 18531, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bit./Sub-bit Hand-fed Units", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.396Z", + "last_change_date": "2022-03-14T07:51:46.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1090, + "fields": { + "EF_ID": 18532, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Dry bottom Wall fired", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.460Z", + "last_change_date": "2022-03-14T07:51:46.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1091, + "fields": { + "EF_ID": 18533, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Dry bottom tangentially fired", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.527Z", + "last_change_date": "2022-03-14T07:51:46.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1092, + "fields": { + "EF_ID": 18534, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Pulverised - Wet Bottom", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.594Z", + "last_change_date": "2022-03-14T07:51:46.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1093, + "fields": { + "EF_ID": 18535, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bituminous Spreader Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.661Z", + "last_change_date": "2022-03-14T07:51:46.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1094, + "fields": { + "EF_ID": 18536, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Fluidised Bed Combustor/Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.727Z", + "last_change_date": "2022-03-14T07:51:46.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1095, + "fields": { + "EF_ID": 18537, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Bitminous/Sub-bituminous Fluidised Bed Combustor/Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.826Z", + "last_change_date": "2022-03-14T07:51:46.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1096, + "fields": { + "EF_ID": 18538, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.904Z", + "last_change_date": "2022-03-14T07:51:46.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1097, + "fields": { + "EF_ID": 18539, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for industrial boiler perfomance", + "Technology_Practices": "Distillate Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-16 on Page 1.54) of the Reference Manual", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:46.969Z", + "last_change_date": "2022-03-14T07:51:46.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1098, + "fields": { + "EF_ID": 18540, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.036Z", + "last_change_date": "2022-03-14T07:51:47.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1099, + "fields": { + "EF_ID": 18541, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.102Z", + "last_change_date": "2022-03-14T07:51:47.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1100, + "fields": { + "EF_ID": 18542, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.195Z", + "last_change_date": "2022-03-14T07:51:47.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1101, + "fields": { + "EF_ID": 18543, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Coking Steel", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "211", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.280Z", + "last_change_date": "2022-03-14T07:51:47.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1102, + "fields": { + "EF_ID": 18544, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.352Z", + "last_change_date": "2022-03-14T07:51:47.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1103, + "fields": { + "EF_ID": 18545, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.456Z", + "last_change_date": "2022-03-14T07:51:47.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1104, + "fields": { + "EF_ID": 18546, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "179", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.529Z", + "last_change_date": "2022-03-14T07:51:47.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1105, + "fields": { + "EF_ID": 18547, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.602Z", + "last_change_date": "2022-03-14T07:51:47.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1106, + "fields": { + "EF_ID": 18548, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.708Z", + "last_change_date": "2022-03-14T07:51:47.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1107, + "fields": { + "EF_ID": 18549, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.796Z", + "last_change_date": "2022-03-14T07:51:47.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1108, + "fields": { + "EF_ID": 18550, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Coking Steel", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.861Z", + "last_change_date": "2022-03-14T07:51:47.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1109, + "fields": { + "EF_ID": 18551, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:47.927Z", + "last_change_date": "2022-03-14T07:51:47.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1110, + "fields": { + "EF_ID": 18552, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.026Z", + "last_change_date": "2022-03-14T07:51:48.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1111, + "fields": { + "EF_ID": 18553, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.104Z", + "last_change_date": "2022-03-14T07:51:48.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1112, + "fields": { + "EF_ID": 18554, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1111", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.171Z", + "last_change_date": "2022-03-14T07:51:48.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1113, + "fields": { + "EF_ID": 18555, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "527", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.269Z", + "last_change_date": "2022-03-14T07:51:48.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1114, + "fields": { + "EF_ID": 18556, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "KiIns - Industry: Cement, lime", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "527", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.346Z", + "last_change_date": "2022-03-14T07:51:48.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1115, + "fields": { + "EF_ID": 18557, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Coking Steel", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Joint EMEP/CORINAIR (1996) Atmospheric Emission Inventory Guide Book. Vol 1.2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.413Z", + "last_change_date": "2022-03-14T07:51:48.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1116, + "fields": { + "EF_ID": 18558, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.479Z", + "last_change_date": "2022-03-14T07:51:48.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1117, + "fields": { + "EF_ID": 18559, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "168", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.578Z", + "last_change_date": "2022-03-14T07:51:48.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1118, + "fields": { + "EF_ID": 18560, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factors for kilns, Ovens and Dryers source perfomance", + "Technology_Practices": "Chemical Processes (Wood, Asphalt, Copper and Phosphate)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "226", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-17 on Page 1.55) of the Reference Manual", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values were originally based on gross calorific value; they were converted to net calorific value by assuming that net calorific values were 5 percent lower than gross calorific for coal and oil and 10 percent lower for natural gas. These percentage adjustments are the OECD/IEA assumption on how to convert from gross to net calorofic values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.654Z", + "last_change_date": "2022-03-14T07:51:48.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1119, + "fields": { + "EF_ID": 18561, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Coal Hot Water Heaters", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.721Z", + "last_change_date": "2022-03-14T07:51:48.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1120, + "fields": { + "EF_ID": 18562, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Coal Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "480", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.788Z", + "last_change_date": "2022-03-14T07:51:48.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1121, + "fields": { + "EF_ID": 18563, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Coal Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.896Z", + "last_change_date": "2022-03-14T07:51:48.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1122, + "fields": { + "EF_ID": 18564, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Residual Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:48.979Z", + "last_change_date": "2022-03-14T07:51:48.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1123, + "fields": { + "EF_ID": 18565, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Distillate Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.054Z", + "last_change_date": "2022-03-14T07:51:49.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1124, + "fields": { + "EF_ID": 18566, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.121Z", + "last_change_date": "2022-03-14T07:51:49.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1125, + "fields": { + "EF_ID": 18567, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Propane/Butane Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.196Z", + "last_change_date": "2022-03-14T07:51:49.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1126, + "fields": { + "EF_ID": 18568, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.271Z", + "last_change_date": "2022-03-14T07:51:49.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1127, + "fields": { + "EF_ID": 18569, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Gas Heaters", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.383Z", + "last_change_date": "2022-03-14T07:51:49.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1128, + "fields": { + "EF_ID": 18570, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Wood Pits", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4900", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.454Z", + "last_change_date": "2022-03-14T07:51:49.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1129, + "fields": { + "EF_ID": 18571, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Fire Places", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.529Z", + "last_change_date": "2022-03-14T07:51:49.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1130, + "fields": { + "EF_ID": 18572, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Conventional Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10000", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.613Z", + "last_change_date": "2022-03-14T07:51:49.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1131, + "fields": { + "EF_ID": 18573, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Non- Catalytic Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6100", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.696Z", + "last_change_date": "2022-03-14T07:51:49.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1132, + "fields": { + "EF_ID": 18574, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Catalytic Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4500", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.771Z", + "last_change_date": "2022-03-14T07:51:49.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1133, + "fields": { + "EF_ID": 18575, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Pellet, Certified Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1700", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.838Z", + "last_change_date": "2022-03-14T07:51:49.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1134, + "fields": { + "EF_ID": 18576, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Pellet, Exempt Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2300", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:49.936Z", + "last_change_date": "2022-03-14T07:51:49.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1135, + "fields": { + "EF_ID": 18577, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Masonry Heater Exempt Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6500", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.013Z", + "last_change_date": "2022-03-14T07:51:50.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1136, + "fields": { + "EF_ID": 18578, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Anthracite Space Heaters", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.096Z", + "last_change_date": "2022-03-14T07:51:50.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1137, + "fields": { + "EF_ID": 18579, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Residual Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.171Z", + "last_change_date": "2022-03-14T07:51:50.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1138, + "fields": { + "EF_ID": 18580, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Distillate Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.238Z", + "last_change_date": "2022-03-14T07:51:50.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1139, + "fields": { + "EF_ID": 18581, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.8", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.313Z", + "last_change_date": "2022-03-14T07:51:50.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1140, + "fields": { + "EF_ID": 18582, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Propane/Butane Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.379Z", + "last_change_date": "2022-03-14T07:51:50.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1141, + "fields": { + "EF_ID": 18583, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Gas Heaters", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.472Z", + "last_change_date": "2022-03-14T07:51:50.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1142, + "fields": { + "EF_ID": 18584, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Wood Pits", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.554Z", + "last_change_date": "2022-03-14T07:51:50.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1143, + "fields": { + "EF_ID": 18585, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Conventional Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "210", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.621Z", + "last_change_date": "2022-03-14T07:51:50.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1144, + "fields": { + "EF_ID": 18586, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Catalytic Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "380", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.696Z", + "last_change_date": "2022-03-14T07:51:50.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1145, + "fields": { + "EF_ID": 18587, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Anthracite Space Heaters", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.771Z", + "last_change_date": "2022-03-14T07:51:50.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1146, + "fields": { + "EF_ID": 18588, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Coal Hot Water Heaters", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.846Z", + "last_change_date": "2022-03-14T07:51:50.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1147, + "fields": { + "EF_ID": 18589, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Coal Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "230", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:50.950Z", + "last_change_date": "2022-03-14T07:51:50.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1148, + "fields": { + "EF_ID": 18590, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Coal Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.029Z", + "last_change_date": "2022-03-14T07:51:51.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1149, + "fields": { + "EF_ID": 18591, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Residual Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.157Z", + "last_change_date": "2022-03-14T07:51:51.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1150, + "fields": { + "EF_ID": 18592, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Distillate Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.355Z", + "last_change_date": "2022-03-14T07:51:51.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1151, + "fields": { + "EF_ID": 18593, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.438Z", + "last_change_date": "2022-03-14T07:51:51.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1152, + "fields": { + "EF_ID": 18594, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Propane/Butane Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.521Z", + "last_change_date": "2022-03-14T07:51:51.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1153, + "fields": { + "EF_ID": 18595, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.628Z", + "last_change_date": "2022-03-14T07:51:51.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1154, + "fields": { + "EF_ID": 18596, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Gas Heaters", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.713Z", + "last_change_date": "2022-03-14T07:51:51.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1155, + "fields": { + "EF_ID": 18597, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Wood Pits", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.796Z", + "last_change_date": "2022-03-14T07:51:51.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1156, + "fields": { + "EF_ID": 18598, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Fire Places", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.879Z", + "last_change_date": "2022-03-14T07:51:51.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1157, + "fields": { + "EF_ID": 18599, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Conventional Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:51.954Z", + "last_change_date": "2022-03-14T07:51:51.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1158, + "fields": { + "EF_ID": 18600, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Catalytic Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.029Z", + "last_change_date": "2022-03-14T07:51:52.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1159, + "fields": { + "EF_ID": 18601, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Pellet, Certified Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.213Z", + "last_change_date": "2022-03-14T07:51:52.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1160, + "fields": { + "EF_ID": 18602, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Residential Source Performance", + "Technology_Practices": "Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-18 on Page 1.56) of the Reference Manual (Residential Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.296Z", + "last_change_date": "2022-03-14T07:51:52.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1161, + "fields": { + "EF_ID": 18603, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Coal Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.371Z", + "last_change_date": "2022-03-14T07:51:52.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1162, + "fields": { + "EF_ID": 18604, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Residual Fuel Oil/Shale Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.454Z", + "last_change_date": "2022-03-14T07:51:52.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1163, + "fields": { + "EF_ID": 18605, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Dstillate Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.521Z", + "last_change_date": "2022-03-14T07:51:52.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1164, + "fields": { + "EF_ID": 18606, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Waste Oil Space Heaters/Vapourising Burner", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.586Z", + "last_change_date": "2022-03-14T07:51:52.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1165, + "fields": { + "EF_ID": 18607, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Waste Oil Space Heaters/Atomising Burner", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.653Z", + "last_change_date": "2022-03-14T07:51:52.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1166, + "fields": { + "EF_ID": 18608, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "LPG Boilers/Propopane", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.751Z", + "last_change_date": "2022-03-14T07:51:52.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1167, + "fields": { + "EF_ID": 18609, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "LPG Boilers/Butane", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.846Z", + "last_change_date": "2022-03-14T07:51:52.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1168, + "fields": { + "EF_ID": 18610, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.911Z", + "last_change_date": "2022-03-14T07:51:52.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1169, + "fields": { + "EF_ID": 18611, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Incineration - high efficiency", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "440", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:52.978Z", + "last_change_date": "2022-03-14T07:51:52.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1170, + "fields": { + "EF_ID": 18612, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Mass Burn Waterwall", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.044Z", + "last_change_date": "2022-03-14T07:51:53.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1171, + "fields": { + "EF_ID": 18613, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON MONOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "MSW Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.121Z", + "last_change_date": "2022-03-14T07:51:53.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1172, + "fields": { + "EF_ID": 18614, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Coal Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.253Z", + "last_change_date": "2022-03-14T07:51:53.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1173, + "fields": { + "EF_ID": 18615, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Residual Fuel Oil/Shale Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.338Z", + "last_change_date": "2022-03-14T07:51:53.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1174, + "fields": { + "EF_ID": 18616, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Dstillate Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.413Z", + "last_change_date": "2022-03-14T07:51:53.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1175, + "fields": { + "EF_ID": 18617, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.488Z", + "last_change_date": "2022-03-14T07:51:53.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1176, + "fields": { + "EF_ID": 18618, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Undifferentiated Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Coal Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.563Z", + "last_change_date": "2022-03-14T07:51:53.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1177, + "fields": { + "EF_ID": 18619, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Residual Fuel Oil/Shale Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.638Z", + "last_change_date": "2022-03-14T07:51:53.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1178, + "fields": { + "EF_ID": 18620, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Dstillate Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.739Z", + "last_change_date": "2022-03-14T07:51:53.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1179, + "fields": { + "EF_ID": 18621, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Waste Oil Space Heaters/Vapourising Burner", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.821Z", + "last_change_date": "2022-03-14T07:51:53.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1180, + "fields": { + "EF_ID": 18622, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Waste Oil Space Heaters/Atomising Burner", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.896Z", + "last_change_date": "2022-03-14T07:51:53.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1181, + "fields": { + "EF_ID": 18623, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "LPG Boilers/Propopane", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:53.971Z", + "last_change_date": "2022-03-14T07:51:53.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1182, + "fields": { + "EF_ID": 18624, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "LPG Boilers/Butane", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.054Z", + "last_change_date": "2022-03-14T07:51:54.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1183, + "fields": { + "EF_ID": 18625, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.121Z", + "last_change_date": "2022-03-14T07:51:54.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1184, + "fields": { + "EF_ID": 18626, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Incineration - high efficiency", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.204Z", + "last_change_date": "2022-03-14T07:51:54.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1185, + "fields": { + "EF_ID": 18627, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Mass Burn Waterwall", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.300Z", + "last_change_date": "2022-03-14T07:51:54.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1186, + "fields": { + "EF_ID": 18628, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "MSW Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "460", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "Radian Corporation (1990) Emissions and Costs Estimates for Globally Significant Anthropogenic Combustion Sources of NOX, N2O, CH4, CO and CO2. Prepared for the Office of Research and Development, USEPA, Washington, DC USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.396Z", + "last_change_date": "2022-03-14T07:51:54.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1187, + "fields": { + "EF_ID": 18629, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Residual Fuel Oil/Shale Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.471Z", + "last_change_date": "2022-03-14T07:51:54.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1188, + "fields": { + "EF_ID": 18630, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Dstillate Fuel Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.554Z", + "last_change_date": "2022-03-14T07:51:54.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1189, + "fields": { + "EF_ID": 18631, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Commercial Source Perfomance", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-19 on Page 1.57) of the Reference Manual (Commercial Source Perfomance)", + "Technical_Reference": "US EPA (1995) Compilation of Air Pollutant Emission Factors. Vol 1 Stationary Point and Area Sources, 5th Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.621Z", + "last_change_date": "2022-03-14T07:51:54.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1190, + "fields": { + "EF_ID": 18632, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27 -0.34", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": " ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.688Z", + "last_change_date": "2022-03-14T07:51:54.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1191, + "fields": { + "EF_ID": 18633, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.07 - 3.91", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.787Z", + "last_change_date": "2022-03-14T07:51:54.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1192, + "fields": { + "EF_ID": 18634, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07 - 0.089", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.871Z", + "last_change_date": "2022-03-14T07:51:54.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1193, + "fields": { + "EF_ID": 18635, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02 -0.03", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:54.946Z", + "last_change_date": "2022-03-14T07:51:54.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1194, + "fields": { + "EF_ID": 18636, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25-0.38", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.021Z", + "last_change_date": "2022-03-14T07:51:55.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1195, + "fields": { + "EF_ID": 18637, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006 -0.009", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.096Z", + "last_change_date": "2022-03-14T07:51:55.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1196, + "fields": { + "EF_ID": 18638, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30 -0.47", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.171Z", + "last_change_date": "2022-03-14T07:51:55.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1197, + "fields": { + "EF_ID": 18639, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.42-5.35", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.246Z", + "last_change_date": "2022-03-14T07:51:55.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1198, + "fields": { + "EF_ID": 18640, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.078-0.122", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.347Z", + "last_change_date": "2022-03-14T07:51:55.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1199, + "fields": { + "EF_ID": 18641, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.44-5.72", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.429Z", + "last_change_date": "2022-03-14T07:51:55.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1200, + "fields": { + "EF_ID": 18642, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.96-64.77", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.495Z", + "last_change_date": "2022-03-14T07:51:55.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1201, + "fields": { + "EF_ID": 18643, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.885 - 1.472", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.561Z", + "last_change_date": "2022-03-14T07:51:55.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1202, + "fields": { + "EF_ID": 18644, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.628Z", + "last_change_date": "2022-03-14T07:51:55.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1203, + "fields": { + "EF_ID": 18645, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.453", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.695Z", + "last_change_date": "2022-03-14T07:51:55.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1204, + "fields": { + "EF_ID": 18646, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.800Z", + "last_change_date": "2022-03-14T07:51:55.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1205, + "fields": { + "EF_ID": 18647, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "280", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.879Z", + "last_change_date": "2022-03-14T07:51:55.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1206, + "fields": { + "EF_ID": 18648, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:55.945Z", + "last_change_date": "2022-03-14T07:51:55.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1207, + "fields": { + "EF_ID": 18649, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.011Z", + "last_change_date": "2022-03-14T07:51:56.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1208, + "fields": { + "EF_ID": 18650, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42 - 0.50", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.110Z", + "last_change_date": "2022-03-14T07:51:56.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1209, + "fields": { + "EF_ID": 18651, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.67 - 5.53", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.204Z", + "last_change_date": "2022-03-14T07:51:56.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1210, + "fields": { + "EF_ID": 18652, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.106 - 0.126", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.328Z", + "last_change_date": "2022-03-14T07:51:56.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1211, + "fields": { + "EF_ID": 18653, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.395Z", + "last_change_date": "2022-03-14T07:51:56.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1212, + "fields": { + "EF_ID": 18654, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28 - 0.39", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.461Z", + "last_change_date": "2022-03-14T07:51:56.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1213, + "fields": { + "EF_ID": 18655, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006 - 0.009", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.528Z", + "last_change_date": "2022-03-14T07:51:56.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1214, + "fields": { + "EF_ID": 18656, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54 - 0.72", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.604Z", + "last_change_date": "2022-03-14T07:51:56.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1215, + "fields": { + "EF_ID": 18657, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.00 - 7.99", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.679Z", + "last_change_date": "2022-03-14T07:51:56.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1216, + "fields": { + "EF_ID": 18658, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.136 - 0.182", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.797Z", + "last_change_date": "2022-03-14T07:51:56.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1217, + "fields": { + "EF_ID": 18659, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.12 - 6.40", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.879Z", + "last_change_date": "2022-03-14T07:51:56.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1218, + "fields": { + "EF_ID": 18660, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.92 - 71.22", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:56.955Z", + "last_change_date": "2022-03-14T07:51:56.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1219, + "fields": { + "EF_ID": 18661, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.044 - 1.619", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.071Z", + "last_change_date": "2022-03-14T07:51:57.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1220, + "fields": { + "EF_ID": 18662, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.154Z", + "last_change_date": "2022-03-14T07:51:57.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1221, + "fields": { + "EF_ID": 18663, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.892", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.238Z", + "last_change_date": "2022-03-14T07:51:57.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1222, + "fields": { + "EF_ID": 18664, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.043", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.350Z", + "last_change_date": "2022-03-14T07:51:57.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1223, + "fields": { + "EF_ID": 18665, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "285", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-27 on Page 1.70 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.438Z", + "last_change_date": "2022-03-14T07:51:57.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1224, + "fields": { + "EF_ID": 18666, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.513Z", + "last_change_date": "2022-03-14T07:51:57.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1225, + "fields": { + "EF_ID": 18667, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.596Z", + "last_change_date": "2022-03-14T07:51:57.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1226, + "fields": { + "EF_ID": 18668, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43 - 0.54", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.671Z", + "last_change_date": "2022-03-14T07:51:57.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1227, + "fields": { + "EF_ID": 18669, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.55 - 5.71", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.777Z", + "last_change_date": "2022-03-14T07:51:57.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1228, + "fields": { + "EF_ID": 18670, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.103 - 0.130", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.863Z", + "last_change_date": "2022-03-14T07:51:57.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1229, + "fields": { + "EF_ID": 18671, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03 - 0.05", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:57.938Z", + "last_change_date": "2022-03-14T07:51:57.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1230, + "fields": { + "EF_ID": 18672, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37 - 0.48", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.013Z", + "last_change_date": "2022-03-14T07:51:58.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1231, + "fields": { + "EF_ID": 18673, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008 - 0.011", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.088Z", + "last_change_date": "2022-03-14T07:51:58.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1232, + "fields": { + "EF_ID": 18674, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79 - 0.99", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.163Z", + "last_change_date": "2022-03-14T07:51:58.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1233, + "fields": { + "EF_ID": 18675, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.41 - 10.52", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.238Z", + "last_change_date": "2022-03-14T07:51:58.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1234, + "fields": { + "EF_ID": 18676, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.191 - 0.239", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.356Z", + "last_change_date": "2022-03-14T07:51:58.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1235, + "fields": { + "EF_ID": 18677, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.44 - 7.86", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.438Z", + "last_change_date": "2022-03-14T07:51:58.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1236, + "fields": { + "EF_ID": 18678, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.93 - 83.93", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.513Z", + "last_change_date": "2022-03-14T07:51:58.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1237, + "fields": { + "EF_ID": 18679, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.317 - 1.903", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.588Z", + "last_change_date": "2022-03-14T07:51:58.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1238, + "fields": { + "EF_ID": 18680, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.663Z", + "last_change_date": "2022-03-14T07:51:58.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1239, + "fields": { + "EF_ID": 18681, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.81", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.738Z", + "last_change_date": "2022-03-14T07:51:58.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1240, + "fields": { + "EF_ID": 18682, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.041", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.841Z", + "last_change_date": "2022-03-14T07:51:58.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1241, + "fields": { + "EF_ID": 18683, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "298", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.921Z", + "last_change_date": "2022-03-14T07:51:58.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1242, + "fields": { + "EF_ID": 18684, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:58.996Z", + "last_change_date": "2022-03-14T07:51:58.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1243, + "fields": { + "EF_ID": 18685, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.071Z", + "last_change_date": "2022-03-14T07:51:59.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1244, + "fields": { + "EF_ID": 18686, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.08 - 1.16", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.177Z", + "last_change_date": "2022-03-14T07:51:59.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1245, + "fields": { + "EF_ID": 18687, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.97 - 9.58", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.271Z", + "last_change_date": "2022-03-14T07:51:59.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1246, + "fields": { + "EF_ID": 18688, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.204 - 0.218", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.354Z", + "last_change_date": "2022-03-14T07:51:59.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1247, + "fields": { + "EF_ID": 18689, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 - 0.08", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.438Z", + "last_change_date": "2022-03-14T07:51:59.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1248, + "fields": { + "EF_ID": 18690, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50 - 0.63", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.521Z", + "last_change_date": "2022-03-14T07:51:59.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1249, + "fields": { + "EF_ID": 18691, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.011 - 0.014", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.604Z", + "last_change_date": "2022-03-14T07:51:59.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1250, + "fields": { + "EF_ID": 18692, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.54 - 2.11", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.688Z", + "last_change_date": "2022-03-14T07:51:59.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1251, + "fields": { + "EF_ID": 18693, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.77 - 17.48", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.763Z", + "last_change_date": "2022-03-14T07:51:59.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1252, + "fields": { + "EF_ID": 18694, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.290 - 0.397", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.872Z", + "last_change_date": "2022-03-14T07:51:59.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1253, + "fields": { + "EF_ID": 18695, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.51 -17.61", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:51:59.954Z", + "last_change_date": "2022-03-14T07:51:59.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1254, + "fields": { + "EF_ID": 18696, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87.08 - 45.95", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.030Z", + "last_change_date": "2022-03-14T07:52:00.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1255, + "fields": { + "EF_ID": 18697, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.979 - 3.317", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.105Z", + "last_change_date": "2022-03-14T07:52:00.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1256, + "fields": { + "EF_ID": 18698, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.075", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.180Z", + "last_change_date": "2022-03-14T07:52:00.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1257, + "fields": { + "EF_ID": 18699, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.622", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.263Z", + "last_change_date": "2022-03-14T07:52:00.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1258, + "fields": { + "EF_ID": 18700, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.349Z", + "last_change_date": "2022-03-14T07:52:00.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1259, + "fields": { + "EF_ID": 18701, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "383", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.446Z", + "last_change_date": "2022-03-14T07:52:00.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1260, + "fields": { + "EF_ID": 18702, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.529Z", + "last_change_date": "2022-03-14T07:52:00.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1261, + "fields": { + "EF_ID": 18703, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.596Z", + "last_change_date": "2022-03-14T07:52:00.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1262, + "fields": { + "EF_ID": 18704, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.27 -1.31", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.663Z", + "last_change_date": "2022-03-14T07:52:00.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1263, + "fields": { + "EF_ID": 18705, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.56 - 7.82", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.760Z", + "last_change_date": "2022-03-14T07:52:00.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1264, + "fields": { + "EF_ID": 18706, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.172 - 0.178", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.846Z", + "last_change_date": "2022-03-14T07:52:00.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1265, + "fields": { + "EF_ID": 18707, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11 - 0.13", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.921Z", + "last_change_date": "2022-03-14T07:52:00.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1266, + "fields": { + "EF_ID": 18708, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65 - 0.75", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:00.988Z", + "last_change_date": "2022-03-14T07:52:00.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1267, + "fields": { + "EF_ID": 18709, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.015 - 0.017", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.054Z", + "last_change_date": "2022-03-14T07:52:01.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1268, + "fields": { + "EF_ID": 18710, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.41 - 2.84", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.121Z", + "last_change_date": "2022-03-14T07:52:01.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1269, + "fields": { + "EF_ID": 18711, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.38 - 17.00", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.188Z", + "last_change_date": "2022-03-14T07:52:01.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1270, + "fields": { + "EF_ID": 18712, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.327 - 0.386", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.253Z", + "last_change_date": "2022-03-14T07:52:01.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1271, + "fields": { + "EF_ID": 18713, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.91 - 25.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.338Z", + "last_change_date": "2022-03-14T07:52:01.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1272, + "fields": { + "EF_ID": 18714, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101.06 - 149.45", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.429Z", + "last_change_date": "2022-03-14T07:52:01.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1273, + "fields": { + "EF_ID": 18715, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.297 - 3.397", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.495Z", + "last_change_date": "2022-03-14T07:52:01.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1274, + "fields": { + "EF_ID": 18716, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.570Z", + "last_change_date": "2022-03-14T07:52:01.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1275, + "fields": { + "EF_ID": 18717, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.125", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.637Z", + "last_change_date": "2022-03-14T07:52:01.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1276, + "fields": { + "EF_ID": 18718, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.733Z", + "last_change_date": "2022-03-14T07:52:01.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1277, + "fields": { + "EF_ID": 18719, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "531", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.813Z", + "last_change_date": "2022-03-14T07:52:01.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1278, + "fields": { + "EF_ID": 18720, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.878Z", + "last_change_date": "2022-03-14T07:52:01.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1279, + "fields": { + "EF_ID": 18721, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:01.945Z", + "last_change_date": "2022-03-14T07:52:01.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1280, + "fields": { + "EF_ID": 18722, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.56", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.021Z", + "last_change_date": "2022-03-14T07:52:02.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1281, + "fields": { + "EF_ID": 18723, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.76", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.126Z", + "last_change_date": "2022-03-14T07:52:02.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1282, + "fields": { + "EF_ID": 18724, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.222", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.205Z", + "last_change_date": "2022-03-14T07:52:02.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1283, + "fields": { + "EF_ID": 18725, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13 -0.14", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.280Z", + "last_change_date": "2022-03-14T07:52:02.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1284, + "fields": { + "EF_ID": 18726, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82 -0.90", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.355Z", + "last_change_date": "2022-03-14T07:52:02.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1285, + "fields": { + "EF_ID": 18727, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.019 - 0.020", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.429Z", + "last_change_date": "2022-03-14T07:52:02.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1286, + "fields": { + "EF_ID": 18728, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.36 - 6.71", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.521Z", + "last_change_date": "2022-03-14T07:52:02.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1287, + "fields": { + "EF_ID": 18729, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.88 - 42.09", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.596Z", + "last_change_date": "2022-03-14T07:52:02.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1288, + "fields": { + "EF_ID": 18730, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.906 - 0.957", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.671Z", + "last_change_date": "2022-03-14T07:52:02.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1289, + "fields": { + "EF_ID": 18731, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.89 - 38.94", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.770Z", + "last_change_date": "2022-03-14T07:52:02.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1290, + "fields": { + "EF_ID": 18732, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "181.14 - 244.14", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.854Z", + "last_change_date": "2022-03-14T07:52:02.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1291, + "fields": { + "EF_ID": 18733, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.117 -5.549", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:02.930Z", + "last_change_date": "2022-03-14T07:52:02.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1292, + "fields": { + "EF_ID": 18734, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.004Z", + "last_change_date": "2022-03-14T07:52:03.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1293, + "fields": { + "EF_ID": 18735, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.079Z", + "last_change_date": "2022-03-14T07:52:03.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1294, + "fields": { + "EF_ID": 18736, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.173Z", + "last_change_date": "2022-03-14T07:52:03.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1295, + "fields": { + "EF_ID": 18737, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "506", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.263Z", + "last_change_date": "2022-03-14T07:52:03.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1296, + "fields": { + "EF_ID": 18738, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.338Z", + "last_change_date": "2022-03-14T07:52:03.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1297, + "fields": { + "EF_ID": 18739, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Gasoline Passengers Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-27 on Page 1.70) of the Reference Manual (Estimated Emission Factors for US Gasoline Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.413Z", + "last_change_date": "2022-03-14T07:52:03.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1298, + "fields": { + "EF_ID": 18740, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32 - 0.41", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.488Z", + "last_change_date": "2022-03-14T07:52:03.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1299, + "fields": { + "EF_ID": 18741, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.50 - 3.23", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.592Z", + "last_change_date": "2022-03-14T07:52:03.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1300, + "fields": { + "EF_ID": 18742, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.057 - 0.073", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.671Z", + "last_change_date": "2022-03-14T07:52:03.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1301, + "fields": { + "EF_ID": 18743, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02 - 0.04", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.754Z", + "last_change_date": "2022-03-14T07:52:03.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1302, + "fields": { + "EF_ID": 18744, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18 - 0.29", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.838Z", + "last_change_date": "2022-03-14T07:52:03.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1303, + "fields": { + "EF_ID": 18745, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004 - 0.007", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.921Z", + "last_change_date": "2022-03-14T07:52:03.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1304, + "fields": { + "EF_ID": 18746, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31 - 0.53", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:03.996Z", + "last_change_date": "2022-03-14T07:52:03.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1305, + "fields": { + "EF_ID": 18747, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.43 - 4.13", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.088Z", + "last_change_date": "2022-03-14T07:52:04.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1306, + "fields": { + "EF_ID": 18748, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.055 - 0.094", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.187Z", + "last_change_date": "2022-03-14T07:52:04.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1307, + "fields": { + "EF_ID": 18749, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.01 - 6.62", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.271Z", + "last_change_date": "2022-03-14T07:52:04.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1308, + "fields": { + "EF_ID": 18750, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.30 - 51.71", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.346Z", + "last_change_date": "2022-03-14T07:52:04.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1309, + "fields": { + "EF_ID": 18751, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.711 - 1.175", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.421Z", + "last_change_date": "2022-03-14T07:52:04.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1310, + "fields": { + "EF_ID": 18752, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.058", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.496Z", + "last_change_date": "2022-03-14T07:52:04.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1311, + "fields": { + "EF_ID": 18753, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.571Z", + "last_change_date": "2022-03-14T07:52:04.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1312, + "fields": { + "EF_ID": 18754, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.690Z", + "last_change_date": "2022-03-14T07:52:04.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1313, + "fields": { + "EF_ID": 18755, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "396", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.771Z", + "last_change_date": "2022-03-14T07:52:04.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1314, + "fields": { + "EF_ID": 18756, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.846Z", + "last_change_date": "2022-03-14T07:52:04.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1315, + "fields": { + "EF_ID": 18757, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Low-Emission Vehicle Technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:04.921Z", + "last_change_date": "2022-03-14T07:52:04.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1316, + "fields": { + "EF_ID": 18758, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50 - 0.61", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.017Z", + "last_change_date": "2022-03-14T07:52:05.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1317, + "fields": { + "EF_ID": 18759, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.04 - 4.86", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.096Z", + "last_change_date": "2022-03-14T07:52:05.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1318, + "fields": { + "EF_ID": 18760, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.092 - 0.111", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.171Z", + "last_change_date": "2022-03-14T07:52:05.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1319, + "fields": { + "EF_ID": 18761, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03 - 0.04", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.246Z", + "last_change_date": "2022-03-14T07:52:05.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1320, + "fields": { + "EF_ID": 18762, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21 - 0.30", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.330Z", + "last_change_date": "2022-03-14T07:52:05.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1321, + "fields": { + "EF_ID": 18763, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005 - 0.007", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.413Z", + "last_change_date": "2022-03-14T07:52:05.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1322, + "fields": { + "EF_ID": 18764, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52 - 0.76", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.497Z", + "last_change_date": "2022-03-14T07:52:05.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1323, + "fields": { + "EF_ID": 18765, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.14 - 6.06", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.604Z", + "last_change_date": "2022-03-14T07:52:05.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1324, + "fields": { + "EF_ID": 18766, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.094 - 0.138", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.696Z", + "last_change_date": "2022-03-14T07:52:05.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1325, + "fields": { + "EF_ID": 18767, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.06 - 7.86", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.771Z", + "last_change_date": "2022-03-14T07:52:05.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1326, + "fields": { + "EF_ID": 18768, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.46 - 62.87", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.846Z", + "last_change_date": "2022-03-14T07:52:05.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1327, + "fields": { + "EF_ID": 18769, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.920 - 1.429", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.921Z", + "last_change_date": "2022-03-14T07:52:05.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1328, + "fields": { + "EF_ID": 18770, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.236", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:05.996Z", + "last_change_date": "2022-03-14T07:52:05.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1329, + "fields": { + "EF_ID": 18771, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.89", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.098Z", + "last_change_date": "2022-03-14T07:52:06.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1330, + "fields": { + "EF_ID": 18772, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.043", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.163Z", + "last_change_date": "2022-03-14T07:52:06.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1331, + "fields": { + "EF_ID": 18773, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "396", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.229Z", + "last_change_date": "2022-03-14T07:52:06.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1332, + "fields": { + "EF_ID": 18774, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.315Z", + "last_change_date": "2022-03-14T07:52:06.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1333, + "fields": { + "EF_ID": 18775, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.388Z", + "last_change_date": "2022-03-14T07:52:06.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1334, + "fields": { + "EF_ID": 18776, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65 - 0.80", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.463Z", + "last_change_date": "2022-03-14T07:52:06.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1335, + "fields": { + "EF_ID": 18777, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.23 - 6.36", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.538Z", + "last_change_date": "2022-03-14T07:52:06.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1336, + "fields": { + "EF_ID": 18778, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.119 - 0.144", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.613Z", + "last_change_date": "2022-03-14T07:52:06.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1337, + "fields": { + "EF_ID": 18779, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 - 0.08", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.704Z", + "last_change_date": "2022-03-14T07:52:06.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1338, + "fields": { + "EF_ID": 18780, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47 - 0.63", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.779Z", + "last_change_date": "2022-03-14T07:52:06.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1339, + "fields": { + "EF_ID": 18781, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.011 - 0.014", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.885Z", + "last_change_date": "2022-03-14T07:52:06.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1340, + "fields": { + "EF_ID": 18782, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.90 -1.23", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:06.963Z", + "last_change_date": "2022-03-14T07:52:06.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1341, + "fields": { + "EF_ID": 18783, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.16 -9.82", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.046Z", + "last_change_date": "2022-03-14T07:52:07.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1342, + "fields": { + "EF_ID": 18784, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.163 - 0.223", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.129Z", + "last_change_date": "2022-03-14T07:52:07.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1343, + "fields": { + "EF_ID": 18785, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.13 - 10.75", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.213Z", + "last_change_date": "2022-03-14T07:52:07.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1344, + "fields": { + "EF_ID": 18786, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.96 - 85.86", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.288Z", + "last_change_date": "2022-03-14T07:52:07.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1345, + "fields": { + "EF_ID": 18787, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.294 - 1.951", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.363Z", + "last_change_date": "2022-03-14T07:52:07.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1346, + "fields": { + "EF_ID": 18788, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.227", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.455Z", + "last_change_date": "2022-03-14T07:52:07.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1347, + "fields": { + "EF_ID": 18789, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.81", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.538Z", + "last_change_date": "2022-03-14T07:52:07.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1348, + "fields": { + "EF_ID": 18790, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.041", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.613Z", + "last_change_date": "2022-03-14T07:52:07.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1349, + "fields": { + "EF_ID": 18791, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "396", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.698Z", + "last_change_date": "2022-03-14T07:52:07.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1350, + "fields": { + "EF_ID": 18792, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.779Z", + "last_change_date": "2022-03-14T07:52:07.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1351, + "fields": { + "EF_ID": 18793, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Early Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.846Z", + "last_change_date": "2022-03-14T07:52:07.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1352, + "fields": { + "EF_ID": 18794, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.10 - 1.23", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.913Z", + "last_change_date": "2022-03-14T07:52:07.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1353, + "fields": { + "EF_ID": 18795, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.03 - 7.84", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:07.979Z", + "last_change_date": "2022-03-14T07:52:07.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1354, + "fields": { + "EF_ID": 18796, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.160 - 0.178", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.046Z", + "last_change_date": "2022-03-14T07:52:08.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1355, + "fields": { + "EF_ID": 18797, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08 - 0.10", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.133Z", + "last_change_date": "2022-03-14T07:52:08.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1356, + "fields": { + "EF_ID": 18798, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52 - 0.66", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.213Z", + "last_change_date": "2022-03-14T07:52:08.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1357, + "fields": { + "EF_ID": 18799, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012 - 0.015", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.280Z", + "last_change_date": "2022-03-14T07:52:08.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1358, + "fields": { + "EF_ID": 18800, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.74 - 2.69", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.346Z", + "last_change_date": "2022-03-14T07:52:08.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1359, + "fields": { + "EF_ID": 18801, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.08 - 17.16", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.413Z", + "last_change_date": "2022-03-14T07:52:08.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1360, + "fields": { + "EF_ID": 18802, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.252 - 0.390", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.488Z", + "last_change_date": "2022-03-14T07:52:08.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1361, + "fields": { + "EF_ID": 18803, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.58 - 22.93", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.563Z", + "last_change_date": "2022-03-14T07:52:08.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1362, + "fields": { + "EF_ID": 18804, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73.77 - 146.07", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.637Z", + "last_change_date": "2022-03-14T07:52:08.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1363, + "fields": { + "EF_ID": 18805, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.677 - 3.320", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.754Z", + "last_change_date": "2022-03-14T07:52:08.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1364, + "fields": { + "EF_ID": 18806, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.097", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.846Z", + "last_change_date": "2022-03-14T07:52:08.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1365, + "fields": { + "EF_ID": 18807, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.912Z", + "last_change_date": "2022-03-14T07:52:08.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1366, + "fields": { + "EF_ID": 18808, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:08.987Z", + "last_change_date": "2022-03-14T07:52:08.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1367, + "fields": { + "EF_ID": 18809, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "498", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.080Z", + "last_change_date": "2022-03-14T07:52:09.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1368, + "fields": { + "EF_ID": 18810, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.171Z", + "last_change_date": "2022-03-14T07:52:09.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1369, + "fields": { + "EF_ID": 18811, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Oxidation Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.254Z", + "last_change_date": "2022-03-14T07:52:09.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1370, + "fields": { + "EF_ID": 18812, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.55 - 1.60", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.338Z", + "last_change_date": "2022-03-14T07:52:09.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1371, + "fields": { + "EF_ID": 18813, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.17 - 8.45", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.421Z", + "last_change_date": "2022-03-14T07:52:09.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1372, + "fields": { + "EF_ID": 18814, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.186 - 0.192", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.504Z", + "last_change_date": "2022-03-14T07:52:09.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1373, + "fields": { + "EF_ID": 18815, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13 - 0.15", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.608Z", + "last_change_date": "2022-03-14T07:52:09.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1374, + "fields": { + "EF_ID": 18816, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69 - 0.80", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.688Z", + "last_change_date": "2022-03-14T07:52:09.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1375, + "fields": { + "EF_ID": 18817, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016 - 0.018", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.763Z", + "last_change_date": "2022-03-14T07:52:09.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1376, + "fields": { + "EF_ID": 18818, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.57 - 4.08", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.838Z", + "last_change_date": "2022-03-14T07:52:09.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1377, + "fields": { + "EF_ID": 18819, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.85 - 21.55", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.913Z", + "last_change_date": "2022-03-14T07:52:09.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1378, + "fields": { + "EF_ID": 18820, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.428 - 0.490", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:09.988Z", + "last_change_date": "2022-03-14T07:52:09.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1379, + "fields": { + "EF_ID": 18821, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.92 - 31.05", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.063Z", + "last_change_date": "2022-03-14T07:52:10.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1380, + "fields": { + "EF_ID": 18822, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110.41- 163.90", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.138Z", + "last_change_date": "2022-03-14T07:52:10.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1381, + "fields": { + "EF_ID": 18823, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.509 - 3.725", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.237Z", + "last_change_date": "2022-03-14T07:52:10.237Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1382, + "fields": { + "EF_ID": 18824, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.023", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.321Z", + "last_change_date": "2022-03-14T07:52:10.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1383, + "fields": { + "EF_ID": 18825, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.404Z", + "last_change_date": "2022-03-14T07:52:10.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1384, + "fields": { + "EF_ID": 18826, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.480Z", + "last_change_date": "2022-03-14T07:52:10.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1385, + "fields": { + "EF_ID": 18827, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "601", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.572Z", + "last_change_date": "2022-03-14T07:52:10.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1386, + "fields": { + "EF_ID": 18828, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.663Z", + "last_change_date": "2022-03-14T07:52:10.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1387, + "fields": { + "EF_ID": 18829, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Non-Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.738Z", + "last_change_date": "2022-03-14T07:52:10.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1388, + "fields": { + "EF_ID": 18830, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.85", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.813Z", + "last_change_date": "2022-03-14T07:52:10.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1389, + "fields": { + "EF_ID": 18831, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.16", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.913Z", + "last_change_date": "2022-03-14T07:52:10.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1390, + "fields": { + "EF_ID": 18832, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.231", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:10.988Z", + "last_change_date": "2022-03-14T07:52:10.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1391, + "fields": { + "EF_ID": 18833, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13 - 0.14", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.099Z", + "last_change_date": "2022-03-14T07:52:11.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1392, + "fields": { + "EF_ID": 18834, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71 - 0.79", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.188Z", + "last_change_date": "2022-03-14T07:52:11.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1393, + "fields": { + "EF_ID": 18835, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016 - 0.018", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.271Z", + "last_change_date": "2022-03-14T07:52:11.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1394, + "fields": { + "EF_ID": 18836, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.53 - 7.92", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.355Z", + "last_change_date": "2022-03-14T07:52:11.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1395, + "fields": { + "EF_ID": 18837, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.26 - 43.37", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.438Z", + "last_change_date": "2022-03-14T07:52:11.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1396, + "fields": { + "EF_ID": 18838, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.938 - 0.936", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.521Z", + "last_change_date": "2022-03-14T07:52:11.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1397, + "fields": { + "EF_ID": 18839, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.73 - 41.24", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.613Z", + "last_change_date": "2022-03-14T07:52:11.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1398, + "fields": { + "EF_ID": 18840, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "168.36 - 225.95", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.680Z", + "last_change_date": "2022-03-14T07:52:11.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1399, + "fields": { + "EF_ID": 18841, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.826 - 5.135", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.778Z", + "last_change_date": "2022-03-14T07:52:11.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1400, + "fields": { + "EF_ID": 18842, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.854Z", + "last_change_date": "2022-03-14T07:52:11.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1401, + "fields": { + "EF_ID": 18843, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:11.930Z", + "last_change_date": "2022-03-14T07:52:11.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1402, + "fields": { + "EF_ID": 18844, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.004Z", + "last_change_date": "2022-03-14T07:52:12.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1403, + "fields": { + "EF_ID": 18845, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "579", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.097Z", + "last_change_date": "2022-03-14T07:52:12.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1404, + "fields": { + "EF_ID": 18846, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.213Z", + "last_change_date": "2022-03-14T07:52:12.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1405, + "fields": { + "EF_ID": 18847, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Gasoline Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-28 on Page 1.71) of the Reference Manual (Estimated Emission Factors for US Light-duty Gasoline Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.313Z", + "last_change_date": "2022-03-14T07:52:12.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1406, + "fields": { + "EF_ID": 18848, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.74 - 1.78", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.388Z", + "last_change_date": "2022-03-14T07:52:12.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1407, + "fields": { + "EF_ID": 18849, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.42 - 5.56", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.463Z", + "last_change_date": "2022-03-14T07:52:12.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1408, + "fields": { + "EF_ID": 18850, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.123 - 0.126", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.546Z", + "last_change_date": "2022-03-14T07:52:12.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1409, + "fields": { + "EF_ID": 18851, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07 - 0.08", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.634Z", + "last_change_date": "2022-03-14T07:52:12.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1410, + "fields": { + "EF_ID": 18852, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21 - 0.24", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.696Z", + "last_change_date": "2022-03-14T07:52:12.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1411, + "fields": { + "EF_ID": 18853, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.763Z", + "last_change_date": "2022-03-14T07:52:12.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1412, + "fields": { + "EF_ID": 18854, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.01 - 1.16", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.829Z", + "last_change_date": "2022-03-14T07:52:12.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1413, + "fields": { + "EF_ID": 18855, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.17 - 3.62", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:12.921Z", + "last_change_date": "2022-03-14T07:52:12.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1414, + "fields": { + "EF_ID": 18856, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.072 - 0.082", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.005Z", + "last_change_date": "2022-03-14T07:52:13.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1415, + "fields": { + "EF_ID": 18857, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.27 - 7.75", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.088Z", + "last_change_date": "2022-03-14T07:52:13.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1416, + "fields": { + "EF_ID": 18858, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.57 - 24.19", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.179Z", + "last_change_date": "2022-03-14T07:52:13.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1417, + "fields": { + "EF_ID": 18859, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.445 - 0.550", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.246Z", + "last_change_date": "2022-03-14T07:52:13.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1418, + "fields": { + "EF_ID": 18860, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.606", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.338Z", + "last_change_date": "2022-03-14T07:52:13.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1419, + "fields": { + "EF_ID": 18861, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.89", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.404Z", + "last_change_date": "2022-03-14T07:52:13.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1420, + "fields": { + "EF_ID": 18862, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.043", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.499Z", + "last_change_date": "2022-03-14T07:52:13.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1421, + "fields": { + "EF_ID": 18863, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1017", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.571Z", + "last_change_date": "2022-03-14T07:52:13.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1422, + "fields": { + "EF_ID": 18864, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.638Z", + "last_change_date": "2022-03-14T07:52:13.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1423, + "fields": { + "EF_ID": 18865, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Three-Way Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.713Z", + "last_change_date": "2022-03-14T07:52:13.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1424, + "fields": { + "EF_ID": 18866, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.28 -2.31", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.801Z", + "last_change_date": "2022-03-14T07:52:13.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1425, + "fields": { + "EF_ID": 18867, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.98 - 7.06", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.880Z", + "last_change_date": "2022-03-14T07:52:13.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1426, + "fields": { + "EF_ID": 18868, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.159 - 0.161", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:13.946Z", + "last_change_date": "2022-03-14T07:52:13.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1427, + "fields": { + "EF_ID": 18869, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12 - 0.13", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.021Z", + "last_change_date": "2022-03-14T07:52:14.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1428, + "fields": { + "EF_ID": 18870, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36 - 0.41", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.113Z", + "last_change_date": "2022-03-14T07:52:14.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1429, + "fields": { + "EF_ID": 18871, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008 - 0.009", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.188Z", + "last_change_date": "2022-03-14T07:52:14.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1430, + "fields": { + "EF_ID": 18872, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.89 - 5.14", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.263Z", + "last_change_date": "2022-03-14T07:52:14.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1431, + "fields": { + "EF_ID": 18873, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.98 - 15.75", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.362Z", + "last_change_date": "2022-03-14T07:52:14.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1432, + "fields": { + "EF_ID": 18874, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.341 - 0.358", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.446Z", + "last_change_date": "2022-03-14T07:52:14.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1433, + "fields": { + "EF_ID": 18875, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.12 - 37.00", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.513Z", + "last_change_date": "2022-03-14T07:52:14.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1434, + "fields": { + "EF_ID": 18876, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95.28 - 113.28", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.580Z", + "last_change_date": "2022-03-14T07:52:14.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1435, + "fields": { + "EF_ID": 18877, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.166 - 2.575", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.646Z", + "last_change_date": "2022-03-14T07:52:14.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1436, + "fields": { + "EF_ID": 18878, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.591", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.713Z", + "last_change_date": "2022-03-14T07:52:14.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1437, + "fields": { + "EF_ID": 18879, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.81", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.806Z", + "last_change_date": "2022-03-14T07:52:14.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1438, + "fields": { + "EF_ID": 18880, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.041", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:14.905Z", + "last_change_date": "2022-03-14T07:52:14.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1439, + "fields": { + "EF_ID": 18881, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1036", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.071Z", + "last_change_date": "2022-03-14T07:52:15.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1440, + "fields": { + "EF_ID": 18882, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.166Z", + "last_change_date": "2022-03-14T07:52:15.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1441, + "fields": { + "EF_ID": 18883, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Non-Catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.255Z", + "last_change_date": "2022-03-14T07:52:15.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1442, + "fields": { + "EF_ID": 18884, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.47 - 4.13", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.330Z", + "last_change_date": "2022-03-14T07:52:15.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1443, + "fields": { + "EF_ID": 18885, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.35 - 9.92", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.405Z", + "last_change_date": "2022-03-14T07:52:15.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1444, + "fields": { + "EF_ID": 18886, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.190 - 0.226", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.479Z", + "last_change_date": "2022-03-14T07:52:15.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1445, + "fields": { + "EF_ID": 18887, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25 - 0.29", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.555Z", + "last_change_date": "2022-03-14T07:52:15.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1446, + "fields": { + "EF_ID": 18888, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61 - 0.70", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.630Z", + "last_change_date": "2022-03-14T07:52:15.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1447, + "fields": { + "EF_ID": 18889, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014 - 0.016", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.705Z", + "last_change_date": "2022-03-14T07:52:15.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1448, + "fields": { + "EF_ID": 18890, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.68 - 15.90", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.803Z", + "last_change_date": "2022-03-14T07:52:15.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1449, + "fields": { + "EF_ID": 18891, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.30 - 38.21", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.888Z", + "last_change_date": "2022-03-14T07:52:15.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1450, + "fields": { + "EF_ID": 18892, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.802 - 0.868", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:15.963Z", + "last_change_date": "2022-03-14T07:52:15.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1451, + "fields": { + "EF_ID": 18893, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "102.37 - 121.51", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.038Z", + "last_change_date": "2022-03-14T07:52:16.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1452, + "fields": { + "EF_ID": 18894, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "246.08 - 292.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.113Z", + "last_change_date": "2022-03-14T07:52:16.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1453, + "fields": { + "EF_ID": 18895, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.593 - 6.638", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.188Z", + "last_change_date": "2022-03-14T07:52:16.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1454, + "fields": { + "EF_ID": 18896, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.054", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.263Z", + "last_change_date": "2022-03-14T07:52:16.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1455, + "fields": { + "EF_ID": 18897, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.355Z", + "last_change_date": "2022-03-14T07:52:16.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1456, + "fields": { + "EF_ID": 18898, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "(1) Ballantyne, V.F., P Howes and L. Stephanson (1994) Ntrous oxide emisssions from light duty vehicles Society of Automotive Engineers Technical Paper Series 940304. (2) De Soete G.G. (1993) Nitrous oxide from from combustion and industry: Chemistry emissions and control In A. R. Amstel, (ed), Procedings of an International IPCC Workshop on Methane and Nitrous Oxide: Methods in National Emission Inventories and Options for Control. RIVM Report No. 481507003, Bilthoven The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Recent measurements have shown that N20 emissions from aged vehicles e.g., tested after driving 15 000 - 25 000km are substantially higher than from new catalyst equipped cars. Tests on comparable models show aged catalysts emitting from roughly 30 percent more to almost 5 times the rate of new equipment. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.438Z", + "last_change_date": "2022-03-14T07:52:16.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1457, + "fields": { + "EF_ID": 18899, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1320", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.513Z", + "last_change_date": "2022-03-14T07:52:16.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1458, + "fields": { + "EF_ID": 18900, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.606Z", + "last_change_date": "2022-03-14T07:52:16.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1459, + "fields": { + "EF_ID": 18901, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy-Duty Gasoline Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-29 on Page 1.72) of the Reference Manual (Estimated Emission Factors for US Heavy-Duty Gasoline Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.696Z", + "last_change_date": "2022-03-14T07:52:16.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1460, + "fields": { + "EF_ID": 18902, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.813Z", + "last_change_date": "2022-03-14T07:52:16.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1461, + "fields": { + "EF_ID": 18903, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.68", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.896Z", + "last_change_date": "2022-03-14T07:52:16.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1462, + "fields": { + "EF_ID": 18904, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.129", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:16.980Z", + "last_change_date": "2022-03-14T07:52:16.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1463, + "fields": { + "EF_ID": 18905, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.088Z", + "last_change_date": "2022-03-14T07:52:17.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1464, + "fields": { + "EF_ID": 18906, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.171Z", + "last_change_date": "2022-03-14T07:52:17.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1465, + "fields": { + "EF_ID": 18907, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.255Z", + "last_change_date": "2022-03-14T07:52:17.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1466, + "fields": { + "EF_ID": 18908, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.361Z", + "last_change_date": "2022-03-14T07:52:17.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1467, + "fields": { + "EF_ID": 18909, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.32", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.446Z", + "last_change_date": "2022-03-14T07:52:17.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1468, + "fields": { + "EF_ID": 18910, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.053", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.521Z", + "last_change_date": "2022-03-14T07:52:17.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1469, + "fields": { + "EF_ID": 18911, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.596Z", + "last_change_date": "2022-03-14T07:52:17.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1470, + "fields": { + "EF_ID": 18912, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.54", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.671Z", + "last_change_date": "2022-03-14T07:52:17.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1471, + "fields": { + "EF_ID": 18913, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.171", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.746Z", + "last_change_date": "2022-03-14T07:52:17.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1472, + "fields": { + "EF_ID": 18914, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.821Z", + "last_change_date": "2022-03-14T07:52:17.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1473, + "fields": { + "EF_ID": 18915, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.896Z", + "last_change_date": "2022-03-14T07:52:17.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1474, + "fields": { + "EF_ID": 18916, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:17.989Z", + "last_change_date": "2022-03-14T07:52:17.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1475, + "fields": { + "EF_ID": 18917, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "237", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.071Z", + "last_change_date": "2022-03-14T07:52:18.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1476, + "fields": { + "EF_ID": 18918, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.146Z", + "last_change_date": "2022-03-14T07:52:18.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1477, + "fields": { + "EF_ID": 18919, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.221Z", + "last_change_date": "2022-03-14T07:52:18.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1478, + "fields": { + "EF_ID": 18920, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.296Z", + "last_change_date": "2022-03-14T07:52:18.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1479, + "fields": { + "EF_ID": 18921, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.88", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.371Z", + "last_change_date": "2022-03-14T07:52:18.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1480, + "fields": { + "EF_ID": 18922, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.156", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.446Z", + "last_change_date": "2022-03-14T07:52:18.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1481, + "fields": { + "EF_ID": 18923, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.521Z", + "last_change_date": "2022-03-14T07:52:18.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1482, + "fields": { + "EF_ID": 18924, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.619Z", + "last_change_date": "2022-03-14T07:52:18.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1483, + "fields": { + "EF_ID": 18925, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.705Z", + "last_change_date": "2022-03-14T07:52:18.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1484, + "fields": { + "EF_ID": 18926, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.780Z", + "last_change_date": "2022-03-14T07:52:18.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1485, + "fields": { + "EF_ID": 18927, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.17", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.846Z", + "last_change_date": "2022-03-14T07:52:18.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1486, + "fields": { + "EF_ID": 18928, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.049", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.913Z", + "last_change_date": "2022-03-14T07:52:18.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1487, + "fields": { + "EF_ID": 18929, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:18.980Z", + "last_change_date": "2022-03-14T07:52:18.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1488, + "fields": { + "EF_ID": 18930, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.35", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.046Z", + "last_change_date": "2022-03-14T07:52:19.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1489, + "fields": { + "EF_ID": 18931, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.167", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.113Z", + "last_change_date": "2022-03-14T07:52:19.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1490, + "fields": { + "EF_ID": 18932, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.238Z", + "last_change_date": "2022-03-14T07:52:19.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1491, + "fields": { + "EF_ID": 18933, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.321Z", + "last_change_date": "2022-03-14T07:52:19.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1492, + "fields": { + "EF_ID": 18934, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.396Z", + "last_change_date": "2022-03-14T07:52:19.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1493, + "fields": { + "EF_ID": 18935, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "248", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.471Z", + "last_change_date": "2022-03-14T07:52:19.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1494, + "fields": { + "EF_ID": 18936, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.546Z", + "last_change_date": "2022-03-14T07:52:19.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1495, + "fields": { + "EF_ID": 18937, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.613Z", + "last_change_date": "2022-03-14T07:52:19.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1496, + "fields": { + "EF_ID": 18938, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.688Z", + "last_change_date": "2022-03-14T07:52:19.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1497, + "fields": { + "EF_ID": 18939, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.62", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.755Z", + "last_change_date": "2022-03-14T07:52:19.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1498, + "fields": { + "EF_ID": 18940, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.841Z", + "last_change_date": "2022-03-14T07:52:19.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1499, + "fields": { + "EF_ID": 18941, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.921Z", + "last_change_date": "2022-03-14T07:52:19.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1500, + "fields": { + "EF_ID": 18942, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:19.988Z", + "last_change_date": "2022-03-14T07:52:19.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1501, + "fields": { + "EF_ID": 18943, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.055Z", + "last_change_date": "2022-03-14T07:52:20.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1502, + "fields": { + "EF_ID": 18944, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.121Z", + "last_change_date": "2022-03-14T07:52:20.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1503, + "fields": { + "EF_ID": 18945, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.39", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.188Z", + "last_change_date": "2022-03-14T07:52:20.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1504, + "fields": { + "EF_ID": 18946, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.054", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.255Z", + "last_change_date": "2022-03-14T07:52:20.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1505, + "fields": { + "EF_ID": 18947, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.321Z", + "last_change_date": "2022-03-14T07:52:20.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1506, + "fields": { + "EF_ID": 18948, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.04", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.420Z", + "last_change_date": "2022-03-14T07:52:20.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1507, + "fields": { + "EF_ID": 18949, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.137", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.505Z", + "last_change_date": "2022-03-14T07:52:20.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1508, + "fields": { + "EF_ID": 18950, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.580Z", + "last_change_date": "2022-03-14T07:52:20.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1509, + "fields": { + "EF_ID": 18951, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.655Z", + "last_change_date": "2022-03-14T07:52:20.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1510, + "fields": { + "EF_ID": 18952, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.729Z", + "last_change_date": "2022-03-14T07:52:20.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1511, + "fields": { + "EF_ID": 18953, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "319", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.805Z", + "last_change_date": "2022-03-14T07:52:20.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1512, + "fields": { + "EF_ID": 18954, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.880Z", + "last_change_date": "2022-03-14T07:52:20.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1513, + "fields": { + "EF_ID": 18955, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Diesel Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-30 on Page 1.73) of the Reference Manual (Estimated Emission Factors for US Diesel Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:20.946Z", + "last_change_date": "2022-03-14T07:52:20.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1514, + "fields": { + "EF_ID": 18956, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.039Z", + "last_change_date": "2022-03-14T07:52:21.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1515, + "fields": { + "EF_ID": 18957, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.121Z", + "last_change_date": "2022-03-14T07:52:21.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1516, + "fields": { + "EF_ID": 18958, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.107", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.196Z", + "last_change_date": "2022-03-14T07:52:21.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1517, + "fields": { + "EF_ID": 18959, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.297Z", + "last_change_date": "2022-03-14T07:52:21.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1518, + "fields": { + "EF_ID": 18960, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.380Z", + "last_change_date": "2022-03-14T07:52:21.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1519, + "fields": { + "EF_ID": 18961, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.463Z", + "last_change_date": "2022-03-14T07:52:21.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1520, + "fields": { + "EF_ID": 18962, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.555Z", + "last_change_date": "2022-03-14T07:52:21.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1521, + "fields": { + "EF_ID": 18963, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.35", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.622Z", + "last_change_date": "2022-03-14T07:52:21.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1522, + "fields": { + "EF_ID": 18964, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.053", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.710Z", + "last_change_date": "2022-03-14T07:52:21.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1523, + "fields": { + "EF_ID": 18965, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.788Z", + "last_change_date": "2022-03-14T07:52:21.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1524, + "fields": { + "EF_ID": 18966, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.11", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:21.988Z", + "last_change_date": "2022-03-14T07:52:21.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1525, + "fields": { + "EF_ID": 18967, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.139", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.121Z", + "last_change_date": "2022-03-14T07:52:22.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1526, + "fields": { + "EF_ID": 18968, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.230Z", + "last_change_date": "2022-03-14T07:52:22.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1527, + "fields": { + "EF_ID": 18969, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.322Z", + "last_change_date": "2022-03-14T07:52:22.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1528, + "fields": { + "EF_ID": 18970, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.430Z", + "last_change_date": "2022-03-14T07:52:22.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1529, + "fields": { + "EF_ID": 18971, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "330", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.547Z", + "last_change_date": "2022-03-14T07:52:22.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1530, + "fields": { + "EF_ID": 18972, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.697Z", + "last_change_date": "2022-03-14T07:52:22.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1531, + "fields": { + "EF_ID": 18973, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.780Z", + "last_change_date": "2022-03-14T07:52:22.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1532, + "fields": { + "EF_ID": 18974, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.855Z", + "last_change_date": "2022-03-14T07:52:22.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1533, + "fields": { + "EF_ID": 18975, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.52", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:22.930Z", + "last_change_date": "2022-03-14T07:52:22.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1534, + "fields": { + "EF_ID": 18976, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.148", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.005Z", + "last_change_date": "2022-03-14T07:52:23.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1535, + "fields": { + "EF_ID": 18977, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.080Z", + "last_change_date": "2022-03-14T07:52:23.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1536, + "fields": { + "EF_ID": 18978, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.155Z", + "last_change_date": "2022-03-14T07:52:23.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1537, + "fields": { + "EF_ID": 18979, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.230Z", + "last_change_date": "2022-03-14T07:52:23.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1538, + "fields": { + "EF_ID": 18980, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.342Z", + "last_change_date": "2022-03-14T07:52:23.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1539, + "fields": { + "EF_ID": 18981, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.34", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.438Z", + "last_change_date": "2022-03-14T07:52:23.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1540, + "fields": { + "EF_ID": 18982, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.053", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.513Z", + "last_change_date": "2022-03-14T07:52:23.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1541, + "fields": { + "EF_ID": 18983, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.588Z", + "last_change_date": "2022-03-14T07:52:23.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1542, + "fields": { + "EF_ID": 18984, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.663Z", + "last_change_date": "2022-03-14T07:52:23.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1543, + "fields": { + "EF_ID": 18985, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.139", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.738Z", + "last_change_date": "2022-03-14T07:52:23.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1544, + "fields": { + "EF_ID": 18986, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.063", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.813Z", + "last_change_date": "2022-03-14T07:52:23.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1545, + "fields": { + "EF_ID": 18987, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.888Z", + "last_change_date": "2022-03-14T07:52:23.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1546, + "fields": { + "EF_ID": 18988, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:23.986Z", + "last_change_date": "2022-03-14T07:52:23.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1547, + "fields": { + "EF_ID": 18989, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "331", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.088Z", + "last_change_date": "2022-03-14T07:52:24.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1548, + "fields": { + "EF_ID": 18990, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.171Z", + "last_change_date": "2022-03-14T07:52:24.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1549, + "fields": { + "EF_ID": 18991, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.247Z", + "last_change_date": "2022-03-14T07:52:24.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1550, + "fields": { + "EF_ID": 18992, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.322Z", + "last_change_date": "2022-03-14T07:52:24.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1551, + "fields": { + "EF_ID": 18993, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.02", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.397Z", + "last_change_date": "2022-03-14T07:52:24.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1552, + "fields": { + "EF_ID": 18994, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.159", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.472Z", + "last_change_date": "2022-03-14T07:52:24.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1553, + "fields": { + "EF_ID": 18995, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.546Z", + "last_change_date": "2022-03-14T07:52:24.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1554, + "fields": { + "EF_ID": 18996, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.633Z", + "last_change_date": "2022-03-14T07:52:24.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1555, + "fields": { + "EF_ID": 18997, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.713Z", + "last_change_date": "2022-03-14T07:52:24.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1556, + "fields": { + "EF_ID": 18998, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.788Z", + "last_change_date": "2022-03-14T07:52:24.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1557, + "fields": { + "EF_ID": 18999, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.76", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.855Z", + "last_change_date": "2022-03-14T07:52:24.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1558, + "fields": { + "EF_ID": 19000, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.086", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.922Z", + "last_change_date": "2022-03-14T07:52:24.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1559, + "fields": { + "EF_ID": 19001, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:24.988Z", + "last_change_date": "2022-03-14T07:52:24.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1560, + "fields": { + "EF_ID": 19002, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.73", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.055Z", + "last_change_date": "2022-03-14T07:52:25.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1561, + "fields": { + "EF_ID": 19003, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.176", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.122Z", + "last_change_date": "2022-03-14T07:52:25.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1562, + "fields": { + "EF_ID": 19004, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.031", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.210Z", + "last_change_date": "2022-03-14T07:52:25.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1563, + "fields": { + "EF_ID": 19005, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.297Z", + "last_change_date": "2022-03-14T07:52:25.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1564, + "fields": { + "EF_ID": 19006, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.363Z", + "last_change_date": "2022-03-14T07:52:25.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1565, + "fields": { + "EF_ID": 19007, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "415", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.447Z", + "last_change_date": "2022-03-14T07:52:25.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1566, + "fields": { + "EF_ID": 19008, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.513Z", + "last_change_date": "2022-03-14T07:52:25.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1567, + "fields": { + "EF_ID": 19009, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light-Duty Diesel Trucks", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-31 on Page 1.74) of the Reference Manual (Estimated Emission Factors for US Light - Duty Diesel Trucks)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.588Z", + "last_change_date": "2022-03-14T07:52:25.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1568, + "fields": { + "EF_ID": 19010, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.52", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.655Z", + "last_change_date": "2022-03-14T07:52:25.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1569, + "fields": { + "EF_ID": 19011, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.32", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.721Z", + "last_change_date": "2022-03-14T07:52:25.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1570, + "fields": { + "EF_ID": 19012, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.257", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.831Z", + "last_change_date": "2022-03-14T07:52:25.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1571, + "fields": { + "EF_ID": 19013, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.913Z", + "last_change_date": "2022-03-14T07:52:25.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1572, + "fields": { + "EF_ID": 19014, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:25.988Z", + "last_change_date": "2022-03-14T07:52:25.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1573, + "fields": { + "EF_ID": 19015, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.063Z", + "last_change_date": "2022-03-14T07:52:26.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1574, + "fields": { + "EF_ID": 19016, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.130Z", + "last_change_date": "2022-03-14T07:52:26.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1575, + "fields": { + "EF_ID": 19017, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.78", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.196Z", + "last_change_date": "2022-03-14T07:52:26.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1576, + "fields": { + "EF_ID": 19018, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.063", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.271Z", + "last_change_date": "2022-03-14T07:52:26.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1577, + "fields": { + "EF_ID": 19019, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.36", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.338Z", + "last_change_date": "2022-03-14T07:52:26.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1578, + "fields": { + "EF_ID": 19020, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.01", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.434Z", + "last_change_date": "2022-03-14T07:52:26.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1579, + "fields": { + "EF_ID": 19021, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.318", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.513Z", + "last_change_date": "2022-03-14T07:52:26.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1580, + "fields": { + "EF_ID": 19022, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.588Z", + "last_change_date": "2022-03-14T07:52:26.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1581, + "fields": { + "EF_ID": 19023, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.664Z", + "last_change_date": "2022-03-14T07:52:26.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1582, + "fields": { + "EF_ID": 19024, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.738Z", + "last_change_date": "2022-03-14T07:52:26.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1583, + "fields": { + "EF_ID": 19025, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "987", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.813Z", + "last_change_date": "2022-03-14T07:52:26.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1584, + "fields": { + "EF_ID": 19026, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.889Z", + "last_change_date": "2022-03-14T07:52:26.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1585, + "fields": { + "EF_ID": 19027, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:26.963Z", + "last_change_date": "2022-03-14T07:52:26.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1586, + "fields": { + "EF_ID": 19028, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.96", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.087Z", + "last_change_date": "2022-03-14T07:52:27.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1587, + "fields": { + "EF_ID": 19029, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.96", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.172Z", + "last_change_date": "2022-03-14T07:52:27.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1588, + "fields": { + "EF_ID": 19030, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.567", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.247Z", + "last_change_date": "2022-03-14T07:52:27.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1589, + "fields": { + "EF_ID": 19031, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.322Z", + "last_change_date": "2022-03-14T07:52:27.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1590, + "fields": { + "EF_ID": 19032, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.397Z", + "last_change_date": "2022-03-14T07:52:27.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1591, + "fields": { + "EF_ID": 19033, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.480Z", + "last_change_date": "2022-03-14T07:52:27.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1592, + "fields": { + "EF_ID": 19034, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.13", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.555Z", + "last_change_date": "2022-03-14T07:52:27.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1593, + "fields": { + "EF_ID": 19035, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.55", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.630Z", + "last_change_date": "2022-03-14T07:52:27.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1594, + "fields": { + "EF_ID": 19036, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.081", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.725Z", + "last_change_date": "2022-03-14T07:52:27.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1595, + "fields": { + "EF_ID": 19037, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.805Z", + "last_change_date": "2022-03-14T07:52:27.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1596, + "fields": { + "EF_ID": 19038, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.71", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.888Z", + "last_change_date": "2022-03-14T07:52:27.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1597, + "fields": { + "EF_ID": 19039, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.357", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:27.972Z", + "last_change_date": "2022-03-14T07:52:27.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1598, + "fields": { + "EF_ID": 19040, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.055Z", + "last_change_date": "2022-03-14T07:52:28.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1599, + "fields": { + "EF_ID": 19041, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.138Z", + "last_change_date": "2022-03-14T07:52:28.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1600, + "fields": { + "EF_ID": 19042, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.222Z", + "last_change_date": "2022-03-14T07:52:28.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1601, + "fields": { + "EF_ID": 19043, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1011", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.305Z", + "last_change_date": "2022-03-14T07:52:28.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1602, + "fields": { + "EF_ID": 19044, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.403Z", + "last_change_date": "2022-03-14T07:52:28.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1603, + "fields": { + "EF_ID": 19045, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.488Z", + "last_change_date": "2022-03-14T07:52:28.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1604, + "fields": { + "EF_ID": 19046, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.3", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.563Z", + "last_change_date": "2022-03-14T07:52:28.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1605, + "fields": { + "EF_ID": 19047, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.79", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.638Z", + "last_change_date": "2022-03-14T07:52:28.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1606, + "fields": { + "EF_ID": 19048, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.677", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.713Z", + "last_change_date": "2022-03-14T07:52:28.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1607, + "fields": { + "EF_ID": 19049, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.788Z", + "last_change_date": "2022-03-14T07:52:28.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1608, + "fields": { + "EF_ID": 19050, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.864Z", + "last_change_date": "2022-03-14T07:52:28.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1609, + "fields": { + "EF_ID": 19051, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:28.939Z", + "last_change_date": "2022-03-14T07:52:28.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1610, + "fields": { + "EF_ID": 19052, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.63", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.031Z", + "last_change_date": "2022-03-14T07:52:29.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1611, + "fields": { + "EF_ID": 19053, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.114Z", + "last_change_date": "2022-03-14T07:52:29.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1612, + "fields": { + "EF_ID": 19054, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.107", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.189Z", + "last_change_date": "2022-03-14T07:52:29.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1613, + "fields": { + "EF_ID": 19055, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.85", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.264Z", + "last_change_date": "2022-03-14T07:52:29.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1614, + "fields": { + "EF_ID": 19056, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.03", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.339Z", + "last_change_date": "2022-03-14T07:52:29.339Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1615, + "fields": { + "EF_ID": 19057, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.319", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.414Z", + "last_change_date": "2022-03-14T07:52:29.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1616, + "fields": { + "EF_ID": 19058, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.031", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.488Z", + "last_change_date": "2022-03-14T07:52:29.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1617, + "fields": { + "EF_ID": 19059, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.588Z", + "last_change_date": "2022-03-14T07:52:29.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1618, + "fields": { + "EF_ID": 19060, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.677Z", + "last_change_date": "2022-03-14T07:52:29.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1619, + "fields": { + "EF_ID": 19061, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1097", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.772Z", + "last_change_date": "2022-03-14T07:52:29.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1620, + "fields": { + "EF_ID": 19062, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.847Z", + "last_change_date": "2022-03-14T07:52:29.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1621, + "fields": { + "EF_ID": 19063, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy Duty Diesel Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-32 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Heavy Duty Diesel Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.914Z", + "last_change_date": "2022-03-14T07:52:29.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1622, + "fields": { + "EF_ID": 19064, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:29.988Z", + "last_change_date": "2022-03-14T07:52:29.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1623, + "fields": { + "EF_ID": 19065, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.055Z", + "last_change_date": "2022-03-14T07:52:30.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1624, + "fields": { + "EF_ID": 19066, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.123", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.122Z", + "last_change_date": "2022-03-14T07:52:30.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1625, + "fields": { + "EF_ID": 19067, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.197Z", + "last_change_date": "2022-03-14T07:52:30.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1626, + "fields": { + "EF_ID": 19068, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.83", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.296Z", + "last_change_date": "2022-03-14T07:52:30.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1627, + "fields": { + "EF_ID": 19069, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.042", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.380Z", + "last_change_date": "2022-03-14T07:52:30.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1628, + "fields": { + "EF_ID": 19070, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.39", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.472Z", + "last_change_date": "2022-03-14T07:52:30.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1629, + "fields": { + "EF_ID": 19071, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.547Z", + "last_change_date": "2022-03-14T07:52:30.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1630, + "fields": { + "EF_ID": 19072, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.786", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.622Z", + "last_change_date": "2022-03-14T07:52:30.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1631, + "fields": { + "EF_ID": 19073, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.57", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.697Z", + "last_change_date": "2022-03-14T07:52:30.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1632, + "fields": { + "EF_ID": 19074, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225.14", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.772Z", + "last_change_date": "2022-03-14T07:52:30.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1633, + "fields": { + "EF_ID": 19075, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.117", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.855Z", + "last_change_date": "2022-03-14T07:52:30.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1634, + "fields": { + "EF_ID": 19076, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:30.950Z", + "last_change_date": "2022-03-14T07:52:30.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1635, + "fields": { + "EF_ID": 19077, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.030Z", + "last_change_date": "2022-03-14T07:52:31.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1636, + "fields": { + "EF_ID": 19078, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.113Z", + "last_change_date": "2022-03-14T07:52:31.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1637, + "fields": { + "EF_ID": 19079, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "219", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.197Z", + "last_change_date": "2022-03-14T07:52:31.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1638, + "fields": { + "EF_ID": 19080, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.280Z", + "last_change_date": "2022-03-14T07:52:31.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1639, + "fields": { + "EF_ID": 19081, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Non-catalytic Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.364Z", + "last_change_date": "2022-03-14T07:52:31.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1640, + "fields": { + "EF_ID": 19082, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.447Z", + "last_change_date": "2022-03-14T07:52:31.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1641, + "fields": { + "EF_ID": 19083, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.29", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.522Z", + "last_change_date": "2022-03-14T07:52:31.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1642, + "fields": { + "EF_ID": 19084, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.052", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.637Z", + "last_change_date": "2022-03-14T07:52:31.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1643, + "fields": { + "EF_ID": 19085, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.722Z", + "last_change_date": "2022-03-14T07:52:31.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1644, + "fields": { + "EF_ID": 19086, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.13", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.797Z", + "last_change_date": "2022-03-14T07:52:31.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1645, + "fields": { + "EF_ID": 19087, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.071", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.872Z", + "last_change_date": "2022-03-14T07:52:31.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1646, + "fields": { + "EF_ID": 19088, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.16", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:31.947Z", + "last_change_date": "2022-03-14T07:52:31.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1647, + "fields": { + "EF_ID": 19089, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73.33", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.022Z", + "last_change_date": "2022-03-14T07:52:32.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1648, + "fields": { + "EF_ID": 19090, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.667", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.097Z", + "last_change_date": "2022-03-14T07:52:32.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1649, + "fields": { + "EF_ID": 19091, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.3", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.189Z", + "last_change_date": "2022-03-14T07:52:32.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1650, + "fields": { + "EF_ID": 19092, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "265.51", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.281Z", + "last_change_date": "2022-03-14T07:52:32.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1651, + "fields": { + "EF_ID": 19093, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.034", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.364Z", + "last_change_date": "2022-03-14T07:52:32.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1652, + "fields": { + "EF_ID": 19094, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.439Z", + "last_change_date": "2022-03-14T07:52:32.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1653, + "fields": { + "EF_ID": 19095, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.514Z", + "last_change_date": "2022-03-14T07:52:32.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1654, + "fields": { + "EF_ID": 19096, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.580Z", + "last_change_date": "2022-03-14T07:52:32.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1655, + "fields": { + "EF_ID": 19097, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "266", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.647Z", + "last_change_date": "2022-03-14T07:52:32.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1656, + "fields": { + "EF_ID": 19098, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172.31", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.714Z", + "last_change_date": "2022-03-14T07:52:32.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1657, + "fields": { + "EF_ID": 19099, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Motorcycles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.098", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-33 on Page 1.75) of the Reference Manual (Estimated Emission Factors for US Motorcycles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.780Z", + "last_change_date": "2022-03-14T07:52:32.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1658, + "fields": { + "EF_ID": 19100, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.869Z", + "last_change_date": "2022-03-14T07:52:32.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1659, + "fields": { + "EF_ID": 19101, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:32.964Z", + "last_change_date": "2022-03-14T07:52:32.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1660, + "fields": { + "EF_ID": 19102, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.039Z", + "last_change_date": "2022-03-14T07:52:33.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1661, + "fields": { + "EF_ID": 19103, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.105Z", + "last_change_date": "2022-03-14T07:52:33.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1662, + "fields": { + "EF_ID": 19104, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.172Z", + "last_change_date": "2022-03-14T07:52:33.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1663, + "fields": { + "EF_ID": 19105, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.239Z", + "last_change_date": "2022-03-14T07:52:33.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1664, + "fields": { + "EF_ID": 19106, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.306Z", + "last_change_date": "2022-03-14T07:52:33.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1665, + "fields": { + "EF_ID": 19107, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.372Z", + "last_change_date": "2022-03-14T07:52:33.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1666, + "fields": { + "EF_ID": 19108, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.464Z", + "last_change_date": "2022-03-14T07:52:33.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1667, + "fields": { + "EF_ID": 19109, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.547Z", + "last_change_date": "2022-03-14T07:52:33.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1668, + "fields": { + "EF_ID": 19110, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "550", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.630Z", + "last_change_date": "2022-03-14T07:52:33.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1669, + "fields": { + "EF_ID": 19111, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.722Z", + "last_change_date": "2022-03-14T07:52:33.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1670, + "fields": { + "EF_ID": 19112, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.797Z", + "last_change_date": "2022-03-14T07:52:33.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1671, + "fields": { + "EF_ID": 19113, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.880Z", + "last_change_date": "2022-03-14T07:52:33.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1672, + "fields": { + "EF_ID": 19114, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:33.964Z", + "last_change_date": "2022-03-14T07:52:33.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1673, + "fields": { + "EF_ID": 19115, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "270", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.038Z", + "last_change_date": "2022-03-14T07:52:34.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1674, + "fields": { + "EF_ID": 19116, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.142Z", + "last_change_date": "2022-03-14T07:52:34.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1675, + "fields": { + "EF_ID": 19117, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.223Z", + "last_change_date": "2022-03-14T07:52:34.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1676, + "fields": { + "EF_ID": 19118, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.288Z", + "last_change_date": "2022-03-14T07:52:34.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1677, + "fields": { + "EF_ID": 19119, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.354Z", + "last_change_date": "2022-03-14T07:52:34.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1678, + "fields": { + "EF_ID": 19120, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.421Z", + "last_change_date": "2022-03-14T07:52:34.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1679, + "fields": { + "EF_ID": 19121, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.488Z", + "last_change_date": "2022-03-14T07:52:34.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1680, + "fields": { + "EF_ID": 19122, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.563Z", + "last_change_date": "2022-03-14T07:52:34.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1681, + "fields": { + "EF_ID": 19123, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.640Z", + "last_change_date": "2022-03-14T07:52:34.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1682, + "fields": { + "EF_ID": 19124, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.738Z", + "last_change_date": "2022-03-14T07:52:34.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1683, + "fields": { + "EF_ID": 19125, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.823Z", + "last_change_date": "2022-03-14T07:52:34.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1684, + "fields": { + "EF_ID": 19126, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.896Z", + "last_change_date": "2022-03-14T07:52:34.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1685, + "fields": { + "EF_ID": 19127, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:34.971Z", + "last_change_date": "2022-03-14T07:52:34.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1686, + "fields": { + "EF_ID": 19128, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "405", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.054Z", + "last_change_date": "2022-03-14T07:52:35.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1687, + "fields": { + "EF_ID": 19129, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.121Z", + "last_change_date": "2022-03-14T07:52:35.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1688, + "fields": { + "EF_ID": 19130, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.188Z", + "last_change_date": "2022-03-14T07:52:35.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1689, + "fields": { + "EF_ID": 19131, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.282Z", + "last_change_date": "2022-03-14T07:52:35.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1690, + "fields": { + "EF_ID": 19132, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.357Z", + "last_change_date": "2022-03-14T07:52:35.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1691, + "fields": { + "EF_ID": 19133, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.421Z", + "last_change_date": "2022-03-14T07:52:35.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1692, + "fields": { + "EF_ID": 19134, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.490Z", + "last_change_date": "2022-03-14T07:52:35.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1693, + "fields": { + "EF_ID": 19135, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Early non-catalyst Controls", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.565Z", + "last_change_date": "2022-03-14T07:52:35.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1694, + "fields": { + "EF_ID": 19136, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.640Z", + "last_change_date": "2022-03-14T07:52:35.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1695, + "fields": { + "EF_ID": 19137, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.715Z", + "last_change_date": "2022-03-14T07:52:35.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1696, + "fields": { + "EF_ID": 19138, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.798Z", + "last_change_date": "2022-03-14T07:52:35.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1697, + "fields": { + "EF_ID": 19139, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.902Z", + "last_change_date": "2022-03-14T07:52:35.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1698, + "fields": { + "EF_ID": 19140, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:35.982Z", + "last_change_date": "2022-03-14T07:52:35.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1699, + "fields": { + "EF_ID": 19141, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.048Z", + "last_change_date": "2022-03-14T07:52:36.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1700, + "fields": { + "EF_ID": 19142, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.123Z", + "last_change_date": "2022-03-14T07:52:36.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1701, + "fields": { + "EF_ID": 19143, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.190Z", + "last_change_date": "2022-03-14T07:52:36.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1702, + "fields": { + "EF_ID": 19144, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.257Z", + "last_change_date": "2022-03-14T07:52:36.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1703, + "fields": { + "EF_ID": 19145, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.332Z", + "last_change_date": "2022-03-14T07:52:36.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1704, + "fields": { + "EF_ID": 19146, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.398Z", + "last_change_date": "2022-03-14T07:52:36.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1705, + "fields": { + "EF_ID": 19147, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.9", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.489Z", + "last_change_date": "2022-03-14T07:52:36.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1706, + "fields": { + "EF_ID": 19148, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.565Z", + "last_change_date": "2022-03-14T07:52:36.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1707, + "fields": { + "EF_ID": 19149, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.632Z", + "last_change_date": "2022-03-14T07:52:36.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1708, + "fields": { + "EF_ID": 19150, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.698Z", + "last_change_date": "2022-03-14T07:52:36.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1709, + "fields": { + "EF_ID": 19151, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.773Z", + "last_change_date": "2022-03-14T07:52:36.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1710, + "fields": { + "EF_ID": 19152, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.848Z", + "last_change_date": "2022-03-14T07:52:36.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1711, + "fields": { + "EF_ID": 19153, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Non-catalyst Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.924Z", + "last_change_date": "2022-03-14T07:52:36.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1712, + "fields": { + "EF_ID": 19154, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:36.998Z", + "last_change_date": "2022-03-14T07:52:36.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1713, + "fields": { + "EF_ID": 19155, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.092Z", + "last_change_date": "2022-03-14T07:52:37.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1714, + "fields": { + "EF_ID": 19156, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.165Z", + "last_change_date": "2022-03-14T07:52:37.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1715, + "fields": { + "EF_ID": 19157, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.249Z", + "last_change_date": "2022-03-14T07:52:37.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1716, + "fields": { + "EF_ID": 19158, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.315Z", + "last_change_date": "2022-03-14T07:52:37.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1717, + "fields": { + "EF_ID": 19159, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.390Z", + "last_change_date": "2022-03-14T07:52:37.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1718, + "fields": { + "EF_ID": 19160, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.457Z", + "last_change_date": "2022-03-14T07:52:37.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1719, + "fields": { + "EF_ID": 19161, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.523Z", + "last_change_date": "2022-03-14T07:52:37.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1720, + "fields": { + "EF_ID": 19162, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.599Z", + "last_change_date": "2022-03-14T07:52:37.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1721, + "fields": { + "EF_ID": 19163, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.704Z", + "last_change_date": "2022-03-14T07:52:37.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1722, + "fields": { + "EF_ID": 19164, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "125", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.799Z", + "last_change_date": "2022-03-14T07:52:37.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1723, + "fields": { + "EF_ID": 19165, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.888Z", + "last_change_date": "2022-03-14T07:52:37.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1724, + "fields": { + "EF_ID": 19166, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:37.957Z", + "last_change_date": "2022-03-14T07:52:37.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1725, + "fields": { + "EF_ID": 19167, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.032Z", + "last_change_date": "2022-03-14T07:52:38.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1726, + "fields": { + "EF_ID": 19168, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.099Z", + "last_change_date": "2022-03-14T07:52:38.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1727, + "fields": { + "EF_ID": 19169, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.165Z", + "last_change_date": "2022-03-14T07:52:38.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1728, + "fields": { + "EF_ID": 19170, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.232Z", + "last_change_date": "2022-03-14T07:52:38.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1729, + "fields": { + "EF_ID": 19171, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Oxidation catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.324Z", + "last_change_date": "2022-03-14T07:52:38.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1730, + "fields": { + "EF_ID": 19172, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.398Z", + "last_change_date": "2022-03-14T07:52:38.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1731, + "fields": { + "EF_ID": 19173, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.457Z", + "last_change_date": "2022-03-14T07:52:38.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1732, + "fields": { + "EF_ID": 19174, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.515Z", + "last_change_date": "2022-03-14T07:52:38.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1733, + "fields": { + "EF_ID": 19175, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.582Z", + "last_change_date": "2022-03-14T07:52:38.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1734, + "fields": { + "EF_ID": 19176, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.640Z", + "last_change_date": "2022-03-14T07:52:38.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1735, + "fields": { + "EF_ID": 19177, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.704Z", + "last_change_date": "2022-03-14T07:52:38.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1736, + "fields": { + "EF_ID": 19178, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.771Z", + "last_change_date": "2022-03-14T07:52:38.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1737, + "fields": { + "EF_ID": 19179, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.869Z", + "last_change_date": "2022-03-14T07:52:38.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1738, + "fields": { + "EF_ID": 19180, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:38.949Z", + "last_change_date": "2022-03-14T07:52:38.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1739, + "fields": { + "EF_ID": 19181, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.013Z", + "last_change_date": "2022-03-14T07:52:39.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1740, + "fields": { + "EF_ID": 19182, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.079Z", + "last_change_date": "2022-03-14T07:52:39.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1741, + "fields": { + "EF_ID": 19183, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.146Z", + "last_change_date": "2022-03-14T07:52:39.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1742, + "fields": { + "EF_ID": 19184, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.213Z", + "last_change_date": "2022-03-14T07:52:39.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1743, + "fields": { + "EF_ID": 19185, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.280Z", + "last_change_date": "2022-03-14T07:52:39.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1744, + "fields": { + "EF_ID": 19186, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.346Z", + "last_change_date": "2022-03-14T07:52:39.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1745, + "fields": { + "EF_ID": 19187, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.447Z", + "last_change_date": "2022-03-14T07:52:39.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1746, + "fields": { + "EF_ID": 19188, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.540Z", + "last_change_date": "2022-03-14T07:52:39.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1747, + "fields": { + "EF_ID": 19189, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Three-way catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.613Z", + "last_change_date": "2022-03-14T07:52:39.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1748, + "fields": { + "EF_ID": 19190, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.680Z", + "last_change_date": "2022-03-14T07:52:39.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1749, + "fields": { + "EF_ID": 19191, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.746Z", + "last_change_date": "2022-03-14T07:52:39.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1750, + "fields": { + "EF_ID": 19192, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.813Z", + "last_change_date": "2022-03-14T07:52:39.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1751, + "fields": { + "EF_ID": 19193, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.888Z", + "last_change_date": "2022-03-14T07:52:39.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1752, + "fields": { + "EF_ID": 19194, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:39.971Z", + "last_change_date": "2022-03-14T07:52:39.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1753, + "fields": { + "EF_ID": 19195, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.062Z", + "last_change_date": "2022-03-14T07:52:40.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1754, + "fields": { + "EF_ID": 19196, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.132Z", + "last_change_date": "2022-03-14T07:52:40.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1755, + "fields": { + "EF_ID": 19197, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "164", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.196Z", + "last_change_date": "2022-03-14T07:52:40.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1756, + "fields": { + "EF_ID": 19198, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.8", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.263Z", + "last_change_date": "2022-03-14T07:52:40.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1757, + "fields": { + "EF_ID": 19199, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.338Z", + "last_change_date": "2022-03-14T07:52:40.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1758, + "fields": { + "EF_ID": 19200, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.404Z", + "last_change_date": "2022-03-14T07:52:40.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1759, + "fields": { + "EF_ID": 19201, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.474Z", + "last_change_date": "2022-03-14T07:52:40.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1760, + "fields": { + "EF_ID": 19202, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.540Z", + "last_change_date": "2022-03-14T07:52:40.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1761, + "fields": { + "EF_ID": 19203, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.631Z", + "last_change_date": "2022-03-14T07:52:40.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1762, + "fields": { + "EF_ID": 19204, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.707Z", + "last_change_date": "2022-03-14T07:52:40.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1763, + "fields": { + "EF_ID": 19205, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.774Z", + "last_change_date": "2022-03-14T07:52:40.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1764, + "fields": { + "EF_ID": 19206, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.849Z", + "last_change_date": "2022-03-14T07:52:40.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1765, + "fields": { + "EF_ID": 19207, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Passenger Cars", + "Technology_Practices": "Two-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-36 on Page 1.81) of the Reference Manual (Estimated Emission Factors for European Gasoline Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.915Z", + "last_change_date": "2022-03-14T07:52:40.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1766, + "fields": { + "EF_ID": 19208, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:40.982Z", + "last_change_date": "2022-03-14T07:52:40.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1767, + "fields": { + "EF_ID": 19209, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.049Z", + "last_change_date": "2022-03-14T07:52:41.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1768, + "fields": { + "EF_ID": 19210, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.124Z", + "last_change_date": "2022-03-14T07:52:41.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1769, + "fields": { + "EF_ID": 19211, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.218Z", + "last_change_date": "2022-03-14T07:52:41.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1770, + "fields": { + "EF_ID": 19212, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.299Z", + "last_change_date": "2022-03-14T07:52:41.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1771, + "fields": { + "EF_ID": 19213, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.374Z", + "last_change_date": "2022-03-14T07:52:41.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1772, + "fields": { + "EF_ID": 19214, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.449Z", + "last_change_date": "2022-03-14T07:52:41.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1773, + "fields": { + "EF_ID": 19215, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.524Z", + "last_change_date": "2022-03-14T07:52:41.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1774, + "fields": { + "EF_ID": 19216, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.607Z", + "last_change_date": "2022-03-14T07:52:41.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1775, + "fields": { + "EF_ID": 19217, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.674Z", + "last_change_date": "2022-03-14T07:52:41.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1776, + "fields": { + "EF_ID": 19218, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.740Z", + "last_change_date": "2022-03-14T07:52:41.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1777, + "fields": { + "EF_ID": 19219, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.838Z", + "last_change_date": "2022-03-14T07:52:41.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1778, + "fields": { + "EF_ID": 19220, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.924Z", + "last_change_date": "2022-03-14T07:52:41.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1779, + "fields": { + "EF_ID": 19221, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:41.990Z", + "last_change_date": "2022-03-14T07:52:41.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1780, + "fields": { + "EF_ID": 19222, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.065Z", + "last_change_date": "2022-03-14T07:52:42.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1781, + "fields": { + "EF_ID": 19223, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.132Z", + "last_change_date": "2022-03-14T07:52:42.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1782, + "fields": { + "EF_ID": 19224, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.199Z", + "last_change_date": "2022-03-14T07:52:42.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1783, + "fields": { + "EF_ID": 19225, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Passenger Cars", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-37 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Passenger Cars )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.274Z", + "last_change_date": "2022-03-14T07:52:42.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1784, + "fields": { + "EF_ID": 19226, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.332Z", + "last_change_date": "2022-03-14T07:52:42.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1785, + "fields": { + "EF_ID": 19227, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.417Z", + "last_change_date": "2022-03-14T07:52:42.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1786, + "fields": { + "EF_ID": 19228, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.474Z", + "last_change_date": "2022-03-14T07:52:42.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1787, + "fields": { + "EF_ID": 19229, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.532Z", + "last_change_date": "2022-03-14T07:52:42.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1788, + "fields": { + "EF_ID": 19230, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.599Z", + "last_change_date": "2022-03-14T07:52:42.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1789, + "fields": { + "EF_ID": 19231, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.674Z", + "last_change_date": "2022-03-14T07:52:42.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1790, + "fields": { + "EF_ID": 19232, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.749Z", + "last_change_date": "2022-03-14T07:52:42.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1791, + "fields": { + "EF_ID": 19233, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.832Z", + "last_change_date": "2022-03-14T07:52:42.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1792, + "fields": { + "EF_ID": 19234, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:42.907Z", + "last_change_date": "2022-03-14T07:52:42.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1793, + "fields": { + "EF_ID": 19235, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.004Z", + "last_change_date": "2022-03-14T07:52:43.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1794, + "fields": { + "EF_ID": 19236, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.091Z", + "last_change_date": "2022-03-14T07:52:43.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1795, + "fields": { + "EF_ID": 19237, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.165Z", + "last_change_date": "2022-03-14T07:52:43.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1796, + "fields": { + "EF_ID": 19238, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.241Z", + "last_change_date": "2022-03-14T07:52:43.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1797, + "fields": { + "EF_ID": 19239, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.307Z", + "last_change_date": "2022-03-14T07:52:43.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1798, + "fields": { + "EF_ID": 19240, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.374Z", + "last_change_date": "2022-03-14T07:52:43.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1799, + "fields": { + "EF_ID": 19241, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "280", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.440Z", + "last_change_date": "2022-03-14T07:52:43.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1800, + "fields": { + "EF_ID": 19242, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.507Z", + "last_change_date": "2022-03-14T07:52:43.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1801, + "fields": { + "EF_ID": 19243, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-38 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Ligth-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.599Z", + "last_change_date": "2022-03-14T07:52:43.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1802, + "fields": { + "EF_ID": 19244, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.674Z", + "last_change_date": "2022-03-14T07:52:43.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1803, + "fields": { + "EF_ID": 19245, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.740Z", + "last_change_date": "2022-03-14T07:52:43.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1804, + "fields": { + "EF_ID": 19246, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.807Z", + "last_change_date": "2022-03-14T07:52:43.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1805, + "fields": { + "EF_ID": 19247, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.874Z", + "last_change_date": "2022-03-14T07:52:43.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1806, + "fields": { + "EF_ID": 19248, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:43.941Z", + "last_change_date": "2022-03-14T07:52:43.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1807, + "fields": { + "EF_ID": 19249, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.007Z", + "last_change_date": "2022-03-14T07:52:44.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1808, + "fields": { + "EF_ID": 19250, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.090Z", + "last_change_date": "2022-03-14T07:52:44.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1809, + "fields": { + "EF_ID": 19251, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.211Z", + "last_change_date": "2022-03-14T07:52:44.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1810, + "fields": { + "EF_ID": 19252, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.291Z", + "last_change_date": "2022-03-14T07:52:44.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1811, + "fields": { + "EF_ID": 19253, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.357Z", + "last_change_date": "2022-03-14T07:52:44.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1812, + "fields": { + "EF_ID": 19254, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.424Z", + "last_change_date": "2022-03-14T07:52:44.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1813, + "fields": { + "EF_ID": 19255, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.491Z", + "last_change_date": "2022-03-14T07:52:44.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1814, + "fields": { + "EF_ID": 19256, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.557Z", + "last_change_date": "2022-03-14T07:52:44.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1815, + "fields": { + "EF_ID": 19257, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.624Z", + "last_change_date": "2022-03-14T07:52:44.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1816, + "fields": { + "EF_ID": 19258, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.690Z", + "last_change_date": "2022-03-14T07:52:44.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1817, + "fields": { + "EF_ID": 19259, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "770", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.790Z", + "last_change_date": "2022-03-14T07:52:44.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1818, + "fields": { + "EF_ID": 19260, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-39 on Page 1.82) of the Reference Manual (Estimated Emission Factors for European Diesel Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.874Z", + "last_change_date": "2022-03-14T07:52:44.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1819, + "fields": { + "EF_ID": 19261, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Diesel Heavy-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:44.946Z", + "last_change_date": "2022-03-14T07:52:44.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1820, + "fields": { + "EF_ID": 19262, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.013Z", + "last_change_date": "2022-03-14T07:52:45.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1821, + "fields": { + "EF_ID": 19263, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.079Z", + "last_change_date": "2022-03-14T07:52:45.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1822, + "fields": { + "EF_ID": 19264, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.146Z", + "last_change_date": "2022-03-14T07:52:45.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1823, + "fields": { + "EF_ID": 19265, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.213Z", + "last_change_date": "2022-03-14T07:52:45.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1824, + "fields": { + "EF_ID": 19266, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.280Z", + "last_change_date": "2022-03-14T07:52:45.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1825, + "fields": { + "EF_ID": 19267, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.368Z", + "last_change_date": "2022-03-14T07:52:45.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1826, + "fields": { + "EF_ID": 19268, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.441Z", + "last_change_date": "2022-03-14T07:52:45.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1827, + "fields": { + "EF_ID": 19269, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.513Z", + "last_change_date": "2022-03-14T07:52:45.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1828, + "fields": { + "EF_ID": 19270, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.580Z", + "last_change_date": "2022-03-14T07:52:45.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1829, + "fields": { + "EF_ID": 19271, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.646Z", + "last_change_date": "2022-03-14T07:52:45.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1830, + "fields": { + "EF_ID": 19272, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "360", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.713Z", + "last_change_date": "2022-03-14T07:52:45.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1831, + "fields": { + "EF_ID": 19273, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.780Z", + "last_change_date": "2022-03-14T07:52:45.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1832, + "fields": { + "EF_ID": 19274, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.872Z", + "last_change_date": "2022-03-14T07:52:45.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1833, + "fields": { + "EF_ID": 19275, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:45.949Z", + "last_change_date": "2022-03-14T07:52:45.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1834, + "fields": { + "EF_ID": 19276, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.013Z", + "last_change_date": "2022-03-14T07:52:46.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1835, + "fields": { + "EF_ID": 19277, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "325", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.088Z", + "last_change_date": "2022-03-14T07:52:46.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1836, + "fields": { + "EF_ID": 19278, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.163Z", + "last_change_date": "2022-03-14T07:52:46.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1837, + "fields": { + "EF_ID": 19279, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Light-Duty Vehicles", + "Technology_Practices": "Moderate Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-40 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Light-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.238Z", + "last_change_date": "2022-03-14T07:52:46.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1838, + "fields": { + "EF_ID": 19280, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.9", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.305Z", + "last_change_date": "2022-03-14T07:52:46.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1839, + "fields": { + "EF_ID": 19281, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.380Z", + "last_change_date": "2022-03-14T07:52:46.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1840, + "fields": { + "EF_ID": 19282, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.475Z", + "last_change_date": "2022-03-14T07:52:46.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1841, + "fields": { + "EF_ID": 19283, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.549Z", + "last_change_date": "2022-03-14T07:52:46.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1842, + "fields": { + "EF_ID": 19284, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.629Z", + "last_change_date": "2022-03-14T07:52:46.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1843, + "fields": { + "EF_ID": 19285, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.713Z", + "last_change_date": "2022-03-14T07:52:46.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1844, + "fields": { + "EF_ID": 19286, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.791Z", + "last_change_date": "2022-03-14T07:52:46.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1845, + "fields": { + "EF_ID": 19287, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.866Z", + "last_change_date": "2022-03-14T07:52:46.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1846, + "fields": { + "EF_ID": 19288, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:46.941Z", + "last_change_date": "2022-03-14T07:52:46.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1847, + "fields": { + "EF_ID": 19289, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.053Z", + "last_change_date": "2022-03-14T07:52:47.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1848, + "fields": { + "EF_ID": 19290, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "346", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.141Z", + "last_change_date": "2022-03-14T07:52:47.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1849, + "fields": { + "EF_ID": 19291, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.9", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.216Z", + "last_change_date": "2022-03-14T07:52:47.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1850, + "fields": { + "EF_ID": 19292, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.283Z", + "last_change_date": "2022-03-14T07:52:47.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1851, + "fields": { + "EF_ID": 19293, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.358Z", + "last_change_date": "2022-03-14T07:52:47.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1852, + "fields": { + "EF_ID": 19294, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.424Z", + "last_change_date": "2022-03-14T07:52:47.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1853, + "fields": { + "EF_ID": 19295, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "535", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.566Z", + "last_change_date": "2022-03-14T07:52:47.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1854, + "fields": { + "EF_ID": 19296, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles ).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.632Z", + "last_change_date": "2022-03-14T07:52:47.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1855, + "fields": { + "EF_ID": 19297, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Gasoline Heavy-Duty Vehicles", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-41 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Gasoline Heavy-Duty Vehicles )", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.724Z", + "last_change_date": "2022-03-14T07:52:47.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1856, + "fields": { + "EF_ID": 19298, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.799Z", + "last_change_date": "2022-03-14T07:52:47.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1857, + "fields": { + "EF_ID": 19299, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.866Z", + "last_change_date": "2022-03-14T07:52:47.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1858, + "fields": { + "EF_ID": 19300, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.932Z", + "last_change_date": "2022-03-14T07:52:47.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1859, + "fields": { + "EF_ID": 19301, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:47.999Z", + "last_change_date": "2022-03-14T07:52:47.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1860, + "fields": { + "EF_ID": 19302, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.066Z", + "last_change_date": "2022-03-14T07:52:48.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1861, + "fields": { + "EF_ID": 19303, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.132Z", + "last_change_date": "2022-03-14T07:52:48.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1862, + "fields": { + "EF_ID": 19304, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.227Z", + "last_change_date": "2022-03-14T07:52:48.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1863, + "fields": { + "EF_ID": 19305, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "359", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.316Z", + "last_change_date": "2022-03-14T07:52:48.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1864, + "fields": { + "EF_ID": 19306, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.391Z", + "last_change_date": "2022-03-14T07:52:48.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1865, + "fields": { + "EF_ID": 19307, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.466Z", + "last_change_date": "2022-03-14T07:52:48.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1866, + "fields": { + "EF_ID": 19308, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "550", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.541Z", + "last_change_date": "2022-03-14T07:52:48.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1867, + "fields": { + "EF_ID": 19309, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.616Z", + "last_change_date": "2022-03-14T07:52:48.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1868, + "fields": { + "EF_ID": 19310, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.691Z", + "last_change_date": "2022-03-14T07:52:48.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1869, + "fields": { + "EF_ID": 19311, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.797Z", + "last_change_date": "2022-03-14T07:52:48.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1870, + "fields": { + "EF_ID": 19312, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.882Z", + "last_change_date": "2022-03-14T07:52:48.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1871, + "fields": { + "EF_ID": 19313, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles < 50cc", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:48.958Z", + "last_change_date": "2022-03-14T07:52:48.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1872, + "fields": { + "EF_ID": 19314, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.033Z", + "last_change_date": "2022-03-14T07:52:49.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1873, + "fields": { + "EF_ID": 19315, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 41.7 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles < 50 cc).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.107Z", + "last_change_date": "2022-03-14T07:52:49.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1874, + "fields": { + "EF_ID": 19316, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.174Z", + "last_change_date": "2022-03-14T07:52:49.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1875, + "fields": { + "EF_ID": 19317, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.241Z", + "last_change_date": "2022-03-14T07:52:49.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1876, + "fields": { + "EF_ID": 19318, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.333Z", + "last_change_date": "2022-03-14T07:52:49.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1877, + "fields": { + "EF_ID": 19319, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.407Z", + "last_change_date": "2022-03-14T07:52:49.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1878, + "fields": { + "EF_ID": 19320, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.483Z", + "last_change_date": "2022-03-14T07:52:49.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1879, + "fields": { + "EF_ID": 19321, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.549Z", + "last_change_date": "2022-03-14T07:52:49.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1880, + "fields": { + "EF_ID": 19322, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.624Z", + "last_change_date": "2022-03-14T07:52:49.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1881, + "fields": { + "EF_ID": 19323, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "530", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.691Z", + "last_change_date": "2022-03-14T07:52:49.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1882, + "fields": { + "EF_ID": 19324, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.766Z", + "last_change_date": "2022-03-14T07:52:49.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1883, + "fields": { + "EF_ID": 19325, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.861Z", + "last_change_date": "2022-03-14T07:52:49.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1884, + "fields": { + "EF_ID": 19326, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "730", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:49.941Z", + "last_change_date": "2022-03-14T07:52:49.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1885, + "fields": { + "EF_ID": 19327, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.016Z", + "last_change_date": "2022-03-14T07:52:50.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1886, + "fields": { + "EF_ID": 19328, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.088Z", + "last_change_date": "2022-03-14T07:52:50.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1887, + "fields": { + "EF_ID": 19329, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.155Z", + "last_change_date": "2022-03-14T07:52:50.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1888, + "fields": { + "EF_ID": 19330, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.221Z", + "last_change_date": "2022-03-14T07:52:50.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1889, + "fields": { + "EF_ID": 19331, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.288Z", + "last_change_date": "2022-03-14T07:52:50.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1890, + "fields": { + "EF_ID": 19332, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.406Z", + "last_change_date": "2022-03-14T07:52:50.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1891, + "fields": { + "EF_ID": 19333, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles > 50cc 2 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 25.0 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 2 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.491Z", + "last_change_date": "2022-03-14T07:52:50.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1892, + "fields": { + "EF_ID": 19334, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.555Z", + "last_change_date": "2022-03-14T07:52:50.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1893, + "fields": { + "EF_ID": 19335, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.621Z", + "last_change_date": "2022-03-14T07:52:50.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1894, + "fields": { + "EF_ID": 19336, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.696Z", + "last_change_date": "2022-03-14T07:52:50.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1895, + "fields": { + "EF_ID": 19337, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.771Z", + "last_change_date": "2022-03-14T07:52:50.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1896, + "fields": { + "EF_ID": 19338, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.846Z", + "last_change_date": "2022-03-14T07:52:50.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1897, + "fields": { + "EF_ID": 19339, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:50.943Z", + "last_change_date": "2022-03-14T07:52:50.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1898, + "fields": { + "EF_ID": 19340, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.9", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.016Z", + "last_change_date": "2022-03-14T07:52:51.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1899, + "fields": { + "EF_ID": 19341, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.080Z", + "last_change_date": "2022-03-14T07:52:51.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1900, + "fields": { + "EF_ID": 19342, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.146Z", + "last_change_date": "2022-03-14T07:52:51.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1901, + "fields": { + "EF_ID": 19343, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.213Z", + "last_change_date": "2022-03-14T07:52:51.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1902, + "fields": { + "EF_ID": 19344, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "530", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.280Z", + "last_change_date": "2022-03-14T07:52:51.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1903, + "fields": { + "EF_ID": 19345, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.346Z", + "last_change_date": "2022-03-14T07:52:51.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1904, + "fields": { + "EF_ID": 19346, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.446Z", + "last_change_date": "2022-03-14T07:52:51.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1905, + "fields": { + "EF_ID": 19347, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.524Z", + "last_change_date": "2022-03-14T07:52:51.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1906, + "fields": { + "EF_ID": 19348, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.588Z", + "last_change_date": "2022-03-14T07:52:51.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1907, + "fields": { + "EF_ID": 19349, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.655Z", + "last_change_date": "2022-03-14T07:52:51.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1908, + "fields": { + "EF_ID": 19350, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3180", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.721Z", + "last_change_date": "2022-03-14T07:52:51.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1909, + "fields": { + "EF_ID": 19351, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European Motorcycles >50cc 4 stroke", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy 19.6 km/l", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-42 on Page 1.83) of the Reference Manual (Estimated Emission Factors for European Motorcycles > 50 cc 4 stroke).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.796Z", + "last_change_date": "2022-03-14T07:52:51.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1910, + "fields": { + "EF_ID": 19352, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.863Z", + "last_change_date": "2022-03-14T07:52:51.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1911, + "fields": { + "EF_ID": 19353, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:51.957Z", + "last_change_date": "2022-03-14T07:52:51.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1912, + "fields": { + "EF_ID": 19354, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.041Z", + "last_change_date": "2022-03-14T07:52:52.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1913, + "fields": { + "EF_ID": 19355, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "0", + "Value": "0.7", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.105Z", + "last_change_date": "2022-03-14T07:52:52.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1914, + "fields": { + "EF_ID": 19356, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.180Z", + "last_change_date": "2022-03-14T07:52:52.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1915, + "fields": { + "EF_ID": 19357, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.250Z", + "last_change_date": "2022-03-14T07:52:52.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1916, + "fields": { + "EF_ID": 19358, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.316Z", + "last_change_date": "2022-03-14T07:52:52.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1917, + "fields": { + "EF_ID": 19359, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.391Z", + "last_change_date": "2022-03-14T07:52:52.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1918, + "fields": { + "EF_ID": 19360, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.511Z", + "last_change_date": "2022-03-14T07:52:52.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1919, + "fields": { + "EF_ID": 19361, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.741Z", + "last_change_date": "2022-03-14T07:52:52.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1920, + "fields": { + "EF_ID": 19362, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.799Z", + "last_change_date": "2022-03-14T07:52:52.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1921, + "fields": { + "EF_ID": 19363, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.858Z", + "last_change_date": "2022-03-14T07:52:52.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1922, + "fields": { + "EF_ID": 19364, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.925Z", + "last_change_date": "2022-03-14T07:52:52.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1923, + "fields": { + "EF_ID": 19365, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2750", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:52.991Z", + "last_change_date": "2022-03-14T07:52:52.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1924, + "fields": { + "EF_ID": 19366, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 14.9 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.080Z", + "last_change_date": "2022-03-14T07:52:53.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1925, + "fields": { + "EF_ID": 19367, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.158Z", + "last_change_date": "2022-03-14T07:52:53.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1926, + "fields": { + "EF_ID": 19368, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.224Z", + "last_change_date": "2022-03-14T07:52:53.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1927, + "fields": { + "EF_ID": 19369, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.291Z", + "last_change_date": "2022-03-14T07:52:53.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1928, + "fields": { + "EF_ID": 19370, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.358Z", + "last_change_date": "2022-03-14T07:52:53.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1929, + "fields": { + "EF_ID": 19371, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.425Z", + "last_change_date": "2022-03-14T07:52:53.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1930, + "fields": { + "EF_ID": 19372, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.491Z", + "last_change_date": "2022-03-14T07:52:53.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1931, + "fields": { + "EF_ID": 19373, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.582Z", + "last_change_date": "2022-03-14T07:52:53.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1932, + "fields": { + "EF_ID": 19374, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.658Z", + "last_change_date": "2022-03-14T07:52:53.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1933, + "fields": { + "EF_ID": 19375, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.725Z", + "last_change_date": "2022-03-14T07:52:53.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1934, + "fields": { + "EF_ID": 19376, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.791Z", + "last_change_date": "2022-03-14T07:52:53.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1935, + "fields": { + "EF_ID": 19377, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.858Z", + "last_change_date": "2022-03-14T07:52:53.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1936, + "fields": { + "EF_ID": 19378, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.925Z", + "last_change_date": "2022-03-14T07:52:53.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1937, + "fields": { + "EF_ID": 19379, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "305", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:53.991Z", + "last_change_date": "2022-03-14T07:52:53.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1938, + "fields": { + "EF_ID": 19380, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2750", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.104Z", + "last_change_date": "2022-03-14T07:52:54.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1939, + "fields": { + "EF_ID": 19381, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light - and Heavy - Duty Natural Gas Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy: 6.5 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.183Z", + "last_change_date": "2022-03-14T07:52:54.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1940, + "fields": { + "EF_ID": 19382, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.250Z", + "last_change_date": "2022-03-14T07:52:54.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1941, + "fields": { + "EF_ID": 19383, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.325Z", + "last_change_date": "2022-03-14T07:52:54.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1942, + "fields": { + "EF_ID": 19384, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.400Z", + "last_change_date": "2022-03-14T07:52:54.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1943, + "fields": { + "EF_ID": 19385, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.474Z", + "last_change_date": "2022-03-14T07:52:54.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1944, + "fields": { + "EF_ID": 19386, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.550Z", + "last_change_date": "2022-03-14T07:52:54.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1945, + "fields": { + "EF_ID": 19387, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.641Z", + "last_change_date": "2022-03-14T07:52:54.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1946, + "fields": { + "EF_ID": 19388, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.733Z", + "last_change_date": "2022-03-14T07:52:54.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1947, + "fields": { + "EF_ID": 19389, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.799Z", + "last_change_date": "2022-03-14T07:52:54.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1948, + "fields": { + "EF_ID": 19390, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.866Z", + "last_change_date": "2022-03-14T07:52:54.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1949, + "fields": { + "EF_ID": 19391, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:54.933Z", + "last_change_date": "2022-03-14T07:52:54.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1950, + "fields": { + "EF_ID": 19392, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.000Z", + "last_change_date": "2022-03-14T07:52:55.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1951, + "fields": { + "EF_ID": 19393, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.092Z", + "last_change_date": "2022-03-14T07:52:55.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1952, + "fields": { + "EF_ID": 19394, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "550", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.171Z", + "last_change_date": "2022-03-14T07:52:55.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1953, + "fields": { + "EF_ID": 19395, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2750", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.233Z", + "last_change_date": "2022-03-14T07:52:55.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1954, + "fields": { + "EF_ID": 19396, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 3.6 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.300Z", + "last_change_date": "2022-03-14T07:52:55.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1955, + "fields": { + "EF_ID": 19397, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.7", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.374Z", + "last_change_date": "2022-03-14T07:52:55.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1956, + "fields": { + "EF_ID": 19398, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.450Z", + "last_change_date": "2022-03-14T07:52:55.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1957, + "fields": { + "EF_ID": 19399, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.563Z", + "last_change_date": "2022-03-14T07:52:55.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1958, + "fields": { + "EF_ID": 19400, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.638Z", + "last_change_date": "2022-03-14T07:52:55.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1959, + "fields": { + "EF_ID": 19401, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.713Z", + "last_change_date": "2022-03-14T07:52:55.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1960, + "fields": { + "EF_ID": 19402, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.780Z", + "last_change_date": "2022-03-14T07:52:55.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1961, + "fields": { + "EF_ID": 19403, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.846Z", + "last_change_date": "2022-03-14T07:52:55.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1962, + "fields": { + "EF_ID": 19404, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:55.913Z", + "last_change_date": "2022-03-14T07:52:55.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1963, + "fields": { + "EF_ID": 19405, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.007Z", + "last_change_date": "2022-03-14T07:52:56.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1964, + "fields": { + "EF_ID": 19406, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.096Z", + "last_change_date": "2022-03-14T07:52:56.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1965, + "fields": { + "EF_ID": 19407, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.171Z", + "last_change_date": "2022-03-14T07:52:56.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1966, + "fields": { + "EF_ID": 19408, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.246Z", + "last_change_date": "2022-03-14T07:52:56.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1967, + "fields": { + "EF_ID": 19409, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "900", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.321Z", + "last_change_date": "2022-03-14T07:52:56.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1968, + "fields": { + "EF_ID": 19410, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2750", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.396Z", + "last_change_date": "2022-03-14T07:52:56.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1969, + "fields": { + "EF_ID": 19411, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Stochiometric Engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.2 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.493Z", + "last_change_date": "2022-03-14T07:52:56.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1970, + "fields": { + "EF_ID": 19412, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.571Z", + "last_change_date": "2022-03-14T07:52:56.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1971, + "fields": { + "EF_ID": 19413, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.663Z", + "last_change_date": "2022-03-14T07:52:56.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1972, + "fields": { + "EF_ID": 19414, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.730Z", + "last_change_date": "2022-03-14T07:52:56.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1973, + "fields": { + "EF_ID": 19415, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.796Z", + "last_change_date": "2022-03-14T07:52:56.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1974, + "fields": { + "EF_ID": 19416, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.863Z", + "last_change_date": "2022-03-14T07:52:56.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1975, + "fields": { + "EF_ID": 19417, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:56.930Z", + "last_change_date": "2022-03-14T07:52:56.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1976, + "fields": { + "EF_ID": 19418, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.020Z", + "last_change_date": "2022-03-14T07:52:57.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1977, + "fields": { + "EF_ID": 19419, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.096Z", + "last_change_date": "2022-03-14T07:52:57.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1978, + "fields": { + "EF_ID": 19420, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.163Z", + "last_change_date": "2022-03-14T07:52:57.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1979, + "fields": { + "EF_ID": 19421, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.238Z", + "last_change_date": "2022-03-14T07:52:57.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1980, + "fields": { + "EF_ID": 19422, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.305Z", + "last_change_date": "2022-03-14T07:52:57.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1981, + "fields": { + "EF_ID": 19423, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.372Z", + "last_change_date": "2022-03-14T07:52:57.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1982, + "fields": { + "EF_ID": 19424, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "825", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.456Z", + "last_change_date": "2022-03-14T07:52:57.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1983, + "fields": { + "EF_ID": 19425, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2750", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.542Z", + "last_change_date": "2022-03-14T07:52:57.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1984, + "fields": { + "EF_ID": 19426, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Advanced Control: Assumed Fuel Economy: 2.4 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.613Z", + "last_change_date": "2022-03-14T07:52:57.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1985, + "fields": { + "EF_ID": 19427, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.688Z", + "last_change_date": "2022-03-14T07:52:57.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1986, + "fields": { + "EF_ID": 19428, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.805Z", + "last_change_date": "2022-03-14T07:52:57.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1987, + "fields": { + "EF_ID": 19429, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.28", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.888Z", + "last_change_date": "2022-03-14T07:52:57.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1988, + "fields": { + "EF_ID": 19430, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:57.950Z", + "last_change_date": "2022-03-14T07:52:57.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1989, + "fields": { + "EF_ID": 19431, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.035Z", + "last_change_date": "2022-03-14T07:52:58.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1990, + "fields": { + "EF_ID": 19432, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.092Z", + "last_change_date": "2022-03-14T07:52:58.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1991, + "fields": { + "EF_ID": 19433, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.155Z", + "last_change_date": "2022-03-14T07:52:58.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1992, + "fields": { + "EF_ID": 19434, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.225Z", + "last_change_date": "2022-03-14T07:52:58.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1993, + "fields": { + "EF_ID": 19435, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.300Z", + "last_change_date": "2022-03-14T07:52:58.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1994, + "fields": { + "EF_ID": 19436, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.375Z", + "last_change_date": "2022-03-14T07:52:58.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1995, + "fields": { + "EF_ID": 19437, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.450Z", + "last_change_date": "2022-03-14T07:52:58.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1996, + "fields": { + "EF_ID": 19438, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.555Z", + "last_change_date": "2022-03-14T07:52:58.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1997, + "fields": { + "EF_ID": 19439, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "990", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.638Z", + "last_change_date": "2022-03-14T07:52:58.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1998, + "fields": { + "EF_ID": 19440, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2750", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.730Z", + "last_change_date": "2022-03-14T07:52:58.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 1999, + "fields": { + "EF_ID": 19441, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Heavy - Duty Vehicles: Lean Burn Engine (compare with diesel)", + "Technology_Practices": "Uncontrolled: Assumed Fuel Economy:2.0 km/m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-43 on Page 1.86) of the Reference Manual (Estimated Emission Factors for US Light - and Heavy - Duty Natural Gas Vehicles).", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.800Z", + "last_change_date": "2022-03-14T07:52:58.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2000, + "fields": { + "EF_ID": 19442, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.867Z", + "last_change_date": "2022-03-14T07:52:58.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2001, + "fields": { + "EF_ID": 19443, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:58.933Z", + "last_change_date": "2022-03-14T07:52:58.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2002, + "fields": { + "EF_ID": 19444, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.000Z", + "last_change_date": "2022-03-14T07:52:59.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2003, + "fields": { + "EF_ID": 19445, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.092Z", + "last_change_date": "2022-03-14T07:52:59.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2004, + "fields": { + "EF_ID": 19446, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.171Z", + "last_change_date": "2022-03-14T07:52:59.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2005, + "fields": { + "EF_ID": 19447, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.233Z", + "last_change_date": "2022-03-14T07:52:59.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2006, + "fields": { + "EF_ID": 19448, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.317Z", + "last_change_date": "2022-03-14T07:52:59.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2007, + "fields": { + "EF_ID": 19449, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.375Z", + "last_change_date": "2022-03-14T07:52:59.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2008, + "fields": { + "EF_ID": 19450, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.433Z", + "last_change_date": "2022-03-14T07:52:59.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2009, + "fields": { + "EF_ID": 19451, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.491Z", + "last_change_date": "2022-03-14T07:52:59.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2010, + "fields": { + "EF_ID": 19452, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.578Z", + "last_change_date": "2022-03-14T07:52:59.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2011, + "fields": { + "EF_ID": 19453, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.646Z", + "last_change_date": "2022-03-14T07:52:59.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2012, + "fields": { + "EF_ID": 19454, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.717Z", + "last_change_date": "2022-03-14T07:52:59.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2013, + "fields": { + "EF_ID": 19455, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3000", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.783Z", + "last_change_date": "2022-03-14T07:52:59.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2014, + "fields": { + "EF_ID": 19456, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.850Z", + "last_change_date": "2022-03-14T07:52:59.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2015, + "fields": { + "EF_ID": 19457, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:52:59.925Z", + "last_change_date": "2022-03-14T07:52:59.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2016, + "fields": { + "EF_ID": 19458, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.000Z", + "last_change_date": "2022-03-14T07:53:00.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2017, + "fields": { + "EF_ID": 19459, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.090Z", + "last_change_date": "2022-03-14T07:53:00.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2018, + "fields": { + "EF_ID": 19460, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.163Z", + "last_change_date": "2022-03-14T07:53:00.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2019, + "fields": { + "EF_ID": 19461, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.225Z", + "last_change_date": "2022-03-14T07:53:00.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2020, + "fields": { + "EF_ID": 19462, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.300Z", + "last_change_date": "2022-03-14T07:53:00.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2021, + "fields": { + "EF_ID": 19463, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.367Z", + "last_change_date": "2022-03-14T07:53:00.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2022, + "fields": { + "EF_ID": 19464, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.438Z", + "last_change_date": "2022-03-14T07:53:00.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2023, + "fields": { + "EF_ID": 19465, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.500Z", + "last_change_date": "2022-03-14T07:53:00.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2024, + "fields": { + "EF_ID": 19466, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.593Z", + "last_change_date": "2022-03-14T07:53:00.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2025, + "fields": { + "EF_ID": 19467, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.671Z", + "last_change_date": "2022-03-14T07:53:00.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2026, + "fields": { + "EF_ID": 19468, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.45", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.738Z", + "last_change_date": "2022-03-14T07:53:00.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2027, + "fields": { + "EF_ID": 19469, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "356", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.821Z", + "last_change_date": "2022-03-14T07:53:00.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2028, + "fields": { + "EF_ID": 19470, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3000", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.888Z", + "last_change_date": "2022-03-14T07:53:00.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2029, + "fields": { + "EF_ID": 19471, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars)", + "Technology_Practices": "Worksheet 1-3; Sheet 1-3", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:00.955Z", + "last_change_date": "2022-03-14T07:53:00.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2030, + "fields": { + "EF_ID": 19472, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.021Z", + "last_change_date": "2022-03-14T07:53:01.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2031, + "fields": { + "EF_ID": 19473, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.112Z", + "last_change_date": "2022-03-14T07:53:01.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2032, + "fields": { + "EF_ID": 19474, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.188Z", + "last_change_date": "2022-03-14T07:53:01.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2033, + "fields": { + "EF_ID": 19475, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "Berdowski, et al (1993a) suggests a CH4 emission factor of 0.013 g/MJ for this vehicle/technology class.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.255Z", + "last_change_date": "2022-03-14T07:53:01.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2034, + "fields": { + "EF_ID": 19476, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "Berdowski, et al (1993a) suggests a CH4 emission factor of 0.013 g/MJ for this vehicle/technology class.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.321Z", + "last_change_date": "2022-03-14T07:53:01.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2035, + "fields": { + "EF_ID": 19477, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "Berdowski, et al (1993a) suggests a CH4 emission factor of 0.013 g/MJ for this vehicle/technology class.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.388Z", + "last_change_date": "2022-03-14T07:53:01.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2036, + "fields": { + "EF_ID": 19478, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.463Z", + "last_change_date": "2022-03-14T07:53:01.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2037, + "fields": { + "EF_ID": 19479, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.548Z", + "last_change_date": "2022-03-14T07:53:01.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2038, + "fields": { + "EF_ID": 19480, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.621Z", + "last_change_date": "2022-03-14T07:53:01.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2039, + "fields": { + "EF_ID": 19481, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.696Z", + "last_change_date": "2022-03-14T07:53:01.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2040, + "fields": { + "EF_ID": 19482, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.771Z", + "last_change_date": "2022-03-14T07:53:01.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2041, + "fields": { + "EF_ID": 19483, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.846Z", + "last_change_date": "2022-03-14T07:53:01.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2042, + "fields": { + "EF_ID": 19484, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "695", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:01.921Z", + "last_change_date": "2022-03-14T07:53:01.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2043, + "fields": { + "EF_ID": 19485, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3000", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.018Z", + "last_change_date": "2022-03-14T07:53:02.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2044, + "fields": { + "EF_ID": 19486, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Advanced Control", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.096Z", + "last_change_date": "2022-03-14T07:53:02.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2045, + "fields": { + "EF_ID": 19487, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.7", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.163Z", + "last_change_date": "2022-03-14T07:53:02.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2046, + "fields": { + "EF_ID": 19488, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.230Z", + "last_change_date": "2022-03-14T07:53:02.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2047, + "fields": { + "EF_ID": 19489, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.297Z", + "last_change_date": "2022-03-14T07:53:02.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2048, + "fields": { + "EF_ID": 19490, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "Berdowski, et al (1993a) suggests a CH4 emission factor of 0.013 g/MJ for this vehicle/technology class.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.363Z", + "last_change_date": "2022-03-14T07:53:02.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2049, + "fields": { + "EF_ID": 19491, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "Berdowski, et al (1993a) suggests a CH4 emission factor of 0.013 g/MJ for this vehicle/technology class.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.454Z", + "last_change_date": "2022-03-14T07:53:02.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2050, + "fields": { + "EF_ID": 19492, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "Berdowski, et al (1993a) suggests a CH4 emission factor of 0.013 g/MJ for this vehicle/technology class.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.530Z", + "last_change_date": "2022-03-14T07:53:02.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2051, + "fields": { + "EF_ID": 19493, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.596Z", + "last_change_date": "2022-03-14T07:53:02.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2052, + "fields": { + "EF_ID": 19494, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.663Z", + "last_change_date": "2022-03-14T07:53:02.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2053, + "fields": { + "EF_ID": 19495, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.730Z", + "last_change_date": "2022-03-14T07:53:02.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2054, + "fields": { + "EF_ID": 19496, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.796Z", + "last_change_date": "2022-03-14T07:53:02.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2055, + "fields": { + "EF_ID": 19497, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.907Z", + "last_change_date": "2022-03-14T07:53:02.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2056, + "fields": { + "EF_ID": 19498, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.52", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:02.980Z", + "last_change_date": "2022-03-14T07:53:02.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2057, + "fields": { + "EF_ID": 19499, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1020", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.055Z", + "last_change_date": "2022-03-14T07:53:03.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2058, + "fields": { + "EF_ID": 19500, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3000", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.121Z", + "last_change_date": "2022-03-14T07:53:03.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2059, + "fields": { + "EF_ID": 19501, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Light- and Heavy- Duty LPG Vehicles (Passenger Cars): Stoichiometric engine (compare with gasoline)", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-44 on Page 1.87) of the Reference Manual (Estimated Emission Factors for US Light- and Heavy- Duty LPG Vehicles)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.188Z", + "last_change_date": "2022-03-14T07:53:03.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2060, + "fields": { + "EF_ID": 19502, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.263Z", + "last_change_date": "2022-03-14T07:53:03.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2061, + "fields": { + "EF_ID": 19503, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.338Z", + "last_change_date": "2022-03-14T07:53:03.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2062, + "fields": { + "EF_ID": 19504, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.444Z", + "last_change_date": "2022-03-14T07:53:03.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2063, + "fields": { + "EF_ID": 19505, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.517Z", + "last_change_date": "2022-03-14T07:53:03.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2064, + "fields": { + "EF_ID": 19506, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.592Z", + "last_change_date": "2022-03-14T07:53:03.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2065, + "fields": { + "EF_ID": 19507, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.667Z", + "last_change_date": "2022-03-14T07:53:03.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2066, + "fields": { + "EF_ID": 19508, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.742Z", + "last_change_date": "2022-03-14T07:53:03.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2067, + "fields": { + "EF_ID": 19509, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.817Z", + "last_change_date": "2022-03-14T07:53:03.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2068, + "fields": { + "EF_ID": 19510, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.892Z", + "last_change_date": "2022-03-14T07:53:03.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2069, + "fields": { + "EF_ID": 19511, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:03.997Z", + "last_change_date": "2022-03-14T07:53:03.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2070, + "fields": { + "EF_ID": 19512, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.097Z", + "last_change_date": "2022-03-14T07:53:04.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2071, + "fields": { + "EF_ID": 19513, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.167Z", + "last_change_date": "2022-03-14T07:53:04.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2072, + "fields": { + "EF_ID": 19514, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.233Z", + "last_change_date": "2022-03-14T07:53:04.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2073, + "fields": { + "EF_ID": 19515, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3030", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.300Z", + "last_change_date": "2022-03-14T07:53:04.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2074, + "fields": { + "EF_ID": 19516, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for European LPG Passenger Cars", + "Technology_Practices": "Moderate Control: Assumed Fuel Economy 8.9km/l (under 5 bar pressure).", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-45 on Page 1.87) of the Reference Manual (Estimated Emission Factors for European LPG Passenger Cars)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Under 5 bar pressure", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.367Z", + "last_change_date": "2022-03-14T07:53:04.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2075, + "fields": { + "EF_ID": 19517, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Ocean-going ships", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.433Z", + "last_change_date": "2022-03-14T07:53:04.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2076, + "fields": { + "EF_ID": 19518, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Ocean-going ships", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.525Z", + "last_change_date": "2022-03-14T07:53:04.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2077, + "fields": { + "EF_ID": 19519, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Ocean-going ships", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.613Z", + "last_change_date": "2022-03-14T07:53:04.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2078, + "fields": { + "EF_ID": 19520, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Ocean-going ships", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.046", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.675Z", + "last_change_date": "2022-03-14T07:53:04.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2079, + "fields": { + "EF_ID": 19521, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Ocean-going ships", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.742Z", + "last_change_date": "2022-03-14T07:53:04.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2080, + "fields": { + "EF_ID": 19522, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Ocean-going ships", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.809Z", + "last_change_date": "2022-03-14T07:53:04.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2081, + "fields": { + "EF_ID": 19523, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Ocean-going ships", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3212", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.875Z", + "last_change_date": "2022-03-14T07:53:04.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2082, + "fields": { + "EF_ID": 19524, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Ocean-going ships", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77.6", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:04.951Z", + "last_change_date": "2022-03-14T07:53:04.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2083, + "fields": { + "EF_ID": 19525, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.128Z", + "last_change_date": "2022-03-14T07:53:05.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2084, + "fields": { + "EF_ID": 19526, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.200Z", + "last_change_date": "2022-03-14T07:53:05.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2085, + "fields": { + "EF_ID": 19527, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.272Z", + "last_change_date": "2022-03-14T07:53:05.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2086, + "fields": { + "EF_ID": 19528, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.330Z", + "last_change_date": "2022-03-14T07:53:05.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2087, + "fields": { + "EF_ID": 19529, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.388Z", + "last_change_date": "2022-03-14T07:53:05.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2088, + "fields": { + "EF_ID": 19530, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.447Z", + "last_change_date": "2022-03-14T07:53:05.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2089, + "fields": { + "EF_ID": 19531, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.513Z", + "last_change_date": "2022-03-14T07:53:05.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2090, + "fields": { + "EF_ID": 19532, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.598Z", + "last_change_date": "2022-03-14T07:53:05.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2091, + "fields": { + "EF_ID": 19533, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.672Z", + "last_change_date": "2022-03-14T07:53:05.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2092, + "fields": { + "EF_ID": 19534, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.738Z", + "last_change_date": "2022-03-14T07:53:05.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2093, + "fields": { + "EF_ID": 19535, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3188", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.805Z", + "last_change_date": "2022-03-14T07:53:05.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2094, + "fields": { + "EF_ID": 19536, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Boats", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.872Z", + "last_change_date": "2022-03-14T07:53:05.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2095, + "fields": { + "EF_ID": 19537, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:05.938Z", + "last_change_date": "2022-03-14T07:53:05.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2096, + "fields": { + "EF_ID": 19538, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.005Z", + "last_change_date": "2022-03-14T07:53:06.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2097, + "fields": { + "EF_ID": 19539, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.101Z", + "last_change_date": "2022-03-14T07:53:06.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2098, + "fields": { + "EF_ID": 19540, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.197Z", + "last_change_date": "2022-03-14T07:53:06.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2099, + "fields": { + "EF_ID": 19541, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.267Z", + "last_change_date": "2022-03-14T07:53:06.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2100, + "fields": { + "EF_ID": 19542, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.342Z", + "last_change_date": "2022-03-14T07:53:06.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2101, + "fields": { + "EF_ID": 19543, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.417Z", + "last_change_date": "2022-03-14T07:53:06.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2102, + "fields": { + "EF_ID": 19544, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.492Z", + "last_change_date": "2022-03-14T07:53:06.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2103, + "fields": { + "EF_ID": 19545, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.567Z", + "last_change_date": "2022-03-14T07:53:06.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2104, + "fields": { + "EF_ID": 19546, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.672Z", + "last_change_date": "2022-03-14T07:53:06.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2105, + "fields": { + "EF_ID": 19547, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3188", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.746Z", + "last_change_date": "2022-03-14T07:53:06.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2106, + "fields": { + "EF_ID": 19548, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Locomotives", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.809Z", + "last_change_date": "2022-03-14T07:53:06.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2107, + "fields": { + "EF_ID": 19549, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.876Z", + "last_change_date": "2022-03-14T07:53:06.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2108, + "fields": { + "EF_ID": 19550, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:06.942Z", + "last_change_date": "2022-03-14T07:53:06.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2109, + "fields": { + "EF_ID": 19551, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.009Z", + "last_change_date": "2022-03-14T07:53:07.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2110, + "fields": { + "EF_ID": 19552, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.011", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.092Z", + "last_change_date": "2022-03-14T07:53:07.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2111, + "fields": { + "EF_ID": 19553, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.182Z", + "last_change_date": "2022-03-14T07:53:07.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2112, + "fields": { + "EF_ID": 19554, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.272Z", + "last_change_date": "2022-03-14T07:53:07.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2113, + "fields": { + "EF_ID": 19555, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.334Z", + "last_change_date": "2022-03-14T07:53:07.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2114, + "fields": { + "EF_ID": 19556, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.400Z", + "last_change_date": "2022-03-14T07:53:07.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2115, + "fields": { + "EF_ID": 19557, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.472Z", + "last_change_date": "2022-03-14T07:53:07.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2116, + "fields": { + "EF_ID": 19558, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.534Z", + "last_change_date": "2022-03-14T07:53:07.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2117, + "fields": { + "EF_ID": 19559, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3188", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.600Z", + "last_change_date": "2022-03-14T07:53:07.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2118, + "fields": { + "EF_ID": 19560, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Farm Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.694Z", + "last_change_date": "2022-03-14T07:53:07.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2119, + "fields": { + "EF_ID": 19561, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.780Z", + "last_change_date": "2022-03-14T07:53:07.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2120, + "fields": { + "EF_ID": 19562, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.842Z", + "last_change_date": "2022-03-14T07:53:07.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2121, + "fields": { + "EF_ID": 19563, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:07.917Z", + "last_change_date": "2022-03-14T07:53:07.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2122, + "fields": { + "EF_ID": 19564, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.001Z", + "last_change_date": "2022-03-14T07:53:08.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2123, + "fields": { + "EF_ID": 19565, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.084Z", + "last_change_date": "2022-03-14T07:53:08.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2124, + "fields": { + "EF_ID": 19566, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.150Z", + "last_change_date": "2022-03-14T07:53:08.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2125, + "fields": { + "EF_ID": 19567, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.239Z", + "last_change_date": "2022-03-14T07:53:08.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2126, + "fields": { + "EF_ID": 19568, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.317Z", + "last_change_date": "2022-03-14T07:53:08.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2127, + "fields": { + "EF_ID": 19569, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.405Z", + "last_change_date": "2022-03-14T07:53:08.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2128, + "fields": { + "EF_ID": 19570, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.480Z", + "last_change_date": "2022-03-14T07:53:08.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2129, + "fields": { + "EF_ID": 19571, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3188", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.555Z", + "last_change_date": "2022-03-14T07:53:08.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2130, + "fields": { + "EF_ID": 19572, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Construction and Industrial Equipment", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.630Z", + "last_change_date": "2022-03-14T07:53:08.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2131, + "fields": { + "EF_ID": 19573, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.705Z", + "last_change_date": "2022-03-14T07:53:08.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2132, + "fields": { + "EF_ID": 19574, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.801Z", + "last_change_date": "2022-03-14T07:53:08.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2133, + "fields": { + "EF_ID": 19575, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.087", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.888Z", + "last_change_date": "2022-03-14T07:53:08.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2134, + "fields": { + "EF_ID": 19576, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:08.955Z", + "last_change_date": "2022-03-14T07:53:08.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2135, + "fields": { + "EF_ID": 19577, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.021Z", + "last_change_date": "2022-03-14T07:53:09.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2136, + "fields": { + "EF_ID": 19578, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.018", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.088Z", + "last_change_date": "2022-03-14T07:53:09.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2137, + "fields": { + "EF_ID": 19579, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.171Z", + "last_change_date": "2022-03-14T07:53:09.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2138, + "fields": { + "EF_ID": 19580, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.238Z", + "last_change_date": "2022-03-14T07:53:09.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2139, + "fields": { + "EF_ID": 19581, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3149", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.337Z", + "last_change_date": "2022-03-14T07:53:09.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2140, + "fields": { + "EF_ID": 19582, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Jet and Turboprop Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.8", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.413Z", + "last_change_date": "2022-03-14T07:53:09.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2141, + "fields": { + "EF_ID": 19583, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.52", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.480Z", + "last_change_date": "2022-03-14T07:53:09.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2142, + "fields": { + "EF_ID": 19584, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.546Z", + "last_change_date": "2022-03-14T07:53:09.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2143, + "fields": { + "EF_ID": 19585, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.64", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.613Z", + "last_change_date": "2022-03-14T07:53:09.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2144, + "fields": { + "EF_ID": 19586, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.680Z", + "last_change_date": "2022-03-14T07:53:09.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2145, + "fields": { + "EF_ID": 19587, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.755Z", + "last_change_date": "2022-03-14T07:53:09.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2146, + "fields": { + "EF_ID": 19588, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.849Z", + "last_change_date": "2022-03-14T07:53:09.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2147, + "fields": { + "EF_ID": 19589, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1034", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.921Z", + "last_change_date": "2022-03-14T07:53:09.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2148, + "fields": { + "EF_ID": 19590, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:09.988Z", + "last_change_date": "2022-03-14T07:53:09.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2149, + "fields": { + "EF_ID": 19591, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.063Z", + "last_change_date": "2022-03-14T07:53:10.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2150, + "fields": { + "EF_ID": 19592, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0009", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.138Z", + "last_change_date": "2022-03-14T07:53:10.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2151, + "fields": { + "EF_ID": 19593, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3172", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.213Z", + "last_change_date": "2022-03-14T07:53:10.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2152, + "fields": { + "EF_ID": 19594, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources ", + "Technology_Practices": "Uncontrolled Emissions: Gasoline (Piston) Aircraft", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-47 on Page 1.89) of the Reference Manual (Estimated Emission Factors for US Non-Road Mobile Sources)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.288Z", + "last_change_date": "2022-03-14T07:53:10.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2153, + "fields": { + "EF_ID": 19595, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Marine Emission Factors", + "Technology_Practices": "Ocean-going ships diesel engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-48 on Page 1.90) of the Reference Manual (Default Marine Emission Factors)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mostly using heavy fuel oil", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.385Z", + "last_change_date": "2022-03-14T07:53:10.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2154, + "fields": { + "EF_ID": 19596, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Marine Emission Factors", + "Technology_Practices": "Ocean-going ships diesel engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-48 on Page 1.90) of the Reference Manual (Default Marine Emission Factors)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mostly using heavy fuel oil", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.463Z", + "last_change_date": "2022-03-14T07:53:10.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2155, + "fields": { + "EF_ID": 19597, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Marine Emission Factors", + "Technology_Practices": "Ocean-going ships diesel engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-48 on Page 1.90) of the Reference Manual (Default Marine Emission Factors)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mostly using heavy fuel oil", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.538Z", + "last_change_date": "2022-03-14T07:53:10.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2156, + "fields": { + "EF_ID": 19598, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Marine Emission Factors", + "Technology_Practices": "Ocean-going ships diesel engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-48 on Page 1.90) of the Reference Manual (Default Marine Emission Factors)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mostly using heavy fuel oil", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.613Z", + "last_change_date": "2022-03-14T07:53:10.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2157, + "fields": { + "EF_ID": 19599, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Marine Emission Factors", + "Technology_Practices": "Ocean-going ships diesel engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.052", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-48 on Page 1.90) of the Reference Manual (Default Marine Emission Factors)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mostly using heavy fuel oil", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.680Z", + "last_change_date": "2022-03-14T07:53:10.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2158, + "fields": { + "EF_ID": 19600, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways and Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.746Z", + "last_change_date": "2022-03-14T07:53:10.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2159, + "fields": { + "EF_ID": 19601, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.813Z", + "last_change_date": "2022-03-14T07:53:10.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2160, + "fields": { + "EF_ID": 19602, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.912Z", + "last_change_date": "2022-03-14T07:53:10.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2161, + "fields": { + "EF_ID": 19603, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:10.988Z", + "last_change_date": "2022-03-14T07:53:10.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2162, + "fields": { + "EF_ID": 19604, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.055Z", + "last_change_date": "2022-03-14T07:53:11.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2163, + "fields": { + "EF_ID": 19605, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.122Z", + "last_change_date": "2022-03-14T07:53:11.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2164, + "fields": { + "EF_ID": 19606, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.232Z", + "last_change_date": "2022-03-14T07:53:11.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2165, + "fields": { + "EF_ID": 19607, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.313Z", + "last_change_date": "2022-03-14T07:53:11.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2166, + "fields": { + "EF_ID": 19608, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.380Z", + "last_change_date": "2022-03-14T07:53:11.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2167, + "fields": { + "EF_ID": 19609, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.451Z", + "last_change_date": "2022-03-14T07:53:11.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2168, + "fields": { + "EF_ID": 19610, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.543Z", + "last_change_date": "2022-03-14T07:53:11.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2169, + "fields": { + "EF_ID": 19611, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.613Z", + "last_change_date": "2022-03-14T07:53:11.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2170, + "fields": { + "EF_ID": 19612, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.684Z", + "last_change_date": "2022-03-14T07:53:11.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2171, + "fields": { + "EF_ID": 19613, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.751Z", + "last_change_date": "2022-03-14T07:53:11.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2172, + "fields": { + "EF_ID": 19614, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.844Z", + "last_change_date": "2022-03-14T07:53:11.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2173, + "fields": { + "EF_ID": 19615, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:11.938Z", + "last_change_date": "2022-03-14T07:53:11.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2174, + "fields": { + "EF_ID": 19616, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.009Z", + "last_change_date": "2022-03-14T07:53:12.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2175, + "fields": { + "EF_ID": 19617, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.076Z", + "last_change_date": "2022-03-14T07:53:12.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2176, + "fields": { + "EF_ID": 19618, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.171Z", + "last_change_date": "2022-03-14T07:53:12.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2177, + "fields": { + "EF_ID": 19619, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.263Z", + "last_change_date": "2022-03-14T07:53:12.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2178, + "fields": { + "EF_ID": 19620, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.326Z", + "last_change_date": "2022-03-14T07:53:12.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2179, + "fields": { + "EF_ID": 19621, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.384Z", + "last_change_date": "2022-03-14T07:53:12.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2180, + "fields": { + "EF_ID": 19622, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.480Z", + "last_change_date": "2022-03-14T07:53:12.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2181, + "fields": { + "EF_ID": 19623, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.538Z", + "last_change_date": "2022-03-14T07:53:12.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2182, + "fields": { + "EF_ID": 19624, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.601Z", + "last_change_date": "2022-03-14T07:53:12.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2183, + "fields": { + "EF_ID": 19625, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.668Z", + "last_change_date": "2022-03-14T07:53:12.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2184, + "fields": { + "EF_ID": 19626, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.759Z", + "last_change_date": "2022-03-14T07:53:12.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2185, + "fields": { + "EF_ID": 19627, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.838Z", + "last_change_date": "2022-03-14T07:53:12.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2186, + "fields": { + "EF_ID": 19628, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.909Z", + "last_change_date": "2022-03-14T07:53:12.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2187, + "fields": { + "EF_ID": 19629, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:12.968Z", + "last_change_date": "2022-03-14T07:53:12.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2188, + "fields": { + "EF_ID": 19630, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.052Z", + "last_change_date": "2022-03-14T07:53:13.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2189, + "fields": { + "EF_ID": 19631, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.126Z", + "last_change_date": "2022-03-14T07:53:13.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2190, + "fields": { + "EF_ID": 19632, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.193Z", + "last_change_date": "2022-03-14T07:53:13.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2191, + "fields": { + "EF_ID": 19633, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.259Z", + "last_change_date": "2022-03-14T07:53:13.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2192, + "fields": { + "EF_ID": 19634, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.362Z", + "last_change_date": "2022-03-14T07:53:13.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2193, + "fields": { + "EF_ID": 19635, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.459Z", + "last_change_date": "2022-03-14T07:53:13.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2194, + "fields": { + "EF_ID": 19636, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.534Z", + "last_change_date": "2022-03-14T07:53:13.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2195, + "fields": { + "EF_ID": 19637, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.609Z", + "last_change_date": "2022-03-14T07:53:13.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2196, + "fields": { + "EF_ID": 19638, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.705Z", + "last_change_date": "2022-03-14T07:53:13.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2197, + "fields": { + "EF_ID": 19639, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.801Z", + "last_change_date": "2022-03-14T07:53:13.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2198, + "fields": { + "EF_ID": 19640, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.872Z", + "last_change_date": "2022-03-14T07:53:13.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2199, + "fields": { + "EF_ID": 19641, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:13.947Z", + "last_change_date": "2022-03-14T07:53:13.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2200, + "fields": { + "EF_ID": 19642, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.065Z", + "last_change_date": "2022-03-14T07:53:14.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2201, + "fields": { + "EF_ID": 19643, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.143Z", + "last_change_date": "2022-03-14T07:53:14.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2202, + "fields": { + "EF_ID": 19644, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.222Z", + "last_change_date": "2022-03-14T07:53:14.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2203, + "fields": { + "EF_ID": 19645, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.288Z", + "last_change_date": "2022-03-14T07:53:14.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2204, + "fields": { + "EF_ID": 19646, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.385Z", + "last_change_date": "2022-03-14T07:53:14.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2205, + "fields": { + "EF_ID": 19647, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.460Z", + "last_change_date": "2022-03-14T07:53:14.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2206, + "fields": { + "EF_ID": 19648, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.530Z", + "last_change_date": "2022-03-14T07:53:14.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2207, + "fields": { + "EF_ID": 19649, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.597Z", + "last_change_date": "2022-03-14T07:53:14.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2208, + "fields": { + "EF_ID": 19650, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.687Z", + "last_change_date": "2022-03-14T07:53:14.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2209, + "fields": { + "EF_ID": 19651, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.776Z", + "last_change_date": "2022-03-14T07:53:14.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2210, + "fields": { + "EF_ID": 19652, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.846Z", + "last_change_date": "2022-03-14T07:53:14.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2211, + "fields": { + "EF_ID": 19653, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:14.913Z", + "last_change_date": "2022-03-14T07:53:14.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2212, + "fields": { + "EF_ID": 19654, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.005Z", + "last_change_date": "2022-03-14T07:53:15.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2213, + "fields": { + "EF_ID": 19655, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.093Z", + "last_change_date": "2022-03-14T07:53:15.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2214, + "fields": { + "EF_ID": 19656, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.163Z", + "last_change_date": "2022-03-14T07:53:15.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2215, + "fields": { + "EF_ID": 19657, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.238Z", + "last_change_date": "2022-03-14T07:53:15.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2216, + "fields": { + "EF_ID": 19658, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.341Z", + "last_change_date": "2022-03-14T07:53:15.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2217, + "fields": { + "EF_ID": 19659, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Railways (Diesel Engines)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.434Z", + "last_change_date": "2022-03-14T07:53:15.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2218, + "fields": { + "EF_ID": 19660, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.505Z", + "last_change_date": "2022-03-14T07:53:15.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2219, + "fields": { + "EF_ID": 19661, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.571Z", + "last_change_date": "2022-03-14T07:53:15.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2220, + "fields": { + "EF_ID": 19662, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.675Z", + "last_change_date": "2022-03-14T07:53:15.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2221, + "fields": { + "EF_ID": 19663, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.751Z", + "last_change_date": "2022-03-14T07:53:15.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2222, + "fields": { + "EF_ID": 19664, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.830Z", + "last_change_date": "2022-03-14T07:53:15.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2223, + "fields": { + "EF_ID": 19665, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.905Z", + "last_change_date": "2022-03-14T07:53:15.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2224, + "fields": { + "EF_ID": 19666, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:15.994Z", + "last_change_date": "2022-03-14T07:53:15.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2225, + "fields": { + "EF_ID": 19667, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.076Z", + "last_change_date": "2022-03-14T07:53:16.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2226, + "fields": { + "EF_ID": 19668, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.138Z", + "last_change_date": "2022-03-14T07:53:16.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2227, + "fields": { + "EF_ID": 19669, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.205Z", + "last_change_date": "2022-03-14T07:53:16.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2228, + "fields": { + "EF_ID": 19670, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3140", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.296Z", + "last_change_date": "2022-03-14T07:53:16.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2229, + "fields": { + "EF_ID": 19671, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Diesel Engines(", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.385Z", + "last_change_date": "2022-03-14T07:53:16.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2230, + "fields": { + "EF_ID": 19672, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.446Z", + "last_change_date": "2022-03-14T07:53:16.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2231, + "fields": { + "EF_ID": 19673, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.513Z", + "last_change_date": "2022-03-14T07:53:16.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2232, + "fields": { + "EF_ID": 19674, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.606Z", + "last_change_date": "2022-03-14T07:53:16.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2233, + "fields": { + "EF_ID": 19675, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.685Z", + "last_change_date": "2022-03-14T07:53:16.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2234, + "fields": { + "EF_ID": 19676, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.746Z", + "last_change_date": "2022-03-14T07:53:16.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2235, + "fields": { + "EF_ID": 19677, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.821Z", + "last_change_date": "2022-03-14T07:53:16.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2236, + "fields": { + "EF_ID": 19678, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1500", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:16.924Z", + "last_change_date": "2022-03-14T07:53:16.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2237, + "fields": { + "EF_ID": 19679, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.001Z", + "last_change_date": "2022-03-14T07:53:17.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2238, + "fields": { + "EF_ID": 19680, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.071Z", + "last_change_date": "2022-03-14T07:53:17.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2239, + "fields": { + "EF_ID": 19681, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.146Z", + "last_change_date": "2022-03-14T07:53:17.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2240, + "fields": { + "EF_ID": 19682, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.251Z", + "last_change_date": "2022-03-14T07:53:17.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2241, + "fields": { + "EF_ID": 19683, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.327Z", + "last_change_date": "2022-03-14T07:53:17.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2242, + "fields": { + "EF_ID": 19684, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.405Z", + "last_change_date": "2022-03-14T07:53:17.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2243, + "fields": { + "EF_ID": 19685, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.505Z", + "last_change_date": "2022-03-14T07:53:17.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2244, + "fields": { + "EF_ID": 19686, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.605Z", + "last_change_date": "2022-03-14T07:53:17.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2245, + "fields": { + "EF_ID": 19687, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.693Z", + "last_change_date": "2022-03-14T07:53:17.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2246, + "fields": { + "EF_ID": 19688, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.755Z", + "last_change_date": "2022-03-14T07:53:17.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2247, + "fields": { + "EF_ID": 19689, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.822Z", + "last_change_date": "2022-03-14T07:53:17.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2248, + "fields": { + "EF_ID": 19690, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:17.914Z", + "last_change_date": "2022-03-14T07:53:17.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2249, + "fields": { + "EF_ID": 19691, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.002Z", + "last_change_date": "2022-03-14T07:53:18.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2250, + "fields": { + "EF_ID": 19692, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.063Z", + "last_change_date": "2022-03-14T07:53:18.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2251, + "fields": { + "EF_ID": 19693, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.130Z", + "last_change_date": "2022-03-14T07:53:18.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2252, + "fields": { + "EF_ID": 19694, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.267Z", + "last_change_date": "2022-03-14T07:53:18.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2253, + "fields": { + "EF_ID": 19695, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.326Z", + "last_change_date": "2022-03-14T07:53:18.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2254, + "fields": { + "EF_ID": 19696, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.380Z", + "last_change_date": "2022-03-14T07:53:18.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2255, + "fields": { + "EF_ID": 19697, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.438Z", + "last_change_date": "2022-03-14T07:53:18.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2256, + "fields": { + "EF_ID": 19698, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.534Z", + "last_change_date": "2022-03-14T07:53:18.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2257, + "fields": { + "EF_ID": 19699, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.610Z", + "last_change_date": "2022-03-14T07:53:18.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2258, + "fields": { + "EF_ID": 19700, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.5", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.680Z", + "last_change_date": "2022-03-14T07:53:18.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2259, + "fields": { + "EF_ID": 19701, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.746Z", + "last_change_date": "2022-03-14T07:53:18.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2260, + "fields": { + "EF_ID": 19702, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.852Z", + "last_change_date": "2022-03-14T07:53:18.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2261, + "fields": { + "EF_ID": 19703, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.926Z", + "last_change_date": "2022-03-14T07:53:18.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2262, + "fields": { + "EF_ID": 19704, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:18.997Z", + "last_change_date": "2022-03-14T07:53:18.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2263, + "fields": { + "EF_ID": 19705, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.071Z", + "last_change_date": "2022-03-14T07:53:19.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2264, + "fields": { + "EF_ID": 19706, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.172Z", + "last_change_date": "2022-03-14T07:53:19.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2265, + "fields": { + "EF_ID": 19707, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.255Z", + "last_change_date": "2022-03-14T07:53:19.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2266, + "fields": { + "EF_ID": 19708, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.318Z", + "last_change_date": "2022-03-14T07:53:19.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2267, + "fields": { + "EF_ID": 19709, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household(Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.385Z", + "last_change_date": "2022-03-14T07:53:19.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2268, + "fields": { + "EF_ID": 19710, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.474Z", + "last_change_date": "2022-03-14T07:53:19.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2269, + "fields": { + "EF_ID": 19711, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.572Z", + "last_change_date": "2022-03-14T07:53:19.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2270, + "fields": { + "EF_ID": 19712, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.635Z", + "last_change_date": "2022-03-14T07:53:19.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2271, + "fields": { + "EF_ID": 19713, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.702Z", + "last_change_date": "2022-03-14T07:53:19.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2272, + "fields": { + "EF_ID": 19714, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.800Z", + "last_change_date": "2022-03-14T07:53:19.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2273, + "fields": { + "EF_ID": 19715, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Including diurnal, soak and running losses ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.880Z", + "last_change_date": "2022-03-14T07:53:19.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2274, + "fields": { + "EF_ID": 19716, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1000", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:19.943Z", + "last_change_date": "2022-03-14T07:53:19.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2275, + "fields": { + "EF_ID": 19717, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.010Z", + "last_change_date": "2022-03-14T07:53:20.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2276, + "fields": { + "EF_ID": 19718, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.110Z", + "last_change_date": "2022-03-14T07:53:20.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2277, + "fields": { + "EF_ID": 19719, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.188Z", + "last_change_date": "2022-03-14T07:53:20.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2278, + "fields": { + "EF_ID": 19720, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.252Z", + "last_change_date": "2022-03-14T07:53:20.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2279, + "fields": { + "EF_ID": 19721, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland waterways (Gasoline 4-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.318Z", + "last_change_date": "2022-03-14T07:53:20.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2280, + "fields": { + "EF_ID": 19722, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.420Z", + "last_change_date": "2022-03-14T07:53:20.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2281, + "fields": { + "EF_ID": 19723, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.497Z", + "last_change_date": "2022-03-14T07:53:20.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2282, + "fields": { + "EF_ID": 19724, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.568Z", + "last_change_date": "2022-03-14T07:53:20.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2283, + "fields": { + "EF_ID": 19725, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.643Z", + "last_change_date": "2022-03-14T07:53:20.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2284, + "fields": { + "EF_ID": 19726, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "620", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.748Z", + "last_change_date": "2022-03-14T07:53:20.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2285, + "fields": { + "EF_ID": 19727, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.821Z", + "last_change_date": "2022-03-14T07:53:20.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2286, + "fields": { + "EF_ID": 19728, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1100", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.894Z", + "last_change_date": "2022-03-14T07:53:20.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2287, + "fields": { + "EF_ID": 19729, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:20.960Z", + "last_change_date": "2022-03-14T07:53:20.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2288, + "fields": { + "EF_ID": 19730, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.058Z", + "last_change_date": "2022-03-14T07:53:21.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2289, + "fields": { + "EF_ID": 19731, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.138Z", + "last_change_date": "2022-03-14T07:53:21.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2290, + "fields": { + "EF_ID": 19732, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.202Z", + "last_change_date": "2022-03-14T07:53:21.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2291, + "fields": { + "EF_ID": 19733, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Agriculture(Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.269Z", + "last_change_date": "2022-03-14T07:53:21.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2292, + "fields": { + "EF_ID": 19734, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.368Z", + "last_change_date": "2022-03-14T07:53:21.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2293, + "fields": { + "EF_ID": 19735, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.447Z", + "last_change_date": "2022-03-14T07:53:21.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2294, + "fields": { + "EF_ID": 19736, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.513Z", + "last_change_date": "2022-03-14T07:53:21.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2295, + "fields": { + "EF_ID": 19737, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.580Z", + "last_change_date": "2022-03-14T07:53:21.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2296, + "fields": { + "EF_ID": 19738, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "760", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.678Z", + "last_change_date": "2022-03-14T07:53:21.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2297, + "fields": { + "EF_ID": 19739, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.755Z", + "last_change_date": "2022-03-14T07:53:21.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2298, + "fields": { + "EF_ID": 19740, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1400", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.822Z", + "last_change_date": "2022-03-14T07:53:21.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2299, + "fields": { + "EF_ID": 19741, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.888Z", + "last_change_date": "2022-03-14T07:53:21.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2300, + "fields": { + "EF_ID": 19742, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:21.980Z", + "last_change_date": "2022-03-14T07:53:21.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2301, + "fields": { + "EF_ID": 19743, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.055Z", + "last_change_date": "2022-03-14T07:53:22.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2302, + "fields": { + "EF_ID": 19744, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.121Z", + "last_change_date": "2022-03-14T07:53:22.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2303, + "fields": { + "EF_ID": 19745, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Forestry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.197Z", + "last_change_date": "2022-03-14T07:53:22.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2304, + "fields": { + "EF_ID": 19746, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.299Z", + "last_change_date": "2022-03-14T07:53:22.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2305, + "fields": { + "EF_ID": 19747, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.388Z", + "last_change_date": "2022-03-14T07:53:22.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2306, + "fields": { + "EF_ID": 19748, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.463Z", + "last_change_date": "2022-03-14T07:53:22.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2307, + "fields": { + "EF_ID": 19749, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.538Z", + "last_change_date": "2022-03-14T07:53:22.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2308, + "fields": { + "EF_ID": 19750, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "600", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.643Z", + "last_change_date": "2022-03-14T07:53:22.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2309, + "fields": { + "EF_ID": 19751, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.722Z", + "last_change_date": "2022-03-14T07:53:22.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2310, + "fields": { + "EF_ID": 19752, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1100", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.788Z", + "last_change_date": "2022-03-14T07:53:22.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2311, + "fields": { + "EF_ID": 19753, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.855Z", + "last_change_date": "2022-03-14T07:53:22.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2312, + "fields": { + "EF_ID": 19754, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:22.953Z", + "last_change_date": "2022-03-14T07:53:22.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2313, + "fields": { + "EF_ID": 19755, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.030Z", + "last_change_date": "2022-03-14T07:53:23.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2314, + "fields": { + "EF_ID": 19756, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.097Z", + "last_change_date": "2022-03-14T07:53:23.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2315, + "fields": { + "EF_ID": 19757, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Industry (Gasoline 2-stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.163Z", + "last_change_date": "2022-03-14T07:53:23.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2316, + "fields": { + "EF_ID": 19758, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.255Z", + "last_change_date": "2022-03-14T07:53:23.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2317, + "fields": { + "EF_ID": 19759, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.455Z", + "last_change_date": "2022-03-14T07:53:23.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2318, + "fields": { + "EF_ID": 19760, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.521Z", + "last_change_date": "2022-03-14T07:53:23.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2319, + "fields": { + "EF_ID": 19761, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.596Z", + "last_change_date": "2022-03-14T07:53:23.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2320, + "fields": { + "EF_ID": 19762, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "810", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.690Z", + "last_change_date": "2022-03-14T07:53:23.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2321, + "fields": { + "EF_ID": 19763, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.780Z", + "last_change_date": "2022-03-14T07:53:23.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2322, + "fields": { + "EF_ID": 19764, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1600", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.855Z", + "last_change_date": "2022-03-14T07:53:23.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2323, + "fields": { + "EF_ID": 19765, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:23.921Z", + "last_change_date": "2022-03-14T07:53:23.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2324, + "fields": { + "EF_ID": 19766, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.043Z", + "last_change_date": "2022-03-14T07:53:24.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2325, + "fields": { + "EF_ID": 19767, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.130Z", + "last_change_date": "2022-03-14T07:53:24.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2326, + "fields": { + "EF_ID": 19768, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.205Z", + "last_change_date": "2022-03-14T07:53:24.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2327, + "fields": { + "EF_ID": 19769, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Household (Gasoline 2 -stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.280Z", + "last_change_date": "2022-03-14T07:53:24.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2328, + "fields": { + "EF_ID": 19770, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.386Z", + "last_change_date": "2022-03-14T07:53:24.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2329, + "fields": { + "EF_ID": 19771, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.461Z", + "last_change_date": "2022-03-14T07:53:24.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2330, + "fields": { + "EF_ID": 19772, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.530Z", + "last_change_date": "2022-03-14T07:53:24.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2331, + "fields": { + "EF_ID": 19773, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.605Z", + "last_change_date": "2022-03-14T07:53:24.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2332, + "fields": { + "EF_ID": 19774, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "500", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.696Z", + "last_change_date": "2022-03-14T07:53:24.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2333, + "fields": { + "EF_ID": 19775, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.780Z", + "last_change_date": "2022-03-14T07:53:24.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2334, + "fields": { + "EF_ID": 19776, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "890", + "Unit": "g/kgl", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.846Z", + "last_change_date": "2022-03-14T07:53:24.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2335, + "fields": { + "EF_ID": 19777, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON MONOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:24.913Z", + "last_change_date": "2022-03-14T07:53:24.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2336, + "fields": { + "EF_ID": 19778, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.006Z", + "last_change_date": "2022-03-14T07:53:25.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2337, + "fields": { + "EF_ID": 19779, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0004", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.088Z", + "last_change_date": "2022-03-14T07:53:25.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2338, + "fields": { + "EF_ID": 19780, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3200", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.155Z", + "last_change_date": "2022-03-14T07:53:25.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2339, + "fields": { + "EF_ID": 19781, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated emission factors for US Non-Road Mobile Sources and Machinery ", + "Technology_Practices": "Inland Waterways (Gasoline 2 - stroke)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-49 on Page 1.91) of the Reference Manual (Estimated emission factors for European non- road mobile sources and machinery)", + "Technical_Reference": "Andrias, A. Z. Samaras and K. H. Zierock (1994), The Estimation of the Emissions of 'Other Mobile Sources and Machine' Subparts 'Off-Road Vehicles and Machines, Railways amd Inland Waterways in the European Union, EC Study Contract B4 -3040/93/000803/B3, Berlin, Germany. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.222Z", + "last_change_date": "2022-03-14T07:53:25.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2340, + "fields": { + "EF_ID": 22964, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Lime Production", + "Technology_Practices": "Process: Lime Kiln-Calcite Feed", + "Parameter_Conditions": "Product: pure high-calcium quicklime (100% of CaO in lime)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "tonnes CO2/tonnes quicklime produced", + "Equation": "Equation 3.4 on Page 3.20 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-2 on Page 2.9 of the Reference Manual)", + "Technical_Reference": "ORTECH International (1991), Compilation of an Ontario Gridded Carbon Dioxide and Nitrous Oxide Emission Inventory. Ortech Report No. P-91-50-6436/OG", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.316Z", + "last_change_date": "2022-03-14T07:53:25.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2341, + "fields": { + "EF_ID": 22965, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Lime Production", + "Technology_Practices": "Process: Lime Kiln-Dolomite Feed", + "Parameter_Conditions": "Product: pure dolomitic lime (100% of CaOMgO in lime)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "tonnes CO2/tonnes dolomitic lime", + "Equation": "Equation 3.4 on Page 3.20 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-2 on Page 2.9 of the Reference Manual)", + "Technical_Reference": "ORTECH International (1991), Compilation of an Ontario Gridded Carbon Dioxide and Nitrous Oxide Emission Inventory. Ortech Report No. P-91-50-6436/OG", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.405Z", + "last_change_date": "2022-03-14T07:53:25.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2342, + "fields": { + "EF_ID": 22966, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "Tonne CO2/tonne NH3 produced", + "Equation": "Page 2.16 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), Noted as Tier 1b in the Workbook (Page 2.14).", + "IPCC_Worksheet": "Worksheet 2-6, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-5 on Page 2.16 of the Reference Manual)", + "Technical_Reference": "Jaques, A.P. (1992), Canada's Greenhouse Gas Emissions: Estimates for 1990. Environment Canada Report EPS 5/AP/4.; Industrial Chemicals (1980), W.l. Faith, D.B. Keyes and R.L. Clark (eds.), 3rd Edition, John Wiley and Sons, New York, New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reductions should be applied to account for any ammonia that is produced from by-product hydrogen. It is not clear if gas used as a fuel is included in this figure. The figures are dependent on the carbon content in the feedstock. This figure is based on the assumption of 812 m3 gas/tonnes NH3 and 0.525 kg carbon/m3 gas.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.471Z", + "last_change_date": "2022-03-14T07:53:25.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2343, + "fields": { + "EF_ID": 22967, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "Tonne CO2/tonne NH3 produced", + "Equation": "Page 2.16 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), Noted as Tier 1b in the Workbook (Page 2.14).", + "IPCC_Worksheet": "Worksheet 2-6, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-5 on Page 2.16 of the Reference Manual)", + "Technical_Reference": "Norsk Hydro (1996), personal communication with Norsk Hydro a.s, Norway", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reductions should be applied to account for any ammonia that is produced from by-product hydrogen. This figure excludes gas used as a fuel. The figures are dependent on the carbon content in the feedstock. This figure is presented as the default value in the Workbook (page 2.14).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.547Z", + "last_change_date": "2022-03-14T07:53:25.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2344, + "fields": { + "EF_ID": 22973, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Calcium Carbide Production (Limestone process)", + "Technology_Practices": "Step in the process: Limestone (Heating calcium carbonate to produce lime)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonne CO2/tonne carbide produced", + "Equation": "Page 2.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.11.2.", + "IPCC_Worksheet": "Worksheet 2-9, Sheet 4 of 4, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-9 on Page 2.22 of the Reference Manual)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CaO (lime) might be produced at another plant than the carbide plant. In this case, the emissions from the CaO step (produced from CaCO3) should be reported as emissions from lime production. [See page 2.22 of Vol.3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.644Z", + "last_change_date": "2022-03-14T07:53:25.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2345, + "fields": { + "EF_ID": 22974, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Calcium Carbide Production (Reduction process)", + "Technology_Practices": "Step in the process: Reduction (Reducing lime with carbon such as petrol coke)", + "Parameter_Conditions": "Carbon source: Petroleum Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.090", + "Unit": "tonne CO2/tonne carbide produced", + "Equation": "Equation 3.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B5, Sheet 2 of 6, in Annex 1 (page A1.8) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-9, Sheet 4 of 4, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.8); Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-9 on Page 2.22 of the Reference Manual)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1,750 kg limestone (or 950 kg CaO), 640 kg of petroleum coke and 20 kg carbon electrodes are required to produce 1 tonne of carbide. CO2 emissions from limestone used in carbide manufacture are not accounted for in this emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.719Z", + "last_change_date": "2022-03-14T07:53:25.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2346, + "fields": { + "EF_ID": 22975, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Calcium Carbide Use in Acetylene Production", + "Technology_Practices": "Step in the process: Use of product (Acetylene production)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.100", + "Unit": "tonne CO2/tonne carbide used", + "Equation": "Equation 3.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B5, Sheet 3 of 6, in Annex 1 (page A1.8) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-9, Sheet 4 of 4, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.8); Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-9 on Page 2.22 of the Reference Manual)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimation of emissions from CaC2 needs to include emissions of CO2 indirectly attributable to CaC2 that is used in acetylene production. Equation 3.11 in the 2006 IPCC Guidelines can be applied where AD is the amount of CaC2 used and EF is the emission factor associated with this use. Under the Tier 1 method it is good practice to assume that all CaC2 used in acetylene production gives rise to CO2 emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.788Z", + "last_change_date": "2022-03-14T07:53:25.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2347, + "fields": { + "EF_ID": 22976, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CH4 from Carbon Black Manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Carbon black", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "g CH4/kg Production", + "Equation": "Page 2.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.12.2.", + "IPCC_Worksheet": "Worksheet 2-10, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-10 on Page 2.23 of the Reference Manual)", + "Technical_Reference": "Shareef, G.S., W.A. Butler, L.A. Bravo and M.B. Stockton (1988), Air emissions species manual Vol. 1. Volatile Organic Compounds (VOC) Species Profiles. EPA-450/2-88-003a (PB 88-215792); Addendum (1989), EPA-450/2-88-003 c (PB 90-146416), USA; Stockton M.B., and J.H.E. Stelling (1987), Criteria pollutant emission factors for the 1985 NAPAP emissions inventory. USEPA, USA. Ouverage, EPA-600/7-87-015 XV-211.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.904Z", + "last_change_date": "2022-03-14T07:53:25.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2348, + "fields": { + "EF_ID": 22977, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CH4 from Ethylene Manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Ethylene", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g CH4/kg Production", + "Equation": "Page 2.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.12.2.", + "IPCC_Worksheet": "Worksheet 2-10, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-10 on Page 2.23 of the Reference Manual)", + "Technical_Reference": "Shareef, G.S., W.A. Butler, L.A. Bravo and M.B. Stockton (1988), Air emissions species manual Vol. 1. Volatile Organic Compounds (VOC) Species Profiles. EPA-450/2-88-003a (PB 88-215792); Addendum (1989), EPA-450/2-88-003 c (PB 90-146416), USA; Stockton M.B., and J.H.E. Stelling (1987), Criteria pollutant emission factors for the 1985 NAPAP emissions inventory. USEPA, USA. Ouverage, EPA-600/7-87-015 XV-211.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:25.988Z", + "last_change_date": "2022-03-14T07:53:25.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2349, + "fields": { + "EF_ID": 22978, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CH4 from Dichloroethylene Manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Dichloroethylene", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g CH4/kg Production", + "Equation": "Page 2.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.12.2.", + "IPCC_Worksheet": "Worksheet 2-10, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-10 on Page 2.23 of the Reference Manual)", + "Technical_Reference": "Shareef, G.S., W.A. Butler, L.A. Bravo and M.B. Stockton (1988), Air emissions species manual Vol. 1. Volatile Organic Compounds (VOC) Species Profiles. EPA-450/2-88-003a (PB 88-215792); Addendum (1989), EPA-450/2-88-003 c (PB 90-146416), USA; Stockton M.B., and J.H.E. Stelling (1987), Criteria pollutant emission factors for the 1985 NAPAP emissions inventory. USEPA, USA. Ouverage, EPA-600/7-87-015 XV-211.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.072Z", + "last_change_date": "2022-03-14T07:53:26.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2350, + "fields": { + "EF_ID": 22979, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CH4 from Styrene Manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Styrene", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g CH4/kg Production", + "Equation": "Page 2.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.12.2.", + "IPCC_Worksheet": "Worksheet 2-10, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-10 on Page 2.23 of the Reference Manual)", + "Technical_Reference": "Shareef, G.S., W.A. Butler, L.A. Bravo and M.B. Stockton (1988), Air emissions species manual Vol. 1. Volatile Organic Compounds (VOC) Species Profiles. EPA-450/2-88-003a (PB 88-215792); Addendum (1989), EPA-450/2-88-003 c (PB 90-146416), USA; Stockton M.B., and J.H.E. Stelling (1987), Criteria pollutant emission factors for the 1985 NAPAP emissions inventory. USEPA, USA. Ouverage, EPA-600/7-87-015 XV-211.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.172Z", + "last_change_date": "2022-03-14T07:53:26.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2351, + "fields": { + "EF_ID": 22980, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CH4 from Methanol Manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Methanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g CH4/kg Production", + "Equation": "Page 2.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.12.2.", + "IPCC_Worksheet": "Worksheet 2-10, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-10 on Page 2.23 of the Reference Manual)", + "Technical_Reference": "Shareef, G.S., W.A. Butler, L.A. Bravo and M.B. Stockton (1988), Air emissions species manual Vol. 1. Volatile Organic Compounds (VOC) Species Profiles. EPA-450/2-88-003a (PB 88-215792); Addendum (1989), EPA-450/2-88-003 c (PB 90-146416), USA; Stockton M.B., and J.H.E. Stelling (1987), Criteria pollutant emission factors for the 1985 NAPAP emissions inventory. USEPA, USA. Ouverage, EPA-600/7-87-015 XV-211.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.255Z", + "last_change_date": "2022-03-14T07:53:26.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2352, + "fields": { + "EF_ID": 22981, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CH4 from Coke Manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g CH4/kg Production", + "Equation": "Page 2.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.12.2.", + "IPCC_Worksheet": "Worksheet 2-10, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-10 on Page 2.23 of the Reference Manual)", + "Technical_Reference": "Schade, H. (1980), Die Schadstoffemissionen der Eisen-und Stahlindustrie in den Belastungsgebieten Buhrgebiet-West und Ruhrgebiet-Ost. Schriftenr. D. Landesanstalt fur Immissionsschutz des Landes N.W. 52: 55-62, Germany.; Barnard, W.R. (1990) ,Emission Factors for Iron and Steel Sources-Criteria and Toxic Pollutants. EPA-600/2-90-024 (PB 90-242314), USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.327Z", + "last_change_date": "2022-03-14T07:53:26.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2353, + "fields": { + "EF_ID": 22982, + "IPCC_Category": "2.C - Metal Industry, 2.C.1 - Iron and Steel Production, 2.C.2 - Ferroalloys Production, 2.C.3 - Aluminium production, 2.C.4 - Magnesium production, 2.C.5 - Lead Production, 2.C.6 - Zinc Production, 2.C.7 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Metal Production Generally", + "Technology_Practices": "Reducing agent: Coal", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Page 2.26 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.1.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 1 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-12 on Page 2.26 of the Reference Manual)", + "Technical_Reference": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-12 on Page 2.26 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Derived from data in the Energy Chapter in the Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Programme", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.402Z", + "last_change_date": "2022-03-14T07:53:26.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2354, + "fields": { + "EF_ID": 22983, + "IPCC_Category": "2.C - Metal Industry, 2.C.1 - Iron and Steel Production, 2.C.2 - Ferroalloys Production, 2.C.3 - Aluminium production, 2.C.4 - Magnesium production, 2.C.5 - Lead Production, 2.C.6 - Zinc Production, 2.C.7 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Metal Production Generally", + "Technology_Practices": "Reducing agent: Coke from coal", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Page 2.26 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.1.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 1 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-12 on Page 2.26 of the Reference Manual)", + "Technical_Reference": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-12 on Page 2.26 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Derived from data in the Energy Chapter in the Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories Programme", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.507Z", + "last_change_date": "2022-03-14T07:53:26.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2355, + "fields": { + "EF_ID": 22984, + "IPCC_Category": "2.C - Metal Industry, 2.C.1 - Iron and Steel Production, 2.C.2 - Ferroalloys Production, 2.C.3 - Aluminium production, 2.C.4 - Magnesium production, 2.C.5 - Lead Production, 2.C.6 - Zinc Production, 2.C.7 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Metal Production Generally", + "Technology_Practices": "Reducing agent: Petrol coke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.6", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Page 2.26 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.1.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 1 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-12 on Page 2.26 of the Reference Manual)", + "Technical_Reference": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-12 on Page 2.26 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.588Z", + "last_change_date": "2022-03-14T07:53:26.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2356, + "fields": { + "EF_ID": 22985, + "IPCC_Category": "2.C - Metal Industry, 2.C.1 - Iron and Steel Production, 2.C.2 - Ferroalloys Production, 2.C.3 - Aluminium production, 2.C.4 - Magnesium production, 2.C.5 - Lead Production, 2.C.6 - Zinc Production, 2.C.7 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Metal Production Generally", + "Technology_Practices": "Reducing agent: Prebaked anodes and coal electrodes", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.6", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Page 2.26 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.1.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 1 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-12 on Page 2.26 of the Reference Manual)", + "Technical_Reference": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-12 on Page 2.26 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.652Z", + "last_change_date": "2022-03-14T07:53:26.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2357, + "fields": { + "EF_ID": 22986, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Iron and Steel Production", + "Technology_Practices": "Integrated facility (coke plus iron and/or steel production).", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "Tonne CO2/Tonne Iron or Steel Product", + "Equation": "Page 2.28 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.3.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 2 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-13 on Page 2.28 of the Reference Manual)", + "Technical_Reference": "Environment Canada (1996), CO2 Emission Factors for the Iron and Steel Industry. Internal memo, F. Neitzert, March 1996.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Includes CO2 produced by coke and coke oven gas consumption. It does not include any form of conventional energy consumption. The emission factor applies to both iron or iron plus steel production, since uncertainty in the estimates overshadow the incremental difference in CO2 emissions. Figures exclude CO2 from flux (CaCO3) consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.719Z", + "last_change_date": "2022-03-14T07:53:26.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2358, + "fields": { + "EF_ID": 22987, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Ferrosilicon - 50%Si", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2-2.7", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-15 on Page 2.31 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Ferrolegering og CO2 STF34 A91056. 8 May 1991. Sintef Norway. AND Streibel, H. (1974), Silicon, in Chemical and Process Technology Encyclopedia, D. Considine (ed.). McGraw Hill, Montreal.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.817Z", + "last_change_date": "2022-03-14T07:53:26.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2359, + "fields": { + "EF_ID": 22988, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Ferrosilicon - 75%Si", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.9", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-15 on Page 2.31 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Ferrolegering og CO2 STF34 A91056. 8 May 1991. Sintef Norway. AND Streibel, H. (1974), Silicon, in Chemical and Process Technology Encyclopedia, D. Considine (ed.). McGraw Hill, Montreal.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.905Z", + "last_change_date": "2022-03-14T07:53:26.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2360, + "fields": { + "EF_ID": 22989, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Ferrosilicon - 90%Si", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.8-6.5", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-15 on Page 2.31 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Ferrolegering og CO2 STF34 A91056. 8 May 1991. Sintef Norway. AND Streibel, H. (1974), Silicon, in Chemical and Process Technology Encyclopedia, D. Considine (ed.). McGraw Hill, Montreal.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:26.969Z", + "last_change_date": "2022-03-14T07:53:26.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2361, + "fields": { + "EF_ID": 22990, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "All producers probably use some biocarbon in order to obtain the desired product properties. 1.6 tonne bio-CO2 /tonne silicon may be considered as a minimum value and is not included here.", + "Parameter_Conditions": "Type ferroalloy: Silicon metala", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.3", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-15 on Page 2.31 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Ferrolegering og CO2 STF34 A91056. 8 May 1991. Sintef Norway. AND Streibel, H. (1974), Silicon, in Chemical and Process Technology Encyclopedia, D. Considine (ed.). McGraw Hill, Montreal.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.044Z", + "last_change_date": "2022-03-14T07:53:27.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2362, + "fields": { + "EF_ID": 22991, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Ferromanganese", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-15 on Page 2.31 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Ferrolegering og CO2 STF34 A91056. 8 May 1991. Sintef Norway. AND Streibel, H. (1974), Silicon, in Chemical and Process Technology Encyclopedia, D. Considine (ed.). McGraw Hill, Montreal.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.152Z", + "last_change_date": "2022-03-14T07:53:27.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2363, + "fields": { + "EF_ID": 22992, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Silicon manganese", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-15 on Page 2.31 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Ferrolegering og CO2 STF34 A91056. 8 May 1991. Sintef Norway. AND Streibel, H. (1974), Silicon, in Chemical and Process Technology Encyclopedia, D. Considine (ed.). McGraw Hill, Montreal.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.230Z", + "last_change_date": "2022-03-14T07:53:27.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2364, + "fields": { + "EF_ID": 22993, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Ferrochromium", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-15 on Page 2.31 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Ferrolegering og CO2 STF34 A91056. 8 May 1991. Sintef Norway. AND Streibel, H. (1974), Silicon, in Chemical and Process Technology Encyclopedia, D. Considine (ed.). McGraw Hill, Montreal.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.303Z", + "last_change_date": "2022-03-14T07:53:27.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2365, + "fields": { + "EF_ID": 22994, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Primary Alminium Production", + "Technology_Practices": "Production technology: Soderberg Process", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "tonne CO2/tonne Al", + "Equation": "Page 2.32 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.5.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 5 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-17 on Page 2.33 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Reduserte CO2-utslipp i aluminiumelektrolysen ved bruk av inert anoder. STF34 A91175, 19 September 1991. Sintef, Norway. AND, ORTECH International (1994), Inventory Methods for Estimating Canadian Emissions of Greenhouse Gases, Report to Environment Canada, May, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.369Z", + "last_change_date": "2022-03-14T07:53:27.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2366, + "fields": { + "EF_ID": 22995, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Primary Alminium Production", + "Technology_Practices": "Production technology: Prebaked Anode Process", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonne CO2/tonne Al", + "Equation": "Page 2.32 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.5.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 5 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-17 on Page 2.33 of the Reference Manual)", + "Technical_Reference": "Sintef (1991), Reduserte CO2-utslipp i aluminiumelektrolysen ved bruk av inert anoder. STF34 A91175, 19 September 1991. Sintef, Norway. AND, ORTECH International (1994), Inventory Methods for Estimating Canadian Emissions of Greenhouse Gases, Report to Environment Canada, May, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.463Z", + "last_change_date": "2022-03-14T07:53:27.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2367, + "fields": { + "EF_ID": 22996, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Vertical Stud S?derberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15-0.9", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Norsk Hydro (1996), personal communication with Norsk Hydro a.s, Norway", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.538Z", + "last_change_date": "2022-03-14T07:53:27.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2368, + "fields": { + "EF_ID": 22997, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02-0.18", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Norsk Hydro (1996), personal communication with Norsk Hydro a.s, Norway", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.605Z", + "last_change_date": "2022-03-14T07:53:27.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2369, + "fields": { + "EF_ID": 22998, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Vertical Stud S?derberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006-0.04", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Norsk Hydro (1996), personal communication with Norsk Hydro a.s, Norway", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.671Z", + "last_change_date": "2022-03-14T07:53:27.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2370, + "fields": { + "EF_ID": 22999, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001-0.008", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Norsk Hydro (1996), personal communication with Norsk Hydro a.s, Norway", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.738Z", + "last_change_date": "2022-03-14T07:53:27.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2371, + "fields": { + "EF_ID": 23000, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Side Worked Prebaked (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.19", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Schiff, H., Unisearch Associates (1994), Presentation at PFC WORKSHOP, London, March, 1994. Also, Measurements of CF4 and C2F6 in the Emissions from Canadian Aluminium Smelters by Tuneable Diode Absorption Laser Spectroscopy, April, 1994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on samples from one plant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.832Z", + "last_change_date": "2022-03-14T07:53:27.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2372, + "fields": { + "EF_ID": 23001, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Schiff, H., Unisearch Associates (1994), Presentation at PFC WORKSHOP, London, March, 1994. Also, Measurements of CF4 and C2F6 in the Emissions from Canadian Aluminium Smelters by Tuneable Diode Absorption Laser Spectroscopy, April, 1994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on samples from one plant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.913Z", + "last_change_date": "2022-03-14T07:53:27.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2373, + "fields": { + "EF_ID": 23002, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Vertical Stud S?derberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Schiff, H., Unisearch Associates (1994), Presentation at PFC WORKSHOP, London, March, 1994. Also, Measurements of CF4 and C2F6 in the Emissions from Canadian Aluminium Smelters by Tuneable Diode Absorption Laser Spectroscopy, April, 1994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Samples from one plant - value has been adjusted to compensate for error.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:27.997Z", + "last_change_date": "2022-03-14T07:53:27.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2374, + "fields": { + "EF_ID": 23003, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.045-0.53", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Schiff, H., Unisearch Associates (1994), Presentation at PFC WORKSHOP, London, March, 1994. Also, Measurements of CF4 and C2F6 in the Emissions from Canadian Aluminium Smelters by Tuneable Diode Absorption Laser Spectroscopy, April, 1994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on sampling 5 plants.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.080Z", + "last_change_date": "2022-03-14T07:53:28.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2375, + "fields": { + "EF_ID": 23004, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Side Worked Prebaked (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.067", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Schiff, H., Unisearch Associates (1994), Presentation at PFC WORKSHOP, London, March, 1994. Also, Measurements of CF4 and C2F6 in the Emissions from Canadian Aluminium Smelters by Tuneable Diode Absorption Laser Spectroscopy, April, 1994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on samples from one plant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.163Z", + "last_change_date": "2022-03-14T07:53:28.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2376, + "fields": { + "EF_ID": 23005, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Horizontal Stud S?derberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Schiff, H., Unisearch Associates (1994), Presentation at PFC WORKSHOP, London, March, 1994. Also, Measurements of CF4 and C2F6 in the Emissions from Canadian Aluminium Smelters by Tuneable Diode Absorption Laser Spectroscopy, April, 1994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on samples from one plant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.275Z", + "last_change_date": "2022-03-14T07:53:28.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2377, + "fields": { + "EF_ID": 23006, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Measured Emissions of PFCs from Primary Alminium Production", + "Technology_Practices": "Cell technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007-0.032", + "Unit": "kg/tonne Al", + "Equation": "Page 2.34 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-19 on Page 2.35 of the Reference Manual)", + "Technical_Reference": "Schiff, H., Unisearch Associates (1994), Presentation at PFC WORKSHOP, London, March, 1994. Also, Measurements of CF4 and C2F6 in the Emissions from Canadian Aluminium Smelters by Tuneable Diode Absorption Laser Spectroscopy, April, 1994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on sampling 5 plants.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.363Z", + "last_change_date": "2022-03-14T07:53:28.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2378, + "fields": { + "EF_ID": 23012, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Global CF4 Emissions form Smelters with Various Cell Technologies", + "Technology_Practices": "Cell technology: Modern Prebaked", + "Parameter_Conditions": "", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg CF4 /tonne Al", + "Equation": "Page 2.35 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-20 on Page 2.36 of the Reference Manual)", + "Technical_Reference": "Tabereaux, A. T. (1995), 5th Australian Aluminium Smelter Technology Workshop, Sydney, October 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.480Z", + "last_change_date": "2022-03-14T07:53:28.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2379, + "fields": { + "EF_ID": 23013, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Global CF4 Emissions form Smelters with Various Cell Technologies", + "Technology_Practices": "Cell technology: HS S?derberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CF4 /tonne Al", + "Equation": "Page 2.35 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-20 on Page 2.36 of the Reference Manual)", + "Technical_Reference": "Tabereaux, A. T. (1995), 5th Australian Aluminium Smelter Technology Workshop, Sydney, October 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.546Z", + "last_change_date": "2022-03-14T07:53:28.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2380, + "fields": { + "EF_ID": 23014, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Global CF4 Emissions form Smelters with Various Cell Technologies", + "Technology_Practices": "Cell technology: “Older” Prebaked", + "Parameter_Conditions": "", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.75", + "Unit": "kg CF4 /tonne Al", + "Equation": "Page 2.35 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-20 on Page 2.36 of the Reference Manual)", + "Technical_Reference": "Tabereaux, A. T. (1995), 5th Australian Aluminium Smelter Technology Workshop, Sydney, October 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.605Z", + "last_change_date": "2022-03-14T07:53:28.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2381, + "fields": { + "EF_ID": 23015, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Global CF4 Emissions form Smelters with Various Cell Technologies", + "Technology_Practices": "Cell technology: VS S?derberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CF4 /tonne Al", + "Equation": "Page 2.35 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-20 on Page 2.36 of the Reference Manual)", + "Technical_Reference": "Tabereaux, A. T. (1995), 5th Australian Aluminium Smelter Technology Workshop, Sydney, October 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.704Z", + "last_change_date": "2022-03-14T07:53:28.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2382, + "fields": { + "EF_ID": 23016, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Global CF4 Emission Factor for Smelters with Various Cell Technologies", + "Technology_Practices": "Weighted average for all plants world-wide (1995)", + "Parameter_Conditions": "", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg CF4 /tonne Al", + "Equation": "Page 2.35 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-20 on Page 2.36 of the Reference Manual)", + "Technical_Reference": "Tabereaux, A. T. (1995), 5th Australian Aluminium Smelter Technology Workshop, Sydney, October 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.780Z", + "last_change_date": "2022-03-14T07:53:28.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2383, + "fields": { + "EF_ID": 23028, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission factor for high calcium lime production", + "Technology_Practices": "", + "Parameter_Conditions": "Stoichiometric ratio is 0.785 (tonne CO2/tonne CaO or CaOMgO); Range of CaO = 93-98%; Range of MgO = 0.3-2.5%; Default value for CaO or CaOMgO content = 0.95", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonne CO2/tonne high calcium lime produced", + "Equation": "Tier 1 method according to the 2006 IPCC Guidelines. In order to estimate CO2 emissions, apply this default emission factor to national level lime production data.; Equation 3.4 on Page 3.20 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A2, Sheet 1 of 1, in Annex 1 (page A1.4) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-2, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Equation 2.8); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.4 on Page 3.22)", + "Technical_Reference": "ASTM International (1996). Standard Specification for Quicklime, Hydrated Lime, and Limestone for Chemical Uses, Designation: C911-96, Table. 1.; Schwarzkopf, F. (1985). Lime Burning Technology (2nd Edition), Table 2, June 1985).; Miller, Michael (1999) U.S. Geological Survey, Calculations based on ASTM, 1996 and Schwarzkopf, 1985.", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "Table 2.5 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.847Z", + "last_change_date": "2022-03-14T07:53:28.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2384, + "fields": { + "EF_ID": 23029, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission factor for dolomitic lime production", + "Technology_Practices": "This value depends on the technology used for lime production. This value is suggested for developed countries.", + "Parameter_Conditions": "Stoichiometric ratio is 0.913 (tonne CO2/tonne CaO or CaOMgO); Range of CaO = 55-57%; Range of MgO = 38-41%; Default value for CaO or CaOMgO content = 0.95", + "Regional_Conditions": "Developed countries (See Technologies/Practices property.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "tonnes CO2/tonnes dolomitic lime", + "Equation": "Tier 1 method according to the 2006 IPCC Guidelines. In order to estimate CO2 emissions, apply this default emission factor to national level lime production data.; Equation 3.4 on Page 3.20 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A2, Sheet 1 of 1, in Annex 1 (page A1.4) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-2, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Equation 2.8); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.4 on Page 3.22)", + "Technical_Reference": "Boynton, R. S. (1980). Chemistry and Technology of Lime and Limestone, 2nd edition, John Wiley and Sons, Inc., New York, USA.; Miller, M. (1999). US Geological Survey, Calculations based on Boynton.", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "Table 2.5 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:28.921Z", + "last_change_date": "2022-03-14T07:53:28.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2385, + "fields": { + "EF_ID": 23030, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission factor for hydraulic lime production", + "Technology_Practices": "", + "Parameter_Conditions": "Stoichiometric ratio is 0.785 (tonne CO2/tonne CaO or CaOMgO); Range of CaO = 65-92% (Total CaO content (including that in silicate phases)); Range of MgO = NA; Default value for CaO or CaOMgO content = 0.75", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonne CO2/tonne lime produced", + "Equation": "Tier 1 method according to the 2006 IPCC Guidelines. In order to estimate CO2 emissions, apply this default emission factor to national level lime production data.; Equation 3.4 on Page 3.20 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A2, Sheet 1 of 1, in Annex 1 (page A1.4) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-2, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Equation 2.8); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.4 on Page 3.22)", + "Technical_Reference": "Boynton, R. S. (1980). Chemistry and Technology of Lime and Limestone, 2nd edition, John Wiley and Sons, Inc., New York, USA.; Miller, M. (1999). US Geological Survey, Calculations based on Boynton.", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "Table 2.5 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.030Z", + "last_change_date": "2022-03-14T07:53:29.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2386, + "fields": { + "EF_ID": 23035, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Water Content in Hydrated Lime", + "Technology_Practices": "", + "Parameter_Conditions": "Lime type: High-calcium lime", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "fraction", + "Equation": "Equation 2.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Page 3.22 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, See Correction for the proportion of hydrated lime.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, page 2.24) See Correction for the proportion of hydrated lime.; Table 3.5 in the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Technical_Reference": "Miller, M. (1999). US Geological Survey, Calculations based on ASTM, 1996, and Schwarzkopf, 1985. American Society for Testing and Materials (ASTM) (1996). Standard Specification for Quicklime, Hydrated Lime, and Limestone for Chemical Uses, Designation: C911-96, Table 1. Schwarzkopf, F. (1985). Lime Burning Technology (2nd Edition), Table 2, June 1985.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.105Z", + "last_change_date": "2022-03-14T07:53:29.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2387, + "fields": { + "EF_ID": 23036, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Water Content in Hydrated Lime", + "Technology_Practices": "", + "Parameter_Conditions": "Lime type: Dolomitic lime", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "fraction", + "Equation": "Equation 2.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Page 3.22 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, See Correction for the proportion of hydrated lime.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, page 2.24) See Correction for the proportion of hydrated lime.; Table 3.5 in the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Technical_Reference": "Miller, M. (1999). US Geological Survey, Calculations based on ASTM, 1996, and Schwarzkopf, 1985. American Society for Testing and Materials (ASTM) (1996). Standard Specification for Quicklime, Hydrated Lime, and Limestone for Chemical Uses, Designation: C911-96, Table 1. Schwarzkopf, F. (1985). Lime Burning Technology (2nd Edition), Table 2, June 1985.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.206Z", + "last_change_date": "2022-03-14T07:53:29.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2388, + "fields": { + "EF_ID": 23037, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "N2O Generation Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Unabated", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/tonne adipic acid produced", + "Equation": "Equation 3.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B3, Sheet 1 of 1, in Annex 1 (page A1.7) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-8, Sheet 1 of 1, Vol. 2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34); Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.19 of the Reference Manual)", + "Technical_Reference": "Thiemens, M.H. and Trogler, W.C. (1991), Nylon production; an unknown source of atmospheric nitrous oxide. Science, 251, pp. 932-934.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range of 300 kg -/+ 10% encompasses the variability from pure ketone to pure alcohol feedstocks, with most manufacturers somewhere in the middle. With regard to a value from the Japan Environment Agency (1995) (282 kg N2O/tonne adipic acid), it is believed that this manufacturer uses oxidation of pure cyclohexanol (alcohol), instead of a ketone-alcohol mixture (Reimer et al., 1999). This is the only plant known to use this method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.280Z", + "last_change_date": "2022-03-14T07:53:29.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2389, + "fields": { + "EF_ID": 23038, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Destruction Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement technology: Catalytic Destruction", + "Other_Properties": "", + "Value": "90-95", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34)", + "Technical_Reference": "Scott, Alex (1998). 'The winners and losers of N2O emission control'. Chemical Week, February 18, 1998.; Reimer, R., (1999). Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manufacturers known to employ this technology include: BASF and DuPont. The destruction factor (that represents the technology abatement efficiency) should be multiplied by an abatement system utility factor. Note that this range is not an uncertainty estimate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.382Z", + "last_change_date": "2022-03-14T07:53:29.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2390, + "fields": { + "EF_ID": 23039, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Destruction Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement technology: Thermal Destruction", + "Other_Properties": "", + "Value": "98-99", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34)", + "Technical_Reference": "Scott, Alex (1998). 'The winners and losers of N2O emission control'. Chemical Week, February 18, 1998.", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manufacturers known to employ this technology include: Asahi, DuPont, Bayer, and Solutia. The destruction factor (that represents the technology abatement efficiency) should be multiplied by an abatement system utility factor. Note that this range is not an uncertainty estimate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.455Z", + "last_change_date": "2022-03-14T07:53:29.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2391, + "fields": { + "EF_ID": 23040, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Destruction Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement technology: Recycle to feedstock for Phenol", + "Other_Properties": "", + "Value": "98-99", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34)", + "Technical_Reference": "Scott, Alex (1998). 'The winners and losers of N2O emission control'. Chemical Week, February 18, 1998.", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manufacturers known to employ this technology include: Alsachemie. The destruction factor (that represents the technology abatement efficiency) should be multiplied by an abatement system utility factor. Note that this range is not an uncertainty estimate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.521Z", + "last_change_date": "2022-03-14T07:53:29.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2392, + "fields": { + "EF_ID": 23041, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Destruction Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement technology: Recycle to feedstock for Adipic Acid", + "Other_Properties": "", + "Value": "90-98", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34)", + "Technical_Reference": "Scott, Alex (1998). 'The winners and losers of N2O emission control'. Chemical Week, February 18, 1998.", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Solutia will be implementing this technology around 2002. The destruction factor (that represents the technology abatement efficiency) should be multiplied by an abatement system utility factor. Note that this range is not an uncertainty estimate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.625Z", + "last_change_date": "2022-03-14T07:53:29.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2393, + "fields": { + "EF_ID": 23042, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Abatement System Utilisation Factor for Adipic Acid Production (Factor to account for any down time of the emission abatement equipment)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement system: Catalytic Destruction", + "Other_Properties": "", + "Value": "80-98", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34)", + "Technical_Reference": "Reimer, R. (1999), Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these default values are based on expert judgement and not industry-supplied data or plant-specific measurements. In the first 1-5 years of the abatement technology implementation, the utilisation factor tends to be at the lower end of the range. Lower utility of the equipment typically results because of the need to learn how to operate the abatement system and because more maintenance problems occur during the initial phase. After 1-5 years, the operating experience improves and the utilisation factor would tend to be at the high end of the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.705Z", + "last_change_date": "2022-03-14T07:53:29.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2394, + "fields": { + "EF_ID": 23043, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Abatement System Utilisation Factor for Adipic Acid Production (Factor to account for any down time of the emission abatement equipment)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement system: Thermal Destruction", + "Other_Properties": "", + "Value": "95-99", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34)", + "Technical_Reference": "Reimer, R. (1999), Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these default values are based on expert judgement and not industry-supplied data or plant-specific measurements. In the first 1-5 years of the abatement technology implementation, the utilisation factor tends to be at the lower end of the range. Lower utility of the equipment typically results because of the need to learn how to operate the abatement system and because more maintenance problems occur during the initial phase. After 1-5 years, the operating experience improves and the utilisation factor would tend to be at the high end of the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.780Z", + "last_change_date": "2022-03-14T07:53:29.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2395, + "fields": { + "EF_ID": 23044, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Abatement System Utilisation Factor for Adipic Acid Production (Factor to account for any down time of the emission abatement equipment)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement system: Recycle to Nitric Acid", + "Other_Properties": "", + "Value": "90-98", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34)", + "Technical_Reference": "Reimer, R. (1999), Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these default values are based on expert judgement and not industry-supplied data or plant-specific measurements. In the first 1-5 years of the abatement technology implementation, the utilisation factor tends to be at the lower end of the range. Lower utility of the equipment typically results because of the need to learn how to operate the abatement system and because more maintenance problems occur during the initial phase. After 1-5 years, the operating experience improves and the utilisation factor would tend to be at the high end of the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.894Z", + "last_change_date": "2022-03-14T07:53:29.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2396, + "fields": { + "EF_ID": 23045, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Abatement System Utilisation Factor for Adipic Acid Production (Factor to account for any down time of the emission abatement equipment)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement system: Recycle to Adipic Acid", + "Other_Properties": "", + "Value": "80-98", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.7 on Page 3.34)", + "Technical_Reference": "Reimer, R. (1999), Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these default values are based on expert judgement and not industry-supplied data or plant-specific measurements. In the first 1-5 years of the abatement technology implementation, the utilisation factor tends to be at the lower end of the range. Lower utility of the equipment typically results because of the need to learn how to operate the abatement system and because more maintenance problems occur during the initial phase. After 1-5 years, the operating experience improves and the utilisation factor would tend to be at the high end of the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:29.980Z", + "last_change_date": "2022-03-14T07:53:29.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2397, + "fields": { + "EF_ID": 23046, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "Without Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "8.5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.8 on Page 3.35)", + "Technical_Reference": "Collis (1999), Personal communication between Gordon Collis, plant administrator, Simplot Canada Ltd., Canada and Heike Mainhardt of ICF, Inc., USA. March 3, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on an average emissions rate for plants of European design. It should be noted that the destruction factor used in the Equation 3.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories is not taken into consideration in the worksheet 2-7 in the Workbook of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.055Z", + "last_change_date": "2022-03-14T07:53:30.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2398, + "fields": { + "EF_ID": 23047, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "With Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "<2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.8 on Page 3.35)", + "Technical_Reference": "Collis (1999), Personal communication between Gordon Collis, plant administrator, Simplot Canada Ltd., Canada and Heike Mainhardt of ICF, Inc., USA. March 3, 1999.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O generation factor accounts for N2O destruction by NSCR. It should be noted that the destruction factor used in the Equation 3.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories is not taken into consideration in the worksheet 2-7 in the Workbook of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.170Z", + "last_change_date": "2022-03-14T07:53:30.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2399, + "fields": { + "EF_ID": 23048, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "Without Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "9.5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.8 on Page 3.35)", + "Technical_Reference": "Choe, J.S., P.J. Cook, and F.P. Petrocelli (1993), ‘Developing N2O Abatement Technology for the Nitric Acid Industry’. Prepared for presentation at the 1993 ANPSG Conference. Air Products and Chemicals, Inc., Allentown, PA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An estimated 80% of nitric acid (HNO3) plants do not use NSCR systems. It should be noted that the destruction factor used in the Equation 3.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories is not taken into consideration in the worksheet 2-7 in the Workbook of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.263Z", + "last_change_date": "2022-03-14T07:53:30.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2400, + "fields": { + "EF_ID": 23049, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "With Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.8 on Page 3.35)", + "Technical_Reference": "Choe, J.S., P.J. Cook, and F.P. Petrocelli (1993), ‘Developing N2O Abatement Technology for the Nitric Acid Industry’. Prepared for presentation at the 1993 ANPSG Conference. Air Products and Chemicals, Inc., Allentown, PA.; Collis (1999), Personal communication between Gordon Collis, plant administrator, Simplot Canada Ltd., Canada and Heike Mainhardt of ICF, Inc., USA. March 3, 1999.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O generation factor accounts for N2O destruction by NSCR. Industry indicates a range of 1.12 to 2.5 kg N2O/tonne HNO3, field experts have indicated that the lower end of the range is more accurate. A factor of 2 was selected as a conservative default. An estimated 20% of HNO3 plants use NSCR systems It should be noted that the destruction factor used in the Equation 3.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories is not taken into consideration in the worksheet 2-7 in the Workbook of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.330Z", + "last_change_date": "2022-03-14T07:53:30.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2401, + "fields": { + "EF_ID": 23050, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "Process-integrated N2O destruction", + "Other_Properties": "", + "Value": "<2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-7 on Page 2.18 of the Reference Manual); IPCC Good", + "Technical_Reference": "Norsk Hydro (1996), Personal communication between Jos Olivier and Norsk Hydro a.s., Norway, March 2000.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Norsk Hydro developed a state-of-the-art reactor design in which emissions of N2O are reduced in a process-integrated manner. It should be noted that the destruction factor used in the Equation 3.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories is not taken into consideration in the worksheet 2-7 in the Workbook of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.422Z", + "last_change_date": "2022-03-14T07:53:30.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2402, + "fields": { + "EF_ID": 23051, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "Production process: atmospheric pressure plant (low pressure)", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4-5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-7 on Page 2.18 of the Reference Manual); IPCC Good", + "Technical_Reference": "Norsk Hydro (1996), Personal communication between Jos Olivier and Norsk Hydro a.s., Norway, March 2000.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It should be noted that the destruction factor used in the Equation 3.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories is not taken into consideration in the worksheet 2-7 in the Workbook of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.488Z", + "last_change_date": "2022-03-14T07:53:30.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2403, + "fields": { + "EF_ID": 23052, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "Production process: medium pressure plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6-7.5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-7 on Page 2.18 of the Reference Manual); IPCC Good", + "Technical_Reference": "Norsk Hydro (1996), Personal communication between Jos Olivier and Norsk Hydro a.s., Norway, March 2000.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It should be noted that the destruction factor used in the Equation 3.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories is not taken into consideration in the worksheet 2-7 in the Workbook of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.563Z", + "last_change_date": "2022-03-14T07:53:30.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2404, + "fields": { + "EF_ID": 23053, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2-5.7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-7 on Page 2.18 of the Reference Manual); IPCC Good", + "Technical_Reference": "Japan Environment Agency (1995), Study of Emission Factors for N2O from Stationary Sources.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It should be noted that the destruction factor used in the Equation 3.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories is not taken into consideration in the worksheet 2-7 in the Workbook of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.666Z", + "last_change_date": "2022-03-14T07:53:30.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2405, + "fields": { + "EF_ID": 23054, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "Production process: European designed, dual pressure plants", + "Parameter_Conditions": "", + "Regional_Conditions": "Countries other than Canada, USA, Norway and Japan", + "Control_Technologies": "Double absorption plants", + "Other_Properties": "", + "Value": "8-10", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.35)", + "Technical_Reference": "Unavailable (See IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Page 3.35)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.738Z", + "last_change_date": "2022-03-14T07:53:30.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2406, + "fields": { + "EF_ID": 23055, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "Production process: Older (pre - 1975)", + "Parameter_Conditions": "", + "Regional_Conditions": "Countries other than Canada, USA, Norway and Japan", + "Control_Technologies": "Without Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "10-19", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.8 on Page 3.35)", + "Technical_Reference": "Choe, J.S., P.J. Cook, and F.P. Petrocelli (1993), ‘Developing N2O Abatement Technology for the Nitric Acid Industry’. Prepared for presentation at the 1993 ANPSG Conference. Air Products and Chemicals, Inc., Allentown, PA.; EFMA (European Fertilizer Manufacturers Association) (1995). BAT for pollution and control in the European fertilizer industry, production of nitric acid. ERMA, Brussels, Belgium.; Cook, Phillip (1999). Personal communication between Phillip Cook of Air Products and Chemicals, Inc., USA, and Heike Mainhardt of ICF, Inc., USA. March 5, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors up to 19 kg N2O/tonne nitric acid have been reported for plants not equipped with Non-Selective Catalytic Reduction (NSCR) technology. Such a high emissions rate would most likely apply to outdated plants.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.813Z", + "last_change_date": "2022-03-14T07:53:30.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2407, + "fields": { + "EF_ID": 23056, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Destruction Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "NOx Abatement technology: Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "80-90", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.8 on Page 3.35)", + "Technical_Reference": "Unavailable (See IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Page 3.35)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Non-Selective Catalytic Reduction (NSCR) is a typical tail gas treatment in the USA and Canada with less application in other parts of the world.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.917Z", + "last_change_date": "2022-03-14T07:53:30.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2408, + "fields": { + "EF_ID": 23057, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Destruction Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "NOx Abatement technology: Selective Catalytic Reduction (SCR)", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.8 on Page 3.35)", + "Technical_Reference": "Unavailable (See IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Page 3.35)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Selective Catalytic Reduction (SCR) with ammonia does not reduce N2O.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:30.997Z", + "last_change_date": "2022-03-14T07:53:30.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2409, + "fields": { + "EF_ID": 23058, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Destruction Factor for Nitric Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "NOx Abatement technology: Extended Absorption", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 3.9 on Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.8 on Page 3.35)", + "Technical_Reference": "Unavailable (See IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, Page 3.35)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.063Z", + "last_change_date": "2022-03-14T07:53:31.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2410, + "fields": { + "EF_ID": 23059, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (slope)", + "Technology_Practices": "Production technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission collection efficiency is assumed to be 95%.", + "Other_Properties": "Slope method", + "Value": "0.14", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other company measurement data.", + "English_Abstract": "", + "Lower_Bound": "-0.009", + "Upper_Bound": "+0.009", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Date calculated is date of edit.", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.138Z", + "last_change_date": "2022-03-14T07:53:31.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2411, + "fields": { + "EF_ID": 23060, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (slope)", + "Technology_Practices": "Production technology: Side Worked Prebaked (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission collection efficiency is assumed to be 90%.", + "Other_Properties": "Slope method", + "Value": "0.29", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other company measurement data.", + "English_Abstract": "", + "Lower_Bound": "-0.02", + "Upper_Bound": "+0.02", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.235Z", + "last_change_date": "2022-03-14T07:53:31.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2412, + "fields": { + "EF_ID": 23061, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (slope)", + "Technology_Practices": "Production technology: Vertical Stud Soderberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission collection efficiency is assumed to be 85%.", + "Other_Properties": "Slope method", + "Value": "0.068", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other company measurement data.", + "English_Abstract": "", + "Lower_Bound": "-0.02", + "Upper_Bound": "+0.02", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This coefficient is based on small number of data and it is expected that the uncertainty might be higher than other for other coefficients shown in the same table (Table 3.9 on Page 3.44 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.313Z", + "last_change_date": "2022-03-14T07:53:31.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2413, + "fields": { + "EF_ID": 23062, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (slope)", + "Technology_Practices": "Production technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission collection efficiency is assumed to be 90%.", + "Other_Properties": "Slope method", + "Value": "0.18", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI) 1991 data.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.380Z", + "last_change_date": "2022-03-14T07:53:31.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2414, + "fields": { + "EF_ID": 23063, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (slope)", + "Technology_Practices": "Production technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission collection efficiency is assumed to be 95%.", + "Other_Properties": "Slope method", + "Value": "0.018", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other company measurement data.", + "English_Abstract": "", + "Lower_Bound": "-0.004", + "Upper_Bound": "+0.004", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.463Z", + "last_change_date": "2022-03-14T07:53:31.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2415, + "fields": { + "EF_ID": 23064, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (slope)", + "Technology_Practices": "Production technology: Side Worked Prebaked (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission collection efficiency is assumed to be 90%.", + "Other_Properties": "Slope method", + "Value": "0.029", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other company measurement data.", + "English_Abstract": "", + "Lower_Bound": "-0.01", + "Upper_Bound": "+0.01", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.578Z", + "last_change_date": "2022-03-14T07:53:31.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2416, + "fields": { + "EF_ID": 23065, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (slope)", + "Technology_Practices": "Production technology: Vertical Stud Soderberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission collection efficiency is assumed to be 85%.", + "Other_Properties": "Slope method", + "Value": "0.003", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other company measurement data.", + "English_Abstract": "", + "Lower_Bound": "-0.001", + "Upper_Bound": "+0.001", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This coefficient is based on small number of data and it is expected that the uncertainty might be higher than other for other coefficients shown in the same table (Table 3.9 on Page 3.44 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.671Z", + "last_change_date": "2022-03-14T07:53:31.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2417, + "fields": { + "EF_ID": 23066, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (slope)", + "Technology_Practices": "Production technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission collection efficiency is assumed to be 90%.", + "Other_Properties": "Slope method", + "Value": "0.018", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI) 1991 data.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.755Z", + "last_change_date": "2022-03-14T07:53:31.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2418, + "fields": { + "EF_ID": 23067, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (over-voltage coefficient)", + "Technology_Practices": "Production technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Pechiney over-voltage method", + "Value": "1.9", + "Unit": "(kg PFC/tAl)/(mV/day)", + "Equation": "Equation 3.11 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other company measurement data.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.830Z", + "last_change_date": "2022-03-14T07:53:31.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2419, + "fields": { + "EF_ID": 23068, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default coefficient for the calculation of PFC emissions from aluminum production (over-voltage coefficient)", + "Technology_Practices": "Production technology: Side Worked Prebaked (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Pechiney over-voltage method", + "Value": "1.9", + "Unit": "(kg PFC/tAl)/(mV/day)", + "Equation": "Equation 3.11 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.9 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other company measurement data.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.922Z", + "last_change_date": "2022-03-14T07:53:31.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2420, + "fields": { + "EF_ID": 23069, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Production technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "kg/tonne Al", + "Equation": "Page 3.43 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; See Tier 1 Method.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.10 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other 1990 company measurement data.", + "English_Abstract": "", + "Lower_Bound": "0.0003", + "Upper_Bound": "1.3", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:31.997Z", + "last_change_date": "2022-03-14T07:53:31.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2421, + "fields": { + "EF_ID": 23070, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Production technology: Side Worked Prebaked (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "kg/tonne Al", + "Equation": "Page 3.43 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; See Tier 1 Method.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.10 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other 1990 company measurement data.", + "English_Abstract": "", + "Lower_Bound": "0.8", + "Upper_Bound": "3.8", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.080Z", + "last_change_date": "2022-03-14T07:53:32.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2422, + "fields": { + "EF_ID": 23071, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Production technology: Vertical Stud Soderberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "kg/tonne Al", + "Equation": "Page 3.43 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; See Tier 1 Method.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.10 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other 1990 company measurement data.", + "English_Abstract": "", + "Lower_Bound": "0.4", + "Upper_Bound": "1.1", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.146Z", + "last_change_date": "2022-03-14T07:53:32.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2423, + "fields": { + "EF_ID": 23072, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Production technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/tonne Al", + "Equation": "Page 3.43 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; See Tier 1 Method.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 8 of 11", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.10 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI) 1991 data.", + "English_Abstract": "", + "Lower_Bound": "0.0006", + "Upper_Bound": "1.4", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.213Z", + "last_change_date": "2022-03-14T07:53:32.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2424, + "fields": { + "EF_ID": 23073, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Production technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg/tonne Al", + "Equation": "Page 3.43 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; See Tier 1 Method.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.10 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other 1990 company measurement data.", + "English_Abstract": "", + "Lower_Bound": "0.00004", + "Upper_Bound": "0.2", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.300Z", + "last_change_date": "2022-03-14T07:53:32.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2425, + "fields": { + "EF_ID": 23074, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Production technology: Side Worked Prebaked (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "kg/tonne Al", + "Equation": "Page 3.43 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; See Tier 1 Method.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.10 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other 1990 company measurement data.", + "English_Abstract": "", + "Lower_Bound": "0.08", + "Upper_Bound": "0.4", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.380Z", + "last_change_date": "2022-03-14T07:53:32.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2426, + "fields": { + "EF_ID": 23075, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Production technology: Vertical Stud Soderberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.061", + "Unit": "kg/tonne Al", + "Equation": "Page 3.43 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; See Tier 1 Method.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.10 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI), US Environment Protection Agency - field measurements, and other 1990 company measurement data.", + "English_Abstract": "", + "Lower_Bound": "0.04", + "Upper_Bound": "0.1", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.455Z", + "last_change_date": "2022-03-14T07:53:32.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2427, + "fields": { + "EF_ID": 23076, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Production technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "kg/tonne Al", + "Equation": "Page 3.43 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; See Tier 1 Method.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.10 on Page 3.44)", + "Technical_Reference": "International Primary Aluminium Institute (IPAI) 1991 data.", + "English_Abstract": "", + "Lower_Bound": "0.00006", + "Upper_Bound": "0.13", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.538Z", + "last_change_date": "2022-03-14T07:53:32.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2428, + "fields": { + "EF_ID": 23077, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Manufacturing", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "Before 1996", + "Value": "0.15", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Bitsch R. (1999), Statement on experiences of Siemens AG, Erlangen, Germany and other European switchgear manufacturers regarding emission factors at the Expert group meeting on Good practice in Inventory Preparation", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.596Z", + "last_change_date": "2022-03-14T07:53:32.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2429, + "fields": { + "EF_ID": 23078, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Manufacturing", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Before 1996", + "Value": "0.3", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Denki Kyodo Kenkyu (1998), Vol. 54, No.3, Electric Technology Research Association, Dec. 1998. AND Chemical Products Council (1999). The Sixth Meeting of the Committee for Prevention of Global Warming. Chemical Products Council, MITI, Japan, May 21, 1999.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.702Z", + "last_change_date": "2022-03-14T07:53:32.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2430, + "fields": { + "EF_ID": 23079, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Manufacturing", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "Since 1996", + "Value": "0.06", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Bitsch R. (1999), Statement on experiences of Siemens AG, Erlangen, Germany and other European switchgear manufacturers regarding emission factors at the Expert group meeting on Good practice in Inventory Preparation", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.780Z", + "last_change_date": "2022-03-14T07:53:32.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2431, + "fields": { + "EF_ID": 23080, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Manufacturing", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Since 1996", + "Value": "0.3", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Denki Kyodo Kenkyu (1998), Vol. 54, No.3, Electric Technology Research Association, Dec. 1998. AND Chemical Products Council (1999). The Sixth Meeting of the Committee for Prevention of Global Warming. Chemical Products Council, MITI, Japan, May 21, 1999.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.847Z", + "last_change_date": "2022-03-14T07:53:32.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2432, + "fields": { + "EF_ID": 23081, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Installation", + "Parameter_Conditions": "", + "Regional_Conditions": "Global", + "Control_Technologies": "", + "Other_Properties": "Before 1996", + "Value": "0.15", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Olivier, J.G.J. and J. Bakker (2000), Historical emissions of HFCs, PFCs and SF6 1950-1995. Consumption and emission estimates per country 1950-1995 and global emissions on 1ox1o in EDGAR 3.0. RIVM, Bilthoven, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:32.913Z", + "last_change_date": "2022-03-14T07:53:32.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2433, + "fields": { + "EF_ID": 23082, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Installation", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "Since 1996", + "Value": "0.06", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Bitsch R. (1999), Statement on experiences of Siemens AG, Erlangen, Germany and other European switchgear manufacturers regarding emission factors at the Expert group meeting on Good practice in Inventory Preparation", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.012Z", + "last_change_date": "2022-03-14T07:53:33.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2434, + "fields": { + "EF_ID": 23083, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Installation", + "Parameter_Conditions": "", + "Regional_Conditions": "Global", + "Control_Technologies": "", + "Other_Properties": "Since 1996", + "Value": "0.15", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Olivier, J.G.J. and J. Bakker (2000), Historical emissions of HFCs, PFCs and SF6 1950-1995. Consumption and emission estimates per country 1950-1995 and global emissions on 1ox1o in EDGAR 3.0. RIVM, Bilthoven, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.096Z", + "last_change_date": "2022-03-14T07:53:33.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2435, + "fields": { + "EF_ID": 23084, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Use", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Before 1996", + "Value": "0.001", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Denki Kyodo Kenkyu (1998), Vol. 54, No.3, Electric Technology Research Association, Dec. 1998. AND Chemical Products Council (1999). The Sixth Meeting of the Committee for Prevention of Global Warming. Chemical Products Council, MITI, Japan, May 21, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for use phase are only for natural emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.172Z", + "last_change_date": "2022-03-14T07:53:33.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2436, + "fields": { + "EF_ID": 23085, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Use", + "Parameter_Conditions": "", + "Regional_Conditions": "Global", + "Control_Technologies": "", + "Other_Properties": "Before 1996", + "Value": "0.05", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Olivier, J.G.J. and J. Bakker (2000), Historical emissions of HFCs, PFCs and SF6 1950-1995. Consumption and emission estimates per country 1950-1995 and global emissions on 1ox1o in EDGAR 3.0. RIVM, Bilthoven, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.236Z", + "last_change_date": "2022-03-14T07:53:33.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2437, + "fields": { + "EF_ID": 23086, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Use", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Since 1996", + "Value": "0.001", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Denki Kyodo Kenkyu (1998), Vol. 54, No.3, Electric Technology Research Association, Dec. 1998. AND Chemical Products Council (1999). The Sixth Meeting of the Committee for Prevention of Global Warming. Chemical Products Council, MITI, Japan, May 21, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors for use phase are only for natural emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.330Z", + "last_change_date": "2022-03-14T07:53:33.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2438, + "fields": { + "EF_ID": 23087, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Use", + "Parameter_Conditions": "", + "Regional_Conditions": "Global", + "Control_Technologies": "", + "Other_Properties": "Since 1996", + "Value": "0.02", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Olivier, J.G.J. and J. Bakker (2000), Historical emissions of HFCs, PFCs and SF6 1950-1995. Consumption and emission estimates per country 1950-1995 and global emissions on 1ox1o in EDGAR 3.0. RIVM, Bilthoven, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.422Z", + "last_change_date": "2022-03-14T07:53:33.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2439, + "fields": { + "EF_ID": 27507, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Cement Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5071", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Page 2.4 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual)", + "IPCC_Worksheet": "Worksheet 2-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.6 of the Reference Manual)", + "Technical_Reference": "See Comments from Data Provider.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The average clinker lime percentage has been estimated to be 64.6%. (Gregg Marland, Oak Ridge National Laboratory, personal communication) This number when multiplied by the molecular weight ratio of CO2 /CaO (0.785) gives a clinker emission factor of 0.5071 tonne CO2 /tonne clinker produced. If the fraction (f) of lime in the clinker is known to be different from 0.646 then the emission factor can be converted as follows: Emission Factor (tonne CO2 /tonne clinker produced) = 0.5701* (f) / 0.646", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.495Z", + "last_change_date": "2022-03-14T07:53:33.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2440, + "fields": { + "EF_ID": 27508, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Cement Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4985", + "Unit": "tonne CO2/tonne cement produced", + "Equation": "Page 2.4 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual)", + "IPCC_Worksheet": "Worksheet 2-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.6 of the Reference Manual)", + "Technical_Reference": "Marland, G., T.A. Boden, R.C. Griffin, S.F. Huang, P. Kanciruk and T.R. Nelson (1989), Estimates of CO2 Emissions from Fossil Fuel Burning and Cement Manufacturing, Based on the United Nations Energy Statistics and the U.S. Bureau of Mines Cement Manufacturing Data. Report No. #ORNL/CDIAC-25, Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Marland et al. (1989) took the average CaO content of cement to be 63.5%. If the fraction (f) of lime in the cement is known to be different from 0.635 then, the emission factor can be converted as follows: Emission Factor (tonne CO2 /tonne cement produced) = 0.4985 * (f) / 0.635", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.562Z", + "last_change_date": "2022-03-14T07:53:33.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2441, + "fields": { + "EF_ID": 27509, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for SO2 Emissions from Cement Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg SO2/tonne cement produced", + "Equation": "Page 2.4 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual)", + "IPCC_Worksheet": "Worksheet 2-1, Sheet 2 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.7 of the Reference Manual)", + "Technical_Reference": "Rypdal, K. (1995), Anthropogenic Emissions of SO2 , NOx , NMVOC and NH3 in Norway. Rapporter Statistic Norway, 95/16, Oslo.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SO2 emissions will originate from sulphur in the fuel and in the clay raw material. Most (about 70-95 per cent) of the SO2 generated in the process will be absorbed in the produced alkaline clinker (U.S. EPA 1995). The fuel emissions are counted as energy emissions while the SO2 from the clay should be counted as non-combustion emissions. A non-combustion emission factor of 0.3 kg SO2 /tonne cement has been calculated from measurements in Norwegian plants (Rypdal 1995). This factor may vary from plant to plant as the sulphur content of raw materials and degree of absorption will vary. If no information on sulphur content and degree of absorption is available and there are no measurement data, a factor of 0.3 kg SO2 /tonne cement is suggested.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.658Z", + "last_change_date": "2022-03-14T07:53:33.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2442, + "fields": { + "EF_ID": 27510, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Cement Kiln Dust (CKD) Correction Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.02", + "Unit": "fraction", + "Equation": "Equation 3.1 (Tier 2) on Page 3.10 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.12)", + "Technical_Reference": "See Comments from Data Provider. Relevant technical reference: van Oss, H. (1998). Personal communication with Andrew O’Hare (VP Environmental Affairs of the American Portland Cement Alliance). Personal communication with plant personnel of US Cement Industry, December, 1998.", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Cement Kiln Dust (CKD) is non-calcined to fully calcined dust produced in the kiln.1 CKD may be partly or completely recycled to the kiln. Any CKD that is not recycled can be considered lost to the system in terms of CO2 emissions. Good practice is to correct for the CO2 contained in non-recycled (lost) calcined CKD because this CO2 will not be accounted for by the clinker produced. The amount of CO2 lost can vary, but would range typically from about 1.5% for a modern plant to about 8% for a plant losing a lot of highly calcinated CKD (van Oss, 1998). As data on CKD are very scarce, the default CKD correction factor is 1.02 (i.e. to add 2% to the CO2 calculated for clinker). If no calcined CKD is believed to be lost to the system, the correction factor will be 1.00 (van Oss, 1998). As for the uncertainty estimates, see Table 3.2 on Page 3.15 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.738Z", + "last_change_date": "2022-03-14T07:53:33.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2443, + "fields": { + "EF_ID": 27511, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Clinker fraction in cement", + "Technology_Practices": "If cement production cannot be disaggregated by type and it is suspected that significant amounts of blended and/or masonry cements are being produced in addition to portland cement, it is acceptable within good practice to assume this overall clinker fraction.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "% (by weight)", + "Equation": "Equation 2.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Tier 1 method); Equation 3.2 (Tier 1) on Page 3.12 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A1, Sheet 1 of 2, in Annex 1 (page A1.4) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, page 2.13); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.14)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Also, see Pages 3.13-3.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Relevant technical reference: van Oss, H. (1998). Personal communication with Andrew O`Hare (VP Environmental Affairs of the American Portland Cement Alliance). Personal communication with plant personnel of US Cement Industry, December, 1998.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Unfortunately, even if the types of cement produced in the country are known, there can be large variability in the clinker fraction of cement within a given blended or masonry cement type. For more information, see page 2.13 and Table 2.2 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.834Z", + "last_change_date": "2022-03-14T07:53:33.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2444, + "fields": { + "EF_ID": 27512, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Clinker fraction in cement", + "Technology_Practices": "If cement production cannot be disaggregated by type and it is known to be essentially all portland cement, then it is good practice to use this default value.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "% (by weight)", + "Equation": "Equation 2.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Tier 1 method); Equation 3.2 (Tier 1) on Page 3.12 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A1, Sheet 1 of 2, in Annex 1 (page A1.4) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, page 2.13); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.14)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Also, see Pages 3.13-3.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Relevant technical reference: van Oss, H. (1998). Personal communication with Andrew O`Hare (VP Environmental Affairs of the American Portland Cement Alliance). Personal communication with plant personnel of US Cement Industry, December, 1998.", + "English_Abstract": "", + "Lower_Bound": "-2 to -7%", + "Upper_Bound": "+2 to +7%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "Table 2.3 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Unfortunately, even if the types of cement produced in the country are known, there can be large variability in the clinker fraction of cement within a given blended or masonry cement type. For more information, see page 2.13 and Table 2.2 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:33.913Z", + "last_change_date": "2022-03-14T07:53:33.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2445, + "fields": { + "EF_ID": 27513, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CaO Content (Weight Fraction) in Clinker", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65 (0.646)", + "Unit": "fraction", + "Equation": "Equation 3.3 (both Tier 1 and 2) on Page 3.12 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.6 of the Reference Manual); IPCC Good Practice Guid", + "Technical_Reference": "Gregg Marland, Oak Ridge National Laboratory, personal communication", + "English_Abstract": "", + "Lower_Bound": "0.60", + "Upper_Bound": "0.67", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Generally, the average CaO content of clinker does not change significantly on an annual basis, so an estimate can be developed periodically (e.g. every 5 years) in each country.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.010Z", + "last_change_date": "2022-03-14T07:53:34.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2446, + "fields": { + "EF_ID": 27514, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission factor for dolomitic lime production", + "Technology_Practices": "This value depends on the technology used for lime production. This value is suggested for developing countries.", + "Parameter_Conditions": "Stoichiometric ratio is 0.913 (tonne CO2/tonne CaO or CaOMgO); Range of CaO = 55-57%; Range of MgO = 38-41%; Default value for CaO or CaOMgO content = 0.85", + "Regional_Conditions": "Developing countries (See Technologies/Practices property.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "tonnes CO2/tonnes dolomitic lime", + "Equation": "Tier 1 method according to the 2006 IPCC Guidelines. In order to estimate CO2 emissions, apply this default emission factor to national level lime production data.; Equation 3.4 on Page 3.20 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A2, Sheet 1 of 1, in Annex 1 (page A1.4) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-2, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Equation 2.8); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.4 on Page 3.22)", + "Technical_Reference": "Boynton, R. S. (1980). Chemistry and Technology of Lime and Limestone, 2nd edition, John Wiley and Sons, Inc., New York, USA.; Miller, M. (1999). US Geological Survey, Calculations based on Boynton.", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "Table 2.5 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.105Z", + "last_change_date": "2022-03-14T07:53:34.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2447, + "fields": { + "EF_ID": 27515, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Proportion of Hydrated Lime in Total Lime Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "fraction", + "Equation": "Page 3.22 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, See Correction for the proportion of hydrated lime.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.22)", + "Technical_Reference": "Miller, M. (1999). US Geological Survey, Calculations based on ASTM, 1996, and Schwarzkopf, 1985. American Society for Testing and Materials (ASTM) (1996). Standard Specification for Quicklime, Hydrated Lime, and Limestone for Chemical Uses, Designation: C911-96, Table 1. Schwarzkopf, F. (1985). Lime Burning Technology (2nd Edition), Table 2, June 1985.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.236Z", + "last_change_date": "2022-03-14T07:53:34.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2448, + "fields": { + "EF_ID": 27516, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Factor to Correct Activity Data (Lime Production) for Hydrated Lime", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.97", + "Unit": "fraction", + "Equation": "Page 3.22 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, See Correction for the proportion of hydrated lime.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.22)", + "Technical_Reference": "Miller, M. (1999). US Geological Survey, Calculations based on ASTM, 1996, and Schwarzkopf, 1985. American Society for Testing and Materials (ASTM) (1996). Standard Specification for Quicklime, Hydrated Lime, and Limestone for Chemical Uses, Designation: C911-96, Table 1. Schwarzkopf, F. (1985). Lime Burning Technology (2nd Edition), Table 2, June 1985.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The proportion of hydrated lime in total lime production is assumed to be 0.10, and the content of water in hydrated lime is assumed to be 0.28.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.313Z", + "last_change_date": "2022-03-14T07:53:34.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2449, + "fields": { + "EF_ID": 27517, + "IPCC_Category": "2.A.4 - Other Process Uses of Carbonates", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Limestone Use", + "Technology_Practices": "", + "Parameter_Conditions": "Limestone Use", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "440", + "Unit": "kg CO2/tonne limestone", + "Equation": "Page 2.10 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual)", + "IPCC_Worksheet": "Worksheet 2-3, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.10 of the Reference Manual)", + "Technical_Reference": "See Comments from data provider.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The mass of CO2 emitted from the use of limestone may be estimated from a consideration of consumption, purity of the raw materials and the stoichiometry of the chemical processes. If the fractional purity (f) of limestone in CaCO3 per tonne of total raw material is known, the emission factor can be converted as follows: Emission Factor (kg CO2/tonne limestone) = 440 * (f). (Default value of (f) is 1.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.378Z", + "last_change_date": "2022-03-14T07:53:34.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2450, + "fields": { + "EF_ID": 27518, + "IPCC_Category": "2.A.4 - Other Process Uses of Carbonates", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Dolomite Use", + "Technology_Practices": "", + "Parameter_Conditions": "Dolomite Use", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "477", + "Unit": "kg CO2/tonne dolomite", + "Equation": "Page 2.10 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual)", + "IPCC_Worksheet": "Worksheet 2-3, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.10 of the Reference Manual)", + "Technical_Reference": "See Comments from data provider.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The mass of CO2 emitted from the use of dolomite may be estimated from a consideration of consumption, purity of the raw materials and the stoichiometry of the chemical processes. If the fractional purity (f) of dolomite in CaCO3 per tonne of total raw material is known, the emission factor can be converted as follows: Emission Factor (kg CO2/tonne dolomite) = 477 * (f). (Default value of (f) is 1.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.471Z", + "last_change_date": "2022-03-14T07:53:34.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2451, + "fields": { + "EF_ID": 27519, + "IPCC_Category": "2.B.7 - Soda Ash Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Natural Soda Ash Production", + "Technology_Practices": "Manufacturing process: Natural sodium carbonate-bearing deposits (Natural processes).", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.097", + "Unit": "tonnes CO2/tonne of trona", + "Equation": "Equation 3.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B7, Sheet 1 of 2, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-4, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Page 3.52, Equation 3.14); Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.12 of the Reference Manual)", + "Technical_Reference": "See Comments from data provider.", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default emission factor is derived from the stoichiometric ratio between soda ash produced and purified sodium sesquicarbonate obtained from Trona. It is based on the main natural production process that is used at present, where soda ash is produced by calcination of purified sodium sesquicarbonate. The stoichiometric ratio is an exact number and assuming 100 percent purity of the input or output, the uncertainty of the default emission factor is negligible. However, the default factors do not take into account the fractional purities of either the Trona input or soda ash output and, in both cases, are expected to result in consistent over-estimation of emissions. As noted earlier, if no data are available for the purity of the Trona input, it is good practice to assume it is 90 percent and adjust this emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.563Z", + "last_change_date": "2022-03-14T07:53:34.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2452, + "fields": { + "EF_ID": 27520, + "IPCC_Category": "2.A - Mineral Industry, 2.A.3 - Glass Production, 2.A.4 - Other Process Uses of Carbonates, 2.A.4.b - Other Uses of Soda Ash, 2.A.5 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Soda Ash Use", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "415", + "Unit": "kg CO2/tonne of soda ash used", + "Equation": "Page 2.13 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.6.2.", + "IPCC_Worksheet": "Worksheet 2-4, Sheet 2 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.13 of the Reference Manual)", + "Technical_Reference": "U.S. Environmental Protection Agency (1994), Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-1993, p. 38, U.S. EPA, Washington DC, USA. EPA 230-R-94-014.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Some of the major uses include glass manufacture, chemicals, soaps, detergents and flue gas desulphurisation. For each of these uses, it is assumed that for each mole of soda ash use, one mole of CO2 is emitted.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.628Z", + "last_change_date": "2022-03-14T07:53:34.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2453, + "fields": { + "EF_ID": 27521, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Asphalt Roofing Production (Saturation Process)", + "Technology_Practices": "Saturation process with Spray", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13-0.16", + "Unit": "kg NMVOC/tonne of asphalt roofing produced", + "Equation": "Page 2.13 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.1.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-3 on Page 2.13 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.739Z", + "last_change_date": "2022-03-14T07:53:34.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2454, + "fields": { + "EF_ID": 27522, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Asphalt Roofing Production (Saturation Process)", + "Technology_Practices": "Saturation process without Spray", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.046-0.049", + "Unit": "kg NMVOC/tonne of asphalt roofing produced", + "Equation": "Page 2.13 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.1.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-3 on Page 2.13 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.838Z", + "last_change_date": "2022-03-14T07:53:34.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2455, + "fields": { + "EF_ID": 27523, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Asphalt Blowing Process", + "Technology_Practices": "Asphalt blowing process", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "With Afterburners", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg NMVOC/tonne of asphalt roofing produced", + "Equation": "Page 2.13 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.1.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-3 on Page 2.9 of the Workbook)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:34.921Z", + "last_change_date": "2022-03-14T07:53:34.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2456, + "fields": { + "EF_ID": 27524, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Asphalt Blowing Process", + "Technology_Practices": "Asphalt blowing process", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "No Control", + "Other_Properties": "", + "Value": "2.4", + "Unit": "kg NMVOC/tonne of asphalt roofing produced", + "Equation": "Page 2.13 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.1.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-3 on Page 2.9 of the Workbook)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.005Z", + "last_change_date": "2022-03-14T07:53:35.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2457, + "fields": { + "EF_ID": 27525, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Asphalt Roofing Production (Saturation Process)", + "Technology_Practices": "Saturation process without Spray", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0095", + "Unit": "kg CO/tonne of asphalt roofing produced", + "Equation": "Page 2.13 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.1.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 2 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-3 on Page 2.13 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.088Z", + "last_change_date": "2022-03-14T07:53:35.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2458, + "fields": { + "EF_ID": 27526, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Road Paving with Asphalt (Emissions from Asphalt Plant)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.035", + "Unit": "kg CO/tonne of asphalt", + "Equation": "Page 2.14 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-4 on Page 2.14 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.192Z", + "last_change_date": "2022-03-14T07:53:35.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2459, + "fields": { + "EF_ID": 27527, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Road Paving with Asphalt (Emissions from Asphalt Plant)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "kg SO2/tonne of asphalt", + "Equation": "Page 2.14 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-4 on Page 2.14 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.271Z", + "last_change_date": "2022-03-14T07:53:35.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2460, + "fields": { + "EF_ID": 27528, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Road Paving with Asphalt (Emissions from Asphalt Plant)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.084", + "Unit": "kg NO2/tonne of asphalt", + "Equation": "Page 2.14 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-4 on Page 2.14 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.347Z", + "last_change_date": "2022-03-14T07:53:35.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2461, + "fields": { + "EF_ID": 27529, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Road Paving with Asphalt (Emissions from Asphalt Plant)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.023", + "Unit": "kg NMVOC/tonne of asphalt", + "Equation": "Page 2.14 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.2.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 3 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-4 on Page 2.14 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.422Z", + "last_change_date": "2022-03-14T07:53:35.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2462, + "fields": { + "EF_ID": 27530, + "IPCC_Category": "2.A - Mineral Industry, 2.A.5 - Other (please specify)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Road Paving with Asphalt (Emissions from Road Surface)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "320", + "Unit": "kg NMVOC/tonne of asphalt", + "Equation": "Page 2.14 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.2.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 3 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-4 on Page 2.14 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.497Z", + "last_change_date": "2022-03-14T07:53:35.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2463, + "fields": { + "EF_ID": 27531, + "IPCC_Category": "2.A.5 - Other (please specify)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for NMVOC Emissions from Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.5", + "Unit": "kg NMVOC/tonne of glass produced", + "Equation": "Page 2.14 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.3.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.14 of the Reference Manual)", + "Technical_Reference": "CASPER (1995) Holtmann, T O. Rentz, Z. Samaras, Y. Tymbanidis, T. Zachariadis, M. Aslanoglou, K. Kulicke and K-H. Zierock, Development of a methodology for forecasting atmospheric emissions from relevant stationary and mobile sources, Karlsruhe, Thessaloniki, Berlin, Project report, November, 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.571Z", + "last_change_date": "2022-03-14T07:53:35.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2464, + "fields": { + "EF_ID": 27532, + "IPCC_Category": "2.A.5 - Other (please specify)", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for SO2 Emissions from Production of Concrete Pumice Stone", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg SO2/tonne of concrete pumice stone produced", + "Equation": "Page 2.14 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.7.3.", + "IPCC_Worksheet": "Worksheet 2-5, Sheet 5 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.14 of the Reference Manual)", + "Technical_Reference": "Rypdal, K. (1995), Anthropogenic Emissions of SO2, NOx, NMVOC and NH3 in Norway. Rapporter Statistic Norway, 95/16, Oslo.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.678Z", + "last_change_date": "2022-03-14T07:53:35.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2465, + "fields": { + "EF_ID": 27533, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg SO2/tonne NH3 produced", + "Equation": "Page 2.16 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.8.4.", + "IPCC_Worksheet": "Worksheet 2-6, Sheet 3 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-6 on Page 2.17 of the Reference Manual)", + "Technical_Reference": "U.S. Environmental Protection Agency (1995), Comment from U.S. EPA to second draft of Chapter 8, December, 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.763Z", + "last_change_date": "2022-03-14T07:53:35.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2466, + "fields": { + "EF_ID": 27535, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "7.9", + "Unit": "kg CO/tonne NH3 produced", + "Equation": "Page 2.16 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.8.4.", + "IPCC_Worksheet": "Worksheet 2-6, Sheet 3 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-6 on Page 2.17 of the Reference Manual)", + "Technical_Reference": "U.S. Environmental Protection Agency (1995), Comment from U.S. EPA to second draft of Chapter 8, December, 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.838Z", + "last_change_date": "2022-03-14T07:53:35.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2467, + "fields": { + "EF_ID": 27536, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "Process: Strong Acid Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1-1", + "Unit": "kg NOx/tonne nitric acid produced", + "Equation": "Page 2.18 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.9.4.", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.18 of the Reference Manual)", + "Technical_Reference": "Unavailable (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.18 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.913Z", + "last_change_date": "2022-03-14T07:53:35.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2468, + "fields": { + "EF_ID": 27537, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "Process: Low Pressure Process", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-20", + "Unit": "kg NOx/tonne nitric acid produced", + "Equation": "Page 2.18 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.9.4.", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.18 of the Reference Manual)", + "Technical_Reference": "Unavailable (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.18 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:35.988Z", + "last_change_date": "2022-03-14T07:53:35.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2469, + "fields": { + "EF_ID": 27538, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Generation Factor for Nitric Acid Production", + "Technology_Practices": "Applicable when the process and technology details are not known.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.0", + "Unit": "kg NOx/tonne nitric acid produced", + "Equation": "Page 2.18 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.9.4.", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.18 of the Reference Manual)", + "Technical_Reference": "Unavailable (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.18 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.096Z", + "last_change_date": "2022-03-14T07:53:36.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2470, + "fields": { + "EF_ID": 27539, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg NOx/tonne adipic acid produced", + "Equation": "Page 2.20 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.10.3.", + "IPCC_Worksheet": "Worksheet 2-8, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-8 on Page 2.20 of the Reference Manual)", + "Technical_Reference": "U.S. Environmental Protection Agency (1995), Comment from U.S. EPA to second draft of Chapter 8, December, 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.188Z", + "last_change_date": "2022-03-14T07:53:36.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2471, + "fields": { + "EF_ID": 27540, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.4", + "Unit": "kg CO/tonne adipic acid produced", + "Equation": "Page 2.20 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.10.3.", + "IPCC_Worksheet": "Worksheet 2-8, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-8 on Page 2.20 of the Reference Manual)", + "Technical_Reference": "U.S. Environmental Protection Agency (1995), Comment from U.S. EPA to second draft of Chapter 8, December, 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.288Z", + "last_change_date": "2022-03-14T07:53:36.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2472, + "fields": { + "EF_ID": 27541, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.3", + "Unit": "kg NMVOC/tonne adipic acid produced", + "Equation": "Page 2.20 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.10.3.", + "IPCC_Worksheet": "Worksheet 2-8, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-8 on Page 2.20 of the Reference Manual)", + "Technical_Reference": "U.S. Environmental Protection Agency (1995), Comment from U.S. EPA to second draft of Chapter 8, December, 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.363Z", + "last_change_date": "2022-03-14T07:53:36.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2473, + "fields": { + "EF_ID": 27542, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon Content in Coke Consumed to Produce Silicon Carbide", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon source: Petrol Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "%", + "Equation": "Page 2.20 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.11.1.", + "IPCC_Worksheet": "Worksheet 2-9, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.21 of the Reference Manual)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "More carbon is actually needed in the process than calculated from a stoichiometric reaction. The suggested emission factors are calculated from coke input in Norwegian plants. The excess carbon is oxidised during the process, little is left as ash (see Raaness, O. (1991), Silisiumkarbid og CO2, STF34 A91134. SINTEF 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.438Z", + "last_change_date": "2022-03-14T07:53:36.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2474, + "fields": { + "EF_ID": 27543, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon Input Sequestered in Product (in Silicon Carbide Production)", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon source: Petrol Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Page 2.20 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.11.1.", + "IPCC_Worksheet": "Worksheet 2-9, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.21 of the Reference Manual)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "More carbon is actually needed in the process than calculated from a stoichiometric reaction. The suggested emission factors are calculated from coke input in Norwegian plants. The excess carbon is oxidised during the process, little is left as ash (see Raaness, O. (1991), Silisiumkarbid og CO2, STF34 A91134. SINTEF 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.540Z", + "last_change_date": "2022-03-14T07:53:36.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2475, + "fields": { + "EF_ID": 27544, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Silicon Carbide Production", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon source: Petroleum Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.30", + "Unit": "tonne CO2/tonne petrol coke consumed", + "Equation": "Equation 3.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B5, Sheet 1 of 6, in Annex 1 (page A1.7) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.7); Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.21 of the Reference Manual)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Typical default values for Norwegian plants for carbon content in coke are 97 percent and for carbon contained in product, 35 percent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.638Z", + "last_change_date": "2022-03-14T07:53:36.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2476, + "fields": { + "EF_ID": 27545, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for CH4 Emissions from Silicon Carbide Production", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon source: Petroleum Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.2", + "Unit": "kg CH4/tonne petrol coke consumed", + "Equation": "Equation 3.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B5, Sheet 5 of 6, in Annex 1 (page A1.9) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-9, Sheet 2 of 4, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.7); Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.21 of the Reference Manual)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.713Z", + "last_change_date": "2022-03-14T07:53:36.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2477, + "fields": { + "EF_ID": 27546, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for CH4 Emissions from Silicon Carbide Production", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon source: Petroleum Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.6", + "Unit": "kg CH4/tonne silicon carbide produced", + "Equation": "Equation 3.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B5, Sheet 6 of 6, in Annex 1 (page A1.9) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-9, Sheet 3 of 4, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.7); Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.21 of the Reference Manual)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.796Z", + "last_change_date": "2022-03-14T07:53:36.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2478, + "fields": { + "EF_ID": 43088, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.910Z", + "last_change_date": "2022-03-14T07:53:36.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2479, + "fields": { + "EF_ID": 43089, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:36.988Z", + "last_change_date": "2022-03-14T07:53:36.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2480, + "fields": { + "EF_ID": 43090, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.063Z", + "last_change_date": "2022-03-14T07:53:37.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2481, + "fields": { + "EF_ID": 43091, + "IPCC_Category": "3.A.1.c - Sheep, 3.A.1.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.147Z", + "last_change_date": "2022-03-14T07:53:37.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2482, + "fields": { + "EF_ID": 43092, + "IPCC_Category": "3.A.1.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.222Z", + "last_change_date": "2022-03-14T07:53:37.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2483, + "fields": { + "EF_ID": 43094, + "IPCC_Category": "3.A.1.e - Camels", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.328Z", + "last_change_date": "2022-03-14T07:53:37.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2484, + "fields": { + "EF_ID": 43095, + "IPCC_Category": "3.A.1.e - Camels", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.422Z", + "last_change_date": "2022-03-14T07:53:37.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2485, + "fields": { + "EF_ID": 43096, + "IPCC_Category": "3.A.1.f - Horses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.497Z", + "last_change_date": "2022-03-14T07:53:37.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2486, + "fields": { + "EF_ID": 43097, + "IPCC_Category": "3.A.1.f - Horses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.572Z", + "last_change_date": "2022-03-14T07:53:37.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2487, + "fields": { + "EF_ID": 43098, + "IPCC_Category": "3.A.1.g - Mules and Asses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.646Z", + "last_change_date": "2022-03-14T07:53:37.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2488, + "fields": { + "EF_ID": 43099, + "IPCC_Category": "3.A.1.g - Mules and Asses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.722Z", + "last_change_date": "2022-03-14T07:53:37.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2489, + "fields": { + "EF_ID": 43100, + "IPCC_Category": "3.A.1.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.823Z", + "last_change_date": "2022-03-14T07:53:37.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2490, + "fields": { + "EF_ID": 43101, + "IPCC_Category": "3.A.1.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-3 on Page 4.10 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.905Z", + "last_change_date": "2022-03-14T07:53:37.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2491, + "fields": { + "EF_ID": 43104, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Highly productive commercialised dairy sector feeding high quality forage and grain.", + "Parameter_Conditions": "Average milk production of 6,700 kg/head/yr", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "118", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:37.980Z", + "last_change_date": "2022-03-14T07:53:37.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2492, + "fields": { + "EF_ID": 43105, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Separate beef cow herd, primarily grazing with feed supplements seasonally. Fast-growing beef steers/heifers finished in feedlots on grain.", + "Parameter_Conditions": "Includes beef cows, bulls, calves, growing steers/heifers, and feedlot cattle", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.055Z", + "last_change_date": "2022-03-14T07:53:38.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2493, + "fields": { + "EF_ID": 43106, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Highly productive commercialised dairy sector feeding high quality forage and grain. Dairy cows also used for beef calf production.", + "Parameter_Conditions": "Average milk production of 4,200 kg/head/yr", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.130Z", + "last_change_date": "2022-03-14T07:53:38.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2494, + "fields": { + "EF_ID": 43107, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Very small dedicated beef cow herd. Minor amount of feedlot feeding with grains.", + "Parameter_Conditions": "Includes bulls, calves, and growing steers/heifers", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.233Z", + "last_change_date": "2022-03-14T07:53:38.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2495, + "fields": { + "EF_ID": 43108, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Commercialised dairy sector feeding mostly forages.", + "Parameter_Conditions": "Average milk production of 2,550 kg/head/yr", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.322Z", + "last_change_date": "2022-03-14T07:53:38.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2496, + "fields": { + "EF_ID": 43109, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Separate beef cow herd, primarily grazing. Minor amount of feedlot feeding with grains.", + "Parameter_Conditions": "Includes beef cows, bulls, and young", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.397Z", + "last_change_date": "2022-03-14T07:53:38.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2497, + "fields": { + "EF_ID": 43110, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing.", + "Parameter_Conditions": "Average milk production of 1,700 kg/head/yr", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.463Z", + "last_change_date": "2022-03-14T07:53:38.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2498, + "fields": { + "EF_ID": 43111, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Separate beef cow, primarily grazing rangelands of widely varying quality. Growing amount of feedlot feeding with grains.", + "Parameter_Conditions": "Includes beef cows, bulls, and young", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.569Z", + "last_change_date": "2022-03-14T07:53:38.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2499, + "fields": { + "EF_ID": 43112, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing.", + "Parameter_Conditions": "Average milk production of 800 kg/head/yr", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.647Z", + "last_change_date": "2022-03-14T07:53:38.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2500, + "fields": { + "EF_ID": 43113, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Separate beef cow herd grazing pastures and rangelands. Minor amount of feedlot feeding with grains.", + "Parameter_Conditions": "Includes beef cows, bulls, and young", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.730Z", + "last_change_date": "2022-03-14T07:53:38.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2501, + "fields": { + "EF_ID": 43114, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Small commercialised dairy sector.", + "Parameter_Conditions": "Average milk production of 1,650 kg/head/yr", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.796Z", + "last_change_date": "2022-03-14T07:53:38.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2502, + "fields": { + "EF_ID": 43115, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Most cattle are multi-purpose, providing power and some milk within farming regions. Small grazing population. Cattle of all types are smaller than those found in most other regions.", + "Parameter_Conditions": "Includes multi-purpose cows, bulls, and young", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.863Z", + "last_change_date": "2022-03-14T07:53:38.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2503, + "fields": { + "EF_ID": 43116, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing with low production per cow.", + "Parameter_Conditions": "Average milk production of 475 kg/head/yr", + "Regional_Conditions": "Region: Africa and Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:38.979Z", + "last_change_date": "2022-03-14T07:53:38.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2504, + "fields": { + "EF_ID": 43117, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Most cattle are multi-purpose, providing draft power and some milk within farming regions. Some cattle graze over very large areas. Cattle of all types are smaller than those found in most other regions.", + "Parameter_Conditions": "Includes multi-purpose cows, bulls, and young", + "Regional_Conditions": "Region: Africa and Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.055Z", + "last_change_date": "2022-03-14T07:53:39.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2505, + "fields": { + "EF_ID": 43118, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on crop by-product feeding with low production per cow.", + "Parameter_Conditions": "Average milk production of 900 kg/head/yr", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "-", + "Other_Properties": "Average milk production of 900 kg/head/yr.", + "Value": "46", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "-", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.121Z", + "last_change_date": "2022-03-14T07:53:39.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2506, + "fields": { + "EF_ID": 43119, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Enteric Fermentation Emission Factors for Cattle", + "Technology_Practices": "Most bullocks provide draft power and cows provide some milk in farming regions. Small grazing population. Cattle in this region are the smallest compared to cattle", + "Parameter_Conditions": "Includes cows, bulls, and young. Young comprise a large portion of the population", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-4 on Page 4.11 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.197Z", + "last_change_date": "2022-03-14T07:53:39.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2507, + "fields": { + "EF_ID": 43120, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.289Z", + "last_change_date": "2022-03-14T07:53:39.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2508, + "fields": { + "EF_ID": 43121, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.372Z", + "last_change_date": "2022-03-14T07:53:39.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2509, + "fields": { + "EF_ID": 43122, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.438Z", + "last_change_date": "2022-03-14T07:53:39.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2510, + "fields": { + "EF_ID": 43123, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.505Z", + "last_change_date": "2022-03-14T07:53:39.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2511, + "fields": { + "EF_ID": 43124, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.591Z", + "last_change_date": "2022-03-14T07:53:39.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2512, + "fields": { + "EF_ID": 43125, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.672Z", + "last_change_date": "2022-03-14T07:53:39.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2513, + "fields": { + "EF_ID": 43126, + "IPCC_Category": "3.A.2.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.738Z", + "last_change_date": "2022-03-14T07:53:39.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2514, + "fields": { + "EF_ID": 43127, + "IPCC_Category": "3.A.2.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.805Z", + "last_change_date": "2022-03-14T07:53:39.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2515, + "fields": { + "EF_ID": 43128, + "IPCC_Category": "3.A.2.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.901Z", + "last_change_date": "2022-03-14T07:53:39.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2516, + "fields": { + "EF_ID": 43129, + "IPCC_Category": "3.A.2.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:39.980Z", + "last_change_date": "2022-03-14T07:53:39.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2517, + "fields": { + "EF_ID": 43130, + "IPCC_Category": "3.A.2.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.062Z", + "last_change_date": "2022-03-14T07:53:40.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2518, + "fields": { + "EF_ID": 43131, + "IPCC_Category": "3.A.2.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.138Z", + "last_change_date": "2022-03-14T07:53:40.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2519, + "fields": { + "EF_ID": 43132, + "IPCC_Category": "3.A.2.e - Camels", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.246Z", + "last_change_date": "2022-03-14T07:53:40.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2520, + "fields": { + "EF_ID": 43133, + "IPCC_Category": "3.A.2.e - Camels", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.347Z", + "last_change_date": "2022-03-14T07:53:40.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2521, + "fields": { + "EF_ID": 43134, + "IPCC_Category": "3.A.2.e - Camels", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.437Z", + "last_change_date": "2022-03-14T07:53:40.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2522, + "fields": { + "EF_ID": 43135, + "IPCC_Category": "3.A.2.e - Camels", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.512Z", + "last_change_date": "2022-03-14T07:53:40.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2523, + "fields": { + "EF_ID": 43136, + "IPCC_Category": "3.A.2.e - Camels", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.614Z", + "last_change_date": "2022-03-14T07:53:40.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2524, + "fields": { + "EF_ID": 43137, + "IPCC_Category": "3.A.2.e - Camels", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.705Z", + "last_change_date": "2022-03-14T07:53:40.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2525, + "fields": { + "EF_ID": 43138, + "IPCC_Category": "3.A.2.f - Horses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.787Z", + "last_change_date": "2022-03-14T07:53:40.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2526, + "fields": { + "EF_ID": 43139, + "IPCC_Category": "3.A.2.f - Horses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.872Z", + "last_change_date": "2022-03-14T07:53:40.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2527, + "fields": { + "EF_ID": 43140, + "IPCC_Category": "3.A.2.f - Horses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:40.982Z", + "last_change_date": "2022-03-14T07:53:40.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2528, + "fields": { + "EF_ID": 43141, + "IPCC_Category": "3.A.2.f - Horses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.080Z", + "last_change_date": "2022-03-14T07:53:41.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2529, + "fields": { + "EF_ID": 43142, + "IPCC_Category": "3.A.2.f - Horses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.163Z", + "last_change_date": "2022-03-14T07:53:41.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2530, + "fields": { + "EF_ID": 43143, + "IPCC_Category": "3.A.2.f - Horses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.239Z", + "last_change_date": "2022-03-14T07:53:41.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2531, + "fields": { + "EF_ID": 43144, + "IPCC_Category": "3.A.2.g - Mules and Asses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.334Z", + "last_change_date": "2022-03-14T07:53:41.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2532, + "fields": { + "EF_ID": 43145, + "IPCC_Category": "3.A.2.g - Mules and Asses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Temperate Regions in Developed Countries (average temperature is 15C to 25C inclusive", + "Control_Technologies": "-", + "Other_Properties": "-", + "Value": "1.14", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.411Z", + "last_change_date": "2022-03-14T07:53:41.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2533, + "fields": { + "EF_ID": 43146, + "IPCC_Category": "3.A.2.g - Mules and Asses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.51", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.480Z", + "last_change_date": "2022-03-14T07:53:41.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2534, + "fields": { + "EF_ID": 43147, + "IPCC_Category": "3.A.2.g - Mules and Asses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.547Z", + "last_change_date": "2022-03-14T07:53:41.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2535, + "fields": { + "EF_ID": 43148, + "IPCC_Category": "3.A.2.g - Mules and Asses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.90", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.644Z", + "last_change_date": "2022-03-14T07:53:41.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2536, + "fields": { + "EF_ID": 43149, + "IPCC_Category": "3.A.2.g - Mules and Asses", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.728Z", + "last_change_date": "2022-03-14T07:53:41.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2537, + "fields": { + "EF_ID": 43150, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields. Include chickens, ducks, and turkeys.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.078", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.805Z", + "last_change_date": "2022-03-14T07:53:41.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2538, + "fields": { + "EF_ID": 43151, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields. Include chickens, ducks, and turkeys.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.117", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.872Z", + "last_change_date": "2022-03-14T07:53:41.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2539, + "fields": { + "EF_ID": 43152, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields. Include chickens, ducks, and turkeys.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.157", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:41.963Z", + "last_change_date": "2022-03-14T07:53:41.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2540, + "fields": { + "EF_ID": 43153, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields. Include chickens, ducks, and turkeys.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C; MCF value used in the estimation is 1%", + "Regional_Conditions": "Climate: Cool; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.053Z", + "last_change_date": "2022-03-14T07:53:42.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2541, + "fields": { + "EF_ID": 43154, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields. Include chickens, ducks, and turkeys.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C; MCF value used in the estimation is 1.5 %", + "Regional_Conditions": "Climate: Temp; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.018", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.130Z", + "last_change_date": "2022-03-14T07:53:42.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2542, + "fields": { + "EF_ID": 43155, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "All manure is assumed to be managed in dry manure management systems, including pastures and ranges, drylots, and daily spreading on fields. Include chickens, ducks, and turkeys.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C; MCF value used in the estimation is 2%", + "Regional_Conditions": "Climate: Warm; Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.023", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-5 on Page 4.12 of the Reference Manual)", + "Technical_Reference": "Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "20%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.189Z", + "last_change_date": "2022-03-14T07:53:42.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2543, + "fields": { + "EF_ID": 43156, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid-based systems are commonly used.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.299Z", + "last_change_date": "2022-03-14T07:53:42.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2544, + "fields": { + "EF_ID": 43157, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid-based systems are commonly used.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.378Z", + "last_change_date": "2022-03-14T07:53:42.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2545, + "fields": { + "EF_ID": 43158, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid-based systems are commonly used.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.472Z", + "last_change_date": "2022-03-14T07:53:42.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2546, + "fields": { + "EF_ID": 43159, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Non-dairy manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.567Z", + "last_change_date": "2022-03-14T07:53:42.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2547, + "fields": { + "EF_ID": 43160, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Non-dairy manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.653Z", + "last_change_date": "2022-03-14T07:53:42.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2548, + "fields": { + "EF_ID": 43161, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Non-dairy manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.760Z", + "last_change_date": "2022-03-14T07:53:42.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2549, + "fields": { + "EF_ID": 43162, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid-based systems are commonly used.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.845Z", + "last_change_date": "2022-03-14T07:53:42.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2550, + "fields": { + "EF_ID": 43163, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid-based systems are commonly used.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.935Z", + "last_change_date": "2022-03-14T07:53:42.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2551, + "fields": { + "EF_ID": 43164, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid-based systems are commonly used.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:42.995Z", + "last_change_date": "2022-03-14T07:53:42.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2552, + "fields": { + "EF_ID": 43165, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.055Z", + "last_change_date": "2022-03-14T07:53:43.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2553, + "fields": { + "EF_ID": 43166, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.153Z", + "last_change_date": "2022-03-14T07:53:43.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2554, + "fields": { + "EF_ID": 43167, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.228Z", + "last_change_date": "2022-03-14T07:53:43.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2555, + "fields": { + "EF_ID": 43168, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.323Z", + "last_change_date": "2022-03-14T07:53:43.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2556, + "fields": { + "EF_ID": 43169, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Western Europe", + "Control_Technologies": "-", + "Other_Properties": "-", + "Value": "20", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.412Z", + "last_change_date": "2022-03-14T07:53:43.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2557, + "fields": { + "EF_ID": 43170, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.506Z", + "last_change_date": "2022-03-14T07:53:43.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2558, + "fields": { + "EF_ID": 43171, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.578Z", + "last_change_date": "2022-03-14T07:53:43.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2559, + "fields": { + "EF_ID": 43172, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.683Z", + "last_change_date": "2022-03-14T07:53:43.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2560, + "fields": { + "EF_ID": 43173, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for manure.Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.780Z", + "last_change_date": "2022-03-14T07:53:43.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2561, + "fields": { + "EF_ID": 43174, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.863Z", + "last_change_date": "2022-03-14T07:53:43.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2562, + "fields": { + "EF_ID": 43175, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:43.976Z", + "last_change_date": "2022-03-14T07:53:43.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2563, + "fields": { + "EF_ID": 43176, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.078Z", + "last_change_date": "2022-03-14T07:53:44.078Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2564, + "fields": { + "EF_ID": 43177, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.195Z", + "last_change_date": "2022-03-14T07:53:44.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2565, + "fields": { + "EF_ID": 43178, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.264Z", + "last_change_date": "2022-03-14T07:53:44.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2566, + "fields": { + "EF_ID": 43179, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.353Z", + "last_change_date": "2022-03-14T07:53:44.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2567, + "fields": { + "EF_ID": 43180, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.428Z", + "last_change_date": "2022-03-14T07:53:44.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2568, + "fields": { + "EF_ID": 43181, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.546Z", + "last_change_date": "2022-03-14T07:53:44.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2569, + "fields": { + "EF_ID": 43182, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.630Z", + "last_change_date": "2022-03-14T07:53:44.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2570, + "fields": { + "EF_ID": 43183, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.740Z", + "last_change_date": "2022-03-14T07:53:44.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2571, + "fields": { + "EF_ID": 43184, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.821Z", + "last_change_date": "2022-03-14T07:53:44.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2572, + "fields": { + "EF_ID": 43185, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.924Z", + "last_change_date": "2022-03-14T07:53:44.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2573, + "fields": { + "EF_ID": 43186, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:44.995Z", + "last_change_date": "2022-03-14T07:53:44.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2574, + "fields": { + "EF_ID": 43187, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.101Z", + "last_change_date": "2022-03-14T07:53:45.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2575, + "fields": { + "EF_ID": 43188, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one -third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.197Z", + "last_change_date": "2022-03-14T07:53:45.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2576, + "fields": { + "EF_ID": 43189, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.301Z", + "last_change_date": "2022-03-14T07:53:45.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2577, + "fields": { + "EF_ID": 43190, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.388Z", + "last_change_date": "2022-03-14T07:53:45.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2578, + "fields": { + "EF_ID": 43191, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.494Z", + "last_change_date": "2022-03-14T07:53:45.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2579, + "fields": { + "EF_ID": 43192, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.580Z", + "last_change_date": "2022-03-14T07:53:45.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2580, + "fields": { + "EF_ID": 43193, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.687Z", + "last_change_date": "2022-03-14T07:53:45.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2581, + "fields": { + "EF_ID": 43194, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.763Z", + "last_change_date": "2022-03-14T07:53:45.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2582, + "fields": { + "EF_ID": 43195, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.870Z", + "last_change_date": "2022-03-14T07:53:45.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2583, + "fields": { + "EF_ID": 43196, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:45.945Z", + "last_change_date": "2022-03-14T07:53:45.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2584, + "fields": { + "EF_ID": 43197, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Virtually all livestock manure is managed as a solid on pastures and ranges. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.022Z", + "last_change_date": "2022-03-14T07:53:46.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2585, + "fields": { + "EF_ID": 43198, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.130Z", + "last_change_date": "2022-03-14T07:53:46.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2586, + "fields": { + "EF_ID": 43199, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.221Z", + "last_change_date": "2022-03-14T07:53:46.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2587, + "fields": { + "EF_ID": 43200, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.323Z", + "last_change_date": "2022-03-14T07:53:46.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2588, + "fields": { + "EF_ID": 43201, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.413Z", + "last_change_date": "2022-03-14T07:53:46.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2589, + "fields": { + "EF_ID": 43203, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.517Z", + "last_change_date": "2022-03-14T07:53:46.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2590, + "fields": { + "EF_ID": 43204, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.704Z", + "last_change_date": "2022-03-14T07:53:46.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2591, + "fields": { + "EF_ID": 43205, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.801Z", + "last_change_date": "2022-03-14T07:53:46.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2592, + "fields": { + "EF_ID": 43206, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.878Z", + "last_change_date": "2022-03-14T07:53:46.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2593, + "fields": { + "EF_ID": 43207, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:46.947Z", + "last_change_date": "2022-03-14T07:53:46.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2594, + "fields": { + "EF_ID": 43208, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.052Z", + "last_change_date": "2022-03-14T07:53:47.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2595, + "fields": { + "EF_ID": 43209, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.138Z", + "last_change_date": "2022-03-14T07:53:47.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2596, + "fields": { + "EF_ID": 43210, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.245Z", + "last_change_date": "2022-03-14T07:53:47.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2597, + "fields": { + "EF_ID": 43211, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.330Z", + "last_change_date": "2022-03-14T07:53:47.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2598, + "fields": { + "EF_ID": 43212, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.430Z", + "last_change_date": "2022-03-14T07:53:47.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2599, + "fields": { + "EF_ID": 43213, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.513Z", + "last_change_date": "2022-03-14T07:53:47.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2600, + "fields": { + "EF_ID": 43216, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.613Z", + "last_change_date": "2022-03-14T07:53:47.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2601, + "fields": { + "EF_ID": 43217, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.687Z", + "last_change_date": "2022-03-14T07:53:47.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2602, + "fields": { + "EF_ID": 43218, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.763Z", + "last_change_date": "2022-03-14T07:53:47.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2603, + "fields": { + "EF_ID": 43219, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.857Z", + "last_change_date": "2022-03-14T07:53:47.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2604, + "fields": { + "EF_ID": 43220, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:47.938Z", + "last_change_date": "2022-03-14T07:53:47.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2605, + "fields": { + "EF_ID": 43221, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.025Z", + "last_change_date": "2022-03-14T07:53:48.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2606, + "fields": { + "EF_ID": 43223, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.122Z", + "last_change_date": "2022-03-14T07:53:48.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2607, + "fields": { + "EF_ID": 43224, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.218Z", + "last_change_date": "2022-03-14T07:53:48.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2608, + "fields": { + "EF_ID": 43225, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About one-third of swine manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.295Z", + "last_change_date": "2022-03-14T07:53:48.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2609, + "fields": { + "EF_ID": 43226, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About one-third of swine manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.395Z", + "last_change_date": "2022-03-14T07:53:48.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2610, + "fields": { + "EF_ID": 43227, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About one-third of swine manure is managed in liquid-based systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.480Z", + "last_change_date": "2022-03-14T07:53:48.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2611, + "fields": { + "EF_ID": 43228, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is burned for fuel or managed as solid.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.547Z", + "last_change_date": "2022-03-14T07:53:48.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2612, + "fields": { + "EF_ID": 43229, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is burned for fuel or managed as solid.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.646Z", + "last_change_date": "2022-03-14T07:53:48.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2613, + "fields": { + "EF_ID": 43230, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is burned for fuel or managed as solid.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.822Z", + "last_change_date": "2022-03-14T07:53:48.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2614, + "fields": { + "EF_ID": 43231, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:48.955Z", + "last_change_date": "2022-03-14T07:53:48.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2615, + "fields": { + "EF_ID": 43232, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.038Z", + "last_change_date": "2022-03-14T07:53:49.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2616, + "fields": { + "EF_ID": 43233, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.139Z", + "last_change_date": "2022-03-14T07:53:49.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2617, + "fields": { + "EF_ID": 43234, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.222Z", + "last_change_date": "2022-03-14T07:53:49.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2618, + "fields": { + "EF_ID": 43235, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.324Z", + "last_change_date": "2022-03-14T07:53:49.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2619, + "fields": { + "EF_ID": 43236, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.413Z", + "last_change_date": "2022-03-14T07:53:49.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2620, + "fields": { + "EF_ID": 43237, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost 40% of swine manure is managed as a liquid.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.516Z", + "last_change_date": "2022-03-14T07:53:49.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2621, + "fields": { + "EF_ID": 43238, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost 40% of swine manure is managed as a liquid.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.588Z", + "last_change_date": "2022-03-14T07:53:49.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2622, + "fields": { + "EF_ID": 43239, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Almost 40% of swine manure is managed as a liquid.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.663Z", + "last_change_date": "2022-03-14T07:53:49.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2623, + "fields": { + "EF_ID": 43240, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Asia", + "Control_Technologies": "-", + "Other_Properties": "-", + "Value": "1", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.777Z", + "last_change_date": "2022-03-14T07:53:49.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2624, + "fields": { + "EF_ID": 43241, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.880Z", + "last_change_date": "2022-03-14T07:53:49.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2625, + "fields": { + "EF_ID": 43242, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:49.963Z", + "last_change_date": "2022-03-14T07:53:49.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2626, + "fields": { + "EF_ID": 43243, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.078Z", + "last_change_date": "2022-03-14T07:53:50.078Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2627, + "fields": { + "EF_ID": 43244, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.163Z", + "last_change_date": "2022-03-14T07:53:50.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2628, + "fields": { + "EF_ID": 43245, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.272Z", + "last_change_date": "2022-03-14T07:53:50.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2629, + "fields": { + "EF_ID": 43246, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.355Z", + "last_change_date": "2022-03-14T07:53:50.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2630, + "fields": { + "EF_ID": 43247, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.455Z", + "last_change_date": "2022-03-14T07:53:50.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2631, + "fields": { + "EF_ID": 43248, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.538Z", + "last_change_date": "2022-03-14T07:53:50.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2632, + "fields": { + "EF_ID": 43249, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Indian Subcontinent", + "Control_Technologies": "-", + "Other_Properties": "-", + "Value": "3", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.631Z", + "last_change_date": "2022-03-14T07:53:50.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2633, + "fields": { + "EF_ID": 43250, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.714Z", + "last_change_date": "2022-03-14T07:53:50.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2634, + "fields": { + "EF_ID": 43251, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.797Z", + "last_change_date": "2022-03-14T07:53:50.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2635, + "fields": { + "EF_ID": 43252, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of buffalo manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.891Z", + "last_change_date": "2022-03-14T07:53:50.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2636, + "fields": { + "EF_ID": 43253, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of buffalo manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:50.981Z", + "last_change_date": "2022-03-14T07:53:50.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2637, + "fields": { + "EF_ID": 43254, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Emission Factor", + "Technology_Practices": "About half of buffalo manure is used for fuel with the remainder managed in dry systems.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm; Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15 on Page 4.30 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-6 on Page 4.13 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J., I. Aselmann and W. Seiler (1986), Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284 , , Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048. , , Woodbury, J.W. and A. Hashimoto (1993), Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.075Z", + "last_change_date": "2022-03-14T07:53:51.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2638, + "fields": { + "EF_ID": 43255, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pasture/Range/Paddock. The manure from pasture and range grazing animals is allowed to lie as is, and is not managed.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.156Z", + "last_change_date": "2022-03-14T07:53:51.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2639, + "fields": { + "EF_ID": 43256, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pasture/Range/Paddock. The manure from pasture and range grazing animals is allowed to lie as is, and is not managed.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.231Z", + "last_change_date": "2022-03-14T07:53:51.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2640, + "fields": { + "EF_ID": 43257, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pasture/Range/Paddock. The manure from pasture and range grazing animals is allowed to lie as is, and is not managed.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.327Z", + "last_change_date": "2022-03-14T07:53:51.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2641, + "fields": { + "EF_ID": 43258, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Daily Spread. Manure is collected in solid form by some means such as scraping. The collected manure is applied to fields regularly (usually daily).", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.405Z", + "last_change_date": "2022-03-14T07:53:51.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2642, + "fields": { + "EF_ID": 43259, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Daily Spread. Manure is collected in solid form by some means such as scraping. The collected manure is applied to fields regularly (usually daily).", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.481Z", + "last_change_date": "2022-03-14T07:53:51.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2643, + "fields": { + "EF_ID": 43260, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Daily Spread. Manure is collected in solid form by some means such as scraping. The collected manure is applied to fields regularly (usually daily).", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.564Z", + "last_change_date": "2022-03-14T07:53:51.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2644, + "fields": { + "EF_ID": 43261, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Solid Storage. Manure is collected as in the daily spread system, but is stored in bulk for a long period of time (months) before disposal.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.671Z", + "last_change_date": "2022-03-14T07:53:51.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2645, + "fields": { + "EF_ID": 43262, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Solid Storage. Manure is collected as in the daily spread system, but is stored in bulk for a long period of time (months) before disposal.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.747Z", + "last_change_date": "2022-03-14T07:53:51.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2646, + "fields": { + "EF_ID": 43263, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Solid Storage. Manure is collected as in the daily spread system, but is stored in bulk for a long period of time (months) before disposal.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.822Z", + "last_change_date": "2022-03-14T07:53:51.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2647, + "fields": { + "EF_ID": 43264, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Drylot. In dry climate animals may be kept on unpaved feedlots where the manure is allowed to dry until it is periodically removed. Upon removal the manure may be spread on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:51.931Z", + "last_change_date": "2022-03-14T07:53:51.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2648, + "fields": { + "EF_ID": 43265, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Drylot. In dry climate animals may be kept on unpaved feedlots where the manure is allowed to dry until it is periodically removed. Upon removal the manure may be spread on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.005Z", + "last_change_date": "2022-03-14T07:53:52.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2649, + "fields": { + "EF_ID": 43266, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Drylot. In dry climate animals may be kept on unpaved feedlots where the manure is allowed to dry until it is periodically removed. Upon removal the manure may be spread on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.072Z", + "last_change_date": "2022-03-14T07:53:52.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2650, + "fields": { + "EF_ID": 43267, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Liquid/Slurry. These systems are characterised by large concrete lined tanks built into the ground. Manure is stored in the tank for six or more months until it can be applied to fields. To facilitate handling as a liquid, water", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.174Z", + "last_change_date": "2022-03-14T07:53:52.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2651, + "fields": { + "EF_ID": 43268, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Liquid/Slurry. These systems are characterised by large concrete lined tanks built into the ground. Manure is stored in the tank for six or more months until it can be applied to fields. To facilitate handling as a liquid, water", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.264Z", + "last_change_date": "2022-03-14T07:53:52.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2652, + "fields": { + "EF_ID": 43269, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Liquid/Slurry. These systems are characterised by large concrete lined tanks built into the ground. Manure is stored in the tank for six or more months until it can be applied to fields. To facilitate handling as a liquid, water", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.339Z", + "last_change_date": "2022-03-14T07:53:52.339Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2653, + "fields": { + "EF_ID": 43270, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Anaerobic Lagoon. Anaerobic lagoon systems are characterised by flush systems that use water to transport manure to lagoons. The manure resides in the lagoon for periods from 30 days to over 200 days. The water from the lagoon ma", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Safley, L.M. Jr. and P.W. Westerman, (1992), Performance of a low temperature lagoon digester, Bioresource Technology 41:167-175. , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.425Z", + "last_change_date": "2022-03-14T07:53:52.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2654, + "fields": { + "EF_ID": 43271, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Anaerobic Lagoon. Anaerobic lagoon systems are characterised by flush systems that use water to transport manure to lagoons. The manure resides in the lagoon for periods from 30 days to over 200 days. The water from the lagoon ma", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Safley, L.M. Jr. and P.W. Westerman, (1992), Performance of a low temperature lagoon digester, Bioresource Technology 41:167-175. , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.506Z", + "last_change_date": "2022-03-14T07:53:52.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2655, + "fields": { + "EF_ID": 43272, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Anaerobic Lagoon. Anaerobic lagoon systems are characterised by flush systems that use water to transport manure to lagoons. The manure resides in the lagoon for periods from 30 days to over 200 days. The water from the lagoon ma", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Safley, L.M. Jr. and P.W. Westerman, (1992), Performance of a low temperature lagoon digester, Bioresource Technology 41:167-175. , , Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.573Z", + "last_change_date": "2022-03-14T07:53:52.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2656, + "fields": { + "EF_ID": 43273, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pit Storage. Liquid swine manure may be stored in a pit while awaiting final disposal. The length of storage time is less than one month (<30 Days).", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.660Z", + "last_change_date": "2022-03-14T07:53:52.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2657, + "fields": { + "EF_ID": 43274, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pit Storage. Liquid swine manure may be stored in a pit while awaiting final disposal. The length of storage time is less than one month (<30 Days).", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.748Z", + "last_change_date": "2022-03-14T07:53:52.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2658, + "fields": { + "EF_ID": 43275, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pit Storage. Liquid swine manure may be stored in a pit while awaiting final disposal. The length of storage time is less than one month (<30 Days).", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.831Z", + "last_change_date": "2022-03-14T07:53:52.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2659, + "fields": { + "EF_ID": 43276, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pit Storage. Liquid swine manure may be stored in a pit while awaiting final disposal. The length of storage time is greater than one month (>30 Days).", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:52.946Z", + "last_change_date": "2022-03-14T07:53:52.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2660, + "fields": { + "EF_ID": 43277, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pit Storage. Liquid swine manure may be stored in a pit while awaiting final disposal. The length of storage time is greater than one month (>30 Days).", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.031Z", + "last_change_date": "2022-03-14T07:53:53.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2661, + "fields": { + "EF_ID": 43278, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Pit Storage. Liquid swine manure may be stored in a pit while awaiting final disposal. The length of storage time is greater than one month (>30 Days).", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Hashimoto, A. and J. Steed (1993), Methane Emissions from Typical U.S. Livestock Manure Management Systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.106Z", + "last_change_date": "2022-03-14T07:53:53.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2662, + "fields": { + "EF_ID": 43279, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Anaerobic Digester. The manure, in liquid or slurry form, is anaerobically digested to produce methane gas for energy. Emissions are from leakage and vary with the type of digester.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5-15", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Yancun, C., H. Cong and Liang Pusen (1985), Development of a new energy village - Xinbu, China. In: Integrated Rural Energy Planning, Y. El Mahgary and A.K. Biswas (eds.), Butterworths Publishing, Guildford, England, pp. 99-108. , , Stuckey, D.C. (1984), Biogas: a global perspective. In: Biogas Technology, Transfer and Diffusion, M.M. El-Halwagi (ed.), Elsevier, New York, U.S.A., pp. 18-44. , , Lichtman, R. J. (1983), Biogas Systems in India, Volunteers In Technical Assistance (VITA), Arlington, Virginia, U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.197Z", + "last_change_date": "2022-03-14T07:53:53.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2663, + "fields": { + "EF_ID": 43280, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Anaerobic Digester. The manure, in liquid or slurry form, is anaerobically digested to produce methane gas for energy. Emissions are from leakage and vary with the type of digester.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5-15", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Yancun, C., H. Cong and Liang Pusen (1985), Development of a new energy village - Xinbu, China. In: Integrated Rural Energy Planning, Y. El Mahgary and A.K. Biswas (eds.), Butterworths Publishing, Guildford, England, pp. 99-108. , , Stuckey, D.C. (1984), Biogas: a global perspective. In: Biogas Technology, Transfer and Diffusion, M.M. El-Halwagi (ed.), Elsevier, New York, U.S.A., pp. 18-44. , , Lichtman, R. J. (1983), Biogas Systems in India, Volunteers In Technical Assistance (VITA), Arlington, Virginia, U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.281Z", + "last_change_date": "2022-03-14T07:53:53.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2664, + "fields": { + "EF_ID": 43281, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Anaerobic Digester. The manure, in liquid or slurry form, is anaerobically digested to produce methane gas for energy. Emissions are from leakage and vary with the type of digester.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5-15", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Yancun, C., H. Cong and Liang Pusen (1985), Development of a new energy village - Xinbu, China. In: Integrated Rural Energy Planning, Y. El Mahgary and A.K. Biswas (eds.), Butterworths Publishing, Guildford, England, pp. 99-108. , , Stuckey, D.C. (1984), Biogas: a global perspective. In: Biogas Technology, Transfer and Diffusion, M.M. El-Halwagi (ed.), Elsevier, New York, U.S.A., pp. 18-44. , , Lichtman, R. J. (1983), Biogas Systems in India, Volunteers In Technical Assistance (VITA), Arlington, Virginia, U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.356Z", + "last_change_date": "2022-03-14T07:53:53.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2665, + "fields": { + "EF_ID": 43282, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Burned for Fuel. Manure is collected and dried in cakes and burned for heating or cooking. Emissions occur while the manure is stored before it is burned.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5-10", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.449Z", + "last_change_date": "2022-03-14T07:53:53.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2666, + "fields": { + "EF_ID": 43283, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Burned for Fuel. Manure is collected and dried in cakes and burned for heating or cooking. Emissions occur while the manure is stored before it is burned.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5-10", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.531Z", + "last_change_date": "2022-03-14T07:53:53.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2667, + "fields": { + "EF_ID": 43284, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Manure Management Systems and Methane Conversion Factors (MCFs)", + "Technology_Practices": "Manure management system: Burned for Fuel. Manure is collected and dried in cakes and burned for heating or cooking. Emissions occur while the manure is stored before it is burned.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5-10", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-8 on Page 4.25 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos (1992), Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.597Z", + "last_change_date": "2022-03-14T07:53:53.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2668, + "fields": { + "EF_ID": 43285, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature females; weight = 500 kg; weight gain kg/day = 0; milk kg/day = 3.3; work hrs/day = 0; pregnant = 80%; digestibility of feed = 60 %; CH4 conversion = 6.0%; day weighted population mix = 36%", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.683Z", + "last_change_date": "2022-03-14T07:53:53.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2669, + "fields": { + "EF_ID": 43286, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature males; weight = 800 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60 %; CH4 conversion = 6.0%; day weighted population mix = 2%", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.764Z", + "last_change_date": "2022-03-14T07:53:53.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2670, + "fields": { + "EF_ID": 43287, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = calves on milk; weight = 100 kg; weight gain kg/day = 0.9; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = NA; CH4 conversion = 0.0%; day weighted population mix = 16%", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.831Z", + "last_change_date": "2022-03-14T07:53:53.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2671, + "fields": { + "EF_ID": 43288, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = calves on forage; weight = 185 kg; weight gain kg/day = 0.9; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 65%; CH4 conversion = 6.0%; day weighted population mix = 8%", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:53.898Z", + "last_change_date": "2022-03-14T07:53:53.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2672, + "fields": { + "EF_ID": 43289, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = growing heifers/steers; weight = 265 kg; weight gain kg/day = 0.7; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 65%; CH4 conversion = 6.0%; day weighted population mix = 17%", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.119Z", + "last_change_date": "2022-03-14T07:53:54.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2673, + "fields": { + "EF_ID": 43290, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = replacement/growing; weight = 375 kg; weight gain kg/day = 0.4; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 11%", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.214Z", + "last_change_date": "2022-03-14T07:53:54.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2674, + "fields": { + "EF_ID": 43291, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = feedlot cattle; weight = 415 kg; weight gain kg/day = 1.3; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 75%; CH4 conversion = 3.5%; day weighted population mix = 11%", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.298Z", + "last_change_date": "2022-03-14T07:53:54.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2675, + "fields": { + "EF_ID": 43292, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature males; weight = 600 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 22%", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.381Z", + "last_change_date": "2022-03-14T07:53:54.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2676, + "fields": { + "EF_ID": 43293, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = replacement/growing; weight = 400 kg; weight gain kg/day = 0.4; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 54%", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "84", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.470Z", + "last_change_date": "2022-03-14T07:53:54.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2677, + "fields": { + "EF_ID": 43294, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = calves on milk; weight = 230 kg; weight gain kg/day = 0.3; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 65%; CH4 conversion = 0.0%; day weighted population mix = 15%", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.564Z", + "last_change_date": "2022-03-14T07:53:54.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2678, + "fields": { + "EF_ID": 43295, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = calves on forage; weight = 230 kg; weight gain kg/day = 0.3; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 65%; CH4 conversion = 6.0%; day weighted population mix = 8%", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.630Z", + "last_change_date": "2022-03-14T07:53:54.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2679, + "fields": { + "EF_ID": 43296, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature females; weight = 500 kg; weight gain kg/day = 0.0; milk kg/day = 3.3; work hrs/day = 0; pregnant = 67%; digestibility of feed = 60%; CH4 conversion = 6.5%; day weighted population mix = 30%", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.697Z", + "last_change_date": "2022-03-14T07:53:54.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2680, + "fields": { + "EF_ID": 43297, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature males; weight = 600 kg; weight gain kg/day = 0.0; milk kg/day = 0.0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.5%; day weighted population mix = 22%", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.798Z", + "last_change_date": "2022-03-14T07:53:54.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2681, + "fields": { + "EF_ID": 43298, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = young; weight = 230 kg; weight gain kg/day = 0.4; milk kg/day = 0.0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 48%", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.881Z", + "last_change_date": "2022-03-14T07:53:54.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2682, + "fields": { + "EF_ID": 43299, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature females; weight = 400 kg; weight gain kg/day = 0; milk kg/day = 2.4; work hrs/day = 0; pregnant = 67%; digestibility of feed = 55%; CH4 conversion = 6.0%; day weighted population mix = 51%", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:54.955Z", + "last_change_date": "2022-03-14T07:53:54.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2683, + "fields": { + "EF_ID": 43300, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature males; weight = 450 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 55%; CH4 conversion = 6.0%; day weighted population mix = 11%", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.022Z", + "last_change_date": "2022-03-14T07:53:55.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2684, + "fields": { + "EF_ID": 43301, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = young; weight = 200 kg; weight gain kg/day = 0.3; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 55%; CH4 conversion = 6.0%; day weighted population mix = 38%", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.125Z", + "last_change_date": "2022-03-14T07:53:55.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2685, + "fields": { + "EF_ID": 43302, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: large areas", + "Parameter_Conditions": "Type = mature females; weight = 400 kg; weight gain kg/day = 0.0; milk kg/day = 1.1; work hrs/day = 0; pregnant = 67%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 37%", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.206Z", + "last_change_date": "2022-03-14T07:53:55.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2686, + "fields": { + "EF_ID": 43303, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: large areas", + "Parameter_Conditions": "Type = mature males; weight = 450 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 6%", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.280Z", + "last_change_date": "2022-03-14T07:53:55.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2687, + "fields": { + "EF_ID": 43304, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: large areas", + "Parameter_Conditions": "Type = young; weight = 230 kg; weight gain kg/day = 0.3; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 58%", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.356Z", + "last_change_date": "2022-03-14T07:53:55.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2688, + "fields": { + "EF_ID": 43305, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = mature females-farming; weight = 325 kg; weight gain kg/day = 0.0; milk kg/day = 1.1; work hrs/day = 0.55; pregnant = 33%; digestibility of feed = 55%; CH4 conversion = 6.5%; day weighted population mix = 27%", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.452Z", + "last_change_date": "2022-03-14T07:53:55.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2689, + "fields": { + "EF_ID": 43306, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature females-grazing; weight = 300 kg; weight gain kg/day = 0.0; milk kg/day = 1.1; work hrs/day = 0; pregnant = 50%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 9%", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.531Z", + "last_change_date": "2022-03-14T07:53:55.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2690, + "fields": { + "EF_ID": 43307, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = mature males-farming; weight = 450 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 1.37; pregnant = 0%; digestibility of feed = 55%; CH4 conversion = 6.5%; day weighted population mix = 24%", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.605Z", + "last_change_date": "2022-03-14T07:53:55.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2691, + "fields": { + "EF_ID": 43308, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = mature males-grazing; weight = 400 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 8%", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.681Z", + "last_change_date": "2022-03-14T07:53:55.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2692, + "fields": { + "EF_ID": 43309, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = young; weight = 200 kg; weight gain kg/day = 0.2; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 32%", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "-", + "Other_Properties": "", + "Value": "31", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "-", + "Lower_Bound": "-", + "Upper_Bound": "-", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.778Z", + "last_change_date": "2022-03-14T07:53:55.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2693, + "fields": { + "EF_ID": 43310, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = mature females; weight = 200 kg; weight gain kg/day = 0.0; milk kg/day = 0.3; work hrs/day = 0.55; pregnant = 33%; digestibility of feed = 55%; CH4 conversion = 6.5%; day weighted population mix = 13%", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.865Z", + "last_change_date": "2022-03-14T07:53:55.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2694, + "fields": { + "EF_ID": 43311, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = draft bullocks; weight = 275 kg; weight gain kg/day = 0.0; milk kg/day = 0.0; work hrs/day = 1.37; pregnant = 0%; digestibility of feed = 55%; CH4 conversion = 6.5%; day weighted population mix = 13%", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:55.940Z", + "last_change_date": "2022-03-14T07:53:55.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2695, + "fields": { + "EF_ID": 43312, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: large areas", + "Parameter_Conditions": "Type = mature females-grazing; weight = 200 kg; weight gain kg/day = 0.0; milk kg/day = 0.3; work hrs/day = 0; pregnant = 33%; digestibility of feed = 55%; CH4 conversion = 7.5%; day weighted population mix = 6%", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.015Z", + "last_change_date": "2022-03-14T07:53:56.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2696, + "fields": { + "EF_ID": 43313, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: large areas", + "Parameter_Conditions": "Type = bulls-grazing; weight = 275 kg; weight gain kg/day = 0.0; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 55%; CH4 conversion = 7.5%; day weighted population mix = 25%", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.113Z", + "last_change_date": "2022-03-14T07:53:56.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2697, + "fields": { + "EF_ID": 43314, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: pasture/range", + "Parameter_Conditions": "Type = young; weight = 75 kg; weight gain kg/day = 0.1; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 60%; CH4 conversion = 6.0%; day weighted population mix = 44%", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.206Z", + "last_change_date": "2022-03-14T07:53:56.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2698, + "fields": { + "EF_ID": 43315, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = mature females; weight = 125 kg; weight gain kg/day = 0; milk kg/day = 0.6; work hrs/day = 0; pregnant = 33%; digestibility of feed = 50%; CH4 conversion = 7.5%; day weighted population mix = 40%", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.281Z", + "last_change_date": "2022-03-14T07:53:56.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2699, + "fields": { + "EF_ID": 43316, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = mature males; weight = 200 kg; weight gain kg/day = 0; milk kg/day = 0.6; work hrs/day = 2.74; pregnant = 0%; digestibility of feed = 50%; CH4 conversion = 7.5%; day weighted population mix = 10%", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.365Z", + "last_change_date": "2022-03-14T07:53:56.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2700, + "fields": { + "EF_ID": 43317, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Non-Dairy Cattle", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = young; weight = 80 kg; weight gain kg/day = 0.1; milk kg/day = 0.0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 50%; CH4 conversion = 6.0%; day weighted population mix = 50%", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-2 on Pages 4.32 - 4.33 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.457Z", + "last_change_date": "2022-03-14T07:53:56.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2701, + "fields": { + "EF_ID": 43318, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Buffalo", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = adult males; weight = 350 to 550 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 1.37; pregnant = 0%; digestibility of feed = 50%; CH4 conversion = 7.5%; day weighted population mix = 14%", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55-77", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-3 on Page 4.34 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "55", + "Upper_Bound": "77", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.540Z", + "last_change_date": "2022-03-14T07:53:56.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2702, + "fields": { + "EF_ID": 43319, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Buffalo", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = adult females; weight = 250 to 450 kg; weight gain kg/day = 0; milk kg/day = 2.7; work hrs/day = 0.55; pregnant = 33%; digestibility of feed = 55%; CH4 conversion = 7.5%; day weighted population mix = 40%", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57-80", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-3 on Page 4.34 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "57", + "Upper_Bound": "80", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.615Z", + "last_change_date": "2022-03-14T07:53:56.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2703, + "fields": { + "EF_ID": 43320, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Buffalo", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = young; weight = 100 to 300 kg; weight gain kg/day = 0.15; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 55%; CH4 conversion = 7.5%; day weighted population mix = 46%", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23-50", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-3 on Page 4.34 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "23", + "Upper_Bound": "50", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.698Z", + "last_change_date": "2022-03-14T07:53:56.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2704, + "fields": { + "EF_ID": 43321, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Buffalo", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = adult males; weight = 350 to 550 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 1.37; pregnant = 0%; digestibility of feed = 50%; CH4 conversion = 7.5%; day weighted population mix = 45%", + "Regional_Conditions": "Region: Other Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55-77", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-3 on Page 4.34 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "55", + "Upper_Bound": "77", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.792Z", + "last_change_date": "2022-03-14T07:53:56.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2705, + "fields": { + "EF_ID": 43322, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Buffalo", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = adult females; weight = 250 to 450 kg; weight gain kg/day = 0; milk kg/day = 0.15; work hrs/day = 0.55; pregnant = 25%; digestibility of feed = 55%; CH4 conversion = 7.5%; day weighted population mix = 45%", + "Regional_Conditions": "Region: Other Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45-67", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-3 on Page 4.34 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "45", + "Upper_Bound": "67", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.873Z", + "last_change_date": "2022-03-14T07:53:56.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2706, + "fields": { + "EF_ID": 43323, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Data for Estimating Enteric Fermentation Emission Factors for Buffalo", + "Technology_Practices": "Feeding situation: stall fed", + "Parameter_Conditions": "Type = young; weight = 100 to 300 kg; weight gain kg/day = 0.15; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 55%; CH4 conversion = 7.5%; day weighted population mix = 10%", + "Regional_Conditions": "Region: Other Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23-50", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12 on Page 4.25 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table A-3 on Page 4.34 of the Reference Manual)", + "Technical_Reference": "Gibbs, M.J. and D.E. Johnson (1993), Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "23", + "Upper_Bound": "50", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:56.956Z", + "last_change_date": "2022-03-14T07:53:56.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2707, + "fields": { + "EF_ID": 43324, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Australia (Griffith)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "NGGIC (1996), Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks, Agriculture, Workbook for Non-Carbon Dioxide Gases from the Biosphere, Workbook 5.1, National Greenhouse Gas Inventory Committee 1996, Canberra, Australia.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.048Z", + "last_change_date": "2022-03-14T07:53:57.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2708, + "fields": { + "EF_ID": 43325, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Organic Matters, Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: China(Beijing)", + "Control_Technologies": "Management of organic and inorganic fertilisers; and water management as methane abatement strategies", + "Other_Properties": "", + "Value": "27 - 91", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Chen, Z., D. Li, K. Shao and B. Wang (1993), “Features of CH4 emission from rice paddy fields in Beijing and Nanjing.” Chemosphere 26, 239-245", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.153Z", + "last_change_date": "2022-03-14T07:53:57.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2709, + "fields": { + "EF_ID": 43326, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters, Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: China(Beijing)", + "Control_Technologies": "Water management, and management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "12 - 39", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yao, H., and Z. L. Chen (1994a), “Effects of chemical fertilizer on methane emission from rice paddies.” J. Geophys. Res. 99, 16463-16470 Yao, H., and Z. L. Chen (1994b), “Seasonal variation of methane flux from a Chinese rice , ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.231Z", + "last_change_date": "2022-03-14T07:53:57.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2710, + "fields": { + "EF_ID": 43327, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters, Soil Types, Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: China(Beijing)", + "Control_Technologies": "Management of organic and inorganic fertilisers; soil type; and water management as methane abatement strategies", + "Other_Properties": "", + "Value": "5.3 - 100.9", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Shao, (1993), Agro-Ecological Environment, Supplement Issue, 19-22 (in Chinese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.306Z", + "last_change_date": "2022-03-14T07:53:57.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2711, + "fields": { + "EF_ID": 43328, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters, Seasons (early and late rices)", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: China(Hangzhou,Zhejiang)", + "Control_Technologies": "Management of organic and inorganic fertilisers; and cropping season as methane abatement strategies", + "Other_Properties": "", + "Value": "14 - 82", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Wassman, R., H. Schütz, H. Papen, H. Rennenberg, W. Seiler, A. Dai, R. Shen, X. Shangguan and M. Wang (1993a), Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertiliser treatment.” Biogeochemistry 20:83-101.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.381Z", + "last_change_date": "2022-03-14T07:53:57.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2712, + "fields": { + "EF_ID": 43329, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters, Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: China(Nanjing, Jiangsu)", + "Control_Technologies": "Water management, and management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "6 - 34", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Chen, Z., D. Li, K. Shao and B. Wang (1993), “Features of CH4 emission from rice paddy fields in Beijing and Nanjing.” Chemosphere 26, 239-245", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.479Z", + "last_change_date": "2022-03-14T07:53:57.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2713, + "fields": { + "EF_ID": 43330, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters, Seasons (early and late rices)", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: China(Taoyuan, Hunan)", + "Control_Technologies": "Management of organic and inorganic fertilisers; and cropping season as methane abatement strategies", + "Other_Properties": "", + "Value": "12 - 115", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Wassman, R., M.X. Wang, X.J. Shangguan, X.L. Xie, R. X. Shen, Y.S. Wang, H. Papen, H. Rennenberg and W. Seiler (1993b), First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan Province (PR China) Geophys. Res. Letters 20, 2071-2074.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.573Z", + "last_change_date": "2022-03-14T07:53:57.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2714, + "fields": { + "EF_ID": 43331, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: China(Tuzhu, Sichuan)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "167", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Khalil, M.A.K., R.A. Rasmussen, M.X. Wang and L. Ren (1991), “Methane emission from rice fields in China.” Environ. Sci. Tech., 25:979-981.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.648Z", + "last_change_date": "2022-03-14T07:53:57.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2715, + "fields": { + "EF_ID": 43332, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Cultivars, Mineral Fertiliser, Organic Matters, Seasons (early and late rices), Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: China(Wuxian, Jiangsu)", + "Control_Technologies": "Use of cultivar; management of organic and inorganic fertilisers; cropping season; and water management as methane abatement strategies", + "Other_Properties": "", + "Value": "10 - 19", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Cai, Z.C., H. Zu, H.H. Zhang and J.S. Jin (1994), “Estimate of methane emission from rice paddy fields in Taihu region, China.” Pedosphere 4, 297-306 ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.748Z", + "last_change_date": "2022-03-14T07:53:57.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2716, + "fields": { + "EF_ID": 43333, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Allahabad, Uttar Pradesh)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.831Z", + "last_change_date": "2022-03-14T07:53:57.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2717, + "fields": { + "EF_ID": 43334, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Barrackpore, West Benegal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8, 6.3", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.906Z", + "last_change_date": "2022-03-14T07:53:57.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2718, + "fields": { + "EF_ID": 43335, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Cultivars", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Cuttack, Orissa)", + "Control_Technologies": "Use of cultivar as methane abatement strategy", + "Other_Properties": "", + "Value": "7-19", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:57.981Z", + "last_change_date": "2022-03-14T07:53:57.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2719, + "fields": { + "EF_ID": 43336, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Faizabad, Uttar Pradesh)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.076Z", + "last_change_date": "2022-03-14T07:53:58.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2720, + "fields": { + "EF_ID": 43337, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Garagacha, West Benegal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.156Z", + "last_change_date": "2022-03-14T07:53:58.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2721, + "fields": { + "EF_ID": 43338, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Jorhat, Assam)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.231Z", + "last_change_date": "2022-03-14T07:53:58.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2722, + "fields": { + "EF_ID": 43339, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Kalyani, West Bengal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.8", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.306Z", + "last_change_date": "2022-03-14T07:53:58.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2723, + "fields": { + "EF_ID": 43340, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Koirapur, West Bengal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.401Z", + "last_change_date": "2022-03-14T07:53:58.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2724, + "fields": { + "EF_ID": 43341, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Madras, Tamil Nadu)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.481Z", + "last_change_date": "2022-03-14T07:53:58.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2725, + "fields": { + "EF_ID": 43342, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(New Delhi)", + "Control_Technologies": "Inorganic fertiliser management as methane abatement strategy", + "Other_Properties": "", + "Value": "0.06-0.58", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.557Z", + "last_change_date": "2022-03-14T07:53:58.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2726, + "fields": { + "EF_ID": 43343, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Purulia, West Bengal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.631Z", + "last_change_date": "2022-03-14T07:53:58.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2727, + "fields": { + "EF_ID": 43344, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Not available", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: India(Trivandrum, Kerala)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Mitra, A.P. (1992), Greenhouse gas emission in India, 1991 methane campaign Council of Scientific and Industrial Research, and Ministry of Environment and Forest. Scientific Report No. 20. NPL, India.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.736Z", + "last_change_date": "2022-03-14T07:53:58.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2728, + "fields": { + "EF_ID": 43345, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Indonesia(Taman Bogo, Lampung)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "31 - 47", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Nugroho, S.G., J. Lumbanraja, H. Suprapto, Sunyoto, W.S. Ardjasa, H. Haraguchi and M. Kimura (1994a), “Methane emission from an Indonesian paddy field subjected to several fertilizer treatments.” Soil Sci. Plant Nutr., 40, 275-281", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.822Z", + "last_change_date": "2022-03-14T07:53:58.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2729, + "fields": { + "EF_ID": 43346, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Indonesia(Taman Bogo, Lampung)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "-", + "Value": "30-50", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Nugroho, S.G., J. Lumbanraja, H. Suprapto, Sunyoto, W.S. Ardjasa, H. Haraguchi and M. Kimura (1994b), “Effect of intermittent irrigation on methane emission from an Indonesian paddy field” Soil Sci. Plant Nutr. 40, 609-615.", + "English_Abstract": "-", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.907Z", + "last_change_date": "2022-03-14T07:53:58.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2730, + "fields": { + "EF_ID": 43347, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Cultivars, Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Indonesia(Sukamandi, West Java)", + "Control_Technologies": "Use of cultivar and water management as methane abatement strategies", + "Other_Properties": "", + "Value": "19 - 44", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Husin, Y. A., D. Murdiyarso, M. A. K. Khalil, R. A. Rasmussen, M. J. Shearer, S. Sabiham, A. Sunar, A. Adijuwana, (1995), “Methane flux from Indonesian wetland rice : The effect of water management and rice variety”, Chemosphere, 31(4), pp 3153-3180.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:58.990Z", + "last_change_date": "2022-03-14T07:53:58.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2731, + "fields": { + "EF_ID": 43348, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Italy(Vercelli)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "18 - 75", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Schütz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg and W. Seiler (1989a), “A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy.” J. Geophys. Res. 94, 16,405-16,416.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.106Z", + "last_change_date": "2022-03-14T07:53:59.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2732, + "fields": { + "EF_ID": 43349, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Japan(Kawachi)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi, K. and K. Minami (1990a), Effect of organic matter applications on methane emissions from Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610. Minami, K. (1994), Methane from rice production Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.215Z", + "last_change_date": "2022-03-14T07:53:59.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2733, + "fields": { + "EF_ID": 43350, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Japan(Mito)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "4 - 13", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi, K. and K. Minami (1990a), Effect of organic matter applications on methane emissions from Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610. Minami, K. (1994), Methane from rice production Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.290Z", + "last_change_date": "2022-03-14T07:53:59.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2734, + "fields": { + "EF_ID": 43351, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Japan(Ryugasaki)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "11 - 28", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi, K. and K. Minami (1990a), Effect of organic matter applications on methane emissions from Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610. Minami, K. (1994), Methane from rice production Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.389Z", + "last_change_date": "2022-03-14T07:53:59.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2735, + "fields": { + "EF_ID": 43352, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Japan(Ryugasaki)", + "Control_Technologies": "Water management as methane abatement strategy", + "Other_Properties": "", + "Value": "7 - 12", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi, K. and K. Minami (1990a), Effect of organic matter applications on methane emissions from Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610. Minami, K. (1994), Methane from rice production Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.473Z", + "last_change_date": "2022-03-14T07:53:59.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2736, + "fields": { + "EF_ID": 43353, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Japan(Taya)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi, K. and K. Minami (1990a), Effect of organic matter applications on methane emissions from Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610. Minami, K. (1994), Methane from rice production Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.540Z", + "last_change_date": "2022-03-14T07:53:59.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2737, + "fields": { + "EF_ID": 43354, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Japan(Tsukuba)", + "Control_Technologies": "Organic fertiliser management as methane abatement strategy", + "Other_Properties": "", + "Value": "<1.1", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi, K. and K. Minami (1990a), Effect of organic matter applications on methane emissions from Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610. Minami, K. (1994), Methane from rice production Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.615Z", + "last_change_date": "2022-03-14T07:53:59.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2738, + "fields": { + "EF_ID": 43355, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Organic Matters, Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Korea(Suwon)", + "Control_Technologies": "Organic fertiliser management and water management as methane abatement strategies", + "Other_Properties": "", + "Value": "9 - 60", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Shin, Y-K, S-H. Yun, M-E. Park (1995), “Estimation of methane emission by water management and rice straw application in paddy soil in Korea.” J. Korean Soc. of Soil Sci. and Fert. 28 (3), 261-265.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.709Z", + "last_change_date": "2022-03-14T07:53:59.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2739, + "fields": { + "EF_ID": 43356, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Philippines(Los Banos)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "2 - 42", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Neue, H.U. and R. Sass (1994), “Trace gas emissions from rice fields.” In: Global Atmospheric-Biospheric Chemistry, R.G. Prinn (ed.) Plenum Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.782Z", + "last_change_date": "2022-03-14T07:53:59.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2740, + "fields": { + "EF_ID": 43357, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Seasons (dry and rainy seasons)", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Philippines(Los Banos)", + "Control_Technologies": "Cropping season as methane abatement strategy", + "Other_Properties": "", + "Value": "7 - 19", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Wassmann, R., H.U. Neue, R.S. Lantin, J.B. Aduna, M.C.R. Alberto, M.J. Andales, M.J. Tan, H.A.C. Denier van der Gon, H. Hoffmann, H. Papen, H. Rennenberg and W. Seiler (1994), “Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application.” J. Geophys. Res. 99, 16457-16462", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.857Z", + "last_change_date": "2022-03-14T07:53:59.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2741, + "fields": { + "EF_ID": 43358, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Spain(Savilla)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Seiler, W., A. Holzapfel-Pschorn, R. Conrad and D. Scharffe (1984), “Methane emissions from rice paddies”. J. Atmos. Chem. 1, 241-268. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:53:59.952Z", + "last_change_date": "2022-03-14T07:53:59.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2742, + "fields": { + "EF_ID": 43359, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Cultivars, Organic Matters, Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Ayutthaya)", + "Control_Technologies": "Use of cultivar; management of organic fertiliser; and water management as methane abatement strategies", + "Other_Properties": "", + "Value": "13 - 20", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Siriratpiraya, 1990 (full technical reference not available)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.032Z", + "last_change_date": "2022-03-14T07:54:00.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2743, + "fields": { + "EF_ID": 43360, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Seasons", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Bang Khen)", + "Control_Technologies": "Cropping season as methane abatement strategy", + "Other_Properties": "", + "Value": "16 - 55", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi K, P.Chairoj, H. Tsuruta, W. Cholitkul, and K. Minami (1994b), “Methane emission from rice paddy fields in the central plain of Thailand.” Soil Sci. Plant Nutr. 40: 29-37. Minami, K. (1994), “Methane from rice production.” Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.107Z", + "last_change_date": "2022-03-14T07:54:00.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2744, + "fields": { + "EF_ID": 43361, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Chai Nat)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi K, P.Chairoj, H. Tsuruta, W. Cholitkul, and K. Minami (1994b), “Methane emission from rice paddy fields in the central plain of Thailand.” Soil Sci. Plant Nutr. 40: 29-37. Minami, K. (1994), “Methane from rice production.” Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.182Z", + "last_change_date": "2022-03-14T07:54:00.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2745, + "fields": { + "EF_ID": 43362, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Chiang Mai)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "9 - 13", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Jermsawatdipong, P., J. Murase, P. Prabuddham, Y. Hasathon, N. Khomthong, K. Naklang, A. Watanabe, H. Haraguchi and M. Kimura (1994), “Methane emission from plots with differences in fertilizer application in Thai paddy fields.” Soil Sci. Plant Nutr., 40, 63-71.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.279Z", + "last_change_date": "2022-03-14T07:54:00.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2746, + "fields": { + "EF_ID": 43363, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Cultivars", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Chiang Mai)", + "Control_Technologies": "Use of cultivar as methane abatement strategy", + "Other_Properties": "", + "Value": "20 - 21", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Siriratpiraya et al. 1995 (full technical reference not available)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.348Z", + "last_change_date": "2022-03-14T07:54:00.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2747, + "fields": { + "EF_ID": 43364, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Khlong Luang)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi K, P.Chairoj, H. Tsuruta, W. Cholitkul, and K. Minami (1994b), “Methane emission from rice paddy fields in the central plain of Thailand.” Soil Sci. Plant Nutr. 40: 29-37. Minami, K. (1994), “Methane from rice production.” Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.407Z", + "last_change_date": "2022-03-14T07:54:00.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2748, + "fields": { + "EF_ID": 43365, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Khon Kaen)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Yagi K, P.Chairoj, H. Tsuruta, W. Cholitkul, and K. Minami (1994b), “Methane emission from rice paddy fields in the central plain of Thailand.” Soil Sci. Plant Nutr. 40: 29-37. Minami, K. (1994), “Methane from rice production.” Fert. Res. 37, pp. 169-179.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.465Z", + "last_change_date": "2022-03-14T07:54:00.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2749, + "fields": { + "EF_ID": 43366, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Seasons", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Nakompathom)", + "Control_Technologies": "Cropping season as methane abatement strategy", + "Other_Properties": "", + "Value": "25-32", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Tomprayoon et al., 1991(full technical reference not available)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.556Z", + "last_change_date": "2022-03-14T07:54:00.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2750, + "fields": { + "EF_ID": 43367, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Pathumthani)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "5 - 11", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Jermsawatdipong, P., J. Murase, P. Prabuddham, Y. Hasathon, N. Khomthong, K. Naklang, A. Watanabe, H. Haraguchi and M. Kimura (1994), “Methane emission from plots with differences in fertilizer application in Thai paddy fields.” Soil Sci. Plant Nutr., 40, 63-71.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.638Z", + "last_change_date": "2022-03-14T07:54:00.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2751, + "fields": { + "EF_ID": 43368, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Seasons", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Phitsanulok)", + "Control_Technologies": "Cropping season as methane abatement strategy", + "Other_Properties": "", + "Value": "17 - 18", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Katoh, K., P. Chairoj, W. Choltikul, H. Tsuruta and K. Yagi (1995). Mechanism of methane formation and development of methods to decrease methane emission in humid tropical paddy fields. Japan International Research Center for Agricultural Sciences.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.715Z", + "last_change_date": "2022-03-14T07:54:00.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2752, + "fields": { + "EF_ID": 43369, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Seasons", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Phrae)", + "Control_Technologies": "Cropping season as methane abatement strategy", + "Other_Properties": "", + "Value": "51 - 69", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Minami, K. (1994), “Methane from rice production.” Fert. Res. 37, pp. 169-179. Yagi K, P.Chairoj, H. Tsuruta, W. Cholitkul, and K. Minami (1994b), “Methane emission from rice paddy fields in the central plain of Thailand.” Soil Sci. Plant Nutr. 40: 29-37.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.790Z", + "last_change_date": "2022-03-14T07:54:00.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2753, + "fields": { + "EF_ID": 43370, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Ratchaburi)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "9 - 117", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Jermsawatdipong, P., J. Murase, P. Prabuddham, Y. Hasathon, N. Khomthong, K. Naklang, A. Watanabe, H. Haraguchi and M. Kimura (1994), “Methane emission from plots with differences in fertilizer application in Thai paddy fields.” Soil Sci. Plant Nutr., 40, 63-71.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.899Z", + "last_change_date": "2022-03-14T07:54:00.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2754, + "fields": { + "EF_ID": 43371, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Seasons", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(San Pa Tong)", + "Control_Technologies": "Cropping season as methane abatement strategy", + "Other_Properties": "", + "Value": "25 - 40", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Minami, K. (1994), “Methane from rice production.” Fert. Res. 37, pp. 169-179. Yagi K, P.Chairoj, H. Tsuruta, W. Cholitkul, and K. Minami (1994b), “Methane emission from rice paddy fields in the central plain of Thailand.” Soil Sci. Plant Nutr. 40: 29-37.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:00.988Z", + "last_change_date": "2022-03-14T07:54:00.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2755, + "fields": { + "EF_ID": 43372, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Surin)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "41 - 66", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Jermsawatdipong, P., J. Murase, P. Prabuddham, Y. Hasathon, N. Khomthong, K. Naklang, A. Watanabe, H. Haraguchi and M. Kimura (1994), “Methane emission from plots with differences in fertilizer application in Thai paddy fields.” Soil Sci. Plant Nutr., 40, 63-71.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.057Z", + "last_change_date": "2022-03-14T07:54:01.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2756, + "fields": { + "EF_ID": 43373, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Surin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Jermsawatdipong, P., J. Murase, P. Prabuddham, Y. Hasathon, N. Khomthong, K. Naklang, A. Watanabe, H. Haraguchi and M. Kimura (1994), “Methane emission from plots with differences in fertilizer application in Thai paddy fields.” Soil Sci. Plant Nutr., 40, 63-71.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.143Z", + "last_change_date": "2022-03-14T07:54:01.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2757, + "fields": { + "EF_ID": 43374, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Seasons", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: Thailand(Suphan Buri)", + "Control_Technologies": "Cropping season as methane abatement strategy", + "Other_Properties": "", + "Value": "51 - 75", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Minami, K. (1994), “Methane from rice production.” Fert. Res. 37, pp. 169-179. Yagi K, P.Chairoj, H. Tsuruta, W. Cholitkul, and K. Minami (1994b), “Methane emission from rice paddy fields in the central plain of Thailand.” Soil Sci. Plant Nutr. 40: 29-37.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.230Z", + "last_change_date": "2022-03-14T07:54:01.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2758, + "fields": { + "EF_ID": 43375, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Organic Matters, Soil types", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: USA(Beaumont, Texas)", + "Control_Technologies": "Organic fertiliser management and soil type as methane abatement strategies", + "Other_Properties": "", + "Value": "5 - 36", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Sass, R.L., F.M. Fisher, P.A. Harcombe and F.T. Turner (1990), “Methane production and emission in a Texas rice field.” Global Biogeochemical Cycles 4:47-68. Sass, R.L., F.M. Fisher, P.A. Harcombe and F.T. Turner (1991a), “Mitigation of methane emissions from rice fields: Possible adverse effects of incorporated rice straw.” Global Biogeochemical Cycles 5: 275-287. Sass, R.L., F.M. Fisher, F.T. Turner and M.F. Jund (1991b), “Methane emission from rice fields as influenced by solar radiation, temperature and straw incorporation”. Global Biogeochemical Cycles 5: 335-350.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.297Z", + "last_change_date": "2022-03-14T07:54:01.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2759, + "fields": { + "EF_ID": 43376, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Water Management", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: USA(Beaumont, Texas)", + "Control_Technologies": "Water management as methane abatement strategy", + "Other_Properties": "", + "Value": "1 -15", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Sass, R.L., F.M. Fisher, Y.B. Yang, F.T. Turner and M.F. Jund (1992), “Methane emissions from rice fields: the effect of flood water management”. Global Biogeochemical Cycles 6(3): 249-262. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.386Z", + "last_change_date": "2022-03-14T07:54:01.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2760, + "fields": { + "EF_ID": 43377, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: USA(Crowley, Louisiana)", + "Control_Technologies": "Inorganic fertiliser management as methane abatement strategy", + "Other_Properties": "", + "Value": "21 - 37", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Lindau, C.W., P.K. Bollich, R.D. DeLaune, W.H. Patrick Jr., and V.J. Law (1991), “Effect of urea fertilizer and environmental factors on CH4 emissions from a Louisiana, USA rice field.” Plant Soil, 136, 195-203", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.463Z", + "last_change_date": "2022-03-14T07:54:01.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2761, + "fields": { + "EF_ID": 43378, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters, Seasons", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: USA(Crowley, Louisiana)", + "Control_Technologies": "Management of organic and inorganic fertilisers; and cropping season as methane abatement strategies", + "Other_Properties": "", + "Value": "22 - 149", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Lindau, C.W. and P.K. Bollich (1993), “Methane emissions from Louisiana first and ratoon rice crop.” Soil Science, 156:42-48. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.530Z", + "last_change_date": "2022-03-14T07:54:01.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2762, + "fields": { + "EF_ID": 43379, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: USA(Crowley, Louisiana)", + "Control_Technologies": "Inorganic fertiliser management as methane abatement strategy", + "Other_Properties": "", + "Value": "60 - 220", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Lindau, C.W. (1994), “Methane emissions from Louisiana rice fields amended with nitrogen with fertilizers.” Soil Biol. Biochem., 26, 353-359", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.629Z", + "last_change_date": "2022-03-14T07:54:01.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2763, + "fields": { + "EF_ID": 43380, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: USA(Davis, California)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Cicerone, R.J., J.D. Shetter and C.C. Delwiche (1983), “Seasonal variation of methane flux from a California rice paddy.” J. Geophys. Res. 88, 7203-7209. Cicerone, R.J., C.C. Delwiche, S C. Tyler and P.R. Zimmerman (1992), “Methane emissions from California rice paddies with varied treatments.” Global Biogeochem. Cycles 6 233-248.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.705Z", + "last_change_date": "2022-03-14T07:54:01.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2764, + "fields": { + "EF_ID": 43381, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Representative Methane Emissions from Rice Paddy Fields in Various Locations of the World", + "Technology_Practices": "Experimental Treatment: Mineral Fertiliser, Organic Matters", + "Parameter_Conditions": "", + "Regional_Conditions": "Country: USA(Knights Landing, California)", + "Control_Technologies": "Management of organic and inorganic fertilisers as methane abatement strategies", + "Other_Properties": "", + "Value": "1-58", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-9 on Page 4.57 of the Reference Manual)", + "Technical_Reference": "Cicerone, R.J., C.C. Delwiche, S C. Tyler and P.R. Zimmerman (1992, “Methane emissions from California rice paddies with varied treatments.” Global Biogeochem. Cycles 6 233-248.", + "English_Abstract": "-", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data source (table) did not indicate in which rice ecosystem (i.e. irrigated, rainfed, etc.) the value would be applicable.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.771Z", + "last_change_date": "2022-03-14T07:54:01.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2765, + "fields": { + "EF_ID": 43382, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.5", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "NGGIC (1996), Australian Methodology for the Estimation of Greenhouse Gas Emissions and Sinks, Agriculture, Workbook for Non-Carbon Dioxide Gases from the Biosphere, Workbook 5.1, National Greenhouse Gas Inventory Committee 1996, Canberra, Australia.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.838Z", + "last_change_date": "2022-03-14T07:54:01.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2766, + "fields": { + "EF_ID": 43383, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13 (10-22)", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Wassman, R., H. Schütz, H. Papen, H. Rennenberg, W. Seiler, A. Dai, R. Shen, X. Shangguan and M. Wang (1993a), Quantification of methane emissions from Chinese rice fields (Zhejiang Province) as influenced by fertiliser treatment.” Biogeochemistry 20:83-101. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:01.939Z", + "last_change_date": "2022-03-14T07:54:01.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2767, + "fields": { + "EF_ID": 43384, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (5-15)", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Mitra A. P. (1996);(ed.) Greenhouse gas inventory for India : 1995 Update, Global Change Series, 1996 (in press). Parashar, D. C, Gupta K. Prabhat and S. Bhataachaya (1996), “Methane emissions from paddy fields in India-An update,” J. Radio and Space Physics (in press). ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.013Z", + "last_change_date": "2022-03-14T07:54:02.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2768, + "fields": { + "EF_ID": 43385, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "Country: Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18 (5-44)", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Nugroho, S.G., J. Lumbanraja, H. Suprapto, Sunyoto, W.S. Ardjasa, H. Haraguchi and M. Kimura (1994a), “Methane emission from an Indonesian paddy field subjected to several fertilizer treatments.” Soil Sci. Plant Nutr., 40, 275-281 Nugroho, S.G., J. Lumbanraja, H. Suprapto, Sunyoto, W.S. Ardjasa, H. Haraguchi and M. Kimura (1994b), “Effect of intermittent irrigation on methane emission from an Indonesian paddy field” Soil Sci. Plant Nutr. 40, 609-615.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.080Z", + "last_change_date": "2022-03-14T07:54:02.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2769, + "fields": { + "EF_ID": 43386, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36 (17-54)", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Schütz, H., A. Holzapfel-Pschorn, R. Conrad, H. Rennenberg and W. Seiler (1989a), “A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rates from an Italian rice paddy.” J. Geophys. Res. 94, 16,405-16,416.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.147Z", + "last_change_date": "2022-03-14T07:54:02.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2770, + "fields": { + "EF_ID": 43387, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Minami, K., (1995), “The effect of nitrogen fertilizer use and other practices on methane emission from flooded rice.” Fert. Res., 40, pp. 71-84.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.241Z", + "last_change_date": "2022-03-14T07:54:02.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2771, + "fields": { + "EF_ID": 43388, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Shin, Y-K, S-H. Yun, M-E. Park (1995), “Estimation of methane emission by water management and rice straw application in paddy soil in Korea.” J. Korean Soc. of Soil Sci. and Fert. 28 (3), 261-265.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.330Z", + "last_change_date": "2022-03-14T07:54:02.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2772, + "fields": { + "EF_ID": 43389, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "(25 - 30)", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Neue, H. U., R. S. Lantin, R. Wassmann, J. B. Aduna, M. C. R. Alberto, and M. J. F. Andales (1994), “Methane emission from rice soils of the Philippines.” In: CH4 and N2O Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, K. Minami, A. Mosier and R. L. Sass (eds.), NIAES, Series 2, Yokendo Publ., Tokyo, Japan, pp. 55-64. Wassmann, R., H.U. Neue, R.S. Lantin, J.B. Aduna, M.C.R. Alberto, M.J. Andales, M.J. Tan, H.A.C. Denier van der Gon, H. Hoffmann, H. Papen, H. Rennenberg and W. Seiler (1994), “Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application.” J. Geophys. Res. 99, 16457-16462", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.405Z", + "last_change_date": "2022-03-14T07:54:02.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2773, + "fields": { + "EF_ID": 43390, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16 (4-40)", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Tomprayoon et al., 1991(full technical reference not available)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.480Z", + "last_change_date": "2022-03-14T07:54:02.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2774, + "fields": { + "EF_ID": 43391, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Seasonally Integrated Methane Emission Factors for Continuously Flooded Rice without Organic Fertiliser in Various Locations of the World", + "Technology_Practices": "Continuously flooded rice without organic fertiliser", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "Country: USA (Texas)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25 (15-35)", + "Unit": "g/m2", + "Equation": "Equation 4.41 on Page 4.77 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-13 on Page 4.70 of the Reference Manual)", + "Technical_Reference": "Sass, R.L. and F.M. Fisher (1995), “Methane emissions from Texas rice fields: a five-year study.” In: Climate Change and Rice. S. Peng, K.T. Ingram, H.U. Neue, L.H. Ziska (eds.) Springer, Berlin, pp.46-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.584Z", + "last_change_date": "2022-03-14T07:54:02.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2775, + "fields": { + "EF_ID": 43393, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Scaling Factors for Methane Emissions for Rice Ecosystems Relative to Continuously Flooded Fields (without Organic Amendments)", + "Technology_Practices": "Upland rice", + "Parameter_Conditions": "Upland rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "fraction", + "Equation": "Equation 4.42 on Page 4.80 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-12 on Page 4.69 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-12, p 4.69", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.672Z", + "last_change_date": "2022-03-14T07:54:02.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2776, + "fields": { + "EF_ID": 43394, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Scaling Factors for Methane Emissions for Rice Ecosystems Relative to Continuously Flooded Fields (without Organic Amendments)", + "Technology_Practices": "Lowland irrigated rice; continuously flooded and without organic amendments", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "fraction", + "Equation": "Equation 4.42 on Page 4.80 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-12 on Page 4.69 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-12, p 4.69", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For irrigated and continuously flooded, lowland rice ecosystems, the default seasonally integrated methane emission is 20 g/m^2 (see Table 4-13 of the IPCC 1996 Guidielines, Reference Manual) for soils without organic amendments. For conversion to methane emissions from soil with organic amendments, apply a default correction factor of 2 (range is 2-5) to the corresponding rice ecosystem for the without organic amendment category.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.740Z", + "last_change_date": "2022-03-14T07:54:02.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2777, + "fields": { + "EF_ID": 43395, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Scaling Factors for Methane Emissions for Rice Ecosystems Relative to Continuously Flooded Fields (without Organic Amendments)", + "Technology_Practices": "Lowland irrigated rice; intermittently flooded (single aeration) and without organic amendments", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 (0.2-0.7)", + "Unit": "fraction", + "Equation": "Equation 4.42 on Page 4.80 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-12 on Page 4.69 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-12, p 4.69", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Intermittent flooding is defined as greater than 3 days aeration during the vegetative period. For irrigated and continuously flooded, lowland rice ecosystems, the default seasonally integrated methane emission is 20 g/m^2 (see Table 4-13 of the IPCC 1996 Guidielines, Reference Manual) for soils without organic amendments. For conversion to methane emissions from soil with organic amendments, apply a default correction factor of 2 (range is 2-5) to the corresponding rice ecosystem for the without organic amendment category.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.807Z", + "last_change_date": "2022-03-14T07:54:02.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2778, + "fields": { + "EF_ID": 43396, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Scaling Factors for Methane Emissions for Rice Ecosystems Relative to Continuously Flooded Fields (without Organic Amendments)", + "Technology_Practices": "Lowland irrigated rice; intermittently flooded (multiple aeration) and without organic amendments", + "Parameter_Conditions": "Irrigated rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2 (0.1-0.3)", + "Unit": "fraction", + "Equation": "Equation 4.42 on Page 4.80 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-12 on Page 4.69 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-12, p 4.69", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Intermittent flooding is defined as greater than 3 days aeration during the vegetative period. For irrigated and continuously flooded, lowland rice ecosystems, the default seasonally integrated methane emission is 20 g/m^2 (see Table 4-13 of the IPCC 1996 Guidielines, Reference Manual) for soils without organic amendments. For conversion to methane emissions from soil with organic amendments, apply a default correction factor of 2 (range is 2-5) to the corresponding rice ecosystem for the without organic amendment category.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.904Z", + "last_change_date": "2022-03-14T07:54:02.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2779, + "fields": { + "EF_ID": 43397, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Scaling Factors for Methane Emissions for Rice Ecosystems Relative to Continuously Flooded Fields (without Organic Amendments)", + "Technology_Practices": "Lowland rainfed rice; flood prone and without organic amendments", + "Parameter_Conditions": "Rainfed rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8 (0.5-1.0)", + "Unit": "fraction", + "Equation": "Equation 4.42 on Page 4.80 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-12 on Page 4.69 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-12, p 4.69", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For irrigated and continuously flooded, lowland rice ecosystems, the default seasonally integrated methane emission is 20 g/m^2 (see Table 4-13 of the IPCC 1996 Guidielines, Reference Manual) for soils without organic amendments. For conversion to methane emissions from soil with organic amendments, apply a default correction factor of 2 (range is 2-5) to the corresponding rice ecosystem for the without organic amendment category.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:02.988Z", + "last_change_date": "2022-03-14T07:54:02.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2780, + "fields": { + "EF_ID": 43398, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Scaling Factors for Methane Emissions for Rice Ecosystems Relative to Continuously Flooded Fields (without Organic Amendments)", + "Technology_Practices": "Lowland rainfed rice; drought prone and without organic amendments", + "Parameter_Conditions": "Rainfed rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (0-0.5)", + "Unit": "fraction", + "Equation": "Equation 4.42 on Page 4.80 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-12 on Page 4.69 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-12, p 4.69", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For irrigated and continuously flooded, lowland rice ecosystems, the default seasonally integrated methane emission is 20 g/m^2 (see Table 4-13 of the IPCC 1996 Guidielines, Reference Manual) for soils without organic amendments. For conversion to methane emissions from soil with organic amendments, apply a default correction factor of 2 (range is 2-5) to the corresponding rice ecosystem for the without organic amendment category.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.088Z", + "last_change_date": "2022-03-14T07:54:03.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2781, + "fields": { + "EF_ID": 43399, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Scaling Factors for Methane Emissions for Rice Ecosystems Relative to Continuously Flooded Fields (without Organic Amendments)", + "Technology_Practices": "Lowland deep water rice (water depth between 50 and 100 cm); without organic amendments", + "Parameter_Conditions": "Deepwater rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8 (0.6-1.0)", + "Unit": "fraction", + "Equation": "Equation 4.42 on Page 4.80 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-12 on Page 4.69 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-12, p 4.69", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For irrigated and continuously flooded, lowland rice ecosystems, the default seasonally integrated methane emission is 20 g/m^2 (see Table 4-13 of the IPCC 1996 Guidielines, Reference Manual) for soils without organic amendments. For conversion to methane emissions from soil with organic amendments, apply a default correction factor of 2 (range is 2-5) to the corresponding rice ecosystem for the without organic amendment category.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.172Z", + "last_change_date": "2022-03-14T07:54:03.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2782, + "fields": { + "EF_ID": 43400, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Scaling Factors for Methane Emissions for Rice Ecosystems Relative to Continuously Flooded Fields (without Organic Amendments)", + "Technology_Practices": "Lowland deep water rice (water depth greater than 100 cm); without organic amendments", + "Parameter_Conditions": "Deepwater rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6 (0.5-0.8)", + "Unit": "fraction", + "Equation": "Equation 4.42 on Page 4.80 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-2, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-12 on Page 4.69 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-12, p 4.69", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For irrigated and continuously flooded, lowland rice ecosystems, the default seasonally integrated methane emission is 20 g/m^2 (see Table 4-13 of the IPCC 1996 Guidielines, Reference Manual) for soils without organic amendments. For conversion to methane emissions from soil with organic amendments, apply a default correction factor of 2 (range is 2-5) to the corresponding rice ecosystem for the without organic amendment category.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.240Z", + "last_change_date": "2022-03-14T07:54:03.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2783, + "fields": { + "EF_ID": 43401, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna that is Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.339Z", + "last_change_date": "2022-03-14T07:54:03.339Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2784, + "fields": { + "EF_ID": 43406, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna that is Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.422Z", + "last_change_date": "2022-03-14T07:54:03.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2785, + "fields": { + "EF_ID": 43411, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna that is Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.490Z", + "last_change_date": "2022-03-14T07:54:03.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2786, + "fields": { + "EF_ID": 43418, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna that is Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Sahel zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05-0.15", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.582Z", + "last_change_date": "2022-03-14T07:54:03.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2787, + "fields": { + "EF_ID": 43421, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna that is Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North Sudan zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25-0.50", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.655Z", + "last_change_date": "2022-03-14T07:54:03.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2788, + "fields": { + "EF_ID": 43428, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna that is Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: South Sudan zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25-0.50", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.724Z", + "last_change_date": "2022-03-14T07:54:03.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2789, + "fields": { + "EF_ID": 43431, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna that is Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Guinea zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60-0.80", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.825Z", + "last_change_date": "2022-03-14T07:54:03.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2790, + "fields": { + "EF_ID": 43436, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna that is Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05-0.70", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.897Z", + "last_change_date": "2022-03-14T07:54:03.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2791, + "fields": { + "EF_ID": 43441, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.6 + or - 1.8", + "Unit": "t dm/ha", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:03.965Z", + "last_change_date": "2022-03-14T07:54:03.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2792, + "fields": { + "EF_ID": 43446, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.9", + "Unit": "t dm/ha", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.085Z", + "last_change_date": "2022-03-14T07:54:04.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2793, + "fields": { + "EF_ID": 43451, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.6 + or - 1.6", + "Unit": "t dm/ha", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.189Z", + "last_change_date": "2022-03-14T07:54:04.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2794, + "fields": { + "EF_ID": 43456, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Sahel zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-2.5", + "Unit": "t dm/ha", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.257Z", + "last_change_date": "2022-03-14T07:54:04.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2795, + "fields": { + "EF_ID": 43461, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North Sudan zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2-4", + "Unit": "t dm/ha", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.354Z", + "last_change_date": "2022-03-14T07:54:04.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2796, + "fields": { + "EF_ID": 43466, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: South Sudan zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3-6", + "Unit": "t dm/ha", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.430Z", + "last_change_date": "2022-03-14T07:54:04.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2797, + "fields": { + "EF_ID": 43471, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Guinea zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4-8", + "Unit": "t dm/ha", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.499Z", + "last_change_date": "2022-03-14T07:54:04.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2798, + "fields": { + "EF_ID": 43476, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1-6", + "Unit": "t dm/ha", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.589Z", + "last_change_date": "2022-03-14T07:54:04.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2799, + "fields": { + "EF_ID": 43481, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Sahel zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "fraction", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.672Z", + "last_change_date": "2022-03-14T07:54:04.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2800, + "fields": { + "EF_ID": 43486, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North Sudan zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "fraction", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.741Z", + "last_change_date": "2022-03-14T07:54:04.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2801, + "fields": { + "EF_ID": 43491, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: South Sudan zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "fraction", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.832Z", + "last_change_date": "2022-03-14T07:54:04.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2802, + "fields": { + "EF_ID": 43496, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Guinea zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9-1.0", + "Unit": "fraction", + "Equation": "Equation 2 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.905Z", + "last_change_date": "2022-03-14T07:54:04.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2803, + "fields": { + "EF_ID": 43501, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Aboveground Biomass that is Living", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Sahel zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "fraction", + "Equation": "Equation 3 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:04.974Z", + "last_change_date": "2022-03-14T07:54:04.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2804, + "fields": { + "EF_ID": 43506, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Aboveground Biomass that is Living", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North Sudan zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "fraction", + "Equation": "Equation 3 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.067Z", + "last_change_date": "2022-03-14T07:54:05.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2805, + "fields": { + "EF_ID": 43511, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Aboveground Biomass that is Living", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: South Sudan zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "fraction", + "Equation": "Equation 3 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.155Z", + "last_change_date": "2022-03-14T07:54:05.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2806, + "fields": { + "EF_ID": 43516, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Aboveground Biomass that is Living", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Guinea zone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "fraction", + "Equation": "Equation 3 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-14 on Page 4.76 of the Reference Manual)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that these are ecological zones that do not correspond directly to areas with political boundaries of the same name. For example, the North and South Sudan zones include countries other than Sudan and run East-West across the African continent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.232Z", + "last_change_date": "2022-03-14T07:54:05.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2807, + "fields": { + "EF_ID": 43522, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Ratios for Savanna Burning Calculations", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004 (0.002 - 0.006)", + "Unit": "fraction", + "Equation": "Equation on Page 4.80 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 3 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-15 on Page 4.80 of the Reference Manual)", + "Technical_Reference": "Delmas, R. (1993), “An Overview of Present Knowledge on Methane Emission from Biomass Burning.” In: Proceedings of an International IPCC Workshop: Methane and Nitrous Oxides, Methods in National Emissions Inventories and Options for Control, 3-5 February 1993, Amersfoort, NL. A.R, van Amstel (ed.). RIVM Report No. 481507003, Bilthoven, The Netherlands, July. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Ratios for carbon compounds, i.e, CH4 and CO, are mass of carbon compound released (in units of C) relative to mass total carbon released from burning (in units of C); those for the nitrogen compounds are expressed as the ratios of mass of nitrogen compounds released relative to the total mass of nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.327Z", + "last_change_date": "2022-03-14T07:54:05.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2808, + "fields": { + "EF_ID": 43532, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Ratios for Savanna Burning Calculations", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007 (0.005 - 0.009)", + "Unit": "fraction", + "Equation": "Equation on Page 4.80 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 3 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-15 on Page 4.80 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J. and M.O. Andreae (1990), “Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles.” Science 250:1669-1678. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Ratios for carbon compounds, i.e, CH4 and CO, are mass of carbon compound released (in units of C) relative to mass total carbon released from burning (in units of C); those for the nitrogen compounds are expressed as the ratios of mass of nitrogen compounds released relative to the total mass of nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.422Z", + "last_change_date": "2022-03-14T07:54:05.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2809, + "fields": { + "EF_ID": 43538, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Ratios for Agricultural Residue Burning Calculations", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005 (0.003 - 0.007)", + "Unit": "fraction", + "Equation": "Equation on Page 4.83 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 3 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-16 on Page 4.84 of the Reference Manual)", + "Technical_Reference": "Delmas, R. (1993), “An Overview of Present Knowledge on Methane Emission from Biomass Burning.” In: Proceedings of an International IPCC Workshop: Methane and Nitrous Oxides, Methods in National Emissions Inventories and Options for Control, 3-5 February 1993, Amersfoort, NL. A.R, van Amstel (ed.). RIVM Report No. 481507003, Bilthoven, The Netherlands, July. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Ratios for carbon compounds, i.e, CH4 and CO, are mass of carbon compound released (in units of C) relative to mass total carbon released from burning (in units of C); those for the nitrogen compounds are expressed as the ratios of mass of nitrogen compounds released relative to the total mass of nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.499Z", + "last_change_date": "2022-03-14T07:54:05.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2810, + "fields": { + "EF_ID": 43543, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Ratios for Agricultural Residue Burning Calculations", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (0.04 - 0.08)", + "Unit": "fraction", + "Equation": "Equation on Page 4.83 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 3 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-16 on Page 4.84 of the Reference Manual)", + "Technical_Reference": "Lacaux, J.P., H. Cachier and R. Delmas (1993), “Biomass Burning in Africa: An Overview of Its Impact on Atmospheric Chemistry.” In: Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires P.J. Crutzen and J.G. Goldammer (eds.). J. Wiley & Sons Ltd, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Ratios for carbon compounds, i.e, CH4 and CO, are mass of carbon compound released (in units of C) relative to mass total carbon released from burning (in units of C); those for the nitrogen compounds are expressed as the ratios of mass of nitrogen compounds released relative to the total mass of nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.603Z", + "last_change_date": "2022-03-14T07:54:05.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2811, + "fields": { + "EF_ID": 43548, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Ratios for Agricultural Residue Burning Calculations", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007 (0.005 - 0.009)", + "Unit": "fraction", + "Equation": "Equation on Page 4.83 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 3 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-16 on Page 4.84 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J. and M.O. Andreae (1990), “Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles.” Science 250:1669-1678. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Ratios for carbon compounds, i.e, CH4 and CO, are mass of carbon compound released (in units of C) relative to mass total carbon released from burning (in units of C); those for the nitrogen compounds are expressed as the ratios of mass of nitrogen compounds released relative to the total mass of nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.688Z", + "last_change_date": "2022-03-14T07:54:05.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2812, + "fields": { + "EF_ID": 43549, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Ratios for Agricultural Residue Burning Calculations", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.121 (0.094 - 0.148)", + "Unit": "fraction", + "Equation": "Equation on Page 4.83 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 3 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-16 on Page 4.84 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J. and M.O. Andreae (1990), “Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles.” Science 250:1669-1678. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Ratios for carbon compounds, i.e, CH4 and CO, are mass of carbon compound released (in units of C) relative to mass total carbon released from burning (in units of C); those for the nitrogen compounds are expressed as the ratios of mass of nitrogen compounds released relative to the total mass of nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.757Z", + "last_change_date": "2022-03-14T07:54:05.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2813, + "fields": { + "EF_ID": 43553, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.856Z", + "last_change_date": "2022-03-14T07:54:05.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2814, + "fields": { + "EF_ID": 43558, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:05.938Z", + "last_change_date": "2022-03-14T07:54:05.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2815, + "fields": { + "EF_ID": 43563, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.007Z", + "last_change_date": "2022-03-14T07:54:06.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2816, + "fields": { + "EF_ID": 43568, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Oats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.074Z", + "last_change_date": "2022-03-14T07:54:06.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2817, + "fields": { + "EF_ID": 43573, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Rye", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.165Z", + "last_change_date": "2022-03-14T07:54:06.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2818, + "fields": { + "EF_ID": 43578, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.247Z", + "last_change_date": "2022-03-14T07:54:06.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2819, + "fields": { + "EF_ID": 43583, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Millet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.316Z", + "last_change_date": "2022-03-14T07:54:06.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2820, + "fields": { + "EF_ID": 43588, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Sorghum", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.382Z", + "last_change_date": "2022-03-14T07:54:06.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2821, + "fields": { + "EF_ID": 43593, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Pea", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.449Z", + "last_change_date": "2022-03-14T07:54:06.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2822, + "fields": { + "EF_ID": 43598, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Bean", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.543Z", + "last_change_date": "2022-03-14T07:54:06.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2823, + "fields": { + "EF_ID": 43603, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Soya", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.638Z", + "last_change_date": "2022-03-14T07:54:06.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2824, + "fields": { + "EF_ID": 43608, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Potatoes", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.707Z", + "last_change_date": "2022-03-14T07:54:06.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2825, + "fields": { + "EF_ID": 43616, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Feedbeet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.774Z", + "last_change_date": "2022-03-14T07:54:06.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2826, + "fields": { + "EF_ID": 43618, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Sugar beet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Ryan, P. and Openshaw, K. (1991) Assessment of Biomass Energy Resources: A discussion on its needs and methodology, World Bank.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.849Z", + "last_change_date": "2022-03-14T07:54:06.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2827, + "fields": { + "EF_ID": 43623, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Jerusalem artichoke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:06.953Z", + "last_change_date": "2022-03-14T07:54:06.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2828, + "fields": { + "EF_ID": 43628, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Residue/Crop Product", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Peanut", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "No dimension", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.030Z", + "last_change_date": "2022-03-14T07:54:07.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2829, + "fields": { + "EF_ID": 43633, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Dry Matter Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78-0.88", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.108Z", + "last_change_date": "2022-03-14T07:54:07.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2830, + "fields": { + "EF_ID": 43638, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Dry Matter Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78-0.88", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.182Z", + "last_change_date": "2022-03-14T07:54:07.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2831, + "fields": { + "EF_ID": 43643, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Dry Matter Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30-0.50", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.266Z", + "last_change_date": "2022-03-14T07:54:07.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2832, + "fields": { + "EF_ID": 43658, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Dry Matter Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78-0.88", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.356Z", + "last_change_date": "2022-03-14T07:54:07.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2833, + "fields": { + "EF_ID": 43688, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Dry Matter Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Potatoes", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30-0.60", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.416Z", + "last_change_date": "2022-03-14T07:54:07.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2834, + "fields": { + "EF_ID": 43693, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Dry Matter Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Feedbeet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10-0.20", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value of Dry Matter Fraction is for beet leaves", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.491Z", + "last_change_date": "2022-03-14T07:54:07.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2835, + "fields": { + "EF_ID": 43698, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Dry Matter Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Sugar beet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10-0.20", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Ryan, P. and Openshaw, K. (1991) Assessment of Biomass Energy Resources: A discussion on its needs and methodology, World Bank.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value of Dry Matter Fraction is for beet leaves", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.557Z", + "last_change_date": "2022-03-14T07:54:07.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2836, + "fields": { + "EF_ID": 43713, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Carbon Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4853", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.624Z", + "last_change_date": "2022-03-14T07:54:07.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2837, + "fields": { + "EF_ID": 43718, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Carbon Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4567", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.717Z", + "last_change_date": "2022-03-14T07:54:07.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2838, + "fields": { + "EF_ID": 43723, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Carbon Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4709", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.799Z", + "last_change_date": "2022-03-14T07:54:07.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2839, + "fields": { + "EF_ID": 43738, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Carbon Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4144", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.866Z", + "last_change_date": "2022-03-14T07:54:07.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2840, + "fields": { + "EF_ID": 43768, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Carbon Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Potatoes", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4226", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.933Z", + "last_change_date": "2022-03-14T07:54:07.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2841, + "fields": { + "EF_ID": 43773, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Carbon Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Feedbeet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4072", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value of Dry Matter Fraction is for beet leaves", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:07.999Z", + "last_change_date": "2022-03-14T07:54:07.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2842, + "fields": { + "EF_ID": 43778, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Carbon Fraction", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Sugar beet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4072", + "Unit": "fraction", + "Equation": "Equation on Page 4.82 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Ryan, P. and Openshaw, K. (1991) Assessment of Biomass Energy Resources: A discussion on its needs and methodology, World Bank.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value of Dry Matter Fraction is for beet leaves", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.094Z", + "last_change_date": "2022-03-14T07:54:08.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2843, + "fields": { + "EF_ID": 43793, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Nitrogen-Carbon(N-C) Ratio", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.172Z", + "last_change_date": "2022-03-14T07:54:08.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2844, + "fields": { + "EF_ID": 43803, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Nitrogen-Carbon(N-C) Ratio", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.232Z", + "last_change_date": "2022-03-14T07:54:08.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2845, + "fields": { + "EF_ID": 43818, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Nitrogen-Carbon(N-C) Ratio", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.299Z", + "last_change_date": "2022-03-14T07:54:08.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2846, + "fields": { + "EF_ID": 43823, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Nitrogen-Carbon(N-C) Ratio", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Millet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.366Z", + "last_change_date": "2022-03-14T07:54:08.366Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2847, + "fields": { + "EF_ID": 43828, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Nitrogen-Carbon(N-C) Ratio", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Sorghum", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.463Z", + "last_change_date": "2022-03-14T07:54:08.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2848, + "fields": { + "EF_ID": 43843, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics, Nitrogen-Carbon(N-C) Ratio", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Soya", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4-4, Sheet 2 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-17 on Page 4.85 of the Reference Manual)", + "Technical_Reference": "Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.541Z", + "last_change_date": "2022-03-14T07:54:08.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2849, + "fields": { + "EF_ID": 43873, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for Direct Emissions from N inputs (EF1) ", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0125 (0.0025 - 0.0225)", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equations 4.20 and 4.21 on Page 4.54 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-18 on Page 4.89 of the Reference Manual)", + "Technical_Reference": "Bouwman, A.F. (1994), Method to estimate direct nitrous oxide emissions from agricultural soils. Report 773004004. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, p. 28. Cole, V. et al., (1995), ‘Agricultural Options for Mitigation of Greenhouse Gas Emissions’. In: Climate Change 1995 - Impacts, Adaptations and Mitigations of Climate Change: Scientific - Technical analyses: The Second Assessment Report of the Inter-governmental Panel on Climate Change, R. T. Watson, M. C. Zinyowera and R. M. Moss (eds.), Cambridge University Press, New York, U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.616Z", + "last_change_date": "2022-03-14T07:54:08.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2850, + "fields": { + "EF_ID": 43874, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for Direct Emissions from organic soil cultivation (EF2) ", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "Climate: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equations 4.20 and 4.21 on Page 4.54 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-18 on Page 4.89 of the Reference Manual)", + "Technical_Reference": "Bouwman, A.F. (1994), Method to estimate direct nitrous oxide emissions from agricultural soils. Report 773004004. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, p. 28. Cole, V. et al., (1995), ‘Agricultural Options for Mitigation of Greenhouse Gas Emissions’. In: Climate Change 1995 - Impacts, Adaptations and Mitigations of Climate Change: Scientific - Technical analyses: The Second Assessment Report of the Inter-governmental Panel on Climate Change, R. T. Watson, M. C. Zinyowera and R. M. Moss (eds.), Cambridge University Press, New York, U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.683Z", + "last_change_date": "2022-03-14T07:54:08.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2851, + "fields": { + "EF_ID": 43875, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for Direct Emissions from organic soil cultivation (EF2) ", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "Climate: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equations 4.20 and 4.21 on Page 4.54 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-18 on Page 4.89 of the Reference Manual)", + "Technical_Reference": "Bouwman, A.F. (1994), Method to estimate direct nitrous oxide emissions from agricultural soils. Report 773004004. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, p. 28. Cole, V. et al., (1995), ‘Agricultural Options for Mitigation of Greenhouse Gas Emissions’. In: Climate Change 1995 - Impacts, Adaptations and Mitigations of Climate Change: Scientific - Technical analyses: The Second Assessment Report of the Inter-governmental Panel on Climate Change, R. T. Watson, M. C. Zinyowera and R. M. Moss (eds.), Cambridge University Press, New York, U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.790Z", + "last_change_date": "2022-03-14T07:54:08.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2852, + "fields": { + "EF_ID": 43876, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Value for the fraction of crop residue that is burned rather than left on field (Frac BURN)", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "Country: Developing Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "kg N/kg crop-N", + "Equation": "Equations 4.28 and 4.29 on Pages 4.58 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5B, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-19 on Page 4.94 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-19, p 4.94", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.866Z", + "last_change_date": "2022-03-14T07:54:08.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2853, + "fields": { + "EF_ID": 43877, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Value for the fraction of crop residue that is burned rather than left on field (Frac BURN)", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "Country: Developed Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "kg N/kg crop-N", + "Equation": "Equations 4.28 and 4.29 on Pages 4.58 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5B, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-19 on Page 4.94 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-19, p 4.94", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:08.949Z", + "last_change_date": "2022-03-14T07:54:08.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2854, + "fields": { + "EF_ID": 43878, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Value for the fraction of crop residue that is removed from the field as crop (Frac R)", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "kg N/kg crop-N", + "Equation": "Equation 4.28 on Page 4.58 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5B, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-19 on Page 4.94 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-19, p 4.94", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.050Z", + "last_change_date": "2022-03-14T07:54:09.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2855, + "fields": { + "EF_ID": 43879, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Value for the fraction of livestock nitrogen excretion contained in excrements burned for fuel (Frac FUEL)", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0", + "Unit": "kg N/kg N totally excreted", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4-5A, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-19 on Page 4.94 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-19, p 4.94", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.141Z", + "last_change_date": "2022-03-14T07:54:09.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2856, + "fields": { + "EF_ID": 43880, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Value for the fraction of synthetic fertiliser nitrogen applied to soils that volatilises as NH3 and NOx (Frac GASF)", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg NH3-N and NOx-N/kg of N input", + "Equation": "Equation 4.22 on Page 4.56 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-19 on Page 4.94 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-19, p 4.94", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.199Z", + "last_change_date": "2022-03-14T07:54:09.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2857, + "fields": { + "EF_ID": 43881, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Value for the fraction of livestock nitrogen excretion that volatilises as NH3 and NOx (Frac GASM)", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg NH3-N and NOx-N/kg of N excreted by livestock", + "Equation": "Equations 4.23 and 4.24 on Page 4.56 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-19 on Page 4.94 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-19, p 4.94", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.272Z", + "last_change_date": "2022-03-14T07:54:09.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2858, + "fields": { + "EF_ID": 43882, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Value for the fraction of nitrogen in N-fixing crop (Frac NCRBF)", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5B, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-19 on Page 4.94 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-19, p 4.94", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.360Z", + "last_change_date": "2022-03-14T07:54:09.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2859, + "fields": { + "EF_ID": 43883, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Value for the fraction of nitrogen in non-N-fixing crop (Frac NCR0)", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.015", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equations 4.28 and 4.29 on Pages 4.58 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5B, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-19 on Page 4.94 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-19, p 4.94", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.449Z", + "last_change_date": "2022-03-14T07:54:09.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2860, + "fields": { + "EF_ID": 43884, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.524Z", + "last_change_date": "2022-03-14T07:54:09.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2861, + "fields": { + "EF_ID": 43885, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.588Z", + "last_change_date": "2022-03-14T07:54:09.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2862, + "fields": { + "EF_ID": 43886, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.687Z", + "last_change_date": "2022-03-14T07:54:09.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2863, + "fields": { + "EF_ID": 43887, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.766Z", + "last_change_date": "2022-03-14T07:54:09.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2864, + "fields": { + "EF_ID": 43888, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "-", + "Other_Properties": "-", + "Value": "20", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.838Z", + "last_change_date": "2022-03-14T07:54:09.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2865, + "fields": { + "EF_ID": 43889, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Other animals", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:09.938Z", + "last_change_date": "2022-03-14T07:54:09.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2866, + "fields": { + "EF_ID": 43890, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.016Z", + "last_change_date": "2022-03-14T07:54:10.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2867, + "fields": { + "EF_ID": 43891, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.088Z", + "last_change_date": "2022-03-14T07:54:10.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2868, + "fields": { + "EF_ID": 43892, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.198Z", + "last_change_date": "2022-03-14T07:54:10.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2869, + "fields": { + "EF_ID": 43893, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.275Z", + "last_change_date": "2022-03-14T07:54:10.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2870, + "fields": { + "EF_ID": 43894, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.338Z", + "last_change_date": "2022-03-14T07:54:10.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2871, + "fields": { + "EF_ID": 43895, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Other animals", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.442Z", + "last_change_date": "2022-03-14T07:54:10.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2872, + "fields": { + "EF_ID": 43896, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.516Z", + "last_change_date": "2022-03-14T07:54:10.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2873, + "fields": { + "EF_ID": 43897, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.588Z", + "last_change_date": "2022-03-14T07:54:10.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2874, + "fields": { + "EF_ID": 43898, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.693Z", + "last_change_date": "2022-03-14T07:54:10.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2875, + "fields": { + "EF_ID": 43899, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.766Z", + "last_change_date": "2022-03-14T07:54:10.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2876, + "fields": { + "EF_ID": 43900, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.830Z", + "last_change_date": "2022-03-14T07:54:10.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2877, + "fields": { + "EF_ID": 43901, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Other animals", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:10.928Z", + "last_change_date": "2022-03-14T07:54:10.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2878, + "fields": { + "EF_ID": 43902, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.016Z", + "last_change_date": "2022-03-14T07:54:11.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2879, + "fields": { + "EF_ID": 43903, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.091Z", + "last_change_date": "2022-03-14T07:54:11.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2880, + "fields": { + "EF_ID": 43904, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.188Z", + "last_change_date": "2022-03-14T07:54:11.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2881, + "fields": { + "EF_ID": 43905, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.266Z", + "last_change_date": "2022-03-14T07:54:11.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2882, + "fields": { + "EF_ID": 43906, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.330Z", + "last_change_date": "2022-03-14T07:54:11.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2883, + "fields": { + "EF_ID": 43907, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Other animals", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.430Z", + "last_change_date": "2022-03-14T07:54:11.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2884, + "fields": { + "EF_ID": 43908, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.508Z", + "last_change_date": "2022-03-14T07:54:11.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2885, + "fields": { + "EF_ID": 43909, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.572Z", + "last_change_date": "2022-03-14T07:54:11.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2886, + "fields": { + "EF_ID": 43910, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.690Z", + "last_change_date": "2022-03-14T07:54:11.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2887, + "fields": { + "EF_ID": 43911, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.766Z", + "last_change_date": "2022-03-14T07:54:11.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2888, + "fields": { + "EF_ID": 43912, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.838Z", + "last_change_date": "2022-03-14T07:54:11.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2889, + "fields": { + "EF_ID": 43913, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Other animals", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:11.933Z", + "last_change_date": "2022-03-14T07:54:11.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2890, + "fields": { + "EF_ID": 43914, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.008Z", + "last_change_date": "2022-03-14T07:54:12.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2891, + "fields": { + "EF_ID": 43915, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.080Z", + "last_change_date": "2022-03-14T07:54:12.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2892, + "fields": { + "EF_ID": 43916, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.185Z", + "last_change_date": "2022-03-14T07:54:12.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2893, + "fields": { + "EF_ID": 43917, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.267Z", + "last_change_date": "2022-03-14T07:54:12.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2894, + "fields": { + "EF_ID": 43918, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.325Z", + "last_change_date": "2022-03-14T07:54:12.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2895, + "fields": { + "EF_ID": 43919, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Other animals", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.437Z", + "last_change_date": "2022-03-14T07:54:12.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2896, + "fields": { + "EF_ID": 43920, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle", + "Regional_Conditions": "Region: Near East & Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.517Z", + "last_change_date": "2022-03-14T07:54:12.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2897, + "fields": { + "EF_ID": 43921, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle", + "Regional_Conditions": "Region: Near East & Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.575Z", + "last_change_date": "2022-03-14T07:54:12.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2898, + "fields": { + "EF_ID": 43922, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "Region: Near East & Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.672Z", + "last_change_date": "2022-03-14T07:54:12.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2899, + "fields": { + "EF_ID": 43923, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "Near East & Mediterranean", + "Control_Technologies": "-", + "Other_Properties": "-", + "Value": "12", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.750Z", + "last_change_date": "2022-03-14T07:54:12.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2900, + "fields": { + "EF_ID": 43924, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "Region: Near East & Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.816Z", + "last_change_date": "2022-03-14T07:54:12.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2901, + "fields": { + "EF_ID": 43925, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Other animals", + "Regional_Conditions": "Region: Near East & Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.906Z", + "last_change_date": "2022-03-14T07:54:12.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2902, + "fields": { + "EF_ID": 43926, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle", + "Regional_Conditions": "Region: Asia & Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:12.980Z", + "last_change_date": "2022-03-14T07:54:12.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2903, + "fields": { + "EF_ID": 43927, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle", + "Regional_Conditions": "Region: Asia & Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.074Z", + "last_change_date": "2022-03-14T07:54:13.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2904, + "fields": { + "EF_ID": 43928, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "Region: Asia & Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.150Z", + "last_change_date": "2022-03-14T07:54:13.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2905, + "fields": { + "EF_ID": 43929, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "Region: Asia & Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.217Z", + "last_change_date": "2022-03-14T07:54:13.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2906, + "fields": { + "EF_ID": 43930, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "Region: Asia & Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There are still uncertainties in the values. Estimates for cattle and swine may be too high. Hence, these estimates (default values need further attention).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.308Z", + "last_change_date": "2022-03-14T07:54:13.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2907, + "fields": { + "EF_ID": 43931, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for Nitrogen Excretion per Head of Animal per Region", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Other animals", + "Regional_Conditions": "Region: Asia & Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equations 4.18, 4.23, 4.24, 4.31, 4.32 on Pages 4.42, 4.56, 4.56, 4.68, and 4.70, respectively, and Equations 4.34 to 4.37 on Page 4.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-20 on Page 4.99 of the Reference Manual)", + "Technical_Reference": "Ecetoc (1994), Ammonia emissions to air in Western Europe. Technical Report No 62. Brussels, p. 196. Steffens, G. and H. Vetter (1990), Neue Faustzahlen ueber Nachrstoffgehalte und Naehrstoffanfall. Landwirtsschaftsblatt Weser-Ems. Vol. 3. Vetter, H., A. Klasink and G. Steffens (1989), “Mist und Guelleduengung nach Mass.” VDLUFA-Schriftenreihe 19:41-66.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.383Z", + "last_change_date": "2022-03-14T07:54:13.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2908, + "fields": { + "EF_ID": 45335, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.450Z", + "last_change_date": "2022-03-14T07:54:13.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2909, + "fields": { + "EF_ID": 45336, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.544Z", + "last_change_date": "2022-03-14T07:54:13.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2910, + "fields": { + "EF_ID": 45337, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.617Z", + "last_change_date": "2022-03-14T07:54:13.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2911, + "fields": { + "EF_ID": 45338, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "14", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.725Z", + "last_change_date": "2022-03-14T07:54:13.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2912, + "fields": { + "EF_ID": 45339, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "84", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.808Z", + "last_change_date": "2022-03-14T07:54:13.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2913, + "fields": { + "EF_ID": 45340, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.905Z", + "last_change_date": "2022-03-14T07:54:13.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2914, + "fields": { + "EF_ID": 45341, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:13.975Z", + "last_change_date": "2022-03-14T07:54:13.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2915, + "fields": { + "EF_ID": 45342, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.092Z", + "last_change_date": "2022-03-14T07:54:14.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2916, + "fields": { + "EF_ID": 45343, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.158Z", + "last_change_date": "2022-03-14T07:54:14.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2917, + "fields": { + "EF_ID": 45344, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.248Z", + "last_change_date": "2022-03-14T07:54:14.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2918, + "fields": { + "EF_ID": 45345, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.325Z", + "last_change_date": "2022-03-14T07:54:14.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2919, + "fields": { + "EF_ID": 45346, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.391Z", + "last_change_date": "2022-03-14T07:54:14.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2920, + "fields": { + "EF_ID": 45347, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.458Z", + "last_change_date": "2022-03-14T07:54:14.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2921, + "fields": { + "EF_ID": 45348, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.558Z", + "last_change_date": "2022-03-14T07:54:14.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2922, + "fields": { + "EF_ID": 45349, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "5", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.633Z", + "last_change_date": "2022-03-14T07:54:14.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2923, + "fields": { + "EF_ID": 45350, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "4", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.700Z", + "last_change_date": "2022-03-14T07:54:14.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2924, + "fields": { + "EF_ID": 45351, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.766Z", + "last_change_date": "2022-03-14T07:54:14.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2925, + "fields": { + "EF_ID": 45352, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.860Z", + "last_change_date": "2022-03-14T07:54:14.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2926, + "fields": { + "EF_ID": 45353, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:14.934Z", + "last_change_date": "2022-03-14T07:54:14.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2927, + "fields": { + "EF_ID": 45354, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.000Z", + "last_change_date": "2022-03-14T07:54:15.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2928, + "fields": { + "EF_ID": 45355, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "90", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.067Z", + "last_change_date": "2022-03-14T07:54:15.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2929, + "fields": { + "EF_ID": 45356, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.171Z", + "last_change_date": "2022-03-14T07:54:15.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2930, + "fields": { + "EF_ID": 45357, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.247Z", + "last_change_date": "2022-03-14T07:54:15.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2931, + "fields": { + "EF_ID": 45358, + "IPCC_Category": "3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.317Z", + "last_change_date": "2022-03-14T07:54:15.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2932, + "fields": { + "EF_ID": 45359, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.384Z", + "last_change_date": "2022-03-14T07:54:15.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2933, + "fields": { + "EF_ID": 45360, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.473Z", + "last_change_date": "2022-03-14T07:54:15.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2934, + "fields": { + "EF_ID": 45362, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.558Z", + "last_change_date": "2022-03-14T07:54:15.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2935, + "fields": { + "EF_ID": 45363, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.634Z", + "last_change_date": "2022-03-14T07:54:15.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2936, + "fields": { + "EF_ID": 45364, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.708Z", + "last_change_date": "2022-03-14T07:54:15.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2937, + "fields": { + "EF_ID": 45366, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.816Z", + "last_change_date": "2022-03-14T07:54:15.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2938, + "fields": { + "EF_ID": 45370, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.892Z", + "last_change_date": "2022-03-14T07:54:15.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2939, + "fields": { + "EF_ID": 45371, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:15.964Z", + "last_change_date": "2022-03-14T07:54:15.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2940, + "fields": { + "EF_ID": 45372, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.030Z", + "last_change_date": "2022-03-14T07:54:16.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2941, + "fields": { + "EF_ID": 45373, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.118Z", + "last_change_date": "2022-03-14T07:54:16.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2942, + "fields": { + "EF_ID": 45374, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "92", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.192Z", + "last_change_date": "2022-03-14T07:54:16.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2943, + "fields": { + "EF_ID": 45375, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.272Z", + "last_change_date": "2022-03-14T07:54:16.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2944, + "fields": { + "EF_ID": 45376, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "8", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.338Z", + "last_change_date": "2022-03-14T07:54:16.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2945, + "fields": { + "EF_ID": 45377, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.436Z", + "last_change_date": "2022-03-14T07:54:16.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2946, + "fields": { + "EF_ID": 45378, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "55", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.509Z", + "last_change_date": "2022-03-14T07:54:16.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2947, + "fields": { + "EF_ID": 45379, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.580Z", + "last_change_date": "2022-03-14T07:54:16.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2948, + "fields": { + "EF_ID": 45380, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "3", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.647Z", + "last_change_date": "2022-03-14T07:54:16.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2949, + "fields": { + "EF_ID": 45381, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "33", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.748Z", + "last_change_date": "2022-03-14T07:54:16.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2950, + "fields": { + "EF_ID": 45382, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.842Z", + "last_change_date": "2022-03-14T07:54:16.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2951, + "fields": { + "EF_ID": 45383, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "9", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.913Z", + "last_change_date": "2022-03-14T07:54:16.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2952, + "fields": { + "EF_ID": 45384, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:16.980Z", + "last_change_date": "2022-03-14T07:54:16.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2953, + "fields": { + "EF_ID": 45385, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.074Z", + "last_change_date": "2022-03-14T07:54:17.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2954, + "fields": { + "EF_ID": 45386, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.163Z", + "last_change_date": "2022-03-14T07:54:17.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2955, + "fields": { + "EF_ID": 45387, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.230Z", + "last_change_date": "2022-03-14T07:54:17.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2956, + "fields": { + "EF_ID": 45388, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.297Z", + "last_change_date": "2022-03-14T07:54:17.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2957, + "fields": { + "EF_ID": 45389, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.401Z", + "last_change_date": "2022-03-14T07:54:17.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2958, + "fields": { + "EF_ID": 45390, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.484Z", + "last_change_date": "2022-03-14T07:54:17.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2959, + "fields": { + "EF_ID": 45391, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.555Z", + "last_change_date": "2022-03-14T07:54:17.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2960, + "fields": { + "EF_ID": 45392, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "13", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.617Z", + "last_change_date": "2022-03-14T07:54:17.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2961, + "fields": { + "EF_ID": 45393, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.711Z", + "last_change_date": "2022-03-14T07:54:17.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2962, + "fields": { + "EF_ID": 45394, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.792Z", + "last_change_date": "2022-03-14T07:54:17.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2963, + "fields": { + "EF_ID": 45395, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.872Z", + "last_change_date": "2022-03-14T07:54:17.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2964, + "fields": { + "EF_ID": 45396, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:17.938Z", + "last_change_date": "2022-03-14T07:54:17.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2965, + "fields": { + "EF_ID": 45397, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "84", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.037Z", + "last_change_date": "2022-03-14T07:54:18.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2966, + "fields": { + "EF_ID": 45399, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.125Z", + "last_change_date": "2022-03-14T07:54:18.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2967, + "fields": { + "EF_ID": 45400, + "IPCC_Category": "3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.188Z", + "last_change_date": "2022-03-14T07:54:18.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2968, + "fields": { + "EF_ID": 45401, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.255Z", + "last_change_date": "2022-03-14T07:54:18.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2969, + "fields": { + "EF_ID": 45402, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.348Z", + "last_change_date": "2022-03-14T07:54:18.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2970, + "fields": { + "EF_ID": 45404, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.426Z", + "last_change_date": "2022-03-14T07:54:18.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2971, + "fields": { + "EF_ID": 45406, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.488Z", + "last_change_date": "2022-03-14T07:54:18.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2972, + "fields": { + "EF_ID": 45408, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.555Z", + "last_change_date": "2022-03-14T07:54:18.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2973, + "fields": { + "EF_ID": 45409, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.659Z", + "last_change_date": "2022-03-14T07:54:18.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2974, + "fields": { + "EF_ID": 45411, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.734Z", + "last_change_date": "2022-03-14T07:54:18.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2975, + "fields": { + "EF_ID": 45412, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.797Z", + "last_change_date": "2022-03-14T07:54:18.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2976, + "fields": { + "EF_ID": 45413, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.864Z", + "last_change_date": "2022-03-14T07:54:18.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2977, + "fields": { + "EF_ID": 45414, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:18.960Z", + "last_change_date": "2022-03-14T07:54:18.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2978, + "fields": { + "EF_ID": 45415, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.034Z", + "last_change_date": "2022-03-14T07:54:19.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2979, + "fields": { + "EF_ID": 45416, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "96", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.109Z", + "last_change_date": "2022-03-14T07:54:19.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2980, + "fields": { + "EF_ID": 45417, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.184Z", + "last_change_date": "2022-03-14T07:54:19.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2981, + "fields": { + "EF_ID": 45418, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "4", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.295Z", + "last_change_date": "2022-03-14T07:54:19.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2982, + "fields": { + "EF_ID": 45419, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "8", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.372Z", + "last_change_date": "2022-03-14T07:54:19.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2983, + "fields": { + "EF_ID": 45420, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "39", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.451Z", + "last_change_date": "2022-03-14T07:54:19.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2984, + "fields": { + "EF_ID": 45421, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.525Z", + "last_change_date": "2022-03-14T07:54:19.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2985, + "fields": { + "EF_ID": 45422, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "52", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.647Z", + "last_change_date": "2022-03-14T07:54:19.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2986, + "fields": { + "EF_ID": 45423, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.747Z", + "last_change_date": "2022-03-14T07:54:19.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2987, + "fields": { + "EF_ID": 45424, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.817Z", + "last_change_date": "2022-03-14T07:54:19.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2988, + "fields": { + "EF_ID": 45425, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:19.884Z", + "last_change_date": "2022-03-14T07:54:19.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2989, + "fields": { + "EF_ID": 45426, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.000Z", + "last_change_date": "2022-03-14T07:54:20.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2990, + "fields": { + "EF_ID": 45427, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.072Z", + "last_change_date": "2022-03-14T07:54:20.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2991, + "fields": { + "EF_ID": 45428, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.134Z", + "last_change_date": "2022-03-14T07:54:20.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2992, + "fields": { + "EF_ID": 45429, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.201Z", + "last_change_date": "2022-03-14T07:54:20.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2993, + "fields": { + "EF_ID": 45430, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.294Z", + "last_change_date": "2022-03-14T07:54:20.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2994, + "fields": { + "EF_ID": 45431, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.367Z", + "last_change_date": "2022-03-14T07:54:20.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2995, + "fields": { + "EF_ID": 45432, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.434Z", + "last_change_date": "2022-03-14T07:54:20.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2996, + "fields": { + "EF_ID": 45433, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.501Z", + "last_change_date": "2022-03-14T07:54:20.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2997, + "fields": { + "EF_ID": 45434, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "28", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.596Z", + "last_change_date": "2022-03-14T07:54:20.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2998, + "fields": { + "EF_ID": 45435, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.684Z", + "last_change_date": "2022-03-14T07:54:20.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 2999, + "fields": { + "EF_ID": 45436, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.759Z", + "last_change_date": "2022-03-14T07:54:20.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3000, + "fields": { + "EF_ID": 45437, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.834Z", + "last_change_date": "2022-03-14T07:54:20.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3001, + "fields": { + "EF_ID": 45438, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:20.939Z", + "last_change_date": "2022-03-14T07:54:20.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3002, + "fields": { + "EF_ID": 45439, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "71", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.026Z", + "last_change_date": "2022-03-14T07:54:21.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3003, + "fields": { + "EF_ID": 45441, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.101Z", + "last_change_date": "2022-03-14T07:54:21.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3004, + "fields": { + "EF_ID": 45442, + "IPCC_Category": "3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.167Z", + "last_change_date": "2022-03-14T07:54:21.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3005, + "fields": { + "EF_ID": 45443, + "IPCC_Category": "3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.259Z", + "last_change_date": "2022-03-14T07:54:21.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3006, + "fields": { + "EF_ID": 45444, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.334Z", + "last_change_date": "2022-03-14T07:54:21.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3007, + "fields": { + "EF_ID": 45446, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.401Z", + "last_change_date": "2022-03-14T07:54:21.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3008, + "fields": { + "EF_ID": 45448, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.467Z", + "last_change_date": "2022-03-14T07:54:21.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3009, + "fields": { + "EF_ID": 45451, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.560Z", + "last_change_date": "2022-03-14T07:54:21.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3010, + "fields": { + "EF_ID": 45453, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.630Z", + "last_change_date": "2022-03-14T07:54:21.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3011, + "fields": { + "EF_ID": 45454, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.693Z", + "last_change_date": "2022-03-14T07:54:21.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3012, + "fields": { + "EF_ID": 45455, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.759Z", + "last_change_date": "2022-03-14T07:54:21.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3013, + "fields": { + "EF_ID": 45456, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.853Z", + "last_change_date": "2022-03-14T07:54:21.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3014, + "fields": { + "EF_ID": 45457, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.926Z", + "last_change_date": "2022-03-14T07:54:21.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3015, + "fields": { + "EF_ID": 45458, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "92", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:21.993Z", + "last_change_date": "2022-03-14T07:54:21.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3016, + "fields": { + "EF_ID": 45459, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.068Z", + "last_change_date": "2022-03-14T07:54:22.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3017, + "fields": { + "EF_ID": 45460, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "8", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.164Z", + "last_change_date": "2022-03-14T07:54:22.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3018, + "fields": { + "EF_ID": 45461, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.243Z", + "last_change_date": "2022-03-14T07:54:22.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3019, + "fields": { + "EF_ID": 45462, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.313Z", + "last_change_date": "2022-03-14T07:54:22.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3020, + "fields": { + "EF_ID": 45463, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.380Z", + "last_change_date": "2022-03-14T07:54:22.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3021, + "fields": { + "EF_ID": 45464, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.465Z", + "last_change_date": "2022-03-14T07:54:22.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3022, + "fields": { + "EF_ID": 45465, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "100", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.551Z", + "last_change_date": "2022-03-14T07:54:22.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3023, + "fields": { + "EF_ID": 45466, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.630Z", + "last_change_date": "2022-03-14T07:54:22.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3024, + "fields": { + "EF_ID": 45467, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.714Z", + "last_change_date": "2022-03-14T07:54:22.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3025, + "fields": { + "EF_ID": 45468, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.801Z", + "last_change_date": "2022-03-14T07:54:22.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3026, + "fields": { + "EF_ID": 45469, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.859Z", + "last_change_date": "2022-03-14T07:54:22.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3027, + "fields": { + "EF_ID": 45470, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.922Z", + "last_change_date": "2022-03-14T07:54:22.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3028, + "fields": { + "EF_ID": 45471, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:22.989Z", + "last_change_date": "2022-03-14T07:54:22.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3029, + "fields": { + "EF_ID": 45472, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.087Z", + "last_change_date": "2022-03-14T07:54:23.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3030, + "fields": { + "EF_ID": 45473, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.159Z", + "last_change_date": "2022-03-14T07:54:23.159Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3031, + "fields": { + "EF_ID": 45474, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.230Z", + "last_change_date": "2022-03-14T07:54:23.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3032, + "fields": { + "EF_ID": 45475, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.297Z", + "last_change_date": "2022-03-14T07:54:23.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3033, + "fields": { + "EF_ID": 45476, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.397Z", + "last_change_date": "2022-03-14T07:54:23.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3034, + "fields": { + "EF_ID": 45477, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.467Z", + "last_change_date": "2022-03-14T07:54:23.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3035, + "fields": { + "EF_ID": 45478, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.539Z", + "last_change_date": "2022-03-14T07:54:23.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3036, + "fields": { + "EF_ID": 45479, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "3", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.605Z", + "last_change_date": "2022-03-14T07:54:23.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3037, + "fields": { + "EF_ID": 45480, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.706Z", + "last_change_date": "2022-03-14T07:54:23.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3038, + "fields": { + "EF_ID": 45481, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "97", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.801Z", + "last_change_date": "2022-03-14T07:54:23.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3039, + "fields": { + "EF_ID": 45489, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.863Z", + "last_change_date": "2022-03-14T07:54:23.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3040, + "fields": { + "EF_ID": 45492, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:23.930Z", + "last_change_date": "2022-03-14T07:54:23.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3041, + "fields": { + "EF_ID": 45493, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.042Z", + "last_change_date": "2022-03-14T07:54:24.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3042, + "fields": { + "EF_ID": 45495, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.151Z", + "last_change_date": "2022-03-14T07:54:24.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3043, + "fields": { + "EF_ID": 45496, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.222Z", + "last_change_date": "2022-03-14T07:54:24.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3044, + "fields": { + "EF_ID": 45497, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.288Z", + "last_change_date": "2022-03-14T07:54:24.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3045, + "fields": { + "EF_ID": 45498, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.395Z", + "last_change_date": "2022-03-14T07:54:24.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3046, + "fields": { + "EF_ID": 45499, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.468Z", + "last_change_date": "2022-03-14T07:54:24.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3047, + "fields": { + "EF_ID": 45500, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "100", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.530Z", + "last_change_date": "2022-03-14T07:54:24.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3048, + "fields": { + "EF_ID": 45501, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.597Z", + "last_change_date": "2022-03-14T07:54:24.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3049, + "fields": { + "EF_ID": 45502, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.816Z", + "last_change_date": "2022-03-14T07:54:24.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3050, + "fields": { + "EF_ID": 45503, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.914Z", + "last_change_date": "2022-03-14T07:54:24.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3051, + "fields": { + "EF_ID": 45504, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:24.984Z", + "last_change_date": "2022-03-14T07:54:24.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3052, + "fields": { + "EF_ID": 45505, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.051Z", + "last_change_date": "2022-03-14T07:54:25.051Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3053, + "fields": { + "EF_ID": 45506, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.140Z", + "last_change_date": "2022-03-14T07:54:25.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3054, + "fields": { + "EF_ID": 45507, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "99", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.218Z", + "last_change_date": "2022-03-14T07:54:25.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3055, + "fields": { + "EF_ID": 45508, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.285Z", + "last_change_date": "2022-03-14T07:54:25.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3056, + "fields": { + "EF_ID": 45509, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.351Z", + "last_change_date": "2022-03-14T07:54:25.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3057, + "fields": { + "EF_ID": 45510, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.441Z", + "last_change_date": "2022-03-14T07:54:25.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3058, + "fields": { + "EF_ID": 45511, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.518Z", + "last_change_date": "2022-03-14T07:54:25.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3059, + "fields": { + "EF_ID": 45512, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.584Z", + "last_change_date": "2022-03-14T07:54:25.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3060, + "fields": { + "EF_ID": 45513, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.651Z", + "last_change_date": "2022-03-14T07:54:25.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3061, + "fields": { + "EF_ID": 45514, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.743Z", + "last_change_date": "2022-03-14T07:54:25.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3062, + "fields": { + "EF_ID": 45515, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.822Z", + "last_change_date": "2022-03-14T07:54:25.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3063, + "fields": { + "EF_ID": 45516, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.893Z", + "last_change_date": "2022-03-14T07:54:25.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3064, + "fields": { + "EF_ID": 45517, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:25.968Z", + "last_change_date": "2022-03-14T07:54:25.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3065, + "fields": { + "EF_ID": 45518, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "9", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.071Z", + "last_change_date": "2022-03-14T07:54:26.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3066, + "fields": { + "EF_ID": 45519, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.147Z", + "last_change_date": "2022-03-14T07:54:26.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3067, + "fields": { + "EF_ID": 45520, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.234Z", + "last_change_date": "2022-03-14T07:54:26.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3068, + "fields": { + "EF_ID": 45521, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "42", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.310Z", + "last_change_date": "2022-03-14T07:54:26.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3069, + "fields": { + "EF_ID": 45522, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.414Z", + "last_change_date": "2022-03-14T07:54:26.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3070, + "fields": { + "EF_ID": 45523, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "49", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.497Z", + "last_change_date": "2022-03-14T07:54:26.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3071, + "fields": { + "EF_ID": 45525, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.559Z", + "last_change_date": "2022-03-14T07:54:26.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3072, + "fields": { + "EF_ID": 45526, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.635Z", + "last_change_date": "2022-03-14T07:54:26.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3073, + "fields": { + "EF_ID": 45527, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.724Z", + "last_change_date": "2022-03-14T07:54:26.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3074, + "fields": { + "EF_ID": 45528, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.813Z", + "last_change_date": "2022-03-14T07:54:26.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3075, + "fields": { + "EF_ID": 45532, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.876Z", + "last_change_date": "2022-03-14T07:54:26.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3076, + "fields": { + "EF_ID": 45533, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:26.943Z", + "last_change_date": "2022-03-14T07:54:26.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3077, + "fields": { + "EF_ID": 45534, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.034Z", + "last_change_date": "2022-03-14T07:54:27.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3078, + "fields": { + "EF_ID": 45535, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.114Z", + "last_change_date": "2022-03-14T07:54:27.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3079, + "fields": { + "EF_ID": 45537, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.176Z", + "last_change_date": "2022-03-14T07:54:27.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3080, + "fields": { + "EF_ID": 45538, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.243Z", + "last_change_date": "2022-03-14T07:54:27.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3081, + "fields": { + "EF_ID": 45539, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.336Z", + "last_change_date": "2022-03-14T07:54:27.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3082, + "fields": { + "EF_ID": 45540, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.414Z", + "last_change_date": "2022-03-14T07:54:27.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3083, + "fields": { + "EF_ID": 45541, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.476Z", + "last_change_date": "2022-03-14T07:54:27.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3084, + "fields": { + "EF_ID": 45542, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "99", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.560Z", + "last_change_date": "2022-03-14T07:54:27.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3085, + "fields": { + "EF_ID": 45543, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.673Z", + "last_change_date": "2022-03-14T07:54:27.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3086, + "fields": { + "EF_ID": 45544, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.747Z", + "last_change_date": "2022-03-14T07:54:27.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3087, + "fields": { + "EF_ID": 45545, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.810Z", + "last_change_date": "2022-03-14T07:54:27.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3088, + "fields": { + "EF_ID": 45546, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:27.885Z", + "last_change_date": "2022-03-14T07:54:27.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3089, + "fields": { + "EF_ID": 45547, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.007Z", + "last_change_date": "2022-03-14T07:54:28.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3090, + "fields": { + "EF_ID": 45548, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "3", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.088Z", + "last_change_date": "2022-03-14T07:54:28.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3091, + "fields": { + "EF_ID": 45549, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "96", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.160Z", + "last_change_date": "2022-03-14T07:54:28.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3092, + "fields": { + "EF_ID": 45550, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.239Z", + "last_change_date": "2022-03-14T07:54:28.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3093, + "fields": { + "EF_ID": 45551, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.350Z", + "last_change_date": "2022-03-14T07:54:28.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3094, + "fields": { + "EF_ID": 45552, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.430Z", + "last_change_date": "2022-03-14T07:54:28.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3095, + "fields": { + "EF_ID": 45553, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.497Z", + "last_change_date": "2022-03-14T07:54:28.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3096, + "fields": { + "EF_ID": 45554, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.564Z", + "last_change_date": "2022-03-14T07:54:28.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3097, + "fields": { + "EF_ID": 45555, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.661Z", + "last_change_date": "2022-03-14T07:54:28.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3098, + "fields": { + "EF_ID": 45556, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.738Z", + "last_change_date": "2022-03-14T07:54:28.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3099, + "fields": { + "EF_ID": 45557, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.805Z", + "last_change_date": "2022-03-14T07:54:28.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3100, + "fields": { + "EF_ID": 45558, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.872Z", + "last_change_date": "2022-03-14T07:54:28.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3101, + "fields": { + "EF_ID": 45559, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:28.971Z", + "last_change_date": "2022-03-14T07:54:28.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3102, + "fields": { + "EF_ID": 45560, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.047Z", + "last_change_date": "2022-03-14T07:54:29.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3103, + "fields": { + "EF_ID": 45561, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.114Z", + "last_change_date": "2022-03-14T07:54:29.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3104, + "fields": { + "EF_ID": 45562, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.180Z", + "last_change_date": "2022-03-14T07:54:29.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3105, + "fields": { + "EF_ID": 45563, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "81", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.273Z", + "last_change_date": "2022-03-14T07:54:29.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3106, + "fields": { + "EF_ID": 45564, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.347Z", + "last_change_date": "2022-03-14T07:54:29.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3107, + "fields": { + "EF_ID": 45565, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "19", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.413Z", + "last_change_date": "2022-03-14T07:54:29.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3108, + "fields": { + "EF_ID": 45568, + "IPCC_Category": "3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.480Z", + "last_change_date": "2022-03-14T07:54:29.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3109, + "fields": { + "EF_ID": 45570, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.584Z", + "last_change_date": "2022-03-14T07:54:29.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3110, + "fields": { + "EF_ID": 45572, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.655Z", + "last_change_date": "2022-03-14T07:54:29.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3111, + "fields": { + "EF_ID": 45574, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.730Z", + "last_change_date": "2022-03-14T07:54:29.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3112, + "fields": { + "EF_ID": 45576, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.805Z", + "last_change_date": "2022-03-14T07:54:29.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3113, + "fields": { + "EF_ID": 45577, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:29.952Z", + "last_change_date": "2022-03-14T07:54:29.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3114, + "fields": { + "EF_ID": 45579, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.013Z", + "last_change_date": "2022-03-14T07:54:30.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3115, + "fields": { + "EF_ID": 45580, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.080Z", + "last_change_date": "2022-03-14T07:54:30.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3116, + "fields": { + "EF_ID": 45581, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.147Z", + "last_change_date": "2022-03-14T07:54:30.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3117, + "fields": { + "EF_ID": 45582, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.245Z", + "last_change_date": "2022-03-14T07:54:30.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3118, + "fields": { + "EF_ID": 45583, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.322Z", + "last_change_date": "2022-03-14T07:54:30.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3119, + "fields": { + "EF_ID": 45584, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "99", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.405Z", + "last_change_date": "2022-03-14T07:54:30.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3120, + "fields": { + "EF_ID": 45585, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.463Z", + "last_change_date": "2022-03-14T07:54:30.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3121, + "fields": { + "EF_ID": 45586, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.555Z", + "last_change_date": "2022-03-14T07:54:30.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3122, + "fields": { + "EF_ID": 45587, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.614Z", + "last_change_date": "2022-03-14T07:54:30.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3123, + "fields": { + "EF_ID": 45588, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.680Z", + "last_change_date": "2022-03-14T07:54:30.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3124, + "fields": { + "EF_ID": 45589, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.747Z", + "last_change_date": "2022-03-14T07:54:30.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3125, + "fields": { + "EF_ID": 45590, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.842Z", + "last_change_date": "2022-03-14T07:54:30.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3126, + "fields": { + "EF_ID": 45591, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "78", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.922Z", + "last_change_date": "2022-03-14T07:54:30.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3127, + "fields": { + "EF_ID": 45592, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "18", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:30.988Z", + "last_change_date": "2022-03-14T07:54:30.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3128, + "fields": { + "EF_ID": 45593, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.055Z", + "last_change_date": "2022-03-14T07:54:31.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3129, + "fields": { + "EF_ID": 45594, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.151Z", + "last_change_date": "2022-03-14T07:54:31.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3130, + "fields": { + "EF_ID": 45595, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.238Z", + "last_change_date": "2022-03-14T07:54:31.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3131, + "fields": { + "EF_ID": 45596, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.314Z", + "last_change_date": "2022-03-14T07:54:31.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3132, + "fields": { + "EF_ID": 45597, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.389Z", + "last_change_date": "2022-03-14T07:54:31.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3133, + "fields": { + "EF_ID": 45598, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.495Z", + "last_change_date": "2022-03-14T07:54:31.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3134, + "fields": { + "EF_ID": 45599, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.572Z", + "last_change_date": "2022-03-14T07:54:31.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3135, + "fields": { + "EF_ID": 45600, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.647Z", + "last_change_date": "2022-03-14T07:54:31.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3136, + "fields": { + "EF_ID": 45601, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.727Z", + "last_change_date": "2022-03-14T07:54:31.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3137, + "fields": { + "EF_ID": 45602, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.830Z", + "last_change_date": "2022-03-14T07:54:31.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3138, + "fields": { + "EF_ID": 45603, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.905Z", + "last_change_date": "2022-03-14T07:54:31.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3139, + "fields": { + "EF_ID": 45604, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:31.977Z", + "last_change_date": "2022-03-14T07:54:31.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3140, + "fields": { + "EF_ID": 45605, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "71", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.044Z", + "last_change_date": "2022-03-14T07:54:32.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3141, + "fields": { + "EF_ID": 45606, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.132Z", + "last_change_date": "2022-03-14T07:54:32.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3142, + "fields": { + "EF_ID": 45607, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "28", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.205Z", + "last_change_date": "2022-03-14T07:54:32.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3143, + "fields": { + "EF_ID": 45610, + "IPCC_Category": "3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.277Z", + "last_change_date": "2022-03-14T07:54:32.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3144, + "fields": { + "EF_ID": 45611, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.344Z", + "last_change_date": "2022-03-14T07:54:32.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3145, + "fields": { + "EF_ID": 45612, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.459Z", + "last_change_date": "2022-03-14T07:54:32.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3146, + "fields": { + "EF_ID": 45613, + "IPCC_Category": "3.A.2.c - Sheep, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.547Z", + "last_change_date": "2022-03-14T07:54:32.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3147, + "fields": { + "EF_ID": 45616, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.610Z", + "last_change_date": "2022-03-14T07:54:32.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3148, + "fields": { + "EF_ID": 45618, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.677Z", + "last_change_date": "2022-03-14T07:54:32.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3149, + "fields": { + "EF_ID": 45619, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.769Z", + "last_change_date": "2022-03-14T07:54:32.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3150, + "fields": { + "EF_ID": 45622, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.847Z", + "last_change_date": "2022-03-14T07:54:32.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3151, + "fields": { + "EF_ID": 45623, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.910Z", + "last_change_date": "2022-03-14T07:54:32.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3152, + "fields": { + "EF_ID": 45624, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:32.977Z", + "last_change_date": "2022-03-14T07:54:32.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3153, + "fields": { + "EF_ID": 45625, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.071Z", + "last_change_date": "2022-03-14T07:54:33.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3154, + "fields": { + "EF_ID": 45626, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "100", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.147Z", + "last_change_date": "2022-03-14T07:54:33.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3155, + "fields": { + "EF_ID": 45627, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.210Z", + "last_change_date": "2022-03-14T07:54:33.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3156, + "fields": { + "EF_ID": 45628, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Near East and Mediterranean", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.277Z", + "last_change_date": "2022-03-14T07:54:33.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3157, + "fields": { + "EF_ID": 45629, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.373Z", + "last_change_date": "2022-03-14T07:54:33.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3158, + "fields": { + "EF_ID": 45630, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.447Z", + "last_change_date": "2022-03-14T07:54:33.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3159, + "fields": { + "EF_ID": 45631, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "16", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.514Z", + "last_change_date": "2022-03-14T07:54:33.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3160, + "fields": { + "EF_ID": 45632, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "14", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.580Z", + "last_change_date": "2022-03-14T07:54:33.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3161, + "fields": { + "EF_ID": 45633, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "30", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.674Z", + "last_change_date": "2022-03-14T07:54:33.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3162, + "fields": { + "EF_ID": 45634, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "40", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.747Z", + "last_change_date": "2022-03-14T07:54:33.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3163, + "fields": { + "EF_ID": 45635, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes buffalo", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.813Z", + "last_change_date": "2022-03-14T07:54:33.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3164, + "fields": { + "EF_ID": 45636, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.889Z", + "last_change_date": "2022-03-14T07:54:33.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3165, + "fields": { + "EF_ID": 45637, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:33.994Z", + "last_change_date": "2022-03-14T07:54:33.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3166, + "fields": { + "EF_ID": 45638, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.097Z", + "last_change_date": "2022-03-14T07:54:34.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3167, + "fields": { + "EF_ID": 45639, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.172Z", + "last_change_date": "2022-03-14T07:54:34.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3168, + "fields": { + "EF_ID": 45640, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.247Z", + "last_change_date": "2022-03-14T07:54:34.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3169, + "fields": { + "EF_ID": 45641, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.363Z", + "last_change_date": "2022-03-14T07:54:34.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3170, + "fields": { + "EF_ID": 45642, + "IPCC_Category": "3.A.2.a.i - Dairy cows, 3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.439Z", + "last_change_date": "2022-03-14T07:54:34.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3171, + "fields": { + "EF_ID": 45643, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.505Z", + "last_change_date": "2022-03-14T07:54:34.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3172, + "fields": { + "EF_ID": 45644, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "2", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.572Z", + "last_change_date": "2022-03-14T07:54:34.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3173, + "fields": { + "EF_ID": 45645, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.673Z", + "last_change_date": "2022-03-14T07:54:34.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3174, + "fields": { + "EF_ID": 45646, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.747Z", + "last_change_date": "2022-03-14T07:54:34.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3175, + "fields": { + "EF_ID": 45647, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "44", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.813Z", + "last_change_date": "2022-03-14T07:54:34.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3176, + "fields": { + "EF_ID": 45648, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.880Z", + "last_change_date": "2022-03-14T07:54:34.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3177, + "fields": { + "EF_ID": 45649, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes chickens, turkeys, and ducks", + "Value": "52", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:34.974Z", + "last_change_date": "2022-03-14T07:54:34.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3178, + "fields": { + "EF_ID": 45650, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.047Z", + "last_change_date": "2022-03-14T07:54:35.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3179, + "fields": { + "EF_ID": 45651, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.111Z", + "last_change_date": "2022-03-14T07:54:35.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3180, + "fields": { + "EF_ID": 45652, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.177Z", + "last_change_date": "2022-03-14T07:54:35.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3181, + "fields": { + "EF_ID": 45654, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.269Z", + "last_change_date": "2022-03-14T07:54:35.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3182, + "fields": { + "EF_ID": 45655, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.347Z", + "last_change_date": "2022-03-14T07:54:35.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3183, + "fields": { + "EF_ID": 45656, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.410Z", + "last_change_date": "2022-03-14T07:54:35.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3184, + "fields": { + "EF_ID": 45657, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.477Z", + "last_change_date": "2022-03-14T07:54:35.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3185, + "fields": { + "EF_ID": 45658, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.570Z", + "last_change_date": "2022-03-14T07:54:35.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3186, + "fields": { + "EF_ID": 45659, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.655Z", + "last_change_date": "2022-03-14T07:54:35.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3187, + "fields": { + "EF_ID": 45660, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.727Z", + "last_change_date": "2022-03-14T07:54:35.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3188, + "fields": { + "EF_ID": 45661, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.794Z", + "last_change_date": "2022-03-14T07:54:35.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3189, + "fields": { + "EF_ID": 45662, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.888Z", + "last_change_date": "2022-03-14T07:54:35.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3190, + "fields": { + "EF_ID": 45664, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:35.964Z", + "last_change_date": "2022-03-14T07:54:35.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3191, + "fields": { + "EF_ID": 45665, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.044Z", + "last_change_date": "2022-03-14T07:54:36.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3192, + "fields": { + "EF_ID": 45666, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.119Z", + "last_change_date": "2022-03-14T07:54:36.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3193, + "fields": { + "EF_ID": 45667, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.215Z", + "last_change_date": "2022-03-14T07:54:36.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3194, + "fields": { + "EF_ID": 45668, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "95", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.289Z", + "last_change_date": "2022-03-14T07:54:36.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3195, + "fields": { + "EF_ID": 45669, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Used Fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "0", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.352Z", + "last_change_date": "2022-03-14T07:54:36.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3196, + "fields": { + "EF_ID": 45670, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for Percentage of Manure N Produced in Different Animal Waste Management Systems in Different World Regions (from Safley et al. 1992)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia and Far East", + "Control_Technologies": "", + "Other_Properties": "Includes goats, horses, mules, donkeys, and camels", + "Value": "5", + "Unit": "% of Manure Production per Animal Waste Management System", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-1 (Supplemental)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-21 on Page 4.101 of the Reference Manual)", + "Technical_Reference": "Safley, L.M., M.E. Casada, J.W. Woodbury and K.F. Roos (1992), Global methnae emissions from livestock and poultry manure, USEPA Report No. 400/1-91/048. Office of Air and Radiation, Washington, D.C. USA, pp. 68, 145 and annexes.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.419Z", + "last_change_date": "2022-03-14T07:54:36.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3197, + "fields": { + "EF_ID": 45671, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for N2O Emission Factor from Animal Waste per Animal Waste Management System (EF3)", + "Technology_Practices": "Animal Waste Management System: Anaerobic", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001 (less than 0.002)", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-22 on Page 4.104 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-22, p 4.104", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of manure that is produced (excreted) in different Animal Waste Management Systems for cattle, swine, and buffalo can be estimated as proposed in Table 4-21 on Page 4.101 of the Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, or as given by Safley et al. (1992).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.509Z", + "last_change_date": "2022-03-14T07:54:36.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3198, + "fields": { + "EF_ID": 45672, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for N2O Emission Factor from Animal Waste per Animal Waste Management System (EF3)", + "Technology_Practices": "Animal Waste Management System: Liquid System", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001 (less than 0.001)", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-22 on Page 4.104 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-22, p 4.104", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of manure that is produced (excreted) in different Animal Waste Management Systems for cattle, swine, and buffalo can be estimated as proposed in Table 4-21 on Page 4.101 of the Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, or as given by Safley et al. (1992).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.580Z", + "last_change_date": "2022-03-14T07:54:36.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3199, + "fields": { + "EF_ID": 45673, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for N2O Emission Factor from Animal Waste per Animal Waste Management System (EF3)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0 (no range)", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-22 on Page 4.104 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-22, p 4.104", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of manure that is produced (excreted) in different Animal Waste Management Systems for cattle, swine, and buffalo can be estimated as proposed in Table 4-21 on Page 4.101 of the Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, or as given by Safley et al. (1992).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.669Z", + "last_change_date": "2022-03-14T07:54:36.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3200, + "fields": { + "EF_ID": 45674, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for N2O Emission Factor from Animal Waste per Animal Waste Management System (EF3)", + "Technology_Practices": "Animal Waste Management System: Solid Storage and Drylot", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02 (0.005 - 0.03)", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-22 on Page 4.104 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-22, p 4.104", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of manure that is produced (excreted) in different Animal Waste Management Systems for cattle, swine, and buffalo can be estimated as proposed in Table 4-21 on Page 4.101 of the Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, or as given by Safley et al. (1992).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.760Z", + "last_change_date": "2022-03-14T07:54:36.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3201, + "fields": { + "EF_ID": 45675, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for N2O Emission Factor from Animal Waste per Animal Waste Management System (EF3)", + "Technology_Practices": "Animal Waste Management System: Pasture Range and Paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02 (0.005 - 0.03)", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-22 on Page 4.104 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-22, p 4.104", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of manure that is produced (excreted) in different Animal Waste Management Systems for cattle, swine, and buffalo can be estimated as proposed in Table 4-21 on Page 4.101 of the Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, or as given by Safley et al. (1992).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.839Z", + "last_change_date": "2022-03-14T07:54:36.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3202, + "fields": { + "EF_ID": 45676, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tentative Default Values for N2O Emission Factor from Animal Waste per Animal Waste Management System (EF3)", + "Technology_Practices": "Animal Waste Management System: Other System", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-22 on Page 4.104 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-22, p 4.104", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of manure that is produced (excreted) in different Animal Waste Management Systems for cattle, swine, and buffalo can be estimated as proposed in Table 4-21 on Page 4.101 of the Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, or as given by Safley et al. (1992).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:36.945Z", + "last_change_date": "2022-03-14T07:54:36.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3203, + "fields": { + "EF_ID": 45677, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for Indirect Emissions (EF4)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01 (0.002 - 0.02)", + "Unit": "Kg N2O-N/kg NH3-N ands NOx - N emitted", + "Equation": "Equations 4.31, 4.32, 4.33 on Pages 4.68 and 4.70, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 9 on Page 4.112 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 4 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-23 on Page 4.105 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-23, p 4.105", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.030Z", + "last_change_date": "2022-03-14T07:54:37.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3204, + "fields": { + "EF_ID": 45678, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for Indirect Emissions (EF5)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025 (0.002 - 0.12)", + "Unit": "Kg N2O-N/kg N leaching/runoff", + "Equation": "Equations 4.34 to 4.38 on Pages 4.71 to 4.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 5 on Page 4.109 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 5 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-23 on Page 4.105 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-23, p 4.105", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.103Z", + "last_change_date": "2022-03-14T07:54:37.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3205, + "fields": { + "EF_ID": 45679, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for Indirect Emissions (EF6)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01 (0.002 - 0.02)", + "Unit": "Kg N2O-N/kg sewage-N produced", + "Equation": "Equations 4.39 and 4.40 on Page 4.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equations 7 and 10 on Pages 4.110 and 4.113, respectively, of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-4, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 4-23 on Page 4.105 of the Reference Manual)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France: Reference Manual, Table 4-23, p 4.105", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.205Z", + "last_change_date": "2022-03-14T07:54:37.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3206, + "fields": { + "EF_ID": 45680, + "IPCC_Category": "3.A.1.a - Cattle, 3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Coefficient for Calculating Net Energy for Maintenance (NEm) for non-lactating cattle; Cfi", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.322", + "Unit": "No dimension", + "Equation": "Equation 4.1 on Page 4.13 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.4 on Page 4.15)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. National Research Council (NRC) (1984) Nutrient Requirements of Beef Cattle, National Academy Press, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.289Z", + "last_change_date": "2022-03-14T07:54:37.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3207, + "fields": { + "EF_ID": 45682, + "IPCC_Category": "3.A.1.a - Cattle, 3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Coefficient for Calculating Net Energy for Maintenance (NEm) for lactating cattle; Cfi", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.335", + "Unit": "No dimension", + "Equation": "Equation 4.1 on Page 4.13 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.4 on Page 4.15)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. National Research Council (NRC) (1984) Nutrient Requirements of Beef Cattle, National Academy Press, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "NRC (1989) provides a higher maintenance allowance for lactation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.364Z", + "last_change_date": "2022-03-14T07:54:37.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3208, + "fields": { + "EF_ID": 45684, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Coefficient for Calculating Net Energy for Maintenance (NEm) for sheep (lamb to 1 year); Cfi", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.236", + "Unit": "No dimension", + "Equation": "Equation 4.1 on Page 4.13 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.4 on Page 4.15)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. National Research Council (NRC) (1984) Nutrient Requirements of Beef Cattle, National Academy Press, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "15% higher for intact males", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.430Z", + "last_change_date": "2022-03-14T07:54:37.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3209, + "fields": { + "EF_ID": 45685, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Coefficient for Calculating Net Energy for Maintenance (NEm) for sheep (older than 1 year); Cfi", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.217", + "Unit": "No dimension", + "Equation": "Equation 4.1 on Page 4.13 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.4 on Page 4.15)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. National Research Council (NRC) (1984) Nutrient Requirements of Beef Cattle, National Academy Press, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "15% higher for intact males", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.532Z", + "last_change_date": "2022-03-14T07:54:37.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3210, + "fields": { + "EF_ID": 45686, + "IPCC_Category": "3.A.1.a - Cattle, 3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Activity Coefficients Corresponding to Animals Feeding Situation (Ca)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Stall; animals are confined to a small area (i.e. tethered, pen, barn) with the result that they expend very little or no energy to acquire feed.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "No dimension", + "Equation": "Equations 4.2a and 4.2b on Page 4.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.5 on Page 4.15)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.605Z", + "last_change_date": "2022-03-14T07:54:37.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3211, + "fields": { + "EF_ID": 45687, + "IPCC_Category": "3.A.1.a - Cattle, 3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Activity Coefficients Corresponding to Animals Feeding Situation (Ca)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Pasture; animals are confined in areas with sufficient forage requiring modest energy expenses to acquire feed.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "No dimension", + "Equation": "Equations 4.2a and 4.2b on Page 4.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.5 on Page 4.15)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.680Z", + "last_change_date": "2022-03-14T07:54:37.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3212, + "fields": { + "EF_ID": 45688, + "IPCC_Category": "3.A.1.a - Cattle, 3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Activity Coefficients Corresponding to Animals Feeding Situation (Ca)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Grazing large areas; animals graze in open range land or hilly terrain and expend significant energy to acquire feed.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "No dimension", + "Equation": "Equations 4.2a and 4.2b on Page 4.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.5 on Page 4.15)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.755Z", + "last_change_date": "2022-03-14T07:54:37.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3213, + "fields": { + "EF_ID": 45692, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Activity Coefficients Corresponding to Animals Feeding Situation (Ca)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Housed ewes; animals are confined due to pregnancy in final trimester (50 days)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "No dimension", + "Equation": "Equations 4.2a and 4.2b on Page 4.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.5 on Page 4.15)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.859Z", + "last_change_date": "2022-03-14T07:54:37.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3214, + "fields": { + "EF_ID": 45693, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Activity Coefficients Corresponding to Animals Feeding Situation (Ca)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Grazing flat pasture; animals walk up to 1000 meters per day and expend very little energy to acquire feed", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0107", + "Unit": "No dimension", + "Equation": "Equations 4.2a and 4.2b on Page 4.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.5 on Page 4.15)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:37.930Z", + "last_change_date": "2022-03-14T07:54:37.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3215, + "fields": { + "EF_ID": 45694, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Activity Coefficients Corresponding to Animals Feeding Situation (Ca)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Grazing hilly pasture; animals walk up to 5,000 meters per day and expend significant energy to acquire feed", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "No dimension", + "Equation": "Equations 4.2a and 4.2b on Page 4.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.5 on Page 4.15)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.005Z", + "last_change_date": "2022-03-14T07:54:38.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3216, + "fields": { + "EF_ID": 45695, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Activity Coefficients Corresponding to Animals Feeding Situation (Ca)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Housed fattening lambs; animals are housed for fattening", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0067", + "Unit": "No dimension", + "Equation": "Equations 4.2a and 4.2b on Page 4.14 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.5 on Page 4.15)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.072Z", + "last_change_date": "2022-03-14T07:54:38.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3217, + "fields": { + "EF_ID": 45696, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant A for use in Calculating Net Energy Growth for Sheep (NE g)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Intact males", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "No dimension", + "Equation": "Equation 4.3b on Page 4.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.6 on Page 4.16)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.147Z", + "last_change_date": "2022-03-14T07:54:38.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3218, + "fields": { + "EF_ID": 45697, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant B for use in Calculating Net Energy Growth for Sheep (NE g)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Intact males", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "No dimension", + "Equation": "Equation 4.3b on Page 4.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.6 on Page 4.16)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.243Z", + "last_change_date": "2022-03-14T07:54:38.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3219, + "fields": { + "EF_ID": 45698, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant A for use in Calculating Net Energy Growth for Sheep (NE g)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Castrates", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.4", + "Unit": "No dimension", + "Equation": "Equation 4.3b on Page 4.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.6 on Page 4.16)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.330Z", + "last_change_date": "2022-03-14T07:54:38.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3220, + "fields": { + "EF_ID": 45699, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant B for use in Calculating Net Energy Growth for Sheep (NE g)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Castrates", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "No dimension", + "Equation": "Equation 4.3b on Page 4.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.6 on Page 4.16)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.397Z", + "last_change_date": "2022-03-14T07:54:38.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3221, + "fields": { + "EF_ID": 45700, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant A for use in Calculating Net Energy Growth for Sheep (NE g)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Females", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "No dimension", + "Equation": "Equation 4.3b on Page 4.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.6 on Page 4.16)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.463Z", + "last_change_date": "2022-03-14T07:54:38.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3222, + "fields": { + "EF_ID": 45701, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant B for use in Calculating Net Energy Growth for Sheep (NE g)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Females", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "No dimension", + "Equation": "Equation 4.3b on Page 4.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.6 on Page 4.16)", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.530Z", + "last_change_date": "2022-03-14T07:54:38.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3223, + "fields": { + "EF_ID": 45702, + "IPCC_Category": "3.A.1.a - Cattle, 3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant for Use in Calculaing Net Energy for Pregnancy (NE p); C pregnancy", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "No dimension", + "Equation": "Equation 4.8 on Page 4.18 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.7 on Page 4.19)", + "Technical_Reference": "National Research Council (NRC) (1996) Nutrient Requirements for Beef Cattle, National Academy Press, Washington, D.C. U.S.A. Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.630Z", + "last_change_date": "2022-03-14T07:54:38.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3224, + "fields": { + "EF_ID": 45704, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant for Use in Calculaing Net Energy for Pregnancy (NE p); C pregnancy", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Single birth", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.077", + "Unit": "No dimension", + "Equation": "Equation 4.8 on Page 4.18 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.7 on Page 4.19)", + "Technical_Reference": "National Research Council (NRC) (1996) Nutrient Requirements for Beef Cattle, National Academy Press, Washington, D.C. U.S.A. Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.722Z", + "last_change_date": "2022-03-14T07:54:38.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3225, + "fields": { + "EF_ID": 45705, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant for Use in Calculaing Net Energy for Pregnancy (NE p); C pregnancy", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Double birth (twins)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.126", + "Unit": "No dimension", + "Equation": "Equation 4.8 on Page 4.18 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.7 on Page 4.19)", + "Technical_Reference": "National Research Council (NRC) (1996) Nutrient Requirements for Beef Cattle, National Academy Press, Washington, D.C. U.S.A. Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.797Z", + "last_change_date": "2022-03-14T07:54:38.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3226, + "fields": { + "EF_ID": 45706, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Constant for Use in Calculaing Net Energy for Pregnancy (NE p); C pregnancy", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Triple birth or more (triplets)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "No dimension", + "Equation": "Equation 4.8 on Page 4.18 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.7 on Page 4.19)", + "Technical_Reference": "National Research Council (NRC) (1996) Nutrient Requirements for Beef Cattle, National Academy Press, Washington, D.C. U.S.A. Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993) Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.872Z", + "last_change_date": "2022-03-14T07:54:38.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3227, + "fields": { + "EF_ID": 45707, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Cattle", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Feedlot fed cattle; fed diets contain 90 percent or more concentrates", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:38.974Z", + "last_change_date": "2022-03-14T07:54:38.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3228, + "fields": { + "EF_ID": 45708, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Cattle", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "All other cattle", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.063Z", + "last_change_date": "2022-03-14T07:54:39.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3229, + "fields": { + "EF_ID": 45709, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Cattle", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Dairy cattle and their young", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.130Z", + "last_change_date": "2022-03-14T07:54:39.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3230, + "fields": { + "EF_ID": 45710, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Buffalo", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Dairy buffalo and their young", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.197Z", + "last_change_date": "2022-03-14T07:54:39.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3231, + "fields": { + "EF_ID": 45711, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Cattle", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Other cattle that are primarily fed low quality crop", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.263Z", + "last_change_date": "2022-03-14T07:54:39.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3232, + "fields": { + "EF_ID": 45712, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Buffalo", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Other buffaloes that are primarily fed low quality crop", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.359Z", + "last_change_date": "2022-03-14T07:54:39.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3233, + "fields": { + "EF_ID": 45713, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Cattle", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Other cattle in Africa - grazing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.439Z", + "last_change_date": "2022-03-14T07:54:39.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3234, + "fields": { + "EF_ID": 45714, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Buffalo", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Other buffaloes in Africa - grazing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.513Z", + "last_change_date": "2022-03-14T07:54:39.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3235, + "fields": { + "EF_ID": 45715, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Cattle", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Other cattle in developing countries other than Africa - grazing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.589Z", + "last_change_date": "2022-03-14T07:54:39.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3236, + "fields": { + "EF_ID": 45716, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Buffalo", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Other buffaloes in developing countries other than Africa - grazing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.8 on Page 4.26)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.663Z", + "last_change_date": "2022-03-14T07:54:39.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3237, + "fields": { + "EF_ID": 45717, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Sheep", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Lambs less than 1 year old; diets less than 65% digestible", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.9 on Page 4.27)", + "Technical_Reference": "Lassey,K.R., and M.J. Ulyatt (1999) Enterically fermented methane, with emphasis on sheep emissions. Report WLG99/5, National Institute of Water and Atmospheric Research, Wellington, New Zealand. Lassey, K.R., M.J. Ulyatt, R.J. Martin, C.F. Walker, and I.D. Shelton (1997) Methane emissions measured directly from grazing livestock in New Zealand, Atmos. Environ., 31, pp. 2905-2914.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.769Z", + "last_change_date": "2022-03-14T07:54:39.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3238, + "fields": { + "EF_ID": 45718, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Sheep", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Lambs less than 1 year old; diets greater than 65% digestible", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05 (+/- 0.005)", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.9 on Page 4.27)", + "Technical_Reference": "Lassey,K.R., and M.J. Ulyatt (1999) Enterically fermented methane, with emphasis on sheep emissions. Report WLG99/5, National Institute of Water and Atmospheric Research, Wellington, New Zealand. Lassey, K.R., M.J. Ulyatt, R.J. Martin, C.F. Walker, and I.D. Shelton (1997) Methane emissions measured directly from grazing livestock in New Zealand, Atmos. Environ., 31, pp. 2905-2914.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.847Z", + "last_change_date": "2022-03-14T07:54:39.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3239, + "fields": { + "EF_ID": 45719, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Sheep", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Mature sheep; diets less than 65% digestible", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.9 on Page 4.27)", + "Technical_Reference": "Lassey,K.R., and M.J. Ulyatt (1999) Enterically fermented methane, with emphasis on sheep emissions. Report WLG99/5, National Institute of Water and Atmospheric Research, Wellington, New Zealand. Lassey, K.R., M.J. Ulyatt, R.J. Martin, C.F. Walker, and I.D. Shelton (1997) Methane emissions measured directly from grazing livestock in New Zealand, Atmos. Environ., 31, pp. 2905-2914.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.914Z", + "last_change_date": "2022-03-14T07:54:39.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3240, + "fields": { + "EF_ID": 45720, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Rate (Ym) for Sheep", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Mature sheep; diets greater than 65% digestible", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 4.14 on Page 4.26 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.9 on Page 4.27)", + "Technical_Reference": "Lassey,K.R., and M.J. Ulyatt (1999) Enterically fermented methane, with emphasis on sheep emissions. Report WLG99/5, National Institute of Water and Atmospheric Research, Wellington, New Zealand. Lassey, K.R., M.J. Ulyatt, R.J. Martin, C.F. Walker, and I.D. Shelton (1997) Methane emissions measured directly from grazing livestock in New Zealand, Atmos. Environ., 31, pp. 2905-2914.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plus (+) and minus (-) signs represent the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:39.988Z", + "last_change_date": "2022-03-14T07:54:39.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3241, + "fields": { + "EF_ID": 45721, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pasture/Range/Paddock. The manure from pasture and range grazing animals is allowed to lie as is, and is not managed.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.097Z", + "last_change_date": "2022-03-14T07:54:40.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3242, + "fields": { + "EF_ID": 45722, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pasture/Range/Paddock. The manure from pasture and range grazing animals is allowed to lie as is, and is not managed.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.180Z", + "last_change_date": "2022-03-14T07:54:40.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3243, + "fields": { + "EF_ID": 45723, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pasture/Range/Paddock. The manure from pasture and range grazing animals is allowed to lie as is, and is not managed.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.247Z", + "last_change_date": "2022-03-14T07:54:40.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3244, + "fields": { + "EF_ID": 45724, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Daily Spread. Dung and urine are collected by some means such as scraping. The collected waste is applied to fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.357Z", + "last_change_date": "2022-03-14T07:54:40.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3245, + "fields": { + "EF_ID": 45725, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Daily Spread. Dung and urine are collected by some means such as scraping. The collected waste is applied to fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.430Z", + "last_change_date": "2022-03-14T07:54:40.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3246, + "fields": { + "EF_ID": 45726, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Daily Spread. Dung and urine are collected by some means such as scraping. The collected waste is applied to fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.497Z", + "last_change_date": "2022-03-14T07:54:40.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3247, + "fields": { + "EF_ID": 45727, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Solid Storage. Dung and urine are collected in a stall. The solids (with or without litter) are collected and stored in bulk for a long time (months) before disposal, with or without liquid runoff into a pit system.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.592Z", + "last_change_date": "2022-03-14T07:54:40.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3248, + "fields": { + "EF_ID": 45728, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Solid Storage. Dung and urine are collected in a stall. The solids (with or without litter) are collected and stored in bulk for a long time (months) before disposal, with or without liquid runoff into a pit system.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.664Z", + "last_change_date": "2022-03-14T07:54:40.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3249, + "fields": { + "EF_ID": 45729, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Solid Storage. Dung and urine are collected in a stall. The solids (with or without litter) are collected and stored in bulk for a long time (months) before disposal, with or without liquid runoff into a pit system.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.730Z", + "last_change_date": "2022-03-14T07:54:40.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3250, + "fields": { + "EF_ID": 45730, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Drylot. In dry climate animals may be kept on unpaved feedlots where the manure is allowed to dry until it is periodically removed. Upon removal the manure may be spread on fields.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.843Z", + "last_change_date": "2022-03-14T07:54:40.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3251, + "fields": { + "EF_ID": 45731, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Drylot. In dry climate animals may be kept on unpaved feedlots where the manure is allowed to dry until it is periodically removed. Upon removal the manure may be spread on fields.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.920Z", + "last_change_date": "2022-03-14T07:54:40.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3252, + "fields": { + "EF_ID": 45732, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Drylot. In dry climate animals may be kept on unpaved feedlots where the manure is allowed to dry until it is periodically removed. Upon removal the manure may be spread on fields.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:40.980Z", + "last_change_date": "2022-03-14T07:54:40.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3253, + "fields": { + "EF_ID": 45733, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Liquid/Slurry. Dung and urine are collected and transported in liquid state to tanks for storage. Liquid may be stored for a long time (months). To facilitate handling water may be added.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.077Z", + "last_change_date": "2022-03-14T07:54:41.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3254, + "fields": { + "EF_ID": 45734, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Liquid/Slurry. Dung and urine are collected and transported in liquid state to tanks for storage. Liquid may be stored for a long time (months). To facilitate handling water may be added.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.153Z", + "last_change_date": "2022-03-14T07:54:41.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3255, + "fields": { + "EF_ID": 45735, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Liquid/Slurry. Dung and urine are collected and transported in liquid state to tanks for storage. Liquid may be stored for a long time (months). To facilitate handling water may be added.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.222Z", + "last_change_date": "2022-03-14T07:54:41.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3256, + "fields": { + "EF_ID": 45736, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Anaerobic Lagoon. Anaerobic lagoon systems are characterised by flush systems that use water to transport manure to lagoons. The manure resides in the lagoon for periods from 30 days to over 200 days. The water from the lagoon ma", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 100", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.328Z", + "last_change_date": "2022-03-14T07:54:41.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3257, + "fields": { + "EF_ID": 45737, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Anaerobic Lagoon. Anaerobic lagoon systems are characterised by flush systems that use water to transport manure to lagoons. The manure resides in the lagoon for periods from 30 days to over 200 days. The water from the lagoon ma", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 100", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.403Z", + "last_change_date": "2022-03-14T07:54:41.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3258, + "fields": { + "EF_ID": 45738, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Anaerobic Lagoon. Anaerobic lagoon systems are characterised by flush systems that use water to transport manure to lagoons. The manure resides in the lagoon for periods from 30 days to over 200 days. The water from the lagoon ma", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 100", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.472Z", + "last_change_date": "2022-03-14T07:54:41.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3259, + "fields": { + "EF_ID": 45739, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pit Storage. Combined storage of dung and urine below animal confinements; less than 1 month", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.580Z", + "last_change_date": "2022-03-14T07:54:41.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3260, + "fields": { + "EF_ID": 45740, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pit Storage. Combined storage of dung and urine below animal confinements; less than 1 month", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.670Z", + "last_change_date": "2022-03-14T07:54:41.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3261, + "fields": { + "EF_ID": 45741, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pit Storage. Combined storage of dung and urine below animal confinements; less than 1 month", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.738Z", + "last_change_date": "2022-03-14T07:54:41.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3262, + "fields": { + "EF_ID": 45742, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pit Storage. Combined storage of dung and urine below animal confinements; greater than 1 month", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.833Z", + "last_change_date": "2022-03-14T07:54:41.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3263, + "fields": { + "EF_ID": 45743, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pit Storage. Combined storage of dung and urine below animal confinements; greater than 1 month", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.912Z", + "last_change_date": "2022-03-14T07:54:41.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3264, + "fields": { + "EF_ID": 45744, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Pit Storage. Combined storage of dung and urine below animal confinements; greater than 1 month", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:41.972Z", + "last_change_date": "2022-03-14T07:54:41.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3265, + "fields": { + "EF_ID": 45745, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Anaerobic Digester. The dung and urine in liquid/slurry are collected and anaerobically digested. Methane may be burned flared or vented.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 100", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.067Z", + "last_change_date": "2022-03-14T07:54:42.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3266, + "fields": { + "EF_ID": 45746, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Anaerobic Digester. The dung and urine in liquid/slurry are collected and anaerobically digested. Methane may be burned flared or vented.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 100", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.145Z", + "last_change_date": "2022-03-14T07:54:42.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3267, + "fields": { + "EF_ID": 45747, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Anaerobic Digester. The dung and urine in liquid/slurry are collected and anaerobically digested. Methane may be burned flared or vented.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 100", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.211Z", + "last_change_date": "2022-03-14T07:54:42.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3268, + "fields": { + "EF_ID": 45748, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Burned for Fuel. The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.302Z", + "last_change_date": "2022-03-14T07:54:42.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3269, + "fields": { + "EF_ID": 45749, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Burned for Fuel. The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.378Z", + "last_change_date": "2022-03-14T07:54:42.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3270, + "fields": { + "EF_ID": 45750, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Defined in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance", + "Technology_Practices": "Manure management system: Burned for Fuel. The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.10 on Page 4.36)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.445Z", + "last_change_date": "2022-03-14T07:54:42.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3271, + "fields": { + "EF_ID": 45751, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Cattle deep litter; Cattle dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.537Z", + "last_change_date": "2022-03-14T07:54:42.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3272, + "fields": { + "EF_ID": 45752, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Cattle deep litter; Cattle dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.622Z", + "last_change_date": "2022-03-14T07:54:42.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3273, + "fields": { + "EF_ID": 45753, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Cattle deep litter; Cattle dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.686Z", + "last_change_date": "2022-03-14T07:54:42.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3274, + "fields": { + "EF_ID": 45754, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Cattle deep litter; Cattle dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.788Z", + "last_change_date": "2022-03-14T07:54:42.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3275, + "fields": { + "EF_ID": 45755, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Cattle deep litter; Cattle dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.870Z", + "last_change_date": "2022-03-14T07:54:42.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3276, + "fields": { + "EF_ID": 45756, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Cattle deep litter; Cattle dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:42.936Z", + "last_change_date": "2022-03-14T07:54:42.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3277, + "fields": { + "EF_ID": 45757, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Swine deep litter; Swine dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.039Z", + "last_change_date": "2022-03-14T07:54:43.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3278, + "fields": { + "EF_ID": 45758, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Swine deep litter; Swine dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.128Z", + "last_change_date": "2022-03-14T07:54:43.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3279, + "fields": { + "EF_ID": 45759, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Swine deep litter; Swine dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.203Z", + "last_change_date": "2022-03-14T07:54:43.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3280, + "fields": { + "EF_ID": 45760, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Swine deep litter; Swine dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.308Z", + "last_change_date": "2022-03-14T07:54:43.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3281, + "fields": { + "EF_ID": 45761, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Swine deep litter; Swine dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.414Z", + "last_change_date": "2022-03-14T07:54:43.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3282, + "fields": { + "EF_ID": 45762, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Swine deep litter; Swine dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to liquid/slurry; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.480Z", + "last_change_date": "2022-03-14T07:54:43.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3283, + "fields": { + "EF_ID": 45763, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected and placed in a vessel or tunnel, there is forced aeration of the waste.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is less than half of solid storage; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.567Z", + "last_change_date": "2022-03-14T07:54:43.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3284, + "fields": { + "EF_ID": 45764, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected and placed in a vessel or tunnel, there is forced aeration of the waste.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is less than half of solid storage; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.647Z", + "last_change_date": "2022-03-14T07:54:43.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3285, + "fields": { + "EF_ID": 45765, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected and placed in a vessel or tunnel, there is forced aeration of the waste.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is less than half of solid storage; temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.714Z", + "last_change_date": "2022-03-14T07:54:43.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3286, + "fields": { + "EF_ID": 45766, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected, stacked and regularly turned for aeration.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is slightly less than solid storage; less temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.811Z", + "last_change_date": "2022-03-14T07:54:43.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3287, + "fields": { + "EF_ID": 45767, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected, stacked and regularly turned for aeration.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is slightly less than solid storage; less temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.889Z", + "last_change_date": "2022-03-14T07:54:43.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3288, + "fields": { + "EF_ID": 45768, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected, stacked and regularly turned for aeration.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is slightly less than solid storage; less temperature dependent", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:43.955Z", + "last_change_date": "2022-03-14T07:54:43.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3289, + "fields": { + "EF_ID": 45769, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Manure is excreted on floor with bedding. Birds walk on waste.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to solid storage but with generally constant warm temperature", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.071Z", + "last_change_date": "2022-03-14T07:54:44.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3290, + "fields": { + "EF_ID": 45770, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Manure is excreted on floor with bedding. Birds walk on waste.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to solid storage but with generally constant warm temperature", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.155Z", + "last_change_date": "2022-03-14T07:54:44.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3291, + "fields": { + "EF_ID": 45771, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Manure is excreted on floor with bedding. Birds walk on waste.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to solid storage but with generally constant warm temperature", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.230Z", + "last_change_date": "2022-03-14T07:54:44.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3292, + "fields": { + "EF_ID": 45772, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Manure is excreted on floor without bedding. Birds do not walk on waste.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to dry lot at warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.330Z", + "last_change_date": "2022-03-14T07:54:44.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3293, + "fields": { + "EF_ID": 45773, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Manure is excreted on floor without bedding. Birds do not walk on waste.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to dry lot at warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.414Z", + "last_change_date": "2022-03-14T07:54:44.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3294, + "fields": { + "EF_ID": 45774, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Manure is excreted on floor without bedding. Birds do not walk on waste.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is similar to dry lot at warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.488Z", + "last_change_date": "2022-03-14T07:54:44.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3295, + "fields": { + "EF_ID": 45775, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected as a liquid. The waste undergoes forced aeration, or treated in aerobic pond or wetland systems to provide nitrification and denitrification.", + "Parameter_Conditions": "Annual Average temperature is less than 15 C", + "Regional_Conditions": "Climate: Cool", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is near zero. Aerobic treatment results in large accumulations of sludge. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.599Z", + "last_change_date": "2022-03-14T07:54:44.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3296, + "fields": { + "EF_ID": 45776, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected as a liquid. The waste undergoes forced aeration, or treated in aerobic pond or wetland systems to provide nitrification and denitrification.", + "Parameter_Conditions": "Annual Average temperature is between 15 C and 25 C", + "Regional_Conditions": "Climate: Temp", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is near zero. Aerobic treatment results in large accumulations of sludge. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.680Z", + "last_change_date": "2022-03-14T07:54:44.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3297, + "fields": { + "EF_ID": 45777, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF) Values for Manure Management Systems Not Specified in the 1996 IPCC Guidelines and Revised in the IPCC Good Practice Guidance using Judgement by Expert Group", + "Technology_Practices": "Dung and urine are collected as a liquid. The waste undergoes forced aeration, or treated in aerobic pond or wetland systems to provide nitrification and denitrification.", + "Parameter_Conditions": "Annual Average temperature is greater than 25 C", + "Regional_Conditions": "Climate: Warm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 4.17 on Page 4.34 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.11 on Page 4.37)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Conversion Factor (MCF) is near zero. Aerobic treatment results in large accumulations of sludge. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.755Z", + "last_change_date": "2022-03-14T07:54:44.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3298, + "fields": { + "EF_ID": 45778, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Pasture/range/paddock", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.851Z", + "last_change_date": "2022-03-14T07:54:44.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3299, + "fields": { + "EF_ID": 45779, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Daily Spread", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Not applicable", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:44.947Z", + "last_change_date": "2022-03-14T07:54:44.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3300, + "fields": { + "EF_ID": 45780, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Solid storage", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "Quantitative data should be used to distinguish whether the system is judged to be a solid storage or liquid/slurry. The borderline between dry and liquid can be drawn at 20% dry matter content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.022Z", + "last_change_date": "2022-03-14T07:54:45.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3301, + "fields": { + "EF_ID": 45781, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Dry lot", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.135Z", + "last_change_date": "2022-03-14T07:54:45.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3302, + "fields": { + "EF_ID": 45782, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Liquid/Slurry", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "Quantitative data should be used to distinguish whether the system is judged to be a solid storage or liquid/slurry. The borderline between dry and liquid can be drawn at 20% dry matter content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.222Z", + "last_change_date": "2022-03-14T07:54:45.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3303, + "fields": { + "EF_ID": 45783, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Anaerobic Lagoon", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.289Z", + "last_change_date": "2022-03-14T07:54:45.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3304, + "fields": { + "EF_ID": 45784, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Open pits below animal confinements", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.413Z", + "last_change_date": "2022-03-14T07:54:45.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3305, + "fields": { + "EF_ID": 45785, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Anaerobic digester", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.497Z", + "last_change_date": "2022-03-14T07:54:45.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3306, + "fields": { + "EF_ID": 45786, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Burned for fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "The emissions associated with the burning of the dung are to be reported under the IPCC category fuel combustion if the dung is used as fuel and under the IPCC category waste incineration, if the dung is burned without energy recovery. Direct and indirect N2O emissions asociated with the urine deposited on agricultural soils are treated in Section 4.7 and 4.8 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, respectively.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.563Z", + "last_change_date": "2022-03-14T07:54:45.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3307, + "fields": { + "EF_ID": 45787, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3)", + "Technology_Practices": "Animal Waste Management System: Burned for fuel", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.12 on Page 4.43)", + "Technical_Reference": "Intergovernmental Panel on Climate Change (IPCC) (1997) Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, J.T. Houghton et al., IPCC/OECD/IEA, Paris, France. Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "The emissions associated with the burning of the dung are to be reported under the IPCC category fuel combustion if the dung is used as fuel and under the IPCC category waste incineration, if the dung is burned without energy recovery. Direct and indirect N2O emissions asociated with the urine deposited on agricultural soils are treated in Section 4.7 and 4.8 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, respectively.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.671Z", + "last_change_date": "2022-03-14T07:54:45.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3308, + "fields": { + "EF_ID": 45788, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Cattle deep litter; Cattle dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.763Z", + "last_change_date": "2022-03-14T07:54:45.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3309, + "fields": { + "EF_ID": 45789, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Cattle deep litter; Cattle dung and urine are excreted on stall floor. The accumulated waste is removed after more than one month.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.881Z", + "last_change_date": "2022-03-14T07:54:45.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3310, + "fields": { + "EF_ID": 45790, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Swine deep litter; Swine dung and urine are excreted on stall floor. The accumulated waste is removed after less than one month.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:45.972Z", + "last_change_date": "2022-03-14T07:54:45.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3311, + "fields": { + "EF_ID": 45791, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Swine deep litter; Swine dung and urine are excreted on stall floor. The accumulated waste is removed after more than one month.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.055Z", + "last_change_date": "2022-03-14T07:54:46.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3312, + "fields": { + "EF_ID": 45792, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Dung and urine are collected and placed in a vessel or tunnel, there is forced aeration of the waste.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.174Z", + "last_change_date": "2022-03-14T07:54:46.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3313, + "fields": { + "EF_ID": 45793, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Dung and urine are collected, stacked and regularly turned for aeration.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.264Z", + "last_change_date": "2022-03-14T07:54:46.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3314, + "fields": { + "EF_ID": 45794, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Manure is excreted on floor with bedding. Birds walk on waste.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.347Z", + "last_change_date": "2022-03-14T07:54:46.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3315, + "fields": { + "EF_ID": 45795, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Manure is excreted on floor without bedding. Birds do not walk on waste.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.459Z", + "last_change_date": "2022-03-14T07:54:46.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3316, + "fields": { + "EF_ID": 45796, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emissions Factor for N2O from Manure Management (EF3); not specified in the IPCC Guidelines (Judgement by Expert Group)", + "Technology_Practices": "Dung and urine are collected as a liquid. The waste undergoes forced aeration, or treated in aerobic pond or wetland systems to provide nitrification and denitrification.", + "Parameter_Conditions": "", + "Regional_Conditions": "Regions: All regions", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "Equation 2 on Page 4.98 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual; and Equation 4.18 on Page 4.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 2 of 2", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.13 on Page 4.44)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is -50% / +100%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.564Z", + "last_change_date": "2022-03-14T07:54:46.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3317, + "fields": { + "EF_ID": 45797, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Adjustment factor for Table 4-20 (Tentative Default Values for Nitrogen Excretion per Head of Animal per Region) in the IPCC Guidelines Reference Manual when estimating N excretion Rates for Young Animals (Note: The adjustment factor is 1 when the age of the animals exceeds the indicated age range).", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle; age range is 0 to 1 year", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.14 on Page 4.45)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.655Z", + "last_change_date": "2022-03-14T07:54:46.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3318, + "fields": { + "EF_ID": 45798, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Adjustment factor for Table 4-20 (Tentative Default Values for Nitrogen Excretion per Head of Animal per Region) in the IPCC Guidelines Reference Manual when estimating N excretion Rates for Young Animals (Note: The adjustment factor is 1 when the age of the animals exceeds the indicated age range).", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-dairy cattle; age range is 1 to 2 years", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.14 on Page 4.45)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.761Z", + "last_change_date": "2022-03-14T07:54:46.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3319, + "fields": { + "EF_ID": 45799, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Adjustment factor for Table 4-20 (Tentative Default Values for Nitrogen Excretion per Head of Animal per Region) in the IPCC Guidelines Reference Manual when estimating N excretion Rates for Young Animals (Note: The adjustment factor is 1 when the age of the animals exceeds the indicated age range).", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle; age range is 0 to 1 year", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.14 on Page 4.45)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.847Z", + "last_change_date": "2022-03-14T07:54:46.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3320, + "fields": { + "EF_ID": 45800, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Adjustment factor for Table 4-20 (Tentative Default Values for Nitrogen Excretion per Head of Animal per Region) in the IPCC Guidelines Reference Manual when estimating N excretion Rates for Young Animals (Note: The adjustment factor is 1 when the age of the animals exceeds the indicated age range).", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy cattle; age range is 1 to 2 years", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.14 on Page 4.45)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.922Z", + "last_change_date": "2022-03-14T07:54:46.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3321, + "fields": { + "EF_ID": 45801, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Adjustment factor for Table 4-20 (Tentative Default Values for Nitrogen Excretion per Head of Animal per Region) in the IPCC Guidelines Reference Manual when estimating N excretion Rates for Young Animals (Note: The adjustment factor is 1 when the age of the animals exceeds the indicated age range).", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry; age range is 0 to 0.25 year", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.14 on Page 4.45)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:46.997Z", + "last_change_date": "2022-03-14T07:54:46.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3322, + "fields": { + "EF_ID": 45802, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Adjustment factor for Table 4-20 (Tentative Default Values for Nitrogen Excretion per Head of Animal per Region) in the IPCC Guidelines Reference Manual when estimating N excretion Rates for Young Animals (Note: The adjustment factor is 1 when the age of the animals exceeds the indicated age range).", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep; age range is 0 to 1 year", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.14 on Page 4.45)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.121Z", + "last_change_date": "2022-03-14T07:54:47.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3323, + "fields": { + "EF_ID": 45803, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Adjustment factor for Table 4-20 (Tentative Default Values for Nitrogen Excretion per Head of Animal per Region) in the IPCC Guidelines Reference Manual when estimating N excretion Rates for Young Animals (Note: The adjustment factor is 1 when the age of the animals exceeds the indicated age range).", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine; age range is 0 to 0.5 year", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.14 on Page 4.45)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.205Z", + "last_change_date": "2022-03-14T07:54:47.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3324, + "fields": { + "EF_ID": 45804, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Dairy Cattle", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.281Z", + "last_change_date": "2022-03-14T07:54:47.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3325, + "fields": { + "EF_ID": 45805, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Non-Dairy Cattle", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.356Z", + "last_change_date": "2022-03-14T07:54:47.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3326, + "fields": { + "EF_ID": 45806, + "IPCC_Category": "3.A.2.b - Buffalo", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Buffalo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.448Z", + "last_change_date": "2022-03-14T07:54:47.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3327, + "fields": { + "EF_ID": 45807, + "IPCC_Category": "3.A.2.c - Sheep", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Sheep", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.539Z", + "last_change_date": "2022-03-14T07:54:47.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3328, + "fields": { + "EF_ID": 45808, + "IPCC_Category": "3.A.2.d - Goats", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Goats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.614Z", + "last_change_date": "2022-03-14T07:54:47.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3329, + "fields": { + "EF_ID": 45809, + "IPCC_Category": "3.A.2.e - Camels", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Camels", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.689Z", + "last_change_date": "2022-03-14T07:54:47.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3330, + "fields": { + "EF_ID": 45810, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Swine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.782Z", + "last_change_date": "2022-03-14T07:54:47.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3331, + "fields": { + "EF_ID": 45811, + "IPCC_Category": "3.A.2.f - Horses", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Horses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.872Z", + "last_change_date": "2022-03-14T07:54:47.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3332, + "fields": { + "EF_ID": 45812, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Values for the Fraction of Nitrogen in Feed Taken in by Animals that is Retained by the different Animal Species/Categories (Fraction N-intake Retained by the Animal)", + "Technology_Practices": "Animal Production", + "Parameter_Conditions": "Type of Animal: Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 4.19 on Page 4.45 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.15 on Page 4.46)", + "Technical_Reference": "Judgement by Expert Group (see Co-Chairs, Editors, and Experts on CH4 Emissions from Manure Management of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range is +/- 50%", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:47.947Z", + "last_change_date": "2022-03-14T07:54:47.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3333, + "fields": { + "EF_ID": 45813, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.022Z", + "last_change_date": "2022-03-14T07:54:48.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3334, + "fields": { + "EF_ID": 45814, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82-0.88", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.117Z", + "last_change_date": "2022-03-14T07:54:48.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3335, + "fields": { + "EF_ID": 45815, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Carbon Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4853", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.213Z", + "last_change_date": "2022-03-14T07:54:48.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3336, + "fields": { + "EF_ID": 45816, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0028", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.289Z", + "last_change_date": "2022-03-14T07:54:48.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3337, + "fields": { + "EF_ID": 45817, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.364Z", + "last_change_date": "2022-03-14T07:54:48.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3338, + "fields": { + "EF_ID": 45818, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82-0.88", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.438Z", + "last_change_date": "2022-03-14T07:54:48.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3339, + "fields": { + "EF_ID": 45819, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Carbon Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4567", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.538Z", + "last_change_date": "2022-03-14T07:54:48.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3340, + "fields": { + "EF_ID": 45820, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0043", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.622Z", + "last_change_date": "2022-03-14T07:54:48.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3341, + "fields": { + "EF_ID": 45821, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.705Z", + "last_change_date": "2022-03-14T07:54:48.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3342, + "fields": { + "EF_ID": 45822, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70-0.86", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.780Z", + "last_change_date": "2022-03-14T07:54:48.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3343, + "fields": { + "EF_ID": 45823, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Carbon Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4709", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.855Z", + "last_change_date": "2022-03-14T07:54:48.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3344, + "fields": { + "EF_ID": 45824, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0081", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:48.948Z", + "last_change_date": "2022-03-14T07:54:48.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3345, + "fields": { + "EF_ID": 45825, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Oats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.030Z", + "last_change_date": "2022-03-14T07:54:49.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3346, + "fields": { + "EF_ID": 45826, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Oats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.097Z", + "last_change_date": "2022-03-14T07:54:49.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3347, + "fields": { + "EF_ID": 45827, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Oats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.163Z", + "last_change_date": "2022-03-14T07:54:49.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3348, + "fields": { + "EF_ID": 45828, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Rye", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.250Z", + "last_change_date": "2022-03-14T07:54:49.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3349, + "fields": { + "EF_ID": 45829, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Rye", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.330Z", + "last_change_date": "2022-03-14T07:54:49.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3350, + "fields": { + "EF_ID": 45830, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Rye", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0048", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.397Z", + "last_change_date": "2022-03-14T07:54:49.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3351, + "fields": { + "EF_ID": 45831, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.464Z", + "last_change_date": "2022-03-14T07:54:49.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3352, + "fields": { + "EF_ID": 45832, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82-0.88", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.551Z", + "last_change_date": "2022-03-14T07:54:49.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3353, + "fields": { + "EF_ID": 45833, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Carbon Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4144", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.647Z", + "last_change_date": "2022-03-14T07:54:49.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3354, + "fields": { + "EF_ID": 45834, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0067", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.712Z", + "last_change_date": "2022-03-14T07:54:49.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3355, + "fields": { + "EF_ID": 45835, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Millet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.779Z", + "last_change_date": "2022-03-14T07:54:49.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3356, + "fields": { + "EF_ID": 45836, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Millet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85-0.92", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.854Z", + "last_change_date": "2022-03-14T07:54:49.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3357, + "fields": { + "EF_ID": 45837, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Millet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:49.954Z", + "last_change_date": "2022-03-14T07:54:49.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3358, + "fields": { + "EF_ID": 45838, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sorghum", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.039Z", + "last_change_date": "2022-03-14T07:54:50.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3359, + "fields": { + "EF_ID": 45839, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sorghum", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.112Z", + "last_change_date": "2022-03-14T07:54:50.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3360, + "fields": { + "EF_ID": 45840, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sorghum", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0108", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.196Z", + "last_change_date": "2022-03-14T07:54:50.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3361, + "fields": { + "EF_ID": 45841, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Peas", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.289Z", + "last_change_date": "2022-03-14T07:54:50.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3362, + "fields": { + "EF_ID": 45842, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Peas", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.405Z", + "last_change_date": "2022-03-14T07:54:50.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3363, + "fields": { + "EF_ID": 45843, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Peas", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0142", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.471Z", + "last_change_date": "2022-03-14T07:54:50.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3364, + "fields": { + "EF_ID": 45844, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Beans", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.537Z", + "last_change_date": "2022-03-14T07:54:50.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3365, + "fields": { + "EF_ID": 45845, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Beans", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82-0.89", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.633Z", + "last_change_date": "2022-03-14T07:54:50.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3366, + "fields": { + "EF_ID": 45846, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Soybeans", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.714Z", + "last_change_date": "2022-03-14T07:54:50.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3367, + "fields": { + "EF_ID": 45847, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Soybeans", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84-0.89", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.788Z", + "last_change_date": "2022-03-14T07:54:50.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3368, + "fields": { + "EF_ID": 45848, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Soybeans", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.023", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Barnard, G.W. and L.A. Kristoferson (1985), Agricultural Residues as Fuel in the Third World. Technical Report No. 5. Earthscan, London, UK. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:50.872Z", + "last_change_date": "2022-03-14T07:54:50.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3369, + "fields": { + "EF_ID": 45849, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Potatoes", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.018Z", + "last_change_date": "2022-03-14T07:54:51.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3370, + "fields": { + "EF_ID": 45850, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Carbon Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Potatoes", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4226", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.114Z", + "last_change_date": "2022-03-14T07:54:51.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3371, + "fields": { + "EF_ID": 45851, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Potatoes", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.011", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.197Z", + "last_change_date": "2022-03-14T07:54:51.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3372, + "fields": { + "EF_ID": 45852, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Feedbeet (value is for beet leaves)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.272Z", + "last_change_date": "2022-03-14T07:54:51.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3373, + "fields": { + "EF_ID": 45853, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Carbon Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Feedbeet (value is for beet leaves)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4072", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.347Z", + "last_change_date": "2022-03-14T07:54:51.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3374, + "fields": { + "EF_ID": 45854, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Feedbeet (value is for beet leaves)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0228", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.445Z", + "last_change_date": "2022-03-14T07:54:51.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3375, + "fields": { + "EF_ID": 45855, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sugarcane tops", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Turn, S. Q., B.M., Jenkin, J.C. Show, L.C. Pritchett, D. Campbell, T. Cahill, and S.A. Whalen (1997) Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. Journal of Geophysical Research, Vol. 102 (D3): pp. 3683-3699.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.531Z", + "last_change_date": "2022-03-14T07:54:51.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3376, + "fields": { + "EF_ID": 45856, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Carbon Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sugarcane tops", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4235", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Turn, S. Q., B.M., Jenkin, J.C. Show, L.C. Pritchett, D. Campbell, T. Cahill, and S.A. Whalen (1997) Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. Journal of Geophysical Research, Vol. 102 (D3): pp. 3683-3699.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.605Z", + "last_change_date": "2022-03-14T07:54:51.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3377, + "fields": { + "EF_ID": 45857, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sugarcane tops", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Turn, S. Q., B.M., Jenkin, J.C. Show, L.C. Pritchett, D. Campbell, T. Cahill, and S.A. Whalen (1997) Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. Journal of Geophysical Research, Vol. 102 (D3): pp. 3683-3699.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.680Z", + "last_change_date": "2022-03-14T07:54:51.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3378, + "fields": { + "EF_ID": 45858, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sugarcane leaves", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Turn, S. Q., B.M., Jenkin, J.C. Show, L.C. Pritchett, D. Campbell, T. Cahill, and S.A. Whalen (1997) Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. Journal of Geophysical Research, Vol. 102 (D3): pp. 3683-3699.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.773Z", + "last_change_date": "2022-03-14T07:54:51.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3379, + "fields": { + "EF_ID": 45859, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Carbon Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sugarcane leaves", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4235", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Turn, S. Q., B.M., Jenkin, J.C. Show, L.C. Pritchett, D. Campbell, T. Cahill, and S.A. Whalen (1997) Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. Journal of Geophysical Research, Vol. 102 (D3): pp. 3683-3699.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.855Z", + "last_change_date": "2022-03-14T07:54:51.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3380, + "fields": { + "EF_ID": 45860, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Sugarcane leaves", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.004", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Turn, S. Q., B.M., Jenkin, J.C. Show, L.C. Pritchett, D. Campbell, T. Cahill, and S.A. Whalen (1997) Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. Journal of Geophysical Research, Vol. 102 (D3): pp. 3683-3699.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:51.930Z", + "last_change_date": "2022-03-14T07:54:51.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3381, + "fields": { + "EF_ID": 45861, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Jerusalem artichoke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.005Z", + "last_change_date": "2022-03-14T07:54:52.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3382, + "fields": { + "EF_ID": 45862, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Residue/Crop Product Ratio", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Peanuts", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.29 on Pages 4.57 and 4.59, respectively, of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.099Z", + "last_change_date": "2022-03-14T07:54:52.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3383, + "fields": { + "EF_ID": 45863, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Dry Matter Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Peanuts", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "fraction", + "Equation": "Equations 4.26, 4.27, and 4.29 on Pages 4.57 and 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.181Z", + "last_change_date": "2022-03-14T07:54:52.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3384, + "fields": { + "EF_ID": 45864, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Selected Crop Residue Statistics: Nitrogen Fraction", + "Technology_Practices": "Crop Production", + "Parameter_Conditions": "Crop (Product): Peanuts", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0106", + "Unit": "fraction", + "Equation": "Equations 4.25 to 4.29 on Pages 4.57 to 4.59 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.16 on Page 4.58)", + "Technical_Reference": "Strehler, A. and W. Stützle (1987), “Biomass residues.” In: Biomass: Regenerable Energy, D.O. Hall, and R.P. Overend (eds.). John Wiley, Chichester, U.K., pp. 75-102. Cornell (1994) The Cornell Net Carbohydrate System for Evaluating Cattle Diets. Cornell Cooperative Extension, Animal Science Department, Ithaca, NY. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.256Z", + "last_change_date": "2022-03-14T07:54:52.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3385, + "fields": { + "EF_ID": 45865, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Updated Default Emission Factor to Estimate Direct N2O Emissions from Agricultural Soils (EF2) ", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "Climate: for mid-latitude organic soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equations 4.20 and 4.21 on Page 4.54 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 1 of 5", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.17 on Page 4.60)", + "Technical_Reference": "Klemedtsson, L., A. Kasimir Klemedtson, M. Escala, and A. Kulmala (1999) Inventory of N2O emission from farmed European peatlands. In: Freibauer, A. and M. Kaltschmitt (eds.), Approaches to Greenhouse Gas Inventories of Biogenic Sources in Agriculture, Proceedings of the Workshop at Lokeberg, Sweden, 9-10 July 1998, pp. 79-91.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.331Z", + "last_change_date": "2022-03-14T07:54:52.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3386, + "fields": { + "EF_ID": 45866, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Updated Default Emission Factor to Estimate Direct N2O Emissions from Agricultural Soils (EF2) ", + "Technology_Practices": "", + "Parameter_Conditions": "Direct Soil Emissions", + "Regional_Conditions": "Climate: for tropical organic soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equations 4.20 and 4.21 on Page 4.54 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 1 of 5", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.17 on Page 4.60)", + "Technical_Reference": "Klemedtsson, L., A. Kasimir Klemedtson, M. Escala, and A. Kulmala (1999) Inventory of N2O emission from farmed European peatlands. In: Freibauer, A. and M. Kaltschmitt (eds.), Approaches to Greenhouse Gas Inventories of Biogenic Sources in Agriculture, Proceedings of the Workshop at Lokeberg, Sweden, 9-10 July 1998, pp. 79-91.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.443Z", + "last_change_date": "2022-03-14T07:54:52.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3387, + "fields": { + "EF_ID": 45867, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dose- Reponse Table for Non-fermented Organic Amendments", + "Technology_Practices": "Application of Organic amendments", + "Parameter_Conditions": "Amount applied as dry matter: 1 - 2 tons/ha", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "No dimension", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.21 on Page 4.81)", + "Technical_Reference": "Denier van der Gon, H.A.C. and H.U. Neue (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 9: pp. 11-22.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of the value of the Scaling Factor is 1 to 2; to use the table for fermented organic amendments, divide the amount applied by six.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.522Z", + "last_change_date": "2022-03-14T07:54:52.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3388, + "fields": { + "EF_ID": 45868, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dose- Reponse Table for Non-fermented Organic Amendments", + "Technology_Practices": "Application of Organic amendments", + "Parameter_Conditions": "Amount applied as dry matter: 2 - 4 tons/ha", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "No dimension", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.21 on Page 4.81)", + "Technical_Reference": "Denier van der Gon, H.A.C. and H.U. Neue (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 9: pp. 11-22.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of the value of the Scaling Factor is 1.5 to 2.5; to use the table for fermented organic amendments, divide the amount applied by six.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.605Z", + "last_change_date": "2022-03-14T07:54:52.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3389, + "fields": { + "EF_ID": 45869, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dose- Reponse Table for Non-fermented Organic Amendments", + "Technology_Practices": "Application of Organic amendments", + "Parameter_Conditions": "Amount applied as dry matter: 4 - 8 tons/ha", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "No dimension", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.21 on Page 4.81)", + "Technical_Reference": "Denier van der Gon, H.A.C. and H.U. Neue (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 9: pp. 11-22.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of the value of the Scaling Factor is 1.5 to 3.5; to use the table for fermented organic amendments, divide the amount applied by six.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.689Z", + "last_change_date": "2022-03-14T07:54:52.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3390, + "fields": { + "EF_ID": 45870, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dose- Reponse Table for Non-fermented Organic Amendments", + "Technology_Practices": "Application of Organic amendments", + "Parameter_Conditions": "Amount applied as dry matter: 8 - 15 tons/ha", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5", + "Unit": "No dimension", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.21 on Page 4.81)", + "Technical_Reference": "Denier van der Gon, H.A.C. and H.U. Neue (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 9: pp. 11-22.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of the value of the Scaling Factor is 2 to 4.5; to use the table for fermented organic amendments, divide the amount applied by six.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.794Z", + "last_change_date": "2022-03-14T07:54:52.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3391, + "fields": { + "EF_ID": 45871, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dose- Reponse Table for Non-fermented Organic Amendments", + "Technology_Practices": "Application of Organic amendments", + "Parameter_Conditions": "Amount applied as dry matter: higher than 15 tons/ha", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "No dimension", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.21 on Page 4.81)", + "Technical_Reference": "Denier van der Gon, H.A.C. and H.U. Neue (1995) Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 9: pp. 11-22.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of the value of the Scaling Factor is 3 to 5; to use the table for fermented organic amendments, divide the amount applied by six.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.889Z", + "last_change_date": "2022-03-14T07:54:52.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3392, + "fields": { + "EF_ID": 45872, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:52.972Z", + "last_change_date": "2022-03-14T07:54:52.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3393, + "fields": { + "EF_ID": 45873, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.6 + or -1.8", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.047Z", + "last_change_date": "2022-03-14T07:54:53.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3394, + "fields": { + "EF_ID": 45874, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.146Z", + "last_change_date": "2022-03-14T07:54:53.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3395, + "fields": { + "EF_ID": 45875, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.230Z", + "last_change_date": "2022-03-14T07:54:53.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3396, + "fields": { + "EF_ID": 45876, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo limpo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3 - 1.0", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.330Z", + "last_change_date": "2022-03-14T07:54:53.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3397, + "fields": { + "EF_ID": 45877, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo limpo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1 + or - 0.5", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.424Z", + "last_change_date": "2022-03-14T07:54:53.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3398, + "fields": { + "EF_ID": 45878, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo limpo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.505Z", + "last_change_date": "2022-03-14T07:54:53.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3399, + "fields": { + "EF_ID": 45879, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo limpo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.580Z", + "last_change_date": "2022-03-14T07:54:53.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3400, + "fields": { + "EF_ID": 45880, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sujo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3 - 1.0", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.675Z", + "last_change_date": "2022-03-14T07:54:53.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3401, + "fields": { + "EF_ID": 45881, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sujo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3 + or - 0.5", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.755Z", + "last_change_date": "2022-03-14T07:54:53.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3402, + "fields": { + "EF_ID": 45882, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sujo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.97", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.830Z", + "last_change_date": "2022-03-14T07:54:53.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3403, + "fields": { + "EF_ID": 45883, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo cerrado)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3 - 1.0", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:53.927Z", + "last_change_date": "2022-03-14T07:54:53.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3404, + "fields": { + "EF_ID": 45884, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo cerrado)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.6 + or - 0.8", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.005Z", + "last_change_date": "2022-03-14T07:54:54.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3405, + "fields": { + "EF_ID": 45885, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo cerrado)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.097Z", + "last_change_date": "2022-03-14T07:54:54.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3406, + "fields": { + "EF_ID": 45886, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo cerrado)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.195Z", + "last_change_date": "2022-03-14T07:54:54.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3407, + "fields": { + "EF_ID": 45887, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sensu stricto)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3 - 1.0", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.289Z", + "last_change_date": "2022-03-14T07:54:54.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3408, + "fields": { + "EF_ID": 45888, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sensu stricto)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10. + or - 0.5", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.372Z", + "last_change_date": "2022-03-14T07:54:54.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3409, + "fields": { + "EF_ID": 45889, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sensu stricto)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.471Z", + "last_change_date": "2022-03-14T07:54:54.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3410, + "fields": { + "EF_ID": 45890, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sensu stricto)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Kauffman, J.B., D.L. Cummings and D.E. Ward (1994) Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado, J. of Ecology, 82, pp. 519-531. Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.564Z", + "last_change_date": "2022-03-14T07:54:54.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3411, + "fields": { + "EF_ID": 45891, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576. Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.647Z", + "last_change_date": "2022-03-14T07:54:54.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3412, + "fields": { + "EF_ID": 45892, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.6 + or -1.6", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576. Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.756Z", + "last_change_date": "2022-03-14T07:54:54.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3413, + "fields": { + "EF_ID": 45893, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576. Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.839Z", + "last_change_date": "2022-03-14T07:54:54.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3414, + "fields": { + "EF_ID": 45894, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:54.931Z", + "last_change_date": "2022-03-14T07:54:54.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3415, + "fields": { + "EF_ID": 45895, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Sahel zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05 - 0.15", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.014Z", + "last_change_date": "2022-03-14T07:54:55.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3416, + "fields": { + "EF_ID": 45896, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Sahel zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 - 2.5", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.097Z", + "last_change_date": "2022-03-14T07:54:55.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3417, + "fields": { + "EF_ID": 45897, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Sahel zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.184Z", + "last_change_date": "2022-03-14T07:54:55.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3418, + "fields": { + "EF_ID": 45898, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (North Sudan zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25 - 0.5", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.247Z", + "last_change_date": "2022-03-14T07:54:55.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3419, + "fields": { + "EF_ID": 45899, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (North Sudan zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0 - 4.0", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.314Z", + "last_change_date": "2022-03-14T07:54:55.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3420, + "fields": { + "EF_ID": 45900, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (North Sudan zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.397Z", + "last_change_date": "2022-03-14T07:54:55.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3421, + "fields": { + "EF_ID": 45901, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (South Sudan zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25 -0.50", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.611Z", + "last_change_date": "2022-03-14T07:54:55.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3422, + "fields": { + "EF_ID": 45902, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (South Sudan zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0 - 6.0", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.688Z", + "last_change_date": "2022-03-14T07:54:55.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3423, + "fields": { + "EF_ID": 45903, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (South Sudan zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.755Z", + "last_change_date": "2022-03-14T07:54:55.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3424, + "fields": { + "EF_ID": 45904, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Guinea zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6 - 0.8", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.822Z", + "last_change_date": "2022-03-14T07:54:55.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3425, + "fields": { + "EF_ID": 45905, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Guinea zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 - 8.0", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Menaut, J.C., L. Abbadie, F. Lavenu, Ph. Loudjani and A. Podaire (1991), “Biomass burning in West African savannas.” In: Global Biomass Burning, J. Levine (ed.), MIT Press, Cambridge, MA, U.S.A. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:55.929Z", + "last_change_date": "2022-03-14T07:54:55.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3426, + "fields": { + "EF_ID": 45906, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Guinea zone)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.90 - 1.0", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Hao, W.M., M.H. Liu and P.J. Crutzen (1990), “Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975-1980.” In: Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, J.G. Goldammer, (ed.). Springer-Verlag, Berlin, Germany, pp. 440-462.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.022Z", + "last_change_date": "2022-03-14T07:54:56.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3427, + "fields": { + "EF_ID": 45907, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 - 1.0", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.097Z", + "last_change_date": "2022-03-14T07:54:56.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3428, + "fields": { + "EF_ID": 45908, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.9 + or - 2.7", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.164Z", + "last_change_date": "2022-03-14T07:54:56.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3429, + "fields": { + "EF_ID": 45909, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74 + or - 0.04", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.255Z", + "last_change_date": "2022-03-14T07:54:56.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3430, + "fields": { + "EF_ID": 45910, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.347Z", + "last_change_date": "2022-03-14T07:54:56.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3431, + "fields": { + "EF_ID": 45911, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 - 1.0", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.430Z", + "last_change_date": "2022-03-14T07:54:56.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3432, + "fields": { + "EF_ID": 45912, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.1 + - 0.4", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.524Z", + "last_change_date": "2022-03-14T07:54:56.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3433, + "fields": { + "EF_ID": 45913, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88 + or - 0.02", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.605Z", + "last_change_date": "2022-03-14T07:54:56.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3434, + "fields": { + "EF_ID": 45914, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.680Z", + "last_change_date": "2022-03-14T07:54:56.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3435, + "fields": { + "EF_ID": 45915, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Dambo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 - 1.0", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.768Z", + "last_change_date": "2022-03-14T07:54:56.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3436, + "fields": { + "EF_ID": 45916, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Dambo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0 + or - 0.5", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.847Z", + "last_change_date": "2022-03-14T07:54:56.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3437, + "fields": { + "EF_ID": 45917, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Dambo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99 + or - 0.01", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:56.922Z", + "last_change_date": "2022-03-14T07:54:56.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3438, + "fields": { + "EF_ID": 45918, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Dambo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Hoffa, E.A., D.E. Ward, W.M. Hao, R.A. Susott and R.H. Wakimoto (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna, J. Geophys. Res. 104, pp. 13841 - 13853. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.011Z", + "last_change_date": "2022-03-14T07:54:57.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3439, + "fields": { + "EF_ID": 45919, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Fallow Chitemene)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.089Z", + "last_change_date": "2022-03-14T07:54:57.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3440, + "fields": { + "EF_ID": 45920, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Fallow Chitemene)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3 + or - 0.7", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.155Z", + "last_change_date": "2022-03-14T07:54:57.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3441, + "fields": { + "EF_ID": 45921, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Fallow Chitemene)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71 + or - 0.05", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.245Z", + "last_change_date": "2022-03-14T07:54:57.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3442, + "fields": { + "EF_ID": 45922, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Fallow Chitemene)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.322Z", + "last_change_date": "2022-03-14T07:54:57.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3443, + "fields": { + "EF_ID": 45923, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Total Savanna Burned Annually", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Woodland, South Africa)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25 - 0.5", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.388Z", + "last_change_date": "2022-03-14T07:54:57.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3444, + "fields": { + "EF_ID": 45924, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Density", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Woodland, South Africa)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.6 + or - 2.8", + "Unit": "t dm/ha", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.572Z", + "last_change_date": "2022-03-14T07:54:57.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3445, + "fields": { + "EF_ID": 45925, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Biomass Actually Burned", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Woodland, South Africa)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85 + or - 0.11", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 4-3, Sheet 1 of 3", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.655Z", + "last_change_date": "2022-03-14T07:54:57.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3446, + "fields": { + "EF_ID": 45926, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Woodland, South Africa)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "fraction", + "Equation": "Equation 1 on Page 4.78 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A1 on Page 4.85)", + "Technical_Reference": "Shea,R.W., B.W. Shea, J.B. Kauffman, D.E. Ward, C.I. Haskins and M.C. Scholes (1996) Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101, pp. 23551 -23568. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.730Z", + "last_change_date": "2022-03-14T07:54:57.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3447, + "fields": { + "EF_ID": 45982, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Emission Factor in relation to Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "Combustion Efficiency of 0.88", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.2", + "Unit": "kg/t dm", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A2 on Page 4.86)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.840Z", + "last_change_date": "2022-03-14T07:54:57.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3448, + "fields": { + "EF_ID": 45983, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Emission Factor in relation to Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "Combustion Efficiency of 0.90", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "kg/t dm", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A2 on Page 4.86)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:57.922Z", + "last_change_date": "2022-03-14T07:54:57.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3449, + "fields": { + "EF_ID": 45984, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Emission Factor in relation to Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "Combustion Efficiency of 0.91", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/t dm", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A2 on Page 4.86)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.005Z", + "last_change_date": "2022-03-14T07:54:58.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3450, + "fields": { + "EF_ID": 45985, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Emission Factor in relation to Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "Combustion Efficiency of 0.92", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "kg/t dm", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A2 on Page 4.86)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.089Z", + "last_change_date": "2022-03-14T07:54:58.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3451, + "fields": { + "EF_ID": 45986, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Emission Factor in relation to Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "Combustion Efficiency of 0.93", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "kg/t dm", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A2 on Page 4.86)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.172Z", + "last_change_date": "2022-03-14T07:54:58.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3452, + "fields": { + "EF_ID": 45987, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Emission Factor in relation to Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "Combustion Efficiency of 0.94", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "kg/t dm", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A2 on Page 4.86)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.275Z", + "last_change_date": "2022-03-14T07:54:58.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3453, + "fields": { + "EF_ID": 45988, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Emission Factor in relation to Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "Combustion Efficiency of 0.95", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/t dm", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A2 on Page 4.86)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.355Z", + "last_change_date": "2022-03-14T07:54:58.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3454, + "fields": { + "EF_ID": 45989, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Emission Factor in relation to Combustion Efficiency", + "Technology_Practices": "", + "Parameter_Conditions": "Combustion Efficiency of 0.96", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg/t dm", + "Equation": "Not applicable", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A2 on Page 4.86)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.430Z", + "last_change_date": "2022-03-14T07:54:58.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3455, + "fields": { + "EF_ID": 45990, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.065", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.505Z", + "last_change_date": "2022-03-14T07:54:58.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3456, + "fields": { + "EF_ID": 45991, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo limpo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1745", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.580Z", + "last_change_date": "2022-03-14T07:54:58.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3457, + "fields": { + "EF_ID": 45992, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo limpo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.678Z", + "last_change_date": "2022-03-14T07:54:58.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3458, + "fields": { + "EF_ID": 45993, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo limpo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.055", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.764Z", + "last_change_date": "2022-03-14T07:54:58.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3459, + "fields": { + "EF_ID": 45994, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sujo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1700", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.839Z", + "last_change_date": "2022-03-14T07:54:58.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3460, + "fields": { + "EF_ID": 45995, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sujo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:58.938Z", + "last_change_date": "2022-03-14T07:54:58.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3461, + "fields": { + "EF_ID": 45996, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sujo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.052", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.030Z", + "last_change_date": "2022-03-14T07:54:59.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3462, + "fields": { + "EF_ID": 45997, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo cerrado)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1698", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.105Z", + "last_change_date": "2022-03-14T07:54:59.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3463, + "fields": { + "EF_ID": 45998, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo cerrado)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.197Z", + "last_change_date": "2022-03-14T07:54:59.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3464, + "fields": { + "EF_ID": 45999, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo cerrado)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.074", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.289Z", + "last_change_date": "2022-03-14T07:54:59.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3465, + "fields": { + "EF_ID": 46000, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sensu stricto)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1722", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.364Z", + "last_change_date": "2022-03-14T07:54:59.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3466, + "fields": { + "EF_ID": 46001, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sensu stricto)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.02", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.458Z", + "last_change_date": "2022-03-14T07:54:59.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3467, + "fields": { + "EF_ID": 46002, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical America (Campo sensu stricto)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.079", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., R.A. Susott, J.B. Kauffman, R.E. Babbitt, D.L. Cummings, B. Dias, B.N. Holben, Y.J. Kaufman, R.A. Rasmussen and A.W. Setzer (1992) Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B Experiment, J. Geophys. Res., 97, pp. 14601 -14619, 1992. Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.555Z", + "last_change_date": "2022-03-14T07:54:59.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3468, + "fields": { + "EF_ID": 46003, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.639Z", + "last_change_date": "2022-03-14T07:54:59.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3469, + "fields": { + "EF_ID": 46004, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1680", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.742Z", + "last_change_date": "2022-03-14T07:54:59.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3470, + "fields": { + "EF_ID": 46005, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.42", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.822Z", + "last_change_date": "2022-03-14T07:54:59.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3471, + "fields": { + "EF_ID": 46006, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.099", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:54:59.905Z", + "last_change_date": "2022-03-14T07:54:59.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3472, + "fields": { + "EF_ID": 46007, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1649", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.018Z", + "last_change_date": "2022-03-14T07:55:00.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3473, + "fields": { + "EF_ID": 46008, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.097Z", + "last_change_date": "2022-03-14T07:55:00.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3474, + "fields": { + "EF_ID": 46009, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Miombo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.071", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.172Z", + "last_change_date": "2022-03-14T07:55:00.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3475, + "fields": { + "EF_ID": 46010, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Dambo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1732", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.279Z", + "last_change_date": "2022-03-14T07:55:00.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3476, + "fields": { + "EF_ID": 46011, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Dambo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.364Z", + "last_change_date": "2022-03-14T07:55:00.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3477, + "fields": { + "EF_ID": 46012, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Moist Dambo)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.431Z", + "last_change_date": "2022-03-14T07:55:00.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3478, + "fields": { + "EF_ID": 46013, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Fallow Chitemene)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1761", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.530Z", + "last_change_date": "2022-03-14T07:55:00.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3479, + "fields": { + "EF_ID": 46014, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Fallow Chitemene)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.647Z", + "last_change_date": "2022-03-14T07:55:00.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3480, + "fields": { + "EF_ID": 46015, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Fallow Chitemene)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.066", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Susott, R.A., G.J. Olbu, S.P. Baker, D.E. Ward, J.B. Kauffman and R.W Shea ( 1996) Carbon, hydrogen, nitrogen, and thermogravimetric analysis of tropical ecosystem biomass, in Biomass Burning and Global Change, edited by J.S Levine, pp. 249 - 259, MIT Press, Cambridge, Mass. Hao, Wei Min, D. Scharffe, J.M. Lobert and P.J. Crutzen (1991) Emissions of N2O from the burning of biomass in an experimental system, Geophys. Res. Lett., 18, pp. 999 - 1002. Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.714Z", + "last_change_date": "2022-03-14T07:55:00.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3481, + "fields": { + "EF_ID": 46016, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of CO2", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Woodland)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1699", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.798Z", + "last_change_date": "2022-03-14T07:55:00.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3482, + "fields": { + "EF_ID": 46017, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N/C Ratio in Biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Woodland)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98 + or - 0.11", + "Unit": "%", + "Equation": "Equation 4.A4 on Page 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.864Z", + "last_change_date": "2022-03-14T07:55:00.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3483, + "fields": { + "EF_ID": 46018, + "IPCC_Category": "3 - Agriculture, Forestry, and Other Land Use", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor of N2O", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Tropical Africa (Semi arid Woodland)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.075", + "Unit": "kg/t dm", + "Equation": "Equations 4.A2 and 4.A3 on Pages 4.86 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 4.A3 on Page 4.87)", + "Technical_Reference": "Ward, D.E., W.M. Hao, R.A. Susott, R.E. Babbitt, R.W. Shea, J.B. Kauffman and C.O. Justice (1996) Effect of fuel composition on combustion effiency and emission factors for African savanna ecosystems, J. Geophys. Res. 101, pp. 23569 - 23576.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.930Z", + "last_change_date": "2022-03-14T07:55:00.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3484, + "fields": { + "EF_ID": 56053, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Moist Forests; 0-20 years of age", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:00.997Z", + "last_change_date": "2022-03-14T07:55:00.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3485, + "fields": { + "EF_ID": 56054, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Moist Forests; 20-100 years of age", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.092Z", + "last_change_date": "2022-03-14T07:55:01.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3486, + "fields": { + "EF_ID": 56055, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Seasonal Forests; 0-20 years of age", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.172Z", + "last_change_date": "2022-03-14T07:55:01.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3487, + "fields": { + "EF_ID": 56056, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Seasonal Forests; 20-100 years of age", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.247Z", + "last_change_date": "2022-03-14T07:55:01.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3488, + "fields": { + "EF_ID": 56057, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 0-20 years of age", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.343Z", + "last_change_date": "2022-03-14T07:55:01.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3489, + "fields": { + "EF_ID": 56058, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 20-100 years of age", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.431Z", + "last_change_date": "2022-03-14T07:55:01.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3490, + "fields": { + "EF_ID": 56059, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Moist Forests; 0-20 years of age", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.505Z", + "last_change_date": "2022-03-14T07:55:01.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3491, + "fields": { + "EF_ID": 56060, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Moist Forests; 20-100 years of age", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.613Z", + "last_change_date": "2022-03-14T07:55:01.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3492, + "fields": { + "EF_ID": 56061, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Seasonal Forests; 0-20 years of age", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.697Z", + "last_change_date": "2022-03-14T07:55:01.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3493, + "fields": { + "EF_ID": 56062, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Seasonal Forests; 20-100 years of age", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.781Z", + "last_change_date": "2022-03-14T07:55:01.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3494, + "fields": { + "EF_ID": 56063, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 0-20 years of age", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.881Z", + "last_change_date": "2022-03-14T07:55:01.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3495, + "fields": { + "EF_ID": 56064, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 20-100 years of age", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Brown, S. and A.E. Lugo (1990) Effects of forest clearing and succession on the carbon and nitrogen content of soils in Puerto Rico and U.S. Virgin Islands. Plant and Soil 124: 53-64.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:01.964Z", + "last_change_date": "2022-03-14T07:55:01.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3496, + "fields": { + "EF_ID": 56065, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 0-20 years of age", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.039Z", + "last_change_date": "2022-03-14T07:55:02.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3497, + "fields": { + "EF_ID": 56066, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 0-20 years of age", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.132Z", + "last_change_date": "2022-03-14T07:55:02.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3498, + "fields": { + "EF_ID": 56067, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 0-20 years of age", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.214Z", + "last_change_date": "2022-03-14T07:55:02.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3499, + "fields": { + "EF_ID": 56068, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 0-20 years of age", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.307Z", + "last_change_date": "2022-03-14T07:55:02.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3500, + "fields": { + "EF_ID": 56069, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 0-20 years of age", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.389Z", + "last_change_date": "2022-03-14T07:55:02.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3501, + "fields": { + "EF_ID": 56070, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Tropical Dry Forests; 20-100 years of age", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Growth rates are derived by assuming that tropical forests regrow to 70% of undisturbed forest biomass in the first twenty years. All forests are assumed to regrow to 100% of undisturbed forest biomass in 100 years. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.484Z", + "last_change_date": "2022-03-14T07:55:02.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3502, + "fields": { + "EF_ID": 56071, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Moist Forests; 0-20 years of age", + "Regional_Conditions": "Temperate Forests: Evergreen", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Temperate and boreal forests actually require considerably longer than 100 years to reach the biomass density of a full mature system.There is also evidence that growth rates in temperate and boreal systems are more nearly linear over different age periods than is the case in tropical systems. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.564Z", + "last_change_date": "2022-03-14T07:55:02.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3503, + "fields": { + "EF_ID": 56072, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Moist Forests; 20-100 years of age", + "Regional_Conditions": "Temperate Forests: Evergreen", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Temperate and boreal forests actually require considerably longer than 100 years to reach the biomass density of a full mature system.There is also evidence that growth rates in temperate and boreal systems are more nearly linear over different age periods than is the case in tropical systems. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.651Z", + "last_change_date": "2022-03-14T07:55:02.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3504, + "fields": { + "EF_ID": 56073, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Seasonal Forests; 0-20 years of age", + "Regional_Conditions": "Temperate Forests: Deciduous", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Temperate and boreal forests actually require considerably longer than 100 years to reach the biomass density of a full mature system.There is also evidence that growth rates in temperate and boreal systems are more nearly linear over different age periods than is the case in tropical systems. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.730Z", + "last_change_date": "2022-03-14T07:55:02.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3505, + "fields": { + "EF_ID": 56074, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Seasonal Forests; 20-100 years of age", + "Regional_Conditions": "Temperate Forests: Deciduous", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Temperate and boreal forests actually require considerably longer than 100 years to reach the biomass density of a full mature system.There is also evidence that growth rates in temperate and boreal systems are more nearly linear over different age periods than is the case in tropical systems. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.819Z", + "last_change_date": "2022-03-14T07:55:02.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3506, + "fields": { + "EF_ID": 56075, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Dry Forests; 0-20 years of age", + "Regional_Conditions": "Boreal Forests", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Temperate and boreal forests actually require considerably longer than 100 years to reach the biomass density of a full mature system.There is also evidence that growth rates in temperate and boreal systems are more nearly linear over different age periods than is the case in tropical systems. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.897Z", + "last_change_date": "2022-03-14T07:55:02.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3507, + "fields": { + "EF_ID": 56076, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Annual Average Aboveground Biomass Uptake by Natural Regeneration", + "Technology_Practices": "Forests are naturally regrowing", + "Parameter_Conditions": "Dry Forests; 20-100 years of age", + "Regional_Conditions": "Boreal Forests", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "t dm/ha", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-2 on Page 5.20 of the Reference Manual)", + "Technical_Reference": "Houghton, R.A., J.E. Hobbie, J.M. Melilo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983), Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53(3):235-262. Houghton, R.A., R.D. Boone, J.R. Fruci, J.E. Hobbie, J.M. Melilo, C.A. Palm, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1987) The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of global flux. Tellus 39B: 122-129.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Temperate and boreal forests actually require considerably longer than 100 years to reach the biomass density of a full mature system.There is also evidence that growth rates in temperate and boreal systems are more nearly linear over different age periods than is the case in tropical systems. NOTE: ALL OF THESE REGIONAL AVERAGE GROWTH RATES SHOULD BE CONSIDERED INDICATIVE ONLY. IF FORESTS ARE A SIGNIFICANT PART OF A COUNTRY`S TOTAL GHG INVENTORY, LOCALLY AVAILABLE DATA OR EXPERT JUDGEMENT SHOULD BE SOUGHT TO DEVELOP VALUES REFLECTING CONDITIONS AND PRACTICES.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:02.994Z", + "last_change_date": "2022-03-14T07:55:02.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3508, + "fields": { + "EF_ID": 56077, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Acacia spp.", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.089Z", + "last_change_date": "2022-03-14T07:55:03.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3509, + "fields": { + "EF_ID": 56078, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Eucalyptus spp.", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.197Z", + "last_change_date": "2022-03-14T07:55:03.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3510, + "fields": { + "EF_ID": 56079, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Tectona grandis", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.289Z", + "last_change_date": "2022-03-14T07:55:03.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3511, + "fields": { + "EF_ID": 56080, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Pinus spp.", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.398Z", + "last_change_date": "2022-03-14T07:55:03.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3512, + "fields": { + "EF_ID": 56081, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Pinus caribaea", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.481Z", + "last_change_date": "2022-03-14T07:55:03.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3513, + "fields": { + "EF_ID": 56082, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Mixed Hardwoods", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.8", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.591Z", + "last_change_date": "2022-03-14T07:55:03.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3514, + "fields": { + "EF_ID": 56083, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Mixed Fast-Growing Hardwoods", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.681Z", + "last_change_date": "2022-03-14T07:55:03.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3515, + "fields": { + "EF_ID": 56084, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Mixed Softwood", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.775Z", + "last_change_date": "2022-03-14T07:55:03.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3516, + "fields": { + "EF_ID": 56085, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Douglas Fir", + "Regional_Conditions": "Temperate Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.856Z", + "last_change_date": "2022-03-14T07:55:03.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3517, + "fields": { + "EF_ID": 56086, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Accumulation of Dry Matter as Biomass in Plantations", + "Technology_Practices": "Plantation type", + "Parameter_Conditions": "Loblolly pine", + "Regional_Conditions": "Temperate Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 1 on page 5.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 5-1, Sheet 1 of 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-3 on Page 5.21 of the Reference Manual)", + "Technical_Reference": "Brown, S., A.E. Lugo and J. Chapman (1986) Biomass of tropical tree plantations and its implications for the global carbon budget. Canadian Journal of Forest Research 16: 390-394. Farnum P., R. Timmis and J. Kulp (1983) Biotechnology of forest yield. Science 219: 694-702.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: These are average accumulation rates over expected plantation lifetimes: actual rates will vary depending on the age of the plantation. The data for the temperate species are based on measurements in the United States. Data on other species, and from other regions, should be supplied by individual countries (as available). Additional temperate estimates by species and by country can be derived from data in ECE/FAO (1992), assuming that country averages of net annual increment for managed and unmanaged stands are reasonable approximations for plantations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:03.950Z", + "last_change_date": "2022-03-14T07:55:03.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3518, + "fields": { + "EF_ID": 56087, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Wet; Annual Rainfall is greater than 2000 mm/yr)", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.032Z", + "last_change_date": "2022-03-14T07:55:04.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3519, + "fields": { + "EF_ID": 56088, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Moist with short dry season; Annual rainfall is between 1000 and 2000 mm/yr)", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.152Z", + "last_change_date": "2022-03-14T07:55:04.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3520, + "fields": { + "EF_ID": 56089, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Moist with long dry season; Annual rainfall is between 1000 and 2000 mm/yr)", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-90", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "P. Frost (1996). Personal Communication", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.232Z", + "last_change_date": "2022-03-14T07:55:04.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3521, + "fields": { + "EF_ID": 56090, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Dry; Annual Rainfall is less than 1000 mm/yr)", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20-55", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "P. Frost (1996). Personal Communication", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.319Z", + "last_change_date": "2022-03-14T07:55:04.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3522, + "fields": { + "EF_ID": 56091, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Montane Moist; Annual Rainfall is greater than 1000 mm/yr)", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.399Z", + "last_change_date": "2022-03-14T07:55:04.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3523, + "fields": { + "EF_ID": 56092, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Montane Dry; Annual Rainfall is less than 1000 mm/yr)", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.466Z", + "last_change_date": "2022-03-14T07:55:04.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3524, + "fields": { + "EF_ID": 56093, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Wet; Annual Rainfall is greater than 2000 mm/yr)", + "Regional_Conditions": "Asia (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.579Z", + "last_change_date": "2022-03-14T07:55:04.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3525, + "fields": { + "EF_ID": 56094, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Moist with short dry season; Annual rainfall is between 1000 and 2000 mm/yr)", + "Regional_Conditions": "Asia (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "185", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.657Z", + "last_change_date": "2022-03-14T07:55:04.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3526, + "fields": { + "EF_ID": 56095, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest: (Moist with long dry season; Annual rainfall is between 1000 and 2000 mm/yr)", + "Regional_Conditions": "Asia (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.772Z", + "last_change_date": "2022-03-14T07:55:04.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3527, + "fields": { + "EF_ID": 56096, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Dry; Annual Rainfall is less than 1000 mm/yr)", + "Regional_Conditions": "Asia (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.857Z", + "last_change_date": "2022-03-14T07:55:04.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3528, + "fields": { + "EF_ID": 56097, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest:(Montane Moist; Annual Rainfall is greater than 1000 mm/yr)", + "Regional_Conditions": "Asia (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:04.966Z", + "last_change_date": "2022-03-14T07:55:04.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3529, + "fields": { + "EF_ID": 56098, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest: (Wet; Annual Rainfall is greater than 2000 mm/yr)", + "Regional_Conditions": "Asia (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.041Z", + "last_change_date": "2022-03-14T07:55:05.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3530, + "fields": { + "EF_ID": 56099, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Moist with short dry season; Annual rainfall is between 1000 and 2000 mm/yr)", + "Regional_Conditions": "Asia (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.141Z", + "last_change_date": "2022-03-14T07:55:05.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3531, + "fields": { + "EF_ID": 56100, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Montane Moist; Annual Rainfall is greater than 1000 mm/yr)", + "Regional_Conditions": "Asia (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "255", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.216Z", + "last_change_date": "2022-03-14T07:55:05.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3532, + "fields": { + "EF_ID": 56101, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Wet; Annual Rainfall is greater than 2000 mm/yr)", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "295", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.317Z", + "last_change_date": "2022-03-14T07:55:05.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3533, + "fields": { + "EF_ID": 56102, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Moist with long dry season; Annual rainfall is between 1000 and 2000 mm/yr)", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.391Z", + "last_change_date": "2022-03-14T07:55:05.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3534, + "fields": { + "EF_ID": 56103, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Dry; Annual Rainfall is less than 1000 mm/yr)", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.493Z", + "last_change_date": "2022-03-14T07:55:05.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3535, + "fields": { + "EF_ID": 56104, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Montane Moist; Annual Rainfall is greater than 1000 mm/yr)", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.566Z", + "last_change_date": "2022-03-14T07:55:05.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3536, + "fields": { + "EF_ID": 56105, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Montane Dry; Annual Rainfall is less than 1000 mm/yr)", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.669Z", + "last_change_date": "2022-03-14T07:55:05.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3537, + "fields": { + "EF_ID": 56108, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Moist with long dry season; Annual rainfall is between 1000 and 2000 mm/yr)", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-90", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.757Z", + "last_change_date": "2022-03-14T07:55:05.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3538, + "fields": { + "EF_ID": 56109, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Aboveground Biomass Estimates for Tropical Forests by Climatic Zone", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Forest (Dry; Annual Rainfall is less than 1000 mm/yr)", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20-55", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-4 on Page 5.26 of the Reference Manual)", + "Technical_Reference": "Iverson, L.R., S. Brown, A. Prasad, H. Mitasova, A.J.R. Gillespie and A.E. Lugo (1994). Use of GIS for estimating potential and actual biomass for continental South and Southeast Asia. In: Effects of Land Use Change on Atmospheric CO2 Concentrations: Southeast Asia as a Case Study (ed. V. Dale), pp. 67-116. Springer Verlag. New York, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Multi-date inventories were brought to a common year of about 1980. The estimates do not distinguish between primary or secondary forests but represents values averaged over the whole forested area in a given climatic zone in a given tropical region. These average values can include forests in all succesional states, from mature or undisturbed to young secondary. REGIONAL DEFAULT ESTIMATES FOR BIOMASS DENSITY MAY BE USED AS AN INITIAL STARTING POINT OR FOR COMPARISON PURPOSES. HOWEVER, IN ANY COUNTRY FOR WHICH FOREST CONVERSION OR REGROWTH IS A SIGNIFICANT SOURCE OR SINK, LOCAL EXPERTS AND MEASUREMENTS SHOULD BE CONSULTED TO DEVELOP MORE ACCURATE VALUES REFLECTING LOCAL CONDITIONS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.861Z", + "last_change_date": "2022-03-14T07:55:05.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3539, + "fields": { + "EF_ID": 56187, + "IPCC_Category": "3.C.1.a - Burning in Forest Land, 3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is gallery forest; climatic zone is moist-dry season", + "Regional_Conditions": "Africa; Gambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:05.941Z", + "last_change_date": "2022-03-14T07:55:05.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3540, + "fields": { + "EF_ID": 56188, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed woodland; climatic zone is dry", + "Regional_Conditions": "Africa; Gambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.038Z", + "last_change_date": "2022-03-14T07:55:06.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3541, + "fields": { + "EF_ID": 56189, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is open woodland; climatic zone is dry", + "Regional_Conditions": "Africa; Gambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.116Z", + "last_change_date": "2022-03-14T07:55:06.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3542, + "fields": { + "EF_ID": 56190, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is tree savanna; climatic zone is dry", + "Regional_Conditions": "Africa; Gambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.199Z", + "last_change_date": "2022-03-14T07:55:06.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3543, + "fields": { + "EF_ID": 56191, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed forest; climatic zone is moist-short dry season", + "Regional_Conditions": "Africa; Ghana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "395", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.306Z", + "last_change_date": "2022-03-14T07:55:06.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3544, + "fields": { + "EF_ID": 56192, + "IPCC_Category": "3.C.1.a - Burning in Forest Land, 3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mixed (closed) and open (secondary); climatic zone is moist-long and shortdry", + "Regional_Conditions": "Africa; Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "135", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.382Z", + "last_change_date": "2022-03-14T07:55:06.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3545, + "fields": { + "EF_ID": 56193, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is dense forest; climatic zone is moist-long dry", + "Regional_Conditions": "Africa; Mozambique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.457Z", + "last_change_date": "2022-03-14T07:55:06.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3546, + "fields": { + "EF_ID": 56194, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is dense forest; climatic zone is moist-long dry", + "Regional_Conditions": "Africa; Mozambique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.567Z", + "last_change_date": "2022-03-14T07:55:06.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3547, + "fields": { + "EF_ID": 56195, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is dense forest; climatic zone is dry-long dry season", + "Regional_Conditions": "Africa; Mozambique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.649Z", + "last_change_date": "2022-03-14T07:55:06.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3548, + "fields": { + "EF_ID": 56196, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is woodland-miombo; climatic zone is moist-long dry season", + "Regional_Conditions": "Africa; Zambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.716Z", + "last_change_date": "2022-03-14T07:55:06.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3549, + "fields": { + "EF_ID": 56197, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is woodland-miombo; climatic zone is dry-long dry season", + "Regional_Conditions": "Africa; Zambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.810Z", + "last_change_date": "2022-03-14T07:55:06.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3550, + "fields": { + "EF_ID": 56198, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is woodland-miombo; climatic zone is dry-long dry season", + "Regional_Conditions": "Africa; Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.882Z", + "last_change_date": "2022-03-14T07:55:06.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3551, + "fields": { + "EF_ID": 56199, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed-large crowns; climatic zone is very moist", + "Regional_Conditions": "Asia; Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "206-210", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:06.941Z", + "last_change_date": "2022-03-14T07:55:06.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3552, + "fields": { + "EF_ID": 56200, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed-small crowns; climatic zone is very moist", + "Regional_Conditions": "Asia; Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.044Z", + "last_change_date": "2022-03-14T07:55:07.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3553, + "fields": { + "EF_ID": 56201, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is disturbed closed; climatic zone is very moist", + "Regional_Conditions": "Asia; Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.124Z", + "last_change_date": "2022-03-14T07:55:07.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3554, + "fields": { + "EF_ID": 56202, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is disturbed open; climatic zone is very moist", + "Regional_Conditions": "Asia; Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.183Z", + "last_change_date": "2022-03-14T07:55:07.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3555, + "fields": { + "EF_ID": 56203, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is dense; climatic zone is moist-short dry", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "295", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.270Z", + "last_change_date": "2022-03-14T07:55:07.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3556, + "fields": { + "EF_ID": 56204, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is semi-dense; climatic zone is moist-short dry", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "370", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.349Z", + "last_change_date": "2022-03-14T07:55:07.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3557, + "fields": { + "EF_ID": 56205, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is secondary; climatic zone is moist-short dry", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.414Z", + "last_change_date": "2022-03-14T07:55:07.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3558, + "fields": { + "EF_ID": 56206, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is open; climatic zone is moist-short dry", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.505Z", + "last_change_date": "2022-03-14T07:55:07.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3559, + "fields": { + "EF_ID": 56207, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is open; climatic zone is moist-long dry", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.583Z", + "last_change_date": "2022-03-14T07:55:07.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3560, + "fields": { + "EF_ID": 56208, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is well to poorly stocked; climatic zone is moist-long dry", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100-155", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.647Z", + "last_change_date": "2022-03-14T07:55:07.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3561, + "fields": { + "EF_ID": 56209, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is deciduous; climatic zone is moist-long dry", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.731Z", + "last_change_date": "2022-03-14T07:55:07.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3562, + "fields": { + "EF_ID": 56210, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is high to low volume; climatic zone is dry", + "Regional_Conditions": "Asia; India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44-81", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.806Z", + "last_change_date": "2022-03-14T07:55:07.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3563, + "fields": { + "EF_ID": 56211, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is forest fallow; climatic zone is dry", + "Regional_Conditions": "Asia; India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.889Z", + "last_change_date": "2022-03-14T07:55:07.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3564, + "fields": { + "EF_ID": 56212, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is superior/moderate hill; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "245-310", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:07.984Z", + "last_change_date": "2022-03-14T07:55:07.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3565, + "fields": { + "EF_ID": 56213, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is poor hill; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.072Z", + "last_change_date": "2022-03-14T07:55:08.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3566, + "fields": { + "EF_ID": 56214, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is upper hill; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.147Z", + "last_change_date": "2022-03-14T07:55:08.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3567, + "fields": { + "EF_ID": 56215, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is disturbed hill; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.244Z", + "last_change_date": "2022-03-14T07:55:08.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3568, + "fields": { + "EF_ID": 56216, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is logged hill; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.322Z", + "last_change_date": "2022-03-14T07:55:08.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3569, + "fields": { + "EF_ID": 56217, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is forest fallow; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.389Z", + "last_change_date": "2022-03-14T07:55:08.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3570, + "fields": { + "EF_ID": 56218, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is freshwater swamp; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.487Z", + "last_change_date": "2022-03-14T07:55:08.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3571, + "fields": { + "EF_ID": 56219, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is disturbed freshwater swamp; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "285", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.564Z", + "last_change_date": "2022-03-14T07:55:08.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3572, + "fields": { + "EF_ID": 56220, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is logged freshwater swamp; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Peninsular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "185", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.630Z", + "last_change_date": "2022-03-14T07:55:08.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3573, + "fields": { + "EF_ID": 56221, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mixed dipterocarps-dense stocking, flat to undulating terrain; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Sarawak)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "325-385", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.730Z", + "last_change_date": "2022-03-14T07:55:08.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3574, + "fields": { + "EF_ID": 56222, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mixed dipterocarps-dense stocking, mountainous; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Sarawak)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "330-405", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.806Z", + "last_change_date": "2022-03-14T07:55:08.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3575, + "fields": { + "EF_ID": 56223, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mixed dipterocarps-medium stocking, flat to mountainous; climatic zone is very moist", + "Regional_Conditions": "Asia; Malaysia (Sarawak)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "280-330", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.872Z", + "last_change_date": "2022-03-14T07:55:08.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3576, + "fields": { + "EF_ID": 56224, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is evergreen; climatic zone is moist-short dry", + "Regional_Conditions": "Asia; Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-200", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:08.981Z", + "last_change_date": "2022-03-14T07:55:08.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3577, + "fields": { + "EF_ID": 56225, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mixed deciduous; climatic zone is moist-short dry", + "Regional_Conditions": "Asia; Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45-135", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.056Z", + "last_change_date": "2022-03-14T07:55:09.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3578, + "fields": { + "EF_ID": 56226, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is Indaing forest; climatic zone is moist-short dry", + "Regional_Conditions": "Asia; Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-65", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.139Z", + "last_change_date": "2022-03-14T07:55:09.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3579, + "fields": { + "EF_ID": 56227, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is old-growth dipterocarp; climatic zone is very moist", + "Regional_Conditions": "Asia; Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "370-520", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.232Z", + "last_change_date": "2022-03-14T07:55:09.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3580, + "fields": { + "EF_ID": 56228, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is logged dipterocarp; climatic zone is very moist", + "Regional_Conditions": "Asia; Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300-370", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.322Z", + "last_change_date": "2022-03-14T07:55:09.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3581, + "fields": { + "EF_ID": 56229, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is evergreen-high yield; climatic zone is very moist", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "435-530", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.389Z", + "last_change_date": "2022-03-14T07:55:09.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3582, + "fields": { + "EF_ID": 56230, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is evergreen-medium yield; climatic zone is very moist", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "365-470", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.483Z", + "last_change_date": "2022-03-14T07:55:09.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3583, + "fields": { + "EF_ID": 56231, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is evergreen-low yield; climatic zone is very moist", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190-400", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.572Z", + "last_change_date": "2022-03-14T07:55:09.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3584, + "fields": { + "EF_ID": 56232, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is evergreen-logged; climatic zone is very moist", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "255", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.647Z", + "last_change_date": "2022-03-14T07:55:09.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3585, + "fields": { + "EF_ID": 56233, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is secondary; climatic zone is very moist", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "280", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.753Z", + "last_change_date": "2022-03-14T07:55:09.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3586, + "fields": { + "EF_ID": 56234, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is degraded dry evergreen; climatic zone is moist-long dry", + "Regional_Conditions": "Asia; Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S., L.R. Iverson, A. Prasad and D. Liu (1993) Geographical Distribution of Carbon in Biomass and Soils of Tropical Asian Forests. Geocarto International, 4:45-59.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.831Z", + "last_change_date": "2022-03-14T07:55:09.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3587, + "fields": { + "EF_ID": 56235, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "orest type is closed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Bolivia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "230", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:09.899Z", + "last_change_date": "2022-03-14T07:55:09.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3588, + "fields": { + "EF_ID": 56243, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is logged forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.004Z", + "last_change_date": "2022-03-14T07:55:10.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3589, + "fields": { + "EF_ID": 56244, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is wallaba forest-seasonal; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "145", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.081Z", + "last_change_date": "2022-03-14T07:55:10.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3590, + "fields": { + "EF_ID": 56245, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mixed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.149Z", + "last_change_date": "2022-03-14T07:55:10.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3591, + "fields": { + "EF_ID": 56246, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is low mixed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "192", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.216Z", + "last_change_date": "2022-03-14T07:55:10.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3592, + "fields": { + "EF_ID": 56247, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is liana forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "125", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.314Z", + "last_change_date": "2022-03-14T07:55:10.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3593, + "fields": { + "EF_ID": 56248, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is wallaba forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "148", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.397Z", + "last_change_date": "2022-03-14T07:55:10.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3594, + "fields": { + "EF_ID": 56249, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is wallaba forest on white sands; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "405", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.466Z", + "last_change_date": "2022-03-14T07:55:10.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3595, + "fields": { + "EF_ID": 56250, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is Orifino forest; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.533Z", + "last_change_date": "2022-03-14T07:55:10.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3596, + "fields": { + "EF_ID": 56251, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is lowland mixed; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "235", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.624Z", + "last_change_date": "2022-03-14T07:55:10.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3597, + "fields": { + "EF_ID": 56252, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mature forest; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.700Z", + "last_change_date": "2022-03-14T07:55:10.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3598, + "fields": { + "EF_ID": 56253, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is secondary; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "183", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.766Z", + "last_change_date": "2022-03-14T07:55:10.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3599, + "fields": { + "EF_ID": 56254, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is high density-mixed; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "239-366", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.841Z", + "last_change_date": "2022-03-14T07:55:10.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3600, + "fields": { + "EF_ID": 56255, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is low density-mixed; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "169-245", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:10.942Z", + "last_change_date": "2022-03-14T07:55:10.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3601, + "fields": { + "EF_ID": 56256, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is Campnosperma forest -high density; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "860", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.031Z", + "last_change_date": "2022-03-14T07:55:11.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3602, + "fields": { + "EF_ID": 56257, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is Campnosperma forest -low density; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "470", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.108Z", + "last_change_date": "2022-03-14T07:55:11.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3603, + "fields": { + "EF_ID": 56258, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is high density-mixed; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "186-252", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.183Z", + "last_change_date": "2022-03-14T07:55:11.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3604, + "fields": { + "EF_ID": 56259, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is low density-mixed; climatic zone is wet/very moist", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "118-143", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.286Z", + "last_change_date": "2022-03-14T07:55:11.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3605, + "fields": { + "EF_ID": 56260, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is primary; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "210", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.364Z", + "last_change_date": "2022-03-14T07:55:11.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3606, + "fields": { + "EF_ID": 56261, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is lightly logged; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "192", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.441Z", + "last_change_date": "2022-03-14T07:55:11.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3607, + "fields": { + "EF_ID": 56262, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is heavily logged; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "125", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.516Z", + "last_change_date": "2022-03-14T07:55:11.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3608, + "fields": { + "EF_ID": 56263, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is late secondary; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.614Z", + "last_change_date": "2022-03-14T07:55:11.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3609, + "fields": { + "EF_ID": 56264, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is young secondary; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.705Z", + "last_change_date": "2022-03-14T07:55:11.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3610, + "fields": { + "EF_ID": 56265, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is flooded secondary; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "195", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.775Z", + "last_change_date": "2022-03-14T07:55:11.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3611, + "fields": { + "EF_ID": 56266, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is low forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "155", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.841Z", + "last_change_date": "2022-03-14T07:55:11.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3612, + "fields": { + "EF_ID": 56267, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is upland forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "255", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:11.948Z", + "last_change_date": "2022-03-14T07:55:11.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3613, + "fields": { + "EF_ID": 56268, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is small crown-upland; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.022Z", + "last_change_date": "2022-03-14T07:55:12.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3614, + "fields": { + "EF_ID": 56269, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is savanna forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "195", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.083Z", + "last_change_date": "2022-03-14T07:55:12.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3615, + "fields": { + "EF_ID": 56270, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is riparian forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "217", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.141Z", + "last_change_date": "2022-03-14T07:55:12.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3616, + "fields": { + "EF_ID": 56271, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is liana forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.225Z", + "last_change_date": "2022-03-14T07:55:12.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3617, + "fields": { + "EF_ID": 56272, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is wallaba forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.314Z", + "last_change_date": "2022-03-14T07:55:12.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3618, + "fields": { + "EF_ID": 56273, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is semi-deciduous-dry; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.392Z", + "last_change_date": "2022-03-14T07:55:12.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3619, + "fields": { + "EF_ID": 56274, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "230", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.458Z", + "last_change_date": "2022-03-14T07:55:12.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3620, + "fields": { + "EF_ID": 56275, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed forest; climatic zone is dry", + "Regional_Conditions": "Africa; Benin", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.552Z", + "last_change_date": "2022-03-14T07:55:12.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3621, + "fields": { + "EF_ID": 56276, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is tree savanna; climatic zone is dry", + "Regional_Conditions": "Africa; Benin", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.639Z", + "last_change_date": "2022-03-14T07:55:12.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3622, + "fields": { + "EF_ID": 56277, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mixed tree savanna; climatic zone is dry-long dry season", + "Regional_Conditions": "Africa; Botswana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.708Z", + "last_change_date": "2022-03-14T07:55:12.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3623, + "fields": { + "EF_ID": 56278, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is degraded tree savanna; climatic zone is dry-long dry season", + "Regional_Conditions": "Africa; Burkina Faso", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.813Z", + "last_change_date": "2022-03-14T07:55:12.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3624, + "fields": { + "EF_ID": 56279, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is primary; climatic zone is very moist", + "Regional_Conditions": "Africa; Cameroon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. and G. Gaston (1995) Use of forest inventories and geographic information systems to estimate biomass density of tropical forest: application to tropical Africa. Environmental Monitoring and Assessment 38: 157-168.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.897Z", + "last_change_date": "2022-03-14T07:55:12.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3625, + "fields": { + "EF_ID": 56329, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "315", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:12.975Z", + "last_change_date": "2022-03-14T07:55:12.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3626, + "fields": { + "EF_ID": 56330, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Ecuador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.080Z", + "last_change_date": "2022-03-14T07:55:13.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3627, + "fields": { + "EF_ID": 56331, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; French Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "309", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.158Z", + "last_change_date": "2022-03-14T07:55:13.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3628, + "fields": { + "EF_ID": 56332, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is riparian forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; French Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.230Z", + "last_change_date": "2022-03-14T07:55:13.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3629, + "fields": { + "EF_ID": 56333, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is savanna forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; French Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.292Z", + "last_change_date": "2022-03-14T07:55:13.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3630, + "fields": { + "EF_ID": 56334, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guatemala", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "242", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.382Z", + "last_change_date": "2022-03-14T07:55:13.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3631, + "fields": { + "EF_ID": 56335, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is closed forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "254", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.464Z", + "last_change_date": "2022-03-14T07:55:13.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3632, + "fields": { + "EF_ID": 56338, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Estimates for Various Tropical Forest Types by Country", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type is mixed forest forest; climatic zone is wet/very moist", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-5 on Pages 5.27 to 5.29 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1995) Personal Communication.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All biomass estimates were derived from either reliable forest inventory data for subnational to national forest areas (sources of inventories and details of methods used to convert to biomass are given in Brown (1996) or from direct measurements ( for Botswana, Zambia, and Zimbabwe derivations were based on P. Frost (1996) personal communication)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.533Z", + "last_change_date": "2022-03-14T07:55:13.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3633, + "fields": { + "EF_ID": 56647, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dry Matter in Aboveground Biomass in Temperate and Boreal Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperate forest; coniferous", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220-295", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-6 on Page 5.30 of the Reference Manual)", + "Technical_Reference": "Whittaker,R.H. and G.E. Likens (1973) Carbon in the biota. In: Carbon and the Biosphere, G.M. Woodwell, and E.V. Pecan (eds.), US Atomic Energy Commission, Symposium Series 30. National Technical Information Service, Springfield, VA, USA, pp. 281-302. Houghton, R.A., J.E. Hobbie, J.M. Melillo, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983) , Changes in the carbon content of terrestrial biota and soil between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53 (3): 235-262.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For temperate forest, total biomass estimates were converted to aboveground biomass by multiplying 0.83 (Leith and Whittaker, 1975). Alternative estimates of aboveground biomass per hectare, by country, for coniferous species and non-coniferous species, can be derived using statistics provided in ECE/FAO (1992). Most temperate and boreal countries have their own national estimates of biomass densities for forests which should be used. These default values are very rough estimates and are provided for comparison only.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.600Z", + "last_change_date": "2022-03-14T07:55:13.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3634, + "fields": { + "EF_ID": 56648, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dry Matter in Aboveground Biomass in Temperate and Boreal Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperate forest; broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175-250", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-6 on Page 5.30 of the Reference Manual)", + "Technical_Reference": "Whittaker,R.H. and G.E. Likens (1973) Carbon in the biota. In: Carbon and the Biosphere, G.M. Woodwell, and E.V. Pecan (eds.), US Atomic Energy Commission, Symposium Series 30. National Technical Information Service, Springfield, VA, USA, pp. 281-302. Houghton, R.A., J.E. Hobbie, J.M. Melillo, B.J. Peterson, G.R. Shaver and G.M. Woodwell (1983) , Changes in the carbon content of terrestrial biota and soil between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53 (3): 235-262.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For temperate forest, total biomass estimates were converted to aboveground biomass by multiplying 0.83 (Leith and Whittaker, 1975). Alternative estimates of aboveground biomass per hectare, by country, for coniferous species and non-coniferous species, can be derived using statistics provided in ECE/FAO (1992). Most temperate and boreal countries have their own national estimates of biomass densities for forests which should be used. These default values are very rough estimates and are provided for comparison only.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.693Z", + "last_change_date": "2022-03-14T07:55:13.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3635, + "fields": { + "EF_ID": 56649, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dry Matter in Aboveground Biomass in Temperate and Boreal Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal forests; mixed broadleaf/coniferous", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-87", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-6 on Page 5.30 of the Reference Manual)", + "Technical_Reference": "Bazilevich, N.I. (1993) Biological productivity of the northern Eurasian ecosystems (in Russian). Nauka, Moscow, Russia. Finnish Forest Research Institute (1995) Yearbook of Forest Statistic. SVT Agriculture and Forestry 5, Helsinki, Finland. Kokorin, A.O. and I.M. Nazarov (1995a) Specific requirements to methodology for estimating of CO2 fluxes in boreal and temperate forests. Quarterly J. Hungarian Meteorological Service Idojoras 99:3-4, 227-234. Isaev, A.S., G.N. Korovin, A.I. Utkin, A.A. Prjazhnikov and D.G. Zamolodchikov (1993) The estimation of the carbon content and annual deposition in phytomass of Russian forest ecosystems (in Russian) Lesovedenie 5:3-10.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For temperate forest, total biomass estimates were converted to aboveground biomass by multiplying 0.83 (Leith and Whittaker, 1975). Alternative estimates of aboveground biomass per hectare, by country, for coniferous species and non-coniferous species, can be derived using statistics provided in ECE/FAO (1992). Most temperate and boreal countries have their own national estimates of biomass densities for forests which should be used. These default values are very rough estimates and are provided for comparison only.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.772Z", + "last_change_date": "2022-03-14T07:55:13.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3636, + "fields": { + "EF_ID": 56650, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dry Matter in Aboveground Biomass in Temperate and Boreal Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal forests; coniferous", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22-113", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-6 on Page 5.30 of the Reference Manual)", + "Technical_Reference": "Bazilevich, N.I. (1993) Biological productivity of the northern Eurasian ecosystems (in Russian). Nauka, Moscow, Russia. Finnish Forest Research Institute (1995) Yearbook of Forest Statistic. SVT Agriculture and Forestry 5, Helsinki, Finland. Kokorin, A.O. and I.M. Nazarov (1995a) Specific requirements to methodology for estimating of CO2 fluxes in boreal and temperate forests. Quarterly J. Hungarian Meteorological Service Idojoras 99:3-4, 227-234. Isaev, A.S., G.N. Korovin, A.I. Utkin, A.A. Prjazhnikov and D.G. Zamolodchikov (1993) The estimation of the carbon content and annual deposition in phytomass of Russian forest ecosystems (in Russian) Lesovedenie 5:3-10.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For temperate forest, total biomass estimates were converted to aboveground biomass by multiplying 0.83 (Leith and Whittaker, 1975). Alternative estimates of aboveground biomass per hectare, by country, for coniferous species and non-coniferous species, can be derived using statistics provided in ECE/FAO (1992). Most temperate and boreal countries have their own national estimates of biomass densities for forests which should be used. These default values are very rough estimates and are provided for comparison only.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.861Z", + "last_change_date": "2022-03-14T07:55:13.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3637, + "fields": { + "EF_ID": 56651, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Dry Matter in Aboveground Biomass in Temperate and Boreal Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal forests; forest-tundra", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8-20", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-2, Sheet 1 of 5", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-6 on Page 5.30 of the Reference Manual)", + "Technical_Reference": "Bazilevich, N.I. (1993) Biological productivity of the northern Eurasian ecosystems (in Russian). Nauka, Moscow, Russia. Finnish Forest Research Institute (1995) Yearbook of Forest Statistic. SVT Agriculture and Forestry 5, Helsinki, Finland. Kokorin, A.O. and I.M. Nazarov (1995a) Specific requirements to methodology for estimating of CO2 fluxes in boreal and temperate forests. Quarterly J. Hungarian Meteorological Service Idojoras 99:3-4, 227-234. Isaev, A.S., G.N. Korovin, A.I. Utkin, A.A. Prjazhnikov and D.G. Zamolodchikov (1993) The estimation of the carbon content and annual deposition in phytomass of Russian forest ecosystems (in Russian) Lesovedenie 5:3-10.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For temperate forest, total biomass estimates were converted to aboveground biomass by multiplying 0.83 (Leith and Whittaker, 1975). Alternative estimates of aboveground biomass per hectare, by country, for coniferous species and non-coniferous species, can be derived using statistics provided in ECE/FAO (1992). Most temperate and boreal countries have their own national estimates of biomass densities for forests which should be used. These default values are very rough estimates and are provided for comparison only.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:13.955Z", + "last_change_date": "2022-03-14T07:55:13.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3638, + "fields": { + "EF_ID": 56672, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emissions Ratios for Open Burning of Cleared Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012 (0.009-0.015)", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-3, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-7 on Page 5.33 of the Reference Manual)", + "Technical_Reference": "Delams, R. (1993) An overview of present knowledge on methane emissions from biomass burning. In: Proceedings of an International IPCC Workshop: Methane and Nitrous Oxides, Methods in National Emissions Inventories and Options for Control, 3-5 February 1993, Amersfoort, NL. A.R. van Amstel (ed.) RIVM Report No. 481507003, Bilthoven, The Netherlands, July.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: ratios for carbon compounds are mass of carbon released (in units of C) relative to mass of total carbon released from burning.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.078Z", + "last_change_date": "2022-03-14T07:55:14.078Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3639, + "fields": { + "EF_ID": 56673, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emissions Ratios for Open Burning of Cleared Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (0.04-0.08)", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-3, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-7 on Page 5.33 of the Reference Manual)", + "Technical_Reference": "Lacaux, J.P., H. Cachier and R. Delmas (1993) Biomass burning in Africa: an overview of its impact on atmospheric chemistry. In: Fire in the Environment; The Ecological, Atmospheric and Climatic Importance of Vegetation Fires. P.J. Crutzen and J.G. Goldammer (eds.), J. Wiley & Sons Ltd.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: ratios for carbon compounds are mass of carbon released (in units of C) relative to mass of total carbon released from burning.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.150Z", + "last_change_date": "2022-03-14T07:55:14.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3640, + "fields": { + "EF_ID": 56674, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emissions Ratios for Open Burning of Cleared Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007 (0.005-0.009)", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-3, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-7 on Page 5.33 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J. and M.O. Andreae (1990) Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669-1678.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: ratios for nitrogen compounds are expressed as the ratios of emissions (in units of N) relative to total nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.222Z", + "last_change_date": "2022-03-14T07:55:14.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3641, + "fields": { + "EF_ID": 56675, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emissions Ratios for Open Burning of Cleared Forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.121 (0.094-0.148)", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-3, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-7 on Page 5.33 of the Reference Manual)", + "Technical_Reference": "Crutzen, P.J. and M.O. Andreae (1990) Biomass burning in the Tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669-1678.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: ratios for nitrogen compounds are expressed as the ratios of emissions (in units of N) relative to total nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.322Z", + "last_change_date": "2022-03-14T07:55:14.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3642, + "fields": { + "EF_ID": 56676, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry; high activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.397Z", + "last_change_date": "2022-03-14T07:55:14.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3643, + "fields": { + "EF_ID": 56677, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry; low activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.464Z", + "last_change_date": "2022-03-14T07:55:14.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3644, + "fields": { + "EF_ID": 56678, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry; sandy soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.539Z", + "last_change_date": "2022-03-14T07:55:14.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3645, + "fields": { + "EF_ID": 56679, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry; volcanic soils (andisols)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.605Z", + "last_change_date": "2022-03-14T07:55:14.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3646, + "fields": { + "EF_ID": 56680, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry; Wetland soils (aquic)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.708Z", + "last_change_date": "2022-03-14T07:55:14.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3647, + "fields": { + "EF_ID": 56681, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist; high activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.784Z", + "last_change_date": "2022-03-14T07:55:14.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3648, + "fields": { + "EF_ID": 56682, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist; low activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.864Z", + "last_change_date": "2022-03-14T07:55:14.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3649, + "fields": { + "EF_ID": 56683, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist; sandy soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:14.939Z", + "last_change_date": "2022-03-14T07:55:14.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3650, + "fields": { + "EF_ID": 56684, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist; volcanic soils (andisols)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.014Z", + "last_change_date": "2022-03-14T07:55:15.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3651, + "fields": { + "EF_ID": 56685, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist; Wetland soils (aquic)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.110Z", + "last_change_date": "2022-03-14T07:55:15.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3652, + "fields": { + "EF_ID": 56686, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry; high activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.192Z", + "last_change_date": "2022-03-14T07:55:15.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3653, + "fields": { + "EF_ID": 56687, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry; low activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.255Z", + "last_change_date": "2022-03-14T07:55:15.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3654, + "fields": { + "EF_ID": 56688, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry; sandy soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.322Z", + "last_change_date": "2022-03-14T07:55:15.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3655, + "fields": { + "EF_ID": 56689, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry; volcanic soils (andisols)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.389Z", + "last_change_date": "2022-03-14T07:55:15.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3656, + "fields": { + "EF_ID": 56690, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry; Wetland soils (aquic)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.487Z", + "last_change_date": "2022-03-14T07:55:15.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3657, + "fields": { + "EF_ID": 56691, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist; high activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.567Z", + "last_change_date": "2022-03-14T07:55:15.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3658, + "fields": { + "EF_ID": 56692, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist; low activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.630Z", + "last_change_date": "2022-03-14T07:55:15.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3659, + "fields": { + "EF_ID": 56693, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist; sandy soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.697Z", + "last_change_date": "2022-03-14T07:55:15.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3660, + "fields": { + "EF_ID": 56694, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist; volcanic soils (andisols)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.764Z", + "last_change_date": "2022-03-14T07:55:15.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3661, + "fields": { + "EF_ID": 56695, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist; Wetland soils (aquic)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "230", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.865Z", + "last_change_date": "2022-03-14T07:55:15.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3662, + "fields": { + "EF_ID": 56696, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry; high activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:15.967Z", + "last_change_date": "2022-03-14T07:55:15.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3663, + "fields": { + "EF_ID": 56697, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry; low activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.022Z", + "last_change_date": "2022-03-14T07:55:16.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3664, + "fields": { + "EF_ID": 56698, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry; sandy soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.089Z", + "last_change_date": "2022-03-14T07:55:16.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3665, + "fields": { + "EF_ID": 56699, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry; volcanic soils (andisols)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.167Z", + "last_change_date": "2022-03-14T07:55:16.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3666, + "fields": { + "EF_ID": 56700, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry; Wetland soils (aquic)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.259Z", + "last_change_date": "2022-03-14T07:55:16.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3667, + "fields": { + "EF_ID": 56701, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (long, dry season); high activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.334Z", + "last_change_date": "2022-03-14T07:55:16.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3668, + "fields": { + "EF_ID": 56702, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (long, dry season); low activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.406Z", + "last_change_date": "2022-03-14T07:55:16.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3669, + "fields": { + "EF_ID": 56703, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (long, dry season); sandy soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.489Z", + "last_change_date": "2022-03-14T07:55:16.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3670, + "fields": { + "EF_ID": 56704, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (long, dry season); volcanic soils (andisols)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.572Z", + "last_change_date": "2022-03-14T07:55:16.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3671, + "fields": { + "EF_ID": 56705, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (long, dry season); Wetland soils (aquic)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.678Z", + "last_change_date": "2022-03-14T07:55:16.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3672, + "fields": { + "EF_ID": 56706, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (short, dry season); high activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.767Z", + "last_change_date": "2022-03-14T07:55:16.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3673, + "fields": { + "EF_ID": 56707, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (short, dry season); low activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.839Z", + "last_change_date": "2022-03-14T07:55:16.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3674, + "fields": { + "EF_ID": 56708, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (short, dry season); sandy soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:16.909Z", + "last_change_date": "2022-03-14T07:55:16.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3675, + "fields": { + "EF_ID": 56709, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (short, dry season); volcanic soils (andisols)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.005Z", + "last_change_date": "2022-03-14T07:55:17.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3676, + "fields": { + "EF_ID": 56710, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist (short, dry season); Wetland soils (aquic)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.084Z", + "last_change_date": "2022-03-14T07:55:17.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3677, + "fields": { + "EF_ID": 56711, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet; high activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.150Z", + "last_change_date": "2022-03-14T07:55:17.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3678, + "fields": { + "EF_ID": 56712, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet; low activity soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.217Z", + "last_change_date": "2022-03-14T07:55:17.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3679, + "fields": { + "EF_ID": 56713, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet; sandy soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.284Z", + "last_change_date": "2022-03-14T07:55:17.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3680, + "fields": { + "EF_ID": 56714, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet; volcanic soils (andisols)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.374Z", + "last_change_date": "2022-03-14T07:55:17.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3681, + "fields": { + "EF_ID": 56715, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Approximate Quantities of Soil Organic Carbon Under Native Vegetation(0-30 cm depth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet; Wetland soils (aquic)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-11 on Page 5.47 of the Reference Manual)", + "Technical_Reference": "Eswaran, H., E. van den Berg and P. Reich (1993) Organic carbon in soils of the world. Soil Sci. Soc. Am. J. 57:192-194.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These values serve as a first approximation and should not be considered as a preferable substitute for actual country-level data. Approximate organic carbon stocks are for the top 30 cm under native vegetation.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.450Z", + "last_change_date": "2022-03-14T07:55:17.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3682, + "fields": { + "EF_ID": 56716, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.517Z", + "last_change_date": "2022-03-14T07:55:17.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3683, + "fields": { + "EF_ID": 56717, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "No Tillage", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.617Z", + "last_change_date": "2022-03-14T07:55:17.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3684, + "fields": { + "EF_ID": 56718, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "Reduced Tillage", + "Other_Properties": "", + "Value": "1.05", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.718Z", + "last_change_date": "2022-03-14T07:55:17.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3685, + "fields": { + "EF_ID": 56719, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "Full Tillage", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.792Z", + "last_change_date": "2022-03-14T07:55:17.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3686, + "fields": { + "EF_ID": 56720, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "Low Input", + "Other_Properties": "", + "Value": "0.9", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.859Z", + "last_change_date": "2022-03-14T07:55:17.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3687, + "fields": { + "EF_ID": 56721, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "Medium Input", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:17.952Z", + "last_change_date": "2022-03-14T07:55:17.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3688, + "fields": { + "EF_ID": 56722, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "High Input", + "Other_Properties": "", + "Value": "1.1/1.2", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.054Z", + "last_change_date": "2022-03-14T07:55:18.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3689, + "fields": { + "EF_ID": 56723, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "No Tillage", + "Other_Properties": "", + "Value": "0.6", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.179Z", + "last_change_date": "2022-03-14T07:55:18.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3690, + "fields": { + "EF_ID": 56724, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "Reduced Tillage", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.313Z", + "last_change_date": "2022-03-14T07:55:18.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3691, + "fields": { + "EF_ID": 56725, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "Full Tillage", + "Other_Properties": "", + "Value": "1.05", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.430Z", + "last_change_date": "2022-03-14T07:55:18.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3692, + "fields": { + "EF_ID": 56726, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "Low Input", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.517Z", + "last_change_date": "2022-03-14T07:55:18.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3693, + "fields": { + "EF_ID": 56727, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "Medium Input", + "Other_Properties": "", + "Value": "0.9", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.584Z", + "last_change_date": "2022-03-14T07:55:18.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3694, + "fields": { + "EF_ID": 56728, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "High Input", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.681Z", + "last_change_date": "2022-03-14T07:55:18.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3695, + "fields": { + "EF_ID": 56729, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1/1.2", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.782Z", + "last_change_date": "2022-03-14T07:55:18.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3696, + "fields": { + "EF_ID": 56730, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Improved pasture", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.882Z", + "last_change_date": "2022-03-14T07:55:18.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3697, + "fields": { + "EF_ID": 56731, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Set aside (less than 20 years)", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:18.992Z", + "last_change_date": "2022-03-14T07:55:18.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3698, + "fields": { + "EF_ID": 56732, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Set aside (more than 20 years)", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.101Z", + "last_change_date": "2022-03-14T07:55:19.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3699, + "fields": { + "EF_ID": 56733, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.210Z", + "last_change_date": "2022-03-14T07:55:19.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3700, + "fields": { + "EF_ID": 56734, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.311Z", + "last_change_date": "2022-03-14T07:55:19.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3701, + "fields": { + "EF_ID": 56735, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.419Z", + "last_change_date": "2022-03-14T07:55:19.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3702, + "fields": { + "EF_ID": 56736, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.493Z", + "last_change_date": "2022-03-14T07:55:19.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3703, + "fields": { + "EF_ID": 56737, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.568Z", + "last_change_date": "2022-03-14T07:55:19.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3704, + "fields": { + "EF_ID": 56738, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.671Z", + "last_change_date": "2022-03-14T07:55:19.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3705, + "fields": { + "EF_ID": 56739, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: high activity, low activity, sandy, volcanic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1/1.2", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.780Z", + "last_change_date": "2022-03-14T07:55:19.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3706, + "fields": { + "EF_ID": 56740, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.881Z", + "last_change_date": "2022-03-14T07:55:19.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3707, + "fields": { + "EF_ID": 56741, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:19.981Z", + "last_change_date": "2022-03-14T07:55:19.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3708, + "fields": { + "EF_ID": 56742, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.090Z", + "last_change_date": "2022-03-14T07:55:20.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3709, + "fields": { + "EF_ID": 56743, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Tillage Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 2) Aina, P.O. (1979) Soil changes resulting from longterm management practices in western Nigeria. Soil Sci. Soc. Am. J. 43:173-177. 3) Juo, A.S.R. and R. Lal (1979) Nutrient profile in tropical alfisol under conventional and no-till systems. Soil Science 127: 168-173. 4) Agboola, A.A. (1981) The effects of different soils tillage and management practices on the physical and chemical properties of soils and maize yield in a rainforest zone of western Nigeria. Agronomy J. 73:247-251.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.164Z", + "last_change_date": "2022-03-14T07:55:20.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3710, + "fields": { + "EF_ID": 56744, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.234Z", + "last_change_date": "2022-03-14T07:55:20.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3711, + "fields": { + "EF_ID": 56745, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.341Z", + "last_change_date": "2022-03-14T07:55:20.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3712, + "fields": { + "EF_ID": 56746, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Long-term cultivated", + "Parameter_Conditions": "Soil Group: aquic", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1/1.2", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.444Z", + "last_change_date": "2022-03-14T07:55:20.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3713, + "fields": { + "EF_ID": 56747, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Wetland (Paddy) rice", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.544Z", + "last_change_date": "2022-03-14T07:55:20.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3714, + "fields": { + "EF_ID": 56748, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Shifting cultivation (including fallow)", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.644Z", + "last_change_date": "2022-03-14T07:55:20.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3715, + "fields": { + "EF_ID": 56749, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Shifting cultivation (including fallow)", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Tropical", + "Control_Technologies": "Mature Fallow", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.745Z", + "last_change_date": "2022-03-14T07:55:20.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3716, + "fields": { + "EF_ID": 56750, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Input Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Shifting cultivation (including fallow)", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Tropical", + "Control_Technologies": "Shortened Fallow", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 2) Paustian, K., H.P. Collins and E.A. P aul (1997) Management controls on soil carbon,. In: Soil organic matter in temperate agroecosystems: Long-term experiments in North America, E.A. Paul, K. Paustian, E.T. Elliot and C.V. Cole (eds), CRC Press, pp. 15-49. 3) Jones, M.J (1971) The maintenance of soil organic matter under continuous cultivation at Samaru, Nigreia. J. Agric. Sci. 77:473-482. 4) Wilson, G.F, R. Lal and B.N. Okigbo (1982) Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisols. Soil and Tillage Research 2:233-250. 5) Sidhu, A.S. and H.S. Sur (1993) Effect of incorporation of legume straw on soil properties and crop yield in a maize-wheat sequence. Trop. Agric. (Trinidad) 70:226-229. 6) Lal, R., G.F. Wilson and B.N. Okigbo (1979) Changes in properties of an alfisol produced by various crop covers. Soil Science 127:377-380. 7) Lal, R., D. De Vleeschauwer and R.M. Nganje (1980) Changes in properties of a newly cleared tropical Alfisols as affected by mulching. Soils Sci. Soc. Am. J. 44: 827-833. 8) Mazzarino, M.J., L. Szott and M. Jimenez (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble carbon in tropical agroecosystems. Soil Biology and Biochemistry 25:205-214. 9) Kang, B.T. and A.S.R. Juo (1986) Effect of forest clearing on soil chemical properties and crop performance. In: Land Clearing and Development in the Tropics, R. Lal, P.A. Sanchez and R.W. Cummings, Jr. (eds.) A.A. Balkema, Rotterdam/Boston, pp.383-394. 10) Inoue, T. (1991) Soil improvement in corn cropping by longterm application of organic matter in Ultisols of Thailand, pp. 174-185. In. Soil Constraints on Sustainbale Plant Production in the Tropics. Proceedings of the 24th International Symposium on Tropical Agriculture Research. Tropical Agriculture Research Series 24, Kyoto, Japan, August 14-16, 1990. 11) Van Holm, LH.J. (1993) Soil organic matter dynamics in a Sri Lankan soils. In: Soil Organic Matter Dynamics and Sustainability of Tropical Agriculture, K. Mulongoy and R. Merckx (eds.) Wiley-Sayce Co. Publication, pp. 121-133. 12) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 13) Fernandes, E.C.M. , M.P. Motavalli, C.Castilla and L. Mukurumbira, Management control of soil organic matter dynamics in tropical land-use systems. (submitted to Geoderma).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.846Z", + "last_change_date": "2022-03-14T07:55:20.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3717, + "fields": { + "EF_ID": 56751, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Abandoned/degraded land", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:20.946Z", + "last_change_date": "2022-03-14T07:55:20.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3718, + "fields": { + "EF_ID": 56752, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Unimproved pasture", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.071Z", + "last_change_date": "2022-03-14T07:55:21.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3719, + "fields": { + "EF_ID": 56753, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Base Factor Used in Default Calculation Procedures for Estimating Carbon Stocks in Mineral Soils", + "Technology_Practices": "System: Improved pasture", + "Parameter_Conditions": "Soil Group: All soils", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet 5-5A (supplemental), Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-12 on Page 5.48 of the Reference Manual)", + "Technical_Reference": "1) Mann, L.K. (1985) A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the Central United States. Geoderma 36:241. 2) Mann, L.K. (1986) Changes in soil carbon storage after cultivation. Soils Sci. 142:279-288. 3) Davidson, E.A. and I.L. Ackerman (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161-164. 4) Van Noordwijk, M. C. Cerri, P.L. Woomer, K. Nugroho and M. Bernoux. Soil carbon dynamics in the humid tropical forest. Paper for GCTE/TSBF Workshop on Management of Carbon in Tropical Soils under Global Change, Nairobi, Feb. 7-11, 1994. Geoderma (submitted). 5) Greenland, D.J. (1985) Nitrogen and food production in the tropics: Contributions from fertiliser nitrogen and biolgical nitrogen fixation. In: Nitrogen Management in Farming Systems in Humid and Sub-Humid Tropics. B.T. Kang and J. van der Heide (eds.), pp. 9-38. Proceedings of International Institute of Tropical Agriculture Symposium, Ibadan, Nigeria, Oct. 23-26, 1984. 6) Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera (1994) Carbon storage by introduced deep rooted grasses in the South American Savannas. Nature 371:236-238. 7) Cerri, C.C., M. Bernoux and G.J. Blair (1994) Carbon pools and fluxes in Brazilian natural and agricultural systems and the implications for the global CO2 balance. Proceedings of Int. Soil Soc., Acapulco, Mexico. 8) Grace, P.R., J.N. Ladd and J.O. Skjemstad (1994) The effect of management practices on soil organic matter. In: C.E. Pankhurst et al. (eds), Soil Biota: Management in Sustainable Farming Systems, CSIRO, Melbourne, Australia, pp. 162-171. 9) Palm, C.A., R.A. Houghton and J.M. Melillo (1986) Atmospheric carbon dioxide from deforestation in Southeast Asia. Biotropica 18: 177-188. 10) Tiessen, H., I.H. Salcedo and E.V.S.B. Sampaio (1992) Nutrient and soil orgnaic matter dynamics under shifting cultivation in semi-arid north-eastern Brazil. Agric. Ecosystes. Environ. 38:139-151. 11) Woomer, P.L., C.A. Palm, N. Karanja, J.N. Qureshi and J. Kotto-Same, Carbon sequestration and organic resource management in African smallholder agriculture. Advances in Soil Science (submitted).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.189Z", + "last_change_date": "2022-03-14T07:55:21.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3720, + "fields": { + "EF_ID": 56754, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "Moist forest growing on spodosols", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (0.7 - 2.3)", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1996) A primer for estimating biomass and biomass change of tropical forests. FAO Forestry Paper, Rome, Italy, in press.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.281Z", + "last_change_date": "2022-03-14T07:55:21.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3721, + "fields": { + "EF_ID": 56755, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "Lowland very moist forests", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13 (0.06 - 0.33)", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1996) A primer for estimating biomass and biomass change of tropical forests. FAO Forestry Paper, Rome, Italy, in press.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.356Z", + "last_change_date": "2022-03-14T07:55:21.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3722, + "fields": { + "EF_ID": 56756, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "Montane moist forest", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22 (0.11 - 0.33)", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1996) A primer for estimating biomass and biomass change of tropical forests. FAO Forestry Paper, Rome, Italy, in press.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.435Z", + "last_change_date": "2022-03-14T07:55:21.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3723, + "fields": { + "EF_ID": 56757, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "deciduous forest", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47 (0.23 - 0.85)", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Brown, S. (1996) A primer for estimating biomass and biomass change of tropical forests. FAO Forestry Paper, Rome, Italy, in press.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.524Z", + "last_change_date": "2022-03-14T07:55:21.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3724, + "fields": { + "EF_ID": 56758, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "Coniferous", + "Regional_Conditions": "Temperate Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Cooper, C.F. (1983) Carbon storage in managed forests. Canadian Journal of Forest Research, Vol. 13.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.614Z", + "last_change_date": "2022-03-14T07:55:21.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3725, + "fields": { + "EF_ID": 56759, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "Broadleaf", + "Regional_Conditions": "Temperate Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Cooper, C.F. (1983) Carbon storage in managed forests. Canadian Journal of Forest Research, Vol. 13.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.677Z", + "last_change_date": "2022-03-14T07:55:21.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3726, + "fields": { + "EF_ID": 56760, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "Coniferous", + "Regional_Conditions": "Boreal Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25 (0.20 - 0.30)", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Isaev, A.S., G.N. Korovin, A.I. Utkin, A.A. Prjazhnikov and D.G. Zamolodchikov (1993) The estimation of the carbon content and annual deposition in phytomass of Russian forest ecosystems (in Russian) Lesovedenie 5:3-10.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.743Z", + "last_change_date": "2022-03-14T07:55:21.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3727, + "fields": { + "EF_ID": 56761, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "Broadleaf", + "Regional_Conditions": "Boreal Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (0.15 - 0.25)", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Isaev, A.S., G.N. Korovin, A.I. Utkin, A.A. Prjazhnikov and D.G. Zamolodchikov (1993) The estimation of the carbon content and annual deposition in phytomass of Russian forest ecosystems (in Russian) Lesovedenie 5:3-10.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.810Z", + "last_change_date": "2022-03-14T07:55:21.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3728, + "fields": { + "EF_ID": 56762, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Root-to-Shoot Ratios that can be applied (multiplier) to Aboveground Biomass to estimate the Belowground Biomass.", + "Technology_Practices": "", + "Parameter_Conditions": "Forest-tundra", + "Regional_Conditions": "Boreal Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35 (0.30 - 0.50)", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Box 8 on Page 5.54 of the Reference Manual)", + "Technical_Reference": "Isaev, A.S., G.N. Korovin, A.I. Utkin, A.A. Prjazhnikov and D.G. Zamolodchikov (1993) The estimation of the carbon content and annual deposition in phytomass of Russian forest ecosystems (in Russian) Lesovedenie 5:3-10.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.877Z", + "last_change_date": "2022-03-14T07:55:21.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3729, + "fields": { + "EF_ID": 56763, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Methane Emissions and Production Periods of Natural Wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Wetland Categories: Bogs", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11 (1-38)", + "Unit": "mg CH4/m2-day", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-13 on Page 5.56 of the Reference Manual)", + "Technical_Reference": "Aselmann, I. and P.J. Crutzen (1989) Global distribution of natural freshwater wetlands and rice paddies, their primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307-358.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:21.977Z", + "last_change_date": "2022-03-14T07:55:21.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3730, + "fields": { + "EF_ID": 56764, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Methane Emissions and Production Periods of Natural Wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Wetland Categories: Fens", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60 (21-162)", + "Unit": "mg CH4/m2-day", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-13 on Page 5.56 of the Reference Manual)", + "Technical_Reference": "Aselmann, I. and P.J. Crutzen (1989) Global distribution of natural freshwater wetlands and rice paddies, their primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307-358.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.056Z", + "last_change_date": "2022-03-14T07:55:22.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3731, + "fields": { + "EF_ID": 56765, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Methane Emissions and Production Periods of Natural Wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Wetland Categories: Swamps", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63 (43-84)", + "Unit": "mg CH4/m2-day", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-13 on Page 5.56 of the Reference Manual)", + "Technical_Reference": "Aselmann, I. and P.J. Crutzen (1989) Global distribution of natural freshwater wetlands and rice paddies, their primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307-358.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.118Z", + "last_change_date": "2022-03-14T07:55:22.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3732, + "fields": { + "EF_ID": 56766, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Methane Emissions and Production Periods of Natural Wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Wetland Categories: Marshes", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "189 (103-299)", + "Unit": "mg CH4/m2-day", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-13 on Page 5.56 of the Reference Manual)", + "Technical_Reference": "Aselmann, I. and P.J. Crutzen (1989) Global distribution of natural freshwater wetlands and rice paddies, their primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307-358.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.185Z", + "last_change_date": "2022-03-14T07:55:22.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3733, + "fields": { + "EF_ID": 56767, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Methane Emissions and Production Periods of Natural Wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Wetland Categories: Floodplains", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75 (37-150)", + "Unit": "mg CH4/m2-day", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-13 on Page 5.56 of the Reference Manual)", + "Technical_Reference": "Aselmann, I. and P.J. Crutzen (1989) Global distribution of natural freshwater wetlands and rice paddies, their primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307-358.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.252Z", + "last_change_date": "2022-03-14T07:55:22.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3734, + "fields": { + "EF_ID": 56768, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Methane Emissions and Production Periods of Natural Wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Wetland Categories: Lakes", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32 (13-67)", + "Unit": "mg CH4/m2-day", + "Equation": "", + "IPCC_Worksheet": "Not Applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 5-13 on Page 5.56 of the Reference Manual)", + "Technical_Reference": "Aselmann, I. and P.J. Crutzen (1989) Global distribution of natural freshwater wetlands and rice paddies, their primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307-358.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.327Z", + "last_change_date": "2022-03-14T07:55:22.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3735, + "fields": { + "EF_ID": 62639, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "US Environmental Protection Agency (1995), Section 2.4, Landfills, in Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition, AP-42. US EPA Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.522Z", + "last_change_date": "2022-03-14T07:55:22.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3736, + "fields": { + "EF_ID": 62640, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.81", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.597Z", + "last_change_date": "2022-03-14T07:55:22.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3737, + "fields": { + "EF_ID": 62641, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.26", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Tom Beer, CSIRO, 1996 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.677Z", + "last_change_date": "2022-03-14T07:55:22.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3738, + "fields": { + "EF_ID": 62642, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.33", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "E. Gray, New Zealand Ministry of Environment, 1996 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.743Z", + "last_change_date": "2022-03-14T07:55:22.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3739, + "fields": { + "EF_ID": 62643, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "UK DoE, 1995", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.810Z", + "last_change_date": "2022-03-14T07:55:22.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3740, + "fields": { + "EF_ID": 62644, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.876Z", + "last_change_date": "2022-03-14T07:55:22.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3741, + "fields": { + "EF_ID": 62645, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Carolin Ziegler, University of Vienna, 1996 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:22.966Z", + "last_change_date": "2022-03-14T07:55:22.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3742, + "fields": { + "EF_ID": 62646, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.10", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.056Z", + "last_change_date": "2022-03-14T07:55:23.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3743, + "fields": { + "EF_ID": 62647, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.26", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.118Z", + "last_change_date": "2022-03-14T07:55:23.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3744, + "fields": { + "EF_ID": 62648, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.70", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.185Z", + "last_change_date": "2022-03-14T07:55:23.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3745, + "fields": { + "EF_ID": 62649, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.29", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.252Z", + "last_change_date": "2022-03-14T07:55:23.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3746, + "fields": { + "EF_ID": 62650, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.318Z", + "last_change_date": "2022-03-14T07:55:23.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3747, + "fields": { + "EF_ID": 62651, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.411Z", + "last_change_date": "2022-03-14T07:55:23.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3748, + "fields": { + "EF_ID": 62652, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Domenico Gaudioso, ENEA Italy, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.489Z", + "last_change_date": "2022-03-14T07:55:23.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3749, + "fields": { + "EF_ID": 62653, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.34", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.551Z", + "last_change_date": "2022-03-14T07:55:23.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3750, + "fields": { + "EF_ID": 62654, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.58", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Hans Oonk, TNO Environment & Energy Research, The Netherlands, !995 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.618Z", + "last_change_date": "2022-03-14T07:55:23.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3751, + "fields": { + "EF_ID": 62655, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.40", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.693Z", + "last_change_date": "2022-03-14T07:55:23.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3752, + "fields": { + "EF_ID": 62656, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.90", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.760Z", + "last_change_date": "2022-03-14T07:55:23.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3753, + "fields": { + "EF_ID": 62657, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.856Z", + "last_change_date": "2022-03-14T07:55:23.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3754, + "fields": { + "EF_ID": 62658, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.01", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:23.931Z", + "last_change_date": "2022-03-14T07:55:23.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3755, + "fields": { + "EF_ID": 62659, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.10", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.001Z", + "last_change_date": "2022-03-14T07:55:24.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3756, + "fields": { + "EF_ID": 62660, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Alexander Lifshits, Geopolis Consulting, Moscow, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.085Z", + "last_change_date": "2022-03-14T07:55:24.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3757, + "fields": { + "EF_ID": 62661, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.12", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.160Z", + "last_change_date": "2022-03-14T07:55:24.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3758, + "fields": { + "EF_ID": 62662, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "kg/cap/day", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "A.D. Bhide, NEERI, India, 1995. (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.235Z", + "last_change_date": "2022-03-14T07:55:24.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3759, + "fields": { + "EF_ID": 62663, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "US Environmental Protection Agency (1995), Section 2.4, Landfills, in Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition, AP-42. US EPA Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.342Z", + "last_change_date": "2022-03-14T07:55:24.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3760, + "fields": { + "EF_ID": 62664, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.431Z", + "last_change_date": "2022-03-14T07:55:24.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3761, + "fields": { + "EF_ID": 62665, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.00", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Tom Beer, CSIRO, 1996 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.497Z", + "last_change_date": "2022-03-14T07:55:24.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3762, + "fields": { + "EF_ID": 62666, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "E. Gray, New Zealand Ministry of Environment, 1996 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.572Z", + "last_change_date": "2022-03-14T07:55:24.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3763, + "fields": { + "EF_ID": 62667, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "UK DoE, 1995", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.639Z", + "last_change_date": "2022-03-14T07:55:24.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3764, + "fields": { + "EF_ID": 62668, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.00", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.727Z", + "last_change_date": "2022-03-14T07:55:24.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3765, + "fields": { + "EF_ID": 62669, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Carolin Ziegler, University of Vienna, 1996 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.806Z", + "last_change_date": "2022-03-14T07:55:24.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3766, + "fields": { + "EF_ID": 62670, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.872Z", + "last_change_date": "2022-03-14T07:55:24.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3767, + "fields": { + "EF_ID": 62671, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:24.939Z", + "last_change_date": "2022-03-14T07:55:24.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3768, + "fields": { + "EF_ID": 62672, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.006Z", + "last_change_date": "2022-03-14T07:55:25.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3769, + "fields": { + "EF_ID": 62673, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.072Z", + "last_change_date": "2022-03-14T07:55:25.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3770, + "fields": { + "EF_ID": 62674, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.172Z", + "last_change_date": "2022-03-14T07:55:25.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3771, + "fields": { + "EF_ID": 62675, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.247Z", + "last_change_date": "2022-03-14T07:55:25.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3772, + "fields": { + "EF_ID": 62676, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Domenico Gaudioso, ENEA Italy, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.322Z", + "last_change_date": "2022-03-14T07:55:25.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3773, + "fields": { + "EF_ID": 62677, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.389Z", + "last_change_date": "2022-03-14T07:55:25.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3774, + "fields": { + "EF_ID": 62678, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Hans Oonk, TNO Environment & Energy Research, The Netherlands, !995 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.456Z", + "last_change_date": "2022-03-14T07:55:25.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3775, + "fields": { + "EF_ID": 62679, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.558Z", + "last_change_date": "2022-03-14T07:55:25.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3776, + "fields": { + "EF_ID": 62680, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.639Z", + "last_change_date": "2022-03-14T07:55:25.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3777, + "fields": { + "EF_ID": 62681, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.705Z", + "last_change_date": "2022-03-14T07:55:25.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3778, + "fields": { + "EF_ID": 62682, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.772Z", + "last_change_date": "2022-03-14T07:55:25.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3779, + "fields": { + "EF_ID": 62683, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.847Z", + "last_change_date": "2022-03-14T07:55:25.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3780, + "fields": { + "EF_ID": 62684, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Alexander Lifshits, Geopolis Consulting, Moscow, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:25.952Z", + "last_change_date": "2022-03-14T07:55:25.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3781, + "fields": { + "EF_ID": 62685, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.039Z", + "last_change_date": "2022-03-14T07:55:26.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3782, + "fields": { + "EF_ID": 62686, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "A.D. Bhide, NEERI, India, 1995. (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.114Z", + "last_change_date": "2022-03-14T07:55:26.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3783, + "fields": { + "EF_ID": 62687, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Municipal Solid Waste (MSW) disposed to Solid Waste Disposal Sites (SWDS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.00", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1A (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Les Venter, Solid Waste Dept., Johannesburg, South Africa, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.314Z", + "last_change_date": "2022-03-14T07:55:26.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3784, + "fields": { + "EF_ID": 62688, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18-0.21", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.389Z", + "last_change_date": "2022-03-14T07:55:26.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3785, + "fields": { + "EF_ID": 62689, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Tom Beer, CSIRO, 1996 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.455Z", + "last_change_date": "2022-03-14T07:55:26.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3786, + "fields": { + "EF_ID": 62690, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "E. Gray, New Zealand Ministry of Environment, 1996 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.553Z", + "last_change_date": "2022-03-14T07:55:26.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3787, + "fields": { + "EF_ID": 62691, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "UK/Western Europe/Scandinavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08-0.19", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.639Z", + "last_change_date": "2022-03-14T07:55:26.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3788, + "fields": { + "EF_ID": 62692, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "UK DoE, 1995", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.706Z", + "last_change_date": "2022-03-14T07:55:26.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3789, + "fields": { + "EF_ID": 62693, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Hans Oonk, TNO Environment & Energy Research, The Netherlands, !995 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.772Z", + "last_change_date": "2022-03-14T07:55:26.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3790, + "fields": { + "EF_ID": 62694, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Piotr Manczarski, Warsaw University, Poland, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.839Z", + "last_change_date": "2022-03-14T07:55:26.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3791, + "fields": { + "EF_ID": 62695, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Alexander Lifshits, Geopolis Consulting, Moscow, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.905Z", + "last_change_date": "2022-03-14T07:55:26.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3792, + "fields": { + "EF_ID": 62696, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "A.D. Bhide, NEERI, India, 1995. (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:26.999Z", + "last_change_date": "2022-03-14T07:55:26.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3793, + "fields": { + "EF_ID": 62697, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.072Z", + "last_change_date": "2022-03-14T07:55:27.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3794, + "fields": { + "EF_ID": 62698, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.147Z", + "last_change_date": "2022-03-14T07:55:27.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3795, + "fields": { + "EF_ID": 62699, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Guatemala", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.214Z", + "last_change_date": "2022-03-14T07:55:27.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3796, + "fields": { + "EF_ID": 62700, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.281Z", + "last_change_date": "2022-03-14T07:55:27.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3797, + "fields": { + "EF_ID": 62701, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.352Z", + "last_change_date": "2022-03-14T07:55:27.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3798, + "fields": { + "EF_ID": 62702, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.443Z", + "last_change_date": "2022-03-14T07:55:27.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3799, + "fields": { + "EF_ID": 62703, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.530Z", + "last_change_date": "2022-03-14T07:55:27.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3800, + "fields": { + "EF_ID": 62704, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.602Z", + "last_change_date": "2022-03-14T07:55:27.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3801, + "fields": { + "EF_ID": 62705, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.24", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "US Environmental Protection Agency (1995), Section 2.4, Landfills, in Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition, AP-42. US EPA Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.668Z", + "last_change_date": "2022-03-14T07:55:27.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3802, + "fields": { + "EF_ID": 62706, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.35", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.735Z", + "last_change_date": "2022-03-14T07:55:27.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3803, + "fields": { + "EF_ID": 62707, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.26", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Tom Beer, CSIRO, 1996 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.802Z", + "last_change_date": "2022-03-14T07:55:27.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3804, + "fields": { + "EF_ID": 62708, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.33", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "E. Gray, New Zealand Ministry of Environment, 1996 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.895Z", + "last_change_date": "2022-03-14T07:55:27.895Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3805, + "fields": { + "EF_ID": 62709, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "UK DoE, 1995", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:27.981Z", + "last_change_date": "2022-03-14T07:55:27.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3806, + "fields": { + "EF_ID": 62710, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.060Z", + "last_change_date": "2022-03-14T07:55:28.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3807, + "fields": { + "EF_ID": 62711, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Carolin Ziegler, University of Vienna, 1996 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.127Z", + "last_change_date": "2022-03-14T07:55:28.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3808, + "fields": { + "EF_ID": 62712, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.202Z", + "last_change_date": "2022-03-14T07:55:28.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3809, + "fields": { + "EF_ID": 62713, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.277Z", + "last_change_date": "2022-03-14T07:55:28.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3810, + "fields": { + "EF_ID": 62714, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.382Z", + "last_change_date": "2022-03-14T07:55:28.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3811, + "fields": { + "EF_ID": 62715, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.455Z", + "last_change_date": "2022-03-14T07:55:28.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3812, + "fields": { + "EF_ID": 62716, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.518Z", + "last_change_date": "2022-03-14T07:55:28.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3813, + "fields": { + "EF_ID": 62717, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.585Z", + "last_change_date": "2022-03-14T07:55:28.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3814, + "fields": { + "EF_ID": 62718, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Domenico Gaudioso, ENEA Italy, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.652Z", + "last_change_date": "2022-03-14T07:55:28.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3815, + "fields": { + "EF_ID": 62719, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.727Z", + "last_change_date": "2022-03-14T07:55:28.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3816, + "fields": { + "EF_ID": 62720, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.06", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Hans Oonk, TNO Environment & Energy Research, The Netherlands, !995 (Personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.818Z", + "last_change_date": "2022-03-14T07:55:28.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3817, + "fields": { + "EF_ID": 62721, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.05", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.905Z", + "last_change_date": "2022-03-14T07:55:28.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3818, + "fields": { + "EF_ID": 62722, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:28.969Z", + "last_change_date": "2022-03-14T07:55:28.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3819, + "fields": { + "EF_ID": 62723, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.036Z", + "last_change_date": "2022-03-14T07:55:29.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3820, + "fields": { + "EF_ID": 62724, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.102Z", + "last_change_date": "2022-03-14T07:55:29.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3821, + "fields": { + "EF_ID": 62725, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.169Z", + "last_change_date": "2022-03-14T07:55:29.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3822, + "fields": { + "EF_ID": 62726, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Piotr Manczarski, Warsaw University, Poland, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.262Z", + "last_change_date": "2022-03-14T07:55:29.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3823, + "fields": { + "EF_ID": 62727, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Alexander Lifshits, Geopolis Consulting, Moscow, 1995 (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.335Z", + "last_change_date": "2022-03-14T07:55:29.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3824, + "fields": { + "EF_ID": 62728, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "OECD (1995), OECD Environmental Data Compendium 1995. Organisation for Economic Co-operation and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.402Z", + "last_change_date": "2022-03-14T07:55:29.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3825, + "fields": { + "EF_ID": 62729, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "A.D. Bhide, NEERI, India, 1995. (Personal Communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.469Z", + "last_change_date": "2022-03-14T07:55:29.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3826, + "fields": { + "EF_ID": 62730, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.535Z", + "last_change_date": "2022-03-14T07:55:29.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3827, + "fields": { + "EF_ID": 62731, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.602Z", + "last_change_date": "2022-03-14T07:55:29.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3828, + "fields": { + "EF_ID": 62732, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Guatemala", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.698Z", + "last_change_date": "2022-03-14T07:55:29.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3829, + "fields": { + "EF_ID": 62733, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.47", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.772Z", + "last_change_date": "2022-03-14T07:55:29.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3830, + "fields": { + "EF_ID": 62734, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.839Z", + "last_change_date": "2022-03-14T07:55:29.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3831, + "fields": { + "EF_ID": 62735, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.914Z", + "last_change_date": "2022-03-14T07:55:29.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3832, + "fields": { + "EF_ID": 62736, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:29.989Z", + "last_change_date": "2022-03-14T07:55:29.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3833, + "fields": { + "EF_ID": 62737, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Municipal Solid Waste (MSW) disposal rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "kg/cap/day", + "Equation": "See Page 6.5 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-1B (SUPPLEMENTAL)", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-1 on Pages 6.6 - 6.7 of the Reference Manual)", + "Technical_Reference": "Cal Recovery Inc., California, USA - based on experience in country.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.055Z", + "last_change_date": "2022-03-14T07:55:30.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3834, + "fields": { + "EF_ID": 62738, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "MCF (methane correction factor) by SWDS classification", + "Technology_Practices": "Managed-anaerobic", + "Parameter_Conditions": "Controlled placement of waste, will include at least one of the following: i. cover material, ii mechanical compacting, iii levelling of the waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "Equation 3.2 in Chapter 3 of Volume 5, 2006 IPCC Guidelines Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "IPCC 2006 Waste model, MCF tab Worksheet 6-1 and Worksheet 6-1C (SUPPLEMENTAL) in 1996 IPCC Guidelines", + "Data_Source": "Table 3.1, p.3.14 of 2006 IPCC Guidelines Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-2 on Page 6.8 of the Reference Manual); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Technical_Reference": "IPCC (2000), Matsufuji, Y., Kobayashi, H., Tanaka, A., Ando, S., Kawabata, T. and Hanashima, M. (1996). ‘Generation of greenhouse gas effect gases by different landfill types and methane gas control`, Proceedings of 7th ISWA International Congress and Exhibition, 1996:10, No. 1, p. 253-254.", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "0.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.168Z", + "last_change_date": "2022-03-14T07:55:30.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3835, + "fields": { + "EF_ID": 62739, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "MCF (methane correction factor) by SWDS classification", + "Technology_Practices": "Unmanaged-deep", + "Parameter_Conditions": "SWDS not meeting criteria for managed waste site and >5 meters of waste and/or high water table.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "includes filling inland water, such as pond, river, or wetland by waste", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 3.2 in Chapter 3 of Volume 5, 2006 IPCC Guidelines Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "IPCC 2006 Waste model, MCF tab Worksheet 6-1 and Worksheet 6-1C (SUPPLEMENTAL) in 1996 IPCC Guidelines", + "Data_Source": "Table 3.1, p.3.14 of 2006 IPCC Guidelines Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-2 on Page 6.8 of the Reference Manual); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Technical_Reference": "IPCC (2000), Matsufuji, Y., Kobayashi, H., Tanaka, A., Ando, S., Kawabata, T. and Hanashima, M. (1996). ‘Generation of greenhouse gas effect gases by different landfill types and methane gas control`, Proceedings of 7th ISWA International Congress and Exhibition, 1996:10, No. 1, p. 253-254.", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.264Z", + "last_change_date": "2022-03-14T07:55:30.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3836, + "fields": { + "EF_ID": 62740, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "MCF (methane correction factor) by SWDS classification", + "Technology_Practices": "Unmanaged-shallow", + "Parameter_Conditions": "SWDS not meeting criteria for managed SWDS and having depths of less than 5 meters", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 3.2 in Chapter 3 of Volume 5, 2006 IPCC Guidelines Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "IPCC 2006 Waste model, MCF tab Worksheet 6-1 and Worksheet 6-1C (SUPPLEMENTAL) in 1996 IPCC Guidelines", + "Data_Source": "Table 3.1, p.3.14 of 2006 IPCC GL Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-2 on Page 6.8 of the Reference Manual); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Technical_Reference": "IPCC (2000), Matsufuji, Y., Kobayashi, H., Tanaka, A., Ando, S., Kawabata, T. and Hanashima, M. (1996). ‘Generation of greenhouse gas effect gases by different landfill types and methane gas control`, Proceedings of 7th ISWA International Congress and Exhibition, 1996:10, No. 1, p. 253-254.", + "English_Abstract": "", + "Lower_Bound": "-0.3", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.331Z", + "last_change_date": "2022-03-14T07:55:30.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3837, + "fields": { + "EF_ID": 62741, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "MCF (methane correction factor) by SWDS classification", + "Technology_Practices": "Uncategorized SWDS", + "Parameter_Conditions": "Only if country cannot categorize their SWDS into managed or unmanaged categories should this MCF be used", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 3.2 in Chapter 3 of Volume 5, 2006 IPCC Guidelines Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "IPCC 2006 Waste model, MCF tab Worksheet 6-1 and Worksheet 6-1C (SUPPLEMENTAL) in 1996 IPCC Guidelines", + "Data_Source": "Table 3.1, p.3.14 of 2006 IPCC Guidelines Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-2 on Page 6.8 of the Reference Manual); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Technical_Reference": "IPCC (2000), Matsufuji, Y., Kobayashi, H., Tanaka, A., Ando, S., Kawabata, T. and Hanashima, M. (1996). ‘Generation of greenhouse gas effect gases by different landfill types and methane gas control`, Proceedings of 7th ISWA International Congress and Exhibition, 1996:10, No. 1, p. 253-254.", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.428Z", + "last_change_date": "2022-03-14T07:55:30.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3838, + "fields": { + "EF_ID": 62746, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "(Biochemical Oxygen Demand) BOD5, daily per capita value", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.037", + "Unit": "kg/cap/day", + "Equation": "Equation 5.6 on Page 5.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-5 on Page 6.23 of the Reference Manual)", + "Technical_Reference": "IPCC (1994), IPCC Guidelines for National Greenhouse Gas Inventories, 3 Volumes: Volume 1, Reporting Instructions; Volume 2, Workbook; Volume 3, Draft Reference Manual.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.506Z", + "last_change_date": "2022-03-14T07:55:30.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3839, + "fields": { + "EF_ID": 62747, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "(Biochemical Oxygen Demand) BOD5, daily per capita value", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia, Middle East, Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg/cap/day", + "Equation": "Equation 5.6 on Page 5.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-5 on Page 6.23 of the Reference Manual)", + "Technical_Reference": "IPCC (1994), IPCC Guidelines for National Greenhouse Gas Inventories, 3 Volumes: Volume 1, Reporting Instructions; Volume 2, Workbook; Volume 3, Draft Reference Manual.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.572Z", + "last_change_date": "2022-03-14T07:55:30.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3840, + "fields": { + "EF_ID": 62748, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "(Biochemical Oxygen Demand) BOD5, daily per capita value", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: N. America, Europe, Former USSR, Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg/cap/day", + "Equation": "Equation 5.6 on Page 5.16 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-5 on Page 6.23 of the Reference Manual)", + "Technical_Reference": "IPCC (1994), IPCC Guidelines for National Greenhouse Gas Inventories, 3 Volumes: Volume 1, Reporting Instructions; Volume 2, Workbook; Volume 3, Draft Reference Manual.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.639Z", + "last_change_date": "2022-03-14T07:55:30.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3841, + "fields": { + "EF_ID": 62749, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "(Biochemical Oxygen Demand) BOD5, annual per capita value", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13505", + "Unit": "kg/1000 persons/yr", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-5 on Page 6.23 of the Reference Manual)", + "Technical_Reference": "IPCC (1994), IPCC Guidelines for National Greenhouse Gas Inventories, 3 Volumes: Volume 1, Reporting Instructions; Volume 2, Workbook; Volume 3, Draft Reference Manual.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.738Z", + "last_change_date": "2022-03-14T07:55:30.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3842, + "fields": { + "EF_ID": 62750, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "(Biochemical Oxygen Demand) BOD5, annual per capita value", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia, Middle East, Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14600", + "Unit": "kg/1000 persons/yr", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-5 on Page 6.23 of the Reference Manual)", + "Technical_Reference": "IPCC (1994), IPCC Guidelines for National Greenhouse Gas Inventories, 3 Volumes: Volume 1, Reporting Instructions; Volume 2, Workbook; Volume 3, Draft Reference Manual.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.831Z", + "last_change_date": "2022-03-14T07:55:30.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3843, + "fields": { + "EF_ID": 62751, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "(Biochemical Oxygen Demand) BOD5, annual per capita value", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: N. America, Europe, Former USSR, Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18250", + "Unit": "kg/1000 persons/yr", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-5 on Page 6.23 of the Reference Manual)", + "Technical_Reference": "IPCC (1994), IPCC Guidelines for National Greenhouse Gas Inventories, 3 Volumes: Volume 1, Reporting Instructions; Volume 2, Workbook; Volume 3, Draft Reference Manual.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.898Z", + "last_change_date": "2022-03-14T07:55:30.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3844, + "fields": { + "EF_ID": 62752, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Distilled & Industry (ethanol)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "m3/m3 ethanol", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:30.964Z", + "last_change_date": "2022-03-14T07:55:30.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3845, + "fields": { + "EF_ID": 62753, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Malt & Beer", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "m3/m3 beer", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.031Z", + "last_change_date": "2022-03-14T07:55:31.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3846, + "fields": { + "EF_ID": 62754, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Malt & Beer", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5-9", + "Unit": "m3/m3 beer", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.131Z", + "last_change_date": "2022-03-14T07:55:31.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3847, + "fields": { + "EF_ID": 62755, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Meat & Poultry", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "m3/animal", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.205Z", + "last_change_date": "2022-03-14T07:55:31.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3848, + "fields": { + "EF_ID": 62756, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Dairy Products", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.272Z", + "last_change_date": "2022-03-14T07:55:31.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3849, + "fields": { + "EF_ID": 62757, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fruits & Vegetables (cannery)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.364Z", + "last_change_date": "2022-03-14T07:55:31.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3850, + "fields": { + "EF_ID": 62758, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fruits & Vegetables (Tomato processing)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.430Z", + "last_change_date": "2022-03-14T07:55:31.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3851, + "fields": { + "EF_ID": 62759, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Oils (vegetable oil)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.526Z", + "last_change_date": "2022-03-14T07:55:31.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3852, + "fields": { + "EF_ID": 62760, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Iron And Steel", + "Regional_Conditions": "Region: South America, Country: Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.606Z", + "last_change_date": "2022-03-14T07:55:31.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3853, + "fields": { + "EF_ID": 62761, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (pulp)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.681Z", + "last_change_date": "2022-03-14T07:55:31.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3854, + "fields": { + "EF_ID": 62762, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (pulp mill)", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.755Z", + "last_change_date": "2022-03-14T07:55:31.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3855, + "fields": { + "EF_ID": 62763, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (virgin paper)", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.839Z", + "last_change_date": "2022-03-14T07:55:31.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3856, + "fields": { + "EF_ID": 62764, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (recycled paper)", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:31.937Z", + "last_change_date": "2022-03-14T07:55:31.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3857, + "fields": { + "EF_ID": 62765, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Textiles (rayon)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "501", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.014Z", + "last_change_date": "2022-03-14T07:55:32.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3858, + "fields": { + "EF_ID": 62766, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Distilled & Industry (ethanol)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.080Z", + "last_change_date": "2022-03-14T07:55:32.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3859, + "fields": { + "EF_ID": 62767, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Distilled & Industry (ethanol)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5000", + "Unit": "kg/m3 ethanol", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.148Z", + "last_change_date": "2022-03-14T07:55:32.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3860, + "fields": { + "EF_ID": 62768, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Distilled & Industry", + "Regional_Conditions": "Region: South America, Country: Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.214Z", + "last_change_date": "2022-03-14T07:55:32.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3861, + "fields": { + "EF_ID": 62769, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Distilled & Industry", + "Regional_Conditions": "Region: Western Europe, Country: the Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0-5.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.314Z", + "last_change_date": "2022-03-14T07:55:32.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3862, + "fields": { + "EF_ID": 62770, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Malt & Beer", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.389Z", + "last_change_date": "2022-03-14T07:55:32.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3863, + "fields": { + "EF_ID": 62771, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Malt & Beer", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0-7.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.456Z", + "last_change_date": "2022-03-14T07:55:32.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3864, + "fields": { + "EF_ID": 62772, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Malt & Beer", + "Regional_Conditions": "Region: Western Europe, Country: the Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-1.5", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.522Z", + "last_change_date": "2022-03-14T07:55:32.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3865, + "fields": { + "EF_ID": 62773, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Meat & Poultry", + "Regional_Conditions": "Region: Western Europe, Country: the Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.589Z", + "last_change_date": "2022-03-14T07:55:32.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3866, + "fields": { + "EF_ID": 62774, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Meat & Poultry", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.682Z", + "last_change_date": "2022-03-14T07:55:32.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3867, + "fields": { + "EF_ID": 62775, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fish", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.756Z", + "last_change_date": "2022-03-14T07:55:32.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3868, + "fields": { + "EF_ID": 62776, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Coffee", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0-14.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.822Z", + "last_change_date": "2022-03-14T07:55:32.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3869, + "fields": { + "EF_ID": 62777, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Dairy Products", + "Regional_Conditions": "Region: Western Europe, Country: the Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.897Z", + "last_change_date": "2022-03-14T07:55:32.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3870, + "fields": { + "EF_ID": 62778, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fruits & Vegetables (potatoes)", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:32.964Z", + "last_change_date": "2022-03-14T07:55:32.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3871, + "fields": { + "EF_ID": 62779, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fruits & Vegetables (bean blanching)", + "Regional_Conditions": "Region: Western Europe, Country: the Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.060Z", + "last_change_date": "2022-03-14T07:55:33.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3872, + "fields": { + "EF_ID": 62780, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fruits & Vegetables (sauerkraut)", + "Regional_Conditions": "Region: Western Europe, Country: the Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0-20.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.147Z", + "last_change_date": "2022-03-14T07:55:33.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3873, + "fields": { + "EF_ID": 62781, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Oils (vegetable oil)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.219Z", + "last_change_date": "2022-03-14T07:55:33.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3874, + "fields": { + "EF_ID": 62782, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Oils", + "Regional_Conditions": "Region: Middle East, Country: Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.286Z", + "last_change_date": "2022-03-14T07:55:33.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3875, + "fields": { + "EF_ID": 62783, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Oils", + "Regional_Conditions": "Region: Asia, Country: Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.353Z", + "last_change_date": "2022-03-14T07:55:33.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3876, + "fields": { + "EF_ID": 62784, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Sugar (cane)", + "Regional_Conditions": "Region: Central America, Country: Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.446Z", + "last_change_date": "2022-03-14T07:55:33.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3877, + "fields": { + "EF_ID": 62785, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Organic Chemicals", + "Regional_Conditions": "Region: Western Europe,Country: the Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20-40", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.539Z", + "last_change_date": "2022-03-14T07:55:33.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3878, + "fields": { + "EF_ID": 62786, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pharmaceuticals", + "Regional_Conditions": "Region: Middle East, Country: Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 on Page 6.24 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.619Z", + "last_change_date": "2022-03-14T07:55:33.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3879, + "fields": { + "EF_ID": 62787, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Starch (potato starch)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0-16", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.694Z", + "last_change_date": "2022-03-14T07:55:33.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3880, + "fields": { + "EF_ID": 62788, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Starch (wheat starch)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0-42", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.769Z", + "last_change_date": "2022-03-14T07:55:33.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3881, + "fields": { + "EF_ID": 62789, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Starch (corn strach)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.873Z", + "last_change_date": "2022-03-14T07:55:33.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3882, + "fields": { + "EF_ID": 62790, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Petroleum Production", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3-0.4", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:33.947Z", + "last_change_date": "2022-03-14T07:55:33.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3883, + "fields": { + "EF_ID": 62791, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Petroleum Production", + "Regional_Conditions": "Region: North America, Country: Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.019Z", + "last_change_date": "2022-03-14T07:55:34.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3884, + "fields": { + "EF_ID": 62792, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (pulp)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0-15", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.111Z", + "last_change_date": "2022-03-14T07:55:34.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3885, + "fields": { + "EF_ID": 62793, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (paper)", + "Regional_Conditions": "Region: Generic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0-8.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.178Z", + "last_change_date": "2022-03-14T07:55:34.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3886, + "fields": { + "EF_ID": 62794, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (virgin paper)", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.267Z", + "last_change_date": "2022-03-14T07:55:34.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3887, + "fields": { + "EF_ID": 62795, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (recycled paper)", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.339Z", + "last_change_date": "2022-03-14T07:55:34.339Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3888, + "fields": { + "EF_ID": 62796, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (paper)", + "Regional_Conditions": "Region: Western Europe, Country: the Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-3.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.411Z", + "last_change_date": "2022-03-14T07:55:34.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3889, + "fields": { + "EF_ID": 62797, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Textiles", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.478Z", + "last_change_date": "2022-03-14T07:55:34.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3890, + "fields": { + "EF_ID": 62798, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Textiles (textile mills)", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.544Z", + "last_change_date": "2022-03-14T07:55:34.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3891, + "fields": { + "EF_ID": 62799, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) Value", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Leather Tanning (Generic)", + "Regional_Conditions": "Region: North America, Country: USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.8", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-6 (Continued) on Page 6.25 of the Reference Manual", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.637Z", + "last_change_date": "2022-03-14T07:55:34.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3892, + "fields": { + "EF_ID": 62800, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.722Z", + "last_change_date": "2022-03-14T07:55:34.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3893, + "fields": { + "EF_ID": 62801, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tunisia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.794Z", + "last_change_date": "2022-03-14T07:55:34.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3894, + "fields": { + "EF_ID": 62802, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.878Z", + "last_change_date": "2022-03-14T07:55:34.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3895, + "fields": { + "EF_ID": 62803, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:34.981Z", + "last_change_date": "2022-03-14T07:55:34.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3896, + "fields": { + "EF_ID": 62804, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.055Z", + "last_change_date": "2022-03-14T07:55:35.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3897, + "fields": { + "EF_ID": 62805, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Singapore", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.119Z", + "last_change_date": "2022-03-14T07:55:35.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3898, + "fields": { + "EF_ID": 62806, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.181Z", + "last_change_date": "2022-03-14T07:55:35.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3899, + "fields": { + "EF_ID": 62808, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.281Z", + "last_change_date": "2022-03-14T07:55:35.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3900, + "fields": { + "EF_ID": 62809, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America and Caribbean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.356Z", + "last_change_date": "2022-03-14T07:55:35.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3901, + "fields": { + "EF_ID": 62810, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.431Z", + "last_change_date": "2022-03-14T07:55:35.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3902, + "fields": { + "EF_ID": 62811, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.505Z", + "last_change_date": "2022-03-14T07:55:35.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3903, + "fields": { + "EF_ID": 62812, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.600Z", + "last_change_date": "2022-03-14T07:55:35.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3904, + "fields": { + "EF_ID": 62813, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Latin America And Caribbean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.672Z", + "last_change_date": "2022-03-14T07:55:35.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3905, + "fields": { + "EF_ID": 62814, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Region: Australia And New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-7 on Page 6.25 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.747Z", + "last_change_date": "2022-03-14T07:55:35.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3906, + "fields": { + "EF_ID": 62815, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "Lagoons", + "Parameter_Conditions": "Industry type: Textiles", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.822Z", + "last_change_date": "2022-03-14T07:55:35.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3907, + "fields": { + "EF_ID": 62816, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "Lagoons", + "Parameter_Conditions": "Industry type: Food - Coffee", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:35.918Z", + "last_change_date": "2022-03-14T07:55:35.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3908, + "fields": { + "EF_ID": 62817, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "Lagoons", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.006Z", + "last_change_date": "2022-03-14T07:55:36.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3909, + "fields": { + "EF_ID": 62818, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.072Z", + "last_change_date": "2022-03-14T07:55:36.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3910, + "fields": { + "EF_ID": 62819, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Palm oil", + "Regional_Conditions": "Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.139Z", + "last_change_date": "2022-03-14T07:55:36.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3911, + "fields": { + "EF_ID": 62820, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Singapore", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.238Z", + "last_change_date": "2022-03-14T07:55:36.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3912, + "fields": { + "EF_ID": 62821, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.322Z", + "last_change_date": "2022-03-14T07:55:36.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3913, + "fields": { + "EF_ID": 62823, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "Activated sludge", + "Parameter_Conditions": "Industry type: Breweries", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.389Z", + "last_change_date": "2022-03-14T07:55:36.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3914, + "fields": { + "EF_ID": 62824, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.456Z", + "last_change_date": "2022-03-14T07:55:36.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3915, + "fields": { + "EF_ID": 62825, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.556Z", + "last_change_date": "2022-03-14T07:55:36.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3916, + "fields": { + "EF_ID": 62826, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.630Z", + "last_change_date": "2022-03-14T07:55:36.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3917, + "fields": { + "EF_ID": 62827, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Region: Latin America and Caribbean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.697Z", + "last_change_date": "2022-03-14T07:55:36.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3918, + "fields": { + "EF_ID": 62828, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Region: Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.764Z", + "last_change_date": "2022-03-14T07:55:36.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3919, + "fields": { + "EF_ID": 62829, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "Lagoons", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.866Z", + "last_change_date": "2022-03-14T07:55:36.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3920, + "fields": { + "EF_ID": 62830, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:36.939Z", + "last_change_date": "2022-03-14T07:55:36.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3921, + "fields": { + "EF_ID": 62831, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.014Z", + "last_change_date": "2022-03-14T07:55:37.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3922, + "fields": { + "EF_ID": 62832, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.106Z", + "last_change_date": "2022-03-14T07:55:37.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3923, + "fields": { + "EF_ID": 62833, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Region: Latin America And Caribbean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.210Z", + "last_change_date": "2022-03-14T07:55:37.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3924, + "fields": { + "EF_ID": 62834, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Methane Conversion Factor (MCF), percentage of anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: All", + "Regional_Conditions": "Region: Australia And New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 2 of 4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-8 on Page 6.26 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.289Z", + "last_change_date": "2022-03-14T07:55:37.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3925, + "fields": { + "EF_ID": 62835, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.356Z", + "last_change_date": "2022-03-14T07:55:37.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3926, + "fields": { + "EF_ID": 62836, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Afghanistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.430Z", + "last_change_date": "2022-03-14T07:55:37.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3927, + "fields": { + "EF_ID": 62837, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "Lagoons", + "Parameter_Conditions": "", + "Regional_Conditions": "Colombia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.545Z", + "last_change_date": "2022-03-14T07:55:37.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3928, + "fields": { + "EF_ID": 62838, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "Lagoons", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.631Z", + "last_change_date": "2022-03-14T07:55:37.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3929, + "fields": { + "EF_ID": 62839, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Albania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1-92", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.697Z", + "last_change_date": "2022-03-14T07:55:37.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3930, + "fields": { + "EF_ID": 62840, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.764Z", + "last_change_date": "2022-03-14T07:55:37.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3931, + "fields": { + "EF_ID": 62841, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.863Z", + "last_change_date": "2022-03-14T07:55:37.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3932, + "fields": { + "EF_ID": 62842, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-100", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:37.939Z", + "last_change_date": "2022-03-14T07:55:37.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3933, + "fields": { + "EF_ID": 62843, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.006Z", + "last_change_date": "2022-03-14T07:55:38.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3934, + "fields": { + "EF_ID": 62844, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Croatia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.072Z", + "last_change_date": "2022-03-14T07:55:38.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3935, + "fields": { + "EF_ID": 62845, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-5", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.166Z", + "last_change_date": "2022-03-14T07:55:38.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3936, + "fields": { + "EF_ID": 62846, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.239Z", + "last_change_date": "2022-03-14T07:55:38.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3937, + "fields": { + "EF_ID": 62847, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.306Z", + "last_change_date": "2022-03-14T07:55:38.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3938, + "fields": { + "EF_ID": 62848, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.372Z", + "last_change_date": "2022-03-14T07:55:38.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3939, + "fields": { + "EF_ID": 62849, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50-85", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.468Z", + "last_change_date": "2022-03-14T07:55:38.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3940, + "fields": { + "EF_ID": 62850, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.539Z", + "last_change_date": "2022-03-14T07:55:38.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3941, + "fields": { + "EF_ID": 62851, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.605Z", + "last_change_date": "2022-03-14T07:55:38.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3942, + "fields": { + "EF_ID": 62852, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.672Z", + "last_change_date": "2022-03-14T07:55:38.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3943, + "fields": { + "EF_ID": 62853, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.778Z", + "last_change_date": "2022-03-14T07:55:38.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3944, + "fields": { + "EF_ID": 62854, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.864Z", + "last_change_date": "2022-03-14T07:55:38.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3945, + "fields": { + "EF_ID": 62855, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:38.939Z", + "last_change_date": "2022-03-14T07:55:38.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3946, + "fields": { + "EF_ID": 62856, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Moldavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.014Z", + "last_change_date": "2022-03-14T07:55:39.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3947, + "fields": { + "EF_ID": 62857, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.129Z", + "last_change_date": "2022-03-14T07:55:39.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3948, + "fields": { + "EF_ID": 62858, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.214Z", + "last_change_date": "2022-03-14T07:55:39.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3949, + "fields": { + "EF_ID": 62859, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-50", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.281Z", + "last_change_date": "2022-03-14T07:55:39.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3950, + "fields": { + "EF_ID": 62860, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.347Z", + "last_change_date": "2022-03-14T07:55:39.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3951, + "fields": { + "EF_ID": 62861, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-46", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.447Z", + "last_change_date": "2022-03-14T07:55:39.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3952, + "fields": { + "EF_ID": 62862, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.522Z", + "last_change_date": "2022-03-14T07:55:39.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3953, + "fields": { + "EF_ID": 62863, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Serbia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.589Z", + "last_change_date": "2022-03-14T07:55:39.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3954, + "fields": { + "EF_ID": 62864, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Slovenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.655Z", + "last_change_date": "2022-03-14T07:55:39.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3955, + "fields": { + "EF_ID": 62865, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.751Z", + "last_change_date": "2022-03-14T07:55:39.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3956, + "fields": { + "EF_ID": 62866, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.822Z", + "last_change_date": "2022-03-14T07:55:39.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3957, + "fields": { + "EF_ID": 62867, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.889Z", + "last_change_date": "2022-03-14T07:55:39.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3958, + "fields": { + "EF_ID": 62868, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:39.956Z", + "last_change_date": "2022-03-14T07:55:39.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3959, + "fields": { + "EF_ID": 62869, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-80", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.060Z", + "last_change_date": "2022-03-14T07:55:40.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3960, + "fields": { + "EF_ID": 62870, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.131Z", + "last_change_date": "2022-03-14T07:55:40.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3961, + "fields": { + "EF_ID": 62871, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Wastewater Treated", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Slovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-65", + "Unit": "%", + "Equation": "Equation 5.8 on Page 5.18 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 10 on Page 6.21 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-2, Sheet 2 of 4 and/or Worksheet 6-3,", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-9 on Page 6.27 of the Reference Manual)", + "Technical_Reference": "Doorn and Eklund (1995), Greenhouse Gases from Wastewater Treatment: Collection and Review of Country-Specific Data and Preliminary Emission Models. Prepared for US EPA Office of Research and Development", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.206Z", + "last_change_date": "2022-03-14T07:55:40.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3962, + "fields": { + "EF_ID": 62872, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Stepgrate", + "Parameter_Conditions": "Temperature: 780-880, Nature of Waste: Municipal refuse", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11-43", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.297Z", + "last_change_date": "2022-03-14T07:55:40.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3963, + "fields": { + "EF_ID": 62873, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Stepgrate", + "Parameter_Conditions": "Temperature: 780-980, Nature of Waste: Municipal refuse", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-220", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.379Z", + "last_change_date": "2022-03-14T07:55:40.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3964, + "fields": { + "EF_ID": 62874, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Fluidised bed", + "Parameter_Conditions": "Temperature: 830-850, Nature of Waste: Municipal refuse", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14-123", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.439Z", + "last_change_date": "2022-03-14T07:55:40.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3965, + "fields": { + "EF_ID": 62875, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: 5 stokers (20-400 tonnes/day)", + "Parameter_Conditions": "Nature of Waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26-270", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.503Z", + "last_change_date": "2022-03-14T07:55:40.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3966, + "fields": { + "EF_ID": 62876, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: 3 Fluidised bed", + "Parameter_Conditions": "Nature of Waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97-293", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.570Z", + "last_change_date": "2022-03-14T07:55:40.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3967, + "fields": { + "EF_ID": 62877, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Rotary kiln (120 tonnes/day)", + "Parameter_Conditions": "Nature of Waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35-165", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.664Z", + "last_change_date": "2022-03-14T07:55:40.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3968, + "fields": { + "EF_ID": 62878, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Rotary grate", + "Parameter_Conditions": "Temperature: 750, Nature of Waste: Sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "227", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.764Z", + "last_change_date": "2022-03-14T07:55:40.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3969, + "fields": { + "EF_ID": 62879, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Fluidised bed", + "Parameter_Conditions": "Temperature: 770-812, Nature of Waste: Sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "580-1528", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.853Z", + "last_change_date": "2022-03-14T07:55:40.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3970, + "fields": { + "EF_ID": 62880, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Fluidised bed", + "Parameter_Conditions": "Temperature: 838-854, Nature of Waste: Sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "684-1508", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:40.928Z", + "last_change_date": "2022-03-14T07:55:40.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3971, + "fields": { + "EF_ID": 62881, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Fluidised bed", + "Parameter_Conditions": "Temperature: 834-844, Nature of Waste: Sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275-886", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.025Z", + "last_change_date": "2022-03-14T07:55:41.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3972, + "fields": { + "EF_ID": 62882, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "N2O Emission Factors from Waste Incineration", + "Technology_Practices": "Facility: Fluidised bed", + "Parameter_Conditions": "Temperature: 853-887, Nature of Waste: Sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101-307", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.12 on Page 5.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (as part of the aggregate emission factor)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-10 on Page 6.29 of the Reference Manual)", + "Technical_Reference": "de Soete, G. (1993), Nitrous oxide from combustion and industry: chemistry, emissions, and control. In: A.R. van Amstel (ed.), Proceeding on the International IPCC Workshop on Methane and Nitrous Oxide - methods in national emissions inventories and options for control. Amersfoort, the Netherlands, 3-5 February 1993, pp. 324 - 325.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.103Z", + "last_change_date": "2022-03-14T07:55:41.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3973, + "fields": { + "EF_ID": 62883, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Alcohol Refining", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24 (16-32)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.178Z", + "last_change_date": "2022-03-14T07:55:41.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3974, + "fields": { + "EF_ID": 62884, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beer & Malt", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.3 (5.0-9.0)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.262Z", + "last_change_date": "2022-03-14T07:55:41.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3975, + "fields": { + "EF_ID": 62885, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (1.3-1.7)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.352Z", + "last_change_date": "2022-03-14T07:55:41.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3976, + "fields": { + "EF_ID": 62886, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Dairy Products", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7 (3-10)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.428Z", + "last_change_date": "2022-03-14T07:55:41.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3977, + "fields": { + "EF_ID": 62888, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Meat & Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13 (8-18)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.503Z", + "last_change_date": "2022-03-14T07:55:41.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3978, + "fields": { + "EF_ID": 62889, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Organic Chemicals", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67 (0-400)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.570Z", + "last_change_date": "2022-03-14T07:55:41.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3979, + "fields": { + "EF_ID": 62891, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Petroleum Refineries", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6 (0.3-1.2)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.645Z", + "last_change_date": "2022-03-14T07:55:41.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3980, + "fields": { + "EF_ID": 62892, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Plastics & Resins", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6 (0.3-1.2)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.737Z", + "last_change_date": "2022-03-14T07:55:41.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3981, + "fields": { + "EF_ID": 62893, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (combined)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "162 (85-240)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.806Z", + "last_change_date": "2022-03-14T07:55:41.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3982, + "fields": { + "EF_ID": 62896, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Starch Production", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9 (4-18)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.872Z", + "last_change_date": "2022-03-14T07:55:41.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3983, + "fields": { + "EF_ID": 62898, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Textiles (natural)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "172 (100-185)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:41.939Z", + "last_change_date": "2022-03-14T07:55:41.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3984, + "fields": { + "EF_ID": 62899, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Vegetable Oils", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1 (1.0-5.0)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.006Z", + "last_change_date": "2022-03-14T07:55:42.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3985, + "fields": { + "EF_ID": 62900, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Vegetables, Fruits & Juices", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (7-35)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.106Z", + "last_change_date": "2022-03-14T07:55:42.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3986, + "fields": { + "EF_ID": 62901, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Wine & Vinegar", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23 (11-46)", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.172Z", + "last_change_date": "2022-03-14T07:55:42.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3987, + "fields": { + "EF_ID": 62903, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Beer & Malt", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (1-4)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.239Z", + "last_change_date": "2022-03-14T07:55:42.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3988, + "fields": { + "EF_ID": 62904, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Coffee", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.4 (2-9)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.306Z", + "last_change_date": "2022-03-14T07:55:42.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3989, + "fields": { + "EF_ID": 62906, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Dairy Products", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4 (1-4)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.372Z", + "last_change_date": "2022-03-14T07:55:42.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3990, + "fields": { + "EF_ID": 62907, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Drugs & Medicines", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.467Z", + "last_change_date": "2022-03-14T07:55:42.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3991, + "fields": { + "EF_ID": 62908, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fish Processing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.562Z", + "last_change_date": "2022-03-14T07:55:42.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3992, + "fields": { + "EF_ID": 62909, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Meat & Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5 (2-3)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.655Z", + "last_change_date": "2022-03-14T07:55:42.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3993, + "fields": { + "EF_ID": 62910, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Organic Chemicals", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1 (1-2)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.722Z", + "last_change_date": "2022-03-14T07:55:42.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3994, + "fields": { + "EF_ID": 62911, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Petroleum Refineries", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (1-8)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.789Z", + "last_change_date": "2022-03-14T07:55:42.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3995, + "fields": { + "EF_ID": 62912, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Plastics & Resins", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4 (1-2)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.886Z", + "last_change_date": "2022-03-14T07:55:42.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3996, + "fields": { + "EF_ID": 62913, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (combined)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (0.3-8)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:42.962Z", + "last_change_date": "2022-03-14T07:55:42.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3997, + "fields": { + "EF_ID": 62916, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Starch Production", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0 (1-25)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.039Z", + "last_change_date": "2022-03-14T07:55:43.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3998, + "fields": { + "EF_ID": 62918, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Textiles (natural)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (0.3-0.8)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.114Z", + "last_change_date": "2022-03-14T07:55:43.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 3999, + "fields": { + "EF_ID": 62919, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Vegetable Oils", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 (0.3-0.8)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.172Z", + "last_change_date": "2022-03-14T07:55:43.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4000, + "fields": { + "EF_ID": 62920, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Vegetables, Fruits & Juices", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0 (0.5-2)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.272Z", + "last_change_date": "2022-03-14T07:55:43.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4001, + "fields": { + "EF_ID": 62921, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beverage - Wine & Vinegar", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7 (0.2-1.4)", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.347Z", + "last_change_date": "2022-03-14T07:55:43.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4002, + "fields": { + "EF_ID": 62922, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Alcohol Refining", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11 (5-22)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.414Z", + "last_change_date": "2022-03-14T07:55:43.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4003, + "fields": { + "EF_ID": 62923, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beer & Malt", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9 (2-7)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.487Z", + "last_change_date": "2022-03-14T07:55:43.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4004, + "fields": { + "EF_ID": 62924, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Coffee", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9 (3-15)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.547Z", + "last_change_date": "2022-03-14T07:55:43.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4005, + "fields": { + "EF_ID": 62925, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.650Z", + "last_change_date": "2022-03-14T07:55:43.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4006, + "fields": { + "EF_ID": 62926, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Dairy Products", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7 (1.5-5.2)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.737Z", + "last_change_date": "2022-03-14T07:55:43.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4007, + "fields": { + "EF_ID": 62927, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Drugs & Medicines", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.1 (1-10)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.805Z", + "last_change_date": "2022-03-14T07:55:43.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4008, + "fields": { + "EF_ID": 62928, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Fish Processing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.881Z", + "last_change_date": "2022-03-14T07:55:43.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4009, + "fields": { + "EF_ID": 62929, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Meat & Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.1 (2-7)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:43.964Z", + "last_change_date": "2022-03-14T07:55:43.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4010, + "fields": { + "EF_ID": 62930, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Organic Chemicals", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3 (0.8-5)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.087Z", + "last_change_date": "2022-03-14T07:55:44.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4011, + "fields": { + "EF_ID": 62932, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Petroleum Refineries", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0 (0.4-1.6)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.156Z", + "last_change_date": "2022-03-14T07:55:44.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4012, + "fields": { + "EF_ID": 62933, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Plastics & Resins", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.7 (0.8-5)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.222Z", + "last_change_date": "2022-03-14T07:55:44.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4013, + "fields": { + "EF_ID": 62934, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Pulp & Paper (combined)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9 (1-15)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.289Z", + "last_change_date": "2022-03-14T07:55:44.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4014, + "fields": { + "EF_ID": 62937, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Starch Production", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (1.5-42)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.356Z", + "last_change_date": "2022-03-14T07:55:44.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4015, + "fields": { + "EF_ID": 62938, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Sugar Refining", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2 (1-6)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.456Z", + "last_change_date": "2022-03-14T07:55:44.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4016, + "fields": { + "EF_ID": 62939, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Textiles (natural)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9 (0.8-1.6)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.545Z", + "last_change_date": "2022-03-14T07:55:44.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4017, + "fields": { + "EF_ID": 62941, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Vegetables, Fruits & Juices", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0 (2-10)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.606Z", + "last_change_date": "2022-03-14T07:55:44.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4018, + "fields": { + "EF_ID": 62942, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Wine & Vinegar", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (0.7-3.0)", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.672Z", + "last_change_date": "2022-03-14T07:55:44.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4019, + "fields": { + "EF_ID": 62943, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon (C) Content of Waste", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Wet waste", + "Value": "40 (33-50)", + "Unit": "% of waste (wet)", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.747Z", + "last_change_date": "2022-03-14T07:55:44.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4020, + "fields": { + "EF_ID": 62944, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon (C) Content of Waste", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Sewage Sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Dry matter", + "Value": "30", + "Unit": "% of sludge (dry matter)", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.842Z", + "last_change_date": "2022-03-14T07:55:44.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4021, + "fields": { + "EF_ID": 62945, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon (C) Content of Waste", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Clinical Waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Dry matter", + "Value": "60", + "Unit": "% of waste (dry matter)", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.920Z", + "last_change_date": "2022-03-14T07:55:44.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4022, + "fields": { + "EF_ID": 62946, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon (C) Content of Waste", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Hazardous Waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Wet waste", + "Value": "50", + "Unit": "% of waste (wet)", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:44.989Z", + "last_change_date": "2022-03-14T07:55:44.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4023, + "fields": { + "EF_ID": 62947, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fossil Carbon as % of Total Carbon", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Wet waste", + "Value": "40 (30-50)", + "Unit": "%", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.064Z", + "last_change_date": "2022-03-14T07:55:45.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4024, + "fields": { + "EF_ID": 62948, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon content", + "Technology_Practices": "Incineration and open burning of waste", + "Parameter_Conditions": "for sewage sludge Incineration in controlled facilities; open burning in open air, open dumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 5.1 of Chapter 5, Volume 5 of 2006 Guidelines `Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "4C1 and 4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment by authors of IPCC Good Practice Guidance and Uncertainty Management for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines, and by authors of IPCC Good Practice Guidance and Uncertainty Management for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for sewage sludge", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.131Z", + "last_change_date": "2022-03-14T07:55:45.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4025, + "fields": { + "EF_ID": 62949, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fossil Carbon as % of Total Carbon", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Clinical Waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Dry matter", + "Value": "40 (30-50)", + "Unit": "%", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.197Z", + "last_change_date": "2022-03-14T07:55:45.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4026, + "fields": { + "EF_ID": 62950, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fossil Carbon as % of Total Carbon", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Hazardous Waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Wet waste", + "Value": "90 (90-100)", + "Unit": "%", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.294Z", + "last_change_date": "2022-03-14T07:55:45.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4027, + "fields": { + "EF_ID": 62951, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Efficiency of Combustion", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Wet waste", + "Value": "95 (95-99)", + "Unit": "%", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.389Z", + "last_change_date": "2022-03-14T07:55:45.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4028, + "fields": { + "EF_ID": 62952, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Efficiency of Combustion", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Sewage Sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Dry matter", + "Value": "95", + "Unit": "%", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.464Z", + "last_change_date": "2022-03-14T07:55:45.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4029, + "fields": { + "EF_ID": 62953, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Efficiency of Combustion", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Clinical Waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Dry matter", + "Value": "95 (50-99.5)", + "Unit": "%", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.531Z", + "last_change_date": "2022-03-14T07:55:45.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4030, + "fields": { + "EF_ID": 62954, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Efficiency of Combustion", + "Technology_Practices": "", + "Parameter_Conditions": "Type of waste: Hazardous Waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Wet waste", + "Value": "99.5 (95-99.5)", + "Unit": "%", + "Equation": "Equation 5.11 on Page 5.25 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "Judgement by Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.605Z", + "last_change_date": "2022-03-14T07:55:45.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4031, + "fields": { + "EF_ID": 62955, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Hearth or grate", + "Parameter_Conditions": "Type of waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Dry Waste", + "Value": "5.5-66", + "Unit": "kg N2O/Gg waste (dry)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Johnke, B (1999), ‘Emissions from waste incineration`. Background paper for Expert meeting on good practice in inventory preparation : emissions from waste. IPCC/OECD/IEA National Greenhouse Gas Inventories Programme", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.681Z", + "last_change_date": "2022-03-14T07:55:45.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4032, + "fields": { + "EF_ID": 62956, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Hearth or grate", + "Parameter_Conditions": "Type of waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "Dry Waste", + "Value": "5.5-11 (average); 30 (highest", + "Unit": "kg N2O/Gg waste (dry)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Environment Agency of the United Kingdom (1999), Environment Agencys Technical Guidance Notes, Environment Agency`s Pollution Inventory (1998 Data), UK", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.790Z", + "last_change_date": "2022-03-14T07:55:45.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4033, + "fields": { + "EF_ID": 62957, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Hearth or grate", + "Parameter_Conditions": "Type of waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Wet Waste", + "Value": "40-150", + "Unit": "kg N2O/Gg waste (wet)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Yasuda, K. (1993), Emissions of Greenhouse Gases from Waste Incineration. Report of Kanagawa Environmental Research Center, vol. 16, pp. 49-53", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.887Z", + "last_change_date": "2022-03-14T07:55:45.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4034, + "fields": { + "EF_ID": 62958, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Hearth or grate", + "Parameter_Conditions": "Type of waste: Sewage Sludge", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Wet", + "Value": "400", + "Unit": "kg N2O/Gg sewage sludge (wet)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Yasuda, K. (1993), Emissions of Greenhouse Gases from Waste Incineration. Report of Kanagawa Environmental Research Center, vol. 16, pp. 49-53", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:45.947Z", + "last_change_date": "2022-03-14T07:55:45.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4035, + "fields": { + "EF_ID": 62959, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Rotating", + "Parameter_Conditions": "Type of waste: Hazardous Waste (from industry);", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Dry Waste", + "Value": "210-240", + "Unit": "kg N2O/Gg waste (dry)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Johnke, B (1999), ‘Emissions from waste incineration`. Background paper for Expert meeting on good practice in inventory preparation : emissions from waste. IPCC/OECD/IEA National Greenhouse Gas Inventories Programme", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.014Z", + "last_change_date": "2022-03-14T07:55:46.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4036, + "fields": { + "EF_ID": 62960, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Fluidised bed", + "Parameter_Conditions": "Type of waste: Municipal Solid Waste (MSW)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Wet Waste", + "Value": "240-660", + "Unit": "kg N2O/Gg waste (wet)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Yasuda, K. (1993), Emissions of Greenhouse Gases from Waste Incineration. Report of Kanagawa Environmental Research Center, vol. 16, pp. 49-53", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.089Z", + "last_change_date": "2022-03-14T07:55:46.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4037, + "fields": { + "EF_ID": 62961, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Fluidised bed", + "Parameter_Conditions": "Type of waste: Sewage Sludge;", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "Dry matter", + "Value": "800", + "Unit": "kg N2O/Gg sewage sludge (dry matter)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Johnke, B (1999), ‘Emissions from waste incineration`. Background paper for Expert meeting on good practice in inventory preparation : emissions from waste. IPCC/OECD/IEA National Greenhouse Gas Inventories Programme", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.175Z", + "last_change_date": "2022-03-14T07:55:46.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4038, + "fields": { + "EF_ID": 62962, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Fluidised bed", + "Parameter_Conditions": "Type of waste: Sewage Sludge;", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "Dry matter", + "Value": "100-1500", + "Unit": "kg N2O/Gg sewage sludge (dry matter)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Environment Agency of the United Kingdom (1999), Environment Agencys Technical Guidance Notes, Environment Agency`s Pollution Inventory (1998 Data), UK", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.254Z", + "last_change_date": "2022-03-14T07:55:46.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4039, + "fields": { + "EF_ID": 62963, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors for N2O from Waste Incineration", + "Technology_Practices": "Incineration plant type: Fluidised bed", + "Parameter_Conditions": "Type of waste: Sewage Sludge;", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Wet", + "Value": "300-1530", + "Unit": "kg N2O/Gg sewage sludge (wet)", + "Equation": "Equation 5.12 on Page 5.26 of the IPCC Good Practice Guidance and Uncertainty Mangement in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.7 on Page 5.30)", + "Technical_Reference": "Yasuda, K. (1993), Emissions of Greenhouse Gases from Waste Incineration. Report of Kanagawa Environmental Research Center, vol. 16, pp. 49-53", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.314Z", + "last_change_date": "2022-03-14T07:55:46.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4040, + "fields": { + "EF_ID": 66026, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon Dissimilated (DOCF)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 6.9 of the Reference Manual); IPCC Good Practice Guid", + "Technical_Reference": "Tabasaran, ). (1981), Gas Production from Landfill. In Household Waste Management in Europe, Economics and Techniques, A.V. Bridgewater and Lindgren, K. (eds), Van Nostrand Reinhold CO, New York, USA, pp. 159-175. and Bingemer, H.G. and P.J. Crutzen (1987), The production of methane from solid wastes. Journal of Geophysical Research, 92 (D2), pp. 2181-2187.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "should only be used if lignin carbon is excluded from the Degradable Organic Carbon (DOC) value", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.381Z", + "last_change_date": "2022-03-14T07:55:46.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4041, + "fields": { + "EF_ID": 66027, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of Degradable Organic Carbon Dissimilated (DOCF)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-0.6", + "Unit": "fraction", + "Equation": "Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 of 1", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 5.9)", + "Technical_Reference": "Oonk, H. and Boom, T. (1995), Landfill gas formation, recovery and emissions. TNO-report R95-203, TNO, Appeldoorn, The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "lignin carbon included in the Degradable Organic Carbon (DOC) value", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.477Z", + "last_change_date": "2022-03-14T07:55:46.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4042, + "fields": { + "EF_ID": 66028, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "OX (oxidation factor for SWDS)", + "Technology_Practices": "managed (but not covered with aerated material), unmanaged and uncategorized SWDS", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "fraction", + "Equation": "Equation 3.1 in Chapter 3 of Volume 5, 2006 IPCC Guidelines Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab Worksheet 6-1, Sheet 1 of 1 in 1996 IPCC Guidelines", + "Data_Source": "table 3.2, p. 3.15 of 2006 IPCC Guidelines Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 6.5 of the Reference Manual); IPCC Good Practice Guid", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Include OX in the uncertainty analysis if a value other than zero has been used for OX itself. In this case the justification for a non-zero value should include consideration of uncertainties.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.554Z", + "last_change_date": "2022-03-14T07:55:46.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4043, + "fields": { + "EF_ID": 66029, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "OX (oxidation factor for SWDS)", + "Technology_Practices": "well-managed covered with CH4 oxidising material (e.g. soil, compost)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 3.1 in Chapter 3 of Volume 5, 2006 IPCC Guidelines Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab `Worksheet 6-1, Sheet 1 of 1 in 1996 IPCC Guidelines", + "Data_Source": "table 3.2, p. 3.15 of 2006 IPCC Guidelines IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 5.10)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Bogner, J. and Matthews, E. (2003). ‘Global methane emissions from landfills: New methodology and annual estimates 1980 – 1996`, Global Biogeochemical Cycles, Vol. 17, No. 2.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Include OX in the uncertainty analysis if a value other than zero has been used for OX itself. In this case the justification for a non-zero value should include consideration of uncertainties.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.631Z", + "last_change_date": "2022-03-14T07:55:46.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4044, + "fields": { + "EF_ID": 66030, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "F (fraction of methane in generated landfill gas)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 3.3 and Equation 3.6 in Chapter 3 of Volume 5, 2006 IPCC Guidelines Equation 5.1 on Page 5.6 and Equation 5.3 on Page 5.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories Equation 1 in page 6.5 Volume 3 of 1996 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab `Worksheet 6-1, Sheet 1 of 1 in 1996 IPCC Guidelines", + "Data_Source": "p. 3.15, p.3.26 of 2006 IPCC Guidelines Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 6.5 of the Reference Manual); IPCC Good Practice Guidance and Uncertainties Management (p.5.10)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.05", + "Upper_Bound": "0.05", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value can vary between 0.5 and 0.55. Only material with substantial amounts of oils or fats can generate with substantially more than 50% methane The fraction of CH4 in generated landfill gas should not be confused with measured CH4 in gas emitted from the SWDS. (Bergman, H. (1995). Metanoxidation i täckskikt på avfallsupplag. (Methane oxidation in waste deposition covers). Licentiate thesis 1995:14L, Tekniska Högskolan i Luleå, ISSN 0280-8242. (In Swedish); Kämpfer, P. and Weissenfels, W. (2001). Biologische Behandlung organisher Abfälle, Springer, Berlin.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.698Z", + "last_change_date": "2022-03-14T07:55:46.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4045, + "fields": { + "EF_ID": 66031, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Frction of Degradable Organic Carbon (DOC)", + "Technology_Practices": "", + "Parameter_Conditions": "Waste stream: Paper and textiles", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 5.4 on Page 5.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-3 on Page 6.9 of the Reference Manual); IPCC Good", + "Technical_Reference": "Bingemer, H.G. and P.J. Crutzen (1987), “The production of methane from solid wastes.” Journal of Geophysical Research, 92 (D2): 2181-2187", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.786Z", + "last_change_date": "2022-03-14T07:55:46.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4046, + "fields": { + "EF_ID": 66032, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Frction of Degradable Organic Carbon (DOC)", + "Technology_Practices": "", + "Parameter_Conditions": "Waste stream: Garden and park waste, and other (non-food) organic putrescibles", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "fraction", + "Equation": "Equation 5.4 on Page 5.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-3 on Page 6.9 of the Reference Manual); IPCC Good", + "Technical_Reference": "Bingemer, H.G. and P.J. Crutzen (1987), “The production of methane from solid wastes.” Journal of Geophysical Research, 92 (D2): 2181-2187", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.856Z", + "last_change_date": "2022-03-14T07:55:46.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4047, + "fields": { + "EF_ID": 66033, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Frction of Degradable Organic Carbon (DOC)", + "Technology_Practices": "", + "Parameter_Conditions": "Waste stream: Food waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 5.4 on Page 5.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-3 on Page 6.9 of the Reference Manual); IPCC Good", + "Technical_Reference": "Bingemer, H.G. and P.J. Crutzen (1987), “The production of methane from solid wastes.” Journal of Geophysical Research, 92 (D2): 2181-2187", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.931Z", + "last_change_date": "2022-03-14T07:55:46.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4048, + "fields": { + "EF_ID": 66034, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Frction of Degradable Organic Carbon (DOC)", + "Technology_Practices": "", + "Parameter_Conditions": "Waste stream: Wood and straw waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 5.4 on Page 5.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 6-3 on Page 6.9 of the Reference Manual); IPCC Good", + "Technical_Reference": "Bingemer, H.G. and P.J. Crutzen (1987), “The production of methane from solid wastes.” Journal of Geophysical Research, 92 (D2): 2181-2187", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:46.996Z", + "last_change_date": "2022-03-14T07:55:46.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4049, + "fields": { + "EF_ID": 66035, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "methane generation rate constant (k)", + "Technology_Practices": "", + "Parameter_Conditions": "Site Conditions: Slow decay , dry site conditions, slowly degradable waste such as wood or paper", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "1/year", + "Equation": "Equation 5.1 on Page 5.6 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 5.7)", + "Technical_Reference": "Oonk, H. and Boom, T. (1995), Landfill gas formation, recovery and emissions. TNO-report R95-203, TNO, Appeldoorn, The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.088Z", + "last_change_date": "2022-03-14T07:55:47.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4050, + "fields": { + "EF_ID": 66036, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "methane generation rate constant (k)", + "Technology_Practices": "", + "Parameter_Conditions": "Site Conditions: Rapid decay, high moisture conditions, rapidly degradable waste such as food waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "1/year", + "Equation": "Equation 5.1 on Page 5.6 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 5.7)", + "Technical_Reference": "Oonk, H. and Boom, T. (1995), Landfill gas formation, recovery and emissions. TNO-report R95-203, TNO, Appeldoorn, The Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.162Z", + "last_change_date": "2022-03-14T07:55:47.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4051, + "fields": { + "EF_ID": 66037, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "methane generation rate constant (k)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "1/year", + "Equation": "Equation 5.1 on Page 5.6 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 5.7)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.229Z", + "last_change_date": "2022-03-14T07:55:47.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4052, + "fields": { + "EF_ID": 66038, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Food - Fish Processing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8-18", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.296Z", + "last_change_date": "2022-03-14T07:55:47.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4053, + "fields": { + "EF_ID": 66039, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Paints", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1-10", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.364Z", + "last_change_date": "2022-03-14T07:55:47.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4054, + "fields": { + "EF_ID": 66040, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Soap and Detergents", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-5.0", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.456Z", + "last_change_date": "2022-03-14T07:55:47.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4055, + "fields": { + "EF_ID": 66041, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Soft Drinks", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.566Z", + "last_change_date": "2022-03-14T07:55:47.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4056, + "fields": { + "EF_ID": 66042, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Sugar Refining", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4-18", + "Unit": "m3/tonnes of product", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.662Z", + "last_change_date": "2022-03-14T07:55:47.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4057, + "fields": { + "EF_ID": 66043, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Alcohol Refining", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3-11", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.739Z", + "last_change_date": "2022-03-14T07:55:47.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4058, + "fields": { + "EF_ID": 66044, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Beverage - Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.814Z", + "last_change_date": "2022-03-14T07:55:47.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4059, + "fields": { + "EF_ID": 66045, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Soap and Detergents", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3-0.8", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.881Z", + "last_change_date": "2022-03-14T07:55:47.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4060, + "fields": { + "EF_ID": 66046, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Beverage - Soft Drinks", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:47.985Z", + "last_change_date": "2022-03-14T07:55:47.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4061, + "fields": { + "EF_ID": 66047, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Sugar Refining", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2-8", + "Unit": "g/l", + "Equation": "See Pages 6.19 - 6.23 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.062Z", + "last_change_date": "2022-03-14T07:55:48.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4062, + "fields": { + "EF_ID": 66048, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Paints", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1-10", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.131Z", + "last_change_date": "2022-03-14T07:55:48.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4063, + "fields": { + "EF_ID": 66049, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Soap and Detergents", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-1.2", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.197Z", + "last_change_date": "2022-03-14T07:55:48.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4064, + "fields": { + "EF_ID": 66050, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Soft Drinks", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.264Z", + "last_change_date": "2022-03-14T07:55:48.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4065, + "fields": { + "EF_ID": 66051, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Chemical Oxygen Demand (COD) ", + "Technology_Practices": "", + "Parameter_Conditions": "Industry Type: Vegetable Oils", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-1.2", + "Unit": "g/l", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual", + "IPCC_Worksheet": "Worksheet 6-3, Sheet 1 of 4", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.4 on Page 5.22)", + "Technical_Reference": "Doorn, M.R.J., R. Strait, W. Barnard, and B. Eklund (1997), Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.379Z", + "last_change_date": "2022-03-14T07:55:48.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4066, + "fields": { + "EF_ID": 110068, + "IPCC_Category": "1.B.1.a - Coal mining and handling", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Underground Emission Factors for Selected Countries", + "Technology_Practices": "Global Average Method - Underground Mining", + "Parameter_Conditions": "", + "Regional_Conditions": "Former Soviet Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.8 - 22.2", + "Unit": "m3/tonne", + "Equation": "Equation 1 on Page 1.105 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1- 6; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-54 on Page 1.105) of the Reference Manual (Estimated Underground Emission Factors for Selected Countries)", + "Technical_Reference": "US EPA (1993) Global Anthropogenic Methane Emissions: Estimates for 1990, Report to the US Congress, US Environmental Protection Agency , Office of Policy, Planning and Evaluation, Washington DC, USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.462Z", + "last_change_date": "2022-03-14T07:55:48.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4067, + "fields": { + "EF_ID": 110069, + "IPCC_Category": "1.B.1.a - Coal mining and handling", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Underground Emission Factors for Selected Countries", + "Technology_Practices": "Global Average Method - Underground Mining", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.0 - 15.3", + "Unit": "m3/tonne", + "Equation": "Equation 1 on Page 1.105 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1- 6; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-54 on Page 1.105) of the Reference Manual (Estimated Underground Emission Factors for Selected Countries)", + "Technical_Reference": "US EPA (1993) Anthropogenic Methane Emissions in the United States: Estimates for 1990, Report to the US Congress, US Environmental Protection Agency , Office of Air and Radiation, Washington DC, USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.523Z", + "last_change_date": "2022-03-14T07:55:48.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4068, + "fields": { + "EF_ID": 110070, + "IPCC_Category": "1.B.1.a - Coal mining and handling", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Underground Emission Factors for Selected Countries", + "Technology_Practices": "Global Average Method - Underground Mining", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.4", + "Unit": "m3/tonne", + "Equation": "Equation 1 on Page 1.105 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1- 6; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-54 on Page 1.105) of the Reference Manual (Estimated Underground Emission Factors for Selected Countries)", + "Technical_Reference": "Zimmermeyer, G. (1989) Methane emissions and Hard Coal Mining, Glueckaufhaus, Essen, Germany, Gesamtverband des deutschen Steinkohlenbergbaus, personal communication", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.597Z", + "last_change_date": "2022-03-14T07:55:48.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4069, + "fields": { + "EF_ID": 110071, + "IPCC_Category": "1.B.1.a - Coal mining and handling", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Underground Emission Factors for Selected Countries", + "Technology_Practices": "Global Average Method - Underground Mining", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.3", + "Unit": "m3/tonne", + "Equation": "Equation 1 on Page 1.105 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1- 6; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-54 on Page 1.105) of the Reference Manual (Estimated Underground Emission Factors for Selected Countries)", + "Technical_Reference": "BCTSRE (1992), Quantification of Methane Emissions from British Coal Mine Sources, prepared by British Coal Technical Services and Research Executive for the Working Group on Methane Emissions, The Watt Committee on Energy, UK ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.697Z", + "last_change_date": "2022-03-14T07:55:48.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4070, + "fields": { + "EF_ID": 110072, + "IPCC_Category": "1.B.1.a - Coal mining and handling", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Underground Emission Factors for Selected Countries", + "Technology_Practices": "Global Average Method - Underground Mining", + "Parameter_Conditions": "", + "Regional_Conditions": "Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.8 - 12.0", + "Unit": "m3/tonne", + "Equation": "Equation 1 on Page 1.105 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1- 6; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-54 on Page 1.105) of the Reference Manual (Estimated Underground Emission Factors for Selected Countries)", + "Technical_Reference": "Pilcher, R. C. et al.(1991) Assessment of the Potential for Economic Development and Utilisation of Coalbed Methane in Poland. EPA/400/1-91/032, US Environmental Protection Agency, Washington DC, USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.816Z", + "last_change_date": "2022-03-14T07:55:48.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4071, + "fields": { + "EF_ID": 110073, + "IPCC_Category": "1.B.1.a - Coal mining and handling", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Underground Emission Factors for Selected Countries", + "Technology_Practices": "Global Average Method - Underground Mining", + "Parameter_Conditions": "", + "Regional_Conditions": "Czechoslovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.9", + "Unit": "m3/tonne", + "Equation": "Equation 1 on Page 1.105 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1- 6; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-54 on Page 1.105) of the Reference Manual (Estimated Underground Emission Factors for Selected Countries)", + "Technical_Reference": "Bibler, C.J. et al (1992) Assessment of the Potential for Economic Development and Utilisation of Coalbed Methane in Czechoslovakia. EPA/430/R-92/1008, US Environmental Protection Agency, Office of Air and Radiation, Washington, DC, USA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:48.921Z", + "last_change_date": "2022-03-14T07:55:48.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4072, + "fields": { + "EF_ID": 110074, + "IPCC_Category": "1.B.1.a - Coal mining and handling", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Underground Emission Factors for Selected Countries", + "Technology_Practices": "Global Average Method - Underground Mining", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.6", + "Unit": "m3/tonne", + "Equation": "Equation 1 on Page 1.105 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1- 6; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-54 on Page 1.105) of the Reference Manual (Estimated Underground Emission Factors for Selected Countries)", + "Technical_Reference": "Lama, R. D. (1992) Methane gas emissions from coal mining in Australia: Estimates and Control Strategies In Proceedings of the IEA/OECD Conference on Coal, the Environment and Development: Technogies to reduce Greenhouse Gas Emissions, IEA/OECD, Paris, France, pp.255-266", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.010Z", + "last_change_date": "2022-03-14T07:55:49.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4073, + "fields": { + "EF_ID": 110075, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "Normal operations: fugitive emissions; deliberate releases from pneumatic devices and process vents", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290 - 4 670", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. All emissions have been scaled down to 1988 energy consumption or production levels", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas production: Emissions from non-gas producing oil wells including fugitive emissions and maintenance emissions in the USA", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.081Z", + "last_change_date": "2022-03-14T07:55:49.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4074, + "fields": { + "EF_ID": 110076, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "Normal operations: fugitive emissions; deliberate releases from pneumatic devices and process vents", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39 590 - 104 220", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. All emissions have been scaled down to 1988 energy consumption or production levels", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas production: Emissions from gas production, including fugitive emissions, dehydrator venting, bleeding from pneumatic devices, maintenance, and systems upsets in the USA.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.203Z", + "last_change_date": "2022-03-14T07:55:49.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4075, + "fields": { + "EF_ID": 110077, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "Normal operations: fugitive emissions; deliberate releases from pneumatic devices and process vents", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2 870 - 13 920", + "Unit": "kg/PJ of oil and gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. All emissions have been scaled down to 1988 energy consumption or production levels", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas production: Venting and flaring emissions from oil and gas production and fugitive emissions from gas-producing oil wells in the USA.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.272Z", + "last_change_date": "2022-03-14T07:55:49.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4076, + "fields": { + "EF_ID": 110078, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "Normal operations: fugitive emissions; deliberate releases from process vents at refineries, during loading and unloading of tankers and storage tanks.", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110 - 1 666", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. All emissions have been scaled down to 1988 energy consumption or production levels", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining: Emissions from oil refining and related oil storage tanks in the USA.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.339Z", + "last_change_date": "2022-03-14T07:55:49.339Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4077, + "fields": { + "EF_ID": 110079, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "Normal operations: fugitive emissions; deliberate releases from pneumatic devices and process vents", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59 660 - 116 610", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. All emissions have been scaled down to 1988 energy consumption or production levels", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transmission and Distribution: Emissions from gas processing, transmisson and and distribution including fugitive emissions, dehydrator venting, bleeding from pneumaic devices, maintenance, and system upsets in the USA.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.406Z", + "last_change_date": "2022-03-14T07:55:49.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4078, + "fields": { + "EF_ID": 110080, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "Normal operations: fugitive emissions; deliberate releases from pneumatic devices and process vents", + "Parameter_Conditions": "", + "Regional_Conditions": "Former Soviet Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "218 000 - 567 600", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Rabchuk, V.I, N.I. Ilkevich and Y.D. Kononov (1991), A Study of Methane Leakage in the Soviet Natural Gas Supply System, prepared for the Batelle Pacific Northwest Laboratory, Siberian Energy Institute, Irkutsk, USSR.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Emissions from leakages at gas wells including routine equipment venting in the former USSR.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.513Z", + "last_change_date": "2022-03-14T07:55:49.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4079, + "fields": { + "EF_ID": 110081, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former Soviet Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "340 000 - 715 800", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Rabchuk, V.I, N.I. Ilkevich and Y.D. Kononov (1991), A Study of Methane Leakage in the Soviet Natural Gas Supply System, prepared for the Batelle Pacific Northwest Laboratory, Siberian Energy Institute, Irkutsk, USSR.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transmission and Distribution: Emissions from leakages at underground storage facilities, compressor stations, linear part of main pipelines and distribution networks in the former USSR", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.589Z", + "last_change_date": "2022-03-14T07:55:49.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4080, + "fields": { + "EF_ID": 110082, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14 800 - 27 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Schneider-Fresenius, W., R.A. Hintz, U. Hoffmann-Meienbrock, W. Klopffer and, J. Wittekind (1989) Determination of Methane Emission into the Atmosphere due to, Losses in the Natural Gas Supply System of the Federal Republic of Germany -Contribution, of Methane to the Global Greenhouse Effect. Battelle-Institut, Frankfurt,, Germany.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Emissions from gas production, and treatment facilities in, Germany", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.673Z", + "last_change_date": "2022-03-14T07:55:49.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4081, + "fields": { + "EF_ID": 110083, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58 000 - 111 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.119) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Schneider-Fresenius, W., R.A. Hintz, U. Hoffmann-Meienbrock, W. Klopffer and, J. Wittekind (1989) Determination of Methane Emission into the Atmosphere due to, Losses in the Natural Gas Supply System of the Federal Republic of Germany -Contribution, of Methane to the Global Greenhouse Effect. Battelle-Institut, Frankfurt,, Germany.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transmission and Distribution: , Emissions from transportation,, distribution and storage of gas in, Germany", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.739Z", + "last_change_date": "2022-03-14T07:55:49.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4082, + "fields": { + "EF_ID": 110084, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Barns, D.W. and J.A. Edmonds (1990), An Evaluation of the Relationship between the, Production and Use of Energy and Atmospheric Methane Emissions, TR047,, US DOE/NBB0088P, US Department of Energy, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": ", Oil and Gas Production: Emissions from gas production and, separation facilities in the world", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.840Z", + "last_change_date": "2022-03-14T07:55:49.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4083, + "fields": { + "EF_ID": 110085, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6 300 - 1 019 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Barns, D.W. and J.A. Edmonds (1990), An Evaluation of the Relationship between the, Production and Use of Energy and Atmospheric Methane Emissions, TR047,, US DOE/NBB0088P, US Department of Energy, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: , Emissions from venting and flaring, activity by region of the world", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:49.931Z", + "last_change_date": "2022-03-14T07:55:49.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4084, + "fields": { + "EF_ID": 110086, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12 800", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Norwegian SPCA (1992b), Letter on “Methane emissions from oil activities” from Audun, Rosland, State Pollution Control Authority to Craig D. Ebert, ICF Incorporated.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: , Emissions from cold vents and, fugitive emissions", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.004Z", + "last_change_date": "2022-03-14T07:55:50.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4085, + "fields": { + "EF_ID": 110087, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3 200", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Norwegian SPCA (1992), Letter on “Methane emissions from oil activities” from Audun, Rosland, State Pollution Control Authority to Craig D. Ebert, ICF Incorporated.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Flare and gas turbines", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.071Z", + "last_change_date": "2022-03-14T07:55:50.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4086, + "fields": { + "EF_ID": 110088, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Norwegian SPCA (1992), Letter on “Methane emissions from oil activities” from Audun, Rosland, State Pollution Control Authority to Craig D. Ebert, ICF Incorporated.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Pre-production emissions (well, testing)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.138Z", + "last_change_date": "2022-03-14T07:55:50.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4087, + "fields": { + "EF_ID": 110089, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2 500", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Norwegian SPCA (1992), Letter on “Methane emissions from oil activities” from Audun, Rosland, State Pollution Control Authority to Craig D. Ebert, ICF Incorporated.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation: Emissions from offshore loading of, crude oil.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.234Z", + "last_change_date": "2022-03-14T07:55:50.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4088, + "fields": { + "EF_ID": 110090, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1 800", + "Unit": "kg/PJ of gas processed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Norwegian SPCA (1992), Letter on “Methane emissions from oil activities” from Audun, Rosland, State Pollution Control Authority to Craig D. Ebert, ICF Incorporated.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing: Emissions from one Norwegian gas, processing terminal.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.331Z", + "last_change_date": "2022-03-14T07:55:50.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4089, + "fields": { + "EF_ID": 110091, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3 000 - 7 500", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Norwegian Oil Industry Association - OLF (1993), Report from OLF Environmental, Programme - Phase 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Emissions from cold vents and, fugitive emissions", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.396Z", + "last_change_date": "2022-03-14T07:55:50.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4090, + "fields": { + "EF_ID": 110092, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Summary of Methane Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100 - 400", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 57 on Page 1.120) of the Reference Manual (Summary of Methane Emission Factors)", + "Technical_Reference": "Norwegian Oil Industry Association - OLF (1993), Report from OLF Environmental, Programme - Phase 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Pre-production emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.462Z", + "last_change_date": "2022-03-14T07:55:50.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4091, + "fields": { + "EF_ID": 110093, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300 - 5 000", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Oil Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.529Z", + "last_change_date": "2022-03-14T07:55:50.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4092, + "fields": { + "EF_ID": 110094, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300 - 5 000", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Oil Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.606Z", + "last_change_date": "2022-03-14T07:55:50.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4093, + "fields": { + "EF_ID": 110095, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300 - 5 000", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Oil Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.696Z", + "last_change_date": "2022-03-14T07:55:50.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4094, + "fields": { + "EF_ID": 110096, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300 - 5 000", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Oil Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.781Z", + "last_change_date": "2022-03-14T07:55:50.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4095, + "fields": { + "EF_ID": 110097, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300 - 5 000", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Oil Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.854Z", + "last_change_date": "2022-03-14T07:55:50.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4096, + "fields": { + "EF_ID": 110098, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15 000 - 27 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:50.929Z", + "last_change_date": "2022-03-14T07:55:50.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4097, + "fields": { + "EF_ID": 110099, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46 000 - 84 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.038Z", + "last_change_date": "2022-03-14T07:55:51.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4098, + "fields": { + "EF_ID": 110100, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140 000 - 314 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.114Z", + "last_change_date": "2022-03-14T07:55:51.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4099, + "fields": { + "EF_ID": 110101, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46 000 - 96 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.188Z", + "last_change_date": "2022-03-14T07:55:51.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4100, + "fields": { + "EF_ID": 110102, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46 000 - 96 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Fugitive and Other Maintenance Emissions from Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.264Z", + "last_change_date": "2022-03-14T07:55:51.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4101, + "fields": { + "EF_ID": 110103, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3 000 - 14 000", + "Unit": "kg/PJ of oil and gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Venting and Flaring from Oil and Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.357Z", + "last_change_date": "2022-03-14T07:55:51.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4102, + "fields": { + "EF_ID": 110104, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1 000 - 3 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Venting and Flaring from Oil and Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.439Z", + "last_change_date": "2022-03-14T07:55:51.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4103, + "fields": { + "EF_ID": 110105, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6 000 - 30 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Venting and Flaring from Oil and Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.514Z", + "last_change_date": "2022-03-14T07:55:51.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4104, + "fields": { + "EF_ID": 110106, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "758 000 - 1 046 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Venting and Flaring from Oil and Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.614Z", + "last_change_date": "2022-03-14T07:55:51.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4105, + "fields": { + "EF_ID": 110107, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175 000 -209 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production: Venting and Flaring from Oil and Gas Production", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.718Z", + "last_change_date": "2022-03-14T07:55:51.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4106, + "fields": { + "EF_ID": 110108, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Due Crude Oil Transportation, Storage and Refining: Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.856Z", + "last_change_date": "2022-03-14T07:55:51.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4107, + "fields": { + "EF_ID": 110109, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Due Crude Oil Transportation, Storage and Refining: Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.922Z", + "last_change_date": "2022-03-14T07:55:51.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4108, + "fields": { + "EF_ID": 110110, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Due Crude Oil Transportation, Storage and Refining: Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:51.989Z", + "last_change_date": "2022-03-14T07:55:51.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4109, + "fields": { + "EF_ID": 110111, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Due Crude Oil Transportation, Storage and Refining: Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.056Z", + "last_change_date": "2022-03-14T07:55:52.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4110, + "fields": { + "EF_ID": 110112, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: Due to Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.154Z", + "last_change_date": "2022-03-14T07:55:52.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4111, + "fields": { + "EF_ID": 110113, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: Due to Refining", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.231Z", + "last_change_date": "2022-03-14T07:55:52.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4112, + "fields": { + "EF_ID": 110114, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: Due to Refining", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.306Z", + "last_change_date": "2022-03-14T07:55:52.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4113, + "fields": { + "EF_ID": 110115, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: Due to Refining", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.381Z", + "last_change_date": "2022-03-14T07:55:52.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4114, + "fields": { + "EF_ID": 110116, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: Due to Refining", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.456Z", + "last_change_date": "2022-03-14T07:55:52.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4115, + "fields": { + "EF_ID": 110117, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: Due to Refining", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.555Z", + "last_change_date": "2022-03-14T07:55:52.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4116, + "fields": { + "EF_ID": 110118, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 250", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: From Oil in Storage Tanks", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.639Z", + "last_change_date": "2022-03-14T07:55:52.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4117, + "fields": { + "EF_ID": 110119, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 250", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: From Oil in Storage Tanks", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.714Z", + "last_change_date": "2022-03-14T07:55:52.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4118, + "fields": { + "EF_ID": 110120, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 250", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: From Oil in Storage Tanks", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.789Z", + "last_change_date": "2022-03-14T07:55:52.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4119, + "fields": { + "EF_ID": 110121, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 250", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: From Oil in Storage Tanks", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.864Z", + "last_change_date": "2022-03-14T07:55:52.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4120, + "fields": { + "EF_ID": 110122, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 250", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Crude Oil Transportation, Storage and Refining: From Oil in Storage Tanks", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:52.958Z", + "last_change_date": "2022-03-14T07:55:52.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4121, + "fields": { + "EF_ID": 110123, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "288 000 - 628 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Emissions from Processing, Distribution and Transmission.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.039Z", + "last_change_date": "2022-03-14T07:55:53.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4122, + "fields": { + "EF_ID": 110124, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "288 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Emissions from Processing, Distribution and Transmission. The emission factor of 288 000 kg/PJ of gas produced is used only for the high emissions estimate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.114Z", + "last_change_date": "2022-03-14T07:55:53.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4123, + "fields": { + "EF_ID": 110125, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "288 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Emissions from Processing, Distribution and Transmission. The emission factor of 288 000 kg/PJ of gas produced is used only for the high emissions estimate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.189Z", + "last_change_date": "2022-03-14T07:55:53.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4124, + "fields": { + "EF_ID": 110126, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72 000 - 133 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Emissions from Processing, Distribution and Transmission.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.284Z", + "last_change_date": "2022-03-14T07:55:53.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4125, + "fields": { + "EF_ID": 110127, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57 000 - 118 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Emissions from Processing, Distribution and Transmission.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.381Z", + "last_change_date": "2022-03-14T07:55:53.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4126, + "fields": { + "EF_ID": 110128, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "118 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Emissions from Processing, Distribution and Transmission - The emission factor of 118 000 kg/PJ of gas consumed is used only for the low emissions estimate. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.464Z", + "last_change_date": "2022-03-14T07:55:53.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4127, + "fields": { + "EF_ID": 110129, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "118 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Emissions from Processing, Distribution and Transmission - The emission factor of 118 000 kg/PJ of gas consumed is used only for the low emissions estimate. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.548Z", + "last_change_date": "2022-03-14T07:55:53.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4128, + "fields": { + "EF_ID": 110130, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175 000 - 384 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Leakage at industrial plants and power stations - Gas consumption by utilities and industries", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.687Z", + "last_change_date": "2022-03-14T07:55:53.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4129, + "fields": { + "EF_ID": 110131, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 175 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Leakage at industrial plants and power stations - Gas consumption by utilities and industries", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.764Z", + "last_change_date": "2022-03-14T07:55:53.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4130, + "fields": { + "EF_ID": 110132, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 175 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Leakage at industrial plants and power stations - Gas consumption by utilities and industries", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.839Z", + "last_change_date": "2022-03-14T07:55:53.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4131, + "fields": { + "EF_ID": 110133, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR, Central and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87 000 - 192 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Leakage in the residential and commercial sectors - Gas consumption by the residential and commercial sectors., ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:53.914Z", + "last_change_date": "2022-03-14T07:55:53.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4132, + "fields": { + "EF_ID": 110134, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 87 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Leakage in the residential and commercial sectors - Gas consumption by the residential and commercial sectors., ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.014Z", + "last_change_date": "2022-03-14T07:55:54.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4133, + "fields": { + "EF_ID": 110135, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Revised Regional Emission Factors for Methane from Oil and Gas Activities (kg/PJ)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 87 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 58 on Page 1.121) of the Reference Manual (Revised Regional Emission Factors For Methane From Oil and Gas Activities(kg/PJ)).", + "Technical_Reference": "US EPA (1994), International Anthropogenic Methane Emissions, Estimates for 1990 (Report to Congress). EPA 230-R-93-010, , US Environmental Protection Agency, Office of Policy Planning and Evaluation,Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution: Leakage in the residential and commercial sectors - Gas consumption by the residential and commercial sectors., ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.114Z", + "last_change_date": "2022-03-14T07:55:54.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4134, + "fields": { + "EF_ID": 110136, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "USA and Canada - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290 - 4 670", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 60 on Page 1.129) of the Reference Manual (USA and Canada - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.189Z", + "last_change_date": "2022-03-14T07:55:54.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4135, + "fields": { + "EF_ID": 110137, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "USA and Canada - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39 590 - 104 220", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 60 on Page 1.129) of the Reference Manual (USA and Canada - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.264Z", + "last_change_date": "2022-03-14T07:55:54.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4136, + "fields": { + "EF_ID": 110138, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "USA and Canada - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2 870 - 13 920", + "Unit": "kg/PJ of oil and gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 60 on Page 1.129) of the Reference Manual (USA and Canada - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.381Z", + "last_change_date": "2022-03-14T07:55:54.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4137, + "fields": { + "EF_ID": 110139, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "USA and Canada - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 60 on Page 1.129) of the Reference Manual (USA and Canada - Emission Factors)", + "Technical_Reference": "API (American Petroleum Institute) (1987), Atmospheric Hydrocarbon Emissions from, Marine Vessel Transfer Operations, API publication 2514A, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining: Emissions due toTransportation - Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.475Z", + "last_change_date": "2022-03-14T07:55:54.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4138, + "fields": { + "EF_ID": 110140, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "USA and Canada - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 60 on Page 1.129) of the Reference Manual (USA and Canada - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining: Emissions due to Refining - Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.564Z", + "last_change_date": "2022-03-14T07:55:54.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4139, + "fields": { + "EF_ID": 110141, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "USA and Canada - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 260", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 60 on Page 1.129) of the Reference Manual (USA and Canada - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining: Emissions from Storage Tanks - Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.647Z", + "last_change_date": "2022-03-14T07:55:54.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4140, + "fields": { + "EF_ID": 110142, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "USA and Canada - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "US and Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59 660 - 116 610", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 60 on Page 1.129) of the Reference Manual (USA and Canada - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport, and Distribution: Emissions from Gas Consumption - Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.722Z", + "last_change_date": "2022-03-14T07:55:54.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4141, + "fields": { + "EF_ID": 110143, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Eastern Europe and Former USSR - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290 - 4 670", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 61 on Page 1.129) of the Reference Manual (Eastern Europe and Former USSR - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Oil", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.797Z", + "last_change_date": "2022-03-14T07:55:54.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4142, + "fields": { + "EF_ID": 110144, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Eastern Europe and Former USSR - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "218 000 - 567 600", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 61 on Page 1.129) of the Reference Manual (Eastern Europe and Former USSR - Emission Factors)", + "Technical_Reference": "Rabchuk, V.I, N.I. Ilkevich and Y.D. Kononov (1991), A Study of Methane Leakage in the, Soviet Natural Gas Supply System, prepared for the Battelle Pacific Northwest, Laboratory, Siberian Energy Institute, Irktsk, USSR.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Gas", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.872Z", + "last_change_date": "2022-03-14T07:55:54.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4143, + "fields": { + "EF_ID": 110145, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Eastern Europe and Former USSR - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6 300 - 29 700", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 61 on Page 1.129) of the Reference Manual (Eastern Europe and Former USSR - Emission Factors)", + "Technical_Reference": "Barns, D.W. and J.A. Edmonds (1990), An Evaluation of the Relationship between the, Production and Use of Energy and Atmospheric Methane Emissions, TR047,, US DOE/NBB0088P, US Department of Energy, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Oil and Gas", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:54.969Z", + "last_change_date": "2022-03-14T07:55:54.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4144, + "fields": { + "EF_ID": 110146, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Eastern Europe and Former USSR - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 61 on Page 1.129) of the Reference Manual (Eastern Europe and Former USSR - Emission Factors)", + "Technical_Reference": "API (American Petroleum Institute) (1987), Atmospheric Hydrocarbon Emissions from, Marine Vessel Transfer Operations, API publication 2514A, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions from Oil Tankered.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.064Z", + "last_change_date": "2022-03-14T07:55:55.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4145, + "fields": { + "EF_ID": 110147, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Eastern Europe and Former USSR - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 61 on Page 1.129) of the Reference Manual (Eastern Europe and Former USSR - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions from Oil Refined", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.147Z", + "last_change_date": "2022-03-14T07:55:55.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4146, + "fields": { + "EF_ID": 110148, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Eastern Europe and Former USSR - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 -260", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 61 on Page 1.129) of the Reference Manual (Eastern Europe and Former USSR - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions from Storage Tanks.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.222Z", + "last_change_date": "2022-03-14T07:55:55.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4147, + "fields": { + "EF_ID": 110149, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Eastern Europe and Former USSR - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Former USSR and Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "340 000 - 715 800", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 61 on Page 1.129) of the Reference Manual (Eastern Europe and Former USSR - Emission Factors)", + "Technical_Reference": "Rabchuk, V.I, N.I. Ilkevich and Y.D. Kononov (1991), A Study of Methane Leakage in the, Soviet Natural Gas Supply System, prepared for the Battelle Pacific Northwest, Laboratory, Siberian Energy Institute, Irktsk, USSR.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport and Distribution on the basis of Tier 1 Method: Emissions from Gas Consumed", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.297Z", + "last_change_date": "2022-03-14T07:55:55.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4148, + "fields": { + "EF_ID": 110150, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290 - 4 670", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.397Z", + "last_change_date": "2022-03-14T07:55:55.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4149, + "fields": { + "EF_ID": 110151, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14 800 - 27 000", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "Schneider-Fresenius, W., R.A. Hintz, U. Hoffmann-Meienbrock, W. Klopffer and, J. Wittekind (1989) Determination of Methane Emission into the Atmosphere due to, Losses in the Natural Gas Supply System of the Federal Republic of Germany -Contribution, of Methane to the Global Greenhouse Effect. Battelle-Institut, Frankfurt,, Germany.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.481Z", + "last_change_date": "2022-03-14T07:55:55.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4150, + "fields": { + "EF_ID": 110152, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13 000-16 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "Norwegian SPCA (1992), Letter on “Methane emissions from oil activities” from Audun, Rosland, State Pollution Control Authority to Craig D. Ebert, ICF Incorporated.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Oil and Gas", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.564Z", + "last_change_date": "2022-03-14T07:55:55.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4151, + "fields": { + "EF_ID": 110153, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3 000-8 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "Norwegian Oil Industry Association - OLF (1993), Report from OLF Environmental, Programme - Phase 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Oil and Gas", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.639Z", + "last_change_date": "2022-03-14T07:55:55.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4152, + "fields": { + "EF_ID": 110154, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "API (American Petroleum Institute) (1987), Atmospheric Hydrocarbon Emissions from, Marine Vessel Transfer Operations, API publication 2514A, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions from Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.714Z", + "last_change_date": "2022-03-14T07:55:55.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4153, + "fields": { + "EF_ID": 110155, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2 500", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "Norwegian SPCA (1992), Letter on “Methane emissions from oil activities” from Audun, Rosland, State Pollution Control Authority to Craig D. Ebert, ICF Incorporated.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions from Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.816Z", + "last_change_date": "2022-03-14T07:55:55.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4154, + "fields": { + "EF_ID": 110156, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions from Refining", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.898Z", + "last_change_date": "2022-03-14T07:55:55.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4155, + "fields": { + "EF_ID": 110157, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 260", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions from Storage Tanks.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:55.972Z", + "last_change_date": "2022-03-14T07:55:55.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4156, + "fields": { + "EF_ID": 110158, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58 000 - 111 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "Schneider-Fresenius, W., R.A. Hintz, U. Hoffmann-Meienbrock, W. Klopffer and, J. Wittekind (1989) Determination of Methane Emission into the Atmosphere due to, Losses in the Natural Gas Supply System of the Federal Republic of Germany -Contribution, of Methane to the Global Greenhouse Effect. Battelle-Institut, Frankfurt,, Germany.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport, and Distribution", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.039Z", + "last_change_date": "2022-03-14T07:55:56.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4157, + "fields": { + "EF_ID": 110159, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Western Europe - Emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1 800", + "Unit": "kg/PJ of gas processed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 62 on Page 1.130) of the Reference Manual (Western Europe - Emission Factors)", + "Technical_Reference": "Norwegian SPCA (1992), Letter on “Methane emissions from oil activities” from Audun, Rosland, State Pollution Control Authority to Craig D. Ebert, ICF Incorporated.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport, and Distribution: Emissions from Gas Processing - Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.106Z", + "last_change_date": "2022-03-14T07:55:56.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4158, + "fields": { + "EF_ID": 110160, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Other Oil Exporting Countries - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290 - 4 670", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 63 on Page 1.130) of the Reference Manual (Other Oil Exporting Countries - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Oil ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.192Z", + "last_change_date": "2022-03-14T07:55:56.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4159, + "fields": { + "EF_ID": 110161, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Other Oil Exporting Countries - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39 590 - 96 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 63 on Page 1.130) of the Reference Manual (Other Oil Exporting Countries - Emission Factors)", + "Technical_Reference": "(1) US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. (2) Barns, D.W. and J.A. Edmonds (1990), An Evaluation of the Relationship between the Production and Use of Energy and Atmospheric Methane Emissions, TR047, US DOE/NBB0088P, US Department of Energy, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Gas ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.323Z", + "last_change_date": "2022-03-14T07:55:56.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4160, + "fields": { + "EF_ID": 110162, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Other Oil Exporting Countries - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "739 470 - 1 019 220", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 63 on Page 1.130) of the Reference Manual (Other Oil Exporting Countries - Emission Factors)", + "Technical_Reference": "Barns, D.W. and J.A. Edmonds (1990), An Evaluation of the Relationship between the, Production and Use of Energy and Atmospheric Methane Emissions, TR047,, US DOE/NBB0088P, US Department of Energy, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Oil and Gas ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.389Z", + "last_change_date": "2022-03-14T07:55:56.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4161, + "fields": { + "EF_ID": 110163, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Other Oil Exporting Countries - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 63 on Page 1.130) of the Reference Manual (Other Oil Exporting Countries - Emission Factors)", + "Technical_Reference": "API (American Petroleum Institute) (1987), Atmospheric Hydrocarbon Emissions from, Marine Vessel Transfer Operations, API publication 2514A, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions are from Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.456Z", + "last_change_date": "2022-03-14T07:55:56.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4162, + "fields": { + "EF_ID": 110164, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Other Oil Exporting Countries - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 63 on Page 1.130) of the Reference Manual (Other Oil Exporting Countries - Emission Factors)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions are from Refining.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.523Z", + "last_change_date": "2022-03-14T07:55:56.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4163, + "fields": { + "EF_ID": 110165, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Other Oil Exporting Countries - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 260", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 63 on Page 1.130) of the Reference Manual (Other Oil Exporting Countries - Emission Factors)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions are from Storage Tanks", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.612Z", + "last_change_date": "2022-03-14T07:55:56.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4164, + "fields": { + "EF_ID": 110166, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Other Oil Exporting Countries - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Other Oil Exporting Countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116 610 - 340 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 63 on Page 1.130) of the Reference Manual (Other Oil Exporting Countries - Emission Factors)", + "Technical_Reference": "(1) US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. (2) Rabchuk, V.I, N.I. Ilkevich and Y.D. Kononov (1991), A Study of Methane Leakage in the Soviet Natural Gas Supply System, prepared for the Battelle Pacific Northwest Laboratory, Siberian Energy Institute, Irktsk, USSR.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport, and Distribution", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.689Z", + "last_change_date": "2022-03-14T07:55:56.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4165, + "fields": { + "EF_ID": 110167, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Rest of the World - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290 - 4 670", + "Unit": "kg/PJ of oil produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 64 on Page 1.131) of the Reference Manual (Rest of the World)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Oil ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.755Z", + "last_change_date": "2022-03-14T07:55:56.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4166, + "fields": { + "EF_ID": 110168, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Rest of the World - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39 590 - 96 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 64 on Page 1.131) of the Reference Manual (Rest of the World)", + "Technical_Reference": "(1) US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. (2) Barns, D.W. and J.A. Edmonds (1990), An Evaluation of the Relationship between the Production and Use of Energy and Atmospheric Methane Emissions, TR047, US DOE/NBB0088P, US Department of Energy, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Gas ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:56.821Z", + "last_change_date": "2022-03-14T07:55:56.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4167, + "fields": { + "EF_ID": 110169, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Rest of the World - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170 000 - 209 000", + "Unit": "kg/PJ of gas produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 64 on Page 1.131) of the Reference Manual (Rest of the World)", + "Technical_Reference": "Barns, D.W. and J.A. Edmonds (1990), An Evaluation of the Relationship between the, Production and Use of Energy and Atmospheric Methane Emissions, TR047,, US DOE/NBB0088P, US Department of Energy, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Oil and Gas Production on the basis of the Tier 1 Method: Emissions from Oil and Gas ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.098Z", + "last_change_date": "2022-03-14T07:55:57.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4168, + "fields": { + "EF_ID": 110170, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Rest of the World - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "745", + "Unit": "kg/PJ oil tankered", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 64 on Page 1.131) of the Reference Manual (Rest of the World)", + "Technical_Reference": "API (American Petroleum Institute) (1987), Atmospheric Hydrocarbon Emissions from, Marine Vessel Transfer Operations, API publication 2514A, Washington, DC, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions are from Transportation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.257Z", + "last_change_date": "2022-03-14T07:55:57.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4169, + "fields": { + "EF_ID": 110171, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Rest of the World - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90 - 1 400", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 64 on Page 1.131) of the Reference Manual (Rest of the World)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions are from Refining.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.331Z", + "last_change_date": "2022-03-14T07:55:57.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4170, + "fields": { + "EF_ID": 110172, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Rest of the World - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 260", + "Unit": "kg/PJ of oil refined", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 64 on Page 1.131) of the Reference Manual (Rest of the World)", + "Technical_Reference": "US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources,, EPA-450/4-81-026d.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Crude Oil Transportation and Refining on the basis of the Tier 1 Method: Emissions are from Storage Tanks", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.405Z", + "last_change_date": "2022-03-14T07:55:57.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4171, + "fields": { + "EF_ID": 110173, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Rest of the World - Emission Factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Rest of the World", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116 610 - 340 000", + "Unit": "kg/PJ of gas consumed", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 7; Sheet 1-1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 64 on Page 1.131) of the Reference Manual (Rest of the World)", + "Technical_Reference": "(1) US EPA (1992), Procedures for Emission Inventory Preparation, Vol. IV: Mobile Sources, EPA-450/4-81-026d. (2) Rabchuk, V.I, N.I. Ilkevich and Y.D. Kononov (1991), A Study of Methane Leakage in the Soviet Natural Gas Supply System, prepared for the Battelle Pacific Northwest Laboratory, Siberian Energy Institute, Irktsk, USSR.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural Gas Processing, Transport, and Distribution: Emissions from Gas Processing - Tier 1 Method", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.480Z", + "last_change_date": "2022-03-14T07:55:57.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4172, + "fields": { + "EF_ID": 110174, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Petroleum Refining. Simple Methodology (kg/m3 Refinery Feedstock e.g. Crude Oil)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/m3 Refinery Feedstock", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 65 on Page 1.133) of the Reference Manual (Non-Combustion Emission Factors for Petroleum Refining. Simple Methodology (kg/m3 Refinery Feedstock e.g. Crude Oil))", + "Technical_Reference": "Joint EMEP/CORINAIR (1996), Atmospheric Emission Inventory Guidebook. Volume 1, 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Sources: Vacuum tower, catalytic cracker, fluid coking, sulphur plant, SWS, incinerator, caustic regeneration, vents, off gases, others. Simple methodology for ozone precursors and sulphur dioxide", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.555Z", + "last_change_date": "2022-03-14T07:55:57.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4173, + "fields": { + "EF_ID": 110175, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Petroleum Refining. Simple Methodology (kg/m3 Refinery Feedstock e.g. Crude Oil)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg/m3 Refinery Feedstock", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 65 on Page 1.133) of the Reference Manual (Non-Combustion Emission Factors for Petroleum Refining. Simple Methodology (kg/m3 Refinery Feedstock e.g. Crude Oil))", + "Technical_Reference": "Joint EMEP/CORINAIR (1996), Atmospheric Emission Inventory Guidebook. Volume 1, 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Source: Catalytic Cracking. Simple methodology for ozone precursors and sulphur dioxide ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.659Z", + "last_change_date": "2022-03-14T07:55:57.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4174, + "fields": { + "EF_ID": 110176, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Petroleum Refining. Simple Methodology (kg/m3 Refinery Feedstock e.g. Crude Oil)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "kg/m3 Refinery Feedstock", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 65 on Page 1.133) of the Reference Manual (Non-Combustion Emission Factors for Petroleum Refining. Simple Methodology (kg/m3 Refinery Feedstock e.g. Crude Oil))", + "Technical_Reference": "Joint EMEP/CORINAIR (1996), Atmospheric Emission Inventory Guidebook. Volume 1, 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Source: Fluid Catalytic Cracking only. Simple methodology for ozone precursors and sulphur dioxide", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.739Z", + "last_change_date": "2022-03-14T07:55:57.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4175, + "fields": { + "EF_ID": 110177, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Petroleum Refining. Simple Methodology (kg/m3 Refinery Feedstock e.g. Crude Oil)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "kg/m3 Refinery Feedstock", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 65 on Page 1.133) of the Reference Manual (Non-Combustion Emission Factors for Petroleum Refining. Simple Methodology (kg/m3 Refinery Feedstock e.g. Crude Oil))", + "Technical_Reference": "Canadian Petroleum Products Institute (CPPI) and Environment Canada (1991),, Atmospheric Emissions from Canadian Petroleum Refineries and the Associated, Gasoline Distribution System for 1988. CPPI Report No. 91-7. Prepared by B.H, Levelton and Associates Ltd. and RTM Engineering Ltd.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Sources: Fugitive and Process Emissions. Simple methodology for ozone precursors and sulphur dioxide", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.822Z", + "last_change_date": "2022-03-14T07:55:57.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4176, + "fields": { + "EF_ID": 110178, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Refineries - (Fluid Catalytic Cracking kg/m3 Oil Treated in the Catalytic Cracker) ", + "Technology_Practices": "Fluid Catalytic Cracking (SNAP 40102)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4 (0.286-1.505)", + "Unit": "kg/m3 Oil", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 66 on Page 1.133) of the Reference Manual (Non-Combustion Emission Factors for Refineries (Fluid Catalytic Cracking kg/m3 Oil Treated in the Fluid Catalytic Cracker)", + "Technical_Reference": "(1) US EPA (1985), “Compilation of Air Pollutant Emission Factors”, Vol. I, Stationary Point and Area Sources, AP-42, 4 th Edition 1985; Suppl. A/1986, Suppl. B/1988, Suppl. C/1990. Environmental Protection Agency, USA. (2) US EPA (1995), Compilation of Air Pollutant Emission Factors. Vol. I: Stationary Point and Area Sources, 5th Edition, AP-42; US Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Detailed Methodolgy for Ozone Precursors and Sulphur Doixide. Emission Factor Range: 0.286 - 1.505", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:57.898Z", + "last_change_date": "2022-03-14T07:55:57.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4177, + "fields": { + "EF_ID": 110179, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Refineries - (Fluid Catalytic Cracking kg/m3 Oil Treated in the Catalytic Cracker) ", + "Technology_Practices": "Fluid Catalytic Cracking (SNAP 40102)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2 (0.107-0.416)", + "Unit": "kg/m3 Oil", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 66 on Page 1.133) of the Reference Manual (Non-Combustion Emission Factors for Refineries (Fluid Catalytic Cracking kg/m3 Oil Treated in the Fluid Catalytic Cracker)", + "Technical_Reference": "(1) US EPA (1985), “Compilation of Air Pollutant Emission Factors”, Vol. I, Stationary Point and Area Sources, AP-42, 4 th Edition 1985; Suppl. A/1986, Suppl. B/1988, Suppl. C/1990. Environmental Protection Agency, USA. (2) US EPA (1995), Compilation of Air Pollutant Emission Factors. Vol. I: Stationary Point and Area Sources, 5th Edition, AP-42; US Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Detailed Methodolgy for Ozone Precursors and Sulphur Doixide. Emission Factor Range: 0.107 - 0.416", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.003Z", + "last_change_date": "2022-03-14T07:55:58.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4178, + "fields": { + "EF_ID": 110180, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Refineries - (Fluid Catalytic Cracking kg/m3 Oil Treated in the Catalytic Cracker) ", + "Technology_Practices": "Fluid Catalytic Cracking (SNAP 40102)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.2", + "Unit": "kg/m3 Oil", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 66 on Page 1.133) of the Reference Manual (Non-Combustion Emission Factors for Refineries (Fluid Catalytic Cracking kg/m3 Oil Treated in the Fluid Catalytic Cracker)", + "Technical_Reference": "(1) US EPA (1985), “Compilation of Air Pollutant Emission Factors”, Vol. I, Stationary Point and Area Sources, AP-42, 4 th Edition 1985; Suppl. A/1986, Suppl. B/1988, Suppl. C/1990. Environmental Protection Agency, USA. (2) US EPA (1995), Compilation of Air Pollutant Emission Factors. Vol. I: Stationary Point and Area Sources, 5th Edition, AP-42; US Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Detailed Methodolgy for Ozone Precursors and Sulphur Doixide.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.098Z", + "last_change_date": "2022-03-14T07:55:58.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4179, + "fields": { + "EF_ID": 110181, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Refineries - (Fluid Catalytic Cracking kg/m3 Oil Treated in the Catalytic Cracker) ", + "Technology_Practices": "Fluid Catalytic Cracking (SNAP 40102)", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/m3 Oil", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 66 on Page 1.133) of the Reference Manual (Non-Combustion Emission Factors for Refineries (Fluid Catalytic Cracking kg/m3 Oil Treated in the Fluid Catalytic Cracker)", + "Technical_Reference": "(1) US EPA (1985), “Compilation of Air Pollutant Emission Factors”, Vol. I, Stationary Point and Area Sources, AP-42, 4 th Edition 1985; Suppl. A/1986, Suppl. B/1988, Suppl. C/1990. Environmental Protection Agency, USA. (2) US EPA (1995), Compilation of Air Pollutant Emission Factors. Vol. I: Stationary Point and Area Sources, 5th Edition, AP-42; US Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Detailed Methodolgy for Ozone Precursors and Sulphur Doixide.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.173Z", + "last_change_date": "2022-03-14T07:55:58.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4180, + "fields": { + "EF_ID": 110182, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Refineries and Sulphur Recovery Plants. (kg/tonne Sulphur)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "139", + "Unit": "kg/tonne Sulphur", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 67 on Page 1.134) of the Reference Manual (Non-Combustion Emission Factors for Refineries and Sulphur Recovery Plants (kg/tonne Sulphur)", + "Technical_Reference": "US EPA (1993), “Compilation of Air Pollutant Emission Factors”, Vol. I, Stationary Point and Area sources, AP-42, Supplement F. US Environmental Protection Agency, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Detailed Methodolgy for Ozone Precursors and Sulphur Doixide.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.270Z", + "last_change_date": "2022-03-14T07:55:58.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4181, + "fields": { + "EF_ID": 110183, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Refineries (Storage and Handling. g/kg Oil Throughput)", + "Technology_Practices": "Majority of volatile products are stored in floating roof tanks with secondary seals., ", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/kg Oil Throughput", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 68 on Page 1.134) of the Reference Manual (Non-Combustion Emission Factors for (Storage and Handling - g/kg Oil Throughput)", + "Technical_Reference": "Joint EMEP/CORINAIR (1996), Atmospheric Emission Inventory Guidebook. Volume 1, 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Detailed Methodolgy for Ozone Precursors and Sulphur Doixide.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.364Z", + "last_change_date": "2022-03-14T07:55:58.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4182, + "fields": { + "EF_ID": 110184, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Refineries (Storage and Handling. g/kg Oil Throughput)", + "Technology_Practices": "Majority of volatile products are stored in floating roof tanks with only primary seals, ", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/kg Oil Throughput", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 68 on Page 1.134) of the Reference Manual (Non-Combustion Emission Factors for (Storage and Handling - g/kg Oil Throughput)", + "Technical_Reference": "Joint EMEP/CORINAIR (1996), Atmospheric Emission Inventory Guidebook. Volume 1, 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Detailed Methodolgy for Ozone Precursors and Sulphur Doixide.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.439Z", + "last_change_date": "2022-03-14T07:55:58.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4183, + "fields": { + "EF_ID": 110185, + "IPCC_Category": "1.B.2.a - Oil", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Non-Combustion Emission Factors for Refineries (Storage and Handling. g/kg Oil Throughput)", + "Technology_Practices": "Majority of volatile products are stored in fixed roof tanks", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.9", + "Unit": "g/kg Oil Throughput", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1- 8; Sheet 1-4", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1- 68 on Page 1.134) of the Reference Manual (Non-Combustion Emission Factors for (Storage and Handling - g/kg Oil Throughput)", + "Technical_Reference": "Joint EMEP/CORINAIR (1996), Atmospheric Emission Inventory Guidebook. Volume 1, 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": " Detailed Methodolgy for Ozone Precursors and Sulphur Doixide.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.514Z", + "last_change_date": "2022-03-14T07:55:58.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4184, + "fields": { + "EF_ID": 110280, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "1990 Net Calorific Values for miscellaneous fuels and products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.59", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories(Table 1-3 on page 1.23 of the Reference Manual)", + "Technical_Reference": "OECD/IEA (1996a) Energy balances of OECD countries, 1993-1994 International Energy Agency, OECD, Paris, France. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NCVs for oil and coal are those used by the IEA in the construction of energy balances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.607Z", + "last_change_date": "2022-03-14T07:55:58.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4185, + "fields": { + "EF_ID": 110281, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.689Z", + "last_change_date": "2022-03-14T07:55:58.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4186, + "fields": { + "EF_ID": 110282, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Sample and default values of sulphur content (s) in fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0001 - 0.3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-4; Sheet 1 - 1", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 1-12 on Page 1.44 of the Reference Manual)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values reported in literature.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.764Z", + "last_change_date": "2022-03-14T07:55:58.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4187, + "fields": { + "EF_ID": 110283, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A300; Fuel Consumption - 1730kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5470", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/943 ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.839Z", + "last_change_date": "2022-03-14T07:55:58.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4188, + "fields": { + "EF_ID": 110284, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A300; Fuel Consumption - 1730kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/944", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.914Z", + "last_change_date": "2022-03-14T07:55:58.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4189, + "fields": { + "EF_ID": 110285, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A300; Fuel Consumption - 1730kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/945", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:58.989Z", + "last_change_date": "2022-03-14T07:55:58.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4190, + "fields": { + "EF_ID": 110286, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A300; Fuel Consumption - 1730kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/946", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.084Z", + "last_change_date": "2022-03-14T07:55:59.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4191, + "fields": { + "EF_ID": 110287, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A300; Fuel Consumption - 1730kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/947", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.164Z", + "last_change_date": "2022-03-14T07:55:59.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4192, + "fields": { + "EF_ID": 110288, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A300; Fuel Consumption - 1730kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/948", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.248Z", + "last_change_date": "2022-03-14T07:55:59.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4193, + "fields": { + "EF_ID": 110289, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A300; Fuel Consumption - 1730kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/949", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.331Z", + "last_change_date": "2022-03-14T07:55:59.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4194, + "fields": { + "EF_ID": 110290, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A310; Fuel Consumption - 1550kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4900", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/950", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.435Z", + "last_change_date": "2022-03-14T07:55:59.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4195, + "fields": { + "EF_ID": 110291, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A310; Fuel Consumption - 1550kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/951", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.514Z", + "last_change_date": "2022-03-14T07:55:59.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4196, + "fields": { + "EF_ID": 110292, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A310; Fuel Consumption - 1550kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/952", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.597Z", + "last_change_date": "2022-03-14T07:55:59.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4197, + "fields": { + "EF_ID": 110293, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A310; Fuel Consumption - 1550kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/953", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.673Z", + "last_change_date": "2022-03-14T07:55:59.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4198, + "fields": { + "EF_ID": 110294, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A310; Fuel Consumption - 1550kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/954", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.779Z", + "last_change_date": "2022-03-14T07:55:59.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4199, + "fields": { + "EF_ID": 110295, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A310; Fuel Consumption - 1550kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/955", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.872Z", + "last_change_date": "2022-03-14T07:55:59.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4200, + "fields": { + "EF_ID": 110296, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A310; Fuel Consumption - 1550kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/956", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:55:59.956Z", + "last_change_date": "2022-03-14T07:55:59.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4201, + "fields": { + "EF_ID": 110297, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A320; Fuel Consumption - 810kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2560", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/957", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.031Z", + "last_change_date": "2022-03-14T07:56:00.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4202, + "fields": { + "EF_ID": 110298, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A320; Fuel Consumption - 810kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/958", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.130Z", + "last_change_date": "2022-03-14T07:56:00.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4203, + "fields": { + "EF_ID": 110299, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A320; Fuel Consumption - 810kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/959", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.214Z", + "last_change_date": "2022-03-14T07:56:00.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4204, + "fields": { + "EF_ID": 110300, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A320; Fuel Consumption - 810kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/960", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.289Z", + "last_change_date": "2022-03-14T07:56:00.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4205, + "fields": { + "EF_ID": 110301, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A320; Fuel Consumption - 810kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/961", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.364Z", + "last_change_date": "2022-03-14T07:56:00.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4206, + "fields": { + "EF_ID": 110302, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A320; Fuel Consumption - 810kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/962", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.458Z", + "last_change_date": "2022-03-14T07:56:00.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4207, + "fields": { + "EF_ID": 110303, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: A320; Fuel Consumption - 810kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/963", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.539Z", + "last_change_date": "2022-03-14T07:56:00.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4208, + "fields": { + "EF_ID": 110304, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: BACI-11; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2150", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/964", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.614Z", + "last_change_date": "2022-03-14T07:56:00.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4209, + "fields": { + "EF_ID": 110305, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: BACI-11; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/965", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.689Z", + "last_change_date": "2022-03-14T07:56:00.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4210, + "fields": { + "EF_ID": 110306, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: BACI-11; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/966", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.784Z", + "last_change_date": "2022-03-14T07:56:00.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4211, + "fields": { + "EF_ID": 110307, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: BACI-11; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.9", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/967", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.864Z", + "last_change_date": "2022-03-14T07:56:00.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4212, + "fields": { + "EF_ID": 110308, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: BACI-11; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/968", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:00.939Z", + "last_change_date": "2022-03-14T07:56:00.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4213, + "fields": { + "EF_ID": 110309, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: BACI-11; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/969", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.014Z", + "last_change_date": "2022-03-14T07:56:01.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4214, + "fields": { + "EF_ID": 110310, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: BACI-11; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/970", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.103Z", + "last_change_date": "2022-03-14T07:56:01.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4215, + "fields": { + "EF_ID": 110311, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Bae 146; Fuel Consumption - 570kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1800", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/971", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.181Z", + "last_change_date": "2022-03-14T07:56:01.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4216, + "fields": { + "EF_ID": 110312, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Bae 146; Fuel Consumption - 570kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/972", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.264Z", + "last_change_date": "2022-03-14T07:56:01.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4217, + "fields": { + "EF_ID": 110313, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Bae 146; Fuel Consumption - 570kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/973", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.348Z", + "last_change_date": "2022-03-14T07:56:01.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4218, + "fields": { + "EF_ID": 110314, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Bae 146; Fuel Consumption - 570kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/974", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.454Z", + "last_change_date": "2022-03-14T07:56:01.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4219, + "fields": { + "EF_ID": 110315, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Bae 146; Fuel Consumption - 570kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/975", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.548Z", + "last_change_date": "2022-03-14T07:56:01.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4220, + "fields": { + "EF_ID": 110316, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Bae 146; Fuel Consumption - 570kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/976", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.623Z", + "last_change_date": "2022-03-14T07:56:01.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4221, + "fields": { + "EF_ID": 110317, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Bae 146; Fuel Consumption - 570kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/977", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.698Z", + "last_change_date": "2022-03-14T07:56:01.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4222, + "fields": { + "EF_ID": 110318, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B707 (older types of aircraft with poor emisson perfomance); Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5880", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/978", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.789Z", + "last_change_date": "2022-03-14T07:56:01.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4223, + "fields": { + "EF_ID": 110319, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B707 (older types of aircraft with poor emisson perfomance); Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/979", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.873Z", + "last_change_date": "2022-03-14T07:56:01.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4224, + "fields": { + "EF_ID": 110320, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B707 (older types of aircraft with poor emisson perfomance); Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/980", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:01.948Z", + "last_change_date": "2022-03-14T07:56:01.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4225, + "fields": { + "EF_ID": 110321, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B707 (older types of aircraft with poor emisson perfomance); Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/981", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.089Z", + "last_change_date": "2022-03-14T07:56:02.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4226, + "fields": { + "EF_ID": 110322, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B707 (older types of aircraft with poor emisson perfomance); Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/982", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.176Z", + "last_change_date": "2022-03-14T07:56:02.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4227, + "fields": { + "EF_ID": 110323, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B707 (older types of aircraft with poor emisson perfomance); Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/983", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.248Z", + "last_change_date": "2022-03-14T07:56:02.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4228, + "fields": { + "EF_ID": 110324, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B707 (older types of aircraft with poor emisson perfomance); Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/984", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.314Z", + "last_change_date": "2022-03-14T07:56:02.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4229, + "fields": { + "EF_ID": 110325, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727; Fuel Consumption - 1410kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4455", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/985", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.373Z", + "last_change_date": "2022-03-14T07:56:02.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4230, + "fields": { + "EF_ID": 110326, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727; Fuel Consumption - 1410kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/986", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.460Z", + "last_change_date": "2022-03-14T07:56:02.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4231, + "fields": { + "EF_ID": 110327, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727; Fuel Consumption - 1410kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/987", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.539Z", + "last_change_date": "2022-03-14T07:56:02.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4232, + "fields": { + "EF_ID": 110328, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727; Fuel Consumption - 1410kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/988", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.606Z", + "last_change_date": "2022-03-14T07:56:02.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4233, + "fields": { + "EF_ID": 110329, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727; Fuel Consumption - 1410kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/989", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.672Z", + "last_change_date": "2022-03-14T07:56:02.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4234, + "fields": { + "EF_ID": 110330, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727; Fuel Consumption - 1410kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/990", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.762Z", + "last_change_date": "2022-03-14T07:56:02.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4235, + "fields": { + "EF_ID": 110331, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727; Fuel Consumption - 1410kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/991", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.864Z", + "last_change_date": "2022-03-14T07:56:02.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4236, + "fields": { + "EF_ID": 110332, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727(older of types of aircraft with poorer emissions perfomance); Fuel Consumption - 1260kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3980", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/992", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.931Z", + "last_change_date": "2022-03-14T07:56:02.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4237, + "fields": { + "EF_ID": 110333, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727(older of types of aircraft with poorer emissions perfomance); Fuel Consumption - 1260kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/993", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:02.997Z", + "last_change_date": "2022-03-14T07:56:02.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4238, + "fields": { + "EF_ID": 110334, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727(older of types of aircraft with poorer emissions perfomance); Fuel Consumption - 1260kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.089Z", + "last_change_date": "2022-03-14T07:56:03.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4239, + "fields": { + "EF_ID": 110335, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727(older of types of aircraft with poorer emissions perfomance); Fuel Consumption - 1260kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/995", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.164Z", + "last_change_date": "2022-03-14T07:56:03.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4240, + "fields": { + "EF_ID": 110336, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727(older of types of aircraft with poorer emissions perfomance); Fuel Consumption - 1260kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/996", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.239Z", + "last_change_date": "2022-03-14T07:56:03.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4241, + "fields": { + "EF_ID": 110337, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727(older of types of aircraft with poorer emissions perfomance); Fuel Consumption - 1260kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/997", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.315Z", + "last_change_date": "2022-03-14T07:56:03.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4242, + "fields": { + "EF_ID": 110338, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B727(older of types of aircraft with poorer emissions perfomance); Fuel Consumption - 1260kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/998", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.400Z", + "last_change_date": "2022-03-14T07:56:03.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4243, + "fields": { + "EF_ID": 110339, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 200; Fuel Consumption - 920kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2905", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/999", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.489Z", + "last_change_date": "2022-03-14T07:56:03.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4244, + "fields": { + "EF_ID": 110340, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 200; Fuel Consumption - 920kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1000", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.556Z", + "last_change_date": "2022-03-14T07:56:03.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4245, + "fields": { + "EF_ID": 110341, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 200; Fuel Consumption - 920kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.623Z", + "last_change_date": "2022-03-14T07:56:03.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4246, + "fields": { + "EF_ID": 110342, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 200; Fuel Consumption - 920kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.727Z", + "last_change_date": "2022-03-14T07:56:03.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4247, + "fields": { + "EF_ID": 110343, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 200; Fuel Consumption - 920kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.806Z", + "last_change_date": "2022-03-14T07:56:03.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4248, + "fields": { + "EF_ID": 110344, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 200; Fuel Consumption - 920kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.889Z", + "last_change_date": "2022-03-14T07:56:03.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4249, + "fields": { + "EF_ID": 110345, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 200; Fuel Consumption - 920kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1005", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:03.973Z", + "last_change_date": "2022-03-14T07:56:03.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4250, + "fields": { + "EF_ID": 110346, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737(older types with poorer emissions perfomance); Fuel Consumption - 870kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2750", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.137Z", + "last_change_date": "2022-03-14T07:56:04.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4251, + "fields": { + "EF_ID": 110347, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737(older types with poorer emissions perfomance); Fuel Consumption - 870kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.223Z", + "last_change_date": "2022-03-14T07:56:04.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4252, + "fields": { + "EF_ID": 110348, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737(older types with poorer emissions perfomance); Fuel Consumption - 870kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1008", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.298Z", + "last_change_date": "2022-03-14T07:56:04.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4253, + "fields": { + "EF_ID": 110349, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737(older types with poorer emissions perfomance); Fuel Consumption - 870kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.381Z", + "last_change_date": "2022-03-14T07:56:04.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4254, + "fields": { + "EF_ID": 110350, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737(older types with poorer emissions perfomance); Fuel Consumption - 870kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1010", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.481Z", + "last_change_date": "2022-03-14T07:56:04.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4255, + "fields": { + "EF_ID": 110351, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737(older types with poorer emissions perfomance); Fuel Consumption - 870kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1011", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.573Z", + "last_change_date": "2022-03-14T07:56:04.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4256, + "fields": { + "EF_ID": 110352, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737(older types with poorer emissions perfomance); Fuel Consumption - 870kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1012", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.648Z", + "last_change_date": "2022-03-14T07:56:04.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4257, + "fields": { + "EF_ID": 110353, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 400; Fuel Consumption - 830kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2625", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1013", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.723Z", + "last_change_date": "2022-03-14T07:56:04.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4258, + "fields": { + "EF_ID": 110354, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 400; Fuel Consumption - 830kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1014", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.816Z", + "last_change_date": "2022-03-14T07:56:04.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4259, + "fields": { + "EF_ID": 110355, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 400; Fuel Consumption - 830kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1015", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.898Z", + "last_change_date": "2022-03-14T07:56:04.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4260, + "fields": { + "EF_ID": 110356, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 400; Fuel Consumption - 830kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1016", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:04.973Z", + "last_change_date": "2022-03-14T07:56:04.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4261, + "fields": { + "EF_ID": 110357, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 400; Fuel Consumption - 830kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1017", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.048Z", + "last_change_date": "2022-03-14T07:56:05.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4262, + "fields": { + "EF_ID": 110358, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 400; Fuel Consumption - 830kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.142Z", + "last_change_date": "2022-03-14T07:56:05.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4263, + "fields": { + "EF_ID": 110359, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B737 - 400; Fuel Consumption - 830kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1019", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.223Z", + "last_change_date": "2022-03-14T07:56:05.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4264, + "fields": { + "EF_ID": 110360, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 200; Fuel Consumption - 3380kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10680", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1020", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.298Z", + "last_change_date": "2022-03-14T07:56:05.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4265, + "fields": { + "EF_ID": 110361, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 200; Fuel Consumption - 3380kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1021", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.373Z", + "last_change_date": "2022-03-14T07:56:05.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4266, + "fields": { + "EF_ID": 110362, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 200; Fuel Consumption - 3380kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1022", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.470Z", + "last_change_date": "2022-03-14T07:56:05.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4267, + "fields": { + "EF_ID": 110363, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 200; Fuel Consumption - 3380kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1023", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.556Z", + "last_change_date": "2022-03-14T07:56:05.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4268, + "fields": { + "EF_ID": 110364, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 200; Fuel Consumption - 3380kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1024", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.631Z", + "last_change_date": "2022-03-14T07:56:05.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4269, + "fields": { + "EF_ID": 110365, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 200; Fuel Consumption - 3380kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1025", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.714Z", + "last_change_date": "2022-03-14T07:56:05.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4270, + "fields": { + "EF_ID": 110366, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 200; Fuel Consumption - 3380kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1026", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.831Z", + "last_change_date": "2022-03-14T07:56:05.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4271, + "fields": { + "EF_ID": 110367, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747(older types with poorer emissions perfomance); Fuel Consumption - 3210kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10145", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1027", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.906Z", + "last_change_date": "2022-03-14T07:56:05.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4272, + "fields": { + "EF_ID": 110368, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747(older types with poorer emissions perfomance); Fuel Consumption - 3210kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1028", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:05.981Z", + "last_change_date": "2022-03-14T07:56:05.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4273, + "fields": { + "EF_ID": 110369, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747(older types with poorer emissions perfomance); Fuel Consumption - 3210kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1029", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.056Z", + "last_change_date": "2022-03-14T07:56:06.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4274, + "fields": { + "EF_ID": 110370, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747(older types with poorer emissions perfomance); Fuel Consumption - 3210kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1030", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.182Z", + "last_change_date": "2022-03-14T07:56:06.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4275, + "fields": { + "EF_ID": 110371, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747(older types with poorer emissions perfomance); Fuel Consumption - 3210kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1031", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.273Z", + "last_change_date": "2022-03-14T07:56:06.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4276, + "fields": { + "EF_ID": 110372, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747(older types with poorer emissions perfomance); Fuel Consumption - 3210kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1032", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.348Z", + "last_change_date": "2022-03-14T07:56:06.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4277, + "fields": { + "EF_ID": 110373, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747(older types with poorer emissions perfomance); Fuel Consumption - 3210kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1033", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.423Z", + "last_change_date": "2022-03-14T07:56:06.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4278, + "fields": { + "EF_ID": 110374, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 400; Fuel Consumption - 3390kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10710", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1034", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.517Z", + "last_change_date": "2022-03-14T07:56:06.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4279, + "fields": { + "EF_ID": 110375, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 400; Fuel Consumption - 3390kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1035", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.598Z", + "last_change_date": "2022-03-14T07:56:06.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4280, + "fields": { + "EF_ID": 110376, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 400; Fuel Consumption - 3390kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1036", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.664Z", + "last_change_date": "2022-03-14T07:56:06.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4281, + "fields": { + "EF_ID": 110377, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 400; Fuel Consumption - 3390kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1037", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.731Z", + "last_change_date": "2022-03-14T07:56:06.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4282, + "fields": { + "EF_ID": 110378, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 400; Fuel Consumption - 3390kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1038", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.819Z", + "last_change_date": "2022-03-14T07:56:06.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4283, + "fields": { + "EF_ID": 110379, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 400; Fuel Consumption - 3390kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1039", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.898Z", + "last_change_date": "2022-03-14T07:56:06.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4284, + "fields": { + "EF_ID": 110380, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B747 - 400; Fuel Consumption - 3390kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1040", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:06.973Z", + "last_change_date": "2022-03-14T07:56:06.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4285, + "fields": { + "EF_ID": 110381, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B757; Fuel Consumption - 1300kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4110", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1041", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.039Z", + "last_change_date": "2022-03-14T07:56:07.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4286, + "fields": { + "EF_ID": 110382, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B757; Fuel Consumption - 1300kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1042", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.138Z", + "last_change_date": "2022-03-14T07:56:07.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4287, + "fields": { + "EF_ID": 110383, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B757; Fuel Consumption - 1300kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1043", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.223Z", + "last_change_date": "2022-03-14T07:56:07.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4288, + "fields": { + "EF_ID": 110384, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B757; Fuel Consumption - 1300kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1044", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.289Z", + "last_change_date": "2022-03-14T07:56:07.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4289, + "fields": { + "EF_ID": 110385, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B757; Fuel Consumption - 1300kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1045", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.356Z", + "last_change_date": "2022-03-14T07:56:07.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4290, + "fields": { + "EF_ID": 110386, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B757; Fuel Consumption - 1300kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1046", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.456Z", + "last_change_date": "2022-03-14T07:56:07.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4291, + "fields": { + "EF_ID": 110387, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B757; Fuel Consumption - 1300kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1047", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.539Z", + "last_change_date": "2022-03-14T07:56:07.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4292, + "fields": { + "EF_ID": 110388, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B767; Fuel Consumption - 1710kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5405", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1048", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.615Z", + "last_change_date": "2022-03-14T07:56:07.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4293, + "fields": { + "EF_ID": 110389, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B767; Fuel Consumption - 1710kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1049", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.690Z", + "last_change_date": "2022-03-14T07:56:07.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4294, + "fields": { + "EF_ID": 110390, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B767; Fuel Consumption - 1710kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1050", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.783Z", + "last_change_date": "2022-03-14T07:56:07.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4295, + "fields": { + "EF_ID": 110391, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B767; Fuel Consumption - 1710kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1051", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.873Z", + "last_change_date": "2022-03-14T07:56:07.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4296, + "fields": { + "EF_ID": 110392, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B767; Fuel Consumption - 1710kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1052", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:07.948Z", + "last_change_date": "2022-03-14T07:56:07.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4297, + "fields": { + "EF_ID": 110393, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B767; Fuel Consumption - 1710kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1053", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.022Z", + "last_change_date": "2022-03-14T07:56:08.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4298, + "fields": { + "EF_ID": 110394, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: B767; Fuel Consumption - 1710kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1054", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.118Z", + "last_change_date": "2022-03-14T07:56:08.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4299, + "fields": { + "EF_ID": 110395, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Caravelle (older types with poorer emissions perfomance); Fuel Consumption - 840kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2655", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1055", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.223Z", + "last_change_date": "2022-03-14T07:56:08.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4300, + "fields": { + "EF_ID": 110396, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Caravelle (older types with poorer emissions perfomance); Fuel Consumption - 840kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1056", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.281Z", + "last_change_date": "2022-03-14T07:56:08.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4301, + "fields": { + "EF_ID": 110397, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Caravelle (older types with poorer emissions perfomance); Fuel Consumption - 840kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1057", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.339Z", + "last_change_date": "2022-03-14T07:56:08.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4302, + "fields": { + "EF_ID": 110398, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Caravelle (older types with poorer emissions perfomance); Fuel Consumption - 840kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1058", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.428Z", + "last_change_date": "2022-03-14T07:56:08.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4303, + "fields": { + "EF_ID": 110399, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Caravelle (older types with poorer emissions perfomance); Fuel Consumption - 840kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1059", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.515Z", + "last_change_date": "2022-03-14T07:56:08.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4304, + "fields": { + "EF_ID": 110400, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Caravelle (older types with poorer emissions perfomance); Fuel Consumption - 840kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1060", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.589Z", + "last_change_date": "2022-03-14T07:56:08.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4305, + "fields": { + "EF_ID": 110401, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Caravelle (older types with poorer emissions perfomance); Fuel Consumption - 840kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1061", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.664Z", + "last_change_date": "2022-03-14T07:56:08.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4306, + "fields": { + "EF_ID": 110402, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC8; Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5890", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1062", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.773Z", + "last_change_date": "2022-03-14T07:56:08.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4307, + "fields": { + "EF_ID": 110403, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC8; Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1063", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.856Z", + "last_change_date": "2022-03-14T07:56:08.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4308, + "fields": { + "EF_ID": 110404, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC8; Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1064", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:08.931Z", + "last_change_date": "2022-03-14T07:56:08.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4309, + "fields": { + "EF_ID": 110405, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC8; Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1065", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.006Z", + "last_change_date": "2022-03-14T07:56:09.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4310, + "fields": { + "EF_ID": 110406, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC8; Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1066", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.116Z", + "last_change_date": "2022-03-14T07:56:09.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4311, + "fields": { + "EF_ID": 110407, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC8; Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1067", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.198Z", + "last_change_date": "2022-03-14T07:56:09.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4312, + "fields": { + "EF_ID": 110408, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC8; Fuel Consumption - 1860kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1068", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.273Z", + "last_change_date": "2022-03-14T07:56:09.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4313, + "fields": { + "EF_ID": 110409, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC9; Fuel Consumption - 880kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2780", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1069", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.356Z", + "last_change_date": "2022-03-14T07:56:09.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4314, + "fields": { + "EF_ID": 110410, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC9; Fuel Consumption - 880kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1070", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.459Z", + "last_change_date": "2022-03-14T07:56:09.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4315, + "fields": { + "EF_ID": 110411, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC9; Fuel Consumption - 880kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1071", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.539Z", + "last_change_date": "2022-03-14T07:56:09.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4316, + "fields": { + "EF_ID": 110412, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC9; Fuel Consumption - 880kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1072", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.623Z", + "last_change_date": "2022-03-14T07:56:09.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4317, + "fields": { + "EF_ID": 110413, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC9; Fuel Consumption - 880kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1073", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.706Z", + "last_change_date": "2022-03-14T07:56:09.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4318, + "fields": { + "EF_ID": 110414, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC9; Fuel Consumption - 880kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1074", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.820Z", + "last_change_date": "2022-03-14T07:56:09.820Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4319, + "fields": { + "EF_ID": 110415, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC9; Fuel Consumption - 880kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1075", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.898Z", + "last_change_date": "2022-03-14T07:56:09.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4320, + "fields": { + "EF_ID": 110416, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC10; Fuel Consumption - 2360kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7460", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1076", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:09.973Z", + "last_change_date": "2022-03-14T07:56:09.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4321, + "fields": { + "EF_ID": 110417, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC10; Fuel Consumption - 2360kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1077", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.048Z", + "last_change_date": "2022-03-14T07:56:10.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4322, + "fields": { + "EF_ID": 110418, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC10; Fuel Consumption - 2360kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1078", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.154Z", + "last_change_date": "2022-03-14T07:56:10.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4323, + "fields": { + "EF_ID": 110419, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC10; Fuel Consumption - 2360kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1079", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.231Z", + "last_change_date": "2022-03-14T07:56:10.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4324, + "fields": { + "EF_ID": 110420, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC10; Fuel Consumption - 2360kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1080", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.315Z", + "last_change_date": "2022-03-14T07:56:10.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4325, + "fields": { + "EF_ID": 110421, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC10; Fuel Consumption - 2360kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1081", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.389Z", + "last_change_date": "2022-03-14T07:56:10.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4326, + "fields": { + "EF_ID": 110422, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: DC10; Fuel Consumption - 2360kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1082", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.491Z", + "last_change_date": "2022-03-14T07:56:10.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4327, + "fields": { + "EF_ID": 110423, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F28; Fuel Consumption - 670kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2115", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1083", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.573Z", + "last_change_date": "2022-03-14T07:56:10.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4328, + "fields": { + "EF_ID": 110424, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F28; Fuel Consumption - 670kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1084", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.648Z", + "last_change_date": "2022-03-14T07:56:10.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4329, + "fields": { + "EF_ID": 110425, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F28; Fuel Consumption - 670kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1085", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.731Z", + "last_change_date": "2022-03-14T07:56:10.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4330, + "fields": { + "EF_ID": 110426, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F28; Fuel Consumption - 670kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1086", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.834Z", + "last_change_date": "2022-03-14T07:56:10.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4331, + "fields": { + "EF_ID": 110427, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F28; Fuel Consumption - 670kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1087", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:10.931Z", + "last_change_date": "2022-03-14T07:56:10.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4332, + "fields": { + "EF_ID": 110428, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F28; Fuel Consumption - 670kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1088", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.006Z", + "last_change_date": "2022-03-14T07:56:11.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4333, + "fields": { + "EF_ID": 110429, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F28; Fuel Consumption - 670kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1089", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.082Z", + "last_change_date": "2022-03-14T07:56:11.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4334, + "fields": { + "EF_ID": 110430, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F100; Fuel Consumption - 740kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2340", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1090", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.185Z", + "last_change_date": "2022-03-14T07:56:11.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4335, + "fields": { + "EF_ID": 110431, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F100; Fuel Consumption - 740kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1091", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.281Z", + "last_change_date": "2022-03-14T07:56:11.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4336, + "fields": { + "EF_ID": 110432, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F100; Fuel Consumption - 740kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1092", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.348Z", + "last_change_date": "2022-03-14T07:56:11.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4337, + "fields": { + "EF_ID": 110433, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F100; Fuel Consumption - 740kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1093", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.415Z", + "last_change_date": "2022-03-14T07:56:11.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4338, + "fields": { + "EF_ID": 110434, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F100; Fuel Consumption - 740kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1094", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.512Z", + "last_change_date": "2022-03-14T07:56:11.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4339, + "fields": { + "EF_ID": 110435, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F100; Fuel Consumption - 740kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1095", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.598Z", + "last_change_date": "2022-03-14T07:56:11.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4340, + "fields": { + "EF_ID": 110436, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type:F100; Fuel Consumption - 740kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1096", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.681Z", + "last_change_date": "2022-03-14T07:56:11.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4341, + "fields": { + "EF_ID": 110437, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: L1011(older types with poorer emissions perfomance); Fuel Consumption - 2540kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8025", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1097", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.765Z", + "last_change_date": "2022-03-14T07:56:11.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4342, + "fields": { + "EF_ID": 110438, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: L1011(older types with poorer emissions perfomance); Fuel Consumption - 2540kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1098", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.881Z", + "last_change_date": "2022-03-14T07:56:11.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4343, + "fields": { + "EF_ID": 110439, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: L1011(older types with poorer emissions perfomance); Fuel Consumption - 2540kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1099", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:11.956Z", + "last_change_date": "2022-03-14T07:56:11.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4344, + "fields": { + "EF_ID": 110440, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: L1011(older types with poorer emissions perfomance); Fuel Consumption - 2540kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1100", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.040Z", + "last_change_date": "2022-03-14T07:56:12.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4345, + "fields": { + "EF_ID": 110441, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: L1011(older types with poorer emissions perfomance); Fuel Consumption - 2540kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1101", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.115Z", + "last_change_date": "2022-03-14T07:56:12.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4346, + "fields": { + "EF_ID": 110442, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: L1011(older types with poorer emissions perfomance); Fuel Consumption - 2540kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1102", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.217Z", + "last_change_date": "2022-03-14T07:56:12.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4347, + "fields": { + "EF_ID": 110443, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: L1011(older types with poorer emissions perfomance); Fuel Consumption - 2540kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1103", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.323Z", + "last_change_date": "2022-03-14T07:56:12.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4348, + "fields": { + "EF_ID": 110444, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: SAAB 340; Fuel Consumption - 300(E)kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "945", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1104", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.440Z", + "last_change_date": "2022-03-14T07:56:12.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4349, + "fields": { + "EF_ID": 110445, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: SAAB 340; Fuel Consumption - 300(E)kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4(E)", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1105", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.506Z", + "last_change_date": "2022-03-14T07:56:12.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4350, + "fields": { + "EF_ID": 110446, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: SAAB 340; Fuel Consumption - 300(E)kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03(E)", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1106", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.602Z", + "last_change_date": "2022-03-14T07:56:12.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4351, + "fields": { + "EF_ID": 110447, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: SAAB 340; Fuel Consumption - 300(E)kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3(E)", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1107", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.690Z", + "last_change_date": "2022-03-14T07:56:12.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4352, + "fields": { + "EF_ID": 110448, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: SAAB 340; Fuel Consumption - 300(E)kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.1(E)", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1108", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.765Z", + "last_change_date": "2022-03-14T07:56:12.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4353, + "fields": { + "EF_ID": 110449, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: SAAB 340; Fuel Consumption - 300(E)kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.7(E)", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1109", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.831Z", + "last_change_date": "2022-03-14T07:56:12.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4354, + "fields": { + "EF_ID": 110450, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: SAAB 340; Fuel Consumption - 300(E)kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3(E)", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1110", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:12.929Z", + "last_change_date": "2022-03-14T07:56:12.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4355, + "fields": { + "EF_ID": 110451, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Tupolev 154; Fuel Consumption - 2190kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6920", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1111", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.015Z", + "last_change_date": "2022-03-14T07:56:13.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4356, + "fields": { + "EF_ID": 110452, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Tupolev 154; Fuel Consumption - 2190kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1112", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.090Z", + "last_change_date": "2022-03-14T07:56:13.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4357, + "fields": { + "EF_ID": 110453, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Tupolev 154; Fuel Consumption - 2190kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1113", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.156Z", + "last_change_date": "2022-03-14T07:56:13.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4358, + "fields": { + "EF_ID": 110454, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Tupolev 154; Fuel Consumption - 2190kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1114", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.255Z", + "last_change_date": "2022-03-14T07:56:13.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4359, + "fields": { + "EF_ID": 110455, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Tupolev 154; Fuel Consumption - 2190kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116.81", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1115", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.340Z", + "last_change_date": "2022-03-14T07:56:13.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4360, + "fields": { + "EF_ID": 110456, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Tupolev 154; Fuel Consumption - 2190kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75.9", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1116", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.407Z", + "last_change_date": "2022-03-14T07:56:13.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4361, + "fields": { + "EF_ID": 110457, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Tupolev 154; Fuel Consumption - 2190kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1117", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.481Z", + "last_change_date": "2022-03-14T07:56:13.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4362, + "fields": { + "EF_ID": 110458, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Concorde; Fuel Consumption - 6420kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20290", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1118", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.583Z", + "last_change_date": "2022-03-14T07:56:13.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4363, + "fields": { + "EF_ID": 110459, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Concorde; Fuel Consumption - 6420kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1119", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.665Z", + "last_change_date": "2022-03-14T07:56:13.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4364, + "fields": { + "EF_ID": 110460, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Concorde; Fuel Consumption - 6420kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1120", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.732Z", + "last_change_date": "2022-03-14T07:56:13.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4365, + "fields": { + "EF_ID": 110461, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Concorde; Fuel Consumption - 6420kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1121", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.798Z", + "last_change_date": "2022-03-14T07:56:13.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4366, + "fields": { + "EF_ID": 110462, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Concorde; Fuel Consumption - 6420kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "385", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1122", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.893Z", + "last_change_date": "2022-03-14T07:56:13.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4367, + "fields": { + "EF_ID": 110463, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Concorde; Fuel Consumption - 6420kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1123", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:13.990Z", + "last_change_date": "2022-03-14T07:56:13.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4368, + "fields": { + "EF_ID": 110464, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: Concorde; Fuel Consumption - 6420kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1124", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.082Z", + "last_change_date": "2022-03-14T07:56:14.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4369, + "fields": { + "EF_ID": 110465, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: GAjet; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2150", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1125", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.148Z", + "last_change_date": "2022-03-14T07:56:14.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4370, + "fields": { + "EF_ID": 110466, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: GAjet; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1126", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.245Z", + "last_change_date": "2022-03-14T07:56:14.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4371, + "fields": { + "EF_ID": 110467, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: GAjet; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1127", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.315Z", + "last_change_date": "2022-03-14T07:56:14.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4372, + "fields": { + "EF_ID": 110468, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: GAjet; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/1128", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.390Z", + "last_change_date": "2022-03-14T07:56:14.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4373, + "fields": { + "EF_ID": 110469, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: GAjet; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/943 ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.456Z", + "last_change_date": "2022-03-14T07:56:14.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4374, + "fields": { + "EF_ID": 110470, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: GAjet; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/944", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming 10% of total VOC emissions in LTO cycles are methane emissions (Olivier, 1991).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.555Z", + "last_change_date": "2022-03-14T07:56:14.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4375, + "fields": { + "EF_ID": 110471, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type", + "Technology_Practices": "Aircraft Type: GAjet; Fuel Consumption - 680kg/LTO", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-50 on Page 1.96) of the Reference Manual (Examples of Aircraft Types and Emission Factors for LTO Cycles as well as Fuel Consumption per Aircraft Type)", + "Technical_Reference": "ICAO (1995), Engine Exhaust Emissions Databank. First Edition - 1995. ICAO doc. 9646-AN/943 ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.640Z", + "last_change_date": "2022-03-14T07:56:14.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4376, + "fields": { + "EF_ID": 110472, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: A300 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.714Z", + "last_change_date": "2022-03-14T07:56:14.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4377, + "fields": { + "EF_ID": 110473, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: A310 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.790Z", + "last_change_date": "2022-03-14T07:56:14.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4378, + "fields": { + "EF_ID": 110474, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: A310 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.899Z", + "last_change_date": "2022-03-14T07:56:14.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4379, + "fields": { + "EF_ID": 110475, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: A310 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:14.981Z", + "last_change_date": "2022-03-14T07:56:14.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4380, + "fields": { + "EF_ID": 110476, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: A320 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.057Z", + "last_change_date": "2022-03-14T07:56:15.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4381, + "fields": { + "EF_ID": 110477, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: A320 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.132Z", + "last_change_date": "2022-03-14T07:56:15.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4382, + "fields": { + "EF_ID": 110478, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: A320 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.215Z", + "last_change_date": "2022-03-14T07:56:15.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4383, + "fields": { + "EF_ID": 110479, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: BAC 1 - 11 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.327Z", + "last_change_date": "2022-03-14T07:56:15.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4384, + "fields": { + "EF_ID": 110480, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: BAC 1 - 11 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.423Z", + "last_change_date": "2022-03-14T07:56:15.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4385, + "fields": { + "EF_ID": 110481, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: BAC 1 - 11 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.499Z", + "last_change_date": "2022-03-14T07:56:15.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4386, + "fields": { + "EF_ID": 110482, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: Bae 146 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.574Z", + "last_change_date": "2022-03-14T07:56:15.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4387, + "fields": { + "EF_ID": 110483, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: Bae 146 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.648Z", + "last_change_date": "2022-03-14T07:56:15.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4388, + "fields": { + "EF_ID": 110484, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: Bae 146 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.754Z", + "last_change_date": "2022-03-14T07:56:15.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4389, + "fields": { + "EF_ID": 110485, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B727 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.840Z", + "last_change_date": "2022-03-14T07:56:15.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4390, + "fields": { + "EF_ID": 110486, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B727 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.915Z", + "last_change_date": "2022-03-14T07:56:15.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4391, + "fields": { + "EF_ID": 110487, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B727 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:15.990Z", + "last_change_date": "2022-03-14T07:56:15.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4392, + "fields": { + "EF_ID": 110488, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B737 - 200 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.065Z", + "last_change_date": "2022-03-14T07:56:16.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4393, + "fields": { + "EF_ID": 110489, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B737 - 200 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.172Z", + "last_change_date": "2022-03-14T07:56:16.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4394, + "fields": { + "EF_ID": 110490, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B737 - 200 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.257Z", + "last_change_date": "2022-03-14T07:56:16.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4395, + "fields": { + "EF_ID": 110491, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B737 - 400 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.332Z", + "last_change_date": "2022-03-14T07:56:16.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4396, + "fields": { + "EF_ID": 110492, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B737 - 400 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.407Z", + "last_change_date": "2022-03-14T07:56:16.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4397, + "fields": { + "EF_ID": 110493, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B737 - 400 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.482Z", + "last_change_date": "2022-03-14T07:56:16.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4398, + "fields": { + "EF_ID": 110494, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B747 - 200 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.591Z", + "last_change_date": "2022-03-14T07:56:16.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4399, + "fields": { + "EF_ID": 110495, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B747 - 200 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.674Z", + "last_change_date": "2022-03-14T07:56:16.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4400, + "fields": { + "EF_ID": 110496, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B747 - 200 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.748Z", + "last_change_date": "2022-03-14T07:56:16.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4401, + "fields": { + "EF_ID": 110497, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B747 - 400 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.8", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.823Z", + "last_change_date": "2022-03-14T07:56:16.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4402, + "fields": { + "EF_ID": 110498, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B747 - 400 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:16.899Z", + "last_change_date": "2022-03-14T07:56:16.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4403, + "fields": { + "EF_ID": 110499, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B747 - 400 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.003Z", + "last_change_date": "2022-03-14T07:56:17.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4404, + "fields": { + "EF_ID": 110500, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B757 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.098Z", + "last_change_date": "2022-03-14T07:56:17.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4405, + "fields": { + "EF_ID": 110501, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B757 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.182Z", + "last_change_date": "2022-03-14T07:56:17.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4406, + "fields": { + "EF_ID": 110502, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B757 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.265Z", + "last_change_date": "2022-03-14T07:56:17.265Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4407, + "fields": { + "EF_ID": 110503, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B767 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.349Z", + "last_change_date": "2022-03-14T07:56:17.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4408, + "fields": { + "EF_ID": 110504, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B767 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.463Z", + "last_change_date": "2022-03-14T07:56:17.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4409, + "fields": { + "EF_ID": 110505, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: B767 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.549Z", + "last_change_date": "2022-03-14T07:56:17.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4410, + "fields": { + "EF_ID": 110506, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC8 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.624Z", + "last_change_date": "2022-03-14T07:56:17.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4411, + "fields": { + "EF_ID": 110507, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC8 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.707Z", + "last_change_date": "2022-03-14T07:56:17.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4412, + "fields": { + "EF_ID": 110508, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC8 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.782Z", + "last_change_date": "2022-03-14T07:56:17.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4413, + "fields": { + "EF_ID": 110509, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC9 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.890Z", + "last_change_date": "2022-03-14T07:56:17.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4414, + "fields": { + "EF_ID": 110510, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC9 (NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:17.974Z", + "last_change_date": "2022-03-14T07:56:17.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4415, + "fields": { + "EF_ID": 110511, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC9 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.049Z", + "last_change_date": "2022-03-14T07:56:18.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4416, + "fields": { + "EF_ID": 110512, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC10 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.124Z", + "last_change_date": "2022-03-14T07:56:18.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4417, + "fields": { + "EF_ID": 110513, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC10(NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.2", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.199Z", + "last_change_date": "2022-03-14T07:56:18.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4418, + "fields": { + "EF_ID": 110514, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: DC10 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.300Z", + "last_change_date": "2022-03-14T07:56:18.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4419, + "fields": { + "EF_ID": 110515, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: F28 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.382Z", + "last_change_date": "2022-03-14T07:56:18.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4420, + "fields": { + "EF_ID": 110516, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: F28(NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.457Z", + "last_change_date": "2022-03-14T07:56:18.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4421, + "fields": { + "EF_ID": 110517, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: F28 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.532Z", + "last_change_date": "2022-03-14T07:56:18.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4422, + "fields": { + "EF_ID": 110518, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: F100 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.632Z", + "last_change_date": "2022-03-14T07:56:18.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4423, + "fields": { + "EF_ID": 110519, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: F100(NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.737Z", + "last_change_date": "2022-03-14T07:56:18.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4424, + "fields": { + "EF_ID": 110520, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: F100 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.4", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.832Z", + "last_change_date": "2022-03-14T07:56:18.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4425, + "fields": { + "EF_ID": 110521, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: MD80 (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.3", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.907Z", + "last_change_date": "2022-03-14T07:56:18.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4426, + "fields": { + "EF_ID": 110522, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: MD80(NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.6", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:18.973Z", + "last_change_date": "2022-03-14T07:56:18.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4427, + "fields": { + "EF_ID": 110523, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: MD80 (AVERAGE)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.5", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.057Z", + "last_change_date": "2022-03-14T07:56:19.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4428, + "fields": { + "EF_ID": 110524, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: TU154(NASA)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.172Z", + "last_change_date": "2022-03-14T07:56:19.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4429, + "fields": { + "EF_ID": 110525, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: Concorde (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.9", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.249Z", + "last_change_date": "2022-03-14T07:56:19.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4430, + "fields": { + "EF_ID": 110526, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factors of NOX for various Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft Type: GAjetConcorde (ANCAT)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.7", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-51 on Page 1.97) of the Reference Manual (Emission factors of NOX for Various Aircraft at Cruise Levels)", + "Technical_Reference": "Baughcum et al (1996) and Gardiner et al (1997) ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Where data for aicraft type is not dispalyed, data for the nearest equivalent type can be used. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.324Z", + "last_change_date": "2022-03-14T07:56:19.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4431, + "fields": { + "EF_ID": 110527, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Airbus A320, Boeing 727, Boeing 737 - 400, Mc Donald Douglas DC9 and MD80; Fuel Consumption 850kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2680", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.390Z", + "last_change_date": "2022-03-14T07:56:19.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4432, + "fields": { + "EF_ID": 110528, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 737 and Mc Donald Douglas DC9: Fuel Consumption 1000kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3150", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.465Z", + "last_change_date": "2022-03-14T07:56:19.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4433, + "fields": { + "EF_ID": 110529, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3150", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.574Z", + "last_change_date": "2022-03-14T07:56:19.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4434, + "fields": { + "EF_ID": 110530, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Airbus A320, Boeing 727, Boeing 737 - 400, Mc Donald Douglas DC9 and MD80; Fuel Consumption 850kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.657Z", + "last_change_date": "2022-03-14T07:56:19.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4435, + "fields": { + "EF_ID": 110531, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 737 and Mc Donald Douglas DC9: Fuel Consumption 1000kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.732Z", + "last_change_date": "2022-03-14T07:56:19.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4436, + "fields": { + "EF_ID": 110532, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Studies indicate that no methane is emitted during cruise", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.807Z", + "last_change_date": "2022-03-14T07:56:19.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4437, + "fields": { + "EF_ID": 110533, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Airbus A320, Boeing 727, Boeing 737 - 400, Mc Donald Douglas DC9 and MD80; Fuel Consumption 850kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Estimates are based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.909Z", + "last_change_date": "2022-03-14T07:56:19.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4438, + "fields": { + "EF_ID": 110534, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 737 and Mc Donald Douglas DC9: Fuel Consumption 1000kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Estimates are based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:19.990Z", + "last_change_date": "2022-03-14T07:56:19.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4439, + "fields": { + "EF_ID": 110535, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Estimates are based on Tier 1 default values", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.057Z", + "last_change_date": "2022-03-14T07:56:20.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4440, + "fields": { + "EF_ID": 110536, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Airbus A320, Boeing 727, Boeing 737 - 400, Mc Donald Douglas DC9 and MD80; Fuel Consumption 850kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.124Z", + "last_change_date": "2022-03-14T07:56:20.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4441, + "fields": { + "EF_ID": 110537, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 737 and Mc Donald Douglas DC9: Fuel Consumption 1000kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.227Z", + "last_change_date": "2022-03-14T07:56:20.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4442, + "fields": { + "EF_ID": 110538, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.324Z", + "last_change_date": "2022-03-14T07:56:20.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4443, + "fields": { + "EF_ID": 110539, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Airbus A320, Boeing 727, Boeing 737 - 400, Mc Donald Douglas DC9 and MD80; Fuel Consumption 850kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.390Z", + "last_change_date": "2022-03-14T07:56:20.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4444, + "fields": { + "EF_ID": 110540, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 737 and Mc Donald Douglas DC9: Fuel Consumption 1000kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.465Z", + "last_change_date": "2022-03-14T07:56:20.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4445, + "fields": { + "EF_ID": 110541, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.563Z", + "last_change_date": "2022-03-14T07:56:20.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4446, + "fields": { + "EF_ID": 110542, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Airbus A320, Boeing 727, Boeing 737 - 400, Mc Donald Douglas DC9 and MD80; Fuel Consumption 850kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Studies indicate that no methane is emitted during cruise", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.649Z", + "last_change_date": "2022-03-14T07:56:20.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4447, + "fields": { + "EF_ID": 110543, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 737 and Mc Donald Douglas DC9: Fuel Consumption 1000kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Studies indicate that no methane is emitted during cruise", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.739Z", + "last_change_date": "2022-03-14T07:56:20.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4448, + "fields": { + "EF_ID": 110544, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Studies indicate that no methane is emitted during cruise", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.814Z", + "last_change_date": "2022-03-14T07:56:20.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4449, + "fields": { + "EF_ID": 110545, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Airbus A320, Boeing 727, Boeing 737 - 400, Mc Donald Douglas DC9 and MD80; Fuel Consumption 850kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Sulphur content of the fuel is assumed to be 0.05% for both LTO and cruise activities.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:20.923Z", + "last_change_date": "2022-03-14T07:56:20.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4450, + "fields": { + "EF_ID": 110546, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 737 and Mc Donald Douglas DC9: Fuel Consumption 1000kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Sulphur content of the fuel is assumed to be 0.05% for both LTO and cruise activities.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.007Z", + "last_change_date": "2022-03-14T07:56:21.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4451, + "fields": { + "EF_ID": 110547, + "IPCC_Category": "1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to domestic flights. Sulphur content of the fuel is assumed to be 0.05% for both LTO and cruise activities.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.081Z", + "last_change_date": "2022-03-14T07:56:21.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4452, + "fields": { + "EF_ID": 110548, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: A300, Boeing 767, B 747, Mc Donald Douglas DC10 and MD80; Fuel Consumption 2500kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7900", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.147Z", + "last_change_date": "2022-03-14T07:56:21.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4453, + "fields": { + "EF_ID": 110549, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 707, B747 and Mc Donald Douglas DC8: Fuel Consumption 2400kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7560", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.250Z", + "last_change_date": "2022-03-14T07:56:21.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4454, + "fields": { + "EF_ID": 110550, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3150", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.332Z", + "last_change_date": "2022-03-14T07:56:21.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4455, + "fields": { + "EF_ID": 110551, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: A300, Boeing 767, B 747, Mc Donald Douglas DC10 and MD80; Fuel Consumption 2500kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Studies indicate that during cruise no methane is emitted", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.414Z", + "last_change_date": "2022-03-14T07:56:21.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4456, + "fields": { + "EF_ID": 110552, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 707, B747 and Mc Donald Douglas DC8: Fuel Consumption 2400kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Studies indicate that during cruise no methane is emitted", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.489Z", + "last_change_date": "2022-03-14T07:56:21.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4457, + "fields": { + "EF_ID": 110553, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft type: not specified for Cruise. Studies indicate that during cruise no methane is emitted.", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Studies indicate that during cruise no methane is emitted", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.601Z", + "last_change_date": "2022-03-14T07:56:21.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4458, + "fields": { + "EF_ID": 110554, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: A300, Boeing 767, B 747, Mc Donald Douglas DC10 and MD80; Fuel Consumption 2500kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Estimates based on Tier 1 default values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.682Z", + "last_change_date": "2022-03-14T07:56:21.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4459, + "fields": { + "EF_ID": 110555, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 707, B747 and Mc Donald Douglas DC8: Fuel Consumption 2400kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Estimates based on Tier 1 default values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.757Z", + "last_change_date": "2022-03-14T07:56:21.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4460, + "fields": { + "EF_ID": 110556, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Estimates based on Tier 1 default values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.832Z", + "last_change_date": "2022-03-14T07:56:21.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4461, + "fields": { + "EF_ID": 110557, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: A300, Boeing 767, B 747, Mc Donald Douglas DC10 and MD80; Fuel Consumption 2500kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:21.936Z", + "last_change_date": "2022-03-14T07:56:21.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4462, + "fields": { + "EF_ID": 110558, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 707, B747 and Mc Donald Douglas DC8: Fuel Consumption 2400kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.6", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.024Z", + "last_change_date": "2022-03-14T07:56:22.024Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4463, + "fields": { + "EF_ID": 110559, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.099Z", + "last_change_date": "2022-03-14T07:56:22.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4464, + "fields": { + "EF_ID": 110560, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: A300, Boeing 767, B 747, Mc Donald Douglas DC10 and MD80; Fuel Consumption 2500kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.166Z", + "last_change_date": "2022-03-14T07:56:22.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4465, + "fields": { + "EF_ID": 110561, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 707, B747 and Mc Donald Douglas DC8: Fuel Consumption 2400kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.273Z", + "last_change_date": "2022-03-14T07:56:22.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4466, + "fields": { + "EF_ID": 110562, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.357Z", + "last_change_date": "2022-03-14T07:56:22.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4467, + "fields": { + "EF_ID": 110563, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: A300, Boeing 767, B 747, Mc Donald Douglas DC10 and MD80; Fuel Consumption 2500kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Studies indicate that during cruise no methane is emitted", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.432Z", + "last_change_date": "2022-03-14T07:56:22.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4468, + "fields": { + "EF_ID": 110564, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 707, B747 and Mc Donald Douglas DC8: Fuel Consumption 2400kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Studies indicate that during cruise no methane is emitted", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.666Z", + "last_change_date": "2022-03-14T07:56:22.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4469, + "fields": { + "EF_ID": 110565, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Studies indicate that during cruise no methane is emitted", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.775Z", + "last_change_date": "2022-03-14T07:56:22.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4470, + "fields": { + "EF_ID": 110566, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: A300, Boeing 767, B 747, Mc Donald Douglas DC10 and MD80; Fuel Consumption 2500kg/LTO (Average Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Sulphur content of the fuel is assumed to be 0.05% for both LTO and cruise activities.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.841Z", + "last_change_date": "2022-03-14T07:56:22.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4471, + "fields": { + "EF_ID": 110567, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft types: Boeing 707, B747 and Mc Donald Douglas DC8: Fuel Consumption 2400kg/LTO (Old Fleet)", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Sulphur content of the fuel is assumed to be 0.05% for both LTO and cruise activities.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.907Z", + "last_change_date": "2022-03-14T07:56:22.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4472, + "fields": { + "EF_ID": 110568, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factors and Fuel Consumption for Aircraft (LTO Emissions are given on a per Aircraft basis)", + "Technology_Practices": "Aircraft not specified for Cruise", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, fuel type is specified as Jet Fuel", + "Regional_Conditions": "Not Applicable", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/t fuel", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-5; Sheet 3 - 3", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ( Table 1-52 on Page 1.98) of the Reference Manual (Default Emission factors and Fuel Consumption for Aircraft (LTO Emission Factors are given on a per Aircraft Basis)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This applies to international flights. Sulphur content of the fuel is assumed to be 0.05% for both LTO and cruise activities.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:22.974Z", + "last_change_date": "2022-03-14T07:56:22.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4473, + "fields": { + "EF_ID": 110571, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon emission factor (CEF) for combustion of bitumious coal (oxidation factor not included)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech republic", + "Control_Technologies": "", + "Other_Properties": "NCV: 26.25 MJ/kg, C content (as received) 66,75%", + "Value": "25.43", + "Unit": "tonne-C/Terajoule", + "Equation": "See Chapter 1.4.1 Reference Manual, IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 1-1, Sheet 2 of 5", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fott P.: Carbon emission factors of coal and lignite, Environmental Science and Policy 2 (1999) 347-354 (and cited references)", + "English_Abstract": "", + "Lower_Bound": "3%", + "Upper_Bound": "3%", + "Data_Quality": "good", + "Data_Quality_Reference": "Peer reviewed journal", + "Other_Data_Quality": "", + "Data_Provider_Comments": "From Czech coal data the following correlation was derived: CEF (t C/TJ) = 10*(2.333 + 5.511/NCV). This emission factor was computed from several experimental data sets. But the Single Input Form of the database contains four words i.e. measured, modelled, compiled and other only. In view of this fact, the word compiled also satisfactorily describes the method used in deriving the mission factor.", + "Other_Comments": "", + "Data_Provider": "Pavel Fott", + "Link": "", + "creation_date": "2022-03-14T07:56:23.068Z", + "last_change_date": "2022-03-14T07:56:23.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4474, + "fields": { + "EF_ID": 110592, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion of peat ", + "Technology_Practices": "CFB (circulating fluidized bed) boiler, 299 Mwth, multifuel boiler (peat and wood)", + "Parameter_Conditions": "Fuel: 100% peat. Load 98%. Bed temperature 865 °C, upper furnace 901 °C, after separator 905 °C. Flue gas (dry): O2 6.1%; CO2 13.8%; CO 14 ppm. CH4 concentration in wet gas when expressed in ppm.", + "Regional_Conditions": "Finland, Boreal region", + "Control_Technologies": "limestone injection deSox", + "Other_Properties": "", + "Value": "4", + "Unit": "parts per million", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Korhonen S, Fabritius M and Hoffren H (2001) Methane and nitrous oxide emissions in the Finnish energy production. Fortum Report Tech 4615. 36 pages (Available at http://www.energia.fi/attachment.asp?Section=1354&Item=1691)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Standard or inhouse methods with normal calibration and reference measurements", + "Data_Quality_Reference": "", + "Other_Data_Quality": "measuring range 0-1000 ppm, confidence limit 2 ppm", + "Data_Provider_Comments": "Campaign monitoring involves detailed extensive measurements not usually justified on regular basis, carried out during a certain period in various conditions determine the actual emissions. The results can be used later to calculate annual emissions.", + "Other_Comments": "Although this emission factor is assigned to CH4, it actually accounts for CH4 and non-CH4 hydrocarbons in the flue gas. The EF value, expressed in g/GJ, was calculated by means of a standardized approach on the basis of the measured total hydrocarbon concentration in the flue gas, the diluent concentration in the flue gas and fuel properties. (A comment from Editorial Board)", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T07:56:23.149Z", + "last_change_date": "2022-03-14T07:56:23.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4475, + "fields": { + "EF_ID": 110593, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion of peat ", + "Technology_Practices": "CFB (circulating fluidized bed) boiler, 299 Mwth, multifuel boiler (peat and wood)", + "Parameter_Conditions": "Fuel: 85% peat, 15% wood. Load: 99%. Bed temperature 846 °C, upper furnace 887 °C, after separator 894 °C. Flue gas (dry): O2 6.2%; CO2 13.7%; CO 9 ppm. CH4 concentration in ppm is on wet basis.", + "Regional_Conditions": "Finland, Boreal region", + "Control_Technologies": "limestone injection deSox", + "Other_Properties": "", + "Value": "4", + "Unit": "parts per million", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Korhonen S, Fabritius M and Hoffren H (2001) Methane and nitrous oxide emissions in the Finnish energy production. Fortum Report Tech 4615. 36 pages (Available at http://www.energia.fi/attachment.asp?Section=1354&Item=1691)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "measuring range 0-1000 ppm, confidence limit 2 ppm", + "Data_Provider_Comments": "Campaign monitoring involves detailed extensive measurements not usually justified on regular basis, carried out during a certain period in various conditions determine the actual emissions. The results can be used later to calculate annual emissions.", + "Other_Comments": "Although this emission factor is assigned to CH4, it actually accounts for CH4 and non-CH4 hydrocarbons in the flue gas. The EF value, expressed in g/GJ, was calculated by means of a standardized approach on the basis of the measured total hydrocarbon concentration in the flue gas, the diluent concentration in the flue gas and fuel properties. (A comment from Editorial Board)", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T07:56:23.232Z", + "last_change_date": "2022-03-14T07:56:23.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4476, + "fields": { + "EF_ID": 110594, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion of peat", + "Technology_Practices": "Circulating fluidized bed (CFB), capacity 294 MWth (municipal CHP plant), multifuel boiler, peat 100% load", + "Parameter_Conditions": "load 98%, bed temperature 865 °C, upper furnace 901 °C, after separator 905 °C. Flue gas (dry): O2 6.1%; CO2 13.8%; CO 14 ppm", + "Regional_Conditions": "Finland", + "Control_Technologies": "limestone injection deSOx", + "Other_Properties": "", + "Value": "2", + "Unit": "parts per million", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Korhonen S, Fabritius M and Hoffren H (2001) Methane and nitrous oxide emissions in the Finnish energy production. Fortum publication Tech-4615. 36 pages. (Available at http://www.energia.fi/attachment.asp?Section=1354&Item=1691)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The measured N2O concentration was < 2 ppm", + "Data_Provider_Comments": "Campaign monitoring involves detailed extensive measurements not usually justified on regular basis. There are other EFs for this technology for different specific conditions available in the EFDB. The information can be used to calculate annual emissions. ", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T07:56:23.336Z", + "last_change_date": "2022-03-14T07:56:23.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4477, + "fields": { + "EF_ID": 110595, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion of peat ", + "Technology_Practices": "Circulating fluidized bed (CFB), capacity 297 MWth (municipal, CHP plant), multifuel boiler, peat 85%/wood 15% load, multifuel", + "Parameter_Conditions": "Fuel: 85% peat, 15% wood. Load: 99%. Bed temperature 846 °C, upper furnace 887 °C, after separator 894 °C. Flue gas (dry): O2 6.2%; CO2 13.7%; CO 9 ppm. N2O concentration in ppm is on dry basis.", + "Regional_Conditions": "Finland", + "Control_Technologies": "limestone injection deSOx", + "Other_Properties": "", + "Value": "5", + "Unit": "parts per million", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Korhonen S, Fabritius M and Hoffren H (2001) Methane and nitrous oxide emissions in the Finnish energy production. Fortum publication Tech-4615. 36 pages.  (Available at http://www.energia.fi/attachment.asp?Section=1354&Item=1691)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Standard/in-house methods with normal calibration and reference measurements", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The measured N2O concentration was < 2 ppm., measuring range 0 - 50/500 ppm, confidence limit 2 ppm ", + "Data_Provider_Comments": "Campaign monitoring involves detailed extensive measurements not usually justified on regular basis, carried out during a certain period in various conditions determine the actual emissions. The results can be used later to calculate annual emissions.", + "Other_Comments": "The EF value, expressed in g/GJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties. (A comment from Editorial Board)", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T07:56:23.416Z", + "last_change_date": "2022-03-14T07:56:23.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4478, + "fields": { + "EF_ID": 110600, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion of NG in NGCC", + "Technology_Practices": "Natural Gas Combined Cycel (NGCC), municipal combined heat and power (CHP) plant. Capacity 155 MWth. Two gas turbines and one heat recovery steam generator.", + "Parameter_Conditions": "Load during measurement 47%. Flue gas (dry): O2 14.7%; CO2 3.5%; CO 7 ppm. ", + "Regional_Conditions": "Finland", + "Control_Technologies": "no information available at present", + "Other_Properties": "", + "Value": "3", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Korhonen S, Fabritius M and Hoffren H (2001) Methane and nitrous oxide emissions in the Finnish energy production. Fortum publication Tech-4615. 36 pages.  (Available at http://www.energia.fi/attachment.asp?Section=1354&Item=1691)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The measured N2O concentration was < 2 ppm. measuring range 0 - 50/500 ppm, confidence limit 2 ppm", + "Data_Provider_Comments": "Campaign monitoring involves detailed extensive measurements not usually justified on regular basis, carried out during a certain period in various conditions determine the actual emissions. The results can be used later to calculate annual emissions.", + "Other_Comments": "The EF value, expressed in g/GJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties. (A comment from Editorial Board) ", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T07:56:23.520Z", + "last_change_date": "2022-03-14T07:56:23.520Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4479, + "fields": { + "EF_ID": 110603, + "IPCC_Category": "1.A.1.b - Petroleum Refining", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from all combustion processes, only occurring in refineries", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 1999.", + "Value": "73", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "(From Editorial Board) For Reference Approach use only. See the TNO report.", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:23.616Z", + "last_change_date": "2022-03-14T07:56:23.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4480, + "fields": { + "EF_ID": 110606, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from all combustion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 1999., NCV = 44 GJ/ton (assumed) and EF has been calculated on this basis [Spakman et al., 1997].", + "Value": "72.3", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002, p. 14", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:23.691Z", + "last_change_date": "2022-03-14T07:56:23.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4481, + "fields": { + "EF_ID": 110611, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from all combustion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 1999., Assumed NCV = 41 GJ/ton, [Spakman et al., 1997]", + "Value": "77", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:23.797Z", + "last_change_date": "2022-03-14T07:56:23.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4482, + "fields": { + "EF_ID": 110612, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from all combustion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 1999. On basis of literature consulted (a.o. Polyenergy-pocketbook [in Dutch]), the amount of carbon in LPG is estimated to be 82%, and the NCV is estimated to be 45 - 46 GJ/ton. See Comments from data provider.", + "Value": "66.4", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "On basis of literature consulted (a.o. Polyenergy-pocketbook [in Dutch]), the amount of carbon in LPG is estimated to be 82% and the NCV is estimated to be 45 - 46 GJ/ton., This leads to an emission of 66 t CO2/TJ [Spakman et al., 1997]. , A more exact value is 66.4 t CO2/TJ [Klein et al., 2002].", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:23.874Z", + "last_change_date": "2022-03-14T07:56:23.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4483, + "fields": { + "EF_ID": 110620, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "Emissions from all combustion processes", + "Technology_Practices": "Metal industry", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 2000. , The CO2 emission factor for coal can vary over a wide range according to the type of coal. In the Netherlands all coal is being imported. (See also the Comments from the data provider field.)", + "Value": "92.8", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002, , Corus and Statistics Netherlands, table 4.3 p. 24", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(Continued from Others property field.) This means it is not easy to assess the typical coal that is being used in the Netherlands. The types of coal are being differentiated to types of consumers or sectors. Different types of anthracite and thus different emission factors are therefore used for different sectors in the Netherlands. The basis of the factor of 101 ton/TJ, which - according to Okken (1989) - is used by the iron & steel industry, is unclear. In reality in this sector in 2000 an EF of 92.8 ton/TJ (based on measurements) is used., Carbon content = 81.8 mass-%, NCV = 32.304 MJ/kg", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:23.941Z", + "last_change_date": "2022-03-14T07:56:23.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4484, + "fields": { + "EF_ID": 110624, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from all combustion processes", + "Technology_Practices": "Metal industry", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 2000., The CO2 emission factor for coal can vary over a wide range according to the type of coal. In the Netherlands all coal is being imported. (See also the Comments from the data provider field.)", + "Value": "113", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002, table 4.3 p. 24, cokes", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(Continued from the Other property field.) This means it is not easy to assess the typical coal that is being used in the Netherlands. The types of coal are being differentiated to types of consumers or sectors. Different types of anthracite and thus different emission factors are therefore used for different sectors in the Netherlands., The basis of the factor of 101 ton/TJ, which - according to Okken (1989) - is used by the iron & steel industry, is unclear. In reality in this sector in 2000 an EF of 113 ton/TJ (based on calculations) is used., Carbon content = 87.8 mass-% , NCV = 28.50 MJ/kg.", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:24.016Z", + "last_change_date": "2022-03-14T07:56:24.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4485, + "fields": { + "EF_ID": 110627, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from all combustion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 1999. , In Holland a standard NCV = 31.65 MJ/m3 is used., (See also the Comments from the data provider field.)", + "Value": "56.0", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "(Continued from the Others property field.) The calculated EF of 56.0 ton CO2/TJ is based on measurements by GASUNIE of the gas quality from different gas wells in the Netherlands. The components are: , [81.3 % of CH4; NCV = 802 MJ/kmol], , [2.9 % of C2H6; NCV = 1428 Mj/kmol], , [0.4 % of C3 H8; NCV = 2044 MJ/kmol], , [0.2 % of C4H10; NCV = 2657 MJ/kmol], , [0.0 % of C5H12; NCV = 3272 MJ/kmol], , [0.1 % of C6H14; NCV = 3887 MJ/kmol], , [14.3 % of N2; NCV = 0], , [0.0 % of O2; NCV = 0], , [0.9 % of CO2; NCV = 0]. , Contribution to EF: , [50.5 kg CO2/GJ from CH4], , [3.6 kg CO2/GJ from C2H6], , [0.7 kg CO2/GJ from C3 H8], , [0.4 kg CO2/GJ from C4H10], , [0.1 kg CO2/GJ from C5H12], , [0.2 kg CO2/GJ from C6H14], , [0.0 kg CO2/GJ from N2], , [0.0 kg CO2/GJ from O2], , [0.6 kg CO2/GJ from CO2].", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:24.142Z", + "last_change_date": "2022-03-14T07:56:24.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4486, + "fields": { + "EF_ID": 110638, + "IPCC_Category": "1.A.1.b - Petroleum Refining", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon dioxide emission factor from combustion of refinery fuel gas.Carbon oxidation factor=95%", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The State of Qatar", + "Control_Technologies": "", + "Other_Properties": "NCVs range:37.50-38.85 MJ/Nm3 , C content average=0.71 , Molecular weights range:15.62-16.39 , Densities(20 deg.C and 1 P.)range:0.70-0.73 Kg/m3 , Molar composition(average):CH4=10%,NMHC=30%,H2=59% , All computations at one atmosph. and 20 deg. Celsius.", + "Value": "12.5+/-0.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Initial National Communication to the UNFCCC by the State of Qatar(Unpublished Report). Al-Maslamani,M.J. and Ahmed,A.F.M(2004)Unpublished Data, Qatar Petroleum, Doha, Qatar", + "English_Abstract": "", + "Lower_Bound": "5.5%", + "Upper_Bound": "5.5%", + "Data_Quality": "good", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The factor was compiled from annual statistics of Qatar refinery fuel physico-chemical characteristics for the period 1995-2000.", + "Other_Comments": "", + "Data_Provider": "Azhari F. M. Ahmed", + "Link": "", + "creation_date": "2022-03-14T07:56:24.224Z", + "last_change_date": "2022-03-14T07:56:24.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4487, + "fields": { + "EF_ID": 110642, + "IPCC_Category": "1.A.3.d.i - International water-borne navigation (International bunkers)", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from medium-speed and slow-speed marine diesel engines, using both heavy fuel oil (HFO) and marine diesel oil (MDO). [HFO 2.7%S 87.5%C and 41MJ/kg; MDO 0.5%S 86.5%C and 42.2MJ/kg. ], , ", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "-", + "Value": "0.1", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/294: Emissiefactoren voor methaan en lachgas uit de luchtvaart en scheepvaart by Dr.ir H.A.C. Denier van der Gon and Ir. J.H.J. Hulskotte.", + "English_Abstract": "EF for CH4 from combustion of international bunker fuels in the marine sector to be used by the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The above mentioned proposed value is based on a literature survey, where both calculated and measured CH4 emission values are presented. , ", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:24.299Z", + "last_change_date": "2022-03-14T07:56:24.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4488, + "fields": { + "EF_ID": 110645, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission of CH4 generated by combustion of international bunker fuels", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Landing and take-off cycle on Dutch airports, average for all aircraft with origin or destination the Netherlands", + "Value": "0.23", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/294: Emissiefactoren voor methaan en lachgas uit de luchtvaart en scheepvaart by Dr.ir H.A.C. Denier van der Gon and Ir. J.H.J. Hulskotte.", + "English_Abstract": "EF for CH4 from combustion of international bunker fuels in the aviation sector to be used by the Netherlands ", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The proposed value is based on a literature survey. The Dutch EF value is much lower than the IPCC value (IPCC value amounts to 1.5 kg/LTO), because the average fleet on Dutch airports is different from the average fleet specified by IPCC. In addition the taxi times on Schiphol airport is much shorter than used by IPCC.", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:24.392Z", + "last_change_date": "2022-03-14T07:56:24.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4489, + "fields": { + "EF_ID": 110646, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission of CH4 generated by combustion of international bunker fuels", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "CH4 emission during cruise", + "Value": "0", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/294: Emissiefactoren voor methaan en lachgas uit de luchtvaart en scheepvaart by Dr.ir H.A.C. Denier van der Gon and Ir. J.H.J. Hulskotte.", + "English_Abstract": "EF for CH4 from combustion of international bunker fuels in the aviation sector to be used by the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For the Dutch situation, during cruise the emission of CH4 is calculated to be zero (Wiesen et al., 1994) or lower than concentration in environmental air.", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:24.474Z", + "last_change_date": "2022-03-14T07:56:24.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4490, + "fields": { + "EF_ID": 110647, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission of CH4 generated by combustion of international bunker fuels", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Over all (cruise and landing and take-off cycle)", + "Value": "0.015", + "Unit": "g/kg fuel", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/294: Emissiefactoren voor methaan en lachgas uit de luchtvaart en scheepvaart by Dr.ir H.A.C. Denier van der Gon and Ir. J.H.J. Hulskotte.", + "English_Abstract": "EF for CH4 from combustion of international bunker fuels in the aviation sector to be used by the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "From a recent RIVM study (Jansen, 2002) it can be derived that the contribution of LTO to the total fuel use amounts to 5% and the contribution of cruise amounts to 95%. On this basis the weighted average EF of 0.015 g/kg fuel has been calculated.", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:24.549Z", + "last_change_date": "2022-03-14T07:56:24.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4491, + "fields": { + "EF_ID": 110649, + "IPCC_Category": "1.A.3.a.i - International Aviation (International Bunkers)", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission of N2O generated by combustion of international bunker fuels", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Landing and take-off cycle on Dutch airports, average for all aircraft with origin or destination the Netherlands", + "Value": "0.08", + "Unit": "kg/LTO", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/294: Emissiefactoren voor methaan en lachgas uit de luchtvaart en scheepvaart by Dr.ir H.A.C. Denier van der Gon and Ir. J.H.J. Hulskotte.", + "English_Abstract": "EF for N2O from combustion of international bunker fuels in the aviation sector to be used by the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The proposed value is based on a literature survey. The Dutch EF value is much lower than the IPCC value (IPCC value amounts to 0.2 kg/LTO), because the average fleet on Dutch airports is different from the average fleet specified by IPCC. In addition the taxi times on Schiphol airport is much shorter than used by IPCC. ", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:24.624Z", + "last_change_date": "2022-03-14T07:56:24.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4492, + "fields": { + "EF_ID": 110652, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:24.727Z", + "last_change_date": "2022-03-14T07:56:24.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4493, + "fields": { + "EF_ID": 110653, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:24.825Z", + "last_change_date": "2022-03-14T07:56:24.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4494, + "fields": { + "EF_ID": 110654, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.2", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:24.917Z", + "last_change_date": "2022-03-14T07:56:24.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4495, + "fields": { + "EF_ID": 110655, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.9", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.001Z", + "last_change_date": "2022-03-14T07:56:25.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4496, + "fields": { + "EF_ID": 110656, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.5", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.084Z", + "last_change_date": "2022-03-14T07:56:25.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4497, + "fields": { + "EF_ID": 110657, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.167Z", + "last_change_date": "2022-03-14T07:56:25.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4498, + "fields": { + "EF_ID": 110658, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.250Z", + "last_change_date": "2022-03-14T07:56:25.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4499, + "fields": { + "EF_ID": 110659, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.2", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.364Z", + "last_change_date": "2022-03-14T07:56:25.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4500, + "fields": { + "EF_ID": 110660, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.1", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.442Z", + "last_change_date": "2022-03-14T07:56:25.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4501, + "fields": { + "EF_ID": 110661, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.2", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.517Z", + "last_change_date": "2022-03-14T07:56:25.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4502, + "fields": { + "EF_ID": 110662, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.592Z", + "last_change_date": "2022-03-14T07:56:25.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4503, + "fields": { + "EF_ID": 110663, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is a default value until a fuel specific CEF is detemined.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.667Z", + "last_change_date": "2022-03-14T07:56:25.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4504, + "fields": { + "EF_ID": 110664, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.733Z", + "last_change_date": "2022-03-14T07:56:25.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4505, + "fields": { + "EF_ID": 110665, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is a default value until a fuel specific CEF is detemined.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.801Z", + "last_change_date": "2022-03-14T07:56:25.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4506, + "fields": { + "EF_ID": 110666, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.5", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.867Z", + "last_change_date": "2022-03-14T07:56:25.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4507, + "fields": { + "EF_ID": 110667, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is a default value until a fuel specific CEF is detemined.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:25.959Z", + "last_change_date": "2022-03-14T07:56:25.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4508, + "fields": { + "EF_ID": 110668, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.2", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For use in the sectoral calculations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.042Z", + "last_change_date": "2022-03-14T07:56:26.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4509, + "fields": { + "EF_ID": 110669, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is a default value until a fuel specific CEF is detemined.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.109Z", + "last_change_date": "2022-03-14T07:56:26.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4510, + "fields": { + "EF_ID": 110670, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.175Z", + "last_change_date": "2022-03-14T07:56:26.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4511, + "fields": { + "EF_ID": 110671, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.242Z", + "last_change_date": "2022-03-14T07:56:26.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4512, + "fields": { + "EF_ID": 110672, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.309Z", + "last_change_date": "2022-03-14T07:56:26.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4513, + "fields": { + "EF_ID": 110673, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as Sub-Bitumous Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.2", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.375Z", + "last_change_date": "2022-03-14T07:56:26.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4514, + "fields": { + "EF_ID": 110674, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.434Z", + "last_change_date": "2022-03-14T07:56:26.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4515, + "fields": { + "EF_ID": 110675, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.1", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.537Z", + "last_change_date": "2022-03-14T07:56:26.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4516, + "fields": { + "EF_ID": 110676, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.9", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.626Z", + "last_change_date": "2022-03-14T07:56:26.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4517, + "fields": { + "EF_ID": 110677, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is a default value until a fuel specific CEF is detemined.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.698Z", + "last_change_date": "2022-03-14T07:56:26.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4518, + "fields": { + "EF_ID": 110678, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as Coke Oven/Gas Coke.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.5", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.764Z", + "last_change_date": "2022-03-14T07:56:26.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4519, + "fields": { + "EF_ID": 110679, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For use in the sectoral calculations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.831Z", + "last_change_date": "2022-03-14T07:56:26.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4520, + "fields": { + "EF_ID": 110680, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For use in the sectoral calculations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:26.898Z", + "last_change_date": "2022-03-14T07:56:26.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4521, + "fields": { + "EF_ID": 110681, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.3", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:27.056Z", + "last_change_date": "2022-03-14T07:56:27.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4522, + "fields": { + "EF_ID": 110682, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Solid Biomass.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.9", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:27.131Z", + "last_change_date": "2022-03-14T07:56:27.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4523, + "fields": { + "EF_ID": 110683, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Liquid Biomass.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is a default value until a fuel specific CEF is detemined.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:27.232Z", + "last_change_date": "2022-03-14T07:56:27.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4524, + "fields": { + "EF_ID": 110684, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "1996 IPCC default", + "Description": "Carbon emission factors", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Gas Biomass.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Workbook Vol 2. Table 1-2, page 1.6", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is a default value until a fuel specific CEF is detemined. For Gas biomass, the CEF is based on the assumption that 50% of the carbon in the biomass is converted to methane and 50% is emitted as CO2 . The CO2 emissions from biogas should not be included in national inventories. If biogas is released and not combusted 50% of the carbon content should be included as methane.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:27.309Z", + "last_change_date": "2022-03-14T07:56:27.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4525, + "fields": { + "EF_ID": 110685, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified as Peat for electircity generation. The peat used in households may be much lower.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. The peat used in households may be much lower. ", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:27.381Z", + "last_change_date": "2022-03-14T07:56:27.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4526, + "fields": { + "EF_ID": 110686, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:27.456Z", + "last_change_date": "2022-03-14T07:56:27.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4527, + "fields": { + "EF_ID": 110687, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:27.561Z", + "last_change_date": "2022-03-14T07:56:27.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4528, + "fields": { + "EF_ID": 110688, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.192Z", + "last_change_date": "2022-03-14T07:56:28.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4529, + "fields": { + "EF_ID": 110689, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.248Z", + "last_change_date": "2022-03-14T07:56:28.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4530, + "fields": { + "EF_ID": 110690, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.306Z", + "last_change_date": "2022-03-14T07:56:28.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4531, + "fields": { + "EF_ID": 110691, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.395Z", + "last_change_date": "2022-03-14T07:56:28.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4532, + "fields": { + "EF_ID": 110692, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.467Z", + "last_change_date": "2022-03-14T07:56:28.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4533, + "fields": { + "EF_ID": 110693, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.523Z", + "last_change_date": "2022-03-14T07:56:28.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4534, + "fields": { + "EF_ID": 110694, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.581Z", + "last_change_date": "2022-03-14T07:56:28.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4535, + "fields": { + "EF_ID": 110695, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.680Z", + "last_change_date": "2022-03-14T07:56:28.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4536, + "fields": { + "EF_ID": 110696, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.759Z", + "last_change_date": "2022-03-14T07:56:28.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4537, + "fields": { + "EF_ID": 110697, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.831Z", + "last_change_date": "2022-03-14T07:56:28.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4538, + "fields": { + "EF_ID": 110698, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:28.898Z", + "last_change_date": "2022-03-14T07:56:28.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4539, + "fields": { + "EF_ID": 110699, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.016Z", + "last_change_date": "2022-03-14T07:56:29.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4540, + "fields": { + "EF_ID": 110700, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Coal.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel. This figure is a global average but varies for different types of coal and can be as low as 0.91.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.092Z", + "last_change_date": "2022-03-14T07:56:29.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4541, + "fields": { + "EF_ID": 110701, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.156Z", + "last_change_date": "2022-03-14T07:56:29.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4542, + "fields": { + "EF_ID": 110702, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.231Z", + "last_change_date": "2022-03-14T07:56:29.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4543, + "fields": { + "EF_ID": 110703, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.325Z", + "last_change_date": "2022-03-14T07:56:29.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4544, + "fields": { + "EF_ID": 110704, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.401Z", + "last_change_date": "2022-03-14T07:56:29.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4545, + "fields": { + "EF_ID": 110705, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.464Z", + "last_change_date": "2022-03-14T07:56:29.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4546, + "fields": { + "EF_ID": 110706, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.539Z", + "last_change_date": "2022-03-14T07:56:29.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4547, + "fields": { + "EF_ID": 110707, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.645Z", + "last_change_date": "2022-03-14T07:56:29.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4548, + "fields": { + "EF_ID": 110708, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.718Z", + "last_change_date": "2022-03-14T07:56:29.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4549, + "fields": { + "EF_ID": 110709, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.792Z", + "last_change_date": "2022-03-14T07:56:29.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4550, + "fields": { + "EF_ID": 110710, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.859Z", + "last_change_date": "2022-03-14T07:56:29.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4551, + "fields": { + "EF_ID": 110711, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:29.972Z", + "last_change_date": "2022-03-14T07:56:29.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4552, + "fields": { + "EF_ID": 110712, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.051Z", + "last_change_date": "2022-03-14T07:56:30.051Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4553, + "fields": { + "EF_ID": 110713, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.118Z", + "last_change_date": "2022-03-14T07:56:30.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4554, + "fields": { + "EF_ID": 110714, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.193Z", + "last_change_date": "2022-03-14T07:56:30.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4555, + "fields": { + "EF_ID": 110715, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.289Z", + "last_change_date": "2022-03-14T07:56:30.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4556, + "fields": { + "EF_ID": 110716, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.376Z", + "last_change_date": "2022-03-14T07:56:30.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4557, + "fields": { + "EF_ID": 110717, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.442Z", + "last_change_date": "2022-03-14T07:56:30.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4558, + "fields": { + "EF_ID": 110718, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.509Z", + "last_change_date": "2022-03-14T07:56:30.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4559, + "fields": { + "EF_ID": 110719, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.599Z", + "last_change_date": "2022-03-14T07:56:30.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4560, + "fields": { + "EF_ID": 110720, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.676Z", + "last_change_date": "2022-03-14T07:56:30.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4561, + "fields": { + "EF_ID": 110721, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waxes", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.743Z", + "last_change_date": "2022-03-14T07:56:30.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4562, + "fields": { + "EF_ID": 110722, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.809Z", + "last_change_date": "2022-03-14T07:56:30.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4563, + "fields": { + "EF_ID": 110723, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Oil and Oil products.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.901Z", + "last_change_date": "2022-03-14T07:56:30.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4564, + "fields": { + "EF_ID": 110724, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of carbon oxidised", + "Technology_Practices": "", + "Parameter_Conditions": "In the Revised 1996 IPCC Guidelines, the fuel type is specified simply as Gas.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.995", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Reference Manual Vol 3. Table 1-6, page 1.29", + "Technical_Reference": "OECD/IEA (1993), Energy Balances of OECD Countries, 1990-1991. International Energy Agency, OECD, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Reference Approach requires data only on the amount of fuels consumed in a country, not data by technology type or sector of the economy. As a result, based on the information available at this point, the default values presented in Table 1-6 are recommended for the percentage of carbon oxidised during combustion by fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:30.976Z", + "last_change_date": "2022-03-14T07:56:30.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4565, + "fields": { + "EF_ID": 113617, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from all combustion processes in this source category (CO2 emission factor)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 1999.\n, NCV = 44 GJ/ton (assumed) and EF has been calculated on this basis [Spakman et al., 1997].", + "Value": "72.3", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002, table 3.1, p. 9, value between brackets", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands ", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:31.043Z", + "last_change_date": "2022-03-14T07:56:31.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4566, + "fields": { + "EF_ID": 113618, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions from all combustion processes in this source category (CO2 emission factor)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 1999. , Assumed NCV = 42 to 43 GJ/ton; , [Spakman et al., 1997]", + "Value": "73.3", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002, table 3.1, p. 9, value between brackets", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands ", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:31.126Z", + "last_change_date": "2022-03-14T07:56:31.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4567, + "fields": { + "EF_ID": 113619, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Emissions from all combustion processes in Metal industry (CO2 emission factor)", + "Technology_Practices": "Metal industry", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 2000. The CO2 emission factor for coal can vary over a wide range according to the type of coal. In the Netherlands all coal is being imported. This means it is not easy to assess the typical coal that is being use", + "Value": "93.2", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002;  \n, Corus and Statistics Netherlands, table 4.3 p. 24, injection coal", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:31.229Z", + "last_change_date": "2022-03-14T07:56:31.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4568, + "fields": { + "EF_ID": 113620, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Emissions from all combustion processes in Energy industry (CO2 emission factor)", + "Technology_Practices": "Power generation", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The value is based on Dutch averages for 1999.\n, The CO2 emission factor for coal can vary over a wide range according to the type of coal. In the Netherlands all coal is being imported. This means it is not easy to assess the typical coal that is being us", + "Value": "94.7", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1-1 and 1-2", + "Data_Source": "Other", + "Technical_Reference": "TNO-report R 2002/174: CO2 emission factors for fuels in the Netherlands by Drs A.K. van Harmelen and Ing. W.W.R. Koch, April 2002, table 4.1, p. 22", + "English_Abstract": "CO2 Emission factor from combustion derived for the Netherlands", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TNO-MEP", + "Link": "", + "creation_date": "2022-03-14T07:56:31.301Z", + "last_change_date": "2022-03-14T07:56:31.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4569, + "fields": { + "EF_ID": 114089, + "IPCC_Category": "1.A.1.c.i - Manufacture of Solid Fuels", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Metallurgical Coke Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonne CO2/tonne coke produced", + "Equation": "Equation 4.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "European IPPC Bureau (2001). Integrated Pollution Prevention and Control (IPPC) Best Available Techniques Reference Document on the Production of Iron and Steel, December 2001., Table 6.2, Page 122", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for coke production is derived by averaging plant-specific CO2 emissions data for 11 European coke plants reported in the IPPC I&S BAT Document. Emissions of CO2 are reported in Table 6.2 of the IPPC I&S BAT Document in units of kilograms of CO2 per tonne of liquid steel produced. The CO2 emissions range from 175 to 200 kg CO2 per tonne liquid steel. The conversion factors provided in Table 6.2 of the IPPC Document are 940 kg pig iron per tonne liquid steel and 358 kg coke per tonne pig iron. Based on these conversion factors the average CO2 emissions from the 11 European coke plants is 0.56 tonne CO2 per tonne coke produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T07:56:31.368Z", + "last_change_date": "2022-03-14T07:56:31.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4570, + "fields": { + "EF_ID": 114090, + "IPCC_Category": "1.A.1.c.i - Manufacture of Solid Fuels", + "Gases": "METHANE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Metallurgical Coke Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "g CH4/tonne coke produced", + "Equation": "Equation 4.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.2)", + "Technical_Reference": "European IPPC Bureau (2001). Integrated Pollution Prevention and Control (IPPC) Best Available Techniques Reference Document on the Production of Iron and Steel, December 2001., Table 6.2-3, Page 122", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for coke production is derived by averaging plant-specific CH4 emissions data for 11 European coke plants reported in the IPPC I&S BAT Document. Emissions of CH4 are reported in Table 6.2 and Table 6.3 of the IPPC I&S BAT Document in units of grams of CH4 per tonne of liquid steel produced. The CH4 emissions reported range from 27 to 32 grams CH4 per tonne liquid steel. Based on the conversion factors the average CH4 emissions from the 11 European coke plants is 0.1 grams CH4 per tonne coke produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T07:56:31.443Z", + "last_change_date": "2022-03-14T07:56:31.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4571, + "fields": { + "EF_ID": 114163, + "IPCC_Category": "2.D.1 - Lubricant Use", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of fossil fuel carbon that is Oxidized During Use (ODU factor)", + "Technology_Practices": "", + "Parameter_Conditions": "Lubricant/type of use: Lubricating oil (motor oil/industrial oils)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 5.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2D1, Sheet 1 of 1, in Annex 1 (page A1.22) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 5, Table 5.2)", + "Technical_Reference": "Rinehart, T. (2000). Personal communication between Thomas Rinehart of U.S. Environmental Protection Agency, Office of Solid Waste, and Randall Freed of ICF Consulting, July 2000.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:31.556Z", + "last_change_date": "2022-03-14T07:56:31.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4572, + "fields": { + "EF_ID": 114164, + "IPCC_Category": "2.D.1 - Lubricant Use", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of fossil fuel carbon that is Oxidized During Use (ODU factor)", + "Technology_Practices": "", + "Parameter_Conditions": "Lubricant/type of use: Grease", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "fraction", + "Equation": "Equation 5.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2D1, Sheet 1 of 1, in Annex 1 (page A1.22) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 5, Table 5.2)", + "Technical_Reference": "Rinehart, T. (2000). Personal communication between Thomas Rinehart of U.S. Environmental Protection Agency, Office of Solid Waste, and Randall Freed of ICF Consulting, July 2000.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:31.634Z", + "last_change_date": "2022-03-14T07:56:31.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4573, + "fields": { + "EF_ID": 114165, + "IPCC_Category": "2.D.1 - Lubricant Use", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of fossil fuel carbon that is Oxidized During Use (ODU factor) [default]", + "Technology_Practices": "", + "Parameter_Conditions": "Lubricant/type of use: Default - Assuming that 90 percent of the mass of lubricants is oil and 10 percent is grease (excluding the use in 2-stroke engines)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 5.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2D1, Sheet 1 of 1, in Annex 1 (page A1.22) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 5, Table 5.2)", + "Technical_Reference": "Rinehart, T. (2000). Personal communication between Thomas Rinehart of U.S. Environmental Protection Agency, Office of Solid Waste, and Randall Freed of ICF Consulting, July 2000.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assuming that 90 percent of the mass of lubricants is oil and 10 percent is grease (excluding the use in 2-stroke engines), applying these weights to the ODU factors for oils and greases yields an overall (rounded to one digit) ODU factor of 0.2. This ODU factor can then be applied to an overall carbon content factor, which may be country-specific or the default value for lubricants to determine national emission levels from this source when activity data on the consumption of lubricants is known.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:31.709Z", + "last_change_date": "2022-03-14T07:56:31.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4574, + "fields": { + "EF_ID": 114166, + "IPCC_Category": "2.D.2 - Paraffin Wax Use", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of fossil fuel carbon that is Oxidized During Use (ODU factor) [default]", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 5.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2D2, Sheet 1 of 1, in Annex 1 (page A1.22) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 5, Section 5.3.2.2, Page 5.12)", + "Technical_Reference": "Expert Judgement by the authors of Chapter 5, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It can be assumed that 20 percent of paraffin waxes are used in a manner leading to emissions, mainly through the burning of candles, leading to a default ODU factor of 0.2.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:31.800Z", + "last_change_date": "2022-03-14T07:56:31.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4575, + "fields": { + "EF_ID": 117443, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.3", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "40.1", + "Upper_Bound": "44.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:31.884Z", + "last_change_date": "2022-03-14T07:56:31.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4576, + "fields": { + "EF_ID": 117444, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.5", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "27.5", + "Upper_Bound": "28.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:31.951Z", + "last_change_date": "2022-03-14T07:56:31.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4577, + "fields": { + "EF_ID": 117445, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "40.9", + "Upper_Bound": "46.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.018Z", + "last_change_date": "2022-03-14T07:56:32.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4578, + "fields": { + "EF_ID": 117446, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.3", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "42.5", + "Upper_Bound": "44.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.108Z", + "last_change_date": "2022-03-14T07:56:32.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4579, + "fields": { + "EF_ID": 117447, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.3", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "42.5", + "Upper_Bound": "44.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.184Z", + "last_change_date": "2022-03-14T07:56:32.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4580, + "fields": { + "EF_ID": 117448, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.3", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "42.5", + "Upper_Bound": "44.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.251Z", + "last_change_date": "2022-03-14T07:56:32.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4581, + "fields": { + "EF_ID": 117449, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.1", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "42.0", + "Upper_Bound": "45.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.318Z", + "last_change_date": "2022-03-14T07:56:32.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4582, + "fields": { + "EF_ID": 117450, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.8", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "42.4", + "Upper_Bound": "45.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.402Z", + "last_change_date": "2022-03-14T07:56:32.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4583, + "fields": { + "EF_ID": 117451, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.1", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "32.1", + "Upper_Bound": "45.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.476Z", + "last_change_date": "2022-03-14T07:56:32.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4584, + "fields": { + "EF_ID": 117452, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.0", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "41.4", + "Upper_Bound": "43.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.543Z", + "last_change_date": "2022-03-14T07:56:32.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4585, + "fields": { + "EF_ID": 117453, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.0", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "41.4", + "Upper_Bound": "43.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.618Z", + "last_change_date": "2022-03-14T07:56:32.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4586, + "fields": { + "EF_ID": 117454, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.4", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "39.8", + "Upper_Bound": "41.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.746Z", + "last_change_date": "2022-03-14T07:56:32.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4587, + "fields": { + "EF_ID": 117455, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47.3", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "44.8", + "Upper_Bound": "52.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.826Z", + "last_change_date": "2022-03-14T07:56:32.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4588, + "fields": { + "EF_ID": 117456, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.4", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "44.9", + "Upper_Bound": "48.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.901Z", + "last_change_date": "2022-03-14T07:56:32.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4589, + "fields": { + "EF_ID": 117457, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.5", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "41.8", + "Upper_Bound": "46.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:32.968Z", + "last_change_date": "2022-03-14T07:56:32.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4590, + "fields": { + "EF_ID": 117458, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "33.5", + "Upper_Bound": "41.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.064Z", + "last_change_date": "2022-03-14T07:56:33.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4591, + "fields": { + "EF_ID": 117459, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "33.5", + "Upper_Bound": "42.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.143Z", + "last_change_date": "2022-03-14T07:56:33.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4592, + "fields": { + "EF_ID": 117460, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.5", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "29.7", + "Upper_Bound": "41.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.239Z", + "last_change_date": "2022-03-14T07:56:33.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4593, + "fields": { + "EF_ID": 117461, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.0", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "36.3", + "Upper_Bound": "46.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.306Z", + "last_change_date": "2022-03-14T07:56:33.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4594, + "fields": { + "EF_ID": 117462, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49.5", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "47.5", + "Upper_Bound": "50.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.391Z", + "last_change_date": "2022-03-14T07:56:33.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4595, + "fields": { + "EF_ID": 117463, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "33.7", + "Upper_Bound": "48.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.476Z", + "last_change_date": "2022-03-14T07:56:33.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4596, + "fields": { + "EF_ID": 117464, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "33.7", + "Upper_Bound": "48.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.564Z", + "last_change_date": "2022-03-14T07:56:33.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4597, + "fields": { + "EF_ID": 117465, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "33.7", + "Upper_Bound": "48.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.639Z", + "last_change_date": "2022-03-14T07:56:33.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4598, + "fields": { + "EF_ID": 117466, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.7", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "21.6", + "Upper_Bound": "32.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.734Z", + "last_change_date": "2022-03-14T07:56:33.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4599, + "fields": { + "EF_ID": 117467, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "24.0", + "Upper_Bound": "31.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.810Z", + "last_change_date": "2022-03-14T07:56:33.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4600, + "fields": { + "EF_ID": 117468, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.8", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.9", + "Upper_Bound": "30.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.881Z", + "last_change_date": "2022-03-14T07:56:33.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4601, + "fields": { + "EF_ID": 117469, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.9", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "11.5", + "Upper_Bound": "26.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:33.948Z", + "last_change_date": "2022-03-14T07:56:33.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4602, + "fields": { + "EF_ID": 117470, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.9", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "5.50", + "Upper_Bound": "21.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.053Z", + "last_change_date": "2022-03-14T07:56:34.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4603, + "fields": { + "EF_ID": 117471, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.9", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "7.1", + "Upper_Bound": "11.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.135Z", + "last_change_date": "2022-03-14T07:56:34.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4604, + "fields": { + "EF_ID": 117472, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.7", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "15.1", + "Upper_Bound": "32.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.206Z", + "last_change_date": "2022-03-14T07:56:34.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4605, + "fields": { + "EF_ID": 117473, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.7", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "15.1", + "Upper_Bound": "32.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.273Z", + "last_change_date": "2022-03-14T07:56:34.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4606, + "fields": { + "EF_ID": 117474, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.1", + "Upper_Bound": "30.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.364Z", + "last_change_date": "2022-03-14T07:56:34.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4607, + "fields": { + "EF_ID": 117475, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.1", + "Upper_Bound": "30.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.460Z", + "last_change_date": "2022-03-14T07:56:34.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4608, + "fields": { + "EF_ID": 117476, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.0", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "14.1", + "Upper_Bound": "55.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.531Z", + "last_change_date": "2022-03-14T07:56:34.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4609, + "fields": { + "EF_ID": 117477, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.7", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.6", + "Upper_Bound": "77.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.598Z", + "last_change_date": "2022-03-14T07:56:34.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4610, + "fields": { + "EF_ID": 117478, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.7", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.6", + "Upper_Bound": "77.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.690Z", + "last_change_date": "2022-03-14T07:56:34.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4611, + "fields": { + "EF_ID": 117479, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.47", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.20", + "Upper_Bound": "5.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.785Z", + "last_change_date": "2022-03-14T07:56:34.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4612, + "fields": { + "EF_ID": 117480, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.06", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3.8", + "Upper_Bound": "15.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.856Z", + "last_change_date": "2022-03-14T07:56:34.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4613, + "fields": { + "EF_ID": 117481, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48.0", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46.5", + "Upper_Bound": "50.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:34.922Z", + "last_change_date": "2022-03-14T07:56:34.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4614, + "fields": { + "EF_ID": 117482, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "7", + "Upper_Bound": "18.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.009Z", + "last_change_date": "2022-03-14T07:56:35.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4615, + "fields": { + "EF_ID": 117483, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.2", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "20.3", + "Upper_Bound": "80.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.101Z", + "last_change_date": "2022-03-14T07:56:35.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4616, + "fields": { + "EF_ID": 117484, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.76", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) and Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "7.80", + "Upper_Bound": "12.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.164Z", + "last_change_date": "2022-03-14T07:56:35.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4617, + "fields": { + "EF_ID": 117485, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.6", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "7.9", + "Upper_Bound": "31.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.251Z", + "last_change_date": "2022-03-14T07:56:35.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4618, + "fields": { + "EF_ID": 117486, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.8", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "5.9", + "Upper_Bound": "23.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.344Z", + "last_change_date": "2022-03-14T07:56:35.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4619, + "fields": { + "EF_ID": 117487, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.6", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "5.9", + "Upper_Bound": "23.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.418Z", + "last_change_date": "2022-03-14T07:56:35.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4620, + "fields": { + "EF_ID": 117488, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.5", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "14.9", + "Upper_Bound": "58.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.489Z", + "last_change_date": "2022-03-14T07:56:35.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4621, + "fields": { + "EF_ID": 117489, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.0", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "13.6", + "Upper_Bound": "54.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.564Z", + "last_change_date": "2022-03-14T07:56:35.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4622, + "fields": { + "EF_ID": 117490, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.0", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "13.6", + "Upper_Bound": "54.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.639Z", + "last_change_date": "2022-03-14T07:56:35.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4623, + "fields": { + "EF_ID": 117491, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.4", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "13.8", + "Upper_Bound": "54.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.730Z", + "last_change_date": "2022-03-14T07:56:35.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4624, + "fields": { + "EF_ID": 117492, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.4", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.4", + "Upper_Bound": "100.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.801Z", + "last_change_date": "2022-03-14T07:56:35.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4625, + "fields": { + "EF_ID": 117493, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.4", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.4", + "Upper_Bound": "100.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.864Z", + "last_change_date": "2022-03-14T07:56:35.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4626, + "fields": { + "EF_ID": 117494, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.4", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.4", + "Upper_Bound": "100.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.931Z", + "last_change_date": "2022-03-14T07:56:35.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4627, + "fields": { + "EF_ID": 117495, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "Net Calorific Value (NCV)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.6", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines, based on a statistical analysis of annual greenhouse gas inventory submissions of Annex I Parties to UNFCCC, the IPCC Emission Factor Database (EFDB), and the IEA Database. For details, see Section 1.4.1.2 and the footnotes of Table 1.2 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "6.80", + "Upper_Bound": "18.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:35.998Z", + "last_change_date": "2022-03-14T07:56:35.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4628, + "fields": { + "EF_ID": 117496, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.4", + "Upper_Bound": "20.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.100Z", + "last_change_date": "2022-03-14T07:56:36.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4629, + "fields": { + "EF_ID": 117497, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.9", + "Upper_Bound": "23.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.185Z", + "last_change_date": "2022-03-14T07:56:36.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4630, + "fields": { + "EF_ID": 117498, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.5", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "15.9", + "Upper_Bound": "19.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.248Z", + "last_change_date": "2022-03-14T07:56:36.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4631, + "fields": { + "EF_ID": 117499, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.9", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.4", + "Upper_Bound": "19.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.318Z", + "last_change_date": "2022-03-14T07:56:36.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4632, + "fields": { + "EF_ID": 117500, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.1", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.4", + "Upper_Bound": "19.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.385Z", + "last_change_date": "2022-03-14T07:56:36.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4633, + "fields": { + "EF_ID": 117501, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.1", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.4", + "Upper_Bound": "19.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.452Z", + "last_change_date": "2022-03-14T07:56:36.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4634, + "fields": { + "EF_ID": 117502, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.5", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19", + "Upper_Bound": "20.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.543Z", + "last_change_date": "2022-03-14T07:56:36.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4635, + "fields": { + "EF_ID": 117503, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.6", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.3", + "Upper_Bound": "20.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.623Z", + "last_change_date": "2022-03-14T07:56:36.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4636, + "fields": { + "EF_ID": 117504, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.5", + "Upper_Bound": "21.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.693Z", + "last_change_date": "2022-03-14T07:56:36.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4637, + "fields": { + "EF_ID": 117505, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.2", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.8", + "Upper_Bound": "20.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.760Z", + "last_change_date": "2022-03-14T07:56:36.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4638, + "fields": { + "EF_ID": 117506, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.2", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.8", + "Upper_Bound": "20.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.831Z", + "last_change_date": "2022-03-14T07:56:36.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4639, + "fields": { + "EF_ID": 117507, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.1", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "20.6", + "Upper_Bound": "21.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.893Z", + "last_change_date": "2022-03-14T07:56:36.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4640, + "fields": { + "EF_ID": 117508, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.2", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "16.8", + "Upper_Bound": "17.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:36.979Z", + "last_change_date": "2022-03-14T07:56:36.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4641, + "fields": { + "EF_ID": 117509, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.8", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "15.4", + "Upper_Bound": "18.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.056Z", + "last_change_date": "2022-03-14T07:56:37.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4642, + "fields": { + "EF_ID": 117510, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.9", + "Upper_Bound": "20.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.118Z", + "last_change_date": "2022-03-14T07:56:37.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4643, + "fields": { + "EF_ID": 117511, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.9", + "Upper_Bound": "24.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.185Z", + "last_change_date": "2022-03-14T07:56:37.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4644, + "fields": { + "EF_ID": 117512, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.6", + "Upper_Bound": "20.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.252Z", + "last_change_date": "2022-03-14T07:56:37.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4645, + "fields": { + "EF_ID": 117513, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.6", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "22.6", + "Upper_Bound": "31.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.343Z", + "last_change_date": "2022-03-14T07:56:37.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4646, + "fields": { + "EF_ID": 117514, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.8", + "Upper_Bound": "20.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.440Z", + "last_change_date": "2022-03-14T07:56:37.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4647, + "fields": { + "EF_ID": 117515, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.7", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "13.3", + "Upper_Bound": "19.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.514Z", + "last_change_date": "2022-03-14T07:56:37.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4648, + "fields": { + "EF_ID": 117516, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.7", + "Upper_Bound": "20.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.585Z", + "last_change_date": "2022-03-14T07:56:37.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4649, + "fields": { + "EF_ID": 117517, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.7", + "Upper_Bound": "20.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.660Z", + "last_change_date": "2022-03-14T07:56:37.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4650, + "fields": { + "EF_ID": 117518, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.7", + "Upper_Bound": "20.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.727Z", + "last_change_date": "2022-03-14T07:56:37.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4651, + "fields": { + "EF_ID": 117519, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.8", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.8", + "Upper_Bound": "27.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.793Z", + "last_change_date": "2022-03-14T07:56:37.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4652, + "fields": { + "EF_ID": 117520, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.8", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "23.8", + "Upper_Bound": "27.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.885Z", + "last_change_date": "2022-03-14T07:56:37.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4653, + "fields": { + "EF_ID": 117521, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.8", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "24.4", + "Upper_Bound": "27.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:37.960Z", + "last_change_date": "2022-03-14T07:56:37.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4654, + "fields": { + "EF_ID": 117522, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.2", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.3", + "Upper_Bound": "27.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.026Z", + "last_change_date": "2022-03-14T07:56:38.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4655, + "fields": { + "EF_ID": 117523, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.6", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "24.8", + "Upper_Bound": "31.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.093Z", + "last_change_date": "2022-03-14T07:56:38.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4656, + "fields": { + "EF_ID": 117524, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.1", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "24.6", + "Upper_Bound": "34", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.160Z", + "last_change_date": "2022-03-14T07:56:38.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4657, + "fields": { + "EF_ID": 117525, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.6", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "23.8", + "Upper_Bound": "29.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.227Z", + "last_change_date": "2022-03-14T07:56:38.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4658, + "fields": { + "EF_ID": 117526, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.6", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "23.8", + "Upper_Bound": "29.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.312Z", + "last_change_date": "2022-03-14T07:56:38.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4659, + "fields": { + "EF_ID": 117527, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.2", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "26.1", + "Upper_Bound": "32.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.390Z", + "last_change_date": "2022-03-14T07:56:38.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4660, + "fields": { + "EF_ID": 117528, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.2", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "26.1", + "Upper_Bound": "32.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.451Z", + "last_change_date": "2022-03-14T07:56:38.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4661, + "fields": { + "EF_ID": 117529, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.6", + "Upper_Bound": "26.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.518Z", + "last_change_date": "2022-03-14T07:56:38.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4662, + "fields": { + "EF_ID": 117530, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.1", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10.3", + "Upper_Bound": "15.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.589Z", + "last_change_date": "2022-03-14T07:56:38.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4663, + "fields": { + "EF_ID": 117531, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.1", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10.3", + "Upper_Bound": "15.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.656Z", + "last_change_date": "2022-03-14T07:56:38.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4664, + "fields": { + "EF_ID": 117532, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70.8", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59.7", + "Upper_Bound": "84.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.765Z", + "last_change_date": "2022-03-14T07:56:38.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4665, + "fields": { + "EF_ID": 117533, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49.6", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "39.5", + "Upper_Bound": "55.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.839Z", + "last_change_date": "2022-03-14T07:56:38.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4666, + "fields": { + "EF_ID": 117534, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.3", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "14.8", + "Upper_Bound": "15.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.906Z", + "last_change_date": "2022-03-14T07:56:38.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4667, + "fields": { + "EF_ID": 117535, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "20.0", + "Upper_Bound": "33.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:38.973Z", + "last_change_date": "2022-03-14T07:56:38.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4668, + "fields": { + "EF_ID": 117536, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "30.0", + "Upper_Bound": "50.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.039Z", + "last_change_date": "2022-03-14T07:56:39.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4669, + "fields": { + "EF_ID": 117537, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "19.7", + "Upper_Bound": "20.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.114Z", + "last_change_date": "2022-03-14T07:56:39.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4670, + "fields": { + "EF_ID": 117538, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.9", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 2 of 3 for Reference Approach (page 1.16), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "28.4", + "Upper_Bound": "29.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.218Z", + "last_change_date": "2022-03-14T07:56:39.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4671, + "fields": { + "EF_ID": 117539, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.5", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.9", + "Upper_Bound": "36.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.314Z", + "last_change_date": "2022-03-14T07:56:39.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4672, + "fields": { + "EF_ID": 117540, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.0", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "22.0", + "Upper_Bound": "30.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.381Z", + "last_change_date": "2022-03-14T07:56:39.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4673, + "fields": { + "EF_ID": 117541, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.3", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "23.1", + "Upper_Bound": "32.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.464Z", + "last_change_date": "2022-03-14T07:56:39.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4674, + "fields": { + "EF_ID": 117542, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.5", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "25.9", + "Upper_Bound": "36.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.531Z", + "last_change_date": "2022-03-14T07:56:39.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4675, + "fields": { + "EF_ID": 117543, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.3", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "16.3", + "Upper_Bound": "23.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.598Z", + "last_change_date": "2022-03-14T07:56:39.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4676, + "fields": { + "EF_ID": 117544, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.3", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "16.3", + "Upper_Bound": "23.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.664Z", + "last_change_date": "2022-03-14T07:56:39.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4677, + "fields": { + "EF_ID": 117545, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.7", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "18.3", + "Upper_Bound": "26.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.731Z", + "last_change_date": "2022-03-14T07:56:39.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4678, + "fields": { + "EF_ID": 117546, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.9", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "12.6", + "Upper_Bound": "18.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.821Z", + "last_change_date": "2022-03-14T07:56:39.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4679, + "fields": { + "EF_ID": 117547, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.9", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "12.6", + "Upper_Bound": "18.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.898Z", + "last_change_date": "2022-03-14T07:56:39.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4680, + "fields": { + "EF_ID": 117548, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.9", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "12.6", + "Upper_Bound": "18.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:39.964Z", + "last_change_date": "2022-03-14T07:56:39.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4681, + "fields": { + "EF_ID": 117549, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.3", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see the footnotes of Table 1.3 in Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "23.1", + "Upper_Bound": "32.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.031Z", + "last_change_date": "2022-03-14T07:56:40.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4682, + "fields": { + "EF_ID": 117550, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.098Z", + "last_change_date": "2022-03-14T07:56:40.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4683, + "fields": { + "EF_ID": 117551, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.164Z", + "last_change_date": "2022-03-14T07:56:40.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4684, + "fields": { + "EF_ID": 117552, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.231Z", + "last_change_date": "2022-03-14T07:56:40.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4685, + "fields": { + "EF_ID": 117553, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.357Z", + "last_change_date": "2022-03-14T07:56:40.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4686, + "fields": { + "EF_ID": 117554, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.423Z", + "last_change_date": "2022-03-14T07:56:40.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4687, + "fields": { + "EF_ID": 117555, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.489Z", + "last_change_date": "2022-03-14T07:56:40.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4688, + "fields": { + "EF_ID": 117556, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.556Z", + "last_change_date": "2022-03-14T07:56:40.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4689, + "fields": { + "EF_ID": 117557, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.623Z", + "last_change_date": "2022-03-14T07:56:40.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4690, + "fields": { + "EF_ID": 117558, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.690Z", + "last_change_date": "2022-03-14T07:56:40.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4691, + "fields": { + "EF_ID": 117559, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.785Z", + "last_change_date": "2022-03-14T07:56:40.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4692, + "fields": { + "EF_ID": 117560, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.860Z", + "last_change_date": "2022-03-14T07:56:40.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4693, + "fields": { + "EF_ID": 117561, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:40.931Z", + "last_change_date": "2022-03-14T07:56:40.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4694, + "fields": { + "EF_ID": 117562, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.014Z", + "last_change_date": "2022-03-14T07:56:41.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4695, + "fields": { + "EF_ID": 117563, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.089Z", + "last_change_date": "2022-03-14T07:56:41.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4696, + "fields": { + "EF_ID": 117564, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.169Z", + "last_change_date": "2022-03-14T07:56:41.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4697, + "fields": { + "EF_ID": 117565, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.279Z", + "last_change_date": "2022-03-14T07:56:41.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4698, + "fields": { + "EF_ID": 117566, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.356Z", + "last_change_date": "2022-03-14T07:56:41.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4699, + "fields": { + "EF_ID": 117567, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.423Z", + "last_change_date": "2022-03-14T07:56:41.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4700, + "fields": { + "EF_ID": 117568, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.514Z", + "last_change_date": "2022-03-14T07:56:41.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4701, + "fields": { + "EF_ID": 117569, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.581Z", + "last_change_date": "2022-03-14T07:56:41.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4702, + "fields": { + "EF_ID": 117570, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.652Z", + "last_change_date": "2022-03-14T07:56:41.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4703, + "fields": { + "EF_ID": 117571, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.741Z", + "last_change_date": "2022-03-14T07:56:41.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4704, + "fields": { + "EF_ID": 117572, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.818Z", + "last_change_date": "2022-03-14T07:56:41.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4705, + "fields": { + "EF_ID": 117573, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.885Z", + "last_change_date": "2022-03-14T07:56:41.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4706, + "fields": { + "EF_ID": 117574, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:41.952Z", + "last_change_date": "2022-03-14T07:56:41.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4707, + "fields": { + "EF_ID": 117575, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.018Z", + "last_change_date": "2022-03-14T07:56:42.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4708, + "fields": { + "EF_ID": 117576, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.085Z", + "last_change_date": "2022-03-14T07:56:42.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4709, + "fields": { + "EF_ID": 117577, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.176Z", + "last_change_date": "2022-03-14T07:56:42.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4710, + "fields": { + "EF_ID": 117578, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.260Z", + "last_change_date": "2022-03-14T07:56:42.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4711, + "fields": { + "EF_ID": 117579, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.319Z", + "last_change_date": "2022-03-14T07:56:42.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4712, + "fields": { + "EF_ID": 117580, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.377Z", + "last_change_date": "2022-03-14T07:56:42.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4713, + "fields": { + "EF_ID": 117581, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.435Z", + "last_change_date": "2022-03-14T07:56:42.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4714, + "fields": { + "EF_ID": 117582, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.502Z", + "last_change_date": "2022-03-14T07:56:42.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4715, + "fields": { + "EF_ID": 117583, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.587Z", + "last_change_date": "2022-03-14T07:56:42.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4716, + "fields": { + "EF_ID": 117584, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.665Z", + "last_change_date": "2022-03-14T07:56:42.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4717, + "fields": { + "EF_ID": 117585, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.727Z", + "last_change_date": "2022-03-14T07:56:42.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4718, + "fields": { + "EF_ID": 117586, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.793Z", + "last_change_date": "2022-03-14T07:56:42.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4719, + "fields": { + "EF_ID": 117587, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.860Z", + "last_change_date": "2022-03-14T07:56:42.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4720, + "fields": { + "EF_ID": 117588, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:42.927Z", + "last_change_date": "2022-03-14T07:56:42.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4721, + "fields": { + "EF_ID": 117589, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.041Z", + "last_change_date": "2022-03-14T07:56:43.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4722, + "fields": { + "EF_ID": 117590, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.106Z", + "last_change_date": "2022-03-14T07:56:43.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4723, + "fields": { + "EF_ID": 117591, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.168Z", + "last_change_date": "2022-03-14T07:56:43.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4724, + "fields": { + "EF_ID": 117592, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.244Z", + "last_change_date": "2022-03-14T07:56:43.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4725, + "fields": { + "EF_ID": 117593, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.310Z", + "last_change_date": "2022-03-14T07:56:43.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4726, + "fields": { + "EF_ID": 117594, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.377Z", + "last_change_date": "2022-03-14T07:56:43.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4727, + "fields": { + "EF_ID": 117595, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.460Z", + "last_change_date": "2022-03-14T07:56:43.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4728, + "fields": { + "EF_ID": 117596, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.556Z", + "last_change_date": "2022-03-14T07:56:43.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4729, + "fields": { + "EF_ID": 117597, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.627Z", + "last_change_date": "2022-03-14T07:56:43.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4730, + "fields": { + "EF_ID": 117598, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.698Z", + "last_change_date": "2022-03-14T07:56:43.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4731, + "fields": { + "EF_ID": 117599, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.765Z", + "last_change_date": "2022-03-14T07:56:43.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4732, + "fields": { + "EF_ID": 117600, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.831Z", + "last_change_date": "2022-03-14T07:56:43.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4733, + "fields": { + "EF_ID": 117601, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.922Z", + "last_change_date": "2022-03-14T07:56:43.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4734, + "fields": { + "EF_ID": 117602, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:43.998Z", + "last_change_date": "2022-03-14T07:56:43.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4735, + "fields": { + "EF_ID": 117603, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "1A, Sheet 3 of 3 for Reference Approach (page 1.17), in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 1.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.064Z", + "last_change_date": "2022-03-14T07:56:44.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4736, + "fields": { + "EF_ID": 117604, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "71100", + "Upper_Bound": "75500", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.131Z", + "last_change_date": "2022-03-14T07:56:44.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4737, + "fields": { + "EF_ID": 117605, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69300", + "Upper_Bound": "85400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.198Z", + "last_change_date": "2022-03-14T07:56:44.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4738, + "fields": { + "EF_ID": 117606, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64200", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "58300", + "Upper_Bound": "70400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.264Z", + "last_change_date": "2022-03-14T07:56:44.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4739, + "fields": { + "EF_ID": 117607, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.357Z", + "last_change_date": "2022-03-14T07:56:44.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4740, + "fields": { + "EF_ID": 117608, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.431Z", + "last_change_date": "2022-03-14T07:56:44.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4741, + "fields": { + "EF_ID": 117609, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.494Z", + "last_change_date": "2022-03-14T07:56:44.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4742, + "fields": { + "EF_ID": 117610, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69700", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.569Z", + "last_change_date": "2022-03-14T07:56:44.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4743, + "fields": { + "EF_ID": 117611, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71900", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "70800", + "Upper_Bound": "73700", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.635Z", + "last_change_date": "2022-03-14T07:56:44.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4744, + "fields": { + "EF_ID": 117612, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67800", + "Upper_Bound": "79200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.726Z", + "last_change_date": "2022-03-14T07:56:44.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4745, + "fields": { + "EF_ID": 117613, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72600", + "Upper_Bound": "74800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.806Z", + "last_change_date": "2022-03-14T07:56:44.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4746, + "fields": { + "EF_ID": 117614, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72600", + "Upper_Bound": "74800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.869Z", + "last_change_date": "2022-03-14T07:56:44.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4747, + "fields": { + "EF_ID": 117615, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "75500", + "Upper_Bound": "78800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:44.936Z", + "last_change_date": "2022-03-14T07:56:44.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4748, + "fields": { + "EF_ID": 117616, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "61600", + "Upper_Bound": "65600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.002Z", + "last_change_date": "2022-03-14T07:56:45.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4749, + "fields": { + "EF_ID": 117617, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "56500", + "Upper_Bound": "68600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.086Z", + "last_change_date": "2022-03-14T07:56:45.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4750, + "fields": { + "EF_ID": 117618, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69300", + "Upper_Bound": "76300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.161Z", + "last_change_date": "2022-03-14T07:56:45.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4751, + "fields": { + "EF_ID": 117619, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "73000", + "Upper_Bound": "89900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.227Z", + "last_change_date": "2022-03-14T07:56:45.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4752, + "fields": { + "EF_ID": 117620, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "71900", + "Upper_Bound": "75200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.294Z", + "last_change_date": "2022-03-14T07:56:45.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4753, + "fields": { + "EF_ID": 117621, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "82900", + "Upper_Bound": "115000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.361Z", + "last_change_date": "2022-03-14T07:56:45.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4754, + "fields": { + "EF_ID": 117622, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "68900", + "Upper_Bound": "76600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.447Z", + "last_change_date": "2022-03-14T07:56:45.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4755, + "fields": { + "EF_ID": 117623, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "48200", + "Upper_Bound": "69000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.523Z", + "last_change_date": "2022-03-14T07:56:45.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4756, + "fields": { + "EF_ID": 117624, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.594Z", + "last_change_date": "2022-03-14T07:56:45.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4757, + "fields": { + "EF_ID": 117625, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.669Z", + "last_change_date": "2022-03-14T07:56:45.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4758, + "fields": { + "EF_ID": 117626, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.761Z", + "last_change_date": "2022-03-14T07:56:45.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4759, + "fields": { + "EF_ID": 117627, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "94600", + "Upper_Bound": "101000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.858Z", + "last_change_date": "2022-03-14T07:56:45.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4760, + "fields": { + "EF_ID": 117628, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "101000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.931Z", + "last_change_date": "2022-03-14T07:56:45.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4761, + "fields": { + "EF_ID": 117629, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "89500", + "Upper_Bound": "99700", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:45.994Z", + "last_change_date": "2022-03-14T07:56:45.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4762, + "fields": { + "EF_ID": 117630, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "92800", + "Upper_Bound": "100000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.069Z", + "last_change_date": "2022-03-14T07:56:46.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4763, + "fields": { + "EF_ID": 117631, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "90900", + "Upper_Bound": "115000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.152Z", + "last_change_date": "2022-03-14T07:56:46.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4764, + "fields": { + "EF_ID": 117632, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "90200", + "Upper_Bound": "125000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.252Z", + "last_change_date": "2022-03-14T07:56:46.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4765, + "fields": { + "EF_ID": 117633, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "109000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.331Z", + "last_change_date": "2022-03-14T07:56:46.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4766, + "fields": { + "EF_ID": 117634, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "109000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.394Z", + "last_change_date": "2022-03-14T07:56:46.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4767, + "fields": { + "EF_ID": 117635, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95700", + "Upper_Bound": "119000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.464Z", + "last_change_date": "2022-03-14T07:56:46.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4768, + "fields": { + "EF_ID": 117636, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95700", + "Upper_Bound": "119000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.531Z", + "last_change_date": "2022-03-14T07:56:46.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4769, + "fields": { + "EF_ID": 117637, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "68200", + "Upper_Bound": "95300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.620Z", + "last_change_date": "2022-03-14T07:56:46.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4770, + "fields": { + "EF_ID": 117638, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "37300", + "Upper_Bound": "54100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.698Z", + "last_change_date": "2022-03-14T07:56:46.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4771, + "fields": { + "EF_ID": 117639, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "37300", + "Upper_Bound": "54100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.765Z", + "last_change_date": "2022-03-14T07:56:46.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4772, + "fields": { + "EF_ID": 117640, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "219000", + "Upper_Bound": "308000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.831Z", + "last_change_date": "2022-03-14T07:56:46.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4773, + "fields": { + "EF_ID": 117641, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "145000", + "Upper_Bound": "202000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.898Z", + "last_change_date": "2022-03-14T07:56:46.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4774, + "fields": { + "EF_ID": 117642, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "54300", + "Upper_Bound": "58300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:46.981Z", + "last_change_date": "2022-03-14T07:56:46.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4775, + "fields": { + "EF_ID": 117643, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "73300", + "Upper_Bound": "121000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.056Z", + "last_change_date": "2022-03-14T07:56:47.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4776, + "fields": { + "EF_ID": 117644, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "110000", + "Upper_Bound": "183000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.123Z", + "last_change_date": "2022-03-14T07:56:47.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4777, + "fields": { + "EF_ID": 117645, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.190Z", + "last_change_date": "2022-03-14T07:56:47.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4778, + "fields": { + "EF_ID": 117646, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100000", + "Upper_Bound": "108000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.256Z", + "last_change_date": "2022-03-14T07:56:47.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4779, + "fields": { + "EF_ID": 117647, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95000", + "Upper_Bound": "132000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.342Z", + "last_change_date": "2022-03-14T07:56:47.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4780, + "fields": { + "EF_ID": 117648, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "80700", + "Upper_Bound": "110000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes the biomass-derived CO2 emitted from the black liquor combustion unit and the biomass-derived CO2 emitted from the kraft mill lime kiln.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.427Z", + "last_change_date": "2022-03-14T07:56:47.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4781, + "fields": { + "EF_ID": 117649, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "84700", + "Upper_Bound": "117000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.506Z", + "last_change_date": "2022-03-14T07:56:47.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4782, + "fields": { + "EF_ID": 117650, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95000", + "Upper_Bound": "132000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.581Z", + "last_change_date": "2022-03-14T07:56:47.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4783, + "fields": { + "EF_ID": 117651, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70800", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59800", + "Upper_Bound": "84300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.656Z", + "last_change_date": "2022-03-14T07:56:47.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4784, + "fields": { + "EF_ID": 117652, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70800", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59800", + "Upper_Bound": "84300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.752Z", + "last_change_date": "2022-03-14T07:56:47.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4785, + "fields": { + "EF_ID": 117653, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67100", + "Upper_Bound": "95300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.848Z", + "last_change_date": "2022-03-14T07:56:47.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4786, + "fields": { + "EF_ID": 117654, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.915Z", + "last_change_date": "2022-03-14T07:56:47.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4787, + "fields": { + "EF_ID": 117655, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:47.981Z", + "last_change_date": "2022-03-14T07:56:47.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4788, + "fields": { + "EF_ID": 117656, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.048Z", + "last_change_date": "2022-03-14T07:56:48.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4789, + "fields": { + "EF_ID": 117657, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "84700", + "Upper_Bound": "117000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.137Z", + "last_change_date": "2022-03-14T07:56:48.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4790, + "fields": { + "EF_ID": 117658, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.219Z", + "last_change_date": "2022-03-14T07:56:48.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4791, + "fields": { + "EF_ID": 117659, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.281Z", + "last_change_date": "2022-03-14T07:56:48.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4792, + "fields": { + "EF_ID": 117660, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.348Z", + "last_change_date": "2022-03-14T07:56:48.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4793, + "fields": { + "EF_ID": 117661, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.414Z", + "last_change_date": "2022-03-14T07:56:48.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4794, + "fields": { + "EF_ID": 117662, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.507Z", + "last_change_date": "2022-03-14T07:56:48.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4795, + "fields": { + "EF_ID": 117663, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.581Z", + "last_change_date": "2022-03-14T07:56:48.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4796, + "fields": { + "EF_ID": 117664, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.648Z", + "last_change_date": "2022-03-14T07:56:48.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4797, + "fields": { + "EF_ID": 117665, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.715Z", + "last_change_date": "2022-03-14T07:56:48.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4798, + "fields": { + "EF_ID": 117666, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.790Z", + "last_change_date": "2022-03-14T07:56:48.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4799, + "fields": { + "EF_ID": 117667, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.884Z", + "last_change_date": "2022-03-14T07:56:48.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4800, + "fields": { + "EF_ID": 117668, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:48.956Z", + "last_change_date": "2022-03-14T07:56:48.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4801, + "fields": { + "EF_ID": 117669, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.023Z", + "last_change_date": "2022-03-14T07:56:49.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4802, + "fields": { + "EF_ID": 117670, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.098Z", + "last_change_date": "2022-03-14T07:56:49.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4803, + "fields": { + "EF_ID": 117671, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.173Z", + "last_change_date": "2022-03-14T07:56:49.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4804, + "fields": { + "EF_ID": 117672, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.270Z", + "last_change_date": "2022-03-14T07:56:49.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4805, + "fields": { + "EF_ID": 117673, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.356Z", + "last_change_date": "2022-03-14T07:56:49.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4806, + "fields": { + "EF_ID": 117674, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.439Z", + "last_change_date": "2022-03-14T07:56:49.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4807, + "fields": { + "EF_ID": 117675, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.514Z", + "last_change_date": "2022-03-14T07:56:49.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4808, + "fields": { + "EF_ID": 117676, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.589Z", + "last_change_date": "2022-03-14T07:56:49.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4809, + "fields": { + "EF_ID": 117677, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.697Z", + "last_change_date": "2022-03-14T07:56:49.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4810, + "fields": { + "EF_ID": 117678, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.773Z", + "last_change_date": "2022-03-14T07:56:49.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4811, + "fields": { + "EF_ID": 117679, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.840Z", + "last_change_date": "2022-03-14T07:56:49.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4812, + "fields": { + "EF_ID": 117680, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:49.931Z", + "last_change_date": "2022-03-14T07:56:49.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4813, + "fields": { + "EF_ID": 117681, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.006Z", + "last_change_date": "2022-03-14T07:56:50.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4814, + "fields": { + "EF_ID": 117682, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.099Z", + "last_change_date": "2022-03-14T07:56:50.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4815, + "fields": { + "EF_ID": 117683, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.173Z", + "last_change_date": "2022-03-14T07:56:50.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4816, + "fields": { + "EF_ID": 117684, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.244Z", + "last_change_date": "2022-03-14T07:56:50.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4817, + "fields": { + "EF_ID": 117685, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.311Z", + "last_change_date": "2022-03-14T07:56:50.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4818, + "fields": { + "EF_ID": 117686, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.377Z", + "last_change_date": "2022-03-14T07:56:50.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4819, + "fields": { + "EF_ID": 117687, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.468Z", + "last_change_date": "2022-03-14T07:56:50.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4820, + "fields": { + "EF_ID": 117688, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.548Z", + "last_change_date": "2022-03-14T07:56:50.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4821, + "fields": { + "EF_ID": 117689, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.611Z", + "last_change_date": "2022-03-14T07:56:50.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4822, + "fields": { + "EF_ID": 117690, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.678Z", + "last_change_date": "2022-03-14T07:56:50.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4823, + "fields": { + "EF_ID": 117691, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.744Z", + "last_change_date": "2022-03-14T07:56:50.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4824, + "fields": { + "EF_ID": 117692, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.829Z", + "last_change_date": "2022-03-14T07:56:50.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4825, + "fields": { + "EF_ID": 117693, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.915Z", + "last_change_date": "2022-03-14T07:56:50.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4826, + "fields": { + "EF_ID": 117694, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:50.978Z", + "last_change_date": "2022-03-14T07:56:50.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4827, + "fields": { + "EF_ID": 117695, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.052Z", + "last_change_date": "2022-03-14T07:56:51.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4828, + "fields": { + "EF_ID": 117696, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.128Z", + "last_change_date": "2022-03-14T07:56:51.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4829, + "fields": { + "EF_ID": 117697, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.222Z", + "last_change_date": "2022-03-14T07:56:51.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4830, + "fields": { + "EF_ID": 117698, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.306Z", + "last_change_date": "2022-03-14T07:56:51.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4831, + "fields": { + "EF_ID": 117699, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.369Z", + "last_change_date": "2022-03-14T07:56:51.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4832, + "fields": { + "EF_ID": 117700, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.436Z", + "last_change_date": "2022-03-14T07:56:51.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4833, + "fields": { + "EF_ID": 117701, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.502Z", + "last_change_date": "2022-03-14T07:56:51.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4834, + "fields": { + "EF_ID": 117702, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.591Z", + "last_change_date": "2022-03-14T07:56:51.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4835, + "fields": { + "EF_ID": 117703, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.664Z", + "last_change_date": "2022-03-14T07:56:51.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4836, + "fields": { + "EF_ID": 117704, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "70", + "Upper_Bound": "600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.748Z", + "last_change_date": "2022-03-14T07:56:51.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4837, + "fields": { + "EF_ID": 117705, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.823Z", + "last_change_date": "2022-03-14T07:56:51.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4838, + "fields": { + "EF_ID": 117706, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:51.898Z", + "last_change_date": "2022-03-14T07:56:51.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4839, + "fields": { + "EF_ID": 117707, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.002Z", + "last_change_date": "2022-03-14T07:56:52.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4840, + "fields": { + "EF_ID": 117708, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.081Z", + "last_change_date": "2022-03-14T07:56:52.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4841, + "fields": { + "EF_ID": 117709, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.148Z", + "last_change_date": "2022-03-14T07:56:52.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4842, + "fields": { + "EF_ID": 117710, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.215Z", + "last_change_date": "2022-03-14T07:56:52.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4843, + "fields": { + "EF_ID": 117711, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.282Z", + "last_change_date": "2022-03-14T07:56:52.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4844, + "fields": { + "EF_ID": 117712, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.371Z", + "last_change_date": "2022-03-14T07:56:52.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4845, + "fields": { + "EF_ID": 117713, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.453Z", + "last_change_date": "2022-03-14T07:56:52.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4846, + "fields": { + "EF_ID": 117714, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.523Z", + "last_change_date": "2022-03-14T07:56:52.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4847, + "fields": { + "EF_ID": 117715, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.589Z", + "last_change_date": "2022-03-14T07:56:52.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4848, + "fields": { + "EF_ID": 117716, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.656Z", + "last_change_date": "2022-03-14T07:56:52.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4849, + "fields": { + "EF_ID": 117717, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.740Z", + "last_change_date": "2022-03-14T07:56:52.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4850, + "fields": { + "EF_ID": 117718, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.815Z", + "last_change_date": "2022-03-14T07:56:52.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4851, + "fields": { + "EF_ID": 117719, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.881Z", + "last_change_date": "2022-03-14T07:56:52.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4852, + "fields": { + "EF_ID": 117720, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:52.948Z", + "last_change_date": "2022-03-14T07:56:52.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4853, + "fields": { + "EF_ID": 117721, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.014Z", + "last_change_date": "2022-03-14T07:56:53.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4854, + "fields": { + "EF_ID": 117722, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.100Z", + "last_change_date": "2022-03-14T07:56:53.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4855, + "fields": { + "EF_ID": 117723, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.173Z", + "last_change_date": "2022-03-14T07:56:53.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4856, + "fields": { + "EF_ID": 117724, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.315Z", + "last_change_date": "2022-03-14T07:56:53.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4857, + "fields": { + "EF_ID": 117725, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.389Z", + "last_change_date": "2022-03-14T07:56:53.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4858, + "fields": { + "EF_ID": 117726, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.464Z", + "last_change_date": "2022-03-14T07:56:53.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4859, + "fields": { + "EF_ID": 117727, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.554Z", + "last_change_date": "2022-03-14T07:56:53.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4860, + "fields": { + "EF_ID": 117728, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.640Z", + "last_change_date": "2022-03-14T07:56:53.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4861, + "fields": { + "EF_ID": 117729, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.706Z", + "last_change_date": "2022-03-14T07:56:53.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4862, + "fields": { + "EF_ID": 117730, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.773Z", + "last_change_date": "2022-03-14T07:56:53.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4863, + "fields": { + "EF_ID": 117731, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.840Z", + "last_change_date": "2022-03-14T07:56:53.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4864, + "fields": { + "EF_ID": 117732, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:53.931Z", + "last_change_date": "2022-03-14T07:56:53.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4865, + "fields": { + "EF_ID": 117733, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.006Z", + "last_change_date": "2022-03-14T07:56:54.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4866, + "fields": { + "EF_ID": 117734, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.090Z", + "last_change_date": "2022-03-14T07:56:54.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4867, + "fields": { + "EF_ID": 117735, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.156Z", + "last_change_date": "2022-03-14T07:56:54.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4868, + "fields": { + "EF_ID": 117736, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.231Z", + "last_change_date": "2022-03-14T07:56:54.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4869, + "fields": { + "EF_ID": 117737, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.324Z", + "last_change_date": "2022-03-14T07:56:54.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4870, + "fields": { + "EF_ID": 117738, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.398Z", + "last_change_date": "2022-03-14T07:56:54.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4871, + "fields": { + "EF_ID": 117739, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.465Z", + "last_change_date": "2022-03-14T07:56:54.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4872, + "fields": { + "EF_ID": 117740, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.531Z", + "last_change_date": "2022-03-14T07:56:54.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4873, + "fields": { + "EF_ID": 117741, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.598Z", + "last_change_date": "2022-03-14T07:56:54.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4874, + "fields": { + "EF_ID": 117742, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.693Z", + "last_change_date": "2022-03-14T07:56:54.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4875, + "fields": { + "EF_ID": 117743, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.764Z", + "last_change_date": "2022-03-14T07:56:54.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4876, + "fields": { + "EF_ID": 117744, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.831Z", + "last_change_date": "2022-03-14T07:56:54.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4877, + "fields": { + "EF_ID": 117745, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.898Z", + "last_change_date": "2022-03-14T07:56:54.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4878, + "fields": { + "EF_ID": 117746, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:54.973Z", + "last_change_date": "2022-03-14T07:56:54.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4879, + "fields": { + "EF_ID": 117747, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.072Z", + "last_change_date": "2022-03-14T07:56:55.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4880, + "fields": { + "EF_ID": 117748, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.156Z", + "last_change_date": "2022-03-14T07:56:55.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4881, + "fields": { + "EF_ID": 117749, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.231Z", + "last_change_date": "2022-03-14T07:56:55.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4882, + "fields": { + "EF_ID": 117750, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.298Z", + "last_change_date": "2022-03-14T07:56:55.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4883, + "fields": { + "EF_ID": 117751, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.365Z", + "last_change_date": "2022-03-14T07:56:55.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4884, + "fields": { + "EF_ID": 117752, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.456Z", + "last_change_date": "2022-03-14T07:56:55.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4885, + "fields": { + "EF_ID": 117753, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.531Z", + "last_change_date": "2022-03-14T07:56:55.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4886, + "fields": { + "EF_ID": 117754, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.598Z", + "last_change_date": "2022-03-14T07:56:55.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4887, + "fields": { + "EF_ID": 117755, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.665Z", + "last_change_date": "2022-03-14T07:56:55.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4888, + "fields": { + "EF_ID": 117756, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.731Z", + "last_change_date": "2022-03-14T07:56:55.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4889, + "fields": { + "EF_ID": 117757, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.817Z", + "last_change_date": "2022-03-14T07:56:55.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4890, + "fields": { + "EF_ID": 117758, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.890Z", + "last_change_date": "2022-03-14T07:56:55.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4891, + "fields": { + "EF_ID": 117759, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:55.962Z", + "last_change_date": "2022-03-14T07:56:55.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4892, + "fields": { + "EF_ID": 117760, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.028Z", + "last_change_date": "2022-03-14T07:56:56.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4893, + "fields": { + "EF_ID": 117761, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.095Z", + "last_change_date": "2022-03-14T07:56:56.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4894, + "fields": { + "EF_ID": 117762, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.210Z", + "last_change_date": "2022-03-14T07:56:56.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4895, + "fields": { + "EF_ID": 117763, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.287Z", + "last_change_date": "2022-03-14T07:56:56.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4896, + "fields": { + "EF_ID": 117764, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.353Z", + "last_change_date": "2022-03-14T07:56:56.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4897, + "fields": { + "EF_ID": 117765, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.2", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.420Z", + "last_change_date": "2022-03-14T07:56:56.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4898, + "fields": { + "EF_ID": 117766, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "71100", + "Upper_Bound": "75500", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.487Z", + "last_change_date": "2022-03-14T07:56:56.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4899, + "fields": { + "EF_ID": 117767, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69300", + "Upper_Bound": "85400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.581Z", + "last_change_date": "2022-03-14T07:56:56.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4900, + "fields": { + "EF_ID": 117768, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64200", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "58300", + "Upper_Bound": "70400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.673Z", + "last_change_date": "2022-03-14T07:56:56.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4901, + "fields": { + "EF_ID": 117769, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.753Z", + "last_change_date": "2022-03-14T07:56:56.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4902, + "fields": { + "EF_ID": 117770, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.828Z", + "last_change_date": "2022-03-14T07:56:56.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4903, + "fields": { + "EF_ID": 117771, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.903Z", + "last_change_date": "2022-03-14T07:56:56.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4904, + "fields": { + "EF_ID": 117772, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69700", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:56.991Z", + "last_change_date": "2022-03-14T07:56:56.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4905, + "fields": { + "EF_ID": 117773, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71900", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "70800", + "Upper_Bound": "73700", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.070Z", + "last_change_date": "2022-03-14T07:56:57.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4906, + "fields": { + "EF_ID": 117774, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67800", + "Upper_Bound": "79200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.137Z", + "last_change_date": "2022-03-14T07:56:57.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4907, + "fields": { + "EF_ID": 117775, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72600", + "Upper_Bound": "74800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.203Z", + "last_change_date": "2022-03-14T07:56:57.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4908, + "fields": { + "EF_ID": 117776, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72600", + "Upper_Bound": "74800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.270Z", + "last_change_date": "2022-03-14T07:56:57.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4909, + "fields": { + "EF_ID": 117777, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "75500", + "Upper_Bound": "78800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.359Z", + "last_change_date": "2022-03-14T07:56:57.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4910, + "fields": { + "EF_ID": 117778, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "61600", + "Upper_Bound": "65600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.437Z", + "last_change_date": "2022-03-14T07:56:57.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4911, + "fields": { + "EF_ID": 117779, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "56500", + "Upper_Bound": "68600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.503Z", + "last_change_date": "2022-03-14T07:56:57.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4912, + "fields": { + "EF_ID": 117780, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69300", + "Upper_Bound": "76300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.570Z", + "last_change_date": "2022-03-14T07:56:57.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4913, + "fields": { + "EF_ID": 117781, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "73000", + "Upper_Bound": "89900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.637Z", + "last_change_date": "2022-03-14T07:56:57.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4914, + "fields": { + "EF_ID": 117782, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "71900", + "Upper_Bound": "75200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.728Z", + "last_change_date": "2022-03-14T07:56:57.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4915, + "fields": { + "EF_ID": 117783, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "82900", + "Upper_Bound": "115000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.804Z", + "last_change_date": "2022-03-14T07:56:57.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4916, + "fields": { + "EF_ID": 117784, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "68900", + "Upper_Bound": "76600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.870Z", + "last_change_date": "2022-03-14T07:56:57.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4917, + "fields": { + "EF_ID": 117785, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "48200", + "Upper_Bound": "69000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:57.937Z", + "last_change_date": "2022-03-14T07:56:57.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4918, + "fields": { + "EF_ID": 117786, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.003Z", + "last_change_date": "2022-03-14T07:56:58.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4919, + "fields": { + "EF_ID": 117787, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.096Z", + "last_change_date": "2022-03-14T07:56:58.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4920, + "fields": { + "EF_ID": 117788, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.179Z", + "last_change_date": "2022-03-14T07:56:58.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4921, + "fields": { + "EF_ID": 117789, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "94600", + "Upper_Bound": "101000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.278Z", + "last_change_date": "2022-03-14T07:56:58.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4922, + "fields": { + "EF_ID": 117790, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "101000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.537Z", + "last_change_date": "2022-03-14T07:56:58.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4923, + "fields": { + "EF_ID": 117791, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "89500", + "Upper_Bound": "99700", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.612Z", + "last_change_date": "2022-03-14T07:56:58.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4924, + "fields": { + "EF_ID": 117792, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "92800", + "Upper_Bound": "100000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.708Z", + "last_change_date": "2022-03-14T07:56:58.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4925, + "fields": { + "EF_ID": 117793, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "90900", + "Upper_Bound": "115000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.795Z", + "last_change_date": "2022-03-14T07:56:58.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4926, + "fields": { + "EF_ID": 117794, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "90200", + "Upper_Bound": "125000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.870Z", + "last_change_date": "2022-03-14T07:56:58.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4927, + "fields": { + "EF_ID": 117795, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "109000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:58.939Z", + "last_change_date": "2022-03-14T07:56:58.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4928, + "fields": { + "EF_ID": 117796, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "109000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.006Z", + "last_change_date": "2022-03-14T07:56:59.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4929, + "fields": { + "EF_ID": 117797, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95700", + "Upper_Bound": "119000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.094Z", + "last_change_date": "2022-03-14T07:56:59.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4930, + "fields": { + "EF_ID": 117798, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95700", + "Upper_Bound": "119000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.170Z", + "last_change_date": "2022-03-14T07:56:59.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4931, + "fields": { + "EF_ID": 117799, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "68200", + "Upper_Bound": "95300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.240Z", + "last_change_date": "2022-03-14T07:56:59.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4932, + "fields": { + "EF_ID": 117800, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "37300", + "Upper_Bound": "54100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.306Z", + "last_change_date": "2022-03-14T07:56:59.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4933, + "fields": { + "EF_ID": 117801, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "37300", + "Upper_Bound": "54100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.373Z", + "last_change_date": "2022-03-14T07:56:59.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4934, + "fields": { + "EF_ID": 117802, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "219000", + "Upper_Bound": "308000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.463Z", + "last_change_date": "2022-03-14T07:56:59.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4935, + "fields": { + "EF_ID": 117803, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "145000", + "Upper_Bound": "202000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.545Z", + "last_change_date": "2022-03-14T07:56:59.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4936, + "fields": { + "EF_ID": 117804, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "54300", + "Upper_Bound": "58300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.615Z", + "last_change_date": "2022-03-14T07:56:59.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4937, + "fields": { + "EF_ID": 117805, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "73300", + "Upper_Bound": "121000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.681Z", + "last_change_date": "2022-03-14T07:56:59.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4938, + "fields": { + "EF_ID": 117806, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "110000", + "Upper_Bound": "183000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.748Z", + "last_change_date": "2022-03-14T07:56:59.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4939, + "fields": { + "EF_ID": 117807, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.839Z", + "last_change_date": "2022-03-14T07:56:59.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4940, + "fields": { + "EF_ID": 117808, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100000", + "Upper_Bound": "108000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.920Z", + "last_change_date": "2022-03-14T07:56:59.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4941, + "fields": { + "EF_ID": 117809, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95000", + "Upper_Bound": "132000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:56:59.998Z", + "last_change_date": "2022-03-14T07:56:59.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4942, + "fields": { + "EF_ID": 117810, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "80700", + "Upper_Bound": "110000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes the biomass-derived CO2 emitted from the black liquor combustion unit and the biomass-derived CO2 emitted from the kraft mill lime kiln.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.073Z", + "last_change_date": "2022-03-14T07:57:00.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4943, + "fields": { + "EF_ID": 117811, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "84700", + "Upper_Bound": "117000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.148Z", + "last_change_date": "2022-03-14T07:57:00.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4944, + "fields": { + "EF_ID": 117812, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95000", + "Upper_Bound": "132000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.234Z", + "last_change_date": "2022-03-14T07:57:00.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4945, + "fields": { + "EF_ID": 117813, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70800", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59800", + "Upper_Bound": "84300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.337Z", + "last_change_date": "2022-03-14T07:57:00.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4946, + "fields": { + "EF_ID": 117814, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70800", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59800", + "Upper_Bound": "84300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.406Z", + "last_change_date": "2022-03-14T07:57:00.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4947, + "fields": { + "EF_ID": 117815, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67100", + "Upper_Bound": "95300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.481Z", + "last_change_date": "2022-03-14T07:57:00.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4948, + "fields": { + "EF_ID": 117816, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.556Z", + "last_change_date": "2022-03-14T07:57:00.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4949, + "fields": { + "EF_ID": 117817, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.653Z", + "last_change_date": "2022-03-14T07:57:00.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4950, + "fields": { + "EF_ID": 117818, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.728Z", + "last_change_date": "2022-03-14T07:57:00.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4951, + "fields": { + "EF_ID": 117819, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "84700", + "Upper_Bound": "117000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.798Z", + "last_change_date": "2022-03-14T07:57:00.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4952, + "fields": { + "EF_ID": 117820, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.873Z", + "last_change_date": "2022-03-14T07:57:00.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4953, + "fields": { + "EF_ID": 117821, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:00.940Z", + "last_change_date": "2022-03-14T07:57:00.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4954, + "fields": { + "EF_ID": 117822, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.030Z", + "last_change_date": "2022-03-14T07:57:01.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4955, + "fields": { + "EF_ID": 117823, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.112Z", + "last_change_date": "2022-03-14T07:57:01.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4956, + "fields": { + "EF_ID": 117824, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.181Z", + "last_change_date": "2022-03-14T07:57:01.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4957, + "fields": { + "EF_ID": 117825, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.248Z", + "last_change_date": "2022-03-14T07:57:01.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4958, + "fields": { + "EF_ID": 117826, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.314Z", + "last_change_date": "2022-03-14T07:57:01.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4959, + "fields": { + "EF_ID": 117827, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.407Z", + "last_change_date": "2022-03-14T07:57:01.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4960, + "fields": { + "EF_ID": 117828, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.512Z", + "last_change_date": "2022-03-14T07:57:01.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4961, + "fields": { + "EF_ID": 117829, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.581Z", + "last_change_date": "2022-03-14T07:57:01.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4962, + "fields": { + "EF_ID": 117830, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.648Z", + "last_change_date": "2022-03-14T07:57:01.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4963, + "fields": { + "EF_ID": 117831, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.723Z", + "last_change_date": "2022-03-14T07:57:01.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4964, + "fields": { + "EF_ID": 117832, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.818Z", + "last_change_date": "2022-03-14T07:57:01.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4965, + "fields": { + "EF_ID": 117833, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.906Z", + "last_change_date": "2022-03-14T07:57:01.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4966, + "fields": { + "EF_ID": 117834, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:01.973Z", + "last_change_date": "2022-03-14T07:57:01.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4967, + "fields": { + "EF_ID": 117835, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.048Z", + "last_change_date": "2022-03-14T07:57:02.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4968, + "fields": { + "EF_ID": 117836, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.115Z", + "last_change_date": "2022-03-14T07:57:02.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4969, + "fields": { + "EF_ID": 117837, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.204Z", + "last_change_date": "2022-03-14T07:57:02.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4970, + "fields": { + "EF_ID": 117838, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.279Z", + "last_change_date": "2022-03-14T07:57:02.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4971, + "fields": { + "EF_ID": 117839, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.348Z", + "last_change_date": "2022-03-14T07:57:02.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4972, + "fields": { + "EF_ID": 117840, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.440Z", + "last_change_date": "2022-03-14T07:57:02.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4973, + "fields": { + "EF_ID": 117841, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.515Z", + "last_change_date": "2022-03-14T07:57:02.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4974, + "fields": { + "EF_ID": 117842, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.613Z", + "last_change_date": "2022-03-14T07:57:02.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4975, + "fields": { + "EF_ID": 117843, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.690Z", + "last_change_date": "2022-03-14T07:57:02.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4976, + "fields": { + "EF_ID": 117844, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.756Z", + "last_change_date": "2022-03-14T07:57:02.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4977, + "fields": { + "EF_ID": 117845, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.848Z", + "last_change_date": "2022-03-14T07:57:02.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4978, + "fields": { + "EF_ID": 117846, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:02.929Z", + "last_change_date": "2022-03-14T07:57:02.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4979, + "fields": { + "EF_ID": 117847, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.025Z", + "last_change_date": "2022-03-14T07:57:03.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4980, + "fields": { + "EF_ID": 117848, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.115Z", + "last_change_date": "2022-03-14T07:57:03.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4981, + "fields": { + "EF_ID": 117849, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.179Z", + "last_change_date": "2022-03-14T07:57:03.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4982, + "fields": { + "EF_ID": 117850, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.254Z", + "last_change_date": "2022-03-14T07:57:03.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4983, + "fields": { + "EF_ID": 117851, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.320Z", + "last_change_date": "2022-03-14T07:57:03.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4984, + "fields": { + "EF_ID": 117852, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.410Z", + "last_change_date": "2022-03-14T07:57:03.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4985, + "fields": { + "EF_ID": 117853, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.531Z", + "last_change_date": "2022-03-14T07:57:03.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4986, + "fields": { + "EF_ID": 117854, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.587Z", + "last_change_date": "2022-03-14T07:57:03.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4987, + "fields": { + "EF_ID": 117855, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.645Z", + "last_change_date": "2022-03-14T07:57:03.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4988, + "fields": { + "EF_ID": 117856, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.721Z", + "last_change_date": "2022-03-14T07:57:03.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4989, + "fields": { + "EF_ID": 117857, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.813Z", + "last_change_date": "2022-03-14T07:57:03.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4990, + "fields": { + "EF_ID": 117858, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.889Z", + "last_change_date": "2022-03-14T07:57:03.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4991, + "fields": { + "EF_ID": 117859, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:03.962Z", + "last_change_date": "2022-03-14T07:57:03.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4992, + "fields": { + "EF_ID": 117860, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.037Z", + "last_change_date": "2022-03-14T07:57:04.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4993, + "fields": { + "EF_ID": 117861, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.121Z", + "last_change_date": "2022-03-14T07:57:04.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4994, + "fields": { + "EF_ID": 117862, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.6", + "Upper_Bound": "6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.215Z", + "last_change_date": "2022-03-14T07:57:04.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4995, + "fields": { + "EF_ID": 117863, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.290Z", + "last_change_date": "2022-03-14T07:57:04.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4996, + "fields": { + "EF_ID": 117864, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.354Z", + "last_change_date": "2022-03-14T07:57:04.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4997, + "fields": { + "EF_ID": 117865, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.456Z", + "last_change_date": "2022-03-14T07:57:04.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4998, + "fields": { + "EF_ID": 117866, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "70", + "Upper_Bound": "600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.531Z", + "last_change_date": "2022-03-14T07:57:04.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 4999, + "fields": { + "EF_ID": 117867, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.625Z", + "last_change_date": "2022-03-14T07:57:04.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5000, + "fields": { + "EF_ID": 117868, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.715Z", + "last_change_date": "2022-03-14T07:57:04.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5001, + "fields": { + "EF_ID": 117869, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.790Z", + "last_change_date": "2022-03-14T07:57:04.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5002, + "fields": { + "EF_ID": 117870, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.864Z", + "last_change_date": "2022-03-14T07:57:04.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5003, + "fields": { + "EF_ID": 117871, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:04.931Z", + "last_change_date": "2022-03-14T07:57:04.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5004, + "fields": { + "EF_ID": 117872, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.020Z", + "last_change_date": "2022-03-14T07:57:05.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5005, + "fields": { + "EF_ID": 117873, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "10", + "Upper_Bound": "100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.098Z", + "last_change_date": "2022-03-14T07:57:05.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5006, + "fields": { + "EF_ID": 117874, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.165Z", + "last_change_date": "2022-03-14T07:57:05.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5007, + "fields": { + "EF_ID": 117875, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.231Z", + "last_change_date": "2022-03-14T07:57:05.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5008, + "fields": { + "EF_ID": 117876, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.298Z", + "last_change_date": "2022-03-14T07:57:05.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5009, + "fields": { + "EF_ID": 117877, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.389Z", + "last_change_date": "2022-03-14T07:57:05.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5010, + "fields": { + "EF_ID": 117878, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.464Z", + "last_change_date": "2022-03-14T07:57:05.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5011, + "fields": { + "EF_ID": 117879, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.531Z", + "last_change_date": "2022-03-14T07:57:05.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5012, + "fields": { + "EF_ID": 117880, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.598Z", + "last_change_date": "2022-03-14T07:57:05.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5013, + "fields": { + "EF_ID": 117881, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.664Z", + "last_change_date": "2022-03-14T07:57:05.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5014, + "fields": { + "EF_ID": 117882, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.758Z", + "last_change_date": "2022-03-14T07:57:05.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5015, + "fields": { + "EF_ID": 117883, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.831Z", + "last_change_date": "2022-03-14T07:57:05.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5016, + "fields": { + "EF_ID": 117884, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.906Z", + "last_change_date": "2022-03-14T07:57:05.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5017, + "fields": { + "EF_ID": 117885, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:05.981Z", + "last_change_date": "2022-03-14T07:57:05.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5018, + "fields": { + "EF_ID": 117886, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.056Z", + "last_change_date": "2022-03-14T07:57:06.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5019, + "fields": { + "EF_ID": 117887, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.143Z", + "last_change_date": "2022-03-14T07:57:06.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5020, + "fields": { + "EF_ID": 117888, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.240Z", + "last_change_date": "2022-03-14T07:57:06.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5021, + "fields": { + "EF_ID": 117889, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.315Z", + "last_change_date": "2022-03-14T07:57:06.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5022, + "fields": { + "EF_ID": 117890, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.381Z", + "last_change_date": "2022-03-14T07:57:06.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5023, + "fields": { + "EF_ID": 117891, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.465Z", + "last_change_date": "2022-03-14T07:57:06.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5024, + "fields": { + "EF_ID": 117892, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.571Z", + "last_change_date": "2022-03-14T07:57:06.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5025, + "fields": { + "EF_ID": 117893, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.648Z", + "last_change_date": "2022-03-14T07:57:06.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5026, + "fields": { + "EF_ID": 117894, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.714Z", + "last_change_date": "2022-03-14T07:57:06.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5027, + "fields": { + "EF_ID": 117895, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.781Z", + "last_change_date": "2022-03-14T07:57:06.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5028, + "fields": { + "EF_ID": 117896, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.848Z", + "last_change_date": "2022-03-14T07:57:06.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5029, + "fields": { + "EF_ID": 117897, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:06.939Z", + "last_change_date": "2022-03-14T07:57:06.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5030, + "fields": { + "EF_ID": 117898, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.023Z", + "last_change_date": "2022-03-14T07:57:07.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5031, + "fields": { + "EF_ID": 117899, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.090Z", + "last_change_date": "2022-03-14T07:57:07.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5032, + "fields": { + "EF_ID": 117900, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.156Z", + "last_change_date": "2022-03-14T07:57:07.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5033, + "fields": { + "EF_ID": 117901, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.223Z", + "last_change_date": "2022-03-14T07:57:07.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5034, + "fields": { + "EF_ID": 117902, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.316Z", + "last_change_date": "2022-03-14T07:57:07.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5035, + "fields": { + "EF_ID": 117903, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.398Z", + "last_change_date": "2022-03-14T07:57:07.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5036, + "fields": { + "EF_ID": 117904, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.464Z", + "last_change_date": "2022-03-14T07:57:07.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5037, + "fields": { + "EF_ID": 117905, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.596Z", + "last_change_date": "2022-03-14T07:57:07.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5038, + "fields": { + "EF_ID": 117906, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.656Z", + "last_change_date": "2022-03-14T07:57:07.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5039, + "fields": { + "EF_ID": 117907, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.752Z", + "last_change_date": "2022-03-14T07:57:07.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5040, + "fields": { + "EF_ID": 117908, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.840Z", + "last_change_date": "2022-03-14T07:57:07.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5041, + "fields": { + "EF_ID": 117909, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.915Z", + "last_change_date": "2022-03-14T07:57:07.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5042, + "fields": { + "EF_ID": 117910, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:07.989Z", + "last_change_date": "2022-03-14T07:57:07.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5043, + "fields": { + "EF_ID": 117911, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.065Z", + "last_change_date": "2022-03-14T07:57:08.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5044, + "fields": { + "EF_ID": 117912, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.164Z", + "last_change_date": "2022-03-14T07:57:08.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5045, + "fields": { + "EF_ID": 117913, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.248Z", + "last_change_date": "2022-03-14T07:57:08.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5046, + "fields": { + "EF_ID": 117914, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.331Z", + "last_change_date": "2022-03-14T07:57:08.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5047, + "fields": { + "EF_ID": 117915, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.415Z", + "last_change_date": "2022-03-14T07:57:08.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5048, + "fields": { + "EF_ID": 117916, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.481Z", + "last_change_date": "2022-03-14T07:57:08.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5049, + "fields": { + "EF_ID": 117917, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.582Z", + "last_change_date": "2022-03-14T07:57:08.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5050, + "fields": { + "EF_ID": 117918, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.665Z", + "last_change_date": "2022-03-14T07:57:08.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5051, + "fields": { + "EF_ID": 117919, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.740Z", + "last_change_date": "2022-03-14T07:57:08.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5052, + "fields": { + "EF_ID": 117920, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.814Z", + "last_change_date": "2022-03-14T07:57:08.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5053, + "fields": { + "EF_ID": 117921, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.873Z", + "last_change_date": "2022-03-14T07:57:08.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5054, + "fields": { + "EF_ID": 117922, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:08.967Z", + "last_change_date": "2022-03-14T07:57:08.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5055, + "fields": { + "EF_ID": 117923, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.048Z", + "last_change_date": "2022-03-14T07:57:09.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5056, + "fields": { + "EF_ID": 117924, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.106Z", + "last_change_date": "2022-03-14T07:57:09.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5057, + "fields": { + "EF_ID": 117925, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.165Z", + "last_change_date": "2022-03-14T07:57:09.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5058, + "fields": { + "EF_ID": 117926, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.229Z", + "last_change_date": "2022-03-14T07:57:09.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5059, + "fields": { + "EF_ID": 117927, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.3", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.327Z", + "last_change_date": "2022-03-14T07:57:09.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5060, + "fields": { + "EF_ID": 117928, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "71100", + "Upper_Bound": "75500", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.415Z", + "last_change_date": "2022-03-14T07:57:09.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5061, + "fields": { + "EF_ID": 117929, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69300", + "Upper_Bound": "85400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.489Z", + "last_change_date": "2022-03-14T07:57:09.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5062, + "fields": { + "EF_ID": 117930, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64200", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "58300", + "Upper_Bound": "70400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.556Z", + "last_change_date": "2022-03-14T07:57:09.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5063, + "fields": { + "EF_ID": 117931, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.623Z", + "last_change_date": "2022-03-14T07:57:09.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5064, + "fields": { + "EF_ID": 117932, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.713Z", + "last_change_date": "2022-03-14T07:57:09.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5065, + "fields": { + "EF_ID": 117933, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.798Z", + "last_change_date": "2022-03-14T07:57:09.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5066, + "fields": { + "EF_ID": 117934, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69700", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.873Z", + "last_change_date": "2022-03-14T07:57:09.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5067, + "fields": { + "EF_ID": 117935, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71900", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "70800", + "Upper_Bound": "73700", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:09.948Z", + "last_change_date": "2022-03-14T07:57:09.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5068, + "fields": { + "EF_ID": 117936, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67800", + "Upper_Bound": "79200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.023Z", + "last_change_date": "2022-03-14T07:57:10.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5069, + "fields": { + "EF_ID": 117937, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72600", + "Upper_Bound": "74800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.116Z", + "last_change_date": "2022-03-14T07:57:10.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5070, + "fields": { + "EF_ID": 117938, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72600", + "Upper_Bound": "74800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.198Z", + "last_change_date": "2022-03-14T07:57:10.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5071, + "fields": { + "EF_ID": 117939, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "75500", + "Upper_Bound": "78800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.263Z", + "last_change_date": "2022-03-14T07:57:10.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5072, + "fields": { + "EF_ID": 117940, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "61600", + "Upper_Bound": "65600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.329Z", + "last_change_date": "2022-03-14T07:57:10.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5073, + "fields": { + "EF_ID": 117941, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "56500", + "Upper_Bound": "68600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.396Z", + "last_change_date": "2022-03-14T07:57:10.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5074, + "fields": { + "EF_ID": 117942, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69300", + "Upper_Bound": "76300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.485Z", + "last_change_date": "2022-03-14T07:57:10.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5075, + "fields": { + "EF_ID": 117943, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "73000", + "Upper_Bound": "89900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.573Z", + "last_change_date": "2022-03-14T07:57:10.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5076, + "fields": { + "EF_ID": 117944, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "71900", + "Upper_Bound": "75200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.638Z", + "last_change_date": "2022-03-14T07:57:10.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5077, + "fields": { + "EF_ID": 117945, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "82900", + "Upper_Bound": "115000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.713Z", + "last_change_date": "2022-03-14T07:57:10.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5078, + "fields": { + "EF_ID": 117946, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "68900", + "Upper_Bound": "76600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.779Z", + "last_change_date": "2022-03-14T07:57:10.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5079, + "fields": { + "EF_ID": 117947, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "48200", + "Upper_Bound": "69000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.870Z", + "last_change_date": "2022-03-14T07:57:10.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5080, + "fields": { + "EF_ID": 117948, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:10.956Z", + "last_change_date": "2022-03-14T07:57:10.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5081, + "fields": { + "EF_ID": 117949, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.021Z", + "last_change_date": "2022-03-14T07:57:11.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5082, + "fields": { + "EF_ID": 117950, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.088Z", + "last_change_date": "2022-03-14T07:57:11.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5083, + "fields": { + "EF_ID": 117951, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "94600", + "Upper_Bound": "101000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.163Z", + "last_change_date": "2022-03-14T07:57:11.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5084, + "fields": { + "EF_ID": 117952, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "101000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.247Z", + "last_change_date": "2022-03-14T07:57:11.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5085, + "fields": { + "EF_ID": 117953, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "89500", + "Upper_Bound": "99700", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.348Z", + "last_change_date": "2022-03-14T07:57:11.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5086, + "fields": { + "EF_ID": 117954, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "92800", + "Upper_Bound": "100000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.413Z", + "last_change_date": "2022-03-14T07:57:11.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5087, + "fields": { + "EF_ID": 117955, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "90900", + "Upper_Bound": "115000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.498Z", + "last_change_date": "2022-03-14T07:57:11.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5088, + "fields": { + "EF_ID": 117956, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "90200", + "Upper_Bound": "125000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.581Z", + "last_change_date": "2022-03-14T07:57:11.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5089, + "fields": { + "EF_ID": 117957, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "109000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.684Z", + "last_change_date": "2022-03-14T07:57:11.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5090, + "fields": { + "EF_ID": 117958, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "109000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.773Z", + "last_change_date": "2022-03-14T07:57:11.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5091, + "fields": { + "EF_ID": 117959, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95700", + "Upper_Bound": "119000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.856Z", + "last_change_date": "2022-03-14T07:57:11.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5092, + "fields": { + "EF_ID": 117960, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95700", + "Upper_Bound": "119000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:11.940Z", + "last_change_date": "2022-03-14T07:57:11.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5093, + "fields": { + "EF_ID": 117961, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "68200", + "Upper_Bound": "95300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.023Z", + "last_change_date": "2022-03-14T07:57:12.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5094, + "fields": { + "EF_ID": 117962, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "37300", + "Upper_Bound": "54100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.128Z", + "last_change_date": "2022-03-14T07:57:12.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5095, + "fields": { + "EF_ID": 117963, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "37300", + "Upper_Bound": "54100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.223Z", + "last_change_date": "2022-03-14T07:57:12.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5096, + "fields": { + "EF_ID": 117964, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "219000", + "Upper_Bound": "308000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.298Z", + "last_change_date": "2022-03-14T07:57:12.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5097, + "fields": { + "EF_ID": 117965, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "145000", + "Upper_Bound": "202000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.381Z", + "last_change_date": "2022-03-14T07:57:12.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5098, + "fields": { + "EF_ID": 117966, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "54300", + "Upper_Bound": "58300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.464Z", + "last_change_date": "2022-03-14T07:57:12.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5099, + "fields": { + "EF_ID": 117967, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "73300", + "Upper_Bound": "121000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.562Z", + "last_change_date": "2022-03-14T07:57:12.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5100, + "fields": { + "EF_ID": 117968, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "110000", + "Upper_Bound": "183000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.656Z", + "last_change_date": "2022-03-14T07:57:12.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5101, + "fields": { + "EF_ID": 117969, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.732Z", + "last_change_date": "2022-03-14T07:57:12.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5102, + "fields": { + "EF_ID": 117970, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100000", + "Upper_Bound": "108000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.831Z", + "last_change_date": "2022-03-14T07:57:12.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5103, + "fields": { + "EF_ID": 117971, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95000", + "Upper_Bound": "132000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:12.915Z", + "last_change_date": "2022-03-14T07:57:12.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5104, + "fields": { + "EF_ID": 117972, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "80700", + "Upper_Bound": "110000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes the biomass-derived CO2 emitted from the black liquor combustion unit and the biomass-derived CO2 emitted from the kraft mill lime kiln.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.014Z", + "last_change_date": "2022-03-14T07:57:13.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5105, + "fields": { + "EF_ID": 117973, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "84700", + "Upper_Bound": "117000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.098Z", + "last_change_date": "2022-03-14T07:57:13.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5106, + "fields": { + "EF_ID": 117974, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95000", + "Upper_Bound": "132000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.173Z", + "last_change_date": "2022-03-14T07:57:13.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5107, + "fields": { + "EF_ID": 117975, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70800", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59800", + "Upper_Bound": "84300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.248Z", + "last_change_date": "2022-03-14T07:57:13.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5108, + "fields": { + "EF_ID": 117976, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70800", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59800", + "Upper_Bound": "84300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.323Z", + "last_change_date": "2022-03-14T07:57:13.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5109, + "fields": { + "EF_ID": 117977, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67100", + "Upper_Bound": "95300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.418Z", + "last_change_date": "2022-03-14T07:57:13.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5110, + "fields": { + "EF_ID": 117978, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.498Z", + "last_change_date": "2022-03-14T07:57:13.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5111, + "fields": { + "EF_ID": 117979, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.573Z", + "last_change_date": "2022-03-14T07:57:13.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5112, + "fields": { + "EF_ID": 117980, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.656Z", + "last_change_date": "2022-03-14T07:57:13.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5113, + "fields": { + "EF_ID": 117981, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "84700", + "Upper_Bound": "117000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.756Z", + "last_change_date": "2022-03-14T07:57:13.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5114, + "fields": { + "EF_ID": 117982, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.862Z", + "last_change_date": "2022-03-14T07:57:13.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5115, + "fields": { + "EF_ID": 117983, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:13.956Z", + "last_change_date": "2022-03-14T07:57:13.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5116, + "fields": { + "EF_ID": 117984, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.031Z", + "last_change_date": "2022-03-14T07:57:14.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5117, + "fields": { + "EF_ID": 117985, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.131Z", + "last_change_date": "2022-03-14T07:57:14.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5118, + "fields": { + "EF_ID": 117986, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.206Z", + "last_change_date": "2022-03-14T07:57:14.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5119, + "fields": { + "EF_ID": 117987, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.305Z", + "last_change_date": "2022-03-14T07:57:14.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5120, + "fields": { + "EF_ID": 117988, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.390Z", + "last_change_date": "2022-03-14T07:57:14.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5121, + "fields": { + "EF_ID": 117989, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.456Z", + "last_change_date": "2022-03-14T07:57:14.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5122, + "fields": { + "EF_ID": 117990, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.531Z", + "last_change_date": "2022-03-14T07:57:14.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5123, + "fields": { + "EF_ID": 117991, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.606Z", + "last_change_date": "2022-03-14T07:57:14.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5124, + "fields": { + "EF_ID": 117992, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.699Z", + "last_change_date": "2022-03-14T07:57:14.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5125, + "fields": { + "EF_ID": 117993, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.790Z", + "last_change_date": "2022-03-14T07:57:14.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5126, + "fields": { + "EF_ID": 117994, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.873Z", + "last_change_date": "2022-03-14T07:57:14.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5127, + "fields": { + "EF_ID": 117995, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:14.948Z", + "last_change_date": "2022-03-14T07:57:14.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5128, + "fields": { + "EF_ID": 117996, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.023Z", + "last_change_date": "2022-03-14T07:57:15.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5129, + "fields": { + "EF_ID": 117997, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.119Z", + "last_change_date": "2022-03-14T07:57:15.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5130, + "fields": { + "EF_ID": 117998, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.206Z", + "last_change_date": "2022-03-14T07:57:15.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5131, + "fields": { + "EF_ID": 117999, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.281Z", + "last_change_date": "2022-03-14T07:57:15.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5132, + "fields": { + "EF_ID": 118000, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.356Z", + "last_change_date": "2022-03-14T07:57:15.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5133, + "fields": { + "EF_ID": 118001, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.431Z", + "last_change_date": "2022-03-14T07:57:15.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5134, + "fields": { + "EF_ID": 118002, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.646Z", + "last_change_date": "2022-03-14T07:57:15.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5135, + "fields": { + "EF_ID": 118003, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.705Z", + "last_change_date": "2022-03-14T07:57:15.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5136, + "fields": { + "EF_ID": 118004, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.781Z", + "last_change_date": "2022-03-14T07:57:15.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5137, + "fields": { + "EF_ID": 118005, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.856Z", + "last_change_date": "2022-03-14T07:57:15.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5138, + "fields": { + "EF_ID": 118006, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:15.931Z", + "last_change_date": "2022-03-14T07:57:15.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5139, + "fields": { + "EF_ID": 118007, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.024Z", + "last_change_date": "2022-03-14T07:57:16.024Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5140, + "fields": { + "EF_ID": 118008, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.106Z", + "last_change_date": "2022-03-14T07:57:16.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5141, + "fields": { + "EF_ID": 118009, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.173Z", + "last_change_date": "2022-03-14T07:57:16.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5142, + "fields": { + "EF_ID": 118010, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.231Z", + "last_change_date": "2022-03-14T07:57:16.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5143, + "fields": { + "EF_ID": 118011, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.290Z", + "last_change_date": "2022-03-14T07:57:16.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5144, + "fields": { + "EF_ID": 118012, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.367Z", + "last_change_date": "2022-03-14T07:57:16.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5145, + "fields": { + "EF_ID": 118013, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.448Z", + "last_change_date": "2022-03-14T07:57:16.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5146, + "fields": { + "EF_ID": 118014, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.523Z", + "last_change_date": "2022-03-14T07:57:16.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5147, + "fields": { + "EF_ID": 118015, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.673Z", + "last_change_date": "2022-03-14T07:57:16.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5148, + "fields": { + "EF_ID": 118016, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.771Z", + "last_change_date": "2022-03-14T07:57:16.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5149, + "fields": { + "EF_ID": 118017, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:16.863Z", + "last_change_date": "2022-03-14T07:57:16.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5150, + "fields": { + "EF_ID": 118018, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.005Z", + "last_change_date": "2022-03-14T07:57:17.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5151, + "fields": { + "EF_ID": 118019, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.071Z", + "last_change_date": "2022-03-14T07:57:17.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5152, + "fields": { + "EF_ID": 118020, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.147Z", + "last_change_date": "2022-03-14T07:57:17.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5153, + "fields": { + "EF_ID": 118021, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.214Z", + "last_change_date": "2022-03-14T07:57:17.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5154, + "fields": { + "EF_ID": 118022, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.299Z", + "last_change_date": "2022-03-14T07:57:17.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5155, + "fields": { + "EF_ID": 118023, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.390Z", + "last_change_date": "2022-03-14T07:57:17.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5156, + "fields": { + "EF_ID": 118024, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.455Z", + "last_change_date": "2022-03-14T07:57:17.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5157, + "fields": { + "EF_ID": 118025, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.538Z", + "last_change_date": "2022-03-14T07:57:17.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5158, + "fields": { + "EF_ID": 118026, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.623Z", + "last_change_date": "2022-03-14T07:57:17.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5159, + "fields": { + "EF_ID": 118027, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.726Z", + "last_change_date": "2022-03-14T07:57:17.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5160, + "fields": { + "EF_ID": 118028, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "70", + "Upper_Bound": "600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.806Z", + "last_change_date": "2022-03-14T07:57:17.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5161, + "fields": { + "EF_ID": 118029, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.881Z", + "last_change_date": "2022-03-14T07:57:17.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5162, + "fields": { + "EF_ID": 118030, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:17.956Z", + "last_change_date": "2022-03-14T07:57:17.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5163, + "fields": { + "EF_ID": 118031, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.031Z", + "last_change_date": "2022-03-14T07:57:18.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5164, + "fields": { + "EF_ID": 118032, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.130Z", + "last_change_date": "2022-03-14T07:57:18.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5165, + "fields": { + "EF_ID": 118033, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.215Z", + "last_change_date": "2022-03-14T07:57:18.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5166, + "fields": { + "EF_ID": 118034, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.290Z", + "last_change_date": "2022-03-14T07:57:18.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5167, + "fields": { + "EF_ID": 118035, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.365Z", + "last_change_date": "2022-03-14T07:57:18.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5168, + "fields": { + "EF_ID": 118036, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.440Z", + "last_change_date": "2022-03-14T07:57:18.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5169, + "fields": { + "EF_ID": 118037, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.539Z", + "last_change_date": "2022-03-14T07:57:18.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5170, + "fields": { + "EF_ID": 118038, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.623Z", + "last_change_date": "2022-03-14T07:57:18.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5171, + "fields": { + "EF_ID": 118039, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.698Z", + "last_change_date": "2022-03-14T07:57:18.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5172, + "fields": { + "EF_ID": 118040, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.773Z", + "last_change_date": "2022-03-14T07:57:18.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5173, + "fields": { + "EF_ID": 118041, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.848Z", + "last_change_date": "2022-03-14T07:57:18.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5174, + "fields": { + "EF_ID": 118042, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:18.941Z", + "last_change_date": "2022-03-14T07:57:18.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5175, + "fields": { + "EF_ID": 118043, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.023Z", + "last_change_date": "2022-03-14T07:57:19.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5176, + "fields": { + "EF_ID": 118044, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.098Z", + "last_change_date": "2022-03-14T07:57:19.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5177, + "fields": { + "EF_ID": 118045, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.173Z", + "last_change_date": "2022-03-14T07:57:19.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5178, + "fields": { + "EF_ID": 118046, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.248Z", + "last_change_date": "2022-03-14T07:57:19.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5179, + "fields": { + "EF_ID": 118047, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.343Z", + "last_change_date": "2022-03-14T07:57:19.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5180, + "fields": { + "EF_ID": 118048, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.423Z", + "last_change_date": "2022-03-14T07:57:19.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5181, + "fields": { + "EF_ID": 118049, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.506Z", + "last_change_date": "2022-03-14T07:57:19.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5182, + "fields": { + "EF_ID": 118050, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.590Z", + "last_change_date": "2022-03-14T07:57:19.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5183, + "fields": { + "EF_ID": 118051, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.673Z", + "last_change_date": "2022-03-14T07:57:19.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5184, + "fields": { + "EF_ID": 118052, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.779Z", + "last_change_date": "2022-03-14T07:57:19.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5185, + "fields": { + "EF_ID": 118053, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.864Z", + "last_change_date": "2022-03-14T07:57:19.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5186, + "fields": { + "EF_ID": 118054, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:19.940Z", + "last_change_date": "2022-03-14T07:57:19.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5187, + "fields": { + "EF_ID": 118055, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.015Z", + "last_change_date": "2022-03-14T07:57:20.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5188, + "fields": { + "EF_ID": 118056, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.090Z", + "last_change_date": "2022-03-14T07:57:20.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5189, + "fields": { + "EF_ID": 118057, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.198Z", + "last_change_date": "2022-03-14T07:57:20.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5190, + "fields": { + "EF_ID": 118058, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.281Z", + "last_change_date": "2022-03-14T07:57:20.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5191, + "fields": { + "EF_ID": 118059, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.356Z", + "last_change_date": "2022-03-14T07:57:20.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5192, + "fields": { + "EF_ID": 118060, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.431Z", + "last_change_date": "2022-03-14T07:57:20.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5193, + "fields": { + "EF_ID": 118061, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.506Z", + "last_change_date": "2022-03-14T07:57:20.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5194, + "fields": { + "EF_ID": 118062, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.600Z", + "last_change_date": "2022-03-14T07:57:20.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5195, + "fields": { + "EF_ID": 118063, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.681Z", + "last_change_date": "2022-03-14T07:57:20.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5196, + "fields": { + "EF_ID": 118064, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.756Z", + "last_change_date": "2022-03-14T07:57:20.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5197, + "fields": { + "EF_ID": 118065, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.831Z", + "last_change_date": "2022-03-14T07:57:20.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5198, + "fields": { + "EF_ID": 118066, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:20.906Z", + "last_change_date": "2022-03-14T07:57:20.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5199, + "fields": { + "EF_ID": 118067, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.002Z", + "last_change_date": "2022-03-14T07:57:21.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5200, + "fields": { + "EF_ID": 118068, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.082Z", + "last_change_date": "2022-03-14T07:57:21.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5201, + "fields": { + "EF_ID": 118069, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.173Z", + "last_change_date": "2022-03-14T07:57:21.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5202, + "fields": { + "EF_ID": 118070, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.248Z", + "last_change_date": "2022-03-14T07:57:21.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5203, + "fields": { + "EF_ID": 118071, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.323Z", + "last_change_date": "2022-03-14T07:57:21.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5204, + "fields": { + "EF_ID": 118072, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.429Z", + "last_change_date": "2022-03-14T07:57:21.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5205, + "fields": { + "EF_ID": 118073, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.523Z", + "last_change_date": "2022-03-14T07:57:21.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5206, + "fields": { + "EF_ID": 118074, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.606Z", + "last_change_date": "2022-03-14T07:57:21.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5207, + "fields": { + "EF_ID": 118075, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.681Z", + "last_change_date": "2022-03-14T07:57:21.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5208, + "fields": { + "EF_ID": 118076, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.756Z", + "last_change_date": "2022-03-14T07:57:21.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5209, + "fields": { + "EF_ID": 118077, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.849Z", + "last_change_date": "2022-03-14T07:57:21.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5210, + "fields": { + "EF_ID": 118078, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:21.931Z", + "last_change_date": "2022-03-14T07:57:21.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5211, + "fields": { + "EF_ID": 118079, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.006Z", + "last_change_date": "2022-03-14T07:57:22.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5212, + "fields": { + "EF_ID": 118080, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.073Z", + "last_change_date": "2022-03-14T07:57:22.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5213, + "fields": { + "EF_ID": 118081, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.148Z", + "last_change_date": "2022-03-14T07:57:22.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5214, + "fields": { + "EF_ID": 118082, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.235Z", + "last_change_date": "2022-03-14T07:57:22.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5215, + "fields": { + "EF_ID": 118083, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.315Z", + "last_change_date": "2022-03-14T07:57:22.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5216, + "fields": { + "EF_ID": 118084, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.398Z", + "last_change_date": "2022-03-14T07:57:22.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5217, + "fields": { + "EF_ID": 118085, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.465Z", + "last_change_date": "2022-03-14T07:57:22.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5218, + "fields": { + "EF_ID": 118086, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.540Z", + "last_change_date": "2022-03-14T07:57:22.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5219, + "fields": { + "EF_ID": 118087, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.628Z", + "last_change_date": "2022-03-14T07:57:22.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5220, + "fields": { + "EF_ID": 118088, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.723Z", + "last_change_date": "2022-03-14T07:57:22.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5221, + "fields": { + "EF_ID": 118089, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.4", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.789Z", + "last_change_date": "2022-03-14T07:57:22.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5222, + "fields": { + "EF_ID": 118090, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "71100", + "Upper_Bound": "75500", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.856Z", + "last_change_date": "2022-03-14T07:57:22.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5223, + "fields": { + "EF_ID": 118091, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69300", + "Upper_Bound": "85400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:22.922Z", + "last_change_date": "2022-03-14T07:57:22.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5224, + "fields": { + "EF_ID": 118092, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64200", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "58300", + "Upper_Bound": "70400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.014Z", + "last_change_date": "2022-03-14T07:57:23.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5225, + "fields": { + "EF_ID": 118093, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.106Z", + "last_change_date": "2022-03-14T07:57:23.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5226, + "fields": { + "EF_ID": 118094, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.207Z", + "last_change_date": "2022-03-14T07:57:23.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5227, + "fields": { + "EF_ID": 118095, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67500", + "Upper_Bound": "73000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.281Z", + "last_change_date": "2022-03-14T07:57:23.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5228, + "fields": { + "EF_ID": 118096, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69700", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.356Z", + "last_change_date": "2022-03-14T07:57:23.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5229, + "fields": { + "EF_ID": 118097, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71900", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "70800", + "Upper_Bound": "73700", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.450Z", + "last_change_date": "2022-03-14T07:57:23.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5230, + "fields": { + "EF_ID": 118098, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67800", + "Upper_Bound": "79200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.531Z", + "last_change_date": "2022-03-14T07:57:23.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5231, + "fields": { + "EF_ID": 118099, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72600", + "Upper_Bound": "74800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.597Z", + "last_change_date": "2022-03-14T07:57:23.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5232, + "fields": { + "EF_ID": 118100, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72600", + "Upper_Bound": "74800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.664Z", + "last_change_date": "2022-03-14T07:57:23.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5233, + "fields": { + "EF_ID": 118101, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "75500", + "Upper_Bound": "78800", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.739Z", + "last_change_date": "2022-03-14T07:57:23.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5234, + "fields": { + "EF_ID": 118102, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "61600", + "Upper_Bound": "65600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.835Z", + "last_change_date": "2022-03-14T07:57:23.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5235, + "fields": { + "EF_ID": 118103, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "56500", + "Upper_Bound": "68600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:23.915Z", + "last_change_date": "2022-03-14T07:57:23.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5236, + "fields": { + "EF_ID": 118104, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "69300", + "Upper_Bound": "76300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.015Z", + "last_change_date": "2022-03-14T07:57:24.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5237, + "fields": { + "EF_ID": 118105, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "73000", + "Upper_Bound": "89900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.115Z", + "last_change_date": "2022-03-14T07:57:24.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5238, + "fields": { + "EF_ID": 118106, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "71900", + "Upper_Bound": "75200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.190Z", + "last_change_date": "2022-03-14T07:57:24.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5239, + "fields": { + "EF_ID": 118107, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "82900", + "Upper_Bound": "115000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.296Z", + "last_change_date": "2022-03-14T07:57:24.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5240, + "fields": { + "EF_ID": 118108, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "68900", + "Upper_Bound": "76600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.390Z", + "last_change_date": "2022-03-14T07:57:24.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5241, + "fields": { + "EF_ID": 118109, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "48200", + "Upper_Bound": "69000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.465Z", + "last_change_date": "2022-03-14T07:57:24.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5242, + "fields": { + "EF_ID": 118110, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.540Z", + "last_change_date": "2022-03-14T07:57:24.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5243, + "fields": { + "EF_ID": 118111, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.615Z", + "last_change_date": "2022-03-14T07:57:24.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5244, + "fields": { + "EF_ID": 118112, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.715Z", + "last_change_date": "2022-03-14T07:57:24.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5245, + "fields": { + "EF_ID": 118113, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "94600", + "Upper_Bound": "101000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.798Z", + "last_change_date": "2022-03-14T07:57:24.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5246, + "fields": { + "EF_ID": 118114, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "101000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.873Z", + "last_change_date": "2022-03-14T07:57:24.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5247, + "fields": { + "EF_ID": 118115, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "89500", + "Upper_Bound": "99700", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:24.948Z", + "last_change_date": "2022-03-14T07:57:24.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5248, + "fields": { + "EF_ID": 118116, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "92800", + "Upper_Bound": "100000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.023Z", + "last_change_date": "2022-03-14T07:57:25.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5249, + "fields": { + "EF_ID": 118117, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "90900", + "Upper_Bound": "115000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.118Z", + "last_change_date": "2022-03-14T07:57:25.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5250, + "fields": { + "EF_ID": 118118, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "90200", + "Upper_Bound": "125000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.198Z", + "last_change_date": "2022-03-14T07:57:25.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5251, + "fields": { + "EF_ID": 118119, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "109000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.290Z", + "last_change_date": "2022-03-14T07:57:25.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5252, + "fields": { + "EF_ID": 118120, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97500", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "87300", + "Upper_Bound": "109000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.373Z", + "last_change_date": "2022-03-14T07:57:25.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5253, + "fields": { + "EF_ID": 118121, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95700", + "Upper_Bound": "119000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.456Z", + "last_change_date": "2022-03-14T07:57:25.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5254, + "fields": { + "EF_ID": 118122, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95700", + "Upper_Bound": "119000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.561Z", + "last_change_date": "2022-03-14T07:57:25.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5255, + "fields": { + "EF_ID": 118123, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "68200", + "Upper_Bound": "95300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.640Z", + "last_change_date": "2022-03-14T07:57:25.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5256, + "fields": { + "EF_ID": 118124, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "37300", + "Upper_Bound": "54100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.715Z", + "last_change_date": "2022-03-14T07:57:25.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5257, + "fields": { + "EF_ID": 118125, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44400", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "37300", + "Upper_Bound": "54100", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.798Z", + "last_change_date": "2022-03-14T07:57:25.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5258, + "fields": { + "EF_ID": 118126, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "219000", + "Upper_Bound": "308000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.873Z", + "last_change_date": "2022-03-14T07:57:25.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5259, + "fields": { + "EF_ID": 118127, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "145000", + "Upper_Bound": "202000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:25.981Z", + "last_change_date": "2022-03-14T07:57:25.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5260, + "fields": { + "EF_ID": 118128, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56100", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "54300", + "Upper_Bound": "58300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.065Z", + "last_change_date": "2022-03-14T07:57:26.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5261, + "fields": { + "EF_ID": 118129, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91700", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "73300", + "Upper_Bound": "121000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.140Z", + "last_change_date": "2022-03-14T07:57:26.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5262, + "fields": { + "EF_ID": 118130, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "110000", + "Upper_Bound": "183000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.215Z", + "last_change_date": "2022-03-14T07:57:26.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5263, + "fields": { + "EF_ID": 118131, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "72200", + "Upper_Bound": "74400", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.290Z", + "last_change_date": "2022-03-14T07:57:26.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5264, + "fields": { + "EF_ID": 118132, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100000", + "Upper_Bound": "108000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.382Z", + "last_change_date": "2022-03-14T07:57:26.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5265, + "fields": { + "EF_ID": 118133, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95000", + "Upper_Bound": "132000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.464Z", + "last_change_date": "2022-03-14T07:57:26.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5266, + "fields": { + "EF_ID": 118134, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "80700", + "Upper_Bound": "110000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This includes the biomass-derived CO2 emitted from the black liquor combustion unit and the biomass-derived CO2 emitted from the kraft mill lime kiln.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.540Z", + "last_change_date": "2022-03-14T07:57:26.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5267, + "fields": { + "EF_ID": 118135, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "84700", + "Upper_Bound": "117000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.615Z", + "last_change_date": "2022-03-14T07:57:26.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5268, + "fields": { + "EF_ID": 118136, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "95000", + "Upper_Bound": "132000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.690Z", + "last_change_date": "2022-03-14T07:57:26.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5269, + "fields": { + "EF_ID": 118137, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70800", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59800", + "Upper_Bound": "84300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.785Z", + "last_change_date": "2022-03-14T07:57:26.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5270, + "fields": { + "EF_ID": 118138, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70800", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "59800", + "Upper_Bound": "84300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.865Z", + "last_change_date": "2022-03-14T07:57:26.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5271, + "fields": { + "EF_ID": 118139, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "67100", + "Upper_Bound": "95300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:26.940Z", + "last_change_date": "2022-03-14T07:57:26.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5272, + "fields": { + "EF_ID": 118140, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.015Z", + "last_change_date": "2022-03-14T07:57:27.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5273, + "fields": { + "EF_ID": 118141, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.098Z", + "last_change_date": "2022-03-14T07:57:27.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5274, + "fields": { + "EF_ID": 118142, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54600", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "46200", + "Upper_Bound": "66000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.195Z", + "last_change_date": "2022-03-14T07:57:27.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5275, + "fields": { + "EF_ID": 118143, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100000", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Tables 1.4 and 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "84700", + "Upper_Bound": "117000", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.273Z", + "last_change_date": "2022-03-14T07:57:27.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5276, + "fields": { + "EF_ID": 118144, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.365Z", + "last_change_date": "2022-03-14T07:57:27.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5277, + "fields": { + "EF_ID": 118145, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.448Z", + "last_change_date": "2022-03-14T07:57:27.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5278, + "fields": { + "EF_ID": 118146, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.523Z", + "last_change_date": "2022-03-14T07:57:27.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5279, + "fields": { + "EF_ID": 118147, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.622Z", + "last_change_date": "2022-03-14T07:57:27.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5280, + "fields": { + "EF_ID": 118148, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.715Z", + "last_change_date": "2022-03-14T07:57:27.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5281, + "fields": { + "EF_ID": 118149, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.790Z", + "last_change_date": "2022-03-14T07:57:27.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5282, + "fields": { + "EF_ID": 118150, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.865Z", + "last_change_date": "2022-03-14T07:57:27.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5283, + "fields": { + "EF_ID": 118151, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:27.940Z", + "last_change_date": "2022-03-14T07:57:27.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5284, + "fields": { + "EF_ID": 118152, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.033Z", + "last_change_date": "2022-03-14T07:57:28.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5285, + "fields": { + "EF_ID": 118153, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.115Z", + "last_change_date": "2022-03-14T07:57:28.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5286, + "fields": { + "EF_ID": 118154, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.181Z", + "last_change_date": "2022-03-14T07:57:28.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5287, + "fields": { + "EF_ID": 118155, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.248Z", + "last_change_date": "2022-03-14T07:57:28.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5288, + "fields": { + "EF_ID": 118156, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.315Z", + "last_change_date": "2022-03-14T07:57:28.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5289, + "fields": { + "EF_ID": 118157, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.403Z", + "last_change_date": "2022-03-14T07:57:28.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5290, + "fields": { + "EF_ID": 118158, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.482Z", + "last_change_date": "2022-03-14T07:57:28.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5291, + "fields": { + "EF_ID": 118159, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.556Z", + "last_change_date": "2022-03-14T07:57:28.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5292, + "fields": { + "EF_ID": 118160, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.623Z", + "last_change_date": "2022-03-14T07:57:28.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5293, + "fields": { + "EF_ID": 118161, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.698Z", + "last_change_date": "2022-03-14T07:57:28.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5294, + "fields": { + "EF_ID": 118162, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.788Z", + "last_change_date": "2022-03-14T07:57:28.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5295, + "fields": { + "EF_ID": 118163, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.865Z", + "last_change_date": "2022-03-14T07:57:28.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5296, + "fields": { + "EF_ID": 118164, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:28.940Z", + "last_change_date": "2022-03-14T07:57:28.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5297, + "fields": { + "EF_ID": 118165, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.006Z", + "last_change_date": "2022-03-14T07:57:29.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5298, + "fields": { + "EF_ID": 118166, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.281Z", + "last_change_date": "2022-03-14T07:57:29.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5299, + "fields": { + "EF_ID": 118167, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.382Z", + "last_change_date": "2022-03-14T07:57:29.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5300, + "fields": { + "EF_ID": 118168, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.482Z", + "last_change_date": "2022-03-14T07:57:29.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5301, + "fields": { + "EF_ID": 118169, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.548Z", + "last_change_date": "2022-03-14T07:57:29.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5302, + "fields": { + "EF_ID": 118170, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.640Z", + "last_change_date": "2022-03-14T07:57:29.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5303, + "fields": { + "EF_ID": 118171, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.731Z", + "last_change_date": "2022-03-14T07:57:29.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5304, + "fields": { + "EF_ID": 118172, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.833Z", + "last_change_date": "2022-03-14T07:57:29.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5305, + "fields": { + "EF_ID": 118173, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:29.931Z", + "last_change_date": "2022-03-14T07:57:29.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5306, + "fields": { + "EF_ID": 118174, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.015Z", + "last_change_date": "2022-03-14T07:57:30.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5307, + "fields": { + "EF_ID": 118175, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.098Z", + "last_change_date": "2022-03-14T07:57:30.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5308, + "fields": { + "EF_ID": 118176, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.173Z", + "last_change_date": "2022-03-14T07:57:30.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5309, + "fields": { + "EF_ID": 118177, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.278Z", + "last_change_date": "2022-03-14T07:57:30.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5310, + "fields": { + "EF_ID": 118178, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.348Z", + "last_change_date": "2022-03-14T07:57:30.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5311, + "fields": { + "EF_ID": 118179, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.415Z", + "last_change_date": "2022-03-14T07:57:30.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5312, + "fields": { + "EF_ID": 118180, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.481Z", + "last_change_date": "2022-03-14T07:57:30.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5313, + "fields": { + "EF_ID": 118181, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.557Z", + "last_change_date": "2022-03-14T07:57:30.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5314, + "fields": { + "EF_ID": 118182, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.656Z", + "last_change_date": "2022-03-14T07:57:30.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5315, + "fields": { + "EF_ID": 118183, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.748Z", + "last_change_date": "2022-03-14T07:57:30.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5316, + "fields": { + "EF_ID": 118184, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.823Z", + "last_change_date": "2022-03-14T07:57:30.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5317, + "fields": { + "EF_ID": 118185, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.898Z", + "last_change_date": "2022-03-14T07:57:30.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5318, + "fields": { + "EF_ID": 118186, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:30.973Z", + "last_change_date": "2022-03-14T07:57:30.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5319, + "fields": { + "EF_ID": 118187, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.066Z", + "last_change_date": "2022-03-14T07:57:31.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5320, + "fields": { + "EF_ID": 118188, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.157Z", + "last_change_date": "2022-03-14T07:57:31.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5321, + "fields": { + "EF_ID": 118189, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.231Z", + "last_change_date": "2022-03-14T07:57:31.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5322, + "fields": { + "EF_ID": 118190, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "70", + "Upper_Bound": "600", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.306Z", + "last_change_date": "2022-03-14T07:57:31.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5323, + "fields": { + "EF_ID": 118191, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.381Z", + "last_change_date": "2022-03-14T07:57:31.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5324, + "fields": { + "EF_ID": 118192, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.476Z", + "last_change_date": "2022-03-14T07:57:31.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5325, + "fields": { + "EF_ID": 118193, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.573Z", + "last_change_date": "2022-03-14T07:57:31.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5326, + "fields": { + "EF_ID": 118194, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.648Z", + "last_change_date": "2022-03-14T07:57:31.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5327, + "fields": { + "EF_ID": 118195, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.731Z", + "last_change_date": "2022-03-14T07:57:31.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5328, + "fields": { + "EF_ID": 118196, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.814Z", + "last_change_date": "2022-03-14T07:57:31.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5329, + "fields": { + "EF_ID": 118197, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "100", + "Upper_Bound": "900", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.920Z", + "last_change_date": "2022-03-14T07:57:31.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5330, + "fields": { + "EF_ID": 118198, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:31.998Z", + "last_change_date": "2022-03-14T07:57:31.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5331, + "fields": { + "EF_ID": 118199, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.073Z", + "last_change_date": "2022-03-14T07:57:32.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5332, + "fields": { + "EF_ID": 118200, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.148Z", + "last_change_date": "2022-03-14T07:57:32.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5333, + "fields": { + "EF_ID": 118201, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.231Z", + "last_change_date": "2022-03-14T07:57:32.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5334, + "fields": { + "EF_ID": 118202, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.331Z", + "last_change_date": "2022-03-14T07:57:32.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5335, + "fields": { + "EF_ID": 118203, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.423Z", + "last_change_date": "2022-03-14T07:57:32.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5336, + "fields": { + "EF_ID": 118204, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.498Z", + "last_change_date": "2022-03-14T07:57:32.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5337, + "fields": { + "EF_ID": 118205, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.573Z", + "last_change_date": "2022-03-14T07:57:32.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5338, + "fields": { + "EF_ID": 118206, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.648Z", + "last_change_date": "2022-03-14T07:57:32.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5339, + "fields": { + "EF_ID": 118207, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.741Z", + "last_change_date": "2022-03-14T07:57:32.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5340, + "fields": { + "EF_ID": 118208, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.831Z", + "last_change_date": "2022-03-14T07:57:32.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5341, + "fields": { + "EF_ID": 118209, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.907Z", + "last_change_date": "2022-03-14T07:57:32.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5342, + "fields": { + "EF_ID": 118210, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:32.981Z", + "last_change_date": "2022-03-14T07:57:32.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5343, + "fields": { + "EF_ID": 118211, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Ethane", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.057Z", + "last_change_date": "2022-03-14T07:57:33.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5344, + "fields": { + "EF_ID": 118212, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.152Z", + "last_change_date": "2022-03-14T07:57:33.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5345, + "fields": { + "EF_ID": 118213, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.248Z", + "last_change_date": "2022-03-14T07:57:33.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5346, + "fields": { + "EF_ID": 118214, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.323Z", + "last_change_date": "2022-03-14T07:57:33.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5347, + "fields": { + "EF_ID": 118215, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.398Z", + "last_change_date": "2022-03-14T07:57:33.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5348, + "fields": { + "EF_ID": 118216, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Refinery Feedstocks", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.473Z", + "last_change_date": "2022-03-14T07:57:33.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5349, + "fields": { + "EF_ID": 118217, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.579Z", + "last_change_date": "2022-03-14T07:57:33.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5350, + "fields": { + "EF_ID": 118218, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Waxes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.657Z", + "last_change_date": "2022-03-14T07:57:33.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5351, + "fields": { + "EF_ID": 118219, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "White Spirit & SBP", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.748Z", + "last_change_date": "2022-03-14T07:57:33.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5352, + "fields": { + "EF_ID": 118220, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.832Z", + "last_change_date": "2022-03-14T07:57:33.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5353, + "fields": { + "EF_ID": 118221, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.898Z", + "last_change_date": "2022-03-14T07:57:33.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5354, + "fields": { + "EF_ID": 118222, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:33.991Z", + "last_change_date": "2022-03-14T07:57:33.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5355, + "fields": { + "EF_ID": 118223, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.098Z", + "last_change_date": "2022-03-14T07:57:34.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5356, + "fields": { + "EF_ID": 118224, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.173Z", + "last_change_date": "2022-03-14T07:57:34.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5357, + "fields": { + "EF_ID": 118225, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.298Z", + "last_change_date": "2022-03-14T07:57:34.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5358, + "fields": { + "EF_ID": 118226, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Oil Shale and Tar Sands", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.382Z", + "last_change_date": "2022-03-14T07:57:34.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5359, + "fields": { + "EF_ID": 118227, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.460Z", + "last_change_date": "2022-03-14T07:57:34.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5360, + "fields": { + "EF_ID": 118228, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.523Z", + "last_change_date": "2022-03-14T07:57:34.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5361, + "fields": { + "EF_ID": 118229, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.582Z", + "last_change_date": "2022-03-14T07:57:34.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5362, + "fields": { + "EF_ID": 118230, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Coke", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.648Z", + "last_change_date": "2022-03-14T07:57:34.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5363, + "fields": { + "EF_ID": 118231, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Coal Tar", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.715Z", + "last_change_date": "2022-03-14T07:57:34.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5364, + "fields": { + "EF_ID": 118232, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Works Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.803Z", + "last_change_date": "2022-03-14T07:57:34.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5365, + "fields": { + "EF_ID": 118233, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.890Z", + "last_change_date": "2022-03-14T07:57:34.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5366, + "fields": { + "EF_ID": 118234, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:34.957Z", + "last_change_date": "2022-03-14T07:57:34.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5367, + "fields": { + "EF_ID": 118235, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.023Z", + "last_change_date": "2022-03-14T07:57:35.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5368, + "fields": { + "EF_ID": 118236, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.098Z", + "last_change_date": "2022-03-14T07:57:35.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5369, + "fields": { + "EF_ID": 118237, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.189Z", + "last_change_date": "2022-03-14T07:57:35.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5370, + "fields": { + "EF_ID": 118238, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.273Z", + "last_change_date": "2022-03-14T07:57:35.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5371, + "fields": { + "EF_ID": 118239, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.340Z", + "last_change_date": "2022-03-14T07:57:35.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5372, + "fields": { + "EF_ID": 118240, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.407Z", + "last_change_date": "2022-03-14T07:57:35.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5373, + "fields": { + "EF_ID": 118241, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.473Z", + "last_change_date": "2022-03-14T07:57:35.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5374, + "fields": { + "EF_ID": 118242, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.576Z", + "last_change_date": "2022-03-14T07:57:35.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5375, + "fields": { + "EF_ID": 118243, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.682Z", + "last_change_date": "2022-03-14T07:57:35.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5376, + "fields": { + "EF_ID": 118244, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.3", + "Upper_Bound": "3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.765Z", + "last_change_date": "2022-03-14T07:57:35.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5377, + "fields": { + "EF_ID": 118245, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.848Z", + "last_change_date": "2022-03-14T07:57:35.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5378, + "fields": { + "EF_ID": 118246, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:35.932Z", + "last_change_date": "2022-03-14T07:57:35.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5379, + "fields": { + "EF_ID": 118247, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.036Z", + "last_change_date": "2022-03-14T07:57:36.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5380, + "fields": { + "EF_ID": 118248, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.123Z", + "last_change_date": "2022-03-14T07:57:36.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5381, + "fields": { + "EF_ID": 118249, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.198Z", + "last_change_date": "2022-03-14T07:57:36.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5382, + "fields": { + "EF_ID": 118250, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.274Z", + "last_change_date": "2022-03-14T07:57:36.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5383, + "fields": { + "EF_ID": 118251, + "IPCC_Category": "1.A.4.b - Residential, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Stationary Combustion (kg/TJ on a net calorific basis)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equation 2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 4 of 4 (page A1.9) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.5", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 2.3.2.1, Chapter 2, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.348Z", + "last_change_date": "2022-03-14T07:57:36.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5384, + "fields": { + "EF_ID": 118415, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "Configuration: Normal Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.446Z", + "last_change_date": "2022-03-14T07:57:36.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5385, + "fields": { + "EF_ID": 118416, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Shale Oil Boilers", + "Parameter_Conditions": "Configuration: Normal Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.532Z", + "last_change_date": "2022-03-14T07:57:36.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5386, + "fields": { + "EF_ID": 118417, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "Configuration: Tangential Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.638Z", + "last_change_date": "2022-03-14T07:57:36.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5387, + "fields": { + "EF_ID": 118418, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Shale Oil Boilers", + "Parameter_Conditions": "Configuration: Tangential Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.724Z", + "last_change_date": "2022-03-14T07:57:36.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5388, + "fields": { + "EF_ID": 118419, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "Configuration: Normal Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.832Z", + "last_change_date": "2022-03-14T07:57:36.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5389, + "fields": { + "EF_ID": 118420, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "Configuration: Normal Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:36.924Z", + "last_change_date": "2022-03-14T07:57:36.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5390, + "fields": { + "EF_ID": 118421, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "Configuration: Tangential Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.033Z", + "last_change_date": "2022-03-14T07:57:37.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5391, + "fields": { + "EF_ID": 118422, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "Configuration: Tangential Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.115Z", + "last_change_date": "2022-03-14T07:57:37.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5392, + "fields": { + "EF_ID": 118423, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Large Diesel Oil Engines > 600hp (447kW)", + "Parameter_Conditions": "Large Diesel Oil Engines > 600hp (447kW)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.209Z", + "last_change_date": "2022-03-14T07:57:37.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5393, + "fields": { + "EF_ID": 118424, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Pulverised Bituminous Combustion Boilers", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.307Z", + "last_change_date": "2022-03-14T07:57:37.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5394, + "fields": { + "EF_ID": 118425, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Pulverised Bituminous Combustion Boilers", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.402Z", + "last_change_date": "2022-03-14T07:57:37.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5395, + "fields": { + "EF_ID": 118426, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Pulverised Bituminous Combustion Boilers", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.499Z", + "last_change_date": "2022-03-14T07:57:37.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5396, + "fields": { + "EF_ID": 118427, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Bituminous Spreader Stoker Boilers", + "Parameter_Conditions": "With and without re-injection", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.595Z", + "last_change_date": "2022-03-14T07:57:37.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5397, + "fields": { + "EF_ID": 118428, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.682Z", + "last_change_date": "2022-03-14T07:57:37.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5398, + "fields": { + "EF_ID": 118429, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.795Z", + "last_change_date": "2022-03-14T07:57:37.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5399, + "fields": { + "EF_ID": 118430, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Bituminous Cyclone Furnace", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.882Z", + "last_change_date": "2022-03-14T07:57:37.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5400, + "fields": { + "EF_ID": 118431, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:37.971Z", + "last_change_date": "2022-03-14T07:57:37.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5401, + "fields": { + "EF_ID": 118432, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas-fired Gas Turbines > 3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.065Z", + "last_change_date": "2022-03-14T07:57:38.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5402, + "fields": { + "EF_ID": 118433, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Large Dual-Fuel Engines", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "258", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.155Z", + "last_change_date": "2022-03-14T07:57:38.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5403, + "fields": { + "EF_ID": 118434, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Combined Cycle", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.249Z", + "last_change_date": "2022-03-14T07:57:38.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5404, + "fields": { + "EF_ID": 118435, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Peat Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "Tsupari, E., Tormonen, K., Monni, S., Vahlman, T., Kolsi, A. and Linna, V. (2006). Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT, Espoo, Finland. VTT Working Papers 43. (In Finnish with Engllish summary). See website: http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "creation_date": "2022-03-14T07:57:38.340Z", + "last_change_date": "2022-03-14T07:57:38.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5405, + "fields": { + "EF_ID": 118436, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Peat Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "Tsupari, E., Tormonen, K., Monni, S., Vahlman, T., Kolsi, A. and Linna, V. (2006). Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT, Espoo, Finland. VTT Working Papers 43. (In Finnish with Engllish summary). See website: http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "creation_date": "2022-03-14T07:57:38.416Z", + "last_change_date": "2022-03-14T07:57:38.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5406, + "fields": { + "EF_ID": 118437, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Wood/Wood Waste Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.515Z", + "last_change_date": "2022-03-14T07:57:38.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5407, + "fields": { + "EF_ID": 118438, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Wood Recovery Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.599Z", + "last_change_date": "2022-03-14T07:57:38.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5408, + "fields": { + "EF_ID": 118439, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "Configuration: Normal Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.702Z", + "last_change_date": "2022-03-14T07:57:38.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5409, + "fields": { + "EF_ID": 118440, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Shale Oil Boilers", + "Parameter_Conditions": "Configuration: Normal Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.791Z", + "last_change_date": "2022-03-14T07:57:38.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5410, + "fields": { + "EF_ID": 118441, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "Configuration: Tangential Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.877Z", + "last_change_date": "2022-03-14T07:57:38.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5411, + "fields": { + "EF_ID": 118442, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Shale Oil Boilers", + "Parameter_Conditions": "Configuration: Tangential Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:38.974Z", + "last_change_date": "2022-03-14T07:57:38.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5412, + "fields": { + "EF_ID": 118443, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "Configuration: Normal Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.062Z", + "last_change_date": "2022-03-14T07:57:39.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5413, + "fields": { + "EF_ID": 118444, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "Configuration: Normal Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.157Z", + "last_change_date": "2022-03-14T07:57:39.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5414, + "fields": { + "EF_ID": 118445, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "Configuration: Tangential Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.245Z", + "last_change_date": "2022-03-14T07:57:39.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5415, + "fields": { + "EF_ID": 118446, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "Configuration: Tangential Firing", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.333Z", + "last_change_date": "2022-03-14T07:57:39.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5416, + "fields": { + "EF_ID": 118447, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Pulverised Bituminous Combustion Boilers", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.430Z", + "last_change_date": "2022-03-14T07:57:39.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5417, + "fields": { + "EF_ID": 118448, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Pulverised Bituminous Combustion Boilers", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.516Z", + "last_change_date": "2022-03-14T07:57:39.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5418, + "fields": { + "EF_ID": 118449, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Pulverised Bituminous Combustion Boilers", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.622Z", + "last_change_date": "2022-03-14T07:57:39.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5419, + "fields": { + "EF_ID": 118450, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Bituminous Spreader Stoker Boilers", + "Parameter_Conditions": "With and without re-injection", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.707Z", + "last_change_date": "2022-03-14T07:57:39.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5420, + "fields": { + "EF_ID": 118451, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.815Z", + "last_change_date": "2022-03-14T07:57:39.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5421, + "fields": { + "EF_ID": 118452, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.899Z", + "last_change_date": "2022-03-14T07:57:39.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5422, + "fields": { + "EF_ID": 118453, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Bituminous Cyclone Furnace", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:39.991Z", + "last_change_date": "2022-03-14T07:57:39.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5423, + "fields": { + "EF_ID": 118454, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Lignite", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Lignite Atmospheric Fluidised Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.074Z", + "last_change_date": "2022-03-14T07:57:40.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5424, + "fields": { + "EF_ID": 118455, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.167Z", + "last_change_date": "2022-03-14T07:57:40.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5425, + "fields": { + "EF_ID": 118456, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Gas-fired Gas Turbines > 3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.249Z", + "last_change_date": "2022-03-14T07:57:40.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5426, + "fields": { + "EF_ID": 118457, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Combined Cycle", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.352Z", + "last_change_date": "2022-03-14T07:57:40.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5427, + "fields": { + "EF_ID": 118458, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Peat Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "Tsupari, E., Tormonen, K., Monni, S., Vahlman, T., Kolsi, A. and Linna, V. (2006). Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT, Espoo, Finland. VTT Working Papers 43. (In Finnish with Engllish summary). See website: http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "creation_date": "2022-03-14T07:57:40.433Z", + "last_change_date": "2022-03-14T07:57:40.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5428, + "fields": { + "EF_ID": 118459, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Peat Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "Tsupari, E., Tormonen, K., Monni, S., Vahlman, T., Kolsi, A. and Linna, V. (2006). Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT, Espoo, Finland. VTT Working Papers 43. (In Finnish with Engllish summary). See website: http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "creation_date": "2022-03-14T07:57:40.528Z", + "last_change_date": "2022-03-14T07:57:40.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5429, + "fields": { + "EF_ID": 118460, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Wood/Wood Waste Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.624Z", + "last_change_date": "2022-03-14T07:57:40.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5430, + "fields": { + "EF_ID": 118461, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Utility Source Emission Factor", + "Technology_Practices": "Wood Recovery Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.6", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.6 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.712Z", + "last_change_date": "2022-03-14T07:57:40.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5431, + "fields": { + "EF_ID": 118462, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.808Z", + "last_change_date": "2022-03-14T07:57:40.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5432, + "fields": { + "EF_ID": 118463, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.897Z", + "last_change_date": "2022-03-14T07:57:40.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5433, + "fields": { + "EF_ID": 118464, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:40.991Z", + "last_change_date": "2022-03-14T07:57:40.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5434, + "fields": { + "EF_ID": 118465, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Large Stationary Diesel Oil Engines > 600hp (447kW)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.080Z", + "last_change_date": "2022-03-14T07:57:41.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5435, + "fields": { + "EF_ID": 118466, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Liquefied Petroleum Gases Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.174Z", + "last_change_date": "2022-03-14T07:57:41.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5436, + "fields": { + "EF_ID": 118467, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.265Z", + "last_change_date": "2022-03-14T07:57:41.265Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5437, + "fields": { + "EF_ID": 118468, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.349Z", + "last_change_date": "2022-03-14T07:57:41.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5438, + "fields": { + "EF_ID": 118469, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.432Z", + "last_change_date": "2022-03-14T07:57:41.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5439, + "fields": { + "EF_ID": 118470, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.524Z", + "last_change_date": "2022-03-14T07:57:41.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5440, + "fields": { + "EF_ID": 118471, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.609Z", + "last_change_date": "2022-03-14T07:57:41.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5441, + "fields": { + "EF_ID": 118472, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.691Z", + "last_change_date": "2022-03-14T07:57:41.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5442, + "fields": { + "EF_ID": 118473, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.784Z", + "last_change_date": "2022-03-14T07:57:41.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5443, + "fields": { + "EF_ID": 118474, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.866Z", + "last_change_date": "2022-03-14T07:57:41.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5444, + "fields": { + "EF_ID": 118475, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:41.987Z", + "last_change_date": "2022-03-14T07:57:41.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5445, + "fields": { + "EF_ID": 118476, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.075Z", + "last_change_date": "2022-03-14T07:57:42.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5446, + "fields": { + "EF_ID": 118477, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous Spreader Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.163Z", + "last_change_date": "2022-03-14T07:57:42.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5447, + "fields": { + "EF_ID": 118478, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.250Z", + "last_change_date": "2022-03-14T07:57:42.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5448, + "fields": { + "EF_ID": 118479, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.339Z", + "last_change_date": "2022-03-14T07:57:42.339Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5449, + "fields": { + "EF_ID": 118480, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.433Z", + "last_change_date": "2022-03-14T07:57:42.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5450, + "fields": { + "EF_ID": 118481, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.540Z", + "last_change_date": "2022-03-14T07:57:42.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5451, + "fields": { + "EF_ID": 118482, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.608Z", + "last_change_date": "2022-03-14T07:57:42.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5452, + "fields": { + "EF_ID": 118483, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Gas-fired Gas Turbines > 3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values. Factor was derived from units operating at high loads (80 percent load) only.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.699Z", + "last_change_date": "2022-03-14T07:57:42.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5453, + "fields": { + "EF_ID": 118484, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Natural Gas-fired Reciprocating Engines", + "Parameter_Conditions": "Configuration: 2-Stroke Lean Burn", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "693", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values. Most natural gas-fired reciprocating engines are used in the natural gas industry at pipeline compressor and storage stations and at gas processing plants.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.783Z", + "last_change_date": "2022-03-14T07:57:42.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5454, + "fields": { + "EF_ID": 118485, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Natural Gas-fired Reciprocating Engines", + "Parameter_Conditions": "Configuration: 4-Stroke Lean Burn", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "597", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values. Most natural gas-fired reciprocating engines are used in the natural gas industry at pipeline compressor and storage stations and at gas processing plants.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.884Z", + "last_change_date": "2022-03-14T07:57:42.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5455, + "fields": { + "EF_ID": 118486, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Natural Gas-fired Reciprocating Engines", + "Parameter_Conditions": "Configuration: 4-Stroke Rich Burn", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values. Most natural gas-fired reciprocating engines are used in the natural gas industry at pipeline compressor and storage stations and at gas processing plants.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:42.966Z", + "last_change_date": "2022-03-14T07:57:42.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5456, + "fields": { + "EF_ID": 118487, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Wood/Wood Waste Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.068Z", + "last_change_date": "2022-03-14T07:57:43.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5457, + "fields": { + "EF_ID": 118488, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.150Z", + "last_change_date": "2022-03-14T07:57:43.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5458, + "fields": { + "EF_ID": 118489, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.245Z", + "last_change_date": "2022-03-14T07:57:43.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5459, + "fields": { + "EF_ID": 118490, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.316Z", + "last_change_date": "2022-03-14T07:57:43.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5460, + "fields": { + "EF_ID": 118491, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Liquefied Petroleum Gases Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.397Z", + "last_change_date": "2022-03-14T07:57:43.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5461, + "fields": { + "EF_ID": 118492, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.492Z", + "last_change_date": "2022-03-14T07:57:43.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5462, + "fields": { + "EF_ID": 118493, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.581Z", + "last_change_date": "2022-03-14T07:57:43.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5463, + "fields": { + "EF_ID": 118494, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.658Z", + "last_change_date": "2022-03-14T07:57:43.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5464, + "fields": { + "EF_ID": 118495, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.757Z", + "last_change_date": "2022-03-14T07:57:43.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5465, + "fields": { + "EF_ID": 118496, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.858Z", + "last_change_date": "2022-03-14T07:57:43.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5466, + "fields": { + "EF_ID": 118497, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:43.975Z", + "last_change_date": "2022-03-14T07:57:43.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5467, + "fields": { + "EF_ID": 118498, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.091Z", + "last_change_date": "2022-03-14T07:57:44.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5468, + "fields": { + "EF_ID": 118499, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.184Z", + "last_change_date": "2022-03-14T07:57:44.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5469, + "fields": { + "EF_ID": 118500, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.250Z", + "last_change_date": "2022-03-14T07:57:44.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5470, + "fields": { + "EF_ID": 118501, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.344Z", + "last_change_date": "2022-03-14T07:57:44.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5471, + "fields": { + "EF_ID": 118502, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous Spreader Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.442Z", + "last_change_date": "2022-03-14T07:57:44.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5472, + "fields": { + "EF_ID": 118503, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.528Z", + "last_change_date": "2022-03-14T07:57:44.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5473, + "fields": { + "EF_ID": 118504, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.583Z", + "last_change_date": "2022-03-14T07:57:44.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5474, + "fields": { + "EF_ID": 118505, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.671Z", + "last_change_date": "2022-03-14T07:57:44.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5475, + "fields": { + "EF_ID": 118506, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.742Z", + "last_change_date": "2022-03-14T07:57:44.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5476, + "fields": { + "EF_ID": 118507, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.848Z", + "last_change_date": "2022-03-14T07:57:44.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5477, + "fields": { + "EF_ID": 118508, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Gas-fired Gas Turbines > 3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values. Factor was derived from units operating at high loads (80 percent load) only.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:44.933Z", + "last_change_date": "2022-03-14T07:57:44.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5478, + "fields": { + "EF_ID": 118509, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Industrial Source Emission Factor", + "Technology_Practices": "Wood/Wood Waste Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.7", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.7 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.023Z", + "last_change_date": "2022-03-14T07:57:45.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5479, + "fields": { + "EF_ID": 118510, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Kilns, Ovens, and Dryers Source Emisson Factor", + "Technology_Practices": "Industry: Cement, Lime; Source: Kilns - Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.8", + "Technical_Reference": "Radian Corporation (1990) Emissions and cost estimates for globally significant anthropogenic combustion sources of Nox, N2O, CH4, CO and CO2 Prepared for the Office of Research and Development, U.S. EPA, Washington D.C., USA", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.8 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.117Z", + "last_change_date": "2022-03-14T07:57:45.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5480, + "fields": { + "EF_ID": 118511, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Kilns, Ovens, and Dryers Source Emisson Factor", + "Technology_Practices": "Industry: Cement, Lime; Source: Kilns - Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.8", + "Technical_Reference": "Radian Corporation (1990) Emissions and cost estimates for globally significant anthropogenic combustion sources of Nox, N2O, CH4, CO and CO2 Prepared for the Office of Research and Development, U.S. EPA, Washington D.C., USA", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.8 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.208Z", + "last_change_date": "2022-03-14T07:57:45.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5481, + "fields": { + "EF_ID": 118512, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Kilns, Ovens, and Dryers Source Emisson Factor", + "Technology_Practices": "Industry: Cement, Lime; Source: Kilns - Coal", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.8", + "Technical_Reference": "Radian Corporation (1990) Emissions and cost estimates for globally significant anthropogenic combustion sources of Nox, N2O, CH4, CO and CO2 Prepared for the Office of Research and Development, U.S. EPA, Washington D.C., USA", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.8 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.292Z", + "last_change_date": "2022-03-14T07:57:45.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5482, + "fields": { + "EF_ID": 118513, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Coking Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Kilns, Ovens, and Dryers Source Emisson Factor", + "Technology_Practices": "Industry: Coking, Steel; Source: Kilns - Coke Oven", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.8", + "Technical_Reference": "Radian Corporation (1990) Emissions and cost estimates for globally significant anthropogenic combustion sources of Nox, N2O, CH4, CO and CO2 Prepared for the Office of Research and Development, U.S. EPA, Washington D.C., USA", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.8 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.383Z", + "last_change_date": "2022-03-14T07:57:45.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5483, + "fields": { + "EF_ID": 118514, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Kilns, Ovens, and Dryers Source Emisson Factor", + "Technology_Practices": "Industry: Chemical Processes, Wood, Asphalt, Copper, Phosphate; Source: Dryer - Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.8", + "Technical_Reference": "Radian Corporation (1990) Emissions and cost estimates for globally significant anthropogenic combustion sources of Nox, N2O, CH4, CO and CO2 Prepared for the Office of Research and Development, U.S. EPA, Washington D.C., USA", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.8 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.475Z", + "last_change_date": "2022-03-14T07:57:45.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5484, + "fields": { + "EF_ID": 118515, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Kilns, Ovens, and Dryers Source Emisson Factor", + "Technology_Practices": "Industry: Chemical Processes, Wood, Asphalt, Copper, Phosphate; Source: Dryer - Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.8", + "Technical_Reference": "Radian Corporation (1990) Emissions and cost estimates for globally significant anthropogenic combustion sources of Nox, N2O, CH4, CO and CO2 Prepared for the Office of Research and Development, U.S. EPA, Washington D.C., USA", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.8 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.576Z", + "last_change_date": "2022-03-14T07:57:45.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5485, + "fields": { + "EF_ID": 118516, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Kilns, Ovens, and Dryers Source Emisson Factor", + "Technology_Practices": "Industry: Chemical Processes, Wood, Asphalt, Copper, Phosphate; Source: Dryer - Coal", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.8", + "Technical_Reference": "Radian Corporation (1990) Emissions and cost estimates for globally significant anthropogenic combustion sources of Nox, N2O, CH4, CO and CO2 Prepared for the Office of Research and Development, U.S. EPA, Washington D.C., USA", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.8 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.650Z", + "last_change_date": "2022-03-14T07:57:45.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5486, + "fields": { + "EF_ID": 118517, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Combustors", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.744Z", + "last_change_date": "2022-03-14T07:57:45.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5487, + "fields": { + "EF_ID": 118518, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Combustors", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.817Z", + "last_change_date": "2022-03-14T07:57:45.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5488, + "fields": { + "EF_ID": 118519, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Gas/Diesel Oil Combustors", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.920Z", + "last_change_date": "2022-03-14T07:57:45.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5489, + "fields": { + "EF_ID": 118520, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Furnaces (In the 2006 IPCC Guidelines, Volume 2, Table 2.9, fuel type is not specified.)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.8", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:45.992Z", + "last_change_date": "2022-03-14T07:57:45.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5490, + "fields": { + "EF_ID": 118521, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Liquefied Petroleum Gases Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.095Z", + "last_change_date": "2022-03-14T07:57:46.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5491, + "fields": { + "EF_ID": 118522, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Other Kerosene Stoves: Wick", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2 - 23", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Smith K.R., Rasmussen, R.A., Manegdeg, F. and Apte, M. (1992). Greenhouse gases from small-scale combustion in developing countries: A Pilot Study in Manila. EPA/600/R-92-005, U.S. Environmental Protection Agency, Research Triangle Park.; Smith K.R., M.A.K. Khalil, R.A. Rasmussen, M. Apte and F. Manegdeg (1993). Greenhouse gases from biomass fossil Fuels stoves in developing countries: a Manila Pilot Study. Chemosphere, 26(1-4): 479-505.; Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from China (CH4), India and Philippines (CH4 and N2O). See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.167Z", + "last_change_date": "2022-03-14T07:57:46.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5492, + "fields": { + "EF_ID": 118523, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Liquefied Petroleum Gases Stoves: Standard", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9 - 23", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Smith K.R., Rasmussen, R.A., Manegdeg, F. and Apte, M. (1992). Greenhouse gases from small-scale combustion in developing countries: A Pilot Study in Manila. EPA/600/R-92-005, U.S. Environmental Protection Agency, Research Triangle Park.; Smith K.R., M.A.K. Khalil, R.A. Rasmussen, M. Apte and F. Manegdeg (1993). Greenhouse gases from biomass fossil Fuels stoves in developing countries: a Manila Pilot Study. Chemosphere, 26(1-4): 479-505.; Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from China (CH4), India and Philippines (CH4 and N2O). See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.271Z", + "last_change_date": "2022-03-14T07:57:46.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5493, + "fields": { + "EF_ID": 118524, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Anthracite Space Heaters", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "147", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.372Z", + "last_change_date": "2022-03-14T07:57:46.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5494, + "fields": { + "EF_ID": 118525, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Other Bituminous Coal Stoves: Brick or Metal", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "267 - 2650", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from China. See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.474Z", + "last_change_date": "2022-03-14T07:57:46.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5495, + "fields": { + "EF_ID": 118526, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Boilers and Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.548Z", + "last_change_date": "2022-03-14T07:57:46.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5496, + "fields": { + "EF_ID": 118527, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Wood Pits", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Adapted from Radian Corporation (1990) Emissions and cost estimates for globally significant anthropogenic combustion sources of Nox, N2O, CH4, CO and CO2 Prepared for the Office of Research and Development, U.S. EPA, Washington D.C., USA; Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.641Z", + "last_change_date": "2022-03-14T07:57:46.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5497, + "fields": { + "EF_ID": 118528, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Wood Stoves: Conventional (U.S. Stoves. Conventional stoves do not have any emission reduction technology or design features and, in most cases, were manufactured before July 1, 1986.)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "932", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "USEPA(2005b). Air CHIEF, Version 12, EPA 454/C-05-001, USEPA, Office of Air Quality Planning Standards, Washington DC", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.723Z", + "last_change_date": "2022-03-14T07:57:46.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5498, + "fields": { + "EF_ID": 118529, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Wood Stoves: Non-catalytic (U.S. Stoves)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "497", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "USEPA(2005b). Air CHIEF, Version 12, EPA 454/C-05-001, USEPA, Office of Air Quality Planning Standards, Washington DC", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.826Z", + "last_change_date": "2022-03-14T07:57:46.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5499, + "fields": { + "EF_ID": 118530, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Wood Stoves: Catalytic (U.S. Stoves)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "360", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "USEPA(2005b). Air CHIEF, Version 12, EPA 454/C-05-001, USEPA, Office of Air Quality Planning Standards, Washington DC", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:46.915Z", + "last_change_date": "2022-03-14T07:57:46.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5500, + "fields": { + "EF_ID": 118531, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Wood Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "258 - 2190", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Battacharya, S.C., Albina, D.O. and Salam, P. Abdul (2002). Emission factors of wood and charcoal-fired cookstoves. Biomass and Bioenergy, 23: 453-469; Smith K.R., Rasmussen, R.A., Manegdeg, F. and Apte, M. (1992). Greenhouse gases from small-scale combustion in developing countries: A Pilot Study in Manila. EPA/600/R-92-005, U.S. Environmental Protection Agency, Research Triangle Park.; Smith K.R., M.A.K. Khalil, R.A. Rasmussen, M. Apte and F. Manegdeg (1993). Greenhouse gases from biomass fossil Fuels stoves in developing countries: a Manila Pilot Study. Chemosphere, 26(1-4): 479-505.; Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of traditional and improved stoves collected from: Cambodia, China, India, Lao PDR, Malaysia, Nepal, Philippines and Thailand. See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.018Z", + "last_change_date": "2022-03-14T07:57:47.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5501, + "fields": { + "EF_ID": 118532, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Charcoal Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275 - 386", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Battacharya, S.C., Albina, D.O. and Salam, P. Abdul (2002). Emission factors of wood and charcoal-fired cookstoves. Biomass and Bioenergy, 23: 453-469; Smith K.R., Rasmussen, R.A., Manegdeg, F. and Apte, M. (1992). Greenhouse gases from small-scale combustion in developing countries: A Pilot Study in Manila. EPA/600/R-92-005, U.S. Environmental Protection Agency, Research Triangle Park.; Smith K.R., M.A.K. Khalil, R.A. Rasmussen, M. Apte and F. Manegdeg (1993). Greenhouse gases from biomass fossil Fuels stoves in developing countries: a Manila Pilot Study. Chemosphere, 26(1-4): 479-505.; Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of traditional and improved stoves collected from: Cambodia, India, Lao PDR, Malaysia, Nepal, Philippines and Thailand.. See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.127Z", + "last_change_date": "2022-03-14T07:57:47.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5502, + "fields": { + "EF_ID": 118533, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Other Primary Solid Biomass (Agriculture Wastes) Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "230 -4190", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from China (CH4) and India (CH4 and N2O). See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.228Z", + "last_change_date": "2022-03-14T07:57:47.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5503, + "fields": { + "EF_ID": 118534, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Other Primary Solid Biomass (Dung) Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "281", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from India. See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.328Z", + "last_change_date": "2022-03-14T07:57:47.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5504, + "fields": { + "EF_ID": 118535, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Petroleum Products", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Furnaces (In the 2006 IPCC Guidelines, Volume 2, Table 2.9, fuel type is not specified.)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.407Z", + "last_change_date": "2022-03-14T07:57:47.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5505, + "fields": { + "EF_ID": 118536, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Other Kerosene Stoves: Wick", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2 - 1.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Smith K.R., Rasmussen, R.A., Manegdeg, F. and Apte, M. (1992). Greenhouse gases from small-scale combustion in developing countries: A Pilot Study in Manila. EPA/600/R-92-005, U.S. Environmental Protection Agency, Research Triangle Park.; Smith K.R., M.A.K. Khalil, R.A. Rasmussen, M. Apte and F. Manegdeg (1993). Greenhouse gases from biomass fossil Fuels stoves in developing countries: a Manila Pilot Study. Chemosphere, 26(1-4): 479-505.; Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from China (CH4), India and Philippines (CH4 and N2O). See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.504Z", + "last_change_date": "2022-03-14T07:57:47.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5506, + "fields": { + "EF_ID": 118537, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Liquefied Petroleum Gases Stoves: Standard", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7 - 3.5", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Smith K.R., Rasmussen, R.A., Manegdeg, F. and Apte, M. (1992). Greenhouse gases from small-scale combustion in developing countries: A Pilot Study in Manila. EPA/600/R-92-005, U.S. Environmental Protection Agency, Research Triangle Park.; Smith K.R., M.A.K. Khalil, R.A. Rasmussen, M. Apte and F. Manegdeg (1993). Greenhouse gases from biomass fossil Fuels stoves in developing countries: a Manila Pilot Study. Chemosphere, 26(1-4): 479-505.; Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from China (CH4), India and Philippines (CH4 and N2O). See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.605Z", + "last_change_date": "2022-03-14T07:57:47.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5507, + "fields": { + "EF_ID": 118538, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Boilers and Furnaces", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.706Z", + "last_change_date": "2022-03-14T07:57:47.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5508, + "fields": { + "EF_ID": 118539, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Wood Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4 - 18.5", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Battacharya, S.C., Albina, D.O. and Salam, P. Abdul (2002). Emission factors of wood and charcoal-fired cookstoves. Biomass and Bioenergy, 23: 453-469; Smith K.R., Rasmussen, R.A., Manegdeg, F. and Apte, M. (1992). Greenhouse gases from small-scale combustion in developing countries: A Pilot Study in Manila. EPA/600/R-92-005, U.S. Environmental Protection Agency, Research Triangle Park.; Smith K.R., M.A.K. Khalil, R.A. Rasmussen, M. Apte and F. Manegdeg (1993). Greenhouse gases from biomass fossil Fuels stoves in developing countries: a Manila Pilot Study. Chemosphere, 26(1-4): 479-505.; Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of traditional and improved stoves collected from: Cambodia, China, India, Lao PDR, Malaysia, Nepal, Philippines and Thailand. See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.806Z", + "last_change_date": "2022-03-14T07:57:47.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5509, + "fields": { + "EF_ID": 118540, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Wood Fireplaces", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:47.915Z", + "last_change_date": "2022-03-14T07:57:47.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5510, + "fields": { + "EF_ID": 118541, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Charcoal", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Charcoal Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6 - 9.3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Battacharya, S.C., Albina, D.O. and Salam, P. Abdul (2002). Emission factors of wood and charcoal-fired cookstoves. Biomass and Bioenergy, 23: 453-469; Smith K.R., Rasmussen, R.A., Manegdeg, F. and Apte, M. (1992). Greenhouse gases from small-scale combustion in developing countries: A Pilot Study in Manila. EPA/600/R-92-005, U.S. Environmental Protection Agency, Research Triangle Park.; Smith K.R., M.A.K. Khalil, R.A. Rasmussen, M. Apte and F. Manegdeg (1993). Greenhouse gases from biomass fossil Fuels stoves in developing countries: a Manila Pilot Study. Chemosphere, 26(1-4): 479-505.; Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of traditional and improved stoves collected from: Cambodia, India, Lao PDR, Malaysia, Nepal, Philippines and Thailand.. See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.025Z", + "last_change_date": "2022-03-14T07:57:48.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5511, + "fields": { + "EF_ID": 118542, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Other Primary Solid Biomass (Agriculture Wastes) Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park.; Zhang, J., Smith, K.R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M.A.K., Rasmussen, R.A. and Thorneloe, S.A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmospheric Environment, 34: 4537-4549. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from China (CH4) and India (CH4 and N2O). See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.143Z", + "last_change_date": "2022-03-14T07:57:48.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5512, + "fields": { + "EF_ID": 118543, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "2006 IPCC default", + "Description": "Residential Source Emission Factor", + "Technology_Practices": "Other Primary Solid Biomass (Dung) Stoves", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.9", + "Technical_Reference": "Smith, K.R., Uma, R., Kishore, V.V.N, Lata, K., Joshi, V., Zhang, J., Rasmussen, R.A. and Khalil, M.A.K. (2000). Greenhouse gases from small-scale combustion devices in developing countries, Phase IIa: Household Stoves in India. U.S. EPA/600/R-00-052, U.S. Environmental Protection Agency, Research Triangle Park. See also Comments from the data provider field.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.9 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This data is based on results of experimental studies conducted on a number of household stoves from India. See the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.243Z", + "last_change_date": "2022-03-14T07:57:48.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5513, + "fields": { + "EF_ID": 118544, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.315Z", + "last_change_date": "2022-03-14T07:57:48.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5514, + "fields": { + "EF_ID": 118545, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Gas/Diesel Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.410Z", + "last_change_date": "2022-03-14T07:57:48.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5515, + "fields": { + "EF_ID": 118546, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Gas/Diesel Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.507Z", + "last_change_date": "2022-03-14T07:57:48.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5516, + "fields": { + "EF_ID": 118547, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Liquefied/Petroleum Gases Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.595Z", + "last_change_date": "2022-03-14T07:57:48.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5517, + "fields": { + "EF_ID": 118548, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.690Z", + "last_change_date": "2022-03-14T07:57:48.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5518, + "fields": { + "EF_ID": 118549, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.787Z", + "last_change_date": "2022-03-14T07:57:48.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5519, + "fields": { + "EF_ID": 118550, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.865Z", + "last_change_date": "2022-03-14T07:57:48.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5520, + "fields": { + "EF_ID": 118551, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:48.971Z", + "last_change_date": "2022-03-14T07:57:48.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5521, + "fields": { + "EF_ID": 118552, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Hand-fed Units", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.048Z", + "last_change_date": "2022-03-14T07:57:49.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5522, + "fields": { + "EF_ID": 118553, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Hand-fed Units", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.156Z", + "last_change_date": "2022-03-14T07:57:49.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5523, + "fields": { + "EF_ID": 118554, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.232Z", + "last_change_date": "2022-03-14T07:57:49.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5524, + "fields": { + "EF_ID": 118555, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.340Z", + "last_change_date": "2022-03-14T07:57:49.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5525, + "fields": { + "EF_ID": 118556, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.415Z", + "last_change_date": "2022-03-14T07:57:49.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5526, + "fields": { + "EF_ID": 118557, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.524Z", + "last_change_date": "2022-03-14T07:57:49.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5527, + "fields": { + "EF_ID": 118558, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.598Z", + "last_change_date": "2022-03-14T07:57:49.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5528, + "fields": { + "EF_ID": 118559, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.692Z", + "last_change_date": "2022-03-14T07:57:49.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5529, + "fields": { + "EF_ID": 118560, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous Spreader Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.773Z", + "last_change_date": "2022-03-14T07:57:49.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5530, + "fields": { + "EF_ID": 118561, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.861Z", + "last_change_date": "2022-03-14T07:57:49.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5531, + "fields": { + "EF_ID": 118562, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:49.931Z", + "last_change_date": "2022-03-14T07:57:49.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5532, + "fields": { + "EF_ID": 118563, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.012Z", + "last_change_date": "2022-03-14T07:57:50.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5533, + "fields": { + "EF_ID": 118564, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.098Z", + "last_change_date": "2022-03-14T07:57:50.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5534, + "fields": { + "EF_ID": 118565, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.179Z", + "last_change_date": "2022-03-14T07:57:50.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5535, + "fields": { + "EF_ID": 118566, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Gas-fired Gas Turbines > 3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.261Z", + "last_change_date": "2022-03-14T07:57:50.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5536, + "fields": { + "EF_ID": 118567, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Wood/Wood Waste Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for CH4 by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.347Z", + "last_change_date": "2022-03-14T07:57:50.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5537, + "fields": { + "EF_ID": 118568, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Residual Fuel Oil Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.440Z", + "last_change_date": "2022-03-14T07:57:50.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5538, + "fields": { + "EF_ID": 118569, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Gas/Diesel Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.539Z", + "last_change_date": "2022-03-14T07:57:50.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5539, + "fields": { + "EF_ID": 118570, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Gas/Diesel Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.615Z", + "last_change_date": "2022-03-14T07:57:50.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5540, + "fields": { + "EF_ID": 118571, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Liquefied/Petroleum Gases Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.707Z", + "last_change_date": "2022-03-14T07:57:50.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5541, + "fields": { + "EF_ID": 118572, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.794Z", + "last_change_date": "2022-03-14T07:57:50.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5542, + "fields": { + "EF_ID": 118573, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Overfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.891Z", + "last_change_date": "2022-03-14T07:57:50.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5543, + "fields": { + "EF_ID": 118574, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:50.965Z", + "last_change_date": "2022-03-14T07:57:50.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5544, + "fields": { + "EF_ID": 118575, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Underfeed Stoker Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.059Z", + "last_change_date": "2022-03-14T07:57:51.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5545, + "fields": { + "EF_ID": 118576, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Hand-fed Units", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.132Z", + "last_change_date": "2022-03-14T07:57:51.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5546, + "fields": { + "EF_ID": 118577, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Hand-fed Units", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.220Z", + "last_change_date": "2022-03-14T07:57:51.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5547, + "fields": { + "EF_ID": 118578, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.290Z", + "last_change_date": "2022-03-14T07:57:51.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5548, + "fields": { + "EF_ID": 118579, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, wall fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.395Z", + "last_change_date": "2022-03-14T07:57:51.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5549, + "fields": { + "EF_ID": 118580, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.473Z", + "last_change_date": "2022-03-14T07:57:51.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5550, + "fields": { + "EF_ID": 118581, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Dry Bottom, tangentially fired", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.562Z", + "last_change_date": "2022-03-14T07:57:51.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5551, + "fields": { + "EF_ID": 118582, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.657Z", + "last_change_date": "2022-03-14T07:57:51.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5552, + "fields": { + "EF_ID": 118583, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Pulverised", + "Parameter_Conditions": "Configuration: Wet Bottom", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.747Z", + "last_change_date": "2022-03-14T07:57:51.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5553, + "fields": { + "EF_ID": 118584, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous Spreader Stokers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.840Z", + "last_change_date": "2022-03-14T07:57:51.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5554, + "fields": { + "EF_ID": 118585, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:51.931Z", + "last_change_date": "2022-03-14T07:57:51.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5555, + "fields": { + "EF_ID": 118586, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Circulating Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.007Z", + "last_change_date": "2022-03-14T07:57:52.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5556, + "fields": { + "EF_ID": 118587, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.099Z", + "last_change_date": "2022-03-14T07:57:52.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5557, + "fields": { + "EF_ID": 118588, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Other Bituminous/Sub-bituminous Fluidised Bed Combustor - Bubbling Bed", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.182Z", + "last_change_date": "2022-03-14T07:57:52.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5558, + "fields": { + "EF_ID": 118589, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.274Z", + "last_change_date": "2022-03-14T07:57:52.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5559, + "fields": { + "EF_ID": 118590, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Gas-fired Gas Turbines > 3MW", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific values were 5 per cent lower than gross calorific values for coal and oil, and 10 per cent lower for natural gas. These percentage adjustments are the OECD/IEA assumptions on how to convert from gross to net calorific values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.361Z", + "last_change_date": "2022-03-14T07:57:52.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5560, + "fields": { + "EF_ID": 118591, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "2006 IPCC default", + "Description": "Commercial/Institutional Source Emission Factor", + "Technology_Practices": "Wood/Wood Waste Boilers", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "Equations 2.3 and 2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.10", + "Technical_Reference": "U.S. EPA (2005). Air CHIEF, Verson 12, EPA 454/C-05-001, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Washington, DC.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 2.12", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 2.10 in Volume 2 of the 2006 IPCC Guidelines gives this value, for example purposes, as a representative emission factor for N2O by main technology and fuel type. National experts working on detailed bottom-up inventories may use this factor as a starting point or for comparison. This is an uncontrolled emission factor for the technology indicated. This emission factor data, therefore, does not include the level of control technology that might be in place in some countries. For instance, for use in countries where control policies have significantly influenced the emission profile, either this factor or the final estimate will need to be adjusted. This value was originally based on gross calorific value; it was converted to net calorific value by assuming that net calorific value for dry wood was 20 per cent lower than the gross calorific value [Forest Products Laboratory (2004). Fuel value calculator, USDA Forest Service, Forest Products Laboratory, Pellet Fuels Institute, Madison. (Available at http://www.fpl.fs.fed.us)]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.459Z", + "last_change_date": "2022-03-14T07:57:52.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5561, + "fields": { + "EF_ID": 118592, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "9.6", + "Upper_Bound": "110", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a USA light duty gasoline vehicle (car) - uncontrolled, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 10 km/l for motor gasoline vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for CH4. If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.532Z", + "last_change_date": "2022-03-14T07:57:52.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5562, + "fields": { + "EF_ID": 118593, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "Oxidaton Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "7.5", + "Upper_Bound": "86", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a USA Light Duty Gasoline Vehicle (Car) - Oxidation Catalyst, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 10 km/l for motor gasoline vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for CH4. If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.635Z", + "last_change_date": "2022-03-14T07:57:52.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5563, + "fields": { + "EF_ID": 118594, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "Low Mileage Light Duty Vehicle Vintage 1995 or later", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.8", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "1.1", + "Upper_Bound": "13", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a USA Light Duty Gasoline Vehicle (Car) - Tier 1, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 10 km/l for motor gasoline vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for CH4. If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.706Z", + "last_change_date": "2022-03-14T07:57:52.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5564, + "fields": { + "EF_ID": 118595, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.9", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "EEA (2005). EMEP/CORINAIR. Emission Inventory Guidebook - 2005 European Environment Agency, Technical report No 30. Copenhagen, Denmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.6", + "Upper_Bound": "9.5", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a European heavy duty diesel truck, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 5 km/l for diesel vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for CH4.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:57:52.795Z", + "last_change_date": "2022-03-14T07:57:52.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5565, + "fields": { + "EF_ID": 118596, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.9", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "EEA (2005). EMEP/CORINAIR. Emission Inventory Guidebook - 2005 European Environment Agency, Technical report No 30. Copenhagen, Denmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.6", + "Upper_Bound": "9.5", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a European heavy duty diesel truck, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 5 km/l for diesel vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for CH4.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:57:52.882Z", + "last_change_date": "2022-03-14T07:57:52.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5566, + "fields": { + "EF_ID": 118597, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "TNO (2003). Evaluation of the environmental impact of modern passenger cars on petrol, diesel and automotive LPG, and CNG.", + "English_Abstract": "", + "Lower_Bound": "50", + "Upper_Bound": "1540", + "Data_Quality": "", + "Data_Quality_Reference": "See Comments from the data provider field.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default and lower value were based on a study by TNO (2003), conducted using European vehicles and test cycles in the Netherlands. The USEPA (2004) has a default value of 350 kg CH4/TJ for a USA CNG car, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 9 km/l for natural gas vehicles (assumed equivalent to gasoline vehicles). If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for CH4. Upper and lower limits are also taken from USEPA (2004). [USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:52.971Z", + "last_change_date": "2022-03-14T07:57:52.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5567, + "fields": { + "EF_ID": 118598, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "TNO (2003). Evaluation of the environmental impact of modern passenger cars on petrol, diesel and automotive LPG, and CNG.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value for methane emissions from LPG, considering for 50 MJ/kg low heating value and 3.1 g CH4/kg LPG was obtained from TNO (2003).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.057Z", + "last_change_date": "2022-03-14T07:57:53.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5568, + "fields": { + "EF_ID": 118599, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "US trucks", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "77", + "Upper_Bound": "880", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a USA ethanol heavy duty truck, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 9 km/l for ethanol vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for CH4.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.155Z", + "last_change_date": "2022-03-14T07:57:53.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5569, + "fields": { + "EF_ID": 118600, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "Brazil cars", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "13", + "Upper_Bound": "84", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data obtained in Brazilian vehicles by Borsari (2005) and CETESB (2004 & 2005). For new 2003 models, best case: 51.3 kg THC/TJ fuel and 26.0 percent CH4 in THC. For 5 years old vehicles: 67 kg THC/TJ fuel and 27.2 percent CH4 in THC. For 10 years old: 308 kg THC/TJ fuel and 27.2 percent CH4 in THC.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.232Z", + "last_change_date": "2022-03-14T07:57:53.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5570, + "fields": { + "EF_ID": 118601, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "Uncontrolled", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "0.96", + "Upper_Bound": "11", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a USA light duty gasoline vehicle (car) - uncontrolled, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 10 km/l for motor gasoline vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for N2O. If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.298Z", + "last_change_date": "2022-03-14T07:57:53.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5571, + "fields": { + "EF_ID": 118602, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "Oxidaton Catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "2.6", + "Upper_Bound": "24", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a USA Light Duty Gasoline Vehicle (Car) - Oxidation Catalyst, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 10 km/l for motor gasoline vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for N2O. If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.390Z", + "last_change_date": "2022-03-14T07:57:53.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5572, + "fields": { + "EF_ID": 118603, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "Low Mileage Light Duty Vehicle Vintage 1995 or later", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.7", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "1.9", + "Upper_Bound": "17", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a USA Light Duty Gasoline Vehicle (Car) - Tier 1, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 10 km/l for motor gasoline vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for N2O. If motorcycles account for a significant share of the national vehicle population, inventory compilers should adjust the given default emission factor downwards.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.465Z", + "last_change_date": "2022-03-14T07:57:53.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5573, + "fields": { + "EF_ID": 118604, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.9", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "EEA (2005). EMEP/CORINAIR. Emission Inventory Guidebook - 2005 European Environment Agency, Technical report No 30. Copenhagen, Denmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.3", + "Upper_Bound": "12", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a European heavy duty diesel truck, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 5 km/l for diesel vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for N2O", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:57:53.558Z", + "last_change_date": "2022-03-14T07:57:53.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5574, + "fields": { + "EF_ID": 118605, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.9", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "EEA (2005). EMEP/CORINAIR. Emission Inventory Guidebook - 2005 European Environment Agency, Technical report No 30. Copenhagen, Denmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.3", + "Upper_Bound": "12", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a European heavy duty diesel truck, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 5 km/l for diesel vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for N2O", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:57:53.632Z", + "last_change_date": "2022-03-14T07:57:53.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5575, + "fields": { + "EF_ID": 118606, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 3 of 4 (page A1.8) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "TNO (2003). Evaluation of the environmental impact of modern passenger cars on petrol, diesel and automotive LPG, and CNG.", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "77", + "Data_Quality": "", + "Data_Quality_Reference": "See Comments from the data provider field.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default and lower value were based on a study by TNO (2003), conducted using European vehicles and test cycles in the Netherlands. The USEPA (2004) has a default value of 28 kg N2O/TJ for a USA CNG car, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 9 km/l for natural gas vehicles (assumed equivalent to gasoline vehicles). If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for N2O. Upper and lower limits are also taken from USEPA (2004). [USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.717Z", + "last_change_date": "2022-03-14T07:57:53.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5576, + "fields": { + "EF_ID": 118607, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "TNO (2003). Evaluation of the environmental impact of modern passenger cars on petrol, diesel and automotive LPG, and CNG.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value for methane emissions from LPG, considering for 50 MJ/kg low heating value and 3.1 g CH4/kg LPG was obtained from TNO (2003).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.790Z", + "last_change_date": "2022-03-14T07:57:53.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5577, + "fields": { + "EF_ID": 118608, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Road Transport Emission Factor", + "Technology_Practices": "US trucks", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "kg/TJ", + "Equation": "Equation 3.2.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.2", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "13", + "Upper_Bound": "123", + "Data_Quality": "", + "Data_Quality_Reference": "Lipman, T. and Delucchi, M (2002). Lipman, Timothy, University of California-Berkeley; and Mark Delucchi, University of California-Davis (2002). Emissions of nitrous oxide and methane from conventional and alternative fuel motor vehicles. Climate Change, 53(4), 477-516, Kluwer Academic Publishers, Netherlands.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on value for a USA ethanol heavy duty truck, converted using the NCV values reported in Chapter 1, Volume 2 of 2006 IPCC Guidelines; density values reported by the U.S. Energy Information Administration; and the following assumed representative fuel consumption value: 9 km/l for ethanol vehicles. If actual representative fuel economy values are available, it is recommended that they be used with total fuel use data to estimate total distance travelled data, which should then be multiplied by Tier 2 emission factors for N2O..", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.876Z", + "last_change_date": "2022-03-14T07:57:53.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5578, + "fields": { + "EF_ID": 118609, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:53.956Z", + "last_change_date": "2022-03-14T07:57:53.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5579, + "fields": { + "EF_ID": 118610, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.032Z", + "last_change_date": "2022-03-14T07:57:54.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5580, + "fields": { + "EF_ID": 118611, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "26", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.137Z", + "last_change_date": "2022-03-14T07:57:54.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5581, + "fields": { + "EF_ID": 118612, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "20", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.206Z", + "last_change_date": "2022-03-14T07:57:54.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5582, + "fields": { + "EF_ID": 118613, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "8", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.281Z", + "last_change_date": "2022-03-14T07:57:54.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5583, + "fields": { + "EF_ID": 118614, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "8", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.349Z", + "last_change_date": "2022-03-14T07:57:54.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5584, + "fields": { + "EF_ID": 118615, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "90", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.438Z", + "last_change_date": "2022-03-14T07:57:54.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5585, + "fields": { + "EF_ID": 118616, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "113", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.523Z", + "last_change_date": "2022-03-14T07:57:54.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5586, + "fields": { + "EF_ID": 118617, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "92", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.590Z", + "last_change_date": "2022-03-14T07:57:54.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5587, + "fields": { + "EF_ID": 118618, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "72", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.673Z", + "last_change_date": "2022-03-14T07:57:54.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5588, + "fields": { + "EF_ID": 118619, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "28", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.765Z", + "last_change_date": "2022-03-14T07:57:54.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5589, + "fields": { + "EF_ID": 118620, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "28", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.840Z", + "last_change_date": "2022-03-14T07:57:54.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5590, + "fields": { + "EF_ID": 118621, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.932Z", + "last_change_date": "2022-03-14T07:57:54.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5591, + "fields": { + "EF_ID": 118622, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Moderate", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:54.998Z", + "last_change_date": "2022-03-14T07:57:54.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5592, + "fields": { + "EF_ID": 118623, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.092Z", + "last_change_date": "2022-03-14T07:57:55.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5593, + "fields": { + "EF_ID": 118624, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.178Z", + "last_change_date": "2022-03-14T07:57:55.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5594, + "fields": { + "EF_ID": 118625, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Moderate", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.249Z", + "last_change_date": "2022-03-14T07:57:55.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5595, + "fields": { + "EF_ID": 118626, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "-1", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.315Z", + "last_change_date": "2022-03-14T07:57:55.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5596, + "fields": { + "EF_ID": 118627, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.419Z", + "last_change_date": "2022-03-14T07:57:55.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5597, + "fields": { + "EF_ID": 118628, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "25", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.498Z", + "last_change_date": "2022-03-14T07:57:55.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5598, + "fields": { + "EF_ID": 118629, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "43", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.565Z", + "last_change_date": "2022-03-14T07:57:55.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5599, + "fields": { + "EF_ID": 118630, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "26", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.631Z", + "last_change_date": "2022-03-14T07:57:55.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5600, + "fields": { + "EF_ID": 118631, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.729Z", + "last_change_date": "2022-03-14T07:57:55.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5601, + "fields": { + "EF_ID": 118632, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.815Z", + "last_change_date": "2022-03-14T07:57:55.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5602, + "fields": { + "EF_ID": 118633, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "59", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.890Z", + "last_change_date": "2022-03-14T07:57:55.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5603, + "fields": { + "EF_ID": 118634, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "200", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:55.965Z", + "last_change_date": "2022-03-14T07:57:55.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5604, + "fields": { + "EF_ID": 118635, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "153", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.065Z", + "last_change_date": "2022-03-14T07:57:56.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5605, + "fields": { + "EF_ID": 118636, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "93", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.148Z", + "last_change_date": "2022-03-14T07:57:56.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5606, + "fields": { + "EF_ID": 118637, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "32", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.215Z", + "last_change_date": "2022-03-14T07:57:56.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5607, + "fields": { + "EF_ID": 118638, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "32", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.282Z", + "last_change_date": "2022-03-14T07:57:56.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5608, + "fields": { + "EF_ID": 118639, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced and moderate", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.375Z", + "last_change_date": "2022-03-14T07:57:56.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5609, + "fields": { + "EF_ID": 118640, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.453Z", + "last_change_date": "2022-03-14T07:57:56.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5610, + "fields": { + "EF_ID": 118641, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced and moderate", + "Other_Properties": "", + "Value": "-1", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.532Z", + "last_change_date": "2022-03-14T07:57:56.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5611, + "fields": { + "EF_ID": 118642, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "-1", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.598Z", + "last_change_date": "2022-03-14T07:57:56.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5612, + "fields": { + "EF_ID": 118643, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.693Z", + "last_change_date": "2022-03-14T07:57:56.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5613, + "fields": { + "EF_ID": 118644, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "52", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.770Z", + "last_change_date": "2022-03-14T07:57:56.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5614, + "fields": { + "EF_ID": 118645, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "88", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.831Z", + "last_change_date": "2022-03-14T07:57:56.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5615, + "fields": { + "EF_ID": 118646, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "55", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.903Z", + "last_change_date": "2022-03-14T07:57:56.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5616, + "fields": { + "EF_ID": 118647, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "20", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:56.994Z", + "last_change_date": "2022-03-14T07:57:56.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5617, + "fields": { + "EF_ID": 118648, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "21", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.070Z", + "last_change_date": "2022-03-14T07:57:57.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5618, + "fields": { + "EF_ID": 118649, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "120", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.137Z", + "last_change_date": "2022-03-14T07:57:57.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5619, + "fields": { + "EF_ID": 118650, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "409", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.203Z", + "last_change_date": "2022-03-14T07:57:57.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5620, + "fields": { + "EF_ID": 118651, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "313", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.288Z", + "last_change_date": "2022-03-14T07:57:57.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5621, + "fields": { + "EF_ID": 118652, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "194", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.362Z", + "last_change_date": "2022-03-14T07:57:57.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5622, + "fields": { + "EF_ID": 118653, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "70", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.428Z", + "last_change_date": "2022-03-14T07:57:57.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5623, + "fields": { + "EF_ID": 118654, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "74", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.504Z", + "last_change_date": "2022-03-14T07:57:57.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5624, + "fields": { + "EF_ID": 118655, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Diesel Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "All - advanced, moderate or uncontrolled", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.599Z", + "last_change_date": "2022-03-14T07:57:57.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5625, + "fields": { + "EF_ID": 118656, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Diesel Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "All - advanced, moderate or uncontrolled", + "Other_Properties": "", + "Value": "-2", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.687Z", + "last_change_date": "2022-03-14T07:57:57.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5626, + "fields": { + "EF_ID": 118657, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Motorcycles", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.762Z", + "last_change_date": "2022-03-14T07:57:57.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5627, + "fields": { + "EF_ID": 118658, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Motorcycles", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.837Z", + "last_change_date": "2022-03-14T07:57:57.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5628, + "fields": { + "EF_ID": 118659, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Motorcycles", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "12", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:57.926Z", + "last_change_date": "2022-03-14T07:57:57.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5629, + "fields": { + "EF_ID": 118660, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Motorcycles", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "15", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.004Z", + "last_change_date": "2022-03-14T07:57:58.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5630, + "fields": { + "EF_ID": 118661, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.070Z", + "last_change_date": "2022-03-14T07:57:58.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5631, + "fields": { + "EF_ID": 118662, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "7", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.137Z", + "last_change_date": "2022-03-14T07:57:58.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5632, + "fields": { + "EF_ID": 118663, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "39", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.236Z", + "last_change_date": "2022-03-14T07:57:58.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5633, + "fields": { + "EF_ID": 118664, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "82", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.312Z", + "last_change_date": "2022-03-14T07:57:58.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5634, + "fields": { + "EF_ID": 118665, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "96", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.379Z", + "last_change_date": "2022-03-14T07:57:58.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5635, + "fields": { + "EF_ID": 118666, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "101", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.470Z", + "last_change_date": "2022-03-14T07:57:58.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5636, + "fields": { + "EF_ID": 118667, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "32", + "Unit": "mg/start", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.565Z", + "last_change_date": "2022-03-14T07:57:58.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5637, + "fields": { + "EF_ID": 118668, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "55", + "Unit": "mg/start", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.629Z", + "last_change_date": "2022-03-14T07:57:58.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5638, + "fields": { + "EF_ID": 118669, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "34", + "Unit": "mg/start", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.722Z", + "last_change_date": "2022-03-14T07:57:58.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5639, + "fields": { + "EF_ID": 118670, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/start", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.795Z", + "last_change_date": "2022-03-14T07:57:58.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5640, + "fields": { + "EF_ID": 118671, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "59", + "Unit": "mg/start", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.865Z", + "last_change_date": "2022-03-14T07:57:58.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5641, + "fields": { + "EF_ID": 118672, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "62", + "Unit": "mg/start", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:58.956Z", + "last_change_date": "2022-03-14T07:57:58.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5642, + "fields": { + "EF_ID": 118673, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.029Z", + "last_change_date": "2022-03-14T07:57:59.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5643, + "fields": { + "EF_ID": 118674, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Moderate", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.098Z", + "last_change_date": "2022-03-14T07:57:59.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5644, + "fields": { + "EF_ID": 118675, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.184Z", + "last_change_date": "2022-03-14T07:57:59.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5645, + "fields": { + "EF_ID": 118676, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced", + "Other_Properties": "", + "Value": "-3", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.312Z", + "last_change_date": "2022-03-14T07:57:59.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5646, + "fields": { + "EF_ID": 118677, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Moderate", + "Other_Properties": "", + "Value": "-3", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.390Z", + "last_change_date": "2022-03-14T07:57:59.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5647, + "fields": { + "EF_ID": 118678, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Vehicle (Car)", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "-3", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.476Z", + "last_change_date": "2022-03-14T07:57:59.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5648, + "fields": { + "EF_ID": 118679, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "7", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.554Z", + "last_change_date": "2022-03-14T07:57:59.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5649, + "fields": { + "EF_ID": 118680, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "14", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.645Z", + "last_change_date": "2022-03-14T07:57:59.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5650, + "fields": { + "EF_ID": 118681, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "39", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.721Z", + "last_change_date": "2022-03-14T07:57:59.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5651, + "fields": { + "EF_ID": 118682, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "81", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:57:59.923Z", + "last_change_date": "2022-03-14T07:57:59.923Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5652, + "fields": { + "EF_ID": 118683, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "109", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.112Z", + "last_change_date": "2022-03-14T07:58:00.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5653, + "fields": { + "EF_ID": 118684, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "116", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.190Z", + "last_change_date": "2022-03-14T07:58:00.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5654, + "fields": { + "EF_ID": 118685, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "46", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.256Z", + "last_change_date": "2022-03-14T07:58:00.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5655, + "fields": { + "EF_ID": 118686, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "82", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.347Z", + "last_change_date": "2022-03-14T07:58:00.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5656, + "fields": { + "EF_ID": 118687, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "72", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.421Z", + "last_change_date": "2022-03-14T07:58:00.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5657, + "fields": { + "EF_ID": 118688, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "99", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.490Z", + "last_change_date": "2022-03-14T07:58:00.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5658, + "fields": { + "EF_ID": 118689, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "67", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.599Z", + "last_change_date": "2022-03-14T07:58:00.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5659, + "fields": { + "EF_ID": 118690, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Gasoline Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "71", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.687Z", + "last_change_date": "2022-03-14T07:58:00.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5660, + "fields": { + "EF_ID": 118691, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced and moderate", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.757Z", + "last_change_date": "2022-03-14T07:58:00.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5661, + "fields": { + "EF_ID": 118692, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Truck", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.842Z", + "last_change_date": "2022-03-14T07:58:00.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5662, + "fields": { + "EF_ID": 118693, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced and moderate", + "Other_Properties": "", + "Value": "-4", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:00.929Z", + "last_change_date": "2022-03-14T07:58:00.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5663, + "fields": { + "EF_ID": 118694, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Light Duty Diesel Truck", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "-4", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.007Z", + "last_change_date": "2022-03-14T07:58:01.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5664, + "fields": { + "EF_ID": 118695, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "14", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.102Z", + "last_change_date": "2022-03-14T07:58:01.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5665, + "fields": { + "EF_ID": 118696, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "15", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.179Z", + "last_change_date": "2022-03-14T07:58:01.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5666, + "fields": { + "EF_ID": 118697, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "121", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.257Z", + "last_change_date": "2022-03-14T07:58:01.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5667, + "fields": { + "EF_ID": 118698, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "111", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.353Z", + "last_change_date": "2022-03-14T07:58:01.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5668, + "fields": { + "EF_ID": 118699, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "239", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.429Z", + "last_change_date": "2022-03-14T07:58:01.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5669, + "fields": { + "EF_ID": 118700, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "263", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.498Z", + "last_change_date": "2022-03-14T07:58:01.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5670, + "fields": { + "EF_ID": 118701, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Low Emission Vehicle (LEV)", + "Other_Properties": "", + "Value": "94", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.588Z", + "last_change_date": "2022-03-14T07:58:01.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5671, + "fields": { + "EF_ID": 118702, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Advanced Three-Way Catalyst", + "Other_Properties": "", + "Value": "163", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.673Z", + "last_change_date": "2022-03-14T07:58:01.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5672, + "fields": { + "EF_ID": 118703, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Early Three-Way Catalyst", + "Other_Properties": "", + "Value": "183", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.740Z", + "last_change_date": "2022-03-14T07:58:01.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5673, + "fields": { + "EF_ID": 118704, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Oxidation Catalyst", + "Other_Properties": "", + "Value": "215", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.831Z", + "last_change_date": "2022-03-14T07:58:01.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5674, + "fields": { + "EF_ID": 118705, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "147", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.907Z", + "last_change_date": "2022-03-14T07:58:01.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5675, + "fields": { + "EF_ID": 118706, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Gasoline Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "162", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:01.981Z", + "last_change_date": "2022-03-14T07:58:01.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5676, + "fields": { + "EF_ID": 118707, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Diesel Vehicle", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "All - advanced, moderate or uncontrolled", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.066Z", + "last_change_date": "2022-03-14T07:58:02.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5677, + "fields": { + "EF_ID": 118708, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Heavy Duty Diesel Vehicle", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "All - advanced, moderate or uncontrolled", + "Other_Properties": "", + "Value": "-11", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. The negative emission factor indicates that a vehicle starting cold produces fewer emissions than a vehicle starting warm or running warming. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.148Z", + "last_change_date": "2022-03-14T07:58:02.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5678, + "fields": { + "EF_ID": 118709, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Motorcycles", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "40", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.233Z", + "last_change_date": "2022-03-14T07:58:02.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5679, + "fields": { + "EF_ID": 118710, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Motorcycles", + "Parameter_Conditions": "Running - (hot)", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "53", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.315Z", + "last_change_date": "2022-03-14T07:58:02.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5680, + "fields": { + "EF_ID": 118711, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Motorcycles", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Non-oxidation Catalyst", + "Other_Properties": "", + "Value": "24", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.390Z", + "last_change_date": "2022-03-14T07:58:02.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5681, + "fields": { + "EF_ID": 118712, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for USA Vehicles", + "Technology_Practices": "Motorcycles", + "Parameter_Conditions": "Cold Start", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "33", + "Unit": "mg/start", + "Equation": "Relevant to Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.3", + "Technical_Reference": "USEPA (2004). Update of methane and nitrous oxide emission factors for on-highway vehicles. Report Number EPA420-P-04-016, US Environmental Protection Agency, Washington DC, USA .November 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum has been rounded to whole number. Table 3.2.3 in Volume 2 of 2006 IPCC Guidelines gives this value as potentially applicable Tier 2 and Tier 3 emission factor from US data. Because of the total-hydrocarbon limits in Europe, the CH4-emissions of European vehicles may be lower than the indicated values from USA. (See Heeb, Norbert., et al (2003). Methane, benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment 37 (2003) 5185-5195.) These cold starts were measured at an ambient temperature of 68 to 86 degrees Fahrenheit (20 to 30 degrees Celsius).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.485Z", + "last_change_date": "2022-03-14T07:58:02.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5682, + "fields": { + "EF_ID": 118713, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Light Duty Vehicles", + "Parameter_Conditions": "Fuel: Methanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.582Z", + "last_change_date": "2022-03-14T07:58:02.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5683, + "fields": { + "EF_ID": 118714, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Light Duty Vehicles", + "Parameter_Conditions": "Fuel: Compressed Natural Gas (CNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "215 - 725", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.648Z", + "last_change_date": "2022-03-14T07:58:02.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5684, + "fields": { + "EF_ID": 118715, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Light Duty Vehicles", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.753Z", + "last_change_date": "2022-03-14T07:58:02.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5685, + "fields": { + "EF_ID": 118716, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Light Duty Vehicles", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27 - 45", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.840Z", + "last_change_date": "2022-03-14T07:58:02.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5686, + "fields": { + "EF_ID": 118717, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "Fuel: Methanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "401", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:02.915Z", + "last_change_date": "2022-03-14T07:58:02.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5687, + "fields": { + "EF_ID": 118718, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "Fuel: Compressed Natural Gas (CNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5983", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.013Z", + "last_change_date": "2022-03-14T07:58:03.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5688, + "fields": { + "EF_ID": 118719, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "Fuel: Liquefied Natural Gas (LNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4261", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.090Z", + "last_change_date": "2022-03-14T07:58:03.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5689, + "fields": { + "EF_ID": 118720, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.156Z", + "last_change_date": "2022-03-14T07:58:03.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5690, + "fields": { + "EF_ID": 118721, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1227", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.256Z", + "last_change_date": "2022-03-14T07:58:03.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5691, + "fields": { + "EF_ID": 118722, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Buses", + "Parameter_Conditions": "Fuel: Methanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "401", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.332Z", + "last_change_date": "2022-03-14T07:58:03.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5692, + "fields": { + "EF_ID": 118723, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Buses", + "Parameter_Conditions": "Fuel: Compressed Natural Gas (CNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7715", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.398Z", + "last_change_date": "2022-03-14T07:58:03.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5693, + "fields": { + "EF_ID": 118724, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Buses", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1292", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.491Z", + "last_change_date": "2022-03-14T07:58:03.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5694, + "fields": { + "EF_ID": 118725, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Light Duty Vehicles", + "Parameter_Conditions": "Fuel: Methanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.573Z", + "last_change_date": "2022-03-14T07:58:03.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5695, + "fields": { + "EF_ID": 118726, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Light Duty Vehicles", + "Parameter_Conditions": "Fuel: Compressed Natural Gas (CNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27 - 70", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.640Z", + "last_change_date": "2022-03-14T07:58:03.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5696, + "fields": { + "EF_ID": 118727, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Light Duty Vehicles", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.734Z", + "last_change_date": "2022-03-14T07:58:03.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5697, + "fields": { + "EF_ID": 118728, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Light Duty Vehicles", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12 - 47", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.815Z", + "last_change_date": "2022-03-14T07:58:03.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5698, + "fields": { + "EF_ID": 118729, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "Fuel: Methanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "135", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.896Z", + "last_change_date": "2022-03-14T07:58:03.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5699, + "fields": { + "EF_ID": 118730, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "Fuel: Compressed Natural Gas (CNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "185", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:03.985Z", + "last_change_date": "2022-03-14T07:58:03.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5700, + "fields": { + "EF_ID": 118731, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "Fuel: Liquefied Natural Gas (LNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "274", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.082Z", + "last_change_date": "2022-03-14T07:58:04.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5701, + "fields": { + "EF_ID": 118732, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.146Z", + "last_change_date": "2022-03-14T07:58:04.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5702, + "fields": { + "EF_ID": 118733, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Heavy Duty Vehicles", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "191", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.238Z", + "last_change_date": "2022-03-14T07:58:04.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5703, + "fields": { + "EF_ID": 118734, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Buses", + "Parameter_Conditions": "Fuel: Methanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "135", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.324Z", + "last_change_date": "2022-03-14T07:58:04.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5704, + "fields": { + "EF_ID": 118735, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Buses", + "Parameter_Conditions": "Fuel: Compressed Natural Gas (CNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.396Z", + "last_change_date": "2022-03-14T07:58:04.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5705, + "fields": { + "EF_ID": 118736, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Alternative Fuel Vehicles", + "Technology_Practices": "Buses", + "Parameter_Conditions": "Fuel: Ethanol", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "226", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.4", + "Technical_Reference": "USEPA (2004). Inventory of greenhouse gas emissions and sinks: 1990-2002. (April 2004) USEPA #430-R-04-003. Table 3-19 , US Environmental Protection Agency, Washington DC, USA.; Borsari, V. (2005). As emissoes veiculares e os gases de efeito estufa. SAE - Brazilian Society of Automotive Engineers.; CETESB (2004). Air Quality Report (Relatório de Qualidade do Ar 2003, in Portuguese, (Air Quality Report 2003), available at http://www.cetesb.sp.gov.br/Ar/Relatorios/RelatorioAr2003.zip; CETESB (2005). Personal communication with Oswaldo Lucon, São Paulo State Environment Agency, Mobile Sources Division. Information based on measurements conducted by Renato Linke, Vanderlei Borsari and Marcelo Bales, (Vehicle Inspection Division, ph. +5511 3030 6000). Partially published.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.489Z", + "last_change_date": "2022-03-14T07:58:04.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5706, + "fields": { + "EF_ID": 118737, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.565Z", + "last_change_date": "2022-03-14T07:58:04.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5707, + "fields": { + "EF_ID": 118738, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.656Z", + "last_change_date": "2022-03-14T07:58:04.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5708, + "fields": { + "EF_ID": 118739, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.757Z", + "last_change_date": "2022-03-14T07:58:04.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5709, + "fields": { + "EF_ID": 118740, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:04.916Z", + "last_change_date": "2022-03-14T07:58:04.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5710, + "fields": { + "EF_ID": 118741, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "201", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.008Z", + "last_change_date": "2022-03-14T07:58:05.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5711, + "fields": { + "EF_ID": 118742, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "131", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.090Z", + "last_change_date": "2022-03-14T07:58:05.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5712, + "fields": { + "EF_ID": 118743, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.184Z", + "last_change_date": "2022-03-14T07:58:05.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5713, + "fields": { + "EF_ID": 118744, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.256Z", + "last_change_date": "2022-03-14T07:58:05.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5714, + "fields": { + "EF_ID": 118745, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.343Z", + "last_change_date": "2022-03-14T07:58:05.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5715, + "fields": { + "EF_ID": 118746, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.432Z", + "last_change_date": "2022-03-14T07:58:05.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5716, + "fields": { + "EF_ID": 118747, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.519Z", + "last_change_date": "2022-03-14T07:58:05.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5717, + "fields": { + "EF_ID": 118748, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.630Z", + "last_change_date": "2022-03-14T07:58:05.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5718, + "fields": { + "EF_ID": 118749, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.730Z", + "last_change_date": "2022-03-14T07:58:05.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5719, + "fields": { + "EF_ID": 118750, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.806Z", + "last_change_date": "2022-03-14T07:58:05.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5720, + "fields": { + "EF_ID": 118751, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.906Z", + "last_change_date": "2022-03-14T07:58:05.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5721, + "fields": { + "EF_ID": 118752, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:05.990Z", + "last_change_date": "2022-03-14T07:58:05.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5722, + "fields": { + "EF_ID": 118753, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.074Z", + "last_change_date": "2022-03-14T07:58:06.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5723, + "fields": { + "EF_ID": 118754, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.157Z", + "last_change_date": "2022-03-14T07:58:06.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5724, + "fields": { + "EF_ID": 118755, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.249Z", + "last_change_date": "2022-03-14T07:58:06.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5725, + "fields": { + "EF_ID": 118756, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.350Z", + "last_change_date": "2022-03-14T07:58:06.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5726, + "fields": { + "EF_ID": 118757, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.459Z", + "last_change_date": "2022-03-14T07:58:06.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5727, + "fields": { + "EF_ID": 118758, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.540Z", + "last_change_date": "2022-03-14T07:58:06.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5728, + "fields": { + "EF_ID": 118759, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.626Z", + "last_change_date": "2022-03-14T07:58:06.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5729, + "fields": { + "EF_ID": 118760, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.707Z", + "last_change_date": "2022-03-14T07:58:06.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5730, + "fields": { + "EF_ID": 118761, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.810Z", + "last_change_date": "2022-03-14T07:58:06.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5731, + "fields": { + "EF_ID": 118762, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:06.923Z", + "last_change_date": "2022-03-14T07:58:06.923Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5732, + "fields": { + "EF_ID": 118763, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.012Z", + "last_change_date": "2022-03-14T07:58:07.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5733, + "fields": { + "EF_ID": 118764, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.121Z", + "last_change_date": "2022-03-14T07:58:07.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5734, + "fields": { + "EF_ID": 118765, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.239Z", + "last_change_date": "2022-03-14T07:58:07.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5735, + "fields": { + "EF_ID": 118766, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.332Z", + "last_change_date": "2022-03-14T07:58:07.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5736, + "fields": { + "EF_ID": 118767, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.431Z", + "last_change_date": "2022-03-14T07:58:07.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5737, + "fields": { + "EF_ID": 118768, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.515Z", + "last_change_date": "2022-03-14T07:58:07.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5738, + "fields": { + "EF_ID": 118769, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.616Z", + "last_change_date": "2022-03-14T07:58:07.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5739, + "fields": { + "EF_ID": 118770, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.698Z", + "last_change_date": "2022-03-14T07:58:07.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5740, + "fields": { + "EF_ID": 118771, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.800Z", + "last_change_date": "2022-03-14T07:58:07.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5741, + "fields": { + "EF_ID": 118772, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. The sulphur content of gasoline has both a cumulative and an immediate effect on N2O emissions. The emission factors for gasoline passenger cars correspond to fuels at the period of registration of the different technologies and a vehicle fleet of up to 50 000 km average mileage. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:07.900Z", + "last_change_date": "2022-03-14T07:58:07.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5742, + "fields": { + "EF_ID": 118773, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.001Z", + "last_change_date": "2022-03-14T07:58:08.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5743, + "fields": { + "EF_ID": 118774, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.090Z", + "last_change_date": "2022-03-14T07:58:08.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5744, + "fields": { + "EF_ID": 118775, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.186Z", + "last_change_date": "2022-03-14T07:58:08.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5745, + "fields": { + "EF_ID": 118776, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.265Z", + "last_change_date": "2022-03-14T07:58:08.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5746, + "fields": { + "EF_ID": 118777, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.353Z", + "last_change_date": "2022-03-14T07:58:08.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5747, + "fields": { + "EF_ID": 118778, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.440Z", + "last_change_date": "2022-03-14T07:58:08.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5748, + "fields": { + "EF_ID": 118779, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.529Z", + "last_change_date": "2022-03-14T07:58:08.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5749, + "fields": { + "EF_ID": 118780, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.615Z", + "last_change_date": "2022-03-14T07:58:08.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5750, + "fields": { + "EF_ID": 118781, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.713Z", + "last_change_date": "2022-03-14T07:58:08.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5751, + "fields": { + "EF_ID": 118782, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.807Z", + "last_change_date": "2022-03-14T07:58:08.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5752, + "fields": { + "EF_ID": 118783, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.882Z", + "last_change_date": "2022-03-14T07:58:08.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5753, + "fields": { + "EF_ID": 118784, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:08.991Z", + "last_change_date": "2022-03-14T07:58:08.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5754, + "fields": { + "EF_ID": 118785, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.073Z", + "last_change_date": "2022-03-14T07:58:09.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5755, + "fields": { + "EF_ID": 118786, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.148Z", + "last_change_date": "2022-03-14T07:58:09.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5756, + "fields": { + "EF_ID": 118787, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.242Z", + "last_change_date": "2022-03-14T07:58:09.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5757, + "fields": { + "EF_ID": 118788, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.324Z", + "last_change_date": "2022-03-14T07:58:09.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5758, + "fields": { + "EF_ID": 118789, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.426Z", + "last_change_date": "2022-03-14T07:58:09.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5759, + "fields": { + "EF_ID": 118790, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.498Z", + "last_change_date": "2022-03-14T07:58:09.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5760, + "fields": { + "EF_ID": 118791, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.582Z", + "last_change_date": "2022-03-14T07:58:09.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5761, + "fields": { + "EF_ID": 118792, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.685Z", + "last_change_date": "2022-03-14T07:58:09.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5762, + "fields": { + "EF_ID": 118793, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.765Z", + "last_change_date": "2022-03-14T07:58:09.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5763, + "fields": { + "EF_ID": 118794, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.848Z", + "last_change_date": "2022-03-14T07:58:09.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5764, + "fields": { + "EF_ID": 118795, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:09.946Z", + "last_change_date": "2022-03-14T07:58:09.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5765, + "fields": { + "EF_ID": 118796, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.024Z", + "last_change_date": "2022-03-14T07:58:10.024Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5766, + "fields": { + "EF_ID": 118797, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.121Z", + "last_change_date": "2022-03-14T07:58:10.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5767, + "fields": { + "EF_ID": 118798, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.198Z", + "last_change_date": "2022-03-14T07:58:10.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5768, + "fields": { + "EF_ID": 118799, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.282Z", + "last_change_date": "2022-03-14T07:58:10.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5769, + "fields": { + "EF_ID": 118800, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.381Z", + "last_change_date": "2022-03-14T07:58:10.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5770, + "fields": { + "EF_ID": 118801, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.473Z", + "last_change_date": "2022-03-14T07:58:10.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5771, + "fields": { + "EF_ID": 118802, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.548Z", + "last_change_date": "2022-03-14T07:58:10.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5772, + "fields": { + "EF_ID": 118803, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.659Z", + "last_change_date": "2022-03-14T07:58:10.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5773, + "fields": { + "EF_ID": 118804, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.748Z", + "last_change_date": "2022-03-14T07:58:10.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5774, + "fields": { + "EF_ID": 118805, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.851Z", + "last_change_date": "2022-03-14T07:58:10.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5775, + "fields": { + "EF_ID": 118806, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:10.940Z", + "last_change_date": "2022-03-14T07:58:10.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5776, + "fields": { + "EF_ID": 118807, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.015Z", + "last_change_date": "2022-03-14T07:58:11.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5777, + "fields": { + "EF_ID": 118808, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.211Z", + "last_change_date": "2022-03-14T07:58:11.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5778, + "fields": { + "EF_ID": 118809, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.290Z", + "last_change_date": "2022-03-14T07:58:11.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5779, + "fields": { + "EF_ID": 118810, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.373Z", + "last_change_date": "2022-03-14T07:58:11.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5780, + "fields": { + "EF_ID": 118811, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.479Z", + "last_change_date": "2022-03-14T07:58:11.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5781, + "fields": { + "EF_ID": 118812, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.556Z", + "last_change_date": "2022-03-14T07:58:11.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5782, + "fields": { + "EF_ID": 118813, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.662Z", + "last_change_date": "2022-03-14T07:58:11.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5783, + "fields": { + "EF_ID": 118814, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.748Z", + "last_change_date": "2022-03-14T07:58:11.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5784, + "fields": { + "EF_ID": 118815, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.823Z", + "last_change_date": "2022-03-14T07:58:11.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5785, + "fields": { + "EF_ID": 118816, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:11.931Z", + "last_change_date": "2022-03-14T07:58:11.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5786, + "fields": { + "EF_ID": 118817, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-ECE (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.022Z", + "last_change_date": "2022-03-14T07:58:12.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5787, + "fields": { + "EF_ID": 118818, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-ECE (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.098Z", + "last_change_date": "2022-03-14T07:58:12.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5788, + "fields": { + "EF_ID": 118819, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-ECE (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.207Z", + "last_change_date": "2022-03-14T07:58:12.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5789, + "fields": { + "EF_ID": 118820, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-ECE (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.290Z", + "last_change_date": "2022-03-14T07:58:12.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5790, + "fields": { + "EF_ID": 118821, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-ECE (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.384Z", + "last_change_date": "2022-03-14T07:58:12.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5791, + "fields": { + "EF_ID": 118822, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-ECE (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.473Z", + "last_change_date": "2022-03-14T07:58:12.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5792, + "fields": { + "EF_ID": 118823, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-ECE (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.568Z", + "last_change_date": "2022-03-14T07:58:12.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5793, + "fields": { + "EF_ID": 118824, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-ECE (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.657Z", + "last_change_date": "2022-03-14T07:58:12.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5794, + "fields": { + "EF_ID": 118825, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.753Z", + "last_change_date": "2022-03-14T07:58:12.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5795, + "fields": { + "EF_ID": 118826, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.831Z", + "last_change_date": "2022-03-14T07:58:12.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5796, + "fields": { + "EF_ID": 118827, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:12.928Z", + "last_change_date": "2022-03-14T07:58:12.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5797, + "fields": { + "EF_ID": 118828, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.006Z", + "last_change_date": "2022-03-14T07:58:13.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5798, + "fields": { + "EF_ID": 118829, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.138Z", + "last_change_date": "2022-03-14T07:58:13.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5799, + "fields": { + "EF_ID": 118830, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.223Z", + "last_change_date": "2022-03-14T07:58:13.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5800, + "fields": { + "EF_ID": 118831, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.330Z", + "last_change_date": "2022-03-14T07:58:13.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5801, + "fields": { + "EF_ID": 118832, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.415Z", + "last_change_date": "2022-03-14T07:58:13.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5802, + "fields": { + "EF_ID": 118833, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.515Z", + "last_change_date": "2022-03-14T07:58:13.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5803, + "fields": { + "EF_ID": 118834, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.598Z", + "last_change_date": "2022-03-14T07:58:13.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5804, + "fields": { + "EF_ID": 118835, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.691Z", + "last_change_date": "2022-03-14T07:58:13.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5805, + "fields": { + "EF_ID": 118836, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.782Z", + "last_change_date": "2022-03-14T07:58:13.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5806, + "fields": { + "EF_ID": 118837, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.874Z", + "last_change_date": "2022-03-14T07:58:13.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5807, + "fields": { + "EF_ID": 118838, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:13.965Z", + "last_change_date": "2022-03-14T07:58:13.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5808, + "fields": { + "EF_ID": 118839, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.077Z", + "last_change_date": "2022-03-14T07:58:14.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5809, + "fields": { + "EF_ID": 118840, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.165Z", + "last_change_date": "2022-03-14T07:58:14.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5810, + "fields": { + "EF_ID": 118841, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 and later (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.262Z", + "last_change_date": "2022-03-14T07:58:14.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5811, + "fields": { + "EF_ID": 118842, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 and later (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.348Z", + "last_change_date": "2022-03-14T07:58:14.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5812, + "fields": { + "EF_ID": 118843, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 and later (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.446Z", + "last_change_date": "2022-03-14T07:58:14.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5813, + "fields": { + "EF_ID": 118844, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 and later (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.532Z", + "last_change_date": "2022-03-14T07:58:14.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5814, + "fields": { + "EF_ID": 118845, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 and later (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.630Z", + "last_change_date": "2022-03-14T07:58:14.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5815, + "fields": { + "EF_ID": 118846, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 and later (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.715Z", + "last_change_date": "2022-03-14T07:58:14.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5816, + "fields": { + "EF_ID": 118847, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 and later (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.822Z", + "last_change_date": "2022-03-14T07:58:14.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5817, + "fields": { + "EF_ID": 118848, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 and later (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:14.907Z", + "last_change_date": "2022-03-14T07:58:14.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5818, + "fields": { + "EF_ID": 118849, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.016Z", + "last_change_date": "2022-03-14T07:58:15.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5819, + "fields": { + "EF_ID": 118850, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.098Z", + "last_change_date": "2022-03-14T07:58:15.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5820, + "fields": { + "EF_ID": 118851, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.291Z", + "last_change_date": "2022-03-14T07:58:15.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5821, + "fields": { + "EF_ID": 118852, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.373Z", + "last_change_date": "2022-03-14T07:58:15.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5822, + "fields": { + "EF_ID": 118853, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "201", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.451Z", + "last_change_date": "2022-03-14T07:58:15.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5823, + "fields": { + "EF_ID": 118854, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "131", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.540Z", + "last_change_date": "2022-03-14T07:58:15.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5824, + "fields": { + "EF_ID": 118855, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.626Z", + "last_change_date": "2022-03-14T07:58:15.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5825, + "fields": { + "EF_ID": 118856, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.715Z", + "last_change_date": "2022-03-14T07:58:15.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5826, + "fields": { + "EF_ID": 118857, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "122", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.804Z", + "last_change_date": "2022-03-14T07:58:15.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5827, + "fields": { + "EF_ID": 118858, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.890Z", + "last_change_date": "2022-03-14T07:58:15.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5828, + "fields": { + "EF_ID": 118859, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:15.979Z", + "last_change_date": "2022-03-14T07:58:15.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5829, + "fields": { + "EF_ID": 118860, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.065Z", + "last_change_date": "2022-03-14T07:58:16.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5830, + "fields": { + "EF_ID": 118861, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.156Z", + "last_change_date": "2022-03-14T07:58:16.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5831, + "fields": { + "EF_ID": 118862, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.240Z", + "last_change_date": "2022-03-14T07:58:16.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5832, + "fields": { + "EF_ID": 118863, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.331Z", + "last_change_date": "2022-03-14T07:58:16.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5833, + "fields": { + "EF_ID": 118864, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.415Z", + "last_change_date": "2022-03-14T07:58:16.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5834, + "fields": { + "EF_ID": 118865, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.499Z", + "last_change_date": "2022-03-14T07:58:16.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5835, + "fields": { + "EF_ID": 118866, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.582Z", + "last_change_date": "2022-03-14T07:58:16.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5836, + "fields": { + "EF_ID": 118867, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.674Z", + "last_change_date": "2022-03-14T07:58:16.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5837, + "fields": { + "EF_ID": 118868, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.757Z", + "last_change_date": "2022-03-14T07:58:16.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5838, + "fields": { + "EF_ID": 118869, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.851Z", + "last_change_date": "2022-03-14T07:58:16.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5839, + "fields": { + "EF_ID": 118870, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:16.932Z", + "last_change_date": "2022-03-14T07:58:16.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5840, + "fields": { + "EF_ID": 118871, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.043Z", + "last_change_date": "2022-03-14T07:58:17.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5841, + "fields": { + "EF_ID": 118872, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.123Z", + "last_change_date": "2022-03-14T07:58:17.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5842, + "fields": { + "EF_ID": 118873, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.211Z", + "last_change_date": "2022-03-14T07:58:17.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5843, + "fields": { + "EF_ID": 118874, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.307Z", + "last_change_date": "2022-03-14T07:58:17.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5844, + "fields": { + "EF_ID": 118875, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.405Z", + "last_change_date": "2022-03-14T07:58:17.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5845, + "fields": { + "EF_ID": 118876, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.498Z", + "last_change_date": "2022-03-14T07:58:17.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5846, + "fields": { + "EF_ID": 118877, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.598Z", + "last_change_date": "2022-03-14T07:58:17.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5847, + "fields": { + "EF_ID": 118878, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.682Z", + "last_change_date": "2022-03-14T07:58:17.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5848, + "fields": { + "EF_ID": 118879, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.782Z", + "last_change_date": "2022-03-14T07:58:17.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5849, + "fields": { + "EF_ID": 118880, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.865Z", + "last_change_date": "2022-03-14T07:58:17.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5850, + "fields": { + "EF_ID": 118881, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:17.966Z", + "last_change_date": "2022-03-14T07:58:17.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5851, + "fields": { + "EF_ID": 118882, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.048Z", + "last_change_date": "2022-03-14T07:58:18.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5852, + "fields": { + "EF_ID": 118883, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.142Z", + "last_change_date": "2022-03-14T07:58:18.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5853, + "fields": { + "EF_ID": 118884, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.224Z", + "last_change_date": "2022-03-14T07:58:18.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5854, + "fields": { + "EF_ID": 118885, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.326Z", + "last_change_date": "2022-03-14T07:58:18.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5855, + "fields": { + "EF_ID": 118886, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.407Z", + "last_change_date": "2022-03-14T07:58:18.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5856, + "fields": { + "EF_ID": 118887, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.510Z", + "last_change_date": "2022-03-14T07:58:18.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5857, + "fields": { + "EF_ID": 118888, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.590Z", + "last_change_date": "2022-03-14T07:58:18.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5858, + "fields": { + "EF_ID": 118889, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.686Z", + "last_change_date": "2022-03-14T07:58:18.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5859, + "fields": { + "EF_ID": 118890, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.766Z", + "last_change_date": "2022-03-14T07:58:18.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5860, + "fields": { + "EF_ID": 118891, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.863Z", + "last_change_date": "2022-03-14T07:58:18.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5861, + "fields": { + "EF_ID": 118892, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:18.957Z", + "last_change_date": "2022-03-14T07:58:18.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5862, + "fields": { + "EF_ID": 118893, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.056Z", + "last_change_date": "2022-03-14T07:58:19.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5863, + "fields": { + "EF_ID": 118894, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.149Z", + "last_change_date": "2022-03-14T07:58:19.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5864, + "fields": { + "EF_ID": 118895, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.257Z", + "last_change_date": "2022-03-14T07:58:19.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5865, + "fields": { + "EF_ID": 118896, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Pre-Euro (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.341Z", + "last_change_date": "2022-03-14T07:58:19.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5866, + "fields": { + "EF_ID": 118897, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.458Z", + "last_change_date": "2022-03-14T07:58:19.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5867, + "fields": { + "EF_ID": 118898, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.541Z", + "last_change_date": "2022-03-14T07:58:19.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5868, + "fields": { + "EF_ID": 118899, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.642Z", + "last_change_date": "2022-03-14T07:58:19.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5869, + "fields": { + "EF_ID": 118900, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.724Z", + "last_change_date": "2022-03-14T07:58:19.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5870, + "fields": { + "EF_ID": 118901, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.818Z", + "last_change_date": "2022-03-14T07:58:19.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5871, + "fields": { + "EF_ID": 118902, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.899Z", + "last_change_date": "2022-03-14T07:58:19.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5872, + "fields": { + "EF_ID": 118903, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:19.994Z", + "last_change_date": "2022-03-14T07:58:19.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5873, + "fields": { + "EF_ID": 118904, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 1 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.082Z", + "last_change_date": "2022-03-14T07:58:20.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5874, + "fields": { + "EF_ID": 118905, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.157Z", + "last_change_date": "2022-03-14T07:58:20.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5875, + "fields": { + "EF_ID": 118906, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.245Z", + "last_change_date": "2022-03-14T07:58:20.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5876, + "fields": { + "EF_ID": 118907, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.324Z", + "last_change_date": "2022-03-14T07:58:20.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5877, + "fields": { + "EF_ID": 118908, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.412Z", + "last_change_date": "2022-03-14T07:58:20.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5878, + "fields": { + "EF_ID": 118909, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.499Z", + "last_change_date": "2022-03-14T07:58:20.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5879, + "fields": { + "EF_ID": 118910, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.590Z", + "last_change_date": "2022-03-14T07:58:20.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5880, + "fields": { + "EF_ID": 118911, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.674Z", + "last_change_date": "2022-03-14T07:58:20.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5881, + "fields": { + "EF_ID": 118912, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 2 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.740Z", + "last_change_date": "2022-03-14T07:58:20.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5882, + "fields": { + "EF_ID": 118913, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.850Z", + "last_change_date": "2022-03-14T07:58:20.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5883, + "fields": { + "EF_ID": 118914, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:20.933Z", + "last_change_date": "2022-03-14T07:58:20.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5884, + "fields": { + "EF_ID": 118915, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.025Z", + "last_change_date": "2022-03-14T07:58:21.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5885, + "fields": { + "EF_ID": 118916, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.107Z", + "last_change_date": "2022-03-14T07:58:21.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5886, + "fields": { + "EF_ID": 118917, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.209Z", + "last_change_date": "2022-03-14T07:58:21.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5887, + "fields": { + "EF_ID": 118918, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.291Z", + "last_change_date": "2022-03-14T07:58:21.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5888, + "fields": { + "EF_ID": 118919, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.394Z", + "last_change_date": "2022-03-14T07:58:21.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5889, + "fields": { + "EF_ID": 118920, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.491Z", + "last_change_date": "2022-03-14T07:58:21.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5890, + "fields": { + "EF_ID": 118921, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.566Z", + "last_change_date": "2022-03-14T07:58:21.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5891, + "fields": { + "EF_ID": 118922, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.670Z", + "last_change_date": "2022-03-14T07:58:21.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5892, + "fields": { + "EF_ID": 118923, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.766Z", + "last_change_date": "2022-03-14T07:58:21.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5893, + "fields": { + "EF_ID": 118924, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.863Z", + "last_change_date": "2022-03-14T07:58:21.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5894, + "fields": { + "EF_ID": 118925, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Cold", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:21.958Z", + "last_change_date": "2022-03-14T07:58:21.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5895, + "fields": { + "EF_ID": 118926, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban, Hot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.055Z", + "last_change_date": "2022-03-14T07:58:22.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5896, + "fields": { + "EF_ID": 118927, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.141Z", + "last_change_date": "2022-03-14T07:58:22.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5897, + "fields": { + "EF_ID": 118928, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. The urban emission factor is distinguished into cold and hot for passenger cars and light duty trucks. The cold emission factor is relevant for trips which start with the engine at ambient temperature. A typical allocation of the annual mileage of a passenger car into the different driving conditions could be: 0.3/0.1/0.3/0.3 for urban cold, urban hot, rural and highway respectively. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.216Z", + "last_change_date": "2022-03-14T07:58:22.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5898, + "fields": { + "EF_ID": 118929, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: All technologies (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field. N2O and CH4 emission factors from heavy duty vehicles and power two wheelers are also expected to depend on vehicle technology. There is no adequate experimental information though to quantify this effect.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.316Z", + "last_change_date": "2022-03-14T07:58:22.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5899, + "fields": { + "EF_ID": 118930, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: All technologies (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field. N2O and CH4 emission factors from heavy duty vehicles and power two wheelers are also expected to depend on vehicle technology. There is no adequate experimental information though to quantify this effect.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.399Z", + "last_change_date": "2022-03-14T07:58:22.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5900, + "fields": { + "EF_ID": 118931, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: All technologies (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field. N2O and CH4 emission factors from heavy duty vehicles and power two wheelers are also expected to depend on vehicle technology. There is no adequate experimental information though to quantify this effect.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.492Z", + "last_change_date": "2022-03-14T07:58:22.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5901, + "fields": { + "EF_ID": 118932, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: All technologies (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field. N2O and CH4 emission factors from heavy duty vehicles and power two wheelers are also expected to depend on vehicle technology. There is no adequate experimental information though to quantify this effect.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.574Z", + "last_change_date": "2022-03-14T07:58:22.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5902, + "fields": { + "EF_ID": 118933, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: All technologies (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field. N2O and CH4 emission factors from heavy duty vehicles and power two wheelers are also expected to depend on vehicle technology. There is no adequate experimental information though to quantify this effect.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.667Z", + "last_change_date": "2022-03-14T07:58:22.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5903, + "fields": { + "EF_ID": 118934, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: All technologies (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field. N2O and CH4 emission factors from heavy duty vehicles and power two wheelers are also expected to depend on vehicle technology. There is no adequate experimental information though to quantify this effect.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.750Z", + "last_change_date": "2022-03-14T07:58:22.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5904, + "fields": { + "EF_ID": 118935, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW < 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.825Z", + "last_change_date": "2022-03-14T07:58:22.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5905, + "fields": { + "EF_ID": 118936, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW < 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.919Z", + "last_change_date": "2022-03-14T07:58:22.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5906, + "fields": { + "EF_ID": 118937, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW < 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:22.999Z", + "last_change_date": "2022-03-14T07:58:22.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5907, + "fields": { + "EF_ID": 118938, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW < 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.104Z", + "last_change_date": "2022-03-14T07:58:23.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5908, + "fields": { + "EF_ID": 118939, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW < 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.191Z", + "last_change_date": "2022-03-14T07:58:23.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5909, + "fields": { + "EF_ID": 118940, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW < 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.266Z", + "last_change_date": "2022-03-14T07:58:23.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5910, + "fields": { + "EF_ID": 118941, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW > 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.371Z", + "last_change_date": "2022-03-14T07:58:23.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5911, + "fields": { + "EF_ID": 118942, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW > 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.466Z", + "last_change_date": "2022-03-14T07:58:23.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5912, + "fields": { + "EF_ID": 118943, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW > 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.558Z", + "last_change_date": "2022-03-14T07:58:23.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5913, + "fields": { + "EF_ID": 118944, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW > 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.656Z", + "last_change_date": "2022-03-14T07:58:23.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5914, + "fields": { + "EF_ID": 118945, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW > 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.749Z", + "last_change_date": "2022-03-14T07:58:23.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5915, + "fields": { + "EF_ID": 118946, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: GVW > 16t (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.825Z", + "last_change_date": "2022-03-14T07:58:23.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5916, + "fields": { + "EF_ID": 118947, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Urban Buses & Coaches (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:23.924Z", + "last_change_date": "2022-03-14T07:58:23.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5917, + "fields": { + "EF_ID": 118948, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Urban Buses & Coaches (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.008Z", + "last_change_date": "2022-03-14T07:58:24.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5918, + "fields": { + "EF_ID": 118949, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Urban Buses & Coaches (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.100Z", + "last_change_date": "2022-03-14T07:58:24.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5919, + "fields": { + "EF_ID": 118950, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Urban Buses & Coaches (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.202Z", + "last_change_date": "2022-03-14T07:58:24.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5920, + "fields": { + "EF_ID": 118951, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Urban Buses & Coaches (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.283Z", + "last_change_date": "2022-03-14T07:58:24.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5921, + "fields": { + "EF_ID": 118952, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Urban Buses & Coaches (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.358Z", + "last_change_date": "2022-03-14T07:58:24.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5922, + "fields": { + "EF_ID": 118953, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: pre-Euro 4 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Fuel: Compressed Natural Gas (CNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5400", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.453Z", + "last_change_date": "2022-03-14T07:58:24.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5923, + "fields": { + "EF_ID": 118954, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Technology/Class: Euro 4 and later including EEV (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Fuel: Compressed Natural Gas (CNG)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "900", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.533Z", + "last_change_date": "2022-03-14T07:58:24.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5924, + "fields": { + "EF_ID": 118955, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.608Z", + "last_change_date": "2022-03-14T07:58:24.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5925, + "fields": { + "EF_ID": 118956, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.704Z", + "last_change_date": "2022-03-14T07:58:24.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5926, + "fields": { + "EF_ID": 118957, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.783Z", + "last_change_date": "2022-03-14T07:58:24.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5927, + "fields": { + "EF_ID": 118958, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "219", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.888Z", + "last_change_date": "2022-03-14T07:58:24.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5928, + "fields": { + "EF_ID": 118959, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "219", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:24.975Z", + "last_change_date": "2022-03-14T07:58:24.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5929, + "fields": { + "EF_ID": 118960, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3 (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "219", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.050Z", + "last_change_date": "2022-03-14T07:58:25.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5930, + "fields": { + "EF_ID": 118961, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 2-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.173Z", + "last_change_date": "2022-03-14T07:58:25.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5931, + "fields": { + "EF_ID": 118962, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 2-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.258Z", + "last_change_date": "2022-03-14T07:58:25.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5932, + "fields": { + "EF_ID": 118963, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 2-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.382Z", + "last_change_date": "2022-03-14T07:58:25.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5933, + "fields": { + "EF_ID": 118964, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 2-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.466Z", + "last_change_date": "2022-03-14T07:58:25.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5934, + "fields": { + "EF_ID": 118965, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 2-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.567Z", + "last_change_date": "2022-03-14T07:58:25.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5935, + "fields": { + "EF_ID": 118966, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 2-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.667Z", + "last_change_date": "2022-03-14T07:58:25.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5936, + "fields": { + "EF_ID": 118967, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 4-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.742Z", + "last_change_date": "2022-03-14T07:58:25.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5937, + "fields": { + "EF_ID": 118968, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 4-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.836Z", + "last_change_date": "2022-03-14T07:58:25.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5938, + "fields": { + "EF_ID": 118969, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 4-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L and Samaras, Z (2005). Personal Communication Leonidas Ntziachristos and Zissis Samaras based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle University Thessaloniki, PO Box 458, GR 54124, Thessaloniki, GREECE; .LAT (2005). Emission factors of N2O and NH3 from road vehicles. LAT Report 0507 (in Greek), Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki, Greece; TNO (2002). N2O formation in vehicles catalysts. Report #02.OR.VM.017.1/NG. Nederlandse Organisatie voor toegepastnatuurwetenschappelijk onderzoek (Netherlands Organisation for Applied Scientific Research), Delft, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:25.908Z", + "last_change_date": "2022-03-14T07:58:25.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5939, + "fields": { + "EF_ID": 118970, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 4-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Urban", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:26.003Z", + "last_change_date": "2022-03-14T07:58:26.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5940, + "fields": { + "EF_ID": 118971, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 4-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Rural", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:26.075Z", + "last_change_date": "2022-03-14T07:58:26.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5941, + "fields": { + "EF_ID": 118972, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for European Vehicles [COPERT IV Model]", + "Technology_Practices": "Vehicle Type: Power Two Wheeler, Vehicle Technology/Class: <50 cm^3, 4-stroke (For details, consult COPERT iV Model)", + "Parameter_Conditions": "Driving Condition: Highway", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "mg/km", + "Equation": "Equation 3.2.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.2.5", + "Technical_Reference": "Ntziachristos, L. and Samaras, Z. (2005) Personal communication based on draft COPERT IV. Laboratory of Applied Thermodynamics, Aristotle Unviversity Thessaloniki, P.O. Box 458, GR 54124, Thessaloniki, GREECE", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Three different driving conditions are considered, namely Urban, Rural and Highway. For details, consult the COPERT IV Model (http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm) and the literature shown in Technical Reference field.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:26.150Z", + "last_change_date": "2022-03-14T07:58:26.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5942, + "fields": { + "EF_ID": 118973, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Agriculture", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.15", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.67", + "Upper_Bound": "10.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. It includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.254Z", + "last_change_date": "2022-03-14T07:58:26.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5943, + "fields": { + "EF_ID": 118974, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Forestry", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.15", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.67", + "Upper_Bound": "10.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. It includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.333Z", + "last_change_date": "2022-03-14T07:58:26.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5944, + "fields": { + "EF_ID": 118975, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Industry", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.15", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.67", + "Upper_Bound": "10.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. It includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.408Z", + "last_change_date": "2022-03-14T07:58:26.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5945, + "fields": { + "EF_ID": 118976, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Household", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.15", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.67", + "Upper_Bound": "10.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. It includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.483Z", + "last_change_date": "2022-03-14T07:58:26.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5946, + "fields": { + "EF_ID": 118977, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Agriculture", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.6", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "14.3", + "Upper_Bound": "85.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.581Z", + "last_change_date": "2022-03-14T07:58:26.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5947, + "fields": { + "EF_ID": 118978, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Forestry", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.6", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "14.3", + "Upper_Bound": "85.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.658Z", + "last_change_date": "2022-03-14T07:58:26.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5948, + "fields": { + "EF_ID": 118979, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Industry", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.6", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "14.3", + "Upper_Bound": "85.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.733Z", + "last_change_date": "2022-03-14T07:58:26.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5949, + "fields": { + "EF_ID": 118980, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Household", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.6", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "14.3", + "Upper_Bound": "85.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.841Z", + "last_change_date": "2022-03-14T07:58:26.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5950, + "fields": { + "EF_ID": 118981, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Agriculture, Engine type: Motor gasoline, 4-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "32", + "Upper_Bound": "200", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. This datum includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:26.925Z", + "last_change_date": "2022-03-14T07:58:26.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5951, + "fields": { + "EF_ID": 118982, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Industry, Engine type: Motor gasoline, 4-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "20", + "Upper_Bound": "125", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. This datum includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.025Z", + "last_change_date": "2022-03-14T07:58:27.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5952, + "fields": { + "EF_ID": 118983, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Household, Engine type: Motor gasoline, 4-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "48", + "Upper_Bound": "300", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. This datum includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.108Z", + "last_change_date": "2022-03-14T07:58:27.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5953, + "fields": { + "EF_ID": 118984, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Agriculture, Engine type: Motor gasoline, 4-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.183Z", + "last_change_date": "2022-03-14T07:58:27.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5954, + "fields": { + "EF_ID": 118985, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Industry, Engine type: Motor gasoline, 4-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.276Z", + "last_change_date": "2022-03-14T07:58:27.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5955, + "fields": { + "EF_ID": 118986, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Household, Engine type: Motor gasoline, 4-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1", + "Upper_Bound": "6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.359Z", + "last_change_date": "2022-03-14T07:58:27.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5956, + "fields": { + "EF_ID": 118987, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Agriculture, Engine type: Motor gasoline, 2-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "56", + "Upper_Bound": "350", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. This datum includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.436Z", + "last_change_date": "2022-03-14T07:58:27.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5957, + "fields": { + "EF_ID": 118988, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Forestry, Engine type: Motor gasoline, 2-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "68", + "Upper_Bound": "425", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. This datum includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.517Z", + "last_change_date": "2022-03-14T07:58:27.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5958, + "fields": { + "EF_ID": 118989, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Industry, Engine type: Motor gasoline, 2-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "52", + "Upper_Bound": "325", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. This datum includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.612Z", + "last_change_date": "2022-03-14T07:58:27.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5959, + "fields": { + "EF_ID": 118990, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Household, Engine type: Motor gasoline, 2-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "72", + "Upper_Bound": "450", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. This datum includes diurnal, soak and running losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.692Z", + "last_change_date": "2022-03-14T07:58:27.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5960, + "fields": { + "EF_ID": 118991, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Agriculture, Engine type: Motor gasoline, 2-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "1.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.759Z", + "last_change_date": "2022-03-14T07:58:27.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5961, + "fields": { + "EF_ID": 118992, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Forestry, Engine type: Motor gasoline, 2-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "1.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.855Z", + "last_change_date": "2022-03-14T07:58:27.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5962, + "fields": { + "EF_ID": 118993, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Industry, Engine type: Motor gasoline, 2-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "1.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:27.934Z", + "last_change_date": "2022-03-14T07:58:27.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5963, + "fields": { + "EF_ID": 118994, + "IPCC_Category": "1.A.3.e.ii - Off-road", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factors for Off-road Mobile Source and Machinery", + "Technology_Practices": "Off-Road Source: Household, Engine type: Motor gasoline, 2-stroke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg/TJ", + "Equation": "Equation 3.3.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.3.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "1.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This datum is based on European off-road mobile sources and machinery. In case fuel consumption by sector is not discriminated, default values may be obtained according to national circumstances, e.g. prevalence of a given sector or weighting by activity. In general, off-road vehicles do not have emission control catalysts installed (there may be exceptions among off-road vehicles in urban areas, such as ground support equipment used in urban airports and harbours). Properly operating catalysts convert nitrogen oxides to N2O and CH4 to CO2. However, exposure of catalysts to high-sulphur or leaded fuels, even once, causes permanent deterioration. (See Walsh, M. (2003). Vehicle emissions trends and forecasts: The lessons of the past 50 years, blue sky in the 21st century conference, Seoul, Korea. May 2003). This effect, if applicable, should be considered when adjusting emission factors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:28.023Z", + "last_change_date": "2022-03-14T07:58:28.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5964, + "fields": { + "EF_ID": 118995, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for the Most Common Used Fuels for Rail Transport", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.15", + "Unit": "kg/TJ", + "Equation": "Equations 3.4.1 and 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "1.67", + "Upper_Bound": "10.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For an average fuel consumption of 0.35 litres per bhp-hr (break horse power-hour) for a 4000 HP locomotive, (0.47 litres per kWh for a 2983 kW locomotive). [Dunn, R. (2001). Diesel fuel quality and locomotive emissions in Canada. Transport Canada Publication Number Tp 13783e (Table 8). This default emission factor may be modified depending on the engine design parameters. See Equation 3.4.4 and Table 3.4.2. To take into account the increase in CH4 emissions with the age, the default emission factor for CH4 may be increased by 1.5 percent per year (EEA, 2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:28.100Z", + "last_change_date": "2022-03-14T07:58:28.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5965, + "fields": { + "EF_ID": 118996, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for the Most Common Used Fuels for Rail Transport", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.6", + "Unit": "kg/TJ", + "Equation": "Equations 3.4.1 and 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.1", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005). Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "14.3", + "Upper_Bound": "85.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For an average fuel consumption of 0.35 litres per bhp-hr (break horse power-hour) for a 4000 HP locomotive, (0.47 litres per kWh for a 2983 kW locomotive). [Dunn, R. (2001). Diesel fuel quality and locomotive emissions in Canada. Transport Canada Publication Number Tp 13783e (Table 8). This default emission factor may be modified depending on the engine design parameters. See Equation 3.4.4 and Table 3.4.2.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T07:58:28.191Z", + "last_change_date": "2022-03-14T07:58:28.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5966, + "fields": { + "EF_ID": 118997, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for the Most Common Used Fuels for Rail Transport", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 3.4.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.1", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines. (This factor was taken from Table 2.2 in Stationary Combustion chapter in Volume 2 of the 2006 IPCC Guidelines.)", + "English_Abstract": "", + "Lower_Bound": "0.6", + "Upper_Bound": "6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For an average fuel consumption of 0.35 litres per bhp-hr (break horse power-hour) for a 4000 HP locomotive, (0.47 litres per kWh for a 2983 kW locomotive). [Dunn, R. (2001). Diesel fuel quality and locomotive emissions in Canada. Transport Canada Publication Number Tp 13783e (Table 8). This default emission factor may be modified depending on the engine design parameters. See Equation 3.4.4 and Table 3.4.2. To take into account the increase in CH4 emissions with the age, the default emission factor for CH4 may be increased by 1.5 percent per year (EEA, 2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.273Z", + "last_change_date": "2022-03-14T07:58:28.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5967, + "fields": { + "EF_ID": 118998, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for the Most Common Used Fuels for Rail Transport", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg/TJ", + "Equation": "Equation 3.4.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 2 of 4 (page A1.7) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.1", + "Technical_Reference": "Expert judgement by the authors of Chapter 1, Volume 2 of the 2006 IPCC Guidelines. For details, see Section 1.4.2.1, Chapter 1, Volume 2 of the 2006 IPCC Guidelines. (This factor was taken from Table 2.2 in Stationary Combustion chapter in Volume 2 of the 2006 IPCC Guidelines.)", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For an average fuel consumption of 0.35 litres per bhp-hr (break horse power-hour) for a 4000 HP locomotive, (0.47 litres per kWh for a 2983 kW locomotive). [Dunn, R. (2001). Diesel fuel quality and locomotive emissions in Canada. Transport Canada Publication Number Tp 13783e (Table 8). This default emission factor may be modified depending on the engine design parameters. See Equation 3.4.4 and Table 3.4.2.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.340Z", + "last_change_date": "2022-03-14T07:58:28.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5968, + "fields": { + "EF_ID": 118999, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Naturally Aspirated Direct Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.433Z", + "last_change_date": "2022-03-14T07:58:28.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5969, + "fields": { + "EF_ID": 119000, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Turbo-Charged Direct Injection / Inter-cooled Turbo-Charged Direct Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.524Z", + "last_change_date": "2022-03-14T07:58:28.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5970, + "fields": { + "EF_ID": 119001, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Naturally Aspirated Pre-chamber Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.599Z", + "last_change_date": "2022-03-14T07:58:28.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5971, + "fields": { + "EF_ID": 119002, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Turbo-Charged Pre-chamber Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.673Z", + "last_change_date": "2022-03-14T07:58:28.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5972, + "fields": { + "EF_ID": 119003, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Inter-cooled Turbo-Charged Pre-chamber Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.768Z", + "last_change_date": "2022-03-14T07:58:28.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5973, + "fields": { + "EF_ID": 119004, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Naturally Aspirated Direct Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.857Z", + "last_change_date": "2022-03-14T07:58:28.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5974, + "fields": { + "EF_ID": 119005, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Turbo-Charged Direct Injection / Inter-cooled Turbo-Charged Direct Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.924Z", + "last_change_date": "2022-03-14T07:58:28.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5975, + "fields": { + "EF_ID": 119006, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Naturally Aspirated Pre-chamber Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:28.990Z", + "last_change_date": "2022-03-14T07:58:28.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5976, + "fields": { + "EF_ID": 119007, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Turbo-Charged Pre-chamber Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.057Z", + "last_change_date": "2022-03-14T07:58:29.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5977, + "fields": { + "EF_ID": 119008, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Pollutant Weighing Factor as Function of Engine Design Parameter for Uncontrolled Engines", + "Technology_Practices": "Engine Type: Inter-cooled Turbo-Charged Pre-chamber Injection", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "dimensionless", + "Equation": "Equation 3.4.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.4.2", + "Technical_Reference": "EMEP/CORINAIR Emission inventory Guidebook 2005, European Environmental Agency, Technical Report No 30, Copenhagen Denmmark, (December 2005)., Table 8-9. Available from web site: http://reports.eea.eu.int/EMEPCORINAIR4/en", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.147Z", + "last_change_date": "2022-03-14T07:58:29.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5978, + "fields": { + "EF_ID": 119009, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Water-Bourne Navigation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "On-going Ships", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "Equation 3.5.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.5.3", + "Technical_Reference": "Lloyd`s Register (1995) Marine exhaust emissions research programme, Lloyd`s Register House, Croydon, England.; EC (2002). Quantification of emissions from ships associated with ship movements between ports in the European Community. Final Report Entec UK Limited (July 2002), page 12. Available from EU web site http://europa.eu.int/comm/environment/air/pdf/chapter2_ship_emissions.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value was derived for diesel engines using heavy fuel oil.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://europa.eu.int/comm/environment/air/pdf/chapter2_ship_emissions.pdf", + "creation_date": "2022-03-14T07:58:29.223Z", + "last_change_date": "2022-03-14T07:58:29.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5979, + "fields": { + "EF_ID": 119010, + "IPCC_Category": "1.A.3.d - Water-borne Navigation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Water-Bourne Navigation Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "On-going Ships", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 3.5.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.5.3", + "Technical_Reference": "Lloyd`s Register (1995) Marine exhaust emissions research programme, Lloyd`s Register House, Croydon, England.; EC (2002). Quantification of emissions from ships associated with ship movements between ports in the European Community. Final Report Entec UK Limited (July 2002), page 12. Available from EU web site http://europa.eu.int/comm/environment/air/pdf/chapter2_ship_emissions.pdf", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+140%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value was derived for diesel engines using heavy fuel oil.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://europa.eu.int/comm/environment/air/pdf/chapter2_ship_emissions.pdf", + "creation_date": "2022-03-14T07:58:29.290Z", + "last_change_date": "2022-03-14T07:58:29.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5980, + "fields": { + "EF_ID": 119011, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "Wiesen, P., Kleffmann, J., Kortenbach, R. and Becker, K.H (1994). Nitrous oxide and methane emissions from aero engines. Geophys. Res. Lett. 21:18 2027-2030.; Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.; Olivier, J.G.J. (1995). Scenarios for global emissions from air traffic. Report No. 773 002 003, RIVM, Bilthoven, The Netherlands, 1995", + "English_Abstract": "", + "Lower_Bound": "-57%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In the cruise mode CH4 emissions are assumed to be negligible (Wiesen et al., 1994). For LTO cycles only (i.e., below an altitude of 914 metres (3000 ft.)) the emission factor is 5 kg/TJ (10% of total VOC factor) (Olivier, 1991). Since globally about 10% of the total fuel is consumed in LTO cycles (Olivier, 1995), the resulting fleet averaged factor is 0.5 kg/TJ. Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.357Z", + "last_change_date": "2022-03-14T07:58:29.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5981, + "fields": { + "EF_ID": 119012, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "Wiesen, P., Kleffmann, J., Kortenbach, R. and Becker, K.H (1994). Nitrous oxide and methane emissions from aero engines. Geophys. Res. Lett. 21:18 2027-2030.; Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.; Olivier, J.G.J. (1995). Scenarios for global emissions from air traffic. Report No. 773 002 003, RIVM, Bilthoven, The Netherlands, 1995", + "English_Abstract": "", + "Lower_Bound": "-57%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In the cruise mode CH4 emissions are assumed to be negligible (Wiesen et al., 1994). For LTO cycles only (i.e., below an altitude of 914 metres (3000 ft.)) the emission factor is 5 kg/TJ (10% of total VOC factor) (Olivier, 1991). Since globally about 10% of the total fuel is consumed in LTO cycles (Olivier, 1995), the resulting fleet averaged factor is 0.5 kg/TJ. Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.448Z", + "last_change_date": "2022-03-14T07:58:29.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5982, + "fields": { + "EF_ID": 119013, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "Wiesen, P., Kleffmann, J., Kortenbach, R. and Becker, K.H (1994). Nitrous oxide and methane emissions from aero engines. Geophys. Res. Lett. 21:18 2027-2030.; Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.; Olivier, J.G.J. (1995). Scenarios for global emissions from air traffic. Report No. 773 002 003, RIVM, Bilthoven, The Netherlands, 1995", + "English_Abstract": "", + "Lower_Bound": "-57%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In the cruise mode CH4 emissions are assumed to be negligible (Wiesen et al., 1994). For LTO cycles only (i.e., below an altitude of 914 metres (3000 ft.)) the emission factor is 5 kg/TJ (10% of total VOC factor) (Olivier, 1991). Since globally about 10% of the total fuel is consumed in LTO cycles (Olivier, 1995), the resulting fleet averaged factor is 0.5 kg/TJ. Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.524Z", + "last_change_date": "2022-03-14T07:58:29.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5983, + "fields": { + "EF_ID": 119014, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "IPCC (1999). Aviation and the global atmosphere. Eds: Penner, J.E., Lister, D.H., Griggs, D.J., Dokken, D.J., MsFarland, M., Intergovernmental Panel on Climate Change, Cambridge University Press 1999.", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.616Z", + "last_change_date": "2022-03-14T07:58:29.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5984, + "fields": { + "EF_ID": 119015, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "IPCC (1999). Aviation and the global atmosphere. Eds: Penner, J.E., Lister, D.H., Griggs, D.J., Dokken, D.J., MsFarland, M., Intergovernmental Panel on Climate Change, Cambridge University Press 1999.", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.690Z", + "last_change_date": "2022-03-14T07:58:29.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5985, + "fields": { + "EF_ID": 119016, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1A, Sheet 1 of 4 (page A1.6) in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "IPCC (1999). Aviation and the global atmosphere. Eds: Penner, J.E., Lister, D.H., Griggs, D.J., Dokken, D.J., MsFarland, M., Intergovernmental Panel on Climate Change, Cambridge University Press 1999.", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.757Z", + "last_change_date": "2022-03-14T07:58:29.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5986, + "fields": { + "EF_ID": 119017, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "250", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "Expert judgement by the authors of Section 3.6, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.840Z", + "last_change_date": "2022-03-14T07:58:29.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5987, + "fields": { + "EF_ID": 119018, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "250", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "Expert judgement by the authors of Section 3.6, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:29.934Z", + "last_change_date": "2022-03-14T07:58:29.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5988, + "fields": { + "EF_ID": 119019, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "Default Emission Factor for Aircraft", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Uncontrolled", + "Other_Properties": "", + "Value": "250", + "Unit": "kg/TJ", + "Equation": "Equation 3.6.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.5", + "Technical_Reference": "Expert judgement by the authors of Section 3.6, Volume 2 of the 2006 IPCC Guidelines.", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 1 assumes that all aircraft have the same emission factors based on the rate of fuel consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:30.024Z", + "last_change_date": "2022-03-14T07:58:30.024Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5989, + "fields": { + "EF_ID": 119020, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5450", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.092Z", + "last_change_date": "2022-03-14T07:58:30.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5990, + "fields": { + "EF_ID": 119021, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4760", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.159Z", + "last_change_date": "2022-03-14T07:58:30.159Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5991, + "fields": { + "EF_ID": 119022, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.244Z", + "last_change_date": "2022-03-14T07:58:30.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5992, + "fields": { + "EF_ID": 119023, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2440", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.332Z", + "last_change_date": "2022-03-14T07:58:30.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5993, + "fields": { + "EF_ID": 119024, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3020", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.437Z", + "last_change_date": "2022-03-14T07:58:30.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5994, + "fields": { + "EF_ID": 119025, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7050", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.640Z", + "last_change_date": "2022-03-14T07:58:30.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5995, + "fields": { + "EF_ID": 119026, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5890", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.731Z", + "last_change_date": "2022-03-14T07:58:30.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5996, + "fields": { + "EF_ID": 119027, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6380", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.807Z", + "last_change_date": "2022-03-14T07:58:30.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5997, + "fields": { + "EF_ID": 119028, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10660", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.898Z", + "last_change_date": "2022-03-14T07:58:30.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5998, + "fields": { + "EF_ID": 119029, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5890", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:30.974Z", + "last_change_date": "2022-03-14T07:58:30.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 5999, + "fields": { + "EF_ID": 119030, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2140", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.066Z", + "last_change_date": "2022-03-14T07:58:31.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6000, + "fields": { + "EF_ID": 119031, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3970", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.140Z", + "last_change_date": "2022-03-14T07:58:31.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6001, + "fields": { + "EF_ID": 119032, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4610", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.233Z", + "last_change_date": "2022-03-14T07:58:31.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6002, + "fields": { + "EF_ID": 119033, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2740", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.307Z", + "last_change_date": "2022-03-14T07:58:31.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6003, + "fields": { + "EF_ID": 119034, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2480", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.401Z", + "last_change_date": "2022-03-14T07:58:31.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6004, + "fields": { + "EF_ID": 119035, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2280", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.474Z", + "last_change_date": "2022-03-14T07:58:31.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6005, + "fields": { + "EF_ID": 119036, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2460", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.569Z", + "last_change_date": "2022-03-14T07:58:31.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6006, + "fields": { + "EF_ID": 119037, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2780", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.657Z", + "last_change_date": "2022-03-14T07:58:31.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6007, + "fields": { + "EF_ID": 119038, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10140", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.744Z", + "last_change_date": "2022-03-14T07:58:31.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6008, + "fields": { + "EF_ID": 119039, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11370", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.832Z", + "last_change_date": "2022-03-14T07:58:31.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6009, + "fields": { + "EF_ID": 119040, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11080", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:31.937Z", + "last_change_date": "2022-03-14T07:58:31.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6010, + "fields": { + "EF_ID": 119041, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10240", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.015Z", + "last_change_date": "2022-03-14T07:58:32.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6011, + "fields": { + "EF_ID": 119042, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4320", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.113Z", + "last_change_date": "2022-03-14T07:58:32.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6012, + "fields": { + "EF_ID": 119043, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4630", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.190Z", + "last_change_date": "2022-03-14T07:58:32.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6013, + "fields": { + "EF_ID": 119044, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4620", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.282Z", + "last_change_date": "2022-03-14T07:58:32.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6014, + "fields": { + "EF_ID": 119045, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5610", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.365Z", + "last_change_date": "2022-03-14T07:58:32.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6015, + "fields": { + "EF_ID": 119046, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5520", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.458Z", + "last_change_date": "2022-03-14T07:58:32.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6016, + "fields": { + "EF_ID": 119047, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8100", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.540Z", + "last_change_date": "2022-03-14T07:58:32.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6017, + "fields": { + "EF_ID": 119048, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7290", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.633Z", + "last_change_date": "2022-03-14T07:58:32.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6018, + "fields": { + "EF_ID": 119049, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5360", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.716Z", + "last_change_date": "2022-03-14T07:58:32.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6019, + "fields": { + "EF_ID": 119050, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2650", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.810Z", + "last_change_date": "2022-03-14T07:58:32.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6020, + "fields": { + "EF_ID": 119051, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7300", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.890Z", + "last_change_date": "2022-03-14T07:58:32.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6021, + "fields": { + "EF_ID": 119052, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7290", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:32.993Z", + "last_change_date": "2022-03-14T07:58:32.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6022, + "fields": { + "EF_ID": 119053, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3180", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.068Z", + "last_change_date": "2022-03-14T07:58:33.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6023, + "fields": { + "EF_ID": 119054, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2760", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.161Z", + "last_change_date": "2022-03-14T07:58:33.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6024, + "fields": { + "EF_ID": 119055, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2930", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.251Z", + "last_change_date": "2022-03-14T07:58:33.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6025, + "fields": { + "EF_ID": 119056, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5960", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.337Z", + "last_change_date": "2022-03-14T07:58:33.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6026, + "fields": { + "EF_ID": 119057, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7030", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.426Z", + "last_change_date": "2022-03-14T07:58:33.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6027, + "fields": { + "EF_ID": 119058, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1910", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.521Z", + "last_change_date": "2022-03-14T07:58:33.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6028, + "fields": { + "EF_ID": 119059, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1800", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.610Z", + "last_change_date": "2022-03-14T07:58:33.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6029, + "fields": { + "EF_ID": 119060, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1060", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.705Z", + "last_change_date": "2022-03-14T07:58:33.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6030, + "fields": { + "EF_ID": 119061, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "990", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.785Z", + "last_change_date": "2022-03-14T07:58:33.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6031, + "fields": { + "EF_ID": 119062, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2390", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.891Z", + "last_change_date": "2022-03-14T07:58:33.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6032, + "fields": { + "EF_ID": 119063, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2520", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:33.985Z", + "last_change_date": "2022-03-14T07:58:33.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6033, + "fields": { + "EF_ID": 119064, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "870", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:34.109Z", + "last_change_date": "2022-03-14T07:58:34.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6034, + "fields": { + "EF_ID": 119065, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2160", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:34.182Z", + "last_change_date": "2022-03-14T07:58:34.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6035, + "fields": { + "EF_ID": 119066, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1890", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:34.268Z", + "last_change_date": "2022-03-14T07:58:34.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6036, + "fields": { + "EF_ID": 119067, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2880", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:34.343Z", + "last_change_date": "2022-03-14T07:58:34.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6037, + "fields": { + "EF_ID": 119068, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1070", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:58:34.444Z", + "last_change_date": "2022-03-14T07:58:34.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6038, + "fields": { + "EF_ID": 119069, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "230", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:34.532Z", + "last_change_date": "2022-03-14T07:58:34.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6039, + "fields": { + "EF_ID": 119070, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "640", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:34.628Z", + "last_change_date": "2022-03-14T07:58:34.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6040, + "fields": { + "EF_ID": 119071, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "620", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:34.701Z", + "last_change_date": "2022-03-14T07:58:34.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6041, + "fields": { + "EF_ID": 119072, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.12", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:34.804Z", + "last_change_date": "2022-03-14T07:58:34.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6042, + "fields": { + "EF_ID": 119073, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.63", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:34.893Z", + "last_change_date": "2022-03-14T07:58:34.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6043, + "fields": { + "EF_ID": 119074, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:34.989Z", + "last_change_date": "2022-03-14T07:58:34.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6044, + "fields": { + "EF_ID": 119075, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.077Z", + "last_change_date": "2022-03-14T07:58:35.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6045, + "fields": { + "EF_ID": 119076, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.14", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.181Z", + "last_change_date": "2022-03-14T07:58:35.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6046, + "fields": { + "EF_ID": 119077, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.260Z", + "last_change_date": "2022-03-14T07:58:35.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6047, + "fields": { + "EF_ID": 119078, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.42", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.365Z", + "last_change_date": "2022-03-14T07:58:35.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6048, + "fields": { + "EF_ID": 119079, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.39", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.443Z", + "last_change_date": "2022-03-14T07:58:35.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6049, + "fields": { + "EF_ID": 119080, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.542Z", + "last_change_date": "2022-03-14T07:58:35.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6050, + "fields": { + "EF_ID": 119081, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.75", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.652Z", + "last_change_date": "2022-03-14T07:58:35.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6051, + "fields": { + "EF_ID": 119082, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.744Z", + "last_change_date": "2022-03-14T07:58:35.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6052, + "fields": { + "EF_ID": 119083, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.69", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.801Z", + "last_change_date": "2022-03-14T07:58:35.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6053, + "fields": { + "EF_ID": 119084, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.81", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.886Z", + "last_change_date": "2022-03-14T07:58:35.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6054, + "fields": { + "EF_ID": 119085, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.45", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:35.943Z", + "last_change_date": "2022-03-14T07:58:35.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6055, + "fields": { + "EF_ID": 119086, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.08", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.129Z", + "last_change_date": "2022-03-14T07:58:36.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6056, + "fields": { + "EF_ID": 119087, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.10", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.210Z", + "last_change_date": "2022-03-14T07:58:36.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6057, + "fields": { + "EF_ID": 119088, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.09", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.313Z", + "last_change_date": "2022-03-14T07:58:36.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6058, + "fields": { + "EF_ID": 119089, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.385Z", + "last_change_date": "2022-03-14T07:58:36.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6059, + "fields": { + "EF_ID": 119090, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.84", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.480Z", + "last_change_date": "2022-03-14T07:58:36.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6060, + "fields": { + "EF_ID": 119091, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.82", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.568Z", + "last_change_date": "2022-03-14T07:58:36.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6061, + "fields": { + "EF_ID": 119092, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.665Z", + "last_change_date": "2022-03-14T07:58:36.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6062, + "fields": { + "EF_ID": 119093, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.22", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.752Z", + "last_change_date": "2022-03-14T07:58:36.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6063, + "fields": { + "EF_ID": 119094, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.849Z", + "last_change_date": "2022-03-14T07:58:36.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6064, + "fields": { + "EF_ID": 119095, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:36.927Z", + "last_change_date": "2022-03-14T07:58:36.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6065, + "fields": { + "EF_ID": 119096, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.034Z", + "last_change_date": "2022-03-14T07:58:37.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6066, + "fields": { + "EF_ID": 119097, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.12", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.110Z", + "last_change_date": "2022-03-14T07:58:37.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6067, + "fields": { + "EF_ID": 119098, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.10", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.202Z", + "last_change_date": "2022-03-14T07:58:37.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6068, + "fields": { + "EF_ID": 119099, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.277Z", + "last_change_date": "2022-03-14T07:58:37.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6069, + "fields": { + "EF_ID": 119100, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.24", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.370Z", + "last_change_date": "2022-03-14T07:58:37.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6070, + "fields": { + "EF_ID": 119101, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.15", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.444Z", + "last_change_date": "2022-03-14T07:58:37.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6071, + "fields": { + "EF_ID": 119102, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.537Z", + "last_change_date": "2022-03-14T07:58:37.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6072, + "fields": { + "EF_ID": 119103, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.40", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.610Z", + "last_change_date": "2022-03-14T07:58:37.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6073, + "fields": { + "EF_ID": 119104, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.24", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.705Z", + "last_change_date": "2022-03-14T07:58:37.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6074, + "fields": { + "EF_ID": 119105, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.785Z", + "last_change_date": "2022-03-14T07:58:37.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6075, + "fields": { + "EF_ID": 119106, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.881Z", + "last_change_date": "2022-03-14T07:58:37.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6076, + "fields": { + "EF_ID": 119107, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.8", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:37.960Z", + "last_change_date": "2022-03-14T07:58:37.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6077, + "fields": { + "EF_ID": 119108, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.32", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.056Z", + "last_change_date": "2022-03-14T07:58:38.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6078, + "fields": { + "EF_ID": 119109, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.90", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.152Z", + "last_change_date": "2022-03-14T07:58:38.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6079, + "fields": { + "EF_ID": 119110, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.250Z", + "last_change_date": "2022-03-14T07:58:38.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6080, + "fields": { + "EF_ID": 119111, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.14", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.344Z", + "last_change_date": "2022-03-14T07:58:38.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6081, + "fields": { + "EF_ID": 119112, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.443Z", + "last_change_date": "2022-03-14T07:58:38.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6082, + "fields": { + "EF_ID": 119113, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.527Z", + "last_change_date": "2022-03-14T07:58:38.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6083, + "fields": { + "EF_ID": 119114, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.14", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.627Z", + "last_change_date": "2022-03-14T07:58:38.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6084, + "fields": { + "EF_ID": 119115, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.15", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.711Z", + "last_change_date": "2022-03-14T07:58:38.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6085, + "fields": { + "EF_ID": 119116, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.803Z", + "last_change_date": "2022-03-14T07:58:38.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6086, + "fields": { + "EF_ID": 119117, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.14", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.877Z", + "last_change_date": "2022-03-14T07:58:38.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6087, + "fields": { + "EF_ID": 119118, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:38.963Z", + "last_change_date": "2022-03-14T07:58:38.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6088, + "fields": { + "EF_ID": 119119, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.25", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:39.044Z", + "last_change_date": "2022-03-14T07:58:39.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6089, + "fields": { + "EF_ID": 119120, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:58:39.138Z", + "last_change_date": "2022-03-14T07:58:39.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6090, + "fields": { + "EF_ID": 119121, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:39.224Z", + "last_change_date": "2022-03-14T07:58:39.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6091, + "fields": { + "EF_ID": 119122, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:39.323Z", + "last_change_date": "2022-03-14T07:58:39.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6092, + "fields": { + "EF_ID": 119123, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:39.407Z", + "last_change_date": "2022-03-14T07:58:39.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6093, + "fields": { + "EF_ID": 119124, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:39.498Z", + "last_change_date": "2022-03-14T07:58:39.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6094, + "fields": { + "EF_ID": 119125, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:39.574Z", + "last_change_date": "2022-03-14T07:58:39.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6095, + "fields": { + "EF_ID": 119126, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:39.666Z", + "last_change_date": "2022-03-14T07:58:39.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6096, + "fields": { + "EF_ID": 119127, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:39.740Z", + "last_change_date": "2022-03-14T07:58:39.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6097, + "fields": { + "EF_ID": 119128, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:39.842Z", + "last_change_date": "2022-03-14T07:58:39.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6098, + "fields": { + "EF_ID": 119129, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:39.915Z", + "last_change_date": "2022-03-14T07:58:39.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6099, + "fields": { + "EF_ID": 119130, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.010Z", + "last_change_date": "2022-03-14T07:58:40.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6100, + "fields": { + "EF_ID": 119131, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.099Z", + "last_change_date": "2022-03-14T07:58:40.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6101, + "fields": { + "EF_ID": 119132, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.194Z", + "last_change_date": "2022-03-14T07:58:40.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6102, + "fields": { + "EF_ID": 119133, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.349Z", + "last_change_date": "2022-03-14T07:58:40.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6103, + "fields": { + "EF_ID": 119134, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.430Z", + "last_change_date": "2022-03-14T07:58:40.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6104, + "fields": { + "EF_ID": 119135, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.498Z", + "last_change_date": "2022-03-14T07:58:40.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6105, + "fields": { + "EF_ID": 119136, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.581Z", + "last_change_date": "2022-03-14T07:58:40.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6106, + "fields": { + "EF_ID": 119137, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.657Z", + "last_change_date": "2022-03-14T07:58:40.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6107, + "fields": { + "EF_ID": 119138, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.748Z", + "last_change_date": "2022-03-14T07:58:40.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6108, + "fields": { + "EF_ID": 119139, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.823Z", + "last_change_date": "2022-03-14T07:58:40.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6109, + "fields": { + "EF_ID": 119140, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.916Z", + "last_change_date": "2022-03-14T07:58:40.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6110, + "fields": { + "EF_ID": 119141, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:40.990Z", + "last_change_date": "2022-03-14T07:58:40.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6111, + "fields": { + "EF_ID": 119142, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.075Z", + "last_change_date": "2022-03-14T07:58:41.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6112, + "fields": { + "EF_ID": 119143, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.4", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.149Z", + "last_change_date": "2022-03-14T07:58:41.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6113, + "fields": { + "EF_ID": 119144, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.4", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.243Z", + "last_change_date": "2022-03-14T07:58:41.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6114, + "fields": { + "EF_ID": 119145, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.315Z", + "last_change_date": "2022-03-14T07:58:41.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6115, + "fields": { + "EF_ID": 119146, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.410Z", + "last_change_date": "2022-03-14T07:58:41.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6116, + "fields": { + "EF_ID": 119147, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.499Z", + "last_change_date": "2022-03-14T07:58:41.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6117, + "fields": { + "EF_ID": 119148, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.586Z", + "last_change_date": "2022-03-14T07:58:41.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6118, + "fields": { + "EF_ID": 119149, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.674Z", + "last_change_date": "2022-03-14T07:58:41.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6119, + "fields": { + "EF_ID": 119150, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.778Z", + "last_change_date": "2022-03-14T07:58:41.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6120, + "fields": { + "EF_ID": 119151, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.874Z", + "last_change_date": "2022-03-14T07:58:41.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6121, + "fields": { + "EF_ID": 119152, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:41.964Z", + "last_change_date": "2022-03-14T07:58:41.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6122, + "fields": { + "EF_ID": 119153, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.040Z", + "last_change_date": "2022-03-14T07:58:42.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6123, + "fields": { + "EF_ID": 119154, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.139Z", + "last_change_date": "2022-03-14T07:58:42.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6124, + "fields": { + "EF_ID": 119155, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.215Z", + "last_change_date": "2022-03-14T07:58:42.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6125, + "fields": { + "EF_ID": 119156, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.316Z", + "last_change_date": "2022-03-14T07:58:42.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6126, + "fields": { + "EF_ID": 119157, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.390Z", + "last_change_date": "2022-03-14T07:58:42.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6127, + "fields": { + "EF_ID": 119158, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.483Z", + "last_change_date": "2022-03-14T07:58:42.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6128, + "fields": { + "EF_ID": 119159, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.557Z", + "last_change_date": "2022-03-14T07:58:42.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6129, + "fields": { + "EF_ID": 119160, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.660Z", + "last_change_date": "2022-03-14T07:58:42.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6130, + "fields": { + "EF_ID": 119161, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.732Z", + "last_change_date": "2022-03-14T07:58:42.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6131, + "fields": { + "EF_ID": 119162, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.827Z", + "last_change_date": "2022-03-14T07:58:42.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6132, + "fields": { + "EF_ID": 119163, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.899Z", + "last_change_date": "2022-03-14T07:58:42.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6133, + "fields": { + "EF_ID": 119164, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:42.986Z", + "last_change_date": "2022-03-14T07:58:42.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6134, + "fields": { + "EF_ID": 119165, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:43.074Z", + "last_change_date": "2022-03-14T07:58:43.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6135, + "fields": { + "EF_ID": 119166, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:43.162Z", + "last_change_date": "2022-03-14T07:58:43.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6136, + "fields": { + "EF_ID": 119167, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:43.249Z", + "last_change_date": "2022-03-14T07:58:43.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6137, + "fields": { + "EF_ID": 119168, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:43.338Z", + "last_change_date": "2022-03-14T07:58:43.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6138, + "fields": { + "EF_ID": 119169, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:43.415Z", + "last_change_date": "2022-03-14T07:58:43.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6139, + "fields": { + "EF_ID": 119170, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:43.523Z", + "last_change_date": "2022-03-14T07:58:43.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6140, + "fields": { + "EF_ID": 119171, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:43.599Z", + "last_change_date": "2022-03-14T07:58:43.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6141, + "fields": { + "EF_ID": 119172, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:58:43.691Z", + "last_change_date": "2022-03-14T07:58:43.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6142, + "fields": { + "EF_ID": 119173, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:43.765Z", + "last_change_date": "2022-03-14T07:58:43.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6143, + "fields": { + "EF_ID": 119174, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:43.858Z", + "last_change_date": "2022-03-14T07:58:43.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6144, + "fields": { + "EF_ID": 119175, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:43.932Z", + "last_change_date": "2022-03-14T07:58:43.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6145, + "fields": { + "EF_ID": 119176, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "25.86", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.051Z", + "last_change_date": "2022-03-14T07:58:44.051Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6146, + "fields": { + "EF_ID": 119177, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "19.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.132Z", + "last_change_date": "2022-03-14T07:58:44.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6147, + "fields": { + "EF_ID": 119178, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.73", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.227Z", + "last_change_date": "2022-03-14T07:58:44.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6148, + "fields": { + "EF_ID": 119179, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.299Z", + "last_change_date": "2022-03-14T07:58:44.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6149, + "fields": { + "EF_ID": 119180, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.72", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.403Z", + "last_change_date": "2022-03-14T07:58:44.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6150, + "fields": { + "EF_ID": 119181, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "35.57", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.474Z", + "last_change_date": "2022-03-14T07:58:44.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6151, + "fields": { + "EF_ID": 119182, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "28.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.571Z", + "last_change_date": "2022-03-14T07:58:44.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6152, + "fields": { + "EF_ID": 119183, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "34.81", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.657Z", + "last_change_date": "2022-03-14T07:58:44.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6153, + "fields": { + "EF_ID": 119184, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "64.45", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.755Z", + "last_change_date": "2022-03-14T07:58:44.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6154, + "fields": { + "EF_ID": 119185, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.96", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.840Z", + "last_change_date": "2022-03-14T07:58:44.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6155, + "fields": { + "EF_ID": 119186, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.68", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:44.939Z", + "last_change_date": "2022-03-14T07:58:44.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6156, + "fields": { + "EF_ID": 119187, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.23", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.015Z", + "last_change_date": "2022-03-14T07:58:45.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6157, + "fields": { + "EF_ID": 119188, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.97", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.108Z", + "last_change_date": "2022-03-14T07:58:45.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6158, + "fields": { + "EF_ID": 119189, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.74", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.188Z", + "last_change_date": "2022-03-14T07:58:45.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6159, + "fields": { + "EF_ID": 119190, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.275Z", + "last_change_date": "2022-03-14T07:58:45.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6160, + "fields": { + "EF_ID": 119191, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.66", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.349Z", + "last_change_date": "2022-03-14T07:58:45.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6161, + "fields": { + "EF_ID": 119192, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.12", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.452Z", + "last_change_date": "2022-03-14T07:58:45.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6162, + "fields": { + "EF_ID": 119193, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.30", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.524Z", + "last_change_date": "2022-03-14T07:58:45.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6163, + "fields": { + "EF_ID": 119194, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "49.17", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.611Z", + "last_change_date": "2022-03-14T07:58:45.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6164, + "fields": { + "EF_ID": 119195, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "49.52", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.682Z", + "last_change_date": "2022-03-14T07:58:45.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6165, + "fields": { + "EF_ID": 119196, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "65.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.770Z", + "last_change_date": "2022-03-14T07:58:45.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6166, + "fields": { + "EF_ID": 119197, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "42.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:45.915Z", + "last_change_date": "2022-03-14T07:58:45.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6167, + "fields": { + "EF_ID": 119198, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "23.43", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.005Z", + "last_change_date": "2022-03-14T07:58:46.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6168, + "fields": { + "EF_ID": 119199, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "17.85", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.082Z", + "last_change_date": "2022-03-14T07:58:46.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6169, + "fields": { + "EF_ID": 119200, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "23.76", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.180Z", + "last_change_date": "2022-03-14T07:58:46.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6170, + "fields": { + "EF_ID": 119201, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "28.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.266Z", + "last_change_date": "2022-03-14T07:58:46.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6171, + "fields": { + "EF_ID": 119202, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "24.80", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.365Z", + "last_change_date": "2022-03-14T07:58:46.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6172, + "fields": { + "EF_ID": 119203, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "52.81", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.440Z", + "last_change_date": "2022-03-14T07:58:46.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6173, + "fields": { + "EF_ID": 119204, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "35.65", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.550Z", + "last_change_date": "2022-03-14T07:58:46.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6174, + "fields": { + "EF_ID": 119205, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.62", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.632Z", + "last_change_date": "2022-03-14T07:58:46.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6175, + "fields": { + "EF_ID": 119206, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.16", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.726Z", + "last_change_date": "2022-03-14T07:58:46.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6176, + "fields": { + "EF_ID": 119207, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "31.64", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.807Z", + "last_change_date": "2022-03-14T07:58:46.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6177, + "fields": { + "EF_ID": 119208, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "35.65", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.902Z", + "last_change_date": "2022-03-14T07:58:46.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6178, + "fields": { + "EF_ID": 119209, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.97", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:46.973Z", + "last_change_date": "2022-03-14T07:58:46.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6179, + "fields": { + "EF_ID": 119210, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.76", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.061Z", + "last_change_date": "2022-03-14T07:58:47.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6180, + "fields": { + "EF_ID": 119211, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.68", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.132Z", + "last_change_date": "2022-03-14T07:58:47.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6181, + "fields": { + "EF_ID": 119212, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.220Z", + "last_change_date": "2022-03-14T07:58:47.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6182, + "fields": { + "EF_ID": 119213, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.307Z", + "last_change_date": "2022-03-14T07:58:47.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6183, + "fields": { + "EF_ID": 119214, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.34", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.396Z", + "last_change_date": "2022-03-14T07:58:47.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6184, + "fields": { + "EF_ID": 119215, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.474Z", + "last_change_date": "2022-03-14T07:58:47.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6185, + "fields": { + "EF_ID": 119216, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.564Z", + "last_change_date": "2022-03-14T07:58:47.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6186, + "fields": { + "EF_ID": 119217, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.69", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.640Z", + "last_change_date": "2022-03-14T07:58:47.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6187, + "fields": { + "EF_ID": 119218, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.75", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.731Z", + "last_change_date": "2022-03-14T07:58:47.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6188, + "fields": { + "EF_ID": 119219, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.40", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.807Z", + "last_change_date": "2022-03-14T07:58:47.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6189, + "fields": { + "EF_ID": 119220, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.99", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.891Z", + "last_change_date": "2022-03-14T07:58:47.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6190, + "fields": { + "EF_ID": 119221, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.63", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:47.974Z", + "last_change_date": "2022-03-14T07:58:47.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6191, + "fields": { + "EF_ID": 119222, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.58", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:48.068Z", + "last_change_date": "2022-03-14T07:58:48.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6192, + "fields": { + "EF_ID": 119223, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.66", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:48.149Z", + "last_change_date": "2022-03-14T07:58:48.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6193, + "fields": { + "EF_ID": 119224, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.74", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:58:48.244Z", + "last_change_date": "2022-03-14T07:58:48.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6194, + "fields": { + "EF_ID": 119225, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.30", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:48.324Z", + "last_change_date": "2022-03-14T07:58:48.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6195, + "fields": { + "EF_ID": 119226, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:48.420Z", + "last_change_date": "2022-03-14T07:58:48.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6196, + "fields": { + "EF_ID": 119227, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.82", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:48.499Z", + "last_change_date": "2022-03-14T07:58:48.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6197, + "fields": { + "EF_ID": 119228, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.80", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:48.574Z", + "last_change_date": "2022-03-14T07:58:48.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6198, + "fields": { + "EF_ID": 119229, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "28.30", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:48.680Z", + "last_change_date": "2022-03-14T07:58:48.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6199, + "fields": { + "EF_ID": 119230, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.35", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:48.773Z", + "last_change_date": "2022-03-14T07:58:48.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6200, + "fields": { + "EF_ID": 119231, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:48.872Z", + "last_change_date": "2022-03-14T07:58:48.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6201, + "fields": { + "EF_ID": 119232, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.55", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:48.965Z", + "last_change_date": "2022-03-14T07:58:48.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6202, + "fields": { + "EF_ID": 119233, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.20", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.065Z", + "last_change_date": "2022-03-14T07:58:49.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6203, + "fields": { + "EF_ID": 119234, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "26.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.149Z", + "last_change_date": "2022-03-14T07:58:49.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6204, + "fields": { + "EF_ID": 119235, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "25.23", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.248Z", + "last_change_date": "2022-03-14T07:58:49.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6205, + "fields": { + "EF_ID": 119236, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.340Z", + "last_change_date": "2022-03-14T07:58:49.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6206, + "fields": { + "EF_ID": 119237, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "92.37", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.441Z", + "last_change_date": "2022-03-14T07:58:49.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6207, + "fields": { + "EF_ID": 119238, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.532Z", + "last_change_date": "2022-03-14T07:58:49.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6208, + "fields": { + "EF_ID": 119239, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "24.44", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.626Z", + "last_change_date": "2022-03-14T07:58:49.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6209, + "fields": { + "EF_ID": 119240, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "27.16", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.707Z", + "last_change_date": "2022-03-14T07:58:49.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6210, + "fields": { + "EF_ID": 119241, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.04", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.802Z", + "last_change_date": "2022-03-14T07:58:49.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6211, + "fields": { + "EF_ID": 119242, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.882Z", + "last_change_date": "2022-03-14T07:58:49.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6212, + "fields": { + "EF_ID": 119243, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.65", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:49.979Z", + "last_change_date": "2022-03-14T07:58:49.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6213, + "fields": { + "EF_ID": 119244, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.065Z", + "last_change_date": "2022-03-14T07:58:50.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6214, + "fields": { + "EF_ID": 119245, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.171Z", + "last_change_date": "2022-03-14T07:58:50.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6215, + "fields": { + "EF_ID": 119246, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "114.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.248Z", + "last_change_date": "2022-03-14T07:58:50.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6216, + "fields": { + "EF_ID": 119247, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "79.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.347Z", + "last_change_date": "2022-03-14T07:58:50.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6217, + "fields": { + "EF_ID": 119248, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "17.84", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.440Z", + "last_change_date": "2022-03-14T07:58:50.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6218, + "fields": { + "EF_ID": 119249, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "26.72", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.539Z", + "last_change_date": "2022-03-14T07:58:50.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6219, + "fields": { + "EF_ID": 119250, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.08", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.624Z", + "last_change_date": "2022-03-14T07:58:50.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6220, + "fields": { + "EF_ID": 119251, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.62", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.800Z", + "last_change_date": "2022-03-14T07:58:50.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6221, + "fields": { + "EF_ID": 119252, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.80", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.890Z", + "last_change_date": "2022-03-14T07:58:50.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6222, + "fields": { + "EF_ID": 119253, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.47", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:50.984Z", + "last_change_date": "2022-03-14T07:58:50.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6223, + "fields": { + "EF_ID": 119254, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.37", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.065Z", + "last_change_date": "2022-03-14T07:58:51.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6224, + "fields": { + "EF_ID": 119255, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.76", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.159Z", + "last_change_date": "2022-03-14T07:58:51.159Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6225, + "fields": { + "EF_ID": 119256, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "20.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.240Z", + "last_change_date": "2022-03-14T07:58:51.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6226, + "fields": { + "EF_ID": 119257, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "26.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.335Z", + "last_change_date": "2022-03-14T07:58:51.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6227, + "fields": { + "EF_ID": 119258, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.29", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.415Z", + "last_change_date": "2022-03-14T07:58:51.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6228, + "fields": { + "EF_ID": 119259, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "103.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.520Z", + "last_change_date": "2022-03-14T07:58:51.520Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6229, + "fields": { + "EF_ID": 119260, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "20.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.599Z", + "last_change_date": "2022-03-14T07:58:51.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6230, + "fields": { + "EF_ID": 119261, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.705Z", + "last_change_date": "2022-03-14T07:58:51.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6231, + "fields": { + "EF_ID": 119262, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.53", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.790Z", + "last_change_date": "2022-03-14T07:58:51.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6232, + "fields": { + "EF_ID": 119263, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "27.98", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.897Z", + "last_change_date": "2022-03-14T07:58:51.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6233, + "fields": { + "EF_ID": 119264, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "82.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:51.981Z", + "last_change_date": "2022-03-14T07:58:51.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6234, + "fields": { + "EF_ID": 119265, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "143.05", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.082Z", + "last_change_date": "2022-03-14T07:58:52.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6235, + "fields": { + "EF_ID": 119266, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.21", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.156Z", + "last_change_date": "2022-03-14T07:58:52.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6236, + "fields": { + "EF_ID": 119267, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.18", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.257Z", + "last_change_date": "2022-03-14T07:58:52.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6237, + "fields": { + "EF_ID": 119268, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.70", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.348Z", + "last_change_date": "2022-03-14T07:58:52.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6238, + "fields": { + "EF_ID": 119269, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.18", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.442Z", + "last_change_date": "2022-03-14T07:58:52.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6239, + "fields": { + "EF_ID": 119270, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.84", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.531Z", + "last_change_date": "2022-03-14T07:58:52.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6240, + "fields": { + "EF_ID": 119271, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.626Z", + "last_change_date": "2022-03-14T07:58:52.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6241, + "fields": { + "EF_ID": 119272, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.35", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.740Z", + "last_change_date": "2022-03-14T07:58:52.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6242, + "fields": { + "EF_ID": 119273, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.844Z", + "last_change_date": "2022-03-14T07:58:52.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6243, + "fields": { + "EF_ID": 119274, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.42", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:52.923Z", + "last_change_date": "2022-03-14T07:58:52.923Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6244, + "fields": { + "EF_ID": 119275, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.22", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:53.012Z", + "last_change_date": "2022-03-14T07:58:53.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6245, + "fields": { + "EF_ID": 119276, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "34.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:58:53.089Z", + "last_change_date": "2022-03-14T07:58:53.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6246, + "fields": { + "EF_ID": 119277, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.97", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:53.180Z", + "last_change_date": "2022-03-14T07:58:53.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6247, + "fields": { + "EF_ID": 119278, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.24", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:53.256Z", + "last_change_date": "2022-03-14T07:58:53.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6248, + "fields": { + "EF_ID": 119279, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:53.364Z", + "last_change_date": "2022-03-14T07:58:53.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6249, + "fields": { + "EF_ID": 119280, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.12", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:53.449Z", + "last_change_date": "2022-03-14T07:58:53.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6250, + "fields": { + "EF_ID": 119281, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.67", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:53.565Z", + "last_change_date": "2022-03-14T07:58:53.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6251, + "fields": { + "EF_ID": 119282, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.54", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:53.674Z", + "last_change_date": "2022-03-14T07:58:53.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6252, + "fields": { + "EF_ID": 119283, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:53.791Z", + "last_change_date": "2022-03-14T07:58:53.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6253, + "fields": { + "EF_ID": 119284, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:53.892Z", + "last_change_date": "2022-03-14T07:58:53.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6254, + "fields": { + "EF_ID": 119285, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.15", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.001Z", + "last_change_date": "2022-03-14T07:58:54.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6255, + "fields": { + "EF_ID": 119286, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.110Z", + "last_change_date": "2022-03-14T07:58:54.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6256, + "fields": { + "EF_ID": 119287, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.235Z", + "last_change_date": "2022-03-14T07:58:54.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6257, + "fields": { + "EF_ID": 119288, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.353Z", + "last_change_date": "2022-03-14T07:58:54.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6258, + "fields": { + "EF_ID": 119289, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "87.71", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.461Z", + "last_change_date": "2022-03-14T07:58:54.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6259, + "fields": { + "EF_ID": 119290, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.05", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.570Z", + "last_change_date": "2022-03-14T07:58:54.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6260, + "fields": { + "EF_ID": 119291, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.25", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.679Z", + "last_change_date": "2022-03-14T07:58:54.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6261, + "fields": { + "EF_ID": 119292, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.32", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.801Z", + "last_change_date": "2022-03-14T07:58:54.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6262, + "fields": { + "EF_ID": 119293, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:54.910Z", + "last_change_date": "2022-03-14T07:58:54.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6263, + "fields": { + "EF_ID": 119294, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.75", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.019Z", + "last_change_date": "2022-03-14T07:58:55.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6264, + "fields": { + "EF_ID": 119295, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.91", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.136Z", + "last_change_date": "2022-03-14T07:58:55.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6265, + "fields": { + "EF_ID": 119296, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.245Z", + "last_change_date": "2022-03-14T07:58:55.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6266, + "fields": { + "EF_ID": 119297, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.65", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.354Z", + "last_change_date": "2022-03-14T07:58:55.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6267, + "fields": { + "EF_ID": 119298, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "43.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.463Z", + "last_change_date": "2022-03-14T07:58:55.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6268, + "fields": { + "EF_ID": 119299, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.41", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.572Z", + "last_change_date": "2022-03-14T07:58:55.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6269, + "fields": { + "EF_ID": 119300, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.680Z", + "last_change_date": "2022-03-14T07:58:55.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6270, + "fields": { + "EF_ID": 119301, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.789Z", + "last_change_date": "2022-03-14T07:58:55.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6271, + "fields": { + "EF_ID": 119302, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.20", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.898Z", + "last_change_date": "2022-03-14T07:58:55.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6272, + "fields": { + "EF_ID": 119303, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.10", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:55.999Z", + "last_change_date": "2022-03-14T07:58:55.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6273, + "fields": { + "EF_ID": 119304, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.99", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.124Z", + "last_change_date": "2022-03-14T07:58:56.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6274, + "fields": { + "EF_ID": 119305, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.225Z", + "last_change_date": "2022-03-14T07:58:56.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6275, + "fields": { + "EF_ID": 119306, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.326Z", + "last_change_date": "2022-03-14T07:58:56.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6276, + "fields": { + "EF_ID": 119307, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.427Z", + "last_change_date": "2022-03-14T07:58:56.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6277, + "fields": { + "EF_ID": 119308, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.528Z", + "last_change_date": "2022-03-14T07:58:56.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6278, + "fields": { + "EF_ID": 119309, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.36", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.629Z", + "last_change_date": "2022-03-14T07:58:56.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6279, + "fields": { + "EF_ID": 119310, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.17", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.738Z", + "last_change_date": "2022-03-14T07:58:56.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6280, + "fields": { + "EF_ID": 119311, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "66.56", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.863Z", + "last_change_date": "2022-03-14T07:58:56.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6281, + "fields": { + "EF_ID": 119312, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:56.980Z", + "last_change_date": "2022-03-14T07:58:56.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6282, + "fields": { + "EF_ID": 119313, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.69", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.089Z", + "last_change_date": "2022-03-14T07:58:57.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6283, + "fields": { + "EF_ID": 119314, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.198Z", + "last_change_date": "2022-03-14T07:58:57.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6284, + "fields": { + "EF_ID": 119315, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.307Z", + "last_change_date": "2022-03-14T07:58:57.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6285, + "fields": { + "EF_ID": 119316, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.85", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.416Z", + "last_change_date": "2022-03-14T07:58:57.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6286, + "fields": { + "EF_ID": 119317, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "107.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.516Z", + "last_change_date": "2022-03-14T07:58:57.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6287, + "fields": { + "EF_ID": 119318, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.21", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.617Z", + "last_change_date": "2022-03-14T07:58:57.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6288, + "fields": { + "EF_ID": 119319, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.718Z", + "last_change_date": "2022-03-14T07:58:57.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6289, + "fields": { + "EF_ID": 119320, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.56", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.799Z", + "last_change_date": "2022-03-14T07:58:57.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6290, + "fields": { + "EF_ID": 119321, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.50", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.894Z", + "last_change_date": "2022-03-14T07:58:57.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6291, + "fields": { + "EF_ID": 119322, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.29", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:57.974Z", + "last_change_date": "2022-03-14T07:58:57.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6292, + "fields": { + "EF_ID": 119323, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.36", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:58.070Z", + "last_change_date": "2022-03-14T07:58:58.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6293, + "fields": { + "EF_ID": 119324, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.52", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:58.179Z", + "last_change_date": "2022-03-14T07:58:58.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6294, + "fields": { + "EF_ID": 119325, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.23", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:58.280Z", + "last_change_date": "2022-03-14T07:58:58.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6295, + "fields": { + "EF_ID": 119326, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.28", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:58.405Z", + "last_change_date": "2022-03-14T07:58:58.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6296, + "fields": { + "EF_ID": 119327, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:58.531Z", + "last_change_date": "2022-03-14T07:58:58.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6297, + "fields": { + "EF_ID": 119328, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:58:58.648Z", + "last_change_date": "2022-03-14T07:58:58.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6298, + "fields": { + "EF_ID": 119329, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.58", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:58.741Z", + "last_change_date": "2022-03-14T07:58:58.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6299, + "fields": { + "EF_ID": 119330, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:58.850Z", + "last_change_date": "2022-03-14T07:58:58.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6300, + "fields": { + "EF_ID": 119331, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.26", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:58:58.933Z", + "last_change_date": "2022-03-14T07:58:58.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6301, + "fields": { + "EF_ID": 119332, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.72", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.042Z", + "last_change_date": "2022-03-14T07:58:59.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6302, + "fields": { + "EF_ID": 119333, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.124Z", + "last_change_date": "2022-03-14T07:58:59.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6303, + "fields": { + "EF_ID": 119334, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.73", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.218Z", + "last_change_date": "2022-03-14T07:58:59.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6304, + "fields": { + "EF_ID": 119335, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.77", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.300Z", + "last_change_date": "2022-03-14T07:58:59.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6305, + "fields": { + "EF_ID": 119336, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.96", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.394Z", + "last_change_date": "2022-03-14T07:58:59.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6306, + "fields": { + "EF_ID": 119337, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.23", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.475Z", + "last_change_date": "2022-03-14T07:58:59.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6307, + "fields": { + "EF_ID": 119338, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.86", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.570Z", + "last_change_date": "2022-03-14T07:58:59.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6308, + "fields": { + "EF_ID": 119339, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.658Z", + "last_change_date": "2022-03-14T07:58:59.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6309, + "fields": { + "EF_ID": 119340, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.37", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.755Z", + "last_change_date": "2022-03-14T07:58:59.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6310, + "fields": { + "EF_ID": 119341, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.86", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.850Z", + "last_change_date": "2022-03-14T07:58:59.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6311, + "fields": { + "EF_ID": 119342, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.68", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:58:59.964Z", + "last_change_date": "2022-03-14T07:58:59.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6312, + "fields": { + "EF_ID": 119343, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.26", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.033Z", + "last_change_date": "2022-03-14T07:59:00.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6313, + "fields": { + "EF_ID": 119344, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.132Z", + "last_change_date": "2022-03-14T07:59:00.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6314, + "fields": { + "EF_ID": 119345, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.87", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.216Z", + "last_change_date": "2022-03-14T07:59:00.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6315, + "fields": { + "EF_ID": 119346, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.324Z", + "last_change_date": "2022-03-14T07:59:00.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6316, + "fields": { + "EF_ID": 119347, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.72", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.416Z", + "last_change_date": "2022-03-14T07:59:00.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6317, + "fields": { + "EF_ID": 119348, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.500Z", + "last_change_date": "2022-03-14T07:59:00.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6318, + "fields": { + "EF_ID": 119349, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.591Z", + "last_change_date": "2022-03-14T07:59:00.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6319, + "fields": { + "EF_ID": 119350, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.21", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.684Z", + "last_change_date": "2022-03-14T07:59:00.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6320, + "fields": { + "EF_ID": 119351, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.60", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.767Z", + "last_change_date": "2022-03-14T07:59:00.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6321, + "fields": { + "EF_ID": 119352, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.861Z", + "last_change_date": "2022-03-14T07:59:00.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6322, + "fields": { + "EF_ID": 119353, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.24", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:00.942Z", + "last_change_date": "2022-03-14T07:59:00.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6323, + "fields": { + "EF_ID": 119354, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.37", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.036Z", + "last_change_date": "2022-03-14T07:59:01.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6324, + "fields": { + "EF_ID": 119355, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.125Z", + "last_change_date": "2022-03-14T07:59:01.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6325, + "fields": { + "EF_ID": 119356, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.321Z", + "last_change_date": "2022-03-14T07:59:01.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6326, + "fields": { + "EF_ID": 119357, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.77", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.408Z", + "last_change_date": "2022-03-14T07:59:01.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6327, + "fields": { + "EF_ID": 119358, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.75", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.490Z", + "last_change_date": "2022-03-14T07:59:01.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6328, + "fields": { + "EF_ID": 119359, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.56", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.576Z", + "last_change_date": "2022-03-14T07:59:01.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6329, + "fields": { + "EF_ID": 119360, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.666Z", + "last_change_date": "2022-03-14T07:59:01.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6330, + "fields": { + "EF_ID": 119361, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.70", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.741Z", + "last_change_date": "2022-03-14T07:59:01.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6331, + "fields": { + "EF_ID": 119362, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.84", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.842Z", + "last_change_date": "2022-03-14T07:59:01.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6332, + "fields": { + "EF_ID": 119363, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:01.916Z", + "last_change_date": "2022-03-14T07:59:01.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6333, + "fields": { + "EF_ID": 119364, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.009Z", + "last_change_date": "2022-03-14T07:59:02.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6334, + "fields": { + "EF_ID": 119365, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.099Z", + "last_change_date": "2022-03-14T07:59:02.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6335, + "fields": { + "EF_ID": 119366, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.87", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.193Z", + "last_change_date": "2022-03-14T07:59:02.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6336, + "fields": { + "EF_ID": 119367, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.93", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.274Z", + "last_change_date": "2022-03-14T07:59:02.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6337, + "fields": { + "EF_ID": 119368, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.89", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.369Z", + "last_change_date": "2022-03-14T07:59:02.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6338, + "fields": { + "EF_ID": 119369, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.22", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.449Z", + "last_change_date": "2022-03-14T07:59:02.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6339, + "fields": { + "EF_ID": 119370, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.60", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.537Z", + "last_change_date": "2022-03-14T07:59:02.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6340, + "fields": { + "EF_ID": 119371, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.57", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.616Z", + "last_change_date": "2022-03-14T07:59:02.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6341, + "fields": { + "EF_ID": 119372, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.705Z", + "last_change_date": "2022-03-14T07:59:02.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6342, + "fields": { + "EF_ID": 119373, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.790Z", + "last_change_date": "2022-03-14T07:59:02.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6343, + "fields": { + "EF_ID": 119374, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.76", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.888Z", + "last_change_date": "2022-03-14T07:59:02.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6344, + "fields": { + "EF_ID": 119375, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.80", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:02.965Z", + "last_change_date": "2022-03-14T07:59:02.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6345, + "fields": { + "EF_ID": 119376, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:03.066Z", + "last_change_date": "2022-03-14T07:59:03.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6346, + "fields": { + "EF_ID": 119377, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.68", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:03.149Z", + "last_change_date": "2022-03-14T07:59:03.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6347, + "fields": { + "EF_ID": 119378, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.60", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:03.250Z", + "last_change_date": "2022-03-14T07:59:03.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6348, + "fields": { + "EF_ID": 119379, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.91", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:03.324Z", + "last_change_date": "2022-03-14T07:59:03.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6349, + "fields": { + "EF_ID": 119380, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.34", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:03.426Z", + "last_change_date": "2022-03-14T07:59:03.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6350, + "fields": { + "EF_ID": 119381, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:03.499Z", + "last_change_date": "2022-03-14T07:59:03.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6351, + "fields": { + "EF_ID": 119382, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.20", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:03.585Z", + "last_change_date": "2022-03-14T07:59:03.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6352, + "fields": { + "EF_ID": 119383, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.20", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:03.682Z", + "last_change_date": "2022-03-14T07:59:03.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6353, + "fields": { + "EF_ID": 119384, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1720", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:03.795Z", + "last_change_date": "2022-03-14T07:59:03.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6354, + "fields": { + "EF_ID": 119385, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1510", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:03.884Z", + "last_change_date": "2022-03-14T07:59:03.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6355, + "fields": { + "EF_ID": 119386, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "730", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:03.950Z", + "last_change_date": "2022-03-14T07:59:03.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6356, + "fields": { + "EF_ID": 119387, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "770", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.054Z", + "last_change_date": "2022-03-14T07:59:04.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6357, + "fields": { + "EF_ID": 119388, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "960", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.133Z", + "last_change_date": "2022-03-14T07:59:04.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6358, + "fields": { + "EF_ID": 119389, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2230", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.200Z", + "last_change_date": "2022-03-14T07:59:04.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6359, + "fields": { + "EF_ID": 119390, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1860", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.267Z", + "last_change_date": "2022-03-14T07:59:04.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6360, + "fields": { + "EF_ID": 119391, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2020", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.356Z", + "last_change_date": "2022-03-14T07:59:04.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6361, + "fields": { + "EF_ID": 119392, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3370", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.450Z", + "last_change_date": "2022-03-14T07:59:04.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6362, + "fields": { + "EF_ID": 119393, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1860", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.517Z", + "last_change_date": "2022-03-14T07:59:04.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6363, + "fields": { + "EF_ID": 119394, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "680", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.583Z", + "last_change_date": "2022-03-14T07:59:04.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6364, + "fields": { + "EF_ID": 119395, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1260", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.676Z", + "last_change_date": "2022-03-14T07:59:04.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6365, + "fields": { + "EF_ID": 119396, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1460", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.759Z", + "last_change_date": "2022-03-14T07:59:04.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6366, + "fields": { + "EF_ID": 119397, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "870", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.825Z", + "last_change_date": "2022-03-14T07:59:04.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6367, + "fields": { + "EF_ID": 119398, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "780", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.892Z", + "last_change_date": "2022-03-14T07:59:04.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6368, + "fields": { + "EF_ID": 119399, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "720", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:04.986Z", + "last_change_date": "2022-03-14T07:59:04.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6369, + "fields": { + "EF_ID": 119400, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "780", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.075Z", + "last_change_date": "2022-03-14T07:59:05.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6370, + "fields": { + "EF_ID": 119408, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1460", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.142Z", + "last_change_date": "2022-03-14T07:59:05.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6371, + "fields": { + "EF_ID": 119409, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1780", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.217Z", + "last_change_date": "2022-03-14T07:59:05.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6372, + "fields": { + "EF_ID": 119410, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1750", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.329Z", + "last_change_date": "2022-03-14T07:59:05.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6373, + "fields": { + "EF_ID": 119411, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2560", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.417Z", + "last_change_date": "2022-03-14T07:59:05.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6374, + "fields": { + "EF_ID": 119412, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.492Z", + "last_change_date": "2022-03-14T07:59:05.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6375, + "fields": { + "EF_ID": 119413, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1700", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.567Z", + "last_change_date": "2022-03-14T07:59:05.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6376, + "fields": { + "EF_ID": 119414, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "840", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.664Z", + "last_change_date": "2022-03-14T07:59:05.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6377, + "fields": { + "EF_ID": 119415, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.742Z", + "last_change_date": "2022-03-14T07:59:05.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6378, + "fields": { + "EF_ID": 119416, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.809Z", + "last_change_date": "2022-03-14T07:59:05.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6379, + "fields": { + "EF_ID": 119417, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1010", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.875Z", + "last_change_date": "2022-03-14T07:59:05.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6380, + "fields": { + "EF_ID": 119418, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "870", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:05.966Z", + "last_change_date": "2022-03-14T07:59:05.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6381, + "fields": { + "EF_ID": 119419, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "930", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.051Z", + "last_change_date": "2022-03-14T07:59:06.051Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6382, + "fields": { + "EF_ID": 119420, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1890", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.126Z", + "last_change_date": "2022-03-14T07:59:06.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6383, + "fields": { + "EF_ID": 119421, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2230", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.192Z", + "last_change_date": "2022-03-14T07:59:06.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6384, + "fields": { + "EF_ID": 119422, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "600", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.276Z", + "last_change_date": "2022-03-14T07:59:06.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6385, + "fields": { + "EF_ID": 119423, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "570", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.401Z", + "last_change_date": "2022-03-14T07:59:06.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6386, + "fields": { + "EF_ID": 119424, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "330", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.467Z", + "last_change_date": "2022-03-14T07:59:06.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6387, + "fields": { + "EF_ID": 119425, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.534Z", + "last_change_date": "2022-03-14T07:59:06.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6388, + "fields": { + "EF_ID": 119426, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "760", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.620Z", + "last_change_date": "2022-03-14T07:59:06.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6389, + "fields": { + "EF_ID": 119427, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "800", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.717Z", + "last_change_date": "2022-03-14T07:59:06.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6390, + "fields": { + "EF_ID": 119428, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "280", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.784Z", + "last_change_date": "2022-03-14T07:59:06.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6391, + "fields": { + "EF_ID": 119429, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "680", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.859Z", + "last_change_date": "2022-03-14T07:59:06.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6392, + "fields": { + "EF_ID": 119430, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "600", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:06.955Z", + "last_change_date": "2022-03-14T07:59:06.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6393, + "fields": { + "EF_ID": 119431, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "910", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:07.042Z", + "last_change_date": "2022-03-14T07:59:07.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6394, + "fields": { + "EF_ID": 119432, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "340", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:07.109Z", + "last_change_date": "2022-03-14T07:59:07.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6395, + "fields": { + "EF_ID": 119433, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "70", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:07.175Z", + "last_change_date": "2022-03-14T07:59:07.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6396, + "fields": { + "EF_ID": 119434, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "200", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:07.273Z", + "last_change_date": "2022-03-14T07:59:07.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6397, + "fields": { + "EF_ID": 119435, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "200", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:07.367Z", + "last_change_date": "2022-03-14T07:59:07.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6398, + "fields": { + "EF_ID": 119505, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "880", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:07.442Z", + "last_change_date": "2022-03-14T07:59:07.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6399, + "fields": { + "EF_ID": 119506, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3210", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:07.517Z", + "last_change_date": "2022-03-14T07:59:07.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6400, + "fields": { + "EF_ID": 119507, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3600", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:07.617Z", + "last_change_date": "2022-03-14T07:59:07.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6401, + "fields": { + "EF_ID": 119508, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3510", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:07.692Z", + "last_change_date": "2022-03-14T07:59:07.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6402, + "fields": { + "EF_ID": 119509, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3240", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:07.759Z", + "last_change_date": "2022-03-14T07:59:07.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6403, + "fields": { + "EF_ID": 119510, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1370", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:07.826Z", + "last_change_date": "2022-03-14T07:59:07.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6404, + "fields": { + "EF_ID": 119511, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1460", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:07.920Z", + "last_change_date": "2022-03-14T07:59:07.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6405, + "fields": { + "EF_ID": 119748, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5450", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.001Z", + "last_change_date": "2022-03-14T07:59:08.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6406, + "fields": { + "EF_ID": 119749, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4760", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.076Z", + "last_change_date": "2022-03-14T07:59:08.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6407, + "fields": { + "EF_ID": 119750, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.171Z", + "last_change_date": "2022-03-14T07:59:08.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6408, + "fields": { + "EF_ID": 119751, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2440", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.259Z", + "last_change_date": "2022-03-14T07:59:08.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6409, + "fields": { + "EF_ID": 119752, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3020", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.347Z", + "last_change_date": "2022-03-14T07:59:08.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6410, + "fields": { + "EF_ID": 119753, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7050", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.426Z", + "last_change_date": "2022-03-14T07:59:08.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6411, + "fields": { + "EF_ID": 119754, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5890", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.514Z", + "last_change_date": "2022-03-14T07:59:08.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6412, + "fields": { + "EF_ID": 119755, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6380", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.592Z", + "last_change_date": "2022-03-14T07:59:08.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6413, + "fields": { + "EF_ID": 119756, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10660", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.690Z", + "last_change_date": "2022-03-14T07:59:08.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6414, + "fields": { + "EF_ID": 119757, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5890", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.768Z", + "last_change_date": "2022-03-14T07:59:08.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6415, + "fields": { + "EF_ID": 119758, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2140", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.866Z", + "last_change_date": "2022-03-14T07:59:08.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6416, + "fields": { + "EF_ID": 119759, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3970", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:08.943Z", + "last_change_date": "2022-03-14T07:59:08.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6417, + "fields": { + "EF_ID": 119760, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4610", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.042Z", + "last_change_date": "2022-03-14T07:59:09.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6418, + "fields": { + "EF_ID": 119761, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2740", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.117Z", + "last_change_date": "2022-03-14T07:59:09.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6419, + "fields": { + "EF_ID": 119762, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2480", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.210Z", + "last_change_date": "2022-03-14T07:59:09.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6420, + "fields": { + "EF_ID": 119763, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2280", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.284Z", + "last_change_date": "2022-03-14T07:59:09.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6421, + "fields": { + "EF_ID": 119764, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2460", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.378Z", + "last_change_date": "2022-03-14T07:59:09.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6422, + "fields": { + "EF_ID": 119765, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2780", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.476Z", + "last_change_date": "2022-03-14T07:59:09.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6423, + "fields": { + "EF_ID": 119766, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10140", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.563Z", + "last_change_date": "2022-03-14T07:59:09.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6424, + "fields": { + "EF_ID": 119767, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11370", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.651Z", + "last_change_date": "2022-03-14T07:59:09.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6425, + "fields": { + "EF_ID": 119768, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11080", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.747Z", + "last_change_date": "2022-03-14T07:59:09.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6426, + "fields": { + "EF_ID": 119769, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10240", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.826Z", + "last_change_date": "2022-03-14T07:59:09.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6427, + "fields": { + "EF_ID": 119770, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4320", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.914Z", + "last_change_date": "2022-03-14T07:59:09.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6428, + "fields": { + "EF_ID": 119771, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4630", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:09.993Z", + "last_change_date": "2022-03-14T07:59:09.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6429, + "fields": { + "EF_ID": 119772, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4620", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.082Z", + "last_change_date": "2022-03-14T07:59:10.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6430, + "fields": { + "EF_ID": 119773, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5610", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.160Z", + "last_change_date": "2022-03-14T07:59:10.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6431, + "fields": { + "EF_ID": 119774, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5520", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.241Z", + "last_change_date": "2022-03-14T07:59:10.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6432, + "fields": { + "EF_ID": 119775, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8100", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.318Z", + "last_change_date": "2022-03-14T07:59:10.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6433, + "fields": { + "EF_ID": 119776, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7290", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.400Z", + "last_change_date": "2022-03-14T07:59:10.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6434, + "fields": { + "EF_ID": 119777, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5360", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.476Z", + "last_change_date": "2022-03-14T07:59:10.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6435, + "fields": { + "EF_ID": 119778, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2650", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.568Z", + "last_change_date": "2022-03-14T07:59:10.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6436, + "fields": { + "EF_ID": 119779, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7300", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.643Z", + "last_change_date": "2022-03-14T07:59:10.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6437, + "fields": { + "EF_ID": 119780, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7290", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.728Z", + "last_change_date": "2022-03-14T07:59:10.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6438, + "fields": { + "EF_ID": 119781, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3180", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.801Z", + "last_change_date": "2022-03-14T07:59:10.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6439, + "fields": { + "EF_ID": 119782, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2760", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.888Z", + "last_change_date": "2022-03-14T07:59:10.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6440, + "fields": { + "EF_ID": 119783, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2930", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:10.960Z", + "last_change_date": "2022-03-14T07:59:10.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6441, + "fields": { + "EF_ID": 119784, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5960", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.056Z", + "last_change_date": "2022-03-14T07:59:11.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6442, + "fields": { + "EF_ID": 119785, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7030", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.135Z", + "last_change_date": "2022-03-14T07:59:11.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6443, + "fields": { + "EF_ID": 119786, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1910", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.231Z", + "last_change_date": "2022-03-14T07:59:11.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6444, + "fields": { + "EF_ID": 119787, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1800", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.310Z", + "last_change_date": "2022-03-14T07:59:11.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6445, + "fields": { + "EF_ID": 119788, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1060", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.399Z", + "last_change_date": "2022-03-14T07:59:11.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6446, + "fields": { + "EF_ID": 119789, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "990", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.476Z", + "last_change_date": "2022-03-14T07:59:11.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6447, + "fields": { + "EF_ID": 119790, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2390", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.575Z", + "last_change_date": "2022-03-14T07:59:11.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6448, + "fields": { + "EF_ID": 119791, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2520", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.652Z", + "last_change_date": "2022-03-14T07:59:11.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6449, + "fields": { + "EF_ID": 119792, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "870", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.734Z", + "last_change_date": "2022-03-14T07:59:11.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6450, + "fields": { + "EF_ID": 119793, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2160", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.810Z", + "last_change_date": "2022-03-14T07:59:11.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6451, + "fields": { + "EF_ID": 119794, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1890", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.894Z", + "last_change_date": "2022-03-14T07:59:11.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6452, + "fields": { + "EF_ID": 119795, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2880", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:11.968Z", + "last_change_date": "2022-03-14T07:59:11.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6453, + "fields": { + "EF_ID": 119796, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1070", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:12.069Z", + "last_change_date": "2022-03-14T07:59:12.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6454, + "fields": { + "EF_ID": 119797, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "230", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:12.143Z", + "last_change_date": "2022-03-14T07:59:12.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6455, + "fields": { + "EF_ID": 119798, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "640", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:12.228Z", + "last_change_date": "2022-03-14T07:59:12.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6456, + "fields": { + "EF_ID": 119799, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "620", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "CO2 for each aircraft based on 3.16 kg CO2 produced for each kg fuel used, then rounded to the nearest 10 kg.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:12.310Z", + "last_change_date": "2022-03-14T07:59:12.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6457, + "fields": { + "EF_ID": 119800, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.12", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:12.405Z", + "last_change_date": "2022-03-14T07:59:12.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6458, + "fields": { + "EF_ID": 119801, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.63", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:12.501Z", + "last_change_date": "2022-03-14T07:59:12.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6459, + "fields": { + "EF_ID": 119802, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:12.590Z", + "last_change_date": "2022-03-14T07:59:12.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6460, + "fields": { + "EF_ID": 119803, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:12.669Z", + "last_change_date": "2022-03-14T07:59:12.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6461, + "fields": { + "EF_ID": 119804, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.14", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:12.757Z", + "last_change_date": "2022-03-14T07:59:12.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6462, + "fields": { + "EF_ID": 119805, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:12.835Z", + "last_change_date": "2022-03-14T07:59:12.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6463, + "fields": { + "EF_ID": 119806, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.42", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:12.925Z", + "last_change_date": "2022-03-14T07:59:12.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6464, + "fields": { + "EF_ID": 119807, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.39", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.002Z", + "last_change_date": "2022-03-14T07:59:13.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6465, + "fields": { + "EF_ID": 119808, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.092Z", + "last_change_date": "2022-03-14T07:59:13.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6466, + "fields": { + "EF_ID": 119809, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.75", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.169Z", + "last_change_date": "2022-03-14T07:59:13.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6467, + "fields": { + "EF_ID": 119810, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.260Z", + "last_change_date": "2022-03-14T07:59:13.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6468, + "fields": { + "EF_ID": 119811, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.69", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.335Z", + "last_change_date": "2022-03-14T07:59:13.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6469, + "fields": { + "EF_ID": 119812, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.81", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.420Z", + "last_change_date": "2022-03-14T07:59:13.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6470, + "fields": { + "EF_ID": 119813, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.45", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.494Z", + "last_change_date": "2022-03-14T07:59:13.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6471, + "fields": { + "EF_ID": 119814, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.08", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.579Z", + "last_change_date": "2022-03-14T07:59:13.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6472, + "fields": { + "EF_ID": 119815, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.727Z", + "last_change_date": "2022-03-14T07:59:13.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6473, + "fields": { + "EF_ID": 119816, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.09", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.813Z", + "last_change_date": "2022-03-14T07:59:13.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6474, + "fields": { + "EF_ID": 119817, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.885Z", + "last_change_date": "2022-03-14T07:59:13.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6475, + "fields": { + "EF_ID": 119818, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.84", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:13.982Z", + "last_change_date": "2022-03-14T07:59:13.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6476, + "fields": { + "EF_ID": 119819, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.82", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.085Z", + "last_change_date": "2022-03-14T07:59:14.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6477, + "fields": { + "EF_ID": 119820, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.192Z", + "last_change_date": "2022-03-14T07:59:14.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6478, + "fields": { + "EF_ID": 119821, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.22", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.277Z", + "last_change_date": "2022-03-14T07:59:14.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6479, + "fields": { + "EF_ID": 119822, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.367Z", + "last_change_date": "2022-03-14T07:59:14.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6480, + "fields": { + "EF_ID": 119823, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.444Z", + "last_change_date": "2022-03-14T07:59:14.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6481, + "fields": { + "EF_ID": 119824, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.535Z", + "last_change_date": "2022-03-14T07:59:14.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6482, + "fields": { + "EF_ID": 119825, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.12", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.610Z", + "last_change_date": "2022-03-14T07:59:14.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6483, + "fields": { + "EF_ID": 119826, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.702Z", + "last_change_date": "2022-03-14T07:59:14.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6484, + "fields": { + "EF_ID": 119827, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.777Z", + "last_change_date": "2022-03-14T07:59:14.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6485, + "fields": { + "EF_ID": 119828, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.24", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.862Z", + "last_change_date": "2022-03-14T07:59:14.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6486, + "fields": { + "EF_ID": 119829, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.15", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:14.935Z", + "last_change_date": "2022-03-14T07:59:14.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6487, + "fields": { + "EF_ID": 119830, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.021Z", + "last_change_date": "2022-03-14T07:59:15.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6488, + "fields": { + "EF_ID": 119831, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.4", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.094Z", + "last_change_date": "2022-03-14T07:59:15.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6489, + "fields": { + "EF_ID": 119832, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.24", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.180Z", + "last_change_date": "2022-03-14T07:59:15.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6490, + "fields": { + "EF_ID": 119833, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.252Z", + "last_change_date": "2022-03-14T07:59:15.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6491, + "fields": { + "EF_ID": 119834, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.348Z", + "last_change_date": "2022-03-14T07:59:15.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6492, + "fields": { + "EF_ID": 119835, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.8", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.419Z", + "last_change_date": "2022-03-14T07:59:15.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6493, + "fields": { + "EF_ID": 119836, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.32", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.516Z", + "last_change_date": "2022-03-14T07:59:15.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6494, + "fields": { + "EF_ID": 119837, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.9", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.611Z", + "last_change_date": "2022-03-14T07:59:15.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6495, + "fields": { + "EF_ID": 119838, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.726Z", + "last_change_date": "2022-03-14T07:59:15.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6496, + "fields": { + "EF_ID": 119839, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.14", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.819Z", + "last_change_date": "2022-03-14T07:59:15.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6497, + "fields": { + "EF_ID": 119840, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.910Z", + "last_change_date": "2022-03-14T07:59:15.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6498, + "fields": { + "EF_ID": 119841, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:15.986Z", + "last_change_date": "2022-03-14T07:59:15.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6499, + "fields": { + "EF_ID": 119842, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.14", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:16.077Z", + "last_change_date": "2022-03-14T07:59:16.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6500, + "fields": { + "EF_ID": 119843, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.15", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:16.152Z", + "last_change_date": "2022-03-14T07:59:16.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6501, + "fields": { + "EF_ID": 119844, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:16.245Z", + "last_change_date": "2022-03-14T07:59:16.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6502, + "fields": { + "EF_ID": 119845, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.14", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:16.319Z", + "last_change_date": "2022-03-14T07:59:16.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6503, + "fields": { + "EF_ID": 119846, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:16.413Z", + "last_change_date": "2022-03-14T07:59:16.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6504, + "fields": { + "EF_ID": 119847, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.25", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:16.486Z", + "last_change_date": "2022-03-14T07:59:16.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6505, + "fields": { + "EF_ID": 119848, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:16.580Z", + "last_change_date": "2022-03-14T07:59:16.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6506, + "fields": { + "EF_ID": 119849, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:16.652Z", + "last_change_date": "2022-03-14T07:59:16.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6507, + "fields": { + "EF_ID": 119850, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:16.748Z", + "last_change_date": "2022-03-14T07:59:16.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6508, + "fields": { + "EF_ID": 119851, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "METHANE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:16.819Z", + "last_change_date": "2022-03-14T07:59:16.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6509, + "fields": { + "EF_ID": 119852, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:16.907Z", + "last_change_date": "2022-03-14T07:59:16.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6510, + "fields": { + "EF_ID": 119853, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:16.982Z", + "last_change_date": "2022-03-14T07:59:16.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6511, + "fields": { + "EF_ID": 119854, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.076Z", + "last_change_date": "2022-03-14T07:59:17.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6512, + "fields": { + "EF_ID": 119855, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.166Z", + "last_change_date": "2022-03-14T07:59:17.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6513, + "fields": { + "EF_ID": 119856, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.268Z", + "last_change_date": "2022-03-14T07:59:17.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6514, + "fields": { + "EF_ID": 119857, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.349Z", + "last_change_date": "2022-03-14T07:59:17.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6515, + "fields": { + "EF_ID": 119858, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.436Z", + "last_change_date": "2022-03-14T07:59:17.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6516, + "fields": { + "EF_ID": 119859, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.516Z", + "last_change_date": "2022-03-14T07:59:17.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6517, + "fields": { + "EF_ID": 119860, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.604Z", + "last_change_date": "2022-03-14T07:59:17.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6518, + "fields": { + "EF_ID": 119861, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.682Z", + "last_change_date": "2022-03-14T07:59:17.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6519, + "fields": { + "EF_ID": 119862, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.788Z", + "last_change_date": "2022-03-14T07:59:17.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6520, + "fields": { + "EF_ID": 119863, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.866Z", + "last_change_date": "2022-03-14T07:59:17.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6521, + "fields": { + "EF_ID": 119864, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:17.956Z", + "last_change_date": "2022-03-14T07:59:17.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6522, + "fields": { + "EF_ID": 119865, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.032Z", + "last_change_date": "2022-03-14T07:59:18.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6523, + "fields": { + "EF_ID": 119866, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.131Z", + "last_change_date": "2022-03-14T07:59:18.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6524, + "fields": { + "EF_ID": 119867, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.207Z", + "last_change_date": "2022-03-14T07:59:18.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6525, + "fields": { + "EF_ID": 119868, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.291Z", + "last_change_date": "2022-03-14T07:59:18.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6526, + "fields": { + "EF_ID": 119869, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.366Z", + "last_change_date": "2022-03-14T07:59:18.366Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6527, + "fields": { + "EF_ID": 119870, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.458Z", + "last_change_date": "2022-03-14T07:59:18.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6528, + "fields": { + "EF_ID": 119871, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.4", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.532Z", + "last_change_date": "2022-03-14T07:59:18.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6529, + "fields": { + "EF_ID": 119872, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.4", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.627Z", + "last_change_date": "2022-03-14T07:59:18.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6530, + "fields": { + "EF_ID": 119873, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.716Z", + "last_change_date": "2022-03-14T07:59:18.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6531, + "fields": { + "EF_ID": 119874, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.811Z", + "last_change_date": "2022-03-14T07:59:18.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6532, + "fields": { + "EF_ID": 119875, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.899Z", + "last_change_date": "2022-03-14T07:59:18.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6533, + "fields": { + "EF_ID": 119876, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:18.988Z", + "last_change_date": "2022-03-14T07:59:18.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6534, + "fields": { + "EF_ID": 119877, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.066Z", + "last_change_date": "2022-03-14T07:59:19.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6535, + "fields": { + "EF_ID": 119878, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.154Z", + "last_change_date": "2022-03-14T07:59:19.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6536, + "fields": { + "EF_ID": 119879, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.3", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.232Z", + "last_change_date": "2022-03-14T07:59:19.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6537, + "fields": { + "EF_ID": 119880, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.323Z", + "last_change_date": "2022-03-14T07:59:19.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6538, + "fields": { + "EF_ID": 119881, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.399Z", + "last_change_date": "2022-03-14T07:59:19.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6539, + "fields": { + "EF_ID": 119882, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.498Z", + "last_change_date": "2022-03-14T07:59:19.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6540, + "fields": { + "EF_ID": 119883, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.574Z", + "last_change_date": "2022-03-14T07:59:19.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6541, + "fields": { + "EF_ID": 119884, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.666Z", + "last_change_date": "2022-03-14T07:59:19.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6542, + "fields": { + "EF_ID": 119885, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.741Z", + "last_change_date": "2022-03-14T07:59:19.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6543, + "fields": { + "EF_ID": 119886, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.842Z", + "last_change_date": "2022-03-14T07:59:19.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6544, + "fields": { + "EF_ID": 119887, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:19.932Z", + "last_change_date": "2022-03-14T07:59:19.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6545, + "fields": { + "EF_ID": 119888, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.035Z", + "last_change_date": "2022-03-14T07:59:20.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6546, + "fields": { + "EF_ID": 119889, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.2", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.116Z", + "last_change_date": "2022-03-14T07:59:20.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6547, + "fields": { + "EF_ID": 119890, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.211Z", + "last_change_date": "2022-03-14T07:59:20.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6548, + "fields": { + "EF_ID": 119891, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.307Z", + "last_change_date": "2022-03-14T07:59:20.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6549, + "fields": { + "EF_ID": 119892, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.396Z", + "last_change_date": "2022-03-14T07:59:20.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6550, + "fields": { + "EF_ID": 119893, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.482Z", + "last_change_date": "2022-03-14T07:59:20.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6551, + "fields": { + "EF_ID": 119894, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.571Z", + "last_change_date": "2022-03-14T07:59:20.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6552, + "fields": { + "EF_ID": 119895, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.649Z", + "last_change_date": "2022-03-14T07:59:20.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6553, + "fields": { + "EF_ID": 119896, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.748Z", + "last_change_date": "2022-03-14T07:59:20.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6554, + "fields": { + "EF_ID": 119897, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.824Z", + "last_change_date": "2022-03-14T07:59:20.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6555, + "fields": { + "EF_ID": 119898, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:20.932Z", + "last_change_date": "2022-03-14T07:59:20.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6556, + "fields": { + "EF_ID": 119899, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.1", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:21.007Z", + "last_change_date": "2022-03-14T07:59:21.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6557, + "fields": { + "EF_ID": 119900, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:21.092Z", + "last_change_date": "2022-03-14T07:59:21.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6558, + "fields": { + "EF_ID": 119901, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:21.165Z", + "last_change_date": "2022-03-14T07:59:21.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6559, + "fields": { + "EF_ID": 119902, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:21.267Z", + "last_change_date": "2022-03-14T07:59:21.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6560, + "fields": { + "EF_ID": 119903, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "Estimates based on Tier I default values (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:21.341Z", + "last_change_date": "2022-03-14T07:59:21.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6561, + "fields": { + "EF_ID": 119904, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "25.86", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:21.435Z", + "last_change_date": "2022-03-14T07:59:21.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6562, + "fields": { + "EF_ID": 119905, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "19.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:21.507Z", + "last_change_date": "2022-03-14T07:59:21.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6563, + "fields": { + "EF_ID": 119906, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.73", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:21.602Z", + "last_change_date": "2022-03-14T07:59:21.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6564, + "fields": { + "EF_ID": 119907, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:21.674Z", + "last_change_date": "2022-03-14T07:59:21.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6565, + "fields": { + "EF_ID": 119908, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.72", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:21.779Z", + "last_change_date": "2022-03-14T07:59:21.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6566, + "fields": { + "EF_ID": 119909, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "35.57", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:21.874Z", + "last_change_date": "2022-03-14T07:59:21.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6567, + "fields": { + "EF_ID": 119910, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "28.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:21.980Z", + "last_change_date": "2022-03-14T07:59:21.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6568, + "fields": { + "EF_ID": 119911, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "34.81", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.065Z", + "last_change_date": "2022-03-14T07:59:22.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6569, + "fields": { + "EF_ID": 119912, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "64.45", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.156Z", + "last_change_date": "2022-03-14T07:59:22.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6570, + "fields": { + "EF_ID": 119913, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.96", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.232Z", + "last_change_date": "2022-03-14T07:59:22.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6571, + "fields": { + "EF_ID": 119914, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.68", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.324Z", + "last_change_date": "2022-03-14T07:59:22.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6572, + "fields": { + "EF_ID": 119915, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.23", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.412Z", + "last_change_date": "2022-03-14T07:59:22.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6573, + "fields": { + "EF_ID": 119916, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.97", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.500Z", + "last_change_date": "2022-03-14T07:59:22.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6574, + "fields": { + "EF_ID": 119917, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.74", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.574Z", + "last_change_date": "2022-03-14T07:59:22.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6575, + "fields": { + "EF_ID": 119918, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.659Z", + "last_change_date": "2022-03-14T07:59:22.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6576, + "fields": { + "EF_ID": 119919, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.66", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.732Z", + "last_change_date": "2022-03-14T07:59:22.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6577, + "fields": { + "EF_ID": 119920, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.12", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.827Z", + "last_change_date": "2022-03-14T07:59:22.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6578, + "fields": { + "EF_ID": 119921, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.30", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.899Z", + "last_change_date": "2022-03-14T07:59:22.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6579, + "fields": { + "EF_ID": 119922, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "49.17", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:22.986Z", + "last_change_date": "2022-03-14T07:59:22.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6580, + "fields": { + "EF_ID": 119923, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "49.52", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.057Z", + "last_change_date": "2022-03-14T07:59:23.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6581, + "fields": { + "EF_ID": 119924, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "65.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.154Z", + "last_change_date": "2022-03-14T07:59:23.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6582, + "fields": { + "EF_ID": 119925, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "42.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.224Z", + "last_change_date": "2022-03-14T07:59:23.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6583, + "fields": { + "EF_ID": 119926, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "23.43", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.322Z", + "last_change_date": "2022-03-14T07:59:23.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6584, + "fields": { + "EF_ID": 119927, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "17.85", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.424Z", + "last_change_date": "2022-03-14T07:59:23.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6585, + "fields": { + "EF_ID": 119928, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "23.76", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.524Z", + "last_change_date": "2022-03-14T07:59:23.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6586, + "fields": { + "EF_ID": 119929, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "28.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.607Z", + "last_change_date": "2022-03-14T07:59:23.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6587, + "fields": { + "EF_ID": 119930, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "24.80", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.699Z", + "last_change_date": "2022-03-14T07:59:23.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6588, + "fields": { + "EF_ID": 119931, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "52.81", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.782Z", + "last_change_date": "2022-03-14T07:59:23.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6589, + "fields": { + "EF_ID": 119932, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "35.65", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.875Z", + "last_change_date": "2022-03-14T07:59:23.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6590, + "fields": { + "EF_ID": 119933, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.62", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:23.949Z", + "last_change_date": "2022-03-14T07:59:23.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6591, + "fields": { + "EF_ID": 119934, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.16", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.135Z", + "last_change_date": "2022-03-14T07:59:24.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6592, + "fields": { + "EF_ID": 119935, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "31.64", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.207Z", + "last_change_date": "2022-03-14T07:59:24.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6593, + "fields": { + "EF_ID": 119936, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "35.65", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.302Z", + "last_change_date": "2022-03-14T07:59:24.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6594, + "fields": { + "EF_ID": 119937, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.97", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.380Z", + "last_change_date": "2022-03-14T07:59:24.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6595, + "fields": { + "EF_ID": 119938, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.76", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.469Z", + "last_change_date": "2022-03-14T07:59:24.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6596, + "fields": { + "EF_ID": 119939, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.68", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.541Z", + "last_change_date": "2022-03-14T07:59:24.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6597, + "fields": { + "EF_ID": 119940, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.638Z", + "last_change_date": "2022-03-14T07:59:24.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6598, + "fields": { + "EF_ID": 119941, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.707Z", + "last_change_date": "2022-03-14T07:59:24.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6599, + "fields": { + "EF_ID": 119942, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.34", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.805Z", + "last_change_date": "2022-03-14T07:59:24.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6600, + "fields": { + "EF_ID": 119943, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.874Z", + "last_change_date": "2022-03-14T07:59:24.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6601, + "fields": { + "EF_ID": 119944, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:24.974Z", + "last_change_date": "2022-03-14T07:59:24.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6602, + "fields": { + "EF_ID": 119945, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.69", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:25.066Z", + "last_change_date": "2022-03-14T07:59:25.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6603, + "fields": { + "EF_ID": 119946, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.75", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:25.166Z", + "last_change_date": "2022-03-14T07:59:25.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6604, + "fields": { + "EF_ID": 119947, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.40", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:25.241Z", + "last_change_date": "2022-03-14T07:59:25.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6605, + "fields": { + "EF_ID": 119948, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.99", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:25.334Z", + "last_change_date": "2022-03-14T07:59:25.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6606, + "fields": { + "EF_ID": 119949, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.63", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:25.407Z", + "last_change_date": "2022-03-14T07:59:25.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6607, + "fields": { + "EF_ID": 119950, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.58", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:25.501Z", + "last_change_date": "2022-03-14T07:59:25.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6608, + "fields": { + "EF_ID": 119951, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.66", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:25.574Z", + "last_change_date": "2022-03-14T07:59:25.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6609, + "fields": { + "EF_ID": 119952, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.74", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:25.669Z", + "last_change_date": "2022-03-14T07:59:25.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6610, + "fields": { + "EF_ID": 119953, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.30", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:25.740Z", + "last_change_date": "2022-03-14T07:59:25.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6611, + "fields": { + "EF_ID": 119954, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:25.845Z", + "last_change_date": "2022-03-14T07:59:25.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6612, + "fields": { + "EF_ID": 119955, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.82", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:25.916Z", + "last_change_date": "2022-03-14T07:59:25.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6613, + "fields": { + "EF_ID": 119956, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.80", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:25.982Z", + "last_change_date": "2022-03-14T07:59:25.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6614, + "fields": { + "EF_ID": 119957, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "28.30", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.088Z", + "last_change_date": "2022-03-14T07:59:26.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6615, + "fields": { + "EF_ID": 119958, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.35", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.174Z", + "last_change_date": "2022-03-14T07:59:26.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6616, + "fields": { + "EF_ID": 119959, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.280Z", + "last_change_date": "2022-03-14T07:59:26.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6617, + "fields": { + "EF_ID": 119960, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.55", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.357Z", + "last_change_date": "2022-03-14T07:59:26.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6618, + "fields": { + "EF_ID": 119961, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.20", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.464Z", + "last_change_date": "2022-03-14T07:59:26.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6619, + "fields": { + "EF_ID": 119962, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "26.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.549Z", + "last_change_date": "2022-03-14T07:59:26.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6620, + "fields": { + "EF_ID": 119963, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "25.23", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.643Z", + "last_change_date": "2022-03-14T07:59:26.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6621, + "fields": { + "EF_ID": 119964, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.716Z", + "last_change_date": "2022-03-14T07:59:26.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6622, + "fields": { + "EF_ID": 119965, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "92.37", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.834Z", + "last_change_date": "2022-03-14T07:59:26.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6623, + "fields": { + "EF_ID": 119966, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:26.907Z", + "last_change_date": "2022-03-14T07:59:26.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6624, + "fields": { + "EF_ID": 119967, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "24.44", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.011Z", + "last_change_date": "2022-03-14T07:59:27.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6625, + "fields": { + "EF_ID": 119968, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "27.16", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.082Z", + "last_change_date": "2022-03-14T07:59:27.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6626, + "fields": { + "EF_ID": 119969, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.04", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.186Z", + "last_change_date": "2022-03-14T07:59:27.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6627, + "fields": { + "EF_ID": 119970, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.03", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.257Z", + "last_change_date": "2022-03-14T07:59:27.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6628, + "fields": { + "EF_ID": 119971, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.65", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.354Z", + "last_change_date": "2022-03-14T07:59:27.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6629, + "fields": { + "EF_ID": 119972, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.424Z", + "last_change_date": "2022-03-14T07:59:27.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6630, + "fields": { + "EF_ID": 119973, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.513Z", + "last_change_date": "2022-03-14T07:59:27.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6631, + "fields": { + "EF_ID": 119974, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "114.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.591Z", + "last_change_date": "2022-03-14T07:59:27.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6632, + "fields": { + "EF_ID": 119975, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "79.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.698Z", + "last_change_date": "2022-03-14T07:59:27.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6633, + "fields": { + "EF_ID": 119976, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "17.84", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.782Z", + "last_change_date": "2022-03-14T07:59:27.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6634, + "fields": { + "EF_ID": 119977, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "26.72", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.890Z", + "last_change_date": "2022-03-14T07:59:27.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6635, + "fields": { + "EF_ID": 119978, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.08", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:27.974Z", + "last_change_date": "2022-03-14T07:59:27.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6636, + "fields": { + "EF_ID": 119979, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.62", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.083Z", + "last_change_date": "2022-03-14T07:59:28.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6637, + "fields": { + "EF_ID": 119980, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.80", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.166Z", + "last_change_date": "2022-03-14T07:59:28.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6638, + "fields": { + "EF_ID": 119981, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.47", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.276Z", + "last_change_date": "2022-03-14T07:59:28.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6639, + "fields": { + "EF_ID": 119982, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.37", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.349Z", + "last_change_date": "2022-03-14T07:59:28.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6640, + "fields": { + "EF_ID": 119983, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.76", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.436Z", + "last_change_date": "2022-03-14T07:59:28.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6641, + "fields": { + "EF_ID": 119984, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "20.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.515Z", + "last_change_date": "2022-03-14T07:59:28.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6642, + "fields": { + "EF_ID": 119985, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "26.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.612Z", + "last_change_date": "2022-03-14T07:59:28.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6643, + "fields": { + "EF_ID": 119986, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.29", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.689Z", + "last_change_date": "2022-03-14T07:59:28.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6644, + "fields": { + "EF_ID": 119987, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "103.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.779Z", + "last_change_date": "2022-03-14T07:59:28.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6645, + "fields": { + "EF_ID": 119988, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "20.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.866Z", + "last_change_date": "2022-03-14T07:59:28.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6646, + "fields": { + "EF_ID": 119989, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:28.955Z", + "last_change_date": "2022-03-14T07:59:28.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6647, + "fields": { + "EF_ID": 119990, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.53", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.032Z", + "last_change_date": "2022-03-14T07:59:29.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6648, + "fields": { + "EF_ID": 119991, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "27.98", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.114Z", + "last_change_date": "2022-03-14T07:59:29.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6649, + "fields": { + "EF_ID": 119992, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "82.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.191Z", + "last_change_date": "2022-03-14T07:59:29.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6650, + "fields": { + "EF_ID": 119993, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "143.05", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.299Z", + "last_change_date": "2022-03-14T07:59:29.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6651, + "fields": { + "EF_ID": 119994, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.21", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.381Z", + "last_change_date": "2022-03-14T07:59:29.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6652, + "fields": { + "EF_ID": 119995, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.18", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.474Z", + "last_change_date": "2022-03-14T07:59:29.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6653, + "fields": { + "EF_ID": 119996, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.70", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.566Z", + "last_change_date": "2022-03-14T07:59:29.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6654, + "fields": { + "EF_ID": 119997, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.18", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.675Z", + "last_change_date": "2022-03-14T07:59:29.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6655, + "fields": { + "EF_ID": 119998, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.84", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.766Z", + "last_change_date": "2022-03-14T07:59:29.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6656, + "fields": { + "EF_ID": 119999, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.852Z", + "last_change_date": "2022-03-14T07:59:29.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6657, + "fields": { + "EF_ID": 120000, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.35", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:29.932Z", + "last_change_date": "2022-03-14T07:59:29.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6658, + "fields": { + "EF_ID": 120001, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:30.020Z", + "last_change_date": "2022-03-14T07:59:30.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6659, + "fields": { + "EF_ID": 120002, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.42", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:30.107Z", + "last_change_date": "2022-03-14T07:59:30.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6660, + "fields": { + "EF_ID": 120003, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.22", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:30.195Z", + "last_change_date": "2022-03-14T07:59:30.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6661, + "fields": { + "EF_ID": 120004, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "34.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:30.273Z", + "last_change_date": "2022-03-14T07:59:30.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6662, + "fields": { + "EF_ID": 120005, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.97", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:30.397Z", + "last_change_date": "2022-03-14T07:59:30.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6663, + "fields": { + "EF_ID": 120006, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.24", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:30.490Z", + "last_change_date": "2022-03-14T07:59:30.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6664, + "fields": { + "EF_ID": 120007, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON MONOXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:30.590Z", + "last_change_date": "2022-03-14T07:59:30.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6665, + "fields": { + "EF_ID": 120008, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.12", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:30.665Z", + "last_change_date": "2022-03-14T07:59:30.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6666, + "fields": { + "EF_ID": 120009, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.67", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:30.749Z", + "last_change_date": "2022-03-14T07:59:30.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6667, + "fields": { + "EF_ID": 120010, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.54", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:30.850Z", + "last_change_date": "2022-03-14T07:59:30.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6668, + "fields": { + "EF_ID": 120011, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:30.959Z", + "last_change_date": "2022-03-14T07:59:30.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6669, + "fields": { + "EF_ID": 120012, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:31.067Z", + "last_change_date": "2022-03-14T07:59:31.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6670, + "fields": { + "EF_ID": 120013, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.15", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:31.185Z", + "last_change_date": "2022-03-14T07:59:31.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6671, + "fields": { + "EF_ID": 120014, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:31.310Z", + "last_change_date": "2022-03-14T07:59:31.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6672, + "fields": { + "EF_ID": 120015, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:31.411Z", + "last_change_date": "2022-03-14T07:59:31.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6673, + "fields": { + "EF_ID": 120016, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:31.513Z", + "last_change_date": "2022-03-14T07:59:31.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6674, + "fields": { + "EF_ID": 120017, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "87.71", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:31.621Z", + "last_change_date": "2022-03-14T07:59:31.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6675, + "fields": { + "EF_ID": 120018, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.05", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:31.730Z", + "last_change_date": "2022-03-14T07:59:31.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6676, + "fields": { + "EF_ID": 120019, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "6.25", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:31.840Z", + "last_change_date": "2022-03-14T07:59:31.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6677, + "fields": { + "EF_ID": 120020, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.32", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.057Z", + "last_change_date": "2022-03-14T07:59:32.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6678, + "fields": { + "EF_ID": 120021, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.165Z", + "last_change_date": "2022-03-14T07:59:32.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6679, + "fields": { + "EF_ID": 120022, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.75", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.274Z", + "last_change_date": "2022-03-14T07:59:32.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6680, + "fields": { + "EF_ID": 120023, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.91", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.391Z", + "last_change_date": "2022-03-14T07:59:32.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6681, + "fields": { + "EF_ID": 120024, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.492Z", + "last_change_date": "2022-03-14T07:59:32.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6682, + "fields": { + "EF_ID": 120025, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.65", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.593Z", + "last_change_date": "2022-03-14T07:59:32.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6683, + "fields": { + "EF_ID": 120026, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "43.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.701Z", + "last_change_date": "2022-03-14T07:59:32.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6684, + "fields": { + "EF_ID": 120027, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.41", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.819Z", + "last_change_date": "2022-03-14T07:59:32.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6685, + "fields": { + "EF_ID": 120028, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:32.936Z", + "last_change_date": "2022-03-14T07:59:32.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6686, + "fields": { + "EF_ID": 120029, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.054Z", + "last_change_date": "2022-03-14T07:59:33.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6687, + "fields": { + "EF_ID": 120030, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.20", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.164Z", + "last_change_date": "2022-03-14T07:59:33.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6688, + "fields": { + "EF_ID": 120031, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.10", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.273Z", + "last_change_date": "2022-03-14T07:59:33.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6689, + "fields": { + "EF_ID": 120032, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.99", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.380Z", + "last_change_date": "2022-03-14T07:59:33.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6690, + "fields": { + "EF_ID": 120033, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.490Z", + "last_change_date": "2022-03-14T07:59:33.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6691, + "fields": { + "EF_ID": 120034, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.599Z", + "last_change_date": "2022-03-14T07:59:33.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6692, + "fields": { + "EF_ID": 120035, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.59", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.717Z", + "last_change_date": "2022-03-14T07:59:33.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6693, + "fields": { + "EF_ID": 120036, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.825Z", + "last_change_date": "2022-03-14T07:59:33.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6694, + "fields": { + "EF_ID": 120037, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.36", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:33.934Z", + "last_change_date": "2022-03-14T07:59:33.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6695, + "fields": { + "EF_ID": 120038, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "4.17", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.068Z", + "last_change_date": "2022-03-14T07:59:34.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6696, + "fields": { + "EF_ID": 120039, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "66.56", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.185Z", + "last_change_date": "2022-03-14T07:59:34.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6697, + "fields": { + "EF_ID": 120040, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.294Z", + "last_change_date": "2022-03-14T07:59:34.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6698, + "fields": { + "EF_ID": 120041, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.69", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.402Z", + "last_change_date": "2022-03-14T07:59:34.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6699, + "fields": { + "EF_ID": 120042, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.06", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.546Z", + "last_change_date": "2022-03-14T07:59:34.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6700, + "fields": { + "EF_ID": 120043, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.19", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.662Z", + "last_change_date": "2022-03-14T07:59:34.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6701, + "fields": { + "EF_ID": 120044, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.85", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.782Z", + "last_change_date": "2022-03-14T07:59:34.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6702, + "fields": { + "EF_ID": 120045, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "107.13", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.890Z", + "last_change_date": "2022-03-14T07:59:34.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6703, + "fields": { + "EF_ID": 120046, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.21", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:34.999Z", + "last_change_date": "2022-03-14T07:59:34.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6704, + "fields": { + "EF_ID": 120047, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.116Z", + "last_change_date": "2022-03-14T07:59:35.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6705, + "fields": { + "EF_ID": 120048, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.56", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.199Z", + "last_change_date": "2022-03-14T07:59:35.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6706, + "fields": { + "EF_ID": 120049, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.50", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.291Z", + "last_change_date": "2022-03-14T07:59:35.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6707, + "fields": { + "EF_ID": 120050, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.29", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.374Z", + "last_change_date": "2022-03-14T07:59:35.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6708, + "fields": { + "EF_ID": 120051, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.36", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.468Z", + "last_change_date": "2022-03-14T07:59:35.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6709, + "fields": { + "EF_ID": 120052, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.52", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.568Z", + "last_change_date": "2022-03-14T07:59:35.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6710, + "fields": { + "EF_ID": 120053, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.23", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.668Z", + "last_change_date": "2022-03-14T07:59:35.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6711, + "fields": { + "EF_ID": 120054, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.28", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.786Z", + "last_change_date": "2022-03-14T07:59:35.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6712, + "fields": { + "EF_ID": 120055, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:35.894Z", + "last_change_date": "2022-03-14T07:59:35.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6713, + "fields": { + "EF_ID": 120056, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:36.012Z", + "last_change_date": "2022-03-14T07:59:36.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6714, + "fields": { + "EF_ID": 120057, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.58", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:36.100Z", + "last_change_date": "2022-03-14T07:59:36.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6715, + "fields": { + "EF_ID": 120058, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.00", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:36.197Z", + "last_change_date": "2022-03-14T07:59:36.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6716, + "fields": { + "EF_ID": 120059, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.26", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "It is assumed that 10% of total VOC emissions in LTO cycles are methane emissions [Olivier, J.G.J. (1991). Inventory of aircraft emissions: a review of recent literature. RIVM Rapport 736301008, Bilthoven, The Netherlands, 1991.] (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:36.291Z", + "last_change_date": "2022-03-14T07:59:36.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6717, + "fields": { + "EF_ID": 120060, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.72", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:36.382Z", + "last_change_date": "2022-03-14T07:59:36.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6718, + "fields": { + "EF_ID": 120061, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:36.466Z", + "last_change_date": "2022-03-14T07:59:36.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6719, + "fields": { + "EF_ID": 120062, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.73", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:36.574Z", + "last_change_date": "2022-03-14T07:59:36.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6720, + "fields": { + "EF_ID": 120063, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.77", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:36.658Z", + "last_change_date": "2022-03-14T07:59:36.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6721, + "fields": { + "EF_ID": 120064, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.96", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:36.751Z", + "last_change_date": "2022-03-14T07:59:36.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6722, + "fields": { + "EF_ID": 120065, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.23", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:36.833Z", + "last_change_date": "2022-03-14T07:59:36.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6723, + "fields": { + "EF_ID": 120066, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.86", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:36.926Z", + "last_change_date": "2022-03-14T07:59:36.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6724, + "fields": { + "EF_ID": 120067, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.02", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.000Z", + "last_change_date": "2022-03-14T07:59:37.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6725, + "fields": { + "EF_ID": 120068, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.37", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.127Z", + "last_change_date": "2022-03-14T07:59:37.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6726, + "fields": { + "EF_ID": 120069, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.86", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.200Z", + "last_change_date": "2022-03-14T07:59:37.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6727, + "fields": { + "EF_ID": 120070, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.68", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.278Z", + "last_change_date": "2022-03-14T07:59:37.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6728, + "fields": { + "EF_ID": 120071, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.26", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.358Z", + "last_change_date": "2022-03-14T07:59:37.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6729, + "fields": { + "EF_ID": 120072, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.446Z", + "last_change_date": "2022-03-14T07:59:37.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6730, + "fields": { + "EF_ID": 120073, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.87", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.542Z", + "last_change_date": "2022-03-14T07:59:37.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6731, + "fields": { + "EF_ID": 120074, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.630Z", + "last_change_date": "2022-03-14T07:59:37.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6732, + "fields": { + "EF_ID": 120075, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.72", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.717Z", + "last_change_date": "2022-03-14T07:59:37.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6733, + "fields": { + "EF_ID": 120076, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.78", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.805Z", + "last_change_date": "2022-03-14T07:59:37.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6734, + "fields": { + "EF_ID": 120077, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.88", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.892Z", + "last_change_date": "2022-03-14T07:59:37.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6735, + "fields": { + "EF_ID": 120078, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.21", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:37.975Z", + "last_change_date": "2022-03-14T07:59:37.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6736, + "fields": { + "EF_ID": 120079, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.60", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.050Z", + "last_change_date": "2022-03-14T07:59:38.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6737, + "fields": { + "EF_ID": 120080, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.51", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.150Z", + "last_change_date": "2022-03-14T07:59:38.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6738, + "fields": { + "EF_ID": 120081, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3.24", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.225Z", + "last_change_date": "2022-03-14T07:59:38.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6739, + "fields": { + "EF_ID": 120082, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.37", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.318Z", + "last_change_date": "2022-03-14T07:59:38.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6740, + "fields": { + "EF_ID": 120083, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.392Z", + "last_change_date": "2022-03-14T07:59:38.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6741, + "fields": { + "EF_ID": 120084, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.46", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.485Z", + "last_change_date": "2022-03-14T07:59:38.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6742, + "fields": { + "EF_ID": 120085, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.77", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.558Z", + "last_change_date": "2022-03-14T07:59:38.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6743, + "fields": { + "EF_ID": 120086, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.75", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.653Z", + "last_change_date": "2022-03-14T07:59:38.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6744, + "fields": { + "EF_ID": 120087, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.56", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.742Z", + "last_change_date": "2022-03-14T07:59:38.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6745, + "fields": { + "EF_ID": 120088, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.829Z", + "last_change_date": "2022-03-14T07:59:38.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6746, + "fields": { + "EF_ID": 120089, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.70", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:38.917Z", + "last_change_date": "2022-03-14T07:59:38.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6747, + "fields": { + "EF_ID": 120090, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.84", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.005Z", + "last_change_date": "2022-03-14T07:59:39.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6748, + "fields": { + "EF_ID": 120091, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.084Z", + "last_change_date": "2022-03-14T07:59:39.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6749, + "fields": { + "EF_ID": 120092, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.172Z", + "last_change_date": "2022-03-14T07:59:39.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6750, + "fields": { + "EF_ID": 120093, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.01", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.250Z", + "last_change_date": "2022-03-14T07:59:39.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6751, + "fields": { + "EF_ID": 120094, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.87", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.340Z", + "last_change_date": "2022-03-14T07:59:39.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6752, + "fields": { + "EF_ID": 120095, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.93", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.417Z", + "last_change_date": "2022-03-14T07:59:39.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6753, + "fields": { + "EF_ID": 120096, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1.89", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.509Z", + "last_change_date": "2022-03-14T07:59:39.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6754, + "fields": { + "EF_ID": 120097, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2.22", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.584Z", + "last_change_date": "2022-03-14T07:59:39.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6755, + "fields": { + "EF_ID": 120098, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.60", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.668Z", + "last_change_date": "2022-03-14T07:59:39.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6756, + "fields": { + "EF_ID": 120099, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.57", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.742Z", + "last_change_date": "2022-03-14T07:59:39.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6757, + "fields": { + "EF_ID": 120100, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.33", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.828Z", + "last_change_date": "2022-03-14T07:59:39.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6758, + "fields": { + "EF_ID": 120101, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.31", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.900Z", + "last_change_date": "2022-03-14T07:59:39.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6759, + "fields": { + "EF_ID": 120102, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.76", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:39.987Z", + "last_change_date": "2022-03-14T07:59:39.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6760, + "fields": { + "EF_ID": 120103, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.80", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:40.067Z", + "last_change_date": "2022-03-14T07:59:40.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6761, + "fields": { + "EF_ID": 120104, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.27", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:40.171Z", + "last_change_date": "2022-03-14T07:59:40.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6762, + "fields": { + "EF_ID": 120105, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.68", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:40.259Z", + "last_change_date": "2022-03-14T07:59:40.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6763, + "fields": { + "EF_ID": 120106, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.60", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:40.372Z", + "last_change_date": "2022-03-14T07:59:40.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6764, + "fields": { + "EF_ID": 120107, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.91", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "This data is from ICAO Engine Exhaust Emissions Data Bank (ICAO, 2004) based on average measured data. It applies to LTO (Landing and Take off) only. Engine types for each aircraft were selected on a consistent basis of the engine with the most LTOs. This approach, for some engine types, may underestimate (or overestimate) fleet emissions which are not directly related to fuel consumption (eg NOx, CO, HC). The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:40.467Z", + "last_change_date": "2022-03-14T07:59:40.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6765, + "fields": { + "EF_ID": 120108, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.34", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:40.557Z", + "last_change_date": "2022-03-14T07:59:40.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6766, + "fields": { + "EF_ID": 120109, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.07", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:40.634Z", + "last_change_date": "2022-03-14T07:59:40.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6767, + "fields": { + "EF_ID": 120110, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.20", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:40.724Z", + "last_change_date": "2022-03-14T07:59:40.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6768, + "fields": { + "EF_ID": 120111, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Emission Factor for Typical Aircraft", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "0.20", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information regarding the uncertainties associated with this data can be found in: Lister, D.H., Norman, P.D. (2003). EC-NEPAir: Work Package 1 Aircraft engine emissions certification – a review of the development of ICAO Annex 16. Volume II, QinetiQ/FST/CR030440, UK (September 2003); and ICAO (1993). International Standards and Recommended Practices Environmental Protection - Annex 16 to the Convention on International Civil Aviation. - Volume II Aircraft Engine Emissions, 2nd edition (1993) International Civil Aviation Organisation, Montreal.", + "Data_Provider_Comments": "The sulphur content of the fuel is assumed to be 0.05% (as in the 1996 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:40.810Z", + "last_change_date": "2022-03-14T07:59:40.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6769, + "fields": { + "EF_ID": 120114, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "730", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:40.900Z", + "last_change_date": "2022-03-14T07:59:40.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6770, + "fields": { + "EF_ID": 120115, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "770", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:40.984Z", + "last_change_date": "2022-03-14T07:59:40.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6771, + "fields": { + "EF_ID": 120116, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "960", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.059Z", + "last_change_date": "2022-03-14T07:59:41.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6772, + "fields": { + "EF_ID": 120117, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2230", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.153Z", + "last_change_date": "2022-03-14T07:59:41.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6773, + "fields": { + "EF_ID": 120118, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1860", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.249Z", + "last_change_date": "2022-03-14T07:59:41.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6774, + "fields": { + "EF_ID": 120119, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2020", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.317Z", + "last_change_date": "2022-03-14T07:59:41.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6775, + "fields": { + "EF_ID": 120120, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3370", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.384Z", + "last_change_date": "2022-03-14T07:59:41.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6776, + "fields": { + "EF_ID": 120121, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1860", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.479Z", + "last_change_date": "2022-03-14T07:59:41.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6777, + "fields": { + "EF_ID": 120122, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "680", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.559Z", + "last_change_date": "2022-03-14T07:59:41.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6778, + "fields": { + "EF_ID": 120123, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1260", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.626Z", + "last_change_date": "2022-03-14T07:59:41.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6779, + "fields": { + "EF_ID": 120124, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1460", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.701Z", + "last_change_date": "2022-03-14T07:59:41.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6780, + "fields": { + "EF_ID": 120125, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "870", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.798Z", + "last_change_date": "2022-03-14T07:59:41.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6781, + "fields": { + "EF_ID": 120126, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "780", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.867Z", + "last_change_date": "2022-03-14T07:59:41.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6782, + "fields": { + "EF_ID": 120127, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "720", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:41.942Z", + "last_change_date": "2022-03-14T07:59:41.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6783, + "fields": { + "EF_ID": 120128, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "780", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.017Z", + "last_change_date": "2022-03-14T07:59:42.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6784, + "fields": { + "EF_ID": 120129, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "880", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.124Z", + "last_change_date": "2022-03-14T07:59:42.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6785, + "fields": { + "EF_ID": 120130, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3210", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.209Z", + "last_change_date": "2022-03-14T07:59:42.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6786, + "fields": { + "EF_ID": 120131, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3600", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.276Z", + "last_change_date": "2022-03-14T07:59:42.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6787, + "fields": { + "EF_ID": 120132, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3510", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.343Z", + "last_change_date": "2022-03-14T07:59:42.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6788, + "fields": { + "EF_ID": 120133, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "3240", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.442Z", + "last_change_date": "2022-03-14T07:59:42.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6789, + "fields": { + "EF_ID": 120134, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1370", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.517Z", + "last_change_date": "2022-03-14T07:59:42.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6790, + "fields": { + "EF_ID": 120135, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1460", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.584Z", + "last_change_date": "2022-03-14T07:59:42.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6791, + "fields": { + "EF_ID": 120136, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1460", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.650Z", + "last_change_date": "2022-03-14T07:59:42.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6792, + "fields": { + "EF_ID": 120137, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1780", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.745Z", + "last_change_date": "2022-03-14T07:59:42.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6793, + "fields": { + "EF_ID": 120138, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1750", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.842Z", + "last_change_date": "2022-03-14T07:59:42.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6794, + "fields": { + "EF_ID": 120146, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "870", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.909Z", + "last_change_date": "2022-03-14T07:59:42.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6795, + "fields": { + "EF_ID": 120147, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "930", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:42.975Z", + "last_change_date": "2022-03-14T07:59:42.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6796, + "fields": { + "EF_ID": 120148, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1890", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.072Z", + "last_change_date": "2022-03-14T07:59:43.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6797, + "fields": { + "EF_ID": 120149, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2230", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.142Z", + "last_change_date": "2022-03-14T07:59:43.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6798, + "fields": { + "EF_ID": 120150, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "600", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.209Z", + "last_change_date": "2022-03-14T07:59:43.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6799, + "fields": { + "EF_ID": 120151, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "570", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.276Z", + "last_change_date": "2022-03-14T07:59:43.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6800, + "fields": { + "EF_ID": 120152, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "330", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.365Z", + "last_change_date": "2022-03-14T07:59:43.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6801, + "fields": { + "EF_ID": 120153, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.451Z", + "last_change_date": "2022-03-14T07:59:43.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6802, + "fields": { + "EF_ID": 120154, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "760", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.525Z", + "last_change_date": "2022-03-14T07:59:43.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6803, + "fields": { + "EF_ID": 120155, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "800", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.592Z", + "last_change_date": "2022-03-14T07:59:43.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6804, + "fields": { + "EF_ID": 120156, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "280", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.691Z", + "last_change_date": "2022-03-14T07:59:43.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6805, + "fields": { + "EF_ID": 120157, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "680", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.776Z", + "last_change_date": "2022-03-14T07:59:43.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6806, + "fields": { + "EF_ID": 120158, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "600", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.851Z", + "last_change_date": "2022-03-14T07:59:43.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6807, + "fields": { + "EF_ID": 120159, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "910", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:43.925Z", + "last_change_date": "2022-03-14T07:59:43.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6808, + "fields": { + "EF_ID": 120160, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "340", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FAA (2004b) Emissions and dispersion modelling system. (EDMS) User`s Manual FAA-AEE-04-02 (Rev. 1 – 10/28/04) Federal Aviation Administration Office of Environment and Energy, Washington, DC September 2004. Additional information is available from the FAA web site: www.faa.gov.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.faa.gov", + "creation_date": "2022-03-14T07:59:44.010Z", + "last_change_date": "2022-03-14T07:59:44.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6809, + "fields": { + "EF_ID": 120161, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "70", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:44.101Z", + "last_change_date": "2022-03-14T07:59:44.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6810, + "fields": { + "EF_ID": 120191, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2560", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.167Z", + "last_change_date": "2022-03-14T07:59:44.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6811, + "fields": { + "EF_ID": 120192, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.226Z", + "last_change_date": "2022-03-14T07:59:44.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6812, + "fields": { + "EF_ID": 120193, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1700", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.321Z", + "last_change_date": "2022-03-14T07:59:44.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6813, + "fields": { + "EF_ID": 120194, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "840", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.393Z", + "last_change_date": "2022-03-14T07:59:44.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6814, + "fields": { + "EF_ID": 120195, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.459Z", + "last_change_date": "2022-03-14T07:59:44.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6815, + "fields": { + "EF_ID": 120196, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "2310", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.518Z", + "last_change_date": "2022-03-14T07:59:44.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6816, + "fields": { + "EF_ID": 120197, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1010", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.606Z", + "last_change_date": "2022-03-14T07:59:44.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6817, + "fields": { + "EF_ID": 120422, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "200", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:44.676Z", + "last_change_date": "2022-03-14T07:59:44.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6818, + "fields": { + "EF_ID": 120423, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "200", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "FOI (The Swedish Defence Research Agency) Turboprop LTO Emissions database", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:44.740Z", + "last_change_date": "2022-03-14T07:59:44.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6819, + "fields": { + "EF_ID": 120424, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1720", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.807Z", + "last_change_date": "2022-03-14T07:59:44.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6820, + "fields": { + "EF_ID": 120425, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "SULPHUR DIOXIDE (SO2+SO3), NITROGEN OXIDES (NO+NO2), NON METHANE VOLATILE ORGANIC COMPOUNDS, METHANE, CARBON MONOXIDE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "LTO Fuel Consumption", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "1510", + "Unit": "kg/LTO", + "Equation": "Equation 3.6.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.9", + "Technical_Reference": "ICAO (2004). Engine exhaust emissions data bank Issue 13 (Doc 9646), ICAO, Montreal, Canada. 1995. (Subsequent updates are available from the ICAO web site www.icao.int)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.icao.int", + "creation_date": "2022-03-14T07:59:44.916Z", + "last_change_date": "2022-03-14T07:59:44.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6821, + "fields": { + "EF_ID": 120476, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.001Z", + "last_change_date": "2022-03-14T07:59:45.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6822, + "fields": { + "EF_ID": 120477, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.083Z", + "last_change_date": "2022-03-14T07:59:45.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6823, + "fields": { + "EF_ID": 120478, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.6", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.193Z", + "last_change_date": "2022-03-14T07:59:45.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6824, + "fields": { + "EF_ID": 120479, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.9", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.310Z", + "last_change_date": "2022-03-14T07:59:45.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6825, + "fields": { + "EF_ID": 120480, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.410Z", + "last_change_date": "2022-03-14T07:59:45.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6826, + "fields": { + "EF_ID": 120481, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.511Z", + "last_change_date": "2022-03-14T07:59:45.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6827, + "fields": { + "EF_ID": 120482, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.612Z", + "last_change_date": "2022-03-14T07:59:45.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6828, + "fields": { + "EF_ID": 120483, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.6", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.713Z", + "last_change_date": "2022-03-14T07:59:45.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6829, + "fields": { + "EF_ID": 120484, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Data from SAGE model; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.814Z", + "last_change_date": "2022-03-14T07:59:45.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6830, + "fields": { + "EF_ID": 120485, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.9", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:45.915Z", + "last_change_date": "2022-03-14T07:59:45.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6831, + "fields": { + "EF_ID": 120486, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P., (2003). Commercial aircraft emission scenario for 2020: Database Development and Analysis. NASA/CR—2003-212331, National Aeronautics and Space Administration, Glenn Research Center, USA May 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.016Z", + "last_change_date": "2022-03-14T07:59:46.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6832, + "fields": { + "EF_ID": 120487, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.7", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.115Z", + "last_change_date": "2022-03-14T07:59:46.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6833, + "fields": { + "EF_ID": 120488, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.216Z", + "last_change_date": "2022-03-14T07:59:46.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6834, + "fields": { + "EF_ID": 120489, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.7", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.308Z", + "last_change_date": "2022-03-14T07:59:46.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6835, + "fields": { + "EF_ID": 120490, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.401Z", + "last_change_date": "2022-03-14T07:59:46.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6836, + "fields": { + "EF_ID": 120491, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.493Z", + "last_change_date": "2022-03-14T07:59:46.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6837, + "fields": { + "EF_ID": 120492, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.585Z", + "last_change_date": "2022-03-14T07:59:46.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6838, + "fields": { + "EF_ID": 120493, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.694Z", + "last_change_date": "2022-03-14T07:59:46.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6839, + "fields": { + "EF_ID": 120494, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.803Z", + "last_change_date": "2022-03-14T07:59:46.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6840, + "fields": { + "EF_ID": 120495, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:46.912Z", + "last_change_date": "2022-03-14T07:59:46.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6841, + "fields": { + "EF_ID": 120496, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.037Z", + "last_change_date": "2022-03-14T07:59:47.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6842, + "fields": { + "EF_ID": 120497, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.138Z", + "last_change_date": "2022-03-14T07:59:47.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6843, + "fields": { + "EF_ID": 120498, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.239Z", + "last_change_date": "2022-03-14T07:59:47.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6844, + "fields": { + "EF_ID": 120499, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P., (2003). Commercial aircraft emission scenario for 2020: Database Development and Analysis. NASA/CR—2003-212331, National Aeronautics and Space Administration, Glenn Research Center, USA May 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.348Z", + "last_change_date": "2022-03-14T07:59:47.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6845, + "fields": { + "EF_ID": 120500, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.3", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.441Z", + "last_change_date": "2022-03-14T07:59:47.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6846, + "fields": { + "EF_ID": 120501, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.3", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.525Z", + "last_change_date": "2022-03-14T07:59:47.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6847, + "fields": { + "EF_ID": 120502, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.7", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P., (2003). Commercial aircraft emission scenario for 2020: Database Development and Analysis. NASA/CR—2003-212331, National Aeronautics and Space Administration, Glenn Research Center, USA May 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.625Z", + "last_change_date": "2022-03-14T07:59:47.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6848, + "fields": { + "EF_ID": 120503, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.718Z", + "last_change_date": "2022-03-14T07:59:47.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6849, + "fields": { + "EF_ID": 120504, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.9", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.818Z", + "last_change_date": "2022-03-14T07:59:47.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6850, + "fields": { + "EF_ID": 120505, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:47.919Z", + "last_change_date": "2022-03-14T07:59:47.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6851, + "fields": { + "EF_ID": 120506, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.019Z", + "last_change_date": "2022-03-14T07:59:48.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6852, + "fields": { + "EF_ID": 120507, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.7", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.120Z", + "last_change_date": "2022-03-14T07:59:48.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6853, + "fields": { + "EF_ID": 120508, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.228Z", + "last_change_date": "2022-03-14T07:59:48.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6854, + "fields": { + "EF_ID": 120509, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.337Z", + "last_change_date": "2022-03-14T07:59:48.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6855, + "fields": { + "EF_ID": 120510, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.455Z", + "last_change_date": "2022-03-14T07:59:48.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6856, + "fields": { + "EF_ID": 120511, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.564Z", + "last_change_date": "2022-03-14T07:59:48.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6857, + "fields": { + "EF_ID": 120512, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.665Z", + "last_change_date": "2022-03-14T07:59:48.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6858, + "fields": { + "EF_ID": 120513, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.767Z", + "last_change_date": "2022-03-14T07:59:48.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6859, + "fields": { + "EF_ID": 120514, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.6", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.867Z", + "last_change_date": "2022-03-14T07:59:48.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6860, + "fields": { + "EF_ID": 120515, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:48.976Z", + "last_change_date": "2022-03-14T07:59:48.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6861, + "fields": { + "EF_ID": 120516, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.093Z", + "last_change_date": "2022-03-14T07:59:49.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6862, + "fields": { + "EF_ID": 120517, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.9", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.202Z", + "last_change_date": "2022-03-14T07:59:49.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6863, + "fields": { + "EF_ID": 120518, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.302Z", + "last_change_date": "2022-03-14T07:59:49.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6864, + "fields": { + "EF_ID": 120519, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.403Z", + "last_change_date": "2022-03-14T07:59:49.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6865, + "fields": { + "EF_ID": 120520, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Data from SAGE model; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.495Z", + "last_change_date": "2022-03-14T07:59:49.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6866, + "fields": { + "EF_ID": 120521, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Data from SAGE model; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.588Z", + "last_change_date": "2022-03-14T07:59:49.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6867, + "fields": { + "EF_ID": 120522, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Data from SAGE model; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.679Z", + "last_change_date": "2022-03-14T07:59:49.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6868, + "fields": { + "EF_ID": 120523, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.6", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Average of the data from SAGE (Kim et al., 2005a and b; Malwitz et al., 2005) and AERO2k (Eyers et al, 2004); Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.789Z", + "last_change_date": "2022-03-14T07:59:49.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6869, + "fields": { + "EF_ID": 120524, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Average of the data from SAGE (Kim et al., 2005a and b; Malwitz et al., 2005) and AERO2k (Eyers et al, 2004); Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:49.897Z", + "last_change_date": "2022-03-14T07:59:49.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6870, + "fields": { + "EF_ID": 120525, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.007Z", + "last_change_date": "2022-03-14T07:59:50.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6871, + "fields": { + "EF_ID": 120526, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.115Z", + "last_change_date": "2022-03-14T07:59:50.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6872, + "fields": { + "EF_ID": 120527, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Kerosene", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.232Z", + "last_change_date": "2022-03-14T07:59:50.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6873, + "fields": { + "EF_ID": 120528, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.334Z", + "last_change_date": "2022-03-14T07:59:50.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6874, + "fields": { + "EF_ID": 120529, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A310", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.434Z", + "last_change_date": "2022-03-14T07:59:50.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6875, + "fields": { + "EF_ID": 120530, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A319", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.6", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.535Z", + "last_change_date": "2022-03-14T07:59:50.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6876, + "fields": { + "EF_ID": 120531, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A320", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.9", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.635Z", + "last_change_date": "2022-03-14T07:59:50.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6877, + "fields": { + "EF_ID": 120532, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A321", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "16.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.736Z", + "last_change_date": "2022-03-14T07:59:50.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6878, + "fields": { + "EF_ID": 120533, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A330-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.837Z", + "last_change_date": "2022-03-14T07:59:50.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6879, + "fields": { + "EF_ID": 120534, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:50.937Z", + "last_change_date": "2022-03-14T07:59:50.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6880, + "fields": { + "EF_ID": 120535, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.6", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.038Z", + "last_change_date": "2022-03-14T07:59:51.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6881, + "fields": { + "EF_ID": 120536, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, A340-500/600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Data from SAGE model; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.139Z", + "last_change_date": "2022-03-14T07:59:51.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6882, + "fields": { + "EF_ID": 120537, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 707", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "5.9", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.247Z", + "last_change_date": "2022-03-14T07:59:51.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6883, + "fields": { + "EF_ID": 120538, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 717", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P., (2003). Commercial aircraft emission scenario for 2020: Database Development and Analysis. NASA/CR—2003-212331, National Aeronautics and Space Administration, Glenn Research Center, USA May 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.348Z", + "last_change_date": "2022-03-14T07:59:51.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6884, + "fields": { + "EF_ID": 120539, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.7", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.449Z", + "last_change_date": "2022-03-14T07:59:51.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6885, + "fields": { + "EF_ID": 120540, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 727-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.549Z", + "last_change_date": "2022-03-14T07:59:51.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6886, + "fields": { + "EF_ID": 120541, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-100/200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.7", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.641Z", + "last_change_date": "2022-03-14T07:59:51.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6887, + "fields": { + "EF_ID": 120542, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-300/400/500", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.735Z", + "last_change_date": "2022-03-14T07:59:51.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6888, + "fields": { + "EF_ID": 120543, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-600", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.836Z", + "last_change_date": "2022-03-14T07:59:51.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6889, + "fields": { + "EF_ID": 120544, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-700", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:51.952Z", + "last_change_date": "2022-03-14T07:59:51.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6890, + "fields": { + "EF_ID": 120545, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 737-800/900", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.062Z", + "last_change_date": "2022-03-14T07:59:52.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6891, + "fields": { + "EF_ID": 120546, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-100", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.162Z", + "last_change_date": "2022-03-14T07:59:52.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6892, + "fields": { + "EF_ID": 120547, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.262Z", + "last_change_date": "2022-03-14T07:59:52.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6893, + "fields": { + "EF_ID": 120548, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.363Z", + "last_change_date": "2022-03-14T07:59:52.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6894, + "fields": { + "EF_ID": 120549, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 747-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.464Z", + "last_change_date": "2022-03-14T07:59:52.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6895, + "fields": { + "EF_ID": 120550, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "11.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.564Z", + "last_change_date": "2022-03-14T07:59:52.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6896, + "fields": { + "EF_ID": 120551, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 757-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P., (2003). Commercial aircraft emission scenario for 2020: Database Development and Analysis. NASA/CR—2003-212331, National Aeronautics and Space Administration, Glenn Research Center, USA May 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.674Z", + "last_change_date": "2022-03-14T07:59:52.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6897, + "fields": { + "EF_ID": 120552, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-200", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.3", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.774Z", + "last_change_date": "2022-03-14T07:59:52.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6898, + "fields": { + "EF_ID": 120553, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.3", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.875Z", + "last_change_date": "2022-03-14T07:59:52.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6899, + "fields": { + "EF_ID": 120554, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 767-400", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.7", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P., (2003). Commercial aircraft emission scenario for 2020: Database Development and Analysis. NASA/CR—2003-212331, National Aeronautics and Space Administration, Glenn Research Center, USA May 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:52.967Z", + "last_change_date": "2022-03-14T07:59:52.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6900, + "fields": { + "EF_ID": 120555, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, 777-200/300", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.059Z", + "last_change_date": "2022-03-14T07:59:53.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6901, + "fields": { + "EF_ID": 120556, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-10", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.9", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.160Z", + "last_change_date": "2022-03-14T07:59:53.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6902, + "fields": { + "EF_ID": 120557, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-8-50/60/70", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "10.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.278Z", + "last_change_date": "2022-03-14T07:59:53.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6903, + "fields": { + "EF_ID": 120558, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, DC-9", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.387Z", + "last_change_date": "2022-03-14T07:59:53.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6904, + "fields": { + "EF_ID": 120559, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, L-1011", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.7", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.496Z", + "last_change_date": "2022-03-14T07:59:53.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6905, + "fields": { + "EF_ID": 120560, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-11", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "13.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.596Z", + "last_change_date": "2022-03-14T07:59:53.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6906, + "fields": { + "EF_ID": 120561, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-80", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.697Z", + "last_change_date": "2022-03-14T07:59:53.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6907, + "fields": { + "EF_ID": 120562, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, MD-90", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.798Z", + "last_change_date": "2022-03-14T07:59:53.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6908, + "fields": { + "EF_ID": 120563, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-134", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:53.906Z", + "last_change_date": "2022-03-14T07:59:53.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6909, + "fields": { + "EF_ID": 120564, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.007Z", + "last_change_date": "2022-03-14T07:59:54.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6910, + "fields": { + "EF_ID": 120565, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Large Commercial Aircraft, TU-154-B", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.1", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.124Z", + "last_change_date": "2022-03-14T07:59:54.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6911, + "fields": { + "EF_ID": 120566, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jets, RJ-RJ85", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.6", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.216Z", + "last_change_date": "2022-03-14T07:59:54.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6912, + "fields": { + "EF_ID": 120567, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, BAE 146", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.317Z", + "last_change_date": "2022-03-14T07:59:54.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6913, + "fields": { + "EF_ID": 120568, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, CRJ-100ER", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.426Z", + "last_change_date": "2022-03-14T07:59:54.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6914, + "fields": { + "EF_ID": 120569, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, ERJ-145", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.9", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.543Z", + "last_change_date": "2022-03-14T07:59:54.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6915, + "fields": { + "EF_ID": 120570, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, Fokker 100/70/28", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.4", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.644Z", + "last_change_date": "2022-03-14T07:59:54.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6916, + "fields": { + "EF_ID": 120571, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, BAC111", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.754Z", + "last_change_date": "2022-03-14T07:59:54.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6917, + "fields": { + "EF_ID": 120572, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, Dornier 328 Jet", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Data from SAGE model; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.879Z", + "last_change_date": "2022-03-14T07:59:54.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6918, + "fields": { + "EF_ID": 120573, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream IV", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.0", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Data from SAGE model; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:54.997Z", + "last_change_date": "2022-03-14T07:59:54.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6919, + "fields": { + "EF_ID": 120574, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jet, Gulfstream V", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "9.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Data from SAGE model; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.123Z", + "last_change_date": "2022-03-14T07:59:55.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6920, + "fields": { + "EF_ID": 120575, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Regional Jets, Yak-42M", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "15.6", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Average of the data from SAGE (Kim et al., 2005a and b; Malwitz et al., 2005) and AERO2k (Eyers et al, 2004); Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.223Z", + "last_change_date": "2022-03-14T07:59:55.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6921, + "fields": { + "EF_ID": 120576, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Low Thrust Jets (engines with thrust below 26.7kN), Cessna 525/560", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "7.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Average of the data from SAGE (Kim et al., 2005a and b; Malwitz et al., 2005) and AERO2k (Eyers et al, 2004); Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.323Z", + "last_change_date": "2022-03-14T07:59:55.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6922, + "fields": { + "EF_ID": 120577, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Turboprops, Beech King Air (Representative of Turboprop aircraft with shaft horsepower of up to 1000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "8.5", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.432Z", + "last_change_date": "2022-03-14T07:59:55.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6923, + "fields": { + "EF_ID": 120578, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Turboprops, DHC8-100 (Representative of Turboprop aircraft with shaft horsepower of 1000 to 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "12.8", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.532Z", + "last_change_date": "2022-03-14T07:59:55.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6924, + "fields": { + "EF_ID": 120579, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Jet Gasoline", + "Parameter_Type": "2006 IPCC default", + "Description": "NOx Emission Factor for Aircraft at Cruise Levels", + "Technology_Practices": "Aircraft type: Turboprops, ATR72-500 (Representative of Turboprop aircraft with shaft horsepower of more than 2000 shp/engine)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fuel is referred to as jet fuel (jet kerosene and jet gasoline) in the 2006 IPCC Guidelines (Volume 2, Chapter 3, Section 3.6).", + "Value": "14.2", + "Unit": "g/kg fuel", + "Equation": "Equation 3.6.5 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 3.6.10", + "Technical_Reference": "Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Information to assist in computing uncertainties can be found in the following literature. Baughcum, S.L., Tritz, T.G., Henderson, S.C. and Pickett, D.C. (1996). Scheduled civil aircraft emission inventories for 1992: database development and analysis. NASA/CR-4700, National Aeronautics and Space Administration, NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, USA.; Sutkus, D.J., Baughcum, S.L., DuBois, D.P.,(2001) Scheduled civil aircraft emission inventories for 1999: database development and Analysis. NASA/CR—2001-211216, National Aeronautics and Space Administration, Glenn Research Center, USA, October 2001.; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Ruggiero, J., Waitz, I., Klima, K., Stouffer, V., Long, D., Kostiuk, P., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillett, W., (2005). SAGE: The system for assessing aviation`s global emissions. FAA-EE-2005-01, (September 2005).; Kim, B., Fleming, G., Balasubramanian, S., Malwitz, A., Lee, J., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Global aviation emissions inventories for 2000 through 2004. FAA-EE-2005-02 (September 2005).; Malwitz, A., Kim, B., Fleming, G., Lee, J., Balasubramanian, S., Waitz, I., Klima, K., Locke, M., Holsclaw, C., Morales, A., McQueen, E., Gillette, W., (2005), SAGE: Validation assessment, model assumptions and uncertainties FAA-EE-2005-03, (September 2005).; Eyers, C.J., Norman, P., Plohr, M., Michot, S., Atkinson, K., and Christou, R.A., (2004). AERO2k Global aviation emissions inventories for 2002 and 2025. QINEYIQ/04/01113 UK, December 2004.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.626Z", + "last_change_date": "2022-03-14T07:59:55.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6925, + "fields": { + "EF_ID": 120580, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Underground Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average mining depths: < 200 m (less than 200 m)", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 1 in Section 1.7.2.2 (page 1.105), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.3, Page 4.12; IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000), Section 2.6.1.2 (Pages 2.74-2.75)", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines; Expert judgement by the authors of Section 2.6 in the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000)", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. As gas content of coal usually increases with depth, the low end of the range (10 - 25 m^3/tonne of coal production) should be chosen for average mining depths of < 200 m, and for depths of > 400 m the high value is appropriate. For intermediate depths, average values can be used.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.718Z", + "last_change_date": "2022-03-14T07:59:55.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6926, + "fields": { + "EF_ID": 120581, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Underground Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average mining depths: > 400 m (greater than 400 m)", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 1 in Section 1.7.2.2 (page 1.105), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.3, Page 4.12; IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000), Section 2.6.1.2 (Pages 2.74-2.75)", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines; Expert judgement by the authors of Section 2.6 in the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000)", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. As gas content of coal usually increases with depth, the low end of the range (10 - 25 m^3/tonne of coal production) should be chosen for average mining depths of < 200 m, and for depths of > 400 m the high value is appropriate. For intermediate depths, average values can be used.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.810Z", + "last_change_date": "2022-03-14T07:59:55.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6927, + "fields": { + "EF_ID": 120582, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Underground Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average mining depths: 200 - 400 m", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.3 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 1 in Section 1.7.2.2 (page 1.105), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.3, Page 4.12; IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000), Section 2.6.1.2 (Pages 2.74-2.75)", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines; Expert judgement by the authors of Section 2.6 in the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000)", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. As gas content of coal usually increases with depth, the low end of the range (10 - 25 m^3/tonne of coal production) should be chosen for average mining depths of < 200 m, and for depths of > 400 m the high value is appropriate. For intermediate depths, average values can be used.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.882Z", + "last_change_date": "2022-03-14T07:59:55.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6928, + "fields": { + "EF_ID": 120583, + "IPCC_Category": "1.B.1.a.i.2 - Post-mining seam gas emissions", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Post-Mining Emissions from Underground Mines", + "Technology_Practices": "", + "Parameter_Conditions": "Average mining depths: < 200 m (less than 200 m)", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 4 in Section 1.7.2.2 (page 1.110), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.4, Page 4.12", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:55.977Z", + "last_change_date": "2022-03-14T07:59:55.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6929, + "fields": { + "EF_ID": 120584, + "IPCC_Category": "1.B.1.a.i.2 - Post-mining seam gas emissions", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Post-Mining Emissions from Underground Mines", + "Technology_Practices": "", + "Parameter_Conditions": "Average mining depths: > 400 m (over 400 m)", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 4 in Section 1.7.2.2 (page 1.110), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.4, Page 4.12", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.049Z", + "last_change_date": "2022-03-14T07:59:56.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6930, + "fields": { + "EF_ID": 120585, + "IPCC_Category": "1.B.1.a.i.2 - Post-mining seam gas emissions", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Post-Mining Emissions from Underground Mines", + "Technology_Practices": "", + "Parameter_Conditions": "Average mining depths: 200 - 400 m", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.4 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 4 in Section 1.7.2.2 (page 1.110), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.4, Page 4.12", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.145Z", + "last_change_date": "2022-03-14T07:59:56.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6931, + "fields": { + "EF_ID": 120586, + "IPCC_Category": "1.B.1.a.ii.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Surface Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average overburden depths: less than 25 m", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.7 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 2 in Section 1.7.2.2 (page 1.108), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.7, Page 4.19", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. For the Tier 1 approach, it is good practice to use the low end of the specific emission range for those mines with average overburden depths of less than 25 meters and the high end for overburden depths over 50 meters. For intermediate depths, average values for the emission factors may be used. In the absence of data on overburden thickness, it is good practice to use the average emission factor, namely 1.2 m^3/tonne.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.215Z", + "last_change_date": "2022-03-14T07:59:56.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6932, + "fields": { + "EF_ID": 120587, + "IPCC_Category": "1.B.1.a.ii.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Surface Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average overburden depths: over 50 m", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.7 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 2 in Section 1.7.2.2 (page 1.108), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.7, Page 4.19", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. For the Tier 1 approach, it is good practice to use the low end of the specific emission range for those mines with average overburden depths of less than 25 meters and the high end for overburden depths over 50 meters. For intermediate depths, average values for the emission factors may be used. In the absence of data on overburden thickness, it is good practice to use the average emission factor, namely 1.2 m^3/tonne.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.282Z", + "last_change_date": "2022-03-14T07:59:56.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6933, + "fields": { + "EF_ID": 120588, + "IPCC_Category": "1.B.1.a.ii.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Surface Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average overburden depths: 25 - 50 m", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.7 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 2 in Section 1.7.2.2 (page 1.108), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.7, Page 4.19", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. For the Tier 1 approach, it is good practice to use the low end of the specific emission range for those mines with average overburden depths of less than 25 meters and the high end for overburden depths over 50 meters. For intermediate depths, average values for the emission factors may be used. In the absence of data on overburden thickness, it is good practice to use the average emission factor, namely 1.2 m^3/tonne.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.380Z", + "last_change_date": "2022-03-14T07:59:56.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6934, + "fields": { + "EF_ID": 120589, + "IPCC_Category": "1.B.1.a.ii.2 - Post-mining seam gas emissions", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Surface Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average overburden depths: less than 25 m", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.7 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 2 in Section 1.7.2.2 (page 1.108), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.7, Page 4.19", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. For the Tier 1 approach, it is good practice to use the low end of the specific emission range for those mines with average overburden depths of less than 25 meters and the high end for overburden depths over 50 meters. For intermediate depths, average values for the emission factors may be used. In the absence of data on overburden thickness, it is good practice to use the average emission factor, namely 1.2 m^3/tonne.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.466Z", + "last_change_date": "2022-03-14T07:59:56.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6935, + "fields": { + "EF_ID": 120590, + "IPCC_Category": "1.B.1.a.ii.2 - Post-mining seam gas emissions", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Surface Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average overburden depths: over 50 m", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.7 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 2 in Section 1.7.2.2 (page 1.108), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.7, Page 4.19", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. For the Tier 1 approach, it is good practice to use the low end of the specific emission range for those mines with average overburden depths of less than 25 meters and the high end for overburden depths over 50 meters. For intermediate depths, average values for the emission factors may be used. In the absence of data on overburden thickness, it is good practice to use the average emission factor, namely 1.2 m^3/tonne.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.556Z", + "last_change_date": "2022-03-14T07:59:56.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6936, + "fields": { + "EF_ID": 120591, + "IPCC_Category": "1.B.1.a.ii.2 - Post-mining seam gas emissions", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Default Emission Factor for Surface Mining", + "Technology_Practices": "", + "Parameter_Conditions": "Average overburden depths: 25 - 50 m", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "m^3/tonne of coal production", + "Equation": "Equation 4.1.7 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 2 in Section 1.7.2.2 (page 1.108), Volume 3 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (underground and surface coal mining and handling), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Equation 4.1.7, Page 4.19", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "-66.7%", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. For the Tier 1 approach, it is good practice to use the low end of the specific emission range for those mines with average overburden depths of less than 25 meters and the high end for overburden depths over 50 meters. For intermediate depths, average values for the emission factors may be used. In the absence of data on overburden thickness, it is good practice to use the average emission factor, namely 1.2 m^3/tonne.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.632Z", + "last_change_date": "2022-03-14T07:59:56.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6937, + "fields": { + "EF_ID": 120592, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percentage of Gassy Coal Mines (Default value for Tier 1 Abandoned Underground Mines)", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1900 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 - 10", + "Unit": "%", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.5", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. Actual estimates can range anywhere from 0 to 100 percent. When choosing within the high and low default values shown here, a country should consider all available historical information that may contribute to the percentage of gassy mines, such as coal rank, gas content, and depth of mining. Countries with recorded instances of gassy mines (e.g., methane explosions or outbursts) should choose the high default values in the early part of the century. The low range of the default value may be appropriate for a given time interval for specific regions, coal basins, or nations, based on geologic conditions or known mining practices.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.724Z", + "last_change_date": "2022-03-14T07:59:56.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6938, + "fields": { + "EF_ID": 120593, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percentage of Gassy Coal Mines (Default value for Tier 1 Abandoned Underground Mines)", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3 - 50", + "Unit": "%", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.5", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. Actual estimates can range anywhere from 0 to 100 percent. When choosing within the high and low default values shown here, a country should consider all available historical information that may contribute to the percentage of gassy mines, such as coal rank, gas content, and depth of mining. Countries with recorded instances of gassy mines (e.g., methane explosions or outbursts) should choose the high default values in the early part of the century. From 1926 to 1975, countries where mines were relatively deep and hydraulic equipment was used should choose the high default value. The low range of the default value may be appropriate for a given time interval for specific regions, coal basins, or nations, based on geologic conditions or known mining practices.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.799Z", + "last_change_date": "2022-03-14T07:59:56.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6939, + "fields": { + "EF_ID": 120594, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percentage of Gassy Coal Mines (Default value for Tier 1 Abandoned Underground Mines)", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1950 - 1976", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5 - 75", + "Unit": "%", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.5", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. Actual estimates can range anywhere from 0 to 100 percent. When choosing within the high and low default values shown here, a country should consider all available historical information that may contribute to the percentage of gassy mines, such as coal rank, gas content, and depth of mining. Countries with recorded instances of gassy mines (e.g., methane explosions or outbursts) should choose the high default values in the early part of the century. From 1926 to 1975, countries where mines were relatively deep and hydraulic equipment was used should choose the high default value. The low range of the default value may be appropriate for a given time interval for specific regions, coal basins, or nations, based on geologic conditions or known mining practices.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.883Z", + "last_change_date": "2022-03-14T07:59:56.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6940, + "fields": { + "EF_ID": 120595, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percentage of Gassy Coal Mines (Default value for Tier 1 Abandoned Underground Mines)", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 - 100", + "Unit": "%", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.5", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. Actual estimates can range anywhere from 0 to 100 percent. When choosing within the high and low default values shown here, a country should consider all available historical information that may contribute to the percentage of gassy mines, such as coal rank, gas content, and depth of mining. Countries with recorded instances of gassy mines (e.g., methane explosions or outbursts) should choose the high default values in the early part of the century. Countries with deep longwall mines or with evidence of gassiness should choose the high values for the time periods after 1975. The low range of the default value may be appropriate for a given time interval for specific regions, coal basins, or nations, based on geologic conditions or known mining practices.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:56.976Z", + "last_change_date": "2022-03-14T07:59:56.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6941, + "fields": { + "EF_ID": 120596, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percentage of Gassy Coal Mines (Default value for Tier 1 Abandoned Underground Mines)", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9 - 100", + "Unit": "%", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.5", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3. Actual estimates can range anywhere from 0 to 100 percent. When choosing within the high and low default values shown here, a country should consider all available historical information that may contribute to the percentage of gassy mines, such as coal rank, gas content, and depth of mining. Countries with recorded instances of gassy mines (e.g., methane explosions or outbursts) should choose the high default values in the early part of the century. Countries with deep longwall mines or with evidence of gassiness should choose the high values for the time periods after 1975. The low range of the default value may be appropriate for a given time interval for specific regions, coal basins, or nations, based on geologic conditions or known mining practices.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.068Z", + "last_change_date": "2022-03-14T07:59:57.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6942, + "fields": { + "EF_ID": 120597, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1990", + "Value": "0.281", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.168Z", + "last_change_date": "2022-03-14T07:59:57.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6943, + "fields": { + "EF_ID": 120598, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1991", + "Value": "0.279", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.241Z", + "last_change_date": "2022-03-14T07:59:57.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6944, + "fields": { + "EF_ID": 120599, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1992", + "Value": "0.277", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.336Z", + "last_change_date": "2022-03-14T07:59:57.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6945, + "fields": { + "EF_ID": 120600, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1993", + "Value": "0.275", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.413Z", + "last_change_date": "2022-03-14T07:59:57.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6946, + "fields": { + "EF_ID": 120601, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1994", + "Value": "0.273", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.536Z", + "last_change_date": "2022-03-14T07:59:57.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6947, + "fields": { + "EF_ID": 120602, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1995", + "Value": "0.272", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.613Z", + "last_change_date": "2022-03-14T07:59:57.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6948, + "fields": { + "EF_ID": 120603, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1996", + "Value": "0.270", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.704Z", + "last_change_date": "2022-03-14T07:59:57.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6949, + "fields": { + "EF_ID": 120604, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1997", + "Value": "0.268", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.780Z", + "last_change_date": "2022-03-14T07:59:57.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6950, + "fields": { + "EF_ID": 120605, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1998", + "Value": "0.267", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.873Z", + "last_change_date": "2022-03-14T07:59:57.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6951, + "fields": { + "EF_ID": 120606, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1999", + "Value": "0.265", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:57.963Z", + "last_change_date": "2022-03-14T07:59:57.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6952, + "fields": { + "EF_ID": 120607, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2000", + "Value": "0.264", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.058Z", + "last_change_date": "2022-03-14T07:59:58.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6953, + "fields": { + "EF_ID": 120608, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2001", + "Value": "0.262", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.147Z", + "last_change_date": "2022-03-14T07:59:58.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6954, + "fields": { + "EF_ID": 120609, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2002", + "Value": "0.261", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.233Z", + "last_change_date": "2022-03-14T07:59:58.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6955, + "fields": { + "EF_ID": 120610, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2003", + "Value": "0.259", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.322Z", + "last_change_date": "2022-03-14T07:59:58.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6956, + "fields": { + "EF_ID": 120611, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2004", + "Value": "0.258", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.417Z", + "last_change_date": "2022-03-14T07:59:58.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6957, + "fields": { + "EF_ID": 120612, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2005", + "Value": "0.256", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.491Z", + "last_change_date": "2022-03-14T07:59:58.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6958, + "fields": { + "EF_ID": 120613, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2006", + "Value": "0.255", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.577Z", + "last_change_date": "2022-03-14T07:59:58.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6959, + "fields": { + "EF_ID": 120614, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2007", + "Value": "0.253", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.655Z", + "last_change_date": "2022-03-14T07:59:58.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6960, + "fields": { + "EF_ID": 120615, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2008", + "Value": "0.252", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.744Z", + "last_change_date": "2022-03-14T07:59:58.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6961, + "fields": { + "EF_ID": 120616, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2009", + "Value": "0.251", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.822Z", + "last_change_date": "2022-03-14T07:59:58.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6962, + "fields": { + "EF_ID": 120617, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2010", + "Value": "0.249", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.912Z", + "last_change_date": "2022-03-14T07:59:58.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6963, + "fields": { + "EF_ID": 120618, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2011", + "Value": "0.248", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:58.988Z", + "last_change_date": "2022-03-14T07:59:58.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6964, + "fields": { + "EF_ID": 120619, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2012", + "Value": "0.247", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.088Z", + "last_change_date": "2022-03-14T07:59:59.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6965, + "fields": { + "EF_ID": 120620, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2013", + "Value": "0.246", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.164Z", + "last_change_date": "2022-03-14T07:59:59.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6966, + "fields": { + "EF_ID": 120621, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2014", + "Value": "0.244", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.255Z", + "last_change_date": "2022-03-14T07:59:59.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6967, + "fields": { + "EF_ID": 120622, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2015", + "Value": "0.243", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.330Z", + "last_change_date": "2022-03-14T07:59:59.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6968, + "fields": { + "EF_ID": 120623, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1901 - 1925", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2016", + "Value": "0.242", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.441Z", + "last_change_date": "2022-03-14T07:59:59.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6969, + "fields": { + "EF_ID": 120624, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1990", + "Value": "0.343", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.514Z", + "last_change_date": "2022-03-14T07:59:59.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6970, + "fields": { + "EF_ID": 120625, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1991", + "Value": "0.340", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.708Z", + "last_change_date": "2022-03-14T07:59:59.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6971, + "fields": { + "EF_ID": 120626, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1992", + "Value": "0.336", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.798Z", + "last_change_date": "2022-03-14T07:59:59.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6972, + "fields": { + "EF_ID": 120627, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1993", + "Value": "0.333", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.885Z", + "last_change_date": "2022-03-14T07:59:59.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6973, + "fields": { + "EF_ID": 120628, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1994", + "Value": "0.330", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T07:59:59.973Z", + "last_change_date": "2022-03-14T07:59:59.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6974, + "fields": { + "EF_ID": 120629, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1995", + "Value": "0.327", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.060Z", + "last_change_date": "2022-03-14T08:00:00.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6975, + "fields": { + "EF_ID": 120630, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1996", + "Value": "0.324", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.140Z", + "last_change_date": "2022-03-14T08:00:00.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6976, + "fields": { + "EF_ID": 120631, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1997", + "Value": "0.322", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.220Z", + "last_change_date": "2022-03-14T08:00:00.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6977, + "fields": { + "EF_ID": 120632, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1998", + "Value": "0.319", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.298Z", + "last_change_date": "2022-03-14T08:00:00.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6978, + "fields": { + "EF_ID": 120633, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1999", + "Value": "0.316", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.388Z", + "last_change_date": "2022-03-14T08:00:00.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6979, + "fields": { + "EF_ID": 120634, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2000", + "Value": "0.314", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.465Z", + "last_change_date": "2022-03-14T08:00:00.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6980, + "fields": { + "EF_ID": 120635, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2001", + "Value": "0.311", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.554Z", + "last_change_date": "2022-03-14T08:00:00.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6981, + "fields": { + "EF_ID": 120636, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2002", + "Value": "0.308", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.632Z", + "last_change_date": "2022-03-14T08:00:00.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6982, + "fields": { + "EF_ID": 120637, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2003", + "Value": "0.306", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.722Z", + "last_change_date": "2022-03-14T08:00:00.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6983, + "fields": { + "EF_ID": 120638, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2004", + "Value": "0.304", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.798Z", + "last_change_date": "2022-03-14T08:00:00.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6984, + "fields": { + "EF_ID": 120639, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2005", + "Value": "0.301", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.898Z", + "last_change_date": "2022-03-14T08:00:00.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6985, + "fields": { + "EF_ID": 120640, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2006", + "Value": "0.299", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:00.982Z", + "last_change_date": "2022-03-14T08:00:00.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6986, + "fields": { + "EF_ID": 120641, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2007", + "Value": "0.297", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.084Z", + "last_change_date": "2022-03-14T08:00:01.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6987, + "fields": { + "EF_ID": 120642, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2008", + "Value": "0.295", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.166Z", + "last_change_date": "2022-03-14T08:00:01.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6988, + "fields": { + "EF_ID": 120643, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2009", + "Value": "0.293", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.260Z", + "last_change_date": "2022-03-14T08:00:01.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6989, + "fields": { + "EF_ID": 120644, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2010", + "Value": "0.29", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.357Z", + "last_change_date": "2022-03-14T08:00:01.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6990, + "fields": { + "EF_ID": 120645, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2011", + "Value": "0.288", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.453Z", + "last_change_date": "2022-03-14T08:00:01.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6991, + "fields": { + "EF_ID": 120646, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2012", + "Value": "0.286", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.549Z", + "last_change_date": "2022-03-14T08:00:01.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6992, + "fields": { + "EF_ID": 120647, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2013", + "Value": "0.284", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.670Z", + "last_change_date": "2022-03-14T08:00:01.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6993, + "fields": { + "EF_ID": 120648, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2014", + "Value": "0.283", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.774Z", + "last_change_date": "2022-03-14T08:00:01.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6994, + "fields": { + "EF_ID": 120649, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2015", + "Value": "0.281", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.864Z", + "last_change_date": "2022-03-14T08:00:01.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6995, + "fields": { + "EF_ID": 120650, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1926 - 1950", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2016", + "Value": "0.279", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:01.932Z", + "last_change_date": "2022-03-14T08:00:01.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6996, + "fields": { + "EF_ID": 120651, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1990", + "Value": "0.478", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.023Z", + "last_change_date": "2022-03-14T08:00:02.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6997, + "fields": { + "EF_ID": 120652, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1991", + "Value": "0.469", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.107Z", + "last_change_date": "2022-03-14T08:00:02.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6998, + "fields": { + "EF_ID": 120653, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1992", + "Value": "0.461", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.207Z", + "last_change_date": "2022-03-14T08:00:02.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 6999, + "fields": { + "EF_ID": 120654, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1993", + "Value": "0.453", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.291Z", + "last_change_date": "2022-03-14T08:00:02.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7000, + "fields": { + "EF_ID": 120655, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1994", + "Value": "0.446", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.393Z", + "last_change_date": "2022-03-14T08:00:02.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7001, + "fields": { + "EF_ID": 120656, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1995", + "Value": "0.439", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.474Z", + "last_change_date": "2022-03-14T08:00:02.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7002, + "fields": { + "EF_ID": 120657, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1996", + "Value": "0.432", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.569Z", + "last_change_date": "2022-03-14T08:00:02.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7003, + "fields": { + "EF_ID": 120658, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1997", + "Value": "0.425", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.833Z", + "last_change_date": "2022-03-14T08:00:02.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7004, + "fields": { + "EF_ID": 120659, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1998", + "Value": "0.419", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:02.937Z", + "last_change_date": "2022-03-14T08:00:02.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7005, + "fields": { + "EF_ID": 120660, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1999", + "Value": "0.413", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.032Z", + "last_change_date": "2022-03-14T08:00:03.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7006, + "fields": { + "EF_ID": 120661, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2000", + "Value": "0.408", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.137Z", + "last_change_date": "2022-03-14T08:00:03.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7007, + "fields": { + "EF_ID": 120662, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2001", + "Value": "0.402", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.224Z", + "last_change_date": "2022-03-14T08:00:03.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7008, + "fields": { + "EF_ID": 120663, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2002", + "Value": "0.397", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.330Z", + "last_change_date": "2022-03-14T08:00:03.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7009, + "fields": { + "EF_ID": 120664, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2003", + "Value": "0.392", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.416Z", + "last_change_date": "2022-03-14T08:00:03.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7010, + "fields": { + "EF_ID": 120665, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2004", + "Value": "0.387", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.523Z", + "last_change_date": "2022-03-14T08:00:03.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7011, + "fields": { + "EF_ID": 120666, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2005", + "Value": "0.382", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.608Z", + "last_change_date": "2022-03-14T08:00:03.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7012, + "fields": { + "EF_ID": 120667, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2006", + "Value": "0.378", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.732Z", + "last_change_date": "2022-03-14T08:00:03.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7013, + "fields": { + "EF_ID": 120668, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2007", + "Value": "0.373", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.816Z", + "last_change_date": "2022-03-14T08:00:03.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7014, + "fields": { + "EF_ID": 120669, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2008", + "Value": "0.369", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.916Z", + "last_change_date": "2022-03-14T08:00:03.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7015, + "fields": { + "EF_ID": 120670, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2009", + "Value": "0.365", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:03.999Z", + "last_change_date": "2022-03-14T08:00:03.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7016, + "fields": { + "EF_ID": 120671, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2010", + "Value": "0.361", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.118Z", + "last_change_date": "2022-03-14T08:00:04.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7017, + "fields": { + "EF_ID": 120672, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2011", + "Value": "0.357", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.207Z", + "last_change_date": "2022-03-14T08:00:04.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7018, + "fields": { + "EF_ID": 120673, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2012", + "Value": "0.353", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.303Z", + "last_change_date": "2022-03-14T08:00:04.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7019, + "fields": { + "EF_ID": 120674, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2013", + "Value": "0.35", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.382Z", + "last_change_date": "2022-03-14T08:00:04.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7020, + "fields": { + "EF_ID": 120675, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2014", + "Value": "0.346", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.479Z", + "last_change_date": "2022-03-14T08:00:04.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7021, + "fields": { + "EF_ID": 120676, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2015", + "Value": "0.343", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.566Z", + "last_change_date": "2022-03-14T08:00:04.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7022, + "fields": { + "EF_ID": 120677, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1951 - 1975", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2016", + "Value": "0.340", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.664Z", + "last_change_date": "2022-03-14T08:00:04.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7023, + "fields": { + "EF_ID": 120678, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1990", + "Value": "1.561", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.749Z", + "last_change_date": "2022-03-14T08:00:04.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7024, + "fields": { + "EF_ID": 120679, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1991", + "Value": "1.334", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.856Z", + "last_change_date": "2022-03-14T08:00:04.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7025, + "fields": { + "EF_ID": 120680, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1992", + "Value": "1.183", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:04.941Z", + "last_change_date": "2022-03-14T08:00:04.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7026, + "fields": { + "EF_ID": 120681, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1993", + "Value": "1.072", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.049Z", + "last_change_date": "2022-03-14T08:00:05.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7027, + "fields": { + "EF_ID": 120682, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1994", + "Value": "0.988", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.132Z", + "last_change_date": "2022-03-14T08:00:05.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7028, + "fields": { + "EF_ID": 120683, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1995", + "Value": "0.921", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.225Z", + "last_change_date": "2022-03-14T08:00:05.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7029, + "fields": { + "EF_ID": 120684, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1996", + "Value": "0.865", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.308Z", + "last_change_date": "2022-03-14T08:00:05.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7030, + "fields": { + "EF_ID": 120685, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1997", + "Value": "0.818", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.400Z", + "last_change_date": "2022-03-14T08:00:05.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7031, + "fields": { + "EF_ID": 120686, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1998", + "Value": "0.778", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.483Z", + "last_change_date": "2022-03-14T08:00:05.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7032, + "fields": { + "EF_ID": 120687, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 1999", + "Value": "0.743", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.577Z", + "last_change_date": "2022-03-14T08:00:05.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7033, + "fields": { + "EF_ID": 120688, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2000", + "Value": "0.713", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.658Z", + "last_change_date": "2022-03-14T08:00:05.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7034, + "fields": { + "EF_ID": 120689, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2001", + "Value": "0.686", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.753Z", + "last_change_date": "2022-03-14T08:00:05.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7035, + "fields": { + "EF_ID": 120690, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2002", + "Value": "0.661", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.858Z", + "last_change_date": "2022-03-14T08:00:05.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7036, + "fields": { + "EF_ID": 120691, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2003", + "Value": "0.639", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:05.955Z", + "last_change_date": "2022-03-14T08:00:05.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7037, + "fields": { + "EF_ID": 120692, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2004", + "Value": "0.620", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.049Z", + "last_change_date": "2022-03-14T08:00:06.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7038, + "fields": { + "EF_ID": 120693, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2005", + "Value": "0.601", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.147Z", + "last_change_date": "2022-03-14T08:00:06.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7039, + "fields": { + "EF_ID": 120694, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2006", + "Value": "0.585", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.233Z", + "last_change_date": "2022-03-14T08:00:06.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7040, + "fields": { + "EF_ID": 120695, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2007", + "Value": "0.569", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.332Z", + "last_change_date": "2022-03-14T08:00:06.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7041, + "fields": { + "EF_ID": 120696, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2008", + "Value": "0.555", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.416Z", + "last_change_date": "2022-03-14T08:00:06.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7042, + "fields": { + "EF_ID": 120697, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2009", + "Value": "0.542", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.516Z", + "last_change_date": "2022-03-14T08:00:06.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7043, + "fields": { + "EF_ID": 120698, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2010", + "Value": "0.529", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.599Z", + "last_change_date": "2022-03-14T08:00:06.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7044, + "fields": { + "EF_ID": 120699, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2011", + "Value": "0.518", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.692Z", + "last_change_date": "2022-03-14T08:00:06.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7045, + "fields": { + "EF_ID": 120700, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2012", + "Value": "0.507", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.774Z", + "last_change_date": "2022-03-14T08:00:06.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7046, + "fields": { + "EF_ID": 120701, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2013", + "Value": "0.496", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.860Z", + "last_change_date": "2022-03-14T08:00:06.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7047, + "fields": { + "EF_ID": 120702, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2014", + "Value": "0.487", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:06.941Z", + "last_change_date": "2022-03-14T08:00:06.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7048, + "fields": { + "EF_ID": 120703, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2015", + "Value": "0.478", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.027Z", + "last_change_date": "2022-03-14T08:00:07.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7049, + "fields": { + "EF_ID": 120704, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 1976 - 2000", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2016", + "Value": "0.469", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.108Z", + "last_change_date": "2022-03-14T08:00:07.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7050, + "fields": { + "EF_ID": 120705, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2001", + "Value": "5.735", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.196Z", + "last_change_date": "2022-03-14T08:00:07.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7051, + "fields": { + "EF_ID": 120706, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2002", + "Value": "2.397", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.283Z", + "last_change_date": "2022-03-14T08:00:07.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7052, + "fields": { + "EF_ID": 120707, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2003", + "Value": "1.762", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.372Z", + "last_change_date": "2022-03-14T08:00:07.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7053, + "fields": { + "EF_ID": 120708, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2004", + "Value": "1.454", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.466Z", + "last_change_date": "2022-03-14T08:00:07.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7054, + "fields": { + "EF_ID": 120709, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2005", + "Value": "1.265", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.574Z", + "last_change_date": "2022-03-14T08:00:07.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7055, + "fields": { + "EF_ID": 120710, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2006", + "Value": "1.133", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.666Z", + "last_change_date": "2022-03-14T08:00:07.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7056, + "fields": { + "EF_ID": 120711, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2007", + "Value": "1.035", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.782Z", + "last_change_date": "2022-03-14T08:00:07.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7057, + "fields": { + "EF_ID": 120712, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2008", + "Value": "0.959", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.875Z", + "last_change_date": "2022-03-14T08:00:07.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7058, + "fields": { + "EF_ID": 120713, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2009", + "Value": "0.896", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:07.967Z", + "last_change_date": "2022-03-14T08:00:07.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7059, + "fields": { + "EF_ID": 120714, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2010", + "Value": "0.845", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:08.050Z", + "last_change_date": "2022-03-14T08:00:08.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7060, + "fields": { + "EF_ID": 120715, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2011", + "Value": "0.801", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:08.143Z", + "last_change_date": "2022-03-14T08:00:08.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7061, + "fields": { + "EF_ID": 120716, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2012", + "Value": "0.763", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:08.225Z", + "last_change_date": "2022-03-14T08:00:08.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7062, + "fields": { + "EF_ID": 120717, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2013", + "Value": "0.73", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:08.310Z", + "last_change_date": "2022-03-14T08:00:08.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7063, + "fields": { + "EF_ID": 120718, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2014", + "Value": "0.701", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:08.400Z", + "last_change_date": "2022-03-14T08:00:08.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7064, + "fields": { + "EF_ID": 120719, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2015", + "Value": "0.675", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:08.487Z", + "last_change_date": "2022-03-14T08:00:08.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7065, + "fields": { + "EF_ID": 120720, + "IPCC_Category": "1.B.1.a.i.3 - Abandoned underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 Abandoned Underground Mines Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Time interval when coal mines were abandoned: 2001 - Present", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Inventory Year: 2016", + "Value": "0.652", + "Unit": "million m^3/mine/year", + "Equation": "Equation 4.1.10 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "1B1, Sheet 1 of 1 (Methane emissions from abandoned coal mines), in Annex 1 (page A1.11) of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2: Energy, Table 4.1.6", + "Technical_Reference": "Expert judgement by the authors of Section 4.1, Volume 2 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The primary causes of the uncertainty related to the Tier 1 methodology include the following: the global nature of the emission factors, time of abandonment, and the activity data. The total estimated range of uncertainty associated with Tier 1 estimations will depend on each of these factors. Actual emissions are likely to be in the range of one-third to three times the estimated emissions value.", + "Data_Provider_Comments": "In order to convert volume of CH4 to mass of CH4, a conversion factor (the density of CH4) needs to be multiplied. The density is taken at 20 degrees Celcius and 1atmosphere pressure, and has a value of 0.67 kg/m^3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:00:08.575Z", + "last_change_date": "2022-03-14T08:00:08.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7066, + "fields": { + "EF_ID": 120817, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Emissions from all combustion processes. , Emission factor agreed and applied in the Dutch inventory system in the period 1990-2006 , ", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.8", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "Heslinga D.C., A.K. van Harmelen, Vaststellingsmethodieken oor de CO2-emissiefactoren van aardgas in Nederland (in Dutch), TNO-report 2006-A-R0079/B , http://www.broeikasgassen.nl/docs/Harmelen%202006-A-R0079-B%20rapport.pdf , ", + "English_Abstract": "The report presents the natural gas CO2 emission factor in the Netherlands. The emission factor has been calculated for the years 1990 and 2003/2004. , For 2003/2004 the emission factor has been calculated for with data from 34 supply stations in the Netherlands, based on the gas chromatograph measurements executed every quarter of an hour. For the period 2003/2004 the emission factor has a value of 56.8 kg CO2/GJ (95% confidence interval +/- 0.14 kg CO2/GJ). From 2007 onwards the emission factor for natural gas is calculated yearly.", + "Lower_Bound": "-0.14 t CO2/TJ", + "Upper_Bound": "+0.14 t CO2/TJ", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "SenterNovem", + "Link": "http://www.broeikasgassen.nl/docs/Harmelen%202006-A-R0079-B%20rapport.pdf", + "creation_date": "2022-03-14T08:00:08.662Z", + "last_change_date": "2022-03-14T08:00:08.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7067, + "fields": { + "EF_ID": 120926, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion of Pulverized Bituminous Coal in Power plant", + "Technology_Practices": "Tangential Firing of Pulverized Bituminous Coal in 2 Power plants with the capacity of 500 and 560 MW", + "Parameter_Conditions": "Load during measurement 98.4-99.3%, Flue gas(dry) : O2 5.99-6.20%, CO2 14.14-14.44%, SO2 28.8-29ppm, NOx 78.1-129.8ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "Limestone-Gypsum Process for SO2 Control, Selective Catalytic Reduction (SCR) Using Ammonia for NOx Control", + "Other_Properties": "", + "Value": "1.05", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, 159pages", + "English_Abstract": "See the file which can be obtained from Link field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This is an averaged value for 2 power plants.", + "Data_Provider_Comments": "The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties. This is an averaged value for 2 power plants.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_KEMCO_N2O.pdf", + "creation_date": "2022-03-14T08:00:08.742Z", + "last_change_date": "2022-03-14T08:00:08.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7068, + "fields": { + "EF_ID": 120927, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the file which can be obtained from Link field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_KEMCO_CO2.pdf", + "creation_date": "2022-03-14T08:00:08.816Z", + "last_change_date": "2022-03-14T08:00:08.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7069, + "fields": { + "EF_ID": 120928, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling/pressurised Fluidised Bed", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacilty smaller than 15 MW", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:08.907Z", + "last_change_date": "2022-03-14T08:00:08.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7070, + "fields": { + "EF_ID": 120929, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling/pressurised Fluidised Bed", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 15 MW", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.000Z", + "last_change_date": "2022-03-14T08:00:09.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7071, + "fields": { + "EF_ID": 120930, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, pulverised combustion, not specified)", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacilty smaller than 50 MW", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.083Z", + "last_change_date": "2022-03-14T08:00:09.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7072, + "fields": { + "EF_ID": 120931, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, pulverised combustion, not specified)", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 50 MW", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.183Z", + "last_change_date": "2022-03-14T08:00:09.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7073, + "fields": { + "EF_ID": 120932, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "Co-firing when peat is the main fuel (greater than 80% peat) and (50%-80% peat). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 50 MW", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.275Z", + "last_change_date": "2022-03-14T08:00:09.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7074, + "fields": { + "EF_ID": 120933, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "Co-firing when peat is the main fuel (greater than 80% peat) and (50%-80% peat). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity 5-50 MW", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.349Z", + "last_change_date": "2022-03-14T08:00:09.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7075, + "fields": { + "EF_ID": 120934, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "Co-firing when peat is the main fuel (greater than 80% peat) and (50%-80% peat). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 5 MW", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.434Z", + "last_change_date": "2022-03-14T08:00:09.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7076, + "fields": { + "EF_ID": 120935, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "Co-firing when wood is the main fuel (greater than 80% wood) and (50%-80% wood). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 50 MW", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.517Z", + "last_change_date": "2022-03-14T08:00:09.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7077, + "fields": { + "EF_ID": 120936, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "Co-firing when wood is the main fuel (greater than 80% wood) and (50%-80% wood). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity 5-50 MW", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.591Z", + "last_change_date": "2022-03-14T08:00:09.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7078, + "fields": { + "EF_ID": 120937, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "Co-firing when wood is the main fuel (greater than 80% wood) and (50%-80% wood). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 5 MW", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.686Z", + "last_change_date": "2022-03-14T08:00:09.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7079, + "fields": { + "EF_ID": 120938, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 50 MW", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.758Z", + "last_change_date": "2022-03-14T08:00:09.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7080, + "fields": { + "EF_ID": 120939, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity 5-50 MW", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.825Z", + "last_change_date": "2022-03-14T08:00:09.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7081, + "fields": { + "EF_ID": 120940, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating/bubbling Fluidised Bed/Gasification", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 1 MW", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.912Z", + "last_change_date": "2022-03-14T08:00:09.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7082, + "fields": { + "EF_ID": 120941, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, pulverised combustion, not specified)", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity 5-50 MW", + "Value": "10", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:09.991Z", + "last_change_date": "2022-03-14T08:00:09.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7083, + "fields": { + "EF_ID": 120942, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, pulverised combustion, not specified)", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity 1-5 MW", + "Value": "50", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.058Z", + "last_change_date": "2022-03-14T08:00:10.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7084, + "fields": { + "EF_ID": 120943, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, pulverised combustion, not specified)", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 1 MW", + "Value": "200", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.147Z", + "last_change_date": "2022-03-14T08:00:10.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7085, + "fields": { + "EF_ID": 120944, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, pulverised combustion, not specified)", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 50 MW", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.217Z", + "last_change_date": "2022-03-14T08:00:10.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7086, + "fields": { + "EF_ID": 120945, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Oil fired boiler", + "Parameter_Conditions": "Co-firing when oil is the main fuel (greater than 80% oil) and (50%-80% oil). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 1 MW", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.283Z", + "last_change_date": "2022-03-14T08:00:10.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7087, + "fields": { + "EF_ID": 120946, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Oil fired boiler", + "Parameter_Conditions": "Co-firing when oil is the main fuel (greater than 80% oil) and (50%-80% oil). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 1 MW", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.383Z", + "last_change_date": "2022-03-14T08:00:10.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7088, + "fields": { + "EF_ID": 120947, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas fired boiler", + "Parameter_Conditions": "Co-firing when gas is the main fuel (greater than 80% gas) and (50%-80% gas). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 1 MW", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.467Z", + "last_change_date": "2022-03-14T08:00:10.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7089, + "fields": { + "EF_ID": 120948, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas fired boiler", + "Parameter_Conditions": "Co-firing when gas is the main fuel (greater than 80% gas) and (50%-80% gas). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 1 MW", + "Value": "5", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.533Z", + "last_change_date": "2022-03-14T08:00:10.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7090, + "fields": { + "EF_ID": 120949, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas turbine plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 50 MW", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.617Z", + "last_change_date": "2022-03-14T08:00:10.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7091, + "fields": { + "EF_ID": 120950, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas turbine plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 50 MW", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.700Z", + "last_change_date": "2022-03-14T08:00:10.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7092, + "fields": { + "EF_ID": 120951, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas turbine plant/Combined cycle power plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 5 MW", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.767Z", + "last_change_date": "2022-03-14T08:00:10.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7093, + "fields": { + "EF_ID": 120952, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas turbine plant/Combined cycle power plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 5 MW", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.852Z", + "last_change_date": "2022-03-14T08:00:10.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7094, + "fields": { + "EF_ID": 120953, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Gas Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Diesel power plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 50 MW", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:10.933Z", + "last_change_date": "2022-03-14T08:00:10.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7095, + "fields": { + "EF_ID": 120954, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Diesel power plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 50 MW", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.008Z", + "last_change_date": "2022-03-14T08:00:11.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7096, + "fields": { + "EF_ID": 120955, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Otto or diesel engine", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "not specified", + "Value": "240", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.104Z", + "last_change_date": "2022-03-14T08:00:11.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7097, + "fields": { + "EF_ID": 120956, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sludge Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Otto or diesel engine", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "not specified", + "Value": "240", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.175Z", + "last_change_date": "2022-03-14T08:00:11.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7098, + "fields": { + "EF_ID": 120974, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "METHANE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Soda recovery boiler", + "Parameter_Conditions": "(greater than 80% black liquor)", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the CH4 EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.250Z", + "last_change_date": "2022-03-14T08:00:11.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7099, + "fields": { + "EF_ID": 120987, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating Fluidised Bed", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities. Data from literature and measurements indicate that for CFB the emission factor would be in the range of 30-?80 kg/TJ. It is supposed that a value of 30 kg/TJ could be used for CFB-plants with relatively rare occurrence of partial load (other an district heating)", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.338Z", + "last_change_date": "2022-03-14T08:00:11.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7100, + "fields": { + "EF_ID": 120988, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Bubbling/pressurised Fluidised Bed", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "20", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.409Z", + "last_change_date": "2022-03-14T08:00:11.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7101, + "fields": { + "EF_ID": 120989, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Pulverised combustion", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.475Z", + "last_change_date": "2022-03-14T08:00:11.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7102, + "fields": { + "EF_ID": 120990, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, combined techniques, not specified)", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [t/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.564Z", + "last_change_date": "2022-03-14T08:00:11.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7103, + "fields": { + "EF_ID": 120991, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating Fluidised Bed", + "Parameter_Conditions": "Co-firing when peat is the main fuel (greater than 80% peat) and (50%-80% peat). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.642Z", + "last_change_date": "2022-03-14T08:00:11.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7104, + "fields": { + "EF_ID": 120992, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Bubbling Fluidised Bed + Combined techniques", + "Parameter_Conditions": "Co-firing when peat is the main fuel (greater than 80% peat) and (50%-80% peat). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.717Z", + "last_change_date": "2022-03-14T08:00:11.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7105, + "fields": { + "EF_ID": 120993, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, pulverised combustion, combined techniques, gasification, not specified)", + "Parameter_Conditions": "Co-firing when peat is the main fuel (greater than 80% peat) and (50%-80% peat). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.792Z", + "last_change_date": "2022-03-14T08:00:11.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7106, + "fields": { + "EF_ID": 120994, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating Fluidised Bed", + "Parameter_Conditions": "Co-firing when wood is the main fuel (greater than 80% wood) and (50%-80% wood). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.859Z", + "last_change_date": "2022-03-14T08:00:11.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7107, + "fields": { + "EF_ID": 120995, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Bubbling Fluidised Bed + Combined techniques", + "Parameter_Conditions": "Co-firing when wood is the main fuel (greater than 80% wood) and (50%-80% wood). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:11.925Z", + "last_change_date": "2022-03-14T08:00:11.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7108, + "fields": { + "EF_ID": 120996, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, combined techniques, gasification, not specified)", + "Parameter_Conditions": "Co-firing when wood is the main fuel (greater than 80% wood) and (50%-80% wood). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.010Z", + "last_change_date": "2022-03-14T08:00:12.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7109, + "fields": { + "EF_ID": 120997, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating Fluidised Bed", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.084Z", + "last_change_date": "2022-03-14T08:00:12.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7110, + "fields": { + "EF_ID": 120998, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Bubbling Fluidised Bed + Combined techniques", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.150Z", + "last_change_date": "2022-03-14T08:00:12.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7111, + "fields": { + "EF_ID": 120999, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, pulverised combustion, combined techniques, not specified)", + "Parameter_Conditions": "No primary fuel greater than 50% (Co-combustion where no specification of main fuel has been provided, because share of each fuel type is smaller than 50%).", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.236Z", + "last_change_date": "2022-03-14T08:00:12.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7112, + "fields": { + "EF_ID": 121000, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Oil fired boiler", + "Parameter_Conditions": "Co-firing when oil is the main fuel (greater than 80% oil) and (50%-80% oil). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity greater than 50 MW", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.317Z", + "last_change_date": "2022-03-14T08:00:12.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7113, + "fields": { + "EF_ID": 121001, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Oil fired boiler", + "Parameter_Conditions": "Co-firing when oil is the main fuel (greater than 80% oil) and (50%-80% oil). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 50 MW", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.392Z", + "last_change_date": "2022-03-14T08:00:12.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7114, + "fields": { + "EF_ID": 121002, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Oil fired boiler", + "Parameter_Conditions": "Co-firing when oil is the main fuel (greater than 80% oil) and (50%-80% oil). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 50 MW", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.488Z", + "last_change_date": "2022-03-14T08:00:12.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7115, + "fields": { + "EF_ID": 121003, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas fired boiler", + "Parameter_Conditions": "Co-firing when gas is the main fuel (greater than 80% gas) and (50%-80% gas). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.559Z", + "last_change_date": "2022-03-14T08:00:12.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7116, + "fields": { + "EF_ID": 121004, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas turbine plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.634Z", + "last_change_date": "2022-03-14T08:00:12.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7117, + "fields": { + "EF_ID": 121005, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas turbine plant/Combined cycle power plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.731Z", + "last_change_date": "2022-03-14T08:00:12.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7118, + "fields": { + "EF_ID": 121006, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Diesel power plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.800Z", + "last_change_date": "2022-03-14T08:00:12.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7119, + "fields": { + "EF_ID": 121007, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Diesel power plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.867Z", + "last_change_date": "2022-03-14T08:00:12.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7120, + "fields": { + "EF_ID": 121008, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Otto or diesel engine", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:12.957Z", + "last_change_date": "2022-03-14T08:00:12.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7121, + "fields": { + "EF_ID": 121009, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Otto or diesel engine", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.034Z", + "last_change_date": "2022-03-14T08:00:13.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7122, + "fields": { + "EF_ID": 121010, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Circulating Fluidised Bed", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "30", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.100Z", + "last_change_date": "2022-03-14T08:00:13.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7123, + "fields": { + "EF_ID": 121011, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Bubbling/pressurised Fluidised Bed", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "20", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.193Z", + "last_change_date": "2022-03-14T08:00:13.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7124, + "fields": { + "EF_ID": 121012, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Pulverised combustion", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.275Z", + "last_change_date": "2022-03-14T08:00:13.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7125, + "fields": { + "EF_ID": 121013, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Other (grate, combined techniques, not specified)", + "Parameter_Conditions": "Co-firing when coal is the main fuel (greater than 80% coal) and (50%-80% coal). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.342Z", + "last_change_date": "2022-03-14T08:00:13.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7126, + "fields": { + "EF_ID": 121023, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Soda recovery boiler", + "Parameter_Conditions": "Co-firing when oil is the main fuel (greater than 80% black liquor). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.427Z", + "last_change_date": "2022-03-14T08:00:13.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7127, + "fields": { + "EF_ID": 121026, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Oil fired boiler", + "Parameter_Conditions": "Co-firing when gas is the main fuel (greater than 80% gas) and (50%-80% gas). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "Capacity smaller than 50 MW", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.507Z", + "last_change_date": "2022-03-14T08:00:13.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7128, + "fields": { + "EF_ID": 121027, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas fired boiler", + "Parameter_Conditions": "Co-firing when gas is the main fuel (greater than 80% gas) and (50%-80% gas). In Finland, co-firing of different types of fuels is very common in, e.g. fluidized beds.", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.575Z", + "last_change_date": "2022-03-14T08:00:13.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7129, + "fields": { + "EF_ID": 121029, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Gas turbine plant/Combined cycle power plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.671Z", + "last_change_date": "2022-03-14T08:00:13.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7130, + "fields": { + "EF_ID": 121032, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Otto or diesel engine", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.749Z", + "last_change_date": "2022-03-14T08:00:13.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7131, + "fields": { + "EF_ID": 121033, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "NITROUS OXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for Stationary Combustion", + "Technology_Practices": "Otto or diesel engine", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland (FIN)", + "Control_Technologies": "", + "Other_Properties": "All capacities", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "Emissions of installation = sum (Fuel [TJ] * EFTechnology [kg/TJ]), where Fuel = each fuel batch of installation in TJ, (Technology) is a combination of installation type+combustion technique, fuel capacity and main fuel. (Bottom-up calculation)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish NIR 2008. Expert estimates by Statistics Finland based mainly on the VTT studies (Tsupari et. al., 2005, Tsupari et. al., 2006 and Tsupari et al., 2007); http://www.vtt.fi/inf/pdf/tiedotteet/2005/T2321.pdf http://www.vtt.fi/inf/pdf/workingpapers/2006/W43.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Central value, uncertainty range and distribution function of the N2O EF for this fuel, technology and operating conditions are representative of the Finnish national circumstances.", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/FIN-Energy-200810.html", + "creation_date": "2022-03-14T08:00:13.809Z", + "last_change_date": "2022-03-14T08:00:13.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7132, + "fields": { + "EF_ID": 121034, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for peat and biomass co-firing. Average peat/biomass ratio 50/50", + "Technology_Practices": "ca. 50 MW(fuel) Bubbling Fluidized Bed Boiler (BFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Peat + biomass co-firing. In addition small amount (smaller than5% of energy) of REF was co-fired. Emission factor is an arithmetic average of 6 days measurements. Unknown, but varying loading and temperature.", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 60%", + "Upper_Bound": ". + 60%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:13.905Z", + "last_change_date": "2022-03-14T08:00:13.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7133, + "fields": { + "EF_ID": 121035, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for peat and biomass co-firing. Average peat/biomass ratio 50/50", + "Technology_Practices": "ca. 50 MW(fuel) Bubbling Fluidized Bed Boiler (BFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Peat + biomass co-firing. In addition small amount (smaller than5% of energy) of REF was co-fired. Emission factor is an arithmetic average of 6 days measurements. Unknown, but varying loading and temperature.", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 60%", + "Upper_Bound": ". + 60%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:13.983Z", + "last_change_date": "2022-03-14T08:00:13.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7134, + "fields": { + "EF_ID": 121036, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. Fraction of biomass 0-12 %.", + "Technology_Practices": "ca. 200 MW(fuel) Bubbling Fluidized Bed Boiler (BFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Full (greater than 80%) load. Biomass+peat. Unknown fuel moisture content. Temperature in boiler varied during the measurement day ( 772 - 787 degrees centigrade). Emission factor is an average emission factor of the period. Flue gas oxygen 2.9 % (vol, wet gases)", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.123Z", + "last_change_date": "2022-03-14T08:00:14.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7135, + "fields": { + "EF_ID": 121037, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. Fraction of biomass 0-12 %.", + "Technology_Practices": "ca. 200 MW(fuel) Bubbling Fluidized Bed Boiler (BFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Full (greater than 80%) load. Biomass+peat. Unknown fuel moisture content. Temperature in boiler varied during the measurement day ( 772 - 787 degrees centigrade). Emission factor is an average emission factor of the period. Flue gas oxygen 2.9 % (vol, wet gases)", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.224Z", + "last_change_date": "2022-03-14T08:00:14.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7136, + "fields": { + "EF_ID": 121038, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. Average peat/biomass ratio 75/25 (large temporal variation)", + "Technology_Practices": "ca. 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Peat+biomass. Unknown fuel moisture content. Full (greater than 80%) load. Average temperature 809degrees centigrade. Flue gas oxygen 2.5 - 21 %, average 3.8 % (vol, wet gases) .", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.324Z", + "last_change_date": "2022-03-14T08:00:14.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7137, + "fields": { + "EF_ID": 121039, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. Average peat/biomass ratio 75/25 (large temporal variation)", + "Technology_Practices": "ca. 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Peat+biomass. Unknown fuel moisture content. Full (greater than 80%) load. Average temperature 809degrees centigrade. Flue gas oxygen 2.5 - 21 %, average 3.8 % (vol, wet gases) .", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.425Z", + "last_change_date": "2022-03-14T08:00:14.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7138, + "fields": { + "EF_ID": 121040, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. Average peat/biomass ratio 75/25 (large temporal variation)", + "Technology_Practices": "ca. 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Peat+biomass. 40-60 % load Temperature 440 - 844 degrees centigrade (average 709degrees centigrade). Flue gas oxygen content 2.6 - 4.6 %, average 3.4% (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.518Z", + "last_change_date": "2022-03-14T08:00:14.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7139, + "fields": { + "EF_ID": 121041, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. Average peat/biomass ratio 75/25 (large temporal variation)", + "Technology_Practices": "ca. 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Peat+biomass. 40-60 % load Temperature 440 - 844 degrees centigrade (average 709degrees centigrade). Flue gas oxygen content 2.6 - 4.6 %, average 3.4% (vol, wet). Unknown fuel moisture.", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.628Z", + "last_change_date": "2022-03-14T08:00:14.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7140, + "fields": { + "EF_ID": 121042, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c - Agriculture/Forestry/Fishing/Fish Farms, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for residual fuel oil combustion.", + "Technology_Practices": "ca. 5 MW(fuel) oil burner.", + "Parameter_Conditions": "Full load", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 70%", + "Upper_Bound": ". + 70%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.745Z", + "last_change_date": "2022-03-14T08:00:14.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7141, + "fields": { + "EF_ID": 121043, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c - Agriculture/Forestry/Fishing/Fish Farms, 1.A.4.c.i - Stationary", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for residual fuel oil combustion.", + "Technology_Practices": "ca. 5 MW(fuel) oil burner.", + "Parameter_Conditions": "Emissions were measured from loading levels between 0-100 %", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "negligible", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 1mg/MJ", + "Upper_Bound": ". + 1mg/MJ", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "value measured was below the detection limit", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.845Z", + "last_change_date": "2022-03-14T08:00:14.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7142, + "fields": { + "EF_ID": 121044, + "IPCC_Category": "1.A.1 - Energy Industries, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c - Agriculture/Forestry/Fishing/Fish Farms, 1.A.4.c.i - Stationary", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for residual fuel oil combustion.", + "Technology_Practices": "ca. 5 MW(fuel) oil burner.", + "Parameter_Conditions": "Loading below 40 %.", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 70%", + "Upper_Bound": ". + 70%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:14.954Z", + "last_change_date": "2022-03-14T08:00:14.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7143, + "fields": { + "EF_ID": 121045, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. 60% biomass, 40% peat", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "60-100% load. 60% biomass, 40% peat. Average furnace temperature 807 degrees centigrade. Average flue gas oxygen 4.9 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.055Z", + "last_change_date": "2022-03-14T08:00:15.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7144, + "fields": { + "EF_ID": 121046, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. 60% biomass, 40% peat", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "60-100% load. 60% biomass, 40% peat. Average furnace temperature 807 degrees centigrade. Average flue gas oxygen 4.9 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.155Z", + "last_change_date": "2022-03-14T08:00:15.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7145, + "fields": { + "EF_ID": 121047, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. 38% peat, 37% biomass, 25% coal", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "60-100% load. 38% peat, 37% biomass, 25% coal Average furnace temperature 862 degrees centigrade. Average flue gas oxygen 4.9 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "negligible", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 1mg/MJ", + "Upper_Bound": ". + 1mg/MJ", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "value measured was below the detection limit", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.256Z", + "last_change_date": "2022-03-14T08:00:15.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7146, + "fields": { + "EF_ID": 121048, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. 38% peat, 37% biomass, 25% coal", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "60-100% load. 38% peat, 37% biomass, 25% coal Average furnace temperature 862 degrees centigrade. Average flue gas oxygen 4.9 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.356Z", + "last_change_date": "2022-03-14T08:00:15.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7147, + "fields": { + "EF_ID": 121049, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. 50% peat, 25% biomass, 25% coal", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Full load. 50% peat, 25% biomass, 25% coal. Average furnace temperature 859 degrees centigrade Average flue gas oxygen 4.8 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "negligible", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 1mg/MJ", + "Upper_Bound": ". + 1mg/MJ", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "value measured was below the detection limit", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.457Z", + "last_change_date": "2022-03-14T08:00:15.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7148, + "fields": { + "EF_ID": 121050, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. 50% peat, 25% biomass, 25% coal", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Full load. 50% peat, 25% biomass, 25% coal. Average furnace temperature 859 degrees centigrade Average flue gas oxygen 4.8 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "The measurements are accurate for the measurement period.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.557Z", + "last_change_date": "2022-03-14T08:00:15.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7149, + "fields": { + "EF_ID": 121051, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. 75% peat, 24% biomass, 1% REF (recovered fuel)", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "60-100% load. 75% peat, 24% biomass, 1% REF Average furnace temperature 822 degrees centigrade Average flue gas oxygen 4.8 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.658Z", + "last_change_date": "2022-03-14T08:00:15.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7150, + "fields": { + "EF_ID": 121052, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. 75% peat, 24% biomass, 1% REF (recovered fuel)", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "60-100% load. 75% peat, 24% biomass, 1% REF Average furnace temperature 822 degrees centigrade Average flue gas oxygen 4.8 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.759Z", + "last_change_date": "2022-03-14T08:00:15.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7151, + "fields": { + "EF_ID": 121053, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. 35-40% coal, 35% biomass, 25-30% peat", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "40-100% load. 35-40% coal, 35% biomass, 25-30% peat", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.860Z", + "last_change_date": "2022-03-14T08:00:15.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7152, + "fields": { + "EF_ID": 121054, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. 35-40% coal, 35% biomass, 25-30% peat", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "Full (greater than 80%) load. 35-40% coal, 35% biomass, 25-30% peat", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:15.960Z", + "last_change_date": "2022-03-14T08:00:15.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7153, + "fields": { + "EF_ID": 121055, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. 35-40% coal, 35% biomass, 25-30% peat", + "Technology_Practices": "greater than 300 MW(fuel) Circulating Fluidized Bed Boiler (CFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "40-60% load. 35-40% coal, 35% biomass, 25-30% peat", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:16.061Z", + "last_change_date": "2022-03-14T08:00:16.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7154, + "fields": { + "EF_ID": 121056, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. 45-83% biomass, 0-19% sludge, 1-45% peat and ca. 4% REF (recovered fuel).", + "Technology_Practices": "ca. 200 MW(fuel) Bubbling Fluidized Bed Boiler (BFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "0-60% load. Peat, biomass, sludge and REF (recovered fuel). Furnace temperature 760-843 degrees centigrade, average 805degrees centigrade. Average flue gas oxygen 5.6 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:16.154Z", + "last_change_date": "2022-03-14T08:00:16.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7155, + "fields": { + "EF_ID": 121057, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. 45-83% biomass, 0-19% sludge, 1-45% peat and ca. 4% REF (recovered fuel).", + "Technology_Practices": "ca. 200 MW(fuel) Bubbling Fluidized Bed Boiler (BFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "0-60% load. Peat, biomass, sludge and REF (recovered fuel). Furnace temperature 760-843 degrees centigrade, average 805degrees centigrade. Average flue gas oxygen 5.6 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:16.279Z", + "last_change_date": "2022-03-14T08:00:16.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7156, + "fields": { + "EF_ID": 121058, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for biomass and peat co-firing. Average peat/biomass ratio 25/70 (large temporal variation)", + "Technology_Practices": "greater than 200 MW(fuel) Bubbling Fluidized Bed Boiler (BFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "40-100% load. Peat, biomass and sludge. Furnace temperature 877-904 degrees centigrade, average 893degrees centigrade. Average flue gas oxygen 4.2 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is sensitive to temperature (load) changes which should be taken into account if generalized to other boilers.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:16.388Z", + "last_change_date": "2022-03-14T08:00:16.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7157, + "fields": { + "EF_ID": 121059, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production, 1.A.1.a.i - Electricity Generation, 1.A.1.a.ii - Combined Heat and Power Generation (CHP), 1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for biomass and peat co-firing. Average peat/biomass ratio 25/70 (large temporal variation)", + "Technology_Practices": "greater than 200 MW(fuel) Bubbling Fluidized Bed Boiler (BFB). CHP plant (e.g. outdoor temperature affect load and emissions)", + "Parameter_Conditions": "40-100% load. Peat, biomass and sludge. Furnace temperature 877-904 degrees centigrade, average 893degrees centigrade. Average flue gas oxygen 4.2 % (vol, wet).", + "Regional_Conditions": "Finland, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Tsupari, Tormonen, Monni, Vahlman, Kolsi and Linna. Emission factors for nitrous oxide (N2O) and methane (CH4) from Finnish power and heating plants and small-scale combustion. VTT Working Papers 43.", + "English_Abstract": "According to the United Nations Framework Convention on Climate Change and the Kyoto Protocol, Finland is liable to estimate and report greenhouse gas emissions annually. Methane (CH4) and nitrous oxide (N2O) emissions from stationary fuel combustion are estimated using fuel and technology specific emission factors. These emissions depend strongly on combustion conditions, e.g. temperature. In fluidized bed combustion, temperatures are typically lower than in other combustion techniques, and temperature decreases further with decreasing load, resulting in increasing N2O emissions. In this study, measurements were carried out in seven fluidized bed boilers using different fuels and in different loads, in order to be able to estimate annual emissions. In addition, emissions of one oil burner were measured, because this technology is typically used in Finnish district heating networks to adjust supply with demand. A survey was also made regarding annual loading of Finnish boilers. This publication presents recommendations for Finnish CH4 and N2O emission factors for the fuels and combustion technologies studied. In addition, CH4 and N2O emissions were measured from the most typical small-scale combustion devices used in Finland, and recommendations for emission factors were given based on the results.", + "Lower_Bound": ". - 30%", + "Upper_Bound": ". + 30%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:00:16.497Z", + "last_change_date": "2022-03-14T08:00:16.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7158, + "fields": { + "EF_ID": 121157, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:16.597Z", + "last_change_date": "2022-03-14T08:00:16.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7159, + "fields": { + "EF_ID": 121158, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Kerosene;for house purpose heating oil, it contained small amount of sulfur and very clean", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.5", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:16.676Z", + "last_change_date": "2022-03-14T08:00:16.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7160, + "fields": { + "EF_ID": 121159, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Heating Oil;for commecial purpose mixed(kerosene and light oil) heating oil", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.5", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:16.751Z", + "last_change_date": "2022-03-14T08:00:16.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7161, + "fields": { + "EF_ID": 121160, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.8", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:16.857Z", + "last_change_date": "2022-03-14T08:00:16.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7162, + "fields": { + "EF_ID": 121161, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Heavy Fuel Oil A;Mixed fuel oil(70% of light oil, 30% of B-C)", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.2", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:16.935Z", + "last_change_date": "2022-03-14T08:00:16.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7163, + "fields": { + "EF_ID": 121162, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Heavy Fuel Oil B;Mixed fuel oil(30% of light oil, 70% of B-C)", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.5", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.010Z", + "last_change_date": "2022-03-14T08:00:17.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7164, + "fields": { + "EF_ID": 121163, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Heavy Fuel Oil C;B-C oil(above 1.0wt% of sulfur) for boiler and power plant", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.085Z", + "last_change_date": "2022-03-14T08:00:17.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7165, + "fields": { + "EF_ID": 121164, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Propane; C3H8, of the alkane series, a hydrocarbon found in natural gas and petroleum used as a refrigerant. This is a fuel used for home use.", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.184Z", + "last_change_date": "2022-03-14T08:00:17.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7166, + "fields": { + "EF_ID": 121165, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Butane; C4H10, of the alkane series, a colorless hydrocarbon found in natural gas and petroleum. This is a fuel used for cars.", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.1", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.260Z", + "last_change_date": "2022-03-14T08:00:17.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7167, + "fields": { + "EF_ID": 121166, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.326Z", + "last_change_date": "2022-03-14T08:00:17.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7168, + "fields": { + "EF_ID": 121167, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Solvent", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.1", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.401Z", + "last_change_date": "2022-03-14T08:00:17.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7169, + "fields": { + "EF_ID": 121168, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.494Z", + "last_change_date": "2022-03-14T08:00:17.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7170, + "fields": { + "EF_ID": 121169, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Asphalt;a residual product of distillation under reduced pressue process, a similar substance that is the by-product of petroleun-cracking operations, any of various dark-colored, adhesive solid", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.1", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.568Z", + "last_change_date": "2022-03-14T08:00:17.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7171, + "fields": { + "EF_ID": 121170, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.635Z", + "last_change_date": "2022-03-14T08:00:17.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7172, + "fields": { + "EF_ID": 121171, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.701Z", + "last_change_date": "2022-03-14T08:00:17.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7173, + "fields": { + "EF_ID": 121172, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Average value of volume weighted for 3 years produced domestically and used in power plants. The caloric value is approx. 4,565 +/- 309 kcal/kg (based on quaternion-based net caloric value).", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.3", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jeon Eui Chan and et al., Sampling and Analysis of Coals used in Korea(2006.1,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_for_Coal_Products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 power generating company. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_for_Coal_Products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.789Z", + "last_change_date": "2022-03-14T08:00:17.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7174, + "fields": { + "EF_ID": 121173, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Average value of volume weighted bituminous coal used for iron manufacturing for 3 years, and its caloric value is approx. 6,750 +/- 287 kcal/kg (based on quaternion-based net caloric value).", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jeon Eui Chan and et al., Sampling and Analysis of Coals used in Korea(2006.1,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_for_Coal_Products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 power generating company. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_for_Coal_Products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.877Z", + "last_change_date": "2022-03-14T08:00:17.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7175, + "fields": { + "EF_ID": 121174, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "Bitmous Coal for fuels. Average value weighted of coal for fuel for 3 years used by the power plant, and the main producing regions are Indonesia, Australia, China, and Russia. Its caloric value is approx. 5,962 +/- 222 kcal/kg.", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jeon Eui Chan and et al., Sampling and Analysis of Coals used in Korea(2006.1,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_for_Coal_Products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 2 iron works (Pohang and Gwangyang). The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_for_Coal_Products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:17.951Z", + "last_change_date": "2022-03-14T08:00:17.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7176, + "fields": { + "EF_ID": 121175, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jeon Eui Chan and et al., Sampling and Analysis of Coals used in Korea(2006.1,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_for_Coal_Products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 power generating company. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_for_Coal_Products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:18.018Z", + "last_change_date": "2022-03-14T08:00:18.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7177, + "fields": { + "EF_ID": 121176, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.4", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:18.107Z", + "last_change_date": "2022-03-14T08:00:18.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7178, + "fields": { + "EF_ID": 121177, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CO2 Emission factor for all combusion processes", + "Technology_Practices": "", + "Parameter_Conditions": "This data can be used for LPG for which the separation of propane and butane deems impossible.", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Jung Chung Seop and et al., A Study on Analysis to measure the Heat Contents of Petroleum Products based on the international standard specification(2007.2,KEMCO)", + "English_Abstract": "See the PDF file (Abstract_Oil products_KEMCO.pdf) which can be downloaded from the Link field below.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an averaged value for 5 oil refineries. The submitted emission factor to the EFDB is the result of the actual use of elemental analysis of domestic fuel and differs from the average global emission factor registered by IPCC.", + "Other_Comments": "", + "Data_Provider": "Korea Energy Management Corporation/KEMCO", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Abstract_Oil products_KEMCO.pdf", + "creation_date": "2022-03-14T08:00:18.185Z", + "last_change_date": "2022-03-14T08:00:18.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7179, + "fields": { + "EF_ID": 121194, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor fof CH4 emissions from underground coal mining nad handling (mining)", + "Technology_Practices": "Mining", + "Parameter_Conditions": "Quite shallow mines (depth of between 140 to 60 m below the surface); Coal type: Bituminous and Anthracite (However, the tonnage of anthracite mined is less than 1% of the bituminous caol production, hence the emissions from anthracite may be ignored.)", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "m3/tonne of coal", + "Equation": "Equation 4.1.3 in Chapter 4, Vol. 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 2.12 in Chapter 2, IPCC Good Practice Guidance and Uncertainty Management in National Greehouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B1, Sheet 1 of 1, Vol.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Other", + "Technical_Reference": "Lloyd, P.J., 2008. Fugitive Emissions from Coal Mines - A report underpinning the national inventory, Prepared for Department of Environment Affairs and Tourism, June 2008.", + "English_Abstract": "See the papers available from the Link field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Comment from Editorial Board: The proposed emission factors are based on measurements from South African mines and represent a Tier 1/2 approach and are more applicable for these mines, than the 2006 Guidelines. The Tier 1 EFs for underground mines from the 2006 Guidelines depended ranged from 10 m3/tonne to 25 m3/tonee depending broadly on the depth of mining with the lower value being for depths of less than 200m and the larger value for depths of 400m. The proposed data for South Africa are for quite shallow mines with the data obtained from depths of between 140m to 60m below the surface and a value of 0.77 m3/tonne was obtained from measurement. There are likely to be variations in gas contents between coal fields in various parts of the world and some coal seams can contain different concentrations of seam gas even for coal mines that are relatively close together and at the same depth. The South African data are an important contribution for EFs from low in situ gas content coals.", + "Data_Provider": "Philip John Donne Lloyd", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Lloyd.html", + "creation_date": "2022-03-14T08:00:18.258Z", + "last_change_date": "2022-03-14T08:00:18.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7180, + "fields": { + "EF_ID": 121195, + "IPCC_Category": "1.B.1.a.i.2 - Post-mining seam gas emissions", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor fof CH4 emissions from underground coal mining nad handling (post-mining)", + "Technology_Practices": "Post-Mining", + "Parameter_Conditions": "Quite shallow mines (depth of between 140 to 60 m below the surface); Coal type: Bituminous and Anthracite (However, the tonnage of anthracite mined is less than 1% of the bituminous caol production, hence the emissions from anthracite may be ignored.)", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "m3/tonne of coal", + "Equation": "Equation 4.1.4 in Chapter 4, Vol. 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 2.12 in Chapter 2, IPCC Good Practice Guidance and Uncertainty Management in National Greehouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B1, Sheet 1 of 1, Vol.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 1-6, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Other", + "Technical_Reference": "Lloyd, P.J., 2008. Fugitive Emissions from Coal Mines - A report underpinning the national inventory, Prepared for Department of Environment Affairs and Tourism, June 2008.", + "English_Abstract": "See the papers available from the Link field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Brief explanation quoted from the paper available from the Link field: There were 191 determinations of the seam gas content., and the average in situ seam gas content was 0.71 m3/t coal. The release of methane was not significantly dependant on the average depth of mining, or on the ambient pressure. Methane was released from the fresh raw coal at a rate that varied log-log with time. The average rate of log-log decrease was -0.15, which indicates that after 1 day the average content of freshly-mined coal would have fallen from 0.71 to 0.35 m3/tonne, after 10 days to 0.25 m3/tonne and after 100 days to 0.17 m3/tonne. Fine grinding of the coal caused the almost instantaneous release of all methane from the coal. ... It is further possible to estimate the emissions from mined coal once it has left the mine. If it contains on average 0.35 m3/tonne after 1 day, and 0.17 m3/tonne after 100 days, and it is reasonable to assume that it will either have been used or exported within 100 days, then the emissions from raw coal post mining will amount to (0.35-0.17) = 0.18 m3/tonne raw coal.", + "Data_Provider": "Philip John Donne Lloyd", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Lloyd.html", + "creation_date": "2022-03-14T08:00:18.358Z", + "last_change_date": "2022-03-14T08:00:18.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7181, + "fields": { + "EF_ID": 121196, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor fof CO2 emissions from underground coal mining nad handling (mining)", + "Technology_Practices": "Mining", + "Parameter_Conditions": "Quite shallow mines (depth of between 140 to 60 m below the surface); Coal type: Bituminous and Anthracite (However, the tonnage of anthracite mined is less than 1% of the bituminous caol production, hence the emissions from anthracite may be ignored.)", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "In a few cases methane desorbed from coal was analysed for CO2. The average content was about 9% (+10 - 6%) of the total gas emitted. The emissions of CO2 resulting from mining are therefore estimated at 10% of the emissions of methane.", + "Value": "0.077", + "Unit": "m3/tonne of coal", + "Equation": "Equation 4.1.3 in Chapter 4, Vol. 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B1, Sheet 1 of 1, Vol.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Other", + "Technical_Reference": "Lloyd, P.J., 2008. Fugitive Emissions from Coal Mines - A report underpinning the national inventory, Prepared for Department of Environment Affairs and Tourism, June 2008.", + "English_Abstract": "See the papers available from the Link field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "As explained in the Other property field, the CO2 emissions are assumed to be estimated at 10% of methane emissions. The EF for methane relevant to this data is included in the EFDB as EF-ID 121194. The EFDB users are therefore recommended to look at the data ED-ID 121194 as well.", + "Data_Provider": "Philip John Donne Lloyd", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Lloyd.html", + "creation_date": "2022-03-14T08:00:18.459Z", + "last_change_date": "2022-03-14T08:00:18.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7182, + "fields": { + "EF_ID": 121197, + "IPCC_Category": "1.B.1.a.i.2 - Post-mining seam gas emissions", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor fof CO2 emissions from underground coal mining nad handling (post-mining)", + "Technology_Practices": "Post-Mining", + "Parameter_Conditions": "Quite shallow mines (depth of between 140 to 60 m below the surface); Coal type: Bituminous and Anthracite (However, the tonnage of anthracite mined is less than 1% of the bituminous caol production, hence the emissions from anthracite may be ignored.)", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "In a few cases methane desorbed from coal was analysed for CO2. The average content was about 9% (+10 - 6%) of the total gas emitted. The emissions of CO2 resulting from mining are therefore estimated at 10% of the emissions of methane.", + "Value": "0.018", + "Unit": "m3/tonne of coal", + "Equation": "Equation 4.1.4 in Chapter 4, Vol. 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B1, Sheet 1 of 1, Vol.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Other", + "Technical_Reference": "Lloyd, P.J., 2008. Fugitive Emissions from Coal Mines - A report underpinning the national inventory, Prepared for Department of Environment Affairs and Tourism, June 2008.", + "English_Abstract": "See the papers available from the Link field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "As explained in the Other property field, the CO2 emissions are assumed to be estimated at 10% of methane emissions. The EF for methane relevant to this data is included in the EFDB as EF-ID 121195. The EFDB users are therefore recommended to look at the data ED-ID 121195 as well.", + "Data_Provider": "Philip John Donne Lloyd", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/Lloyd.html", + "creation_date": "2022-03-14T08:00:18.535Z", + "last_change_date": "2022-03-14T08:00:18.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7183, + "fields": { + "EF_ID": 121577, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Lignite", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "101.98", + "Unit": "t CO2/TJ", + "Equation": "EF CO2 [t/TJ] = (C [%] * Ox)*44 / (NCV [TJ/t]*100)*12, Revised 1996 IPCC Guidelines for National GHG Inventories", + "IPCC_Worksheet": "1-2 Sheet 1 (Revised 1996 IPCC Guidelines)", + "Data_Source": "Other", + "Technical_Reference": "Preparation of the GHG Inventory for the Third National Communication to the UNFCCC, National Inventory Summary Report (Available from the URL below)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Annual report of investigaion of the physical and chemical characteristics of the lignite from the thermo power plant Rek Bitola- ELEM", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/GHG%20Inventory/MACEDONIA_National_GHG_Inventory_Report_2013.pdf", + "creation_date": "2022-03-14T08:00:18.626Z", + "last_change_date": "2022-03-14T08:00:18.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7184, + "fields": { + "EF_ID": 121578, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country Specific EF for combustion of Natural Gas", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "None", + "Other_Properties": "The entire quantity of natural gas is imported from Russia through gas pipline. Data on composition of Russian natural gas was used to derive the EF.", + "Value": "54.8", + "Unit": "t CO2/TJ", + "Equation": "EF CO2 [t/TJ] = (C [%] * Ox)*44 / (NCV [TJ/t]*100)*12 Revised 1996 IPCC Guidelines for National GHG Inventories", + "IPCC_Worksheet": "1-1, 1-2 Sheet 1, 3, 5, 15 (Revised 1996 IPCC Guidelines)", + "Data_Source": "Other", + "Technical_Reference": "Report National CO2 and non-CO2 emission factors for key sectors under IPCC and CORINAIR methodologies (Available from the URL below)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "None", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:00:18.702Z", + "last_change_date": "2022-03-14T08:00:18.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7185, + "fields": { + "EF_ID": 121579, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country Specific EF for combustion of Residual Fuel Oil", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "77.68", + "Unit": "t CO2/TJ", + "Equation": "EF CO2 [t/TJ] = (C [%] * Ox)*44 / (NCV [TJ/t]*100)*12 Revised 1996 IPCC Guidelines for National GHG Inventories", + "IPCC_Worksheet": "1-1, 1-2 Sheet 1, 3, 13, 15 (Revised 1996 IPCC Guidelines)", + "Data_Source": "Other", + "Technical_Reference": "Report National CO2 and non-CO2 emission factors for key sectors under IPCC and CORINAIR methodologies (Available from the URL below)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Compliance with the standard MKS B H2.430 and Rulebook on Quality of Liquid Fuels", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:00:18.783Z", + "last_change_date": "2022-03-14T08:00:18.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7186, + "fields": { + "EF_ID": 121580, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Lignite", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "1602.58", + "Unit": "kg/TJ", + "Equation": "Revised 1996 IPCC Guidelines for National GHG Inventories, page 1.43", + "IPCC_Worksheet": "1-4, Sheet 1 (Revised 1996 IPCC Guidelines)", + "Data_Source": "Other", + "Technical_Reference": "Preparation of the GHG Inventory for the Third National Communication to the UNFCCC, National Inventory Summary Report, Report National CO2 and non-CO2 emission factors for key sectors under IPCC and CORINAIR methodologies (Available from the URL below)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "ELEM annual pollution report to the Ministry of Environment and Physical Planning", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/GHG%20Inventory/MACEDONIA_National_GHG_Inventory_Report_2013.pdf http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:00:18.869Z", + "last_change_date": "2022-03-14T08:00:18.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7187, + "fields": { + "EF_ID": 121581, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country Specific EF for combustion of Residual Fuel Oil", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "500", + "Unit": "kg/TJ", + "Equation": "Revised 1996 IPCC Guidelines for National GHG Inventories, page 1.43", + "IPCC_Worksheet": "1-4, Sheet 1,2,3,4,5 (Revised 1996 IPCC Guidelines)", + "Data_Source": "Other", + "Technical_Reference": "Preparation of the GHG Inventory for the Third National Communication to the UNFCCC, National Inventory Summary Report, Report National CO2 and non-CO2 emission factors for key sectors under IPCC and CORINAIR methodologies (Available from the URL below)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Compliance with the standard MKS B H2.430 and Rulebook on Quality of Liquid Fuels", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/GHG%20Inventory/MACEDONIA_National_GHG_Inventory_Report_2013.pdf http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:00:18.943Z", + "last_change_date": "2022-03-14T08:00:18.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7188, + "fields": { + "EF_ID": 121582, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Lignite", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "271.55", + "Unit": "kg/TJ", + "Equation": "Revised 1996 IPCC Guidelines for National GHG Inventories, page 1.37", + "IPCC_Worksheet": "1-3, Sheet 2 (Revised 1996 IPCC Guidelines)", + "Data_Source": "Other", + "Technical_Reference": "Preparation of the GHG Inventory for the Third National Communication to the UNFCCC, National Inventory Summary Report, Report National CO2 and non-CO2 emission factors for key sectors under IPCC and CORINAIR methodologies (Available from the URL below)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/GHG%20Inventory/MACEDONIA_National_GHG_Inventory_Report_2013.pdf http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:00:19.016Z", + "last_change_date": "2022-03-14T08:00:19.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7189, + "fields": { + "EF_ID": 121751, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines (tests performed with E22 blend: 78% gasoline + 22% ethanol v/v) (the fuel is named as Gasolina C in the CETESB (2010) report)", + "Technology_Practices": "Dedicated gasohol engines", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "213", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.082Z", + "last_change_date": "2022-03-14T08:00:19.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7190, + "fields": { + "EF_ID": 121752, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "CARBON MONOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines (tests performed with E22 blend: 78% gasoline + 22% ethanol v/v) (the fuel is named as Gasolina C in the CETESB (2010) report)", + "Technology_Practices": "Dedicated gasohol engines", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.172Z", + "last_change_date": "2022-03-14T08:00:19.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7191, + "fields": { + "EF_ID": 121753, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines (tests performed with E22 blend: 78% gasoline + 22% ethanol v/v) (the fuel is named as Gasolina C in the CETESB (2010) report)", + "Technology_Practices": "Dedicated gasohol engines", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.268Z", + "last_change_date": "2022-03-14T08:00:19.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7192, + "fields": { + "EF_ID": 121754, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated ethanol engines (the fuel is named as Etanol in the CETESB (2010) report)", + "Technology_Practices": "Dedicated ethanol engines", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2006.(the factor is listed in table 20 page 135 for the year 2006 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.333Z", + "last_change_date": "2022-03-14T08:00:19.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7193, + "fields": { + "EF_ID": 121755, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated ethanol engines (the fuel is named as Etanol in the CETESB (2010) report)", + "Technology_Practices": "Dedicated ethanol engines", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2006.(the factor is listed in table 20 page 135 for the year 2006 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.391Z", + "last_change_date": "2022-03-14T08:00:19.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7194, + "fields": { + "EF_ID": 121756, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated ethanol engines (the fuel is named as Etanol in the CETESB (2010) report)", + "Technology_Practices": "Dedicated ethanol engines", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2006.(the factor is listed in table 20 page 135 for the year 2006 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.474Z", + "last_change_date": "2022-03-14T08:00:19.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7195, + "fields": { + "EF_ID": 121757, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines fueled with gasohol (78% gasoline + 22% ethanol v/v) (the fuel is named as Flex-Gasol.C in the CETESB (2010) report)", + "Technology_Practices": "Flex-fuel engines fueled with gasohol (78% gasoline + 22% ethanol)", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "178", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.560Z", + "last_change_date": "2022-03-14T08:00:19.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7196, + "fields": { + "EF_ID": 121758, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "CARBON MONOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines fueled with gasohol (78% gasoline + 22% ethanol v/v) (the fuel is named as Flex-Gasol.C in the CETESB (2010) report)", + "Technology_Practices": "Flex-fuel engines fueled with gasohol (78% gasoline + 22% ethanol)", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.624Z", + "last_change_date": "2022-03-14T08:00:19.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7197, + "fields": { + "EF_ID": 121759, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines fueled with gasohol (78% gasoline + 22% ethanol v/v) (the fuel is named as Flex-Gasol.C in the CETESB (2010) report)", + "Technology_Practices": "Flex-fuel engines fueled with gasohol (78% gasoline + 22% ethanol)", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.699Z", + "last_change_date": "2022-03-14T08:00:19.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7198, + "fields": { + "EF_ID": 121760, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines fueled with ethanol (the fuel is named as Flex-Etanol in the CETESB (2010) report)", + "Technology_Practices": "Flex-fuel engines fueled with ethanol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "172", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.792Z", + "last_change_date": "2022-03-14T08:00:19.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7199, + "fields": { + "EF_ID": 121761, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines fueled with ethanol (the fuel is named as Flex-Etanol in the CETESB (2010) report)", + "Technology_Practices": "Flex-fuel engines fueled with ethanol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.868Z", + "last_change_date": "2022-03-14T08:00:19.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7200, + "fields": { + "EF_ID": 121762, + "IPCC_Category": "1.A.3.b.i.1 - Passenger cars with 3-way catalysts", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines fueled with ethanol (the fuel is named as Flex-Etanol in the CETESB (2010) report)", + "Technology_Practices": "Flex-fuel engines fueled with ethanol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each car model in Brazil in 2010.(the factor is listed in table 20 page 135 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.933Z", + "last_change_date": "2022-03-14T08:00:19.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7201, + "fields": { + "EF_ID": 121763, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines not greater than 150 cc", + "Technology_Practices": "Dedicated gasohol engines not greater than 150 cc", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52.48", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:19.999Z", + "last_change_date": "2022-03-14T08:00:19.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7202, + "fields": { + "EF_ID": 121764, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "CARBON MONOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines not greater than 150 cc", + "Technology_Practices": "Dedicated gasohol engines not greater than 150 cc", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.086Z", + "last_change_date": "2022-03-14T08:00:20.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7203, + "fields": { + "EF_ID": 121765, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines not greater than 150 cc", + "Technology_Practices": "Dedicated gasohol engines not greater than 150 cc", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.160Z", + "last_change_date": "2022-03-14T08:00:20.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7204, + "fields": { + "EF_ID": 121766, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines > 150 cc", + "Technology_Practices": "Dedicated gasohol engines > 150 cc", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78.61", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.233Z", + "last_change_date": "2022-03-14T08:00:20.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7205, + "fields": { + "EF_ID": 121767, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "CARBON MONOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines > 150 cc", + "Technology_Practices": "Dedicated gasohol engines > 150 cc", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.14", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.308Z", + "last_change_date": "2022-03-14T08:00:20.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7206, + "fields": { + "EF_ID": 121768, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in dedicated gasohol engines > 150 cc", + "Technology_Practices": "Dedicated gasohol engines > 150 cc", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.412Z", + "last_change_date": "2022-03-14T08:00:20.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7207, + "fields": { + "EF_ID": 121769, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines not greater than 150 cc fueled with gasohol", + "Technology_Practices": "Flex-fuel engines not greater than 150 cc fueled with gasohol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "51.17", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.485Z", + "last_change_date": "2022-03-14T08:00:20.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7208, + "fields": { + "EF_ID": 121770, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "CARBON MONOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines not greater than 150 cc fueled with gasohol", + "Technology_Practices": "Flex-fuel engines not greater than 150 cc fueled with gasohol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.557Z", + "last_change_date": "2022-03-14T08:00:20.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7209, + "fields": { + "EF_ID": 121771, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines not greater than 150 cc fueled with gasohol", + "Technology_Practices": "Flex-fuel engines not greater than 150 cc fueled with gasohol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.635Z", + "last_change_date": "2022-03-14T08:00:20.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7210, + "fields": { + "EF_ID": 121772, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines not greater than 150 cc fueled with ethanol", + "Technology_Practices": "Flex-fuel engines not greater than 150 cc fueled with ethanol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.96", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.724Z", + "last_change_date": "2022-03-14T08:00:20.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7211, + "fields": { + "EF_ID": 121773, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "CARBON MONOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines not greater than 150 cc fueled with ethanol", + "Technology_Practices": "Flex-fuel engines not greater than 150 cc fueled with ethanol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.810Z", + "last_change_date": "2022-03-14T08:00:20.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7212, + "fields": { + "EF_ID": 121774, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average emission factor for fuel combustion in flex-fuel engines not greater than 150 cc fueled with ethanol", + "Technology_Practices": "Flex-fuel engines not greater than 150 cc fueled with ethanol", + "Parameter_Conditions": "New vehicles", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "g/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CETESB (2010). Qualidade do ar no Estado de São Paulo 2010 / CETESB. Série Relatórios / CETESB; São Paulo, Brasil", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Results of emissions tests for new vehicles in accordance with the environmental laws are reported to CETESB and IBAMA. The emission factor provided here is the average published by CETESB, which is calculated as the weighted average with respect to the sales of each model in Brazil in 2010. (the factor is listed in table 23 page 139 for the year 2010 measurement in the CETESB (2010) report)", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.877Z", + "last_change_date": "2022-03-14T08:00:20.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7213, + "fields": { + "EF_ID": 121775, + "IPCC_Category": "1.A.1.c.ii - Other Energy Industries", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "Measured", + "Description": "NOx emission factor for bagasse boilers operating in sugarcane mills", + "Technology_Practices": "Bagasse boiler; steam flow ~40 t/h at approximately ~ 20 bar, 300°C", + "Parameter_Conditions": "Boiler operational conditions during measurements - air excess coefficient: 1.30-1.74; steam pressure: 19.6-20.9 bar; steam temperature: 288-302°C", + "Regional_Conditions": "Experiment performed at Usina Monte Alegre (MG), Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2050", + "Unit": "g/Mg fuel", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Teixeira FN, Lora ES (2004). Experimental and analytical evaluation of NOx emissions in bagasse boilers. Biomass and Bioenergy 26: 571-577", + "English_Abstract": "", + "Lower_Bound": "Unkown", + "Upper_Bound": "Unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The value presented here is the median of the values reported in the referece. The emission factors range between approximately 1600 and 2600.", + "Data_Provider_Comments": "Measured emission factors ranged between approximately 1600 and 2600 g/t bagasse, for air excess coefficients ranging from 1.34 to 1.70.", + "Other_Comments": "", + "Data_Provider": "Joaquim Eugenio Abel Seabra", + "Link": "", + "creation_date": "2022-03-14T08:00:20.944Z", + "last_change_date": "2022-03-14T08:00:20.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7214, + "fields": { + "EF_ID": 121776, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ventilation emissions", + "Technology_Practices": "Fugitive", + "Parameter_Conditions": "Average depth: 500 m. Mine A in year 2005 as reported by SU et al, 2008. Coal type: coking coal.", + "Regional_Conditions": "New South Wales, Australia", + "Control_Technologies": "No", + "Other_Properties": "", + "Value": "20.69", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "SU et al, 2008, Journal of Environmental Management 86(2008) 44-62", + "English_Abstract": "Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and about 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "The range of ventillation air methane is +/- 170%, based on one week measurements by SU et al for mine A.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This work is also published as Characterisation and Cleaning of Mine Ventilation Air Flows (ACARP Project C13072) CSIRO Exploration and Mining Report P2005/220 June 2005. The author calculated the EF using the measured data, methane concentration, ventilation flow rate and coal production (see Fig. 16).", + "Other_Comments": "", + "Data_Provider": "Shi Su", + "Link": "", + "creation_date": "2022-03-14T08:00:21.034Z", + "last_change_date": "2022-03-14T08:00:21.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7215, + "fields": { + "EF_ID": 121777, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ventilation emissions", + "Technology_Practices": "Fugitive", + "Parameter_Conditions": "Maximum depth: ~400 m. Mine B in year 2005 as reported by SU et al, 2008. Coal type: coking coal.", + "Regional_Conditions": "Queensland, Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.77", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "SU et al, 2008, Journal of Environmental Management 86(2008) 44-62", + "English_Abstract": "Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and about 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "The range of ventillation air methane is +/- 84%, based on five days measurements by SU et al for mine B.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This work is also published as Characterisation and Cleaning of Mine Ventilation Air Flows (ACARP Project C13072) CSIRO Exploration and Mining Report P2005/220 June 2005. The author calculated the EF using the measured data, methane concentration, ventilation flow rate and coal production (see Fig. 17).", + "Other_Comments": "", + "Data_Provider": "Shi Su", + "Link": "", + "creation_date": "2022-03-14T08:00:21.110Z", + "last_change_date": "2022-03-14T08:00:21.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7216, + "fields": { + "EF_ID": 121778, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ventilation emissions", + "Technology_Practices": "Fugitive", + "Parameter_Conditions": "Mine C in year 2005 as reported by SU et al, 2008. Coal type: coking coal & thermal coal.", + "Regional_Conditions": "Mine C operates within the central Bowen Basin, Australia", + "Control_Technologies": "", + "Other_Properties": "Su et al. (2008) report that compared with other mines, this mine is not a gassy mine.", + "Value": "2.21", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "SU et al, 2008, Journal of Environmental Management 86(2008) 44-62", + "English_Abstract": "Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and about 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "The range of ventillation air methane is +/- 160%, based on one week measurements by SU et al for mine C.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This work is also published as Characterisation and Cleaning of Mine Ventilation Air Flows (ACARP Project C13072) CSIRO Exploration and Mining Report P2005/220 June 2005. The author calculated the EF using the measured data, methane concentration, ventilation flow rate and coal production (see Fig. 18).", + "Other_Comments": "", + "Data_Provider": "Shi Su", + "Link": "", + "creation_date": "2022-03-14T08:00:21.202Z", + "last_change_date": "2022-03-14T08:00:21.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7217, + "fields": { + "EF_ID": 121779, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ventilation emissions", + "Technology_Practices": "Fugitive", + "Parameter_Conditions": "Average depth: 200 m. Mine D in year 2005 as reported by SU et al, 2008. Coal type: coking coal & thermal coal.", + "Regional_Conditions": "Mine D is located in the Hunter Valley, Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.53", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "SU et al, 2008, Journal of Environmental Management 86(2008) 44-62", + "English_Abstract": "Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and about 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "The range of ventillation air methane is +/- 177%, based on one week measurements by SU et al for mine D.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This work is also published as Characterisation and Cleaning of Mine Ventilation Air Flows (ACARP Project C13072) CSIRO Exploration and Mining Report P2005/220 June 2005. The author calculated the EF using the measured data, methane concentration, ventilation flow rate and coal production (see Fig. 19).", + "Other_Comments": "", + "Data_Provider": "Shi Su", + "Link": "", + "creation_date": "2022-03-14T08:00:21.310Z", + "last_change_date": "2022-03-14T08:00:21.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7218, + "fields": { + "EF_ID": 121780, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ventilation emissions", + "Technology_Practices": "Fugitive", + "Parameter_Conditions": "Average depth: > 200m. Mining group A in year 2007 as reported by SU et al, 2011, covers 142 km2, includes 9-12 coal-bearing seams and is divided in 9 mining fields. Coal type: anthracite.", + "Regional_Conditions": "Chongqing, China", + "Control_Technologies": "No", + "Other_Properties": "", + "Value": "38", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "SU et al, 2011, Atmospheric Environment 45 (2011) 2220-2232", + "English_Abstract": "Large quantities (about 28 billion m3) of methane are released to the atmosphere every year from coal-mining activities around the world. This methane represents not only a significant greenhouse gas that is contributing to global temperature change, but is also a wasted energy resource. China, the largest coal producer in the world, is responsible for over 50% of the total global release of methane-containing ventilation air from coal mines. A mine site investigation methodology was developed for collecting reliable methane emission data from coal mines. Five main coal-mining areas in China were studied and specific data were collected from two mines in each of the five mining groups. Information such as coal and methane reserves, ventilation air released, methane concentration and methane release rates were collected. Future development plans were evaluated and used to estimate potential future emissions. It was determined that most of the methane generated in the five mining areas is currently released to the atmosphere.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "The range of ventillation air methane is +/- 34%, based on 3 months measurements by SU et al for mine A1 and A2.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This work is also published as AUSTRALIA-CHINA CLIMATE CHANGE PARTNERSHIP: Study on Coal Mine Methane Resources and Potential Project Development, CSIRO Exploration and Mining Report: P2009/423", + "Other_Comments": "", + "Data_Provider": "Shi Su", + "Link": "", + "creation_date": "2022-03-14T08:00:21.411Z", + "last_change_date": "2022-03-14T08:00:21.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7219, + "fields": { + "EF_ID": 121781, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ventilation emissions", + "Technology_Practices": "Fugitive", + "Parameter_Conditions": "Mining group B in year 2008 as reported by SU et al, 2011. Coal type: bituminous coal", + "Regional_Conditions": "Henan, China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.67", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "SU et al, 2011, Atmospheric Environment 45 (2011) 2220-2232", + "English_Abstract": "Large quantities (about 28 billion m3) of methane are released to the atmosphere every year from coal-mining activities around the world. This methane represents not only a significant greenhouse gas that is contributing to global temperature change, but is also a wasted energy resource. China, the largest coal producer in the world, is responsible for over 50% of the total global release of methane-containing ventilation air from coal mines. A mine site investigation methodology was developed for collecting reliable methane emission data from coal mines. Five main coal-mining areas in China were studied and specific data were collected from two mines in each of the five mining groups. Information such as coal and methane reserves, ventilation air released, methane concentration and methane release rates were collected. Future development plans were evaluated and used to estimate potential future emissions. It was determined that most of the methane generated in the five mining areas is currently released to the atmosphere.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "The range of ventillation air methane is +/- 59%, based on 3 months measurements by SU et al for mine B1 and B2.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This work is also published as AUSTRALIA-CHINA CLIMATE CHANGE PARTNERSHIP: Study on Coal Mine Methane Resources and Potential Project Development, CSIRO Exploration and Mining Report: P2009/423", + "Other_Comments": "", + "Data_Provider": "Shi Su", + "Link": "", + "creation_date": "2022-03-14T08:00:21.512Z", + "last_change_date": "2022-03-14T08:00:21.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7220, + "fields": { + "EF_ID": 121782, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ventilation emissions", + "Technology_Practices": "Fugitive", + "Parameter_Conditions": "Mining group C in year 2008 as reported by SU et al, 2011. Coal type: sub-bituminous coal", + "Regional_Conditions": "Liaoning, China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.07", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "SU et al, 2011, Atmospheric Environment 45 (2011) 2220-2232", + "English_Abstract": "Large quantities (about 28 billion m3) of methane are released to the atmosphere every year from coal-mining activities around the world. This methane represents not only a significant greenhouse gas that is contributing to global temperature change, but is also a wasted energy resource. China, the largest coal producer in the world, is responsible for over 50% of the total global release of methane-containing ventilation air from coal mines. A mine site investigation methodology was developed for collecting reliable methane emission data from coal mines. Five main coal-mining areas in China were studied and specific data were collected from two mines in each of the five mining groups. Information such as coal and methane reserves, ventilation air released, methane concentration and methane release rates were collected. Future development plans were evaluated and used to estimate potential future emissions. It was determined that most of the methane generated in the five mining areas is currently released to the atmosphere.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "The range of ventillation air methane is +/- 45%, based on 3 months measurements by SU et al for mine C1 and C2.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This work is also published as AUSTRALIA-CHINA CLIMATE CHANGE PARTNERSHIP: Study on Coal Mine Methane Resources and Potential Project Development, CSIRO Exploration and Mining Report: P2009/423", + "Other_Comments": "", + "Data_Provider": "Shi Su", + "Link": "", + "creation_date": "2022-03-14T08:00:21.585Z", + "last_change_date": "2022-03-14T08:00:21.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7221, + "fields": { + "EF_ID": 121783, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ventilation emissions", + "Technology_Practices": "Fugitive", + "Parameter_Conditions": "Mining group E in year 2007 as reported by SU et al, 2011. Coal type: anthracite.", + "Regional_Conditions": "Shanxi, China", + "Control_Technologies": "", + "Other_Properties": "In the Qinshui Basin, coal rank shows a clear regular pattern; the highest rank is distributed in the north and south of the basin, in the Yangquan and Jincheng coal mining areas, where the coal is mainly composed of anthracite; in the middle of the basin, in the Qinyuan and Lu`an coal mining areas, the coal mainly comprises coking coal, lean coal and meagre coal (X. Fu, H. Sun, W. Zhang, B. Zhang. Assessment of CO2 storage potential in coals of the Qinshui Basin. China United Coalbed Methane Corporation Ltd, Beijing.", + "Value": "9.89", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "SU et al, 2011, Atmospheric Environment 45 (2011) 2220-2232", + "English_Abstract": "Large quantities (about 28 billion m3) of methane are released to the atmosphere every year from coal-mining activities around the world. This methane represents not only a significant greenhouse gas that is contributing to global temperature change, but is also a wasted energy resource. China, the largest coal producer in the world, is responsible for over 50% of the total global release of methane-containing ventilation air from coal mines. A mine site investigation methodology was developed for collecting reliable methane emission data from coal mines. Five main coal-mining areas in China were studied and specific data were collected from two mines in each of the five mining groups. Information such as coal and methane reserves, ventilation air released, methane concentration and methane release rates were collected. Future development plans were evaluated and used to estimate potential future emissions. It was determined that most of the methane generated in the five mining areas is currently released to the atmosphere.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "The range of ventillation air methane is +/- 38%, based on 3 months measurements by SU et al for mine E1 and E2.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This work is also published as AUSTRALIA-CHINA CLIMATE CHANGE PARTNERSHIP: Study on Coal Mine Methane Resources and Potential Project Development, CSIRO Exploration and Mining Report: P2009/423", + "Other_Comments": "", + "Data_Provider": "Shi Su", + "Link": "", + "creation_date": "2022-03-14T08:00:21.671Z", + "last_change_date": "2022-03-14T08:00:21.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7222, + "fields": { + "EF_ID": 121879, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "Coal-fired power plants", + "Parameter_Conditions": "Coal-fired", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "Emission factor could be applied only in case of inefficient combustion processes and combined very low oxidation factor (the basic data indicate more than 10 % carbon in the ash!)", + "Value": "88.7", + "Unit": "Mg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeon E-C, Myeong S, Sa J-W, Kim J, Jeong J-H. Greenhouse gas emission factor development for coal-fired power plants in Korea. Applied Energy. Vol. 87 (2010) 205–210.", + "English_Abstract": "Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO2 concentration from power plants was measured using GC–FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for subbituminous coal than the IPCC figures.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is based on fuel analysis.", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:21.744Z", + "last_change_date": "2022-03-14T08:00:21.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7223, + "fields": { + "EF_ID": 121880, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "Coal-fired power plants", + "Parameter_Conditions": "Coal-fired", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98", + "Unit": "Mg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeon E-C, Myeong S, Sa J-W, Kim J, Jeong J-H. Greenhouse gas emission factor development for coal-fired power plants in Korea. Applied Energy. Vol. 87 (2010) 205–210.", + "English_Abstract": "Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO2 concentration from power plants was measured using GC–FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for subbituminous coal than the IPCC figures.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is based on fuel analysis.", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:21.839Z", + "last_change_date": "2022-03-14T08:00:21.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7224, + "fields": { + "EF_ID": 121881, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "Coal-fired power plants", + "Parameter_Conditions": "Domestic anthracite", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "111,430 <30.39 tC/TJ>", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee J, Kim J, Kim S, Im G, Lee S, Jeon EC (2012). Development of a country-spcific CO2 emission factor for domestic anthracite in Korea, 2007–2009. Environmental Science and Pollution Research. Vol. 19, No. 7 (2012) pp. 2722–2727.", + "English_Abstract": "Introduction Korea has been making efforts to reduce greenhouse gas (GHG) emissions, including a voluntary commitment to the target of a 30% reduction, based on business-asusual of the total GHG emission volume, by 2020; 2006 IPCC Guidelines provided default values, applying countryspecific emission factors was recommended when estimating national greenhouse gas emissions. Results and discussion This study focused on anthracite produced in Korea in order to provide basic data for developing country-specific emission factor. This study has estimated CO2 emission factors to use worksheet of which five steps consisted according to the fuel analysis method. Conclusion As a result, the average of net colorific value for 3 years (2007~2009) was 4,519 kcal/kg, and the CO2 emission factor was calculated to be 111,446 kg/TJ, which is about 11.8% lower than the 2006 IPCC guidelines default value, and about 7.9% higher than the US EPA emission factor.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:21.910Z", + "last_change_date": "2022-03-14T08:00:21.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7225, + "fields": { + "EF_ID": 121882, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "Circulating Fluidized Bed Power Plant", + "Parameter_Conditions": "Circulating Fluidized Bed", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.198", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee S, Kim J, Lee J, Jeon EC (2012). A Study on Methane and Nitrous Oxide Emissions Characteristics from Anthracite Circulating Fluidized Bed Power Plant in Korea. The Scientific World Journal, Article ID 468214, 6 pages. doi:10.1100/2012/468214", + "English_Abstract": "In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea`s emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH4) and nitrous oxide (N2O) in the exhaust gases fromcirculating fluidized bed plant. The findings showed the concentration of CH4 and N2O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH4 emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N2O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:21.998Z", + "last_change_date": "2022-03-14T08:00:21.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7226, + "fields": { + "EF_ID": 121883, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "Circulating Fluidized Bed Power Plant", + "Parameter_Conditions": "Circulating Fluidized Bed", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.486", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee S, Kim J, Lee J, Jeon EC (2012). A Study on Methane and Nitrous Oxide Emissions Characteristics from Anthracite Circulating Fluidized Bed Power Plant in Korea. The Scientific World Journal, Article ID 468214, 6 pages. doi:10.1100/2012/468214", + "English_Abstract": "In order to tackle climate change effectively, the greenhouse gas emissions produced in Korea should be assessed precisely. To do so, the nation needs to accumulate country-specific data reflecting the specific circumstances surrounding Korea`s emissions. This paper analyzed element contents of domestic anthracite, calorific value, and concentration of methane (CH4) and nitrous oxide (N2O) in the exhaust gases fromcirculating fluidized bed plant. The findings showed the concentration of CH4 and N2O in the flue gas to be 1.85 and 3.25 ppm, respectively, and emission factors were 0.486 and 2.198 kg/TJ, respectively. The CH4 emission factor in this paper was 52% lower than default emission factor presented by the IPCC. The N2O emission factor was estimated to be 46% higher than default emission factor presented by the IPCC. This discrepancy can be attributable to the different methods and conditions of combustion because the default emission factors suggested by IPCC take only fuel characteristics into consideration without combustion technologies. Therefore, Korea needs to facilitate research on a legion of fuel and energy consumption facilities to develop country-specific emission factors so that the nation can have a competitive edge in the international climate change convention in the years to come.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:22.077Z", + "last_change_date": "2022-03-14T08:00:22.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7227, + "fields": { + "EF_ID": 121884, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Bituminous coal Oxidation Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Large Scale Boilers", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.997", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee S, Kim J, Lee J, Lee Seung-hee, Lee S, Jeon E. A Study of the Bituminous Coal Oxidation Factor in Large Scale Boilers for Estimating GHG Emissions. Asian Journal of Atmospheric Environment, Vol. 5-3, pp.189-195, September 2011.", + "English_Abstract": "Korea-specific GHG emissions should be estimated correctly in order to ensure effective measurement of climate change variables. The use of country-specific data that reflects fuel and technology characteristics is needed for accurate GHG emissions estimation. Oxidation factors are used to convert existing data into equivalent GHG emissions, and changes in these oxidation factors are directly related to changes in emissions. As such, the oxidation factor is one of the most important variables in using country-specific data to determine GHG emissions. In this study, the oxidation factor of bituminous coal in large scale boilers was estimated using 4,527 data points sampled from eight large-scale boilers that had been using bituminous coal for two years. The average oxidation factor was determined to be 0.997, which is lower than the oxidation factor of 1 that is recommended by the IPCC G/L for large scale boilers when estimating national GHG emissions. However, an oxidation factor less than 1 is assumed for fluidized bed boilers, internal combustion engines, and other small-scale boilers. Accordingly, studies on oxidation factor estimation should be continued to allow for accurate estimation of GHG emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The oxidation factor of bituminous coal in large scale boilers was estimated using 4,527 data points sampled from eight large-scale boilers that had been using bituminous coal for two years.", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:22.167Z", + "last_change_date": "2022-03-14T08:00:22.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7228, + "fields": { + "EF_ID": 121885, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "Anthracite Fired Power Plants", + "Parameter_Conditions": "Anthracite Fired", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.98", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee S.-H., Kim J., Lee S., Sa J.-H., Kim K., Jeon E.-C. Development of Greenhouse Gas (CH4 and N2O) Emission Factors for Anthracite Fired Power Plants in Korea. Journal of Korean Society for Atmospheric Environment, Vol. 25, No. 6 (2009) pp. 562-570.", + "English_Abstract": "Although anthracite power plant acts as the important source of greenhouse gas emissions, relatively little is known about its emission potentials. Especially, because the emissions of Non-CO2 greenhouse gas CH4 and N2O are strongly dependent on fuel type and technology available, it is desirable to obtain the information concerning their emission pattens. In this study, the anthracite power plants in Korea were investigated and the emission gases were analyzed using GC/FID and GC/ECD to develop Non-CO2 emission factors. The anthracite samples were also analyzed to quantity the amount of carbon and hydrogen using an element analyzer, while calorie was measured by an automatic calorie analyzer. The emission factor of CH4 and N2O computed through the gas analysis corresponded to 0.73 and 1.98 kg/TJ, respectively. Compared with IPCC values, the CH4 emission factor in this study was about 25% lower, while that of N2O was higher by about 40%. More research is needed to extend our database for emission factors of various energy-consuming facilities in order to stand on a higher position.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:22.244Z", + "last_change_date": "2022-03-14T08:00:22.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7229, + "fields": { + "EF_ID": 121886, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "Anthracite Fired Power Plants", + "Parameter_Conditions": "Anthracite Fired", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee S.-H., Kim J., Lee S., Sa J.-H., Kim K., Jeon E.-C. Development of Greenhouse Gas (CH4 and N2O) Emission Factors for Anthracite Fired Power Plants in Korea. Journal of Korean Society for Atmospheric Environment, Vol. 25, No. 6 (2009) pp. 562-570.", + "English_Abstract": "Although anthracite power plant acts as the important source of greenhouse gas emissions, relatively little is known about its emission potentials. Especially, because the emissions of Non-CO2 greenhouse gas CH4 and N2O are strongly dependent on fuel type and technology available, it is desirable to obtain the information concerning their emission pattens. In this study, the anthracite power plants in Korea were investigated and the emission gases were analyzed using GC/FID and GC/ECD to develop Non-CO2 emission factors. The anthracite samples were also analyzed to quantity the amount of carbon and hydrogen using an element analyzer, while calorie was measured by an automatic calorie analyzer. The emission factor of CH4 and N2O computed through the gas analysis corresponded to 0.73 and 1.98 kg/TJ, respectively. Compared with IPCC values, the CH4 emission factor in this study was about 25% lower, while that of N2O was higher by about 40%. More research is needed to extend our database for emission factors of various energy-consuming facilities in order to stand on a higher position.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:22.326Z", + "last_change_date": "2022-03-14T08:00:22.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7230, + "fields": { + "EF_ID": 121887, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "B-C Oil Tangential firing Power Plants", + "Parameter_Conditions": "B-C Oil Tangential firing", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88 (0.60-1.31)", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 1 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee S.-H., Kim J., Kim O. -H., Lee J. -W., Lee S. -H.., Jeon E.-C. Development of Non-CO2 Greenhouse Gas Emission Factors for the B-C Oil Fired Boiler Power Plants. Journal of Korean Society for Atmospheric Environment Vol. 27, No. 1 (2011) pp. 41-49.", + "English_Abstract": "The power plants are one of the GHG major source among the sectors of fossil fuel combustion, therefore information of its emission factors is very essential to the establishing control strategies for the greenhouse gas emissions. The CH4 and N2O concentration from power plants were measured using GC-FID and GC-ECD. The results showed that CH4 emission factor was 0.33 kg/TJ and N2O emission factor was 0.88 kg/TJ. The CH4 and N2O emission factors developed in this study were compared with those for IPCC default value and other countries emission factors. The results showed that CH4 emission factor was lower than IPCC default value and Finnish emission factor, but higher than Japanese emission factor. N2O emission factor was higher Japanese emission factor and IPCC default emission factor however lower than Finnish emission factor. More research is needed on our own emission factors of various energy-consuming facilities in order to stand on a higher position in international negotiations regarding the treaties on climate changes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:22.411Z", + "last_change_date": "2022-03-14T08:00:22.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7231, + "fields": { + "EF_ID": 121888, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "Country-specific emission factor", + "Technology_Practices": "B-C Oil Tangential firing Power Plants", + "Parameter_Conditions": "B-C Oil Tangential firing", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33 (0.23-0.54)", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 1 of 4 in Annex 1 of Volume 2, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee S.-H., Kim J., Kim O. -H., Lee J. -W., Lee S. -H.., Jeon E.-C. Development of Non-CO2 Greenhouse Gas Emission Factors for the B-C Oil Fired Boiler Power Plants. Journal of Korean Society for Atmospheric Environment Vol. 27, No. 1 (2011) pp. 41-49.", + "English_Abstract": "The power plants are one of the GHG major source among the sectors of fossil fuel combustion, therefore information of its emission factors is very essential to the establishing control strategies for the greenhouse gas emissions. The CH4 and N2O concentration from power plants were measured using GC-FID and GC-ECD. The results showed that CH4 emission factor was 0.33 kg/TJ and N2O emission factor was 0.88 kg/TJ. The CH4 and N2O emission factors developed in this study were compared with those for IPCC default value and other countries emission factors. The results showed that CH4 emission factor was lower than IPCC default value and Finnish emission factor, but higher than Japanese emission factor. N2O emission factor was higher Japanese emission factor and IPCC default emission factor however lower than Finnish emission factor. More research is needed on our own emission factors of various energy-consuming facilities in order to stand on a higher position in international negotiations regarding the treaties on climate changes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eui-Chan Jeon", + "Link": "", + "creation_date": "2022-03-14T08:00:22.510Z", + "last_change_date": "2022-03-14T08:00:22.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7232, + "fields": { + "EF_ID": 121891, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emitted from the incineration of municipal solid waste", + "Technology_Practices": "3 facilities in Switzerland were studied; all are continuously operated underfeed stoker-type incinerators", + "Parameter_Conditions": "Fuel: Solid recovered fuels without addition of sewage sludge", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "Selective catalytic reduction (SCR) for NOx removal", + "Other_Properties": "The facilities burn between 92,000 and 233,000 tonnes of waste per year", + "Value": "0.4", + "Unit": "g N2O/GJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A: Sheet 3 of 4 (CO2, CH4 and N2O from fuel combustion by source categories)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harris, E., Zeyer, K., Kegel, R., Müller, B., Emmenegger, L., and Mohn, J. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland, Waste Management, 2015, 35:135-140, doi: 10.1016/j.wasman.2014.10.016", + "English_Abstract": "Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3+/-4.0 g N2O/tonne waste (wet) (hereafter abbreviated as t-1) (0.4+/-0.4 g N2O/GJ), ten times lower than from plants with selective non-catalytic reduction (51.5+/-10.6 g N2O/ t; 4.5+/-0.9 g N2O/GJ). These emission factors, which are much lower than the value of 120 g N2O/t (10.4 g N2O/GJ) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of 14N15NO relative to 15N14NO –was found to be 17.6+/-0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5+/-5.6 g CH4/t (0.2+/-0.5 g CH4/GJ), which is expected due to high incinerator temperatures and efficient combustion.", + "Lower_Bound": "0", + "Upper_Bound": "0.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EFs calculated using an energy capacity for 2012 of 0.0115 TJ /t", + "Other_Comments": "", + "Data_Provider": "Eliza Harris", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14005005", + "creation_date": "2022-03-14T08:00:22.586Z", + "last_change_date": "2022-03-14T08:00:22.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7233, + "fields": { + "EF_ID": 121892, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emitted from the incineration of municipal solid waste", + "Technology_Practices": "2 facilities in Switzerland were studied; both are continuously operated underfeed stoker-type incinerators", + "Parameter_Conditions": "Fuel: Solid recovered fuels without addition of sewage sludge", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "Selective non-catalytic reduction (SNCR) for NOx removal", + "Other_Properties": "The facilities burn between 92,000 and 233,000 tonnes of waste per year", + "Value": "4.5", + "Unit": "g N2O/GJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A: Sheet 3 of 4 (CO2, CH4 and N2O from fuel combustion by source categories)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harris, E., Zeyer, K., Kegel, R., Müller, B., Emmenegger, L., and Mohn, J. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland, Waste Management, 2015, 35:135-140, doi: 10.1016/j.wasman.2014.10.016", + "English_Abstract": "Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3+/-4.0 g N2O/tonne waste (wet) (hereafter abbreviated as t-1) (0.4+/-0.4 g N2O/GJ), ten times lower than from plants with selective non-catalytic reduction (51.5+/-10.6 g N2O/ t; 4.5+/-0.9 g N2O/GJ). These emission factors, which are much lower than the value of 120 g N2O/t (10.4 g N2O/GJ) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of 14N15NO relative to 15N14NO –was found to be 17.6+/-0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5+/-5.6 g CH4/t (0.2+/-0.5 g CH4/GJ), which is expected due to high incinerator temperatures and efficient combustion.", + "Lower_Bound": "3.6", + "Upper_Bound": "5.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EFs calculated using an energy capacity for 2012 of 0.0115 TJ /t", + "Other_Comments": "", + "Data_Provider": "Eliza Harris", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14005005", + "creation_date": "2022-03-14T08:00:22.703Z", + "last_change_date": "2022-03-14T08:00:22.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7234, + "fields": { + "EF_ID": 121895, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "2 facilities in Switzerland were studied; both are continuously operated underfeed stoker-type incinerators", + "Parameter_Conditions": "Fuel: Solid recovered fuels without addition of sewage sludge", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "Selective non-catalytic reduction (SNCR) for NOx removal", + "Other_Properties": "The facilities burn between 92,000 and 233,000 tonnes of waste per year", + "Value": "0.2", + "Unit": "g CH4/GJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A: Sheet 3 of 4 (CO2, CH4 and N2O from fuel combustion by source categories)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harris, E., Zeyer, K., Kegel, R., Müller, B., Emmenegger, L., and Mohn, J. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland, Waste Management, 2015, 35:135-140, doi: 10.1016/j.wasman.2014.10.016", + "English_Abstract": "Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3+/-4.0 g N2O/tonne waste (wet) (hereafter abbreviated as t-1) (0.4+/-0.4 g N2O/GJ), ten times lower than from plants with selective non-catalytic reduction (51.5+/-10.6 g N2O/ t; 4.5+/-0.9 g N2O/GJ). These emission factors, which are much lower than the value of 120 g N2O/t (10.4 g N2O/GJ) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of 14N15NO relative to 15N14NO –was found to be 17.6+/-0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5+/-5.6 g CH4/t (0.2+/-0.5 g CH4/GJ), which is expected due to high incinerator temperatures and efficient combustion.", + "Lower_Bound": "0", + "Upper_Bound": "0.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EFs calculated using an energy capacity for 2012 of 0.0115 TJ /t", + "Other_Comments": "", + "Data_Provider": "Eliza Harris", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14005005", + "creation_date": "2022-03-14T08:00:22.787Z", + "last_change_date": "2022-03-14T08:00:22.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7235, + "fields": { + "EF_ID": 122004, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for natural gas for oil ang gas extraction industry, offshore operations and gas terminals", + "Technology_Practices": "", + "Parameter_Conditions": "NCV NIR -39.67 GJ/1000sm3, density - 0.85kg/m3", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.34", + "Unit": "tonne/1000m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National inventory Report 2009. Greenhouse gas emission 1990-2007. statens forurensningstilsen. 2009", + "English_Abstract": "", + "Lower_Bound": "-7%", + "Upper_Bound": "+7%", + "Data_Quality": "In the case of the emission factors for CO2, the uncertainty is +/- 7per cent for gas, p.81 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.73 of NIR. The general emission factor for CO2 used in the emission inventory is 2.34 tonne/1000m3, followed by a more detailed description of the factors used for offshore operations (2.30-2.50 tonne/1000m3) and gas terminals (2.66-2.94 tonne/tonne). The data provider converted the unit of value: 58.987 tCO2/TJ", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:22.888Z", + "last_change_date": "2022-03-14T08:00:22.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7236, + "fields": { + "EF_ID": 122005, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for peat", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "117.766", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "M. McGettigan, P. Duffy, B. Hyde, E. Hanley and P. O`Brien Ireland. National Inventory Report 2009. Greenhouse gas emissions 1990 - 2007 reported to the UNFCCC, EPA, Johnstown Castle Estate, Wexford, Ireland, 2009. pp.201", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "5%-for EFs for solid fuels for this category, for other categories - peat - 20%, p.22 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.151 of NIR. All CO2 emission factors are country-specific values, determined directly from information on the carbon content and net calorific value of the fuels used in stationary and mobile sources, p.40 NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:22.960Z", + "last_change_date": "2022-03-14T08:00:22.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7237, + "fields": { + "EF_ID": 122006, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for milled peat", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "M. McGettigan, P. Duffy, B. Hyde, E. Hanley and P. O`Brien Ireland. National Inventory Report 2009. Greenhouse gas emissions 1990 - 2007 reported to the UNFCCC, EPA, Johnstown Castle Estate, Wexford, Ireland, 2009. pp.201", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "5%-for EFs for solid fuels for this category, for other categories - peat - 20%, p.22 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.159 of NIR. All CO2 emission factors are country-specific values, determined directly from information on the carbon content and net calorific value of the fuels used in stationary and mobile sources, p.40 NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.056Z", + "last_change_date": "2022-03-14T08:00:23.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7238, + "fields": { + "EF_ID": 122007, + "IPCC_Category": "1.A.1.c - Manufacture of Solid Fuels and Other Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for peat in Category Manufacturing of briquttes", + "Technology_Practices": "Two plants for production of peat briquettes from milled peat", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "122.32", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "M. McGettigan, P. Duffy, B. Hyde, E. Hanley and P. O`Brien Ireland. National Inventory Report 2009. Greenhouse gas emissions 1990 - 2007 reported to the UNFCCC, EPA, Johnstown Castle Estate, Wexford, Ireland, 2009. pp.201", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "5%-for EFs for solid fuels for this category, for other categories - peat - 20%, p.22 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.151 of NIR. All CO2 emission factors are country-specific values, determined directly from information on the carbon content and net calorific value of the fuels used in stationary and mobile sources, p.40 NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.127Z", + "last_change_date": "2022-03-14T08:00:23.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7239, + "fields": { + "EF_ID": 122008, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for for peat (pellets and briquettes)", + "Technology_Practices": "Combustion of peat pellets and briquettes", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finland NIR 2009 and Vesterinen, R. 2003. Estimation of CO2 emission factors for peat combustion on the bases of analyses of peats delivered to power plants. Finland: VTT processes. Research report PRO2/P6020/03.", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "For peat, uncertainties are estimated at +/-5%, pp.70 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.154 of NIR.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.191Z", + "last_change_date": "2022-03-14T08:00:23.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7240, + "fields": { + "EF_ID": 122009, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for methane", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54.9", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Netherlands. 1990-2007. National Inventory Report 2009, Planbereau voor de Leefomgeving, 2009, pp.212", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.154 of NIR.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.258Z", + "last_change_date": "2022-03-14T08:00:23.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7241, + "fields": { + "EF_ID": 122010, + "IPCC_Category": "1.A.1.c.ii - Other Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF colliery (coalbed) methane", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13930", + "Unit": "gC/GJ Gross", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "UK NIR 2009 and Carbon Emission Factors and Calorific Values from the UK Greenhouse Gas Inventory (AEA, 2009) to Support the EU ETS, EU ETS team at DECC. Final Spreadsheet", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "For EFs for colliery metahne +/-5%, p.465 part II NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For categories 1A1c2/cii and 1A2fi_Manufacturing_Industry&Construction:Other (p.294 Part II NIR 2009, se also the reference paper). The IPCC Guidelines do not refer to colliery methane but significant use is made of it as a fuel in the UK so emissions are included in the GHGI (p.276 NIR 2009). The data provider converted the unit of value: 56.73 tCO2/TJ", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php and http://www.decc.gov.uk", + "creation_date": "2022-03-14T08:00:23.324Z", + "last_change_date": "2022-03-14T08:00:23.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7242, + "fields": { + "EF_ID": 122011, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for sour gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.916", + "Unit": "Kt/Mth", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "UK NIR 2009 and Carbon Emission Factors and Calorific Values from the UK Greenhouse Gas Inventory (AEA, 2009) to Support the EU ETS, EU ETS team at DECC. Final Spreadsheet", + "English_Abstract": "", + "Lower_Bound": "-1%", + "Upper_Bound": "+1%", + "Data_Quality": "For EFs for sour gas +/-1%, p.465 part II NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.298 Part II of NIR, and the reference paper. Sour Gas-Unrefined natural gas is used as a fuel on offshore platforms and in some power stations. It has a higher carbon and sulphur content than mains gas (p.276 NIR 2009). The data provider converted the unit of value: 73.98 tCO2/TJ", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php and http://www.decc.gov.uk", + "creation_date": "2022-03-14T08:00:23.416Z", + "last_change_date": "2022-03-14T08:00:23.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7243, + "fields": { + "EF_ID": 122012, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for MSW wet, only for fossil part", + "Technology_Practices": "", + "Parameter_Conditions": "A fossil share of 45% of the overall carbon content of 261 kg C/t MSWwet, heating value of 9.8 GJ/t.", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "fossil part", + "Value": "48.88", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Austria NIR 2009, ABFALLWIRTSCHAFT 2003, ÖKOINSTITUT 2002, STATISTIK AUSTRIA, IEA JQ 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "EF uncertanitny for other fuels in Energy sector - 20%, p.A-106 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.502Z", + "last_change_date": "2022-03-14T08:00:23.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7244, + "fields": { + "EF_ID": 122013, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for MSW (fossil)", + "Technology_Practices": "", + "Parameter_Conditions": "Fosil part of MSW is only plastics - 6%. The total CO2 emission from incineration of municipal waste is 112.1 kg/GJ, 17.6 kg/GJ(fossil-part) plus 94.5 kg/GJ (bio-part).", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "fossil part", + "Value": "17.6", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denamrk NIR 2009 and Jørgensen, L. & Johansen, L. P. 2003: Eltra PSO 3141, Kortlægning af emissioner fra decentrale kraftvarmeværker, Anlæg A1-A5, dk-Teknik in Danish", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "EF for combustion of plastic waste - 5%", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All municipal waste incineration is utilised for heat and power production, 1A1, 1A2, 1A4 (pp.87, 90 and 464 NIR 2009). Total EF is measured, fossil part is calculated", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.569Z", + "last_change_date": "2022-03-14T08:00:23.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7245, + "fields": { + "EF_ID": 122014, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for MSW (fossil)", + "Technology_Practices": "", + "Parameter_Conditions": "fossil part - 25%, fossil carbon content - 75 kg C/tonne, assuming the total carbon 300 kg C/tonne", + "Regional_Conditions": "The UK", + "Control_Technologies": "", + "Other_Properties": "fossil part", + "Value": "75", + "Unit": "kg C/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "UK NIR 2009 and Carbon Emission Factors and Calorific Values from the UK Greenhouse Gas Inventory (AEA, 2009) to Support the EU ETS, EU ETS team at DECC. Final Spreadsheet", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "EF uncertainty for MSW is +/-20%, p.465 Part II NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 1A1a Categories Public electicity and in 1A4a Residential/Commercial (p.292 Part II NIR 2009, see also the reference paper). The data provider converted the unit of value: 30.47 tCO2/TJ", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php and http://www.decc.gov.uk", + "creation_date": "2022-03-14T08:00:23.636Z", + "last_change_date": "2022-03-14T08:00:23.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7246, + "fields": { + "EF_ID": 122015, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for waste (non-biogenic)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "fossil", + "Value": "73.6", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Netherlands. 1990-2007. National Inventory Report 2009, Planbereau voor de Leefomgeving, 2009, pp.212", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Table A7.2 Uncertainty assessment - unreadable, CO2 EF tier 1 +/-3%, p.159 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1A1a other fuels: waste incineration (pp.39 and 154 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.727Z", + "last_change_date": "2022-03-14T08:00:23.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7247, + "fields": { + "EF_ID": 122016, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for fossil part of MSW", + "Technology_Practices": "The share of organic matter in the MSW is estimated to be 60%", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "fossil part", + "Value": "0.508", + "Unit": "tonne/tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "CO2 EF unceartanty for other fuels in Energy industries - 29.4%, p. 347 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.77 of NIR. CO2 EF for biogenic part is 0.763 tonne/tonne waste.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.802Z", + "last_change_date": "2022-03-14T08:00:23.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7248, + "fields": { + "EF_ID": 122017, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for fossil part of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "fossil part", + "Value": "0.324", + "Unit": "tonne/tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "GREENHOUSE GAS EMISSIONS INVENTORY OF SPAIN 1990-2007 COMMUNICATION TO THE EUROPEAN COMISIÓN (Decisions 2004/280/EC and 2005/166/EC) Ministry of Environment and Rural and Marine Affairs. Madrid, spain, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "the uncertainty corresponding to the emission factors is around 4% for the solid fuels, p.3-15NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.3.14 of NIR. For CO2 EF assumed is 324 kg/tonne of waste, calculated on the basis that 36% of this CO2 is of fossil origin and 64% of biogenic origin, and taking into account that the overall factor (fossil + biogenic) for CO2 per tonne of waste is 900 kg/tonne. The values have been derived from data on waste composition", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.869Z", + "last_change_date": "2022-03-14T08:00:23.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7249, + "fields": { + "EF_ID": 122018, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for fossil part of Municipal waste", + "Technology_Practices": "", + "Parameter_Conditions": "NCV - 10.5 MJ/ tonne", + "Regional_Conditions": "Norway", + "Control_Technologies": "", + "Other_Properties": "fossil part", + "Value": "0.251", + "Unit": "tonne/tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National inventory Report 2009. Greenhouse gas emission 1990-2007. statens forurensningstilsen. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p. 71, 73 and 80 of NIR.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:23.936Z", + "last_change_date": "2022-03-14T08:00:23.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7250, + "fields": { + "EF_ID": 122019, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for waste tyres and rubber used in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "fossil part", + "Value": "1568.12", + "Unit": "kg/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "CO2 EF unceartanty for other fuels in Manufacturing industries - 29.4%, p. 347 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR. The data provider converted the unit of value: 61.32 tCO2/TJ", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.002Z", + "last_change_date": "2022-03-14T08:00:24.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7251, + "fields": { + "EF_ID": 122020, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for used tyres in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon EF=21.6545 tC/TJ", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79.4", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "LATVIA`S NATIONAL INVENTORY REPORT. Submitted under United Nations Convention on Climate Change. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Emissions from waste incineration - CO2 EF - uncertanty - 50%, p.216", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p 40, 41 and 62 of NIR. This CO2 emission factor is estimated at the plant by using plant specific data about combustion installation, as well as net calorific value and carbon content measured and obtained in the plant laboratory", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.113Z", + "last_change_date": "2022-03-14T08:00:24.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7252, + "fields": { + "EF_ID": 122021, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for scrap tyres in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon EF -455.11kt/MT, CO2 EF - 1668.84 kt/MT, Oxidation factor -1", + "Regional_Conditions": "The UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1668.84", + "Unit": "kt/Mt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "UK NIR 2009 and Carbon Emission Factors and Calorific Values from the UK Greenhouse Gas Inventory (AEA, 2009) to Support the EU ETS, EU ETS team at DECC. Final Spreadsheet", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "10% CO2 EF uncertainty for scrap tyres, p.465 Part II NIR", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 62.06 tCO2/TJ", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php and http://www.decc.gov.uk", + "creation_date": "2022-03-14T08:00:24.186Z", + "last_change_date": "2022-03-14T08:00:24.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7253, + "fields": { + "EF_ID": 122022, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for tyres in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "CO2 EF without oxidation factor - 83.7 kgCO2/GJ, Oxidation factor - 0.98", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "82", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "GREENHOUSE GAS EMISSIONS INVENTORY OF SPAIN 1990-2007 COMMUNICATION TO THE EUROPEAN COMISIÓN (Decisions 2004/280/EC and 2005/166/EC) Ministry of Environment and Rural and Marine Affairs. Madrid, spain, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p. A8.3 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.261Z", + "last_change_date": "2022-03-14T08:00:24.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7254, + "fields": { + "EF_ID": 122023, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for plastics in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "fossil part", + "Value": "1601.32", + "Unit": "kg/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "CO2 EF unceartanty for other fuels in Manufacturing industries - 29.4%, p. 347 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR. The data provider converted the unit of value: 71.78 tCO2/TJ", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.328Z", + "last_change_date": "2022-03-14T08:00:24.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7255, + "fields": { + "EF_ID": 122024, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for Polyethylen (PE)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.5", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denamark NIR 2009 and Hulgaard (2003) refers to: 1) TNO report 2000/119, Eco-efficiency of recovery scenarios of plastic packaging, Appendices, July 2001 by P.G. Eggels, A.M.M. Ansems, B.L. van der Ven, for Association of Plastic Manufacturers in Europe 2) Kost, Thomas, Brennstofftechnische Charakterisierung von Haushaltabfällen, Technische Universität Dresden, Eigenverlag des Forums für Abfallwirtschaft und Altlasten e.V., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For 1A1, 1A2, 1A4 , heat and power production (p.464 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.402Z", + "last_change_date": "2022-03-14T08:00:24.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7256, + "fields": { + "EF_ID": 122025, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for polystyrene/expanded polystyrene (PS/EPS)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denamark NIR 2009 and Hulgaard (2003) refers to: 1) TNO report 2000/119, Eco-efficiency of recovery scenarios of plastic packaging, Appendices, July 2001 by P.G. Eggels, A.M.M. Ansems, B.L. van der Ven, for Association of Plastic Manufacturers in Europe 2) Kost, Thomas, Brennstofftechnische Charakterisierung von Haushaltabfällen, Technische Universität Dresden, Eigenverlag des Forums für Abfallwirtschaft und Altlasten e.V., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For 1A1, 1A2, 1A4 , heat and power production (p.464 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.499Z", + "last_change_date": "2022-03-14T08:00:24.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7257, + "fields": { + "EF_ID": 122026, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for polyvinyl chloride (PVC)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denamark NIR 2009 and Hulgaard (2003) refers to: 1) TNO report 2000/119, Eco-efficiency of recovery scenarios of plastic packaging, Appendices, July 2001 by P.G. Eggels, A.M.M. Ansems, B.L. van der Ven, for Association of Plastic Manufacturers in Europe 2) Kost, Thomas, Brennstofftechnische Charakterisierung von Haushaltabfällen, Technische Universität Dresden, Eigenverlag des Forums für Abfallwirtschaft und Altlasten e.V., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For 1A1, 1A2, 1A4 , heat and power production (p.464 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.578Z", + "last_change_date": "2022-03-14T08:00:24.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7258, + "fields": { + "EF_ID": 122027, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for ethanol for all transport subcategories", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "5.56", + "Unit": "kg/gal", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CLIMATE LEADERS GREENHOUSE GAS INVENTORY PROTOCOL CORE MODULE GUIDANCE. Direct Emissions from Mobile Combustion Sources. US EPA. May 2008 EPA430-K-08-004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data provider converted the unit of value: (5.56/3.785411784)/(0.7892*27)=68.93 kgCO2/TJ, assuming density 0.7892 and NCV - 27", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "www.epa.gov/climateleaders", + "creation_date": "2022-03-14T08:00:24.653Z", + "last_change_date": "2022-03-14T08:00:24.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7259, + "fields": { + "EF_ID": 122028, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for ethanol, relevant to all transport subcatgories", + "Technology_Practices": "", + "Parameter_Conditions": "GCV - 24.12 TJ/ML, carbon content - 52.14%, density - 789.2kg/m3, oxidation factor - 0.99.", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "1494", + "Unit": "g/litre", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report. Greenhouse Gas Sources and Sinks in Canada 1990–2007. Greenhouse Gas Division. Environment Canada. Submission to the United Nations Framework Convention on Climate Change. 2009. pp.673", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 emission factors used are those based upon true chemical characteristics and a 99% oxidation rate", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.727Z", + "last_change_date": "2022-03-14T08:00:24.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7260, + "fields": { + "EF_ID": 122029, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for biodiesel for all transport subcategories", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "9.46", + "Unit": "kg/gal", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "CLIMATE LEADERS GREENHOUSE GAS INVENTORY PROTOCOL CORE MODULE GUIDANCE. Direct Emissions from Mobile Combustion Sources. US EPA. May 2008 EPA430-K-08-004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data provider converted the unit of value: (9.46/3.785411784)/0.882*37=75.04 kg CO2/TJ, assuming density - 0.882 and NCV - 37; same value in Canda NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "www.epa.gov/climateleaders", + "creation_date": "2022-03-14T08:00:24.811Z", + "last_change_date": "2022-03-14T08:00:24.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7261, + "fields": { + "EF_ID": 122030, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for landfill gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "100.7", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Netherlands. 1990-2007. National Inventory Report 2009, Planbereau voor de Leefomgeving, 2009, pp.212", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "p.64 - The uncertainty in EF is rather high (e.g., 10% for CO2) due to the uncertainty in the carbon and energy content of the biomass; this is caused by the inclusion of variable fractions of water in the weight and variable composition of the biomass.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.154 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.909Z", + "last_change_date": "2022-03-14T08:00:24.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7262, + "fields": { + "EF_ID": 122031, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for biogas from waste water treatment plants", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "84.2", + "Unit": "kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Netherlands. 1990-2007. National Inventory Report 2009, Planbereau voor de Leefomgeving, 2009, pp.212", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "p.64 - The uncertainty in EF is rather high (e.g., 10% for CO2) due to the uncertainty in the carbon and energy content of the biomass; this is caused by the inclusion of variable fractions of water in the weight and variable composition of the biomass.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.154 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:24.994Z", + "last_change_date": "2022-03-14T08:00:24.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7263, + "fields": { + "EF_ID": 122032, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for animal fat burned in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "2872.07 kg CO2/t of fuel, 100% biogenic", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "79", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "CO2 EF unceartanty for other fuels in Manufacturing industries - 29.4%, p. 347 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.061Z", + "last_change_date": "2022-03-14T08:00:25.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7264, + "fields": { + "EF_ID": 122033, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for animal meat burned in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "1471.37 kg CO2/t of fuel, 100% biogenic", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "85", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "CO2 EF unceartanty for other fuels in Manufacturing industries - 29.4%, p. 347 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.128Z", + "last_change_date": "2022-03-14T08:00:25.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7265, + "fields": { + "EF_ID": 122034, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for vegetable oil", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "73.6", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.69 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.194Z", + "last_change_date": "2022-03-14T08:00:25.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7266, + "fields": { + "EF_ID": 122035, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sewage Sludge", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 EF for sewage sludge (dried) used in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "100% bio, 797.39 kg CO2/tonne", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "biogenic", + "Value": "80", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "CO2 EF unceartanty for other fuels in Manufacturing industries - 29.4%, p. 347 NIR 2009", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.261Z", + "last_change_date": "2022-03-14T08:00:25.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7267, + "fields": { + "EF_ID": 122036, + "IPCC_Category": "1.B.3 - Other emissions from Energy Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO2 fugitive EF for geothermal energy", + "Technology_Practices": "Geothermal systems can be considered as geochemical reservoirs of CO2. Degassing of mantle-derived magma is the sole source of CO2 in these systems in Iceland", + "Parameter_Conditions": "", + "Regional_Conditions": "Iceland", + "Control_Technologies": "", + "Other_Properties": "geo-fugitive", + "Value": "42", + "Unit": "Gg/kMWh electricity produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report Iceland 2009 Submitted under the United Nations Framework Convention on Climate Change. Environment Agency of Iceland. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The EF was calculated by data provider (CO2 EF = CO2 emissions / Electricity production). The total emissions estimate is based on direct measurements. The enthalpy and flow of each well are measured and the CO2 concentration of the steam fraction determined at the wellhead pressure. The steam fraction of the fluid and its CO2 concentration at the wellhead pressure and the geothermal plant inlet pressure are calculated for each well, pp.38, 45 NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.354Z", + "last_change_date": "2022-03-14T08:00:25.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7268, + "fields": { + "EF_ID": 122037, + "IPCC_Category": "1.B.3 - Other emissions from Energy Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 fugitive implied EF for geothermal energy", + "Technology_Practices": "No fuel is burnt in the geothermal operations as the process harnesses the energy in tapped geothermal fluid. High-pressure steam (26 bar) is used to power the main electricity producing, back-pressure turbines. In some plants, the low-pressure exhaust steam is then used to drive secondary (binary) turbines. The CO2 and CH4 dissolved in the geothermal fluid are released along with steam.", + "Parameter_Conditions": "Electricity and heat generation - 84081 TJ from geothermal power in 2007", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "geo-fugitive", + "Value": "3585.44", + "Unit": "kg/TJ elec. generation and heat", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "New Zealand`s Greenhouse Gas Inventory 1990–2007. Ministry for the Environment Manatu Mo Te Taiao PO Box 10-362, Wellington, New Zealand. Submitted to the United Nations Framework Convention on Climate Change 15 April 2009. ISBN: 978-0-478-33161-5 (electronic) Publication number: ME 928.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See CRF tables 2009 as well. The EF was calculated by data provider (CO2 EF = CO2 emissions / Electricity and heat production). Some of the energy from geothermal fields is transformed into electricity and the emissions are reported under the fugitive emissions from fuels subcategory. Sites with naturally occurring emissions where there is no use of geothermal steam for energy production have been excluded from the inventory. Estimates of CO2 and CH4 for the geothermal subcategory are obtained directly from the geothermal field operators. Analyses of the gases emitted from the geothermal fields occur on a routine basis, pp.37,38 NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.428Z", + "last_change_date": "2022-03-14T08:00:25.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7269, + "fields": { + "EF_ID": 122038, + "IPCC_Category": "1.B.3 - Other emissions from Energy Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 fugitive implied EF for geothermal energy", + "Technology_Practices": "No fuel is burnt in the geothermal operations as the process harnesses the energy in tapped geothermal fluid. High-pressure steam (26 bar) is used to power the main electricity producing, back-pressure turbines. In some plants, the low-pressure exhaust steam is then used to drive secondary (binary) turbines. The CO2 and CH4 dissolved in the geothermal fluid are released along with steam.", + "Parameter_Conditions": "Electricity and heat generation - 84081 TJ from geothermal power in 2007", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "geo-fugitive", + "Value": "36.48", + "Unit": "kg/TJ elec. generation and heat", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "New Zealand`s Greenhouse Gas Inventory 1990–2007. Ministry for the Environment Manatu Mo Te Taiao PO Box 10-362, Wellington, New Zealand. Submitted to the United Nations Framework Convention on Climate Change 15 April 2009. ISBN: 978-0-478-33161-5 (electronic) Publication number: ME 928.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See CRF tables 2009 as well. The EF was calculated by data provider (CH4 EF = CH4 emissions / Electricity and heat production). Some of the energy from geothermal fields is transformed into electricity and the emissions are reported under the fugitive emissions from fuels subcategory. Sites with naturally occurring emissions where there is no use of geothermal steam for energy production have been excluded from the inventory. Estimates of CO2 and CH4 for the geothermal subcategory are obtained directly from the geothermal field operators. Analyses of the gases emitted from the geothermal fields occur on a routine basis, pp.37.38 NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.494Z", + "last_change_date": "2022-03-14T08:00:25.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7270, + "fields": { + "EF_ID": 122039, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "Measured", + "Description": "NCV for sod peat", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.1047", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "M. McGettigan, P. Duffy, B. Hyde, E. Hanley and P. O`Brien Ireland. National Inventory Report 2009. Greenhouse gas emissions 1990 - 2007 reported to the UNFCCC, EPA, Johnstown Castle Estate, Wexford, Ireland, 2009. pp.201", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.155, CRF-table1A(b) of Ireland NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.588Z", + "last_change_date": "2022-03-14T08:00:25.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7271, + "fields": { + "EF_ID": 122040, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "Measured", + "Description": "NCV for sod peat", + "Technology_Practices": "Usually multi-fuel fired power plants using woodfuels as well; Usually fluidised bed combustion", + "Parameter_Conditions": "Usually mid-scale (10 - 500 MWth; moisture 40 - 50%", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.3", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finland NIR 2009 and Vesterinen, R. 2003. Estimation of CO2 emission factors for peat combustion on the bases of analyses of peats delivered to power plants. Finland: VTT processes. Research report PRO2/P6020/03.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p. 64 of Finland NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.661Z", + "last_change_date": "2022-03-14T08:00:25.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7272, + "fields": { + "EF_ID": 122041, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "Measured", + "Description": "NCV for peat pellets and briquettes", + "Technology_Practices": "Usually multi-fuel fired power plants using woodfuels as well; Usually fluidised bed combustion", + "Parameter_Conditions": "Usually mid-scale (10 - 500 MWth; moisture 40 - 50%", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.9", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finland NIR 2009 and Vesterinen, R. 2003. Estimation of CO2 emission factors for peat combustion on the bases of analyses of peats delivered to power plants. Finland: VTT processes. Research report PRO2/P6020/03.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p. 64 of Finland NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.728Z", + "last_change_date": "2022-03-14T08:00:25.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7273, + "fields": { + "EF_ID": 122042, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Peat", + "Parameter_Type": "Measured", + "Description": "NCV for peat briquettes", + "Technology_Practices": "Moisture - 16%", + "Parameter_Conditions": "", + "Regional_Conditions": "Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.58", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Belarus NIR 2010, Ministry of Environment of Belarus, 2010, Minsk, pp. 210 and a ref.paper (in Russian) - Summary of methods of air emissions assessment from different industries, Gidrometeoizdat, Leningrad, 1986, pp.87", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.193 of Belarus NIR 2010", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.794Z", + "last_change_date": "2022-03-14T08:00:25.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7274, + "fields": { + "EF_ID": 122043, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "NCV for hydrogen in general, (no specific combustion activities mentioned)", + "Technology_Practices": "Mentioned as bio fuel (Finland) and as fossil Fuel (The Netherlands)", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.8", + "Unit": "GJ/1000m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Finland 1990-2007, Statistics Finland, 2009, pp.412. Greenhouse gas emissions in Netherlands. 1990-2007. National Inventory Report 2009, Planbereau voor de Leefomgeving, 2009, pp.212.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p. 63 of Finlad NIR 2009 and p. 154 of the Netherlands NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:25.882Z", + "last_change_date": "2022-03-14T08:00:25.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7275, + "fields": { + "EF_ID": 122044, + "IPCC_Category": "1.A.1.c.ii - Other Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "NCV for colliery (coalbed)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.5", + "Unit": "MJ/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Carbon Emission Factors and Calorific Values from the UK Greenhouse Gas Inventory (AEA, 2009) to Support the EU ETS, EU ETS team at DECC. Final Spreadsheet", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The IPCC Guidelines do not refer to colliery methane but significant use is made of it as a fuel in the UK so emissions are included in the GHGI (p.276 NIR 2009). Mentioned for categories 1A1c2/cii and 1A2fi Manufacturing_Industry & Construction: Other (p.294 NIR 2009).", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.decc.gov.uk", + "creation_date": "2022-03-14T08:00:25.953Z", + "last_change_date": "2022-03-14T08:00:25.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7276, + "fields": { + "EF_ID": 122045, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "NCV for sour gas for power stations", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.7", + "Unit": "MJ/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Carbon Emission Factors and Calorific Values from the UK Greenhouse Gas Inventory (AEA, 2009) to Support the EU ETS, EU ETS team at DECC. Final Spreadsheet", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.298 of the NIR, and the reference paper. Sour Gas-Unrefined natural gas is used as a fuel on offshore platforms and in some power stations. It has a higher carbon and sulphur content than mains gas (p.276 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.decc.gov.uk", + "creation_date": "2022-03-14T08:00:26.028Z", + "last_change_date": "2022-03-14T08:00:26.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7277, + "fields": { + "EF_ID": 122046, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "Measured", + "Description": "NCV for biogas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.3", + "Unit": "GJ/1000m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland NIR 2009 and a ref.paper - EMIS 2009/(NFR-Code): Comments to EMIS database. Internal documents. Federal Of for the Environment, Bern.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mentioned in category 1A1a, 1A2f, 1A4a as biofuel/transport (NCV - p.308 NIR2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.103Z", + "last_change_date": "2022-03-14T08:00:26.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7278, + "fields": { + "EF_ID": 122047, + "IPCC_Category": "1.A.2.d - Pulp, Paper and Print", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "Measured", + "Description": "NCV for biogas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.7", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Portugese National inventory repoert on GHG, 1990 – 2007, Ministry of environemnet, April 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mentioned also in Manufacturing Industry, Residential, Instituional, Agricultur/Forestry categories (p.3-51, 3-153 NIR2009). The decomposition of organic materials originates landfill gas or biogas consisting of approximately 50 per cent CH4 and 50 per cent CO2 by volume (p.8-1 NIR 2009). Landfill gas -considering a density of 0.72 kg/m3 and a percentage of 60% of CH4 in biogas (p.8-10 NIR2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.177Z", + "last_change_date": "2022-03-14T08:00:26.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7279, + "fields": { + "EF_ID": 122048, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "Measured", + "Description": "NCV for biogas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.5", + "Unit": "MJ/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Netherlands. 1990-2007. National Inventory Report 2009, Planbereau voor de Leefomgeving, 2009, pp.212", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mentioned under 1A1a Public Electricity and Heat Generation, particularly for CHP (pp. 46 and 154 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.278Z", + "last_change_date": "2022-03-14T08:00:26.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7280, + "fields": { + "EF_ID": 122049, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "Measured", + "Description": "NCV for biogas from waste water treatment plants", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.3", + "Unit": "MJ/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Netherlands. 1990-2007. National Inventory Report 2009, Planbereau voor de Leefomgeving, 2009, pp.212", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Also used in category 1A4 Other (p.59 and 154 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.376Z", + "last_change_date": "2022-03-14T08:00:26.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7281, + "fields": { + "EF_ID": 122050, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "Measured", + "Description": "NCV for biogas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.86", + "Unit": "MJ/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Austria National Inventory Report 2009. Submission under the United Nations Framework Convention on Climate Change. Umweltbundesamt. REPORT REP-0188 Vienna, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Also used in category CHP and Heat Production, and 1A2 -Pulp, Food (p.A-35,A-37 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.461Z", + "last_change_date": "2022-03-14T08:00:26.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7282, + "fields": { + "EF_ID": 122051, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sludge Gas", + "Parameter_Type": "Measured", + "Description": "NCV for sewage sludge gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.8", + "Unit": "MJ/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Austria National Inventory Report 2009. Submission under the United Nations Framework Convention on Climate Change. Umweltbundesamt. REPORT REP-0188 Vienna, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Also used in category 1A2 - Chemical industry (pp.A-35, A-37 and A-90 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.536Z", + "last_change_date": "2022-03-14T08:00:26.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7283, + "fields": { + "EF_ID": 122052, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Landfill Gas", + "Parameter_Type": "Measured", + "Description": "NCV for landfill gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.39", + "Unit": "MJ/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Austria National Inventory Report 2009. Submission under the United Nations Framework Convention on Climate Change. Umweltbundesamt. REPORT REP-0188 Vienna, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See pp.A-35,A-37 and A-91 of NIR 2009", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.603Z", + "last_change_date": "2022-03-14T08:00:26.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7284, + "fields": { + "EF_ID": 122053, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for methanol (methanol can be biofuel and fossil fuel)", + "Technology_Practices": "", + "Parameter_Conditions": "25 degrees centigrade, 101.325kPa", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.9", + "Unit": "kJ/g", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Methanex. Technical Information & Safe Handling Guide for Methanol Version 3.0 September 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "NCV is calculated from GCV", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.methanex.com/products/documents/TISH_english.pdf", + "creation_date": "2022-03-14T08:00:26.686Z", + "last_change_date": "2022-03-14T08:00:26.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7285, + "fields": { + "EF_ID": 122054, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for bioethanol", + "Technology_Practices": "In Denmark, only E5 gasoline-ethanol blends is sold at the gas stations in negligible amounts", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.7", + "Unit": "GJ/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denmark National report 2009, National environmental research institute, Aarhus univesity, NERI Technical Report no. 724, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.138 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.753Z", + "last_change_date": "2022-03-14T08:00:26.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7286, + "fields": { + "EF_ID": 122055, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for bioethanol", + "Technology_Practices": "Used with gasoline", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.1", + "Unit": "GJ/1000 litre", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "SWISS NIR 2009 and EMIS 2009/(NFR-Code): Comments to EMIS database. Internal documents. Federal Of for the Environment, Bern.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.308 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.824Z", + "last_change_date": "2022-03-14T08:00:26.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7287, + "fields": { + "EF_ID": 122056, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bio-Alcohol", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for ethanol", + "Technology_Practices": "Used with gasoline", + "Parameter_Conditions": "Density 789.2 kg/m3, Carbon content 52.14%", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.12", + "Unit": "TJ/ML", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report. Greenhouse Gas Sources and Sinks in Canada 1990–2007. Greenhouse Gas Division. Environment Canada. Submission to the United Nations Framework Convention on Climate Change. 2009. pp.673", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ethanol properties were developed according to chemistry. The data provider converted the unit of value: 30.56 TJ gross/kt (=24.12/0.7892)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:26.913Z", + "last_change_date": "2022-03-14T08:00:26.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7288, + "fields": { + "EF_ID": 122057, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Measured", + "Description": "NCV for biodisel - B100 for all relevenat transport subactegories", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "density - 0.88 g/cm3", + "Value": "118170", + "Unit": "Btu/gal", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Biodiesel. Handling and Use Guide. Fourth Edition. US Department of Energy. pp. 56. NREL/TP-540-43672. Revised January 2009. Available at http://www.nrel.gov/transportation/pdfs/43672.pdf Accessed on: 10/10/2015.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.11 of Report. The data provider converted the unit of value: 37.4 TJ/kt (=118170*1055.05585/(3.785412*0.88*10-6))", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.osti.gov/bridge and http://www.nrel.gov/vehiclesandfuels/pdfs/43672.pdf", + "creation_date": "2022-03-14T08:00:26.995Z", + "last_change_date": "2022-03-14T08:00:26.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7289, + "fields": { + "EF_ID": 122058, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for biodisel - B20 for all relevenat transport subactegories", + "Technology_Practices": "", + "Parameter_Conditions": "Based on B100-118296 and #2 diesel-129500", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "density - 0.856 g/cm3", + "Value": "127259", + "Unit": "Btu/gal", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National biodiesel board. Energy Content. Factsheet. Pp.1. Available at http://www.biodiesel.org/pdf_files/fuelfactsheets/BTU_Content_Final_Oct2005.pdf. Accessed on: 17/02/2011 - attached", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 41.4 TJ/kt (= 127259*1055.05585/(3.785412*0.856*10-6))", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.biodiesel.org/pdf_files/fuelfactsheets/BTU_Content_Final_Oct2005.pdf", + "creation_date": "2022-03-14T08:00:27.066Z", + "last_change_date": "2022-03-14T08:00:27.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7290, + "fields": { + "EF_ID": 122059, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for biodisel - B2 for all relevenat transport subactegories", + "Technology_Practices": "", + "Parameter_Conditions": "Based on B100-118296 and #2 diesel-129500", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "density - 0.851g/cm3", + "Value": "129276", + "Unit": "Btu/gal", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National biodiesel board. Energy Content. Factsheet. Pp.1. Available at http://www.biodiesel.org/pdf_files/fuelfactsheets/BTU_Content_Final_Oct2005.pdf. Accessed on: 17/02/2011 - attached", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 42.3 TJ/kt (=129276*1055.05585/(3.785412*0.851*10-6))", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.biodiesel.org/pdf_files/fuelfactsheets/BTU_Content_Final_Oct2005.pdf", + "creation_date": "2022-03-14T08:00:27.133Z", + "last_change_date": "2022-03-14T08:00:27.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7291, + "fields": { + "EF_ID": 122060, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for biodisel - for all relevenat transport subactegories", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.6", + "Unit": "GJ/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denamrk National report 2009, National environmental research institute, Aarhus univesity, NERI Technical Report no. 724, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.508 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.199Z", + "last_change_date": "2022-03-14T08:00:27.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7292, + "fields": { + "EF_ID": 122061, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for biodiesel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.7", + "Unit": "GJ/1000 litre", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "SWISS NIR 2009 and EMIS 2009/(NFR-Code): Comments to EMIS database. Internal documents. Federal Of for the Environment, Bern.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.308 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.269Z", + "last_change_date": "2022-03-14T08:00:27.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7293, + "fields": { + "EF_ID": 122062, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for biodisel", + "Technology_Practices": "76.5% carbon content, and 882 kg/m3 density", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.18", + "Unit": "TJ/ML", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Canada NIR 2009 and BioMer. 2005. Biodiesel Demonstration and Assessment for Tour Boats in the Old Port of Montreal and Lachine Canal National Historic Site. Final Report.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.90 of NIR. The properties used for biodiesel were extracted from a biodiesel study conducted between 2004 and 2005 (BioMer, 2005). The data provider converted the unit of value: 39.89 TJ gross/kt (=35.18/0.882)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.366Z", + "last_change_date": "2022-03-14T08:00:27.366Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7294, + "fields": { + "EF_ID": 122063, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Measured", + "Description": "NCV for biodisel", + "Technology_Practices": "Boliers/furnces in manufacuring industries, transport - road vehicles", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Portuguese National Inventory Report on Greenhouse Gases, 1990-2007 Submitted under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Portuguese Environmental Agency. 15 April 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Not only for transport p.3-106, also for - Iron&Steel p.3.44, Chemical& Plastic, Paper&Pulp, Food&Beverages, Textile, Ceramic, Glass, Cement", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.445Z", + "last_change_date": "2022-03-14T08:00:27.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7295, + "fields": { + "EF_ID": 122064, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "Measured", + "Description": "NCV for MSW renewable part", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.96", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Austria National Inventory Report 2009. Submission under the United Nations Framework Convention on Climate Change. Umweltbundesamt. REPORT REP-0188 Vienna, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW as total used in subcategories Electricity, CHP, Heat (p. A-35, A-92 NIR 2009). p.80 - The CO2 EF is converted into t CO2/TJ by means of a heating value of 9.8 GJ/t. The heating value is a personal information of STATISTIK AUSTRIA to the Umweltbundesamt and consistent with the energy balance. STATISTIK AUSTRIA quotes that the heating value was obtained from the plant operator.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.516Z", + "last_change_date": "2022-03-14T08:00:27.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7296, + "fields": { + "EF_ID": 122065, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Measured", + "Description": "NCV for MSW non-renewable part", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.89", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Austria National Inventory Report 2009. Submission under the United Nations Framework Convention on Climate Change. Umweltbundesamt. REPORT REP-0188 Vienna, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW as total used in subcategories Electricity, CHP, Heat (p. A-35, A-92 NIR 2009). p.80 - The CO2 EF is converted into t CO2/TJ by means of a heating value of 9.8 GJ/t. The heating value is a personal information of STATISTIK AUSTRIA to the Umweltbundesamt and consistent with the energy balance. STATISTIK AUSTRIA quotes that the heating value was obtained from the plant operator.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.582Z", + "last_change_date": "2022-03-14T08:00:27.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7297, + "fields": { + "EF_ID": 122066, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Measured", + "Description": "NCV for MSW (fossil+bio)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.5", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denmark NIR 2009 and Danish Energy Authority (DEA), 2008b: The Danish energy statistics, Available at: http://www.ens.dk/graphics/UK_Facts_Figures/Statistics/yearly_stat istics/2007/BasicData2007.xls. Accessed on: 03/03/2009.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The plastic content of waste was estimated to be 6.6 w/w % in 2003 (Hulgaard, 2003). The total weight share for plastic and for the various plastic types is assumed to be the same for all years (NERI assumption). Also 1A1, 1A2, 1A4 , heat and power production (p.465 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.649Z", + "last_change_date": "2022-03-14T08:00:27.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7298, + "fields": { + "EF_ID": 122067, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Measured", + "Description": "NCV for Waste non-biogenic", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.4", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Netherlands. 1990-2007. National Inventory Report 2009, Planbereau voor de Leefomgeving, 2009, pp.212", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.154 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.735Z", + "last_change_date": "2022-03-14T08:00:27.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7299, + "fields": { + "EF_ID": 122068, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Measured", + "Description": "NCV for waste tyres and rubber (fossil + bio) used in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "Fraction of biomass-C is 27%", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.57", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.824Z", + "last_change_date": "2022-03-14T08:00:27.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7300, + "fields": { + "EF_ID": 122069, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Measured", + "Description": "NCV for used tyres used in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.2", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "LATVIA`S NATIONAL INVENTORY REPORT. Submitted under United Nations Convention on Climate Change. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.41 and 209 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:27.899Z", + "last_change_date": "2022-03-14T08:00:27.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7301, + "fields": { + "EF_ID": 122070, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for scrap tyres used in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "GCV - 29.9, 0.9 conversion factor to NCV", + "Regional_Conditions": "The UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.89", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Carbon Emission Factors and Calorific Values from the UK Greenhouse Gas Inventory (AEA, 2009) to Support the EU ETS, EU ETS team at DECC", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.decc.gov.uk/", + "creation_date": "2022-03-14T08:00:27.974Z", + "last_change_date": "2022-03-14T08:00:27.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7302, + "fields": { + "EF_ID": 122071, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Measured", + "Description": "NCV for tyres used in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.39", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "GREENHOUSE GAS EMISSIONS INVENTORY OF SPAIN 1990-2007 COMMUNICATION TO THE EUROPEAN COMISIÓN (Decisions 2004/280/EC and 2005/166/EC) Ministry of Environment and Rural and Marine Affairs. Madrid, spain, 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.A8.3 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:28.049Z", + "last_change_date": "2022-03-14T08:00:28.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7303, + "fields": { + "EF_ID": 122072, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for rubber in tyres as part of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "Passenger Tire: Natural rubber -14%, Synthetic rubber - 27%; Carbon black - 28%; Fabric, fillers, accelerators, antiozonants, etc. - 14-15%", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Gross CV", + "Value": "26.86", + "Unit": "million Btu/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "US Department of energy. 2007. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy. pp.18. Available at http://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf Accessed on: 10/10/2015 and Rubber Manufacturer`s Association, Scrap Tire Characteristics http://www.rma.org/scrap_tires/scrap_tire_markets/scrap_tire_characteristics/ Accessed on: 17/02/2011", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All rubber is assumed to be tires with the metals, fiber, and other material removed. Therefore, the rubber is assumed to be synthetic, and is treated as a non- biogenic material. The data provider converted the unit of value: 28.3 TJ/kt (=26.86*1055.05585*10-3)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.eia.doe.gov/cneaf/solar.renewables/page/mswaste/msw.pdf", + "creation_date": "2022-03-14T08:00:28.124Z", + "last_change_date": "2022-03-14T08:00:28.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7304, + "fields": { + "EF_ID": 122073, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Measured", + "Description": "NCV for plastics in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "Fraction of biomass-C is 3%", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:28.221Z", + "last_change_date": "2022-03-14T08:00:28.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7305, + "fields": { + "EF_ID": 122074, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for Polyethylen PE", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denmark NIR 2009 and Hulgaard (2003) refers to: 1) TNO report 2000/119, Eco-efficiency of recovery scenarios of plastic packaging, Appendices, July 2001 by P.G. Eggels, A.M.M. Ansems, B.L. van der Ven, for Association of Plastic Manufacturers in Europe 2) Kost, Thomas, Brennstofftechnische Charakterisierung von Haushaltabfällen, Technische Universität Dresden, Eigenverlag des Forums für Abfallwirtschaft und Altlasten e.V., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Also 1A1, 1A2, 1A4 , heat and power production (p.464 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:28.333Z", + "last_change_date": "2022-03-14T08:00:28.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7306, + "fields": { + "EF_ID": 122075, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for polystirol PS/EPS", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denamark NIR 2009 and Hulgaard (2003) refers to: 1) TNO report 2000/119, Eco-efficiency of recovery scenarios of plastic packaging, Appendices, July 2001 by P.G. Eggels, A.M.M. Ansems, B.L. van der Ven, for Association of Plastic Manufacturers in Europe 2) Kost, Thomas, Brennstofftechnische Charakterisierung von Haushaltabfällen, Technische Universität Dresden, Eigenverlag des Forums für Abfallwirtschaft und Altlasten e.V., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Also 1A1, 1A2, 1A4 , heat and power production (p.464 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:28.391Z", + "last_change_date": "2022-03-14T08:00:28.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7307, + "fields": { + "EF_ID": 122076, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for plyvinichlorid PVC", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denamrk NIR 2009 and Hulgaard (2003) refers to: 1) TNO report 2000/119, Eco-efficiency of recovery scenarios of plastic packaging, Appendices, July 2001 by P.G. Eggels, A.M.M. Ansems, B.L. van der Ven, for Association of Plastic Manufacturers in Europe 2) Kost, Thomas, Brennstofftechnische Charakterisierung von Haushaltabfällen, Technische Universität Dresden, Eigenverlag des Forums für Abfallwirtschaft und Altlasten e.V., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Also 1A1, 1A2, 1A4 , heat and power production (p.464 NIR 2009)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:28.449Z", + "last_change_date": "2022-03-14T08:00:28.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7308, + "fields": { + "EF_ID": 122077, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for polyethylene terephthalate (PET) as part of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Gross CV", + "Value": "20.45", + "Unit": "million Btu/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "US Department of energy. 2007. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy. pp.18.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 21.6 TJ/kt (=21.6*1055.05585*10-3)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf", + "creation_date": "2022-03-14T08:00:28.531Z", + "last_change_date": "2022-03-14T08:00:28.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7309, + "fields": { + "EF_ID": 122078, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for high-density polyethylene (HDPE) as part of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Gross CV", + "Value": "19", + "Unit": "million Btu/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "US Department of energy. 2007. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy. pp.18.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 40.1 TJ/kt (=19.00*1055.05585*10-3)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf", + "creation_date": "2022-03-14T08:00:28.607Z", + "last_change_date": "2022-03-14T08:00:28.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7310, + "fields": { + "EF_ID": 122079, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for polyvinyl chloride (PVC) as part of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Gross CV", + "Value": "16.5", + "Unit": "million Btu/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "US Department of energy. 2007. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy. pp.18.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 17.4 TJ/kt (=16.50*1055.05585*10-3)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf", + "creation_date": "2022-03-14T08:00:28.674Z", + "last_change_date": "2022-03-14T08:00:28.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7311, + "fields": { + "EF_ID": 122080, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for low-density polyethylene/linear low-density polyethylene (LDPE/LLDPE) as part of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Gross CV", + "Value": "24.1", + "Unit": "million Btu/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "US Department of energy. 2007. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy. pp.18.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 25.4 TJ/kt (=24.10*1055.05585*10-3)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf", + "creation_date": "2022-03-14T08:00:28.749Z", + "last_change_date": "2022-03-14T08:00:28.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7312, + "fields": { + "EF_ID": 122081, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for polypropylene (PP) as part of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Gross CV", + "Value": "38", + "Unit": "million Btu/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "US Department of energy. 2007. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy. pp.18.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 40.1 TJ/kt (=38.00*1055.05585*10-3)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf", + "creation_date": "2022-03-14T08:00:28.816Z", + "last_change_date": "2022-03-14T08:00:28.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7313, + "fields": { + "EF_ID": 122082, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Municipal Wastes (non-biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "GCV for polystyrene (PS) as part of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Gross CV", + "Value": "35.6", + "Unit": "million Btu/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "US Department of energy. 2007. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy. pp.18.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data provider converted the unit of value: 37.6 TJ/kt (=35.60*1055.05585*10-3)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf", + "creation_date": "2022-03-14T08:00:28.883Z", + "last_change_date": "2022-03-14T08:00:28.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7314, + "fields": { + "EF_ID": 122083, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Measured", + "Description": "NCV for animal fat burned in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.36", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:28.967Z", + "last_change_date": "2022-03-14T08:00:28.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7315, + "fields": { + "EF_ID": 122084, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Measured", + "Description": "NCV for animal meat burned in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.31", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:29.049Z", + "last_change_date": "2022-03-14T08:00:29.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7316, + "fields": { + "EF_ID": 122085, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV for vegetable oil", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.6", + "Unit": "GJ/1000litre", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.308 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:29.116Z", + "last_change_date": "2022-03-14T08:00:29.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7317, + "fields": { + "EF_ID": 122086, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "Measured", + "Description": "NCV for fish oil", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.2", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Denmark NIR 2009 and Danish Energy Authority (DEA), 2008b: The Danish energy statistics, Available at: http://www.ens.dk/graphics/UK_Facts_Figures/Statistics/yearly_stat istics/2007/BasicData2007.xls. Accessed on 2009-03-03.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.508 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:29.182Z", + "last_change_date": "2022-03-14T08:00:29.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7318, + "fields": { + "EF_ID": 122087, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sewage Sludge", + "Parameter_Type": "Measured", + "Description": "NCV for sewadge sludge (dried) used in cement industry", + "Technology_Practices": "", + "Parameter_Conditions": "Fraction of biomass-C is 100%", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.97", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Switzerland`s Greenhouse Gas Inventory 1990–2007 National Inventory Report 2009. Federal office for the environment. 2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknwon", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See p.87 of NIR", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:29.249Z", + "last_change_date": "2022-03-14T08:00:29.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7319, + "fields": { + "EF_ID": 122088, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "Carbon content of the fuel in term of kgC/GJ", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.77", + "Unit": "kg C/gigajoule, net calorific value basis", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gao E., Li S., Wu D., Hu J., Wang B., Wang M. and Zheng B., 2014, The Average Carbon Content per unit Energy in Chinese coals. EARTH and ENVIRONMENT. Vol.42(1): 95-101", + "English_Abstract": "The data of coals on coals on carbon content per unit energy are needed when calculating the CO2 emission on factors of coals. In this study, 205 coal samples were collected from all over China, and analyzed by means of proximate analysis, calorific value analysis and ultimate analysis. The average carbon content per unit energy of Chinese coals on an energy basis was calculated according to these results. The average carbon content per unit energy of anthracite is close to the IPCC default values, which is 26.77+/-0.13kg/GJ. Those value of bitumen and lignite, which are 25.50+/-0.03kg/GJ and 27.21+/-0.35kg/GJ, respectively, are 1.16% and 1.41% lower than the IPCC default values, respectively. The carbon content per unit energy of sub-bituminous coal is 26.57+/-0.1kg/GJ, which is 1.41% higher than the IPCC default value.", + "Lower_Bound": "26.64", + "Upper_Bound": "26.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurements were taken in 2003 in US (cooperated with United States Geological Survey,USGS)", + "Other_Comments": "", + "Data_Provider": "Songli Zhu", + "Link": "", + "creation_date": "2022-03-14T08:00:29.316Z", + "last_change_date": "2022-03-14T08:00:29.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7320, + "fields": { + "EF_ID": 122089, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Carbon content of the fuel in term of kgC/GJ", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.5", + "Unit": "kg C/gigajoule, net calorific value basis", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gao E., Li S., Wu D., Hu J., Wang B., Wang M. and Zheng B., 2014, The Average Carbon Content per unit Energy in Chinese coals. EARTH and ENVIRONMENT. Vol.42(1): 95-101", + "English_Abstract": "The data of coals on coals on carbon content per unit energy are needed when calculating the CO2 emission on factors of coals. In this study, 205 coal samples were collected from all over China, and analyzed by means of proximate analysis, calorific value analysis and ultimate analysis. The average carbon content per unit energy of Chinese coals on an energy basis was calculated according to these results. The average carbon content per unit energy of anthracite is close to the IPCC default values, which is 26.77+/-0.13kg/GJ. Those value of bitumen and lignite, which are 25.50+/-0.03kg/GJ and 27.21+/-0.35kg/GJ, respectively, are 1.16% and 1.41% lower than the IPCC default values, respectively. The carbon content per unit energy of sub-bituminous coal is 26.57+/-0.1kg/GJ, which is 1.41% higher than the IPCC default value.", + "Lower_Bound": "25.44", + "Upper_Bound": "25.56", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurements were taken in 2003 in US (cooperated with United States Geological Survey,USGS)", + "Other_Comments": "", + "Data_Provider": "Songli Zhu", + "Link": "", + "creation_date": "2022-03-14T08:00:29.403Z", + "last_change_date": "2022-03-14T08:00:29.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7321, + "fields": { + "EF_ID": 122090, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Carbon content of the fuel in term of kgC/GJ", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26.57", + "Unit": "kg C/gigajoule, net calorific value basis", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gao E., Li S., Wu D., Hu J., Wang B., Wang M. and Zheng B., 2014, The Average Carbon Content per unit Energy in Chinese coals. EARTH and ENVIRONMENT. Vol.42(1): 95-101", + "English_Abstract": "The data of coals on coals on carbon content per unit energy are needed when calculating the CO2 emission on factors of coals. In this study, 205 coal samples were collected from all over China, and analyzed by means of proximate analysis, calorific value analysis and ultimate analysis. The average carbon content per unit energy of Chinese coals on an energy basis was calculated according to these results. The average carbon content per unit energy of anthracite is close to the IPCC default values, which is 26.77+/-0.13kg/GJ. Those value of bitumen and lignite, which are 25.50+/-0.03kg/GJ and 27.21+/-0.35kg/GJ, respectively, are 1.16% and 1.41% lower than the IPCC default values, respectively. The carbon content per unit energy of sub-bituminous coal is 26.57+/-0.1kg/GJ, which is 1.41% higher than the IPCC default value.", + "Lower_Bound": "26.28", + "Upper_Bound": "26.86", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurements were taken in 2003 in US (cooperated with United States Geological Survey,USGS)", + "Other_Comments": "", + "Data_Provider": "Songli Zhu", + "Link": "", + "creation_date": "2022-03-14T08:00:29.478Z", + "last_change_date": "2022-03-14T08:00:29.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7322, + "fields": { + "EF_ID": 122091, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Carbon content of the fuel in term of kgC/GJ", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.21", + "Unit": "kg C/gigajoule, net calorific value basis", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gao E., Li S., Wu D., Hu J., Wang B., Wang M. and Zheng B., 2014, The Average Carbon Content per unit Energy in Chinese coals. EARTH and ENVIRONMENT. Vol.42(1): 95-101", + "English_Abstract": "The data of coals on coals on carbon content per unit energy are needed when calculating the CO2 emission on factors of coals. In this study, 205 coal samples were collected from all over China, and analyzed by means of proximate analysis, calorific value analysis and ultimate analysis. The average carbon content per unit energy of Chinese coals on an energy basis was calculated according to these results. The average carbon content per unit energy of anthracite is close to the IPCC default values, which is 26.77+/-0.13kg/GJ. Those value of bitumen and lignite, which are 25.50+/-0.03kg/GJ and 27.21+/-0.35kg/GJ, respectively, are 1.16% and 1.41% lower than the IPCC default values, respectively. The carbon content per unit energy of sub-bituminous coal is 26.57+/-0.1kg/GJ, which is 1.41% higher than the IPCC default value.", + "Lower_Bound": "26.25", + "Upper_Bound": "28.17", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurements were taken in 2003 in US (cooperated with United States Geological Survey,USGS)", + "Other_Comments": "", + "Data_Provider": "Songli Zhu", + "Link": "", + "creation_date": "2022-03-14T08:00:29.571Z", + "last_change_date": "2022-03-14T08:00:29.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7323, + "fields": { + "EF_ID": 122092, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion of brushwood in improved cookstove. Characteristics of gaseous pollutants from biofuel-stoves in rural China were mearused in January, April and November, 2008 in Beijing, China, including CH, CO, Nox, VOC, by expertise from Tsinghua Univeristy, China", + "Technology_Practices": "Fuel combustion in typical cook stoves in rural China", + "Parameter_Conditions": "January and April", + "Regional_Conditions": "Rural area of Beijing, China", + "Control_Technologies": "Improved cookstoves", + "Other_Properties": "Brush wood", + "Value": "2.2 (for both January and April)", + "Unit": "g/kg fuel", + "Equation": "NCV of brushwood is selected as 16.7 MJ/kg (4000kcal/kg)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang S.,Wei W., Du L.,Li G., Hao J. 2009. Characteristics of gaseous pollutants from biofuel-stoves in rural China. Atmospheric Environment 43 (2009) 4148–4154", + "English_Abstract": "The research team analyzed the emission characteristics of gaseous pollutants, including volatile organic compounds (VOCs), from biomass combustion in improved stoves in rural China. The research included measurements from five biofuels and two stove types in the months of January, April, and September. The measurements were conducted according to U.S. EPA Method 25 using a collection system with a cooling device and two-level filters. CO, CO2, NOx, CH4 and THC analyzers were used for in-field, realtime emission measurements. The emission data indicate that gaseous pollutants were emitted at higher concentrations in the early combustion stage and lower concentrations in the later stage. CH4 and THC, as well as CO and CO2, presented positive relationships during the whole entire combustion process for all tests. The chemical profiles of flue gas samples were analyzed by GC/MS and GC/FID/ECD. Aromatics, carbonyls, and alkenes & alkynes dominated the VOC emissions, respectively accounting for 37%, 33%, and 23% of total VOC emissions by volume. Benzene was the most abundant VOC species, consisting of 17.3 8.1% of VOCs, followed by propylene (11.3 3.5%), acetone (10.8 8.2%), toluene (7.3 5.7%) and acetaldehyde (6.5 7.3%). Carbon mass balance approach was applied to calculate CO, CO2, CH4, NOx, and VOC species emission factors. This analysis includes a discussion of the differences among VOC emission factors of different biofuel-stove combinations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In the technical reference, CH4 emission factors for January and April are provided. Regarding the uncertainties expressed as 95% confidencelimit, lower confidence limit is 1.4 for January and 1.8 for April (in term of g/kg fuel). Upper confidence limit is 3.0 for January and 2.6 for April (in term of g/kg fuel)", + "Other_Comments": "", + "Data_Provider": "Songli Zhu", + "Link": "", + "creation_date": "2022-03-14T08:00:29.649Z", + "last_change_date": "2022-03-14T08:00:29.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7324, + "fields": { + "EF_ID": 122093, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion of brushwood in cookstove - Kang. Characteristics of gaseous pollutants from biofuel-stoves in rural China were mearused in January, April and November, 2008 in Beijing, China, including CH, CO, Nox, VOC, by expertise from Tsinghua Univeristy, China", + "Technology_Practices": "Fuel combustion in typical cook stoves in rural China", + "Parameter_Conditions": "September", + "Regional_Conditions": "Rural area of Beijing, China", + "Control_Technologies": "Kang , widely used for cooking and heating, in north China, is a brick bed with ducts inside connected to a cookstove. As the combustion gases travel from the cookstove to the flue, they pass through the ducts and transfer heat to the kang.", + "Other_Properties": "Brush wood", + "Value": "2.3", + "Unit": "g/kg fuel", + "Equation": "NCV of brushwood is selected as 16.7 MJ/kg (4000kcal/kg)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang S.,Wei W., Du L.,Li G., Hao J. 2009. Characteristics of gaseous pollutants from biofuel-stoves in rural China. Atmospheric Environment 43 (2009) 4148–4154", + "English_Abstract": "The research team analyzed the emission characteristics of gaseous pollutants, including volatile organic compounds (VOCs), from biomass combustion in improved stoves in rural China. The research included measurements from five biofuels and two stove types in the months of January, April, and September. The measurements were conducted according to U.S. EPA Method 25 using a collection system with a cooling device and two-level filters. CO, CO2, NOx, CH4 and THC analyzers were used for in-field, realtime emission measurements. The emission data indicate that gaseous pollutants were emitted at higher concentrations in the early combustion stage and lower concentrations in the later stage. CH4 and THC, as well as CO and CO2, presented positive relationships during the whole entire combustion process for all tests. The chemical profiles of flue gas samples were analyzed by GC/MS and GC/FID/ECD. Aromatics, carbonyls, and alkenes & alkynes dominated the VOC emissions, respectively accounting for 37%, 33%, and 23% of total VOC emissions by volume. Benzene was the most abundant VOC species, consisting of 17.3 8.1% of VOCs, followed by propylene (11.3 3.5%), acetone (10.8 8.2%), toluene (7.3 5.7%) and acetaldehyde (6.5 7.3%). Carbon mass balance approach was applied to calculate CO, CO2, CH4, NOx, and VOC species emission factors. This analysis includes a discussion of the differences among VOC emission factors of different biofuel-stove combinations.", + "Lower_Bound": "0.9 (in term of g/kg fuel)", + "Upper_Bound": "3.7 (in ter m of g/kg fuel)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Songli Zhu", + "Link": "", + "creation_date": "2022-03-14T08:00:29.756Z", + "last_change_date": "2022-03-14T08:00:29.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7325, + "fields": { + "EF_ID": 122094, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion of maize straw in improved cookstove. Characteristics of gaseous pollutants from biofuel-stoves in rural China were mearused in January, April and November, 2008 in Beijing, China, including CH, CO, Nox, VOC, by expertise from Tsinghua Univeristy, China", + "Technology_Practices": "Fuel combustion in typical cook stoves in rural China", + "Parameter_Conditions": "January and April", + "Regional_Conditions": "Rural area of Beijing, China", + "Control_Technologies": "Improved cookstoves", + "Other_Properties": "maize straw", + "Value": "3.6 for January and 10.8 for April", + "Unit": "g/kg fuel", + "Equation": "NCV of maize straw is selected as 14.4 MJ/kg", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang S.,Wei W., Du L.,Li G., Hao J. 2009. Characteristics of gaseous pollutants from biofuel-stoves in rural China. Atmospheric Environment 43 (2009) 4148–4154", + "English_Abstract": "The research team analyzed the emission characteristics of gaseous pollutants, including volatile organic compounds (VOCs), from biomass combustion in improved stoves in rural China. The research included measurements from five biofuels and two stove types in the months of January, April, and September. The measurements were conducted according to U.S. EPA Method 25 using a collection system with a cooling device and two-level filters. CO, CO2, NOx, CH4 and THC analyzers were used for in-field, realtime emission measurements. The emission data indicate that gaseous pollutants were emitted at higher concentrations in the early combustion stage and lower concentrations in the later stage. CH4 and THC, as well as CO and CO2, presented positive relationships during the whole entire combustion process for all tests. The chemical profiles of flue gas samples were analyzed by GC/MS and GC/FID/ECD. Aromatics, carbonyls, and alkenes & alkynes dominated the VOC emissions, respectively accounting for 37%, 33%, and 23% of total VOC emissions by volume. Benzene was the most abundant VOC species, consisting of 17.3 8.1% of VOCs, followed by propylene (11.3 3.5%), acetone (10.8 8.2%), toluene (7.3 5.7%) and acetaldehyde (6.5 7.3%). Carbon mass balance approach was applied to calculate CO, CO2, CH4, NOx, and VOC species emission factors. This analysis includes a discussion of the differences among VOC emission factors of different biofuel-stove combinations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Regarding the uncertainties expressed as 95% confidencelimit, lower confidence limit is 2.2 for January and 10.0 for April (in term of g/kg fuel). Upper confidence limit is 5.0 for January and 11.6 for April (in term of g/kg fuel).", + "Other_Comments": "", + "Data_Provider": "Songli Zhu", + "Link": "", + "creation_date": "2022-03-14T08:00:29.857Z", + "last_change_date": "2022-03-14T08:00:29.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7326, + "fields": { + "EF_ID": 122095, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion of maize straw in cookstove - Kang. Characteristics of gaseous pollutants from biofuel-stoves in rural China were mearused in January, April and November, 2008 in Beijing, China, including CH, CO, Nox, VOC, by expertise from Tsinghua Univeristy, China", + "Technology_Practices": "Fuel combustion in typical cook stoves in rural China", + "Parameter_Conditions": "January and September", + "Regional_Conditions": "Rural area of Beijing, China", + "Control_Technologies": "Kang , widely used for cooking and heating, in north China, is a brick bed with ducts inside connected to a cookstove. As the combustion gases travel from the cookstove to the flue, they pass through the ducts and transfer heat to the kang.", + "Other_Properties": "maize straw", + "Value": "0.4 for January and 1.4 for September", + "Unit": "g/kg fuel", + "Equation": "NCV of maize straw is selected as 14.4 MJ/kg", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang S.,Wei W., Du L.,Li G., Hao J. 2009. Characteristics of gaseous pollutants from biofuel-stoves in rural China. Atmospheric Environment 43 (2009) 4148–4154", + "English_Abstract": "The research team analyzed the emission characteristics of gaseous pollutants, including volatile organic compounds (VOCs), from biomass combustion in improved stoves in rural China. The research included measurements from five biofuels and two stove types in the months of January, April, and September. The measurements were conducted according to U.S. EPA Method 25 using a collection system with a cooling device and two-level filters. CO, CO2, NOx, CH4 and THC analyzers were used for in-field, realtime emission measurements. The emission data indicate that gaseous pollutants were emitted at higher concentrations in the early combustion stage and lower concentrations in the later stage. CH4 and THC, as well as CO and CO2, presented positive relationships during the whole entire combustion process for all tests. The chemical profiles of flue gas samples were analyzed by GC/MS and GC/FID/ECD. Aromatics, carbonyls, and alkenes & alkynes dominated the VOC emissions, respectively accounting for 37%, 33%, and 23% of total VOC emissions by volume. Benzene was the most abundant VOC species, consisting of 17.3 8.1% of VOCs, followed by propylene (11.3 3.5%), acetone (10.8 8.2%), toluene (7.3 5.7%) and acetaldehyde (6.5 7.3%). Carbon mass balance approach was applied to calculate CO, CO2, CH4, NOx, and VOC species emission factors. This analysis includes a discussion of the differences among VOC emission factors of different biofuel-stove combinations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Regarding the uncertainties expressed as 95% confidencelimit, lower confidence limit is 0.3 for January and 1.3 for September (in term of g/kg fuel). Upper confidence limit is 0.5 for January and 1.5 for September (in term of g/kg fuel).", + "Other_Comments": "", + "Data_Provider": "Songli Zhu", + "Link": "", + "creation_date": "2022-03-14T08:00:29.958Z", + "last_change_date": "2022-03-14T08:00:29.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7327, + "fields": { + "EF_ID": 122096, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for combustion processes in Energy Industries. EF applied for Italy GHG inventory in period 1990-2012", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "The oxidation rate of 0.995 is used by Italy in the calcuation. And the NCV is 47.41TJ/Gg which is calcuated by the reviewer based on the information provided on p.408 of the NIR.", + "Value": "15.540-15.888", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "ITALIAN GREENHOUSE GAS INVENTORY 1990-2012. NATIONAL INVENTORY REPORT 2014", + "English_Abstract": "CO2 EF used for Italy GHG inventory 1990-2012", + "Lower_Bound": "-3%", + "Upper_Bound": "+3%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The weighted average of CO2 emission factor reported by operators in the EU ETS scheme (57.015 tCO2/TJ for 2012). CO2 EF presented in the NIR vary between 56.700 and 57.963 t CO2/TJ with oxidation factor 0.995.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:30.058Z", + "last_change_date": "2022-03-14T08:00:30.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7328, + "fields": { + "EF_ID": 122097, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for combustion processes in Energy Industries. EF applied for Romania GHG inventory in period 1990-2012", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.3", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Romania`s Greenhouse Gas Inventory 1989-2012", + "English_Abstract": "CO2 EF from fuel combustion derived for Romania", + "Lower_Bound": "-0.8%", + "Upper_Bound": "+0.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The total sum of the verified CO2 emissions (ETS) is divided by the total amount of the respective fuel consumption. Weighted average EF for natural gas is calculated for the period 2007-2010. CO2 EF presented in the NIR is 56.1 t CO2/TJ.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:30.133Z", + "last_change_date": "2022-03-14T08:00:30.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7329, + "fields": { + "EF_ID": 122098, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for Sweden GHG inventory in period 1990-2012", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "NCV changes between years: min - 0.04 GJ/m3, max - 0.04 GJ/m3, mediana - 0.02 GJ/m3.", + "Value": "54.95 - 59.3", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report Sweden 2014: Greenhouse Gas Emission Inventories 1990-2012", + "English_Abstract": "CO2 EF from fuel combustion derived for Sweden", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The NIR does not indicate wether this CO2 EF contains the oxidation factor or not. In 2012 EF was 55.83 t CO2/TJ. A complete list of EFs for all fuels, years and substances can be found at the Swedish EPA website, including full references. The weighted average emission factor for CO2 for refinery gas is slightly lower for 2008- 2012 when plant specific emission factors are used. However, as the national emission factor used for earlier years is based on information from the refineries. The emission factor uncertainty is around 5% for 2012.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:30.217Z", + "last_change_date": "2022-03-14T08:00:30.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7330, + "fields": { + "EF_ID": 122099, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.03349 TJ/1000m3", + "Value": "15.06", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "14.7", + "Upper_Bound": "15.4", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculated EF is based on the chemical composition of natural gas that was provided by Central Calibration and Test Laboratory of JSC “Lietuvos dujos” and considering the carbon content in natural gas.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:30.291Z", + "last_change_date": "2022-03-14T08:00:30.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7331, + "fields": { + "EF_ID": 122100, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.04006 TJ/tonne", + "Value": "21.16", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The measurement performed by accredited Laboratory of Quality Research Centre of Petroleum Refining Company.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:30.358Z", + "last_change_date": "2022-03-14T08:00:30.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7332, + "fields": { + "EF_ID": 122101, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.04642 TJ/tonne", + "Value": "17.84", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The measurement performed by accredited Laboratory of Quality Research Centre of Petroleum Refining Company.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:30.444Z", + "last_change_date": "2022-03-14T08:00:30.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7333, + "fields": { + "EF_ID": 122102, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.04307 TJ/tonne", + "Value": "19.88", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The measurement performed by accredited Laboratory of Quality Research Centre of Petroleum Refining Company.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:30.533Z", + "last_change_date": "2022-03-14T08:00:30.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7334, + "fields": { + "EF_ID": 122103, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.04307 TJ/tonne", + "Value": "19.88", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The measurement performed by accredited Laboratory of Quality Research Centre of Petroleum Refining Company.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:30.628Z", + "last_change_date": "2022-03-14T08:00:30.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7335, + "fields": { + "EF_ID": 122104, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.02512 TJ/tonne", + "Value": "25.88", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "24.1", + "Upper_Bound": "27.7", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF set on the basis of data provided by the operators under EU ETS. Average of measured plant-specific data compilled under the European Union Emission Trading System (EU ETS) in the period 2005-2011. In this period, Lithuania mostly imported coal from Poland and Russia.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:30.716Z", + "last_change_date": "2022-03-14T08:00:30.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7336, + "fields": { + "EF_ID": 122105, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.02512 TJ/tonne", + "Value": "29.06", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "27", + "Upper_Bound": "31.1", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF set on the basis of data provided by the operators under EU ETS. Average of measured plant-specific data compilled under the European Union Emission Trading System (EU ETS) in the period 2005-2011. In this period, Lithuania mostly imported coal from Poland and Russia.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:30.904Z", + "last_change_date": "2022-03-14T08:00:30.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7337, + "fields": { + "EF_ID": 122106, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.02512 TJ/tonne", + "Value": "27.6", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "25.7", + "Upper_Bound": "29.5", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF determined taking into consideration results of performed measurements and calculations provided in various national studies. Average of measured plant-specific data compilled under the European Union Emission Trading System (EU ETS) in the period 2005-2011. In this period, Lithuania mostly imported coal from Poland and Russia.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:30.982Z", + "last_change_date": "2022-03-14T08:00:30.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7338, + "fields": { + "EF_ID": 122107, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "based on flue gas composition", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.00820 TJ/tonne", + "Value": "29.97", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "15", + "Upper_Bound": "45", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 EF for wood and wood waste is specified by performed measurements in Laboratory of Heat Equipment Research and Testing, Lithuanian Energy Institute.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:31.080Z", + "last_change_date": "2022-03-14T08:00:31.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7339, + "fields": { + "EF_ID": 122108, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Orimulsion", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.29", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "LITHUANIA‘S NATIONAL INVENTORY REPORT 2014 GREENHOUSE GAS EMISSIONS 1990-2012", + "English_Abstract": "Lithuania‘s GHG inventory submission (2014) under the United Nations Framework Convention on Climate Change (UNFCCC), Kyoto Protocol and Regulation No 525/2013 of the European Parliament and of the Council of 21 May 2013 repealing Decision No 280/2004/EC", + "Lower_Bound": "21.7", + "Upper_Bound": "22.9", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF set on the basis of data provided by the operators under EU ETS", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:31.158Z", + "last_change_date": "2022-03-14T08:00:31.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7340, + "fields": { + "EF_ID": 122109, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.04278 TJ/tonne", + "Value": "21.2", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "20.7", + "Upper_Bound": "21.7", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF determined taking into consideration results of performed measurements and calculations provided in various national studies.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:31.249Z", + "last_change_date": "2022-03-14T08:00:31.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7341, + "fields": { + "EF_ID": 122110, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Shale Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.11", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "20.6", + "Upper_Bound": "21.6", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF set on the basis of average of measured plant-specific data compilled under the European Union Emission Trading System (EU ETS) in the period 2005-2011 and taking into consideration the national Estonian EF considering to the fact that shale oil is imported to Lithuania from Estonia. The information provided in Estonian NIR.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:31.324Z", + "last_change_date": "2022-03-14T08:00:31.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7342, + "fields": { + "EF_ID": 122111, + "IPCC_Category": "1.A.1.b - Petroleum Refining", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.65", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "25", + "Upper_Bound": "26.3", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF set on the basis of data provided by the operators under EU ETS", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:31.416Z", + "last_change_date": "2022-03-14T08:00:31.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7343, + "fields": { + "EF_ID": 122112, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.04479 TJ/tonne", + "Value": "19.9", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The measurement performed by accredited Laboratory of Quality Research Centre of Petroleum Refining Company.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:31.495Z", + "last_change_date": "2022-03-14T08:00:31.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7344, + "fields": { + "EF_ID": 122113, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.02930 TJ/tonne", + "Value": "29.76", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "27.7", + "Upper_Bound": "31.8", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF set on the basis of data provided by the operators under EU ETS. Average of measured plant-specific data compilled under the European Union Emission Trading System (EU ETS) in the period 2005-2011.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:31.584Z", + "last_change_date": "2022-03-14T08:00:31.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7345, + "fields": { + "EF_ID": 122114, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Measured", + "Description": "EF for all combustion processes. EF applied for Lithuanian GHG inventory", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Lithuania", + "Control_Technologies": "", + "Other_Properties": "NCV=0.04316 TJ/tonne", + "Value": "19.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Konstantinaviciute, I. et al. (2014). Assessment of national carbon dioxide emission factors for the Lithuanian fuel combustion sector. Greenhouse Gas Measurement & Management, Vol.4, No.1, 14-27.", + "English_Abstract": "This paper aims at deriving country-specific CO2 emission factors for fuels combusted in the Lithuanian energy sector. Rigorously assessed country-specific CO2 emission factors will contribute to accurate and reliable estimates of CO2 emissions. The paper presents the methods applied to derive country-specific CO2 emission factors together with their recommended values and uncertainties for various types of fuels. Analysis of the data provided by the plant operators participating under the European Union emission trading system and aggregation of the measurements results of the accredited research laboratories allowed to determine country-specific CO2 emission factors for the different types of fuels. Uncertainties of recommended CO2 emission factors were derived at a fuel type-specific level. It was set that recommended values of CO2 emission factors are within the uncertainty range of the IPCC default values. The application of determined country-specific CO2 emission factors in the Lithuanian energy sector increases accuracy and decreases uncertainty of the national greenhouse gas inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The measurement performed by accredited Laboratory of Quality Research Centre of Petroleum Refining Company.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "", + "creation_date": "2022-03-14T08:00:31.658Z", + "last_change_date": "2022-03-14T08:00:31.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7346, + "fields": { + "EF_ID": 122115, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon content of commercial natural gas", + "Technology_Practices": "", + "Parameter_Conditions": "The value is derived under standard conditons 20 degrees centigrade and 1 atm.", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "The weight average parameter of the natural gas produced in the Russian Federation.", + "Value": "14.836", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "1 - Uvarova N.E., Ishkov A.G., Akopova G.S., Ginzburg V.A., Romanov K.V., Kruglova N.Y., Gytarsky M.L. The update of methane emission parameters for natural gas operations in Russia. Carbon Management. 2015. DOI 10.1080/17583004.2015.1049105. 2 - Uvarova N.E., Ginzburg V.A., Gytarsky M.L., Ishkov A.G., Romanov K.V., Akopova G.S., Kruglova N.Y. The update of greenhouse gas emission parameters for natural gas industry in Russia. Gas industry of Russia. 2015. ?7/725, ?.70-74 (in Russian).", + "English_Abstract": "The gas sector makes a significant contribution to fugitive emissions in the national greenhouse gas inventory of the Russian Federation. A cooperative research project by the Institute of Global Climate and Ecology, Gazprom VNIIGAZ Ltd. and Gazprom JSC is being conducted, aimed at the update of the parameters used for the estimation of methane emission due to natural gas extraction and pipeline transport, which are among the basic operations of the natural gas sector in the country. The update was performed based on average density and chemical content of the natural gas produced. The values derived were recalculated for the standard thermodynamic conditions. Following the update, the methane emissions were calculated with the incorporation of the parameters derived.", + "Lower_Bound": "-0.03%", + "Upper_Bound": "+0.03%", + "Data_Quality": "Quality of initial data on natural gas composition and modelling techniques are verified.", + "Data_Quality_Reference": "Interstate Standard. GOST 30319.1-96. Natural Gas. Methods of Calculation of Physical Properties. Definitions of Physical Properties of Natural Gas, Its components and Processing Products. Moscow, IPK Izd-vo standartov] (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Nina Uvarova", + "Link": "", + "creation_date": "2022-03-14T08:00:31.752Z", + "last_change_date": "2022-03-14T08:00:31.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7347, + "fields": { + "EF_ID": 122116, + "IPCC_Category": "1.B.2.b - Natural Gas, 1.B.2.b.iii.1 - Exploration, 1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Density of crude natural gas", + "Technology_Practices": "", + "Parameter_Conditions": "The value is derived under standard conditons 20 degrees centigrade and 1 atm.", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "The weight average parameter of the natural gas produced in the Russian Federation.", + "Value": "0.68", + "Unit": "kg/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "1 - Uvarova N.E., Ishkov A.G., Akopova G.S., Ginzburg V.A., Romanov K.V., Kruglova N.Y., Gytarsky M.L. The update of methane emission parameters for natural gas operations in Russia. Carbon Management. 2015. DOI 10.1080/17583004.2015.1049105. 2 - Uvarova N.E., Ginzburg V.A., Gytarsky M.L., Ishkov A.G., Romanov K.V., Akopova G.S., Kruglova N.Y. The update of greenhouse gas emission parameters for natural gas industry in Russia. Gas industry of Russia. 2015. ?7/725, ?.70-74 (in Russian).", + "English_Abstract": "The gas sector makes a significant contribution to fugitive emissions in the national greenhouse gas inventory of the Russian Federation. A cooperative research project by the Institute of Global Climate and Ecology, Gazprom VNIIGAZ Ltd. and Gazprom JSC is being conducted, aimed at the update of the parameters used for the estimation of methane emission due to natural gas extraction and pipeline transport, which are among the basic operations of the natural gas sector in the country. The update was performed based on average density and chemical content of the natural gas produced. The values derived were recalculated for the standard thermodynamic conditions. Following the update, the methane emissions were calculated with the incorporation of the parameters derived.", + "Lower_Bound": "-2.35%", + "Upper_Bound": "+2.3%", + "Data_Quality": "Quality of initial data on natural gas composition and modelling techniques are verified.", + "Data_Quality_Reference": "Interstate Standard. GOST 30319.1-96. Natural Gas. Methods of Calculation of Physical Properties. Definitions of Physical Properties of Natural Gas, Its components and Processing Products. Moscow, IPK Izd-vo standartov] (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The parameter is relevant to CH4, CO2, N2O and NMVOC emission estimates.", + "Other_Comments": "", + "Data_Provider": "Nina Uvarova", + "Link": "", + "creation_date": "2022-03-14T08:00:31.824Z", + "last_change_date": "2022-03-14T08:00:31.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7348, + "fields": { + "EF_ID": 122117, + "IPCC_Category": "1.B.2.b - Natural Gas, 1.B.2.b.iii.1 - Exploration, 1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Density of commercial natural gas", + "Technology_Practices": "", + "Parameter_Conditions": "The value is derived under standard conditons 20 degrees centigrade and 1 atm.", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "The weight average parameter of the natural gas produced in the Russian Federation.", + "Value": "0.679", + "Unit": "kg/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "1 - Uvarova N.E., Ishkov A.G., Akopova G.S., Ginzburg V.A., Romanov K.V., Kruglova N.Y., Gytarsky M.L. The update of methane emission parameters for natural gas operations in Russia. Carbon Management. 2015. DOI 10.1080/17583004.2015.1049105. 2 - Uvarova N.E., Ginzburg V.A., Gytarsky M.L., Ishkov A.G., Romanov K.V., Akopova G.S., Kruglova N.Y. The update of greenhouse gas emission parameters for natural gas industry in Russia. Gas industry of Russia. 2015. ?7/725, ?.70-74 (in Russian).", + "English_Abstract": "The gas sector makes a significant contribution to fugitive emissions in the national greenhouse gas inventory of the Russian Federation. A cooperative research project by the Institute of Global Climate and Ecology, Gazprom VNIIGAZ Ltd. and Gazprom JSC is being conducted, aimed at the update of the parameters used for the estimation of methane emission due to natural gas extraction and pipeline transport, which are among the basic operations of the natural gas sector in the country. The update was performed based on average density and chemical content of the natural gas produced. The values derived were recalculated for the standard thermodynamic conditions. Following the update, the methane emissions were calculated with the incorporation of the parameters derived.", + "Lower_Bound": "-0.04%", + "Upper_Bound": "+0.04%", + "Data_Quality": "Quality of initial data on natural gas composition and modelling techniques are verified.", + "Data_Quality_Reference": "Interstate Standard. GOST 30319.1-96. Natural Gas. Methods of Calculation of Physical Properties. Definitions of Physical Properties of Natural Gas, Its components and Processing Products. Moscow, IPK Izd-vo standartov] (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The parameter is relevant to CH4, CO2, N2O and NMVOC emission estimates.", + "Other_Comments": "", + "Data_Provider": "Nina Uvarova", + "Link": "", + "creation_date": "2022-03-14T08:00:31.920Z", + "last_change_date": "2022-03-14T08:00:31.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7349, + "fields": { + "EF_ID": 122118, + "IPCC_Category": "1.B.2.b - Natural Gas, 1.B.2.b.iii.1 - Exploration, 1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 volume fraction of crude natural gas", + "Technology_Practices": "", + "Parameter_Conditions": "The value is derived under standard conditons 20 degrees centigrade and 1 atm.", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "The weight average parameter of the natural gas produced in the Russian Federation.", + "Value": "0.897", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "1 - Uvarova N.E., Ishkov A.G., Akopova G.S., Ginzburg V.A., Romanov K.V., Kruglova N.Y., Gytarsky M.L. The update of methane emission parameters for natural gas operations in Russia. Carbon Management. 2015. DOI 10.1080/17583004.2015.1049105. 2 - Uvarova N.E., Ginzburg V.A., Gytarsky M.L., Ishkov A.G., Romanov K.V., Akopova G.S., Kruglova N.Y. The update of greenhouse gas emission parameters for natural gas industry in Russia. Gas industry of Russia. 2015. ?7/725, ?.70-74 (in Russian).", + "English_Abstract": "The gas sector makes a significant contribution to fugitive emissions in the national greenhouse gas inventory of the Russian Federation. A cooperative research project by the Institute of Global Climate and Ecology, Gazprom VNIIGAZ Ltd. and Gazprom JSC is being conducted, aimed at the update of the parameters used for the estimation of methane emission due to natural gas extraction and pipeline transport, which are among the basic operations of the natural gas sector in the country. The update was performed based on average density and chemical content of the natural gas produced. The values derived were recalculated for the standard thermodynamic conditions. Following the update, the methane emissions were calculated with the incorporation of the parameters derived.", + "Lower_Bound": "-2.76%", + "Upper_Bound": "+2.68%", + "Data_Quality": "Quality of initial data on natural gas composition and modelling techniques are verified.", + "Data_Quality_Reference": "Interstate Standard. GOST 30319.1-96. Natural Gas. Methods of Calculation of Physical Properties. Definitions of Physical Properties of Natural Gas, Its components and Processing Products. Moscow, IPK Izd-vo standartov] (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The parameter is relevant to CH4 and CO2 emission estimates.", + "Other_Comments": "", + "Data_Provider": "Nina Uvarova", + "Link": "", + "creation_date": "2022-03-14T08:00:32.020Z", + "last_change_date": "2022-03-14T08:00:32.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7350, + "fields": { + "EF_ID": 122119, + "IPCC_Category": "1.B.2.b - Natural Gas, 1.B.2.b.iii.1 - Exploration, 1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 volume fraction of commercial natural gas", + "Technology_Practices": "", + "Parameter_Conditions": "The value is derived under standard conditons 20 degrees centigrade and 1 atm.", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "The weight average parameter of the natural gas produced in the Russian Federation.", + "Value": "0.982", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "1 - Uvarova N.E., Ishkov A.G., Akopova G.S., Ginzburg V.A., Romanov K.V., Kruglova N.Y., Gytarsky M.L. The update of methane emission parameters for natural gas operations in Russia. Carbon Management. 2015. DOI 10.1080/17583004.2015.1049105. 2 - Uvarova N.E., Ginzburg V.A., Gytarsky M.L., Ishkov A.G., Romanov K.V., Akopova G.S., Kruglova N.Y. The update of greenhouse gas emission parameters for natural gas industry in Russia. Gas industry of Russia. 2015. ?7/725, ?.70-74 (in Russian).", + "English_Abstract": "The gas sector makes a significant contribution to fugitive emissions in the national greenhouse gas inventory of the Russian Federation. A cooperative research project by the Institute of Global Climate and Ecology, Gazprom VNIIGAZ Ltd. and Gazprom JSC is being conducted, aimed at the update of the parameters used for the estimation of methane emission due to natural gas extraction and pipeline transport, which are among the basic operations of the natural gas sector in the country. The update was performed based on average density and chemical content of the natural gas produced. The values derived were recalculated for the standard thermodynamic conditions. Following the update, the methane emissions were calculated with the incorporation of the parameters derived.", + "Lower_Bound": "-0.03%", + "Upper_Bound": "+0.03%", + "Data_Quality": "Quality of initial data on natural gas composition and modelling techniques are verified.", + "Data_Quality_Reference": "Interstate Standard. GOST 30319.1-96. Natural Gas. Methods of Calculation of Physical Properties. Definitions of Physical Properties of Natural Gas, Its components and Processing Products. Moscow, IPK Izd-vo standartov] (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The parameter is relevant to CH4 and CO2 emission estimates.", + "Other_Comments": "", + "Data_Provider": "Nina Uvarova", + "Link": "", + "creation_date": "2022-03-14T08:00:32.129Z", + "last_change_date": "2022-03-14T08:00:32.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7351, + "fields": { + "EF_ID": 122120, + "IPCC_Category": "1.B.2.b - Natural Gas, 1.B.2.b.iii.1 - Exploration, 1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 volume fraction of crude natural gas", + "Technology_Practices": "", + "Parameter_Conditions": "The value is derived under standard conditons 20 degrees centigrade and 1 atm.", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "The weight average parameter of the natural gas produced in the Russian Federation.", + "Value": "0.0063", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "1 - Uvarova N.E., Ishkov A.G., Akopova G.S., Ginzburg V.A., Romanov K.V., Kruglova N.Y., Gytarsky M.L. The update of methane emission parameters for natural gas operations in Russia. Carbon Management. 2015. DOI 10.1080/17583004.2015.1049105. 2 - Uvarova N.E., Ginzburg V.A., Gytarsky M.L., Ishkov A.G., Romanov K.V., Akopova G.S., Kruglova N.Y. The update of greenhouse gas emission parameters for natural gas industry in Russia. Gas industry of Russia. 2015. ?7/725, ?.70-74 (in Russian).", + "English_Abstract": "The gas sector makes a significant contribution to fugitive emissions in the national greenhouse gas inventory of the Russian Federation. A cooperative research project by the Institute of Global Climate and Ecology, Gazprom VNIIGAZ Ltd. and Gazprom JSC is being conducted, aimed at the update of the parameters used for the estimation of methane emission due to natural gas extraction and pipeline transport, which are among the basic operations of the natural gas sector in the country. The update was performed based on average density and chemical content of the natural gas produced. The values derived were recalculated for the standard thermodynamic conditions. Following the update, the methane emissions were calculated with the incorporation of the parameters derived.", + "Lower_Bound": "-18.13%", + "Upper_Bound": "+15.75%", + "Data_Quality": "Quality of initial data on natural gas composition and modelling techniques are verified.", + "Data_Quality_Reference": "Interstate Standard. GOST 30319.1-96. Natural Gas. Methods of Calculation of Physical Properties. Definitions of Physical Properties of Natural Gas, Its components and Processing Products. Moscow, IPK Izd-vo standartov] (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The parameter is relevant to CH4 and CO2 emission estimates.", + "Other_Comments": "", + "Data_Provider": "Nina Uvarova", + "Link": "", + "creation_date": "2022-03-14T08:00:32.246Z", + "last_change_date": "2022-03-14T08:00:32.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7352, + "fields": { + "EF_ID": 122121, + "IPCC_Category": "1.B.2.b - Natural Gas, 1.B.2.b.iii.1 - Exploration, 1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 volume fraction of commercial natural gas", + "Technology_Practices": "", + "Parameter_Conditions": "The value is derived under standard conditons 20 degrees centigrade and 1 atm.", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "The weight average parameter of the natural gas produced in the Russian Federation.", + "Value": "0.0004", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "1 - Uvarova N.E., Ishkov A.G., Akopova G.S., Ginzburg V.A., Romanov K.V., Kruglova N.Y., Gytarsky M.L. The update of methane emission parameters for natural gas operations in Russia. Carbon Management. 2015. DOI 10.1080/17583004.2015.1049105. 2 - Uvarova N.E., Ginzburg V.A., Gytarsky M.L., Ishkov A.G., Romanov K.V., Akopova G.S., Kruglova N.Y. The update of greenhouse gas emission parameters for natural gas industry in Russia. Gas industry of Russia. 2015. ?7/725, ?.70-74 (in Russian).", + "English_Abstract": "The gas sector makes a significant contribution to fugitive emissions in the national greenhouse gas inventory of the Russian Federation. A cooperative research project by the Institute of Global Climate and Ecology, Gazprom VNIIGAZ Ltd. and Gazprom JSC is being conducted, aimed at the update of the parameters used for the estimation of methane emission due to natural gas extraction and pipeline transport, which are among the basic operations of the natural gas sector in the country. The update was performed based on average density and chemical content of the natural gas produced. The values derived were recalculated for the standard thermodynamic conditions. Following the update, the methane emissions were calculated with the incorporation of the parameters derived.", + "Lower_Bound": "-0.96%", + "Upper_Bound": "+0.95%", + "Data_Quality": "Quality of initial data on natural gas composition and modelling techniques are verified.", + "Data_Quality_Reference": "Interstate Standard. GOST 30319.1-96. Natural Gas. Methods of Calculation of Physical Properties. Definitions of Physical Properties of Natural Gas, Its components and Processing Products. Moscow, IPK Izd-vo standartov] (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The parameter is relevant to CH4 and CO2 emission estimates.", + "Other_Comments": "", + "Data_Provider": "Nina Uvarova", + "Link": "", + "creation_date": "2022-03-14T08:00:32.355Z", + "last_change_date": "2022-03-14T08:00:32.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7353, + "fields": { + "EF_ID": 122122, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 EF for natural gas engines less 25 MWw", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "Engines equipped with oxidation catalysts for reducing the emission of CO", + "Other_Properties": "", + "Value": "481", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Only few measurements include CH4, therefore the emission factor for CH4 is based on a distribution for total unburned hydrocarbons calcualted by DGC. This distribution is established based on nine measurements and is further described in project report no.4 (Jørgensen et al., 2010b). The emission factor includes the elevated emission contribution during start-up and shut-down of the engines.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:32.456Z", + "last_change_date": "2022-03-14T08:00:32.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7354, + "fields": { + "EF_ID": 122123, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Modeled", + "Description": "CH4 EF for natural gas turbines less 25 MW", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "Almost all the gas turbines are equipped with low-NOx burners. One plant is equipped with SCR.", + "Other_Properties": "", + "Value": "1.7", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "No measurements include CH4 and NMVOC. The emission factors of CH4 and NMVOC are based on a distribution key for UHC, referenced to a previous study (Nielsen & Illerup, 2003).", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:32.532Z", + "last_change_date": "2022-03-14T08:00:32.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7355, + "fields": { + "EF_ID": 122124, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "METHANE", + "Fuel": "Other Biogas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 EF for biogas engines less 25 MW", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "434", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Only few measurements include CH4 and NMVOC. The emission factors for CH4 and NMVOC are based on a distribution key for total UHC established by DGC. This distribution is established based on three measurements as described in project report 4 (Jørgensenet al., 2010b).", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:32.633Z", + "last_change_date": "2022-03-14T08:00:32.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7356, + "fields": { + "EF_ID": 122125, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "METHANE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 EF for MSW (CHP less 25 MW)", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "The majority (67 %) of the waste was incinerated at plants equipped with wet desulphurisation. The share of waste incinerated at plants with semidry and dry desulphurisation is considerable with 24 % and 9 %, respectively. More than half of the waste was incinerated at plants equipped with only a filter bag for particle abatement. The remaining part of the waste was incinerated in plants with only an electrostatic precipitator or with both electrostatic precipitator and filter bag, see Figure 3.1. In 2006 68 % of the incinerated waste was incinerated at plants equipped with DeNOx (SNCR).", + "Other_Properties": "", + "Value": "0.34", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors for NMVOC and CH4 have been calculated based on a distribution from the IPCC Guidelines (IPCC,1996).", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:32.708Z", + "last_change_date": "2022-03-14T08:00:32.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7357, + "fields": { + "EF_ID": 122126, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "METHANE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 EF for straw (CHP less 25 MW)", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "Five of the plants are equipped with a filter bag and the sixth has an electrostatic precipitator.", + "Other_Properties": "", + "Value": "0.47", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:32.770Z", + "last_change_date": "2022-03-14T08:00:32.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7358, + "fields": { + "EF_ID": 122127, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 EF for wood (CHP less 25 MW)", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "The plants are equipped with either filter bag, electrostatic precipitator (ESP) or a wet scrubber. More than 80 % of the fuel consumption occurred at plants with ESP.", + "Other_Properties": "", + "Value": "3.1", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:32.859Z", + "last_change_date": "2022-03-14T08:00:32.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7359, + "fields": { + "EF_ID": 122128, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O EF for natural gas engines less 25 MW", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "Engines equipped with oxidation catalysts for reducing the emission of CO.", + "Other_Properties": "", + "Value": "0.58", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For N2O the emission factor calculated of 0.6 g per GJ is 56 % lower than the emission factor for the year 2000. This emission factor is still higher than the default IPCC 2006, which is 0.1 g per GJ (0.03-0.3 g per GJ). Instinctively an increase of the N2O emission factor would be expected due to the increased use of oxidation catalysts. However, since it is not possible to rule out that the change in emission level is due to changes in measurement technique, the new emission factor will be used for the entire time-series. The basis for calculating the N2O EF is better in this project than in the previous project.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:32.958Z", + "last_change_date": "2022-03-14T08:00:32.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7360, + "fields": { + "EF_ID": 122129, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O EF for natural gas turbines less 25 MW", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "Almost all the gas turbines are equipped with low-NOx burners. One plant is equipped with SCR.", + "Other_Properties": "", + "Value": "1", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For N2O the emission factor of 1.0 g per GJ is 53 % lower compared to the emission factor for 2000. All three measurements that the emission factor is based on are considerably lower than the emission factor for 2000. The new emission factor is still somewhat higher than the IPCC value (IPCC, 2006)", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:33.029Z", + "last_change_date": "2022-03-14T08:00:33.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7361, + "fields": { + "EF_ID": 122130, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Biogas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O EF for biogas engines less 25 MW", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor for N2O is three times higher than the emission factor for 2000. The old emission factor was only based on a single measurement, while the new emission factor is based on three measurements. Therefore the new emission factor will be used for the entire time-series.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:33.119Z", + "last_change_date": "2022-03-14T08:00:33.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7362, + "fields": { + "EF_ID": 122131, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "NITROUS OXIDE", + "Fuel": "Municipal Wastes (biomass fraction)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O EF for MSW (CHP less 25 MW)", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "The majority (67 %) of the waste was incinerated at plants equipped with wet desulphurisation. The share of waste incinerated at plants with semidry and dry desulphurisation is considerable with 24 % and 9 %, respectively. More than half of the waste was incinerated at plants equipped with only a filter bag for particle abatement. The remaining part of the waste was incinerated in plants with only an electrostatic precipitator or with both electrostatic precipitator and filter bag, see Figure 3.1. In 2006 68 % of the incinerated waste was incinerated at plants equipped with DeNOx (SNCR).", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:33.191Z", + "last_change_date": "2022-03-14T08:00:33.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7363, + "fields": { + "EF_ID": 122132, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O EF for straw (CHP less 25 MW)", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "Five of the plants are equipped with a filter bag and the sixth has an electrostatic precipitator.", + "Other_Properties": "", + "Value": "1.1", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O EF has been calculated to 1.1 g per GJ, is 20 % lower than the EF for year 2000. The previous measurements are generally slightly higher compared to the new ones. It has not been possible to clearly explain this apparent reduction. It cannot be ruled out that it is due to a change in measurement technique. Since there are no available explanations for the apparent decrease in EF,it has been decided to include both the new and previous measurements in calculating the EF. All measurements - both new and old - are above the detection limit. The calculated emission factor is slightly lower than the IPCC default range of 1.5-15 g per GJ (IPCC, 1996).", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:33.254Z", + "last_change_date": "2022-03-14T08:00:33.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7364, + "fields": { + "EF_ID": 122133, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O EF for wood (CHP less 25MW)", + "Technology_Practices": "CHP<25MW", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "The plants are equipped with either filter bag, electrostatic precipitator (ESP) or a wet scrubber. More than 80 % of the fuel consumption occurred at plants with ESP.", + "Other_Properties": "", + "Value": "0.83", + "Unit": "g/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Nielsen, M., Nielsen, O.-K. & Thomsen, M. 2010: Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 – Emission factors and emission inventory for decentralised CHP production. National Environmental Research Institute, Aarhus University. 113 pp. – NERI Technical report No. 786. http://www.dmu.dk/Pub/FR786.pdf.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For N2O the emission factor has been calculated to 0.8 g per GJ, which is identical to the previously used value.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://www2.dmu.dk/Pub/FR786.pdf", + "creation_date": "2022-03-14T08:00:33.503Z", + "last_change_date": "2022-03-14T08:00:33.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7365, + "fields": { + "EF_ID": 122134, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Landfill Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 EF for landfill gas, sewage treatment gas, biogas (Residential and Institutional sectors)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "185", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Germany NIR 2010 (p.145) and Aufbereitung von Daten der Emissionserklärungen gemäß 11. BImSchV aus dem Jahre 2004 für die Verwendung bei der UNFCCC- und UNECE-Berichterstattung. Teilbericht Stationäre Verbrennungsmotoren. Umweltbudesamt. 45/2009", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "EF uncertainty for comercial sector for gaseous fuels is -70 to +100%, for residential sector is -15 to +23%. NIR p.201", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.145 - For biogas, sewage gas, landfill gas and mine gas, an average CH4 emission factor of 185 kg/TJ was determined. For biogas, at least, it was possible to confirm that figure with data from emissions monitoring. In light of the lower methane concentrations of biogenic gases, the corresponding factor must be set lower for them than for natural gas.", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php and https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3887.pdf", + "creation_date": "2022-03-14T08:00:33.895Z", + "last_change_date": "2022-03-14T08:00:33.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7366, + "fields": { + "EF_ID": 122135, + "IPCC_Category": "1.A.1.a - Main Activity Electricity and Heat Production", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 EF for natural gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "309", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Germany NIR 2010 (p.145) and Aufbereitung von Daten der Emissionserklärungen gemäß 11. BImSchV aus dem Jahre 2004 für die Verwendung bei der UNFCCC- und UNECE-Berichterstattung. Teilbericht Stationäre Verbrennungsmotoren. Umweltbudesamt. 45/2009", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "Uncertainty is +/-50% in NIR, and more than 1 order in ref.paper.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.145 special CH4 EFs for gas engines The average - 309 kg/TJ, is markedly higher than 0.3 kg/TJ, which is the same as the value for steam turbine power stations. With emissions monitoring data, it was possible to confirm that significant methane leakage occurs via leakage of unburned natural gas. The pertinent measurements can vary considerably, in keeping with the type of engine and engine maintenance standards involved", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php and https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3887.pdf", + "creation_date": "2022-03-14T08:00:33.962Z", + "last_change_date": "2022-03-14T08:00:33.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7367, + "fields": { + "EF_ID": 122136, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Landfill Gas", + "Parameter_Type": "Measured", + "Description": "CH4 EF for natural gas fired engines and biogas fired engines", + "Technology_Practices": "Natural/bio-gas fired engines - Otto or Diesel engines", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "mg/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse gas emissions in Finland 1990-2007, Statistics Finland, 2009 (p.66)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Pavel Shermanau", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:00:34.082Z", + "last_change_date": "2022-03-14T08:00:34.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7368, + "fields": { + "EF_ID": 122147, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "Measured", + "Description": "Carbon content of cotton wastes from the ginning procedure from textile industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The study was conducted for a textile factory in Greece.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.8", + "Unit": "% by weight, dry basis", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Zabaniotou, K. Andreou. Development of alternative energy sources for GHG emissions reduction in the textile industry by energy recovery from cotton ginning waste. Journal of Cleaner Production 18 (2010) 784–790", + "English_Abstract": "The agricultural sector and primarily its cotton subsector are of great importance for Greece, due to the intensive agricultural activities. The wastes from cotton ginning plants are also considerable and can be valorized for bioenergy production. The substitution of conventional by green fuels, which can be produced from cotton ginning wastes, is a step towards: (a) economic and environmental sustainability for the textile industry and (b) the development of alternative energy supplies, contributing to the reduction of GHG emissions. Furthermore, it consists an especially attractive opportunity to invest in rural areas. The present paper concerns the feasibility study for energy recovery from cotton ginning waste with GHG emissions reduction in a textile plant located in Northern Greece. The aim was to replace part of heavy fuel oil used for the thermal needs of the plant by biomass. The results showed that the most economically interesting energy option for a bioenergy unit in the above textile plant is 5 MW for the coverage of the 52% of the plant`s thermal requirements.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This C content corresponds to cotton wastes from the ginning procedure with a NCV of 12.184 TJ/Gg", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.174Z", + "last_change_date": "2022-03-14T08:00:34.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7369, + "fields": { + "EF_ID": 122148, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Primary Solid Biomass", + "Parameter_Type": "Measured", + "Description": "Net calorific value of cotton wastes from the ginning procedure from textile industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "The study was conducted for a textile factory in Greece.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12184", + "Unit": "kJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Zabaniotou, K. Andreou. Development of alternative energy sources for GHG emissions reduction in the textile industry by energy recovery from cotton ginning waste. Journal of Cleaner Production 18 (2010) 784–790", + "English_Abstract": "The agricultural sector and primarily its cotton subsector are of great importance for Greece, due to the intensive agricultural activities. The wastes from cotton ginning plants are also considerable and can be valorized for bioenergy production. The substitution of conventional by green fuels, which can be produced from cotton ginning wastes, is a step towards: (a) economic and environmental sustainability for the textile industry and (b) the development of alternative energy supplies, contributing to the reduction of GHG emissions. Furthermore, it consists an especially attractive opportunity to invest in rural areas. The present paper concerns the feasibility study for energy recovery from cotton ginning waste with GHG emissions reduction in a textile plant located in Northern Greece. The aim was to replace part of heavy fuel oil used for the thermal needs of the plant by biomass. The results showed that the most economically interesting energy option for a bioenergy unit in the above textile plant is 5 MW for the coverage of the 52% of the plant`s thermal requirements.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The net calorific value was determined in relevance with the high calorific value and the humidity for cotton wastes from the ginning procedure with a C content of 38.8% (by weight, dry basis)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.237Z", + "last_change_date": "2022-03-14T08:00:34.237Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7370, + "fields": { + "EF_ID": 122149, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission factor of Aviation gasoline", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.0", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.333Z", + "last_change_date": "2022-03-14T08:00:34.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7371, + "fields": { + "EF_ID": 122150, + "IPCC_Category": "1.A.3.a - Civil Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission factor of Jet Kerosene", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71.5", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.408Z", + "last_change_date": "2022-03-14T08:00:34.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7372, + "fields": { + "EF_ID": 122151, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission factor of (bio) Petrol", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.0", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.479Z", + "last_change_date": "2022-03-14T08:00:34.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7373, + "fields": { + "EF_ID": 122152, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission factor of (bio) Diesel fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74.3", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.554Z", + "last_change_date": "2022-03-14T08:00:34.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7374, + "fields": { + "EF_ID": 122153, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission factor of LPG", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66.7", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.621Z", + "last_change_date": "2022-03-14T08:00:34.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7375, + "fields": { + "EF_ID": 122154, + "IPCC_Category": "1.A.5.b - Mobile", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission factor of Jet Kerosine, Ministry of Defence of the Netherlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.9", + "Unit": "g/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Defence, various years from 1999 onwards; Annual Environmental Reports of the Ministry of Defence. Compiled by the Coördinator Ruimtelijke Ordening en Milieuzaken, The Hague. www.defensie.nl ; choose “ZOEKEN”; zoeken naar: Milieujaarverslag.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.687Z", + "last_change_date": "2022-03-14T08:00:34.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7376, + "fields": { + "EF_ID": 122155, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of Coking Coal", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94.0", + "Unit": "CO2 kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.786Z", + "last_change_date": "2022-03-14T08:00:34.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7377, + "fields": { + "EF_ID": 122156, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of Coking Coal (used in coke oven)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95.4", + "Unit": "CO2 kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.862Z", + "last_change_date": "2022-03-14T08:00:34.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7378, + "fields": { + "EF_ID": 122157, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of Coking Coal (used in blast furnaces)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "89.8", + "Unit": "CO2 kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:34.937Z", + "last_change_date": "2022-03-14T08:00:34.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7379, + "fields": { + "EF_ID": 122158, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of Coke Oven/Gas Coke", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "111.9", + "Unit": "CO2 kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:35.021Z", + "last_change_date": "2022-03-14T08:00:35.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7380, + "fields": { + "EF_ID": 122159, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of Coke Oven gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.2", + "Unit": "CO2 kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:35.091Z", + "last_change_date": "2022-03-14T08:00:35.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7381, + "fields": { + "EF_ID": 122160, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of Blast Furnace Gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "247.4", + "Unit": "CO2 kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:35.157Z", + "last_change_date": "2022-03-14T08:00:35.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7382, + "fields": { + "EF_ID": 122161, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of Natural Gas (dry)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.5", + "Unit": "CO2 kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Vreuls, H.H.J., and P.J. Zijlema, 2012: The Netherlands` list of fuels and standard CO2 emission factors, version January 2012, NL Agency, UEMB1234690, Utrecht", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:35.233Z", + "last_change_date": "2022-03-14T08:00:35.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7383, + "fields": { + "EF_ID": 122162, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of Waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106.1", + "Unit": "CO2 kg/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "RENEWABLE ENERGY MONITORING PROTOCOL Update 2010 Methodology for the calculation and recording of the amounts of energy produced from renewable sources in the Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values are applicable for the emission year 2010. The percentage of biogenic in the heating value is 53%. The percentage of biogenic in the emission factor is 63%. In the emission year 2009 the heating value was 10.0 MJ/kg (51% biogenic) and the emission factor was 105.7 kg/GJ (62% biogenic). In the emission year 2008 the heating value was 10.3 MJ/kg (49% biogenic) and the emission factor was 97.5 kg/GJ (63% biogenic).", + "Other_Comments": "The composition of the waste is determined per waste stream (household waste and several others). In 2010, household waste accounte for 57.7% of total waste incinerated (mass-basis)", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:35.291Z", + "last_change_date": "2022-03-14T08:00:35.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7384, + "fields": { + "EF_ID": 122163, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Diesel engines in the capacity of 500kW to 1500kW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 14.36 -15.28%, CO2 4.72 -5.58%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.088", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 126-136", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-26.1%", + "Upper_Bound": "+24.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 diesel engines. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:35.390Z", + "last_change_date": "2022-03-14T08:00:35.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7385, + "fields": { + "EF_ID": 122164, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Diesel engines in the capacity of 500kW to 1500kW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 14.36 -15.28%, CO2 4.72 -5.58%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.188", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 126-136", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-79.5%", + "Upper_Bound": "+152.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 diesel engines. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:35.487Z", + "last_change_date": "2022-03-14T08:00:35.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7386, + "fields": { + "EF_ID": 122165, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with combined cycle in the capacity of 150MW to 300MW", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 14.23-16.02%, CO2 2.96 -3.90%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.184", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-7.4%", + "Upper_Bound": "+10.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 power boilers with combined cycle. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:35.549Z", + "last_change_date": "2022-03-14T08:00:35.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7387, + "fields": { + "EF_ID": 122166, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with combined cycle in the capacity of 150MW to 300MW", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 14.23-16.02%, CO2 2.96 -3.90%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.993", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-106.5%", + "Upper_Bound": "+197%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 power boilers with combined cycle. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:35.641Z", + "last_change_date": "2022-03-14T08:00:35.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7388, + "fields": { + "EF_ID": 122167, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with corner(tangential) firing in the capacity of 250MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.96%, CO2 10.02%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.191", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-0.8%", + "Upper_Bound": "+0.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 power boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:35.736Z", + "last_change_date": "2022-03-14T08:00:35.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7389, + "fields": { + "EF_ID": 122168, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with corner(tangential) firing in the capacity of 250MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.96%, CO2 10.02%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.646", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-0.8%", + "Upper_Bound": "+0.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 power boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:35.795Z", + "last_change_date": "2022-03-14T08:00:35.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7390, + "fields": { + "EF_ID": 122169, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with tangential firing in the capacity of 500MW to 560MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.96 - 6.14%, CO2 11.83 -13.20%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.01", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-45.3%", + "Upper_Bound": "+45.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:35.866Z", + "last_change_date": "2022-03-14T08:00:35.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7391, + "fields": { + "EF_ID": 122170, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with tangential firing in the capacity of 500MW to 560MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.96 - 6.14%, CO2 11.83 -13.20%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.027", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-2.2%", + "Upper_Bound": "+2.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:35.941Z", + "last_change_date": "2022-03-14T08:00:35.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7392, + "fields": { + "EF_ID": 122171, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with opposed wall firing in the capacity of 250MW to 800MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 3.80-5.20%, CO2 13.23-16.80%,CO 0 -436ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.304", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-56.9%", + "Upper_Bound": "+117.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.046Z", + "last_change_date": "2022-03-14T08:00:36.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7393, + "fields": { + "EF_ID": 122172, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with opposed wall firing in the capacity of 250MW to 800MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 3.80-5.20%, CO2 13.23-16.80%,CO 0 -436ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-2.1%", + "Upper_Bound": "+2.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.121Z", + "last_change_date": "2022-03-14T08:00:36.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7394, + "fields": { + "EF_ID": 122173, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with circulating fluidized bed in the capacity of 200MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 3.65%, CO2 14.5%, CO 59.9ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.707", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-21.3%", + "Upper_Bound": "+21.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 fludized power boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.191Z", + "last_change_date": "2022-03-14T08:00:36.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7395, + "fields": { + "EF_ID": 122174, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with circulating fluidized bed in the capacity of 200MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 3.65%, CO2 14.5%, CO 59.9ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.056", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-21.8%", + "Upper_Bound": "+21.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 fludized power boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.257Z", + "last_change_date": "2022-03-14T08:00:36.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7396, + "fields": { + "EF_ID": 122175, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with arch firing in the capacity of 125MW to 200MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.27-12.28%, CO2 9.08-13.82%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.507", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-34.9%", + "Upper_Bound": "+34.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.347Z", + "last_change_date": "2022-03-14T08:00:36.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7397, + "fields": { + "EF_ID": 122176, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with arch firing in the capacity of 125MW to 200MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.27-12.28%, CO2 9.08-13.82%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.178", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-94.7%", + "Upper_Bound": "+94.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.429Z", + "last_change_date": "2022-03-14T08:00:36.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7398, + "fields": { + "EF_ID": 122177, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Internal marine engine in the capacity of 10MW to 40MW", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 12.77-13.94%, CO2 4.72-5.06%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.969", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-0.7%", + "Upper_Bound": "+0.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 internal engines. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.508Z", + "last_change_date": "2022-03-14T08:00:36.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7399, + "fields": { + "EF_ID": 122178, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Internal marine engine in the capacity of 10MW to 40MW", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 12.77-13.94%, CO2 4.72-5.06%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.365", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-13.5%", + "Upper_Bound": "+13.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 internal engines. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.574Z", + "last_change_date": "2022-03-14T08:00:36.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7400, + "fields": { + "EF_ID": 122179, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with Front wall firing in the capacity of 325MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.2%, CO2 11.95%,CO 97ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.418", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-24.5%", + "Upper_Bound": "+24.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 power boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.666Z", + "last_change_date": "2022-03-14T08:00:36.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7401, + "fields": { + "EF_ID": 122180, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with Front wall firing in the capacity of 325MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.2%, CO2 11.95%,CO 97ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-0.4%", + "Upper_Bound": "+0.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 power boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.754Z", + "last_change_date": "2022-03-14T08:00:36.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7402, + "fields": { + "EF_ID": 122181, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with corner(tangential) firing in the capacity of 75MW to 100MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.15-5.14%, CO2 12.47-13.73%,CO 0 -62.1ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.411", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-2.7%", + "Upper_Bound": "+2.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.824Z", + "last_change_date": "2022-03-14T08:00:36.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7403, + "fields": { + "EF_ID": 122182, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with corner(tangential) firing in the capacity of 75MW to 100MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.15-5.14%, CO2 12.47-13.73%,CO 0 -62.1ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.713", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-68.9%", + "Upper_Bound": "+68.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.891Z", + "last_change_date": "2022-03-14T08:00:36.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7404, + "fields": { + "EF_ID": 122183, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with opposed wall firing in the capacity of 200MW to 400MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.2 - 5.91%, CO2 11.12 - 14.22%,CO 0 -197.45ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.332", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-47%", + "Upper_Bound": "+58.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:36.992Z", + "last_change_date": "2022-03-14T08:00:36.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7405, + "fields": { + "EF_ID": 122184, + "IPCC_Category": "1.A.1.a.i - Electricity Generation", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for electricity generation", + "Technology_Practices": "Power Boiler with opposed wall firing in the capacity of 200MW to 400MW", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.2 - 5.91%, CO2 11.12 - 14.22%,CO 0 -197.45ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 84-85", + "English_Abstract": "See the attached file Summary-1.A.1.a.i(20111210-Korea-KS).doc", + "Lower_Bound": "-50.9%", + "Upper_Bound": "+93.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 power boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.i.pdf", + "creation_date": "2022-03-14T08:00:37.083Z", + "last_change_date": "2022-03-14T08:00:37.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7406, + "fields": { + "EF_ID": 122185, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "NITROUS OXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for combined heat and power generation", + "Technology_Practices": "Steam turbine in the capacity of 55MW with 200t/h CFBC boiler", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 11.81%, CO2 9.13%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.111", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 105-119", + "English_Abstract": "See the attached file Summary-1.A.1.a.ii(Korea-20111210-KS).doc", + "Lower_Bound": "-0.7%", + "Upper_Bound": "+0.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is only one value of GT.The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.ii.pdf", + "creation_date": "2022-03-14T08:00:37.149Z", + "last_change_date": "2022-03-14T08:00:37.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7407, + "fields": { + "EF_ID": 122186, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "METHANE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for combined heat and power generation", + "Technology_Practices": "Steam turbine in the capacity of 55MW with 200t/h CFBC boiler", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 11.81%, CO2 9.13%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.025", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 105-119", + "English_Abstract": "See the attached file Summary-1.A.1.a.ii(Korea-20111210-KS).doc", + "Lower_Bound": "-20.3%", + "Upper_Bound": "+20.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is only one value of GT.The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.ii.pdf", + "creation_date": "2022-03-14T08:00:37.224Z", + "last_change_date": "2022-03-14T08:00:37.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7408, + "fields": { + "EF_ID": 122187, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for combined heat and power generation", + "Technology_Practices": "Gas turbine in the capacity of 2.8 MW with heat recovery boiler", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 17.47%, CO2 2.15%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.832", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 135-136", + "English_Abstract": "See the attached file Summary-1.A.1.a.ii(Korea-20111210-KS).doc", + "Lower_Bound": "-26.8%", + "Upper_Bound": "+26.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is only one value of GT.The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.ii.pdf", + "creation_date": "2022-03-14T08:00:37.320Z", + "last_change_date": "2022-03-14T08:00:37.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7409, + "fields": { + "EF_ID": 122188, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for combined heat and power generation", + "Technology_Practices": "Gas turbine in the capacity of 2.8 MW with heat recovery boiler", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 17.47%, CO2 2.15%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.258", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 135-136", + "English_Abstract": "See the attached file Summary-1.A.1.a.ii(Korea-20111210-KS).doc", + "Lower_Bound": "-26.9%", + "Upper_Bound": "+26.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is only one value of GT. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.ii.pdf", + "creation_date": "2022-03-14T08:00:37.396Z", + "last_change_date": "2022-03-14T08:00:37.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7410, + "fields": { + "EF_ID": 122189, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for combined heat and power generation", + "Technology_Practices": "Gas engine in the capacity of 85kW to 356kW with heat recovery system", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 3.1 - 11.97%, CO2 4.82 - 9.81%,CO 322 - 4866ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.828", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 132-136", + "English_Abstract": "See the attached file Summary-1.A.1.a.ii(Korea-20111210-KS).doc", + "Lower_Bound": "-71.8%", + "Upper_Bound": "+141.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 gas engines. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.ii.pdf", + "creation_date": "2022-03-14T08:00:37.474Z", + "last_change_date": "2022-03-14T08:00:37.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7411, + "fields": { + "EF_ID": 122190, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for combined heat and power generation", + "Technology_Practices": "Gas engine in the capacity of 85kW to 356kW with heat recovery system", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 3.1 - 11.97%, CO2 4.82 - 9.81%,CO 322 - 4866ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "149.77", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 132-136", + "English_Abstract": "See the attached file Summary-1.A.1.a.ii(Korea-20111210-KS).doc", + "Lower_Bound": "-41.1%", + "Upper_Bound": "+119%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 gas engines. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.1.a.ii.pdf", + "creation_date": "2022-03-14T08:00:37.549Z", + "last_change_date": "2022-03-14T08:00:37.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7412, + "fields": { + "EF_ID": 122191, + "IPCC_Category": "1.A.2.a - Iron and Steel", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for sintering furnace in iron industry", + "Technology_Practices": "sintering furnace for iron making", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 13.5%, CO2 6.68%, CO 6982.0ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.275", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.a(20111210-Korea-KS).doc", + "Lower_Bound": "-2.7%", + "Upper_Bound": "+2.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 sintering furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties. The directly-measured volume rate is 6,978 Nm3/min, combustion rate is 76.3 Gcal/h.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.a.pdf", + "creation_date": "2022-03-14T08:00:37.647Z", + "last_change_date": "2022-03-14T08:00:37.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7413, + "fields": { + "EF_ID": 122192, + "IPCC_Category": "1.A.2.a - Iron and Steel", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for sintering furnace in iron industry", + "Technology_Practices": "sintering furnace for iron making", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 13.5%, CO2 6.68%, CO 6982.0ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66.46", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.a(20111210-Korea-KS).doc", + "Lower_Bound": "-2.5%", + "Upper_Bound": "+2.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 sintering furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties. The directly-measured volume rate is 6,978 Nm3/min, combustion rate is 76.3 Gcal/h.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.a.pdf", + "creation_date": "2022-03-14T08:00:37.729Z", + "last_change_date": "2022-03-14T08:00:37.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7414, + "fields": { + "EF_ID": 122193, + "IPCC_Category": "1.A.2.a - Iron and Steel", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for cupola of cast iron", + "Technology_Practices": "cupola for cast iron", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 12.1-13.4%, CO2 2.23-4.29%, CO 225.20-273.20ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.724", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.a(20111210-Korea-KS).doc", + "Lower_Bound": "-12.9%", + "Upper_Bound": "+12.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 cupolas. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.a.pdf", + "creation_date": "2022-03-14T08:00:37.791Z", + "last_change_date": "2022-03-14T08:00:37.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7415, + "fields": { + "EF_ID": 122194, + "IPCC_Category": "1.A.2.a - Iron and Steel", + "Gases": "METHANE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for cupola of cast iron", + "Technology_Practices": "cupola for cast iron", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 12.1-13.4%, CO2 2.23-4.29%, CO 225.20-273.20ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.963", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.a(20111210-Korea-KS).doc", + "Lower_Bound": "-59%", + "Upper_Bound": "+59%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 cupolas. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.a.pdf", + "creation_date": "2022-03-14T08:00:37.858Z", + "last_change_date": "2022-03-14T08:00:37.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7416, + "fields": { + "EF_ID": 122195, + "IPCC_Category": "1.A.2.a - Iron and Steel", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for reheating furnace", + "Technology_Practices": "Steel reheating furnace with the pusher or walking beam type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.90-9.94%, CO2 7.88-8.33%, CO 52.3-107.01ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.376", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.a(20111210-Korea-KS).doc", + "Lower_Bound": "-4%", + "Upper_Bound": "+4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 reheating furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.a.pdf", + "creation_date": "2022-03-14T08:00:37.949Z", + "last_change_date": "2022-03-14T08:00:37.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7417, + "fields": { + "EF_ID": 122196, + "IPCC_Category": "1.A.2.a - Iron and Steel", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for reheating furnaces", + "Technology_Practices": "Steel reheating furnace with the pusher or walking beam type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.90-9.94%, CO2 7.88-8.33%, CO 52.3-107.01ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.235", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.a(20111210-Korea-KS).doc", + "Lower_Bound": "-63.6%", + "Upper_Bound": "+63.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 reheating furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.a.pdf", + "creation_date": "2022-03-14T08:00:38.029Z", + "last_change_date": "2022-03-14T08:00:38.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7418, + "fields": { + "EF_ID": 122197, + "IPCC_Category": "1.A.2.a - Iron and Steel", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for combustion facilities for reheating furnace", + "Technology_Practices": "Steel reheating furnace with the pusher or walking beam type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.86-12.2%, CO2 8.06 - 10.31%, CO 86.8 -121.84ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.377", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.a(20111210-Korea-KS).doc", + "Lower_Bound": "-14.4%", + "Upper_Bound": "+27.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 reheating furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.a.pdf", + "creation_date": "2022-03-14T08:00:38.091Z", + "last_change_date": "2022-03-14T08:00:38.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7419, + "fields": { + "EF_ID": 122198, + "IPCC_Category": "1.A.2.a - Iron and Steel", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for combustion facilities for reheating furnaces", + "Technology_Practices": "Steel reheating furnace with the pusher or walking beam type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.86-12.2%, CO2 8.06 - 10.31%, CO 86.8 -121.84ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.531", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.a(20111210-Korea-KS).doc", + "Lower_Bound": "-79.5%", + "Upper_Bound": "+178%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 reheating furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.a.pdf", + "creation_date": "2022-03-14T08:00:38.158Z", + "last_change_date": "2022-03-14T08:00:38.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7420, + "fields": { + "EF_ID": 122199, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for indusrial boiler", + "Technology_Practices": "industrial boiler", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.64%, CO2 14.43%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.186", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-0.9%", + "Upper_Bound": "+0.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.250Z", + "last_change_date": "2022-03-14T08:00:38.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7421, + "fields": { + "EF_ID": 122200, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for indusrial boiler", + "Technology_Practices": "industrial boiler", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.64%, CO2 14.43%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.028", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-0.4%", + "Upper_Bound": "+0.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.329Z", + "last_change_date": "2022-03-14T08:00:38.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7422, + "fields": { + "EF_ID": 122201, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for lead melting furnace", + "Technology_Practices": "melting furnace for lead", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 7.18%, CO2 7.58%, CO 115.36ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.915", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-1.6%", + "Upper_Bound": "+1.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of lead melting furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.391Z", + "last_change_date": "2022-03-14T08:00:38.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7423, + "fields": { + "EF_ID": 122202, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for lead melting furnace", + "Technology_Practices": "melting furnace for lead", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 7.18%, CO2 7.58%, CO 115.36ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.536", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-5.3%", + "Upper_Bound": "+5.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of lead melting furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.458Z", + "last_change_date": "2022-03-14T08:00:38.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7424, + "fields": { + "EF_ID": 122203, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.56%, CO2 10.59%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.551", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-1%", + "Upper_Bound": "+1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.594Z", + "last_change_date": "2022-03-14T08:00:38.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7425, + "fields": { + "EF_ID": 122204, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.56%, CO2 10.59%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.015", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-0.4%", + "Upper_Bound": "+0.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.658Z", + "last_change_date": "2022-03-14T08:00:38.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7426, + "fields": { + "EF_ID": 122205, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for reheating furnaces for aluminium", + "Technology_Practices": "reheating furnaces for aluminium", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 11.55%, CO2 5.16%,CO 168.27ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.422", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-3.3%", + "Upper_Bound": "+3.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 reheating furnace for aluminium. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.724Z", + "last_change_date": "2022-03-14T08:00:38.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7427, + "fields": { + "EF_ID": 122206, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for reheating furnaces for aluminium", + "Technology_Practices": "reheating furnaces for aluminium", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.2%, CO2 11.95%,CO 97ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.758", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-1.4%", + "Upper_Bound": "+1.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 reheating furnace for aluminium. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.799Z", + "last_change_date": "2022-03-14T08:00:38.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7428, + "fields": { + "EF_ID": 122207, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for melting furnaces for aluminium", + "Technology_Practices": "melting furnaces for aluminium", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 3.68-14.58%, CO2 0.56-7.04%, CO 2.24-178.62ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.778", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-80.4%", + "Upper_Bound": "+123.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 8 melting furnaces for aluminium. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.897Z", + "last_change_date": "2022-03-14T08:00:38.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7429, + "fields": { + "EF_ID": 122208, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for melting furnaces for aluminium", + "Technology_Practices": "melting furnaces for aluminium", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 3.68-14.58%, CO2 0.56-7.04%, CO 2.24-178.62ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.368", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-53.6%", + "Upper_Bound": "+76.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 8 melting furnaces for aluminium. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:38.971Z", + "last_change_date": "2022-03-14T08:00:38.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7430, + "fields": { + "EF_ID": 122209, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for lead melting furnace", + "Technology_Practices": "melting furnace for lead", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.11-5.56%, CO2 7.78-8.17%, CO 10.76-30.56ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.885", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-81.5%", + "Upper_Bound": "+81.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 lead melting furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:39.049Z", + "last_change_date": "2022-03-14T08:00:39.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7431, + "fields": { + "EF_ID": 122210, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for lead melting furnace", + "Technology_Practices": "melting furnace for lead", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.11-5.56%, CO2 7.78-8.17%, CO 10.76-30.56ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.526", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-51.5%", + "Upper_Bound": "+51.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 lead melting furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:39.133Z", + "last_change_date": "2022-03-14T08:00:39.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7432, + "fields": { + "EF_ID": 122211, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for copper melting furnace", + "Technology_Practices": "copper melting furnace", + "Parameter_Conditions": "Load during measurement about 60% -80%, Flue gas(dry) : O2 7.85-16.52%, CO2 1.21-8.82%, CO 235.63-3564.3ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.925", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-79.9%", + "Upper_Bound": "+70.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 copper melting furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:39.249Z", + "last_change_date": "2022-03-14T08:00:39.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7433, + "fields": { + "EF_ID": 122212, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for copper melting furnace", + "Technology_Practices": "copper melting furnace", + "Parameter_Conditions": "Load during measurement about 60% -80%, Flue gas(dry) : O2 7.85-16.52%, CO2 1.21-8.82%, CO 235.63-3564.3ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62.801", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-96%", + "Upper_Bound": "+154.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 copper melting furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:39.329Z", + "last_change_date": "2022-03-14T08:00:39.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7434, + "fields": { + "EF_ID": 122213, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for melting furnace for aluminium", + "Technology_Practices": "melting furnace for aluminium", + "Parameter_Conditions": "Load during measurement about 60% -90%, Flue gas(dry) : O2 4.81-11.63%, CO2 8.14-11.95%,CO 27.15-106.05ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.78", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-24.3%", + "Upper_Bound": "+24.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 melting furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:39.391Z", + "last_change_date": "2022-03-14T08:00:39.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7435, + "fields": { + "EF_ID": 122214, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for melting furnace for aluminium", + "Technology_Practices": "melting furnace for aluminium", + "Parameter_Conditions": "Load during measurement about 60% -90%, Flue gas(dry) : O2 4.81-11.63%, CO2 8.14-11.95%,CO 27.15-106.05ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.749", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-85.3%", + "Upper_Bound": "+85.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 melting furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:39.466Z", + "last_change_date": "2022-03-14T08:00:39.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7436, + "fields": { + "EF_ID": 122215, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for melting furnace for copper", + "Technology_Practices": "melting furnace for copper", + "Parameter_Conditions": "Load during measurement about 70% -90%, Flue gas(dry) : O2 19.33%, CO2 0.21%,CO 372.87ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.293", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-17.4%", + "Upper_Bound": "+17.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 copper melting furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:39.567Z", + "last_change_date": "2022-03-14T08:00:39.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7437, + "fields": { + "EF_ID": 122216, + "IPCC_Category": "1.A.2.b - Non-Ferrous Metals", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for melting furnace for copper", + "Technology_Practices": "melting furnace for copper", + "Parameter_Conditions": "Load during measurement about 70% -90%, Flue gas(dry) : O2 19.33%, CO2 0.21%,CO 372.87ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "362.89", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 77-136", + "English_Abstract": "See the attached file Summary-1.A.2.b(20111210-Korea-KS).doc", + "Lower_Bound": "-21.8%", + "Upper_Bound": "+21.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 copper melting furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.b.pdf", + "creation_date": "2022-03-14T08:00:39.654Z", + "last_change_date": "2022-03-14T08:00:39.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7438, + "fields": { + "EF_ID": 122217, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.49-9.92%, CO2 6.39-9.25%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.236", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-99.2%", + "Upper_Bound": "+89%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:39.721Z", + "last_change_date": "2022-03-14T08:00:39.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7439, + "fields": { + "EF_ID": 122218, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.49-9.92%, CO2 6.39-9.25%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-9.9%", + "Upper_Bound": "+19.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:39.788Z", + "last_change_date": "2022-03-14T08:00:39.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7440, + "fields": { + "EF_ID": 122219, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.53-14.14%, CO2 5.52-12.81%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.007", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-44%", + "Upper_Bound": "+54.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 8 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:39.885Z", + "last_change_date": "2022-03-14T08:00:39.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7441, + "fields": { + "EF_ID": 122220, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.53-14.14%, CO2 5.52-12.81%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.331", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-87.3%", + "Upper_Bound": "+277.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of of 8 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:39.963Z", + "last_change_date": "2022-03-14T08:00:39.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7442, + "fields": { + "EF_ID": 122221, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.48%, CO2 11.21%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-27.8%", + "Upper_Bound": "+27.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.029Z", + "last_change_date": "2022-03-14T08:00:40.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7443, + "fields": { + "EF_ID": 122222, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.48%, CO2 11.21%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-27.8%", + "Upper_Bound": "+27.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.096Z", + "last_change_date": "2022-03-14T08:00:40.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7444, + "fields": { + "EF_ID": 122223, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 7.02%, CO2 14.04%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.096", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-28.1%", + "Upper_Bound": "+28.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.196Z", + "last_change_date": "2022-03-14T08:00:40.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7445, + "fields": { + "EF_ID": 122224, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 7.02%, CO2 14.04%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.193", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-29.4%", + "Upper_Bound": "+29.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.299Z", + "last_change_date": "2022-03-14T08:00:40.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7446, + "fields": { + "EF_ID": 122225, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boilers", + "Technology_Practices": "industrial boiler in the water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 12.1%, CO2 8.5%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.094", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-27.8%", + "Upper_Bound": "+27.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.363Z", + "last_change_date": "2022-03-14T08:00:40.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7447, + "fields": { + "EF_ID": 122226, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Naphtha", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boilers", + "Technology_Practices": "industrial boiler in the water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 12.1%, CO2 8.5%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.021", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-27.8%", + "Upper_Bound": "+27.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.421Z", + "last_change_date": "2022-03-14T08:00:40.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7448, + "fields": { + "EF_ID": 122227, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace for chemicals", + "Technology_Practices": "drying furnace in the type of conveyor belt", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 9.81-19.85%, CO2 0.01-6.93%, CO 76.23-445.6ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.277", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-68.3%", + "Upper_Bound": "+115.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 5 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.515Z", + "last_change_date": "2022-03-14T08:00:40.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7449, + "fields": { + "EF_ID": 122228, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace for chemicals", + "Technology_Practices": "drying furnace in the type of conveyor belt", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 9.81-19.85%, CO2 0.01-6.93%, CO 76.23-445.6ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.807", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-91.4%", + "Upper_Bound": "+256.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 5 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.596Z", + "last_change_date": "2022-03-14T08:00:40.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7450, + "fields": { + "EF_ID": 122229, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace for chemicals", + "Technology_Practices": "drying furnace in the type of conveyor belt", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 17.3-18.94%, CO2 0.00-1.6%, CO 132.1-135.5 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.742", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-27.2%", + "Upper_Bound": "+27.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.671Z", + "last_change_date": "2022-03-14T08:00:40.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7451, + "fields": { + "EF_ID": 122230, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace for chemicals", + "Technology_Practices": "drying furnace in the type of conveyor belt", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 17.3-18.94%, CO2 0.00-1.6%, CO 132.1-135.5 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.556", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-31%", + "Upper_Bound": "+30.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.746Z", + "last_change_date": "2022-03-14T08:00:40.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7452, + "fields": { + "EF_ID": 122231, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace of fertilizers", + "Technology_Practices": "Drying furnace of fertilizers in the band type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 11.84%, CO2 4.86%,CO 184.98ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.761", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-0.8%", + "Upper_Bound": "+0.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 drying furnace for fertilizers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.850Z", + "last_change_date": "2022-03-14T08:00:40.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7453, + "fields": { + "EF_ID": 122232, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace of fertilizers", + "Technology_Practices": "Drying furnace of fertilizers in the band type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 11.84%, CO2 4.86%,CO 184.98ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.309", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-0.6%", + "Upper_Bound": "+0.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 drying furnace for fertilizers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:40.938Z", + "last_change_date": "2022-03-14T08:00:40.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7454, + "fields": { + "EF_ID": 122233, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace of fertilizers", + "Technology_Practices": "Drying furnace of fertilizers in the band type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 9.00-19.65%, CO2 0.22-8.42% , CO 83.6-183.48ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.197", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-75.7%", + "Upper_Bound": "+40.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:41.004Z", + "last_change_date": "2022-03-14T08:00:41.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7455, + "fields": { + "EF_ID": 122234, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace of fertilizers", + "Technology_Practices": "Drying furnace of fertilizers in the band type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 9.00-19.65%, CO2 0.22-8.42% , CO 83.6-183.48ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.723", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-89.5%", + "Upper_Bound": "+168.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:41.071Z", + "last_change_date": "2022-03-14T08:00:41.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7456, + "fields": { + "EF_ID": 122235, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "NITROUS OXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace of fertilizers", + "Technology_Practices": "Drying furnace in the type of rotary kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 9.7-10.79%, CO2 4.7-7.16%,CO 100ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.947", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-46.3%", + "Upper_Bound": "+46.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:41.168Z", + "last_change_date": "2022-03-14T08:00:41.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7457, + "fields": { + "EF_ID": 122236, + "IPCC_Category": "1.A.2.c - Chemicals", + "Gases": "METHANE", + "Fuel": "Naphtha", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace of fertilizers", + "Technology_Practices": "Drying furnace in the type of rotary kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 9.7-10.79%, CO2 4.7-7.16%,CO 100ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.c(20111210-Korea-KS).doc", + "Lower_Bound": "-42.7%", + "Upper_Bound": "+42.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.c.pdf", + "creation_date": "2022-03-14T08:00:41.258Z", + "last_change_date": "2022-03-14T08:00:41.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7458, + "fields": { + "EF_ID": 122237, + "IPCC_Category": "1.A.2.d - Pulp, Paper and Print", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 9.19%, CO2 13.37%,CO 1,300ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.67", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-24.6%", + "Upper_Bound": "+24.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:41.321Z", + "last_change_date": "2022-03-14T08:00:41.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7459, + "fields": { + "EF_ID": 122238, + "IPCC_Category": "1.A.2.d - Pulp, Paper and Print", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 9.19%, CO2 13.37%,CO 1,300ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.235", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:41.388Z", + "last_change_date": "2022-03-14T08:00:41.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7460, + "fields": { + "EF_ID": 122239, + "IPCC_Category": "1.A.2.e - Food Processing, Beverages and Tobacco", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 2.93-15.4%, CO2 8.79-12.01%,CO 0-13400 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-56.8%", + "Upper_Bound": "+222.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 7 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:41.487Z", + "last_change_date": "2022-03-14T08:00:41.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7461, + "fields": { + "EF_ID": 122240, + "IPCC_Category": "1.A.2.e - Food Processing, Beverages and Tobacco", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 2.93-15.4%, CO2 8.79-12.01%,CO 0-13400 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.101", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-86.9%", + "Upper_Bound": "+564.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 7 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:41.563Z", + "last_change_date": "2022-03-14T08:00:41.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7462, + "fields": { + "EF_ID": 122241, + "IPCC_Category": "1.A.2.e - Food Processing, Beverages and Tobacco", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.56-10.86%, CO2 7.65-10.75%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.843", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-37.5%", + "Upper_Bound": "+49.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:41.629Z", + "last_change_date": "2022-03-14T08:00:41.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7463, + "fields": { + "EF_ID": 122242, + "IPCC_Category": "1.A.2.e - Food Processing, Beverages and Tobacco", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.56-10.86%, CO2 7.65-10.75%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.018", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-36.3%", + "Upper_Bound": "+29.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of of 4 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:41.696Z", + "last_change_date": "2022-03-14T08:00:41.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7464, + "fields": { + "EF_ID": 122243, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 3.97-8.39%, CO2 7.6-10.67%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.167", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-114.2%", + "Upper_Bound": "+114.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:41.788Z", + "last_change_date": "2022-03-14T08:00:41.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7465, + "fields": { + "EF_ID": 122244, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 3.97-8.39%, CO2 7.6-10.67%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.013", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-17.7%", + "Upper_Bound": "+18.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:41.871Z", + "last_change_date": "2022-03-14T08:00:41.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7466, + "fields": { + "EF_ID": 122245, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for calcining furnace for cement", + "Technology_Practices": "calcining furnace in the type of rotary kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.66-20.08%, CO2 0.44-21.76%, CO 0-3600 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.699", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-80.2%", + "Upper_Bound": "+525.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 10 cement kilns. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:41.946Z", + "last_change_date": "2022-03-14T08:00:41.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7467, + "fields": { + "EF_ID": 122246, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for calcining furnace for cement", + "Technology_Practices": "calcining furnace in the type of rotary kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.66-20.08%, CO2 0.44-21.76%, CO 0-3600 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110.374", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-81.7%", + "Upper_Bound": "+123.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 10 cement kilns. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.022Z", + "last_change_date": "2022-03-14T08:00:42.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7468, + "fields": { + "EF_ID": 122247, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for calcining furnace for calcium oxide", + "Technology_Practices": "calcining furnace in the type of rotary kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 10.29-12.83%, CO2 15.49-17.43%, CO 1634.98-1912.90 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.283", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-13.3%", + "Upper_Bound": "+13.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 calcining furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.116Z", + "last_change_date": "2022-03-14T08:00:42.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7469, + "fields": { + "EF_ID": 122248, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for calcining furnace for calcium oxide", + "Technology_Practices": "calcining furnace in the type of rotary kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 10.29-12.83%, CO2 15.49-17.43%, CO 1634.98-1912.90 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.157", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 137-172", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-79.9%", + "Upper_Bound": "+79.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 calcining furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.205Z", + "last_change_date": "2022-03-14T08:00:42.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7470, + "fields": { + "EF_ID": 122249, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace of ceramics", + "Technology_Practices": "Drying furnace in the type of Flash jet dryer", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 16.0-20.26%, CO2 0.07-2.76%,CO 102.77-3735.1ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.952", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-79.3%", + "Upper_Bound": "+505.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 9 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.274Z", + "last_change_date": "2022-03-14T08:00:42.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7471, + "fields": { + "EF_ID": 122250, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace of ceramics", + "Technology_Practices": "Drying furnace in the type of Flash jet dryer", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 16.0-20.26%, CO2 0.07-2.76%,CO 102.77-3735.1ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.67", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-92.5%", + "Upper_Bound": "+202.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 9 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.341Z", + "last_change_date": "2022-03-14T08:00:42.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7472, + "fields": { + "EF_ID": 122251, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace of ceramics", + "Technology_Practices": "drying furnace of ceramics in the type of rotary kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 16.36-17.75%, CO2 3.98-4.09%, CO 117.88-221.64ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.6", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-29.9%", + "Upper_Bound": "+29.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.443Z", + "last_change_date": "2022-03-14T08:00:42.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7473, + "fields": { + "EF_ID": 122252, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace of ceramics", + "Technology_Practices": "drying furnace of ceramics in the type of rotary kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 16.36-17.75%, CO2 3.98-4.09%, CO 117.88-221.64ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.738", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-33.5%", + "Upper_Bound": "+33.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of of 2 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.521Z", + "last_change_date": "2022-03-14T08:00:42.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7474, + "fields": { + "EF_ID": 122253, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for calcining furnace of tiles", + "Technology_Practices": "Calcining furnace of tiles in the type of shuttle kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 18.63%, CO2 2.68%, CO 78.49 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.78", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-24.7%", + "Upper_Bound": "+24.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 calcining furnace in the type of shuttle kiln. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.599Z", + "last_change_date": "2022-03-14T08:00:42.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7475, + "fields": { + "EF_ID": 122254, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for calcining furnace of tiles", + "Technology_Practices": "Calcining furnace of tiles in the type of shuttle kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 18.63%, CO2 2.68%, CO 78.49 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-24.6%", + "Upper_Bound": "+24.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 calcining furnace in the type of shuttle kiln.The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.674Z", + "last_change_date": "2022-03-14T08:00:42.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7476, + "fields": { + "EF_ID": 122255, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for calcining furnace of tiles", + "Technology_Practices": "Calcining furnace of tiles in the type of roller hearth kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 10.77-15.53%, CO2 2.37-6.11%, CO 2.63-184.3 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.544", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-84.7%", + "Upper_Bound": "+101%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 calcining furnaces for tiles. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.770Z", + "last_change_date": "2022-03-14T08:00:42.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7477, + "fields": { + "EF_ID": 122256, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for calcining furnace of tiles", + "Technology_Practices": "Calcining furnace of tiles in the type of roller hearth kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 10.77-15.53%, CO2 2.37-6.11%, CO 2.63-184.3 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.764", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-97.2%", + "Upper_Bound": "+103.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 calcining furnaces for tiles. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.846Z", + "last_change_date": "2022-03-14T08:00:42.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7478, + "fields": { + "EF_ID": 122257, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for glass melting furnace", + "Technology_Practices": "melting furnace of glass in the type of forehearth system", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.69-17.0%, CO2 3.0-10.05% , CO 25.85-187.0ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.389", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-84.5%", + "Upper_Bound": "+79.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 8 glass melting furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.916Z", + "last_change_date": "2022-03-14T08:00:42.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7479, + "fields": { + "EF_ID": 122258, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for glass melting furnace", + "Technology_Practices": "melting furnace of glass in the type of forehearth system", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.69-17.0%, CO2 3.0-10.05% , CO 25.85-187.0ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.268", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-91.6%", + "Upper_Bound": "+223.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 8 glass melting furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:42.983Z", + "last_change_date": "2022-03-14T08:00:42.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7480, + "fields": { + "EF_ID": 122259, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for calcining furnace of ceramics", + "Technology_Practices": "Calcining furnace of ceramics in the type of shuttle kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 15.76-17.7%, CO2 0.55-3.5%, CO 114.62-135.4 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.671", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-17.5%", + "Upper_Bound": "+12.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 calcining furnaces in the type of shuttle kiln. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:43.080Z", + "last_change_date": "2022-03-14T08:00:43.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7481, + "fields": { + "EF_ID": 122260, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for calcining furnace of ceramics", + "Technology_Practices": "Calcining furnace of ceramics in the type of shuttle kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 15.76-17.7%, CO2 0.55-3.5%, CO 114.62-135.4 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.222", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-62.2%", + "Upper_Bound": "+108.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 calcining furnaces in the type of shuttle kiln.The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:43.163Z", + "last_change_date": "2022-03-14T08:00:43.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7482, + "fields": { + "EF_ID": 122261, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for calcining furnace of ceramics", + "Technology_Practices": "Calcining furnace of ceramics in the type of roller hearth kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.56-16.59%, CO2 0.69-4.8%, CO 2.13-211.6ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.457", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-91.8%", + "Upper_Bound": "+207%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 calcining furnaces in the type of roller hearth kiln. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:43.241Z", + "last_change_date": "2022-03-14T08:00:43.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7483, + "fields": { + "EF_ID": 122262, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for calcining furnace of ceramics", + "Technology_Practices": "Calcining furnace of ceramics in the type of roller hearth kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.56-16.59%, CO2 0.69-4.8%, CO 2.13-211.6ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.048", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-89.8%", + "Upper_Bound": "+327.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 calcining furnaces in the type of roller hearth kiln. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:43.308Z", + "last_change_date": "2022-03-14T08:00:43.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7484, + "fields": { + "EF_ID": 122263, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for calcining furnace of refactories", + "Technology_Practices": "Calcining furnace of refractories in the type of tunnel kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.42-12.74%, CO2 2.57-7.3%, CO 59.58-162.39ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.667", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-42.7%", + "Upper_Bound": "+60.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 calcining furnaces for refractories in the type of tunnel kiln. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:43.408Z", + "last_change_date": "2022-03-14T08:00:43.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7485, + "fields": { + "EF_ID": 122264, + "IPCC_Category": "1.A.2.f - Non-Metallic Minerals", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for calcining furnace of refactories", + "Technology_Practices": "Calcining furnace of refractories in the type of tunnel kiln", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 6.42-12.74%, CO2 2.57-7.3%, CO 59.58-162.39ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.142", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(II) (2009), KEMCO-2008-43, pp 173-239", + "English_Abstract": "See the attached file Summary-1.A.2.f(20111210-Korea-KS).doc", + "Lower_Bound": "-101.3%", + "Upper_Bound": "+184.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 calcining furnaces for refractories in the type of tunnel kiln. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.f.pdf", + "creation_date": "2022-03-14T08:00:43.488Z", + "last_change_date": "2022-03-14T08:00:43.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7486, + "fields": { + "EF_ID": 122265, + "IPCC_Category": "1.A.2.g - Transport Equipment", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.41-4.83%, CO2 9.85-10.04%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.413", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-1%", + "Upper_Bound": "+1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:43.566Z", + "last_change_date": "2022-03-14T08:00:43.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7487, + "fields": { + "EF_ID": 122266, + "IPCC_Category": "1.A.2.g - Transport Equipment", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 4.41-4.83%, CO2 9.85-10.04%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.251", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-109.1%", + "Upper_Bound": "+109%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:43.649Z", + "last_change_date": "2022-03-14T08:00:43.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7488, + "fields": { + "EF_ID": 122267, + "IPCC_Category": "1.A.2.g - Transport Equipment", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 4.32%, CO2 12.93%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-26%", + "Upper_Bound": "+26%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:43.734Z", + "last_change_date": "2022-03-14T08:00:43.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7489, + "fields": { + "EF_ID": 122268, + "IPCC_Category": "1.A.2.g - Transport Equipment", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 4.32%, CO2 12.93%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-26%", + "Upper_Bound": "+26%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:43.816Z", + "last_change_date": "2022-03-14T08:00:43.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7490, + "fields": { + "EF_ID": 122269, + "IPCC_Category": "1.A.2.g - Transport Equipment", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 90%, Flue gas(dry) : O2 8.17%, CO2 9.63%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.415", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-28.1%", + "Upper_Bound": "+28.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:43.874Z", + "last_change_date": "2022-03-14T08:00:43.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7491, + "fields": { + "EF_ID": 122270, + "IPCC_Category": "1.A.2.g - Transport Equipment", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 90%, Flue gas(dry) : O2 8.17%, CO2 9.63%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.017", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-21.2%", + "Upper_Bound": "+21.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:43.932Z", + "last_change_date": "2022-03-14T08:00:43.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7492, + "fields": { + "EF_ID": 122271, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace of metals etc", + "Technology_Practices": "drying furnace in the type of conveyor belt", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 19.85%, CO2 0.97%, CO 191.3 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.849", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-1.3%", + "Upper_Bound": "+1.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.045Z", + "last_change_date": "2022-03-14T08:00:44.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7493, + "fields": { + "EF_ID": 122272, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace of metals etc", + "Technology_Practices": "drying furnace in the type of conveyor belt", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 19.85%, CO2 0.97%, CO 191.3 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.542", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-3.5%", + "Upper_Bound": "+3.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of of 1 drying furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.125Z", + "last_change_date": "2022-03-14T08:00:44.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7494, + "fields": { + "EF_ID": 122273, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for drying furnace of metals etc", + "Technology_Practices": "drying furnace in the type of conveyor belt", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 9.62-19.28%, CO2 0.47-7.15%, CO 134.5-3436ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.589", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-74%", + "Upper_Bound": "+63.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 14 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.191Z", + "last_change_date": "2022-03-14T08:00:44.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7495, + "fields": { + "EF_ID": 122274, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for drying furnace of metals etc", + "Technology_Practices": "drying furnace in the type of conveyor belt", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 9.62-19.28%, CO2 0.47-7.15%, CO 134.5-3436ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.786", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-92.2%", + "Upper_Bound": "+197.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 14 drying furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.275Z", + "last_change_date": "2022-03-14T08:00:44.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7496, + "fields": { + "EF_ID": 122275, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heat treatment furnace of aluminium in annealing process", + "Technology_Practices": "heat treatment furnace in the box type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.15-17.83%, CO2 1.55-6.71%,CO 82.05-150.7ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.779", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-47.3%", + "Upper_Bound": "+118.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 heat treatment furnaces for aluminium. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.372Z", + "last_change_date": "2022-03-14T08:00:44.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7497, + "fields": { + "EF_ID": 122276, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heat treatment furnace of aluminium in annealing process", + "Technology_Practices": "heat treatment furnace in the box type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.15-17.83%, CO2 1.55-6.71%,CO 82.05-150.7ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.495", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 90-112", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-74.6%", + "Upper_Bound": "+226.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 heat treatment furnaces for aluminium. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.432Z", + "last_change_date": "2022-03-14T08:00:44.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7498, + "fields": { + "EF_ID": 122277, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heat treatment furnace of steel in tempering & annealing process", + "Technology_Practices": "heat treatment furnace in the box type", + "Parameter_Conditions": "Load during measurement about 100%, Flue gas(dry) : O2 12.6%, CO2 5.04% , CO 137.6ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.408", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-3%", + "Upper_Bound": "+3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 heat treatment furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.499Z", + "last_change_date": "2022-03-14T08:00:44.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7499, + "fields": { + "EF_ID": 122278, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heat treatment furnace of steel in tempering & annealing process", + "Technology_Practices": "heat treatment furnace in the box type", + "Parameter_Conditions": "Load during measurement about 100%, Flue gas(dry) : O2 12.6%, CO2 5.04% , CO 137.6ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-22.3%", + "Upper_Bound": "+22.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 heat treatment furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.566Z", + "last_change_date": "2022-03-14T08:00:44.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7500, + "fields": { + "EF_ID": 122279, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heat treatment furnace of steel in tempering & annealing process", + "Technology_Practices": "heat treatment furnace in the box type", + "Parameter_Conditions": "Load during measurement about 90%, Flue gas(dry) : O2 14.47%, CO2 4.87%, CO 597.2 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.421", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-2.2%", + "Upper_Bound": "+2.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 heat treatment furnace.The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.665Z", + "last_change_date": "2022-03-14T08:00:44.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7501, + "fields": { + "EF_ID": 122280, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heat treatment furnace of steel in tempering & annealing process", + "Technology_Practices": "heat treatment furnace in the box type", + "Parameter_Conditions": "Load during measurement about 90%, Flue gas(dry) : O2 14.47%, CO2 4.87%, CO 597.2 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.501", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-16.7%", + "Upper_Bound": "+16.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of a value of 1 heat treatment furnace.The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.741Z", + "last_change_date": "2022-03-14T08:00:44.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7502, + "fields": { + "EF_ID": 122281, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heat treatment furnace of steel in tempering & annealing process", + "Technology_Practices": "heat treatment furnace in the box type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.2-19.3%, CO2 0.84-8.69%, CO 28.2-241.9 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.064", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-67.1%", + "Upper_Bound": "+206.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 13 heat treatment furnaces for steel. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.866Z", + "last_change_date": "2022-03-14T08:00:44.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7503, + "fields": { + "EF_ID": 122282, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heat treatment furnace of steel in tempering & annealing process", + "Technology_Practices": "heat treatment furnace in the box type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.2-19.3%, CO2 0.84-8.69%, CO 28.2-241.9 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.218", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-89.8%", + "Upper_Bound": "+279.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 13 heat treatment furnaces for steel. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:44.933Z", + "last_change_date": "2022-03-14T08:00:44.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7504, + "fields": { + "EF_ID": 122283, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for reheating furnace for forging", + "Technology_Practices": "forging reheating furnace of steel in the box type", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 5.85%, CO2 11.02%, CO 199.7 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.163", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-3.7%", + "Upper_Bound": "+3.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 forging reheating furnace. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:45.026Z", + "last_change_date": "2022-03-14T08:00:45.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7505, + "fields": { + "EF_ID": 122284, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for reheating furnace for forging", + "Technology_Practices": "forging reheating furnace of steel in the box type", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 5.85%, CO2 11.02%, CO 199.7 ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.393", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-61.4%", + "Upper_Bound": "+61.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the value of 1 forging reheating furnace.The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:45.108Z", + "last_change_date": "2022-03-14T08:00:45.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7506, + "fields": { + "EF_ID": 122285, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for reheating furnace for forging", + "Technology_Practices": "forging reheating furnace of steel in the box type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.54-16.13%, CO2 3.11-9.54%, CO 0-1679ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.519", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-64.3%", + "Upper_Bound": "+137.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 7 forging reheating furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:45.174Z", + "last_change_date": "2022-03-14T08:00:45.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7507, + "fields": { + "EF_ID": 122286, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for reheating furnace for forging", + "Technology_Practices": "forging reheating furnace of steel in the box type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.54-16.13%, CO2 3.11-9.54%, CO 0-1679ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.363", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(III) (2010), KEMCO-2009-44, pp 56-89", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-90.2%", + "Upper_Bound": "+170.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 7 forging reheating furnaces. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:45.241Z", + "last_change_date": "2022-03-14T08:00:45.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7508, + "fields": { + "EF_ID": 122287, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -90%, Flue gas(dry) : O2 4.41-10.19%, CO2 8.07-12.62%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.753", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-73.2%", + "Upper_Bound": "+133.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:45.336Z", + "last_change_date": "2022-03-14T08:00:45.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7509, + "fields": { + "EF_ID": 122288, + "IPCC_Category": "1.A.2.h - Machinery", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -90%, Flue gas(dry) : O2 4.41-10.19%, CO2 8.07-12.62%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.229", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.h(20111210-Korea-KS).doc", + "Lower_Bound": "-88.3%", + "Upper_Bound": "+175.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.h.pdf", + "creation_date": "2022-03-14T08:00:45.424Z", + "last_change_date": "2022-03-14T08:00:45.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7510, + "fields": { + "EF_ID": 122289, + "IPCC_Category": "1.A.2.j - Wood and wood products", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for water tube type", + "Parameter_Conditions": "Load during measurement about 90%, Flue gas(dry) : O2 6.25%, CO2 9.38%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.438", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-21.3%", + "Upper_Bound": "+21.3%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:45.491Z", + "last_change_date": "2022-03-14T08:00:45.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7511, + "fields": { + "EF_ID": 122290, + "IPCC_Category": "1.A.2.j - Wood and wood products", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for water tube type", + "Parameter_Conditions": "Load during measurement about 90%, Flue gas(dry) : O2 6.25%, CO2 9.38%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.013", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-21.2%", + "Upper_Bound": "+21.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:45.558Z", + "last_change_date": "2022-03-14T08:00:45.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7512, + "fields": { + "EF_ID": 122291, + "IPCC_Category": "1.A.2.j - Wood and wood products", + "Gases": "NITROUS OXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 11.4-12.2%, CO2 9.2-9.67%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.235", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-45.9%", + "Upper_Bound": "+45.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:45.655Z", + "last_change_date": "2022-03-14T08:00:45.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7513, + "fields": { + "EF_ID": 122292, + "IPCC_Category": "1.A.2.j - Wood and wood products", + "Gases": "METHANE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 11.4-12.2%, CO2 9.2-9.67%", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.224", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-83.4%", + "Upper_Bound": "+83.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of of 2 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:45.733Z", + "last_change_date": "2022-03-14T08:00:45.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7514, + "fields": { + "EF_ID": 122293, + "IPCC_Category": "1.A.2.l - Textile and Leather", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.76-13.6%, CO2 3.97-9.56%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.193", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-95.8%", + "Upper_Bound": "+102.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:45.808Z", + "last_change_date": "2022-03-14T08:00:45.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7515, + "fields": { + "EF_ID": 122294, + "IPCC_Category": "1.A.2.l - Textile and Leather", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube & water tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 5.76-13.6%, CO2 3.97-9.56%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.542", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-92.4%", + "Upper_Bound": "+281.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 4 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:45.883Z", + "last_change_date": "2022-03-14T08:00:45.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7516, + "fields": { + "EF_ID": 122295, + "IPCC_Category": "1.A.2.l - Textile and Leather", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.2-13.4%, CO2 7.44-10.51%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.029", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-42.1%", + "Upper_Bound": "+71%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:45.981Z", + "last_change_date": "2022-03-14T08:00:45.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7517, + "fields": { + "EF_ID": 122296, + "IPCC_Category": "1.A.2.l - Textile and Leather", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 60% -100%, Flue gas(dry) : O2 8.2-13.4%, CO2 7.44-10.51%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-90.7%", + "Upper_Bound": "+90.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of of 3 industrial boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:46.058Z", + "last_change_date": "2022-03-14T08:00:46.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7518, + "fields": { + "EF_ID": 122297, + "IPCC_Category": "1.A.2.l - Textile and Leather", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 7.11%, CO2 13.83%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.552", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-26%", + "Upper_Bound": "+26%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:46.133Z", + "last_change_date": "2022-03-14T08:00:46.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7519, + "fields": { + "EF_ID": 122298, + "IPCC_Category": "1.A.2.l - Textile and Leather", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for industrial boiler", + "Technology_Practices": "industrial boiler for flue tube type", + "Parameter_Conditions": "Load during measurement about 80%, Flue gas(dry) : O2 7.11%, CO2 13.83%,", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 90-119", + "English_Abstract": "See the attached file Summary-1.A.2.d,e,g,j.l(20111210-Korea-KS).doc", + "Lower_Bound": "-26.2%", + "Upper_Bound": "+26.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is value of 1 industrial boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.2.d_e_g_j_l.pdf", + "creation_date": "2022-03-14T08:00:46.216Z", + "last_change_date": "2022-03-14T08:00:46.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7520, + "fields": { + "EF_ID": 122299, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 6.11-14.26%, CO2 7.02-10.23%, CO 5.02-20.9ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.114", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-84.7%", + "Upper_Bound": "+493.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 7 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.316Z", + "last_change_date": "2022-03-14T08:00:46.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7521, + "fields": { + "EF_ID": 122300, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 6.11-14.26%, CO2 7.02-10.23%, CO 5.02-20.9ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.081", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-78.8%", + "Upper_Bound": "+256.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 7 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.391Z", + "last_change_date": "2022-03-14T08:00:46.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7522, + "fields": { + "EF_ID": 122301, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating & cooling faciity", + "Technology_Practices": "gas engine driven heat pump", + "Parameter_Conditions": "Load during measurement about 60% -80%, Flue gas(dry) : O2 6.71-9.92%, CO2 4.47-7.03%, CO 422- 993.20ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.855", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 120-136", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-58.7%", + "Upper_Bound": "+35.2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 gas engine driven heat pumps. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.455Z", + "last_change_date": "2022-03-14T08:00:46.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7523, + "fields": { + "EF_ID": 122302, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating & cooling faciity", + "Technology_Practices": "gas engine driven heat pump", + "Parameter_Conditions": "Load during measurement about 60% -80%, Flue gas(dry) : O2 6.71-9.92%, CO2 4.47-7.03%, CO 422- 993.20ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "491.406", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(I) (2008), KEMCO-2007-31, pp 120-136", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-53.5%", + "Upper_Bound": "+26.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 gas engine driven heat pumps. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.530Z", + "last_change_date": "2022-03-14T08:00:46.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7524, + "fields": { + "EF_ID": 122303, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating & cooling faciity", + "Technology_Practices": "gas absortion heat pump", + "Parameter_Conditions": "Load during measurement about 60% -80%, Flue gas(dry) : O2 4.09-18.57%, CO2 0.06-10.48%, CO 0-22.2ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.141", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-83.3%", + "Upper_Bound": "+550.9%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 28 gas absorption heat pumps. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.628Z", + "last_change_date": "2022-03-14T08:00:46.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7525, + "fields": { + "EF_ID": 122304, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating & cooling faciity", + "Technology_Practices": "gas absortion heat pump", + "Parameter_Conditions": "Load during measurement about 60% -80%, Flue gas(dry) : O2 4.09-18.57%, CO2 0.06-10.48%, CO 0-22.2ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.579", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-72.4%", + "Upper_Bound": "+901.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 28 gas absorption heat pumps. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.716Z", + "last_change_date": "2022-03-14T08:00:46.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7526, + "fields": { + "EF_ID": 122305, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 60% -90%, Flue gas(dry) : O2 10.57%, CO2 8.02%,CO 11.9ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-2.6%", + "Upper_Bound": "+2.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a value of 1 heating boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.788Z", + "last_change_date": "2022-03-14T08:00:46.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7527, + "fields": { + "EF_ID": 122306, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Other Kerosene", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 60% -90%, Flue gas(dry) : O2 10.57%, CO2 8.02%,CO 11.9ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.023", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-0.4%", + "Upper_Bound": "+0.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a average value of 1 heating boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.855Z", + "last_change_date": "2022-03-14T08:00:46.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7528, + "fields": { + "EF_ID": 122307, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 70% -90%, Flue gas(dry) : O2 8.42-13.49%, CO2 6.3-9.77%,CO 7.59-18ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.419", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-27.2%", + "Upper_Bound": "+23.8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:46.954Z", + "last_change_date": "2022-03-14T08:00:46.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7529, + "fields": { + "EF_ID": 122308, + "IPCC_Category": "1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 70% -90%, Flue gas(dry) : O2 8.42-13.49%, CO2 6.3-9.77%,CO 7.59-18ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.a(20111210-Korea-KS).doc", + "Lower_Bound": "-19.8%", + "Upper_Bound": "+36.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 3 heating boilers The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.a.pdf", + "creation_date": "2022-03-14T08:00:47.033Z", + "last_change_date": "2022-03-14T08:00:47.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7530, + "fields": { + "EF_ID": 122309, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 12.98-14.49%, CO2 4.66-6.12%, CO 46.76-61.6ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.264", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.b(20111210-Korea-KS).doc", + "Lower_Bound": "-33.7%", + "Upper_Bound": "+33.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.b.pdf", + "creation_date": "2022-03-14T08:00:47.097Z", + "last_change_date": "2022-03-14T08:00:47.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7531, + "fields": { + "EF_ID": 122310, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 80% -100%, Flue gas(dry) : O2 12.98-14.49%, CO2 4.66-6.12%, CO 46.76-61.6ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.022", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.b(20111210-Korea-KS).doc", + "Lower_Bound": "-11%", + "Upper_Bound": "+11.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 2 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.b.pdf", + "creation_date": "2022-03-14T08:00:47.163Z", + "last_change_date": "2022-03-14T08:00:47.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7532, + "fields": { + "EF_ID": 122311, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 60% -80%, Flue gas(dry) : O2 6.01-13.06%, CO2 5.08-9.23%, CO 14.28-60.13ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.204", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.b(20111210-Korea-KS).doc", + "Lower_Bound": "-59.9%", + "Upper_Bound": "+62%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 13 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.b.pdf", + "creation_date": "2022-03-14T08:00:47.256Z", + "last_change_date": "2022-03-14T08:00:47.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7533, + "fields": { + "EF_ID": 122312, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 60% -80%, Flue gas(dry) : O2 6.01-13.06%, CO2 5.08-9.23%, CO 14.28-60.13ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.807", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.b(20111210-Korea-KS).doc", + "Lower_Bound": "-94.9%", + "Upper_Bound": "+91.7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 13 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.b.pdf", + "creation_date": "2022-03-14T08:00:47.330Z", + "last_change_date": "2022-03-14T08:00:47.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7534, + "fields": { + "EF_ID": 122313, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 60% -90%, Flue gas(dry) : O2 2.62-9.36%, CO2 9.1-13.72%,CO 2.59-61.43ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.217", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.b(20111210-Korea-KS).doc", + "Lower_Bound": "-52.2%", + "Upper_Bound": "+67.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.b.pdf", + "creation_date": "2022-03-14T08:00:47.397Z", + "last_change_date": "2022-03-14T08:00:47.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7535, + "fields": { + "EF_ID": 122314, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Other Kerosene", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 60% -90%, Flue gas(dry) : O2 2.62-9.36%, CO2 9.1-13.72%,CO 2.59-61.43ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.018", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.b(20111210-Korea-KS).doc", + "Lower_Bound": "-26.7%", + "Upper_Bound": "+16.1%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is an average value of 6 heating boilers. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.b.pdf", + "creation_date": "2022-03-14T08:00:47.464Z", + "last_change_date": "2022-03-14T08:00:47.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7536, + "fields": { + "EF_ID": 122315, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 70% -90%, Flue gas(dry) : O2 9.8%, CO2 8.87%,CO 63.62ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.572", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.b(20111210-Korea-KS).doc", + "Lower_Bound": "-2.6%", + "Upper_Bound": "+2.6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Confidence limits are lower than those reported in the background document. The confidence limits in the database have been updated according to a recommendation of the authors who pointed out that this EF represents one measurement taken from one sample", + "Data_Provider_Comments": "This is a value of 1 heating boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured N2O concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.b.pdf", + "creation_date": "2022-03-14T08:00:47.583Z", + "last_change_date": "2022-03-14T08:00:47.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7537, + "fields": { + "EF_ID": 122316, + "IPCC_Category": "1.A.4.b - Residential", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for heating boiler", + "Technology_Practices": "heating boiler", + "Parameter_Conditions": "Load during measurement about 70% -90%, Flue gas(dry) : O2 9.8%, CO2 8.87%,CO 63.62ppm", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Byung Moo Min and et al., Development of Country Specified Greenhouse Gases emission Factor(IV) (2011), KEMCO-20100338633, pp 47-94", + "English_Abstract": "See the attached file Summary-1.A.4.b(20111210-Korea-KS).doc", + "Lower_Bound": "-0.4%", + "Upper_Bound": "+0.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Confidence limits are lower than those reported in the background document. The confidence limits in the database have been updated according to a recommendation of the authors who pointed out that this EF represents one measurement taken from one sample", + "Data_Provider_Comments": "This is a value of 1 heating boiler. The EF value, expressed in kg/TJ, was calculated by means of a standardized approach on the basis of the measured CH4 concentration in the flue gas, the diluent concentration in the flue gas and fuel properties.", + "Other_Comments": "", + "Data_Provider": "Byoung-moo MIN", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/20111215-Korea-KS/1.A.4.b.pdf", + "creation_date": "2022-03-14T08:00:47.680Z", + "last_change_date": "2022-03-14T08:00:47.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7538, + "fields": { + "EF_ID": 122942, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV of E5, a blend for gasline and 5% V/V ethanol.", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "EU", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.98", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dardiotis C. Fontaras G., Marotta A., Martini G. and Manfredi U. 2015. Emissions of modern light duty ethanol flex-fuel vehicles over different operating and environmental conditions. Fuel. 140: 531-540.", + "English_Abstract": "In 2012 some 2.8 million toe of bioethanol were introduced in the European gasoline market. The introduction of ethanol blendstocks in the European fuels market should take place without undermining pollutant emissions or vehicle engine performance. According to the Euro 5 certification procedure the properties of three different ethanol blends supplied in the European market (E5, E75, E85) should be taken into account when testing for exhaust emissions. In this study the latest procedure established for emissions certification is assessed, shedding light on the gaseous regulated emissions and CO2 – energy/fuel consumption performance of two Flex Fuel Vehicles with different fueling strategies (Direct/Port Fuel Injection) and different Euro standards (Euro 4 and Euro 5). Both legislative and non-legislative “real-world” driving cycles were used in the study. The analysis is completed with a comparison with existing emission factors for Flex Fuel Vehicles in Europe. At 22 degrees Celsius CO emissions decreased over all conditions tested with the use of the high ethanol content fuel (E85), compared to the E5 performance. Total HC emissions were practically unaffected by the fuel type. NOx emissions decreased for both vehicles over the New European Driving Cycle, while over the Common Artemis Driving Cycle the vehicles exhibited different NOx behavior. At -7 degrees Celsius both regulated CO and total HC emissions increased with E75 fuel. However, the Euro 5 vehicle exhibited emission performance below the current legislative limits for both CO/total HC over the cold-start urban part of the cycle. Results were found to be in line with existing emission factors used in Europe for ethanol-fueled vehicles.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0016236114009545", + "creation_date": "2022-03-14T08:00:47.764Z", + "last_change_date": "2022-03-14T08:00:47.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7539, + "fields": { + "EF_ID": 122943, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon content of E5, a blend for gasline and 5% V/V ethanol.", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "EU", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "84.751", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dardiotis C. Fontaras G., Marotta A., Martini G. and Manfredi U. 2015. Emissions of modern light duty ethanol flex-fuel vehicles over different operating and environmental conditions. Fuel. 140: 531-540.", + "English_Abstract": "In 2012 some 2.8 million toe of bioethanol were introduced in the European gasoline market. The introduction of ethanol blendstocks in the European fuels market should take place without undermining pollutant emissions or vehicle engine performance. According to the Euro 5 certification procedure the properties of three different ethanol blends supplied in the European market (E5, E75, E85) should be taken into account when testing for exhaust emissions. In this study the latest procedure established for emissions certification is assessed, shedding light on the gaseous regulated emissions and CO2 – energy/fuel consumption performance of two Flex Fuel Vehicles with different fueling strategies (Direct/Port Fuel Injection) and different Euro standards (Euro 4 and Euro 5). Both legislative and non-legislative “real-world” driving cycles were used in the study. The analysis is completed with a comparison with existing emission factors for Flex Fuel Vehicles in Europe. At 22 degrees Celsius CO emissions decreased over all conditions tested with the use of the high ethanol content fuel (E85), compared to the E5 performance. Total HC emissions were practically unaffected by the fuel type. NOx emissions decreased for both vehicles over the New European Driving Cycle, while over the Common Artemis Driving Cycle the vehicles exhibited different NOx behavior. At -7 degrees Celsius both regulated CO and total HC emissions increased with E75 fuel. However, the Euro 5 vehicle exhibited emission performance below the current legislative limits for both CO/total HC over the cold-start urban part of the cycle. Results were found to be in line with existing emission factors used in Europe for ethanol-fueled vehicles.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0016236114009545", + "creation_date": "2022-03-14T08:00:47.859Z", + "last_change_date": "2022-03-14T08:00:47.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7540, + "fields": { + "EF_ID": 122944, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV of E75, a blend for gasline and 75% V/V ethanol.", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "EU", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.85", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dardiotis C. Fontaras G., Marotta A., Martini G. and Manfredi U. 2015. Emissions of modern light duty ethanol flex-fuel vehicles over different operating and environmental conditions. Fuel. 140: 531-540.", + "English_Abstract": "In 2012 some 2.8 million toe of bioethanol were introduced in the European gasoline market. The introduction of ethanol blendstocks in the European fuels market should take place without undermining pollutant emissions or vehicle engine performance. According to the Euro 5 certification procedure the properties of three different ethanol blends supplied in the European market (E5, E75, E85) should be taken into account when testing for exhaust emissions. In this study the latest procedure established for emissions certification is assessed, shedding light on the gaseous regulated emissions and CO2 – energy/fuel consumption performance of two Flex Fuel Vehicles with different fueling strategies (Direct/Port Fuel Injection) and different Euro standards (Euro 4 and Euro 5). Both legislative and non-legislative “real-world” driving cycles were used in the study. The analysis is completed with a comparison with existing emission factors for Flex Fuel Vehicles in Europe. At 22 degrees Celsius CO emissions decreased over all conditions tested with the use of the high ethanol content fuel (E85), compared to the E5 performance. Total HC emissions were practically unaffected by the fuel type. NOx emissions decreased for both vehicles over the New European Driving Cycle, while over the Common Artemis Driving Cycle the vehicles exhibited different NOx behavior. At -7 degrees Celsius both regulated CO and total HC emissions increased with E75 fuel. However, the Euro 5 vehicle exhibited emission performance below the current legislative limits for both CO/total HC over the cold-start urban part of the cycle. Results were found to be in line with existing emission factors used in Europe for ethanol-fueled vehicles.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0016236114009545", + "creation_date": "2022-03-14T08:00:47.960Z", + "last_change_date": "2022-03-14T08:00:47.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7541, + "fields": { + "EF_ID": 122945, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon content of E75, a blend for gasline and 75% V/V ethanol.", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "EU", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60.339", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dardiotis C. Fontaras G., Marotta A., Martini G. and Manfredi U. 2015. Emissions of modern light duty ethanol flex-fuel vehicles over different operating and environmental conditions. Fuel. 140: 531-540.", + "English_Abstract": "In 2012 some 2.8 million toe of bioethanol were introduced in the European gasoline market. The introduction of ethanol blendstocks in the European fuels market should take place without undermining pollutant emissions or vehicle engine performance. According to the Euro 5 certification procedure the properties of three different ethanol blends supplied in the European market (E5, E75, E85) should be taken into account when testing for exhaust emissions. In this study the latest procedure established for emissions certification is assessed, shedding light on the gaseous regulated emissions and CO2 – energy/fuel consumption performance of two Flex Fuel Vehicles with different fueling strategies (Direct/Port Fuel Injection) and different Euro standards (Euro 4 and Euro 5). Both legislative and non-legislative “real-world” driving cycles were used in the study. The analysis is completed with a comparison with existing emission factors for Flex Fuel Vehicles in Europe. At 22 degrees Celsius CO emissions decreased over all conditions tested with the use of the high ethanol content fuel (E85), compared to the E5 performance. Total HC emissions were practically unaffected by the fuel type. NOx emissions decreased for both vehicles over the New European Driving Cycle, while over the Common Artemis Driving Cycle the vehicles exhibited different NOx behavior. At -7 degrees Celsius both regulated CO and total HC emissions increased with E75 fuel. However, the Euro 5 vehicle exhibited emission performance below the current legislative limits for both CO/total HC over the cold-start urban part of the cycle. Results were found to be in line with existing emission factors used in Europe for ethanol-fueled vehicles.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0016236114009545", + "creation_date": "2022-03-14T08:00:48.061Z", + "last_change_date": "2022-03-14T08:00:48.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7542, + "fields": { + "EF_ID": 122946, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "NCV of E855, a blend for gasline and 85% V/V ethanol.", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "EU", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.43", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dardiotis C. Fontaras G., Marotta A., Martini G. and Manfredi U. 2015. Emissions of modern light duty ethanol flex-fuel vehicles over different operating and environmental conditions. Fuel. 140: 531-540.", + "English_Abstract": "In 2012 some 2.8 million toe of bioethanol were introduced in the European gasoline market. The introduction of ethanol blendstocks in the European fuels market should take place without undermining pollutant emissions or vehicle engine performance. According to the Euro 5 certification procedure the properties of three different ethanol blends supplied in the European market (E5, E75, E85) should be taken into account when testing for exhaust emissions. In this study the latest procedure established for emissions certification is assessed, shedding light on the gaseous regulated emissions and CO2 – energy/fuel consumption performance of two Flex Fuel Vehicles with different fueling strategies (Direct/Port Fuel Injection) and different Euro standards (Euro 4 and Euro 5). Both legislative and non-legislative “real-world” driving cycles were used in the study. The analysis is completed with a comparison with existing emission factors for Flex Fuel Vehicles in Europe. At 22 degrees Celsius CO emissions decreased over all conditions tested with the use of the high ethanol content fuel (E85), compared to the E5 performance. Total HC emissions were practically unaffected by the fuel type. NOx emissions decreased for both vehicles over the New European Driving Cycle, while over the Common Artemis Driving Cycle the vehicles exhibited different NOx behavior. At -7 degrees Celsius both regulated CO and total HC emissions increased with E75 fuel. However, the Euro 5 vehicle exhibited emission performance below the current legislative limits for both CO/total HC over the cold-start urban part of the cycle. Results were found to be in line with existing emission factors used in Europe for ethanol-fueled vehicles.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0016236114009545", + "creation_date": "2022-03-14T08:00:48.179Z", + "last_change_date": "2022-03-14T08:00:48.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7543, + "fields": { + "EF_ID": 122947, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Fuel mixtures (fossil and biomass)", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon content of E85, a blend for gasline and 85% V/V ethanol.", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "EU", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.379", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dardiotis C. Fontaras G., Marotta A., Martini G. and Manfredi U. 2015. Emissions of modern light duty ethanol flex-fuel vehicles over different operating and environmental conditions. Fuel. 140: 531-540.", + "English_Abstract": "In 2012 some 2.8 million toe of bioethanol were introduced in the European gasoline market. The introduction of ethanol blendstocks in the European fuels market should take place without undermining pollutant emissions or vehicle engine performance. According to the Euro 5 certification procedure the properties of three different ethanol blends supplied in the European market (E5, E75, E85) should be taken into account when testing for exhaust emissions. In this study the latest procedure established for emissions certification is assessed, shedding light on the gaseous regulated emissions and CO2 – energy/fuel consumption performance of two Flex Fuel Vehicles with different fueling strategies (Direct/Port Fuel Injection) and different Euro standards (Euro 4 and Euro 5). Both legislative and non-legislative “real-world” driving cycles were used in the study. The analysis is completed with a comparison with existing emission factors for Flex Fuel Vehicles in Europe. At 22 degrees Celsius CO emissions decreased over all conditions tested with the use of the high ethanol content fuel (E85), compared to the E5 performance. Total HC emissions were practically unaffected by the fuel type. NOx emissions decreased for both vehicles over the New European Driving Cycle, while over the Common Artemis Driving Cycle the vehicles exhibited different NOx behavior. At -7 degrees Celsius both regulated CO and total HC emissions increased with E75 fuel. However, the Euro 5 vehicle exhibited emission performance below the current legislative limits for both CO/total HC over the cold-start urban part of the cycle. Results were found to be in line with existing emission factors used in Europe for ethanol-fueled vehicles.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0016236114009545", + "creation_date": "2022-03-14T08:00:48.287Z", + "last_change_date": "2022-03-14T08:00:48.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7544, + "fields": { + "EF_ID": 122948, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Emission factors of N2O (and NH3) are provided, by on-road measurment by Quantum cascade laser infrared spectrometer (QCL-IR) and Portable emissions measurements system (PEMS)-based data analysis, in term of g/kWh", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "4 tests were done. Detailed information is provided in table 2 of the article. This data is from test 1: Work is 103.7 kWh, and trip distance is 118.4 km; share of urban, rural and motorway is 56%, 22% and 22%, respectively; the average of temperature is 10.8 degrees Celsius; Engine start temperature is 7 degrees Celsius (cold start);", + "Regional_Conditions": "EU", + "Control_Technologies": "EURO V; DPF (diesel particulate filter) + SCR (selective catalytic reduction system)", + "Other_Properties": "", + "Value": "0.139", + "Unit": "g/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa R., Mendoza-Villafuerte P., Bonnel P., Lilova V., Hill L. Perujo A and Astogra C. 2016. On-road measurement of NH3 and N2O emissions from a Euro V heavy-duty vehicle. Atmospheric Environment. 139: 167-197.", + "English_Abstract": "The use of selective catalytic reduction systems (SCR) to abate NOx vehicular emissions brings new concerns on the emissions of the byproducts NH3 and N2O. Therefore, NH3 and N2O on-road emissions from a Euro V truck equipped with a SCR were measured in real time using a QCL-IR. Results bring to light possibility to perform this kind of real time measurements for other pollutants besides, hydrocarbons, NOx, CO and CO2. The capability to measure NH3 and N2O in a second-by-second basis will allow applying the currently agreed regulatory emissions evaluation for gaseous compounds. Average N2O emission factors calculated applying the current PEMS-based data analysis to all available windows from the tests ranged from 0.063 g/kWh to 0.139 g/kWh. Average NH3 concentrations ranged from 0.9 ppm to 5.7 ppm. Although calculated average N2O and NH3 emissions were within current limits, NOx emissions were substantially higher than Euro V limits under the studied conditions", + "Lower_Bound": "unkown", + "Upper_Bound": "unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data in unit (g/km) is 0.122 g/km. EF in g/km = EF in g/kWh * work (kWh) / trip distance (km)", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1352231016303181", + "creation_date": "2022-03-14T08:00:48.396Z", + "last_change_date": "2022-03-14T08:00:48.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7545, + "fields": { + "EF_ID": 122949, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Emission factors of N2O (and NH3) are provided, by on-road measurment by Quantum cascade laser infrared spectrometer (QCL-IR) and Portable emissions measurements system (PEMS)-based data analysis, in term of g/kWh", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "4 tests were done. Detailed information is provided in table 2 of the article. This data is from test 2: Work is 106.4 kWh, and trip distance is 116.4 km; share of urban, rural and motorway is 59%, 20% and 21%, respectively; the average of temperature is 16 degrees Celsius; Engine start temperature is 12 degrees Celsius (cold start)", + "Regional_Conditions": "EU", + "Control_Technologies": "EURO V; DPF (diesel particulate filter) + SCR (selective catalytic reduction system)", + "Other_Properties": "", + "Value": "0.074", + "Unit": "g/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa R., Mendoza-Villafuerte P., Bonnel P., Lilova V., Hill L. Perujo A and Astogra C. 2016. On-road measurement of NH3 and N2O emissions from a Euro V heavy-duty vehicle. Atmospheric Environment. 139: 167-197.", + "English_Abstract": "The use of selective catalytic reduction systems (SCR) to abate NOx vehicular emissions brings new concerns on the emissions of the byproducts NH3 and N2O. Therefore, NH3 and N2O on-road emissions from a Euro V truck equipped with a SCR were measured in real time using a QCL-IR. Results bring to light possibility to perform this kind of real time measurements for other pollutants besides, hydrocarbons, NOx, CO and CO2. The capability to measure NH3 and N2O in a second-by-second basis will allow applying the currently agreed regulatory emissions evaluation for gaseous compounds. Average N2O emission factors calculated applying the current PEMS-based data analysis to all available windows from the tests ranged from 0.063 g/kWh to 0.139 g/kWh. Average NH3 concentrations ranged from 0.9 ppm to 5.7 ppm. Although calculated average N2O and NH3 emissions were within current limits, NOx emissions were substantially higher than Euro V limits under the studied conditions", + "Lower_Bound": "unkown", + "Upper_Bound": "unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data in unit (g/km) is 0.065 g/km. EF in g/km = EF in g/kWh * work (kWh) / trip distance (km)", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1352231016303181", + "creation_date": "2022-03-14T08:00:48.505Z", + "last_change_date": "2022-03-14T08:00:48.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7546, + "fields": { + "EF_ID": 122950, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Emission factors of N2O (and NH3) are provided, by on-road measurment by Quantum cascade laser infrared spectrometer (QCL-IR) and Portable emissions measurements system (PEMS)-based data analysis, in term of g/kWh", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "4 tests were done. Detailed information is provided in table 2 of the article. This data is from test 3: Work is 103.2 kWh, and trip distance is 138.55 km; share of urban, rural and motorway is 55%, 29% and 16%, respectively; the average of temperature is 10.7 degrees Celsius; Engine start temperature is 9 degrees Celsius (cold start)", + "Regional_Conditions": "EU", + "Control_Technologies": "EURO V; DPF (diesel particulate filter) + SCR (selective catalytic reduction system)", + "Other_Properties": "", + "Value": "0.09", + "Unit": "g/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa R., Mendoza-Villafuerte P., Bonnel P., Lilova V., Hill L. Perujo A and Astogra C. 2016. On-road measurement of NH3 and N2O emissions from a Euro V heavy-duty vehicle. Atmospheric Environment. 139: 167-197.", + "English_Abstract": "The use of selective catalytic reduction systems (SCR) to abate NOx vehicular emissions brings new concerns on the emissions of the byproducts NH3 and N2O. Therefore, NH3 and N2O on-road emissions from a Euro V truck equipped with a SCR were measured in real time using a QCL-IR. Results bring to light possibility to perform this kind of real time measurements for other pollutants besides, hydrocarbons, NOx, CO and CO2. The capability to measure NH3 and N2O in a second-by-second basis will allow applying the currently agreed regulatory emissions evaluation for gaseous compounds. Average N2O emission factors calculated applying the current PEMS-based data analysis to all available windows from the tests ranged from 0.063 g/kWh to 0.139 g/kWh. Average NH3 concentrations ranged from 0.9 ppm to 5.7 ppm. Although calculated average N2O and NH3 emissions were within current limits, NOx emissions were substantially higher than Euro V limits under the studied conditions", + "Lower_Bound": "unkown", + "Upper_Bound": "unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data in unit (g/km) is 0.079 g/km. EF in g/km = EF in g/kWh * work (kWh) / trip distance (km)", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1352231016303181", + "creation_date": "2022-03-14T08:00:48.614Z", + "last_change_date": "2022-03-14T08:00:48.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7547, + "fields": { + "EF_ID": 122951, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Emission factors of N2O (and NH3) are provided, by on-road measurment by Quantum cascade laser infrared spectrometer (QCL-IR) and Portable emissions measurements system (PEMS)-based data analysis, in term of g/kWh", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "4 tests were done, of which 3 are for cold start. The data is the avarage of these 3 data (Test 1, 2 and 3) with the range.", + "Regional_Conditions": "EU", + "Control_Technologies": "EURO V; DPF (diesel particulate filter) + SCR (selective catalytic reduction system)", + "Other_Properties": "", + "Value": "0.101(0.074-0.139)", + "Unit": "g/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa R., Mendoza-Villafuerte P., Bonnel P., Lilova V., Hill L. Perujo A and Astogra C. 2016. On-road measurement of NH3 and N2O emissions from a Euro V heavy-duty vehicle. Atmospheric Environment. 139: 167-197.", + "English_Abstract": "The use of selective catalytic reduction systems (SCR) to abate NOx vehicular emissions brings new concerns on the emissions of the byproducts NH3 and N2O. Therefore, NH3 and N2O on-road emissions from a Euro V truck equipped with a SCR were measured in real time using a QCL-IR. Results bring to light possibility to perform this kind of real time measurements for other pollutants besides, hydrocarbons, NOx, CO and CO2. The capability to measure NH3 and N2O in a second-by-second basis will allow applying the currently agreed regulatory emissions evaluation for gaseous compounds. Average N2O emission factors calculated applying the current PEMS-based data analysis to all available windows from the tests ranged from 0.063 g/kWh to 0.139 g/kWh. Average NH3 concentrations ranged from 0.9 ppm to 5.7 ppm. Although calculated average N2O and NH3 emissions were within current limits, NOx emissions were substantially higher than Euro V limits under the studied conditions", + "Lower_Bound": "unkown", + "Upper_Bound": "unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1352231016303181", + "creation_date": "2022-03-14T08:00:48.715Z", + "last_change_date": "2022-03-14T08:00:48.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7548, + "fields": { + "EF_ID": 122952, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Emission factors of N2O (and NH3) are provided, by on-road measurment by Quantum cascade laser infrared spectrometer (QCL-IR) and Portable emissions measurements system (PEMS)-based data analysis, in term of g/kWh", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "4 tests were done. Detailed information is provided in table 2 of the article. This data is from test 4: Work is 97.0 kWh; trip distance is 136.9 km. share of urban, rural and motorway is 57%, 29% and 14%, respectively; the average of temperature is 12.6 degrees Celsius; Engine start temperature is 70 degrees Celsius (hot start)", + "Regional_Conditions": "EU", + "Control_Technologies": "EURO V; DPF (diesel particulate filter) + SCR (selective catalytic reduction system)", + "Other_Properties": "", + "Value": "0.063", + "Unit": "g/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa R., Mendoza-Villafuerte P., Bonnel P., Lilova V., Hill L. Perujo A and Astogra C. 2016. On-road measurement of NH3 and N2O emissions from a Euro V heavy-duty vehicle. Atmospheric Environment. 139: 167-197.", + "English_Abstract": "The use of selective catalytic reduction systems (SCR) to abate NOx vehicular emissions brings new concerns on the emissions of the byproducts NH3 and N2O. Therefore, NH3 and N2O on-road emissions from a Euro V truck equipped with a SCR were measured in real time using a QCL-IR. Results bring to light possibility to perform this kind of real time measurements for other pollutants besides, hydrocarbons, NOx, CO and CO2. The capability to measure NH3 and N2O in a second-by-second basis will allow applying the currently agreed regulatory emissions evaluation for gaseous compounds. Average N2O emission factors calculated applying the current PEMS-based data analysis to all available windows from the tests ranged from 0.063 g/kWh to 0.139 g/kWh. Average NH3 concentrations ranged from 0.9 ppm to 5.7 ppm. Although calculated average N2O and NH3 emissions were within current limits, NOx emissions were substantially higher than Euro V limits under the studied conditions", + "Lower_Bound": "unkown", + "Upper_Bound": "unkown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data in unit (g/km) is 0.055 g/km. EF in g/km = EF in g/kWh * work (kWh) / trip distance (km)", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1352231016303181", + "creation_date": "2022-03-14T08:00:48.816Z", + "last_change_date": "2022-03-14T08:00:48.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7549, + "fields": { + "EF_ID": 122953, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Net calorific value", + "Technology_Practices": "", + "Parameter_Conditions": "Motor gasoline blend E6, with a nominal 5.7 Volume % of ethanol. Measured ethanol content for the E6 sample considered in the study: 5.08 mass %.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.58", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Table 9, p. 23)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on measured ethanol content using the methodology described in: P. Geng, R. L. Furey, and A. Konzack, “Calculation of Heating Value for Gasoline Containing Ethanol,” SAE Paper 10SFL-0201, June 2010", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:48.916Z", + "last_change_date": "2022-03-14T08:00:48.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7550, + "fields": { + "EF_ID": 122954, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Net calorific value", + "Technology_Practices": "", + "Parameter_Conditions": "Motor gasoline blend E32, which is a 2:1 vol mixture of biogasolines E6 and E85. E6 has a nominal 5.7 Volume % of ethanol while E85 contains up to 85 volume % of ethanol. Measured ethanol content for the E32 sample considerfed in the study: 29.50 mass %.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.04", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Table 9, p. 23)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on measured ethanol content using the methodology described in: P. Geng, R. L. Furey, and A. Konzack, “Calculation of Heating Value for Gasoline Containing Ethanol,” SAE Paper 10SFL-0201, June 2010", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.006Z", + "last_change_date": "2022-03-14T08:00:49.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7551, + "fields": { + "EF_ID": 122955, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Net calorific value", + "Technology_Practices": "", + "Parameter_Conditions": "Motor gasoline blend E59, which is a 1:2 vol mixture of biogasolines E6 and E85. E6 has a nominal 5.7 Volume % of ethanol while E85 contains up to 85 volume % of ethanol. Measured ethanol content for the E32 sample considered in the study: 52.82 mass %.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.66", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Table 9, p. 23)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on measured ethanol content using the methodology described in: P. Geng, R. L. Furey, and A. Konzack, “Calculation of Heating Value for Gasoline Containing Ethanol,” SAE Paper 10SFL-0201, June 2010", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.100Z", + "last_change_date": "2022-03-14T08:00:49.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7552, + "fields": { + "EF_ID": 122956, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Net calorific value", + "Technology_Practices": "", + "Parameter_Conditions": "Motor gasoline blend E85, which contains up to 85 volume % of ethanol. Measured ethanol content for the E85 sample considered in the study: 83.31 mass %.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.54", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Table 9, p. 23)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on measured ethanol content using the methodology described in: P. Geng, R. L. Furey, and A. Konzack, “Calculation of Heating Value for Gasoline Containing Ethanol,” SAE Paper 10SFL-0201, June 2010", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.174Z", + "last_change_date": "2022-03-14T08:00:49.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7553, + "fields": { + "EF_ID": 122957, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fuel economy", + "Technology_Practices": "", + "Parameter_Conditions": "Fuel economy estimated on the basis of the federal test procedure (FTP) applied to seven light-duty vehicles of different brands and 2006 or 2007 models. All cars were provided with catalytic converters. The reference (CRC report E-80) provides detailed information on the selection and stage of the cars.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Motor gasoline blend E6, with a nominal 5.7 Volume % of ethanol. Measured ethanol content for the E6 sample considered in the study: 5.08 mass %.", + "Value": "17", + "Unit": "miles/galon", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Table 20, p. 73)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Range: 13.71-20.61 miles/galon", + "Data_Provider_Comments": "Fuel economy for other biogasoline blends (E32, E59 and E85) were also determined using the FTP tests. The results show decreasing fuel economy levels with increasing ethanol content in the biogasoline. Two other drive cycles were also used, namely the Suplemental Federal State Procedure (SFTP or US06) and the California drive cycle (UC). The results exhibit similar trends of fuel economy versus ethanol content.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.284Z", + "last_change_date": "2022-03-14T08:00:49.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7554, + "fields": { + "EF_ID": 122958, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fuel economy", + "Technology_Practices": "", + "Parameter_Conditions": "Fuel economy estimated on the basis of the federal test procedure (FTP) applied to seven light-duty vehicles of different brands and 2006 or 2007 models. All cars were provided with catalytic converters. The reference (CRC report E-80) provides detailed information on the selection and stage of the cars.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Motor gasoline blend E32, which is a 2:1 vol mixture of biogasolines E6 and E85. E6 has a nominal 5.7 Volume % of ethanol while E85 contains up to 85 volume % of ethanol. Measured ethanol content for the E32 sample considerfed in the study: 29.50 mass %.", + "Value": "15.5", + "Unit": "miles/galon", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Table 20, p. 73)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Range: 12.52-18.80 miles/galon", + "Data_Provider_Comments": "Fuel economy for other biogasoline blends (E6, E59 and E85) were also determined using the FTP tests. The results show decreasing fuel economy levels with increasing ethanol content in the biogasoline. Two other drive cycles were also used, namely the Suplemental Federal State Procedure (SFTP or US06) and the California drive cycle (UC). The results exhibit similar trends of fuel economy versus ethanol content.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.349Z", + "last_change_date": "2022-03-14T08:00:49.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7555, + "fields": { + "EF_ID": 122959, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fuel economy", + "Technology_Practices": "", + "Parameter_Conditions": "Fuel economy estimated on the basis of the federal test procedure (FTP) applied to seven light-duty vehicles of different brands and 2006 or 2007 models. All cars were provided with catalytic converters. The reference (CRC report E-80) provides detailed information on the selection and stage of the cars.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Motor gasoline blend E59, which is a 1:2 vol mixture of biogasolines E6 and E85. E6 has a nominal 5.7 Volume % of ethanol while E85 contains up to 85 volume % of ethanol. Measured ethanol content for the E32 sample considered in the study: 52.82 mass %.", + "Value": "13.9", + "Unit": "miles/galon", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Table 20, p. 73)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Range: 11.37-15.53 miles/galon", + "Data_Provider_Comments": "Fuel economy for other biogasoline blends (E6, E32 and E85) were also determined using the FTP tests. The results show decreasing fuel economy levels with increasing ethanol content in the biogasoline. Two other drive cycles were also used, namely the Suplemental Federal State Procedure (SFTP or US06) and the California drive cycle (UC). The results exhibit similar trends of fuel economy versus ethanol content.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.444Z", + "last_change_date": "2022-03-14T08:00:49.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7556, + "fields": { + "EF_ID": 122960, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fuel economy", + "Technology_Practices": "", + "Parameter_Conditions": "Fuel economy estimated on the basis of the federal test procedure (FTP) applied to seven light-duty vehicles of different brands and 2006 or 2007 models. All cars were provided with catalytic converters. The reference (CRC report E-80) provides detailed information on the selection and stage of the cars.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Motor gasoline blend E85, which contains up to 85 volume % of ethanol. Measured ethanol content for the E85 sample considered in the study: 83.31 mass %.", + "Value": "12.6", + "Unit": "miles/galon", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Table 20, p. 73)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Range: 10.31-15.65 miles/galon", + "Data_Provider_Comments": "Fuel economy for other biogasoline blends (E6, E32 and E59) were also determined using the FTP tests. The results show decreasing fuel economy levels with increasing ethanol content in the biogasoline. Two other drive cycles were also used, namely the Suplemental Federal State Procedure (SFTP or US06) and the California drive cycle (UC). The results exhibit similar trends of fuel economy versus ethanol content.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.536Z", + "last_change_date": "2022-03-14T08:00:49.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7557, + "fields": { + "EF_ID": 122961, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "CH4 emissions determined using the federal test procedure (FTP) for seven light-duty vehicles of different brands and 2006 or 2007 models. All cars were provided with catalytic converters. The reference (CRC report E-80) provides detailed information on the selection and stage of the cars.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Fuel used: motor gasoline blend E6, with a nominal 5.7 Volume % of ethanol. Measured ethanol content for the E6 sample considered in the study: 5.08 mass %.", + "Value": "0.016-0.026", + "Unit": "g/mile", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Appendix II)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 emission factors for other biogasoline blends (E32, E59 and E85) used in the same vehicles were also determined using the FTP tests. The results show increasing values of CH4 EFs with increasing ethanol content in the biogasoline. Two other drive cycles were also used, namely the Suplemental Federal State Procedure (SFTP or US06) and the California drive cycle (UC).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.663Z", + "last_change_date": "2022-03-14T08:00:49.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7558, + "fields": { + "EF_ID": 122962, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "CH4 emissions determined using the federal test procedure (FTP) for seven light-duty vehicles of different brands and 2006 or 2007 models. All cars were provided with catalytic converters. The reference (CRC report E-80) provides detailed information on the selection and stage of the cars.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Fuel used: motor gasoline blend E32, which is a 2:1 vol mixture of biogasolines E6 and E85. E6 has a nominal 5.7 Volume % of ethanol while E85 contains up to 85 volume % of ethanol. Measured ethanol content for the E32 sample considerfed in the study: 29.50 mass %.", + "Value": "0.017-0.033", + "Unit": "g/mile", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Appendix II)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 emission factors for other biogasoline blends (E6, E59 and E85) used in the same vehicles were also determined using the FTP tests. The results show increasing values of CH4 EFs with increasing ethanol content in the biogasoline. Two other drive cycles were also used, namely the Suplemental Federal State Procedure (SFTP or US06) and the California drive cycle (UC).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.771Z", + "last_change_date": "2022-03-14T08:00:49.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7559, + "fields": { + "EF_ID": 122963, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "CH4 emissions determined using the federal test procedure (FTP) for to seven light-duty vehicles of different brands and 2006 or 2007 models. All cars were provided with catalytic converters. The reference (CRC report E-80) provides detailed information on the selection and stage of the cars.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Motor gasoline blend E59, which is a 1:2 vol mixture of biogasolines E6 and E85. E6 has a nominal 5.7 Volume % of ethanol while E85 contains up to 85 volume % of ethanol. Measured ethanol content for the E32 sample considered in the study: 52.82 mass %.", + "Value": "0.016-0.042", + "Unit": "g/mile", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Appendix II)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 emission factors for other biogasoline blends (E6, E32 and E85) used in the same vehicles were also determined using the FTP tests. The results show increasing values of CH4 EFs with increasing ethanol content in the biogasoline. Two other drive cycles were also used, namely the Suplemental Federal State Procedure (SFTP or US06) and the California drive cycle (UC).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:49.880Z", + "last_change_date": "2022-03-14T08:00:49.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7560, + "fields": { + "EF_ID": 122964, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "METHANE", + "Fuel": "Biogasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "CH4 emissions determined using the federal test procedure (FTP) for seven light-duty vehicles of different brands and 2006 or 2007 models. All cars were provided with catalytic converters. The reference (CRC report E-80) provides detailed information on the selection and stage of the cars.", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "Motor gasoline blend E85, which contains up to 85 volume % of ethanol. Measured ethanol content for the E85 sample considered in the study: 83.31 mass %.", + "Value": "0.015-0.057", + "Unit": "g/mile", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Exhaust and evaporative emissions testing of flexible-fuels vehicles, CRC Report No. E-80, Coordinating Research Council, Inc., USA, 2011. (Appendix II)", + "English_Abstract": "This report describes an investigation into the evaporative and tailpipe emissions of FFVs using fuel blends of E6, E85 and intermediate blends of the two. The impetus for this program (CRC`s E-80) started with discussions involving the California Air Resources Board (CARB), the U.S. Environmental Protection Agency (EPA) and the Coordinating Research Council (CRC) concerning questions about the emissions inventory impact that these vehicles might have, namely: (i) Is there a trend in emissions as fuels change in concentration from low ethanol content to high ethanol content? (ii) Given that these vehicles are calibrated for and certified on the endpoint fuels (E6 and E85 in this Program), are emissions for a mixture of the two fuels, creating intermediate blends (for example, E32 and E59) consistent with those of the endpoint fuels?", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 emission factors for other biogasoline blends (E6, E32 and E59) used in the same vehicles were also determined using the FTP tests. The results show increasing values of CH4 EFs with increasing ethanol content in the biogasoline. Two other drive cycles were also used, namely the Suplemental Federal State Procedure (SFTP or US06) and the California drive cycle (UC).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://crcao.org/publications/emissions/index.html", + "creation_date": "2022-03-14T08:00:50.006Z", + "last_change_date": "2022-03-14T08:00:50.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7561, + "fields": { + "EF_ID": 122965, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for uncontrolled wells during well completion flowback", + "Technology_Practices": "Hydraulic fracturing", + "Parameter_Conditions": "Measurements were performed after well is drilled during competion stage (exploration)", + "Regional_Conditions": "Gulf Coast, Midcontinent, Rocky Mountain, and Appalachian production regions of the United States of America", + "Control_Technologies": "Uncontroled", + "Other_Properties": "", + "Value": "0.83", + "Unit": "Mg/well completion flowback event", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen, D. T.; Torres, V. M.; Thomas, J.; Sullivan, D.; Harrison, M.; Hendler, A.; Herndon, S. C.; Kolb, C. E.; Fraser, M. P.; Hill, A. D.; Lamb, B. K.; Miskimins, J.; Sawyer, R. F.; Seinfeld, J. H. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17768-17773", + "English_Abstract": "Engineering estimates of methane emissions from natural gas B27production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at +/-200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. B28The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements were performed at 9 well completions flowbacks events", + "Data_Provider_Comments": "Measurements of the nine completions (all gases were vented to the atmosphere for the entire duration of the completion event) showed a wide range of emissions. 4 Mg of methane for one completion and 0.5 Mg of methane for another completion of this type for an adjacent well.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.pnas.org/content/110/44/17768.full", + "creation_date": "2022-03-14T08:00:50.107Z", + "last_change_date": "2022-03-14T08:00:50.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7562, + "fields": { + "EF_ID": 122966, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for gas well unloading", + "Technology_Practices": "Gas Well Liquids Unloadings (non-plunger)", + "Parameter_Conditions": "Measurements were performed during manual unloadings events", + "Regional_Conditions": "Gulf Coast, Rocky Mountain, and Appalachian production regions of the United States of America", + "Control_Technologies": "Uncontroled", + "Other_Properties": "", + "Value": "1.1", + "Unit": "Mg/unloading event", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen, D. T.; Torres, V. M.; Thomas, J.; Sullivan, D.; Harrison, M.; Hendler, A.; Herndon, S. C.; Kolb, C. E.; Fraser, M. P.; Hill, A. D.; Lamb, B. K.; Miskimins, J.; Sawyer, R. F.; Seinfeld, J. H. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17768-17773", + "English_Abstract": "Engineering estimates of methane emissions from natural gas B27production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at +/-200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. B28The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).", + "Lower_Bound": "0.32 Mg/unloading event", + "Upper_Bound": "2.0 Mg/unloading event", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "9 liquid unloading events", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.pnas.org/content/110/44/17768.full", + "creation_date": "2022-03-14T08:00:50.208Z", + "last_change_date": "2022-03-14T08:00:50.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7563, + "fields": { + "EF_ID": 122967, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for equipment leaks", + "Technology_Practices": "Includes leaks from wellhead equipment, piping, flanges, fittings, valves and separators; does not include flashing from tanks or engine exhaust gases", + "Parameter_Conditions": "", + "Regional_Conditions": "Gulf Coast, Midcontinent, Rocky Mountain, and Appalachian production regions of the United States of America", + "Control_Technologies": "Uncontroled", + "Other_Properties": "", + "Value": "33900", + "Unit": "scf/well", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen, D. T.; Torres, V. M.; Thomas, J.; Sullivan, D.; Harrison, M.; Hendler, A.; Herndon, S. C.; Kolb, C. E.; Fraser, M. P.; Hill, A. D.; Lamb, B. K.; Miskimins, J.; Sawyer, R. F.; Seinfeld, J. H. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17768-17773", + "English_Abstract": "Engineering estimates of methane emissions from natural gas B27production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at +/-200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. B28The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "150 sites (478 wells)", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.pnas.org/content/110/44/17768.full", + "creation_date": "2022-03-14T08:00:50.308Z", + "last_change_date": "2022-03-14T08:00:50.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7564, + "fields": { + "EF_ID": 122968, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for well unloading", + "Technology_Practices": "Gas well liquids unloading (non plunger lifts), number of events per year per well is greater than 10 and less than or equal to 50.", + "Parameter_Conditions": "Measurements were performed during manual unloadings events", + "Regional_Conditions": "United States of America", + "Control_Technologies": "Uncontroled", + "Other_Properties": "", + "Value": "24100", + "Unit": "scf/event", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen, D. T.; Sullivan, D. W.; Zavala-Araiza, D.; Pacsi, A. P.; Harrison, M.; Keen, K.; Fraser, M. P.; Hill, A. D.; Lamb, B. K.; Sawyer, R. F.; Seinfeld, J. H. Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Liquid Unloadings. Environ. Sci. Technol., 2015, 49 (1), pp 641–648", + "English_Abstract": "Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21 000-35 000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10 000-50 000 scf/event). For wells with plunger lifts, emissions averaged 1000-10 000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12 000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190- 400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings.", + "Lower_Bound": "8700 scf/event", + "Upper_Bound": "50400 scf/event", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "10 wells without plunger lifts", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://pubs.acs.org/doi/abs/10.1021/es504016r", + "creation_date": "2022-03-14T08:00:50.401Z", + "last_change_date": "2022-03-14T08:00:50.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7565, + "fields": { + "EF_ID": 122969, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for well unloading", + "Technology_Practices": "Gas well liquids unloading (with plunger lifts), number of events per year per well is less than or equal to 100", + "Parameter_Conditions": "Manually triggered liquid unloadings practice was used", + "Regional_Conditions": "United States of America", + "Control_Technologies": "Uncontroled", + "Other_Properties": "", + "Value": "9650", + "Unit": "scf/event", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen, D. T.; Sullivan, D. W.; Zavala-Araiza, D.; Pacsi, A. P.; Harrison, M.; Keen, K.; Fraser, M. P.; Hill, A. D.; Lamb, B. K.; Sawyer, R. F.; Seinfeld, J. H. Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Liquid Unloadings. Environ. Sci. Technol., 2015, 49 (1), pp 641–648", + "English_Abstract": "Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21 000-35 000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10 000-50 000 scf/event). For wells with plunger lifts, emissions averaged 1000-10 000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12 000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190- 400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings.", + "Lower_Bound": "6900 scf/event", + "Upper_Bound": "12400 scf/event", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "50 wells with plunger lifts", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://pubs.acs.org/doi/abs/10.1021/es504016r", + "creation_date": "2022-03-14T08:00:50.492Z", + "last_change_date": "2022-03-14T08:00:50.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7566, + "fields": { + "EF_ID": 122970, + "IPCC_Category": "1.B.2.b - Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for well unloading", + "Technology_Practices": "Gas well liquids unloading (with plunger lifts), number of events per year per well: events>100", + "Parameter_Conditions": "Automatically triggered liquid unloadings practice was used", + "Regional_Conditions": "United States of America", + "Control_Technologies": "Uncontroled", + "Other_Properties": "", + "Value": "1260", + "Unit": "scf/event", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen, D. T.; Sullivan, D. W.; Zavala-Araiza, D.; Pacsi, A. P.; Harrison, M.; Keen, K.; Fraser, M. P.; Hill, A. D.; Lamb, B. K.; Sawyer, R. F.; Seinfeld, J. H. Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Liquid Unloadings. Environ. Sci. Technol., 2015, 49 (1), pp 641–648", + "English_Abstract": "Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21 000-35 000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10 000-50 000 scf/event). For wells with plunger lifts, emissions averaged 1000-10 000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12 000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190- 400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings.", + "Lower_Bound": "500 scf/event", + "Upper_Bound": "2100 scf/event", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "250 wells with plunger lifts", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://pubs.acs.org/doi/abs/10.1021/es504016r", + "creation_date": "2022-03-14T08:00:50.584Z", + "last_change_date": "2022-03-14T08:00:50.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7567, + "fields": { + "EF_ID": 122971, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for decommissioned oil and gas wells", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "Wells have been decommissioned in line with best practice.", + "Other_Properties": "", + "Value": "364 +/- 677", + "Unit": "kg CO2e/well, GWP=24", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Boothroyd et al., 2016. Science of the Total Environment 547 (2016) 461–469", + "English_Abstract": "This study considered the fugitive emissions of methane (CH4) from former oil and gas exploration and production wells drilled to exploit conventional hydrocarbon reservoirs onshore in the UK. This study selected from the 66% of all onshorewells in the UK which appeared to be properly decommissioned (abandoned) that came from 4 different basins and were between 8 and 79 years old. The soil gas above each well was analysed and assessed relative to a nearby control site of similar land use and soil type. The results showed that of the 102wells considered 30% had soil gas CH4 at the soil surface thatwas significantly greater than their respective control. Conversely, 39% of well sites had significant lower surface soil gas CH4 concentrations than their respective control. We interpret elevated soil gas CH4 concentrations to be the result ofwell integrity failure, but do not know the source of the gas nor the route to the surface. Where elevated CH4was detected it appears to have occurredwithin a decade of it being drilled. The flux of CH4 from wells was 364+/-677 kg CO2eq/well/year with a 27% chance that the wellwould have a negative flux to the atmosphere independent ofwell age. This flux is lowrelative to the activity commonly used on decommissioned well sites (e.g. sheep grazing), however, fluxes from wells that have not been appropriately decommissioned would be expected to be higher.", + "Lower_Bound": "See comments from data provider", + "Upper_Bound": "See comments from data provider", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "1529 measurements were carried out - 804 on control fields and 725 in well fields. 102 wells measured covering four different basins", + "Data_Provider_Comments": "Standard deviation is given with the value", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.scitotenv.2015.12.096", + "creation_date": "2022-03-14T08:00:50.677Z", + "last_change_date": "2022-03-14T08:00:50.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7568, + "fields": { + "EF_ID": 122972, + "IPCC_Category": "1.B.2 - Oil and Natural Gas", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for abandoned oil and gas wells", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "8604", + "Unit": "kg CO2e/well, GWP=24", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Boothroyd et al., 2016. Science of the Total Environment 547 (2016) 461–469", + "English_Abstract": "This study considered the fugitive emissions of methane (CH4) from former oil and gas exploration and production wells drilled to exploit conventional hydrocarbon reservoirs onshore in the UK. This study selected from the 66% of all onshorewells in the UK which appeared to be properly decommissioned (abandoned) that came from 4 different basins and were between 8 and 79 years old. The soil gas above each well was analysed and assessed relative to a nearby control site of similar land use and soil type. The results showed that of the 102wells considered 30% had soil gas CH4 at the soil surface thatwas significantly greater than their respective control. Conversely, 39% of well sites had significant lower surface soil gas CH4 concentrations than their respective control. We interpret elevated soil gas CH4 concentrations to be the result ofwell integrity failure, but do not know the source of the gas nor the route to the surface. Where elevated CH4was detected it appears to have occurredwithin a decade of it being drilled. The flux of CH4 from wells was 364+/-677 kg CO2eq/well/year with a 27% chance that the wellwould have a negative flux to the atmosphere independent ofwell age. This flux is lowrelative to the activity commonly used on decommissioned well sites (e.g. sheep grazing), however, fluxes from wells that have not been appropriately decommissioned would be expected to be higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Only a single measurement as abandoning of wells without proper decommissioning has not occurred for a long time in the UK", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.scitotenv.2015.12.096", + "creation_date": "2022-03-14T08:00:50.769Z", + "last_change_date": "2022-03-14T08:00:50.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7569, + "fields": { + "EF_ID": 122973, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fugitive emissions from underground mining activities", + "Technology_Practices": "Conventional Underground coal mining in Indian Degree-I Seams", + "Parameter_Conditions": "Degree-I underground seam refers to a coal seams in which the percentage of methane in the general body of air does not exceed 0.1 and the rate of emission of methane does not exceed one cubic meter per tonne of coal produced. (Reg 2(12A), Coal Mines Regulations, 1957, DGMS, India)", + "Regional_Conditions": "India", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "2.91", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Singh A.K., Singh H., Mendhe V.A., Kispotta J., Mondal B.K., Singh K.K., Singh P.K., Development of Country Emission Factors due to Venting and Flaring and Preparation of GHG Emission Estimates for the Period 1995 to 2007 Associated to Fugitive Emissions from Coal and Oil and Natural Gas Systems, CIMFR Project No. GC/MS/154/2007-08. Submitted to Ministry of Environment and Forests, Government of India, 2012.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Study conducted for India`s national communications", + "Other_Comments": "", + "Data_Provider": "Dr Ajay Kumar Singh", + "Link": "", + "creation_date": "2022-03-14T08:00:50.841Z", + "last_change_date": "2022-03-14T08:00:50.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7570, + "fields": { + "EF_ID": 122974, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fugitive emissions from underground mining activities", + "Technology_Practices": "Conventional Underground coal mining in Indian Degree-II Seams", + "Parameter_Conditions": "“Degree II Seam” means a coal seam in which the percentage of inflammable gas in the general body of air at any place in the workings of the seam is more than 0.1 or rate of emission of inflammable gas per tonne of coal produced exceeds one cubic metre but does not exceed ten cubic metres. (Reg 2(12A), Coal Mines Regulations, 1957, DGMS, India)", + "Regional_Conditions": "India", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "13.08", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Singh A.K., Singh H., Mendhe V.A., Kispotta J., Mondal B.K., Singh K.K., Singh P.K., Development of Country Emission Factors due to Venting and Flaring and Preparation of GHG Emission Estimates for the Period 1995 to 2007 Associated to Fugitive Emissions from Coal and Oil and Natural Gas Systems, CIMFR Project No. GC/MS/154/2007-08. Submitted to Ministry of Environment and Forests, Government of India, 2012.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Study conducted for India`s national communications", + "Other_Comments": "", + "Data_Provider": "Dr Ajay Kumar Singh", + "Link": "", + "creation_date": "2022-03-14T08:00:50.928Z", + "last_change_date": "2022-03-14T08:00:50.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7571, + "fields": { + "EF_ID": 122975, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fugitive emissions from underground mining activities", + "Technology_Practices": "Conventional Underground coal mining in Indian Degree-III Seams", + "Parameter_Conditions": "“Degree III Seams” means a coal seam in which the rate of emission of inflammable gas per tonne of coal produced exceeds ten cubic metres. (Reg 2(12A), Coal Mines Regulations, 1957, DGMS, India)", + "Regional_Conditions": "India", + "Control_Technologies": "None", + "Other_Properties": "", + "Value": "23.68", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Singh A.K., Singh H., Mendhe V.A., Kispotta J., Mondal B.K., Singh K.K., Singh P.K., Development of Country Emission Factors due to Venting and Flaring and Preparation of GHG Emission Estimates for the Period 1995 to 2007 Associated to Fugitive Emissions from Coal and Oil and Natural Gas Systems, CIMFR Project No. GC/MS/154/2007-08. Submitted to Ministry of Environment and Forests, Government of India, 2012.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Study conducted for India`s national communications", + "Other_Comments": "", + "Data_Provider": "Dr Ajay Kumar Singh", + "Link": "", + "creation_date": "2022-03-14T08:00:50.999Z", + "last_change_date": "2022-03-14T08:00:50.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7572, + "fields": { + "EF_ID": 122976, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for Energy Industries. EF applied for Greece GHG inventory in period 1990-2012", + "Technology_Practices": "Combastion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "The South Kavala reservoir has a NCV of 11313 kcal/Nm3; The Prinos reservoir has a NCV of 12192 kcal/Nm3.", + "Value": "15.96 - 16.23", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "ANNUAL INVENTORY SUBMISSION OF GREECE UNDER THE CONVENTION AND THE KYOTO PROTOCOL FOR GREENHOUSE AND OTHER GASES FOR THE YEARS 1990-2012", + "English_Abstract": "CO2 EF from fuel combustion derived for Greece", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF derived for domestic natural gas depends on the reservoir that the gas is extracted.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:51.066Z", + "last_change_date": "2022-03-14T08:00:51.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7573, + "fields": { + "EF_ID": 122977, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for inventories in period 1990-2012", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria, Bulgaria, Czech Republic, Estonia, Finland, Greece, Hungary, Italy, Latvia, Romina, Slovakia and Slovenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0 - 15.3", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Carbon content of natural gas in European countries that are producers and/or importers mainly from the Russian Federation", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:51.132Z", + "last_change_date": "2022-03-14T08:00:51.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7574, + "fields": { + "EF_ID": 122978, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for all combustion processes. EF applied for inventories in period 1990-2012", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark, Ireland, Netherlands, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.4 - 15.7", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Carbon content of natural gas in European countries that are producers, importers or exporters of natural gas extracted in the North Sea area.", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:51.223Z", + "last_change_date": "2022-03-14T08:00:51.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7575, + "fields": { + "EF_ID": 122982, + "IPCC_Category": "1.A.1.c.ii - Other Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for process heaters on an energy input baaasis", + "Technology_Practices": "Process heater less than 29 MW", + "Parameter_Conditions": "EF based on the gross heating value of the fuel", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "ng/J of Fuel", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "PTAC.2015. Development of N2O Emission Factors for Upstream Oil and Gas Fired Equipment. A report prepared by Clearstone Engineering Ltd. Calgary, AB. Pp. 146.", + "English_Abstract": "Limited data is currently available on N2O emissions from natural gas-fired equipment in the upstream oil and gas (UOG) industry and the N2O emission factors presently in use have high uncertainties. The primary objective of this study was to determine N2O emission factors for selected types of natural gas-fired equipment commonly used in the UOG industry, namely, process heaters, reciprocating engines, and stationary gas turbines. In addition, emission factors were determined for CH4, CO, CO2, and NOx.", + "Lower_Bound": "-88%", + "Upper_Bound": "114%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The combustion tests were typically performed for 30 to 60 minutes and quantified concentrations of N2O, No, NO2, CO2, CO, CH4, O2 and H2O. Fuel gas analyses quantified concentrations of C1 to C5 hydrocarbons, and CO2. The CH4 content of the fuel gas was 89.7 to 97.4 mol percent, depending on the source. Eight different heaters were tested (all were less than 29 MW in capacity).", + "Other_Comments": "", + "Data_Provider": "David Picard", + "Link": "", + "creation_date": "2022-03-14T08:00:51.308Z", + "last_change_date": "2022-03-14T08:00:51.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7576, + "fields": { + "EF_ID": 122983, + "IPCC_Category": "1.A.1.c.ii - Other Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for reciprocating engines on an energy input basis", + "Technology_Practices": "2-stroke and 4-stroke lean-burn reciprocating engines", + "Parameter_Conditions": "EF based on the gross heating value of the fuel", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "ng/J of Fuel", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "PTAC.2015. Development of N2O Emission Factors for Upstream Oil and Gas Fired Equipment. A report prepared by Clearstone Engineering Ltd. Calgary, AB. Pp. 146.", + "English_Abstract": "Limited data is currently available on N2O emissions from natural gas-fired equipment in the upstream oil and gas (UOG) industry and the N2O emission factors presently in use have high uncertainties. The primary objective of this study was to determine N2O emission factors for selected types of natural gas-fired equipment commonly used in the UOG industry, namely, process heaters, reciprocating engines, and stationary gas turbines. In addition, emission factors were determined for CH4, CO, CO2, and NOx.", + "Lower_Bound": "-61%", + "Upper_Bound": "165%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The combustion tests were typically performed for 30 to 60 minutes and quantified concentrations of N2O, No, NO2, CO2, CO, CH4, O2 and H2O. Fuel gas analyses quantified concentrations of C1 to C5 hydrocarbons, and CO2. The CH4 content of the fuel gas was 89.7 to 97.4 mol percent, depending on the source. Six different reciprocating engines were tested (i.e., one 2-stroke lean burn engine and five 4-stroke lean burn engines).", + "Other_Comments": "", + "Data_Provider": "David Picard", + "Link": "", + "creation_date": "2022-03-14T08:00:51.374Z", + "last_change_date": "2022-03-14T08:00:51.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7577, + "fields": { + "EF_ID": 122984, + "IPCC_Category": "1.A.1.c.ii - Other Energy Industries", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for stationary gas turbine engines on an energy input basis", + "Technology_Practices": "Turbine engines", + "Parameter_Conditions": "EF based on the gross heating value of the fuel", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.04", + "Unit": "ng/J of Fuel", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "PTAC.2015. Development of N2O Emission Factors for Upstream Oil and Gas Fired Equipment. A report prepared by Clearstone Engineering Ltd. Calgary, AB. Pp. 146.", + "English_Abstract": "Limited data is currently available on N2O emissions from natural gas-fired equipment in the upstream oil and gas (UOG) industry and the N2O emission factors presently in use have high uncertainties. The primary objective of this study was to determine N2O emission factors for selected types of natural gas-fired equipment commonly used in the UOG industry, namely, process heaters, reciprocating engines, and stationary gas turbines. In addition, emission factors were determined for CH4, CO, CO2, and NOx.", + "Lower_Bound": "-64%", + "Upper_Bound": "64%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The combustion tests were typically performed for 30 to 60 minutes and quantified concentrations of N2O, No, NO2, CO2, CO, CH4, O2 and H2O. Fuel gas analyses quantified concentrations of C1 to C5 hydrocarbons, and CO2. The CH4 content of the fuel gas was 89.7 to 97.4 mol percent, depending on the source. Three different turbine engines were tested.", + "Other_Comments": "", + "Data_Provider": "David Picard", + "Link": "", + "creation_date": "2022-03-14T08:00:51.466Z", + "last_change_date": "2022-03-14T08:00:51.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7578, + "fields": { + "EF_ID": 122985, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Measured", + "Description": "EF for combustion processes in Energy Industries. EF applied for Belgian GHG inventory in period 1990-2012", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.03 - 15.41", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "BELGIUM`S GREENHOUSE GAS INVENTORY (1990-2012)", + "English_Abstract": "CO2 EF used for Belgium GHG inventory 1990-2012", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emissions of CO2 of the refinery gas are measured, based on continuous analyses of the refinery gas by gas chromatography which determines the C-amounts in the gas. CO2 EF presented in the NIR vary between 55.1 and 56.5 t CO2/TJ", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:51.541Z", + "last_change_date": "2022-03-14T08:00:51.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7579, + "fields": { + "EF_ID": 122986, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Measured", + "Description": "EF for combustion processes in Energy Industries. EF applied for Denmark GHG inventory in period 1990-2012", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.49 - 15.85", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "DENMARK`S NATIONAL INVENTORY REPORT 2014", + "English_Abstract": "CO2 EF used for Denmark GHG inventory 1990-2012", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor applied for refinery gas refers to EU ETS data for the two refineries in operation in Denmark. The weighted average emission factor (57.6 kg per GJ) for 2006-2009 have been applied for the years 1990-2005. CO2 EF presented in the NIR vary between 56.8 and 58.099 t CO2/TJ", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:51.608Z", + "last_change_date": "2022-03-14T08:00:51.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7580, + "fields": { + "EF_ID": 122987, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Measured", + "Description": "EF for combustion processes in Energy Industries. EF applied for Greece GHG inventory in period 1990-2012", + "Technology_Practices": "Combustion technology", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "NCV=45.08 TJ/kt", + "Value": "15.62", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "ANNUAL INVENTORY SUBMISSION OF GREECE UNDER THE CONVENTION AND THE KYOTO PROTOCOL FOR GREENHOUSE AND OTHER GASES FOR THE YEARS 1990-2012", + "English_Abstract": "CO2 EF used for Greece GHG inventory 1990-2012", + "Lower_Bound": "-2%", + "Upper_Bound": "+3%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is derived from PS data contained in the verified EU ETS emission reports of refineries", + "Other_Comments": "", + "Data_Provider": "Inga Konstantinaviciute", + "Link": "http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/8108.php", + "creation_date": "2022-03-14T08:00:51.709Z", + "last_change_date": "2022-03-14T08:00:51.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7581, + "fields": { + "EF_ID": 122988, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of CO2 from Coking Coal", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93.61", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Choudhary, A., Roy, J., Biswas, S., Chakraborty, C. C. and Sen, K., 2004. Determination of carbon dioxide emission factors from coal combustion. In Climate Change and India: Uncertainty Reduction in Greenhouse Gas Inventory Estimates (eds Mitra, A. P., Sharma, S., Bhattacharya, S., Garg, A., Devotta, S. and Sen, K.). Universities Press, Hyderabad", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is CO2 EF from combustion of coking coal (1A1a) mainly but also for coal combustion in Iron and steel plants.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:51.783Z", + "last_change_date": "2022-03-14T08:00:51.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7582, + "fields": { + "EF_ID": 122989, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of CO2 from Non-coking coal", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95.81", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Choudhary, A., Roy, J., Biswas, S., Chakraborty, C. C. and Sen, K., 2004. Determination of carbon dioxide emission factors from coal combustion. In Climate Change and India: Uncertainty Reduction in Greenhouse Gas Inventory Estimates (eds Mitra, A. P., Sharma, S., Bhattacharya, S., Garg, A., Devotta, S. and Sen, K.). Universities Press, Hyderabad", + "English_Abstract": "", + "Lower_Bound": "95.81", + "Upper_Bound": "96.03", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is CO2 EF from combustion of non-coking coal (1A1a) mainly.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:51.857Z", + "last_change_date": "2022-03-14T08:00:51.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7583, + "fields": { + "EF_ID": 122990, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of CO2 from Lignite", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106.51", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Choudhary, A., Roy, J., Biswas, S., Chakraborty, C. C. and Sen, K., 2004. Determination of carbon dioxide emission factors from coal combustion. In Climate Change and India: Uncertainty Reduction in Greenhouse Gas Inventory Estimates (eds Mitra, A. P., Sharma, S., Bhattacharya, S., Garg, A., Devotta, S. and Sen, K.). Universities Press, Hyderabad", + "English_Abstract": "", + "Lower_Bound": "103.73", + "Upper_Bound": "109.27", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is CO2 EF from combustion of lignite (1A1a) mainly.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:51.933Z", + "last_change_date": "2022-03-14T08:00:51.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7584, + "fields": { + "EF_ID": 122991, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF of Underground mines", + "Technology_Practices": "", + "Parameter_Conditions": "During mining(Deg.I)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.91", + "Unit": "m3 CH4/tonne of coal produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Degree I: means a coal seam or part thereof within the precincts of a mine not being an opencast working, whether or not inflammable gas is actually detected in the general body of the air at any place in its workings below ground, or when the percentage of the inflammable gas, if and when detected, in such general body of air does not exceed 0.1 and the rate of emission of such gas does not exceed one cubic meter per tonne of coal produced.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.008Z", + "last_change_date": "2022-03-14T08:00:52.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7585, + "fields": { + "EF_ID": 122992, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF of Underground mines", + "Technology_Practices": "", + "Parameter_Conditions": "During mining(Deg.II)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.08", + "Unit": "m3 CH4/tonne of coal produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Degree II: means a coal seam or part thereof within the precincts of a mine not being an opencast working in which the percentage of inflammable gas in the general body of air at any place in the workings of the seam is more than 0.1 or rate of emission of inflammable gas per tonne of coal produced exceeds one cubic meter but does not exceed ten cubic meters.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.102Z", + "last_change_date": "2022-03-14T08:00:52.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7586, + "fields": { + "EF_ID": 122993, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF of Underground mines", + "Technology_Practices": "", + "Parameter_Conditions": "During mining(Deg.III)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.64", + "Unit": "m3 CH4/tonne of coal produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Degree III: means a coal seam or part thereof within the precincts of a mine not being an opencast working in which the rate of emission of inflammable gas per tonne of coal produced exceeds ten cubic meters.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.191Z", + "last_change_date": "2022-03-14T08:00:52.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7587, + "fields": { + "EF_ID": 122994, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF of Underground mines", + "Technology_Practices": "", + "Parameter_Conditions": "Post mining(Deg.I)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "m3 CH4/tonne of coal produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Degree I: means a coal seam or part thereof within the precincts of a mine not being an opencast working, whether or not inflammable gas is actually detected in the general body of the air at any place in its workings below ground, or when the percentage of the inflammable gas, if and when detected, in such general body of air does not exceed 0.1 and the rate of emission of such gas does not exceed one cubic meter per tonne of coal produced.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.256Z", + "last_change_date": "2022-03-14T08:00:52.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7588, + "fields": { + "EF_ID": 122995, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF of Underground mines", + "Technology_Practices": "", + "Parameter_Conditions": "Post mining(Deg.II)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.15", + "Unit": "m3 CH4/tonne of coal produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Degree II: means a coal seam or part thereof within the precincts of a mine not being an opencast working in which the percentage of inflammable gas in the general body of air at any place in the workings of the seam is more than 0.1 or rate of emission of inflammable gas per tonne of coal produced exceeds one cubic meter but does not exceed ten cubic meters.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.324Z", + "last_change_date": "2022-03-14T08:00:52.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7589, + "fields": { + "EF_ID": 122996, + "IPCC_Category": "1.B.1.a.i - Underground mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF of Underground mines", + "Technology_Practices": "", + "Parameter_Conditions": "Post mining(Deg.III)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.12", + "Unit": "m3 CH4/tonne of coal produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Degree III: means a coal seam or part thereof within the precincts of a mine not being an opencast working in which the rate of emission of inflammable gas per tonne of coal produced exceeds ten cubic meters.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.391Z", + "last_change_date": "2022-03-14T08:00:52.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7590, + "fields": { + "EF_ID": 122997, + "IPCC_Category": "1.B.1.a.ii - Surface mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF of Surfacemining", + "Technology_Practices": "", + "Parameter_Conditions": "Mining", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.18", + "Unit": "m3 CH4/tonne of coal produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.479Z", + "last_change_date": "2022-03-14T08:00:52.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7591, + "fields": { + "EF_ID": 122998, + "IPCC_Category": "1.B.1.a.ii - Surface mines", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF of Surfacemining", + "Technology_Practices": "", + "Parameter_Conditions": "Post Mining", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "m3 CH4/tonne of coal produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.549Z", + "last_change_date": "2022-03-14T08:00:52.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7592, + "fields": { + "EF_ID": 122999, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "NCV of Coking coal", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.18", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "23.88", + "Upper_Bound": "24.48", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.616Z", + "last_change_date": "2022-03-14T08:00:52.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7593, + "fields": { + "EF_ID": 123000, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "NCV of Non-coking coal", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.63", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "19.23", + "Upper_Bound": "20.03", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.691Z", + "last_change_date": "2022-03-14T08:00:52.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7594, + "fields": { + "EF_ID": 123001, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "NCV of Lignite", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.69", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "9.29", + "Upper_Bound": "10.09", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.749Z", + "last_change_date": "2022-03-14T08:00:52.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7595, + "fields": { + "EF_ID": 123002, + "IPCC_Category": "1.A.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission coefficients of gasoline", + "Technology_Practices": "", + "Parameter_Conditions": "2W/3W(two wheelers and three wheelers)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.9", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "36.6", + "Upper_Bound": "51.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is estimated by assessing emissions from the vehicles of 1994 vintage", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.808Z", + "last_change_date": "2022-03-14T08:00:52.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7596, + "fields": { + "EF_ID": 123003, + "IPCC_Category": "1.A.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission coefficients of gasoline", + "Technology_Practices": "", + "Parameter_Conditions": "Car/Taxi", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61.5", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "57.5", + "Upper_Bound": "65.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is estimated by assessing emissions from the vehicles of 1994 vintage", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.866Z", + "last_change_date": "2022-03-14T08:00:52.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7597, + "fields": { + "EF_ID": 123004, + "IPCC_Category": "1.A.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission coefficients of diesel oil", + "Technology_Practices": "", + "Parameter_Conditions": "MCV(medium commercial vehicle)/HCV(Heavy Commercial Vehicles)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71.4", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "70.85", + "Upper_Bound": "71.95", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is estimated by assessing emissions from the vehicles of 1994 vintage", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:52.933Z", + "last_change_date": "2022-03-14T08:00:52.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7598, + "fields": { + "EF_ID": 123005, + "IPCC_Category": "1.A.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission coefficients of diesel oil", + "Technology_Practices": "", + "Parameter_Conditions": "LCV(Light Commercial Vehicles)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71.4", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "Proceedings of the workshop on uncertainty resuction in greenhouse gas inventories, Ministry of Environment & Forests Government of India", + "English_Abstract": "", + "Lower_Bound": "70.9", + "Upper_Bound": "71.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is estimated by assessing emissions from the vehicles of 1994 vintage", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:00:53.000Z", + "last_change_date": "2022-03-14T08:00:53.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7599, + "fields": { + "EF_ID": 123006, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Patent Fuel", + "Parameter_Type": "Measured", + "Description": "Carbon content", + "Technology_Practices": "Fuel Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe/", + "Control_Technologies": "", + "Other_Properties": "NCV: 16.59 – 17.37 TJ/kt", + "Value": "27064.5 - 27115.7", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Technical code of common practice 17.08-01-2006 (02120) The procedure for determining emissions from fuel combustion in boilers with a heat release of up to 25 MW", + "English_Abstract": "In Belarus today the situation with the restriction of air pollution is very serious. The Energy sector amount to much of national GHG emissions in Belarus as a most countries. The Ministry of Natural Resources and Environmental Protection of the Republic of Belarus manage development of Technical codes of common practice for registration of air pollution.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Dzmitry Melekh", + "Link": "", + "creation_date": "2022-03-14T08:00:53.084Z", + "last_change_date": "2022-03-14T08:00:53.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7600, + "fields": { + "EF_ID": 123007, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "Carbon content", + "Technology_Practices": "Fuel Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe/", + "Control_Technologies": "", + "Other_Properties": "NCV: 39.64 - 40.48 TJ/kg", + "Value": "20787.1 – 21319.2", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Technical code of common practice 17.08-01-2006 (02120) The procedure for determining emissions from fuel combustion in boilers with a heat release of up to 25 MW", + "English_Abstract": "In Belarus today the situation with the restriction of air pollution is very serious. The Energy sector amount to much of national GHG emissions in Belarus as a most countries. The Ministry of Natural Resources and Environmental Protection of the Republic of Belarus manage development of Technical codes of common practice for registration of air pollution.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Dzmitry Melekh", + "Link": "", + "creation_date": "2022-03-14T08:00:53.149Z", + "last_change_date": "2022-03-14T08:00:53.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7601, + "fields": { + "EF_ID": 123008, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Carbon content", + "Technology_Practices": "Fuel Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe/", + "Control_Technologies": "", + "Other_Properties": "NCV: 42.44 - 42.71 TJ/kg", + "Value": "19503.6 – 19627.7", + "Unit": "kg/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Technical code of common practice 17.08-01-2006 (02120) The procedure for determining emissions from fuel combustion in boilers with a heat release of up to 25 MW", + "English_Abstract": "In Belarus today the situation with the restriction of air pollution is very serious. The Energy sector amount to much of national GHG emissions in Belarus as a most countries. The Ministry of Natural Resources and Environmental Protection of the Republic of Belarus manage development of Technical codes of common practice for registration of air pollution.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Dzmitry Melekh", + "Link": "", + "creation_date": "2022-03-14T08:00:53.216Z", + "last_change_date": "2022-03-14T08:00:53.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7602, + "fields": { + "EF_ID": 123009, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Measured", + "Description": "The value presented here is the average of Gross Calorific Value (GCV) of 10 wood species. The specific data for each of 10 specices are listed following: 1. Combretum collinum: 23.49; 2. Vernonia amaygdalina: 24.79; 3. Albizia coriaria: 23.14; 4. Combretum molle: 24.64 5. Vittelaria paradoxa: 22.79; 6. Grewia mollis: 25.77; 7. Acacia hockii: 25.21; 8. Ficus natalensis: 29.46; 9. Tamarindus indica: 24.71; 10. Albizia grandibracteata: 20.95;", + "Technology_Practices": "", + "Parameter_Conditions": "This data is the average for gross calorifc values of 10 woodfuel species commonly used to provide biomass energy (charcoal and firewood). For this presentation, the values presented were obtained from wood samples.", + "Regional_Conditions": "Masindi and Nebbi districts of Uganda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.50 (20.95-29.46)", + "Unit": "KJ/g", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ojelel, S., Otiti, T. & Mugisha, S. (2015). Fuel Value Indices of selected woodfuel species used in Masindi and Nebbi districts of Uganda. Energy, Sustainability and Society, 5:14", + "English_Abstract": "Biomass currently meets upto 94% of the total energy requirements in Uganda. However,contrary to this heavy reliance on biomass, there is paucity of information regarding the fuel value indices (FVIs) of woodfuel species used in different locations of the country such as Masindi and Nebbi districts. This study therefore sought to identify ten woodfuel species commonly used by the communities in these two districts and examine their FVIs from basic properties, namely; moisture content, density and gross calorific value. A semi-structured interview using a checklist of guiding questionnaire was conducted to generate a woodfuel species list. The familiarity index (FI) was calculated for each species and then used to rank ten commonly used species for further analysis. The moisture content, density and gross calorific value of the selected species were determined in triplicate. The FVI of each species was then determined from these basic properties. One-way ANOVA, Pearson product moment correlation, and Spearman rank correlation coefficient analyses were performed in SPSS ver.16.0 to examine the variation and relationship of variables. Ten woodfuel species belonging to seven families and eight genera were identified as commonly used species. Combretum collinum was mentioned by every respondent as a suitable woodfuel species. A significant variation in moisture content and density was recorded among the species (F(df = 9) = 92.927, p = 0.0001) unlike in gross calorific value (F(df = 9) = 1.400, p = 0.253). There was a positive correlation between density and gross calorific value (r = 0.895, n = 30, p = 0.0001) and a negative correlation between moisture content and gross calorific value (r = −0.518, n = 30, p = 0.003). The FVIs obtained ranged from 1.10 in Ficus natalensis to 13.09 in Albizia grandibracteata. There was also a positive relationship (rho = 0.62) between FVIs and FIs using Pearson rank correlation coefficient. Moisture content and density are important properties in the selection of woodfuel species than gross calorific value. On the proposition of the FVIs, A. grandibracteata is a suitable woodfuel species than F. natalensis. These findings fit well into the ongoing efforts by Government and Civil Society Organizations to encourage woodlot management to ensure the sustainability of woodfuel in the country.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The data presented here is from direct measurements taken on wood samples following standard procedures. No extrapolation or modelling was applied to these results.", + "Data_Provider_Comments": "The data presented here presents the scientific basis for the prioritization of desirable woodfuel species. This information can therefore be augmented by incorporating in the socially defined features that shape local people`s preception of acceptable woodfuel species. Three samples for each of 10 wood species were analysed.", + "Other_Comments": "", + "Data_Provider": "Samuel Ojelel", + "Link": "https://link.springer.com/article/10.1186/s13705-015-0043-y", + "creation_date": "2022-03-14T08:00:53.283Z", + "last_change_date": "2022-03-14T08:00:53.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7603, + "fields": { + "EF_ID": 123010, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 23 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar), Average moisture content 11.1 weight per cent to dry coal.", + "Value": "28.94 (GCV) 26.68 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "28.62 (GCV) 26.36 (NCV)", + "Upper_Bound": "29.26 (GCV) 27.00 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:53.369Z", + "last_change_date": "2022-03-14T08:00:53.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7604, + "fields": { + "EF_ID": 123011, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 23 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar), Average moisture content 11.1 weight per cent to dry coal.", + "Value": "24.42 (GCV) 26.50 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "24.25 (GCV) 26.31 (NCV)", + "Upper_Bound": "24.60 (GCV) 26.69 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:53.470Z", + "last_change_date": "2022-03-14T08:00:53.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7605, + "fields": { + "EF_ID": 123012, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Coal for Pulverized Coal Injection of Blast Furnace, Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 20 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "28.01 (GCV) 25.74 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "27.62 (GCV) 25.35 (NCV)", + "Upper_Bound": "28.39 (GCV) 26.13 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:53.571Z", + "last_change_date": "2022-03-14T08:00:53.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7606, + "fields": { + "EF_ID": 123013, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Coal for Pulverized Coal Injection of Blast Furnace, Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 20 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "25.06 (GCV) 27.27 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "24.76 (GCV) 26.96 (NCV)", + "Upper_Bound": "25.35 (GCV) 27.57 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:53.672Z", + "last_change_date": "2022-03-14T08:00:53.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7607, + "fields": { + "EF_ID": 123014, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Steaming Coal, Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 721 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "25.97 (GCV) 24.66 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "25.83 (GCV) 24.52 (NCV)", + "Upper_Bound": "26.10 (GCV) 24.80 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:53.789Z", + "last_change_date": "2022-03-14T08:00:53.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7608, + "fields": { + "EF_ID": 123015, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Steaming Coal, Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 721 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "24.42 (GCV) 25.68 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "24.38 (GCV) 25.63 (NCV)", + "Upper_Bound": "24.46 (GCV) 25.74 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:53.890Z", + "last_change_date": "2022-03-14T08:00:53.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7609, + "fields": { + "EF_ID": 123016, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Modeled", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from interpolation and approximation equation of Japanese Steam Coal data, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "27.80 (GCV) 26.89 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "26.55 (GCV) 25.68 (NCV)", + "Upper_Bound": "29.05 (GCV) 28.09 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:53.990Z", + "last_change_date": "2022-03-14T08:00:53.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7610, + "fields": { + "EF_ID": 123017, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Modeled", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from interpolation and approximation equation of Japanese Steam Coal data, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "25.92 (GCV) 26.80 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "25.09 (GCV) 24.52 (NCV)", + "Upper_Bound": "26.76 (GCV) 29.41 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.100Z", + "last_change_date": "2022-03-14T08:00:54.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7611, + "fields": { + "EF_ID": 123018, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Modeled", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from interpolation and approximation equation of Japanese Steam Coal data, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "13.05 (GCV) 10.98 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "11.78 (GCV) 9.76 (NCV)", + "Upper_Bound": "14.32 (GCV) 12.20 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.201Z", + "last_change_date": "2022-03-14T08:00:54.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7612, + "fields": { + "EF_ID": 123019, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Modeled", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from interpolation and approximation equation of Japanese Steam Coal data, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "26.82 (GCV) 30.02 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "25.97 (GCV) 27.72 (NCV)", + "Upper_Bound": "27.67 (GCV) 32.65 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.326Z", + "last_change_date": "2022-03-14T08:00:54.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7613, + "fields": { + "EF_ID": 123020, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 12 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "29.18 (GCV) 28.81 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "29.06 (GCV) 28.67 (NCV)", + "Upper_Bound": "29.30 (GCV) 28.95 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.443Z", + "last_change_date": "2022-03-14T08:00:54.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7614, + "fields": { + "EF_ID": 123021, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 12 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "30.22 (GCV) 30.60 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "29.99 (GCV) 30.45 (NCV)", + "Upper_Bound": "30.45 (GCV) 30.76 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.536Z", + "last_change_date": "2022-03-14T08:00:54.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7615, + "fields": { + "EF_ID": 123022, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 24 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "19.12 (GCV) 15.21 (NCV)", + "Unit": "TJ/10^6m3 @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "18.80 (GCV) 14.93 (NCV) TJ/10^6m3 @SATP", + "Upper_Bound": "19.44 (GCV) 15.48 (NCV) TJ/10^6m3 @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.628Z", + "last_change_date": "2022-03-14T08:00:54.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7616, + "fields": { + "EF_ID": 123023, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 24 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "10.93 (GCV) 13.74 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "10.85 (GCV) 13.66 (GCV)", + "Upper_Bound": "11.01 (GCV) 13.83 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.737Z", + "last_change_date": "2022-03-14T08:00:54.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7617, + "fields": { + "EF_ID": 123024, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 30 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "3.284 (GCV) 3.135 (NCV)", + "Unit": "TJ/10^6m3 @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "3.230 (GCV) 2.472 (NCV) TJ/10^6m3 @SATP", + "Upper_Bound": "3.338 (GCV) 2.562 (NCV) TJ/10^6m3 @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.863Z", + "last_change_date": "2022-03-14T08:00:54.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7618, + "fields": { + "EF_ID": 123025, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 30 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "71.31 (GCV) 74.70 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "70.92 (GCV) 74.40 (NCV)", + "Upper_Bound": "71.70 (GCV) 75.01 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:54.980Z", + "last_change_date": "2022-03-14T08:00:54.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7619, + "fields": { + "EF_ID": 123026, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 30 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "7.640 (GCV) 7.603 (NCV)", + "Unit": "TJ/10^6m3 @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "7.502 (GCV) 7.466 (NCV) TJ/10^6m3 @SATP", + "Upper_Bound": "7.779 (GCV) 7.740 (NCV) TJ/10^6m3 @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.097Z", + "last_change_date": "2022-03-14T08:00:55.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7620, + "fields": { + "EF_ID": 123027, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 30 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "51.94 (GCV) 52.19 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou, Addendum 4", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "51.33 (GCV) 51.57 (NCV)", + "Upper_Bound": "52.54 (GCV) 52.81 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.214Z", + "last_change_date": "2022-03-14T08:00:55.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7621, + "fields": { + "EF_ID": 123028, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "All Countries", + "Control_Technologies": "", + "Other_Properties": "Average of 163 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "38.28 (GCV) 36.04 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "38.17 (GCV) 35.92 (NCV) TJ/10^3kl @SATP", + "Upper_Bound": "38.40 (GCV) 36.16 (NCV) TJ/10^3kl @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Results of regression analysis for interpolation and approximation by density, sulfur, ash and moisture content are available in the Technical Reference. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.323Z", + "last_change_date": "2022-03-14T08:00:55.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7622, + "fields": { + "EF_ID": 123029, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Crude Oil", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "All Countries", + "Control_Technologies": "", + "Other_Properties": "Average of 163 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "19.00 (GCV) 20.18 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "18.96 (GCV) 20.14 (NCV)", + "Upper_Bound": "19.04 (GCV) 20.22 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Results of regression analysis for interpolation and approximation by density, sulfur, ash and moisture content are available in the Technical Reference. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.423Z", + "last_change_date": "2022-03-14T08:00:55.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7623, + "fields": { + "EF_ID": 123030, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "All Countries", + "Control_Technologies": "", + "Other_Properties": "Average of 21 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "34.93 (GCV) 32.73 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "34.74 (GCV) 32.56 (NCV) TJ/10^3kl @SATP", + "Upper_Bound": "35.11 (GCV) 32.91 (NCV) TJ/10^3kl @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Results of regression analysis for interpolation and approximation by density, sulfur, ash and moisture content are available in the Technical Reference. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.541Z", + "last_change_date": "2022-03-14T08:00:55.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7624, + "fields": { + "EF_ID": 123031, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas Liquids", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "All Countries", + "Control_Technologies": "", + "Other_Properties": "Average of 21 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "18.26 (GCV) 19.49 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "18.18 (GCV) 19.39 (NCV)", + "Upper_Bound": "18.35 (GCV) 19.58 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Results of regression analysis for interpolation and approximation by density, sulfur, ash and moisture content are available in the Technical Reference. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.634Z", + "last_change_date": "2022-03-14T08:00:55.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7625, + "fields": { + "EF_ID": 123032, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Modeled", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from average of 7 years of observation data of Propane and Butane consumption ratio in Japan, Ratio of n-Butane and i-Butane are estimated as 50:50. Estimation conditions; 298.15K and 10^5 Pa (SATP)", + "Value": "50.06 (GCV) 46.43 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "50.04 (GCV) 46.41 (NCV)", + "Upper_Bound": "50.07 (GCV) 46.44 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.726Z", + "last_change_date": "2022-03-14T08:00:55.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7626, + "fields": { + "EF_ID": 123033, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Modeled", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from average of 7 years of observation data of Propane and Butane consumption ratio in Japan, Ratio of n-Butane and i-Butane are estimated as 50:50. Estimation conditions; 298.15K and 10^5 Pa (SATP)", + "Value": "16.38 (GCV) 17.66 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "16.37 (GCV) 17.66 (NCV)", + "Upper_Bound": "16.39 (GCV) 17.67 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.819Z", + "last_change_date": "2022-03-14T08:00:55.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7627, + "fields": { + "EF_ID": 123034, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 69 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "33.31 (GCV) 31.25 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "33.23 (GCV) 31.16 (NCV)", + "Upper_Bound": "33.39 (GCV) 31.34 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:55.919Z", + "last_change_date": "2022-03-14T08:00:55.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7628, + "fields": { + "EF_ID": 123035, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 69 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "18.63 (GCV) 19.86 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "18.58 (GCV) 19.81 (NCV)", + "Upper_Bound": "18.68 (GCV) 19.90 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.020Z", + "last_change_date": "2022-03-14T08:00:56.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7629, + "fields": { + "EF_ID": 123036, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 136 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "33.37 (GCV) 31.33 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "33.29 (GCV) 31.16 (NCV) TJ/10^3kl @SATP", + "Upper_Bound": "33.46 (GCV) 31.42 (NCV) TJ/10^3kl @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Original data are measured by Premium Gasoline and Regular Gasoline respectively and estimated by weighted average by consumption quantity. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.121Z", + "last_change_date": "2022-03-14T08:00:56.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7630, + "fields": { + "EF_ID": 123037, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 136 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "18.72 (GCV) 19.94 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "18.67 (GCV) 19.90 (NCV)", + "Upper_Bound": "18.78 (GCV) 19.99 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Original data are measured by Premium Gasoline and Regular Gasoline respectively and estimated by weighted average by consumption quantity. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.221Z", + "last_change_date": "2022-03-14T08:00:56.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7631, + "fields": { + "EF_ID": 123038, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 37 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "36.34 (GCV) 34.10 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "36.25 (GCV) 34.01 (NCV) TJ/10^3kl @SATP", + "Upper_Bound": "36.43 (GCV) 34.19 (NCV) TJ/10^3kl @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Original data are measured by Jet Fuel / Kerosene Type and Jet Fuel / Gasoline Type respectively and estimated by weighted average by consumption quantity. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.330Z", + "last_change_date": "2022-03-14T08:00:56.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7632, + "fields": { + "EF_ID": 123039, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 37 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "18.60 (GCV) 19.82 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "18.55 (GCV) 19.77 (NCV)", + "Upper_Bound": "18.65 (GCV) 19.87 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Original data are measured by Jet Fuel / Kerosene Type and Jet Fuel / Gasoline Type respectively and estimated by weighted average by consumption quantity. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.431Z", + "last_change_date": "2022-03-14T08:00:56.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7633, + "fields": { + "EF_ID": 123040, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 23 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "36.49 (GCV) 34.27 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "36.40 (GCV) 34.17 (NCV) TJ/10^3kl @SATP", + "Upper_Bound": "36.59 (GCV) 34.36 (NCV) TJ/10^3kl @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.531Z", + "last_change_date": "2022-03-14T08:00:56.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7634, + "fields": { + "EF_ID": 123041, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Kerosene", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 23 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "18.71 (GCV) 19.92 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "18.66 (GCV) 19.88 (NCV)", + "Upper_Bound": "18.75 (GCV) 19.97 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.632Z", + "last_change_date": "2022-03-14T08:00:56.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7635, + "fields": { + "EF_ID": 123042, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Motor Vehicle Fuel, Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 69 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "38.04 (GCV) 35.77 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "37.96 (GCV) 35.69 (NCV) TJ/10^3kl @SATP", + "Upper_Bound": "38.12 (GCV) 35.85 (NCV) TJ/10^3kl @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.741Z", + "last_change_date": "2022-03-14T08:00:56.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7636, + "fields": { + "EF_ID": 123043, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Motor Vehicle Fuel, Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 69 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "18.79 (GCV) 19.99 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "18.77 (GCV) 19.97 (NCV)", + "Upper_Bound": "18.82 (GCV) 20.01 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.833Z", + "last_change_date": "2022-03-14T08:00:56.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7637, + "fields": { + "EF_ID": 123044, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "Measured", + "Description": "Stationary Diesel Engine Fuel named Heavy Fuel Oil A, Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 23 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "38.90 (GCV) 36.73 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "38.74 (GCV) 36.56 (NCV) TJ/10^3kl @SATP", + "Upper_Bound": "39.06 (GCV) 36.90 (NCV) TJ/10^3kl @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:56.942Z", + "last_change_date": "2022-03-14T08:00:56.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7638, + "fields": { + "EF_ID": 123045, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Gas Oil", + "Parameter_Type": "Measured", + "Description": "Stationary Diesel Engine Fuel named Heavy Fuel Oil A, Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 23 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "19.32 (GCV) 20.46 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "19.22 (GCV) 20.37 (NCV)", + "Upper_Bound": "19.42 (GCV) 20.56 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.069Z", + "last_change_date": "2022-03-14T08:00:57.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7639, + "fields": { + "EF_ID": 123046, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "Residual Fuel Oil named Heavy Fuel Oil C, Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 23 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "41.78 (GCV) 39.67 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "41.59 (GCV) 39.46 (NCV)", + "Upper_Bound": "41.97 (GCV) 39.89 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.169Z", + "last_change_date": "2022-03-14T08:00:57.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7640, + "fields": { + "EF_ID": 123047, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "Residual Fuel Oil named Heavy Fuel Oil C, Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 23 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "20.17 (GCV) 21.24 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "20.02 (GCV) 21.09 (NCV) TJ/10^3kl @SATP", + "Upper_Bound": "20.33 (GCV) 21.40 (NCV) TJ/10^3kl @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.270Z", + "last_change_date": "2022-03-14T08:00:57.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7641, + "fields": { + "EF_ID": 123048, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "Modeled", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from interpolation and approximation equation of Japanese Oil products data, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "40.20 (GCV) 37.94 (NCV)", + "Unit": "TJ/10^3kl @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.370Z", + "last_change_date": "2022-03-14T08:00:57.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7642, + "fields": { + "EF_ID": 123049, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lubricants", + "Parameter_Type": "Modeled", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from interpolation and approximation equation of Japanese Oil products data, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "19.89 (GCV) 20.99 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.470Z", + "last_change_date": "2022-03-14T08:00:57.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7643, + "fields": { + "EF_ID": 123050, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "Modeled", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from interpolation and approximation equation of Japanese Oil products data, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "41.87 (GCV) 39.77 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.571Z", + "last_change_date": "2022-03-14T08:00:57.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7644, + "fields": { + "EF_ID": 123051, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Bitumen", + "Parameter_Type": "Modeled", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from interpolation and approximation equation of Japanese Oil products data, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "20.41 (GCV) 21.46 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.672Z", + "last_change_date": "2022-03-14T08:00:57.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7645, + "fields": { + "EF_ID": 123052, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 18 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "33.29 (GCV) 32.79 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "33.01 (GCV) 32.08 (NCV)", + "Upper_Bound": "33.58 (GCV) 33.49 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.764Z", + "last_change_date": "2022-03-14T08:00:57.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7646, + "fields": { + "EF_ID": 123053, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 18 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "24.50 (GCV) 25.04 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "24.31 (GCV) 24.84 (NCV)", + "Upper_Bound": "24.69 (GCV) 25.25 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.864Z", + "last_change_date": "2022-03-14T08:00:57.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7647, + "fields": { + "EF_ID": 123054, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 22 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "46.73 (GCV) 42.98 (NCV)", + "Unit": "TJ/10^6m3 @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "41.45 (GCV) 45.29 (NCV) TJ/10^6m3 @SATP", + "Upper_Bound": "52.01 (GCV) 48.07 (NCV) TJ/10^6m3 @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:57.973Z", + "last_change_date": "2022-03-14T08:00:57.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7648, + "fields": { + "EF_ID": 123055, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 22 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "14.44 (GCV) 15.71 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "14.03 (GCV) 15.29 (NCV)", + "Upper_Bound": "14.85 (GCV) 16.13 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.074Z", + "last_change_date": "2022-03-14T08:00:58.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7649, + "fields": { + "EF_ID": 123056, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Modeled", + "Description": "Liquified Natural Gas, Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from chemical composition of major LNG providers typical sample, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "54.48 (GCV) 49.67 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "54.16 (GCV) 49.44 (NCV)", + "Upper_Bound": "54.81 (GCV) 49.91 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.167Z", + "last_change_date": "2022-03-14T08:00:58.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7650, + "fields": { + "EF_ID": 123057, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Modeled", + "Description": "Liquified Natural Gas, Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Estimated from chemical composition of major LNG providers typical sample, Estimation conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "13.95 (GCV) 15.30 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "13.78 (GCV) 15.14 (NCV)", + "Upper_Bound": "14.12 (GCV) 15.47 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.259Z", + "last_change_date": "2022-03-14T08:00:58.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7651, + "fields": { + "EF_ID": 123058, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Indigenous Natural Gas in Japan, Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 226 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "40.15 (GCV) 36.62 (NCV)", + "Unit": "TJ/10^6m3 @SATP", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "39.74 (GCV) 36.23 (NCV) TJ/10^6m3 @SATP", + "Upper_Bound": "40.56 (GCV) 37.00 (NCV) TJ/10^6m3 @SATP", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.376Z", + "last_change_date": "2022-03-14T08:00:58.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7652, + "fields": { + "EF_ID": 123059, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Indigenous Natural Gas in Japan, Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 226 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "13.97 (GCV) 15.32 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "13.93 (GCV) 15.28 (NCV)", + "Upper_Bound": "14.01 (GCV) 15.36 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.484Z", + "last_change_date": "2022-03-14T08:00:58.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7653, + "fields": { + "EF_ID": 123060, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 10 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), dry basis (d)", + "Value": "13.61 (GCV) 11.90 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "13.34 (GCV) 11.13 (NCV)", + "Upper_Bound": "13.87 (GCV) 12.67 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Cross checked with IPCC 2006 G/L default value and C.I.", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.595Z", + "last_change_date": "2022-03-14T08:00:58.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7654, + "fields": { + "EF_ID": 123061, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sulphite Lyes (Black Liquor)", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 10 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), dry basis (d)", + "Value": "24.85 (GCV) 28.53 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "23.19 (GCV) 27.32 (NCV)", + "Upper_Bound": "26.52 (GCV) 29.73 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset. Government of Japan accepted these values, except for CEF using NCV. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.704Z", + "last_change_date": "2022-03-14T08:00:58.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7655, + "fields": { + "EF_ID": 123062, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Measured", + "Description": "Calorific Value for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 5 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "17.06 (GCV) 15.34 (NCV)", + "Unit": "TJ/kt", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "15.87 (GCV) 11.10 (NCV)", + "Upper_Bound": "18.25 (GCV) 19.58 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Carbon Emission Factor data of the same fuel in this dataset. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.804Z", + "last_change_date": "2022-03-14T08:00:58.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7656, + "fields": { + "EF_ID": 123063, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Wood/Wood Waste", + "Parameter_Type": "Measured", + "Description": "Carbon Emission Factor for Gross Calorofic Value(GCV) and Net Calorific Value(NCV)", + "Technology_Practices": "Combustion", + "Parameter_Conditions": "", + "Regional_Conditions": "Only for Japan", + "Control_Technologies": "", + "Other_Properties": "Average of 5 sample data, Measurement conditions; 298.15K and 10^5 Pa (SATP), as received basis (ar)", + "Value": "29.55 (GCV) 32.88 (NCV)", + "Unit": "tC/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Recommendations of Draft Revised Standard Calorific Value and Carbon Emission Factor for Fossil Fuel Energy Sources in Japan Oct 2014, Kazunari Kainou", + "English_Abstract": "Here the author quantified Japanese standard Gross Calorific Value and Carbon Emission Factor for various fossil fuels used in Japan upon the request of the Ministry of Economy, Trade and Industry and the Ministry of the Environment under the cooperation of relevant industrial organizations by the request of these Ministries, using real measured physical and chemical data and calorific value in 2013. The revised standard values have several unique natures compared to the current one as follows; - The standard values are comprehensive and clearly traceable from the real measurement data of physical, chemical characteristics and calorific value of fuels and the data process and treatment. - The gross calorific value and carbon emission factors are simultaneously measured from the same samples in a consistent manner, different from the current standard values. - The interpolation and approximation equations are estimated using these data and that enabled estimation for minor energy sources and adjustment of small changes of physical, chemical characteristics for major energy sources. As a result, highly accurate and up to date standard gross calorific value and carbon emission factor are measured for various fossil fuels used in Japan listed in the current standard. So the author recommends the revision of the standard values. Moreover, based on the revision works, the author proposes several changes and amendments of energy origin carbon dioxide emission quantification and estimation process in Japanese greenhouse gas inventory systems under the UNFCCC.", + "Lower_Bound": "23.22 (GCV) 24.86 (NCV)", + "Upper_Bound": "35.88 (GCV) 40.89 (NCV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data should be used with relevant Calorific Value data of the same fuel in this dataset.Government of Japan accepted these values, except for CEF using NCV. Users are advised to look at the original reference before using the data for applicability of data for certain circumstances.", + "Other_Comments": "", + "Data_Provider": "Kainou Kazunari, See Technical Reference for Sample Data Origin", + "Link": "http://www.rieti.go.jp/users/kainou-kazunari/14j047_e.pdf", + "creation_date": "2022-03-14T08:00:58.905Z", + "last_change_date": "2022-03-14T08:00:58.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7657, + "fields": { + "EF_ID": 123064, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Anthracite", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Anthracite", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Heating Value = 27.72 MJ / kg (LHV)", + "Value": "28.28", + "Unit": "MMT C / QBtu [HHV]", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Data for year 2015 from: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015 (April 2017), EPA 430-P-17-001", + "English_Abstract": "", + "Lower_Bound": "26.87 MMT C / QBtu (HHV)", + "Upper_Bound": "31.31 MMT C / QBtu (HHV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in Common Units calculated by following formula: 28.28 * 0.9478 (QBtu/EJ) * 1/0.95 (HHV/LHV) = 28.21", + "Other_Comments": "", + "Data_Provider": "Vincent Camobreco", + "Link": "https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks", + "creation_date": "2022-03-14T08:00:59.065Z", + "last_change_date": "2022-03-14T08:00:59.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7658, + "fields": { + "EF_ID": 123065, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Bituminous", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Heating Value = 27.54 MJ / kg (LHV)", + "Value": "25.44", + "Unit": "MMT C / QBtu [HHV]", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Data for year 2015 from: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015 (April 2017), EPA 430-P-17-001", + "English_Abstract": "", + "Lower_Bound": "23.34 MMT C / QBtu (HHV)", + "Upper_Bound": "28.69 MMT C / QBtu (HHV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in Common Units calculated by following formula: 25.44 * 0.9478 (QBtu/EJ) * 1/0.95 (HHV/LHV) = 25.38", + "Other_Comments": "", + "Data_Provider": "Vincent Camobreco", + "Link": "https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks", + "creation_date": "2022-03-14T08:00:59.141Z", + "last_change_date": "2022-03-14T08:00:59.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7659, + "fields": { + "EF_ID": 123066, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Lignite", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Heating Value = 15.70 MJ / kg (LHV)", + "Value": "26.65", + "Unit": "MMT C / QBtu [HHV]", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Data for year 2015 from: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015 (April 2017), EPA 430-P-17-001", + "English_Abstract": "", + "Lower_Bound": "25.76 MMT C / QBtu (HHV)", + "Upper_Bound": "29.06 MMT C / QBtu (HHV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in Common Units calculated by following formula: 26.65 * 0.9478 (QBtu/EJ) * 1/0.95 (HHV/LHV) = 26.59", + "Other_Comments": "", + "Data_Provider": "Vincent Camobreco", + "Link": "https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks", + "creation_date": "2022-03-14T08:00:59.218Z", + "last_change_date": "2022-03-14T08:00:59.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7660, + "fields": { + "EF_ID": 123067, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Sub-Bituminous", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Heating Value = 19.06 MJ / kg (LHV)", + "Value": "26.5", + "Unit": "MMT C / QBtu [HHV]", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Data for year 2015 from: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015 (April 2017), EPA 430-P-17-001", + "English_Abstract": "", + "Lower_Bound": "24.90 MMT C / QBtu (HHV)", + "Upper_Bound": "26.75 MMT C / QBtu (HHV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in Common Units calculated by following formula: 26.50 * 0.9478 (QBtu/EJ) * 1/0.95 (HHV/LHV) = 26.44", + "Other_Comments": "", + "Data_Provider": "Vincent Camobreco", + "Link": "https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks", + "creation_date": "2022-03-14T08:00:59.315Z", + "last_change_date": "2022-03-14T08:00:59.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7661, + "fields": { + "EF_ID": 123068, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Diesel Fuel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Heating Value = 36.72 MJ / L (LHV)", + "Value": "20.17", + "Unit": "MMT C / QBtu [HHV]", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Data for year 2015 from: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015 (April 2017), EPA 430-P-17-001", + "English_Abstract": "", + "Lower_Bound": "19.88 MMT C / QBtu (HHV)", + "Upper_Bound": "20.46 MMT C / QBtu (HHV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in Common Units calculated by following formula: 20.17 * 0.9478 (QBtu/EJ) * 1/0.95 (HHV/LHV) = 20.12", + "Other_Comments": "", + "Data_Provider": "Vincent Camobreco", + "Link": "https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks", + "creation_date": "2022-03-14T08:00:59.391Z", + "last_change_date": "2022-03-14T08:00:59.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7662, + "fields": { + "EF_ID": 123069, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Gasoline", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Heating Value = 31.89 MJ / L (LHV)", + "Value": "19.46", + "Unit": "MMT C / QBtu [HHV]", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Data for year 2015 from: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015 (April 2017), EPA 430-P-17-001", + "English_Abstract": "", + "Lower_Bound": "18.35 MMT C / QBtu (HHV)", + "Upper_Bound": "20.56 MMT C / QBtu (HHV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in Common Units calculated by following formula: 19.46 * 0.9478 (QBtu/EJ) * 1/0.95 (HHV/LHV) = 19.41", + "Other_Comments": "", + "Data_Provider": "Vincent Camobreco", + "Link": "https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks", + "creation_date": "2022-03-14T08:00:59.468Z", + "last_change_date": "2022-03-14T08:00:59.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7663, + "fields": { + "EF_ID": 123070, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Country Specific EF for combustion of Natural Gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Heating Value = 34.74 MJ / m3 (LHV)", + "Value": "14.46", + "Unit": "MMT C / QBtu [HHV]", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Data for year 2015 from: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2015 (April 2017), EPA 430-P-17-001", + "English_Abstract": "", + "Lower_Bound": "14.37 MMT C / QBtu (HHV)", + "Upper_Bound": "14.52 MMT C / QBtu (HHV)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in Common Units calculated by following formula: 14.46 * 0.9478 (QBtu/EJ) * 1/0.9 (HHV/LHV) = 15.23", + "Other_Comments": "", + "Data_Provider": "Vincent Camobreco", + "Link": "https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks", + "creation_date": "2022-03-14T08:00:59.543Z", + "last_change_date": "2022-03-14T08:00:59.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7664, + "fields": { + "EF_ID": 123071, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Oxygen Steel Furnace Gas", + "Parameter_Type": "Measured", + "Description": "Basic oxygen furnace gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "NCV: 8.3 MJ/m³", + "Value": "194.3", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using ETS data.", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "184.6", + "Upper_Bound": "199.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data from all basic oxygen furnace plants of the year 2014. The total amount of gas was 796 Mio. m³. The emission factor applies to source category 1.A.1.a, 1.A.1.c and 1.A.2.a. See iron & steel gases sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:00:59.610Z", + "last_change_date": "2022-03-14T08:00:59.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7665, + "fields": { + "EF_ID": 123072, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Blast Furnace Gas", + "Parameter_Type": "Measured", + "Description": "Blast furnace gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "NCV: 3.6 MJ/m³", + "Value": "261.9", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using ETS data.", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "254.3", + "Upper_Bound": "292.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data from all blast furnaces/ power plants of the year 2014. The total amount of gas was 21,925 Mio. m³. The emission factor applies to source category 1.A.1.a, 1.A.1.c and 1.A.2.a. See iron & steel gases sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:00:59.700Z", + "last_change_date": "2022-03-14T08:00:59.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7666, + "fields": { + "EF_ID": 123073, + "IPCC_Category": "1.A.4 - Other Sectors", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "Measured", + "Description": "Brown coal briquettes rhineland", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Briquettes from rhineland mining district (Germany)", + "Control_Technologies": "", + "Other_Properties": "NCV: 20.8 MJ/kg", + "Value": "99.0", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using measurement data from the technical university of Dresden.", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "98.8", + "Upper_Bound": "99.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measured by TU Dresden. A comparison with ETS data, which are in the range of 99.1 and 100.1, shows a good correlation. The average NCV of the analyzed briquettes is slightly higher than in ETS This is plausible since briquettes used in small combustion plants are usually of higher quality. See brown coal briquettes sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:00:59.810Z", + "last_change_date": "2022-03-14T08:00:59.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7667, + "fields": { + "EF_ID": 123074, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal", + "Technology_Practices": "Dust firing", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "Wet desulfurization, electrostatic precipitator, SCR", + "Other_Properties": "", + "Value": "0.73", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 109, calculated emission factors using measurement data from the VGB PowerTech e.V. project: „ Messtechnische Ermittlung der CH4- und N2O-Emissionen von Kraftwerken“", + "English_Abstract": "In addition to the known carbon dioxide as a greenhouse gas, other gases are also becoming an effective climate Potential. These include methane and nitrous oxide (CH4 and N2O). Important natural sources for these gases are volcanic activities, digestive processes, (Methane) and biological processes (laughing gas). In addition to natural sources, methane is released in all processes, with the production and processing of natural gas and combustion processes (from the motor vehicle to the power plant). Non-natural sources for nitrous oxide include certain combustion processes (e.g., fluidized bed combustions for organic materials) and also nitrogen oxide reduction measures with the introduction of ammonia. There is currently little information on the expected concentrations of methane and nitrous oxide in the flue gas of fossil fuel fired conventional power plants. In most cases default values were used for the calculation. It was therefore of fundamental interest to provide more detailed information on emissions methane and nitrous oxide in the flue gas of fossil-fired power plants.", + "Lower_Bound": "0.36", + "Upper_Bound": "4.37", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculation of a simple average value using partial-load emission factors. See N2O CH4 sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:00:59.919Z", + "last_change_date": "2022-03-14T08:00:59.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7668, + "fields": { + "EF_ID": 123075, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal", + "Technology_Practices": "Wet bottom firing system", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "Wet desulfurization, electrostatic precipitator, SCR", + "Other_Properties": "", + "Value": "2.18", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 109, tabelle 8.1-4, calculated emission factors using measurement data from the VGB PowerTech e.V. project: „ Messtechnische Ermittlung der CH4- und N2O-Emissionen von Kraftwerken“", + "English_Abstract": "In addition to the known carbon dioxide as a greenhouse gas, other gases are also becoming an effective climate Potential. These include methane and nitrous oxide (CH4 and N2O). Important natural sources for these gases are volcanic activities, digestive processes, (Methane) and biological processes (laughing gas). In addition to natural sources, methane is released in all processes, with the production and processing of natural gas and combustion processes (from the motor vehicle to the power plant). Non-natural sources for nitrous oxide include certain combustion processes (e.g., fluidized bed combustions for organic materials) and also nitrogen oxide reduction measures with the introduction of ammonia. There is currently little information on the expected concentrations of methane and nitrous oxide in the flue gas of fossil fuel fired conventional power plants. In most cases default values were used for the calculation. It was therefore of fundamental interest to provide more detailed information on emissions methane and nitrous oxide in the flue gas of fossil-fired power plants.", + "Lower_Bound": "0.36", + "Upper_Bound": "4.70", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculation of a simple average value using partial-load emission factors. See N2O CH4 sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.127Z", + "last_change_date": "2022-03-14T08:01:00.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7669, + "fields": { + "EF_ID": 123076, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Raw lignite", + "Technology_Practices": "Dust firing", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "Wet desulfurization, electrostatic precipitator", + "Other_Properties": "", + "Value": "0.63", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 109, tabelle 8.1-4, calculated emission factors using measurement data from the VGB PowerTech e.V. project: „ Messtechnische Ermittlung der CH4- und N2O-Emissionen von Kraftwerken“", + "English_Abstract": "In addition to the known carbon dioxide as a greenhouse gas, other gases are also becoming an effective climate Potential. These include methane and nitrous oxide (CH4 and N2O). Important natural sources for these gases are volcanic activities, digestive processes, (Methane) and biological processes (laughing gas). In addition to natural sources, methane is released in all processes, with the production and processing of natural gas and combustion processes (from the motor vehicle to the power plant). Non-natural sources for nitrous oxide include certain combustion processes (e.g., fluidized bed combustions for organic materials) and also nitrogen oxide reduction measures with the introduction of ammonia. There is currently little information on the expected concentrations of methane and nitrous oxide in the flue gas of fossil fuel fired conventional power plants. In most cases default values were used for the calculation. It was therefore of fundamental interest to provide more detailed information on emissions methane and nitrous oxide in the flue gas of fossil-fired power plants.", + "Lower_Bound": "0.42", + "Upper_Bound": "10.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculation of a simple average value using full-load emission factors. See N2O CH4 sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.216Z", + "last_change_date": "2022-03-14T08:01:00.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7670, + "fields": { + "EF_ID": 123077, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Natural gas", + "Technology_Practices": "Combined cycle gas turbine", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "No abatement technology used", + "Other_Properties": "", + "Value": "16.8", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 109, calculated emission factors using measurement data from the VGB PowerTech e.V. project: „ Messtechnische Ermittlung der CH4- und N2O-Emissionen von Kraftwerken“", + "English_Abstract": "In addition to the known carbon dioxide as a greenhouse gas, other gases are also becoming an effective climate Potential. These include methane and nitrous oxide (CH4 and N2O). Important natural sources for these gases are volcanic activities, digestive processes, (Methane) and biological processes (laughing gas). In addition to natural sources, methane is released in all processes, with the production and processing of natural gas and combustion processes (from the motor vehicle to the power plant). Non-natural sources for nitrous oxide include certain combustion processes (e.g., fluidized bed combustions for organic materials) and also nitrogen oxide reduction measures with the introduction of ammonia. There is currently little information on the expected concentrations of methane and nitrous oxide in the flue gas of fossil fuel fired conventional power plants. In most cases default values were used for the calculation. It was therefore of fundamental interest to provide more detailed information on emissions methane and nitrous oxide in the flue gas of fossil-fired power plants.", + "Lower_Bound": "1.7", + "Upper_Bound": "36.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculation of a simple average value using partial-load emission factors. See N2O CH4 sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.304Z", + "last_change_date": "2022-03-14T08:01:00.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7671, + "fields": { + "EF_ID": 123078, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Gas", + "Parameter_Type": "Measured", + "Description": "Coke oven gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "NCV: 16.6 MJ/m³", + "Value": "41.2", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using ETS data", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "39.7", + "Upper_Bound": "45.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data from all coking plants of one year. The total amount of gas was 2,066 Mio. m³. The emission factor applies to source category 1.A.1.a, 1.A.1.c and 1.A.2.a. See iron & steel gases sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.376Z", + "last_change_date": "2022-03-14T08:01:00.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7672, + "fields": { + "EF_ID": 123079, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal mix", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hard coal mix (25.3% Russia, 18.8% USA, 0.3% Australia, 5,3% South Africa, 16% Germany, 20.7% Colombia, 6.2% Poland, 1,4% Norway, 0.8% Czech Republic, 5.2% other EU)", + "Control_Technologies": "", + "Other_Properties": "NCV: 25.67 MJ/kg", + "Value": "93.36", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using ETS data", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "91.41", + "Upper_Bound": "95.06", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data for all coal regions of one year. The amount of hard coal registred in ETS was 46.5 Mio. t in 2013. The emission factor applies to source category 1.A.1 and 1.A.2. See hard coal mix sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.472Z", + "last_change_date": "2022-03-14T08:01:00.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7673, + "fields": { + "EF_ID": 123080, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "Heavy fuel oil", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "NCV: 40.5 MJ/kg", + "Value": "79.8", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using ETS data", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "78.0", + "Upper_Bound": "81.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average value is calculated by using all measured ETS data for several years from 2005 to 2013. Underlying this is an amount of 2.5 Mio. tons of heavy fuel oil. See petroleum products sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.572Z", + "last_change_date": "2022-03-14T08:01:00.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7674, + "fields": { + "EF_ID": 123081, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Raw lignite with a high sulfur content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Raw lignite from central german mining district", + "Control_Technologies": "", + "Other_Properties": "Sulfur content: 1.3 – 2.1% , NCV: 10.7 MJ/kg", + "Value": "102.8", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using ETS data", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "102.8", + "Upper_Bound": "104.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data for the whole region of one year. Underlying this was an maount of 18.2 Mio. tons of coal in 2014. See raw lignite sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.673Z", + "last_change_date": "2022-03-14T08:01:00.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7675, + "fields": { + "EF_ID": 123082, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Measured", + "Description": "Lignite coke", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Lignite coke from rhineland mining district (Germany)", + "Control_Technologies": "", + "Other_Properties": "NCV: 30.0 MJ/kg", + "Value": "109.6", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "109.3", + "Upper_Bound": "109.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data for the whole region of one year. See raw lignite sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.782Z", + "last_change_date": "2022-03-14T08:01:00.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7676, + "fields": { + "EF_ID": 123083, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "Measured", + "Description": "Lignite dust and fluidized bed coal", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Average value from all three German mining districts (92 % lignite dust and 8 % fluidized bed coal)", + "Control_Technologies": "", + "Other_Properties": "NCV: 19.1 - 22.0 MJ/kg", + "Value": "98.1", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "97.6", + "Upper_Bound": "98.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data for the whole region of one year. See lignite dust & fbc sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.883Z", + "last_change_date": "2022-03-14T08:01:00.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7677, + "fields": { + "EF_ID": 123084, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Raw lignite with a medium sulfur content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Lignite from Lusatian mining district (Germany)", + "Control_Technologies": "", + "Other_Properties": "Sulfur content: 0.3 – 1.5% , NCV: 8.5 MJ/kg", + "Value": "111.2", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "109.9", + "Upper_Bound": "112.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data for the whole region of the year 2014. Underlying this was an amount of 58.2 Mio. tons of lignite. See raw lignite sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:00.983Z", + "last_change_date": "2022-03-14T08:01:00.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7678, + "fields": { + "EF_ID": 123085, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Raw lignite with a low sulfur content", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Lignite from rhineland mining district (Germany)", + "Control_Technologies": "", + "Other_Properties": "Sulfur content: 0.15 – 0.5% , NCV: 8.9 MJ/kg", + "Value": "113.1", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using ETS data", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "113.0", + "Upper_Bound": "113.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average emission factor is calculated by using all measurement data for the whole region of one year. Underlying this was an amount of 81.7 Mio. tons of coal in 2014. See raw lignite sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.084Z", + "last_change_date": "2022-03-14T08:01:01.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7679, + "fields": { + "EF_ID": 123086, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Modeled", + "Description": "Liquified petroleum gas", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "NCV: 45.98 MJ/kg, (mix of 60 % propane & 40 % butane)", + "Value": "65.5", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "64.0", + "Upper_Bound": "66.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Only the carbon content is calculated using the share of propene and butene (knowing from the LPG statistic). The NCV is measured by the operators. The ETS EF of the same year is 65.7 kg/TJ. This is very similar. However the ETS covers only a small part of LPG consumption. The average EF is calculated for the 2014 situation.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "", + "creation_date": "2022-03-14T08:01:01.185Z", + "last_change_date": "2022-03-14T08:01:01.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7680, + "fields": { + "EF_ID": 123087, + "IPCC_Category": "1.A.4 - Other Sectors", + "Gases": "CARBON DIOXIDE", + "Fuel": "Brown Coal Briquettes", + "Parameter_Type": "Measured", + "Description": "Lusatian brown coal briquettes", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Briquettes from lusatian mining district (Germany)", + "Control_Technologies": "", + "Other_Properties": "NCV: 20.12 MJ/kg", + "Value": "98.5", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 using measurement data from the technical university of Dresden.", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "98.2", + "Upper_Bound": "98.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measured by TU Dresden. A comparison with ETS data, which are in the range of 97.8 and 99.2, shows a good correlation. The average NCV of the analyzed briquettes is slightly higher than in ETS. This is plausible since briquettes used in small combustion plants are usually of higher quality. See brown coal briquettes sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.285Z", + "last_change_date": "2022-03-14T08:01:01.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7681, + "fields": { + "EF_ID": 123088, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal", + "Technology_Practices": "Dust firing", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "Wet desulfurization, electrostatic precipitator, SCR", + "Other_Properties": "", + "Value": "1.1", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 109, calculated emission factors using measurement data from the VGB PowerTech e.V. project: „ Messtechnische Ermittlung der CH4- und N2O-Emissionen von Kraftwerken“", + "English_Abstract": "In addition to the known carbon dioxide as a greenhouse gas, other gases are also becoming an effective climate Potential. These include methane and nitrous oxide (CH4 and N2O). Important natural sources for these gases are volcanic activities, digestive processes, (Methane) and biological processes (laughing gas). In addition to natural sources, methane is released in all processes, with the production and processing of natural gas and combustion processes (from the motor vehicle to the power plant). Non-natural sources for nitrous oxide include certain combustion processes (e.g., fluidized bed combustions for organic materials) and also nitrogen oxide reduction measures with the introduction of ammonia. There is currently little information on the expected concentrations of methane and nitrous oxide in the flue gas of fossil fuel fired conventional power plants. In most cases default values were used for the calculation. It was therefore of fundamental interest to provide more detailed information on emissions methane and nitrous oxide in the flue gas of fossil-fired power plants.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See N2O CH4 sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.377Z", + "last_change_date": "2022-03-14T08:01:01.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7682, + "fields": { + "EF_ID": 123089, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal", + "Technology_Practices": "Wet bottom firing system", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "Wet desulfurization, electrostatic precipitator, SCR", + "Other_Properties": "", + "Value": "2.015", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 109, calculated emission factors using measurement data from the VGB PowerTech e.V. project: „ Messtechnische Ermittlung der CH4- und N2O-Emissionen von Kraftwerken“", + "English_Abstract": "In addition to the known carbon dioxide as a greenhouse gas, other gases are also becoming an effective climate Potential. These include methane and nitrous oxide (CH4 and N2O). Important natural sources for these gases are volcanic activities, digestive processes, (Methane) and biological processes (laughing gas). In addition to natural sources, methane is released in all processes, with the production and processing of natural gas and combustion processes (from the motor vehicle to the power plant). Non-natural sources for nitrous oxide include certain combustion processes (e.g., fluidized bed combustions for organic materials) and also nitrogen oxide reduction measures with the introduction of ammonia. There is currently little information on the expected concentrations of methane and nitrous oxide in the flue gas of fossil fuel fired conventional power plants. In most cases default values were used for the calculation. It was therefore of fundamental interest to provide more detailed information on emissions methane and nitrous oxide in the flue gas of fossil-fired power plants.", + "Lower_Bound": "0.73", + "Upper_Bound": "4.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculation of a simple average value using full-load emission factors. See N2O CH4 sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.469Z", + "last_change_date": "2022-03-14T08:01:01.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7683, + "fields": { + "EF_ID": 123090, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Raw lignite", + "Technology_Practices": "Dust firing", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "Wet desulfurization, electrostatic precipitator", + "Other_Properties": "", + "Value": "3.35", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 109, calculated emission factors using measurement data from the VGB PowerTech e.V. project: „ Messtechnische Ermittlung der CH4- und N2O-Emissionen von Kraftwerken“", + "English_Abstract": "In addition to the known carbon dioxide as a greenhouse gas, other gases are also becoming an effective climate Potential. These include methane and nitrous oxide (CH4 and N2O). Important natural sources for these gases are volcanic activities, digestive processes, (Methane) and biological processes (laughing gas). In addition to natural sources, methane is released in all processes, with the production and processing of natural gas and combustion processes (from the motor vehicle to the power plant). Non-natural sources for nitrous oxide include certain combustion processes (e.g., fluidized bed combustions for organic materials) and also nitrogen oxide reduction measures with the introduction of ammonia. There is currently little information on the expected concentrations of methane and nitrous oxide in the flue gas of fossil fuel fired conventional power plants. In most cases default values were used for the calculation. It was therefore of fundamental interest to provide more detailed information on emissions methane and nitrous oxide in the flue gas of fossil-fired power plants.", + "Lower_Bound": "2.5", + "Upper_Bound": "7.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculation of a simple average value using full-load emission factors. See N2O CH4 sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.558Z", + "last_change_date": "2022-03-14T08:01:01.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7684, + "fields": { + "EF_ID": 123091, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Natural gas", + "Technology_Practices": "Combined cycle gas turbine", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "No abatement technology used", + "Other_Properties": "", + "Value": "1.7", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 109, calculated emission factors using measurement data from the VGB PowerTech e.V. project: „ Messtechnische Ermittlung der CH4- und N2O-Emissionen von Kraftwerken“", + "English_Abstract": "In addition to the known carbon dioxide as a greenhouse gas, other gases are also becoming an effective climate Potential. These include methane and nitrous oxide (CH4 and N2O). Important natural sources for these gases are volcanic activities, digestive processes, (Methane) and biological processes (laughing gas). In addition to natural sources, methane is released in all processes, with the production and processing of natural gas and combustion processes (from the motor vehicle to the power plant). Non-natural sources for nitrous oxide include certain combustion processes (e.g., fluidized bed combustions for organic materials) and also nitrogen oxide reduction measures with the introduction of ammonia. There is currently little information on the expected concentrations of methane and nitrous oxide in the flue gas of fossil fuel fired conventional power plants. In most cases default values were used for the calculation. It was therefore of fundamental interest to provide more detailed information on emissions methane and nitrous oxide in the flue gas of fossil-fired power plants.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See N2O CH4 sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.645Z", + "last_change_date": "2022-03-14T08:01:01.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7685, + "fields": { + "EF_ID": 123092, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Natural gas Germany", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Natural gas which was produced in Germany", + "Control_Technologies": "", + "Other_Properties": "NCV: 32.22 MJ/m³, GCV: 35.73 MJ/m³, methane content: 85.8%, nitrogen content: 11.5% CO2 content: 0.7%, ethene content: 1.7%, propene content: 0.1%", + "Value": "55.59", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 derived from the unpublished report: Messungen der Erdgasqualität an verschiedenen Stellen im Netz zur Ableitung bzw. Verifizierung von durchschnittlichen Emissionsfaktoren und Heizwerten von Erdgas by Udo Lubenau, Stefan Schütz, DBI Gas- und Umwelttechnik GmbH Leipzig", + "English_Abstract": "Natural gas used and distributed in Germany comes from different sources and has varying quality parameters. Hence, the calorific characteristics of the gases as well as its sulphur and, possibly, heavy metal contents differ. The project aim was to establish a basis to determine the lower heating value of gases distributed in Germany. The measurement results should form the basis to calculate the CO2, SO2 and Hg emission factors and, furthermore, test the default values derived from the EMEP/EEA guidebook for heavy metals, which may sometimes be found in natural gas. We analysed gas samples from 32 measuring points throughout Germany, including L-gas from German and Dutch origin as well as H-gas from Russia and the North Sea. Due to the wide spread gas samples we covered, we were able to collect sound knowledge of the gas qual-ity parameters, the sulphur content and mercury concentration. The measuring results demonstrate increasing problems in determining a stable distribution of the different gas qualities within Germany.", + "Lower_Bound": "55.41", + "Upper_Bound": "56.06", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average value of summer and winter measurement campaign. The emission factor applies for source category 1.A.1, 1.A.2 and 1.A.4. See natural gas sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.735Z", + "last_change_date": "2022-03-14T08:01:01.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7686, + "fields": { + "EF_ID": 123093, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Natural gas Netherlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Natural gas which was produced in the Netherlands", + "Control_Technologies": "", + "Other_Properties": "NCV: 31.91 MJ/m³, GCV: 35.38 MJ/m³, methane content: 84.1%, nitrogen content: 12.6% CO2 content: 0.8%, ethene content: 2.1%, propene content: 0.2%", + "Value": "55.77", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 derived from the unpublished report: Messungen der Erdgasqualität an verschiedenen Stellen im Netz zur Ableitung bzw. Verifizierung von durchschnittlichen Emissionsfaktoren und Heizwerten von Erdgas by Udo Lubenau, Stefan Schütz, DBI Gas- und Umwelttechnik GmbH Leipzig", + "English_Abstract": "Natural gas used and distributed in Germany comes from different sources and has varying quality parameters. Hence, the calorific characteristics of the gases as well as its sulphur and, possibly, heavy metal contents differ. The project aim was to establish a basis to determine the lower heating value of gases distributed in Germany. The measurement results should form the basis to calculate the CO2, SO2 and Hg emission factors and, furthermore, test the default values derived from the EMEP/EEA guidebook for heavy metals, which may sometimes be found in natural gas. We analysed gas samples from 32 measuring points throughout Germany, including L-gas from German and Dutch origin as well as H-gas from Russia and the North Sea. Due to the wide spread gas samples we covered, we were able to collect sound knowledge of the gas qual-ity parameters, the sulphur content and mercury concentration. The measuring results demonstrate increasing problems in determining a stable distribution of the different gas qualities within Germany.", + "Lower_Bound": "55.6", + "Upper_Bound": "56.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average value of summer and winter measurement campaign. The emission factor applies for source category 1.A.1, 1.A.2 and 1.A.4. See natural gas sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.831Z", + "last_change_date": "2022-03-14T08:01:01.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7687, + "fields": { + "EF_ID": 123094, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Natural gas Norway", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Natural gas which was produced in Norway", + "Control_Technologies": "", + "Other_Properties": "NCV: 36.83 MJ/m³, GCV: 40.80 MJ/m³, methane content: 92%, nitrogen content: 1.2% CO2 content: 1.4%, ethene content: 4.6%, propene content: 0.7%", + "Value": "56.37", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 derived from the unpublished report: Messungen der Erdgasqualität an verschiedenen Stellen im Netz zur Ableitung bzw. Verifizierung von durchschnittlichen Emissionsfaktoren und Heizwerten von Erdgas by Udo Lubenau, Stefan Schütz, DBI Gas- und Umwelttechnik GmbH Leipzig", + "English_Abstract": "Natural gas used and distributed in Germany comes from different sources and has varying quality parameters. Hence, the calorific characteristics of the gases as well as its sulphur and, possibly, heavy metal contents differ. The project aim was to establish a basis to determine the lower heating value of gases distributed in Germany. The measurement results should form the basis to calculate the CO2, SO2 and Hg emission factors and, furthermore, test the default values derived from the EMEP/EEA guidebook for heavy metals, which may sometimes be found in natural gas. We analysed gas samples from 32 measuring points throughout Germany, including L-gas from German and Dutch origin as well as H-gas from Russia and the North Sea. Due to the wide spread gas samples we covered, we were able to collect sound knowledge of the gas qual-ity parameters, the sulphur content and mercury concentration. The measuring results demonstrate increasing problems in determining a stable distribution of the different gas qualities within Germany.", + "Lower_Bound": "56.12", + "Upper_Bound": "56.62", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average value of summer and winter measurement campaign. The emission factor applies for source category 1.A.1, 1.A.2 and 1.A.4. See natural gas sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:01.932Z", + "last_change_date": "2022-03-14T08:01:01.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7688, + "fields": { + "EF_ID": 123095, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Natural gas Russia", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Natural gas which was produced in Russia", + "Control_Technologies": "", + "Other_Properties": "NCV: 36.4 MJ/m³, GCV: 40.36 MJ/m³, methane content: 96.9%, nitrogen content: 0.7% CO2 content: 0.1%, ethene content: 1.7%, propene content: 0.4%", + "Value": "55.24", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016 derived from the unpublished report: Messungen der Erdgasqualität an verschiedenen Stellen im Netz zur Ableitung bzw. Verifizierung von durchschnittlichen Emissionsfaktoren und Heizwerten von Erdgas by Udo Lubenau, Stefan Schütz, DBI Gas- und Umwelttechnik GmbH Leipzig", + "English_Abstract": "Natural gas used and distributed in Germany comes from different sources and has varying quality parameters. Hence, the calorific characteristics of the gases as well as its sulphur and, possibly, heavy metal contents differ. The project aim was to establish a basis to determine the lower heating value of gases distributed in Germany. The measurement results should form the basis to calculate the CO2, SO2 and Hg emission factors and, furthermore, test the default values derived from the EMEP/EEA guidebook for heavy metals, which may sometimes be found in natural gas. We analysed gas samples from 32 measuring points throughout Germany, including L-gas from German and Dutch origin as well as H-gas from Russia and the North Sea. Due to the wide spread gas samples we covered, we were able to collect sound knowledge of the gas qual-ity parameters, the sulphur content and mercury concentration. The measuring results demonstrate increasing problems in determining a stable distribution of the different gas qualities within Germany.", + "Lower_Bound": "55.16", + "Upper_Bound": "55.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average value of summer and winter measurement campaign. The emission factor aaplies for source category 1.A.1, 1.A.2 and 1.A.4. See natural gas sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:02.041Z", + "last_change_date": "2022-03-14T08:01:02.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7689, + "fields": { + "EF_ID": 123096, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Petroleum Coke", + "Parameter_Type": "Measured", + "Description": "Petroleum coke", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "NCV: 31.7 MJ/kg", + "Value": "95.7", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "91.0", + "Upper_Bound": "107.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average value is calculated by using all measured ETS data for several years. Underlying this is an amount of approx. 80,000 tons of petroleum coke. The emission factor applies to source category 1.A.1.a, 1.A.1.b and 1.A.2.f. See petroleum products sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:02.149Z", + "last_change_date": "2022-03-14T08:01:02.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7690, + "fields": { + "EF_ID": 123097, + "IPCC_Category": "1.A.1.b - Petroleum Refining", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "Refinery residues", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "(Slurry, Visbreaker, other residues) NCV: 38.5 MJ/kg", + "Value": "82.7", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Report: CO2 Emission Factors for Fossil Fuels by Kristina Juhrich, Emissions Situation (Section I 2.6), German Environment Agency (UBA), June 2016", + "English_Abstract": "Germany is obligated to report its national emissions of greenhouse gases, annually, to the European Union and the United Nations. Over 80 % of the greenhouse-gas emissions reported by Germany occur via combustion of fossil fuels. The great majority of the emissions consist of carbon dioxide. To calcu-late carbon dioxide emissions, one needs both the relevant activity data and suitable emission factors, with the latter depending on the applicable fuel quality and input quantities. In light of these elements` importance for emission factors, the German inventory uses country-specific emission factors rather than international, average factors. To determine such factors, one requires a detailed knowledge of the fuel compositions involved, especially with regard to carbon content and net calorific values. The present publication provides an overview of the quality characteristics of the most important fuels used in Germany and of the CO2 emission factors calculated on the basis of those characteristics. Since annual greenhouse-gas emissions have to be calculated back to 1990, the study also considers fuels that are no longer used today. To that end, archival data are used. Gaps in the data are closed with the help of methods for recalculation back through the base year.", + "Lower_Bound": "77.8", + "Upper_Bound": "84.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A weighted average value is calculated by using all measured ETS data for several years. See petroleum products sheet of the attached file background_data_Germany_combustion.xlsx.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_Germany_combustion.xlsx", + "creation_date": "2022-03-14T08:01:02.250Z", + "last_change_date": "2022-03-14T08:01:02.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7691, + "fields": { + "EF_ID": 123098, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "NITROUS OXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Raw lignite", + "Technology_Practices": "Fluidized combustion", + "Parameter_Conditions": "Full load, partial load and load changes", + "Regional_Conditions": "", + "Control_Technologies": "Wet desulfurization, electrostatic precipitator", + "Other_Properties": "", + "Value": "11.08", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "DFIU, KIT, EIFER “Fortschreibung der Emissionsfaktoren für Feuerungs- und Gasturbinenanlagen nach13./17. BImSchV und TA Luft“ page 108, tabelle 8.1-1.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the weighted annual average value of one plant. The range is not available.", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/DFIU_Endbericht_EF_GFA_GT_FKZ370842301.pdf", + "creation_date": "2022-03-14T08:01:02.327Z", + "last_change_date": "2022-03-14T08:01:02.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7692, + "fields": { + "EF_ID": 123099, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal Colombia", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hard coal which was produced in Colombia", + "Control_Technologies": "", + "Other_Properties": "NCV: 24.69 MJ/kg", + "Value": "94.64", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Kristina Juhrich, Region specific coal data (emission factor and NCV), 2018 January", + "English_Abstract": "Since 2005 when the emission trading scheeme came into force the carbon content of coal and many other fuels used in combustion plants > 20 MW is measured regularly. Measured data on the NCV are also required. Therefore many CO2 emission factors are available. During the first emission trading period (2005-2007) data was partielly of minor quality. Due to the increasing requirements on data quality during the second trading period data from 2008 onwards were used for the calculation of an average CO2 emission factor for the different hard coal species. During this second trading period many region specific coal data was available. Germany has only a few restrictions regarding the fuel classification. Material description can be entered by the operators. Therefore the information on the origine of the hard coal is available in many cases. From 2013 onwards the situation changed. Only a few information on hard coal regions was/ is available. Therefore the calculation refers basically to the second trading period (2008 - 2012). The calculation spreadsheet shows the weighted average CO2 emission factors and NCVs for each year but also individual values for the different plants.", + "Lower_Bound": "92.26", + "Upper_Bound": "97.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor applies to source category 1.A.1 and 1.A.2. See hc Colombia sheet of the attached file background_data_hard_coal_Germany_2008_2012.xlsx", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_hard_coal_Germany_2008_2012.xlsx", + "creation_date": "2022-03-14T08:01:02.417Z", + "last_change_date": "2022-03-14T08:01:02.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7693, + "fields": { + "EF_ID": 123100, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal Germany. German coal is a high calorific coal of a high chlorine content (0.14 - 0.17%) and a high heavy metal content (Hg: 0.16 - 0.24 mg/kg; Pb: 14 - 52 mg/kg; As: 2.4 - 16 mg/kg; Cd: 0.1 - 0.2 mg/kg; Ni: 23 - 35 mg/kg). The ash content is low (7 - 10%)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "NCV: 28.44 MJ/kg", + "Value": "92.64", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Kristina Juhrich, Region specific coal data (emission factor and NCV), 2018 January", + "English_Abstract": "Since 2005 when the emission trading scheeme came into force the carbon content of coal and many other fuels used in combustion plants > 20 MW is measured regularly. Measured data on the NCV are also required. Therefore many CO2 emission factors are available. During the first emission trading period (2005-2007) data was partielly of minor quality. Due to the increasing requirements on data quality during the second trading period data from 2008 onwards were used for the calculation of an average CO2 emission factor for the different hard coal species. During this second trading period many region specific coal data was available. Germany has only a few restrictions regarding the fuel classification. Material description can be entered by the operators. Therefore the information on the origine of the hard coal is available in many cases. From 2013 onwards the situation changed. Only a few information on hard coal regions was/ is available. Therefore the calculation refers basically to the second trading period (2008 - 2012). The calculation spreadsheet shows the weighted average CO2 emission factors and NCVs for each year but also individual values for the different plants.", + "Lower_Bound": "91.37", + "Upper_Bound": "94.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor applies to source category 1.A.1 and 1.A.2. See hc Germany sheet of the attached file background_data_hard_coal_Germany_2008_2012.xlsx", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_hard_coal_Germany_2008_2012.xlsx", + "creation_date": "2022-03-14T08:01:02.493Z", + "last_change_date": "2022-03-14T08:01:02.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7694, + "fields": { + "EF_ID": 123101, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal Poland", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hard coal which was produced in Poland", + "Control_Technologies": "", + "Other_Properties": "NCV: 28.48 MJ/kg", + "Value": "94.4", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Kristina Juhrich, Region specific coal data (emission factor and NCV), 2018 January", + "English_Abstract": "Since 2005 when the emission trading scheeme came into force the carbon content of coal and many other fuels used in combustion plants > 20 MW is measured regularly. Measured data on the NCV are also required. Therefore many CO2 emission factors are available. During the first emission trading period (2005-2007) data was partielly of minor quality. Due to the increasing requirements on data quality during the second trading period data from 2008 onwards were used for the calculation of an average CO2 emission factor for the different hard coal species. During this second trading period many region specific coal data was available. Germany has only a few restrictions regarding the fuel classification. Material description can be entered by the operators. Therefore the information on the origine of the hard coal is available in many cases. From 2013 onwards the situation changed. Only a few information on hard coal regions was/ is available. Therefore the calculation refers basically to the second trading period (2008 - 2012). The calculation spreadsheet shows the weighted average CO2 emission factors and NCVs for each year but also individual values for the different plants.", + "Lower_Bound": "91.4", + "Upper_Bound": "96.96", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor applies to source category 1.A.1 and 1.A.2. See hc Poland sheet of the attached file background_data_hard_coal_Germany_2008_2012.xlsx", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_hard_coal_Germany_2008_2012.xlsx", + "creation_date": "2022-03-14T08:01:02.585Z", + "last_change_date": "2022-03-14T08:01:02.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7695, + "fields": { + "EF_ID": 123102, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal Russia", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hard coal which was produced in Russia", + "Control_Technologies": "", + "Other_Properties": "NCV: 25.16 MJ/kg", + "Value": "93.99", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Kristina Juhrich, Region specific coal data (emission factor and NCV), 2018 January", + "English_Abstract": "Since 2005 when the emission trading scheeme came into force the carbon content of coal and many other fuels used in combustion plants > 20 MW is measured regularly. Measured data on the NCV are also required. Therefore many CO2 emission factors are available. During the first emission trading period (2005-2007) data was partielly of minor quality. Due to the increasing requirements on data quality during the second trading period data from 2008 onwards were used for the calculation of an average CO2 emission factor for the different hard coal species. During this second trading period many region specific coal data was available. Germany has only a few restrictions regarding the fuel classification. Material description can be entered by the operators. Therefore the information on the origine of the hard coal is available in many cases. From 2013 onwards the situation changed. Only a few information on hard coal regions was/ is available. Therefore the calculation refers basically to the second trading period (2008 - 2012). The calculation spreadsheet shows the weighted average CO2 emission factors and NCVs for each year but also individual values for the different plants.", + "Lower_Bound": "91.34", + "Upper_Bound": "97.48", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor applies to source category 1.A.1 and 1.A.2. See hc Russia sheet of the attached file background_data_hard_coal_Germany_2008_2012.xlsx", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_hard_coal_Germany_2008_2012.xlsx", + "creation_date": "2022-03-14T08:01:02.660Z", + "last_change_date": "2022-03-14T08:01:02.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7696, + "fields": { + "EF_ID": 123103, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal South Africa", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hard coal which was produced in South Africa", + "Control_Technologies": "", + "Other_Properties": "NCV: 24.94 MJ/kg", + "Value": "96.02", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Kristina Juhrich, Region specific coal data (emission factor and NCV), 2018 January", + "English_Abstract": "Since 2005 when the emission trading scheeme came into force the carbon content of coal and many other fuels used in combustion plants > 20 MW is measured regularly. Measured data on the NCV are also required. Therefore many CO2 emission factors are available. During the first emission trading period (2005-2007) data was partielly of minor quality. Due to the increasing requirements on data quality during the second trading period data from 2008 onwards were used for the calculation of an average CO2 emission factor for the different hard coal species. During this second trading period many region specific coal data was available. Germany has only a few restrictions regarding the fuel classification. Material description can be entered by the operators. Therefore the information on the origine of the hard coal is available in many cases. From 2013 onwards the situation changed. Only a few information on hard coal regions was/ is available. Therefore the calculation refers basically to the second trading period (2008 - 2012). The calculation spreadsheet shows the weighted average CO2 emission factors and NCVs for each year but also individual values for the different plants.", + "Lower_Bound": "92.57", + "Upper_Bound": "98.36", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor applies to source category 1.A.1 and 1.A.2. See hc South Africa sheet of the attached file background_data_hard_coal_Germany_2008_2012.xlsx", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_hard_coal_Germany_2008_2012.xlsx", + "creation_date": "2022-03-14T08:01:02.753Z", + "last_change_date": "2022-03-14T08:01:02.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7697, + "fields": { + "EF_ID": 123104, + "IPCC_Category": "1.A.1 - Energy Industries", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Hard coal Venezuela", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Hard coal which was produced in Venezuela", + "Control_Technologies": "", + "Other_Properties": "NCV: 28.58 MJ/kg", + "Value": "91.95", + "Unit": "t CO2/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Kristina Juhrich, Region specific coal data (emission factor and NCV), 2018 January", + "English_Abstract": "Since 2005 when the emission trading scheeme came into force the carbon content of coal and many other fuels used in combustion plants > 20 MW is measured regularly. Measured data on the NCV are also required. Therefore many CO2 emission factors are available. During the first emission trading period (2005-2007) data was partielly of minor quality. Due to the increasing requirements on data quality during the second trading period data from 2008 onwards were used for the calculation of an average CO2 emission factor for the different hard coal species. During this second trading period many region specific coal data was available. Germany has only a few restrictions regarding the fuel classification. Material description can be entered by the operators. Therefore the information on the origine of the hard coal is available in many cases. From 2013 onwards the situation changed. Only a few information on hard coal regions was/ is available. Therefore the calculation refers basically to the second trading period (2008 - 2012). The calculation spreadsheet shows the weighted average CO2 emission factors and NCVs for each year but also individual values for the different plants.", + "Lower_Bound": "90.03", + "Upper_Bound": "93.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor applies to source category 1.A.1 and 1.A.2. See hc Venezuela sheet of the attached file background_data_hard_coal_Germany_2008_2012.xlsx", + "Other_Comments": "", + "Data_Provider": "Kristina Juhrich", + "Link": "./src/201804_KristinaJuhrich/background_data_hard_coal_Germany_2008_2012.xlsx", + "creation_date": "2022-03-14T08:01:02.835Z", + "last_change_date": "2022-03-14T08:01:02.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7698, + "fields": { + "EF_ID": 123625, + "IPCC_Category": "1.A.1.c.i - Manufacture of Solid Fuels", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Coke Production", + "Technology_Practices": "Company X in China. BF-BOF. Output of steel is 15 million ton", + "Parameter_Conditions": "65 holes coke oven", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "129.45", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.1 on p.4.17 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Coke Production for Company X in China (Table 1 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:01:02.937Z", + "last_change_date": "2022-03-14T08:01:02.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7699, + "fields": { + "EF_ID": 123626, + "IPCC_Category": "1.A.1.c.i - Manufacture of Solid Fuels", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Coke Production", + "Technology_Practices": "Company X in China. BF-BOF. Output of steel is 15 million ton", + "Parameter_Conditions": "35 holes coke oven", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "199.86", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.1 on p.4.17 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Coke Production for Company X in China (Table 1 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:01:03.019Z", + "last_change_date": "2022-03-14T08:01:03.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7700, + "fields": { + "EF_ID": 123633, + "IPCC_Category": "1.A.1.c.i - Manufacture of Solid Fuels", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Coke Production", + "Technology_Practices": "Company Y in China. BF-BOF. Output of steel is 21 million ton", + "Parameter_Conditions": "55 holes coke oven", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "222.69", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.1 on p.4.17 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Coke Production for Company Y in China (Table 2 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:01:03.105Z", + "last_change_date": "2022-03-14T08:01:03.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7701, + "fields": { + "EF_ID": 123811, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for Agriculture off-road machinery", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p23 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.215Z", + "last_change_date": "2022-03-14T08:01:03.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7702, + "fields": { + "EF_ID": 123812, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for Agriculture off-road machinery", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p23 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.302Z", + "last_change_date": "2022-03-14T08:01:03.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7703, + "fields": { + "EF_ID": 123813, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for Forestry off-road machinery", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p23 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.377Z", + "last_change_date": "2022-03-14T08:01:03.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7704, + "fields": { + "EF_ID": 123814, + "IPCC_Category": "1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for Forestry off-road machinery", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "138", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p23 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.444Z", + "last_change_date": "2022-03-14T08:01:03.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7705, + "fields": { + "EF_ID": 123815, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction, 1.A.4.a - Commercial/Institutional", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for manufatcuring industries, construction, commercial and institutional off-road machinery", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p24 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.533Z", + "last_change_date": "2022-03-14T08:01:03.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7706, + "fields": { + "EF_ID": 123816, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction, 1.A.4.a - Commercial/Institutional", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for manufatcuring industries, construction, commercial and institutional off-road machinery", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "135", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p24 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.610Z", + "last_change_date": "2022-03-14T08:01:03.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7707, + "fields": { + "EF_ID": 123817, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for manufatcuring industries, construction, commercial, institutional, residential, agriculture, forestry and fishing off-road machinery", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "354", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p24 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.677Z", + "last_change_date": "2022-03-14T08:01:03.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7708, + "fields": { + "EF_ID": 123818, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for manufatcuring industries, construction, commercial, institutional, residential, agriculture, forestry and fishing off-road machinery", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "161", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p24 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.743Z", + "last_change_date": "2022-03-14T08:01:03.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7709, + "fields": { + "EF_ID": 123819, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for manufatcuring industries, construction, commercial, institutional, residential, agriculture, forestry and fishing off-road machinery", + "Technology_Practices": "Four-stroke engine", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "665", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p25 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.811Z", + "last_change_date": "2022-03-14T08:01:03.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7710, + "fields": { + "EF_ID": 123820, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for manufatcuring industries, construction, commercial, institutional, residential, agriculture, forestry and fishing off-road machinery", + "Technology_Practices": "Four-stroke engine", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p25 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.902Z", + "last_change_date": "2022-03-14T08:01:03.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7711, + "fields": { + "EF_ID": 123821, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for manufatcuring industries, construction, commercial, institutional, residential, agriculture, forestry and fishing off-road machinery", + "Technology_Practices": "Two-stroke engine", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17108", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p25 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:03.977Z", + "last_change_date": "2022-03-14T08:01:03.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7712, + "fields": { + "EF_ID": 123822, + "IPCC_Category": "1.A.2 - Manufacturing Industries and Construction, 1.A.4.a - Commercial/Institutional, 1.A.4.b - Residential, 1.A.4.c.ii - Off-road Vehicles and Other Machinery", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for manufatcuring industries, construction, commercial, institutional, residential, agriculture, forestry and fishing off-road machinery", + "Technology_Practices": "Two-stroke engine", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "g/tonnes fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.4 Non road mobile machinery 2016 update May 2017.pdf p25 Table 3-1", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-4-non-road-1/view", + "creation_date": "2022-03-14T08:01:04.335Z", + "last_change_date": "2022-03-14T08:01:04.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7713, + "fields": { + "EF_ID": 123823, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for line-haul locomotives", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182", + "Unit": "g/tonne", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.3.c Railways 2016.pdf p9 Table 3-2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-c-railways-2016/view", + "creation_date": "2022-03-14T08:01:04.469Z", + "last_change_date": "2022-03-14T08:01:04.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7714, + "fields": { + "EF_ID": 123824, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for shunting locomotives", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "176", + "Unit": "g/tonne", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.3.c Railways 2016.pdf p9 Table 3-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-c-railways-2016/view", + "creation_date": "2022-03-14T08:01:04.535Z", + "last_change_date": "2022-03-14T08:01:04.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7715, + "fields": { + "EF_ID": 123825, + "IPCC_Category": "1.A.3.c - Railways", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for rail cars", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "179", + "Unit": "g/tonne", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 Update May 2017 1.A.3.c Railways 2016.pdf p10 Table 3-4", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-c-railways-2016/view", + "creation_date": "2022-03-14T08:01:04.679Z", + "last_change_date": "2022-03-14T08:01:04.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7716, + "fields": { + "EF_ID": 123826, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.206", + "Unit": "g/kg-fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p24 Table 3.7", + "English_Abstract": "", + "Lower_Bound": "0.133", + "Upper_Bound": "0.320", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:04.752Z", + "last_change_date": "2022-03-14T08:01:04.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7717, + "fields": { + "EF_ID": 123827, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.087", + "Unit": "g/kg-fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p24 Table 3.7", + "English_Abstract": "", + "Lower_Bound": "0.044", + "Upper_Bound": "0.107", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:04.819Z", + "last_change_date": "2022-03-14T08:01:04.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7718, + "fields": { + "EF_ID": 123828, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.089", + "Unit": "g/kg-fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p24 Table 3.7", + "English_Abstract": "", + "Lower_Bound": "0.024", + "Upper_Bound": "0.202", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:04.886Z", + "last_change_date": "2022-03-14T08:01:04.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7719, + "fields": { + "EF_ID": 123829, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for light commercial vehicle", + "Technology_Practices": "Light commercial vehicles < 3.5 t", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.186", + "Unit": "g/kg-fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p24 Table 3.7", + "English_Abstract": "", + "Lower_Bound": "0.103", + "Upper_Bound": "0.316", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:04.952Z", + "last_change_date": "2022-03-14T08:01:04.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7720, + "fields": { + "EF_ID": 123830, + "IPCC_Category": "1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for light commercial vehicle", + "Technology_Practices": "Light commercial vehicles < 3.5 t", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.056", + "Unit": "g/kg-fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p24 Table 3.7", + "English_Abstract": "", + "Lower_Bound": "0.025", + "Upper_Bound": "0.072", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.019Z", + "last_change_date": "2022-03-14T08:01:05.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7721, + "fields": { + "EF_ID": 123831, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for heavy-duty vehicle", + "Technology_Practices": "Heavy-duty vehicles > 3.5 t and buses", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.051", + "Unit": "g/kg-fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p24 Table 3.7", + "English_Abstract": "", + "Lower_Bound": "0.030", + "Upper_Bound": "0.089", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.094Z", + "last_change_date": "2022-03-14T08:01:05.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7722, + "fields": { + "EF_ID": 123832, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for L-category vehicles", + "Technology_Practices": "L-category vehicles comprises seven vehicle subcategories including powered cycles, two- and three-wheeled mopeds, two-wheeled motorcycles with and without a sidecar, tricycles, quadricycles and mini-cars", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.059", + "Unit": "g/kg-fuel", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p24 Table 3.7", + "English_Abstract": "", + "Lower_Bound": "0.048", + "Upper_Bound": "0.067", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.169Z", + "last_change_date": "2022-03-14T08:01:05.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7723, + "fields": { + "EF_ID": 123833, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Biodiesels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Net Calorific Value of biodiesel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.3", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p51 Table 3.28", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.267Z", + "last_change_date": "2022-03-14T08:01:05.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7724, + "fields": { + "EF_ID": 123834, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Net Calorific Value of bioethanol", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.8", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p51 Table 3.28", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.344Z", + "last_change_date": "2022-03-14T08:01:05.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7725, + "fields": { + "EF_ID": 123835, + "IPCC_Category": "1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Liquid Biofuels", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Net Calorific Value of ETBE", + "Technology_Practices": "ETBE: Ethyl Tertiary Butyl Ether", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.2", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p52 Table 3.28", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.427Z", + "last_change_date": "2022-03-14T08:01:05.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7726, + "fields": { + "EF_ID": 123836, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car using CNG fuel at hot condition on urban road", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.3", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p75 Table 3.47", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.494Z", + "last_change_date": "2022-03-14T08:01:05.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7727, + "fields": { + "EF_ID": 123837, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car using CNG fuel on rural road", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.73", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p75 Table 3.47", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.560Z", + "last_change_date": "2022-03-14T08:01:05.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7728, + "fields": { + "EF_ID": 123838, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car using CNG fuel on highway", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.39", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p75 Table 3.47", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.627Z", + "last_change_date": "2022-03-14T08:01:05.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7729, + "fields": { + "EF_ID": 123839, + "IPCC_Category": "1.A.3.b.i - Cars, 1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car and light commercial vehicle in category Euro 6 using diesel oil at hot condition on urban road", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p89 Table 3.64", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.694Z", + "last_change_date": "2022-03-14T08:01:05.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7730, + "fields": { + "EF_ID": 123840, + "IPCC_Category": "1.A.3.b.i - Cars, 1.A.3.b.ii - Light-duty trucks", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car and light commercial vehicle in category Euro 6 using diesel oil on rural road and highway", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p89 Table 3.64", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.786Z", + "last_change_date": "2022-03-14T08:01:05.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7731, + "fields": { + "EF_ID": 123841, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car in categories Euro 5 and Euro 6 using LPG at cold-start condition on urban road", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p89 Table 3.64", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.861Z", + "last_change_date": "2022-03-14T08:01:05.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7732, + "fields": { + "EF_ID": 123842, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car in categories Euro 5 and Euro 6 using LPG at hot condition on urban road", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p89 Table 3.64", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.927Z", + "last_change_date": "2022-03-14T08:01:05.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7733, + "fields": { + "EF_ID": 123843, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car in categories Euro 5 and Euro 6 using LPG on rural road", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p89 Table 3.64", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:05.994Z", + "last_change_date": "2022-03-14T08:01:05.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7734, + "fields": { + "EF_ID": 123844, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for passenger car in categories Euro 5 and Euro 6 using LPG on highway", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p89 Table 3.64", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:06.061Z", + "last_change_date": "2022-03-14T08:01:06.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7735, + "fields": { + "EF_ID": 123845, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for two-wheel vehicle less than 50 cubic centimeters", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p89 Table 3.64", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:06.127Z", + "last_change_date": "2022-03-14T08:01:06.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7736, + "fields": { + "EF_ID": 123846, + "IPCC_Category": "1.A.3.b.iv - Motorcycles", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF for two-wheel vehicle more than 50 cubic centimeters", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Other", + "Technical_Reference": "EMEP/EEA air pollutant emission inventory guidebook 2016 1.A.3.b.i-iv Road transport 2018.pdf p89 Table 3.64", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view", + "creation_date": "2022-03-14T08:01:06.199Z", + "last_change_date": "2022-03-14T08:01:06.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7737, + "fields": { + "EF_ID": 123847, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Net Calorific Value", + "Technology_Practices": "", + "Parameter_Conditions": "Coal analysis", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.75 ± 7.59", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim, S., Lee, J., Lee, S., Cho, CS., Sa, JH., and Jeon, EC. Development of a CO2 emission factor in Korea from sub-bituminous coal by the classification method, Environ Earth Sci (2014) 72:2325–2332", + "English_Abstract": "While the Intergovernmental Panel on Climate Change classifies coal as anthracite, bituminous coal, and sub-bituminous coal, Korea only distinguishes coal as anthracite and bituminous coal while sub-bituminous coal is considered bituminous coal. As a result, Korea conducted research in the CO2 emission factors of anthracite and bituminous coal, but largely ignored sub-bituminous coal. Therefore, the purpose of this research is to develop the CO2 emission factor of sub-bituminous coal by classifying sub-bituminous coal from resources of bituminous coal activities collected in Korea between 2007 and 2011. The 2007–2011 average carbon content of sub-bituminous coal was analyzed to be 69.63 ± 3.11 %, the average hydrogen content 4.97 ± 0.37 %, the inherent moisture 12.60 ± 4.33 %, the total moisture 21.91 ± 5.45 %, and the dry-based gross calorific value was analyzed to be 5,914 ± 391 kcal/kg; using these analyzed values, the as-received net calorific value was found to be 20.75 ± 7.59 TJ/Gg and the CO2 emission factor was found to be 96,241 ± 4,064 kg/TJ. In addition, the 62.7 million ton amount for the 2009 greenhouse gas emission from sub-bituminous coal as estimated with the analyzed value of this study is an amount that is equivalent to 11.1 % of the 2009 total greenhouse gas emission amount of 564.7 million tons, and this amount is larger than the 9.3 % for the industrial processes sector, 3.3 % for the agricultural sector and 2.5 % for the waste sector. Therefore, it is important to reflect the realities of Korea when estimating the greenhouse gas emission from such subbituminous coals.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kim et al. 2014.", + "Other_Comments": "", + "Data_Provider": "Eui Chan Jeon, Sejong University", + "Link": "", + "creation_date": "2022-03-14T08:01:06.306Z", + "last_change_date": "2022-03-14T08:01:06.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7738, + "fields": { + "EF_ID": 123848, + "IPCC_Category": "1.A.1.a.iii - Heat Plants", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CO2 Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "Coal analysis", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96241 ± 4064", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "Worksheet 1A, Sheet 2 of 4", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim, S., Lee, J., Lee, S., Cho, CS., Sa, JH., and Jeon, EC. Development of a CO2 emission factor in Korea from sub-bituminous coal by the classification method, Environ Earth Sci (2014) 72:2325–2332", + "English_Abstract": "While the Intergovernmental Panel on Climate Change classifies coal as anthracite, bituminous coal, and sub-bituminous coal, Korea only distinguishes coal as anthracite and bituminous coal while sub-bituminous coal is considered bituminous coal. As a result, Korea conducted research in the CO2 emission factors of anthracite and bituminous coal, but largely ignored sub-bituminous coal. Therefore, the purpose of this research is to develop the CO2 emission factor of sub-bituminous coal by classifying sub-bituminous coal from resources of bituminous coal activities collected in Korea between 2007 and 2011. The 2007–2011 average carbon content of sub-bituminous coal was analyzed to be 69.63 ± 3.11 %, the average hydrogen content 4.97 ± 0.37 %, the inherent moisture 12.60 ± 4.33 %, the total moisture 21.91 ± 5.45 %, and the dry-based gross calorific value was analyzed to be 5,914 ± 391 kcal/kg; using these analyzed values, the as-received net calorific value was found to be 20.75 ± 7.59 TJ/Gg and the CO2 emission factor was found to be 96,241 ± 4,064 kg/TJ. In addition, the 62.7 million ton amount for the 2009 greenhouse gas emission from sub-bituminous coal as estimated with the analyzed value of this study is an amount that is equivalent to 11.1 % of the 2009 total greenhouse gas emission amount of 564.7 million tons, and this amount is larger than the 9.3 % for the industrial processes sector, 3.3 % for the agricultural sector and 2.5 % for the waste sector. Therefore, it is important to reflect the realities of Korea when estimating the greenhouse gas emission from such subbituminous coals.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kim et al. 2014.", + "Other_Comments": "", + "Data_Provider": "Eui Chan Jeon, Sejong University", + "Link": "", + "creation_date": "2022-03-14T08:01:06.394Z", + "last_change_date": "2022-03-14T08:01:06.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7739, + "fields": { + "EF_ID": 124230, + "IPCC_Category": "1.A.1.a.ii - Combined Heat and Power Generation (CHP)", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Methane emission factor for natural gas-fired power plants for combined heat and power generation.", + "Technology_Practices": "Large combined cycle power plants with maximum capacity from 680 MW to 3530 MW. Relatively new plants (from 2002 onwards) with high combustion efficiency.", + "Parameter_Conditions": "Operation type: baseload units operating >70% of the year, intermediate units operating 30−70% of the year and peaking units operating <30% of the year.", + "Regional_Conditions": "United States of America, North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.4", + "Unit": "g CH4/10^6 BTU", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kristian D. Hajny, Olivia E. Salmon, Joseph Rudek, David R. Lyon, Andrew A. Stuff, Brian H. Stirm, Robert Kaeser, Cody R. Floerchinger, Stephen Conley, Mackenzie L. Smith and Paul B. Shepson. Observations of Methane Emissions from Natural Gas-Fired Power Plants. Environmental Science and Technology. 2019, 53, 8976−8984.", + "English_Abstract": "Current research efforts on the atmospheric impacts of natural gas (NG) have focused heavily on the production, storage/transmission, and processing sectors, with less attention paid to the distribution and end use sectors. This work discusses 23 flights at 14 natural gas-fired power plants (NGPPs) using an aircraft-based mass balance technique and methane/carbon dioxide enhancement ratios (ΔCH4/ΔCO2) measured from stack plumes to quantify the unburned fuel. By comparing the ΔCH4/ΔCO2 ratio measured in stack plumes to that measured downwind, we determined that, within uncertainty of the measurement, all observed CH4 emissions were stack-based, that is, uncombusted NG from the stack rather than fugitive sources. Measured CH4 emission rates (ER) ranged from 8 (±5) to 135 (±27) kg CH4/h (±1σ), with the fractional CH4 throughput lost (loss rate) ranging from −0.039% (±0.076%) to 0.204% (±0.054%). We attribute negative values to partial combustion of ambient CH4 in the power plant. The average calculated emission factor (EF) of 5.4 (+10/−5.4) g CH4/million British thermal units (MMBTU) is within uncertainty of the Environmental Protection Agency (EPA) EFs. However, one facility measured during startup exhibited substantially larger stack emissions with an EF of 440 (+660/−440) g CH4/MMBTU and a loss rate of 2.5% (+3.8/−2.5%).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculation of the CH4 throughput used the reported heat input by the Air Markets Program Data (AMPD), the density of NG (18.9 kg CH4/10^3 ft3), the heat content (gross calorific value) of NG (1033 BTU/ft3) and the assumption that NG contains 95% CH4. The average emission factor of 5.4 g CH4/10^3 BTU is calculated from a range of (+10/−5.4) g CH4/10^6 BTU.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.9b01875", + "creation_date": "2022-03-14T08:01:06.481Z", + "last_change_date": "2022-03-14T08:01:06.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7740, + "fields": { + "EF_ID": 124231, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with diesel oil at 23 degrees. Only for vehicles with the SCR technology.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reduction (SCR)", + "Other_Properties": "", + "Value": "2", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:06.584Z", + "last_change_date": "2022-03-14T08:01:06.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7741, + "fields": { + "EF_ID": 124232, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with diesel oil at -7 degrees. Only for vehicles with the SCR technology.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reduction (SCR)", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:06.684Z", + "last_change_date": "2022-03-14T08:01:06.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7742, + "fields": { + "EF_ID": 124233, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with diesel oil at 23 degrees. Only for vehicles with the LNT technology.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "15", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:06.761Z", + "last_change_date": "2022-03-14T08:01:06.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7743, + "fields": { + "EF_ID": 124234, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with diesel oil at -7 degrees. Only for vehicles with the LNT technology.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "12", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:06.852Z", + "last_change_date": "2022-03-14T08:01:06.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7744, + "fields": { + "EF_ID": 124235, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with pure hydrotreated vegetable oil (HVO).", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reduction (SCR)", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:06.927Z", + "last_change_date": "2022-03-14T08:01:06.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7745, + "fields": { + "EF_ID": 124236, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with pure hydrotreated vegetable oil (HVO) at 23 degrees.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "14", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:07.019Z", + "last_change_date": "2022-03-14T08:01:07.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7746, + "fields": { + "EF_ID": 124237, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with pure hydrotreated vegetable oil (HVO) at -7 degrees.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "16", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:07.094Z", + "last_change_date": "2022-03-14T08:01:07.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7747, + "fields": { + "EF_ID": 124238, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with B7 diesel mixture.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reduction (SCR)", + "Other_Properties": "", + "Value": "1", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:07.178Z", + "last_change_date": "2022-03-14T08:01:07.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7748, + "fields": { + "EF_ID": 124239, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with B7 diesel mixture at 23 degrees.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "14", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:07.253Z", + "last_change_date": "2022-03-14T08:01:07.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7749, + "fields": { + "EF_ID": 124240, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 EF applicable for cold start EURO 6b passenger cars fueled with B7 diesel mixture at -7 degrees.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "13", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:07.346Z", + "last_change_date": "2022-03-14T08:01:07.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7750, + "fields": { + "EF_ID": 124241, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factor applicable for EURO VI (step C) heavy duty vehicles. The results are integrated emissions including the engine cold start emissions.", + "Technology_Practices": "Vehicle mass empty/max - 15.5 / 26 t. Engine max power 220 kW.", + "Parameter_Conditions": "Diesel B7 (EN590) was used (biofuel content 6.2% FAME, sulfur content 8.4 ppm, polycyclic aromatics 3.4%).", + "Regional_Conditions": "", + "Control_Technologies": "Selective Catalytic Reduction (SCR) systems", + "Other_Properties": "", + "Value": "40 - 80", + "Unit": "mg/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Giechaskiel, B., Gioria, R., Carriero, M., Lahde, T., Forloni F., Perujo, A., Martini, G., Bissi, L., and Terenghi, R. Emission Factors of a Euro VI Heavy-Duty Diesel Refuse Collection Vehicle. Sustainability 2019, 11, 1067; doi:10.3390/su11041067", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:07.419Z", + "last_change_date": "2022-03-14T08:01:07.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7751, + "fields": { + "EF_ID": 124242, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "CO2 Emission Factor for Indonesian lignite", + "Technology_Practices": "", + "Parameter_Conditions": "Coal quality data", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "Net Calorific Value (NCV)=14.8 TJ/Gg", + "Value": "106476", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Retno Damayanti and Herni Khaerunissa. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian mining journal Vol. 21, No. 1, April 2018: 45-58", + "English_Abstract": "Climate change will become the priority for the air quality management. It focuses more on carbon cioxide emission. Indonesia which has power generation dominated by coal combustion is expected to develop the national CO2 emission factor. Due to the high variation in Indonesia coal rank and its growing magnitude in CO2 emission caused by the future coal-fired power plant development, the characteristic emission value becomes an important concern. The method used in this study is developed from the IPCC Guidelines for Energy. The conversion unit plays an important role in the calculation method. The result shows that the higher in C content, the lower in its CO2 emission factor. It means that coal classified as high C content or high heating value will produce low carbon dioxide emission factor. The average CO2 emission factor obtained in Indonesian coal is 99,718 kg CO2/TJ with an average value of carbon content 27.2 kg C/GJ, and NCV equal to 19.8 TJ/Gg. Coal rank is categorized as lignite to subbituminous or bituminous.", + "Lower_Bound": "105579", + "Upper_Bound": "107374", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:01:07.514Z", + "last_change_date": "2022-03-14T08:01:07.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7752, + "fields": { + "EF_ID": 124243, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Lignite", + "Parameter_Type": "Measured", + "Description": "Net Calorific Value (NCV) for Indonesian lignite", + "Technology_Practices": "", + "Parameter_Conditions": "Coal quality data", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.8", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Retno Damayanti and Herni Khaerunissa. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian mining journal Vol. 21, No. 1, April 2018: 45-58", + "English_Abstract": "Climate change will become the priority for the air quality management. It focuses more on carbon cioxide emission. Indonesia which has power generation dominated by coal combustion is expected to develop the national CO2 emission factor. Due to the high variation in Indonesia coal rank and its growing magnitude in CO2 emission caused by the future coal-fired power plant development, the characteristic emission value becomes an important concern. The method used in this study is developed from the IPCC Guidelines for Energy. The conversion unit plays an important role in the calculation method. The result shows that the higher in C content, the lower in its CO2 emission factor. It means that coal classified as high C content or high heating value will produce low carbon dioxide emission factor. The average CO2 emission factor obtained in Indonesian coal is 99,718 kg CO2/TJ with an average value of carbon content 27.2 kg C/GJ, and NCV equal to 19.8 TJ/Gg. Coal rank is categorized as lignite to subbituminous or bituminous.", + "Lower_Bound": "14.3", + "Upper_Bound": "15.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:01:07.586Z", + "last_change_date": "2022-03-14T08:01:07.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7753, + "fields": { + "EF_ID": 124244, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CO2 Emission Factor for Indonesian sub-bituminous coal", + "Technology_Practices": "", + "Parameter_Conditions": "Coal quality data", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "Net Calorific Value (NCV)=18.7 TJ/Gg", + "Value": "100575", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Retno Damayanti and Herni Khaerunissa. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian mining journal Vol. 21, No. 1, April 2018: 45-58", + "English_Abstract": "Climate change will become the priority for the air quality management. It focuses more on carbon cioxide emission. Indonesia which has power generation dominated by coal combustion is expected to develop the national CO2 emission factor. Due to the high variation in Indonesia coal rank and its growing magnitude in CO2 emission caused by the future coal-fired power plant development, the characteristic emission value becomes an important concern. The method used in this study is developed from the IPCC Guidelines for Energy. The conversion unit plays an important role in the calculation method. The result shows that the higher in C content, the lower in its CO2 emission factor. It means that coal classified as high C content or high heating value will produce low carbon dioxide emission factor. The average CO2 emission factor obtained in Indonesian coal is 99,718 kg CO2/TJ with an average value of carbon content 27.2 kg C/GJ, and NCV equal to 19.8 TJ/Gg. Coal rank is categorized as lignite to subbituminous or bituminous.", + "Lower_Bound": "100229", + "Upper_Bound": "100921", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:01:07.658Z", + "last_change_date": "2022-03-14T08:01:07.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7754, + "fields": { + "EF_ID": 124245, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Sub-Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Net Calorific Value (NCV) for Indonesian sub-bituminous coal", + "Technology_Practices": "", + "Parameter_Conditions": "Coal quality data", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.7", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Retno Damayanti and Herni Khaerunissa. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian mining journal Vol. 21, No. 1, April 2018: 45-58", + "English_Abstract": "Climate change will become the priority for the air quality management. It focuses more on carbon cioxide emission. Indonesia which has power generation dominated by coal combustion is expected to develop the national CO2 emission factor. Due to the high variation in Indonesia coal rank and its growing magnitude in CO2 emission caused by the future coal-fired power plant development, the characteristic emission value becomes an important concern. The method used in this study is developed from the IPCC Guidelines for Energy. The conversion unit plays an important role in the calculation method. The result shows that the higher in C content, the lower in its CO2 emission factor. It means that coal classified as high C content or high heating value will produce low carbon dioxide emission factor. The average CO2 emission factor obtained in Indonesian coal is 99,718 kg CO2/TJ with an average value of carbon content 27.2 kg C/GJ, and NCV equal to 19.8 TJ/Gg. Coal rank is categorized as lignite to subbituminous or bituminous.", + "Lower_Bound": "18.4", + "Upper_Bound": "18.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:01:07.748Z", + "last_change_date": "2022-03-14T08:01:07.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7755, + "fields": { + "EF_ID": 124246, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "CO2 Emission Factor for Indonesian other bituminous coal", + "Technology_Practices": "", + "Parameter_Conditions": "Coal quality data", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "Net Calorific Value (NCV)=24.1 TJ/Gg", + "Value": "94715", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Retno Damayanti and Herni Khaerunissa. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian mining journal Vol. 21, No. 1, April 2018: 45-58", + "English_Abstract": "Climate change will become the priority for the air quality management. It focuses more on carbon cioxide emission. Indonesia which has power generation dominated by coal combustion is expected to develop the national CO2 emission factor. Due to the high variation in Indonesia coal rank and its growing magnitude in CO2 emission caused by the future coal-fired power plant development, the characteristic emission value becomes an important concern. The method used in this study is developed from the IPCC Guidelines for Energy. The conversion unit plays an important role in the calculation method. The result shows that the higher in C content, the lower in its CO2 emission factor. It means that coal classified as high C content or high heating value will produce low carbon dioxide emission factor. The average CO2 emission factor obtained in Indonesian coal is 99,718 kg CO2/TJ with an average value of carbon content 27.2 kg C/GJ, and NCV equal to 19.8 TJ/Gg. Coal rank is categorized as lignite to subbituminous or bituminous.", + "Lower_Bound": "94461", + "Upper_Bound": "94969", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:01:07.827Z", + "last_change_date": "2022-03-14T08:01:07.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7756, + "fields": { + "EF_ID": 124247, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Other Bituminous Coal", + "Parameter_Type": "Measured", + "Description": "Net Calorific Value (NCV) for Indonesian other bituminous coal", + "Technology_Practices": "", + "Parameter_Conditions": "Coal quality data", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.1", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Retno Damayanti and Herni Khaerunissa. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian mining journal Vol. 21, No. 1, April 2018: 45-58", + "English_Abstract": "Climate change will become the priority for the air quality management. It focuses more on carbon cioxide emission. Indonesia which has power generation dominated by coal combustion is expected to develop the national CO2 emission factor. Due to the high variation in Indonesia coal rank and its growing magnitude in CO2 emission caused by the future coal-fired power plant development, the characteristic emission value becomes an important concern. The method used in this study is developed from the IPCC Guidelines for Energy. The conversion unit plays an important role in the calculation method. The result shows that the higher in C content, the lower in its CO2 emission factor. It means that coal classified as high C content or high heating value will produce low carbon dioxide emission factor. The average CO2 emission factor obtained in Indonesian coal is 99,718 kg CO2/TJ with an average value of carbon content 27.2 kg C/GJ, and NCV equal to 19.8 TJ/Gg. Coal rank is categorized as lignite to subbituminous or bituminous.", + "Lower_Bound": "23.8", + "Upper_Bound": "24.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:01:07.916Z", + "last_change_date": "2022-03-14T08:01:07.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7757, + "fields": { + "EF_ID": 124248, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "CO2 Emission Factor for Indonesian coking coal", + "Technology_Practices": "", + "Parameter_Conditions": "Coal quality data", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "Net Calorific Value (NCV)=28.5 TJ/Gg", + "Value": "95062", + "Unit": "KG/TJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Retno Damayanti and Herni Khaerunissa. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian mining journal Vol. 21, No. 1, April 2018: 45-58", + "English_Abstract": "Climate change will become the priority for the air quality management. It focuses more on carbon cioxide emission. Indonesia which has power generation dominated by coal combustion is expected to develop the national CO2 emission factor. Due to the high variation in Indonesia coal rank and its growing magnitude in CO2 emission caused by the future coal-fired power plant development, the characteristic emission value becomes an important concern. The method used in this study is developed from the IPCC Guidelines for Energy. The conversion unit plays an important role in the calculation method. The result shows that the higher in C content, the lower in its CO2 emission factor. It means that coal classified as high C content or high heating value will produce low carbon dioxide emission factor. The average CO2 emission factor obtained in Indonesian coal is 99,718 kg CO2/TJ with an average value of carbon content 27.2 kg C/GJ, and NCV equal to 19.8 TJ/Gg. Coal rank is categorized as lignite to subbituminous or bituminous.", + "Lower_Bound": "94408", + "Upper_Bound": "95716", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:01:08.003Z", + "last_change_date": "2022-03-14T08:01:08.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7758, + "fields": { + "EF_ID": 124249, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "Net Calorific Value (NCV) for Indonesian coking coal", + "Technology_Practices": "", + "Parameter_Conditions": "Coal quality data", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.5", + "Unit": "TJ/Gg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Retno Damayanti and Herni Khaerunissa. Carbon dioxide emission factor estimation from Indonesian coal. Indonesian mining journal Vol. 21, No. 1, April 2018: 45-58", + "English_Abstract": "Climate change will become the priority for the air quality management. It focuses more on carbon cioxide emission. Indonesia which has power generation dominated by coal combustion is expected to develop the national CO2 emission factor. Due to the high variation in Indonesia coal rank and its growing magnitude in CO2 emission caused by the future coal-fired power plant development, the characteristic emission value becomes an important concern. The method used in this study is developed from the IPCC Guidelines for Energy. The conversion unit plays an important role in the calculation method. The result shows that the higher in C content, the lower in its CO2 emission factor. It means that coal classified as high C content or high heating value will produce low carbon dioxide emission factor. The average CO2 emission factor obtained in Indonesian coal is 99,718 kg CO2/TJ with an average value of carbon content 27.2 kg C/GJ, and NCV equal to 19.8 TJ/Gg. Coal rank is categorized as lignite to subbituminous or bituminous.", + "Lower_Bound": "28.2", + "Upper_Bound": "28.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:01:08.085Z", + "last_change_date": "2022-03-14T08:01:08.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7759, + "fields": { + "EF_ID": 124250, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O EF applicable for cold start EURO 6b passenger cars", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reaction (SCR), lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "10 - 12", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.161Z", + "last_change_date": "2022-03-14T08:01:08.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7760, + "fields": { + "EF_ID": 124251, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O EF applicable for cold start EURO 6b passenger cars at 23 degrees. Pure Hydrotreated vegetable oil (HVO) as fuel.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reaction (SCR), lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "8", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.253Z", + "last_change_date": "2022-03-14T08:01:08.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7761, + "fields": { + "EF_ID": 124252, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O EF applicable for cold start EURO 6b passenger cars at -7 degrees. Pure Hydrotreated vegetable oil (HVO) as fuel.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reaction (SCR), lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "11 - 12", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.328Z", + "last_change_date": "2022-03-14T08:01:08.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7762, + "fields": { + "EF_ID": 124253, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O EF applicable for cold start EURO 6b passenger cars . B7 diesel mixture.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Lean NOx trap (LNT)", + "Other_Properties": "", + "Value": "12", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.445Z", + "last_change_date": "2022-03-14T08:01:08.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7763, + "fields": { + "EF_ID": 124254, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O EF applicable for cold start EURO 6b passenger cars. B7 diesel mixture at 23 degrees.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reaction (SCR)", + "Other_Properties": "", + "Value": "7", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.519Z", + "last_change_date": "2022-03-14T08:01:08.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7764, + "fields": { + "EF_ID": 124255, + "IPCC_Category": "1.A.3.b - Road Transportation, 1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O EF applicable for cold start EURO 6b passenger cars. B7 diesel mixture at -7 degrees.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "EU, countries using EURO standardisation", + "Control_Technologies": "Selective catalytic reaction (SCR)", + "Other_Properties": "", + "Value": "11", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T. and Lonza, L. Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel, 2019, 235: 1427-1435.", + "English_Abstract": "Regulated and unregulated emissions from two Euro 6b diesel passenger cars tested using three different blends of hydrotreated vegetable oil (HVO), fossil diesel and commercial diesel (B7) were investigated at 23 °C and −7 °C using the World harmonized Light-duty vehicle Test Procedure at the Vehicle Emission Laboratory of the European Commission Joint Research Centre Ispra, Italy. The HVO blends used were: Neat HVO (100 vol% HVO), 30 vol% HVO and 7 vol% HVO. One of the vehicles was also tested using the three HVO blends on-road following a RDE compliant route. Overall, the use of different HVO blends and diesel did not lead to fuel related trends on the emissions of the tested vehicles in the laboratory nor on-road. However, HVO-100 resulted in∼4% lower CO2 emissions than the other fuel tested in all the studied conditions. Low ambient temperature caused an increase of the emissions of studied compounds (with the exception of NH3) with all tested blends. The experimental results showed that in many cases the observed outcomes were probably attributable to a combination of combustion effects, after-treatment effects, and their control strategy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In the paper, the range of average N2O emission factor is provided as 8 - 14 mg/km, please see the paper.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.604Z", + "last_change_date": "2022-03-14T08:01:08.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7765, + "fields": { + "EF_ID": 124256, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factors applicable for EURO 6 heavy duty vehicles. Emissions include also the cold start.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Diesel Oxidation Catalyst (DOC), Diesel Particle Filter (DPF), Selective Catalytic Reduction (SCR) systems and ammonia Oxidation Catalyst (AMOX)", + "Other_Properties": "", + "Value": "50 - 70", + "Unit": "mg/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mendoza-Villafuerte, P., Suarez-Bertoa, R., Giechaskiel, B., Riccobono, F., Bulgheroni, C., Astorga, C., and Perujo, A. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Science of The Total Environment 609 (2017): 546-555.", + "English_Abstract": "Euro VI emission standards for heavy-duty vehicles (HDVs) introduced for the first time limits for solid particle number (PN) and NH3 emissions. EU regulation also includes a Portable Emissions Measurement System (PEMS) based test at type approval, followed by in-service conformity (ISC) testing. A comprehensive study on the real-time on-road emissions of NOx, NH3, N2O and PN from a Euro VI HDV equipped with a Diesel Oxidation Catalyst (DOC), a Diesel Particle Filter (DPF), a Selective Catalytic Reduction (SCR) system and an Ammonia Oxidation Catalyst (AMOX) is presented. Our analyses revealed that up to 85% of the NOx emissionsmeasured during the tests performed are not taken into consideration if the boundary conditions for data exclusion set in the current legislation are applied. Moreover, it was found that the highest NOx emissions were measured during urban operation. Analyses show that a large fraction urban of operation is not considered when 20% power threshold as boundary condition is applied. They also show that cold start emissions account for a large fraction of the total NOx emitted. Low emissions of PN (2.8 × 1010 to 6.5 × 1010 #/kWh) and NH3 (1.0 to 2.2 ppm) were obtained during the on-road tests, suggesting effectiveness of the vehicle`s after-treatment (DPF and AMOX). Finally, a comparison between speed-based (as currently defined by Euro VI legislation) and land-use-based (using Geographic Information System (GIS)) calculation of shares of operation was performed. Results suggest that using GIS to categorize the shares of operation could result in different interpretations depending on the criteria adopted for their definition.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.678Z", + "last_change_date": "2022-03-14T08:01:08.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7766, + "fields": { + "EF_ID": 124257, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factors applicable for EURO 6 heavy duty vehicles for urban driving. Emissions include also the cold start.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Diesel Oxidation Catalyst (DOC), Diesel Particle Filter (DPF), Selective Catalytic Reduction (SCR) systems and ammonia Oxidation Catalyst (AMOX)", + "Other_Properties": "", + "Value": "55 - 83", + "Unit": "mg/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mendoza-Villafuerte, P., Suarez-Bertoa, R., Giechaskiel, B., Riccobono, F., Bulgheroni, C., Astorga, C., and Perujo, A. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Science of The Total Environment 609 (2017): 546-555.", + "English_Abstract": "Euro VI emission standards for heavy-duty vehicles (HDVs) introduced for the first time limits for solid particle number (PN) and NH3 emissions. EU regulation also includes a Portable Emissions Measurement System (PEMS) based test at type approval, followed by in-service conformity (ISC) testing. A comprehensive study on the real-time on-road emissions of NOx, NH3, N2O and PN from a Euro VI HDV equipped with a Diesel Oxidation Catalyst (DOC), a Diesel Particle Filter (DPF), a Selective Catalytic Reduction (SCR) system and an Ammonia Oxidation Catalyst (AMOX) is presented. Our analyses revealed that up to 85% of the NOx emissionsmeasured during the tests performed are not taken into consideration if the boundary conditions for data exclusion set in the current legislation are applied. Moreover, it was found that the highest NOx emissions were measured during urban operation. Analyses show that a large fraction urban of operation is not considered when 20% power threshold as boundary condition is applied. They also show that cold start emissions account for a large fraction of the total NOx emitted. Low emissions of PN (2.8 × 1010 to 6.5 × 1010 #/kWh) and NH3 (1.0 to 2.2 ppm) were obtained during the on-road tests, suggesting effectiveness of the vehicle`s after-treatment (DPF and AMOX). Finally, a comparison between speed-based (as currently defined by Euro VI legislation) and land-use-based (using Geographic Information System (GIS)) calculation of shares of operation was performed. Results suggest that using GIS to categorize the shares of operation could result in different interpretations depending on the criteria adopted for their definition.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.764Z", + "last_change_date": "2022-03-14T08:01:08.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7767, + "fields": { + "EF_ID": 124258, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factors applicable for EURO 6 heavy duty vehicles rural driving. Emissions include also the cold start.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Diesel Oxidation Catalyst (DOC), Diesel Particle Filter (DPF), Selective Catalytic Reduction (SCR) systems and ammonia Oxidation Catalyst (AMOX)", + "Other_Properties": "", + "Value": "62 - 84", + "Unit": "mg/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mendoza-Villafuerte, P., Suarez-Bertoa, R., Giechaskiel, B., Riccobono, F., Bulgheroni, C., Astorga, C., and Perujo, A. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Science of The Total Environment 609 (2017): 546-555.", + "English_Abstract": "Euro VI emission standards for heavy-duty vehicles (HDVs) introduced for the first time limits for solid particle number (PN) and NH3 emissions. EU regulation also includes a Portable Emissions Measurement System (PEMS) based test at type approval, followed by in-service conformity (ISC) testing. A comprehensive study on the real-time on-road emissions of NOx, NH3, N2O and PN from a Euro VI HDV equipped with a Diesel Oxidation Catalyst (DOC), a Diesel Particle Filter (DPF), a Selective Catalytic Reduction (SCR) system and an Ammonia Oxidation Catalyst (AMOX) is presented. Our analyses revealed that up to 85% of the NOx emissionsmeasured during the tests performed are not taken into consideration if the boundary conditions for data exclusion set in the current legislation are applied. Moreover, it was found that the highest NOx emissions were measured during urban operation. Analyses show that a large fraction urban of operation is not considered when 20% power threshold as boundary condition is applied. They also show that cold start emissions account for a large fraction of the total NOx emitted. Low emissions of PN (2.8 × 1010 to 6.5 × 1010 #/kWh) and NH3 (1.0 to 2.2 ppm) were obtained during the on-road tests, suggesting effectiveness of the vehicle`s after-treatment (DPF and AMOX). Finally, a comparison between speed-based (as currently defined by Euro VI legislation) and land-use-based (using Geographic Information System (GIS)) calculation of shares of operation was performed. Results suggest that using GIS to categorize the shares of operation could result in different interpretations depending on the criteria adopted for their definition.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.856Z", + "last_change_date": "2022-03-14T08:01:08.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7768, + "fields": { + "EF_ID": 124259, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emission factors applicable for EURO 6 heavy duty vehicles for motorways driving.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Diesel Oxidation Catalyst (DOC), Diesel Particle Filter (DPF), Selective Catalytic Reduction (SCR) systems and ammonia Oxidation Catalyst (AMOX)", + "Other_Properties": "", + "Value": "66 - 85", + "Unit": "mg/kWh", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mendoza-Villafuerte, P., Suarez-Bertoa, R., Giechaskiel, B., Riccobono, F., Bulgheroni, C., Astorga, C., and Perujo, A. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Science of The Total Environment 609 (2017): 546-555.", + "English_Abstract": "Euro VI emission standards for heavy-duty vehicles (HDVs) introduced for the first time limits for solid particle number (PN) and NH3 emissions. EU regulation also includes a Portable Emissions Measurement System (PEMS) based test at type approval, followed by in-service conformity (ISC) testing. A comprehensive study on the real-time on-road emissions of NOx, NH3, N2O and PN from a Euro VI HDV equipped with a Diesel Oxidation Catalyst (DOC), a Diesel Particle Filter (DPF), a Selective Catalytic Reduction (SCR) system and an Ammonia Oxidation Catalyst (AMOX) is presented. Our analyses revealed that up to 85% of the NOx emissionsmeasured during the tests performed are not taken into consideration if the boundary conditions for data exclusion set in the current legislation are applied. Moreover, it was found that the highest NOx emissions were measured during urban operation. Analyses show that a large fraction urban of operation is not considered when 20% power threshold as boundary condition is applied. They also show that cold start emissions account for a large fraction of the total NOx emitted. Low emissions of PN (2.8 × 1010 to 6.5 × 1010 #/kWh) and NH3 (1.0 to 2.2 ppm) were obtained during the on-road tests, suggesting effectiveness of the vehicle`s after-treatment (DPF and AMOX). Finally, a comparison between speed-based (as currently defined by Euro VI legislation) and land-use-based (using Geographic Information System (GIS)) calculation of shares of operation was performed. Results suggest that using GIS to categorize the shares of operation could result in different interpretations depending on the criteria adopted for their definition.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:01:08.965Z", + "last_change_date": "2022-03-14T08:01:08.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7769, + "fields": { + "EF_ID": 124260, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor based on data for Chinese underground mines.", + "Technology_Practices": "", + "Parameter_Conditions": "The value presented is for a mining depth of up to 200 m", + "Regional_Conditions": "Data from Chinese underground coal mines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.27", + "Unit": "m3/tonne of coal", + "Equation": "Equation 4.1.3 on page 4.11 of Chapter 4, Volume 2 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang, K., Zhang, J., Cai, B. & Yu, S. Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty. Applied Energy 250 (2019) 273–282.", + "English_Abstract": "Fugitive methane from underground coal mining is the main source of methane emissions in China. Accurate and updateable methane emission factors for underground coal mining are of great significance for the accounting of methane emissions in China. In this paper, 10,951 underground coal mines are investigated for developing an emission factor matrix for national and provincial scales. For national emission factors, 27 types of emission factors are determined according to the classification of the ownership of the enterprise, gas emission rate, and maximum mining depth. For provincial emission factors, three types of emission factors for 25 provinces are determined based on gas emission rates. Based on these metrics, this paper uses bootstrap and Monte Carlo simulations to determine the uncertainty range of different emission factors at the 95% confidence interval (CI). The results show that emission factors at the national scale ranged from 3.005m3/t to 54.487m3/t, with a 95% CI of 2.735m3/t to 76.082m3/t, and that emission factors at the provincial scale ranged from 0.58m3/t to 56.19m3/t, with a 95% CI of 0.347m3/t to 108.115m3/t. By comparison, the emission factors calculated in this paper are more representative than the default values recommended by the Intergovernmental Panel on Climate Change (IPCC). In addition, these results are more specific and updateable than those in previous studies, which lays a foundation for the future study of fugitive methane emissions from underground coal mines at different scales.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://doi.org/10.1016/j.apenergy.2019.05.024", + "creation_date": "2022-03-14T08:01:09.066Z", + "last_change_date": "2022-03-14T08:01:09.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7770, + "fields": { + "EF_ID": 124261, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor based on data for Chinese underground mines.", + "Technology_Practices": "", + "Parameter_Conditions": "The value presented is for a mining depth of between 200 and 400 m.", + "Regional_Conditions": "Data from Chinese underground coal mines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.30", + "Unit": "m3/tonne of coal", + "Equation": "Equation 4.1.3 on page 4.11 of Chapter 4, Volume 2 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang, K., Zhang, J., Cai, B. & Yu, S. Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty. Applied Energy 250 (2019) 273–282.", + "English_Abstract": "Fugitive methane from underground coal mining is the main source of methane emissions in China. Accurate and updateable methane emission factors for underground coal mining are of great significance for the accounting of methane emissions in China. In this paper, 10,951 underground coal mines are investigated for developing an emission factor matrix for national and provincial scales. For national emission factors, 27 types of emission factors are determined according to the classification of the ownership of the enterprise, gas emission rate, and maximum mining depth. For provincial emission factors, three types of emission factors for 25 provinces are determined based on gas emission rates. Based on these metrics, this paper uses bootstrap and Monte Carlo simulations to determine the uncertainty range of different emission factors at the 95% confidence interval (CI). The results show that emission factors at the national scale ranged from 3.005m3/t to 54.487m3/t, with a 95% CI of 2.735m3/t to 76.082m3/t, and that emission factors at the provincial scale ranged from 0.58m3/t to 56.19m3/t, with a 95% CI of 0.347m3/t to 108.115m3/t. By comparison, the emission factors calculated in this paper are more representative than the default values recommended by the Intergovernmental Panel on Climate Change (IPCC). In addition, these results are more specific and updateable than those in previous studies, which lays a foundation for the future study of fugitive methane emissions from underground coal mines at different scales.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://doi.org/10.1016/j.apenergy.2019.05.025", + "creation_date": "2022-03-14T08:01:09.167Z", + "last_change_date": "2022-03-14T08:01:09.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7771, + "fields": { + "EF_ID": 124262, + "IPCC_Category": "1.B.1.a.i.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor based on data for Chinese underground mines.", + "Technology_Practices": "", + "Parameter_Conditions": "The value presented is for a mining depth of above 400 m.", + "Regional_Conditions": "Data from Chinese underground coal mines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.16", + "Unit": "m3/tonne of coal", + "Equation": "Equation 4.1.3 on page 4.11 of Chapter 4, Volume 2 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang, K., Zhang, J., Cai, B. & Yu, S. Emission factors of fugitive methane from underground coal mines in China: Estimation and uncertainty. Applied Energy 250 (2019) 273–282.", + "English_Abstract": "Fugitive methane from underground coal mining is the main source of methane emissions in China. Accurate and updateable methane emission factors for underground coal mining are of great significance for the accounting of methane emissions in China. In this paper, 10,951 underground coal mines are investigated for developing an emission factor matrix for national and provincial scales. For national emission factors, 27 types of emission factors are determined according to the classification of the ownership of the enterprise, gas emission rate, and maximum mining depth. For provincial emission factors, three types of emission factors for 25 provinces are determined based on gas emission rates. Based on these metrics, this paper uses bootstrap and Monte Carlo simulations to determine the uncertainty range of different emission factors at the 95% confidence interval (CI). The results show that emission factors at the national scale ranged from 3.005m3/t to 54.487m3/t, with a 95% CI of 2.735m3/t to 76.082m3/t, and that emission factors at the provincial scale ranged from 0.58m3/t to 56.19m3/t, with a 95% CI of 0.347m3/t to 108.115m3/t. By comparison, the emission factors calculated in this paper are more representative than the default values recommended by the Intergovernmental Panel on Climate Change (IPCC). In addition, these results are more specific and updateable than those in previous studies, which lays a foundation for the future study of fugitive methane emissions from underground coal mines at different scales.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://doi.org/10.1016/j.apenergy.2019.05.026", + "creation_date": "2022-03-14T08:01:09.283Z", + "last_change_date": "2022-03-14T08:01:09.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7772, + "fields": { + "EF_ID": 124263, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "Methane emissions from gasoline driven Japanese light passenger cars", + "Technology_Practices": "Japanese light passenger vehicle (660 cc or lower)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "3.6", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:09.376Z", + "last_change_date": "2022-03-14T08:01:09.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7773, + "fields": { + "EF_ID": 124264, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "N2O emissions from gasoline driven Japanese light passenger cars", + "Technology_Practices": "Japanese light passenger vehicle (660 cc or lower)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "2.3", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:09.470Z", + "last_change_date": "2022-03-14T08:01:09.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7774, + "fields": { + "EF_ID": 124265, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "Methane emissions from gasoline driven Japanese passenger vehicles", + "Technology_Practices": "Japanese passenger vehicle (>660 cc)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "5.9", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:09.595Z", + "last_change_date": "2022-03-14T08:01:09.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7775, + "fields": { + "EF_ID": 124266, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "N2O emissions from gasoline driven Japanese passenger vehicles", + "Technology_Practices": "Japanese passenger vehicle (>660 cc)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "3.1", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:09.674Z", + "last_change_date": "2022-03-14T08:01:09.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7776, + "fields": { + "EF_ID": 124267, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "Methane emissions from gasoline driven Japanese light cargo trucks", + "Technology_Practices": "Japanese light cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "4.6", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:09.749Z", + "last_change_date": "2022-03-14T08:01:09.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7777, + "fields": { + "EF_ID": 124268, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "N2O emissions from gasoline driven Japanese light cargo trucks", + "Technology_Practices": "Japanese light cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "4.6", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:09.846Z", + "last_change_date": "2022-03-14T08:01:09.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7778, + "fields": { + "EF_ID": 124269, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "Methane emissions from gasoline driven Japanese small cargo trucks", + "Technology_Practices": "Japanese small cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "6.3", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:09.925Z", + "last_change_date": "2022-03-14T08:01:09.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7779, + "fields": { + "EF_ID": 124270, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "N2O emissions from gasoline driven Japanese small cargo trucks", + "Technology_Practices": "Japanese small cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "4.2", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:09.991Z", + "last_change_date": "2022-03-14T08:01:09.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7780, + "fields": { + "EF_ID": 124271, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Methane emissions from diesel driven Japanese passenger vehicles", + "Technology_Practices": "Japanese passenger vehicle (>660 cc)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "14.5", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.081Z", + "last_change_date": "2022-03-14T08:01:10.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7781, + "fields": { + "EF_ID": 124272, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emissions from diesel driven Japanese passenger vehicles", + "Technology_Practices": "Japanese passenger vehicle (>660 cc)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "7.0", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.158Z", + "last_change_date": "2022-03-14T08:01:10.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7782, + "fields": { + "EF_ID": 124273, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Methane emissions from diesel driven Japanese small cargo trucks", + "Technology_Practices": "Japanese small cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "8.2", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.225Z", + "last_change_date": "2022-03-14T08:01:10.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7783, + "fields": { + "EF_ID": 124274, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emissions from diesel driven Japanese small cargo trucks", + "Technology_Practices": "Japanese small cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "12.8", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.315Z", + "last_change_date": "2022-03-14T08:01:10.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7784, + "fields": { + "EF_ID": 124275, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "Methane emissions from diesel driven Japanese regular cargo trucks", + "Technology_Practices": "Japanese regular cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "7.9", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.391Z", + "last_change_date": "2022-03-14T08:01:10.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7785, + "fields": { + "EF_ID": 124276, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "N2O emissions from diesel driven Japanese regular cargo trucks", + "Technology_Practices": "Japanese regular cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "44.4", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for the years 1990-2017 is also available", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.466Z", + "last_change_date": "2022-03-14T08:01:10.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7786, + "fields": { + "EF_ID": 124277, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Methane emissions from natural gas driven Japanese passenger vehicles", + "Technology_Practices": "Japanese passenger vehicle (>660 cc)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "13", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.558Z", + "last_change_date": "2022-03-14T08:01:10.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7787, + "fields": { + "EF_ID": 124278, + "IPCC_Category": "1.A.3.b.i - Cars", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emissions from natural gas driven Japanese passenger vehicles", + "Technology_Practices": "Japanese passenger vehicle (>660 cc)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "To derive the EF, the N2O EF of natural gas driven small cargo truck is used considering the standard of vehicle type. Please see the NIR and the background document for more detail.", + "Value": "0.2", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.641Z", + "last_change_date": "2022-03-14T08:01:10.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7788, + "fields": { + "EF_ID": 124279, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Methane emissions from natural gas driven Japanese buses", + "Technology_Practices": "Japanese Bus", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "50", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.711Z", + "last_change_date": "2022-03-14T08:01:10.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7789, + "fields": { + "EF_ID": 124280, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emissions from natural gas driven Japanese buses", + "Technology_Practices": "Japanese Bus", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The EF was established by correcting the N2O EF of regular cargo truck by the equivalent inertial weight ratio considering vehicle weight. Please see the NIR and background document for more detail.", + "Value": "38.4", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.801Z", + "last_change_date": "2022-03-14T08:01:10.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7790, + "fields": { + "EF_ID": 124281, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "METHANE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "Methane emissions from natural gas driven Japanese regular cargo trucks", + "Technology_Practices": "Japanese regular cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The emission factors are established on the basis of the raw emission factors data provided by Japan Automobile Manufacturers Association (JAMA). The raw emission factors are arranged as combined mode emission factors by car registration year. They were calculated using “combined driving mode” = “hot start driving mode” ×0.75 + “cold start driving mode” ×0.25. The emission factors are estimated by averaging the arranged emission factors of JAMA weighted by the number of vehicles of each car registration year of each car type.", + "Value": "93", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.891Z", + "last_change_date": "2022-03-14T08:01:10.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7791, + "fields": { + "EF_ID": 124282, + "IPCC_Category": "1.A.3.b.iii - Heavy-duty trucks and buses", + "Gases": "NITROUS OXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "N2O emissions from natural gas driven Japanese cargo trucks", + "Technology_Practices": "Japanese cargo trucks", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "The N2O emission factors for natural gas trucks are established from actual measurement data. The emission factors are developed as weighted averages calculated from emission factors of each class of running speed based on actual measurements taken in Japan and the proportion of distance traveled for each class of running speed reported in the Road Transport Census (MLIT).", + "Value": "12.8", + "Unit": "mg/km", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhuse Gas Inventory Report of Japan, Ministry of the Environment, Government of Japan, 2019 (English); Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, GHGs Estimation Methods Committee Report Part 1, August 2006. (Only in Japanese)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.env.go.jp/earth/ondanka/santei_k/18_01/index.html", + "creation_date": "2022-03-14T08:01:10.961Z", + "last_change_date": "2022-03-14T08:01:10.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7792, + "fields": { + "EF_ID": 124617, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil and gas operations - Well drilling (flaring and venting)", + "Technology_Practices": "Well Drilling", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000033", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.045Z", + "last_change_date": "2022-03-14T08:01:11.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7793, + "fields": { + "EF_ID": 124618, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil and gas operations - Well drilling (flaring and venting)", + "Technology_Practices": "Well Drilling", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0001", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.125Z", + "last_change_date": "2022-03-14T08:01:11.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7794, + "fields": { + "EF_ID": 124619, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil and gas operations - Well drilling (flaring and venting)", + "Technology_Practices": "Well Drilling", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000087", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.214Z", + "last_change_date": "2022-03-14T08:01:11.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7795, + "fields": { + "EF_ID": 124620, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil and gas operations - Well testing (flaring and venting)", + "Technology_Practices": "Well Testing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000051", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.291Z", + "last_change_date": "2022-03-14T08:01:11.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7796, + "fields": { + "EF_ID": 124621, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil and gas operations - Well testing (flaring and venting)", + "Technology_Practices": "Well Testing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.381Z", + "last_change_date": "2022-03-14T08:01:11.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7797, + "fields": { + "EF_ID": 124622, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil and gas operations - Well testing (flaring and venting)", + "Technology_Practices": "Well Testing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000012", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.458Z", + "last_change_date": "2022-03-14T08:01:11.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7798, + "fields": { + "EF_ID": 124623, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil and gas operations - Well testing (flaring and venting)", + "Technology_Practices": "Well Testing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000068", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.557Z", + "last_change_date": "2022-03-14T08:01:11.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7799, + "fields": { + "EF_ID": 124624, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil and gas operations - Well servicing (flaring and venting)", + "Technology_Practices": "Well Servicing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00011", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.633Z", + "last_change_date": "2022-03-14T08:01:11.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7800, + "fields": { + "EF_ID": 124625, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil and gas operations - Well servicing (flaring and venting)", + "Technology_Practices": "Well Servicing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000019", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.724Z", + "last_change_date": "2022-03-14T08:01:11.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7801, + "fields": { + "EF_ID": 124626, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil and gas operations - Well servicing (flaring and venting)", + "Technology_Practices": "Well Servicing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000017", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.800Z", + "last_change_date": "2022-03-14T08:01:11.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7802, + "fields": { + "EF_ID": 124627, + "IPCC_Category": "1.B.2.b.iii.2 - Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas production (fugitives)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00038-0.0023", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.892Z", + "last_change_date": "2022-03-14T08:01:11.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7803, + "fields": { + "EF_ID": 124628, + "IPCC_Category": "1.B.2.b.iii.2 - Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas production (fugitives)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000014-0.000082", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:11.966Z", + "last_change_date": "2022-03-14T08:01:11.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7804, + "fields": { + "EF_ID": 124629, + "IPCC_Category": "1.B.2.b.iii.2 - Production", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas production (fugitives)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000091-0.00055", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.060Z", + "last_change_date": "2022-03-14T08:01:12.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7805, + "fields": { + "EF_ID": 124630, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas production (flaring)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000076", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.133Z", + "last_change_date": "2022-03-14T08:01:12.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7806, + "fields": { + "EF_ID": 124631, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas production (flaring)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0012", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.227Z", + "last_change_date": "2022-03-14T08:01:12.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7807, + "fields": { + "EF_ID": 124632, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas production (flaring)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000062", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.316Z", + "last_change_date": "2022-03-14T08:01:12.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7808, + "fields": { + "EF_ID": 124633, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas production (flaring)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000021", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.413Z", + "last_change_date": "2022-03-14T08:01:12.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7809, + "fields": { + "EF_ID": 124634, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00048-0.000103", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.491Z", + "last_change_date": "2022-03-14T08:01:12.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7810, + "fields": { + "EF_ID": 124635, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00015-0.00032", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.614Z", + "last_change_date": "2022-03-14T08:01:12.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7811, + "fields": { + "EF_ID": 124636, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00022-0.00047", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.691Z", + "last_change_date": "2022-03-14T08:01:12.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7812, + "fields": { + "EF_ID": 124637, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, flaring)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000012", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.773Z", + "last_change_date": "2022-03-14T08:01:12.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7813, + "fields": { + "EF_ID": 124638, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, flaring)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0018", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.849Z", + "last_change_date": "2022-03-14T08:01:12.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7814, + "fields": { + "EF_ID": 124639, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, flaring)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000096", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:12.941Z", + "last_change_date": "2022-03-14T08:01:12.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7815, + "fields": { + "EF_ID": 124640, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, flaring)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000025", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.016Z", + "last_change_date": "2022-03-14T08:01:13.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7816, + "fields": { + "EF_ID": 124641, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000097", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.126Z", + "last_change_date": "2022-03-14T08:01:13.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7817, + "fields": { + "EF_ID": 124642, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "Sour Gas Plants", + "Other_Properties": "", + "Value": "0.0000079", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.208Z", + "last_change_date": "2022-03-14T08:01:13.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7818, + "fields": { + "EF_ID": 124643, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "Sour Gas Plants", + "Other_Properties": "", + "Value": "0.000068", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.293Z", + "last_change_date": "2022-03-14T08:01:13.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7819, + "fields": { + "EF_ID": 124644, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, flaring)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000024", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.366Z", + "last_change_date": "2022-03-14T08:01:13.366Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7820, + "fields": { + "EF_ID": 124645, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, flaring)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0036", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.452Z", + "last_change_date": "2022-03-14T08:01:13.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7821, + "fields": { + "EF_ID": 124646, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, flaring)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000019", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.529Z", + "last_change_date": "2022-03-14T08:01:13.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7822, + "fields": { + "EF_ID": 124647, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, flaring)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000054", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.620Z", + "last_change_date": "2022-03-14T08:01:13.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7823, + "fields": { + "EF_ID": 124648, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, raw CO2 venting)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Raw CO2 Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.063", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.708Z", + "last_change_date": "2022-03-14T08:01:13.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7824, + "fields": { + "EF_ID": 124649, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, fugitives)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000011", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.804Z", + "last_change_date": "2022-03-14T08:01:13.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7825, + "fields": { + "EF_ID": 124650, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, fugitives)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000016", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.891Z", + "last_change_date": "2022-03-14T08:01:13.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7826, + "fields": { + "EF_ID": 124651, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, fugitives)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000027", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:13.981Z", + "last_change_date": "2022-03-14T08:01:13.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7827, + "fields": { + "EF_ID": 124652, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, flaring)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000072", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.083Z", + "last_change_date": "2022-03-14T08:01:14.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7828, + "fields": { + "EF_ID": 124653, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, flaring)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00011", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.175Z", + "last_change_date": "2022-03-14T08:01:14.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7829, + "fields": { + "EF_ID": 124654, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, flaring)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000059", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.233Z", + "last_change_date": "2022-03-14T08:01:14.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7830, + "fields": { + "EF_ID": 124655, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, flaring)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000012", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.317Z", + "last_change_date": "2022-03-14T08:01:14.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7831, + "fields": { + "EF_ID": 124656, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for fugitives)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "Default Weighted Total", + "Value": "0.00015-0.00103", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.391Z", + "last_change_date": "2022-03-14T08:01:14.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7832, + "fields": { + "EF_ID": 124657, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (Deafult weighted total for fugitives)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "Default Weighted Total", + "Value": "0.000012-0.00032", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.477Z", + "last_change_date": "2022-03-14T08:01:14.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7833, + "fields": { + "EF_ID": 124658, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for fugitives)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "Default Weighted Total", + "Value": "0.00014-0.00047", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.550Z", + "last_change_date": "2022-03-14T08:01:14.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7834, + "fields": { + "EF_ID": 124659, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for flaring)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "Default Weighted Total", + "Value": "0.000002", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.669Z", + "last_change_date": "2022-03-14T08:01:14.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7835, + "fields": { + "EF_ID": 124660, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for flaring)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "Default Weighted Total", + "Value": "0.003", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.733Z", + "last_change_date": "2022-03-14T08:01:14.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7836, + "fields": { + "EF_ID": 124661, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for flaring)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "Default Weighted Total", + "Value": "0.0000016", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "25%", + "Upper_Bound": "25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.812Z", + "last_change_date": "2022-03-14T08:01:14.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7837, + "fields": { + "EF_ID": 124662, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for flaring)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "Default Weighted Total", + "Value": "0.000000033", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.883Z", + "last_change_date": "2022-03-14T08:01:14.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7838, + "fields": { + "EF_ID": 124663, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for Raw CO2 venting)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Raw CO2 Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "Default Weighted Total", + "Value": "0.04", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:14.963Z", + "last_change_date": "2022-03-14T08:01:14.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7839, + "fields": { + "EF_ID": 124664, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, fugitives)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000066-0.00048", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.050Z", + "last_change_date": "2022-03-14T08:01:15.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7840, + "fields": { + "EF_ID": 124665, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, fugitives)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000088", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.139Z", + "last_change_date": "2022-03-14T08:01:15.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7841, + "fields": { + "EF_ID": 124666, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, fugitives)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000007", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.225Z", + "last_change_date": "2022-03-14T08:01:15.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7842, + "fields": { + "EF_ID": 124667, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, venting)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000044-0.00032", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.324Z", + "last_change_date": "2022-03-14T08:01:15.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7843, + "fields": { + "EF_ID": 124668, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, venting)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000031", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.400Z", + "last_change_date": "2022-03-14T08:01:15.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7844, + "fields": { + "EF_ID": 124669, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, venting)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000046", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.509Z", + "last_change_date": "2022-03-14T08:01:15.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7845, + "fields": { + "EF_ID": 124670, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (storage)", + "Technology_Practices": "Gas Transmission & Storage, Storage", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000025", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.588Z", + "last_change_date": "2022-03-14T08:01:15.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7846, + "fields": { + "EF_ID": 124671, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (storage)", + "Technology_Practices": "Gas Transmission & Storage, Storage", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000011", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.701Z", + "last_change_date": "2022-03-14T08:01:15.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7847, + "fields": { + "EF_ID": 124672, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (storage)", + "Technology_Practices": "Gas Transmission & Storage, Storage", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000036", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.779Z", + "last_change_date": "2022-03-14T08:01:15.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7848, + "fields": { + "EF_ID": 124673, + "IPCC_Category": "1.B.2.b.iii.5 - Distribution", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas distribution", + "Technology_Practices": "Gas Distribution", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0011", + "Unit": "Gg per 10^6 m^3 of utility sales", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.885Z", + "last_change_date": "2022-03-14T08:01:15.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7849, + "fields": { + "EF_ID": 124674, + "IPCC_Category": "1.B.2.b.iii.5 - Distribution", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas distribution", + "Technology_Practices": "Gas Distribution", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000051", + "Unit": "Gg per 10^6 m^3 of utility sales", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:15.963Z", + "last_change_date": "2022-03-14T08:01:15.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7850, + "fields": { + "EF_ID": 124675, + "IPCC_Category": "1.B.2.b.iii.5 - Distribution", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas distribution", + "Technology_Practices": "Gas Distribution", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000016", + "Unit": "Gg per 10^6 m^3 of utility sales", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.061Z", + "last_change_date": "2022-03-14T08:01:16.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7851, + "fields": { + "EF_ID": 124676, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Natural gas liquids transport (condensate)", + "Technology_Practices": "Natural Gas Liquids Transport, Condensate", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00011", + "Unit": "Gg per 10^3 m^3 Condensate and Pentanes Plus", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.138Z", + "last_change_date": "2022-03-14T08:01:16.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7852, + "fields": { + "EF_ID": 124677, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Natural gas liquids transport (condensate)", + "Technology_Practices": "Natural Gas Liquids Transport, Condensate", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000072", + "Unit": "Gg per 10^3 m^3 Condensate and Pentanes Plus", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.238Z", + "last_change_date": "2022-03-14T08:01:16.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7853, + "fields": { + "EF_ID": 124678, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Natural gas liquids transport (condensate)", + "Technology_Practices": "Natural Gas Liquids Transport, Condensate", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0011", + "Unit": "Gg per 10^3 m^3 Condensate and Pentanes Plus", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.313Z", + "last_change_date": "2022-03-14T08:01:16.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7854, + "fields": { + "EF_ID": 124679, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Natural gas liquids transport (LPG)", + "Technology_Practices": "Natural Gas Liquids Transport, Liquefied Petroleum Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00043", + "Unit": "Gg per 10^3 m^3 LPG", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.413Z", + "last_change_date": "2022-03-14T08:01:16.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7855, + "fields": { + "EF_ID": 124680, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Natural gas liquids transport (LPG)", + "Technology_Practices": "Natural Gas Liquids Transport, Liquefied Petroleum Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000000022", + "Unit": "Gg per 10^3 m^3 LPG", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.488Z", + "last_change_date": "2022-03-14T08:01:16.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7856, + "fields": { + "EF_ID": 124681, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives onshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Onshore)", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000015-0.0036", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.589Z", + "last_change_date": "2022-03-14T08:01:16.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7857, + "fields": { + "EF_ID": 124682, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives onshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Onshore)", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000011-0.00026", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.671Z", + "last_change_date": "2022-03-14T08:01:16.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7858, + "fields": { + "EF_ID": 124683, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives onshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Onshore)", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000018-0.0045", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.773Z", + "last_change_date": "2022-03-14T08:01:16.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7859, + "fields": { + "EF_ID": 124684, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives offshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Offshore)", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000059", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.863Z", + "last_change_date": "2022-03-14T08:01:16.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7860, + "fields": { + "EF_ID": 124685, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives offshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Offshore)", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000043", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:16.959Z", + "last_change_date": "2022-03-14T08:01:16.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7861, + "fields": { + "EF_ID": 124686, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives offshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Offshore)", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000074", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.046Z", + "last_change_date": "2022-03-14T08:01:17.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7862, + "fields": { + "EF_ID": 124687, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (conventional oil, venting)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00072", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.143Z", + "last_change_date": "2022-03-14T08:01:17.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7863, + "fields": { + "EF_ID": 124688, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, venting)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000095", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.221Z", + "last_change_date": "2022-03-14T08:01:17.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7864, + "fields": { + "EF_ID": 124689, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (conventional oil, venting)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00043", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.344Z", + "last_change_date": "2022-03-14T08:01:17.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7865, + "fields": { + "EF_ID": 124690, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (conventional oil, flaring)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000025", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.421Z", + "last_change_date": "2022-03-14T08:01:17.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7866, + "fields": { + "EF_ID": 124691, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, flaring)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.041", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.528Z", + "last_change_date": "2022-03-14T08:01:17.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7867, + "fields": { + "EF_ID": 124692, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (conventional oil, flaring)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000021", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.604Z", + "last_change_date": "2022-03-14T08:01:17.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7868, + "fields": { + "EF_ID": 124693, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, flaring)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000064", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.704Z", + "last_change_date": "2022-03-14T08:01:17.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7869, + "fields": { + "EF_ID": 124694, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, fugitives)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0079", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.780Z", + "last_change_date": "2022-03-14T08:01:17.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7870, + "fields": { + "EF_ID": 124695, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, fugitives)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00054", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.880Z", + "last_change_date": "2022-03-14T08:01:17.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7871, + "fields": { + "EF_ID": 124696, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, fugitives)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0029", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:17.955Z", + "last_change_date": "2022-03-14T08:01:17.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7872, + "fields": { + "EF_ID": 124697, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, venting)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.017", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.048Z", + "last_change_date": "2022-03-14T08:01:18.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7873, + "fields": { + "EF_ID": 124698, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, venting)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0053", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.130Z", + "last_change_date": "2022-03-14T08:01:18.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7874, + "fields": { + "EF_ID": 124699, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, venting)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0027", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.224Z", + "last_change_date": "2022-03-14T08:01:18.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7875, + "fields": { + "EF_ID": 124700, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, flaring)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00014", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.296Z", + "last_change_date": "2022-03-14T08:01:18.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7876, + "fields": { + "EF_ID": 124701, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, flaring)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.022", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.391Z", + "last_change_date": "2022-03-14T08:01:18.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7877, + "fields": { + "EF_ID": 124702, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, flaring)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000011", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.471Z", + "last_change_date": "2022-03-14T08:01:18.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7878, + "fields": { + "EF_ID": 124703, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, flaring)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000046", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.569Z", + "last_change_date": "2022-03-14T08:01:18.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7879, + "fields": { + "EF_ID": 124704, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, fugitives)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00018", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.655Z", + "last_change_date": "2022-03-14T08:01:18.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7880, + "fields": { + "EF_ID": 124705, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, fugitives)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000029", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.752Z", + "last_change_date": "2022-03-14T08:01:18.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7881, + "fields": { + "EF_ID": 124706, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, fugitives)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00023", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.846Z", + "last_change_date": "2022-03-14T08:01:18.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7882, + "fields": { + "EF_ID": 124707, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, venting)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0035", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:18.946Z", + "last_change_date": "2022-03-14T08:01:18.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7883, + "fields": { + "EF_ID": 124708, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, venting)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00022", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.030Z", + "last_change_date": "2022-03-14T08:01:19.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7884, + "fields": { + "EF_ID": 124709, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, venting)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00087", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.138Z", + "last_change_date": "2022-03-14T08:01:19.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7885, + "fields": { + "EF_ID": 124710, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, flaring)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000016", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.213Z", + "last_change_date": "2022-03-14T08:01:19.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7886, + "fields": { + "EF_ID": 124711, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, flaring)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.027", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.305Z", + "last_change_date": "2022-03-14T08:01:19.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7887, + "fields": { + "EF_ID": 124712, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, flaring)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000013", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.380Z", + "last_change_date": "2022-03-14T08:01:19.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7888, + "fields": { + "EF_ID": 124713, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, flaring)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000024", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.498Z", + "last_change_date": "2022-03-14T08:01:19.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7889, + "fields": { + "EF_ID": 124714, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (synthetic crude from oilsands)", + "Technology_Practices": "Oil Production, Synthetic Crude (from Oilsands)", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0023", + "Unit": "Gg per 10^3 m^3 synthetic crude production from oilsands", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.580Z", + "last_change_date": "2022-03-14T08:01:19.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7890, + "fields": { + "EF_ID": 124715, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (synthetic crude from oilsands)", + "Technology_Practices": "Oil Production, Synthetic Crude (from Oilsands)", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0009", + "Unit": "Gg per 10^3 m^3 synthetic crude production from oilsands", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.674Z", + "last_change_date": "2022-03-14T08:01:19.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7891, + "fields": { + "EF_ID": 124716, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for fugitives)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0022", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.758Z", + "last_change_date": "2022-03-14T08:01:19.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7892, + "fields": { + "EF_ID": 124717, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for fugitives)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00028", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.849Z", + "last_change_date": "2022-03-14T08:01:19.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7893, + "fields": { + "EF_ID": 124718, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for fugitives)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0031", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:19.925Z", + "last_change_date": "2022-03-14T08:01:19.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7894, + "fields": { + "EF_ID": 124719, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for venting)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0087", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.017Z", + "last_change_date": "2022-03-14T08:01:20.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7895, + "fields": { + "EF_ID": 124720, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for venting)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0018", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.100Z", + "last_change_date": "2022-03-14T08:01:20.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7896, + "fields": { + "EF_ID": 124721, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for venting)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0016", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.194Z", + "last_change_date": "2022-03-14T08:01:20.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7897, + "fields": { + "EF_ID": 124722, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for flaring)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000021", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.283Z", + "last_change_date": "2022-03-14T08:01:20.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7898, + "fields": { + "EF_ID": 124723, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxideemission factor for fugitive emissions from oil operations - Oil production (Default weighted total for flaring)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.034", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.379Z", + "last_change_date": "2022-03-14T08:01:20.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7899, + "fields": { + "EF_ID": 124724, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for flaring)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000017", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.458Z", + "last_change_date": "2022-03-14T08:01:20.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7900, + "fields": { + "EF_ID": 124725, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for flaring)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000054", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.571Z", + "last_change_date": "2022-03-14T08:01:20.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7901, + "fields": { + "EF_ID": 124726, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil transport (pipelines)", + "Technology_Practices": "Oil Transport, Pipelines", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000054", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.650Z", + "last_change_date": "2022-03-14T08:01:20.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7902, + "fields": { + "EF_ID": 124727, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil transport (pipelines)", + "Technology_Practices": "Oil Transport, Pipelines", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000049", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.748Z", + "last_change_date": "2022-03-14T08:01:20.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7903, + "fields": { + "EF_ID": 124728, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil transport (pipelines)", + "Technology_Practices": "Oil Transport, Pipelines", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000054", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.825Z", + "last_change_date": "2022-03-14T08:01:20.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7904, + "fields": { + "EF_ID": 124729, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil transport (tanker trucks and rail cars, venting)", + "Technology_Practices": "Oil Transport, Tanker Trucks and Rail Cars", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000025", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:20.923Z", + "last_change_date": "2022-03-14T08:01:20.923Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7905, + "fields": { + "EF_ID": 124730, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil transport (tanker trucks and rail cars, venting)", + "Technology_Practices": "Oil Transport, Tanker Trucks and Rail Cars", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000023", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.000Z", + "last_change_date": "2022-03-14T08:01:21.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7906, + "fields": { + "EF_ID": 124731, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil transport (tanker trucks and rail cars, venting)", + "Technology_Practices": "Oil Transport, Tanker Trucks and Rail Cars", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00025", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.125Z", + "last_change_date": "2022-03-14T08:01:21.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7907, + "fields": { + "EF_ID": 124732, + "IPCC_Category": "1.B.2.a.iii.4 - Refining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil refining", + "Technology_Practices": "Oil Refining", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000026-0.000041", + "Unit": "Gg per 10^3 m^3 oil refined", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.208Z", + "last_change_date": "2022-03-14T08:01:21.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7908, + "fields": { + "EF_ID": 124733, + "IPCC_Category": "1.B.2.a.iii.4 - Refining", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil refining", + "Technology_Practices": "Oil Refining", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0013", + "Unit": "Gg per 10^3 m^3 oil refined", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.308Z", + "last_change_date": "2022-03-14T08:01:21.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7909, + "fields": { + "EF_ID": 124734, + "IPCC_Category": "1.B.2.a.iii.5 - Distribution of oil products", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Refined product distribution (gasoline)", + "Technology_Practices": "Refined Product Destribution, Gasoline", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0022", + "Unit": "Gg per 10^3 m^3 product distributed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.4", + "Technical_Reference": "American Petroleum Institute. 2004. Compendium of Greenhouse Gas Emissions Estimation Methodologies for the Oil and Gas Industry. Washington, DC; Canadian Association of Petroleum Producers (1999). CH4 and VOC Emissions From The Canadian Upstream Oil and Gas Industry. Volumes 1 to 4. Calgary, AB; Canadian Association of Petroleum Producers (2004). A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry. Volumes 1 to 5. Calgary, AB; Gas Research Institute and US Environmental Protection Agency (1996). Methane Emissions from the Natural gas Industry. Volumes 1 to 15. Chicago, IL; US EPA (1999). Methane Emissions from the U.S. Petroleum Industry. EPA Report No. EPA-600/R-99-010, p. 158, prepared by Radian International LLC for United States Environmental Protection Agency, Office of Research and Development.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.383Z", + "last_change_date": "2022-03-14T08:01:21.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7910, + "fields": { + "EF_ID": 124735, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil and gas operations - Well drilling (flaring and venting)", + "Technology_Practices": "Well Drilling", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000033-0.00056", + "Unit": "Gg per well drilled", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.509Z", + "last_change_date": "2022-03-14T08:01:21.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7911, + "fields": { + "EF_ID": 124736, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil and gas operations - Well drilling (flaring and venting)", + "Technology_Practices": "Well Drilling", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0001-0.0017", + "Unit": "Gg per well drilled", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.583Z", + "last_change_date": "2022-03-14T08:01:21.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7912, + "fields": { + "EF_ID": 124737, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil and gas operations - Well drilling (flaring and venting)", + "Technology_Practices": "Well Drilling", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000087-0.000015", + "Unit": "Gg per well drilled", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.663Z", + "last_change_date": "2022-03-14T08:01:21.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7913, + "fields": { + "EF_ID": 124738, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil and gas operations - Well testing (flaring and venting)", + "Technology_Practices": "Well Testing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000051-0.00085", + "Unit": "Gg per well drilled", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.762Z", + "last_change_date": "2022-03-14T08:01:21.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7914, + "fields": { + "EF_ID": 124739, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil and gas operations - Well testing (flaring and venting)", + "Technology_Practices": "Well Testing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009-0.15", + "Unit": "Gg per well drilled", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.833Z", + "last_change_date": "2022-03-14T08:01:21.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7915, + "fields": { + "EF_ID": 124740, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil and gas operations - Well testing (flaring and venting)", + "Technology_Practices": "Well Testing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000012-0.0002", + "Unit": "Gg per well drilled", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.897Z", + "last_change_date": "2022-03-14T08:01:21.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7916, + "fields": { + "EF_ID": 124741, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil and gas operations - Well testing (flaring and venting)", + "Technology_Practices": "Well Testing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000068-0.0000011", + "Unit": "Gg per well drilled", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:21.988Z", + "last_change_date": "2022-03-14T08:01:21.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7917, + "fields": { + "EF_ID": 124742, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil and gas operations - Well servicing (flaring and venting)", + "Technology_Practices": "Well Servicing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00011-0.0018", + "Unit": "Gg/yr per producing or capable well", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.066Z", + "last_change_date": "2022-03-14T08:01:22.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7918, + "fields": { + "EF_ID": 124743, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil and gas operations - Well servicing (flaring and venting)", + "Technology_Practices": "Well Servicing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000019-0.00032", + "Unit": "Gg/yr per producing or capable well", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.130Z", + "last_change_date": "2022-03-14T08:01:22.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7919, + "fields": { + "EF_ID": 124744, + "IPCC_Category": "1.B.2.a.ii - Flaring, 1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil and gas operations - Well servicing (flaring and venting)", + "Technology_Practices": "Well Servicing", + "Parameter_Conditions": "Flaring and venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000017-0.00028", + "Unit": "Gg/yr per producing or capable well", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.223Z", + "last_change_date": "2022-03-14T08:01:22.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7920, + "fields": { + "EF_ID": 124745, + "IPCC_Category": "1.B.2.b.iii.2 - Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas production (fugitives)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00038-0.024", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.300Z", + "last_change_date": "2022-03-14T08:01:22.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7921, + "fields": { + "EF_ID": 124746, + "IPCC_Category": "1.B.2.b.iii.2 - Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas production (fugitives)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000014-0.00018", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.366Z", + "last_change_date": "2022-03-14T08:01:22.366Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7922, + "fields": { + "EF_ID": 124747, + "IPCC_Category": "1.B.2.b.iii.2 - Production", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas production (fugitives)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000091-0.0012", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.457Z", + "last_change_date": "2022-03-14T08:01:22.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7923, + "fields": { + "EF_ID": 124748, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas production (flaring)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000076-0.000001", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.533Z", + "last_change_date": "2022-03-14T08:01:22.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7924, + "fields": { + "EF_ID": 124749, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas production (flaring)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0012-0.0016", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.599Z", + "last_change_date": "2022-03-14T08:01:22.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7925, + "fields": { + "EF_ID": 124750, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas production (flaring)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000062-0.00000085", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.684Z", + "last_change_date": "2022-03-14T08:01:22.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7926, + "fields": { + "EF_ID": 124751, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas production (flaring)", + "Technology_Practices": "Gas production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000021-0.000000029", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.758Z", + "last_change_date": "2022-03-14T08:01:22.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7927, + "fields": { + "EF_ID": 124752, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00048-0.0011", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.825Z", + "last_change_date": "2022-03-14T08:01:22.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7928, + "fields": { + "EF_ID": 124753, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00015-0.00035", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:22.910Z", + "last_change_date": "2022-03-14T08:01:22.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7929, + "fields": { + "EF_ID": 124754, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00022-0.00051", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.000Z", + "last_change_date": "2022-03-14T08:01:23.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7930, + "fields": { + "EF_ID": 124755, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, flaring)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000012-0.0000016", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.075Z", + "last_change_date": "2022-03-14T08:01:23.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7931, + "fields": { + "EF_ID": 124756, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, flaring)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0018-0.0025", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.170Z", + "last_change_date": "2022-03-14T08:01:23.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7932, + "fields": { + "EF_ID": 124757, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, flaring)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000096-0.0000013", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.258Z", + "last_change_date": "2022-03-14T08:01:23.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7933, + "fields": { + "EF_ID": 124758, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (sweet gas plants, flaring)", + "Technology_Practices": "Gas processing, Sweet Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000025-0.000000034", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.333Z", + "last_change_date": "2022-03-14T08:01:23.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7934, + "fields": { + "EF_ID": 124759, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000097-0.00022", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.422Z", + "last_change_date": "2022-03-14T08:01:23.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7935, + "fields": { + "EF_ID": 124760, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000079-0.000018", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.500Z", + "last_change_date": "2022-03-14T08:01:23.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7936, + "fields": { + "EF_ID": 124761, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, fugitives)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000068-0.00016", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.566Z", + "last_change_date": "2022-03-14T08:01:23.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7937, + "fields": { + "EF_ID": 124762, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, flaring)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000024-0.0000033", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.657Z", + "last_change_date": "2022-03-14T08:01:23.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7938, + "fields": { + "EF_ID": 124763, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, flaring)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0036-0.0049", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.733Z", + "last_change_date": "2022-03-14T08:01:23.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7939, + "fields": { + "EF_ID": 124764, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, flaring)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000019-0.0000026", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.800Z", + "last_change_date": "2022-03-14T08:01:23.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7940, + "fields": { + "EF_ID": 124765, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, flaring)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000054-0.000000074", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.891Z", + "last_change_date": "2022-03-14T08:01:23.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7941, + "fields": { + "EF_ID": 124766, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (sour gas plants, raw CO2 venting)", + "Technology_Practices": "Gas processing, Sour Gas Plants", + "Parameter_Conditions": "Raw CO2 Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.063-0.15", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:23.966Z", + "last_change_date": "2022-03-14T08:01:23.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7942, + "fields": { + "EF_ID": 124767, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, fugitives)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000011-0.000025", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.033Z", + "last_change_date": "2022-03-14T08:01:24.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7943, + "fields": { + "EF_ID": 124768, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, fugitives)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000016-0.0000037", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.143Z", + "last_change_date": "2022-03-14T08:01:24.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7944, + "fields": { + "EF_ID": 124769, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, fugitives)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000027-0.0000062", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.217Z", + "last_change_date": "2022-03-14T08:01:24.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7945, + "fields": { + "EF_ID": 124770, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, flaring)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000072-0.000000099", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.283Z", + "last_change_date": "2022-03-14T08:01:24.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7946, + "fields": { + "EF_ID": 124771, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, flaring)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00011-0.00015", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.369Z", + "last_change_date": "2022-03-14T08:01:24.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7947, + "fields": { + "EF_ID": 124772, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, flaring)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000059-0.000000081", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.441Z", + "last_change_date": "2022-03-14T08:01:24.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7948, + "fields": { + "EF_ID": 124773, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (deep-cut extraction plants, flaring)", + "Technology_Practices": "Gas processing, Deep-cut Extraction Plants (Straddle Plants)", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000012-0.000000081", + "Unit": "Gg per 10^6 m^3 raw gas feed", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.508Z", + "last_change_date": "2022-03-14T08:01:24.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7949, + "fields": { + "EF_ID": 124774, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for fugitives)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00015-0.00035", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.596Z", + "last_change_date": "2022-03-14T08:01:24.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7950, + "fields": { + "EF_ID": 124775, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (Deafult weighted total for fugitives)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000012-0.000028", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.683Z", + "last_change_date": "2022-03-14T08:01:24.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7951, + "fields": { + "EF_ID": 124776, + "IPCC_Category": "1.B.2.b.iii.3 - Processing", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for fugitives)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00014-0.00032", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.758Z", + "last_change_date": "2022-03-14T08:01:24.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7952, + "fields": { + "EF_ID": 124777, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for flaring)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000002-0.0000028", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.872Z", + "last_change_date": "2022-03-14T08:01:24.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7953, + "fields": { + "EF_ID": 124778, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for flaring)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003-0.0041", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:24.958Z", + "last_change_date": "2022-03-14T08:01:24.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7954, + "fields": { + "EF_ID": 124779, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for flaring)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000016-0.0000022", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.024Z", + "last_change_date": "2022-03-14T08:01:25.024Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7955, + "fields": { + "EF_ID": 124780, + "IPCC_Category": "1.B.2.b.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for flaring)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000033-0.000000045", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.132Z", + "last_change_date": "2022-03-14T08:01:25.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7956, + "fields": { + "EF_ID": 124781, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Gas processing (Default weighted total for Raw CO2 venting)", + "Technology_Practices": "Gas processing", + "Parameter_Conditions": "Raw CO2 Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04-0.095", + "Unit": "Gg per 10^6 m^3 gas production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.208Z", + "last_change_date": "2022-03-14T08:01:25.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7957, + "fields": { + "EF_ID": 124782, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, fugitives)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000166-0.0011", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.283Z", + "last_change_date": "2022-03-14T08:01:25.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7958, + "fields": { + "EF_ID": 124783, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, fugitives)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000088-0.000002", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.359Z", + "last_change_date": "2022-03-14T08:01:25.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7959, + "fields": { + "EF_ID": 124784, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, fugitives)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000007-0.000016", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.425Z", + "last_change_date": "2022-03-14T08:01:25.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7960, + "fields": { + "EF_ID": 124785, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, venting)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000044-0.00074", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.491Z", + "last_change_date": "2022-03-14T08:01:25.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7961, + "fields": { + "EF_ID": 124786, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, venting)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000031-0.0000073", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.577Z", + "last_change_date": "2022-03-14T08:01:25.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7962, + "fields": { + "EF_ID": 124787, + "IPCC_Category": "1.B.2.b.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (transmission, venting)", + "Technology_Practices": "Gas Transmission & Storage, Transmission", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000046-0.000011", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "40%", + "Upper_Bound": "250%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.650Z", + "last_change_date": "2022-03-14T08:01:25.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7963, + "fields": { + "EF_ID": 124788, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (storage)", + "Technology_Practices": "Gas Transmission & Storage, Storage", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000025-0.000058", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.716Z", + "last_change_date": "2022-03-14T08:01:25.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7964, + "fields": { + "EF_ID": 124789, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (storage)", + "Technology_Practices": "Gas Transmission & Storage, Storage", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000011-0.00000026", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.803Z", + "last_change_date": "2022-03-14T08:01:25.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7965, + "fields": { + "EF_ID": 124790, + "IPCC_Category": "1.B.2.b.iii.4 - Transmission and Storage", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas Transmission & Storage (storage)", + "Technology_Practices": "Gas Transmission & Storage, Storage", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000036-0.00000083", + "Unit": "Gg per 10^6 m^3 of marketable gas", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.875Z", + "last_change_date": "2022-03-14T08:01:25.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7966, + "fields": { + "EF_ID": 124791, + "IPCC_Category": "1.B.2.b.iii.5 - Distribution", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Gas distribution", + "Technology_Practices": "Gas Distribution", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0011-0.0025", + "Unit": "Gg per 10^6 m^3 of utility sales", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:25.941Z", + "last_change_date": "2022-03-14T08:01:25.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7967, + "fields": { + "EF_ID": 124792, + "IPCC_Category": "1.B.2.b.iii.5 - Distribution", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Gas distribution", + "Technology_Practices": "Gas Distribution", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000051-0.00014", + "Unit": "Gg per 10^6 m^3 of utility sales", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.030Z", + "last_change_date": "2022-03-14T08:01:26.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7968, + "fields": { + "EF_ID": 124793, + "IPCC_Category": "1.B.2.b.iii.5 - Distribution", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Gas distribution", + "Technology_Practices": "Gas Distribution", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000016-0.000036", + "Unit": "Gg per 10^6 m^3 of utility sales", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "20%", + "Upper_Bound": "500%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.108Z", + "last_change_date": "2022-03-14T08:01:26.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7969, + "fields": { + "EF_ID": 124794, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from gas operations - Natural gas liquids transport (condensate)", + "Technology_Practices": "Natural Gas Liquids Transport, Condensate", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00011", + "Unit": "Gg per 10^3 m^3 Condensate and Pentanes Plus", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.174Z", + "last_change_date": "2022-03-14T08:01:26.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7970, + "fields": { + "EF_ID": 124795, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Natural gas liquids transport (condensate)", + "Technology_Practices": "Natural Gas Liquids Transport, Condensate", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000072", + "Unit": "Gg per 10^3 m^3 Condensate and Pentanes Plus", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.264Z", + "last_change_date": "2022-03-14T08:01:26.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7971, + "fields": { + "EF_ID": 124796, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from gas operations - Natural gas liquids transport (condensate)", + "Technology_Practices": "Natural Gas Liquids Transport, Condensate", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0011", + "Unit": "Gg per 10^3 m^3 Condensate and Pentanes Plus", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.341Z", + "last_change_date": "2022-03-14T08:01:26.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7972, + "fields": { + "EF_ID": 124797, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from gas operations - Natural gas liquids transport (LPG)", + "Technology_Practices": "Natural Gas Liquids Transport, Liquefied Petroleum Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00043", + "Unit": "Gg per 10^3 m^3 LPG", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "100%", + "Upper_Bound": "100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.416Z", + "last_change_date": "2022-03-14T08:01:26.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7973, + "fields": { + "EF_ID": 124798, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from gas operations - Natural gas liquids transport (LPG)", + "Technology_Practices": "Natural Gas Liquids Transport, Liquefied Petroleum Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000000022", + "Unit": "Gg per 10^3 m^3 LPG", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 2 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.516Z", + "last_change_date": "2022-03-14T08:01:26.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7974, + "fields": { + "EF_ID": 124799, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives onshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Onshore)", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000015-0.06", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.608Z", + "last_change_date": "2022-03-14T08:01:26.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7975, + "fields": { + "EF_ID": 124800, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives onshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Onshore)", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000011-0.0043", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.683Z", + "last_change_date": "2022-03-14T08:01:26.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7976, + "fields": { + "EF_ID": 124801, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives onshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Onshore)", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000018-0.075", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.776Z", + "last_change_date": "2022-03-14T08:01:26.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7977, + "fields": { + "EF_ID": 124802, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives offshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Offshore)", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000059", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.850Z", + "last_change_date": "2022-03-14T08:01:26.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7978, + "fields": { + "EF_ID": 124803, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives offshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Offshore)", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000000043", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:26.916Z", + "last_change_date": "2022-03-14T08:01:26.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7979, + "fields": { + "EF_ID": 124804, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (conventional oil, fugitives offshore)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Fugitives (Offshore)", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000074", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.002Z", + "last_change_date": "2022-03-14T08:01:27.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7980, + "fields": { + "EF_ID": 124805, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (conventional oil, venting)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00072-0.00099", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.075Z", + "last_change_date": "2022-03-14T08:01:27.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7981, + "fields": { + "EF_ID": 124806, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, venting)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000095-0.00013", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.141Z", + "last_change_date": "2022-03-14T08:01:27.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7982, + "fields": { + "EF_ID": 124807, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (conventional oil, venting)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00043-0.00059", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.228Z", + "last_change_date": "2022-03-14T08:01:27.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7983, + "fields": { + "EF_ID": 124808, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (conventional oil, flaring)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000025-0.000034", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.300Z", + "last_change_date": "2022-03-14T08:01:27.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7984, + "fields": { + "EF_ID": 124809, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, flaring)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.041-0.056", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.364Z", + "last_change_date": "2022-03-14T08:01:27.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7985, + "fields": { + "EF_ID": 124810, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (conventional oil, flaring)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000021-0.000029", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.454Z", + "last_change_date": "2022-03-14T08:01:27.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7986, + "fields": { + "EF_ID": 124811, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil operations - Oil production (conventional oil, flaring)", + "Technology_Practices": "Oil Production, Conventional Oil", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000064-0.00000088", + "Unit": "Gg per 10^3 m^3 conventional oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.525Z", + "last_change_date": "2022-03-14T08:01:27.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7987, + "fields": { + "EF_ID": 124812, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, fugitives)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0079-0.13", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.590Z", + "last_change_date": "2022-03-14T08:01:27.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7988, + "fields": { + "EF_ID": 124813, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, fugitives)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00054-0.009", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.681Z", + "last_change_date": "2022-03-14T08:01:27.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7989, + "fields": { + "EF_ID": 124814, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, fugitives)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0029-0.048", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.750Z", + "last_change_date": "2022-03-14T08:01:27.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7990, + "fields": { + "EF_ID": 124815, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, venting)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.017-0.023", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.823Z", + "last_change_date": "2022-03-14T08:01:27.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7991, + "fields": { + "EF_ID": 124816, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, venting)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0053-0.0073", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:27.916Z", + "last_change_date": "2022-03-14T08:01:27.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7992, + "fields": { + "EF_ID": 124817, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, venting)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0027-0.0037", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.008Z", + "last_change_date": "2022-03-14T08:01:28.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7993, + "fields": { + "EF_ID": 124818, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, flaring)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00014-0.00019", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.090Z", + "last_change_date": "2022-03-14T08:01:28.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7994, + "fields": { + "EF_ID": 124819, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, flaring)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "Heavy Oil/Cold Bitumen", + "Other_Properties": "", + "Value": "0.022-0.03", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.185Z", + "last_change_date": "2022-03-14T08:01:28.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7995, + "fields": { + "EF_ID": 124820, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, flaring)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000011-0.000015", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.258Z", + "last_change_date": "2022-03-14T08:01:28.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7996, + "fields": { + "EF_ID": 124821, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil operations - Oil production (heavy oil/cold bitumen, flaring)", + "Technology_Practices": "Oil Production, Heavy Oil/Cold Bitumen", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000046-0.00000063", + "Unit": "Gg per 10^3 m^3 heavy oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.323Z", + "last_change_date": "2022-03-14T08:01:28.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7997, + "fields": { + "EF_ID": 124822, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, fugitives)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00018-0.003", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.411Z", + "last_change_date": "2022-03-14T08:01:28.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7998, + "fields": { + "EF_ID": 124823, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, fugitives)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000029-0.00048", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.483Z", + "last_change_date": "2022-03-14T08:01:28.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 7999, + "fields": { + "EF_ID": 124824, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, fugitives)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00023-0.0038", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.548Z", + "last_change_date": "2022-03-14T08:01:28.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8000, + "fields": { + "EF_ID": 124825, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, venting)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0035-0.0048", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.637Z", + "last_change_date": "2022-03-14T08:01:28.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8001, + "fields": { + "EF_ID": 124826, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, venting)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00022-0.0003", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.716Z", + "last_change_date": "2022-03-14T08:01:28.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8002, + "fields": { + "EF_ID": 124827, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, venting)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00087-0.0012", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.781Z", + "last_change_date": "2022-03-14T08:01:28.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8003, + "fields": { + "EF_ID": 124828, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, flaring)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000016-0.000022", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.872Z", + "last_change_date": "2022-03-14T08:01:28.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8004, + "fields": { + "EF_ID": 124829, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, flaring)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.027-0.037", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:28.950Z", + "last_change_date": "2022-03-14T08:01:28.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8005, + "fields": { + "EF_ID": 124830, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, flaring)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000013-0.000018", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.016Z", + "last_change_date": "2022-03-14T08:01:29.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8006, + "fields": { + "EF_ID": 124831, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil operations - Oil production (thermal oil production, flaring)", + "Technology_Practices": "Oil Production, Thermal Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000024-0.00000033", + "Unit": "Gg per 10^3 m^3 thermal bitumen production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.107Z", + "last_change_date": "2022-03-14T08:01:29.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8007, + "fields": { + "EF_ID": 124832, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (synthetic crude from oilsands)", + "Technology_Practices": "Oil Production, Synthetic Crude (from Oilsands)", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0023-0.038", + "Unit": "Gg per 10^3 m^3 synthetic crude production from oilsands", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.174Z", + "last_change_date": "2022-03-14T08:01:29.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8008, + "fields": { + "EF_ID": 124833, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (synthetic crude from oilsands)", + "Technology_Practices": "Oil Production, Synthetic Crude (from Oilsands)", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0009-0.015", + "Unit": "Gg per 10^3 m^3 synthetic crude production from oilsands", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "67%", + "Upper_Bound": "150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.250Z", + "last_change_date": "2022-03-14T08:01:29.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8009, + "fields": { + "EF_ID": 124834, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for fugitives)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0022-0.037", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.341Z", + "last_change_date": "2022-03-14T08:01:29.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8010, + "fields": { + "EF_ID": 124835, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for fugitives)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00028-0.0047", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.433Z", + "last_change_date": "2022-03-14T08:01:29.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8011, + "fields": { + "EF_ID": 124836, + "IPCC_Category": "1.B.2.a.iii.2 - Production and Upgrading", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for fugitives)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Fugitives", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0031-0.052", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "12.5%", + "Upper_Bound": "800%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.500Z", + "last_change_date": "2022-03-14T08:01:29.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8012, + "fields": { + "EF_ID": 124837, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for venting)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0087-0.012", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.585Z", + "last_change_date": "2022-03-14T08:01:29.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8013, + "fields": { + "EF_ID": 124838, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for venting)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0018-0.0025", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.666Z", + "last_change_date": "2022-03-14T08:01:29.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8014, + "fields": { + "EF_ID": 124839, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for venting)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0016-0.0022", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.741Z", + "last_change_date": "2022-03-14T08:01:29.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8015, + "fields": { + "EF_ID": 124840, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for flaring)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000021-0.000029", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.837Z", + "last_change_date": "2022-03-14T08:01:29.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8016, + "fields": { + "EF_ID": 124841, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxideemission factor for fugitive emissions from oil operations - Oil production (Default weighted total for flaring)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.034-0.047", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:29.908Z", + "last_change_date": "2022-03-14T08:01:29.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8017, + "fields": { + "EF_ID": 124842, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for flaring)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000017-2.3", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "75%", + "Upper_Bound": "75%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:30.016Z", + "last_change_date": "2022-03-14T08:01:30.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8018, + "fields": { + "EF_ID": 124843, + "IPCC_Category": "1.B.2.a.ii - Flaring", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Nitrous oxide emission factor for fugitive emissions from oil operations - Oil production (Default weighted total for flaring)", + "Technology_Practices": "Oil Production", + "Parameter_Conditions": "Flaring", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000054-0.00000074", + "Unit": "Gg per 10^3 m^3 total oil production", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "10%", + "Upper_Bound": "1000%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:30.105Z", + "last_change_date": "2022-03-14T08:01:30.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8019, + "fields": { + "EF_ID": 124844, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil transport (pipelines)", + "Technology_Practices": "Oil Transport, Pipelines", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000054", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:30.166Z", + "last_change_date": "2022-03-14T08:01:30.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8020, + "fields": { + "EF_ID": 124845, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil transport (pipelines)", + "Technology_Practices": "Oil Transport, Pipelines", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00000049", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:30.250Z", + "last_change_date": "2022-03-14T08:01:30.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8021, + "fields": { + "EF_ID": 124846, + "IPCC_Category": "1.B.2.a.iii.3 - Transport", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil transport (pipelines)", + "Technology_Practices": "Oil Transport, Pipelines", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000054", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:30.331Z", + "last_change_date": "2022-03-14T08:01:30.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8022, + "fields": { + "EF_ID": 124847, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane emission factor for fugitive emissions from oil operations - Oil transport (tanker trucks and rail cars, venting)", + "Technology_Practices": "Oil Transport, Tanker Trucks and Rail Cars", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000025", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:30.391Z", + "last_change_date": "2022-03-14T08:01:30.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8023, + "fields": { + "EF_ID": 124848, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon dioxide emission factor for fugitive emissions from oil operations - Oil transport (tanker trucks and rail cars, venting)", + "Technology_Practices": "Oil Transport, Tanker Trucks and Rail Cars", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000023", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:30.458Z", + "last_change_date": "2022-03-14T08:01:30.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8024, + "fields": { + "EF_ID": 124849, + "IPCC_Category": "1.B.2.a.i - Venting", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NMVOC emission factor for fugitive emissions from oil operations - Oil transport (tanker trucks and rail cars, venting)", + "Technology_Practices": "Oil Transport, Tanker Trucks and Rail Cars", + "Parameter_Conditions": "Venting", + "Regional_Conditions": "Developing country and country with economy in transition", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00025", + "Unit": "Gg per 10^3 m^3 oil transported by pipeline", + "Equation": "Equation 4.2.1 in Volume 2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 1B.2 (sheet 1 of 2)", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 2, Chapter 4, Table 4.2.5", + "Technical_Reference": "The factors presented in this table have been determined by setting the lower limit of the range for each category equal to at least the values published in Table 4.2.4 for North America. Otherwise, all presented values have been adapted from applicable data provided in the 1996 IPCC Guidelines and from limited measurement data available from more recent unpublished studies of natural gas systems in China, Romania and Uzbekistan.", + "English_Abstract": "", + "Lower_Bound": "50%", + "Upper_Bound": "200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_4_Ch4_Fugitive_Emissions.pdf", + "creation_date": "2022-03-14T08:01:30.540Z", + "last_change_date": "2022-03-14T08:01:30.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8025, + "fields": { + "EF_ID": 124920, + "IPCC_Category": "1.B.1.a.ii - Surface mines, 1.B.1.a.ii.1 - Mining", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane fugitive emissions from surface mining activities", + "Technology_Practices": "Conventional surface mining in Indian conditions", + "Parameter_Conditions": "Production of coal varied between 400-125,000 tonnes per day at the various mine sites", + "Regional_Conditions": "The studies were carried out in Jharia, East Bokaro, West Bokaro, North Karanpura, South Karanpura, Singarauli, Sohagpur and Korba coalfields", + "Control_Technologies": "None", + "Other_Properties": "Active mines conditions", + "Value": "0.74-1.52", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Singh A.K., Singh H., Kispotta J., Mohanty D., Mondal B.K., Singh K.K., Mahto R.K., Singh P.K. (2012). Assessment of Fugitive Emission of Methane from Surface Mining of Coal in India, CSIR-Central Institute of Mining and Fuel Research, Project No. CNP/2778/2010-11.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The study was sponsored by the Central Mine Planning and Design Institute", + "Other_Comments": "", + "Data_Provider": "Dr. Ajay Kumar Singh", + "Link": "", + "creation_date": "2022-03-14T08:01:30.615Z", + "last_change_date": "2022-03-14T08:01:30.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8026, + "fields": { + "EF_ID": 124921, + "IPCC_Category": "1.B.1.a.ii - Surface mines, 1.B.1.a.ii.2 - Post-mining seam gas emissions", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane fugitive emissions from post-mining activities in surface mining", + "Technology_Practices": "Conventional surface mining in Indian conditions", + "Parameter_Conditions": "Production of coal varied between 400-125,000 tonnes per day at the various mine sites", + "Regional_Conditions": "The studies were carried out in Jharia, East Bokaro, West Bokaro, North Karanpura, South Karanpura, Singarauli, Sohagpur and Korba coalfields", + "Control_Technologies": "None", + "Other_Properties": "Active mines conditions", + "Value": "0.04-1.26", + "Unit": "m3/tonnes of product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Singh A.K., Singh H., Kispotta J., Mohanty D., Mondal B.K., Singh K.K., Mahto R.K., Singh P.K. (2012). Assessment of Fugitive Emission of Methane from Surface Mining of Coal in India, CSIR-Central Institute of Mining and Fuel Research, Project No. CNP/2778/2010-11.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The study was sponsored by the Central Mine Planning and Design Institute", + "Other_Comments": "", + "Data_Provider": "Dr. Ajay Kumar Singh", + "Link": "", + "creation_date": "2022-03-14T08:01:30.683Z", + "last_change_date": "2022-03-14T08:01:30.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8027, + "fields": { + "EF_ID": 124922, + "IPCC_Category": "1.A - Fuel Combustion Activities, 1.A.3.b - Road Transportation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Motor Gasoline", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for gasoline combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 42.57 MJ/kg, C content in weight: 75.72%", + "Value": "73791.164", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 and equation 3.2.1 on page 3.12 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "72704.187", + "Upper_Bound": "74878.141", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 18 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:30.767Z", + "last_change_date": "2022-03-14T08:01:30.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8028, + "fields": { + "EF_ID": 124923, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.i - International Aviation (International Bunkers), 1.A.3.a.ii - Domestic Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Jet Kerosene", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for jet kerosene combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 43.28 MJ/kg, C content in weight: 85.78%", + "Value": "72614.02", + "Unit": "KG/TJ", + "Equation": "Equations 3.6.1 and 3.6.5 on page 3.59 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "72256.14", + "Upper_Bound": "72971.90", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 8 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:30.841Z", + "last_change_date": "2022-03-14T08:01:30.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8029, + "fields": { + "EF_ID": 124924, + "IPCC_Category": "1.A.3.a - Civil Aviation, 1.A.3.a.ii - Domestic Aviation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Aviation Gasoline", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for aviation gasoline combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 43.29 MJ/kg, C content in weight: 85.80%", + "Value": "72476.67", + "Unit": "KG/TJ", + "Equation": "Equation 3.6.1 on page 3.59 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "70398.44", + "Upper_Bound": "74554.90", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 3 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:30.908Z", + "last_change_date": "2022-03-14T08:01:30.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8030, + "fields": { + "EF_ID": 124925, + "IPCC_Category": "1.A - Fuel Combustion Activities, 1.A.3.b - Road Transportation, 1.A.3.c - Railways, 1.A.3.d - Water-borne Navigation, 1.A.3.e.ii - Off-road", + "Gases": "CARBON DIOXIDE", + "Fuel": "Diesel Oil", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for diesel combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 43.18 MJ/kg, C content in weight: 85.83%", + "Value": "72850.77", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11, equation 3.2.1 on page 3.12, equation 3.3.1 on page 3.33, equation 3.4.1 on page 3.41 and equation 3.5.1 on page 3.47 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "71989.31", + "Upper_Bound": "73712.23", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 15 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:30.975Z", + "last_change_date": "2022-03-14T08:01:30.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8031, + "fields": { + "EF_ID": 124926, + "IPCC_Category": "1.A - Fuel Combustion Activities, 1.A.3.d - Water-borne Navigation", + "Gases": "CARBON DIOXIDE", + "Fuel": "Residual Fuel Oil", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for residuel fuel oil combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 39.03 MJ/kg, C content in weight: 84.60%", + "Value": "79450.29", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 and equation 3.5.1 on page 3.47 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "77303.34", + "Upper_Bound": "81597.24", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 5 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.061Z", + "last_change_date": "2022-03-14T08:01:31.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8032, + "fields": { + "EF_ID": 124927, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coking Coal", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for coking coal combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 30.08 MJ/kg, C content in weight: 74.65%", + "Value": "90911.74", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "89436.53", + "Upper_Bound": "92386.95", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 5 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.140Z", + "last_change_date": "2022-03-14T08:01:31.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8033, + "fields": { + "EF_ID": 124928, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Coke Oven Coke and Lignite Coke", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for coke oven coke combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 25.32 MJ/kg, C content in weight: 75.72%", + "Value": "109598.01", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "106517.66", + "Upper_Bound": "112678.36", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 5 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.208Z", + "last_change_date": "2022-03-14T08:01:31.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8034, + "fields": { + "EF_ID": 124929, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for waste tyres combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 36.37 MJ/kg, C content in weight: 83.74%", + "Value": "84442.58", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "81602.50", + "Upper_Bound": "87282.66", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 10 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.316Z", + "last_change_date": "2022-03-14T08:01:31.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8035, + "fields": { + "EF_ID": 124930, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Waste Oils", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for waste oils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 42.03 MJ/kg, C content in weight: 89.07%", + "Value": "77722.89", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "75649.45", + "Upper_Bound": "79796.33", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 10 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.404Z", + "last_change_date": "2022-03-14T08:01:31.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8036, + "fields": { + "EF_ID": 124931, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Naphtha", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for naphtha combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 45.22 MJ/kg, C content in weight: 85.84%", + "Value": "69552.71", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "69115.06", + "Upper_Bound": "69990.36", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 5 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.465Z", + "last_change_date": "2022-03-14T08:01:31.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8037, + "fields": { + "EF_ID": 124932, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Industrial Wastes", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for alternative liquid fuel combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 40.95 MJ/kg, C content in weight: 87.39%", + "Value": "78225.78", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "76257.58", + "Upper_Bound": "80193.98", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 3 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.525Z", + "last_change_date": "2022-03-14T08:01:31.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8038, + "fields": { + "EF_ID": 124933, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Natural Gas", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for natural gas combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 46.74 MJ/kg, C content in weight: 71.76%, density: 0.844 kg/m3", + "Value": "57755.93", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "55038.88", + "Upper_Bound": "60472.98", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 8 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.591Z", + "last_change_date": "2022-03-14T08:01:31.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8039, + "fields": { + "EF_ID": 124934, + "IPCC_Category": "1.A - Fuel Combustion Activities, 1.A.1.b - Petroleum Refining", + "Gases": "CARBON DIOXIDE", + "Fuel": "Refinery Gas", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for refinery gas combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 45.66 MJ/kg, C content in weight: 70.24%, density: 0.885 kg/m3", + "Value": "58170.98", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "55323.44", + "Upper_Bound": "61018.42", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 5 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.681Z", + "last_change_date": "2022-03-14T08:01:31.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8040, + "fields": { + "EF_ID": 124935, + "IPCC_Category": "1.A - Fuel Combustion Activities", + "Gases": "CARBON DIOXIDE", + "Fuel": "Liquefied Petroleum Gases", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for LPG combustion", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "NCV: 46.16 MJ/kg, C content in weight: 81.99%, density: 1.96 kg/m3", + "Value": "65082.90", + "Unit": "KG/TJ", + "Equation": "Equation 2.1 on page 2.11 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Instituto Mexicano del Petroleo (2014). Informe técnico: Factores de emisión para los diferentes tipos de combustibles fósiles y alternativos que se consumen en México. Tercer Informe. Informe final. Desarrollado para el Instituto Nacional de Ecología y Cambio Climático de acuerdo al convenio INECC/A1-008/2014. INECC, México, D.F., México.", + "English_Abstract": "", + "Lower_Bound": "64939.91", + "Upper_Bound": "65225.89", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Measurements conducted on 15 samples", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.gob.mx/cms/uploads/attachment/file/110131/CGCCDBC_2014_FE_tipos_combustibles_fosiles.pdf", + "creation_date": "2022-03-14T08:01:31.765Z", + "last_change_date": "2022-03-14T08:01:31.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8041, + "fields": { + "EF_ID": 124936, + "IPCC_Category": "1.B.2.a - Oil, 1.B.2.a.i - Venting, 1.B.2.a.iii.6 - Other, 1.B.2.b - Natural Gas, 1.B.2.b.i - Venting, 1.B.2.b.iii.6 - Other", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor from plugged and abandoned oil and natural gas wells", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "West Virginia, Eastern United States, Appalachian Basin", + "Control_Technologies": "Abandoned wells that have been plugged. Those that have protective casing inside the wellbore cemented to the surface have to be vented in this state", + "Other_Properties": "", + "Value": "0.00312", + "Unit": "kg CH4 /d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Riddick, S. N. Et al. (2019) Measuring methane emissions from abandoned and active oil and gas wells in West Virginia, Science of the Total Environment, 651, 1849-1956, https://doi.org/10.1016/j.scitotenv.2018.10.082", + "English_Abstract": "Recent studies have reported methane (CH4) emissions from abandoned and active oil and gas infrastructure across the United States, where measured emissions show regional variability. To investigate similar phenomena in West Virginia, we measure and characterize emissions from abandoned and active conventional oil and gas wells. In addition, we reconcile divergent regional CH4 emissions estimates by comparing our West Virginia emissions estimates with those from other states in the United States. We find the CH4 emission factors from 112 plugged and 147 unplugged wells in West Virginia are 0.1 g CH4 h−1 and 3.2 g CH4 h−1, respectively. The highest emitting unplugged abandoned wells in WV are those most recently abandoned, with the mean emission of wells abandoned between 1993 and 2015 of 16 g CH4 h−1 compared to the mean of those abandoned before 1993 of 3 x 10-3 g CH4 h-1. Using field observations at a historic mining area as a proxy for state-wide drilling activity in the late 19th/early 20th century, we estimate the number of abandoned wells in WV at between 60000 and 760000 wells. Methane emission factors from active conventional wells were estimated at 138 g CH4 h-1. We did not find an emission pattern relating to age of wells or operator for active wells, however, the CH4 emission factor for active conventional wells was 7.5 times larger than the emission factor used by the EPA for conventional oil and gas wells. Our results suggest that well emission factors for active and abandoned wells can vary within the same geologic formation and may be affected by differences in state regulations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "0.00888", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "`EF for CH4 from plugged and abandoned oil and natural gas wells in West Virginia, USA. Not reported separately for oil and natural gas. 2019 Refinement IPCC Categories 1B2avii and 1B2bvii. Emission factors are representative of the mean of the individual emission rates of all wells sampled during the study (112 plugged and abandoned wells, or 0.2% of this type of well in West Virginia). Scaling up to an annual emission factor, authors report 0.07 Gg CH4 / yr from this type of well in West Virginia.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.10.082", + "creation_date": "2022-03-14T08:01:31.833Z", + "last_change_date": "2022-03-14T08:01:31.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8042, + "fields": { + "EF_ID": 124937, + "IPCC_Category": "1.B.2.a - Oil, 1.B.2.a.i - Venting, 1.B.2.a.iii.6 - Other, 1.B.2.b - Natural Gas, 1.B.2.b.i - Venting, 1.B.2.b.iii.6 - Other", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor from unplugged and abandoned oil and natural gas wells", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "West Virginia, Eastern United States, Appalachian Basin", + "Control_Technologies": "Abandoned wells not plugged according to regulation", + "Other_Properties": "", + "Value": "0.0744", + "Unit": "kg CH4 /d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Riddick, S. N. Et al. (2019) Measuring methane emissions from abandoned and active oil and gas wells in West Virginia, Science of the Total Environment, 651, 1849-1956, https://doi.org/10.1016/j.scitotenv.2018.10.082", + "English_Abstract": "Recent studies have reported methane (CH4) emissions from abandoned and active oil and gas infrastructure across the United States, where measured emissions show regional variability. To investigate similar phenomena in West Virginia, we measure and characterize emissions from abandoned and active conventional oil and gas wells. In addition, we reconcile divergent regional CH4 emissions estimates by comparing our West Virginia emissions estimates with those from other states in the United States. We find the CH4 emission factors from 112 plugged and 147 unplugged wells in West Virginia are 0.1 g CH4 h−1 and 3.2 g CH4 h−1, respectively. The highest emitting unplugged abandoned wells in WV are those most recently abandoned, with the mean emission of wells abandoned between 1993 and 2015 of 16 g CH4 h−1 compared to the mean of those abandoned before 1993 of 3 x 10-3 g CH4 h-1. Using field observations at a historic mining area as a proxy for state-wide drilling activity in the late 19th/early 20th century, we estimate the number of abandoned wells in WV at between 60000 and 760000 wells. Methane emission factors from active conventional wells were estimated at 138 g CH4 h-1. We did not find an emission pattern relating to age of wells or operator for active wells, however, the CH4 emission factor for active conventional wells was 7.5 times larger than the emission factor used by the EPA for conventional oil and gas wells. Our results suggest that well emission factors for active and abandoned wells can vary within the same geologic formation and may be affected by differences in state regulations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "0.16224", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF for CH4 from unplugged and abandoned oil and natural gas wells in West Virginia, USA. Not reported separately for oil and natural gas. 2019 Refinement IPCC Categories 1B2avii and 1B2bvii. Emission factors are representative of the mean of the individual emission rates of all wells sampled during the study (147 unplugged and abandoned wells, or 0.02% of this type of well in West Virginia). Scaling up to an annual emission factor, authors report 12 Gg CH4 / yr from this type of well in West Virginia.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.10.082", + "creation_date": "2022-03-14T08:01:31.924Z", + "last_change_date": "2022-03-14T08:01:31.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8043, + "fields": { + "EF_ID": 124938, + "IPCC_Category": "1.B.2 - Oil and Natural Gas, 1.B.2 - Oil and Natural Gas, 1.B.2.a - Oil, 1.B.2.a.iii.2 - Production and Upgrading, 1.B.2.b - Natural Gas, 1.B.2.b.iii.2 - Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission factor from active oil and natural gas wells", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "West Virginia, Eastern United States, Appalachian Basin", + "Control_Technologies": "Active conventional wells in West Virginia, USA. Does not specify if venting or flaring, assume both", + "Other_Properties": "", + "Value": "3.336", + "Unit": "kg CH4 /d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Riddick, S. N. Et al. (2019) Measuring methane emissions from abandoned and active oil and gas wells in West Virginia, Science of the Total Environment, 651, 1849-1956, https://doi.org/10.1016/j.scitotenv.2018.10.082", + "English_Abstract": "Recent studies have reported methane (CH4) emissions from abandoned and active oil and gas infrastructure across the United States, where measured emissions show regional variability. To investigate similar phenomena in West Virginia, we measure and characterize emissions from abandoned and active conventional oil and gas wells. In addition, we reconcile divergent regional CH4 emissions estimates by comparing our West Virginia emissions estimates with those from other states in the United States. We find the CH4 emission factors from 112 plugged and 147 unplugged wells in West Virginia are 0.1 g CH4 h−1 and 3.2 g CH4 h−1, respectively. The highest emitting unplugged abandoned wells in WV are those most recently abandoned, with the mean emission of wells abandoned between 1993 and 2015 of 16 g CH4 h−1 compared to the mean of those abandoned before 1993 of 3 x 10-3 g CH4 h-1. Using field observations at a historic mining area as a proxy for state-wide drilling activity in the late 19th/early 20th century, we estimate the number of abandoned wells in WV at between 60000 and 760000 wells. Methane emission factors from active conventional wells were estimated at 138 g CH4 h-1. We did not find an emission pattern relating to age of wells or operator for active wells, however, the CH4 emission factor for active conventional wells was 7.5 times larger than the emission factor used by the EPA for conventional oil and gas wells. Our results suggest that well emission factors for active and abandoned wells can vary within the same geologic formation and may be affected by differences in state regulations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF for CH4 from active conventional oil and natural gas wells in West Virginia, USA. Not reported separately for oil and natural gas. 2019 Refinement IPCC Categories 1B2aii, 1B2bii. Emission factors are representative of the mean of the individual emission rates of all wells sampled during the study (79 active wells, or 0.2% of these types of wells in West Virginia). Scaling up to an annual emission factor, authors report 268 Gg CH4 / yr from this type of well in West Virginia.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.10.082", + "creation_date": "2022-03-14T08:01:32.025Z", + "last_change_date": "2022-03-14T08:01:32.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8044, + "fields": { + "EF_ID": 210186, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO2 Emission Factor for Electrode Consumption from Steel Produced in Electric Arc Furnaces", + "Technology_Practices": "Electric arc furnaces (EAF)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CO2/tonnes steel produced", + "Equation": "Page 3.28 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, See Section Choice of Emission Factors.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 2 of 11", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.28)", + "Technical_Reference": "Tichy, M. (1999). Personal communication with plant personnel, January 1999., IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.28)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.126Z", + "last_change_date": "2022-03-14T08:01:32.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8045, + "fields": { + "EF_ID": 210187, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor from Steel Processing (Rolling Mills)", + "Technology_Practices": "rolling mills", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45 (30-60)", + "Unit": "g/tonnes steel produced", + "Equation": "Page 2.29 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.3.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 3 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-14 on Page 2.29 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "from process smelter gas", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.199Z", + "last_change_date": "2022-03-14T08:01:32.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8046, + "fields": { + "EF_ID": 210188, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor from Steel Processing (Rolling Mills)", + "Technology_Practices": "rolling mills", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (20-50)", + "Unit": "g/tonnes steel produced", + "Equation": "Page 2.29 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.3.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 3 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-14 on Page 2.29 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "from process smelter gas", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.284Z", + "last_change_date": "2022-03-14T08:01:32.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8047, + "fields": { + "EF_ID": 210189, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor from Steel Processing (Rolling Mills)", + "Technology_Practices": "rolling mills", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1 (0.3-1)", + "Unit": "g/tonnes steel produced", + "Equation": "Page 2.29 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.3.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 3 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-14 on Page 2.29 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "from process smelter gas", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.382Z", + "last_change_date": "2022-03-14T08:01:32.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8048, + "fields": { + "EF_ID": 210190, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor from Steel Processing (Rolling Mills)", + "Technology_Practices": "rolling mills", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30 (20-30)", + "Unit": "g/tonnes steel produced", + "Equation": "Page 2.29 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.3.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 3 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-14 on Page 2.29 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.449Z", + "last_change_date": "2022-03-14T08:01:32.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8049, + "fields": { + "EF_ID": 210191, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Emission Factor for Ferroalloy Production", + "Technology_Practices": "Covered furnace", + "Parameter_Conditions": "Type ferroalloy: Ferrosilicon - 50%Si", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.09", + "Unit": "kg/tonnes metal", + "Equation": "Page 2.31 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.3.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-16 on Page 2.32 of the Reference Manual)", + "Technical_Reference": "ORTECH International (1994), Inventory Methods for Estimating Canadian Emissions of Greenhouse Gases, Report to Environment Canada, May, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.516Z", + "last_change_date": "2022-03-14T08:01:32.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8050, + "fields": { + "EF_ID": 210192, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Emission Factor for Ferroalloy Production", + "Technology_Practices": "Covered furnace", + "Parameter_Conditions": "Type ferroalloy: Ferrosilicon - 75%Si", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.62", + "Unit": "kg/tonnes metal", + "Equation": "Page 2.31 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.3.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-16 on Page 2.32 of the Reference Manual)", + "Technical_Reference": "ORTECH International (1994), Inventory Methods for Estimating Canadian Emissions of Greenhouse Gases, Report to Environment Canada, May, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.583Z", + "last_change_date": "2022-03-14T08:01:32.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8051, + "fields": { + "EF_ID": 210193, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "CO Emission Factor for Ferroalloy Production", + "Technology_Practices": "Sealed furnace", + "Parameter_Conditions": "Type ferroalloy: Silicon manganese", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "kg/tonnes metal", + "Equation": "Page 2.31 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.3.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-16 on Page 2.32 of the Reference Manual)", + "Technical_Reference": "ORTECH International (1994), Inventory Methods for Estimating Canadian Emissions of Greenhouse Gases, Report to Environment Canada, May, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.650Z", + "last_change_date": "2022-03-14T08:01:32.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8052, + "fields": { + "EF_ID": 210194, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Primary Alminium Production", + "Technology_Practices": "Process: Electrolyis", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.2 (10-17.5)", + "Unit": "kg/tonnes product", + "Equation": "Page 2.33 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.5.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 10 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-18 on Page 2.33 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.738Z", + "last_change_date": "2022-03-14T08:01:32.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8053, + "fields": { + "EF_ID": 210195, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "SULPHUR DIOXIDE (SO2+SO3)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Primary Alminium Production", + "Technology_Practices": "Process: Anode baking", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9 (0.8-1.0)", + "Unit": "kg/tonnes product", + "Equation": "Page 2.33 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.5.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 10 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-18 on Page 2.33 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.824Z", + "last_change_date": "2022-03-14T08:01:32.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8054, + "fields": { + "EF_ID": 210196, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Primary Alminium Production", + "Technology_Practices": "Process: Electrolyis", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.15 (1.3-3.0)", + "Unit": "kg/tonnes product", + "Equation": "Page 2.33 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.5.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 10 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-18 on Page 2.33 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.891Z", + "last_change_date": "2022-03-14T08:01:32.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8055, + "fields": { + "EF_ID": 210197, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Primary Alminium Production", + "Technology_Practices": "Process: Electrolyis", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "135 (27-680)", + "Unit": "kg/tonnes product", + "Equation": "Page 2.33 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.5.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 10 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-18 on Page 2.33 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:32.966Z", + "last_change_date": "2022-03-14T08:01:32.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8056, + "fields": { + "EF_ID": 210198, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Primary Alminium Production", + "Technology_Practices": "Process: Anode baking", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "400", + "Unit": "kg/tonnes product", + "Equation": "Page 2.33 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.5.3.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 10 of 11", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Table 2-18 on Page 2.33 of the Reference Manual)", + "Technical_Reference": "EMEP/CORINAIR (1996), Joint Atmospheric Emission Inventory Guidebook (1st edition)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.041Z", + "last_change_date": "2022-03-14T08:01:33.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8057, + "fields": { + "EF_ID": 210199, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Estimated Global C2F6 Emission Factor for Smelters with Various Cell Technologies", + "Technology_Practices": "Weighted average for all plants world-wide (1995)", + "Parameter_Conditions": "", + "Regional_Conditions": "Global average", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg C2F6/tonne Al", + "Equation": "Page 2.35 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.6.2.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Page 2.35 of the Reference Manual)", + "Technical_Reference": "Tabereaux, A. T. (1995), 5th Australian Aluminium Smelter Technology Workshop, Sydney, October 1995.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.116Z", + "last_change_date": "2022-03-14T08:01:33.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8058, + "fields": { + "EF_ID": 210200, + "IPCC_Category": "2.C.4 - Magnesium production", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "SF6 Consumption Rate in Magnesium Smelters and Foundaries", + "Technology_Practices": "Type of technology: Die-casting", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg SF6/tonnes magnesium produced or smelted", + "Equation": "Page 3.48 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, See Section Choice of Emission Factors.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.48)", + "Technical_Reference": "Gjestland, H. (1996), and D. Magers. Proceedings of the International Magnesium Association`s annual World Magnesium Conference, 1996.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is quite uncertain, however. For example, one diecasting industry survey showed a wide range of SF6 consumption rates, from 0.1 to 10 kg SF6 per tonne magnesium produced. (Palmer, B (1999). Cheminfo Services, Inc. Personal Communication with plant personnel from leading primary magnesium smelters, January 1999.).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.215Z", + "last_change_date": "2022-03-14T08:01:33.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8059, + "fields": { + "EF_ID": 210201, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Emission Factor for SF6 Emissions from Electrical Equipment", + "Technology_Practices": "Type of Application/Equipment: Electorical Equipment, Phase (lifecycle stage): Retired", + "Parameter_Conditions": "", + "Regional_Conditions": "Global", + "Control_Technologies": "", + "Other_Properties": "Lifetime is assumed to be 30 years", + "Value": "0.95", + "Unit": "Fraction of SF6/year", + "Equation": "Equation 3.17 on Page 3.57 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.12 on Page 3.58)", + "Technical_Reference": "Olivier, J.G.J. and J. Bakker (2000), Historical emissions of HFCs, PFCs and SF6 1950-1995. Consumption and emission estimates per country 1950-1995 and global emissions on 1ox1o in EDGAR 3.0. RIVM, Bilthoven, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.307Z", + "last_change_date": "2022-03-14T08:01:33.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8060, + "fields": { + "EF_ID": 210202, + "IPCC_Category": "2.B.9.b - Fugitive Emissions", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for SF6 Fugitive Emissions from Production of SF6", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Countries in which the predominant end use does not require highly purified SF6 gas (e.g. electrical equipment, insulated windows).", + "Control_Technologies": "No Abatement", + "Other_Properties": "", + "Value": "0.2", + "Unit": "% of total quantity of SF6 produced", + "Equation": "Equation 3.41 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Page 3.67 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B9, Sheet 3 of 3, in Annex 1 (page A1.16) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.104); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.67)", + "Technical_Reference": "Preisegger, E. (1999). Statement on experiences of Solvay Fluor und Derivate GmbH, Hannover, Germany regarding an emission factor at the Expert group meeting on Good practice in Inventory Preparation, Washington D.C., USA, Jan, 1999, IPCC/OECD/IEA National Greenhouse Gas Inventories Programme.", + "English_Abstract": "", + "Lower_Bound": "-100% (= 0% of total quantity of SF6 produced)", + "Upper_Bound": "+100% (= 0.4% of total quantity of SF6 produced)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on German experience, a default emission factor of 0.2% of the total quantity of SF6 produced is suggested for those countries in which the predominant end use does not require highly purified SF6 gas (e.g., electrical equipment, insulated windows). This default emission factor is based on situations where no abatement measures are employed. If the quantity of gas emitted to the atmosphere is reduced by, for example, thermal oxidation of the vent stream, the quantity emitted should be adjusted to account for the destruction efficiency of the oxidiser and the length of time that it is in service. Based on the experience in the destruction of HFC-23, a default destruction efficiency of 100 percent is suggested but the on-line time of the destruction process will have a greater effect on emissions and should be recorded.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.366Z", + "last_change_date": "2022-03-14T08:01:33.366Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8061, + "fields": { + "EF_ID": 210203, + "IPCC_Category": "2.B.9.b - Fugitive Emissions", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for SF6 Fugitive Emissions from Production of SF6", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Countries where the major uses require highly purified SF6 gas (e.g. semiconductor manufacturing)", + "Control_Technologies": "No Abatement", + "Other_Properties": "", + "Value": "8", + "Unit": "% of total quantity of SF6 produced", + "Equation": "Equation 3.41 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Page 3.67 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B9, Sheet 3 of 3, in Annex 1 (page A1.16) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.104); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.67)", + "Technical_Reference": "Suizu, T. (1999). Partnership activities for SF6 gas emission reduction from gas insulated electrical equipment in Japan. Proc. Joint IPCC/TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, ECN, Petten, Netherlands, 26-28 May 1999.", + "English_Abstract": "", + "Lower_Bound": "-100% (= 0% of total quantity of SF6 produced)", + "Upper_Bound": "+100% (= 16% of total quantity of SF6 produced)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on experience in Japan, in countries where the major uses require highly purified SF6 gas (e.g., semiconductor manufacturing), the default value should be 8 percent because of handling losses during disposal of residual gas (i.e., the ‘heel` that is not used or recycled) in returned cylinders. This default emission factor is based on situations where no abatement measures are employed. If the quantity of gas emitted to the atmosphere is reduced by, for example, thermal oxidation of the vent stream, the quantity emitted should be adjusted to account for the destruction efficiency of the oxidiser and the length of time that it is in service. Based on the experience in the destruction of HFC-23, a default destruction efficiency of 100 percent is suggested but the on-line time of the destruction process will have a greater effect on emissions and should be recorded.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.475Z", + "last_change_date": "2022-03-14T08:01:33.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8062, + "fields": { + "EF_ID": 210204, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Not include CF4 by-product emissions from use of the other fluorinated gases.", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 3.31 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.575Z", + "last_change_date": "2022-03-14T08:01:33.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8063, + "fields": { + "EF_ID": 210205, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 3.31 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.658Z", + "last_change_date": "2022-03-14T08:01:33.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8064, + "fields": { + "EF_ID": 210206, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 3.31 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.725Z", + "last_change_date": "2022-03-14T08:01:33.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8065, + "fields": { + "EF_ID": 210207, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 3.31 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.827Z", + "last_change_date": "2022-03-14T08:01:33.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8066, + "fields": { + "EF_ID": 210208, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 3.31 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.916Z", + "last_change_date": "2022-03-14T08:01:33.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8067, + "fields": { + "EF_ID": 210209, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 3.31 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:33.983Z", + "last_change_date": "2022-03-14T08:01:33.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8068, + "fields": { + "EF_ID": 210210, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 3.31 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.091Z", + "last_change_date": "2022-03-14T08:01:34.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8069, + "fields": { + "EF_ID": 210211, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CF4 Emissions as by-product from Semiconductor Manufacture", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fluorinated Gas from which CF4 by-product emissions are resulted: C2F6", + "Value": "0.1", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 3.32 on Page 3.73 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.180Z", + "last_change_date": "2022-03-14T08:01:34.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8070, + "fields": { + "EF_ID": 210212, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CF4 Emissions as by-product from Semiconductor Manufacture", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fluorinated Gas from which CF4 by-product emissions are resulted: C3F68", + "Value": "0.2", + "Unit": "kg CF4/kg C3F8", + "Equation": "Equation 3.32 on Page 3.73 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.258Z", + "last_change_date": "2022-03-14T08:01:34.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8071, + "fields": { + "EF_ID": 210213, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Not include CF4 by-product emissions from use of the other fluorinated gases.", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.316Z", + "last_change_date": "2022-03-14T08:01:34.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8072, + "fields": { + "EF_ID": 210214, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.375Z", + "last_change_date": "2022-03-14T08:01:34.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8073, + "fields": { + "EF_ID": 210215, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.490Z", + "last_change_date": "2022-03-14T08:01:34.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8074, + "fields": { + "EF_ID": 210216, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.566Z", + "last_change_date": "2022-03-14T08:01:34.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8075, + "fields": { + "EF_ID": 210217, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.625Z", + "last_change_date": "2022-03-14T08:01:34.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8076, + "fields": { + "EF_ID": 210218, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.690Z", + "last_change_date": "2022-03-14T08:01:34.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8077, + "fields": { + "EF_ID": 210219, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.775Z", + "last_change_date": "2022-03-14T08:01:34.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8078, + "fields": { + "EF_ID": 210220, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CF4 Emissions as by-product from Semiconductor Manufacture", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fluorinated Gas from which CF4 by-product emissions are resulted: C2F6", + "Value": "0.1", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 3.30 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.850Z", + "last_change_date": "2022-03-14T08:01:34.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8079, + "fields": { + "EF_ID": 210221, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CF4 Emissions as by-product from Semiconductor Manufacture", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Fluorinated Gas from which CF4 by-product emissions are resulted: C3F68", + "Value": "0.2", + "Unit": "kg CF4/kg C3F8", + "Equation": "Equation 3.30 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.916Z", + "last_change_date": "2022-03-14T08:01:34.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8080, + "fields": { + "EF_ID": 210222, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: Plasma etching thin films", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Not include CF4 by-product emissions from use of the other fluorinated gases.", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:34.991Z", + "last_change_date": "2022-03-14T08:01:34.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8081, + "fields": { + "EF_ID": 210223, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: Plasma etching thin films", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.252Z", + "last_change_date": "2022-03-14T08:01:35.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8082, + "fields": { + "EF_ID": 210224, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: Plasma etching thin films", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.333Z", + "last_change_date": "2022-03-14T08:01:35.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8083, + "fields": { + "EF_ID": 210225, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: Plasma etching thin films", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.416Z", + "last_change_date": "2022-03-14T08:01:35.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8084, + "fields": { + "EF_ID": 210226, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: Plasma etching thin films", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.500Z", + "last_change_date": "2022-03-14T08:01:35.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8085, + "fields": { + "EF_ID": 210227, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: Plasma etching thin films", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Use of NF3 in the etch process is typically small compared to CVD. The aggregate emissions of NF3 from etch and CVD under Tier 2b will usually not be greater than estimates made with Tier 2c or Tier 1 methods.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.595Z", + "last_change_date": "2022-03-14T08:01:35.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8086, + "fields": { + "EF_ID": 210228, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: Plasma etching thin films", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.675Z", + "last_change_date": "2022-03-14T08:01:35.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8087, + "fields": { + "EF_ID": 210229, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: CVD chamber cleaning", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Not include CF4 by-product emissions from use of the other fluorinated gases.", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.741Z", + "last_change_date": "2022-03-14T08:01:35.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8088, + "fields": { + "EF_ID": 210230, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: CVD chamber cleaning", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.808Z", + "last_change_date": "2022-03-14T08:01:35.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8089, + "fields": { + "EF_ID": 210231, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: CVD chamber cleaning", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.897Z", + "last_change_date": "2022-03-14T08:01:35.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8090, + "fields": { + "EF_ID": 210232, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: CVD chamber cleaning", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:35.975Z", + "last_change_date": "2022-03-14T08:01:35.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8091, + "fields": { + "EF_ID": 210233, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for Fluorinated Compounds Emissions (FCs) from Semiconductor Manufacture (= 1 - Use Rate of Gas)", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: CVD chamber cleaning", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.041Z", + "last_change_date": "2022-03-14T08:01:36.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8092, + "fields": { + "EF_ID": 210234, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CF4 Emissions as by-product from Semiconductor Manufacture", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: Plasma etching thin films", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 3.28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.108Z", + "last_change_date": "2022-03-14T08:01:36.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8093, + "fields": { + "EF_ID": 210235, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CF4 Emissions as by-product from Semiconductor Manufacture", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: CVD chamber cleaning", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 3.28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.199Z", + "last_change_date": "2022-03-14T08:01:36.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8094, + "fields": { + "EF_ID": 210236, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission Factor for CF4 Emissions as by-product from Semiconductor Manufacture", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: CVD chamber cleaning", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg C3F8", + "Equation": "Equation 3.30 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.275Z", + "last_change_date": "2022-03-14T08:01:36.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8095, + "fields": { + "EF_ID": 210237, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion, plasma, and catalytic devices that are specifically designed to abate fluorinated compounds (FCs). See Comments from Data Provider.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 3.29 and 30 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 2c emission control technology factors are applicable only to fueled combustion, plasma, and catalytic devices that are specifically designed to abate FCs. Under the Tier 2c approach, other technologies, such as hot tubes, are assumed to have a destruction efficiency of 0%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.341Z", + "last_change_date": "2022-03-14T08:01:36.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8096, + "fields": { + "EF_ID": 210238, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion, plasma, and catalytic devices that are specifically designed to abate fluorinated compounds (FCs). See Comments from Data Provider.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 2c emission control technology factors are applicable only to fueled combustion, plasma, and catalytic devices that are specifically designed to abate FCs. Under the Tier 2c approach, other technologies, such as hot tubes, are assumed to have a destruction efficiency of 0%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.408Z", + "last_change_date": "2022-03-14T08:01:36.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8097, + "fields": { + "EF_ID": 210239, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion, plasma, and catalytic devices that are specifically designed to abate fluorinated compounds (FCs). See Comments from Data Provider.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 2c emission control technology factors are applicable only to fueled combustion, plasma, and catalytic devices that are specifically designed to abate FCs. Under the Tier 2c approach, other technologies, such as hot tubes, are assumed to have a destruction efficiency of 0%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.492Z", + "last_change_date": "2022-03-14T08:01:36.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8098, + "fields": { + "EF_ID": 210240, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion, plasma, and catalytic devices that are specifically designed to abate fluorinated compounds (FCs). See Comments from Data Provider.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 2c emission control technology factors are applicable only to fueled combustion, plasma, and catalytic devices that are specifically designed to abate FCs. Under the Tier 2c approach, other technologies, such as hot tubes, are assumed to have a destruction efficiency of 0%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.566Z", + "last_change_date": "2022-03-14T08:01:36.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8099, + "fields": { + "EF_ID": 210241, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion, plasma, and catalytic devices that are specifically designed to abate fluorinated compounds (FCs). See Comments from Data Provider.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 2c emission control technology factors are applicable only to fueled combustion, plasma, and catalytic devices that are specifically designed to abate FCs. Under the Tier 2c approach, other technologies, such as hot tubes, are assumed to have a destruction efficiency of 0%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.633Z", + "last_change_date": "2022-03-14T08:01:36.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8100, + "fields": { + "EF_ID": 210242, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion, plasma, and catalytic devices that are specifically designed to abate fluorinated compounds (FCs). See Comments from Data Provider.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 2c emission control technology factors are applicable only to fueled combustion, plasma, and catalytic devices that are specifically designed to abate FCs. Under the Tier 2c approach, other technologies, such as hot tubes, are assumed to have a destruction efficiency of 0%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.718Z", + "last_change_date": "2022-03-14T08:01:36.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8101, + "fields": { + "EF_ID": 210243, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion, plasma, and catalytic devices that are specifically designed to abate fluorinated compounds (FCs). See Comments from Data Provider.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.29 on Page 3.72 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2c)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Tier 2c emission control technology factors are applicable only to fueled combustion, plasma, and catalytic devices that are specifically designed to abate FCs. Under the Tier 2c approach, other technologies, such as hot tubes, are assumed to have a destruction efficiency of 0%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.808Z", + "last_change_date": "2022-03-14T08:01:36.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8102, + "fields": { + "EF_ID": 210244, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Hot Tube", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equations 3.27 and 28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "SEMATECH Technology Transfer Report, SEMATECH, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.875Z", + "last_change_date": "2022-03-14T08:01:36.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8103, + "fields": { + "EF_ID": 210245, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Hot Tube", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "SEMATECH Technology Transfer Report, SEMATECH, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:36.961Z", + "last_change_date": "2022-03-14T08:01:36.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8104, + "fields": { + "EF_ID": 210246, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Hot Tube", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "SEMATECH Technology Transfer Report, SEMATECH, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.050Z", + "last_change_date": "2022-03-14T08:01:37.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8105, + "fields": { + "EF_ID": 210247, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Hot Tube", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "SEMATECH Technology Transfer Report, SEMATECH, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.125Z", + "last_change_date": "2022-03-14T08:01:37.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8106, + "fields": { + "EF_ID": 210248, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 3.27 and 28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Vender data verified by semiconductor manufacturers; Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.200Z", + "last_change_date": "2022-03-14T08:01:37.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8107, + "fields": { + "EF_ID": 210249, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Vender data verified by semiconductor manufacturers; Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.275Z", + "last_change_date": "2022-03-14T08:01:37.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8108, + "fields": { + "EF_ID": 210250, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Vender data verified by semiconductor manufacturers; Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.372Z", + "last_change_date": "2022-03-14T08:01:37.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8109, + "fields": { + "EF_ID": 210251, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Vender data verified by semiconductor manufacturers; Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.450Z", + "last_change_date": "2022-03-14T08:01:37.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8110, + "fields": { + "EF_ID": 210252, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Vender data verified by semiconductor manufacturers; Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.516Z", + "last_change_date": "2022-03-14T08:01:37.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8111, + "fields": { + "EF_ID": 210253, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Vender data verified by semiconductor manufacturers; Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.600Z", + "last_change_date": "2022-03-14T08:01:37.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8112, + "fields": { + "EF_ID": 210254, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Fueled combustion", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Vender data verified by semiconductor manufacturers; Expert judgement during the development of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (1999-2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.683Z", + "last_change_date": "2022-03-14T08:01:37.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8113, + "fields": { + "EF_ID": 210255, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive H2O vapour)", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 3.27 and 28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.758Z", + "last_change_date": "2022-03-14T08:01:37.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8114, + "fields": { + "EF_ID": 210256, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive H2O vapour)", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.825Z", + "last_change_date": "2022-03-14T08:01:37.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8115, + "fields": { + "EF_ID": 210257, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive H2O vapour)", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.891Z", + "last_change_date": "2022-03-14T08:01:37.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8116, + "fields": { + "EF_ID": 210258, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive H2O vapour)", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:37.958Z", + "last_change_date": "2022-03-14T08:01:37.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8117, + "fields": { + "EF_ID": 210259, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive H2O vapour)", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.043Z", + "last_change_date": "2022-03-14T08:01:38.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8118, + "fields": { + "EF_ID": 210260, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive O2)", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 3.27 and 28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.125Z", + "last_change_date": "2022-03-14T08:01:38.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8119, + "fields": { + "EF_ID": 210261, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive O2)", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.191Z", + "last_change_date": "2022-03-14T08:01:38.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8120, + "fields": { + "EF_ID": 210262, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive O2)", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.258Z", + "last_change_date": "2022-03-14T08:01:38.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8121, + "fields": { + "EF_ID": 210263, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive O2)", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.325Z", + "last_change_date": "2022-03-14T08:01:38.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8122, + "fields": { + "EF_ID": 210264, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Plasma (with additive O2)", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Draft SEMATECH Technology Transfer Report, SEMATECH, 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.412Z", + "last_change_date": "2022-03-14T08:01:38.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8123, + "fields": { + "EF_ID": 210265, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Catalytic", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 3.27 and 28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.500Z", + "last_change_date": "2022-03-14T08:01:38.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8124, + "fields": { + "EF_ID": 210266, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Catalytic", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.566Z", + "last_change_date": "2022-03-14T08:01:38.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8125, + "fields": { + "EF_ID": 210267, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Catalytic", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.633Z", + "last_change_date": "2022-03-14T08:01:38.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8126, + "fields": { + "EF_ID": 210268, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Catalytic", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.699Z", + "last_change_date": "2022-03-14T08:01:38.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8127, + "fields": { + "EF_ID": 210269, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Catalytic", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.789Z", + "last_change_date": "2022-03-14T08:01:38.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8128, + "fields": { + "EF_ID": 210270, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Catalytic", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.866Z", + "last_change_date": "2022-03-14T08:01:38.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8129, + "fields": { + "EF_ID": 210271, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Catalytic", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:38.941Z", + "last_change_date": "2022-03-14T08:01:38.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8130, + "fields": { + "EF_ID": 210272, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Cryogenic absorption", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equations 3.27 and 28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:39.016Z", + "last_change_date": "2022-03-14T08:01:39.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8131, + "fields": { + "EF_ID": 210273, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Cryogenic absorption", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:39.083Z", + "last_change_date": "2022-03-14T08:01:39.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8132, + "fields": { + "EF_ID": 210274, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Cryogenic absorption", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:39.167Z", + "last_change_date": "2022-03-14T08:01:39.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8133, + "fields": { + "EF_ID": 210275, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Cryogenic absorption", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:39.250Z", + "last_change_date": "2022-03-14T08:01:39.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8134, + "fields": { + "EF_ID": 210276, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Membrane separation", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equations 3.27 and 28 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:39.316Z", + "last_change_date": "2022-03-14T08:01:39.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8135, + "fields": { + "EF_ID": 210277, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Membrane separation", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:39.383Z", + "last_change_date": "2022-03-14T08:01:39.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8136, + "fields": { + "EF_ID": 210278, + "IPCC_Category": "2.F.6 - Other Applications (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Fraction of gas destroyed by the emission control technology", + "Technology_Practices": "Type of Application/Equipment: Semiconductor manufacture, Process type: no specification", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Emission Control Technology: Membrane separation", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 3.27 on Page 3.71 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 2b)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.15 on Page 3.74)", + "Technical_Reference": "Semicon SW 1999, Austin, Texas, USA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:39.450Z", + "last_change_date": "2022-03-14T08:01:39.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8137, + "fields": { + "EF_ID": 210279, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "Old, unoptimised plants (e.g., 1940s to 1990/1995)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "No Recovery of HFC-23 (No Abatement methods)", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg HFC-23/kg HCFC-22 manufactured", + "Equation": "Equation 3.30 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Page 3.125 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1); Page 2.42 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.28); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.125); Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Page 2.42)", + "Technical_Reference": "U.S. EPA (2001). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-1999. United States Environmental Protection Agency, Report No. EPA 236-R-01-001, Washington, U.S.A., 2001; U.S. Environmental Protection Agency (1994), Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-1993, p. 38, U.S. EPA, Washington DC, USA. EPA 230-R-94-014.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default to be used when there are no measurements and describes the output of HFC-23 from a typical HCFC-22 plant in the absence of recovery or destruction of HFC-23. It is possible, by process optimisation, to reduce the production to between 0.014 and 0.03 kg HFC-23/kg HCFC-22 (1.4 to 3 percent) but it is not possible to completely eliminate HFC-23 formation this way. Furthermore, the extent of the reduction is highly dependent on the process design and the economic environment (measures to reduce HFC-23 can often reduce the process output). In an optimised process HFC-23 production and emissions will, invariably, have been measured; it is not possible to optimise process operation without such measurements and so default values have no meaning in this context for an individual plant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:39.536Z", + "last_change_date": "2022-03-14T08:01:39.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8138, + "fields": { + "EF_ID": 210569, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "N2O emission factor for nitric acid production", + "Technology_Practices": "HNO3 production under pressure 0.1 MPa", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "DENOX technology (removal of NOx): SCR (Selective catalytic reduction) by NH3", + "Other_Properties": "", + "Value": "9.2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31 of IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Other", + "Technical_Reference": "Markvart M., Bernauer B.: Emissions of N2O from combustion and chemical processes. Report of KATEKO for CHMI, Prague, October 1999", + "English_Abstract": "Calculation EF(N2O) is based on mass balance of ammonia oxidation reactor including DENOX unit (Selective catalytic reduction of NOx.)", + "Lower_Bound": "6", + "Upper_Bound": "10", + "Data_Quality": "medium", + "Data_Quality_Reference": "Approved by Czech Ministry of Environment ", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SCR on vanadium oxide-based catalysts removes NOx but increases N2O from 9.05 to 9.2 kg/t HNO3.  The mass of NH3 entering the reactor and the mass of NO exiting the reactor are measured for process control purposes. The unmeasured nitrogen produced by the reaction is emitted as N2 and N2O. The selectivities of the catalyst toward these compounds under similar conditions are used to estimate N2O emissions. Measurements of NH3 and NO were continuous. Occasional measurements of N2O were made to verify the selectivities used.", + "Other_Comments": "", + "Data_Provider": "Pavel Fott", + "Link": "", + "creation_date": "2022-03-14T08:01:39.633Z", + "last_change_date": "2022-03-14T08:01:39.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8139, + "fields": { + "EF_ID": 210570, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "N2O emission factor for nitric acid production", + "Technology_Practices": "HNO3 production under pressure 0.1 MPa", + "Parameter_Conditions": "N2O destruction is 80% (from 9.05 to 1.8 kg N2O/tonne nitric acid produced)", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "Non Selective Catalytical Reduction (NSCR) by Natural gas", + "Other_Properties": "", + "Value": "1.8", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31, IPCC Good Practice Guidance [N.B.: N2O destruction factor is taken into account in this value.] ", + "IPCC_Worksheet": "Worksheet 2-7, Sheet 1 of 1", + "Data_Source": "Other", + "Technical_Reference": "Markvart M., Bernauer B.: Emissions of N2O from combustion and chemical processes. KATEKO Report for CHMI, Prague, October 1999", + "English_Abstract": "This emission factor was derived from mass balance approach of ammonia oxidation reactor including DENOX unit based on NSCR by NOx abatement.) ", + "Lower_Bound": "1", + "Upper_Bound": "3", + "Data_Quality": "Medium", + "Data_Quality_Reference": "Report was approved by the Czech Ministry of Environment", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value contibutes to aggregated (weighted) emission factor for N2O from HNO3, which is used in the Czech inventory of GHG. The mass of NH3 entering the reactor and the mass of NO exiting the reactor are measured for process control purposes. The unmeasured nitrogen produced by the reaction is emitted as N2 and N2O. The selectivities of the catalyst toward these compounds under similar conditions are used to estimate N2O emissions. Measurements of NH3 and NO were continuous. Occasional measurements of N2O were made to verify the selectivities used.", + "Other_Comments": "", + "Data_Provider": "Pavel Fott", + "Link": "", + "creation_date": "2022-03-14T08:01:39.720Z", + "last_change_date": "2022-03-14T08:01:39.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8140, + "fields": { + "EF_ID": 213622, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture ", + "Technology_Practices": "Any HCFC-22 plant that employs liquid-phase, antimony pentachchloride-catalysed reaction technology with a reflux column mounted above the reactor.", + "Parameter_Conditions": "Revision of operating procedures for the reactor and reflux column to reflect the optimum conditions aimed at reducing the production of HFC-23. Operators were notified of these changes and trained... (Continued in Comments from data provider below.)", + "Regional_Conditions": "Global", + "Control_Technologies": "Cost effective process optimization technology to reduce HFC-23 by-product formation without side-effects (e.g. HCFC-21 carry-over to downstream processes or increased reactor corrosion).", + "Other_Properties": "Measurement was made at DuPont's Louisville Works optimized Freon 22 Plant. Results of optimization may vary at other HCFC-22 producing sites.", + "Value": "0.0137", + "Unit": "tonnes HFC-23/tonnes HCFC-22 manufactured", + "Equation": "Page 3.125 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1); Page 2.42 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-14, Sheet 1 of 2", + "Data_Source": "Other", + "Technical_Reference": "Greenhouse Gas Emission Reduction Verification Audit for DuPont’s Louisville Works Freon®22 Plant. ICF consultingy, 11 May 2004. Copy with proprietary information removed has been supplied to IPCC-NGGIP/TSU.", + "English_Abstract": "This report documents the verification of greenhouse gas emission reductions claimed over the period 1-Jan-2003 through 31-December-2003 as a result of the Freon®23 (HFC-23) abatement project at DuPont’s Louisville, Kentucky Freon®22 production facility.", + "Lower_Bound": "0.0134 (-2%)", + "Upper_Bound": "0.0140 (+2%)", + "Data_Quality": "The average emission factor for the years 2001 and 2002 are within 3% of the value for the year 2003 (0.0137).", + "Data_Quality_Reference": "See technical reference.", + "Other_Data_Quality": "HFC-23 produced is measured using flow and concentration measurement of the two process streams that contain >99.5% of the HFC-23 produced. The flow is measured by a meter that has accuracy stated as +/- 1%. The HFC-23 concentration in the process stream is automatically sampled and analyzed by a gas chromatograph at least twice per hour. The GC is calibrated at least monthly against a certified standard. Storage tank levels and weighed shipping containers are used to quantify the Freon 22 production. The scales used to weigh shipping containers are certified to be accurate +/- 0.5%. HFC-23 emission reductions, which include all of these measurements, are annually verified by a third party.", + "Data_Provider_Comments": "The HFC-23 by-product was reduced through process optimization at DuPont's Louisville works Freon®23 Plant at a cost savings; the value of the increased HCFC-22 production more than offset the cost associated with optimization. The emission factor is an improvement of about 1/3 compared to the non-optimised process in this plant.::: --- [Continued from Parameters/Conditions above] Operators were notified of these changes and trained to respond to indications outside of the control limits of operation. In addition preventative maintenance was implemented on key instruments including gas chromatographs, flow meters, RTD’s, pressure transmitters, weight cells, feed control valves, pressure control valves, brine flow control valves, and steam control valves. ", + "Other_Comments": "", + "Data_Provider": "DuPont Fluoroproducts", + "Link": "", + "creation_date": "2022-03-14T08:01:39.800Z", + "last_change_date": "2022-03-14T08:01:39.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8141, + "fields": { + "EF_ID": 213624, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Generation Factor of N2O from Adipic Acid production", + "Technology_Practices": "", + "Parameter_Conditions": "N2O generation from adipic acid production", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Measurement was made at Leona Plastics & Intermediates Plant, Nobeoka Works of Asahi Kasei Chemicals Corporation", + "Value": "282", + "Unit": "kg N2O/tonne adipic acid production", + "Equation": "Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1); Page 2.19 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 2-8 ", + "Data_Source": "Other", + "Technical_Reference": "N2O Emissions Factor from the Adipic Acid Production at Leona Plastics & Intermediates Plant, Nobeoka Works of Asahi Kasei Chemicals Corporation described by Greenhouse Gas Inventory Office of Japan. ", + "English_Abstract": "The report documents the information about N2O generation from adipic acid production and N2O decompositon (same meaning as destruction indicated in GPG2000) due to the N2O decompositon equipment (same meaning as destruction equipment indicated in GPG2000) at Leona Plastics & Intermediates Plant, Nobeoka Works of the Asahi Kasei Chemicals Corporation. ", + "Lower_Bound": "-7.2% (262 [kg N2O/tonne adipic acid production])", + "Upper_Bound": "+6.4% (300 [kg N2O/tonne adipic acid production])", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "See technical reference", + "Other_Data_Quality": "The amount of N2O was calculated by multiplying N2O concentrations by gas flow-rates. N2O concentrations and gas flows were measured continuously by the online infrared gas analyzer and by the flow meters. The measuring precision of the infrared gas analyzer was in the range of +/- 2.0% of the full scale. The automatic calibration of the analyzer with the standard gas was performed once a week, and periodical inspections of the analyzers were conducted by a third party once a month. Equipment maintenance and calibration were conducted according to the plant's procedures in accordance with the adopted ISO9001 and ISO14001 systems. The accuracy ratio of the flowmeters was in the range of ±1.3%. The inspection of the flowmeters was performed annually under the Green House Gas Management System established by the Asahi Kasei Chemicals Corporation.  ", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "GIO/CGER/NIES", + "Link": "", + "creation_date": "2022-03-14T08:01:39.896Z", + "last_change_date": "2022-03-14T08:01:39.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8142, + "fields": { + "EF_ID": 213625, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O decompositon factor (same meaning as destruction factor indicated in GPG2000) for thermal destruction of N2O generated from Adipic Acid production (See Comments from the data provider.)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "N2O decompositon (same meaning as destruction indicated in GPG2000) due to thermal N2O decomposition equipment", + "Other_Properties": "Measurement was conducted at Leona Plastics & Intermediates Plant, Nobeoka Works of the Asahi Kasei Chemicals Corporation", + "Value": "99.94", + "Unit": "%", + "Equation": "Page 3.31 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Tier 1); Page 2.19 of Reference Manual of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 2-8 ", + "Data_Source": "Other", + "Technical_Reference": "N2O Emissions Factor from the Adipic Acid Production at Leona Plastics & Intermediates Plant, Nobeoka Works of Asahi Kasei Chemicals Corporation described by Greenhouse Gas Inventory Office of Japan. ", + "English_Abstract": "The report documents the information about N2O generation from adipic acid production and N2O decompositon (same meaning as destruction indicated in GPG2000) due to the N2O decompositon equipment (same meaningas destruction equipment indicated in GPG2000) at Leona Plastics & Intermediates Plant, Nobeoka Works of the Asahi Kasei Chemicals Corporation.", + "Lower_Bound": "99.84%", + "Upper_Bound": "100%", + "Data_Quality": "High certainty of GHG protocol Corporate Accounting and Reporting Standard", + "Data_Quality_Reference": "See technical reference", + "Other_Data_Quality": "The amount of N2O was calculated by multiplying N2O concentrations by gas flow-rates. N2O concentrations and gas flows were measured continuously by the online infrared gas analyzer and by the flow meters. The measuring precision of the infrared gas analyzer was in the range of +/- 2.0% of the full scale. The automatic calibration of the analyzer with the standard gas was performed once a week, and periodical inspections of the analyzers were conducted by a third party once a month. Equipment maintenance and calibration were conducted according to the plant's procedures in accordance with the adopted ISO9001 and ISO14001 systems. The accuracy ratio of the flowmeters was in the range of ±1.3%. The inspection of the flowmeters was performed annually under the Green House Gas Management System established by the Asahi Kasei Chemicals Corporation.", + "Data_Provider_Comments": "As 0.03% of the generated N2O gas escapes through the online infrared gas analyzer and during the first crystallization process, the remaining 99.97% is fed into decomposition equipment. In addition, 99.97% of the N2O fed is destroyed. Therefore, the overall destruction factor is 99.94% (= 0.9997 * 0.9997).", + "Other_Comments": "", + "Data_Provider": "GIO/CGER/NIES", + "Link": "", + "creation_date": "2022-03-14T08:01:40.005Z", + "last_change_date": "2022-03-14T08:01:40.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8143, + "fields": { + "EF_ID": 213919, + "IPCC_Category": "2.A - Mineral Industry, 2.A.1 - Cement production, 2.A.2 - Lime production, 2.A.3 - Glass Production, 2.A.4 - Other Process Uses of Carbonates, 2.A.4.a - Ceramics, 2.A.4.b - Other Uses of Soda Ash, 2.A.4.c - Non Metallurgical Magnesia Production, 2.A.4.d - Other (please specify), 2.A.5 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for CO2 emissions from use of carbonate", + "Technology_Practices": "", + "Parameter_Conditions": "CaCO3 (Calcite or aragonite); formula weight = 100.0869", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43971", + "Unit": "tonne CO2/tonne carbonate", + "Equation": "Equations 2.3, 2.5, 2.7, 2.12, 2.14, 2.15, 2.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A4, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.1)", + "Technical_Reference": "CRC Handbook of Chemistry and Physics (2004). (David R. Lide, Ed in Chief); CRC Press, Boca Raton, FL; Sec. 1, p.12-14", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "Based on stoichiometric calculation, therefore uncertainty is not relevant.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of emitted CO2 assuming 100 percent calcination. Calcite is the principal mineral in limestone. Terms like high-magnesium or dolomitic limestones refer to a relatively small substitution of Mg for Ca in the general CaCO3 formula commonly shown for limestone.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.114Z", + "last_change_date": "2022-03-14T08:01:40.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8144, + "fields": { + "EF_ID": 213920, + "IPCC_Category": "2.A - Mineral Industry, 2.A.1 - Cement production, 2.A.2 - Lime production, 2.A.3 - Glass Production, 2.A.4 - Other Process Uses of Carbonates, 2.A.4.a - Ceramics, 2.A.4.b - Other Uses of Soda Ash, 2.A.4.c - Non Metallurgical Magnesia Production, 2.A.4.d - Other (please specify), 2.A.5 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for CO2 emissions from use of carbonate", + "Technology_Practices": "", + "Parameter_Conditions": "MgCO3 (Magnesite); formula weight = 84.3139", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52197", + "Unit": "tonne CO2/tonne carbonate", + "Equation": "Equations 2.3, 2.5, 2.7, 2.12, 2.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A4, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.1)", + "Technical_Reference": "CRC Handbook of Chemistry and Physics (2004). (David R. Lide, Ed in Chief); CRC Press, Boca Raton, FL; Sec. 1, p.12-14", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "Based on stoichiometric calculation, therefore uncertainty is not relevant.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of emitted CO2 assuming 100 percent calcination.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.208Z", + "last_change_date": "2022-03-14T08:01:40.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8145, + "fields": { + "EF_ID": 213921, + "IPCC_Category": "2.A - Mineral Industry, 2.A.1 - Cement production, 2.A.2 - Lime production, 2.A.3 - Glass Production, 2.A.4 - Other Process Uses of Carbonates, 2.A.4.a - Ceramics, 2.A.4.b - Other Uses of Soda Ash, 2.A.4.c - Non Metallurgical Magnesia Production, 2.A.4.d - Other (please specify), 2.A.5 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for CO2 emissions from use of carbonate", + "Technology_Practices": "", + "Parameter_Conditions": "CaMg(CO3)2 (Dolomite); formula weight = 184.4008", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47732", + "Unit": "tonne CO2/tonne carbonate", + "Equation": "Equations 2.3, 2.5, 2.7, 2.12, 2.14, 2.15, 2.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A4, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.1)", + "Technical_Reference": "CRC Handbook of Chemistry and Physics (2004). (David R. Lide, Ed in Chief); CRC Press, Boca Raton, FL; Sec. 1, p.12-14", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "Based on stoichiometric calculation, therefore uncertainty is not relevant.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of emitted CO2 assuming 100 percent calcination. Calcite is the principal mineral in limestone. Terms like high-magnesium or dolomitic limestones refer to a relatively small substitution of Mg for Ca in the general CaCO3 formula commonly shown for limestone.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.332Z", + "last_change_date": "2022-03-14T08:01:40.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8146, + "fields": { + "EF_ID": 213922, + "IPCC_Category": "2.A - Mineral Industry, 2.A.1 - Cement production, 2.A.2 - Lime production, 2.A.3 - Glass Production, 2.A.4 - Other Process Uses of Carbonates, 2.A.4.a - Ceramics, 2.A.4.b - Other Uses of Soda Ash, 2.A.4.c - Non Metallurgical Magnesia Production, 2.A.4.d - Other (please specify), 2.A.5 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for CO2 emissions from use of carbonate", + "Technology_Practices": "", + "Parameter_Conditions": "FeCO3 (Siderite); formula weight = 115.8539", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37987", + "Unit": "tonne CO2/tonne carbonate", + "Equation": "Equations 2.3, 2.5, 2.7, 2.12, 2.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A4, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.1)", + "Technical_Reference": "CRC Handbook of Chemistry and Physics (2004). (David R. Lide, Ed in Chief); CRC Press, Boca Raton, FL; Sec. 1, p.12-14", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "Based on stoichiometric calculation, therefore uncertainty is not relevant.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of emitted CO2 assuming 100 percent calcination.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.408Z", + "last_change_date": "2022-03-14T08:01:40.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8147, + "fields": { + "EF_ID": 213923, + "IPCC_Category": "2.A - Mineral Industry, 2.A.1 - Cement production, 2.A.2 - Lime production, 2.A.3 - Glass Production, 2.A.4 - Other Process Uses of Carbonates, 2.A.4.a - Ceramics, 2.A.4.b - Other Uses of Soda Ash, 2.A.4.c - Non Metallurgical Magnesia Production, 2.A.4.d - Other (please specify), 2.A.5 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for CO2 emissions from use of carbonate", + "Technology_Practices": "", + "Parameter_Conditions": "Ca(Fe,Mg,Mn)(CO3)2 (Ankerite); formula weight = 185.0225-215.6160", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40822-0.47572", + "Unit": "tonne CO2/tonne carbonate", + "Equation": "Equations 2.3, 2.5, 2.7, 2.12, 2.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A4, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.1)", + "Technical_Reference": "CRC Handbook of Chemistry and Physics (2004). (David R. Lide, Ed in Chief); CRC Press, Boca Raton, FL; Sec. 1, p.12-14", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "Based on stoichiometric calculation, therefore uncertainty is not relevant.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of emitted CO2 assuming 100 percent calcination. Formulae weight range shown for ankerite assumes that Fe, Mg, and Mn are present in amounts of at least 1.0 percent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.483Z", + "last_change_date": "2022-03-14T08:01:40.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8148, + "fields": { + "EF_ID": 213924, + "IPCC_Category": "2.A - Mineral Industry, 2.A.1 - Cement production, 2.A.2 - Lime production, 2.A.3 - Glass Production, 2.A.4 - Other Process Uses of Carbonates, 2.A.4.a - Ceramics, 2.A.4.b - Other Uses of Soda Ash, 2.A.4.c - Non Metallurgical Magnesia Production, 2.A.4.d - Other (please specify), 2.A.5 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for CO2 emissions from use of carbonate", + "Technology_Practices": "", + "Parameter_Conditions": "MnCO3 (Rhodochrosite); formula weight = 114.9470", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38286", + "Unit": "tonne CO2/tonne carbonate", + "Equation": "Equations 2.3, 2.5, 2.7, 2.12, 2.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A4, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.1)", + "Technical_Reference": "CRC Handbook of Chemistry and Physics (2004). (David R. Lide, Ed in Chief); CRC Press, Boca Raton, FL; Sec. 1, p.12-14", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "Based on stoichiometric calculation, therefore uncertainty is not relevant.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of emitted CO2 assuming 100 percent calcination.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.576Z", + "last_change_date": "2022-03-14T08:01:40.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8149, + "fields": { + "EF_ID": 213925, + "IPCC_Category": "2.A - Mineral Industry, 2.A.1 - Cement production, 2.A.2 - Lime production, 2.A.3 - Glass Production, 2.A.4 - Other Process Uses of Carbonates, 2.A.4.a - Ceramics, 2.A.4.b - Other Uses of Soda Ash, 2.A.4.c - Non Metallurgical Magnesia Production, 2.A.4.d - Other (please specify), 2.A.5 - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for CO2 emissions from use of carbonate", + "Technology_Practices": "", + "Parameter_Conditions": "Na2CO3 (Sodium carbonate or Soda ash); formula weight = 106.0685", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41492", + "Unit": "tonne CO2/tonne carbonate", + "Equation": "Equations 2.3, 2.5, 2.7, 2.12, 2.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A4, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.1)", + "Technical_Reference": "CRC Handbook of Chemistry and Physics (2004). (David R. Lide, Ed in Chief); CRC Press, Boca Raton, FL; Sec. 1, p.12-14", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "Based on stoichiometric calculation, therefore uncertainty is not relevant.", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fraction of emitted CO2 assuming 100 percent calcination.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.675Z", + "last_change_date": "2022-03-14T08:01:40.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8150, + "fields": { + "EF_ID": 213926, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for clinker production", + "Technology_Practices": "", + "Parameter_Conditions": "CaO content for clinker of 65%; 100% of the CaO is from calcium carbonate material; 2% correction factor for Cement Kiln Dust (CKD) is incorporated.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Tier 1 method)", + "IPCC_Worksheet": "2A1, Sheet 2 of 2, in Annex 1 (page A1.4) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Equation 2.4)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "-25 to -36%", + "Upper_Bound": "+25 to +36%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from relevant values in Table 2.3 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Provider_Comments": "For details, see Equation 2.4 and its explanation in Chapter 2 (pages 2.11-2.12), Volume 3 of the 2006 IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.733Z", + "last_change_date": "2022-03-14T08:01:40.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8151, + "fields": { + "EF_ID": 213927, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CKD (Cement Kiln Dust) correction factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.02", + "Unit": "fraction", + "Equation": "This factor is used to calculate default emission factor for clinker in Equation 2.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, page 2.12)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "-25 to -35%", + "Upper_Bound": "+25 to +35%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "Table 2.3 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Quote from page 2.12 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines: As data on the amount of CKD produced may be scarce (except possibly for plant-level reporting), estimating emissions from lost CKD based on a default value can be considered good practice. The amount of CO2 from lost CKD can vary, but ranges typically from about 1.5 percent (additional CO2 relative to that calculated for clinker) for a modern plant to about 20 percent for a plant losing a lot of highly calcinated CKD (van Oss, 2005). In the absence of data, the default CKD correction factor is 1.02 (i.e., add 2 percent to the CO2 calculated for clinker). If no calcined CKD is believed to be lost to the system, the CKD correction factor will be 1.00 (van Oss, 2005). In addition to CKD, the World Business Council for Sustainable Development (WBCSD) separately addresses emissions from bypass dust (which is fully calcined). If the data are available, countries may refer to the WBCSD Protocol to estimate these emissions (WBCSD, 2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.818Z", + "last_change_date": "2022-03-14T08:01:40.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8152, + "fields": { + "EF_ID": 213928, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for lime production", + "Technology_Practices": "", + "Parameter_Conditions": "Based on the assumption of 85% production of high calcium lime and 15% production of dolomitic lime.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonne CO2/tonne lime produced", + "Equation": "Tier 1 method according to the 2006 IPCC Guidelines. In order to estimate CO2 emissions, apply this default emission factor to national level lime production data.; Equation 3.4 on Page 3.20 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A2, Sheet 1 of 1, in Annex 1 (page A1.4) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-2, Sheet 1 of 1, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Equation 2.8); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Page 3.22)", + "Technical_Reference": "Boynton, R. S. (1980). Chemistry and Technology of Lime and Limestone, 2nd edition, John Wiley and Sons, Inc., New York, USA.; Miller, M. (1999). US Geological Survey, Calculations based on Boynton.", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "Table 2.5 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default emission factor for dolomitic lime may be 0.86 or 0.77 tonnes CO2/tonne lime produced depending on the technology used for lime production. The higher value is suggested for developed countries, the lower value for developing countries. Uncertainty estimate assumes that there is no hydraulic lime produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.894Z", + "last_change_date": "2022-03-14T08:01:40.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8153, + "fields": { + "EF_ID": 213929, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "LKD (Lime Kiln Dust) correction factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.02", + "Unit": "fraction", + "Equation": "See the explanation of Tier 2 Method on pages 2.23-2.24 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, page 2.24)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "-25 to -35%", + "Upper_Bound": "+25 to +35%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, and Michael Miller, U.S. Geological Survey", + "Data_Quality_Reference": "Table 2.5 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This factor is used in Tier 2 or 3 method according to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. The default value for LKD correction is based on the default value for CKD correction in cement production. The uncertainty for LKD correction is assumed to be at least equal to, and likely greater than, the uncertainty for CKD correction.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:40.986Z", + "last_change_date": "2022-03-14T08:01:40.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8154, + "fields": { + "EF_ID": 213930, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Typical raw material mixture is assumed. Namely, typical soda-lime batch consisting of sand (56.2 weight percent), feldspar (5.3 percent), dolomite (9.8 percent), limestone (8.6 percent) and soda ash (20.0 percent).", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.10 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Tier 1 method)", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Equation 2.13)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-60% (See Other info on data quality)", + "Upper_Bound": "+60% (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "This uncertainty range is associated with use of the Tier 1 (default) emission factor and cullet ratio, rather than default emission factor only. It may be on the order of +/- 60 percent, according to the 2006 IPCC Guidelines.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.069Z", + "last_change_date": "2022-03-14T08:01:41.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8155, + "fields": { + "EF_ID": 213931, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "fraction", + "Equation": "Equation 2.10 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Tier 1 method)", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, page 2.30)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-60% (See Other info on data quality)", + "Upper_Bound": "+60% (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "This uncertainty range is associated with use of the Tier 1 (default) emission factor and cullet ratio, rather than default cullet ratio only. It may be on the order of +/- 60 percent, according to the 2006 IPCC Guidelines.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.170Z", + "last_change_date": "2022-03-14T08:01:41.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8156, + "fields": { + "EF_ID": 213932, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Float", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.244Z", + "last_change_date": "2022-03-14T08:01:41.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8157, + "fields": { + "EF_ID": 213933, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Float", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10-0.20", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.10 (See Other info on data quality)", + "Upper_Bound": "0.20 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.319Z", + "last_change_date": "2022-03-14T08:01:41.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8158, + "fields": { + "EF_ID": 213934, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Container (Flint)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.413Z", + "last_change_date": "2022-03-14T08:01:41.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8159, + "fields": { + "EF_ID": 213935, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Container (Flint)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30-0.60", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.30 (See Other info on data quality)", + "Upper_Bound": "0.60 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.503Z", + "last_change_date": "2022-03-14T08:01:41.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8160, + "fields": { + "EF_ID": 213936, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Container (Amber/Green)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.569Z", + "last_change_date": "2022-03-14T08:01:41.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8161, + "fields": { + "EF_ID": 213937, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Container (Amber/Green)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30-0.80", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.30 (See Other info on data quality)", + "Upper_Bound": "0.80 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.665Z", + "last_change_date": "2022-03-14T08:01:41.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8162, + "fields": { + "EF_ID": 213938, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Fiberglass (E-glass)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.761Z", + "last_change_date": "2022-03-14T08:01:41.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8163, + "fields": { + "EF_ID": 213939, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Fiberglass (E-glass)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00-0.15", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.00 (See Other info on data quality)", + "Upper_Bound": "0.15 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.833Z", + "last_change_date": "2022-03-14T08:01:41.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8164, + "fields": { + "EF_ID": 213940, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Fiberglass (Insulation)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:41.924Z", + "last_change_date": "2022-03-14T08:01:41.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8165, + "fields": { + "EF_ID": 213941, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Fiberglass (Insulation)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10-0.50", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.10 (See Other info on data quality)", + "Upper_Bound": "0.50 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.003Z", + "last_change_date": "2022-03-14T08:01:42.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8166, + "fields": { + "EF_ID": 213942, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (TV Panel)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.083Z", + "last_change_date": "2022-03-14T08:01:42.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8167, + "fields": { + "EF_ID": 213943, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (TV Panel)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20-0.75", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.20 (See Other info on data quality)", + "Upper_Bound": "0.75 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.176Z", + "last_change_date": "2022-03-14T08:01:42.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8168, + "fields": { + "EF_ID": 213944, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (TV Funnel)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.261Z", + "last_change_date": "2022-03-14T08:01:42.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8169, + "fields": { + "EF_ID": 213945, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (TV Funnel)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20-0.70", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.20 (See Other info on data quality)", + "Upper_Bound": "0.70 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.333Z", + "last_change_date": "2022-03-14T08:01:42.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8170, + "fields": { + "EF_ID": 213946, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (Tableware)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.412Z", + "last_change_date": "2022-03-14T08:01:42.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8171, + "fields": { + "EF_ID": 213947, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (Tableware)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20-0.60", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.20 (See Other info on data quality)", + "Upper_Bound": "0.60 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.486Z", + "last_change_date": "2022-03-14T08:01:42.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8172, + "fields": { + "EF_ID": 213948, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (Lab/Pharma)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.550Z", + "last_change_date": "2022-03-14T08:01:42.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8173, + "fields": { + "EF_ID": 213949, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (Lab/Pharma)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30-0.75", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.30 (See Other info on data quality)", + "Upper_Bound": "0.75 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.638Z", + "last_change_date": "2022-03-14T08:01:42.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8174, + "fields": { + "EF_ID": 213950, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (Lighting)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "tonne CO2/tonne glass", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.719Z", + "last_change_date": "2022-03-14T08:01:42.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8175, + "fields": { + "EF_ID": 213951, + "IPCC_Category": "2.A.3 - Glass Production, 2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Curret Ratio in Glass Production", + "Technology_Practices": "", + "Parameter_Conditions": "Glass type: Specialty (Lighting)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40-0.70", + "Unit": "fraction", + "Equation": "Equation 2.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2A3, Sheet 1 of 1, in Annex 1 (page A1.5) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 2, Table 2.6)", + "Technical_Reference": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories based on communication with Victor Aume (2004)", + "English_Abstract": "", + "Lower_Bound": "0.40 (See Other info on data quality)", + "Upper_Bound": "0.70 (See Other info on data quality)", + "Data_Quality": "Expert judgement by the authors of Chapter 2, Volume 3 of the 2006 IPCC Guidelines based on communication with Victor Aume (2004)", + "Data_Quality_Reference": "Page 2.31 of Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Other_Data_Quality": "The range in the Value field can be assumed to reflect the 95 percent confidence interval.", + "Data_Provider_Comments": "The mid-point values of the cullet ratio may be used unless other values are known to be more representative of country-specific circumstances.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.783Z", + "last_change_date": "2022-03-14T08:01:42.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8176, + "fields": { + "EF_ID": 213974, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total Fuel Requirements for Ammonia Production", + "Technology_Practices": "Modern plants; Conventional reforming; natural gas as feedstock", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.2", + "Unit": "GJ[NCV]/tonne NH3", + "Equation": "Equations 3.1, 3.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B1, Sheet 1 of 2, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For modern plants default factors can be derived using C content based on natural gas (dry basis). See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.873Z", + "last_change_date": "2022-03-14T08:01:42.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8177, + "fields": { + "EF_ID": 213975, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total Fuel Requirements for Ammonia Production", + "Technology_Practices": "Modern plants; Excess air reforming; natural gas as feedstock", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.7", + "Unit": "GJ[NCV]/tonne NH3", + "Equation": "Equations 3.1, 3.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B1, Sheet 1 of 2, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For modern plants default factors can be derived using C content based on natural gas (dry basis). See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:42.961Z", + "last_change_date": "2022-03-14T08:01:42.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8178, + "fields": { + "EF_ID": 213976, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total Fuel Requirements for Ammonia Production", + "Technology_Practices": "Modern plants; Autothermal reforming; natural gas as feedstock", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.2", + "Unit": "GJ[NCV]/tonne NH3", + "Equation": "Equations 3.1, 3.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B1, Sheet 1 of 2, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For modern plants default factors can be derived using C content based on natural gas (dry basis). See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.048Z", + "last_change_date": "2022-03-14T08:01:43.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8179, + "fields": { + "EF_ID": 213977, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total Fuel Requirements for Ammonia Production", + "Technology_Practices": "Modern plants; Partial oxidation", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.0", + "Unit": "GJ[NCV]/tonne NH3", + "Equation": "Equations 3.1, 3.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B1, Sheet 1 of 2, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For partial oxidation default factors can be derived using C content based on residual fuel oil. See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.136Z", + "last_change_date": "2022-03-14T08:01:43.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8180, + "fields": { + "EF_ID": 213978, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total Fuel Requirements for Ammonia Production", + "Technology_Practices": "Mix of modern and older plants (Derived from European average values for specific energy consumption); natural gas as feedstock", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.5", + "Unit": "GJ[NCV]/tonne NH3", + "Equation": "Equations 3.1, 3.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B1, Sheet 1 of 2, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-7%", + "Upper_Bound": "+7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.225Z", + "last_change_date": "2022-03-14T08:01:43.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8181, + "fields": { + "EF_ID": 213979, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total Fuel Requirements for Ammonia Production", + "Technology_Practices": "Mix of modern and older plants (Derived from European average values for specific energy consumption); Partial oxidation", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "GJ[NCV]/tonne NH3", + "Equation": "Equations 3.1, 3.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B1, Sheet 1 of 2, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-7%", + "Upper_Bound": "+7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.303Z", + "last_change_date": "2022-03-14T08:01:43.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8182, + "fields": { + "EF_ID": 213980, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "Modern plants; Conventional reforming; natural gas as feedstock", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.694", + "Unit": "Tonne CO2/tonne NH3 produced", + "Equation": "Equation 3.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (The emission factor is the product of FR (fuel requirement), CCF (carbon content of the fuel) and COF (carbon oxidation factor of the fuel).)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For modern plants default factors can be derived using C content based on natural gas (dry basis). See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.384Z", + "last_change_date": "2022-03-14T08:01:43.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8183, + "fields": { + "EF_ID": 213981, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "Modern plants; Excess air reforming; natural gas as feedstock", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.7", + "Unit": "Tonne CO2/tonne NH3 produced", + "Equation": "Equation 3.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (The emission factor is the product of FR (fuel requirement), CCF (carbon content of the fuel) and COF (carbon oxidation factor of the fuel).)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For modern plants default factors can be derived using C content based on natural gas (dry basis). See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.461Z", + "last_change_date": "2022-03-14T08:01:43.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8184, + "fields": { + "EF_ID": 213982, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "Modern plants; Autothermal reforming; natural gas as feedstock", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.2", + "Unit": "Tonne CO2/tonne NH3 produced", + "Equation": "Equation 3.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (The emission factor is the product of FR (fuel requirement), CCF (carbon content of the fuel) and COF (carbon oxidation factor of the fuel).)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For modern plants default factors can be derived using C content based on natural gas (dry basis). See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.543Z", + "last_change_date": "2022-03-14T08:01:43.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8185, + "fields": { + "EF_ID": 213983, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "Modern plants; Partial oxidation", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.0", + "Unit": "Tonne CO2/tonne NH3 produced", + "Equation": "Equation 3.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (The emission factor is the product of FR (fuel requirement), CCF (carbon content of the fuel) and COF (carbon oxidation factor of the fuel).)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For partial oxidation default factors can be derived using C content based on residual fuel oil. See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.620Z", + "last_change_date": "2022-03-14T08:01:43.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8186, + "fields": { + "EF_ID": 213984, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "Mix of modern and older plants (Derived from European average values for specific energy consumption); natural gas as feedstock", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.5", + "Unit": "Tonne CO2/tonne NH3 produced", + "Equation": "Equation 3.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (The emission factor is the product of FR (fuel requirement), CCF (carbon content of the fuel) and COF (carbon oxidation factor of the fuel).)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-7%", + "Upper_Bound": "+7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.720Z", + "last_change_date": "2022-03-14T08:01:43.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8187, + "fields": { + "EF_ID": 213985, + "IPCC_Category": "2.B.1 - Ammonia Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Ammonia Production", + "Technology_Practices": "Mix of modern and older plants (Derived from European average values for specific energy consumption); Partial oxidation", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5", + "Unit": "Tonne CO2/tonne NH3 produced", + "Equation": "Equation 3.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (The emission factor is the product of FR (fuel requirement), CCF (carbon content of the fuel) and COF (carbon oxidation factor of the fuel).)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.1)", + "Technical_Reference": "Adapted from EFMA (2000b). European Fertilizer Manufacturers` Association, Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry: Production of Nitric Acid, Booklet No. 2 of 8, European Fertilizer Manufacturers` Association, Brussels.; and de Beer, J., Phylipsen, D. and Bates, J. (2001). Economic Evaluation of Sectoral Emission Reduction Objectives for Climate Change: Economic Evaluation of Carbon Dioxide and Nitrous Oxide Emission Reductions in Industry in the EU - Bottom-up Analysis, Contribution to a Study for DG Environment, European Commission by Ecofys Energy and Environment, AEA Technology Environment and National Technical University of Athens.", + "English_Abstract": "", + "Lower_Bound": "-7%", + "Upper_Bound": "+7%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "See Table 3.1 in Chapter 3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.816Z", + "last_change_date": "2022-03-14T08:01:43.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8188, + "fields": { + "EF_ID": 213986, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Nitric Acid Production (relating to 100 percent pure acid)", + "Technology_Practices": "Plants with Non-Selective Catalytic Reduction (NSCR) (all processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equations 3.5, 3.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B2, Sheet 1 of 1, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.3)", + "Technical_Reference": "van Balken, J.A.M. (2005). Personal communication from J.A.M. van Balken (European Fertilizer Manufacturers Association).", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Section 3.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This factor already incorporates the effect of N2O abatement measures. To use this factor, inventory compilers should verify that the abatement technology is installed at individual plants and operated throughout the year.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.921Z", + "last_change_date": "2022-03-14T08:01:43.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8189, + "fields": { + "EF_ID": 213987, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Nitric Acid Production (relating to 100 percent pure acid)", + "Technology_Practices": "Plants with process-integrated or tailgas N2O destruction", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Process-integrated or tailgas N2O destruction", + "Other_Properties": "", + "Value": "2.5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equations 3.5, 3.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B2, Sheet 1 of 1, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.3)", + "Technical_Reference": "van Balken, J.A.M. (2005). Personal communication from J.A.M. van Balken (European Fertilizer Manufacturers Association).", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Section 3.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This factor already incorporates the effect of N2O abatement measures. To use this factor, inventory compilers should verify that the abatement technology is installed at individual plants and operated throughout the year.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:43.995Z", + "last_change_date": "2022-03-14T08:01:43.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8190, + "fields": { + "EF_ID": 213988, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Nitric Acid Production (relating to 100 percent pure acid)", + "Technology_Practices": "Atmospheric pressure plants (low pressure)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equations 3.5, 3.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B2, Sheet 1 of 1, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.3)", + "Technical_Reference": "van Balken, J.A.M. (2005). Personal communication from J.A.M. van Balken (European Fertilizer Manufacturers Association).", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "Expert judgement by the authors of Section 3.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.058Z", + "last_change_date": "2022-03-14T08:01:44.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8191, + "fields": { + "EF_ID": 213989, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Nitric Acid Production (relating to 100 percent pure acid)", + "Technology_Practices": "Medium pressure combustion plants", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equations 3.5, 3.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B2, Sheet 1 of 1, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.3)", + "Technical_Reference": "van Balken, J.A.M. (2005). Personal communication from J.A.M. van Balken (European Fertilizer Manufacturers Association).", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "Expert judgement by the authors of Section 3.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.156Z", + "last_change_date": "2022-03-14T08:01:44.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8192, + "fields": { + "EF_ID": 213990, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Nitric Acid Production (relating to 100 percent pure acid)", + "Technology_Practices": "High pressure plants", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equations 3.5, 3.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B2, Sheet 1 of 1, in Annex 1 (page A1.6) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.3)", + "Technical_Reference": "van Balken, J.A.M. (2005). Personal communication from J.A.M. van Balken (European Fertilizer Manufacturers Association).", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "Expert judgement by the authors of Section 3.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.229Z", + "last_change_date": "2022-03-14T08:01:44.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8193, + "fields": { + "EF_ID": 213991, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Destruction Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement technology: Catalytic Destruction", + "Other_Properties": "", + "Value": "92.5", + "Unit": "%", + "Equation": "Equation 3.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4)", + "Technical_Reference": "Scott, Alex (1998). `The winners and losers of N2O emission control`. Chemical Week, February 18, 1998.; Reimer, R., (1999). Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "0.9", + "Upper_Bound": "0.95", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The destruction factor (that represents the technology abatement efficiency) should be multiplied by an abatement system utilisation factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.295Z", + "last_change_date": "2022-03-14T08:01:44.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8194, + "fields": { + "EF_ID": 213992, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Destruction Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement technology: Thermal Destruction", + "Other_Properties": "", + "Value": "98.5", + "Unit": "%", + "Equation": "Equation 3.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4)", + "Technical_Reference": "Scott, Alex (1998). `The winners and losers of N2O emission control`. Chemical Week, February 18, 1998.", + "English_Abstract": "", + "Lower_Bound": "0.98", + "Upper_Bound": "0.99", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The destruction factor (that represents the technology abatement efficiency) should be multiplied by an abatement system utilisation factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.358Z", + "last_change_date": "2022-03-14T08:01:44.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8195, + "fields": { + "EF_ID": 213993, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Destruction Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement technology: Recycle to feedstock for Phenol", + "Other_Properties": "", + "Value": "98.5", + "Unit": "%", + "Equation": "Equation 3.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4)", + "Technical_Reference": "Scott, Alex (1998). `The winners and losers of N2O emission control`. Chemical Week, February 18, 1998.", + "English_Abstract": "", + "Lower_Bound": "0.98", + "Upper_Bound": "0.99", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The destruction factor (that represents the technology abatement efficiency) should be multiplied by an abatement system utilisation factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.458Z", + "last_change_date": "2022-03-14T08:01:44.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8196, + "fields": { + "EF_ID": 213994, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Destruction Factor for Adipic Acid Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement technology: Recycle to feedstock for Adipic Acid", + "Other_Properties": "", + "Value": "94", + "Unit": "%", + "Equation": "Equation 3.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4)", + "Technical_Reference": "Scott, Alex (1998). `The winners and losers of N2O emission control`. Chemical Week, February 18, 1998.", + "English_Abstract": "", + "Lower_Bound": "0.9", + "Upper_Bound": "0.98", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The destruction factor (that represents the technology abatement efficiency) should be multiplied by an abatement system utilisation factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.528Z", + "last_change_date": "2022-03-14T08:01:44.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8197, + "fields": { + "EF_ID": 213995, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Abatement System Utilisation Factor for Adipic Acid Production (Factor to account for any down time of the emission abatement equipment)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement system: Catalytic Destruction", + "Other_Properties": "", + "Value": "89", + "Unit": "%", + "Equation": "Equation 3.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4)", + "Technical_Reference": "Reimer, R. (1999), Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "0.8", + "Upper_Bound": "0.98", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that this default value is based on expert judgement and not industry-supplied data or plant-specific measurements. In the first 1-5 years of the abatement technology implementation, the utilisation factor tends to be at the lower end of the range. Lower utility of the equipment typically results because of the need to learn how to operate the abatement system and because more maintenance problems occur during the initial phase. After 1-5 years, the operating experience improves and the utilisation factor would tend to be at the high end of the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.591Z", + "last_change_date": "2022-03-14T08:01:44.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8198, + "fields": { + "EF_ID": 213996, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Abatement System Utilisation Factor for Adipic Acid Production (Factor to account for any down time of the emission abatement equipment)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement system: Thermal Destruction", + "Other_Properties": "", + "Value": "97", + "Unit": "%", + "Equation": "Equation 3.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4)", + "Technical_Reference": "Reimer, R. (1999), Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "0.95", + "Upper_Bound": "0.99", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that this default value is based on expert judgement and not industry-supplied data or plant-specific measurements. In the first 1-5 years of the abatement technology implementation, the utilisation factor tends to be at the lower end of the range. Lower utility of the equipment typically results because of the need to learn how to operate the abatement system and because more maintenance problems occur during the initial phase. After 1-5 years, the operating experience improves and the utilisation factor would tend to be at the high end of the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.666Z", + "last_change_date": "2022-03-14T08:01:44.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8199, + "fields": { + "EF_ID": 213997, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Abatement System Utilisation Factor for Adipic Acid Production (Factor to account for any down time of the emission abatement equipment)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement system: Recycle to Nitric Acid", + "Other_Properties": "", + "Value": "94", + "Unit": "%", + "Equation": "Equation 3.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4)", + "Technical_Reference": "Reimer, R. (1999), Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "0.9", + "Upper_Bound": "0.98", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that this default value is based on expert judgement and not industry-supplied data or plant-specific measurements. In the first 1-5 years of the abatement technology implementation, the utilisation factor tends to be at the lower end of the range. Lower utility of the equipment typically results because of the need to learn how to operate the abatement system and because more maintenance problems occur during the initial phase. After 1-5 years, the operating experience improves and the utilisation factor would tend to be at the high end of the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.759Z", + "last_change_date": "2022-03-14T08:01:44.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8200, + "fields": { + "EF_ID": 213998, + "IPCC_Category": "2.B.3 - Adipic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Abatement System Utilisation Factor for Adipic Acid Production (Factor to account for any down time of the emission abatement equipment)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Abatement system: Recycle to Adipic Acid", + "Other_Properties": "", + "Value": "89", + "Unit": "%", + "Equation": "Equation 3.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.4)", + "Technical_Reference": "Reimer, R. (1999), Personal communication between Ron Reimer of DuPont, USA and Heike Mainhardt of ICF, Inc., USA. May 19, 1999.", + "English_Abstract": "", + "Lower_Bound": "0.8", + "Upper_Bound": "0.98", + "Data_Quality": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that this default value is based on expert judgement and not industry-supplied data or plant-specific measurements. In the first 1-5 years of the abatement technology implementation, the utilisation factor tends to be at the lower end of the range. Lower utility of the equipment typically results because of the need to learn how to operate the abatement system and because more maintenance problems occur during the initial phase. After 1-5 years, the operating experience improves and the utilisation factor would tend to be at the high end of the range.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.845Z", + "last_change_date": "2022-03-14T08:01:44.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8201, + "fields": { + "EF_ID": 213999, + "IPCC_Category": "2.B.4 - Caprolactam, Glyoxal and Glyoxylic Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O Emission Factor for Caprolactam Production (default)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "No abatement", + "Other_Properties": "", + "Value": "9.0", + "Unit": "kg N2O/tonne caprolactam produced", + "Equation": "Equation 3.10 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B4, Sheet 1 of 1, in Annex 1 (page A1.7) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.5)", + "Technical_Reference": "Expert judgement by the authors of Section 3.4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, based on: van Balken, J.A.M. (2005). Personal communication from J.A.M. van Balken (European Fertilizer Manufacturers Association).", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default value is based on data for high pressure plants for nitric acid production. Uncertainty for this default value is an estimate based on the default value for nitric acid plants. Estimation of emissions of N2O from caprolactam production can be treated as analogous to estimation of emissions of N2O from nitric acid production. Both production processes involve an initial step of NH3 oxidation which is the source of N2O formation and emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:44.908Z", + "last_change_date": "2022-03-14T08:01:44.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8202, + "fields": { + "EF_ID": 214000, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Silicon Carbide Production", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon source: Petroleum Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.62", + "Unit": "tonne CO2/tonne carbide produced", + "Equation": "Equation 3.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B5, Sheet 2 of 6, in Annex 1 (page A1.8) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.7)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Typical default values for Norwegian plants for carbon content in coke are 97 percent and for carbon contained in product, 35 percent.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:45.010Z", + "last_change_date": "2022-03-14T08:01:45.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8203, + "fields": { + "EF_ID": 214001, + "IPCC_Category": "2.B.5 - Carbide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Calcium Carbide Production", + "Technology_Practices": "", + "Parameter_Conditions": "Carbon source: Petroleum Coke", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.70", + "Unit": "tonne CO2/tonne petrol coke consumed", + "Equation": "Equation 3.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B5, Sheet 1 of 6, in Annex 1 (page A1.7) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.8)", + "Technical_Reference": "Based on measurements at Norwegian plants (See the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Page 2.21 of the Reference Manual)", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1,750 kg limestone (or 950 kg CaO), 640 kg of petroleum coke and 20 kg carbon electrodes are required to produce 1 tonne of carbide. CO2 emissions from limestone used in carbide manufacture are not accounted for in this emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:45.087Z", + "last_change_date": "2022-03-14T08:01:45.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8204, + "fields": { + "EF_ID": 214002, + "IPCC_Category": "2.B.6 - Titanium Dioxide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Titanium Dioxide Production", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Synthetic rutile", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.43", + "Unit": "tonne CO2/tonne titanium dioxide produced", + "Equation": "Equation 3.12 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B6, Sheet 1 of 1, in Annex 1 (page A1.9) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.9)", + "Technical_Reference": "Derived from data provided by Iluka Resources", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default emission factor is based on an estimate of reductant or carbothermal input per unit of output assuming complete conversion of the C content to CO2.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:45.150Z", + "last_change_date": "2022-03-14T08:01:45.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8205, + "fields": { + "EF_ID": 214003, + "IPCC_Category": "2.B.6 - Titanium Dioxide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Titanium Dioxide Production", + "Technology_Practices": "", + "Parameter_Conditions": "Product: Rutile titanium dioxide (chloride route)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.34", + "Unit": "tonne CO2/tonne titanium dioxide produced", + "Equation": "Equation 3.12 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B6, Sheet 1 of 1, in Annex 1 (page A1.9) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.9)", + "Technical_Reference": "Adapted from EIPPCB (2004). European Integrated Pollution Prevention and Control Bureau, Draft Reference Document on Best Available Techniques in the Large Volume Inorganic Chemicals, Ammonia, Acids and Fertilisers Industries, Draft March 2004, European Commission Directorate General JRC, Joint Research Centre, Institute for Prospective Technological Studies, Spain.", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default emission factor is based on an estimate of reductant or carbothermal input per unit of output assuming complete conversion of the C content to CO2.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:45.225Z", + "last_change_date": "2022-03-14T08:01:45.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8206, + "fields": { + "EF_ID": 214004, + "IPCC_Category": "2.B.7 - Soda Ash Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for CO2 Emissions from Natural Soda Ash Production", + "Technology_Practices": "Manufacturing process: Natural sodium carbonate-bearing deposits (Natural processes).", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.138", + "Unit": "tonne CO2/tonne of soda ash produced", + "Equation": "Equation 3.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B7, Sheet 2 of 2, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Page 3.52, Equation 3.14)", + "Technical_Reference": "See Comments from data provider.", + "English_Abstract": "", + "Lower_Bound": "Negligible", + "Upper_Bound": "Negligible", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default emission factor is derived from the stoichiometric ratio between soda ash produced and purified sodium sesquicarbonate obtained from Trona. It is based on the main natural production process that is used at present, where soda ash is produced by calcination of purified sodium sesquicarbonate. The stoichiometric ratio is an exact number and assuming 100 percent purity of the input or output, the uncertainty of the default emission factor is negligible. However, the default factors do not take into account the fractional purities of either the Trona input or soda ash output and, in both cases, are expected to result in consistent over-estimation of emissions. As noted earlier, if no data are available for the purity of the Trona input, it is good practice to assume it is 90 percent and adjust this emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:45.322Z", + "last_change_date": "2022-03-14T08:01:45.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8207, + "fields": { + "EF_ID": 214005, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: Conventional Steam Reforming, without primary reformer; Process Feedstock: Natural Gas (Defaul process technology and default feedstock)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "Methanex, 2003. Global Environmental Excellence Report 2002, Methanex Corporation, 2003; and Struker, A. Blok, K.: Sectorstudie organische chemie, National Energy Efficiency Data Informatie Systeem (NEEDIS), Patten, December 1995. Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 36.5 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:45.395Z", + "last_change_date": "2022-03-14T08:01:45.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8208, + "fields": { + "EF_ID": 214006, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: Conventional Steam Reforming, without primary reformer; Process Feedstock: Natural Gas (Defaul process technology and default feedstock)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "kg CH4/tonne of methanol produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 2 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Page 3.74)", + "Technical_Reference": "Methanex, 1996. Methanex Corporation Climate Change Voluntary Challenge and Registry Program Action Plan, September 1996.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.vcr-mvr.ca/registry/out/C969-METHANEX-W52.PDF", + "creation_date": "2022-03-14T08:01:45.475Z", + "last_change_date": "2022-03-14T08:01:45.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8209, + "fields": { + "EF_ID": 214007, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: Conventional Steam Reforming Process with Primary Reformer; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.497", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "Hinderink, et. al., 1996. Exergy Analysis with Flowsheeting Simulator - II Application Synthesis Gas Production from Natural Gas, Chemical Engineering Science, Volume 51, No. 20, Page 4701-4715, 1996, Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 33.4 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:45.582Z", + "last_change_date": "2022-03-14T08:01:45.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8210, + "fields": { + "EF_ID": 214008, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: Conventional Steam Reforming Process with Integrated Ammonia Production; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.02", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "Methanex, 2003. Global Environmental Excellence Report 2002, Methanex Corporation, 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:45.653Z", + "last_change_date": "2022-03-14T08:01:45.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8211, + "fields": { + "EF_ID": 214009, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: LURGI Conventional Steam Reforming Process; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.385", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "Lurgi, 2004, Integrated Low Pressure Methanol Process: Synthesis Gas Production by Conventional Steam Reforming of Natural Gas or Oil Associated Gas. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 31.4 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.lurgi-oel.de/lurgi_oel/english/nbsp/main/info/methanol_conventional_reforming.pdf", + "creation_date": "2022-03-14T08:01:45.720Z", + "last_change_date": "2022-03-14T08:01:45.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8212, + "fields": { + "EF_ID": 214010, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: LURGI Conventional Steam Reforming Process; Process Feedstock: Natural Gas plus Feedstock CO2", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.267", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "Lurgi, 2004, Integrated Low Pressure Methanol Process: Synthesis Gas Production by Conventional Steam Reforming of Natural Gas or Oil Associated Gas. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 29.3 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.lurgi-oel.de/lurgi_oel/english/nbsp/main/info/methanol_conventional_reforming.pdf", + "creation_date": "2022-03-14T08:01:45.795Z", + "last_change_date": "2022-03-14T08:01:45.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8213, + "fields": { + "EF_ID": 214011, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: LURGI Low Pressure Steam Reforming Process; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.267", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "Calculated from:feedstock consumption data provided in: Lurgi, 2004, Integrated Low Pressure Methanol Process: Synthesis Gas Production by Conventional Steam Reforming of Natural Gas or Oil Associated Gas. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 29.3 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.lurgi-oel.de/lurgi_oel/english/nbsp/main/info/methanol_conventional_reforming.pdf", + "creation_date": "2022-03-14T08:01:45.908Z", + "last_change_date": "2022-03-14T08:01:45.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8214, + "fields": { + "EF_ID": 214012, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: LURGI Combined Steam Reforming Process; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.396", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "Calculated from:feedstock consumption data provided in: Lurgi, 2004, Integrated Low Pressure Methanol Process: Synthesis Gas Production by Combined Steam Reforming of Natural Gas or Oil Associated Gas. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 31.6 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.lurgi-oel.de/lurgi_oel/english/nbsp/main/info/methanol_combined_reforming.pdf", + "creation_date": "2022-03-14T08:01:45.995Z", + "last_change_date": "2022-03-14T08:01:45.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8215, + "fields": { + "EF_ID": 214013, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: LURGI Mega Methanol Steam Reforming Process; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.310", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "Calculated from:feedstock consumption data provided in: Lurgi, 2004. Lurgi Mega Methanol. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 30.1 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.070Z", + "last_change_date": "2022-03-14T08:01:46.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8216, + "fields": { + "EF_ID": 214014, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: Partial Oxidation; Process Feedstock: Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.376", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "FgH-ISI, 1999. Fraunhofer-Institut für Systemtechnik und Innovationsforschung. C-Ströme Abschätzung der Material -Energie und CO2 Ströme für Modellsysteme in Zuzammenhang mit dem nichenergetishen Verbrauch, orientiert am Lebensweg - Stand und Szenarienbetractthung, Karlsrue, 1999, Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 37.15 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.137Z", + "last_change_date": "2022-03-14T08:01:46.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8217, + "fields": { + "EF_ID": 214015, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: Partial Oxidation; Process Feedstock: Coal", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.285", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "FgH-ISI, 1999. Fraunhofer-Institut für Systemtechnik und Innovationsforschung. C-Ströme Abschätzung der Material -Energie und CO2 Ströme für Modellsysteme in Zuzammenhang mit dem nichenergetishen Verbrauch, orientiert am Lebensweg - Stand und Szenarienbetractthung, Karlsrue, 1999, Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 71.6 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.226Z", + "last_change_date": "2022-03-14T08:01:46.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8218, + "fields": { + "EF_ID": 214016, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Methanol Production", + "Technology_Practices": "Process Technology: Partial Oxidation; Process Feedstock: Lignite", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.020", + "Unit": "tonne CO2/tonne of methanol produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 1 of 12, in Annex 1 (page A1.10) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.12)", + "Technical_Reference": "FgH-ISI, 1999. Fraunhofer-Institut für Systemtechnik und Innovationsforschung. C-Ströme Abschätzung der Material -Energie und CO2 Ströme für Modellsysteme in Zuzammenhang mit dem nichenergetishen Verbrauch, orientiert am Lebensweg - Stand und Szenarienbetractthung, Karlsrue, 1999, Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Feedstock consumption factor is 57.6 GJ feedstock per tonne methanol produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.312Z", + "last_change_date": "2022-03-14T08:01:46.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8219, + "fields": { + "EF_ID": 214017, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: Conventional Steam Reforming, without primary reformer; Process Feedstock: Natural Gas (Defaul process technology and default feedstock)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36.5", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "Methanex, 2003. Global Environmental Excellence Report 2002, Methanex Corporation, 2003; and Struker, A. Blok, K.: Sectorstudie organische chemie, National Energy Efficiency Data Informatie Systeem (NEEDIS), Patten, December 1995. Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.379Z", + "last_change_date": "2022-03-14T08:01:46.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8220, + "fields": { + "EF_ID": 214018, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: Conventional Steam Reforming Process with Primary Reformer; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33.4", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "Hinderink, et. al., 1996. Exergy Analysis with Flowsheeting Simulator - II Application Synthesis Gas Production from Natural Gas, Chemical Engineering Science, Volume 51, No. 20, Page 4701-4715, 1996, Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.469Z", + "last_change_date": "2022-03-14T08:01:46.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8221, + "fields": { + "EF_ID": 214019, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: LURGI Conventional Steam Reforming Process; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.14", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "Lurgi, 2004, Integrated Low Pressure Methanol Process: Synthesis Gas Production by Conventional Steam Reforming of Natural Gas or Oil Associated Gas. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.lurgi-oel.de/lurgi_oel/english/nbsp/main/info/methanol_conventional_reforming.pdf", + "creation_date": "2022-03-14T08:01:46.545Z", + "last_change_date": "2022-03-14T08:01:46.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8222, + "fields": { + "EF_ID": 214020, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: LURGI Conventional Steam Reforming Process; Process Feedstock: Natural Gas plus Feedstock CO2", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.3", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "Lurgi, 2004, Integrated Low Pressure Methanol Process: Synthesis Gas Production by Conventional Steam Reforming of Natural Gas or Oil Associated Gas. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.lurgi-oel.de/lurgi_oel/english/nbsp/main/info/methanol_conventional_reforming.pdf", + "creation_date": "2022-03-14T08:01:46.612Z", + "last_change_date": "2022-03-14T08:01:46.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8223, + "fields": { + "EF_ID": 214021, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: LURGI Low Pressure Steam Reforming Process; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.3", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "Lurgi, 2004, Integrated Low Pressure Methanol Process: Synthesis Gas Production by Conventional Steam Reforming of Natural Gas or Oil Associated Gas. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.lurgi-oel.de/lurgi_oel/english/nbsp/main/info/methanol_conventional_reforming.pdf", + "creation_date": "2022-03-14T08:01:46.703Z", + "last_change_date": "2022-03-14T08:01:46.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8224, + "fields": { + "EF_ID": 214022, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: LURGI Combined Steam Reforming Process; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.6", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "Lurgi, 2004, Integrated Low Pressure Methanol Process: Synthesis Gas Production by Combined Steam Reforming of Natural Gas or Oil Associated Gas. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.lurgi-oel.de/lurgi_oel/english/nbsp/main/info/methanol_combined_reforming.pdf", + "creation_date": "2022-03-14T08:01:46.779Z", + "last_change_date": "2022-03-14T08:01:46.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8225, + "fields": { + "EF_ID": 214023, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: LURGI Mega Methanol Steam Reforming Process; Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.1", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "Lurgi, 2004. Lurgi Mega Methanol. Lurgi Oel-Gas-Chemie", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.845Z", + "last_change_date": "2022-03-14T08:01:46.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8226, + "fields": { + "EF_ID": 214024, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: Partial Oxidation; Process Feedstock: Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.15", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "FgH-ISI, 1999. Fraunhofer-Institut für Systemtechnik und Innovationsforschung. C-Ströme Abschätzung der Material -Energie und CO2 Ströme für Modellsysteme in Zuzammenhang mit dem nichenergetishen Verbrauch, orientiert am Lebensweg - Stand und Szenarienbetractthung, Karlsrue, 1999, Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.912Z", + "last_change_date": "2022-03-14T08:01:46.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8227, + "fields": { + "EF_ID": 214025, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: Partial Oxidation; Process Feedstock: Coal", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71.6", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "FgH-ISI, 1999. Fraunhofer-Institut für Systemtechnik und Innovationsforschung. C-Ströme Abschätzung der Material -Energie und CO2 Ströme für Modellsysteme in Zuzammenhang mit dem nichenergetishen Verbrauch, orientiert am Lebensweg - Stand und Szenarienbetractthung, Karlsrue, 1999, Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:46.998Z", + "last_change_date": "2022-03-14T08:01:46.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8228, + "fields": { + "EF_ID": 214026, + "IPCC_Category": "2.B.8.a - Methanol", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Methanol Production (= Amount of feedstock required to produce 1 tonne of methanol)", + "Technology_Practices": "Process Technology: Partial Oxidation; Process Feedstock: Lignite", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.6", + "Unit": "GJ feedstock input/tonne of methanol produced", + "Equation": "Equation 3.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (This factor cannot be directly used in this equation, but SPP in this equation is relevant to this factor.", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.13)", + "Technical_Reference": "FgH-ISI, 1999. Fraunhofer-Institut für Systemtechnik und Innovationsforschung. C-Ströme Abschätzung der Material -Energie und CO2 Ströme für Modellsysteme in Zuzammenhang mit dem nichenergetishen Verbrauch, orientiert am Lebensweg - Stand und Szenarienbetractthung, Karlsrue, 1999, Cited in Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands. Report Number NW&S-E-2003-10, Copernicus Institute, Department of Science, Technology, and Society, Utrecht, The Netherlands, April 2003", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:47.070Z", + "last_change_date": "2022-03-14T08:01:47.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8229, + "fields": { + "EF_ID": 214027, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Naphtha", + "Parameter_Conditions": "", + "Regional_Conditions": "All countries other than those in North America, South America and Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.73", + "Unit": "tonne CO2/tonne of ethylene produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.14)", + "Technical_Reference": "Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands, Report Number NW&S-E-2003-10, Department of Science, Technology, and Society, Utrecht, The Netherlands, Copernicus Institute, April 2003, Table 2-3, Page 26.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is based on data from Western European steam crackers. For the other regions, Geographic Adjustment Factors should be applied. (See Equation 3.15 in Volume 3, the 2006 IPCC Guidelines.) In order to develop this emission factor, ethylene has been chosen as the reference for estimating the total CO2 emissions from the steam cracking process as a whole. Multiplication of this emission factor by the ethylene production therefore leads to the total CO2 emissions resulting not only from the production of ethylene but also from the production of propylene, butadiene, aromatics, and all other chemicals produced by the steam cracking process. This default emission factor provides the total CO2 emissions from the steam cracking process, not only the CO2 emissions associated with the production of the ethylene from the steam cracking process.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:47.145Z", + "last_change_date": "2022-03-14T08:01:47.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8230, + "fields": { + "EF_ID": 214028, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Ethane", + "Parameter_Conditions": "", + "Regional_Conditions": "North America, South America and Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "tonne CO2/tonne of ethylene produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.14)", + "Technical_Reference": "Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands, Report Number NW&S-E-2003-10, Department of Science, Technology, and Society, Utrecht, The Netherlands, Copernicus Institute, April 2003, Table 2-3, Page 26.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is based on data from Western European steam crackers. For the other regions, Geographic Adjustment Factors should be applied. (See Equation 3.15 in Volume 3, the 2006 IPCC Guidelines.) In order to develop this emission factor, ethylene has been chosen as the reference for estimating the total CO2 emissions from the steam cracking process as a whole. Multiplication of this emission factor by the ethylene production therefore leads to the total CO2 emissions resulting not only from the production of ethylene but also from the production of propylene, butadiene, aromatics, and all other chemicals produced by the steam cracking process. This default emission factor provides the total CO2 emissions from the steam cracking process, not only the CO2 emissions associated with the production of the ethylene from the steam cracking process.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:47.249Z", + "last_change_date": "2022-03-14T08:01:47.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8231, + "fields": { + "EF_ID": 214029, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Naphtha", + "Parameter_Conditions": "", + "Regional_Conditions": "All countries other than those in North America, South America and Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/tonne of ethylene produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 4 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.16)", + "Technical_Reference": "EEA, 2005. EMEP/CORINAIR Emissions Inventory Guidebook - 2004. Processes in Organic Chemical Industries (Bulk Production) -- Ethylene -- Activity 040501. February 15, 1996, Page B451-6.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en/page013.html", + "creation_date": "2022-03-14T08:01:47.337Z", + "last_change_date": "2022-03-14T08:01:47.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8232, + "fields": { + "EF_ID": 214030, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Ethane", + "Parameter_Conditions": "", + "Regional_Conditions": "North America, South America and Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/tonne of ethylene produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 4 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.16)", + "Technical_Reference": "EEA, 2005. EMEP/CORINAIR Emissions Inventory Guidebook - 2004. Processes in Organic Chemical Industries (Bulk Production) -- Ethylene -- Activity 040501. February 15, 1996, Page B451-6.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en/page013.html", + "creation_date": "2022-03-14T08:01:47.442Z", + "last_change_date": "2022-03-14T08:01:47.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8233, + "fields": { + "EF_ID": 214031, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Gas Oil", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.29", + "Unit": "tonne CO2/tonne of ethylene produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.14)", + "Technical_Reference": "Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands, Report Number NW&S-E-2003-10, Department of Science, Technology, and Society, Utrecht, The Netherlands, Copernicus Institute, April 2003, Table 2-3, Page 26.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is based on data from Western European steam crackers. For the other regions, Geographic Adjustment Factors should be applied. (See Equation 3.15 in Volume 3, the 2006 IPCC Guidelines.) In order to develop this emission factor, ethylene has been chosen as the reference for estimating the total CO2 emissions from the steam cracking process as a whole. Multiplication of this emission factor by the ethylene production therefore leads to the total CO2 emissions resulting not only from the production of ethylene but also from the production of propylene, butadiene, aromatics, and all other chemicals produced by the steam cracking process. This default emission factor provides the total CO2 emissions from the steam cracking process, not only the CO2 emissions associated with the production of the ethylene from the steam cracking process.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:47.520Z", + "last_change_date": "2022-03-14T08:01:47.520Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8234, + "fields": { + "EF_ID": 214032, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Propane", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.04", + "Unit": "tonne CO2/tonne of ethylene produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.14)", + "Technical_Reference": "Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands, Report Number NW&S-E-2003-10, Department of Science, Technology, and Society, Utrecht, The Netherlands, Copernicus Institute, April 2003, Table 2-3, Page 26.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is based on data from Western European steam crackers. For the other regions, Geographic Adjustment Factors should be applied. (See Equation 3.15 in Volume 3, the 2006 IPCC Guidelines.) In order to develop this emission factor, ethylene has been chosen as the reference for estimating the total CO2 emissions from the steam cracking process as a whole. Multiplication of this emission factor by the ethylene production therefore leads to the total CO2 emissions resulting not only from the production of ethylene but also from the production of propylene, butadiene, aromatics, and all other chemicals produced by the steam cracking process. This default emission factor provides the total CO2 emissions from the steam cracking process, not only the CO2 emissions associated with the production of the ethylene from the steam cracking process.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:47.587Z", + "last_change_date": "2022-03-14T08:01:47.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8235, + "fields": { + "EF_ID": 214033, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Butane", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.07", + "Unit": "tonne CO2/tonne of ethylene produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.14)", + "Technical_Reference": "Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands, Report Number NW&S-E-2003-10, Department of Science, Technology, and Society, Utrecht, The Netherlands, Copernicus Institute, April 2003, Table 2-3, Page 26.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is based on data from Western European steam crackers. For the other regions, Geographic Adjustment Factors should be applied. (See Equation 3.15 in Volume 3, the 2006 IPCC Guidelines.) In order to develop this emission factor, ethylene has been chosen as the reference for estimating the total CO2 emissions from the steam cracking process as a whole. Multiplication of this emission factor by the ethylene production therefore leads to the total CO2 emissions resulting not only from the production of ethylene but also from the production of propylene, butadiene, aromatics, and all other chemicals produced by the steam cracking process. This default emission factor provides the total CO2 emissions from the steam cracking process, not only the CO2 emissions associated with the production of the ethylene from the steam cracking process.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:47.676Z", + "last_change_date": "2022-03-14T08:01:47.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8236, + "fields": { + "EF_ID": 214034, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Other feedstock than naphtha, ethane, gas oil, propane and butane", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.73", + "Unit": "tonne CO2/tonne of ethylene produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.14)", + "Technical_Reference": "Neelis, M; Patel, M; de Feber, M; 2003. Improvement of CO2 Emissions Estimates from the Non-energy Use of Fossil Fuels in the Netherlands, Report Number NW&S-E-2003-10, Department of Science, Technology, and Society, Utrecht, The Netherlands, Copernicus Institute, April 2003, Table 2-3, Page 26.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Other feedstocks are assumed to have the same product yields as naphtha feedstock. This value is based on data from Western European steam crackers. For the other regions, Geographic Adjustment Factors should be applied. (See Equation 3.15 in Volume 3, the 2006 IPCC Guidelines.) In order to develop this emission factor, ethylene has been chosen as the reference for estimating the total CO2 emissions from the steam cracking process as a whole. Multiplication of this emission factor by the ethylene production therefore leads to the total CO2 emissions resulting not only from the production of ethylene but also from the production of propylene, butadiene, aromatics, and all other chemicals produced by the steam cracking process. This default emission factor provides the total CO2 emissions from the steam cracking process, not only the CO2 emissions associated with the production of the ethylene from the steam cracking process.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:47.754Z", + "last_change_date": "2022-03-14T08:01:47.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8237, + "fields": { + "EF_ID": 214035, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ethylene Production", + "Technology_Practices": "Process Technology: Steam Cracker; Default Process Feedstock: Other feedstock except ethane and naphtha", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/tonne of ethylene produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 4 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.16)", + "Technical_Reference": "EEA, 2005. EMEP/CORINAIR Emissions Inventory Guidebook - 2004. Processes in Organic Chemical Industries (Bulk Production) -- Ethylene -- Activity 040501. February 15, 1996, Page B451-6.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en/page013.html", + "creation_date": "2022-03-14T08:01:47.852Z", + "last_change_date": "2022-03-14T08:01:47.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8238, + "fields": { + "EF_ID": 214036, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Geographic Adjustment Factor for CO2 Emission Factors for Ethylene Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "%", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.15)", + "Technical_Reference": "Based on data provided by Mr. Roger Matthews in personal communication to Mr. Martin Patel, May 2002.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable to CO2 emission factors for ethylene production to adjust for regional variation in steam cracker operating efficiency.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:47.929Z", + "last_change_date": "2022-03-14T08:01:47.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8239, + "fields": { + "EF_ID": 214037, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Geographic Adjustment Factor for CO2 Emission Factors for Ethylene Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Eastern Europe (except Russia)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "%", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.15)", + "Technical_Reference": "Based on data provided by Mr. Roger Matthews in personal communication to Mr. Martin Patel, May 2002.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable to CO2 emission factors for ethylene production to adjust for regional variation in steam cracker operating efficiency.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:48.004Z", + "last_change_date": "2022-03-14T08:01:48.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8240, + "fields": { + "EF_ID": 214038, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Geographic Adjustment Factor for CO2 Emission Factors for Ethylene Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan and Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.15)", + "Technical_Reference": "Based on data provided by Mr. Roger Matthews in personal communication to Mr. Martin Patel, May 2002.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable to CO2 emission factors for ethylene production to adjust for regional variation in steam cracker operating efficiency.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:48.103Z", + "last_change_date": "2022-03-14T08:01:48.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8241, + "fields": { + "EF_ID": 214039, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Geographic Adjustment Factor for CO2 Emission Factors for Ethylene Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia (except Japan and Korea), Africa, Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "%", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.15)", + "Technical_Reference": "Based on data provided by Mr. Roger Matthews in personal communication to Mr. Martin Patel, May 2002.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable to CO2 emission factors for ethylene production to adjust for regional variation in steam cracker operating efficiency.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:48.179Z", + "last_change_date": "2022-03-14T08:01:48.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8242, + "fields": { + "EF_ID": 214040, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Geographic Adjustment Factor for CO2 Emission Factors for Ethylene Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America, South America and Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "%", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 3 of 12, in Annex 1 (page A1.11) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.15)", + "Technical_Reference": "Based on data provided by Mr. Roger Matthews in personal communication to Mr. Martin Patel, May 2002.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable to CO2 emission factors for ethylene production to adjust for regional variation in steam cracker operating efficiency.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:48.246Z", + "last_change_date": "2022-03-14T08:01:48.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8243, + "fields": { + "EF_ID": 214041, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Dichloride Production", + "Technology_Practices": "Process Technology: Direct Chlorination Process for Ethylene Dichloride Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.191", + "Unit": "tonne CO2/tonne of ethylene dichloride produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 5 of 12, in Annex 1 (page A1.12) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.17)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Tables 12.6 and 12.7.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values for CO2 emissions from EDC and VCM production for several European production plants were provided in Tables 12.6 and 12.7 of the IPPC LVOC BAT Document (European IPPC Bureau, 2003). These values were averaged to calculate CO2 emission factors for EDC and VCM production. One EDC plant that is equipped with a CO2 control device and that reported zero CO2 emissions from the process is not included in the average emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:48.312Z", + "last_change_date": "2022-03-14T08:01:48.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8244, + "fields": { + "EF_ID": 214042, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Dichloride/Vinyl Chloride Monomer Production", + "Technology_Practices": "Process Technology: Direct Chlorination Process for Ethylene Dichloride Production, Integrated Ethylene Dichloride/Vinyl Chloride Monomer Process for Vinyl Chloride Monomer Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.286", + "Unit": "tonne CO2/tonne of vinyl chloride monomer produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 5 of 12, in Annex 1 (page A1.12) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.17)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Tables 12.6 and 12.7.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values for CO2 emissions from EDC and VCM production for several European production plants were provided in Tables 12.6 and 12.7 of the IPPC LVOC BAT Document (European IPPC Bureau, 2003). These values were averaged to calculate CO2 emission factors for EDC and VCM production. One EDC plant that is equipped with a CO2 control device and that reported zero CO2 emissions from the process is not included in the average emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:48.414Z", + "last_change_date": "2022-03-14T08:01:48.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8245, + "fields": { + "EF_ID": 214043, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Dichloride Production", + "Technology_Practices": "Process Technology: Oxychlorination Process for Ethylene Dichloride Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.202", + "Unit": "tonne CO2/tonne of ethylene dichloride produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 5 of 12, in Annex 1 (page A1.12) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.17)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Tables 12.6 and 12.7.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values for CO2 emissions from EDC and VCM production for several European production plants were provided in Tables 12.6 and 12.7 of the IPPC LVOC BAT Document (European IPPC Bureau, 2003). These values were averaged to calculate CO2 emission factors for EDC and VCM production. One EDC plant that is equipped with a CO2 control device and that reported zero CO2 emissions from the process is not included in the average emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:48.487Z", + "last_change_date": "2022-03-14T08:01:48.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8246, + "fields": { + "EF_ID": 214044, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Dichloride/Vinyl Chloride Monomer Production", + "Technology_Practices": "Process Technology: Oxychlorination Process for Ethylene Dichloride Production, Integrated Ethylene Dichloride/Vinyl Chloride Monomer Process for Vinyl Chloride Monomer Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.302", + "Unit": "tonne CO2/tonne of vinyl chloride monomer produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 5 of 12, in Annex 1 (page A1.12) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.17)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Tables 12.6 and 12.7.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values for CO2 emissions from EDC and VCM production for several European production plants were provided in Tables 12.6 and 12.7 of the IPPC LVOC BAT Document (European IPPC Bureau, 2003). These values were averaged to calculate CO2 emission factors for EDC and VCM production. One EDC plant that is equipped with a CO2 control device and that reported zero CO2 emissions from the process is not included in the average emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:48.582Z", + "last_change_date": "2022-03-14T08:01:48.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8247, + "fields": { + "EF_ID": 214045, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Dichloride Production", + "Technology_Practices": "Process Technology: Balanced Process (= combination of direct chlorination process and oxychlorination process) for Ethylene Dichloride Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.196", + "Unit": "tonne CO2/tonne of ethylene dichloride produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 5 of 12, in Annex 1 (page A1.12) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.17)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Tables 12.6 and 12.7.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values for CO2 emissions from EDC and VCM production for several European production plants were provided in Tables 12.6 and 12.7 of the IPPC LVOC BAT Document (European IPPC Bureau, 2003). These values were averaged to calculate CO2 emission factors for EDC and VCM production. One EDC plant that is equipped with a CO2 control device and that reported zero CO2 emissions from the process is not included in the average emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:48.662Z", + "last_change_date": "2022-03-14T08:01:48.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8248, + "fields": { + "EF_ID": 214046, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Dichloride/Vinyl Chloride Monomer Production", + "Technology_Practices": "Process Technology: Balanced Process (= combination of direct chlorination process and oxychlorination process) for Ethylene Dichloride Production, Integrated Ethylene Dichloride/Vinyl Chloride Monomer Process for Vinyl Chloride Monomer Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.294", + "Unit": "tonne CO2/tonne of vinyl chloride monomer produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 5 of 12, in Annex 1 (page A1.12) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.17)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Tables 12.6 and 12.7.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values for CO2 emissions from EDC and VCM production for several European production plants were provided in Tables 12.6 and 12.7 of the IPPC LVOC BAT Document (European IPPC Bureau, 2003). These values were averaged to calculate CO2 emission factors for EDC and VCM production. One EDC plant that is equipped with a CO2 control device and that reported zero CO2 emissions from the process is not included in the average emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:48.758Z", + "last_change_date": "2022-03-14T08:01:48.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8249, + "fields": { + "EF_ID": 214047, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ethylene Dichloride/Vinyl Chloride Monomer Production", + "Technology_Practices": "Process Technology: Balanced Process (= combination of direct chlorination process and oxychlorination process) for Ethylene Dichloride Production, Integrated Ethylene Dichloride/Vinyl Chloride Monomer Process for Vinyl Chloride Monomer Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0226", + "Unit": "kg CH4/tonne of vinyl chloride monomer produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 6 of 12, in Annex 1 (page A1.12) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.19)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 12.3.1, Table 12.4, Page 300.; EEA (2005). EMEP/CORINAIR. Emission Inventory Guidebook - 2005, European Environment Agency, Technical report No 30. Copenhagen, Denmark, (December 2005)., Processes in Organic Chemical Industries (Bulk Production) 1, 2-Dichloroethane and Vinyl Chloride (Balanced Process), Activity 040505, February 15, 1996, Section 3.4, Page B455-3, and Table 9.2, B455-5.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from natural gas consumption data for integrated ethylene dichloride vinyl chloride monomer plants and CH4 emission factor for natural gas consumption.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en/page013.html", + "creation_date": "2022-03-14T08:01:48.846Z", + "last_change_date": "2022-03-14T08:01:48.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8250, + "fields": { + "EF_ID": 214048, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Ethylene Dichloride Production (= Amount of feedstock required to produce 1 tonne of Ethylene Dichloride)", + "Technology_Practices": "Process Technology: Direct Chlorination Process for Ethylene Dichloride Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.290", + "Unit": "tonne ethylene/tonne of ethylene dichloride produced", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.18)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 12.3.1, Pages 299-300; Section 12.1, Table 12.3, Page 293", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:48.951Z", + "last_change_date": "2022-03-14T08:01:48.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8251, + "fields": { + "EF_ID": 214049, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Ethylene Dichloride Production (= Amount of feedstock required to produce 1 tonne of Ethylene Dichloride)", + "Technology_Practices": "Process Technology: Oxychlorination Process for Ethylene Dichloride Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.302", + "Unit": "tonne ethylene/tonne of ethylene dichloride produced", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.18)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 12.3.1, Pages 299-300; Section 12.1, Table 12.3, Page 293", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:49.029Z", + "last_change_date": "2022-03-14T08:01:49.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8252, + "fields": { + "EF_ID": 214050, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Ethylene Dichloride Production (= Amount of feedstock required to produce 1 tonne of Ethylene Dichloride)", + "Technology_Practices": "Process Technology: Balanced Process (= combination of direct chlorination process and oxychlorination process) for Ethylene Dichloride Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.296", + "Unit": "tonne ethylene/tonne of ethylene dichloride produced", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.18)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 12.3.1, Pages 299-300; Section 12.1, Table 12.3, Page 293", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:49.104Z", + "last_change_date": "2022-03-14T08:01:49.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8253, + "fields": { + "EF_ID": 214051, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Feedstock Consumption Factor for Ethylene Dichloride/Vinyl Chloride Monomer Production (= Amount of feedstock required to produce 1 tonne of Vinyl Chloride Monomer)", + "Technology_Practices": "Process Technology: Balanced Process (= combination of direct chlorination process and oxychlorination process) for Ethylene Dichloride Production, Integrated Ethylene Dichloride/Vinyl Chloride Monomer Process for Vinyl Chloride Monomer Production; Ethylene Dichloride Process Feedstock: Ethylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonne ethylene/tonne of vinyl chloride monomer produced", + "Equation": "", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.18)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 12.3.1, Pages 299-300; Section 12.1, Table 12.3, Page 293", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:49.202Z", + "last_change_date": "2022-03-14T08:01:49.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8254, + "fields": { + "EF_ID": 214052, + "IPCC_Category": "2.B.8.d - Ethylene Oxide", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Oxide Production", + "Technology_Practices": "Process Technology: Air Process; Catalyst Selectivity: 70%; Process Feedstock: Ethylene; Feedstock Consumption Factor = 0.90 tonne ethylene/tonne ethylene oxide produced", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.863", + "Unit": "tonne CO2/tonne of ethylene oxide produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 7 of 12, in Annex 1 (page A1.13) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.20)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 9.2.1, Page 224; Section 9.3.1.1, Page 231, Figure 9.6", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from process-specific catalyst selectivity data provided in the IPPC LVOC BAT document. This value does not include emissions from flare. If the catalyst selectivity is 75%, the feedstock consumption factor will be 0.85 tonne ethylene/tonne ethylene oxide produced and the emission factor will be 0.663 tonne CO2/tonne ethylene oxide produced. If the catalyst selectivity is 80%, the feedstock consumption factor will be 0.80 tonne ethylene/tonne ethylene oxide produced and the emission factor will be 0.5 tonne CO2/tonne ethylene oxide produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:49.279Z", + "last_change_date": "2022-03-14T08:01:49.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8255, + "fields": { + "EF_ID": 214053, + "IPCC_Category": "2.B.8.d - Ethylene Oxide", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ethylene Oxide Production", + "Technology_Practices": "Process Technology: Oxygen Process; Catalyst Selectivity: 75%; Process Feedstock: Ethylene; Feedstock Consumption Factor = 0.85 tonne ethylene/tonne ethylene oxide produced", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.663", + "Unit": "tonne CO2/tonne of ethylene oxide produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 7 of 12, in Annex 1 (page A1.13) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.20)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 9.2.1, Page 224; Section 9.3.1.1, Page 231, Figure 9.6", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from process-specific catalyst selectivity data provided in the IPPC LVOC BAT document. This value does not include emissions from flare. If the catalyst selectivity is 80%, the feedstock consumption factor will be 0.80 tonne ethylene/tonne ethylene oxide produced and the emission factor will be 0.5 tonne CO2/tonne ethylene oxide produced. If the catalyst selectivity is 85%, the feedstock consumption factor will be 0.75 tonne ethylene/tonne ethylene oxide produced and the emission factor will be 0.35 tonne CO2/tonne ethylene oxide produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:49.346Z", + "last_change_date": "2022-03-14T08:01:49.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8256, + "fields": { + "EF_ID": 214054, + "IPCC_Category": "2.B.8.d - Ethylene Oxide", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ethylene Oxide Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "No abatement (Without thermal treatment of CH4 emissions)", + "Other_Properties": "", + "Value": "1.79", + "Unit": "kg CH4/tonne of ethylene oxide produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 8 of 12, in Annex 1 (page A1.13) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.21)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Table 9.6, Page 233; Table 9.8, Page 236; Table 9.9, Page 236", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from plant-specific data reported in IPPC LVOC BAT document for ethylene oxide plants operating in Western Europe. Process technology was not reported for CH4 emissions data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:49.445Z", + "last_change_date": "2022-03-14T08:01:49.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8257, + "fields": { + "EF_ID": 214055, + "IPCC_Category": "2.B.8.d - Ethylene Oxide", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ethylene Oxide Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "With thermal treatment of CH4 emissions", + "Other_Properties": "", + "Value": "0.79", + "Unit": "kg CH4/tonne of ethylene oxide produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 8 of 12, in Annex 1 (page A1.13) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.21)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Table 9.6, Page 233; Table 9.8, Page 236; Table 9.9, Page 236", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from plant-specific data reported in IPPC LVOC BAT document for ethylene oxide plants operating in Western Europe. Process technology was not reported for CH4 emissions data.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:49.521Z", + "last_change_date": "2022-03-14T08:01:49.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8258, + "fields": { + "EF_ID": 214056, + "IPCC_Category": "2.B.8.e - Acrylonitrile", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Acrylonitrile Production (default)", + "Technology_Practices": "Process Technology: Secondary Products Burned for Energy Recovery or Flared; Process Feedstock: Propylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.00", + "Unit": "tonne CO2/tonne of acrylonitrile produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 9 of 12, in Annex 1 (page A1.14) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.22)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 11.3.1.1, Table 11.2, Page 274; Section 11.3.1.2, Page 275", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from process-specific acrylonitrile yield data and process-specific feedstock consumption data reported in the IPPC LVOC BAT document. This emission factor is based on an average (default) propylene feedstock consumption factor of 1.09 tonnes propylene feedstock per tonne acrylonitrile produced, corresponding to a primary product yield factor of approximately 70 percent. It is based on conversion of propylene feedstock to secondary product acetonitrile at 18.5 kilograms per tonne acrylonitrile produced, and conversion of propylene to secondary product hydrogen cyanide at 105 kilograms per tonne acrylonitrile produced, and is based on process-specific acrylonitrile yield data and process-specific feedstock consumption data reported in the IPPC LVOC BAT document (European IPPC Bureau, 2003). Note however that the acrylonitrile production process may be configured and operated to produce a greater or lesser amount of secondary products. This emission factor is based on the assumption that the secondary products (acetonitrile and hydrogen cyanide) of the acrylonitrile production process and hydrocarbon by products in the main absorber vent gas are either burned for energy recovery or flared to CO2 and are not recovered as products or emitted to the atmosphere without combustion treatment. This emission factor does not include CO2 emissions from any combustion of auxiliary fuel (e.g., natural gas) for the process waste gas energy recovery or flare systems.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:49.587Z", + "last_change_date": "2022-03-14T08:01:49.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8259, + "fields": { + "EF_ID": 214057, + "IPCC_Category": "2.B.8.e - Acrylonitrile", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Acrylonitrile Production", + "Technology_Practices": "Process Technology: Acetonitrile Secondary Product Burned for Energy Recovery or Flared; Hydrogen Cyanide Recovered as Product; Process Feedstock: Propylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "tonne CO2/tonne of acrylonitrile produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 9 of 12, in Annex 1 (page A1.14) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.22)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 11.3.1.1, Table 11.2, Page 274; Section 11.3.1.2, Page 275", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from process-specific acrylonitrile yield data and process-specific feedstock consumption data reported in the IPPC LVOC BAT document. This emission factor is based on an average (default) propylene feedstock consumption factor of 1.09 tonnes propylene feedstock per tonne acrylonitrile produced, corresponding to a primary product yield factor of approximately 70 percent. This emission factor does not include CO2 emissions from any combustion of auxiliary fuel (e.g., natural gas) for the process waste gas energy recovery or flare systems.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:49.688Z", + "last_change_date": "2022-03-14T08:01:49.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8260, + "fields": { + "EF_ID": 214058, + "IPCC_Category": "2.B.8.e - Acrylonitrile", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Acrylonitrile Production", + "Technology_Practices": "Process Technology: Acetonitrile and Hydrogen Cyanide Recovered as Product; Process Feedstock: Propylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "tonne CO2/tonne of acrylonitrile produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 9 of 12, in Annex 1 (page A1.14) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.22)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 11.3.1.1, Table 11.2, Page 274; Section 11.3.1.2, Page 275", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from process-specific acrylonitrile yield data and process-specific feedstock consumption data reported in the IPPC LVOC BAT document. This emission factor is based on an average (default) propylene feedstock consumption factor of 1.09 tonnes propylene feedstock per tonne acrylonitrile produced, corresponding to a primary product yield factor of approximately 70 percent. This emission factor does not include CO2 emissions from any combustion of auxiliary fuel (e.g., natural gas) for the process waste gas energy recovery or flare systems.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:49.762Z", + "last_change_date": "2022-03-14T08:01:49.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8261, + "fields": { + "EF_ID": 214059, + "IPCC_Category": "2.B.8.e - Acrylonitrile", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Acrylonitrile Production", + "Technology_Practices": "Process Technology: Secondary Products Burned for Energy Recovery or Flared; Process Feedstock: Propylene", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "kg CH4/tonne of acrylonitrile produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 10 of 12, in Annex 1 (page A1.14) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Page 3.79)", + "Technical_Reference": "Boustead, I., (2003). Eco Profiles of the European Plastics Industry: Methodology, A Report prepared for APME, Brussels, July 2003, Page 40", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on plant-specific data reported in European Association of Plastics Manufacturers Life Cycle Analysis Report: Acrylonitrile Data Summary. A more recent edition of Boustead, I., 2005. Eco-profiles of the European Plastics Industry: Acrylonitrile, March 2005. Report prepared for PlasticsEurope, reports methane emissions from acrylonitrile production of 3100 mg CH4 per kg acrylonitrile produced. http://lca.plasticseurope.org/_vti_bin/shtml.exe/an4.htm/map", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.plasticseurope.org/content/default.asp?PageID=392", + "creation_date": "2022-03-14T08:01:49.855Z", + "last_change_date": "2022-03-14T08:01:49.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8262, + "fields": { + "EF_ID": 214060, + "IPCC_Category": "2.B.8.e - Acrylonitrile", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Secondary Product Production Factor for Acrylonitrile Production Process (Acetonitrile)", + "Technology_Practices": "Secondary Product: Acetonitrile", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.5", + "Unit": "kg acetonitrile/tonne acrylonitrile", + "Equation": "Equation 3.19 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.26)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 11.3.4, Page 27", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on process-specific acetonitrile yield data reported in the IPPC LVOC BAT document. This factor is applicable to mass balance calculations to estimate CO2 emissions from acrylonitrile production where production data for secondary products are not available. (Tier 2 Mass Balance Calculations defined in the 2006 IPCC Guidelines)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:49.929Z", + "last_change_date": "2022-03-14T08:01:49.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8263, + "fields": { + "EF_ID": 214061, + "IPCC_Category": "2.B.8.e - Acrylonitrile", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Secondary Product Production Factor for Acrylonitrile Production Process (Hydrogen Cyanide)", + "Technology_Practices": "Secondary Product: Hydrogen Cyanide", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "kg hydrogen cyanide/tonne acrylonitrile", + "Equation": "Equation 3.19 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.26)", + "Technical_Reference": "European IPPC Bureau (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Large Volume Organic Chemical (LVOC) Industry, February 2003., Section 11.3.4, Page 27", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on process-specific hydrogen cyanide yield data reported in the IPPC LVOC BAT document. This factor is applicable to mass balance calculations to estimate CO2 emissions from acrylonitrile production where production data for secondary products are not available. (Tier 2 Mass Balance Calculations defined in the 2006 IPCC Guidelines)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.000Z", + "last_change_date": "2022-03-14T08:01:50.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8264, + "fields": { + "EF_ID": 214062, + "IPCC_Category": "2.B.8.f - Carbon Black", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Carbon Black Production (default)", + "Technology_Practices": "Process Technology: Furnace Black Process; Primary Process Feedstock: Carbon Black Feedstock (also referred to as carbon black oil) which is a heavy aromatic oil that may be derived either as a by-product of the petroleum refining process or the metallurgical (coal) coke production process; Secondary Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.62", + "Unit": "tonne CO2/tonne of carbon black produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 11 of 12, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.23)", + "Technical_Reference": "European IPPC Bureau (2005). Integrated Pollution Prevention and Control (IPPC) Draft Reference Document on Best Available Techniques in the Large Volume Inorganic Chemicals (LVIC) - Solid and Others Industry, EK/EIPPCB/LVIC-S_Draft_2, Draft, June 2005., Table 4.11, Page 214", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on average of range of plant-specific data reported in June 2005 Draft IPPC LVIC BAT Document.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.100Z", + "last_change_date": "2022-03-14T08:01:50.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8265, + "fields": { + "EF_ID": 214063, + "IPCC_Category": "2.B.8.f - Carbon Black", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Carbon Black Production", + "Technology_Practices": "Process Technology: Thermal Black Process; Primary Process Feedstock: Carbon Black Feedstock (also referred to as carbon black oil) which is a heavy aromatic oil that may be derived either as a by-product of the petroleum refining process or the metallurgical (coal) coke production process; Secondary Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.25", + "Unit": "tonne CO2/tonne of carbon black produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 11 of 12, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.23)", + "Technical_Reference": "European IPPC Bureau (2005). Integrated Pollution Prevention and Control (IPPC) Draft Reference Document on Best Available Techniques in the Large Volume Inorganic Chemicals (LVIC) - Solid and Others Industry, EK/EIPPCB/LVIC-S_Draft_2, Draft, June 2005., Table 4.11, Page 214", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on average of range of plant-specific data reported in June 2005 Draft IPPC LVIC BAT Document.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.179Z", + "last_change_date": "2022-03-14T08:01:50.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8266, + "fields": { + "EF_ID": 214064, + "IPCC_Category": "2.B.8.f - Carbon Black", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Carbon Black Production", + "Technology_Practices": "Process Technology: Acetylene Black Process; Primary Process Feedstock: Acetylene Feedstock; Secondary Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonne CO2/tonne of carbon black produced", + "Equation": "Equation 3.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 11 of 12, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.23)", + "Technical_Reference": "European IPPC Bureau (2005). Integrated Pollution Prevention and Control (IPPC) Draft Reference Document on Best Available Techniques in the Large Volume Inorganic Chemicals (LVIC) - Solid and Others Industry, EK/EIPPCB/LVIC-S_Draft_2, Draft, June 2005., Table 4.11, Page 214", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated based on average of range of plant-specific data reported in June 2005 Draft IPPC LVIC BAT Document.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.250Z", + "last_change_date": "2022-03-14T08:01:50.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8267, + "fields": { + "EF_ID": 214065, + "IPCC_Category": "2.B.8.f - Carbon Black", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Carbon Black Production", + "Technology_Practices": "Process Technology: Furnace Black Process; Primary Process Feedstock: Carbon Black Feedstock (also referred to as carbon black oil) which is a heavy aromatic oil that may be derived either as a by-product of the petroleum refining process or the metallurgical (coal) coke production process; Secondary Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "No abatement (Without Thermal Treatment of CH4 Emissions)", + "Other_Properties": "", + "Value": "28.7", + "Unit": "kg CH4/tonne of carbon black produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 12 of 12, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.24)", + "Technical_Reference": "European IPPC Bureau (2005). Integrated Pollution Prevention and Control (IPPC) Draft Reference Document on Best Available Techniques in the Large Volume Inorganic Chemicals (LVIC) - Solid and Others Industry, EK/EIPPCB/LVIC-S_Draft_2, Draft, June 2005., Table 4.8, Page 209; Table 4.10, Page 213, Section 4.3.2.3, Page 210", + "English_Abstract": "", + "Lower_Bound": "-85%", + "Upper_Bound": "+85%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimated from process tail gas generation and composition data reported in June 2005 Draft IPPC LVIC BAT Document", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.343Z", + "last_change_date": "2022-03-14T08:01:50.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8268, + "fields": { + "EF_ID": 214066, + "IPCC_Category": "2.B.8.f - Carbon Black", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Carbon Black Production", + "Technology_Practices": "Process Technology: Furnace Black Process; Primary Process Feedstock: Carbon Black Feedstock (also referred to as carbon black oil) which is a heavy aromatic oil that may be derived either as a by-product of the petroleum refining process or the metallurgical (coal) coke production process; Secondary Process Feedstock: Natural Gas", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "With Thermal Treatment of CH4 Emissions", + "Other_Properties": "", + "Value": "0.06", + "Unit": "kg CH4/tonne of carbon black produced", + "Equation": "Equations 3.23-3.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B8, Sheet 12 of 12, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.24)", + "Technical_Reference": "European IPPC Bureau (2005). Integrated Pollution Prevention and Control (IPPC) Draft Reference Document on Best Available Techniques in the Large Volume Inorganic Chemicals (LVIC) - Solid and Others Industry, EK/EIPPCB/LVIC-S_Draft_2, Draft, June 2005., Table 4.8, Page 209; Table 4.10, Page 213, Section 4.3.2.3, Page 210", + "English_Abstract": "", + "Lower_Bound": "-85%", + "Upper_Bound": "+85%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimated from process tail gas generation and composition data reported in June 2005 Draft IPPC LVIC BAT Document", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.429Z", + "last_change_date": "2022-03-14T08:01:50.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8269, + "fields": { + "EF_ID": 214067, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "Plants of recent design (note: it was in 2006 when the 2006 IPCC Guidelines were accepted where this value was presented), not specifically optimised", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg HFC-23/kg HCFC-22 manufactured", + "Equation": "Equation 3.30 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.28)", + "Technical_Reference": "Expert judgement by the authors of Section 3.10, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In cases where plant-specific measurements or sampling are not available and Tier 1 methods are used, the default emission factor should be used, assuming no abatement methods. For plants in operation prior to 1995 the default emission factor is 0.04 kg HFC-23/kg HCFC-22 (4 percent). This is a default to be used when there are no measurements and describes the output of HFC-23 from a typical HCFC-22 plant in the absence of recovery or destruction of HFC-23. However, the state of the technological art has been advanced by optimisation of individual plants and that art should have been built into the design of recent plants, suggesting a default emission factor of 0.03 kg HFC- 23/kg HCFC-22 (3 percent).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:50.500Z", + "last_change_date": "2022-03-14T08:01:50.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8270, + "fields": { + "EF_ID": 214068, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Global average emissions (1978 - 1995) This is calculated from the change in atmospheric concentration of HFC-23. It does not discriminate between plant emissions, which range from nothing to greater than 4 percent of the HCFC-22 production.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg HFC-23/kg HCFC-22 manufactured", + "Equation": "Equation 3.30 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Table 3.28)", + "Technical_Reference": "Expert judgement by the authors of Section 3.10, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In cases where plant-specific measurements or sampling are not available and Tier 1 methods are used, the default emission factor should be used, assuming no abatement methods. For plants in operation prior to 1995 the default emission factor is 0.04 kg HFC-23/kg HCFC-22 (4 percent). This is a default to be used when there are no measurements and describes the output of HFC-23 from a typical HCFC-22 plant in the absence of recovery or destruction of HFC-23. However, the state of the technological art has been advanced by optimisation of individual plants and that art should have been built into the design of recent plants, suggesting a default emission factor of 0.03 kg HFC- 23/kg HCFC-22 (3 percent). Atmospheric observations of HFC-23 concentrations in the 1978-1995 time period (Oram et al.,1998) showed globally averaged emissions to be equivalent to 2 percent of the total quantity of HCFC-22 produced at a time when significant HFC-23 was being recovered and converted into Halon 1301 (McCulloch, 1992) and abatement was required practice in several countries where there was significant production.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:50.594Z", + "last_change_date": "2022-03-14T08:01:50.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8271, + "fields": { + "EF_ID": 214069, + "IPCC_Category": "2.B.9.b - Fugitive Emissions", + "Gases": "HFC-23, HFC-32, HFC-41, HFC-43-10mee, HFC-125, HFC-134, HFC-134a, HFC-152a, HFC-143, HFC-143a, HFC-227ea, HFC-236fa, HFC-245ca, CF4, C2F6, C3F8, C4F10, c-C4F8, C5F12, C6F14", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fugitive (and By-product) Emissions of Fluorinated Compound from Production of Fluorinated Compounds", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "No Abatement", + "Other_Properties": "", + "Value": "0.5", + "Unit": "% of total quantity of fluorinated compounds produced", + "Equation": "Equation 3.41 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2B9, Sheet 3 of 3, in Annex 1 (page A1.16) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 3, Page 3.104)", + "Technical_Reference": "Expert judgement by the authors of Section 3.10, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, based on data supplied to AFEAS (2000); AFEAS (2004). Production, Sales and Estimated Atmospheric Emissions of CFCs, HCFCs and HFCs, Alternative Fluorocarbons Environmental Acceptability Study, Arlington, U.S.A., 2004. Available at www.afeas.org.", + "English_Abstract": "", + "Lower_Bound": "-100% (= 0% of total F-compounds produced)", + "Upper_Bound": "+100% (= 1.0% of total F-compounds produced)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For Tier 1, in the absence of abatement measures, a default emission factor of 0.5 percent of production, not counting losses in transport and transfer of materials, is suggested for HFCs and PFCs, based on data supplied to AFEAS (2004). There is a wide range of substances that may potentially be released. However, the AFEAS data showed that the components that were lost during production of a particular fluorochemical had, in general, radiative forcing properties similar to those of the desired fluorochemical. Consequently, for sources that are not significant subcategories under key category, fugitive and by-product emissions are the same and are included in the 0.5 percent emission factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:50.679Z", + "last_change_date": "2022-03-14T08:01:50.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8272, + "fields": { + "EF_ID": 214091, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Iron & Steel Production (Sinter Production)", + "Technology_Practices": "Process: Sinter Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "tonne CO2/tonne sinter produced", + "Equation": "Equation 4.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C1, Sheet 1 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "European IPPC Bureau (2001). Integrated Pollution Prevention and Control (IPPC) Best Available Techniques Reference Document on the Production of Iron and Steel, December 2001., Table 4.1, Page 29", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for sinter plants is derived by averaging plant-specific CO2 emissions data for four European sinter plants reported in the IPPC I&S BAT Document. Emissions of CO2 are reported in Table 4.1 of Chapter 4: Metal Industry Emissions 2006 IPCC Guidelines for National Greenhouse Gas Inventories 4.25 the IPPC I&S BAT Document in units of kilograms of CO2 per tonne of liquid steel produced. The CO2 emissions range from 205 to 240 kg CO2 per tonne liquid steel. The conversion factors provided in Table 4.1 of the IPPC I&S BAT Document are 940 kg pig iron per tonne liquid steel and 1160 kg sinter per tonne pig iron. Based on these conversion factors the average CO2 emissions from the four European sinter plants is 0.2 kg CO2 per kg sinter produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.778Z", + "last_change_date": "2022-03-14T08:01:50.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8273, + "fields": { + "EF_ID": 214092, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Iron & Steel Production (Pig Iron Production)", + "Technology_Practices": "Process: Iron Production (Blast Furnace Iron Making)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.35", + "Unit": "tonne CO2/tonne pig iron produced", + "Equation": "Equation 4.5 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C1, Sheet 1 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "European IPPC Bureau (2001). Integrated Pollution Prevention and Control (IPPC) Best Available Techniques Reference Document on the Production of Iron and Steel, December 2001., Tables 7.2 and 7.3", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for blast furnace iron making is derived by averaging plant-specific CO2 emissions data for European sinter plants reported in the IPPC I&S BAT Document. The CO2 and CO content of blast furnace gas produced by the iron making process is reported in Tables 7.2 and 7.3 of the IPPC I&S BAT Document in units of kilograms of CO2 per tonne of pig iron produced and kilograms of CO per tonne of pig iron produced. The CO2 content ranges from 400 to 900 kg CO2 per tonne pig iron produced and the CO content ranges from 300 to 700 kg CO per tonne of pig iron produced. Based on the assumption that all of the blast furnace gas burned for energy recovery (and combusted to CO2) within the integrated iron and steel mill and that no blast furnace gas is transferred off site, this corresponds to an emission factor of 1.35 kg CO2 per kg pig iron produced.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.854Z", + "last_change_date": "2022-03-14T08:01:50.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8274, + "fields": { + "EF_ID": 214093, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Iron & Steel Production (Direct Reduced Iron (DRI) Production)", + "Technology_Practices": "Process: Direct Reduced Iron (DRI) Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonne CO2/tonne DRI produced", + "Equation": "Equation 4.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C1, Sheet 1 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "European IPPC Bureau (2001). Integrated Pollution Prevention and Control (IPPC) Best Available Techniques Reference Document on the Production of Iron and Steel, December 2001., Table 10.1, Page 322; Table 10.4, Page 331", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is assumed that the default fuel for production of Direct Reduced Iron is natural gas. Natural gas-based processes account for the vast majority of installed direct reduced iron (DRI) production capacity worldwide, with 63 percent of that capacity being the MIDREX process. Fuel consumption for production of direct reduced iron using the MIDREX process is typically 10.5 - 14.5 GJ natural gas/metric tonne solid DRI assuming 100 percent lump iron ore operation. Fuel consumption for production of hot briquetted iron from iron fines was reported to be 12.5 GJ natural gas per tonne of product for the FINMET process and 14 GJ natural gas per tonne of product for the CIRCORED process. The default energy consumption of 12.5 GJ natural gas per tonne of DRI produced and the default carbon content of natural gas of 15.3 kg carbon per GJ natural gas correspond to a CO2 emission factor of 191.3 kg carbon per tonne DRI produced (0.7 tonnes CO2 per tonne DRI produced).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:50.962Z", + "last_change_date": "2022-03-14T08:01:50.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8275, + "fields": { + "EF_ID": 214094, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Iron & Steel Production (Pellet Production)", + "Technology_Practices": "Process: Pellet Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "tonne CO2/tonne pellet produced", + "Equation": "Equation 4.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C1, Sheet 1 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "European IPPC Bureau (2001). Integrated Pollution Prevention and Control (IPPC) Best Available Techniques Reference Document on the Production of Iron and Steel, December 2001., Table 5.1, Page 95", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for pellet production is based on the IPPC I&S BAT Document which provides an emission factor range of 15.6 to 31.8 kg CO2 per tonne product. However, the CO2 emission factor for a specific process will depend on the characteristic of the raw materials and fuels used in the process. The emission factor would vary depending upon whether coal, natural gas, or coke oven gas was used as the primary fuel. The defaultemission factor provided is at the high end of the range, 30 kg CO2 per tonne product, and should be used if the inventory compiler does not know anything about the fuels or raw materials used. If the inventory compiler knows the inputs used, CO2 emissions should be calculated using a higher tier method, accounting for the fuel consumption, heating value and carbon content of the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://eippcb.jrc.es/pages/FActivities.htm", + "creation_date": "2022-03-14T08:01:51.038Z", + "last_change_date": "2022-03-14T08:01:51.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8276, + "fields": { + "EF_ID": 214095, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Iron & Steel Production (Basic Oxygen Furnace)", + "Technology_Practices": "Steel Making Method: Basic Oxygen Furnace (BOF)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.46", + "Unit": "tonne CO2/tonne steel produced", + "Equation": "Equation 4.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C1, Sheet 1 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "Consensus of experts and IISI Environmental Performance Indicators 2003 STEEL (International Iron and Steel Institute (2004). Steel Statistical Yearbook 2004: International Iron and Steel Institute, COMMITTEE ON ECONOMIC STUDIES, Brussels.)", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor includes emissions from blast furnace iron production.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.138Z", + "last_change_date": "2022-03-14T08:01:51.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8277, + "fields": { + "EF_ID": 214096, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Iron & Steel Production (Open Hearth Furnace)", + "Technology_Practices": "Steel Making Method: Open Hearth Furnace (OHF)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.72", + "Unit": "tonne CO2/tonne steel produced", + "Equation": "Equation 4.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C1, Sheet 1 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "Consensus of experts and IISI Environmental Performance Indicators 2003 STEEL (International Iron and Steel Institute (2004). Steel Statistical Yearbook 2004: International Iron and Steel Institute, COMMITTEE ON ECONOMIC STUDIES, Brussels.)", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor includes emissions from blast furnace iron production.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.221Z", + "last_change_date": "2022-03-14T08:01:51.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8278, + "fields": { + "EF_ID": 214097, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Iron & Steel Production (Electric Arc Furnace)", + "Technology_Practices": "Steel Making Method: Electric Arc Furnace (EAF); Assume production of steel from scrap metal, not from pig iron", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "tonne CO2/tonne steel produced", + "Equation": "Equation 4.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C1, Sheet 1 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "Consensus of experts and IISI Environmental Performance Indicators 2003 STEEL (International Iron and Steel Institute (2004). Steel Statistical Yearbook 2004: International Iron and Steel Institute, COMMITTEE ON ECONOMIC STUDIES, Brussels.)", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for EAF steelmaking does not include emissions from iron production. It is based on production of steel from scrap metal, and therefore the EAF emission factor does not account for any CO2 emissions from blast furnace iron making. This emission factor for EAFs is therefore not applicable to EAFs that use pig iron as a raw material.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.283Z", + "last_change_date": "2022-03-14T08:01:51.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8279, + "fields": { + "EF_ID": 214098, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Iron & Steel Production (Global Average)", + "Technology_Practices": "Steel Making Method: See Comments from Data Provider", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.06", + "Unit": "tonne CO2/tonne steel produced", + "Equation": "CO2 emissions can be calculated by multiplying total national steel production and this emission factor. (See Equation 4.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories)", + "IPCC_Worksheet": "2C1, Sheet 1 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.1)", + "Technical_Reference": "Consensus of experts and IISI Environmental Performance Indicators 2003 STEEL (International Iron and Steel Institute (2004). Steel Statistical Yearbook 2004: International Iron and Steel Institute, COMMITTEE ON ECONOMIC STUDIES, Brussels.)", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This Global Average Factor (65% BOF, 30% EAF, 5% OHF = default allocation of total national steel production among these three steelmaking processes) can be used in the event that activity data for steel production for each process is not available. This is a factor based on 2003 international data where BOFs accounted for approximately 63 percent of world steel production and EAFs approximately 33 percent; OHF production accounted for the remaining 4 percent but is declining.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.373Z", + "last_change_date": "2022-03-14T08:01:51.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8280, + "fields": { + "EF_ID": 214099, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Iron & Steel Production (Sinter Production)", + "Technology_Practices": "Process: Sinter Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "kg CH4/tonne sinter produced", + "Equation": "Equation 4.12 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C1, Sheet 2 of 2, in Annex 1 (page A1.17) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.2)", + "Technical_Reference": "EEA (2005). EMEP/CORINAIR. Emission Inventory Guidebook - 2005, European Environment Agency, Technical report No 30. Copenhagen, Denmark, (December 2005). Processes With Contact: Sinter and Pelletizing Plants: Sinter and Pelletizing Plants (Except Combustion 030301) Table 8.2a Emission factors for gaseous compounds", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for sinter production is derived by averaging plant-specific CH4 emissions data for European sinter plants reported in the EMEP/CORINAIR Emissions Inventory Guidebook (EEA, 2005) and in other emission inventory reports. Emissions of CH4 are reported in Table 8.2a of the EMEP/CORINAIR Emission Inventory Guidebook for sinter and palletising plants. For sinter plants using coke breeze an emission factor of 50 mg CH4 per MJ was reported and a range of coke input of 38 to 55 kg coke per tonne sinter was reported. This corresponds to an average emission factor of 0.07 kg CH4 per tonne sinter using the default value of 28.2 TJ/Gg coke. An emission factor of 0.05 kg CH4 per tonne sinter was reported for sinter plants operating in Finland. (Pipatti, R. (2001). Greenhouse Gas Emissions and Removals in Finland, Report No. 2094, VTT Technical Research Centre of Finland, Espoo, 2001. http://virtual.vtt.fi/inf/pdf/tiedotteet/2001/T2094.pdf)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://reports.eea.eu.int/EMEPCORINAIR4/en", + "creation_date": "2022-03-14T08:01:51.454Z", + "last_change_date": "2022-03-14T08:01:51.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8281, + "fields": { + "EF_ID": 214100, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Iron & Steel Production (Direct Reduced Iron (DRI) Production)", + "Technology_Practices": "Process: Direct Reduced Iron (DRI) Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/TJ", + "Equation": "Relevant equation is Equation 4.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. It should be noted that the activity data should be consumption of natural gas (in TJ, on a net calorific value (NCV) basis)", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.2)", + "Technical_Reference": "Energy Volume default emission factor for CH4 Emissions from natural gas combustion. [See Table 2.3 of Volume 2, Chapter 2.]", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.549Z", + "last_change_date": "2022-03-14T08:01:51.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8282, + "fields": { + "EF_ID": 214101, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 45% Si (FeSi 45)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon, except some woodchips for FeSi production, is used, this factor cannot be employed. The emission factors for FeSi90 and Si-metal in Table 4.5 in Volume 3 of 2006 IPCC Guidelines are based on a Fix C consumption of 110 percent of the stoichiometric amount needed for reduction of SiO2. This factor presented in the same table is based on 114 percent of the stoichiometric amount of Fix C.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.633Z", + "last_change_date": "2022-03-14T08:01:51.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8283, + "fields": { + "EF_ID": 214102, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 65% Si (FeSi 65)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.6", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon, except some woodchips for FeSi production, is used, this factor cannot be employed. The emission factors for FeSi90 and Si-metal in Table 4.5 in Volume 3 of 2006 IPCC Guidelines are based on a Fix C consumption of 110 percent of the stoichiometric amount needed for reduction of SiO2. This factor presented in the same table is based on 114 percent of the stoichiometric amount of Fix C.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.700Z", + "last_change_date": "2022-03-14T08:01:51.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8284, + "fields": { + "EF_ID": 214103, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 75% Si (FeSi 75)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon, except some woodchips for FeSi production, is used, this factor cannot be employed. The emission factors for FeSi90 and Si-metal in Table 4.5 in Volume 3 of 2006 IPCC Guidelines are based on a Fix C consumption of 110 percent of the stoichiometric amount needed for reduction of SiO2. This factor presented in the same table is based on 114 percent of the stoichiometric amount of Fix C.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.793Z", + "last_change_date": "2022-03-14T08:01:51.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8285, + "fields": { + "EF_ID": 214104, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 90% Si (FeSi 90)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.8", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon, except some woodchips for FeSi production, is used, this factor cannot be employed. This emission factor for FeSi90 is based on a Fix C consumption of 110 percent of the stoichiometric amount needed for reduction of SiO2.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.883Z", + "last_change_date": "2022-03-14T08:01:51.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8286, + "fields": { + "EF_ID": 214105, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferromanganeses (7% C) (FeMn)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Olsen, S.E. (2004). CO2 Emissions from the Production of Manganese Alloys in Norway, STF80A04010, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon is used, this factor cannot be employed. For FeMn alloys the emission factors are based on production where the Mn containing raw materials are a mixture of oxide ores, carbonate ores and imported Mn-sinter. If the sinter is produced abroad it will not give any contribution to the national greenhouse gas inventory. Emission from sinter production must be reported where the production is located.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:51.950Z", + "last_change_date": "2022-03-14T08:01:51.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8287, + "fields": { + "EF_ID": 214106, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferromanganeses (1% C) (FeMn)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Olsen, S.E. (2004). CO2 Emissions from the Production of Manganese Alloys in Norway, STF80A04010, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon is used, this factor cannot be employed. For FeMn alloys the emission factors are based on production where the Mn containing raw materials are a mixture of oxide ores, carbonate ores and imported Mn-sinter. If the sinter is produced abroad it will not give any contribution to the national greenhouse gas inventory. Emission from sinter production must be reported where the production is located.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.053Z", + "last_change_date": "2022-03-14T08:01:52.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8288, + "fields": { + "EF_ID": 214107, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Silicomanganese (SiMn)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.; Olsen, S.E. (2004). CO2 Emissions from the Production of Manganese Alloys in Norway, STF80A04010, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon is used, this factor cannot be employed.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.246Z", + "last_change_date": "2022-03-14T08:01:52.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8289, + "fields": { + "EF_ID": 214108, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Silicon metal (Si-metal)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.; Olsen, S.E. (2004). CO2 Emissions from the Production of Manganese Alloys in Norway, STF80A04010, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon, except some woodchips for Si-metal production, is used, this factor cannot be employed. This emission factor for Si-metal is based on a Fix C consumption of 110 percent of the stoichiometric amount needed for reduction of SiO2.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.308Z", + "last_change_date": "2022-03-14T08:01:52.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8290, + "fields": { + "EF_ID": 214109, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "Without sinter plant", + "Parameter_Conditions": "Type of Ferroalloy: Ferrochromium (FeCr)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Olsen, S.E., Monsen, B.E. and Lindstad, T. (1998). CO2 Emissions from the Production of Manganese and Chrome Alloys in Norway, Electric Furnace Conference Proceedings Vol. 56, Iron & Steel Society, Warrendale PA 1998, pp 363-369.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon is used, this factor cannot be employed.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.413Z", + "last_change_date": "2022-03-14T08:01:52.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8291, + "fields": { + "EF_ID": 214110, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "With sinter plant", + "Parameter_Conditions": "Type of Ferroalloy: Ferrochromium (FeCr)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "tonne CO2/tonne ferroalloy produced", + "Equation": "Equation 4.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 1 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 4 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.5)", + "Technical_Reference": "Olsen, S.E., Monsen, B.E. and Lindstad, T. (1998). CO2 Emissions from the Production of Manganese and Chrome Alloys in Norway, Electric Furnace Conference Proceedings Vol. 56, Iron & Steel Society, Warrendale PA 1998, pp 363-369.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "If any bio-carbon is used, this factor cannot be employed.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.492Z", + "last_change_date": "2022-03-14T08:01:52.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8292, + "fields": { + "EF_ID": 214111, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Reducing Agent used in Ferroalloy Production", + "Technology_Practices": "Reducing Agent (usage): Coal (for FeSi and Si-metal)", + "Parameter_Conditions": "Type of Ferroalloy: Ferrocsilicon (FeSi), Silicon metal (Si-metal)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Equation 4.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.6)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.558Z", + "last_change_date": "2022-03-14T08:01:52.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8293, + "fields": { + "EF_ID": 214112, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Reducing Agent used in Ferroalloy Production", + "Technology_Practices": "Reducing Agent (usage): Coke (for FeMn and SiMn)", + "Parameter_Conditions": "Type of Ferroalloy: Ferrocsilicon (FeSi), Silicon metal (Si-metal)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2-3.3", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Equation 4.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.6)", + "Technical_Reference": "Olsen, S.E. (2004). CO2 Emissions from the Production of Manganese Alloys in Norway, STF80A04010, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.625Z", + "last_change_date": "2022-03-14T08:01:52.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8294, + "fields": { + "EF_ID": 214113, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Reducing Agent used in Ferroalloy Production", + "Technology_Practices": "Reducing Agent (usage): Coke (for Si and FeSi)", + "Parameter_Conditions": "Type of Ferroalloy: Ferrocsilicon (FeSi), Silicon metal (Si-metal)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.3-3.4", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Equation 4.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.6)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.731Z", + "last_change_date": "2022-03-14T08:01:52.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8295, + "fields": { + "EF_ID": 214114, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Reducing Agent used in Ferroalloy Production", + "Technology_Practices": "Reducing Agent: Prebaked electrodes", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.54", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Equation 4.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.6)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.; Olsen, S.E. (2004). CO2 Emissions from the Production of Manganese Alloys in Norway, STF80A04010, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.791Z", + "last_change_date": "2022-03-14T08:01:52.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8296, + "fields": { + "EF_ID": 214115, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Reducing Agent used in Ferroalloy Production", + "Technology_Practices": "Reducing Agent: Electrode paste", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Equation 4.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.6)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.; Olsen, S.E. (2004). CO2 Emissions from the Production of Manganese Alloys in Norway, STF80A04010, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.850Z", + "last_change_date": "2022-03-14T08:01:52.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8297, + "fields": { + "EF_ID": 214116, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Reducing Agent used in Ferroalloy Production", + "Technology_Practices": "Reducing Agent: Petroleum coke", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5", + "Unit": "Tonne CO2/Tonne Reducing Agent", + "Equation": "Equation 4.16 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.6)", + "Technical_Reference": "Lindstad, T. (2004). CO2 Emissions from the Production of Silicon Alloys, STF80A04019, SINTEF, Trondheim 2004.; Olsen, S.E. (2004). CO2 Emissions from the Production of Manganese Alloys in Norway, STF80A04010, SINTEF, Trondheim 2004.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.908Z", + "last_change_date": "2022-03-14T08:01:52.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8298, + "fields": { + "EF_ID": 214117, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 65% Si (FeSi 65)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.7)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factors for CH4 is based on the averages of a small number of operation-specific measurements carried out by SINTEF and DNV mainly in 1995 and 1998 (FFF (2000)).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:52.975Z", + "last_change_date": "2022-03-14T08:01:52.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8299, + "fields": { + "EF_ID": 214118, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 75% Si (FeSi 75)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.7)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factors for CH4 is based on the averages of a small number of operation-specific measurements carried out by SINTEF and DNV mainly in 1995 and 1998 (FFF (2000)).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.066Z", + "last_change_date": "2022-03-14T08:01:53.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8300, + "fields": { + "EF_ID": 214119, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 90% Si (FeSi 90)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.7)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factors for CH4 is based on the averages of a small number of operation-specific measurements carried out by SINTEF and DNV mainly in 1995 and 1998 (FFF (2000)).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.141Z", + "last_change_date": "2022-03-14T08:01:53.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8301, + "fields": { + "EF_ID": 214120, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Emission Factor for Ferroalloy Production", + "Technology_Practices": "", + "Parameter_Conditions": "Type of Ferroalloy: Silicon metal (Si-metal)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.7)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-25%", + "Upper_Bound": "<+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factors for CH4 is based on the averages of a small number of operation-specific measurements carried out by SINTEF and DNV mainly in 1995 and 1998 (FFF (2000)).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.208Z", + "last_change_date": "2022-03-14T08:01:53.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8302, + "fields": { + "EF_ID": 214121, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Batch-charging", + "Parameter_Conditions": "Type of Ferroalloy: Silicon metal (Si-metal)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.283Z", + "last_change_date": "2022-03-14T08:01:53.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8303, + "fields": { + "EF_ID": 214122, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Sprinkle-charging (= Charging intermittently every minute)", + "Parameter_Conditions": "Type of Ferroalloy: Silicon metal (Si-metal)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.378Z", + "last_change_date": "2022-03-14T08:01:53.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8304, + "fields": { + "EF_ID": 214123, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Sprinkle-charging (= Charging intermittently every minute); Temperature in off-gas channel (measured where the thermocouple cannot see the combustion in the furnace hood): higher than 750 degrees centigrade", + "Parameter_Conditions": "Type of Ferroalloy: Silicon metal (Si-metal)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.450Z", + "last_change_date": "2022-03-14T08:01:53.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8305, + "fields": { + "EF_ID": 214124, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Batch-charging", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 90% Si (FeSi 90)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.508Z", + "last_change_date": "2022-03-14T08:01:53.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8306, + "fields": { + "EF_ID": 214125, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Sprinkle-charging (= Charging intermittently every minute)", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 90% Si (FeSi 90)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.566Z", + "last_change_date": "2022-03-14T08:01:53.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8307, + "fields": { + "EF_ID": 214126, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Sprinkle-charging (= Charging intermittently every minute); Temperature in off-gas channel (measured where the thermocouple cannot see the combustion in the furnace hood): higher than 750 degrees centigrade", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 90% Si (FeSi 90)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.663Z", + "last_change_date": "2022-03-14T08:01:53.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8308, + "fields": { + "EF_ID": 214127, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Batch-charging", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 75% Si (FeSi 75)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.758Z", + "last_change_date": "2022-03-14T08:01:53.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8309, + "fields": { + "EF_ID": 214128, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Sprinkle-charging (= Charging intermittently every minute)", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 75% Si (FeSi 75)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.833Z", + "last_change_date": "2022-03-14T08:01:53.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8310, + "fields": { + "EF_ID": 214129, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Sprinkle-charging (= Charging intermittently every minute); Temperature in off-gas channel (measured where the thermocouple cannot see the combustion in the furnace hood): higher than 750 degrees centigrade", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 75% Si (FeSi 75)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.905Z", + "last_change_date": "2022-03-14T08:01:53.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8311, + "fields": { + "EF_ID": 214130, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Batch-charging", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 65% Si (FeSi 65)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:53.989Z", + "last_change_date": "2022-03-14T08:01:53.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8312, + "fields": { + "EF_ID": 214131, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Sprinkle-charging (= Charging intermittently every minute)", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 65% Si (FeSi 65)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:54.067Z", + "last_change_date": "2022-03-14T08:01:54.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8313, + "fields": { + "EF_ID": 214132, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Operation Specific Emission Factor for CH4 Emissions from Ferroalloy Production", + "Technology_Practices": "Operation of Furnace: Sprinkle-charging (= Charging intermittently every minute); Temperature in off-gas channel (measured where the thermocouple cannot see the combustion in the furnace hood): higher than 750 degrees centigrade", + "Parameter_Conditions": "Type of Ferroalloy: Ferrosilicon 65% Si (FeSi 65)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg CH4/tonne ferroalloy produced", + "Equation": "Equation 4.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C2, Sheet 2 of 2, in Annex 1 (page A1.18) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.8)", + "Technical_Reference": "FFF (2000). The Norwegian Ferroalloy Producers Research Association, Emission factors standardized at meeting, Oslo 2000.", + "English_Abstract": "", + "Lower_Bound": ">-10%", + "Upper_Bound": "<+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:54.146Z", + "last_change_date": "2022-03-14T08:01:54.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8314, + "fields": { + "EF_ID": 214133, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Primary Alminium Production", + "Technology_Practices": "Production technology: Soderberg", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "tonne CO2/tonne Al", + "Equation": "Equation 4.20 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 1 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 5 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.10)", + "Technical_Reference": "IAI (2000). International Aluminium Institute, International Aluminium Institute (2000) Life Cycle Assessment of Aluminium", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:54.246Z", + "last_change_date": "2022-03-14T08:01:54.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8315, + "fields": { + "EF_ID": 214134, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Primary Alminium Production", + "Technology_Practices": "Production technology: Prebake", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "tonne CO2/tonne Al", + "Equation": "Equation 4.20 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 1 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 5 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.10)", + "Technical_Reference": "IAI (2000). International Aluminium Institute, International Aluminium Institute (2000) Life Cycle Assessment of Aluminium", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for Prebake cells includes CO2 emissions from the combustion of pitch volatiles and packing coke from baking anodes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:54.341Z", + "last_change_date": "2022-03-14T08:01:54.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8316, + "fields": { + "EF_ID": 214135, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CF4 Emission Factor for Aluminium Production by Cell Technology Type", + "Technology_Practices": "Technology: Centre Worked Prebake (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg CF4 /tonne Al", + "Equation": "Equation 4.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 2 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 8 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.15)", + "Technical_Reference": "IAI (2001). International Aluminium Institute, Perfluorocarbon Emissions Reduction Programme 1990 - 2000, 2001.", + "English_Abstract": "", + "Lower_Bound": "-99%", + "Upper_Bound": "+380%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty based on the range of calculated CF4 specific emissions by technology from 1990 IAI anode effect survey data (IAI, 2001: See Full Technical Reference.)", + "Data_Provider_Comments": "Calculated from median anode effect performance from 1990 IAI survey data (IAI, 2001: See Full Technical Reference.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.world-aluminium.org/iai/publications/documents/pfc2000.pdf", + "creation_date": "2022-03-14T08:01:54.416Z", + "last_change_date": "2022-03-14T08:01:54.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8317, + "fields": { + "EF_ID": 214136, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CF4 Emission Factor for Aluminium Production by Cell Technology Type", + "Technology_Practices": "Technology: Side Worked Prebake (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "kg CF4 /tonne Al", + "Equation": "Equation 4.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 2 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 8 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.15)", + "Technical_Reference": "IAI (2001). International Aluminium Institute, Perfluorocarbon Emissions Reduction Programme 1990 - 2000, 2001.", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty based on the range of calculated CF4 specific emissions by technology from 1990 IAI anode effect survey data (IAI, 2001: See Full Technical Reference.)", + "Data_Provider_Comments": "Calculated from median anode effect performance from 1990 IAI survey data (IAI, 2001: See Full Technical Reference.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.world-aluminium.org/iai/publications/documents/pfc2000.pdf", + "creation_date": "2022-03-14T08:01:54.488Z", + "last_change_date": "2022-03-14T08:01:54.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8318, + "fields": { + "EF_ID": 214137, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CF4 Emission Factor for Aluminium Production by Cell Technology Type", + "Technology_Practices": "Technology: Vertical Stud Soderberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg CF4 /tonne Al", + "Equation": "Equation 4.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 2 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 8 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.15)", + "Technical_Reference": "IAI (2001). International Aluminium Institute, Perfluorocarbon Emissions Reduction Programme 1990 - 2000, 2001.", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+260%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty based on the range of calculated CF4 specific emissions by technology from 1990 IAI anode effect survey data (IAI, 2001: See Full Technical Reference.)", + "Data_Provider_Comments": "Calculated from median anode effect performance from 1990 IAI survey data (IAI, 2001: See Full Technical Reference.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.world-aluminium.org/iai/publications/documents/pfc2000.pdf", + "creation_date": "2022-03-14T08:01:54.592Z", + "last_change_date": "2022-03-14T08:01:54.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8319, + "fields": { + "EF_ID": 214138, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CF4 Emission Factor for Aluminium Production by Cell Technology Type", + "Technology_Practices": "Technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg CF4 /tonne Al", + "Equation": "Equation 4.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 2 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-11, Sheet 8 of 11, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.15)", + "Technical_Reference": "IAI (2001). International Aluminium Institute, Perfluorocarbon Emissions Reduction Programme 1990 - 2000, 2001.", + "English_Abstract": "", + "Lower_Bound": "-80%", + "Upper_Bound": "+180%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty based on the range of calculated CF4 specific emissions by technology from 1990 IAI anode effect survey data (IAI, 2001: See Full Technical Reference.)", + "Data_Provider_Comments": "Calculated from median anode effect performance from 1990 IAI survey data (IAI, 2001: See Full Technical Reference.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.world-aluminium.org/iai/publications/documents/pfc2000.pdf", + "creation_date": "2022-03-14T08:01:54.666Z", + "last_change_date": "2022-03-14T08:01:54.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8320, + "fields": { + "EF_ID": 214139, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "C2F6 Emission Factor for Aluminium Production by Cell Technology Type", + "Technology_Practices": "Technology: Centre Worked Prebake (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg C2F6 /tonne Al", + "Equation": "Equation 4.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 3 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.15)", + "Technical_Reference": "IAI (2001). International Aluminium Institute, Perfluorocarbon Emissions Reduction Programme 1990 - 2000, 2001.", + "English_Abstract": "", + "Lower_Bound": "-99%", + "Upper_Bound": "+380%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range based on global average C2F6:CF4 ratios by technology, multiplied by calculated minimum and maximum specific CF4 emissions from 1990 IAI survey data (IAI, 2001: See Full Technical Reference.)", + "Data_Provider_Comments": "Calculated from global average C2F6:CF4 ratios by technology, multiplied by the default CF4 emission factor (= 0.4 kg CF4/tonne Al).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.world-aluminium.org/iai/publications/documents/pfc2000.pdf", + "creation_date": "2022-03-14T08:01:54.738Z", + "last_change_date": "2022-03-14T08:01:54.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8321, + "fields": { + "EF_ID": 214140, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "C2F6 Emission Factor for Aluminium Production by Cell Technology Type", + "Technology_Practices": "Technology: Side Worked Prebake (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg C2F6 /tonne Al", + "Equation": "Equation 4.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 3 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.15)", + "Technical_Reference": "IAI (2001). International Aluminium Institute, Perfluorocarbon Emissions Reduction Programme 1990 - 2000, 2001.", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+150%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range based on global average C2F6:CF4 ratios by technology, multiplied by calculated minimum and maximum specific CF4 emissions from 1990 IAI survey data (IAI, 2001: See Full Technical Reference.)", + "Data_Provider_Comments": "Calculated from global average C2F6:CF4 ratios by technology, multiplied by the default CF4 emission factor (= 1.6 kg CF4/tonne Al).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.world-aluminium.org/iai/publications/documents/pfc2000.pdf", + "creation_date": "2022-03-14T08:01:54.838Z", + "last_change_date": "2022-03-14T08:01:54.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8322, + "fields": { + "EF_ID": 214141, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "C2F6 Emission Factor for Aluminium Production by Cell Technology Type", + "Technology_Practices": "Technology: Vertical Stud Soderberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg C2F6 /tonne Al", + "Equation": "Equation 4.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 3 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.15)", + "Technical_Reference": "IAI (2001). International Aluminium Institute, Perfluorocarbon Emissions Reduction Programme 1990 - 2000, 2001.", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+260%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range based on global average C2F6:CF4 ratios by technology, multiplied by calculated minimum and maximum specific CF4 emissions from 1990 IAI survey data (IAI, 2001: See Full Technical Reference.)", + "Data_Provider_Comments": "Calculated from global average C2F6:CF4 ratios by technology, multiplied by the default CF4 emission factor (= 0.8 kg CF4/tonne Al).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.world-aluminium.org/iai/publications/documents/pfc2000.pdf", + "creation_date": "2022-03-14T08:01:54.916Z", + "last_change_date": "2022-03-14T08:01:54.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8323, + "fields": { + "EF_ID": 214142, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "C2F6 Emission Factor for Aluminium Production by Cell Technology Type", + "Technology_Practices": "Technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg C2F6 /tonne Al", + "Equation": "Equation 4.25 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C3, Sheet 3 of 3, in Annex 1 (page A1.19) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.15)", + "Technical_Reference": "IAI (2001). International Aluminium Institute, Perfluorocarbon Emissions Reduction Programme 1990 - 2000, 2001.", + "English_Abstract": "", + "Lower_Bound": "-80%", + "Upper_Bound": "+180%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty range based on global average C2F6:CF4 ratios by technology, multiplied by calculated minimum and maximum specific CF4 emissions from 1990 IAI survey data (IAI, 2001: See Full Technical Reference.)", + "Data_Provider_Comments": "Calculated from global average C2F6:CF4 ratios by technology, multiplied by the default CF4 emission factor (= 0.4 kg CF4/tonne Al).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.world-aluminium.org/iai/publications/documents/pfc2000.pdf", + "creation_date": "2022-03-14T08:01:54.988Z", + "last_change_date": "2022-03-14T08:01:54.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8324, + "fields": { + "EF_ID": 214143, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Technology Specific Slope Coefficient for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Technology: Centre Worked Prebake (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.143", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 4.26 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Embedded in this coefficient is an assumed emissions collection efficiency 98% for CWPB. This collection efficiency has been assumed based on measured PFC collection fractions, measured fluoride gas collection efficiencies and expert opinion. This slope coefficient was derived from measurement of PFCs and correlating the measured PFC emissions to anode effect minutes per cell day at over one-hundred aluminium smelters. It is from measurement data available as of March 2005 when the 2006 IPCC Guidelines were developed. It is important to note Tier 2 slope coefficients are based on the anode-effect minutes per cell-day statistic as defined in the IAI GHG Protocol (IAI (2005). International Aluminium Institute, The Aluminium Sector Greenhouse Gas Protocol, http://www.world-aluminium.org/environment/climate/ghg_protocol.pdf, 2005.).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.090Z", + "last_change_date": "2022-03-14T08:01:55.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8325, + "fields": { + "EF_ID": 214144, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Technology Specific Slope Coefficient for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Technology: Side Worked Prebake (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.272", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 4.26 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Embedded in this coefficient is an assumed emissions collection efficiency 90% for SWPB. This collection efficiency has been assumed based on measured PFC collection fractions, measured fluoride gas collection efficiencies and expert opinion. This slope coefficient was derived from measurement of PFCs and correlating the measured PFC emissions to anode effect minutes per cell day at over one-hundred aluminium smelters. It is from measurement data available as of March 2005 when the 2006 IPCC Guidelines were developed. It is important to note Tier 2 slope coefficients are based on the anode-effect minutes per cell-day statistic as defined in the IAI GHG Protocol (IAI (2005). International Aluminium Institute, The Aluminium Sector Greenhouse Gas Protocol, http://www.world-aluminium.org/environment/climate/ghg_protocol.pdf, 2005.).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.166Z", + "last_change_date": "2022-03-14T08:01:55.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8326, + "fields": { + "EF_ID": 214145, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Technology Specific Slope Coefficient for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Technology: Vertical Stud Soderberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.092", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 4.26 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-17%", + "Upper_Bound": "+17%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Embedded in this coefficient is an assumed emissions collection efficiency 85% for VSS. This collection efficiency has been assumed based on measured PFC collection fractions, measured fluoride gas collection efficiencies and expert opinion. This slope coefficient was derived from measurement of PFCs and correlating the measured PFC emissions to anode effect minutes per cell day at over one-hundred aluminium smelters. It is from measurement data available as of March 2005 when the 2006 IPCC Guidelines were developed. It is important to note Tier 2 slope coefficients are based on the anode-effect minutes per cell-day statistic as defined in the IAI GHG Protocol (IAI (2005). International Aluminium Institute, The Aluminium Sector Greenhouse Gas Protocol, http://www.world-aluminium.org/environment/climate/ghg_protocol.pdf, 2005.).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.257Z", + "last_change_date": "2022-03-14T08:01:55.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8327, + "fields": { + "EF_ID": 214146, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Technology Specific Slope Coefficient for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.099", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 4.26 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 3.10 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-44%", + "Upper_Bound": "+44%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Embedded in this coefficient is an assumed emissions collection efficiency 90% for HSS. This collection efficiency has been assumed based on measured PFC collection fractions, measured fluoride gas collection efficiencies and expert opinion. This slope coefficient was derived from measurement of PFCs and correlating the measured PFC emissions to anode effect minutes per cell day at over one-hundred aluminium smelters. It is from measurement data available as of March 2005 when the 2006 IPCC Guidelines were developed. It is important to note Tier 2 slope coefficients are based on the anode-effect minutes per cell-day statistic as defined in the IAI GHG Protocol (IAI (2005). International Aluminium Institute, The Aluminium Sector Greenhouse Gas Protocol, http://www.world-aluminium.org/environment/climate/ghg_protocol.pdf, 2005.).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.333Z", + "last_change_date": "2022-03-14T08:01:55.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8328, + "fields": { + "EF_ID": 214147, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Technology Specific Overvoltage Coefficient for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Technology: Centre Worked Prebake (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.16", + "Unit": "(kg PFC/tAl)/(mV/day)", + "Equation": "Equation 4.27 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 3.11 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-24%", + "Upper_Bound": "+24%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Embedded in this coefficient is an assumed emissions collection efficiency 98% for CWPB. This collection efficiency has been assumed based on measured PFC collection fractions, measured fluoride gas collection efficiencies and expert opinion. The noted coefficients reflect measurements made at some facilities recording positive overvoltage and others recording algebraic overvoltage. No robust relationship has yet been established between positive and algebraic overvoltage. Positive overvoltage should provide a better correlation with PFC emissions than algebraic overvoltage. Overvoltage coefficients are not relevant to VSS and HSS technologies.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.433Z", + "last_change_date": "2022-03-14T08:01:55.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8329, + "fields": { + "EF_ID": 214148, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Technology Specific Overvoltage Coefficient for the Calculation of PFC Emissions from Aluminium Production", + "Technology_Practices": "Technology: Side Worked Prebake (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.65", + "Unit": "(kg PFC/tAl)/(mV/day)", + "Equation": "Equation 4.27 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Equation 3.11 on Page 3.42 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-43%", + "Upper_Bound": "+43%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Embedded in this coefficient is an assumed emissions collection efficiency 90% for SWPB. This collection efficiency has been assumed based on measured PFC collection fractions, measured fluoride gas collection efficiencies and expert opinion. The noted coefficients reflect measurements made at some facilities recording positive overvoltage and others recording algebraic overvoltage. No robust relationship has yet been established between positive and algebraic overvoltage. Positive overvoltage should provide a better correlation with PFC emissions than algebraic overvoltage. Overvoltage coefficients are not relevant to VSS and HSS technologies.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.508Z", + "last_change_date": "2022-03-14T08:01:55.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8330, + "fields": { + "EF_ID": 214149, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Weight Fraction of C2F6 to CF4 (C2F6/CF4)", + "Technology_Practices": "Technology: Centre Worked Prebake (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.121", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.27 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-11%", + "Upper_Bound": "+11%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.634Z", + "last_change_date": "2022-03-14T08:01:55.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8331, + "fields": { + "EF_ID": 214150, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Weight Fraction of C2F6 to CF4 (C2F6/CF4)", + "Technology_Practices": "Technology: Side Worked Prebake (SWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.252", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.27 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-23%", + "Upper_Bound": "+23%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.691Z", + "last_change_date": "2022-03-14T08:01:55.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8332, + "fields": { + "EF_ID": 214151, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Weight Fraction of C2F6 to CF4 (C2F6/CF4)", + "Technology_Practices": "Technology: Vertical Stud Soderberg (VSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.053", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.27 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.755Z", + "last_change_date": "2022-03-14T08:01:55.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8333, + "fields": { + "EF_ID": 214152, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Weight Fraction of C2F6 to CF4 (C2F6/CF4)", + "Technology_Practices": "Technology: Horizontal Stud Soderberg (HSS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.085", + "Unit": "fraction", + "Equation": "Equations 4.26 and 4.27 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.16)", + "Technical_Reference": "U.S. EPA and IAI (2003), U.S. Environmental Protection Agency and International Aluminium Institute, USEPA/IAI Protocol for Measurement of PFCs from Primary Aluminium Production, EPA 43-R-03-006, May 2003.", + "English_Abstract": "", + "Lower_Bound": "-48%", + "Upper_Bound": "+48%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.813Z", + "last_change_date": "2022-03-14T08:01:55.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8334, + "fields": { + "EF_ID": 214153, + "IPCC_Category": "2.C.4 - Magnesium production", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "SF6 Emission Factor for Magnesium Casting Processes", + "Technology_Practices": "Type of technology: All Casting Processes", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "kg SF6/tonne magnesium casting", + "Equation": "Equation 4.30 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C4, Sheet 2 of 2, in Annex 1 (page A1.20) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.20)", + "Technical_Reference": "Gjestland, H. and Magers, D. (1996). Practical usage of sulphur hexafluoride for melt protection in the magnesium die casting industry Proceedings of the 53rd International Magnesium Conference, 1996, Ube City, Japan", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor is the default EF applicable to Tier 1 method in the 2006 IPCC Guidelines. The underlying assumption for the Tier 1 approach is that all SF6 consumption in this industry segment is emitted. The Tier 1 method also assumes no knowledge of type of magnesium handling- or casting operation (recycling, billet casting or die-casting, etc.) Under recommended conditions for die-casting, the consumption rates are about 1 kg SF6 per tonne magnesium produced or smelted (Gjestland and Magers, 1996). Although the SF6 consumption vary substantially between different casting operations and operators (sometimes orders of magnitude), the basic Tier 1 method uses this value as a basis for the default emission calculation when SF6 is used for oxidation protection. If the national magnesium manufacturing processes are well documented, a more accurate application of the Tier 1 method is to disaggregate production data and emission factors according to the various manufacturing processes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:55.919Z", + "last_change_date": "2022-03-14T08:01:55.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8335, + "fields": { + "EF_ID": 214154, + "IPCC_Category": "2.C.4 - Magnesium production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Primary Magnesium Production", + "Technology_Practices": "", + "Parameter_Conditions": "Raw Material: Dolomite", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.13", + "Unit": "tonne CO2/tonne primary Mg produced", + "Equation": "Equation 4.28 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C4, Sheet 1 of 2, in Annex 1 (page A1.20) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.19)", + "Technical_Reference": "Expert Judgement by the authors of Section 4.5, Chapter 4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default emission factor takes into account the type of material used and basic stoichiometric ratios which have been adjusted by empirical data for generic manufacturing process losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.000Z", + "last_change_date": "2022-03-14T08:01:56.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8336, + "fields": { + "EF_ID": 214155, + "IPCC_Category": "2.C.4 - Magnesium production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Primary Magnesium Production", + "Technology_Practices": "", + "Parameter_Conditions": "Raw Material: Magnesite", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.83", + "Unit": "tonne CO2/tonne primary Mg produced", + "Equation": "Equation 4.28 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C4, Sheet 1 of 2, in Annex 1 (page A1.20) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.19)", + "Technical_Reference": "Expert Judgement by the authors of Section 4.5, Chapter 4, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default emission factor takes into account the type of material used and basic stoichiometric ratios which have been adjusted by empirical data for generic manufacturing process losses.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.072Z", + "last_change_date": "2022-03-14T08:01:56.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8337, + "fields": { + "EF_ID": 214156, + "IPCC_Category": "2.C.5 - Lead Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Lead Production", + "Technology_Practices": "Source and Furnace Type: Imperial Smelt Furnace (ISF) Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonne CO2/tonne lead produced", + "Equation": "Equation 4.32 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C5, Sheet 1 of 1, in Annex 1 (page A1.21) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.21)", + "Technical_Reference": "Sjardin, M. (2003). CO2 Emission Factors for Non-Energy Use in the Non-Ferrous Metal, Ferroalloys and Inorganics Industry. Copernicus Institute, Utrecht, The Netherlands, June 2003.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.171Z", + "last_change_date": "2022-03-14T08:01:56.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8338, + "fields": { + "EF_ID": 214157, + "IPCC_Category": "2.C.5 - Lead Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Lead Production", + "Technology_Practices": "Source and Furnace Type: Direct Smelting (DS) Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "tonne CO2/tonne lead produced", + "Equation": "Equation 4.32 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C5, Sheet 1 of 1, in Annex 1 (page A1.21) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.21)", + "Technical_Reference": "Sjardin, M. (2003). CO2 Emission Factors for Non-Energy Use in the Non-Ferrous Metal, Ferroalloys and Inorganics Industry. Copernicus Institute, Utrecht, The Netherlands, June 2003.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.258Z", + "last_change_date": "2022-03-14T08:01:56.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8339, + "fields": { + "EF_ID": 214158, + "IPCC_Category": "2.C.5 - Lead Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Lead Production", + "Technology_Practices": "Source and Furnace Type: Treatment of Secondary Raw Materials", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "tonne CO2/tonne lead produced", + "Equation": "Equation 4.32 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C5, Sheet 1 of 1, in Annex 1 (page A1.21) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.21)", + "Technical_Reference": "Sjardin, M. (2003). CO2 Emission Factors for Non-Energy Use in the Non-Ferrous Metal, Ferroalloys and Inorganics Industry. Copernicus Institute, Utrecht, The Netherlands, June 2003.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.330Z", + "last_change_date": "2022-03-14T08:01:56.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8340, + "fields": { + "EF_ID": 214159, + "IPCC_Category": "2.C.5 - Lead Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Lead Production (default)", + "Technology_Practices": "Source and Furnace Type: 80% Imperial Smelt Furnace (ISF) and 20% Direct Smelting (DS) is assumed. - Applicable only in the case that no information is available on lead production by source/furnace type.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonne CO2/tonne lead produced", + "Equation": "Equation 4.32 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C5, Sheet 1 of 1, in Annex 1 (page A1.21) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.21)", + "Technical_Reference": "Sjardin, M. (2003). CO2 Emission Factors for Non-Energy Use in the Non-Ferrous Metal, Ferroalloys and Inorganics Industry. Copernicus Institute, Utrecht, The Netherlands, June 2003.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default should only be used when no information is available on the relative amounts of lead produced from primary and from secondary materials. This factor assumes that 80 percent of the world`s lead production (including both primary and secondary) is smelted using an Imperial Smelting Furnaces, while the remaining 20 percent is smelted using the direct smelting method in the Kivcet, Ausmelt, and Queneau-Schumann-Lurgi furnaces (Sjardin, 2003).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.397Z", + "last_change_date": "2022-03-14T08:01:56.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8341, + "fields": { + "EF_ID": 214160, + "IPCC_Category": "2.C.6 - Zinc Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Zinc Production", + "Technology_Practices": "Process: Waelz Kiln", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.66", + "Unit": "tonne CO2/tonne zinc produced", + "Equation": "Equation 4.34 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C6, Sheet 1 of 1, in Annex 1 (page A1.21) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.24)", + "Technical_Reference": "Viklund-White C. (2000). The Use of LCA for the Environmental Evaluation of the Recycling of Galvanized Steel. ISIJ International. Volume 40 No. 3: 292-299.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor based on the amount of coke consumed per tonne of EAF dust consumed in a Waelz Kiln furnace was developed based on the materials balance provided by Viklund-White (2000), wherein Viklund-White finds that 400 kg of coke are consumed for every metric tonne of EAF dust consumed.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.490Z", + "last_change_date": "2022-03-14T08:01:56.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8342, + "fields": { + "EF_ID": 214161, + "IPCC_Category": "2.C.6 - Zinc Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Zinc Production", + "Technology_Practices": "Process: Pyrometeallurgical (Imperial Smelting Furnace)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonne CO2/tonne zinc produced", + "Equation": "Equation 4.34 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C6, Sheet 1 of 1, in Annex 1 (page A1.21) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.24)", + "Technical_Reference": "Sjardin, M. (2003). CO2 Emission Factors for Non-Energy Use in the Non-Ferrous Metal, Ferroalloys and Inorganics Industry. Copernicus Institute, Utrecht, The Netherlands, June 2003.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for the pyrometallurgaical process (Imperial Smelting Furnace) is an aggregate, weighted emission factor encompassing both primary and secondary zinc production in Europe (Sjardin, 2003).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.567Z", + "last_change_date": "2022-03-14T08:01:56.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8343, + "fields": { + "EF_ID": 214162, + "IPCC_Category": "2.C.6 - Zinc Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Emission Factor for Zinc Production (default)", + "Technology_Practices": "Process: 60% Imperial Smelting and 40% Waelz Kiln is assumed. - Applicable only in the case that no information is available on zinc production by process.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.72", + "Unit": "tonne CO2/tonne zinc produced", + "Equation": "Equation 4.33 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2C6, Sheet 1 of 1, in Annex 1 (page A1.21) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 4, Table 4.24)", + "Technical_Reference": "Viklund-White C. (2000). The Use of LCA for the Environmental Evaluation of the Recycling of Galvanized Steel. ISIJ International. Volume 40 No. 3: 292-299.; Sjardin, M. (2003). CO2 Emission Factors for Non-Energy Use in the Non-Ferrous Metal, Ferroalloys and Inorganics Industry. Copernicus Institute, Utrecht, The Netherlands, June 2003.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This default factor is based on weighting of known emission factors (60% Imperial Smelting [= 0.43 tonne CO2/tonne zinc produced], 40% Waelz Kiln [= 3.66 tonne CO2/tonne zinc produced]).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.638Z", + "last_change_date": "2022-03-14T08:01:56.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8344, + "fields": { + "EF_ID": 214167, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg CF4/m^2 of silicon processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E1, Sheet 1 of 1, in Annex 1 (page A1.23) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for semiconductor manufacturing, 0.9 for CF4, 1.0 for C2F6, 0.04 for CHF3 (HFC-23), 0.05 for C3F8, 0.04 for NF3, and 0.2 for SF6 (kg/m^2 of silicon processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Using a single factor to account for the FC emissions from the diversity of semiconductor products is a glaring simplification. The factor presented here is heavily weighted toward the manufacture of advanced vintage-late-1990s memory and logic products, having 3 to 5 layers, respectively, manufactured on the silicon wafer. The factors for countries that are currently manufacturing products at the leading-edge of technology (and are not using measures to reduce FC emissions) would be larger, while countries that manufacture products that use older technologies or manufacture simpler devices would use the same or an even smaller factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.733Z", + "last_change_date": "2022-03-14T08:01:56.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8345, + "fields": { + "EF_ID": 214168, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg C2F6/m^2 of silicon processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E1, Sheet 1 of 1, in Annex 1 (page A1.23) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for semiconductor manufacturing, 0.9 for CF4, 1.0 for C2F6, 0.04 for CHF3 (HFC-23), 0.05 for C3F8, 0.04 for NF3, and 0.2 for SF6 (kg/m^2 of silicon processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Using a single factor to account for the FC emissions from the diversity of semiconductor products is a glaring simplification. The factor presented here is heavily weighted toward the manufacture of advanced vintage-late-1990s memory and logic products, having 3 to 5 layers, respectively, manufactured on the silicon wafer. The factors for countries that are currently manufacturing products at the leading-edge of technology (and are not using measures to reduce FC emissions) would be larger, while countries that manufacture products that use older technologies or manufacture simpler devices would use the same or an even smaller factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.808Z", + "last_change_date": "2022-03-14T08:01:56.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8346, + "fields": { + "EF_ID": 214169, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg CHF3/m^2 of silicon processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E1, Sheet 1 of 1, in Annex 1 (page A1.23) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for semiconductor manufacturing, 0.9 for CF4, 1.0 for C2F6, 0.04 for CHF3 (HFC-23), 0.05 for C3F8, 0.04 for NF3, and 0.2 for SF6 (kg/m^2 of silicon processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Using a single factor to account for the FC emissions from the diversity of semiconductor products is a glaring simplification. The factor presented here is heavily weighted toward the manufacture of advanced vintage-late-1990s memory and logic products, having 3 to 5 layers, respectively, manufactured on the silicon wafer. The factors for countries that are currently manufacturing products at the leading-edge of technology (and are not using measures to reduce FC emissions) would be larger, while countries that manufacture products that use older technologies or manufacture simpler devices would use the same or an even smaller factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:56.901Z", + "last_change_date": "2022-03-14T08:01:56.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8347, + "fields": { + "EF_ID": 214170, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg C3F8/m^2 of silicon processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E1, Sheet 1 of 1, in Annex 1 (page A1.23) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for semiconductor manufacturing, 0.9 for CF4, 1.0 for C2F6, 0.04 for CHF3 (HFC-23), 0.05 for C3F8, 0.04 for NF3, and 0.2 for SF6 (kg/m^2 of silicon processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Using a single factor to account for the FC emissions from the diversity of semiconductor products is a glaring simplification. The factor presented here is heavily weighted toward the manufacture of advanced vintage-late-1990s memory and logic products, having 3 to 5 layers, respectively, manufactured on the silicon wafer. The factors for countries that are currently manufacturing products at the leading-edge of technology (and are not using measures to reduce FC emissions) would be larger, while countries that manufacture products that use older technologies or manufacture simpler devices would use the same or an even smaller factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.069Z", + "last_change_date": "2022-03-14T08:01:57.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8348, + "fields": { + "EF_ID": 214171, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg NF3/m^2 of silicon processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E1, Sheet 1 of 1, in Annex 1 (page A1.23) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for semiconductor manufacturing, 0.9 for CF4, 1.0 for C2F6, 0.04 for CHF3 (HFC-23), 0.05 for C3F8, 0.04 for NF3, and 0.2 for SF6 (kg/m^2 of silicon processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Using a single factor to account for the FC emissions from the diversity of semiconductor products is a glaring simplification. The factor presented here is heavily weighted toward the manufacture of advanced vintage-late-1990s memory and logic products, having 3 to 5 layers, respectively, manufactured on the silicon wafer. The factors for countries that are currently manufacturing products at the leading-edge of technology (and are not using measures to reduce FC emissions) would be larger, while countries that manufacture products that use older technologies or manufacture simpler devices would use the same or an even smaller factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.168Z", + "last_change_date": "2022-03-14T08:01:57.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8349, + "fields": { + "EF_ID": 214172, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg SF6/m^2 of silicon processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E1, Sheet 1 of 1, in Annex 1 (page A1.23) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for semiconductor manufacturing, 0.9 for CF4, 1.0 for C2F6, 0.04 for CHF3 (HFC-23), 0.05 for C3F8, 0.04 for NF3, and 0.2 for SF6 (kg/m^2 of silicon processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. Using a single factor to account for the FC emissions from the diversity of semiconductor products is a glaring simplification. The factor presented here is heavily weighted toward the manufacture of advanced vintage-late-1990s memory and logic products, having 3 to 5 layers, respectively, manufactured on the silicon wafer. The factors for countries that are currently manufacturing products at the leading-edge of technology (and are not using measures to reduce FC emissions) would be larger, while countries that manufacture products that use older technologies or manufacture simpler devices would use the same or an even smaller factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.269Z", + "last_change_date": "2022-03-14T08:01:57.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8350, + "fields": { + "EF_ID": 214173, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g CF4/m^2 of glass processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E2, Sheet 1 of 1, in Annex 1 (page A1.24) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006; Burton, C. S. (2004). PFC Uses, Emissions, and Trends in FPD Manufacture: An Update, draft report prepared for U. S. EPA`s Climate Change Division, June 2004.", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for TFT-FPD manufacturing, 0.5 for CF4, 0.9 for NF3, and 4.0 for SF6 (g/m^2 of glass processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. The Tier 1 emissions factors for TFT-FPD manufacturing represents a weighted average of the estimated aggregate PFC emissions per unit area of substrate glass consumed during TFT-FPD manufacture for the area where data were available (Burton, 2004).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.370Z", + "last_change_date": "2022-03-14T08:01:57.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8351, + "fields": { + "EF_ID": 214174, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "g NF3/m^2 of glass processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E2, Sheet 1 of 1, in Annex 1 (page A1.24) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006; Burton, C. S. (2004). PFC Uses, Emissions, and Trends in FPD Manufacture: An Update, draft report prepared for U. S. EPA`s Climate Change Division, June 2004.", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for TFT-FPD manufacturing, 0.5 for CF4, 0.9 for NF3, and 4.0 for SF6 (g/m^2 of glass processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. The Tier 1 emissions factors for TFT-FPD manufacturing represents a weighted average of the estimated aggregate PFC emissions per unit area of substrate glass consumed during TFT-FPD manufacture for the area where data were available (Burton, 2004).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.470Z", + "last_change_date": "2022-03-14T08:01:57.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8352, + "fields": { + "EF_ID": 214175, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g SF6/m^2 of glass processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E2, Sheet 1 of 1, in Annex 1 (page A1.24) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006; Burton, C. S. (2004). PFC Uses, Emissions, and Trends in FPD Manufacture: An Update, draft report prepared for U. S. EPA`s Climate Change Division, June 2004.", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for TFT-FPD manufacturing, 0.5 for CF4, 0.9 for NF3, and 4.0 for SF6 (g/m^2 of glass processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. The Tier 1 emissions factors for TFT-FPD manufacturing represents a weighted average of the estimated aggregate PFC emissions per unit area of substrate glass consumed during TFT-FPD manufacture for the area where data were available (Burton, 2004).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.542Z", + "last_change_date": "2022-03-14T08:01:57.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8353, + "fields": { + "EF_ID": 214176, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "See Comments from data provider.", + "Other_Properties": "", + "Value": "5", + "Unit": "g CF4/m^2 of substrate processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E3, Sheet 2 of 2, in Annex 1 (page A1.25) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Adapted from unpublished work of Fthenakis, Alsema and Agostinelli. - Fthenakis, V. (2005). Personal communication to S. Bartos on 5 February 2005 of data tables quantifying historical and current CF4 and C2F6 usage in PV manufacture for U. S. and Europe.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for PV-cell manufacturing, 5.0 for CF4 and 0.2 for C2F6 (g/m^2 of substrate processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. EFs adapted from unpublished work of Fthenakis, Alsema and Agostinelli. (Fthenakis, 2005) Note that factor is applicable only to silicon-specific technologies and is applied for abatement.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.646Z", + "last_change_date": "2022-03-14T08:01:57.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8354, + "fields": { + "EF_ID": 214177, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "See Comments from data provider.", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g CF4/m^2 of substrate processed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E3, Sheet 2 of 2, in Annex 1 (page A1.25) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Adapted from unpublished work of Fthenakis, Alsema and Agostinelli. - Fthenakis, V. (2005). Personal communication to S. Bartos on 5 February 2005 of data tables quantifying historical and current CF4 and C2F6 usage in PV manufacture for U. S. and Europe.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a default value for Tier 1 method defined in the 2006 IPCC Guidelines. For this Tier 1 method, a set of default values for various FCs is suggested in Table 6.2 on Page 6.16, Chapter 6, Volume 3 of the 2006 IPCC Guidelines. Namely, for PV-cell manufacturing, 5.0 for CF4 and 0.2 for C2F6 (g/m^2 of substrate processed) are suggested as a set of default values. In using Tier 1, it is not good practice to modify, in any way, this set of the FCs or the values of the emission factors. Inventory compilers should not combine emissions estimated using Tier 1 method with emissions estimated using the Tier 2 or 3 methods. EFs adapted from unpublished work of Fthenakis, Alsema and Agostinelli. (Fthenakis, 2005) Note that factor is applicable only to silicon-specific technologies and is applied for abatement.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.716Z", + "last_change_date": "2022-03-14T08:01:57.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8355, + "fields": { + "EF_ID": 214178, + "IPCC_Category": "2.E.4 - Heat Transfer Fluid", + "Gases": "C6F14", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for Fluorinated Compound (FC) Emissions from Evaporation of Heat Transfer Fluids (2006 IPCC Guidelines Tier 1 default: See Comments from data provider)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg C6F14/m^2 of silicon consumed", + "Equation": "Equation 6.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2E4, Sheet 1 of 1, in Annex 1 (page A1.25) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.2)", + "Technical_Reference": "Burton, C. S. (2004). Uses and Air Emissions of Liquid PFC Heat Transfer Fluids from the Electronics Sector: Initial Findings, report prepared for U. S. EPA`s Climate Change Division, October 2004.; Tuma, P.E. and Tousignant, L. (2001). Reducing Emissions of PFC Heat Transfer Fluids, Presented at Semicon West, San Francisco, July 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor assumes HTFs have the same global warming potential (GWP) and C6F14 represents a suitable proxy. The origin of this factor is described in Burton, 2004, and is based in part on the work of Tuma and Tousignant (2001).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.814Z", + "last_change_date": "2022-03-14T08:01:57.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8356, + "fields": { + "EF_ID": 214179, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.900Z", + "last_change_date": "2022-03-14T08:01:57.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8357, + "fields": { + "EF_ID": 214180, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:57.991Z", + "last_change_date": "2022-03-14T08:01:57.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8358, + "fields": { + "EF_ID": 214181, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.075Z", + "last_change_date": "2022-03-14T08:01:58.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8359, + "fields": { + "EF_ID": 214182, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+400%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.184Z", + "last_change_date": "2022-03-14T08:01:58.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8360, + "fields": { + "EF_ID": 214183, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.256Z", + "last_change_date": "2022-03-14T08:01:58.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8361, + "fields": { + "EF_ID": 214184, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-80%", + "Upper_Bound": "+80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.351Z", + "last_change_date": "2022-03-14T08:01:58.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8362, + "fields": { + "EF_ID": 214185, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "Cleaning method in which the film cleaning-agents formed from NF3 (F-atoms) are produced in a plasma upstream (remote) from the chamber being cleaned. NF3 used in this cleaning process is referred to as Remote-NF3 in the 2006 IPCC Guidelines. Also, see Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+400%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.425Z", + "last_change_date": "2022-03-14T08:01:58.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8363, + "fields": { + "EF_ID": 214186, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines. Also, see Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.519Z", + "last_change_date": "2022-03-14T08:01:58.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8364, + "fields": { + "EF_ID": 214187, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+300%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.592Z", + "last_change_date": "2022-03-14T08:01:58.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8365, + "fields": { + "EF_ID": 214188, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-90%", + "Upper_Bound": "+90%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.687Z", + "last_change_date": "2022-03-14T08:01:58.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8366, + "fields": { + "EF_ID": 214189, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of CHF3 (HFC-23) in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "kg CF4/kg CHF3", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+300%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.758Z", + "last_change_date": "2022-03-14T08:01:58.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8367, + "fields": { + "EF_ID": 214190, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of CH2F2 (HFC-32) in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "kg CF4/kg CH2F2", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.863Z", + "last_change_date": "2022-03-14T08:01:58.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8368, + "fields": { + "EF_ID": 214191, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C3F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C3F8", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:58.950Z", + "last_change_date": "2022-03-14T08:01:58.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8369, + "fields": { + "EF_ID": 214192, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of c-C4F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg c-C4F8", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.047Z", + "last_change_date": "2022-03-14T08:01:59.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8370, + "fields": { + "EF_ID": 214193, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of Remote-NF3 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "Cleaning method in which the film cleaning-agents formed from NF3 (F-atoms) are produced in a plasma upstream (remote) from the chamber being cleaned. NF3 used in this cleaning process is referred to as Remote-NF3 in the 2006 IPCC Guidelines. Also, see Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CF4/kg NF3", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive. According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.125Z", + "last_change_date": "2022-03-14T08:01:59.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8371, + "fields": { + "EF_ID": 214194, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines. Also, see Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "kg CF4/kg NF3", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.223Z", + "last_change_date": "2022-03-14T08:01:59.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8372, + "fields": { + "EF_ID": 214195, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F6 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg CF4/kg C4F6", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.308Z", + "last_change_date": "2022-03-14T08:01:59.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8373, + "fields": { + "EF_ID": 214196, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C5F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C5F8", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Estimate relies on an analogy to c-C4F8 as the data for C5F8 were insufficient to estimate a confidence interval.", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.400Z", + "last_change_date": "2022-03-14T08:01:59.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8374, + "fields": { + "EF_ID": 214197, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F8O in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C4F8O", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-80%", + "Upper_Bound": "+80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.500Z", + "last_change_date": "2022-03-14T08:01:59.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8375, + "fields": { + "EF_ID": 214198, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of F2 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CF4/kg F2", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive. According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.592Z", + "last_change_date": "2022-03-14T08:01:59.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8376, + "fields": { + "EF_ID": 214199, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of COF2 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CF4/kg COF2", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive. According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.667Z", + "last_change_date": "2022-03-14T08:01:59.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8377, + "fields": { + "EF_ID": 214200, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of c-C4F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg C2F6/kg c-C4F8", + "Equation": "Equation 6.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive. According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.777Z", + "last_change_date": "2022-03-14T08:01:59.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8378, + "fields": { + "EF_ID": 214201, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C4F6 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg C2F6/kg C4F6", + "Equation": "Equation 6.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive. According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.858Z", + "last_change_date": "2022-03-14T08:01:59.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8379, + "fields": { + "EF_ID": 214202, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C5F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg C2F6/kg C5F8", + "Equation": "Equation 6.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Estimate relies on an analogy to c-C4F8 as the data for C5F8 were insufficient to estimate a confidence interval.", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive. According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:01:59.961Z", + "last_change_date": "2022-03-14T08:01:59.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8380, + "fields": { + "EF_ID": 214203, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C3F8 Emissions from Use of C4F8O in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg C3F8/kg C4F8O", + "Equation": "Equation 6.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.039Z", + "last_change_date": "2022-03-14T08:02:00.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8381, + "fields": { + "EF_ID": 214204, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.145Z", + "last_change_date": "2022-03-14T08:02:00.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8382, + "fields": { + "EF_ID": 214205, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.222Z", + "last_change_date": "2022-03-14T08:02:00.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8383, + "fields": { + "EF_ID": 214206, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.291Z", + "last_change_date": "2022-03-14T08:02:00.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8384, + "fields": { + "EF_ID": 214207, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+700%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.358Z", + "last_change_date": "2022-03-14T08:02:00.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8385, + "fields": { + "EF_ID": 214208, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.455Z", + "last_change_date": "2022-03-14T08:02:00.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8386, + "fields": { + "EF_ID": 214209, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch; An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+300%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.547Z", + "last_change_date": "2022-03-14T08:02:00.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8387, + "fields": { + "EF_ID": 214210, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+300%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.617Z", + "last_change_date": "2022-03-14T08:02:00.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8388, + "fields": { + "EF_ID": 214211, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.717Z", + "last_change_date": "2022-03-14T08:02:00.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8389, + "fields": { + "EF_ID": 214212, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.799Z", + "last_change_date": "2022-03-14T08:02:00.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8390, + "fields": { + "EF_ID": 214213, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-0.4%", + "Upper_Bound": "+0.4%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.872Z", + "last_change_date": "2022-03-14T08:02:00.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8391, + "fields": { + "EF_ID": 214214, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:00.950Z", + "last_change_date": "2022-03-14T08:02:00.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8392, + "fields": { + "EF_ID": 214215, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD); Cleaning method in which the film cleaning-agents formed from NF3 (F-atoms) are produced in a plasma upstream (remote) from the chamber being cleaned. NF3 used in this cleaning process is referred to as Remote-NF3 in the 2006 IPCC Guidelines.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+400%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.025Z", + "last_change_date": "2022-03-14T08:02:01.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8393, + "fields": { + "EF_ID": 214216, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD); An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.127Z", + "last_change_date": "2022-03-14T08:02:01.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8394, + "fields": { + "EF_ID": 214217, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.206Z", + "last_change_date": "2022-03-14T08:02:01.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8395, + "fields": { + "EF_ID": 214218, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of CHF3 (HFC-23) in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "kg CF4/kg CHF3", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+300%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.283Z", + "last_change_date": "2022-03-14T08:02:01.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8396, + "fields": { + "EF_ID": 214219, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of CH2F2 (HFC-32) in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "kg CF4/kg CH2F2", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.366Z", + "last_change_date": "2022-03-14T08:02:01.366Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8397, + "fields": { + "EF_ID": 214220, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of c-C4F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg c-C4F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.462Z", + "last_change_date": "2022-03-14T08:02:01.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8398, + "fields": { + "EF_ID": 214221, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F6 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg CF4/kg C4F6", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.539Z", + "last_change_date": "2022-03-14T08:02:01.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8399, + "fields": { + "EF_ID": 214222, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C5F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg C5F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Estimate relies on an analogy to c-C4F8 as the data for C5F8 were insufficient to estimate a confidence interval.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.616Z", + "last_change_date": "2022-03-14T08:02:01.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8400, + "fields": { + "EF_ID": 214223, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of c-C4F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg C2F6/kg c-C4F8", + "Equation": "Equation 6.9 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.700Z", + "last_change_date": "2022-03-14T08:02:01.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8401, + "fields": { + "EF_ID": 214224, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C4F6 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch (including multi-gas etch processes)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg C2F6/kg C4F6", + "Equation": "Equation 6.9 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.783Z", + "last_change_date": "2022-03-14T08:02:01.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8402, + "fields": { + "EF_ID": 214225, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C5F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg C2F6/kg C5F8", + "Equation": "Equation 6.9 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Estimate relies on an analogy to c-C4F8 as the data for C5F8 were insufficient to estimate a confidence interval.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.889Z", + "last_change_date": "2022-03-14T08:02:01.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8403, + "fields": { + "EF_ID": 214226, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-80%", + "Upper_Bound": "+80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:01.964Z", + "last_change_date": "2022-03-14T08:02:01.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8404, + "fields": { + "EF_ID": 214227, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C3F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C3F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.041Z", + "last_change_date": "2022-03-14T08:02:02.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8405, + "fields": { + "EF_ID": 214228, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of c-C4F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg c-C4F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.125Z", + "last_change_date": "2022-03-14T08:02:02.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8406, + "fields": { + "EF_ID": 214229, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of Remote-NF3 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD); Cleaning method in which the film cleaning-agents formed from NF3 (F-atoms) are produced in a plasma upstream (remote) from the chamber being cleaned. NF3 used in this cleaning process is referred to as Remote-NF3 in the 2006 IPCC Guidelines.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CF4/kg NF3", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.208Z", + "last_change_date": "2022-03-14T08:02:02.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8407, + "fields": { + "EF_ID": 214230, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD); An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg NF3", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.299Z", + "last_change_date": "2022-03-14T08:02:02.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8408, + "fields": { + "EF_ID": 214231, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C5F8 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C5F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Estimate relies on an analogy to c-C4F8 as the data for C5F8 were insufficient to estimate a confidence interval.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.381Z", + "last_change_date": "2022-03-14T08:02:02.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8409, + "fields": { + "EF_ID": 214232, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F8O in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg C4F8O", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-80%", + "Upper_Bound": "+80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.441Z", + "last_change_date": "2022-03-14T08:02:02.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8410, + "fields": { + "EF_ID": 214233, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of F2 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CF4/kg F2", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.508Z", + "last_change_date": "2022-03-14T08:02:02.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8411, + "fields": { + "EF_ID": 214234, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of COF2 in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CF4/kg COF2", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-100% (close to zero in absolute value)", + "Upper_Bound": "+200%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.619Z", + "last_change_date": "2022-03-14T08:02:02.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8412, + "fields": { + "EF_ID": 214235, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C3F8 Emissions from Use of C4F8O in Semiconductor Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "kg C3F8/kg C4F8O", + "Equation": "Equation 6.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.3)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimate reflects presence of low-k, carbide and multi-gas etch processes that may contain a C-containing FC additive.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.698Z", + "last_change_date": "2022-03-14T08:02:02.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8413, + "fields": { + "EF_ID": 214236, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.758Z", + "last_change_date": "2022-03-14T08:02:02.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8414, + "fields": { + "EF_ID": 214237, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-8%", + "Upper_Bound": "+8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.853Z", + "last_change_date": "2022-03-14T08:02:02.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8415, + "fields": { + "EF_ID": 214238, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:02.931Z", + "last_change_date": "2022-03-14T08:02:02.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8416, + "fields": { + "EF_ID": 214239, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "Cleaning method in which the film cleaning-agents formed from NF3 (F-atoms) are produced in a plasma upstream (remote) from the chamber being cleaned. NF3 used in this cleaning process is referred to as Remote-NF3 in the 2006 IPCC Guidelines. Also, see Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.021Z", + "last_change_date": "2022-03-14T08:02:03.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8417, + "fields": { + "EF_ID": 214240, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines. Also, see Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.106Z", + "last_change_date": "2022-03-14T08:02:03.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8418, + "fields": { + "EF_ID": 214241, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.197Z", + "last_change_date": "2022-03-14T08:02:03.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8419, + "fields": { + "EF_ID": 214242, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of CHF3 (HFC-23) in Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "kg CF4/kg CHF3", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.273Z", + "last_change_date": "2022-03-14T08:02:03.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8420, + "fields": { + "EF_ID": 214243, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of c-C4F8 in Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "kg CF4/kg c-C4F8", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.364Z", + "last_change_date": "2022-03-14T08:02:03.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8421, + "fields": { + "EF_ID": 214244, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CHF3 (HFC-23) Emissions from Use of c-C4F8 in Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CHF3/kg c-C4F8", + "Equation": "Equation 6.5 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.440Z", + "last_change_date": "2022-03-14T08:02:03.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8422, + "fields": { + "EF_ID": 214245, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of CHF3 (HFC-23) in Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg C2F6/kg CHF3", + "Equation": "Equation 6.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method. This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.532Z", + "last_change_date": "2022-03-14T08:02:03.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8423, + "fields": { + "EF_ID": 214246, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "+50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.606Z", + "last_change_date": "2022-03-14T08:02:03.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8424, + "fields": { + "EF_ID": 214247, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-8%", + "Upper_Bound": "+8%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.708Z", + "last_change_date": "2022-03-14T08:02:03.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8425, + "fields": { + "EF_ID": 214248, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.790Z", + "last_change_date": "2022-03-14T08:02:03.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8426, + "fields": { + "EF_ID": 214249, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.850Z", + "last_change_date": "2022-03-14T08:02:03.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8427, + "fields": { + "EF_ID": 214250, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD); Cleaning method in which the film cleaning-agents formed from NF3 (F-atoms) are produced in a plasma upstream (remote) from the chamber being cleaned. NF3 used in this cleaning process is referred to as Remote-NF3 in the 2006 IPCC Guidelines.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:03.931Z", + "last_change_date": "2022-03-14T08:02:03.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8428, + "fields": { + "EF_ID": 214251, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD); An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.044Z", + "last_change_date": "2022-03-14T08:02:04.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8429, + "fields": { + "EF_ID": 214252, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Semiconductor Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-6%", + "Upper_Bound": "+6%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.131Z", + "last_change_date": "2022-03-14T08:02:04.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8430, + "fields": { + "EF_ID": 214253, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of CHF3 (HFC-23) in Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "kg CF4/kg CHF3", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.198Z", + "last_change_date": "2022-03-14T08:02:04.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8431, + "fields": { + "EF_ID": 214254, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of c-C4F8 in Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "kg CF4/kg c-C4F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.296Z", + "last_change_date": "2022-03-14T08:02:04.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8432, + "fields": { + "EF_ID": 214255, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CHF3 (HFC-23) Emissions from Use of c-C4F8 in Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CHF3/kg c-C4F8", + "Equation": "Equation 6.10 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.373Z", + "last_change_date": "2022-03-14T08:02:04.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8433, + "fields": { + "EF_ID": 214256, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of CHF3 (HFC-23) in Thin-Film-Transistor Flat Panel Display (TFT-FPD) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg C2F6/kg CHF3", + "Equation": "Equation 6.9 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.4)", + "Technical_Reference": "Nishida, H., Marsumura, K., Kurokawa, H., Hoshino, A. and Masui, S. (2005), PFC emission-reduction strategy for the LCD industry, J. Society for Information Display, Vol 13, pp. 841-848 (2005).", + "English_Abstract": "", + "Lower_Bound": "-40%", + "Upper_Bound": "+40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor for TFT-FPD manufacturing is a simple (unweighted) average developed from gas- and process-specific values published by Nishida et al. (2005).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.439Z", + "last_change_date": "2022-03-14T08:02:04.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8434, + "fields": { + "EF_ID": 214257, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.506Z", + "last_change_date": "2022-03-14T08:02:04.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8435, + "fields": { + "EF_ID": 214258, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.606Z", + "last_change_date": "2022-03-14T08:02:04.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8436, + "fields": { + "EF_ID": 214259, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.698Z", + "last_change_date": "2022-03-14T08:02:04.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8437, + "fields": { + "EF_ID": 214260, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.799Z", + "last_change_date": "2022-03-14T08:02:04.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8438, + "fields": { + "EF_ID": 214261, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.883Z", + "last_change_date": "2022-03-14T08:02:04.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8439, + "fields": { + "EF_ID": 214262, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines. Also, see Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:04.974Z", + "last_change_date": "2022-03-14T08:02:04.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8440, + "fields": { + "EF_ID": 214263, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2a)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.2 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.050Z", + "last_change_date": "2022-03-14T08:02:05.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8441, + "fields": { + "EF_ID": 214264, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.142Z", + "last_change_date": "2022-03-14T08:02:05.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8442, + "fields": { + "EF_ID": 214265, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C3F8 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg C3F8", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.225Z", + "last_change_date": "2022-03-14T08:02:05.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8443, + "fields": { + "EF_ID": 214266, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of c-C4F8 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg c-C4F8", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.326Z", + "last_change_date": "2022-03-14T08:02:05.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8444, + "fields": { + "EF_ID": 214267, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines. Also, see Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg CF4/kg NF3", + "Equation": "Equation 6.3 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.416Z", + "last_change_date": "2022-03-14T08:02:05.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8445, + "fields": { + "EF_ID": 214268, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of c-C4F8 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "See Comments from data provider.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg C2F6/kg c-C4F8", + "Equation": "Equation 6.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "According to the 2006 IPCC Guidelines, The Tier 2a method uses the emission factor for the process type (CVD or etch) in which the individual FC is most frequently used in the particular electronics sector. This method reflects a current trend where individual FCs tend to be used predominantly in particular process types (CVD or etch) throughout each industry. However, in countries with companies or plants that depart significantly from the industry-wide pattern of usage (e.g., by using a gas primarily in etch while others primarily use it in CVD), inventory compilers should evaluate the potential to introduce error by using the Tier 2a method rather than the Tier 2b method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.528Z", + "last_change_date": "2022-03-14T08:02:05.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8446, + "fields": { + "EF_ID": 214269, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.617Z", + "last_change_date": "2022-03-14T08:02:05.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8447, + "fields": { + "EF_ID": 214270, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.681Z", + "last_change_date": "2022-03-14T08:02:05.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8448, + "fields": { + "EF_ID": 214271, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:05.955Z", + "last_change_date": "2022-03-14T08:02:05.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8449, + "fields": { + "EF_ID": 214272, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.092Z", + "last_change_date": "2022-03-14T08:02:06.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8450, + "fields": { + "EF_ID": 214273, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.175Z", + "last_change_date": "2022-03-14T08:02:06.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8451, + "fields": { + "EF_ID": 214274, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.266Z", + "last_change_date": "2022-03-14T08:02:06.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8452, + "fields": { + "EF_ID": 214275, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.331Z", + "last_change_date": "2022-03-14T08:02:06.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8453, + "fields": { + "EF_ID": 214276, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.424Z", + "last_change_date": "2022-03-14T08:02:06.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8454, + "fields": { + "EF_ID": 214277, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD); An in-situ NF3 cleaning process that is analogous to the process for other cleaning gases like C2F6 and C3F8. NF3 used in this cleaning process is referred to as simply NF3 and distinguished from Remote-NF3 in the 2006 IPCC Guidelines.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.508Z", + "last_change_date": "2022-03-14T08:02:06.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8455, + "fields": { + "EF_ID": 214278, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Process Tool Emission Factor for Fluorinated Compound (FC) Emissions from Photovoltaic (PV) Manufacturing (= 1 - Use Rate) (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.583Z", + "last_change_date": "2022-03-14T08:02:06.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8456, + "fields": { + "EF_ID": 214279, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.658Z", + "last_change_date": "2022-03-14T08:02:06.658Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8457, + "fields": { + "EF_ID": 214280, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of c-C4F8 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg c-C4F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.733Z", + "last_change_date": "2022-03-14T08:02:06.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8458, + "fields": { + "EF_ID": 214281, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of c-C4F8 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Etch", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg C2F6/kg c-C4F8", + "Equation": "Equation 6.9 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.851Z", + "last_change_date": "2022-03-14T08:02:06.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8459, + "fields": { + "EF_ID": 214282, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg C2F6", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:06.933Z", + "last_change_date": "2022-03-14T08:02:06.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8460, + "fields": { + "EF_ID": 214283, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C3F8 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CF4/kg C3F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.008Z", + "last_change_date": "2022-03-14T08:02:07.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8461, + "fields": { + "EF_ID": 214284, + "IPCC_Category": "2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of c-C4F8 in Photovoltaic (PV) Manufacturing (2006 IPCC Guidelines Tier 2b)", + "Technology_Practices": "Process type: Chemical Vapour Deposition (CVD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CF4/kg c-C4F8", + "Equation": "Equation 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.5)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.083Z", + "last_change_date": "2022-03-14T08:02:07.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8462, + "fields": { + "EF_ID": 214285, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Destruction Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for fuelled combustion, plasma, and catalytic abatement technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.3, 6.7, 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.158Z", + "last_change_date": "2022-03-14T08:02:07.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8463, + "fields": { + "EF_ID": 214286, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Destruction Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for fuelled combustion, plasma, and catalytic abatement technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.4, 6.7, 6.9 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.261Z", + "last_change_date": "2022-03-14T08:02:07.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8464, + "fields": { + "EF_ID": 214287, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Destruction Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for fuelled combustion, plasma, and catalytic abatement technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.5, 6.7, 6.10 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.358Z", + "last_change_date": "2022-03-14T08:02:07.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8465, + "fields": { + "EF_ID": 214288, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Destruction Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for fuelled combustion, plasma, and catalytic abatement technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.6, 6.7, 6.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.462Z", + "last_change_date": "2022-03-14T08:02:07.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8466, + "fields": { + "EF_ID": 214311, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Destruction Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for fuelled combustion, plasma, and catalytic abatement technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.558Z", + "last_change_date": "2022-03-14T08:02:07.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8467, + "fields": { + "EF_ID": 214312, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Destruction Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for fuelled combustion, plasma, and catalytic abatement technologies.", + "Other_Properties": "", + "Value": "0.95", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.656Z", + "last_change_date": "2022-03-14T08:02:07.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8468, + "fields": { + "EF_ID": 214313, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Destruction Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for fuelled combustion, plasma, and catalytic abatement technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.742Z", + "last_change_date": "2022-03-14T08:02:07.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8469, + "fields": { + "EF_ID": 214314, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Capture/Recovery Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for cryogenic and membrane capture and recovery technologies.", + "Other_Properties": "", + "Value": "0.75", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.3, 6.7, 6.8 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.831Z", + "last_change_date": "2022-03-14T08:02:07.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8470, + "fields": { + "EF_ID": 214315, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Capture/Recovery Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for cryogenic and membrane capture and recovery technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.4, 6.7, 6.9 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:07.917Z", + "last_change_date": "2022-03-14T08:02:07.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8471, + "fields": { + "EF_ID": 214316, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Capture/Recovery Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for cryogenic and membrane capture and recovery technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.5, 6.7, 6.10 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.008Z", + "last_change_date": "2022-03-14T08:02:08.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8472, + "fields": { + "EF_ID": 214317, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Capture/Recovery Efficiency for Electronics Industry Fluorinated Compound (FC) Emission Reduction Technology (2006 IPCC Guidelines Tiers 2a and 2b)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "Average values for cryogenic and membrane capture and recovery technologies.", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equations 6.2, 6.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Table 6.6)", + "Technical_Reference": "Burton, C. S. (2006). Sources and Methods Used to Develop PFC Emission Factors from the Electronics Sector, report prepared for U. S. EPA`s Climate Change Division, February 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This parameter is based on tests of control devices that have been optimised for specific processes and tools. It was calculated from data received from equipment suppliers, abatement technology suppliers and electronic device manufacturers. It should be noted that only data from abatement devices that were specifically designed to abate FCs were used in the calculation. It is the result of all of the data received for optimized technologies and for each input gas, rounded down to the next 5 percent (e.g., an average of 98 percent would be rounded down to 0.95). For further details, see the footnotes to Table 6.6 and relevant sections on Pages 6.20 - 6.22 in Chapter 6, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.092Z", + "last_change_date": "2022-03-14T08:02:08.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8473, + "fields": { + "EF_ID": 214318, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor, 2.E.2 - TFT Flat Panel Display, 2.E.3 - Photovoltaics", + "Gases": "Nitrogen Trifluoride, HFC-23, HFC-32, CF4, C2F6, C3F8, c-C4F8, Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of Gas Remaining in Shipping Container (= Heel) After Use", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "fraction", + "Equation": "Equations 6.2 to 6.11 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 6, Page 6.16)", + "Technical_Reference": "Expert judgement by the authors of Chapter 6, Volume 3 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.184Z", + "last_change_date": "2022-03-14T08:02:08.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8474, + "fields": { + "EF_ID": 214342, + "IPCC_Category": "2.F.5 - Solvents", + "Gases": "HFE-365mcf3, HFC-43-10mee, C6F14", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Uses of Substitutes for Ozone Depleting Substances (ODSs) for Solvent Cleaning (Fraction of Chemical Emitted from Solvents in the Year of Initial Use)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 7.5 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2F5, Sheet 1 of 1, in Annex 1 (page A1.28) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Section 7.2.2.2, Page 7.24); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Chapter 3, Section 3.7.2.1, Page 3.89)", + "Technical_Reference": "Expert judgement by the authors of Chapter 7, Volume 3 of the 2006 IPCC Guidelines; Expert judgement by the authors of Section 3.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.267Z", + "last_change_date": "2022-03-14T08:02:08.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8475, + "fields": { + "EF_ID": 214345, + "IPCC_Category": "2.F.4 - Aerosols", + "Gases": "HFE-245fa1, HFE-365mcf3, HFC-43-10mee, HFC-134a, HFC-152a, HFC-227ea", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Uses of Substitutes for Ozone Depleting Substances (ODSs) for Aerosols [Propellants and Solvents] (Fraction of Chemical Emitted from Solvents in the First Year)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 7.6 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2F4, Sheet 1 of 1, in Annex 1 (page A1.27) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Section 7.3.2.2, Page 7.29); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Chapter 3, Section 3.7.1.1, Page 3.87)", + "Technical_Reference": "Expert judgement by the authors of Chapter 7, Volume 3 of the 2006 IPCC Guidelines; Expert judgement by the authors of Section 3.7 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.342Z", + "last_change_date": "2022-03-14T08:02:08.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8476, + "fields": { + "EF_ID": 214351, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFE-245fa1, HFE-365mcf3, HFC-134a, HFC-152a, HFC-227ea", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Product Lifetime (n), First Year Losses (FYL) and Annual Losses (AL) for HFC emissions from Closed-Cell Foam", + "Technology_Practices": "", + "Parameter_Conditions": "Foam Type: Closed-cell foam", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 20 years; FYL = 10; AL = 4.5", + "Unit": "% of the original HFC charge/year", + "Equation": "See Section 7.4.2.1, Chapter 7, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; See Section 3.7.3.1, Chapter 3 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.5); IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Chapter 3, Table 3.17, Page 3.96)", + "Technical_Reference": "Gamlen P.H., Lane B.C., Midgley P.M. and Steed J.M (1986). The production and release to the atmosphere of CFCl3 and CF2 Cl2 (chlorofluorocarbons CFC-11 and CFC-12). Atmos. Environ. 20: 1077-1085.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value of first year losses could drop to 5% if significant recycling takes place during manufacturing.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.435Z", + "last_change_date": "2022-03-14T08:02:08.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8477, + "fields": { + "EF_ID": 214356, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Integral Skin", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 12 years; FYL = 95; AL = 2.5; EOLL = 0", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "IPCC/TEAP (2005). IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. Prepared by Working I and III of the Intergovernmental Panel on Climate Change, and the Technology and Economic Assessment Panel [Metz, B., L. Kuijpers, S. Solomon, S. O. Andersen, O. Davidson, J. Pons, D. de Jager, T. Kestin, M. Manning, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 488 pp.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.525Z", + "last_change_date": "2022-03-14T08:02:08.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8478, + "fields": { + "EF_ID": 214357, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Continuous Panel", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 10; AL = 0.5; EOLL = 65", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "IPCC/TEAP (2005). IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. Prepared by Working I and III of the Intergovernmental Panel on Climate Change, and the Technology and Economic Assessment Panel [Metz, B., L. Kuijpers, S. Solomon, S. O. Andersen, O. Davidson, J. Pons, D. de Jager, T. Kestin, M. Manning, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 488 pp.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.600Z", + "last_change_date": "2022-03-14T08:02:08.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8479, + "fields": { + "EF_ID": 214358, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Discontinuous Panel", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 12.5; AL = 0.5; EOLL = 62.5", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "IPCC/TEAP (2005). IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. Prepared by Working I and III of the Intergovernmental Panel on Climate Change, and the Technology and Economic Assessment Panel [Metz, B., L. Kuijpers, S. Solomon, S. O. Andersen, O. Davidson, J. Pons, D. de Jager, T. Kestin, M. Manning, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 488 pp.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.695Z", + "last_change_date": "2022-03-14T08:02:08.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8480, + "fields": { + "EF_ID": 214359, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Appliance", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 15 years; FYL = 7; AL = 0.5; EOLL = 85.5", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "IPCC/TEAP (2005). IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. Prepared by Working I and III of the Intergovernmental Panel on Climate Change, and the Technology and Economic Assessment Panel [Metz, B., L. Kuijpers, S. Solomon, S. O. Andersen, O. Davidson, J. Pons, D. de Jager, T. Kestin, M. Manning, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 488 pp.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.792Z", + "last_change_date": "2022-03-14T08:02:08.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8481, + "fields": { + "EF_ID": 214360, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Injected", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 15 years; FYL = 12.5; AL = 0.5; EOLL = 80", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "IPCC/TEAP (2005). IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. Prepared by Working I and III of the Intergovernmental Panel on Climate Change, and the Technology and Economic Assessment Panel [Metz, B., L. Kuijpers, S. Solomon, S. O. Andersen, O. Davidson, J. Pons, D. de Jager, T. Kestin, M. Manning, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 488 pp.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.883Z", + "last_change_date": "2022-03-14T08:02:08.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8482, + "fields": { + "EF_ID": 214361, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: One Component Foam (OCF)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 95; AL = 2.5; EOLL = 0", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "Ashford, P. and Jeffs, M. (2004). Development of Emissions Functions for Foams and their use in Emissions Forecasting, ETF Proceedings, April 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:08.988Z", + "last_change_date": "2022-03-14T08:02:08.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8483, + "fields": { + "EF_ID": 214362, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Extruded Polystyrene (XPS)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 25; AL = 0.75; EOLL = 37.5", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "Vo and Paquet (2004). An Evaluation of Thermal Conductivity over time for Extruded Polystyrene Foams blown with HFC-134a and HCFC-142b, ETF Proceedings, April 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.083Z", + "last_change_date": "2022-03-14T08:02:09.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8484, + "fields": { + "EF_ID": 214363, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Extruded Polyethylene (PE)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 40; AL = 3; EOLL = 0", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "Ashford, P. and Jeffs, M. (2004). Development of Emissions Functions for Foams and their use in Emissions Forecasting, ETF Proceedings, April 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.167Z", + "last_change_date": "2022-03-14T08:02:09.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8485, + "fields": { + "EF_ID": 214370, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-152a", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL), Annual Loss (AL) and Maximum Potential End-of-Life Loss (EOLL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Extruded Polystyrene (XPS)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 50; AL = 25; EOLL = 0", + "Unit": "%", + "Equation": "Equation 7.7 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.6)", + "Technical_Reference": "IPCC/TEAP (2005). IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons. Prepared by Working I and III of the Intergovernmental Panel on Climate Change, and the Technology and Economic Assessment Panel [Metz, B., L. Kuijpers, S. Solomon, S. O. Andersen, O. Davidson, J. Pons, D. de Jager, T. Kestin, M. Manning, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 488 pp.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.241Z", + "last_change_date": "2022-03-14T08:02:09.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8486, + "fields": { + "EF_ID": 214372, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL) and Annual Loss (AL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Integral Skin", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 12-15 years; FYL = 95; AL = 2.5", + "Unit": "%", + "Equation": "Equation 3.38 on Page 3.93 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.18 on Page 3.96)", + "Technical_Reference": "Ashford P. (1999). Emissions from Foams - Predicting, monitoring, reporting and reducing. Proceedings of the Joint IPCC/TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, ECN Petten, Netherlands, 26-28 May 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.332Z", + "last_change_date": "2022-03-14T08:02:09.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8487, + "fields": { + "EF_ID": 214373, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL) and Annual Loss (AL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Continuous Panel", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 10; AL = 0.5", + "Unit": "%", + "Equation": "Equation 3.38 on Page 3.93 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.18 on Page 3.96)", + "Technical_Reference": "Ashford P. (1999). Emissions from Foams - Predicting, monitoring, reporting and reducing. Proceedings of the Joint IPCC/TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, ECN Petten, Netherlands, 26-28 May 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.417Z", + "last_change_date": "2022-03-14T08:02:09.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8488, + "fields": { + "EF_ID": 214374, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL) and Annual Loss (AL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Discontinuous Panel", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 12.5; AL = 0.5", + "Unit": "%", + "Equation": "Equation 3.38 on Page 3.93 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.18 on Page 3.96)", + "Technical_Reference": "Ashford P. (1999). Emissions from Foams - Predicting, monitoring, reporting and reducing. Proceedings of the Joint IPCC/TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, ECN Petten, Netherlands, 26-28 May 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.492Z", + "last_change_date": "2022-03-14T08:02:09.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8489, + "fields": { + "EF_ID": 214375, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL) and Annual Loss (AL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Appliance", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 15-20 years; FYL = 7.5; AL = 0.5", + "Unit": "%", + "Equation": "Equation 3.38 on Page 3.93 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.18 on Page 3.96)", + "Technical_Reference": "Ashford P. (1999). Emissions from Foams - Predicting, monitoring, reporting and reducing. Proceedings of the Joint IPCC/TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, ECN Petten, Netherlands, 26-28 May 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.567Z", + "last_change_date": "2022-03-14T08:02:09.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8490, + "fields": { + "EF_ID": 214376, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL) and Annual Loss (AL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Polyurethane - Injected", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 15 years; FYL = 12.5; AL = 0.5", + "Unit": "%", + "Equation": "Equation 3.38 on Page 3.93 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.18 on Page 3.96)", + "Technical_Reference": "Ashford P. (1999). Emissions from Foams - Predicting, monitoring, reporting and reducing. Proceedings of the Joint IPCC/TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, ECN Petten, Netherlands, 26-28 May 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.659Z", + "last_change_date": "2022-03-14T08:02:09.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8491, + "fields": { + "EF_ID": 214377, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL) and Annual Loss (AL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: One Component Foam (OCF)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 95; AL = 2.5", + "Unit": "%", + "Equation": "Equation 3.38 on Page 3.93 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.18 on Page 3.96)", + "Technical_Reference": "Ashford P. (1999). Emissions from Foams - Predicting, monitoring, reporting and reducing. Proceedings of the Joint IPCC/TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, ECN Petten, Netherlands, 26-28 May 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.742Z", + "last_change_date": "2022-03-14T08:02:09.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8492, + "fields": { + "EF_ID": 214378, + "IPCC_Category": "2.F.2 - Foam Blowing Agents", + "Gases": "HFC-134a, HFC-152a", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Product Lifetime (n), First Year Loss (FYL) and Annual Loss (AL) for HFC emissions from Foam Blowing", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Extruded Polystyrene/Extruded Polyethylene (XPS/PE)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "n = 50 years; FYL = 40; AL = 3", + "Unit": "%", + "Equation": "Equation 3.38 on Page 3.93 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 3.18 on Page 3.96)", + "Technical_Reference": "Ashford P. (1999). Emissions from Foams - Predicting, monitoring, reporting and reducing. Proceedings of the Joint IPCC/TEAP Expert Meeting on Options for the Limitation of Emissions of HFCs and PFCs, ECN Petten, Netherlands, 26-28 May 1999.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.816Z", + "last_change_date": "2022-03-14T08:02:09.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8493, + "fields": { + "EF_ID": 214382, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, HFC-236fa", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factors and Parameters for Estimation of HFC Emissions from Refrigeration and Stationary Air Conditioning - Charge [M], Lifetime [d], Initial Emission Factor (losses of HFC charged into new equipment) [k], Operation Emission Factor (annual emission rate accounting for average annual leakage and average annual emissions during servicing) [x], Recovery Efficiency at Disposal [n], and Initial Charge Remaining (residual charge of HFC in equipment being disposed of) [p]", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Domestic Refrigeration", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "M = 0.05-0.5 kg; d = 12-20 years; k = 0.2-1; x = 0.1-0.5; n = 0-70; p = 0-80", + "Unit": "%", + "Equation": "Equations 7.12-7.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.9)", + "Technical_Reference": "UNEP-RTOC (1999). 1998 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, 1998 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-1731-6; UNEP-RTOC (2003). 2002 Report of the Refrigeration, air Conditioning and Heat Pumps Technical Options Committee, 2002 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-2288-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These default values reflect the current state of knowledge about the industry, and are provided as ranges rather than point estimates. The lower end of the ranges for lifetime, initial emission factor and operation emission factor is intended to indicate the status within developed countries, while the upper end of each range is intended to indicate the status within developing countries. Inventory compilers should choose from the range according to country-specific conditions, and document the reasons for their choices. The lower threshold (0%) highlights that there is no recovery in some countries.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.892Z", + "last_change_date": "2022-03-14T08:02:09.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8494, + "fields": { + "EF_ID": 214383, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, HFC-236fa", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factors and Parameters for Estimation of HFC Emissions from Refrigeration and Stationary Air Conditioning - Charge [M], Lifetime [d], Initial Emission Factor (losses of HFC charged into new equipment) [k], Operation Emission Factor (annual emission rate accounting for average annual leakage and average annual emissions during servicing) [x], Recovery Efficiency at Disposal [n], and Initial Charge Remaining (residual charge of HFC in equipment being disposed of) [p]", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Stand-alone Commercial Applications", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "M = 0.2-6 kg; d = 10-15 years; k = 0.5-3; x = 1-15; n = 0-70; p = 0-80", + "Unit": "%", + "Equation": "Equations 7.12-7.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.9)", + "Technical_Reference": "UNEP-RTOC (1999). 1998 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, 1998 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-1731-6; UNEP-RTOC (2003). 2002 Report of the Refrigeration, air Conditioning and Heat Pumps Technical Options Committee, 2002 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-2288-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These default values reflect the current state of knowledge about the industry, and are provided as ranges rather than point estimates. The lower end of the ranges for lifetime, initial emission factor and operation emission factor is intended to indicate the status within developed countries, while the upper end of each range is intended to indicate the status within developing countries. Inventory compilers should choose from the range according to country-specific conditions, and document the reasons for their choices. The lower threshold (0%) highlights that there is no recovery in some countries.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:09.986Z", + "last_change_date": "2022-03-14T08:02:09.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8495, + "fields": { + "EF_ID": 214384, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, HFC-236fa", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factors and Parameters for Estimation of HFC Emissions from Refrigeration and Stationary Air Conditioning - Charge [M], Lifetime [d], Initial Emission Factor (losses of HFC charged into new equipment) [k], Operation Emission Factor (annual emission rate accounting for average annual leakage and average annual emissions during servicing) [x], Recovery Efficiency at Disposal [n], and Initial Charge Remaining (residual charge of HFC in equipment being disposed of) [p]", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Medium & Large Commercial Refrigeration", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "M = 50-2000 kg; d = 7-15 years; k = 0.5-3; x = 10-35; n = 0-70; p = 50-100", + "Unit": "%", + "Equation": "Equations 7.12-7.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.9)", + "Technical_Reference": "UNEP-RTOC (1999). 1998 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, 1998 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-1731-6; UNEP-RTOC (2003). 2002 Report of the Refrigeration, air Conditioning and Heat Pumps Technical Options Committee, 2002 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-2288-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These default values reflect the current state of knowledge about the industry, and are provided as ranges rather than point estimates. The lower end of the ranges for lifetime, initial emission factor and operation emission factor is intended to indicate the status within developed countries, while the upper end of each range is intended to indicate the status within developing countries. Inventory compilers should choose from the range according to country-specific conditions, and document the reasons for their choices. The lower threshold (0%) highlights that there is no recovery in some countries.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:10.095Z", + "last_change_date": "2022-03-14T08:02:10.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8496, + "fields": { + "EF_ID": 214385, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, HFC-236fa", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factors and Parameters for Estimation of HFC Emissions from Refrigeration and Stationary Air Conditioning - Charge [M], Lifetime [d], Initial Emission Factor (losses of HFC charged into new equipment) [k], Operation Emission Factor (annual emission rate accounting for average annual leakage and average annual emissions during servicing) [x], Recovery Efficiency at Disposal [n], and Initial Charge Remaining (residual charge of HFC in equipment being disposed of) [p]", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Transport Refrigeration", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "M = 3-8 kg; d = 6-9 years; k = 0.2-1; x = 15-50; n = 0-70; p = 0-50", + "Unit": "%", + "Equation": "Equations 7.12-7.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.9)", + "Technical_Reference": "UNEP-RTOC (1999). 1998 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, 1998 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-1731-6; UNEP-RTOC (2003). 2002 Report of the Refrigeration, air Conditioning and Heat Pumps Technical Options Committee, 2002 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-2288-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These default values reflect the current state of knowledge about the industry, and are provided as ranges rather than point estimates. The lower end of the ranges for lifetime, initial emission factor and operation emission factor is intended to indicate the status within developed countries, while the upper end of each range is intended to indicate the status within developing countries. Inventory compilers should choose from the range according to country-specific conditions, and document the reasons for their choices. The lower threshold (0%) highlights that there is no recovery in some countries.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:10.212Z", + "last_change_date": "2022-03-14T08:02:10.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8497, + "fields": { + "EF_ID": 214386, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, HFC-236fa", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factors and Parameters for Estimation of HFC Emissions from Refrigeration and Stationary Air Conditioning - Charge [M], Lifetime [d], Initial Emission Factor (losses of HFC charged into new equipment) [k], Operation Emission Factor (annual emission rate accounting for average annual leakage and average annual emissions during servicing) [x], Recovery Efficiency at Disposal [n], and Initial Charge Remaining (residual charge of HFC in equipment being disposed of) [p]", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Industrial Refrigeration including Food Processing and Cold Storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "M = 10-10000 kg; d = 15-30 years; k = 0.5-3; x = 7-25; n = 0-90; p = 50-100", + "Unit": "%", + "Equation": "Equations 7.12-7.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.9)", + "Technical_Reference": "UNEP-RTOC (1999). 1998 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, 1998 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-1731-6; UNEP-RTOC (2003). 2002 Report of the Refrigeration, air Conditioning and Heat Pumps Technical Options Committee, 2002 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-2288-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These default values reflect the current state of knowledge about the industry, and are provided as ranges rather than point estimates. The lower end of the ranges for lifetime, initial emission factor and operation emission factor is intended to indicate the status within developed countries, while the upper end of each range is intended to indicate the status within developing countries. Inventory compilers should choose from the range according to country-specific conditions, and document the reasons for their choices. The lower threshold (0%) highlights that there is no recovery in some countries.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:10.320Z", + "last_change_date": "2022-03-14T08:02:10.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8498, + "fields": { + "EF_ID": 214387, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, HFC-236fa", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factors and Parameters for Estimation of HFC Emissions from Refrigeration and Stationary Air Conditioning - Charge [M], Lifetime [d], Initial Emission Factor (losses of HFC charged into new equipment) [k], Operation Emission Factor (annual emission rate accounting for average annual leakage and average annual emissions during servicing) [x], Recovery Efficiency at Disposal [n], and Initial Charge Remaining (residual charge of HFC in equipment being disposed of) [p]", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Chillers", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "M = 10-2000 kg; d = 15-30 years; k = 0.2-1; x = 2-15; n = 0-95; p = 80-100", + "Unit": "%", + "Equation": "Equations 7.12-7.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.9)", + "Technical_Reference": "UNEP-RTOC (1999). 1998 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, 1998 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-1731-6; UNEP-RTOC (2003). 2002 Report of the Refrigeration, air Conditioning and Heat Pumps Technical Options Committee, 2002 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-2288-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These default values reflect the current state of knowledge about the industry, and are provided as ranges rather than point estimates. The lower end of the ranges for lifetime, initial emission factor and operation emission factor is intended to indicate the status within developed countries, while the upper end of each range is intended to indicate the status within developing countries. Inventory compilers should choose from the range according to country-specific conditions, and document the reasons for their choices. The lower threshold (0%) highlights that there is no recovery in some countries.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:10.430Z", + "last_change_date": "2022-03-14T08:02:10.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8499, + "fields": { + "EF_ID": 214388, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, HFC-236fa", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factors and Parameters for Estimation of HFC Emissions from Refrigeration and Stationary Air Conditioning - Charge [M], Lifetime [d], Initial Emission Factor (losses of HFC charged into new equipment) [k], Operation Emission Factor (annual emission rate accounting for average annual leakage and average annual emissions during servicing) [x], Recovery Efficiency at Disposal [n], and Initial Charge Remaining (residual charge of HFC in equipment being disposed of) [p]", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Residential and Commercial Air Conditioning (A/C), including Heat Pumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "M = 0.5-100 kg; d = 10-20 years; k = 0.2-1; x = 1-10; n = 0-80; p = 0-80", + "Unit": "%", + "Equation": "Equations 7.12-7.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.9)", + "Technical_Reference": "UNEP-RTOC (1999). 1998 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, 1998 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-1731-6; UNEP-RTOC (2003). 2002 Report of the Refrigeration, air Conditioning and Heat Pumps Technical Options Committee, 2002 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-2288-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These default values reflect the current state of knowledge about the industry, and are provided as ranges rather than point estimates. The lower end of the ranges for lifetime, initial emission factor and operation emission factor is intended to indicate the status within developed countries, while the upper end of each range is intended to indicate the status within developing countries. Inventory compilers should choose from the range according to country-specific conditions, and document the reasons for their choices. The lower threshold (0%) highlights that there is no recovery in some countries.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:10.546Z", + "last_change_date": "2022-03-14T08:02:10.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8500, + "fields": { + "EF_ID": 214389, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, HFC-236fa", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factors and Parameters for Estimation of HFC Emissions from Refrigeration and Stationary Air Conditioning - Charge [M], Lifetime [d], Initial Emission Factor (losses of HFC charged into new equipment) [k], Operation Emission Factor (annual emission rate accounting for average annual leakage and average annual emissions during servicing) [x], Recovery Efficiency at Disposal [n], and Initial Charge Remaining (residual charge of HFC in equipment being disposed of) [p]", + "Technology_Practices": "", + "Parameter_Conditions": "Sub-application type: Mobile Air Conditioning (A/C)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "M = 0.5-1.5 kg; d = 9-16 years; k = 0.2-0.5; x = 10-20; n = 0-50; p = 0-50", + "Unit": "%", + "Equation": "Equations 7.12-7.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 7, Table 7.9)", + "Technical_Reference": "UNEP-RTOC (1999). 1998 Report of the Refrigeration, Air Conditioning and Heat Pumps Technical Options Committee, 1998 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-1731-6; UNEP-RTOC (2003). 2002 Report of the Refrigeration, air Conditioning and Heat Pumps Technical Options Committee, 2002 Assessment, UNEP, Ozone Secretariat, Nairobi, Kenya, ISBN 92-807-2288-3", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These default values reflect the current state of knowledge about the industry, and are provided as ranges rather than point estimates. The lower end of the ranges for lifetime, initial emission factor and operation emission factor is intended to indicate the status within developed countries, while the upper end of each range is intended to indicate the status within developing countries. Inventory compilers should choose from the range according to country-specific conditions, and document the reasons for their choices. The lower threshold (0%) highlights that there is no recovery in some countries. Schwarz and Harnisch (2003) estimates leakage rates of 5.3% to 10.6%; these rates apply only to second generation mobile air conditioners installed in European models in 1996 and beyond. [Schwarz, W. and Harnisch, J. (2003). Establishing the leakage rates of Mobile Air Conditioners. Final report for the EC. Ref. B4-3040/2002/337136/MAR/C1. 17 April 2003.]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:10.664Z", + "last_change_date": "2022-03-14T08:02:10.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8501, + "fields": { + "EF_ID": 214446, + "IPCC_Category": "2.G.1.a - Manufacture of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manufacturing Emission Factor for Emissions from Electrical Equipment (Emission Factor for Manufacturing Phase)", + "Technology_Practices": "Sealed Pressure Electrical Equipment (MV Switchgear) [MV Switchgear = Medium Voltage Switchgear for rated operating voltages above 1000 Volts and up to 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction [amount of gas emitted per amount of gas consumed]", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 1 of 5, in Annex 1 (page A1.29) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.2)", + "Technical_Reference": "Ecofys (2005). Reductions of SF6 Emissions from High and Medium Voltage Electrical Equipment in Europe, Final Report to CAPIEL, S, Wartmann and J. Harnisch, June 28, 2005", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. The reference shown in the Full Technical Reference shows how these developed further upon successive implementation of various voluntary measures later on. Another reference (Schwarz, 2006) relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:10.782Z", + "last_change_date": "2022-03-14T08:02:10.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8502, + "fields": { + "EF_ID": 214447, + "IPCC_Category": "2.G.1.b - Use of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Equipment Use Emission Factor for Emissions from Electrical Equipment (Emission Factor for Use Phase)", + "Technology_Practices": "Sealed Pressure Electrical Equipment (MV Switchgear) [MV Switchgear = Medium Voltage Switchgear for rated operating voltages above 1000 Volts and up to 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.002", + "Unit": "fraction [amount of gas emitted per year per nameplate capacity of all equipment", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 3 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.2)", + "Technical_Reference": "Ecofys (2005). Reductions of SF6 Emissions from High and Medium Voltage Electrical Equipment in Europe, Final Report to CAPIEL, S, Wartmann and J. Harnisch, June 28, 2005", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "This emission factor includes emissions due to leakage, servicing, maintenance, and equipment failures. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. The reference shown in the Full Technical Reference shows how these developed further upon successive implementation of various voluntary measures later on. Another reference (Schwarz, 2006) relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:10.933Z", + "last_change_date": "2022-03-14T08:02:10.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8503, + "fields": { + "EF_ID": 214448, + "IPCC_Category": "2.G.1.c - Disposal of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of Charge Remaining at Retirement (Emission Factor for Disposal Phase), and Lifetime of Equipment", + "Technology_Practices": "Sealed Pressure Electrical Equipment (MV Switchgear) [MV Switchgear = Medium Voltage Switchgear for rated operating voltages above 1000 Volts and up to 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.93 [Lifetime: >35 years]", + "Unit": "fraction [amount of gas emitted per nameplate capacity of all equipment installe", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 4 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.2)", + "Technical_Reference": "Ecofys (2005). Reductions of SF6 Emissions from High and Medium Voltage Electrical Equipment in Europe, Final Report to CAPIEL, S, Wartmann and J. Harnisch, June 28, 2005", + "English_Abstract": "", + "Lower_Bound": "Unknown for emission factor; -20% for Lifetime", + "Upper_Bound": "Unknown for emission factor; +40% for Lifetime", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "This emission factor refers to the percentage of the original charge or nameplate capacity remaining in the equipment at end of life; it represents the fraction of the nameplate capacity potentially emitted before the equipment is recycled or disposed. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. The reference shown in the Full Technical Reference shows how these developed further upon successive implementation of various voluntary measures later on. Another reference (Schwarz, 2006) relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.034Z", + "last_change_date": "2022-03-14T08:02:11.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8504, + "fields": { + "EF_ID": 214449, + "IPCC_Category": "2.G.1.a - Manufacture of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manufacturing Emission Factor for Emissions from Electrical Equipment (Emission Factor for Manufacturing Phase)", + "Technology_Practices": "Sealed Pressure Electrical Equipment (MV Switchgear) [MV Switchgear = Medium Voltage Switchgear for rated operating voltages above 1000 Volts and up to 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.29", + "Unit": "fraction [amount of gas emitted per amount of gas consumed]", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 1 of 5, in Annex 1 (page A1.29) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.2)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.134Z", + "last_change_date": "2022-03-14T08:02:11.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8505, + "fields": { + "EF_ID": 214450, + "IPCC_Category": "2.G.1.b - Use of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Equipment Use Emission Factor for Emissions from Electrical Equipment (Emission Factor for Use Phase)", + "Technology_Practices": "Sealed Pressure Electrical Equipment (MV Switchgear) [MV Switchgear = Medium Voltage Switchgear for rated operating voltages above 1000 Volts and up to 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.007", + "Unit": "fraction [amount of gas emitted per year per nameplate capacity of all equipment", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 3 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.2)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor includes emissions due to leakage, servicing, maintenance, and equipment failures. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.234Z", + "last_change_date": "2022-03-14T08:02:11.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8506, + "fields": { + "EF_ID": 214451, + "IPCC_Category": "2.G.1.c - Disposal of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of Charge Remaining at Retirement (Emission Factor for Disposal Phase), and Lifetime of Equipment", + "Technology_Practices": "Sealed Pressure Electrical Equipment (MV Switchgear) [MV Switchgear = Medium Voltage Switchgear for rated operating voltages above 1000 Volts and up to 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.95 [Lifetime: Unknown (Not Reported)]", + "Unit": "fraction [amount of gas emitted per nameplate capacity of all equipment installe", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 4 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.2)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "Unknown for emission factor; -20% for Lifetime", + "Upper_Bound": "Unknown for emission factor; +40% for Lifetime", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor refers to the percentage of the original charge or nameplate capacity remaining in the equipment at end of life; it represents the fraction of the nameplate capacity potentially emitted before the equipment is recycled or disposed. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.335Z", + "last_change_date": "2022-03-14T08:02:11.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8507, + "fields": { + "EF_ID": 214452, + "IPCC_Category": "2.G.1.a - Manufacture of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manufacturing Emission Factor for Emissions from Electrical Equipment (Emission Factor for Manufacturing Phase)", + "Technology_Practices": "Closed Pressure Electrical Equipment (HV Switchgear) [HV Switchgear = High Voltage Switchgear for rated operating voltages above 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.085", + "Unit": "fraction [amount of gas emitted per amount of gas consumed]", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 1 of 5, in Annex 1 (page A1.29) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.3)", + "Technical_Reference": "Ecofys (2005). Reductions of SF6 Emissions from High and Medium Voltage Electrical Equipment in Europe, Final Report to CAPIEL, S, Wartmann and J. Harnisch, June 28, 2005", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "This emission factor includes emissions from installation. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. The reference shown in the Full Technical Reference shows how these developed further upon successive implementation of various voluntary measures later on. Another reference (Schwarz, 2006) relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.436Z", + "last_change_date": "2022-03-14T08:02:11.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8508, + "fields": { + "EF_ID": 214453, + "IPCC_Category": "2.G.1.b - Use of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Equipment Use Emission Factor for Emissions from Electrical Equipment (Emission Factor for Use Phase)", + "Technology_Practices": "Closed Pressure Electrical Equipment (HV Switchgear) [HV Switchgear = High Voltage Switchgear for rated operating voltages above 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.026", + "Unit": "fraction [amount of gas emitted per year per nameplate capacity of all equipment", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 3 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.3)", + "Technical_Reference": "Ecofys (2005). Reductions of SF6 Emissions from High and Medium Voltage Electrical Equipment in Europe, Final Report to CAPIEL, S, Wartmann and J. Harnisch, June 28, 2005", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "This emission factor includes emissions due to leakage, servicing, maintenance, and equipment failures. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. The reference shown in the Full Technical Reference shows how these developed further upon successive implementation of various voluntary measures later on. Another reference (Schwarz, 2006) relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.536Z", + "last_change_date": "2022-03-14T08:02:11.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8509, + "fields": { + "EF_ID": 214454, + "IPCC_Category": "2.G.1.c - Disposal of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of Charge Remaining at Retirement (Emission Factor for Disposal Phase), and Lifetime of Equipment", + "Technology_Practices": "Closed Pressure Electrical Equipment (HV Switchgear) [HV Switchgear = High Voltage Switchgear for rated operating voltages above 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.95 [Lifetime: >35 years]", + "Unit": "fraction [amount of gas emitted per nameplate capacity of all equipment installe", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 4 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.3)", + "Technical_Reference": "Ecofys (2005). Reductions of SF6 Emissions from High and Medium Voltage Electrical Equipment in Europe, Final Report to CAPIEL, S, Wartmann and J. Harnisch, June 28, 2005", + "English_Abstract": "", + "Lower_Bound": "Unknown for emission factor; -10% for Lifetime", + "Upper_Bound": "Unknown for emission factor; +40% for Lifetime", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "This emission factor refers to the percentage of the original charge or nameplate capacity remaining in the equipment at end of life; it represents the fraction of the nameplate capacity potentially emitted before the equipment is recycled or disposed. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. The reference shown in the Full Technical Reference shows how these developed further upon successive implementation of various voluntary measures later on. Another reference (Schwarz, 2006) relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.637Z", + "last_change_date": "2022-03-14T08:02:11.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8510, + "fields": { + "EF_ID": 214455, + "IPCC_Category": "2.G.1.a - Manufacture of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manufacturing Emission Factor for Emissions from Electrical Equipment (Emission Factor for Manufacturing Phase)", + "Technology_Practices": "Closed Pressure Electrical Equipment (HV Switchgear) [HV Switchgear = High Voltage Switchgear for rated operating voltages above 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.29", + "Unit": "fraction [amount of gas emitted per amount of gas consumed]", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 1 of 5, in Annex 1 (page A1.29) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.3)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "This emission factor includes emissions from installation. FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.738Z", + "last_change_date": "2022-03-14T08:02:11.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8511, + "fields": { + "EF_ID": 214456, + "IPCC_Category": "2.G.1.b - Use of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Equipment Use Emission Factor for Emissions from Electrical Equipment (Emission Factor for Use Phase)", + "Technology_Practices": "Closed Pressure Electrical Equipment (HV Switchgear) [HV Switchgear = High Voltage Switchgear for rated operating voltages above 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.007", + "Unit": "fraction [amount of gas emitted per year per nameplate capacity of all equipment", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 3 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.3)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor includes emissions due to leakage, servicing, maintenance, and equipment failures. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.846Z", + "last_change_date": "2022-03-14T08:02:11.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8512, + "fields": { + "EF_ID": 214457, + "IPCC_Category": "2.G.1.c - Disposal of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of Charge Remaining at Retirement (Emission Factor for Disposal Phase), and Lifetime of Equipment", + "Technology_Practices": "Closed Pressure Electrical Equipment (HV Switchgear) [HV Switchgear = High Voltage Switchgear for rated operating voltages above 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.95 [Lifetime: Unknown (Not Reported)]", + "Unit": "fraction [amount of gas emitted per nameplate capacity of all equipment installe", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 4 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.3)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "Unknown for emission factor; -10% for Lifetime", + "Upper_Bound": "Unknown for emission factor; +40% for Lifetime", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor refers to the percentage of the original charge or nameplate capacity remaining in the equipment at end of life; it represents the fraction of the nameplate capacity potentially emitted before the equipment is recycled or disposed. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:11.947Z", + "last_change_date": "2022-03-14T08:02:11.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8513, + "fields": { + "EF_ID": 214458, + "IPCC_Category": "2.G.1.b - Use of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Equipment Use Emission Factor for Emissions from Electrical Equipment (Emission Factor for Use Phase)", + "Technology_Practices": "Closed Pressure Electrical Equipment (HV Switchgear) [HV Switchgear = High Voltage Switchgear for rated operating voltages above 52000 Volts; Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.14", + "Unit": "fraction [amount of gas emitted per nameplate capacity of all equipment installe", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 3 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.3)", + "Technical_Reference": "U.S. Inventory of Greenhouse Gases and Sinks, 1990-2002. (U.S. EPA, 2004). Value is from 1999, first year for which representative country-specific data were available. [U.S. EPA (2004). U.S. Inventory of Greenhouse Gases and Sinks, 1990-2002. U.S. Environmental Protection Agency, April, 2004.]", + "English_Abstract": "", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor includes emissions due to leakage, servicing, maintenance, and equipment failures as well as emissions from installation and disposal phases. Lifetime of equipment is >35 years. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.055Z", + "last_change_date": "2022-03-14T08:02:12.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8514, + "fields": { + "EF_ID": 214459, + "IPCC_Category": "2.G.1.a - Manufacture of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manufacturing Emission Factor for Emissions from Electrical Equipment (Emission Factor for Manufacturing Phase)", + "Technology_Practices": "Gas Insulated Transformers (GIT); Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.29", + "Unit": "fraction [amount of gas emitted per amount of gas consumed]", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 1 of 5, in Annex 1 (page A1.29) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.4)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Estimated by analogy with closed pressure systems. This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.156Z", + "last_change_date": "2022-03-14T08:02:12.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8515, + "fields": { + "EF_ID": 214460, + "IPCC_Category": "2.G.1.b - Use of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Equipment Use Emission Factor for Emissions from Electrical Equipment (Emission Factor for Use Phase)", + "Technology_Practices": "Gas Insulated Transformers (GIT); Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.007", + "Unit": "fraction [amount of gas emitted per year per nameplate capacity of all equipment", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 3 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.4)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "+30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Estimated by analogy with closed pressure systems. This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor includes emissions due to leakage, servicing, maintenance, and equipment failures. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.273Z", + "last_change_date": "2022-03-14T08:02:12.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8516, + "fields": { + "EF_ID": 214461, + "IPCC_Category": "2.G.1.c - Disposal of Electrical Equipment", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of Charge Remaining at Retirement (Emission Factor for Disposal Phase), and Lifetime of Equipment", + "Technology_Practices": "Gas Insulated Transformers (GIT); Based on technologies and practices in place in 1995", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "No mitigation measures implemented", + "Other_Properties": "", + "Value": "0.95 [Lifetime: Unknown (Not Reported)]", + "Unit": "fraction [amount of gas emitted per nameplate capacity of all equipment installe", + "Equation": "Equation 8.1 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G1, Sheet 4 of 5, in Annex 1 (page A1.30) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.4)", + "Technical_Reference": "Based on data reported by the Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA); FEPC and JEMA (2004). Federation of Electric Power Companies (FEPC) and the Japan Electrical Manufacturers` Association (JEMA), Japanese Emission Factors. (Personal communication from Mr. Kiyoshi Saitoh of Japan Electrical Manufacturers Association (JEMA) to Mr. Kiyoto Tanabe, IPCC Technical Support Unit, November, 2004.)", + "English_Abstract": "", + "Lower_Bound": "Unknown for emission factor; -10% for Lifetime", + "Upper_Bound": "Unknown for emission factor; +40% for Lifetime", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Estimated by analogy with closed pressure systems. This value is based on the variation observed in emission factors in Europe. (No uncertainty estimates available from Japan.) If this emission factor is applied outside the countries and/or regions in which it was developed, the uncertainty will be greater.", + "Data_Provider_Comments": "FEPC and JEMA did not distinguish among equipment types in reporting average emission factors. This factor is therefore intended to be applied to all equipment types, including sealed pressure systems, closed pressure systems, and gas-insulated transformers. This emission factor refers to the percentage of the original charge or nameplate capacity remaining in the equipment at end of life; it represents the fraction of the nameplate capacity potentially emitted before the equipment is recycled or disposed. This emission factor reflects the practices and technologies in place in 1995, i.e., before mitigation measures were implemented. There is a reference (Schwarz, 2006) which relates state-of–the-art emission factors to mitigation measures in Germany. [Schwarz, W. (2006). The German Monitoring System for SF6 Emissions from Equipment for Electricity Transmission and Distribution.]; Nameplate capacity means the full and proper charge of fluid/gas specified by the equipment manufacturer to achieve the equipment`s specified performance. The nameplate capacity is typically indicated on the equipment`s nameplate; it is not necessarily the actual charge, which may be influenced by leakage and other emissions.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.382Z", + "last_change_date": "2022-03-14T08:02:12.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8517, + "fields": { + "EF_ID": 214462, + "IPCC_Category": "2.G.2.a - Military Applications", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for SF6 Emissions from AWACS", + "Technology_Practices": "Airborne Warning and Control System (AWACS)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "740", + "Unit": "kg/plane/year", + "Equation": "Equation 8.12 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 1 of 7, in Annex 1 (page A1.31) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.7)", + "Technical_Reference": "Schwarz, W. (2005). Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002. Research Report 201 41 261/01, UBA-FB 000811/e, Umweltbundesamt, Berlin.", + "English_Abstract": "", + "Lower_Bound": "640 kg/plane/year", + "Upper_Bound": "840 kg/plane/year", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is based on estimates of SF6 emissions from NATO Boeing E-3As. Note that actual emissions per plane are strongly influenced by the average number of sorties (take-offs) per plane per year. More frequent sorties will raise the emission rate above 740 kg/plane; less frequent sorties will lower it. Leakage rates during flight or during time on the ground will also affect the emission rate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.509Z", + "last_change_date": "2022-03-14T08:02:12.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8518, + "fields": { + "EF_ID": 214463, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "SF6 Use Factor for Calculation of SF6 Emissions from Particle Accelerators [Fraction of university and research particle accelerators that use SF6 as an insulator]", + "Technology_Practices": "University and Research Particle Accelerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "fraction", + "Equation": "Equation 8.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 2 of 7, in Annex 1 (page A1.31) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Page 8.28)", + "Technical_Reference": "Expert judgement by the authors of Section 8.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.602Z", + "last_change_date": "2022-03-14T08:02:12.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8519, + "fields": { + "EF_ID": 214464, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "SF6 Charge Factor for Calculation of SF6 Emissions from Particle Accelerators [Average SF6 charge in an accelerator]", + "Technology_Practices": "University and Research Particle Accelerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2400", + "Unit": "kg/accelerator", + "Equation": "Equation 8.14 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 2 of 7, in Annex 1 (page A1.31) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Page 8.28)", + "Technical_Reference": "Expert judgement by the authors of Section 8.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.683Z", + "last_change_date": "2022-03-14T08:02:12.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8520, + "fields": { + "EF_ID": 214465, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for SF6 Emissions from Particle Accelerators", + "Technology_Practices": "University and Research Particle Accelerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equations 8.14 and 8.15 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 2 of 7, in Annex 1 (page A1.31) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Page 8.28)", + "Technical_Reference": "Expert judgement by the authors of Section 8.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.758Z", + "last_change_date": "2022-03-14T08:02:12.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8521, + "fields": { + "EF_ID": 214466, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "SF6 Charge Factor for Calculation of SF6 Emissions from Particle Accelerators [Average SF6 charge in an accelerator]", + "Technology_Practices": "Industrial Particle Accelerators - high voltage (0.3-23 MV)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1300", + "Unit": "kg/accelerator", + "Equation": "Equation 8.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 3 of 7, in Annex 1 (page A1.32) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.9)", + "Technical_Reference": "Schwarz, W. (2005). Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002. Research Report 201 41 261/01, UBA-FB 000811/e, Umweltbundesamt, Berlin.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.841Z", + "last_change_date": "2022-03-14T08:02:12.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8522, + "fields": { + "EF_ID": 214467, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "SF6 Charge Factor for Calculation of SF6 Emissions from Particle Accelerators [Average SF6 charge in an accelerator]", + "Technology_Practices": "Industrial Particle Accelerators - low voltage (<0.3 MV)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "kg/accelerator", + "Equation": "Equation 8.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 3 of 7, in Annex 1 (page A1.32) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.9)", + "Technical_Reference": "Schwarz, W. (2005). Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002. Research Report 201 41 261/01, UBA-FB 000811/e, Umweltbundesamt, Berlin.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:12.937Z", + "last_change_date": "2022-03-14T08:02:12.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8523, + "fields": { + "EF_ID": 214468, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "SF6 Charge Factor for Calculation of SF6 Emissions from Particle Accelerators [Average SF6 charge in an accelerator]", + "Technology_Practices": "Medical Particle Accelerators (Radiotherapy)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg/accelerator", + "Equation": "Equation 8.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 3 of 7, in Annex 1 (page A1.32) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.9)", + "Technical_Reference": "Schwarz, W. (2005). Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002. Research Report 201 41 261/01, UBA-FB 000811/e, Umweltbundesamt, Berlin.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is the average of values ranging from 0.05 kg to over 0.8 kg, depending on model and manufacturer.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:13.033Z", + "last_change_date": "2022-03-14T08:02:13.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8524, + "fields": { + "EF_ID": 214469, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for SF6 Emissions from Particle Accelerators", + "Technology_Practices": "Industrial Particle Accelerators - high voltage (0.3-23 MV)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 8.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 3 of 7, in Annex 1 (page A1.32) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.10)", + "Technical_Reference": "Schwarz, W. (2005). Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002. Research Report 201 41 261/01, UBA-FB 000811/e, Umweltbundesamt, Berlin.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:13.117Z", + "last_change_date": "2022-03-14T08:02:13.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8525, + "fields": { + "EF_ID": 214470, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for SF6 Emissions from Particle Accelerators", + "Technology_Practices": "Industrial Particle Accelerators - low voltage (<0.3 MV)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.013", + "Unit": "fraction", + "Equation": "Equation 8.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 3 of 7, in Annex 1 (page A1.32) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.10)", + "Technical_Reference": "Schwarz, W. (2005). Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002. Research Report 201 41 261/01, UBA-FB 000811/e, Umweltbundesamt, Berlin.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:13.200Z", + "last_change_date": "2022-03-14T08:02:13.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8526, + "fields": { + "EF_ID": 214471, + "IPCC_Category": "2.G.2.b - Accelerators", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for SF6 Emissions from Particle Accelerators", + "Technology_Practices": "Medical Particle Accelerators (Radiotherapy)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "fraction", + "Equation": "Equation 8.18 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 3 of 7, in Annex 1 (page A1.32) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Table 8.10)", + "Technical_Reference": "Schwarz, W. (2005). Emissions, Activity Data, and Emission Factors of Fluorinated Greenhouse Gases (F-Gases) in Germany 1995-2002. Research Report 201 41 261/01, UBA-FB 000811/e, Umweltbundesamt, Berlin.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This emission factor is the average of values ranging from 1 kg to 10 kg per kg charge, depending on model, manufacturer, and service intervals.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:13.304Z", + "last_change_date": "2022-03-14T08:02:13.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8527, + "fields": { + "EF_ID": 214472, + "IPCC_Category": "2.G.2.c - Other (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Assembly Emission Factor for SF6 Emissions from Sound-Proof Glazing (Emissions when filling double glazed windows with SF6)", + "Technology_Practices": "Sound-Proof Glazing (Double-glazed sound-proof windows)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "fraction [amount of gas emitted per amount of gas purchased to fill windows asse", + "Equation": "Equation 8.20 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 5 of 7, in Annex 1 (page A1.33) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Page 8.31)", + "Technical_Reference": "Schwarz, W. and Leisewitz, A. (1999). Emissions and reduction potentials of HFCs, PFCs, and SF6 in Germany. Report UBA-FB 298 41 256, Umweltbundesamt, Berlin.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:13.383Z", + "last_change_date": "2022-03-14T08:02:13.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8528, + "fields": { + "EF_ID": 214473, + "IPCC_Category": "2.G.2.c - Other (please specify)", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Leakage Emission Factor for SF6 Emissions from Sound-Proof Glazing (Annual leakage rate including glass breakage of SF6 from double-glazed sound-proof windows)", + "Technology_Practices": "Sound-Proof Glazing (Double-glazed sound-proof windows)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "fraction [amount of gas emitted per capacity of existing windows]", + "Equation": "Equation 8.21 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G2, Sheet 5 of 7, in Annex 1 (page A1.33) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Page 8.31)", + "Technical_Reference": "Expert judgement by the authors of Section 8.3, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:13.458Z", + "last_change_date": "2022-03-14T08:02:13.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8529, + "fields": { + "EF_ID": 220905, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for nitric acid production based on measurements at different units using the same technology", + "Technology_Practices": "HNO3 production in a single stage medium pressure plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "none", + "Other_Properties": "The information is related to rather old plants, the oldest of them started in 1965.", + "Value": "8.9", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.9 on Page 3.31, IPCC Good Practice Guidance as well as Equation 3.6 on Page 3.21 in Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2, Sheet 1 of 1; 2006 IPCC Guidelines: Volume 3, Annex 1 A1.6", + "Data_Source": "Other", + "Technical_Reference": "Pipatti R. (2001) Greenhouse gas emissions and removals in Finland, VTT Technical Research Centre of Finland. VTT Research notes 2094. Annex C, p. 3-4. http://www.vtt.fi/inf/pdf/tiedotteet/2001/T2094.pdf", + "English_Abstract": "Calculation based on annual measurements according to documentation in Pipatti (2001). The N2O emission have been estimated using national emission factors based on a series of measurements carried out at the production plants at two locations. The original data are plant specific and the total national mean emission factor may therefore vary from year to year.", + "Lower_Bound": "7.6 kg N2O/t HNO3 produced (-15% of the value)", + "Upper_Bound": "10.2 kg N2O/t HNO3 produced (+15% of the value)", + "Data_Quality": "Medium (according to industry experts and researches, see below Data quality reference", + "Data_Quality_Reference": "The uncertainty value as well as data quality are estimated by industry experts and researchers. Reference for the uncertainty estimate can be found in the National Inventory Report to the UNFCCC and Kyoto Protocol; Greenhouse gas emissions in Finland 1990-2006, p.139.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor is based on measurements carried out in four single units on different locations in the country, all using the same technology.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "http://www.vtt.fi/inf/pdf/tiedotteet/2001/T2094.pdf", + "creation_date": "2022-03-14T08:02:13.533Z", + "last_change_date": "2022-03-14T08:02:13.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8530, + "fields": { + "EF_ID": 221178, + "IPCC_Category": "2.A.2 - Lime production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CaO*MgO content of lime (Emission Factor for CO2 for lime production is calculated using stoichiometric ratio (CO2/(CaO*MgO)) and the CaO*MgO content of lime.)", + "Technology_Practices": "Limestone as raw material.", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "No", + "Other_Properties": "Inventory year for which this value is used: 2006", + "Value": "94.27", + "Unit": "%", + "Equation": "Equation 3.5B in Chapter 3, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000); Equation 2.9 in Chapter 2, Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish National Inventory Report 2008, Table 4.2_2. Based on stoechiometric calculations carried out at Statistics Finland in an MsExcel file", + "English_Abstract": "See Comments from data provider field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The EFs have been calculated backwards from emission data using production data. The masters thesis describes that the method for developing the EFs was based on collection of plant level data. This data covered for production data (which was confidential) the years 1998-2002 and emission data (not confidential) related to the manufacturing of this product. Based on this information, the EF has been calculated. The EF is a mean value between the plants and over the years. The EF is lower than the default, because the lime stone here is fluctuating in the CaO contents and sometimes even below that in the GPG guidelines (93%). The calculations have been carried out at the inventory agency which is a statistical office and can thus use confidential data in their work, but cannot send it forward. The actual concentrations of CaO and MgO in the burnt lime in 1998-2002 have been used in the calculations. There is no further documentation of these measurements but as the measurements are carried out due to the need of the processes - so they should be very much ok.", + "Other_Comments": "Note by Editorial Board: Data on which this parameter based are confidential and cannot be checked. , This data was originally submitted in 2009 following on-line discussion between the data provider and the Editorial Board after the 6th EB meeting held in Buenos Aires, Argentina, in November 2008. This is not correctly reflected in the Date submitted to EFDB by Data Provider field above due to technical reasons. ", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:13.632Z", + "last_change_date": "2022-03-14T08:02:13.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8531, + "fields": { + "EF_ID": 221179, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CaO*MgO content of lime (Emission Factor for CO2 from the ceramics industry is calculated using stoichiometric ratio (CO2/(CaO*MgO)) and the CaO*MgO content of lime.)", + "Technology_Practices": "Dolomite as raw material.", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "No", + "Other_Properties": "Inventory year for which this value is used: 2006", + "Value": "92.7", + "Unit": "%", + "Equation": "Equation 3.5B in Chapter 3, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish National Inventory Report 2008, Table 4.2_2. Based on stoechiometric calculations carried out at Statistics Finland in an MsExcel file", + "English_Abstract": "See Comments from data provider field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The EFs have been calculated backwards from emission data using production data. The masters thesis describes that the method for developing the EFs was based on collection of plant level data. This data covered for production data (which was confidential) the years 1998-2002 and emission data (not confidential) related to the manufacturing of this product. Based on this information, the EF has been calculated. The EF is a mean value between the plants and over the years. The EF is lower than the default, because the lime stone here is fluctuating in the CaO contents and sometimes even below that in the GPG guidelines (93%). The calculations have been carried out at the inventory agency which is a statistical office and can thus use confidential data in their work, but cannot send it forward. The actual concentrations of CaO and MgO in the burnt lime in 1998-2002 have been used in the calculations. There is no further documentation of these measurements but as the measurements are carried out due to the need of the processes - so they should be very much ok.", + "Other_Comments": "Note by Editorial Board: Data on which this parameter based are confidential and cannot be checked. , This data was originally submitted in 2009 following on-line discussion between the data provider and the Editorial Board after the 6th EB meeting held in Buenos Aires, Argentina, in November 2008. This is not correctly reflected in the Date submitted to EFDB by Data Provider field above due to technical reasons. ", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:13.748Z", + "last_change_date": "2022-03-14T08:02:13.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8532, + "fields": { + "EF_ID": 221180, + "IPCC_Category": "2.A.4.d - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CaO*MgO content of lime (Emission Factor for CO2 from industries other than ceramics and glass production is calculated using stoichiometric ratio (CO2/(CaO*MgO)) and the CaO*MgO content of lime.)", + "Technology_Practices": "Industries other than ceramics and glass production where dolomite is used", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "No", + "Other_Properties": "Inventory year for which this value is used: 2006", + "Value": "92.7", + "Unit": "%", + "Equation": "Equation 3.5B in Chapter 3, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish National Inventory Report 2008, Table 4.2_2. Based on stoechiometric calculations carried out at Statistics Finland in an MsExcel file", + "English_Abstract": "See Comments from data provider field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The EFs have been calculated backwards from emission data using production data. The masters thesis describes that the method for developing the EFs was based on collection of plant level data. This data covered for production data (which was confidential) the years 1998-2002 and emission data (not confidential) related to the manufacturing of this product. Based on this information, the EF has been calculated. The EF is a mean value between the plants and over the years. The EF is lower than the default, because the lime stone here is fluctuating in the CaO contents and sometimes even below that in the GPG guidelines (93%). The calculations have been carried out at the inventory agency which is a statistical office and can thus use confidential data in their work, but cannot send it forward. The actual concentrations of CaO and MgO in the burnt lime in 1998-2002 have been used in the calculations. There is no further documentation of these measurements but as the measurements are carried out due to the need of the processes - so they should be very much ok.", + "Other_Comments": "Note by Editorial Board: Data on which this parameter based are confidential and cannot be checked. , This data was originally submitted in 2009 following on-line discussion between the data provider and the Editorial Board after the 6th EB meeting held in Buenos Aires, Argentina, in November 2008. This is not correctly reflected in the Date submitted to EFDB by Data Provider field above due to technical reasons. ", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:13.866Z", + "last_change_date": "2022-03-14T08:02:13.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8533, + "fields": { + "EF_ID": 221181, + "IPCC_Category": "2.A.3 - Glass Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CaO*MgO content of lime (Emission Factor for CO2 for lime production is calculated using stoichiometric ratio (CO2/(CaO*MgO)) and the CaO*MgO content of lime.)", + "Technology_Practices": "Glass Production, Used dolomite.", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "No", + "Other_Properties": "Inventory year for which this value is used: 2006", + "Value": "92.7", + "Unit": "%", + "Equation": "Equation 3.5B in Chapter 3, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000)", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finnish National Inventory Report 2008, Table 4.2_2. Based on stoechiometric calculations carried out at Statistics Finland in an MsExcel file", + "English_Abstract": "See Comments from data provider field.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The EFs have been calculated backwards from emission data using production data. The masters thesis describes that the method for developing the EFs was based on collection of plant level data. This data covered for production data (which was confidential) the years 1998-2002 and emission data (not confidential) related to the manufacturing of this product. Based on this information, the EF has been calculated. The EF is a mean value between the plants and over the years. The EF is lower than the default, because the lime stone here is fluctuating in the CaO contents and sometimes even below that in the GPG guidelines (93%). The calculations have been carried out at the inventory agency which is a statistical office and can thus use confidential data in their work, but cannot send it forward. The actual concentrations of CaO and MgO in the burnt lime in 1998-2002 have been used in the calculations. There is no further documentation of these measurements but as the measurements are carried out due to the need of the processes - so they should be very much ok.", + "Other_Comments": "Note by Editorial Board: Data on which this parameter based are confidential and cannot be checked. , This data was originally submitted in 2009 following on-line discussion between the data provider and the Editorial Board after the 6th EB meeting held in Buenos Aires, Argentina, in November 2008. This is not correctly reflected in the Date submitted to EFDB by Data Provider field above due to technical reasons. ", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:13.983Z", + "last_change_date": "2022-03-14T08:02:13.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8534, + "fields": { + "EF_ID": 221609, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for CO2 Emissions from Cement Production", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54215", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Page 2.4 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual)", + "IPCC_Worksheet": "Worksheet 2-1, Sheet 1 of 2 of the Revised 1996 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "REPORT Proejct: 00075206 - Third National Communication towards UNFCC under the United Nations Development Program - UNDP- NATIONAL CO2 AND NON-CO2 EMISSION FACTORS FOR KEY SECTORS UNDER IPCC AND CORINAIR METHODOLOGIES", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:02:14.125Z", + "last_change_date": "2022-03-14T08:02:14.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8535, + "fields": { + "EF_ID": 221610, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "Production of Ferrosilicon -Ferromanganese . It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Ferromanganese", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3457", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11 of the Revised 1996 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "REPORT Proejct: 00075206 - Third National Communication towards UNFCC under the United Nations Development Program - UNDP- NATIONAL CO2 AND NON-CO2 EMISSION FACTORS FOR KEY SECTORS UNDER IPCC AND CORINAIR METHODOLOGIES", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:02:14.208Z", + "last_change_date": "2022-03-14T08:02:14.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8536, + "fields": { + "EF_ID": 221611, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "Production of Ferrosilicon -Ferronickel. It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Ferronickel", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0158", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11 of the Revised 1996 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "REPORT Proejct: 00075206 - Third National Communication towards UNFCC under the United Nations Development Program - UNDP- NATIONAL CO2 AND NON-CO2 EMISSION FACTORS FOR KEY SECTORS UNDER IPCC AND CORINAIR METHODOLOGIES", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:02:14.275Z", + "last_change_date": "2022-03-14T08:02:14.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8537, + "fields": { + "EF_ID": 221612, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "Production of Ferrosilicon - 75%Si. It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Ferrosilicon - 75%Si", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.1782", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11 of the Revised 1996 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "REPORT Proejct: 00075206 - Third National Communication towards UNFCC under the United Nations Development Program - UNDP- NATIONAL CO2 AND NON-CO2 EMISSION FACTORS FOR KEY SECTORS UNDER IPCC AND CORINAIR METHODOLOGIES", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:02:14.378Z", + "last_change_date": "2022-03-14T08:02:14.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8538, + "fields": { + "EF_ID": 221613, + "IPCC_Category": "2.C.2 - Ferroalloys Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Ferroalloy Production", + "Technology_Practices": "Production of Ferrosilicon -Siliconmanganese . It is assumed that all carbon is fossil carbon.", + "Parameter_Conditions": "Type ferroalloy: Siliconmanganese", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5511", + "Unit": "Tonne CO2/Tonne Product", + "Equation": "Page 2.30 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Reference Manual), See Section 2.13.4.2.", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 4 of 11 of the Revised 1996 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "REPORT Proejct: 00075206 - Third National Communication towards UNFCC under the United Nations Development Program - UNDP- NATIONAL CO2 AND NON-CO2 EMISSION FACTORS FOR KEY SECTORS UNDER IPCC AND CORINAIR METHODOLOGIES", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:02:14.458Z", + "last_change_date": "2022-03-14T08:02:14.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8539, + "fields": { + "EF_ID": 221614, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Iron and Steel Production (Electric Arc Furnace)", + "Technology_Practices": "Steel Making Method: Electric Arc Furnace (EAF); Assume production of steel from scrap metal, not from pig iron", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0899", + "Unit": "Tonne CO2/Tonne Iron or Steel Product", + "Equation": "Equation 4.4 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 2-11, Sheet 2 of 11 of the Revised 1996 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "REPORT Proejct: 00075206 - Third National Communication towards UNFCC under the United Nations Development Program - UNDP- NATIONAL CO2 AND NON-CO2 EMISSION FACTORS FOR KEY SECTORS UNDER IPCC AND CORINAIR METHODOLOGIES", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "http://www.unfccc.org.mk/content/Documents/INVENTORY/EFs%20EN.pdf", + "creation_date": "2022-03-14T08:02:14.542Z", + "last_change_date": "2022-03-14T08:02:14.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8540, + "fields": { + "EF_ID": 221896, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.071", + "Upper_Bound": "0.13", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 39", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:14.625Z", + "last_change_date": "2022-03-14T08:02:14.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8541, + "fields": { + "EF_ID": 221897, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of C2F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.047", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.029", + "Upper_Bound": "0.064", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:14.738Z", + "last_change_date": "2022-03-14T08:02:14.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8542, + "fields": { + "EF_ID": 221898, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of HFC-125 (C2HF5) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.019", + "Upper_Bound": "0.030", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 31", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:14.847Z", + "last_change_date": "2022-03-14T08:02:14.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8543, + "fields": { + "EF_ID": 221899, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of HFC-125 (C2HF5) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.077", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.063", + "Upper_Bound": "0.090", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 31", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:14.956Z", + "last_change_date": "2022-03-14T08:02:14.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8544, + "fields": { + "EF_ID": 221900, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C4F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.018", + "Upper_Bound": "0.21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 12", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.073Z", + "last_change_date": "2022-03-14T08:02:15.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8545, + "fields": { + "EF_ID": 221901, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.031", + "Upper_Bound": "0.23", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 12", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.182Z", + "last_change_date": "2022-03-14T08:02:15.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8546, + "fields": { + "EF_ID": 221902, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of C4F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.066", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.282Z", + "last_change_date": "2022-03-14T08:02:15.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8547, + "fields": { + "EF_ID": 221903, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.037", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.019", + "Upper_Bound": "0.056", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 44", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.383Z", + "last_change_date": "2022-03-14T08:02:15.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8548, + "fields": { + "EF_ID": 221904, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.080", + "Upper_Bound": "0.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 47", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.483Z", + "last_change_date": "2022-03-14T08:02:15.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8549, + "fields": { + "EF_ID": 221905, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of C4F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.040", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.028", + "Upper_Bound": "0.053", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 5", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.601Z", + "last_change_date": "2022-03-14T08:02:15.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8550, + "fields": { + "EF_ID": 221906, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of 54F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.718Z", + "last_change_date": "2022-03-14T08:02:15.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8551, + "fields": { + "EF_ID": 221907, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of C5F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0039", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.837Z", + "last_change_date": "2022-03-14T08:02:15.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8552, + "fields": { + "EF_ID": 221908, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of CF4 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.046", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.033", + "Upper_Bound": "0.059", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 102", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:15.921Z", + "last_change_date": "2022-03-14T08:02:15.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8553, + "fields": { + "EF_ID": 221909, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of CF4 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.085", + "Upper_Bound": "0.12", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 63", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.004Z", + "last_change_date": "2022-03-14T08:02:16.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8554, + "fields": { + "EF_ID": 221910, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of HFC-32 (CH2F2) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.020", + "Upper_Bound": "0.031", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 35", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.130Z", + "last_change_date": "2022-03-14T08:02:16.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8555, + "fields": { + "EF_ID": 221911, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of HFC-32 (CH2F2) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.079", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.062", + "Upper_Bound": "0.10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 41", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.231Z", + "last_change_date": "2022-03-14T08:02:16.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8556, + "fields": { + "EF_ID": 221912, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of HFC-32 (CH2F2) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.049", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.331Z", + "last_change_date": "2022-03-14T08:02:16.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8557, + "fields": { + "EF_ID": 221913, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of HFC-41 (CH3F) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0034", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). The GHGRP includes this value as the by-product emission factor for CHF3 (HFC-23) from the use of CH3F (HFC-41). It is actually the by-product emission factor for C2F6 from the use of CH3F (HFC-41), as stated here. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.440Z", + "last_change_date": "2022-03-14T08:02:16.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8558, + "fields": { + "EF_ID": 221914, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.030", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.023", + "Upper_Bound": "0.037", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 70", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.549Z", + "last_change_date": "2022-03-14T08:02:16.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8559, + "fields": { + "EF_ID": 221915, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.085", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.075", + "Upper_Bound": "0.10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 72", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.666Z", + "last_change_date": "2022-03-14T08:02:16.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8560, + "fields": { + "EF_ID": 221916, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.767Z", + "last_change_date": "2022-03-14T08:02:16.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8561, + "fields": { + "EF_ID": 221917, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0040", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.867Z", + "last_change_date": "2022-03-14T08:02:16.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8562, + "fields": { + "EF_ID": 221918, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of SF6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:16.968Z", + "last_change_date": "2022-03-14T08:02:16.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8563, + "fields": { + "EF_ID": 221919, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of SF6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00", + "Upper_Bound": "0.27", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:17.077Z", + "last_change_date": "2022-03-14T08:02:17.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8564, + "fields": { + "EF_ID": 221920, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of SF6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0012", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:17.210Z", + "last_change_date": "2022-03-14T08:02:17.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8565, + "fields": { + "EF_ID": 221921, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.14", + "Upper_Bound": "0.27", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 12", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:17.328Z", + "last_change_date": "2022-03-14T08:02:17.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8566, + "fields": { + "EF_ID": 221922, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C3F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.072", + "Upper_Bound": "0.33", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:17.463Z", + "last_change_date": "2022-03-14T08:02:17.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8567, + "fields": { + "EF_ID": 221923, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:17.572Z", + "last_change_date": "2022-03-14T08:02:17.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8568, + "fields": { + "EF_ID": 221924, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C4F8O in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.045", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:17.681Z", + "last_change_date": "2022-03-14T08:02:17.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8569, + "fields": { + "EF_ID": 221925, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F8O in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.081", + "Upper_Bound": "0.17", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:17.790Z", + "last_change_date": "2022-03-14T08:02:17.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8570, + "fields": { + "EF_ID": 221926, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.050", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00", + "Upper_Bound": "0.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:17.907Z", + "last_change_date": "2022-03-14T08:02:17.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8571, + "fields": { + "EF_ID": 221927, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Remote plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.015", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.0081", + "Upper_Bound": "0.022", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 16", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.016Z", + "last_change_date": "2022-03-14T08:02:18.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8572, + "fields": { + "EF_ID": 221928, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C2F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.125Z", + "last_change_date": "2022-03-14T08:02:18.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8573, + "fields": { + "EF_ID": 221929, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C3F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.095", + "Upper_Bound": "0.27", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.234Z", + "last_change_date": "2022-03-14T08:02:18.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8574, + "fields": { + "EF_ID": 221930, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C3F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.17", + "Upper_Bound": "0.25", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.342Z", + "last_change_date": "2022-03-14T08:02:18.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8575, + "fields": { + "EF_ID": 221931, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of C3F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.0057", + "Upper_Bound": "0.019", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.451Z", + "last_change_date": "2022-03-14T08:02:18.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8576, + "fields": { + "EF_ID": 221932, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-41", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-41 (CH3F) Emissions from Use of C3F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00073", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00063", + "Upper_Bound": "0.00082", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.552Z", + "last_change_date": "2022-03-14T08:02:18.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8577, + "fields": { + "EF_ID": 221933, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C4F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.074", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.019", + "Upper_Bound": "0.13", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 27", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.652Z", + "last_change_date": "2022-03-14T08:02:18.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8578, + "fields": { + "EF_ID": 221934, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.059", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.018", + "Upper_Bound": "0.10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 37", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.753Z", + "last_change_date": "2022-03-14T08:02:18.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8579, + "fields": { + "EF_ID": 221935, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of C4F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.019", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.0077", + "Upper_Bound": "0.031", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 34", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.862Z", + "last_change_date": "2022-03-14T08:02:18.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8580, + "fields": { + "EF_ID": 221936, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-32 (CH2F2) Emissions from Use of C4F6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00003", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.000016", + "Upper_Bound": "0.000044", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:18.971Z", + "last_change_date": "2022-03-14T08:02:18.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8581, + "fields": { + "EF_ID": 221937, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.031", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.025", + "Upper_Bound": "0.036", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 57", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.081Z", + "last_change_date": "2022-03-14T08:02:19.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8582, + "fields": { + "EF_ID": 221938, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.045", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.033", + "Upper_Bound": "0.057", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 80", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.198Z", + "last_change_date": "2022-03-14T08:02:19.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8583, + "fields": { + "EF_ID": 221939, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.027", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.019", + "Upper_Bound": "0.035", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 73", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.307Z", + "last_change_date": "2022-03-14T08:02:19.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8584, + "fields": { + "EF_ID": 221940, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-32 (CH2F2) Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0015", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00044", + "Upper_Bound": "0.0026", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.416Z", + "last_change_date": "2022-03-14T08:02:19.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8585, + "fields": { + "EF_ID": 221941, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of C5F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.083", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.022", + "Upper_Bound": "0.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 9", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.524Z", + "last_change_date": "2022-03-14T08:02:19.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8586, + "fields": { + "EF_ID": 221942, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of C5F5 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.064", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 16", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.633Z", + "last_change_date": "2022-03-14T08:02:19.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8587, + "fields": { + "EF_ID": 221943, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of C5F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0069", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00", + "Upper_Bound": "0.015", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 12", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.742Z", + "last_change_date": "2022-03-14T08:02:19.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8588, + "fields": { + "EF_ID": 221944, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C3F8 Emissions from Use of C5F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00012", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.000083", + "Upper_Bound": "0.00015", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.851Z", + "last_change_date": "2022-03-14T08:02:19.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8589, + "fields": { + "EF_ID": 221945, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of CF4 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.079", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.056", + "Upper_Bound": "0.10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 75", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:19.952Z", + "last_change_date": "2022-03-14T08:02:19.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8590, + "fields": { + "EF_ID": 221946, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C4F8 Emissions from Use of CF4 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00063", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00057", + "Upper_Bound": "0.0007", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.052Z", + "last_change_date": "2022-03-14T08:02:20.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8591, + "fields": { + "EF_ID": 221947, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of CF4 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.011", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.006", + "Upper_Bound": "0.016", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 41", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.153Z", + "last_change_date": "2022-03-14T08:02:20.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8592, + "fields": { + "EF_ID": 221948, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-41", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-41 (CH3F) Emissions from Use of CF4 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.262Z", + "last_change_date": "2022-03-14T08:02:20.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8593, + "fields": { + "EF_ID": 221949, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of HFC-32 (CH2F2) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.052", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.023", + "Upper_Bound": "0.081", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 22", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.362Z", + "last_change_date": "2022-03-14T08:02:20.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8594, + "fields": { + "EF_ID": 221950, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of CHF-32 (CH2F2) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.049", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.023", + "Upper_Bound": "0.075", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 34", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.471Z", + "last_change_date": "2022-03-14T08:02:20.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8595, + "fields": { + "EF_ID": 221951, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of CHF-32 (CH2F2) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.050", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.035", + "Upper_Bound": "0.065", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 34", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.572Z", + "last_change_date": "2022-03-14T08:02:20.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8596, + "fields": { + "EF_ID": 221952, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-41", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-41 (CH3F) Emissions from Use of CHF-32 (CH2F2) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0080", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.674Z", + "last_change_date": "2022-03-14T08:02:20.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8597, + "fields": { + "EF_ID": 221953, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of HFC-41 (CH3F) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00087", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00036", + "Upper_Bound": "0.0014", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.782Z", + "last_change_date": "2022-03-14T08:02:20.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8598, + "fields": { + "EF_ID": 221954, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of HFC-41 (CH3F) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.045", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00", + "Upper_Bound": "0.093", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 5", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.892Z", + "last_change_date": "2022-03-14T08:02:20.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8599, + "fields": { + "EF_ID": 221955, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of HFC-41 (CH3F) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0057", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00", + "Upper_Bound": "0.02", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 5", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:20.992Z", + "last_change_date": "2022-03-14T08:02:20.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8600, + "fields": { + "EF_ID": 221956, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-32 (CH2F2) Emissions from Use of HFC-41 (CH3F) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0023", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.0013", + "Upper_Bound": "0.0033", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.092Z", + "last_change_date": "2022-03-14T08:02:21.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8601, + "fields": { + "EF_ID": 221957, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.064", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.037", + "Upper_Bound": "0.091", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 64", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.193Z", + "last_change_date": "2022-03-14T08:02:21.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8602, + "fields": { + "EF_ID": 221958, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C4F8 Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00080", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.302Z", + "last_change_date": "2022-03-14T08:02:21.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8603, + "fields": { + "EF_ID": 221959, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.046", + "Upper_Bound": "0.145", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 54", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.402Z", + "last_change_date": "2022-03-14T08:02:21.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8604, + "fields": { + "EF_ID": 221960, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-41", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-41 (CH3F) Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.494Z", + "last_change_date": "2022-03-14T08:02:21.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8605, + "fields": { + "EF_ID": 221961, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-32 (CH2F2) Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0036", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00", + "Upper_Bound": "0.0075", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.595Z", + "last_change_date": "2022-03-14T08:02:21.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8606, + "fields": { + "EF_ID": 221962, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.045", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.014", + "Upper_Bound": "0.076", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 14", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.696Z", + "last_change_date": "2022-03-14T08:02:21.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8607, + "fields": { + "EF_ID": 221963, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.046", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.027", + "Upper_Bound": "0.065", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 36", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.797Z", + "last_change_date": "2022-03-14T08:02:21.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8608, + "fields": { + "EF_ID": 221964, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.0050", + "Upper_Bound": "0.045", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 13", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:21.906Z", + "last_change_date": "2022-03-14T08:02:21.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8609, + "fields": { + "EF_ID": 221965, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-41", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-41 (CH3F) Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0080", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.015Z", + "last_change_date": "2022-03-14T08:02:22.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8610, + "fields": { + "EF_ID": 221966, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-32 (CH2F2) Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00086", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00056", + "Upper_Bound": "0.0012", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.116Z", + "last_change_date": "2022-03-14T08:02:22.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8611, + "fields": { + "EF_ID": 221967, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C2F6 Emissions from Use of SF6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.044", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.016", + "Upper_Bound": "0.072", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 13", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.217Z", + "last_change_date": "2022-03-14T08:02:22.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8612, + "fields": { + "EF_ID": 221968, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF-4 Emissions from Use of SF6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.012", + "Upper_Bound": "0.067", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 19", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.334Z", + "last_change_date": "2022-03-14T08:02:22.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8613, + "fields": { + "EF_ID": 221969, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-23 (CHF3) Emissions from Use of SF6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0037", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.00", + "Upper_Bound": "0.010", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 5", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.452Z", + "last_change_date": "2022-03-14T08:02:22.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8614, + "fields": { + "EF_ID": 221970, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for HFC-32 (CH2F2) Emissions from Use of SF6 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000029", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.627Z", + "last_change_date": "2022-03-14T08:02:22.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8615, + "fields": { + "EF_ID": 221971, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.037", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.719Z", + "last_change_date": "2022-03-14T08:02:22.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8616, + "fields": { + "EF_ID": 221972, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: In situ thermal chamber cleaning", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.010", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.821Z", + "last_change_date": "2022-03-14T08:02:22.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8617, + "fields": { + "EF_ID": 221973, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for CF4 Emissions from Use of NF3 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Remote plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.075", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.0048", + "Upper_Bound": "0.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 30", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:22.921Z", + "last_change_date": "2022-03-14T08:02:22.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8618, + "fields": { + "EF_ID": 221974, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C2F6 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC2F6", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.66", + "Upper_Bound": "0.79", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 43", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.022Z", + "last_change_date": "2022-03-14T08:02:23.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8619, + "fields": { + "EF_ID": 221975, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-125", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for HFC-125 (C2HF5) Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC2HF5", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.064", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.054", + "Upper_Bound": "0.075", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 31", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.122Z", + "last_change_date": "2022-03-14T08:02:23.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8620, + "fields": { + "EF_ID": 221976, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C4F8 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC4F8", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.12", + "Upper_Bound": "0.17", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 53", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.231Z", + "last_change_date": "2022-03-14T08:02:23.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8621, + "fields": { + "EF_ID": 221977, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for CF4 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCF4", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.81", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.77", + "Upper_Bound": "0.85", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 134", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.323Z", + "last_change_date": "2022-03-14T08:02:23.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8622, + "fields": { + "EF_ID": 221978, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for HFC-32 (CH2F2) Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCH2F2", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.10", + "Upper_Bound": "0.16", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 44", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.424Z", + "last_change_date": "2022-03-14T08:02:23.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8623, + "fields": { + "EF_ID": 221979, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-41", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for HFC-41 (CH3F) Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCH3F", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.58", + "Upper_Bound": "0.83", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. This value differs from the corresponding value in the default semiconductor EFs of the Greenhouse Gas Reporting Program (GHGRP). This value is correct. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.526Z", + "last_change_date": "2022-03-14T08:02:23.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8624, + "fields": { + "EF_ID": 221980, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for HFC-23 (CHF3) Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCHF3", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.47", + "Upper_Bound": "0.55", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 136", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.643Z", + "last_change_date": "2022-03-14T08:02:23.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8625, + "fields": { + "EF_ID": 221981, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for NF3 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UNF3", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.14", + "Upper_Bound": "0.25", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 23", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.761Z", + "last_change_date": "2022-03-14T08:02:23.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8626, + "fields": { + "EF_ID": 221982, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for SF6 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-USF6", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.51", + "Upper_Bound": "0.60", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 132", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:23.878Z", + "last_change_date": "2022-03-14T08:02:23.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8627, + "fields": { + "EF_ID": 221983, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C2F6 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC2F6", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.48", + "Upper_Bound": "0.61", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 13", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.004Z", + "last_change_date": "2022-03-14T08:02:24.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8628, + "fields": { + "EF_ID": 221984, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C3F8 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC3F8", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.36", + "Upper_Bound": "0.44", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.121Z", + "last_change_date": "2022-03-14T08:02:24.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8629, + "fields": { + "EF_ID": 221985, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C4F8 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC4F8", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.230Z", + "last_change_date": "2022-03-14T08:02:24.230Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8630, + "fields": { + "EF_ID": 221986, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for CF4 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCF4", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.88", + "Upper_Bound": "0.95", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 5", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.338Z", + "last_change_date": "2022-03-14T08:02:24.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8631, + "fields": { + "EF_ID": 221987, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for NF3 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UNF3", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.10", + "Upper_Bound": "0.26", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 18", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.447Z", + "last_change_date": "2022-03-14T08:02:24.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8632, + "fields": { + "EF_ID": 221988, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for NF3 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UNF3", + "Technology_Practices": "Process Type: Remote plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.017", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3.Technical Support Document for Process Emissions from Electronics Manufacture: Mandatory Reporting of Greenhouse Gases—Revised, Office of Air and Radiation, U.S. Environmental Protection Agency, November 2010, Docket item EPA-HQ-OAR-2009-0927-0195 4. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 5. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 6. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 7. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.014", + "Upper_Bound": "0.020", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 103", + "Data_Provider_Comments": "In general, default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) However, as discussed in the November 2010 Technical Support Document for Process Emissions from Electronics Manufacture (Reference 3), this emission factor, for remote clean NF3, was developed somewhat differently. First, the EF was based on measurements from both 200 mm and 300 mm manufacturing, as the difference between the mean EFs for these two categories was not statistically significant. Second, four data points out of a total of 107 were identified as outliers and were excluded from the calculation of the mean. (The arithmetic average of the 103 non-outlier measurements was 0.017 while the arithmetic average of all 107 measurements was 0.022.) Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. This value differs from the corresponding value in the Greenhouse Gas Reporting Program (GHGRP) default emission factors. This value is correct. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.548Z", + "last_change_date": "2022-03-14T08:02:24.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8633, + "fields": { + "EF_ID": 221989, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C2F6 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC2F6", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.80", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.648Z", + "last_change_date": "2022-03-14T08:02:24.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8634, + "fields": { + "EF_ID": 221990, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C3F8 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC3F8", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.23", + "Upper_Bound": "0.37", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 4", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.749Z", + "last_change_date": "2022-03-14T08:02:24.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8635, + "fields": { + "EF_ID": 221991, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "c-C4F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for c-C4F8 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC4F8", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.16", + "Upper_Bound": "0.21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 90", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.849Z", + "last_change_date": "2022-03-14T08:02:24.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8636, + "fields": { + "EF_ID": 221992, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for CF4 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCF4", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.61", + "Upper_Bound": "0.70", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 104", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:24.950Z", + "last_change_date": "2022-03-14T08:02:24.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8637, + "fields": { + "EF_ID": 221993, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-32", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for HFC-32 (CH2F2) Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCH2F2", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.16", + "Upper_Bound": "0.27", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 57", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.052Z", + "last_change_date": "2022-03-14T08:02:25.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8638, + "fields": { + "EF_ID": 221994, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-41", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for HFC-41 (CH3F) Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCH3F", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.22", + "Upper_Bound": "0.44", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 13", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.153Z", + "last_change_date": "2022-03-14T08:02:25.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8639, + "fields": { + "EF_ID": 221995, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for HFC-23 (CHF3) Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UCHF3", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.37", + "Upper_Bound": "0.47", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 91", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.253Z", + "last_change_date": "2022-03-14T08:02:25.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8640, + "fields": { + "EF_ID": 221996, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for NF3 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UNF3", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.12", + "Upper_Bound": "0.18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 66", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.362Z", + "last_change_date": "2022-03-14T08:02:25.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8641, + "fields": { + "EF_ID": 221997, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for SF6 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-USF6", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.25", + "Upper_Bound": "0.39", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 46", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.487Z", + "last_change_date": "2022-03-14T08:02:25.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8642, + "fields": { + "EF_ID": 221998, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for NF3 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UNF3", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.17", + "Upper_Bound": "0.28", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 8", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.605Z", + "last_change_date": "2022-03-14T08:02:25.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8643, + "fields": { + "EF_ID": 221999, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for NF3 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UNF3", + "Technology_Practices": "Process Type: In situ thermal chamber cleaning", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.721Z", + "last_change_date": "2022-03-14T08:02:25.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8644, + "fields": { + "EF_ID": 222000, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C3F8 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC3F8", + "Technology_Practices": "Process Type: Remote plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.063", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.040", + "Upper_Bound": "0.087", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.831Z", + "last_change_date": "2022-03-14T08:02:25.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8645, + "fields": { + "EF_ID": 222001, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "Nitrogen Trifluoride", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for NF3 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UNF3", + "Technology_Practices": "Process Type: Remote plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.017", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3.Technical Support Document for Process Emissions from Electronics Manufacture: Mandatory Reporting of Greenhouse Gases—Revised, Office of Air and Radiation, U.S. Environmental Protection Agency, November 2010, Docket item EPA-HQ-OAR-2009-0927-0195 4. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 5. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 6. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 7. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.014", + "Upper_Bound": "0.020", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 103", + "Data_Provider_Comments": "In general, default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) However, as discussed in the November 2010 Technical Support Document for Process Emissions from Electronics Manufacture (Reference 3), this emission factor, for remote clean NF3, was developed somewhat differently. First, the EF was based on measurements from both 200 mm and 300 mm manufacturing, as the difference between the mean EFs for these two categories was not statistically significant. Second, four data points out of a total of 107 were identified as outliers and were excluded from the calculation of the mean. (The arithmetic average of the 103 non-outlier measurements was 0.017 while the arithmetic average of all 107 measurements was 0.022.) Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. N/A for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). This value differs from the corresponding value in the Greenhouse Gas Reporting Program (GHGRP) default emission factors. This value is correct. Measurements were taken during various times using different standards, such as the 2006 and 2009 International SEMATECH Manufacturing Initiative Guideline for Environmental Characterization of Semiconductor Process Equipment, and NIST/Intel 1997.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:25.931Z", + "last_change_date": "2022-03-14T08:02:25.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8646, + "fields": { + "EF_ID": 222002, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for Nitrous Oxide Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UN2O", + "Technology_Practices": "Process type: Chemical Vapor Deposition", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.80", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Technical Support for Other Technical Issues Addressed in Revisions to Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket item EPA-HQ-OAR-2011-0028-0084. 2. Technical Support Document for Process Emissions from Electronics Manufacture: Mandatory Reporting of Greenhouse Gases—Revised, Office of Air and Radiation, U.S. Environmental Protection Agency, November 2010, Docket item EPA-HQ-OAR-2009-0927-0195. 3. Analysis of Nitrous Oxide Survey Data. International SEMATECH Manufacturing Initiative, June 2009, Technology Transfer #09065015A-TR.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There was wide variability seen in the N2O emission factors available. The emission factor provided here is not based on calculation, but was developed based on a review of the available data and consideration of its representativeness of U.S. semiconductor manufacturers (particularly with respect to wafer size). Please see references, particularly reference 2.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "1) http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2011-0028-0084 2) http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2009-0927-0195 3) http://sematech.org/docubase/document/5015atr.pdf", + "creation_date": "2022-03-14T08:02:26.032Z", + "last_change_date": "2022-03-14T08:02:26.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8647, + "fields": { + "EF_ID": 222003, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for Nitrous Oxide Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UN2O", + "Technology_Practices": "Process type: All processes that use N2O other than chemical vapor deposition", + "Parameter_Conditions": "", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.00", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of the 2006 Guidelines (Volume 3)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Technical Support for Other Technical Issues Addressed in Revisions to Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket item EPA-HQ-OAR-2011-0028-0084. 2. Technical Support Document for Process Emissions from Electronics Manufacture: Mandatory Reporting of Greenhouse Gases—Revised, Office of Air and Radiation, U.S. Environmental Protection Agency, November 2010, Docket item EPA-HQ-OAR-2009-0927-0195. 3. Analysis of Nitrous Oxide Survey Data. International SEMATECH Manufacturing Initiative, June 2009, Technology Transfer #09065015A-TR.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "There was wide variability seen in the N2O emission factors available. The emission factor provided here is not based on calculation, but was developed based on a review of the available data and consideration of its representativeness of U.S. semiconductor manufacturers. Please see references, particularly references 1 and 2.", + "Other_Comments": "", + "Data_Provider": "Deborah Ottinger", + "Link": "1) http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2011-0028-0084 2) http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2009-0927-0195 3) http://sematech.org/docubase/document/5015atr.pdf", + "creation_date": "2022-03-14T08:02:26.133Z", + "last_change_date": "2022-03-14T08:02:26.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8648, + "fields": { + "EF_ID": 222137, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fugitive emissions of HFC-134a from Mobile Air Conditioning of passenger vehicle at the use-phase", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Mini-sized (initial charge amount = 512.5+/-43.3 g, average operating time = 9.5+/-2.5 years, mileage = 94.9+/-29.0 (1000 km)). Based on measurements from 8 Korea-made operating passenger vehicles (excluding Van and SUV) whereby the refrigerants have never been recharged. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.6", + "Unit": "%/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-1.2", + "Upper_Bound": "+1.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:26.208Z", + "last_change_date": "2022-03-14T08:02:26.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8649, + "fields": { + "EF_ID": 222138, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fugitive emissions of HFC-134a from Mobile Air Conditioning of passenger vehicle at the use-phase", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Small-sized (initial charge amount = 616.4+/-51.9 g, average operating time = 9.2+/-1.8 years, mileage = 125.1+/-28.3 (1000 km)). Based on measurements from 14 Korea-made operating passenger vehicles (excluding Van and SUV) whereby the refrigerants have never been recharged. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-1.2", + "Upper_Bound": "+1.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:26.300Z", + "last_change_date": "2022-03-14T08:02:26.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8650, + "fields": { + "EF_ID": 222139, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fugitive emissions of HFC-134a from Mobile Air Conditioning of passenger vehicle at the use-phase", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Medium-sized (initial charge amount = 657.6+/-47.1 g, average operating time = 8.5+/-1.8 years, mileage = 119.7+/-26.4 (1000 km)). Based on measurements from 18 Korea-made operating passenger vehicles (excluding Van and SUV) whereby the refrigerants have never been recharged. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2", + "Unit": "%/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-0.9", + "Upper_Bound": "+0.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:26.400Z", + "last_change_date": "2022-03-14T08:02:26.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8651, + "fields": { + "EF_ID": 222140, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fugitive emissions of HFC-134a from Mobile Air Conditioning of passenger vehicle at the use-phase", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Large-sized (initial charge amount = 712.9+/-102.3 g, average operating time = 7.5+/-2.4 years, mileage = 110.4+/-30.2 (1000 km)). Based on measurements from 7 Korea-made operating passenger vehicles (excluding Van and SUV) whereby the refrigerants have never been recharged. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.6", + "Unit": "%/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-0.8", + "Upper_Bound": "+0.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:26.501Z", + "last_change_date": "2022-03-14T08:02:26.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8652, + "fields": { + "EF_ID": 222141, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fugitive emissions of HFC-134a from Mobile Air Conditioning of passenger vehicle at the use-phase", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Average of mini-sized, small-sized, medium-sized and large-sized (initial charge amount = 624.5+/- 31.6 g, average operating time = 8.7+/-0.9 years, mileage = 114.4+/-31.6 (1000 km)). Based on measurements from 47 Korea-made operating passenger vehicles (excluding Van and SUV) whereby the refrigerants have never been recharged. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.1", + "Unit": "%/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-0.5", + "Upper_Bound": "+0.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:26.601Z", + "last_change_date": "2022-03-14T08:02:26.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8653, + "fields": { + "EF_ID": 222142, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Residual rates of HFC-134a in Mobile Air Conditioning of scrap passenger vehicles", + "Technology_Practices": ".", + "Parameter_Conditions": "Vehicle type: Mini-sized (initial charge amount = 552.8+/- 5.6 g, average age = 12.2+/-0.3 years). Based on measurements from 91 Korea-made scrap passenger vehicles. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "51.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-2.4", + "Upper_Bound": "+2.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:26.703Z", + "last_change_date": "2022-03-14T08:02:26.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8654, + "fields": { + "EF_ID": 222143, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Residual rates of HFC-134a in Mobile Air Conditioning of scrap passenger vehicles", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Small-sized (initial charge amount = 673.2+/- 15.0 g, average age = 12.7+/-0.6 years). Based on measurements from 157 Korea-made scrap passenger vehicles. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "51.2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-1.9", + "Upper_Bound": "+1.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:26.812Z", + "last_change_date": "2022-03-14T08:02:26.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8655, + "fields": { + "EF_ID": 222144, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Residual rates of HFC-134a in Mobile Air Conditioning of scrap passenger vehicles", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Medium-sized (initial charge amount = 680.0+/- 14.9 g, average age = 11.7+/-0.7 years). Based on measurements from 106 Korea-made scrap passenger vehicles. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55.2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-2.0", + "Upper_Bound": "+2.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:26.913Z", + "last_change_date": "2022-03-14T08:02:26.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8656, + "fields": { + "EF_ID": 222145, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Residual rates of HFC-134a in Mobile Air Conditioning of scrap passenger vehicles", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Large-sized (initial charge amount = 833.8+/- 41.7 g, average age = 12.8+/-0.8 years). Based on measurements from 39 Korea-made scrap passenger vehicles. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-3.4", + "Upper_Bound": "+3.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:27.030Z", + "last_change_date": "2022-03-14T08:02:27.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8657, + "fields": { + "EF_ID": 222146, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Residual rates of HFC-134a in Mobile Air Conditioning of scrap passenger vehicles", + "Technology_Practices": "", + "Parameter_Conditions": "Vehicle type: Average of mini-sized, small-sized, medium-sized and large-sized (initial charge amount = 689.5+/- 4.2 g, average age = 12.4+/-0.2 years). Based on measurements from 393 Korea-made scrap passenger vehicles. For consistency, the passenger vehicles made by one motor company were chosen.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "S. Kim, and E. Kim (2014) Regular emission characteristics of HFC-134a from mobile air conditioners, Journal of Industrial and Engineering Chemistry, Volume 21, 25 January 2015, Pages 489–493 (the paper: Received 23 August 2013, Accepted 5 March 2014, Available online 12 March 2014)", + "English_Abstract": "This paper describes the regular emission characteristics and model of HFC-134a from the mobile air conditioners (MACs) of passenger vehicles excluding van and sports utility vehicle (SUV) at the use- and disposal-phase. The fugitive emission model of HFC-134a from MAC developed here assumed that the emission process would be expressed by the first-order kinetics. The apparent fugitive emission constant of HFC-134a from MAC in passenger vehicles is estimated to be 0.0526 +/- 0.0024 yr-1 within a confidence interval of 95%, leading to the emission factor (EF) of 5.1 +/- 0.4% yr-1. The average residual rate of HFC-134a is 55.6 +/- 1.1% in scrap passenger vehicles with an average age of 12.4 years. The average emission rate per vehicle is determined to be 24.6 g yr-1 at the use-phase and 383.4 g per scrap passenger. Based on the excellent duplication of the measured residual rates of scrap passenger vehicles by the predicted ones by the emission model developed here, it is concluded that the emission model and apparent fugitive emission constants are reasonably appropriate for representing the regular emission characteristics of HFC-134a from MAC of passenger vehicles.", + "Lower_Bound": "-1.1", + "Upper_Bound": "+1.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1226086X14001634", + "creation_date": "2022-03-14T08:02:27.147Z", + "last_change_date": "2022-03-14T08:02:27.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8658, + "fields": { + "EF_ID": 222744, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2-26", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.264Z", + "last_change_date": "2022-03-14T08:02:27.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8659, + "fields": { + "EF_ID": 222745, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-30", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.350Z", + "last_change_date": "2022-03-14T08:02:27.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8660, + "fields": { + "EF_ID": 222746, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-14", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.416Z", + "last_change_date": "2022-03-14T08:02:27.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8661, + "fields": { + "EF_ID": 222747, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1-41", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.507Z", + "last_change_date": "2022-03-14T08:02:27.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8662, + "fields": { + "EF_ID": 222748, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1-25", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.600Z", + "last_change_date": "2022-03-14T08:02:27.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8663, + "fields": { + "EF_ID": 222749, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.667Z", + "last_change_date": "2022-03-14T08:02:27.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8664, + "fields": { + "EF_ID": 222750, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-17", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.733Z", + "last_change_date": "2022-03-14T08:02:27.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8665, + "fields": { + "EF_ID": 222751, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1-37", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.800Z", + "last_change_date": "2022-03-14T08:02:27.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8666, + "fields": { + "EF_ID": 222752, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1-25", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.866Z", + "last_change_date": "2022-03-14T08:02:27.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8667, + "fields": { + "EF_ID": 222753, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite+Dolomite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-20.5", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:27.960Z", + "last_change_date": "2022-03-14T08:02:27.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8668, + "fields": { + "EF_ID": 222754, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcite+Dolomite content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-24", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:28.042Z", + "last_change_date": "2022-03-14T08:02:28.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8669, + "fields": { + "EF_ID": 222755, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Calcium Carbonate (CaCO3) content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.63-45", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:28.108Z", + "last_change_date": "2022-03-14T08:02:28.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8670, + "fields": { + "EF_ID": 222756, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Magnesium carbonate (MgCO3) content in clay raw materials", + "Technology_Practices": "Clay raw materials applied in the brick and roof tile industry in different European countries", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-31", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.36 Table 2.1 Ranges of chemical and mineralogical compositions of clay raw materials applied in the brick and roof tile industry in different European countries", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/cer_bref_0807.pdf", + "creation_date": "2022-03-14T08:02:28.183Z", + "last_change_date": "2022-03-14T08:02:28.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8671, + "fields": { + "EF_ID": 222757, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Variation within a campaign until gauze exchange. With medium pressure burner. Correlating with N2O yield of 1.5–2.5%", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.6-9.0", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [96, Maurerand Groves, 2004]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.258Z", + "last_change_date": "2022-03-14T08:02:28.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8672, + "fields": { + "EF_ID": 222758, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "All plants", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9-21.6", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [102, EFMA, 2000]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.362Z", + "last_change_date": "2022-03-14T08:02:28.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8673, + "fields": { + "EF_ID": 222759, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Atmospheric plants", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [80, Jenssen, 2004]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.441Z", + "last_change_date": "2022-03-14T08:02:28.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8674, + "fields": { + "EF_ID": 222760, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Medium pressure oxidation", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [80, Jenssen, 2004]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.508Z", + "last_change_date": "2022-03-14T08:02:28.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8675, + "fields": { + "EF_ID": 222761, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "High pressure plants", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0-9.0", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [80, Jenssen, 2004]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.580Z", + "last_change_date": "2022-03-14T08:02:28.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8676, + "fields": { + "EF_ID": 222762, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "EU average", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [80, Jenssen, 2004]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.646Z", + "last_change_date": "2022-03-14T08:02:28.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8677, + "fields": { + "EF_ID": 222763, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Depending on the process conditions", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1-12.3", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [98, ADEME, 2003]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.732Z", + "last_change_date": "2022-03-14T08:02:28.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8678, + "fields": { + "EF_ID": 222764, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "EU representative level", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.0-8.0", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [99, IRMA, 2003]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.825Z", + "last_change_date": "2022-03-14T08:02:28.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8679, + "fields": { + "EF_ID": 222765, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "EU average", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [87, infoMil, 2001]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.905Z", + "last_change_date": "2022-03-14T08:02:28.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8680, + "fields": { + "EF_ID": 222766, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H plant. Combined tail gas abatement system since 2003", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "Combined tail gas abatement system", + "Other_Properties": "", + "Value": "0.12-0.25", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [100, AMI, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:28.980Z", + "last_change_date": "2022-03-14T08:02:28.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8681, + "fields": { + "EF_ID": 222767, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H plant. Before 2003, 3.3/8 bar", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.9-8.6", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [94, Austrian UBA, 2001]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.050Z", + "last_change_date": "2022-03-14T08:02:29.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8682, + "fields": { + "EF_ID": 222768, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual L/M plant. 0/3.8 bar", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4-4.9", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF); 2) [94, Austrian UBA, 2001]; 3) [100, AMI, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.159Z", + "last_change_date": "2022-03-14T08:02:29.159Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8683, + "fields": { + "EF_ID": 222769, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Mono M/M plant. SKW Piesteritz. Campaign average. Improved oxidation catalyst by Heraeus, 4.5 bar, 250 degrees Celsius in front of the expander", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "Improved oxidation catalyst by Heraeus", + "Other_Properties": "", + "Value": "4.9", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.233Z", + "last_change_date": "2022-03-14T08:02:29.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8684, + "fields": { + "EF_ID": 222770, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Mono M/M plant. Sasol Nitro, South Africa. 230 degrees Celsius in front of the expander", + "Parameter_Conditions": "", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.2-7.4", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.297Z", + "last_change_date": "2022-03-14T08:02:29.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8685, + "fields": { + "EF_ID": 222771, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H plant. YARA, Sluiskil 6. Capacity: 584 000 tonnes/year, 5/10 bar", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.363Z", + "last_change_date": "2022-03-14T08:02:29.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8686, + "fields": { + "EF_ID": 222772, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H plant. DSM Geleen. Capacity: 500 000 tonnes /year, 5/11bar, 500 degrees Celsius infront of expander", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.430Z", + "last_change_date": "2022-03-14T08:02:29.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8687, + "fields": { + "EF_ID": 222773, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Mono M/M plant. DSM Geleen. Capacity: 210 000 tonnes/year, 5 bar, 450 degrees Celsius in front of expander", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF). 2) [103,Brink,2000]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.552Z", + "last_change_date": "2022-03-14T08:02:29.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8688, + "fields": { + "EF_ID": 222774, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H plant. YARA, Sluiskil 7. Capacity: 730 000 tonnes/year, 4/11bar", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.625Z", + "last_change_date": "2022-03-14T08:02:29.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8689, + "fields": { + "EF_ID": 222775, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Mono M/M plant. DSM IJmuiden. Capacity: 255 000tonnes/year, 4 bar, 400 degrees Celsius in front of expander", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF). 2) [103,Brink,2000]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.713Z", + "last_change_date": "2022-03-14T08:02:29.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8690, + "fields": { + "EF_ID": 222776, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H plant. DSM Ijmuiden. Capacity: 245 000 tonnes/year, 4/10 bar", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.780Z", + "last_change_date": "2022-03-14T08:02:29.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8691, + "fields": { + "EF_ID": 222777, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Mono M/M plant. Kemira Agro Pernis. Capacity: 80 000 tonnes/year, 2.6–3.6 bar (Plant closed)", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.8", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.846Z", + "last_change_date": "2022-03-14T08:02:29.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8692, + "fields": { + "EF_ID": 222778, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Mono H/H plant. Kemira Agro Rozenburg. Capacity: 400 000 tonnes/year, NSCR, 9 bar (Plant closed)", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:29.946Z", + "last_change_date": "2022-03-14T08:02:29.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8693, + "fields": { + "EF_ID": 222779, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H plant. Agropolychim, Devnia. Capacity: 1100 tonnes/day,3.5/12.8 bar, gauze age at time of measurement: 5 months", + "Parameter_Conditions": "", + "Regional_Conditions": "Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.025Z", + "last_change_date": "2022-03-14T08:02:30.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8694, + "fields": { + "EF_ID": 222780, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Medium pressure plant. GP Rouen AN6. Heraeus secondary catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "Heraeus secondary catalyst", + "Other_Properties": "", + "Value": "1.9", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.088Z", + "last_change_date": "2022-03-14T08:02:30.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8695, + "fields": { + "EF_ID": 222781, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/M (KD6). Lovochemie, Lovosice. Heraeus secondary catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "Heraeus secondary catalyst", + "Other_Properties": "", + "Value": "5.5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.155Z", + "last_change_date": "2022-03-14T08:02:30.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8696, + "fields": { + "EF_ID": 222782, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H (Uhde 2). Capacity 750 tonnes/day", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.225Z", + "last_change_date": "2022-03-14T08:02:30.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8697, + "fields": { + "EF_ID": 222783, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/M (Uhde 3). Capacity 550 tonnes/day", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.323Z", + "last_change_date": "2022-03-14T08:02:30.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8698, + "fields": { + "EF_ID": 222784, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual H/H (Dupont). Capacity 850 tonnes/day, NSCR", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.408Z", + "last_change_date": "2022-03-14T08:02:30.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8699, + "fields": { + "EF_ID": 222785, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H (SZ2). BASF, Antwerp. BASF secondary catalyst,12cm (6.7 kg before reduction)", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "BASF secondary catalyst,12cm (6.7 kg before reduction)", + "Other_Properties": "", + "Value": "1.8", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.475Z", + "last_change_date": "2022-03-14T08:02:30.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8700, + "fields": { + "EF_ID": 222786, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H (SZ3). BASF, Antwerp. BASF secondary catalyst,12cm (6.7 kg before reduction)", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "BASF secondary catalyst,12cm (6.7 kg before reduction)", + "Other_Properties": "", + "Value": "1.7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.542Z", + "last_change_date": "2022-03-14T08:02:30.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8701, + "fields": { + "EF_ID": 222787, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual M/H. BASF, Antwerp", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.608Z", + "last_change_date": "2022-03-14T08:02:30.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8702, + "fields": { + "EF_ID": 222788, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "Dual H/H. BASF, Antwerp. NSCR", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "Non-Selective Catalytic Reduction (NSCR)", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.700Z", + "last_change_date": "2022-03-14T08:02:30.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8703, + "fields": { + "EF_ID": 222789, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "M/H. YARA, Ambès. YARA secondary catalyst, 50% filling (7kg before reduction)", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "YARA secondary catalyst, 50% filling (7kg before reduction)", + "Other_Properties": "", + "Value": "2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.783Z", + "last_change_date": "2022-03-14T08:02:30.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8704, + "fields": { + "EF_ID": 222790, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "M/H. YARA, Ambès. YARA secondary catalyst,40% filling (7kg before reduction)", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "YARA secondary catalyst,40% filling (7kg before reduction)", + "Other_Properties": "", + "Value": "3.3", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.850Z", + "last_change_date": "2022-03-14T08:02:30.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8705, + "fields": { + "EF_ID": 222791, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "M/H. YARA,Montoir. YARA secondary catalyst, 25% filling (5.2 kg before reduction)", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "YARA secondary catalyst, 25% filling (5.2 kg before reduction)", + "Other_Properties": "", + "Value": "2.8", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:30.925Z", + "last_change_date": "2022-03-14T08:02:30.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8706, + "fields": { + "EF_ID": 222792, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3)", + "Technology_Practices": "M/H. YARA,Montoir. YARA secondary catalyst,75% filling (5.2 kg before reduction)", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "YARA secondary catalyst,75% filling (5.2 kg before reduction)", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.7 on pp.103-105 of the report (BREF LVIC-AAF).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.000Z", + "last_change_date": "2022-03-14T08:02:31.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8707, + "fields": { + "EF_ID": 222793, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3) with catalytic N2O decomposition", + "Technology_Practices": "M/M. YARA , Ambès. Implemented from May 2002 to June 2003. Achieved with 50 % catalyst filling", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "Catalytic N2O decomposition in the oxidation reactor - 50 % catalyst filling", + "Other_Properties": "", + "Value": "2", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.12 on page 126 of the report (BREF LVIC-AAF). Example plants applying catalytic N2O decomposition in the oxidation reactor [87, infoMil, 2001, 106, Yara, 2006, 109, Lenoir, 2006, 110, F&C, 2005, 111, NCIC, 2004, 113, Sasol, 2006, 154, TWG on LVIC-AAF, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.102Z", + "last_change_date": "2022-03-14T08:02:31.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8708, + "fields": { + "EF_ID": 222794, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3) with catalytic N2O decomposition", + "Technology_Practices": "M/M. YARA , Ambès. Implemented from January 2004 to March 2006. Achieved with 40 % catalyst filling", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "Catalytic N2O decomposition in the oxidation reactor - 40 % catalyst filling", + "Other_Properties": "", + "Value": "3.3", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.12 on page 126 of the report (BREF LVIC-AAF). Example plants applying catalytic N2O decomposition in the oxidation reactor [87, infoMil, 2001, 106, Yara, 2006, 109, Lenoir, 2006, 110, F&C, 2005, 111, NCIC, 2004, 113, Sasol, 2006, 154, TWG on LVIC-AAF, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.181Z", + "last_change_date": "2022-03-14T08:02:31.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8709, + "fields": { + "EF_ID": 222795, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3) with catalytic N2O decomposition", + "Technology_Practices": "M/H. YARA, Montoir. Implemented in August 2003, 25 % catalyst filling", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "Catalytic N2O decomposition in the oxidation reactor - 25 % catalyst filling", + "Other_Properties": "", + "Value": "2.8", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.12 on page 126 of the report (BREF LVIC-AAF). Example plants applying catalytic N2O decomposition in the oxidation reactor [87, infoMil, 2001, 106, Yara, 2006, 109, Lenoir, 2006, 110, F&C, 2005, 111, NCIC, 2004, 113, Sasol, 2006, 154, TWG on LVIC-AAF, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.247Z", + "last_change_date": "2022-03-14T08:02:31.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8710, + "fields": { + "EF_ID": 222796, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3) with catalytic N2O decomposition", + "Technology_Practices": "M/H. YARA, Montoir. Implemented in Augut 2005, new catalyst, 75 % filling", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "Catalytic N2O decomposition in the oxidation reactor - new catalyst, 75 % filling", + "Other_Properties": "", + "Value": "0.8", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.12 on page 126 of the report (BREF LVIC-AAF). Example plants applying catalytic N2O decomposition in the oxidation reactor [87, infoMil, 2001, 106, Yara, 2006, 109, Lenoir, 2006, 110, F&C, 2005, 111, NCIC, 2004, 113, Sasol, 2006, 154, TWG on LVIC-AAF, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.353Z", + "last_change_date": "2022-03-14T08:02:31.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8711, + "fields": { + "EF_ID": 222797, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3) with catalytic N2O decomposition", + "Technology_Practices": "M/H. BASF, Antwerp SZ2. Implemented in 2005/2006, 12 cm catalyst filling, new catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "Catalytic N2O decomposition in the oxidation reactor- 12 cm catalyst filling, new catalyst", + "Other_Properties": "", + "Value": "1.8", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.12 on page 126 of the report (BREF LVIC-AAF). Example plants applying catalytic N2O decomposition in the oxidation reactor [87, infoMil, 2001, 106, Yara, 2006, 109, Lenoir, 2006, 110, F&C, 2005, 111, NCIC, 2004, 113, Sasol, 2006, 154, TWG on LVIC-AAF, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.472Z", + "last_change_date": "2022-03-14T08:02:31.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8712, + "fields": { + "EF_ID": 222798, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3) with catalytic N2O decomposition", + "Technology_Practices": "M/H. BASF, Antwerp SZ3. Implemented in 2005/2006, 12 cm catalyst filling, new catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Belgium", + "Control_Technologies": "Catalytic N2O decomposition in the oxidation reactor - 12 cm catalyst filling, new catalyst", + "Other_Properties": "", + "Value": "1.7", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.12 on page 126 of the report (BREF LVIC-AAF). Example plants applying catalytic N2O decomposition in the oxidation reactor [87, infoMil, 2001, 106, Yara, 2006, 109, Lenoir, 2006, 110, F&C, 2005, 111, NCIC, 2004, 113, Sasol, 2006, 154, TWG on LVIC-AAF, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.530Z", + "last_change_date": "2022-03-14T08:02:31.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8713, + "fields": { + "EF_ID": 222799, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3) with catalytic N2O decomposition", + "Technology_Practices": "M/M. Lovochemie KD6. Achieved with Heraeus catalyst", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "catalytic N2O decomposition in the oxidation reactor - Heraeus catalyst", + "Other_Properties": "", + "Value": "5.5", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.12 on page 126 of the report (BREF LVIC-AAF). Example plants applying catalytic N2O decomposition in the oxidation reactor [87, infoMil, 2001, 106, Yara, 2006, 109, Lenoir, 2006, 110, F&C, 2005, 111, NCIC, 2004, 113, Sasol, 2006, 154, TWG on LVIC-AAF, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.622Z", + "last_change_date": "2022-03-14T08:02:31.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8714, + "fields": { + "EF_ID": 222800, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide (N2O) emission factor from production of nitric acid (HNO3) with catalytic N2O decomposition", + "Technology_Practices": "M/H. Grande Paroisse, Rouen. Achieved with Heraeus catalyst in combination with an improved oxidation catalyst (FTCplus)", + "Parameter_Conditions": "", + "Regional_Conditions": "France", + "Control_Technologies": "Catalytic N2O decomposition in the oxidation reactor - Heraeus catalyst in combination with an improved oxidation catalyst (FTCplus)", + "Other_Properties": "", + "Value": "1.9", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 3.12 on page 126 of the report (BREF LVIC-AAF). Example plants applying catalytic N2O decomposition in the oxidation reactor [87, infoMil, 2001, 106, Yara, 2006, 109, Lenoir, 2006, 110, F&C, 2005, 111, NCIC, 2004, 113, Sasol, 2006, 154, TWG on LVIC-AAF, 2006]", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.680Z", + "last_change_date": "2022-03-14T08:02:31.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8715, + "fields": { + "EF_ID": 222801, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Nitrous oxide (N2O) emission factor for Best Available Techniques (BAT) in production of nitric acid (HNO3)", + "Technology_Practices": "Emission Factor for Best Available Techniques (BAT). BAT is to reduce emissions of N2O and to achieve the emission factors or emission concentration levels given in Table 3.14 by applying a combination of the following techniques: • optimising the filtration of raw materials • optimising the mixing of raw materials • optimising the gas distribution over the catalyst • monitoring catalyst performance and adjusting the campaign length • optimisation of the NH3/air ratio • optimise pressure and temperature of the oxidation step • N2O decomposition by extension of the reactor chamber in new plants • catalytic N2O decomposition in the reactor chamber • combined NOx and N2O abatement in tail gases", + "Parameter_Conditions": "M/M, M/H and H/H", + "Regional_Conditions": "European Union", + "Control_Technologies": "catalytic N2O decomposition", + "Other_Properties": "New plants", + "Value": "0.12-0.6", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.14 on page 140 of the report (BREF LVIC-AAF). 2) Industry and one Member State claim that the BAT range should include 2.5 kg N2O/tonne 100 % HNO3 for existing plants.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.741Z", + "last_change_date": "2022-03-14T08:02:31.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8716, + "fields": { + "EF_ID": 222802, + "IPCC_Category": "2.B.2 - Nitric Acid Production", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Nitrous oxide (N2O) emission factor for Best Available Techniques (BAT) in production of nitric acid (HNO3)", + "Technology_Practices": "Emission Factor for Best Available Techniques (BAT). BAT is to reduce emissions of N2O and to achieve the emission factors or emission concentration levels given in Table 3.14 by applying a combination of the following techniques: • optimising the filtration of raw materials • optimising the mixing of raw materials • optimising the gas distribution over the catalyst • monitoring catalyst performance and adjusting the campaign length • optimisation of the NH3/air ratio • optimise pressure and temperature of the oxidation step • N2O decomposition by extension of the reactor chamber in new plants • catalytic N2O decomposition in the reactor chamber • combined NOx and N2O abatement in tail gases", + "Parameter_Conditions": "M/M, M/H and H/H", + "Regional_Conditions": "European Union", + "Control_Technologies": "catalytic N2O decomposition", + "Other_Properties": "Existing plants", + "Value": "0.12-1.85", + "Unit": "kg N2O/tonne nitric acid produced", + "Equation": "Equation 3.5 on p.3.21 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2B2", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Ammonia, Acids and Fertilisers, August 2007, Integrated Pollution Prevention and Control, EUROPEAN COMMISSION (BREF LVIC-AAF)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1) Table 3.14 on page 140 of the report (BREF LVIC-AAF). 2) Industry and one Member State claim that the BAT range should include 2.5 kg N2O/tonne 100 % HNO3 for existing plants.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic_aaf.pdf", + "creation_date": "2022-03-14T08:02:31.841Z", + "last_change_date": "2022-03-14T08:02:31.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8717, + "fields": { + "EF_ID": 222803, + "IPCC_Category": "2.A.4.b - Other Uses of Soda Ash", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon dioxide emission factor in water glass (sodium silicate) production (from reaction of soda and quartz-sand)", + "Technology_Practices": "Revolving heart furnace", + "Parameter_Conditions": "The CO2 specific emissons from chemical reactions are based on several measured concentrations over average half hourly periods in O2 content of 8 vol-% at 273 oK, 101.3 kPa after removal of water vapour", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "165", + "Unit": "kg/tonnes product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Solids and Others Industry. Integrated Pollution Prevention and Control, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.449 Table 7.54 Emissions and concentrations of pollutants in exhaust air – revolving hearth furnace. The information presented in the BREF originates from UBA - Germany (2001), German Notes on BAT for the production of LVSIC -Sodium Silicate.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic-s_bref_0907.pdf", + "creation_date": "2022-03-14T08:02:31.930Z", + "last_change_date": "2022-03-14T08:02:31.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8718, + "fields": { + "EF_ID": 222804, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon dioxide emission factor in calcium chloride (CaCl2) liqour production (acid-limestone route)", + "Technology_Practices": "Acid-limestone neutralisation with HCl", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "Emission of CO2 heavily dependent upon ability to utilise the gas", + "Other_Properties": "", + "Value": "250-400", + "Unit": "kg/tonnes product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Solids and Others Industry. Integrated Pollution Prevention and Control, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p. 495 Table 7.72 Environmental impacts from the production of calcium chloride liquor. The information presented in the BREF originates from CEFIC (2005), CEFIC BREF Calcium Chloride.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic-s_bref_0907.pdf", + "creation_date": "2022-03-14T08:02:32.025Z", + "last_change_date": "2022-03-14T08:02:32.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8719, + "fields": { + "EF_ID": 222805, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "CDM projects", + "Other_Properties": "", + "Value": "2.31-3.64", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "LIN, Hui., CUI, Yong-Li., YANG, Li-Rong.: Analysis of Potential for HFC-23 Emission Reduction in China`s Fluorine Chemical Industry, ADVANCES IN CLIMATE CHANGE RESEARCH 4(4): 260-266, 2013, DOI: 10.3724/SP.J.1248.2013.260", + "English_Abstract": "China is one of the major producers of chlorodifluoromethane (HCFC-22) in the world. A large amount of fluoroform (HFC-23) is emitted during the production of HCFC-22. Emission factors of HFC-23 were calculated in accordance with the monitoring reports of eleven HFC-23 clean development mechanism (CDM) projects in China and the HFC-23 emissions in 2000–2010 as well as that in 2011–2020 were estimated and projected, respectively. It is expected that, by the end of 2020, emissions of HFC-23 in China will be as much as 230 Mt CO2-eq. If HCFC-22 producers voluntarily reduced HFC-23 emissions, it would contribute 3.2%–3.6% to the national CO2 emission reduction target for 2020.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.261. The range of value is based on ten enterprises during monitoring periods under the CDM after 2006", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927813500384", + "creation_date": "2022-03-14T08:02:32.114Z", + "last_change_date": "2022-03-14T08:02:32.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8720, + "fields": { + "EF_ID": 222806, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "CDM project", + "Other_Properties": "", + "Value": "1.11-2.26", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "LIN, Hui., CUI, Yong-Li., YANG, Li-Rong.: Analysis of Potential for HFC-23 Emission Reduction in China`s Fluorine Chemical Industry, ADVANCES IN CLIMATE CHANGE RESEARCH 4(4): 260-266, 2013, DOI: 10.3724/SP.J.1248.2013.260", + "English_Abstract": "China is one of the major producers of chlorodifluoromethane (HCFC-22) in the world. A large amount of fluoroform (HFC-23) is emitted during the production of HCFC-22. Emission factors of HFC-23 were calculated in accordance with the monitoring reports of eleven HFC-23 clean development mechanism (CDM) projects in China and the HFC-23 emissions in 2000–2010 as well as that in 2011–2020 were estimated and projected, respectively. It is expected that, by the end of 2020, emissions of HFC-23 in China will be as much as 230 Mt CO2-eq. If HCFC-22 producers voluntarily reduced HFC-23 emissions, it would contribute 3.2%–3.6% to the national CO2 emission reduction target for 2020.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.261 The range of value is based on one enterprise (the Jiangsu Haike project) due to adoption of new French technology during monitoring periods under the CDM after 2006", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927813500384", + "creation_date": "2022-03-14T08:02:32.183Z", + "last_change_date": "2022-03-14T08:02:32.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8721, + "fields": { + "EF_ID": 222807, + "IPCC_Category": "2.E - Electronics Industry, 2.E.2 - TFT Flat Panel Display", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitorus oxide (N2O) destruction rate", + "Technology_Practices": "Chamber-washing for chemical vapor deposition processes in semiconductor and LCD manufacturing", + "Parameter_Conditions": "reaction temp. at 410 degrees Celsius, space velocity at 6000(-h)", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "catalytic direct decomposition of N2O", + "Other_Properties": "", + "Value": "83", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Seung-Jae Lee, In-Soo Ryu, and Seung-Hyun Moon.: N2O emission and reduction in the electronics manufacturing industries, Korea Institute of Energy Research, Society of Chemical Industry and John Wiley & Sons, Ltd, Greenhouse Gas Sci Technol. 2:380–385 (2012)", + "English_Abstract": "Electronics manufacturing industries have rapidly developed in South Korea. To reduce the use of fl uorinated gases having high global warming potential (GWP) in their processes, companies have recently attempted to replace these gases with nitrous oxide (N2O). Unfortunately, N2O itself has a GWP of 310 and is one of the main greenhouse gases. The electronics manufacturing industries should therefore consider reducing N2O emissions from their processes. This study measured the N2O emission from a large display manufacturing plant in South Korea and investigated the removal of N2O at the site of the plant by either a catalytic decomposition process or a reduction process. We suggest a hybrid N2O reduction process to effectively reduce the N2O emissions of the electronics manufacturing industries.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "At equal space velocity, N2O conversion increased with reaction temperature, and 100% of N2O conversion is attained at 500 degrees Celsius. Still, an increase of space velocity causes a somewhat lowered N2O conversion, even at high reaction temperatures above 500 degrees Celsius. Thus, in order to maintain high N2O conversions in the catalytic decomposition process, reaction temperatures must be maintained above 500 degrees Celsius, while space velocity must be constrained below 6000 h–1.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://onlinelibrary.wiley.com/doi/10.1002/ghg.1301/full", + "creation_date": "2022-03-14T08:02:32.276Z", + "last_change_date": "2022-03-14T08:02:32.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8722, + "fields": { + "EF_ID": 222808, + "IPCC_Category": "2.E - Electronics Industry, 2.E.2 - TFT Flat Panel Display", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitorus oxide (N2O) destruction rate", + "Technology_Practices": "Chamber-washing for chemical vapor deposition processes in semiconductor and LCD manufacturing", + "Parameter_Conditions": "reaction temp. above 500 degrees Celsius, space velocity less than 6000(-h)", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "catalytic direct decomposition of N2O", + "Other_Properties": "", + "Value": "100", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Seung-Jae Lee, In-Soo Ryu, and Seung-Hyun Moon.: N2O emission and reduction in the electronics manufacturing industries, Korea Institute of Energy Research, Society of Chemical Industry and John Wiley & Sons, Ltd, Greenhouse Gas Sci Technol. 2:380–385 (2012)", + "English_Abstract": "Electronics manufacturing industries have rapidly developed in South Korea. To reduce the use of fl uorinated gases having high global warming potential (GWP) in their processes, companies have recently attempted to replace these gases with nitrous oxide (N2O). Unfortunately, N2O itself has a GWP of 310 and is one of the main greenhouse gases. The electronics manufacturing industries should therefore consider reducing N2O emissions from their processes. This study measured the N2O emission from a large display manufacturing plant in South Korea and investigated the removal of N2O at the site of the plant by either a catalytic decomposition process or a reduction process. We suggest a hybrid N2O reduction process to effectively reduce the N2O emissions of the electronics manufacturing industries.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "At equal space velocity, N2O conversion increased with reaction temperature, and 100% of N2O conversion is attained at 500 degrees Celsius. Still, an increase of space velocity causes a somewhat lowered N2O conversion, even at high reaction temperatures above 500 degrees Celsius. Thus, in order to maintain high N2O conversions in the catalytic decomposition process, reaction temperatures must be maintained above 500 degrees Celsius, while space velocity must be constrained below 6000 h–1.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://onlinelibrary.wiley.com/doi/10.1002/ghg.1301/full", + "creation_date": "2022-03-14T08:02:32.350Z", + "last_change_date": "2022-03-14T08:02:32.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8723, + "fields": { + "EF_ID": 222809, + "IPCC_Category": "2.E - Electronics Industry, 2.E.2 - TFT Flat Panel Display", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitorus oxide (N2O) destruction rate", + "Technology_Practices": "Chamber-washing for chemical vapor deposition processes in semiconductor and LCD manufacturing", + "Parameter_Conditions": "reaction temp. at 360 degrees Celsius, space velocity at 10000(-h)", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "catalytic reduction of N2O using a reducing agent (typicaly NH3)", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Seung-Jae Lee, In-Soo Ryu, and Seung-Hyun Moon.: N2O emission and reduction in the electronics manufacturing industries, Korea Institute of Energy Research, Society of Chemical Industry and John Wiley & Sons, Ltd, Greenhouse Gas Sci Technol. 2:380–385 (2012)", + "English_Abstract": "Electronics manufacturing industries have rapidly developed in South Korea. To reduce the use of fl uorinated gases having high global warming potential (GWP) in their processes, companies have recently attempted to replace these gases with nitrous oxide (N2O). Unfortunately, N2O itself has a GWP of 310 and is one of the main greenhouse gases. The electronics manufacturing industries should therefore consider reducing N2O emissions from their processes. This study measured the N2O emission from a large display manufacturing plant in South Korea and investigated the removal of N2O at the site of the plant by either a catalytic decomposition process or a reduction process. We suggest a hybrid N2O reduction process to effectively reduce the N2O emissions of the electronics manufacturing industries.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.383 In the proposed process, the ordinary process should be the N2O catalytic direct decomposition abatement process. However, because the N2O concentration of the emission gas fluctuates significantly in the manufacturing process and the operation window for the catalytic decomposition is too narrow to respond to these fluctuations, NH3 as a reducing agent should be fed into the emission gas stream whenever the N2O concentration exceeds the abatement ability of the catalytic decomposition process. Hence, a hybrid process is suggested, which can be switched from catalytic decomposition to catalytic reduction by NH3. In order to enable such a hybrid N2O abatement process, the reaction conditions should simultaneously meet the temperatures and space velocities required for catalytic decomposition and catalytic reduction (i.e. at 400 degrees Celsius over 6000 h-1). In this way, the suggested hybrid technology minimizes the consumption and slip of NH3 as well as the energy consumed for heating the emission gas stream", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://onlinelibrary.wiley.com/doi/10.1002/ghg.1301/full", + "creation_date": "2022-03-14T08:02:32.444Z", + "last_change_date": "2022-03-14T08:02:32.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8724, + "fields": { + "EF_ID": 222810, + "IPCC_Category": "2.E - Electronics Industry, 2.E.2 - TFT Flat Panel Display", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitorus oxide (N2O) destruction rate", + "Technology_Practices": "Chamber-washing for chemical vapor deposition processes in semiconductor and LCD manufacturing", + "Parameter_Conditions": "reaction temp. at 360 degrees Celsius, space velocity at 6000(-h)", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "catalytic reduction of N2O using a reducing agent (typicaly NH3)", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Seung-Jae Lee, In-Soo Ryu, and Seung-Hyun Moon.: N2O emission and reduction in the electronics manufacturing industries, Korea Institute of Energy Research, Society of Chemical Industry and John Wiley & Sons, Ltd, Greenhouse Gas Sci Technol. 2:380–385 (2012)", + "English_Abstract": "Electronics manufacturing industries have rapidly developed in South Korea. To reduce the use of fl uorinated gases having high global warming potential (GWP) in their processes, companies have recently attempted to replace these gases with nitrous oxide (N2O). Unfortunately, N2O itself has a GWP of 310 and is one of the main greenhouse gases. The electronics manufacturing industries should therefore consider reducing N2O emissions from their processes. This study measured the N2O emission from a large display manufacturing plant in South Korea and investigated the removal of N2O at the site of the plant by either a catalytic decomposition process or a reduction process. We suggest a hybrid N2O reduction process to effectively reduce the N2O emissions of the electronics manufacturing industries.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.383 In the proposed process, the ordinary process should be the N2O catalytic direct decomposition abatement process. However, because the N2O concentration of the emission gas fluctuates significantly in the manufacturing process and the operation window for the catalytic decomposition is too narrow to respond to these fluctuations, NH3 as a reducing agent should be fed into the emission gas stream whenever the N2O concentration exceeds the abatement ability of the catalytic decomposition process. Hence, a hybrid process is suggested, which can be switched from catalytic decomposition to catalytic reduction by NH3. In order to enable such a hybrid N2O abatement process, the reaction conditions should simultaneously meet the temperatures and space velocities required for catalytic decomposition and catalytic reduction (i.e. at 400 degrees Celsius over 6000 h-1). In this way, the suggested hybrid technology minimizes the consumption and slip of NH3 as well as the energy consumed for heating the emission gas stream", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://onlinelibrary.wiley.com/doi/10.1002/ghg.1301/full", + "creation_date": "2022-03-14T08:02:32.561Z", + "last_change_date": "2022-03-14T08:02:32.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8725, + "fields": { + "EF_ID": 222811, + "IPCC_Category": "2.C.4 - Magnesium production", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Destruction rate of cover gas HFC-134a", + "Technology_Practices": "AM-Cover™ using HFC-134a with compressed dry air (CDA) Carrier Gas, a cold chambered die casting operation. An HPM 400 die-casting machine, fabricating an automotive lock body housing, was chosen for the testing", + "Parameter_Conditions": "Cover gas concentartion - 4,200 ppmv, Cover Gas Mixture Flow ~ 40 lpm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Bartos, Scott C.: Characterization of Emissions and Occupational Exposure Associated with Five Cover Gas Technologies for Magnesium Die Casting, U.S. Environmental Protection Agency Climate Protection Partnership Division, [EPA 430-R-07-008] Washington DC August 2007.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Min concentartion - 671.6 ppmv, max concentration - 1957.8 ppmv, average - 1 198.3 ppmv, St dev - 437.7", + "Data_Provider_Comments": "p.4-6 Table 4-3 and p.5-4 Table 5-1. Two concentrations of HFC-134a mixed with compressed dry air (CDA) were injected (4,200 and 3,600 ppmv) during August 24th and 25th, 2006. The HFC-134a cover gas standard was diluted with facility CDA and mixed with a gas blender provided by Lunt Manufacturing and operated by Advanced Magnesium Technologies (AMT). Each cover gas mixture`s HFC-134a concentration was verified by FTIR prior to injection into the crucible. To accomplish this, the outlet of the gas blender was connected directly to the heated extraction line leading to the FTIR. The gas blending parameters were adjusted until the desired HFC-134a concentration was achieved. The gas mixture was then delivered into the crucible.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www3.epa.gov/highgwp/magnesium-sf6/documents/lunt_measurement_study_full.pdf", + "creation_date": "2022-03-14T08:02:32.662Z", + "last_change_date": "2022-03-14T08:02:32.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8726, + "fields": { + "EF_ID": 222812, + "IPCC_Category": "2.C.4 - Magnesium production", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Destruction rate of cover gas HFC-134a", + "Technology_Practices": "AM-Cover™ using HFC-134a with compressed dry air (CDA) Carrier Gas, a cold chambered die casting operation. An HPM 400 die-casting machine, fabricating an automotive lock body housing, was chosen for the testing", + "Parameter_Conditions": "Cover gas concentartion - 3,600 ppmv, Cover Gas Mixture Flow ~ 40 lpm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Bartos, Scott C.: Characterization of Emissions and Occupational Exposure Associated with Five Cover Gas Technologies for Magnesium Die Casting, U.S. Environmental Protection Agency Climate Protection Partnership Division, [EPA 430-R-07-008] Washington DC August 2007.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Min concentartion - 475.7 ppmv, max concentration - 1512.3 ppmv, average - 810.7 ppmv, St dev - 276.1", + "Data_Provider_Comments": "p.4-6 Table 4-3 and p.5-4 Table 5-1. Two concentrations of HFC-134a mixed with compressed dry air (CDA) were injected (4,200 and 3,600 ppmv) during August 24th and 25th, 2006. The HFC-134a cover gas standard was diluted with facility CDA and mixed with a gas blender provided by Lunt Manufacturing and operated by Advanced Magnesium Technologies (AMT). Each cover gas mixture`s HFC-134a concentration was verified by FTIR prior to injection into the crucible. To accomplish this, the outlet of the gas blender was connected directly to the heated extraction line leading to the FTIR. The gas blending parameters were adjusted until the desired HFC-134a concentration was achieved. The gas mixture was then delivered into the crucible.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www3.epa.gov/highgwp/magnesium-sf6/documents/lunt_measurement_study_full.pdf", + "creation_date": "2022-03-14T08:02:32.771Z", + "last_change_date": "2022-03-14T08:02:32.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8727, + "fields": { + "EF_ID": 222813, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.90-3.74", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miller, B. R., Rigby, M., Kuijpers, L. J. M., Krummel, P. B., Steele, L. P., Leist, M., Fraser, P. J., McCulloch, A., Harth, C., Salameh, P., Mühle, J., Weiss, R. F., Prinn, R. G., Wang, R. H. J., O`Doherty, S., Greally, B. R., and Simmonds, P. G.: HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures, Atmos. Chem. Phys., 10, 7875-7890, doi:10.5194/acp-10-7875-2010, 2010.", + "English_Abstract": "Abstract. HFC-23 (also known as CHF3, fluoroform or trifluoromethane) is a potent greenhouse gas (GHG), with a global warming potential (GWP) of 14 800 for a 100-year time horizon. It is an unavoidable by-product of HCFC-22 (CHClF2, chlorodifluoromethane) production. HCFC-22, an ozone depleting substance (ODS), is used extensively in commercial refrigeration and air conditioning, in the extruded polystyrene (XPS) foam industries (dispersive applications) and also as a feedstock in fluoropolymer manufacture (a non-dispersive use). Aside from small markets in specialty uses, HFC-23 has historically been considered a waste gas that was, and often still is, simply vented to the atmosphere. Efforts have been made in the past two decades to reduce HFC-23 emissions, including destruction (incineration) in facilities in developing countries under the United Nations Framework Convention on Climate Change`s (UNFCCC) Clean Development Mechanism (CDM), and by process optimization and/or voluntary incineration by most producers in developed countries. We present observations of lower-tropospheric mole fractions of HFC-23 measured by Medusa GC/MSD instruments from ambient air sampled in situ at the Advanced Global Atmospheric Gases Experiment (AGAGE) network of five remote sites (2007–2009) and in Cape Grim air archive (CGAA) samples (1978–2009) from Tasmania, Australia. These observations are used with the AGAGE 2-D atmospheric 12-box model and an inverse method to produce model mole fractions and a top-down HFC-23 emission history. The model 2009 annual mean global lower-tropospheric background abundance is 22.6 (+/-0.2) pmol mol-1. The derived HFC-23 emissions show a plateau during 1997–2003, followed by a rapid ~50% increase to a peak of 15.0 (+1.3/-1.2) Gg/yr in 2006. Following this peak, emissions of HFC-23 declined rapidly to 8.6 (+0.9/-1.0) Gg/yr in 2009, the lowest annual emission of the past 15 years. We derive a 1990–2008 bottom-up HFC-23 emission history using data from the United Nations Environment Programme and the UNFCCC. Comparison with the top-down HFC-23 emission history shows agreement within the stated uncertainties. In the 1990s, HFC-23 emissions from developed countries dominated all other sources, then began to decline and eventually became fairly constant during 2003–2008. By this point, with developed countries` emissions essentially at a plateau, the major factor controlling the annual dynamics of global HFC-23 emissions became the historical rise of developing countries` HCFC-22 dispersive use production, which peaked in 2007. Thereafter in 2007–2009, incineration through CDM projects became a larger factor, reducing global HFC-23 emissions despite rapidly rising HCFC-22 feedstock production in developing countries.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table 4, page 7887. The emission factor is a range for HFC-23/HCFC-22 co-production ratio in % for years of 1990-2002. Since the 1990s, some HCFC-22 producers in the developed countries have voluntarily reduced HFC-23 emissions by process optimization and/or incineration. Based on historical trends, McCulloch (2004) concluded that “approximately half of the HFC-23 co-produced with HCFC-22 in the developed world is abated.” [From 2003 the CDM projects information was included in the global average data].", + "Other_Comments": "", + "Data_Provider": "Dr.Tatsuya Hanaoka", + "Link": "http://www.atmos-chem-phys.net/10/7875/2010/", + "creation_date": "2022-03-14T08:02:32.858Z", + "last_change_date": "2022-03-14T08:02:32.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8728, + "fields": { + "EF_ID": 222814, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "Non abatement - No operation management", + "Other_Properties": "", + "Value": "2.13", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN (2015). Copyright 2015: NIES: National Institute for Environmental Studies", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.4-46 Table 4-35. The emission factor is the generation rate of HFC-23 (%) in HCFC-22 production for the years of 1990 and 1995. It is obtained from the results of composition analysis of the interior of a reactor.", + "Other_Comments": "", + "Data_Provider": "Dr.Tatsuya Hanaoka", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:02:32.955Z", + "last_change_date": "2022-03-14T08:02:32.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8729, + "fields": { + "EF_ID": 222815, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "Non abatement - With operation management", + "Other_Properties": "", + "Value": "1.41-2.34", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN (2015). Copyright 2015: NIES: National Institute for Environmental Studies", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.4-46 Table 4-35 . The emission factor is the generation rate of HFC-23 (%) in HCFC-22 production after year 2004 - the year of indtroduction of destruction technologies, it also assumes an improvement in management practices. It is obtained from the results of composition analysis of the interior of a reactor", + "Other_Comments": "", + "Data_Provider": "Dr.Tatsuya Hanaoka", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:02:33.063Z", + "last_change_date": "2022-03-14T08:02:33.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8730, + "fields": { + "EF_ID": 222816, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "After abatement - Non operation management", + "Other_Properties": "", + "Value": "0.14", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN (2015). Copyright 2015: NIES: National Institute for Environmental Studies", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.4-46 Table 4-35. The emission factor is the emission rate of HFC-23 to production of HCFC-22 in % (after abatement) for the year 2004. In 2004 all manufacturing facilities were equipped with recovery/destruction units", + "Other_Comments": "", + "Data_Provider": "Dr.Tatsuya Hanaoka", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:02:33.139Z", + "last_change_date": "2022-03-14T08:02:33.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8731, + "fields": { + "EF_ID": 222817, + "IPCC_Category": "2.B.9.a - By-product emissions", + "Gases": "HFC-23", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for HFC-23 emissions from HCFC-22 Manufacture", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "After abatement - With operation management", + "Other_Properties": "", + "Value": "0.002-0.06", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "2B9, Sheet 1 of 3, in Annex 1 (page A1.15) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Worksheet 2-14, Sheet 1 of 2, Vol.2 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN (2015). Copyright 2015: NIES: National Institute for Environmental Studies", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.4-46 Table 4-35. The emission factor is the emission rate of HFC-23 to production of HCFC-22 in % (after abatement) for the years 2005-2013. In 2004 all manufacturing facilities were equipped with recovery/destruction units. The low emission rate to production is due to efforts made in preventing the fall of the operating rates through the improvement in techniques of operation management of destruction facilities and maintenance. Emission reduction has further advanced since, with continuous efforts made in improvement of operation management techniques etc.", + "Other_Comments": "", + "Data_Provider": "Dr.Tatsuya Hanaoka", + "Link": "http://unfccc.int/2860.php", + "creation_date": "2022-03-14T08:02:33.208Z", + "last_change_date": "2022-03-14T08:02:33.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8732, + "fields": { + "EF_ID": 222979, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon dioxide emission factor in calcium chloride (CaCl2) liqour production (soda ash route)", + "Technology_Practices": "CaCl2 production using soda ash - CO2 from carbonation", + "Parameter_Conditions": "", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2-3", + "Unit": "kg/tonnes product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Solids and Others Industry. Integrated Pollution Prevention and Control, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p. 495 Table 7.72 Environmental impacts from the production of calcium chloride liquor. The information presented in the BREF originates from CEFIC (2005), CEFIC BREF Calcium Chloride and CEFIC-Brunner Mond (2004), Process BREF for Calcium Chloride and InfoMil (2004), Dutch Authorities Factsheet on Production of Silicon Carbide)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic-s_bref_0907.pdf", + "creation_date": "2022-03-14T08:02:33.307Z", + "last_change_date": "2022-03-14T08:02:33.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8733, + "fields": { + "EF_ID": 222980, + "IPCC_Category": "2.B.10 - Other (Please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon dioxide emission factor in production of synthetic amorphous pyrogenic silica", + "Technology_Practices": "Production of pyrogenic silica from chlorosilanes (e.g. SiCl4, HSiCl3) and/or alkylchlorosilanes (e.g. methylchlorosilane CH3SiCl3): CH3SiCl3 + 2 O2 --> SiO2 + 3 HCl + CO2", + "Parameter_Conditions": "CO2 emissions in the off-gas leaving the absorption scrubber system and the venting of conveying air from storage silos. The value depends on the silane feedstock. For certain alkylsilanes the value is < 760 kg/t of silica.", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "<640", + "Unit": "kg/tonnes product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Solids and Others Industry. Integrated Pollution Prevention and Control, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.273 Table 5.7. Emission concentrations and emission values – synthetic amorphous pyrogenic silica. The information presented is based on CEFIC-ASASP (2002), BREF Working Group - Synthetic Amorphous Silica.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic-s_bref_0907.pdf", + "creation_date": "2022-03-14T08:02:33.389Z", + "last_change_date": "2022-03-14T08:02:33.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8734, + "fields": { + "EF_ID": 222981, + "IPCC_Category": "2.B.6 - Titanium Dioxide Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon dioxide emission factor from a gypsum plant (by-product emissions from titatnium dioxide production via sulphate process route)", + "Technology_Practices": "Emissions from a gypsum plant. Sulphate process of titanium dioxide production. Grimsby Works, UK", + "Parameter_Conditions": "The range of annual emissions for years 1999-2002", + "Regional_Conditions": "European Union", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "616-713", + "Unit": "kg/tonnes product", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals - Solids and Others Industry. Integrated Pollution Prevention and Control, European Comission, August 2007", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "p.164 Table 3.50 Detailed annual emissions 2002 in Grimsby Works, the sulphate process. The information presented is based on CEFIC-TDMA (2004), Process BREF Titanium Dioxide Background Document.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic-s_bref_0907.pdf", + "creation_date": "2022-03-14T08:02:33.458Z", + "last_change_date": "2022-03-14T08:02:33.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8735, + "fields": { + "EF_ID": 223623, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for clinker", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5150", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equations 2.1 and 2.2 Chapter 2 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2A1 Sheet 2 of 2", + "Data_Source": "Other", + "Technical_Reference": "NAMA Formulation in the Cement and Iron and Steel Sectors, Final report for NRE/UNDP, Eco-Ideal Consulting Sdn. Bhd. (Co. No: 622103-X), March 2016", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor for clinker is calculated by taking into account the country`s average plant specific lime content in 5 year period (EFclinker = country average plant`s specific lime content (0.656) x 0.785), MGTC & UNITEN", + "Other_Comments": "", + "Data_Provider": "Tan Ee San / Universiti Tenaga Nasional", + "Link": "http://www.nre.gov.my/sites/lecbnre/Documents/Final-Report/App4.2.4b_CementAndIron.pdf", + "creation_date": "2022-03-14T08:02:33.550Z", + "last_change_date": "2022-03-14T08:02:33.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8736, + "fields": { + "EF_ID": 223624, + "IPCC_Category": "2.B.8.b - Ethylene", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for ethylene production", + "Technology_Practices": "steam cracking", + "Parameter_Conditions": "Capacity - 300 000 tonne of ethylene per year", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.37", + "Unit": "tonne CO2/tonne of ethylene produced", + "Equation": "Equation 3.15 Chapter 3 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 3B8 Sheet 3 of 12", + "Data_Source": "Other", + "Technical_Reference": "Mukhina T.N., Baranov N.L., Babash C.E. et al. Steam cracking of hydrocarbon feedstock Moscow, Khimiya, 1987, 240 p. (in Russian)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Detailed material balance for steam cracker EP-300 is presented on page 145 of the book. It was used for CO2 EF from ethylene production (feedstock - naphtha) estimation. Assumptions made: 1. Methane and fuel gas are combusted for energy purposes; 2. Fuel gas is regarded as refinery gas (IPCC default net calorific value (49.5 TJ/Gg), IPCC default carbon content (15.7 kg C/GJ) are used in the calculations). 3. Methane carbon content - 0.749 t C/t methane. 4. IPCC default losses value is accepted.", + "Other_Comments": "", + "Data_Provider": "Imshennik Ekaterina", + "Link": "", + "creation_date": "2022-03-14T08:02:33.633Z", + "last_change_date": "2022-03-14T08:02:33.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8737, + "fields": { + "EF_ID": 223627, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Sinter Production", + "Technology_Practices": "Company X in China. BF-BOF. Output of steel is 15 million ton", + "Parameter_Conditions": "210m2 sinter machine", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "245.27", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.7 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Sinter Production for Company X in China (Table 1 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:33.691Z", + "last_change_date": "2022-03-14T08:02:33.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8738, + "fields": { + "EF_ID": 223628, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Sinter Production", + "Technology_Practices": "Company X in China. BF-BOF. Output of steel is 15 million ton", + "Parameter_Conditions": "180m2 sinter machine", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "239.08", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.7 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Sinter Production for Company X in China (Table 1 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:33.786Z", + "last_change_date": "2022-03-14T08:02:33.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8739, + "fields": { + "EF_ID": 223629, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Iron Production", + "Technology_Practices": "Company X in China. BF-BOF. Output of steel is 15 million ton", + "Parameter_Conditions": "3200m3 BF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1056.99", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.5 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Iron Production for Company X in China (Table 1 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:33.912Z", + "last_change_date": "2022-03-14T08:02:33.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8740, + "fields": { + "EF_ID": 223630, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Iron Production", + "Technology_Practices": "Company X in China. BF-BOF. Output of steel is 15 million ton", + "Parameter_Conditions": "2000m3 BF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1012.97", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.5 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Iron Production for Company X in China (Table 1 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.045Z", + "last_change_date": "2022-03-14T08:02:34.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8741, + "fields": { + "EF_ID": 223631, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace - BOF)", + "Technology_Practices": "Company X in China. BF-BOF. Output of steel is 15 million ton", + "Parameter_Conditions": "150 t BOF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.35", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.4 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace) for Company X in China (Table 1 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.154Z", + "last_change_date": "2022-03-14T08:02:34.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8742, + "fields": { + "EF_ID": 223632, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace - BOF)", + "Technology_Practices": "Company X in China. BF-BOF. Output of steel is 15 million ton", + "Parameter_Conditions": "55 t BOF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.58", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.4 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace) for Company X in China (Table 1 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.263Z", + "last_change_date": "2022-03-14T08:02:34.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8743, + "fields": { + "EF_ID": 223634, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Sinter Production", + "Technology_Practices": "Company Y in China. BF-BOF. Output of steel is 21 million ton", + "Parameter_Conditions": "360m2 sinter machine", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "199.51", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.7 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Sinter Production for Company Y in China (Table 2 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.372Z", + "last_change_date": "2022-03-14T08:02:34.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8744, + "fields": { + "EF_ID": 223635, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Iron Production", + "Technology_Practices": "Company Y in China. BF-BOF. Output of steel is 21 million ton", + "Parameter_Conditions": "3200m3 BF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "953.70", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.5 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Iron Production for Company Y in China (Table 2 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.481Z", + "last_change_date": "2022-03-14T08:02:34.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8745, + "fields": { + "EF_ID": 223636, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Iron Production", + "Technology_Practices": "Company Y in China. BF-BOF. Output of steel is 21 million ton", + "Parameter_Conditions": "2580m3 BF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "800.33", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.5 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Iron Production for Company Y in China (Table 2 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.581Z", + "last_change_date": "2022-03-14T08:02:34.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8746, + "fields": { + "EF_ID": 223637, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace - BOF)", + "Technology_Practices": "Company Y in China. BF-BOF. Output of steel is 21 million ton", + "Parameter_Conditions": "90 t BOF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "103.62", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.4 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace) for Company Y in China (Table 2 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.682Z", + "last_change_date": "2022-03-14T08:02:34.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8747, + "fields": { + "EF_ID": 223638, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace - BOF)", + "Technology_Practices": "Company Y in China. BF-BOF. Output of steel is 21 million ton", + "Parameter_Conditions": "180 t BOF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.51", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.4 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace) for Company Y in China (Table 2 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.782Z", + "last_change_date": "2022-03-14T08:02:34.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8748, + "fields": { + "EF_ID": 223639, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace - BOF)", + "Technology_Practices": "Company Y in China. BF-BOF. Output of steel is 21 million ton", + "Parameter_Conditions": "260 t BOF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "118.32", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.4 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace) for Company Y in China (Table 2 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:34.960Z", + "last_change_date": "2022-03-14T08:02:34.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8749, + "fields": { + "EF_ID": 223640, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Sinter Production", + "Technology_Practices": "Company Z in China. BF-BOF. Output of steel is 3 million ton", + "Parameter_Conditions": "132m2 sinter machine", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "219.7", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.7 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Sinter Production for Company Z in China (Table 3 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:35.060Z", + "last_change_date": "2022-03-14T08:02:35.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8750, + "fields": { + "EF_ID": 223641, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Sinter Production", + "Technology_Practices": "Company Z in China. BF-BOF. Output of steel is 3 million ton", + "Parameter_Conditions": "60m2 sinter machine", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "224.8", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.7 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Sinter Production for Company Z in China (Table 3 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:35.161Z", + "last_change_date": "2022-03-14T08:02:35.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8751, + "fields": { + "EF_ID": 223642, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Iron Production", + "Technology_Practices": "Company Z in China. BF-BOF. Output of steel is 3 million ton", + "Parameter_Conditions": "450m3 BF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "722.75", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.5 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Iron Production for Company Z in China (Table 3 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:35.262Z", + "last_change_date": "2022-03-14T08:02:35.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8752, + "fields": { + "EF_ID": 223643, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Iron Production", + "Technology_Practices": "Company Z in China. BF-BOF. Output of steel is million ton", + "Parameter_Conditions": "550m3 BF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "936.88", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.5 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Iron Production for Company Z in China (Table 3 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:35.379Z", + "last_change_date": "2022-03-14T08:02:35.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8753, + "fields": { + "EF_ID": 223644, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace - BOF)", + "Technology_Practices": "Company Z in China. BF-BOF. Output of steel is million ton", + "Parameter_Conditions": "80 t BOF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.33", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.4 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace) for Company Z in China (Table 3 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:35.496Z", + "last_change_date": "2022-03-14T08:02:35.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8754, + "fields": { + "EF_ID": 223645, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace - BOF)", + "Technology_Practices": "Company Z in China. BF-BOF. Output of steel is million ton", + "Parameter_Conditions": "100 t BOF", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.90", + "Unit": "kg/tonnes product", + "Equation": "Equation 4.4 on p.4.21 Chapter 4 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C1, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Material Flow Analysis of CO2 Emissions from Blast Furnace and Basic Oxygen Furnace Steelmaking Systems in China. Wenqing Xu, Wanjie Cao, Tingyu Zhu, Yinjiao Li, and Bin Wan. Steel Research int. 86 (2015) No. 9", + "English_Abstract": "In China, iron and steel plants are confronted with increased demands to reduce their CO2 emissions. Data on CO2 emissions derived from iron and steel making is a basic requirement for a certificate of CO2 reduction. In the current paper, carbon flows from blast furnace and basic oxygen furnace (BF-BOF) steelmaking systems are analyzed using Material Flow Analysis (MFA). The computation method is built and used to calculate CO2 emissions in three steel works. The amount of carbon flow and CO2 emission per ton of product (EFCO2 ) of each process in BF-BOF steeling systems is obtained. The results show that the EFCO2 of each process varies significantly. As for the highest percentage of parts, the EFCO2 of the blast furnace iron making is greater than 700 kg on average; however, the EFCO2 of casting is only roughly 50 kg. The EFCO2 of the same process is more influenced by the firm size, and the main production equipment scale plays a small role. In the end, the input of coal and coke is decreased by using charcoal instead, CO2 is removed from blast furnace gas along with carbon capture and storage, and traditional energy saving approaches/technologies for CO2 reduction for the iron and steel industry are introduced.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CO2 Emission Factor for Steel Production (Basic Oxygen Furnace) for Company Z in China (Table 3 in the paper) - only direct emissions (Ei, CO2, direct)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.researchgate.net/publication/271589864", + "creation_date": "2022-03-14T08:02:35.605Z", + "last_change_date": "2022-03-14T08:02:35.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8755, + "fields": { + "EF_ID": 223646, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C4F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C4F6 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC4F6", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.051", + "Upper_Bound": "0.28", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 14", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer).", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:35.722Z", + "last_change_date": "2022-03-14T08:02:35.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8756, + "fields": { + "EF_ID": 223647, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C5F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C5F8 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC5F8", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.072", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer).", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:35.831Z", + "last_change_date": "2022-03-14T08:02:35.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8757, + "fields": { + "EF_ID": 223648, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C4F8O", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C4F8O Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC4F8O", + "Technology_Practices": "Process Type: In situ plasma chamber cleaning", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.11", + "Upper_Bound": "0.16", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 3", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer).", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:35.948Z", + "last_change_date": "2022-03-14T08:02:35.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8758, + "fields": { + "EF_ID": 223649, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C4F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C4F6 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC4F6", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.1", + "Upper_Bound": "0.19", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 45", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer).", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:36.049Z", + "last_change_date": "2022-03-14T08:02:36.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8759, + "fields": { + "EF_ID": 223650, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C5F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Process Tool Emission Factor for C5F8 Emissions from Semiconductor Manufacturing (= 1 - Use Rate), 1-UC5F8", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.7 on Page 6.11 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "0.056", + "Upper_Bound": "0.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 16", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer).", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:36.149Z", + "last_change_date": "2022-03-14T08:02:36.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8760, + "fields": { + "EF_ID": 223651, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C5F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C5F8 Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0086", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process.", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:36.258Z", + "last_change_date": "2022-03-14T08:02:36.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8761, + "fields": { + "EF_ID": 223652, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C5F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C5F8 Emissions from Use of CF4 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0012", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process.", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:36.376Z", + "last_change_date": "2022-03-14T08:02:36.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8762, + "fields": { + "EF_ID": 223653, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C5F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C5F8 Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 150/200 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0012", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process.", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:36.761Z", + "last_change_date": "2022-03-14T08:02:36.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8763, + "fields": { + "EF_ID": 223654, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C4F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C4F6 Emissions from Use of C4F8 in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.018", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 2 (only two measurements)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process.", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:36.903Z", + "last_change_date": "2022-03-14T08:02:36.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8764, + "fields": { + "EF_ID": 223655, + "IPCC_Category": "2.E.1 - Integrated Circuit or Semiconductor", + "Gases": "C4F6", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "By-Product Emission Factor for C4F6 Emissions from Use of HFC-23 (CHF3) in Semiconductor Manufacturing", + "Technology_Practices": "Process Type: Etching/wafer cleanining", + "Parameter_Conditions": "Wafer Size: 300 mm", + "Regional_Conditions": "USA", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0001", + "Unit": "fraction", + "Equation": "Equations 6.8-6.11 on Pages 6.11 and 6.12 of Chapter 6 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "1. Final Technical Documentation - Revision of Default Utilization Rates and By-Product Formation Rates; Revision of Default Destruction and Removal Efficiencies for Semiconductor Facilities under Subpart I; and Revision of Maximum Field Detection Limits for the Stack Test Method, U.S. Environmental Protection Agency, August 16, 2013, Docket item EPA-HQ-OAR-2011-0028-105-1. 2. Technical Support for Modifications to the Fluorinated Greenhouse Gas Emission Estimation Method Option for Semiconductor Facilities under Subpart I, Office of Air and Radiation, U.S. Environmental Protection Agency, August 2012, Docket Item EPA-HQ-OAR-2011-0028-0083. 3. Report to EPA on Etch Factor Proposal for Fab GHG Emissions Reporting, Semiconductor Industry Association, February 28, 2012, Docket item EPA-HQ-OAR-2011-0074. 4. Draft Emission Factors for Refined Semiconductor Manufacturing Process Categories, U.S. Environmental Protection Agency, May 2010, Docket item EPA-HQ-OAR-2009-0927-0073. 5. Etch Process Equipment Emissions Characterization Data, ISMI ESH Technology Center, January 31, 2012, Docket item EPA-HQ-OAR-2011-0028-0071. 6. Additional Etch Emissions Characterization Data, January 16, 2013, Docket item EPA-HQ-OAR-2011-0028-0095, Attachment A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N = 1 (only one measurement)", + "Data_Provider_Comments": "Default emission factors were calculated as arithmetic averages of multiple measurements for the same input gas, wafer size, and process type. (The number in Other Info on Data Quality is the number of measurements that went into any given emission factor.) Factors are provided for two categories of wafer sizes (150/200 mm and 300 mm) and four categories of process type (etch/wafer clean, in situ plasma chamber clean, remote plasma chamber clean, and in situ thermal chamber clean). Because the measurement uncertainty of the individual data points supporting the defaults is often unknown, the lower and upper confidence limits do not account for this measurement uncertainty. Where data on measurement uncertainty are available, this uncertainty ranges from less than 1% to approximately 85%, with averages near 15%. Unknown for lower or upper confidence limit indicates that insufficient data were available to develop such a limit (i.e., two data points or fewer). Where multiple input gases were used in a process, by-product emissions were assigned to each input gas by its share of the total mass of input gases being fed into the process.", + "Other_Comments": "", + "Data_Provider": "Ms. Deborah Ottinger", + "Link": "www.regulations.gov", + "creation_date": "2022-03-14T08:02:37.112Z", + "last_change_date": "2022-03-14T08:02:37.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8765, + "fields": { + "EF_ID": 223687, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mass SF6 per unit area of TFT-LCD processed", + "Technology_Practices": "CVD and etching in thin film transistor liquid crystal display manufacturing", + "Parameter_Conditions": "TFT-LCD manufacturing generation 35; mother glass size 60x72 cm", + "Regional_Conditions": "Taiwan, Province of China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16-22", + "Unit": "g SF6/m^2 of glass processed", + "Equation": "Equation 6.1 on p.6.9 of Chapter 6 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 1 of 1 of 2E2 on p.A1.24 of Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ju-Hsiu Cheng, Scott C. Bartos, Wei Ming Lee, Shou-Nan Li, Joey (Ching-Hui) Lu; SF6 usage and emission trends in the TFT-LCD industry. International Journal of Greenhouse Gas Control 17 (2013), 106-110. http://dx.doi.org/10.1016/j.ijggc.2013.04.003.", + "English_Abstract": "Several fluorinated compounds (FCs) used in electronics manufacturing, including SF6, perfluorocarbons (PFCs), and hydrofluorocarbons (HFCs) are extremely potent greenhouse gases. These compounds are classified as global warming pollutants to be controlled by the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. Thin film transistor liquid crystal display (TFTLCD) manufacturing is a major source of SF6 emissions, in which these gases are used for equipment cleaning and plasma etching. The respective Environmental Protection Administration of the Republic of China, Taiwan and the Environmental Protection Agency of the United States collaboratively strive in encouraging high technology manufacturers to improve annual reporting of FCs emissions and implement emission reduction practices and technologies. In the TFT-LCD industry, FCs account on average for 30% of total greenhouse gas emissions; 80% of emissions originate from the etching process and 20% from the chemical vapor deposition (CVD) chamber cleaning process, which is in compliance with Taiwan EPA data reports from 2005 to 2010. The leading TFT-LCD manufacturers are Japan, Korea, and Taiwan. The World LCD Industry Cooperation Committee (WLICC) subsequently established an aggressive climate protection action plan in 2001. This study focuses specifically on SF6 usage and emission factors reflecting common TFT-LCD manufacturing practices.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data origins from 2005 to 2010 from the Taiwan`s TFT-LCD industry.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.ijggc.2013.04.003", + "creation_date": "2022-03-14T08:02:37.204Z", + "last_change_date": "2022-03-14T08:02:37.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8766, + "fields": { + "EF_ID": 223688, + "IPCC_Category": "2.E.2 - TFT Flat Panel Display", + "Gases": "Sulphur Hexafluoride", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mass SF6 per unit area of TFT-LCD processed", + "Technology_Practices": "CVD and etching in thin film transistor liquid crystal display manufacturing", + "Parameter_Conditions": "TFT-LCD manufacturing generation 55", + "Regional_Conditions": "Taiwan, Province of China", + "Control_Technologies": "local scrubbers", + "Other_Properties": "", + "Value": "2.6-3.4", + "Unit": "g SF6/m^2 of glass processed", + "Equation": "Equation 6.1 on p.6.9 of Chapter 6 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 1 of 1 of 2E2 on p.A1.24 of Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ju-Hsiu Cheng, Scott C. Bartos, Wei Ming Lee, Shou-Nan Li, Joey (Ching-Hui) Lu; SF6 usage and emission trends in the TFT-LCD industry. International Journal of Greenhouse Gas Control 17 (2013), 106-110. http://dx.doi.org/10.1016/j.ijggc.2013.04.003.", + "English_Abstract": "Several fluorinated compounds (FCs) used in electronics manufacturing, including SF6, perfluorocarbons (PFCs), and hydrofluorocarbons (HFCs) are extremely potent greenhouse gases. These compounds are classified as global warming pollutants to be controlled by the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. Thin film transistor liquid crystal display (TFTLCD) manufacturing is a major source of SF6 emissions, in which these gases are used for equipment cleaning and plasma etching. The respective Environmental Protection Administration of the Republic of China, Taiwan and the Environmental Protection Agency of the United States collaboratively strive in encouraging high technology manufacturers to improve annual reporting of FCs emissions and implement emission reduction practices and technologies. In the TFT-LCD industry, FCs account on average for 30% of total greenhouse gas emissions; 80% of emissions originate from the etching process and 20% from the chemical vapor deposition (CVD) chamber cleaning process, which is in compliance with Taiwan EPA data reports from 2005 to 2010. The leading TFT-LCD manufacturers are Japan, Korea, and Taiwan. The World LCD Industry Cooperation Committee (WLICC) subsequently established an aggressive climate protection action plan in 2001. This study focuses specifically on SF6 usage and emission factors reflecting common TFT-LCD manufacturing practices.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data origins from 2005 to 2010 from the Taiwan`s TFT-LCD industry.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.ijggc.2013.04.003", + "creation_date": "2022-03-14T08:02:37.305Z", + "last_change_date": "2022-03-14T08:02:37.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8767, + "fields": { + "EF_ID": 223689, + "IPCC_Category": "2.G.3.a - Medical Applications", + "Gases": "HCFE-235da2", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for Isoflurane used in anesthesia", + "Technology_Practices": "Medical application of F-gases in anesthesia", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "IainMoppett, Inhalational anaesthetics, Anaesthesia & Intensive Care Medicine, Volume 13, Issue 7, July 2012, Pages 348-353, https://doi.org/10.1016/j.mpaic.2012.04.003; Martin K. Vollmer, Tae Siek Rhee, Matt Rigby, Doris Hofstetter,Matthias Hill, Fabian Schoenenberger, Stefan Reimann, Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere, AGU Publications, Geophysical Research Letters; Dr. med. Martin Rüegger, Dr. med. Marcel Jost, Dr. sc. nat. Alexander Meier, Dr. sc. techn. Rudolf Knutti, Prof. Dr. med. et phil. II Christian Schlatter, Umgang mit Anästhesiegasen, Gefährdung, Schutzmassnahmen", + "English_Abstract": "Inhalational anaesthetic agents include the halogenated organic compounds (halothane, enflurane, desflurane, isoflurane and sevoflurane), nitrous oxide and xenon. Their mechanism of action is becoming increasingly understood as well as the clinically important differences between agents. The use of xenon is relatively new and may assume greater importance in the future because of the environmental impact of the older agents.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The percentage of isoflurane which metabolized is 0.2%, so the rest (99.8%) is considered to be emitted", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1472029912001075?via%3Dihub", + "creation_date": "2022-03-14T08:02:37.397Z", + "last_change_date": "2022-03-14T08:02:37.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8768, + "fields": { + "EF_ID": 223690, + "IPCC_Category": "2.G.3.a - Medical Applications", + "Gases": "HFE-236ea2", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for Desflurane used in anesthesia", + "Technology_Practices": "Medical application of F-gases in anesthesia", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99.98", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "IainMoppett, Inhalational anaesthetics, Anaesthesia & Intensive Care Medicine, Volume 13, Issue 7, July 2012, Pages 348-353, https://doi.org/10.1016/j.mpaic.2012.04.003; Martin K. Vollmer, Tae Siek Rhee, Matt Rigby, Doris Hofstetter,Matthias Hill, Fabian Schoenenberger, Stefan Reimann, Modern inhalation anesthetics: Potent greenhouse gases in the global atmosphere, AGU Publications, Geophysical Research Letters; Dr. med. Martin Rüegger, Dr. med. Marcel Jost, Dr. sc. nat. Alexander Meier, Dr. sc. techn. Rudolf Knutti, Prof. Dr. med. et phil. II Christian Schlatter, Umgang mit Anästhesiegasen, Gefährdung, Schutzmassnahmen", + "English_Abstract": "Inhalational anaesthetic agents include the halogenated organic compounds (halothane, enflurane, desflurane, isoflurane and sevoflurane), nitrous oxide and xenon. Their mechanism of action is becoming increasingly understood as well as the clinically important differences between agents. The use of xenon is relatively new and may assume greater importance in the future because of the environmental impact of the older agents.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The percentage of desflurane which metabolized is 0.02%, so the rest (99.98%) is considered to be emitted", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1472029912001075?via%3Dihub", + "creation_date": "2022-03-14T08:02:37.456Z", + "last_change_date": "2022-03-14T08:02:37.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8769, + "fields": { + "EF_ID": 223691, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "New Suspension preheater (NSP) kiln", + "Parameter_Conditions": "Is a large-scale NSP process with 83.12% of lime for cement production", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52284", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.1 and 2.2 on p.2.9 Chapter 2 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2 of 2 of 2A1 on p.A1.4 Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lei Shen, Tianming Gao, Jianan Zhao, Limao Wang, Lan Wang, Litao Liu, Fengnan Chen, Jingjing Xue. Factory-level measurements on CO2 emission factors of cement productionin China; RenewableandSustainableEnergyReviews34(2014)337–349; 1364-0321/& 2014ElsevierLtd.", + "English_Abstract": "Cement is a primary component of concrete and is consumed extensively for construction and transportation infrastructures worldwide. Cement is largely produced and consumed locally but has global impact in terms of both energy consumption and greenhouse gas emissions. China is both the largest producer of cement and the biggest emitter of CO2 emissions in the world. It has been widely recognized that uncertainties of China`s CO2 emissions were poorly quantified and clear discrepancies can be identified among different sources. These discrepancies arise from many uncertainties, including system boundary and statistical standards, availability of production data (especially for the clinker and cement outputs), and emission factors. We argue that the emission factors (EFs, either default values or adjusted ones) are the most important here and highlight the importance of clearly defining the CO2 accounting and reporting boundaries for determining the emission factors. We therefore developed a factory-level measurement for different types of clinker and cement production, primarily using onsite surveys and sampling, with the objective of distinguishing process-, combustion- and electricity-related emission factors on a factory level. It is a bottom-up CO2 emission inventory for China using the uniform formula and calculators and the first time factory-level sampling method (BFSM) based on three tiers of production lines, provincial and national integrations. Our results indicate that China`s carbon emissions from cement production might be overestimated in the previous estimates because they overlooked the technology transition from the wet process to the dry process, differences in lime content and clinker-to-cement ratios, raw materials and fuels substitutions, and usages of blend additives.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Sampling in 2010. 685 samples of 144 NSP kiln production lines were collected in 16 provinces. 314 samples of 67 shaft kiln production lines in 13 provinces and 378 samples of 78 special cement and/or grinding stations production lines in 15 provinces were also surveyed respectively. It follows the IPCC tier 3 and incorporated a large amount of factory-level sample measurements over the 18 major cement producing provinces and/or regions of China. Bottom-up factory-level sampling method (BFSM). A better approach should be based on the factory-level and facility-specific sampling and examining. Our bottom-up factory-level sampling method (BFSM) is only a first step. More disaggregated classifications for emission sources and spatial scales are a necessary next step and will be done in the near future.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.rser.2014.03.025", + "creation_date": "2022-03-14T08:02:37.548Z", + "last_change_date": "2022-03-14T08:02:37.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8770, + "fields": { + "EF_ID": 223692, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "Shaft kilnf or specific type of cement (aluminates) production", + "Parameter_Conditions": "Is a typical process with the mixture of 45% of lime and 55% of bauxite in to aluminates cement", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25295", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.1 and 2.2 on p.2.9 Chapter 2 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2 of 2 of 2A1 on p.A1.4 Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lei Shen, Tianming Gao, Jianan Zhao, Limao Wang, Lan Wang, Litao Liu, Fengnan Chen, Jingjing Xue. Factory-level measurements on CO2 emission factors of cement productionin China; RenewableandSustainableEnergyReviews34(2014)337–349; 1364-0321/& 2014ElsevierLtd.", + "English_Abstract": "Cement is a primary component of concrete and is consumed extensively for construction and transportation infrastructures worldwide. Cement is largely produced and consumed locally but has global impact in terms of both energy consumption and greenhouse gas emissions. China is both the largest producer of cement and the biggest emitter of CO2 emissions in the world. It has been widely recognized that uncertainties of China`s CO2 emissions were poorly quantified and clear discrepancies can be identified among different sources. These discrepancies arise from many uncertainties, including system boundary and statistical standards, availability of production data (especially for the clinker and cement outputs), and emission factors. We argue that the emission factors (EFs, either default values or adjusted ones) are the most important here and highlight the importance of clearly defining the CO2 accounting and reporting boundaries for determining the emission factors. We therefore developed a factory-level measurement for different types of clinker and cement production, primarily using onsite surveys and sampling, with the objective of distinguishing process-, combustion- and electricity-related emission factors on a factory level. It is a bottom-up CO2 emission inventory for China using the uniform formula and calculators and the first time factory-level sampling method (BFSM) based on three tiers of production lines, provincial and national integrations. Our results indicate that China`s carbon emissions from cement production might be overestimated in the previous estimates because they overlooked the technology transition from the wet process to the dry process, differences in lime content and clinker-to-cement ratios, raw materials and fuels substitutions, and usages of blend additives.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Sampling in 2010. 685 samples of 144 NSP kiln production lines were collected in 16 provinces. 314 samples of 67 shaft kiln production lines in 13 provinces and 378 samples of 78 special cement and/or grinding stations production lines in 15 provinces were also surveyed respectively. It follows the IPCC tier 3 and incorporated a large amount of factory-level sample measurements over the 18 major cement producing provinces and/or regions of China. Bottom-up factory-level sampling method (BFSM). A better approach should be based on the factory-level and facility-specific sampling and examining. Our bottom-up factory-level sampling method (BFSM) is only a first step. More disaggregated classifications for emission sources and spatial scales are a necessary next step and will be done in the near future.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.rser.2014.03.025", + "creation_date": "2022-03-14T08:02:37.690Z", + "last_change_date": "2022-03-14T08:02:37.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8771, + "fields": { + "EF_ID": 223693, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "Typical shaft kiln for specific type of cement production", + "Parameter_Conditions": "Is a small-scale shaft kiln with 71% of lime and 9% of coal ash for cement production", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47211", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.1 and 2.2 on p.2.9 Chapter 2 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2 of 2 of 2A1 on p.A1.4 Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lei Shen, Tianming Gao, Jianan Zhao, Limao Wang, Lan Wang, Litao Liu, Fengnan Chen, Jingjing Xue. Factory-level measurements on CO2 emission factors of cement productionin China; RenewableandSustainableEnergyReviews34(2014)337–349; 1364-0321/& 2014ElsevierLtd.", + "English_Abstract": "Cement is a primary component of concrete and is consumed extensively for construction and transportation infrastructures worldwide. Cement is largely produced and consumed locally but has global impact in terms of both energy consumption and greenhouse gas emissions. China is both the largest producer of cement and the biggest emitter of CO2 emissions in the world. It has been widely recognized that uncertainties of China`s CO2 emissions were poorly quantified and clear discrepancies can be identified among different sources. These discrepancies arise from many uncertainties, including system boundary and statistical standards, availability of production data (especially for the clinker and cement outputs), and emission factors. We argue that the emission factors (EFs, either default values or adjusted ones) are the most important here and highlight the importance of clearly defining the CO2 accounting and reporting boundaries for determining the emission factors. We therefore developed a factory-level measurement for different types of clinker and cement production, primarily using onsite surveys and sampling, with the objective of distinguishing process-, combustion- and electricity-related emission factors on a factory level. It is a bottom-up CO2 emission inventory for China using the uniform formula and calculators and the first time factory-level sampling method (BFSM) based on three tiers of production lines, provincial and national integrations. Our results indicate that China`s carbon emissions from cement production might be overestimated in the previous estimates because they overlooked the technology transition from the wet process to the dry process, differences in lime content and clinker-to-cement ratios, raw materials and fuels substitutions, and usages of blend additives.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Sampling in 2010. 685 samples of 144 NSP kiln production lines were collected in 16 provinces. 314 samples of 67 shaft kiln production lines in 13 provinces and 378 samples of 78 special cement and/or grinding stations production lines in 15 provinces were also surveyed respectively. It follows the IPCC tier 3 and incorporated a large amount of factory-level sample measurements over the 18 major cement producing provinces and/or regions of China. Bottom-up factory-level sampling method (BFSM). A better approach should be based on the factory-level and facility-specific sampling and examining. Our bottom-up factory-level sampling method (BFSM) is only a first step. More disaggregated classifications for emission sources and spatial scales are a necessary next step and will be done in the near future.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.rser.2014.03.025", + "creation_date": "2022-03-14T08:02:37.799Z", + "last_change_date": "2022-03-14T08:02:37.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8772, + "fields": { + "EF_ID": 223694, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "New Suspension preheater (NSP) kiln", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52266", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.1 and 2.2 on p.2.9 Chapter 2 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2 of 2 of 2A1 on p.A1.4 Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tianming Gao, Lei Shen, Ming Shen, Fengnan Chen, Litao Liu, Li Gao; Analysis on differences of carbon dioxide emission from cement production and their major determinants; Journal of Cleaner Production 103 (2015) 160 - 170; 0959-6526/Crown Copyright © 2014 Published by Elsevier Ltd.", + "English_Abstract": "Based on 15 production lines we surveyed in China, the widely accepted input and output methods were applied to compare the process emissions with CSI (Cement Sustainability Initiative), and IPCC (Intergovernmental Panel on Climate Change) default values. We found that the output method would magnify CO2 emissions from carbonate breakdown during clinker production. A reasonable method is to calculate carbonate content in raw meal using the CaO and MgO content in carbonate-containing material and their material ratio. Another finding is that the raw meals consumption recommended by CSI and CMBA (China Building Materials Academy) would enlarge and underestimate the calcining emissions, respectively. We applied the TC (total carbon) and LHV (lower heating value) methods for fuel emissions calculation and found that all of the samples` fuel emissions by the LHV method were higher than those by the TC method. Indirect emissions from different cement producing stages were also estimated by using regional electricity emission factor. In raw meal preparation and cement grinding stage, there were no differences in main production technologies, but in clinker production stage a remarkable difference appears. Replacing carbonate-containing materials with non-carbonate materials and changing clinker ratio are the main ways to reduce CO2 content in raw meal and process emissions. Lowering fossil fuel intensity, using clean energy and alternative fuel were strongly recommended for reducing cement energy emissions.", + "Lower_Bound": "4.31%-6.46%", + "Upper_Bound": "4.31%-6.46%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In this study, 11 NSP kilns from 8 cement plants were surveyed in Guangdong province of China. This article reports the CO2 emission results of onsite cement plants in China. Accordingly, almost all of the process emissions by the input method are lower than those by the output method. About 13 kg and 11 kg process emissions based on input method are lower than output method for NSP kiln and shaft kilns, respectively. This comparative result shows that CaO and MgO in clinker are not in the form of carbonate materials, and the output method magnifies CO2 emissions by the CaCO3 and MgCO3 decompose. Therefore, we strongly suggest to calculate clinker process emission with CO2 content in raw meal and raw meal clinker mass ratio.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.jclepro.2014.11.026", + "creation_date": "2022-03-14T08:02:37.908Z", + "last_change_date": "2022-03-14T08:02:37.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8773, + "fields": { + "EF_ID": 223695, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "shaft kiln", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50746", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.1 and 2.2 on p.2.9 Chapter 2 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2 of 2 of 2A1 on p.A1.4 Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tianming Gao, Lei Shen, Ming Shen, Fengnan Chen, Litao Liu, Li Gao; Analysis on differences of carbon dioxide emission from cement production and their major determinants; Journal of Cleaner Production 103 (2015) 160 - 170; 0959-6526/Crown Copyright © 2014 Published by Elsevier Ltd.", + "English_Abstract": "Based on 15 production lines we surveyed in China, the widely accepted input and output methods were applied to compare the process emissions with CSI (Cement Sustainability Initiative), and IPCC (Intergovernmental Panel on Climate Change) default values. We found that the output method would magnify CO2 emissions from carbonate breakdown during clinker production. A reasonable method is to calculate carbonate content in raw meal using the CaO and MgO content in carbonate-containing material and their material ratio. Another finding is that the raw meals consumption recommended by CSI and CMBA (China Building Materials Academy) would enlarge and underestimate the calcining emissions, respectively. We applied the TC (total carbon) and LHV (lower heating value) methods for fuel emissions calculation and found that all of the samples` fuel emissions by the LHV method were higher than those by the TC method. Indirect emissions from different cement producing stages were also estimated by using regional electricity emission factor. In raw meal preparation and cement grinding stage, there were no differences in main production technologies, but in clinker production stage a remarkable difference appears. Replacing carbonate-containing materials with non-carbonate materials and changing clinker ratio are the main ways to reduce CO2 content in raw meal and process emissions. Lowering fossil fuel intensity, using clean energy and alternative fuel were strongly recommended for reducing cement energy emissions.", + "Lower_Bound": "2.76-4.14%", + "Upper_Bound": "2.76-4.14%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In this study, 4 shaft kilns from 3 cement plants were surveyed in Guangdong province of China. This article reports the CO2 emission results of onsite cement plants in China. Accordingly, almost all of the process emissions by the input method are lower than those by the output method. About 13 kg and 11 kg process emissions based on input method are lower than output method for NSP kiln and shaft kilns, respectively. This comparative result shows that CaO and MgO in clinker are not in the form of carbonate materials, and the output method magnifies CO2 emissions by the CaCO3 and MgCO3 decompose. Therefore, we strongly suggest to calculate clinker process emission with CO2 content in raw meal and raw meal clinker mass ratio.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.jclepro.2014.11.026", + "creation_date": "2022-03-14T08:02:38.025Z", + "last_change_date": "2022-03-14T08:02:38.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8774, + "fields": { + "EF_ID": 223696, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "Direct emissions are largely produced in the preheater, precalcinator and pyro-processing kiln", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.519", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.1 and 2.2 on p.2.9 Chapter 2 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2 of 2 of 2A1 on p.A1.4 Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhi Cao, Lei Shen, Jianan Zhao, Litao Liu, Shuai Zhong, Yanzhi Sun, Yan Yang; Toward a better practice for estimating the CO2 emission factors of cement production: An experience from China; Journal of Cleaner Production 139 (2016) 527-539; 0959-6526/© 2016 Elsevier Ltd.", + "English_Abstract": "CO2 emission estimation of cement production is an underlying tool to identify the CO2 sources, to evaluate the reduction efforts and to set prospective reduction targets for the Chinese cement industry. However, lack of domestic data has limited the reliability and accuracy of CO2 emission estimation for Chinese cement industry. To develop an accurate and comprehensive CO2 emission factor for Chinese Cement industry, this study established a factory-level database of 197 cement production lines from 21 provinces covering various capacity scales. On the basis of this database, process, fuel, electricity and synthesized emission factor were computed. Furthermore, bootstrap simulation and Monte Carlo simulation were applied to evaluate the uncertainty of these factors. After corrections for cement kiln dust (CKD), incomplete decomposition, organic carbon and inorganic carbon, the medians of process, fuel and direct emission factors are 525, 369, and 919 kg CO2/t clinker, respectively. Electricity emission factor is 74.9 kg CO2/t clinker. The final synthesized emission factor for cement product is 761 kg CO2/t cement with uncertainties of [-34.8%, to 31.69%]. In this study, two revised calculation methods for the process emission factor are applied. Two calculation methods for the fuel emission factor are adopted as well. These practices seek to improve the reliability and accuracy of cement CO2 emission factor. The simulated results indicate that the revised output method produces more accurate estimation for the process emission factor than the revised input method and unrevised output method. For fuel emission factor, the CC (carbon content) method is more accurate than the NCV (net calorific value) method. Simulated results are also compared with other authoritative estimation to validate the reliability of the CO2 emission factors calculated in the present study.", + "Lower_Bound": "-3.58%", + "Upper_Bound": "1.85%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Input method. This study established a factory-level database of 197 cement production lines from 21 provinces covering various capacity scales. On the basis of a database consisted of 197 cement production samples, the simulation results show that the previous authoritative estimates are likely to deviate from the actual situation of Chinese situation. For process emission factor, it is rather accessible to obtain the data of clinker output other than that of carbonate decomposed in China. The original input method for process emission factor should be converted into a clinker-based method compatible with the output method. As well, the original output method is revised to eliminate the CO2 emission overestimated from the no-carbonate CaO and MgO content .", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.jclepro.2016.08.070", + "creation_date": "2022-03-14T08:02:38.126Z", + "last_change_date": "2022-03-14T08:02:38.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8775, + "fields": { + "EF_ID": 223697, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "Direct emissions are largely produced in the preheater, precalcinator and pyro-processing kiln", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.525", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.1 and 2.2 on p.2.9 Chapter 2 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2 of 2 of 2A1 on p.A1.4 Annex 1 Volume 3 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhi Cao, Lei Shen, Jianan Zhao, Litao Liu, Shuai Zhong, Yanzhi Sun, Yan Yang; Toward a better practice for estimating the CO2 emission factors of cement production: An experience from China; Journal of Cleaner Production 139 (2016) 527-539; 0959-6526/© 2016 Elsevier Ltd.", + "English_Abstract": "CO2 emission estimation of cement production is an underlying tool to identify the CO2 sources, to evaluate the reduction efforts and to set prospective reduction targets for the Chinese cement industry. However, lack of domestic data has limited the reliability and accuracy of CO2 emission estimation for Chinese cement industry. To develop an accurate and comprehensive CO2 emission factor for Chinese Cement industry, this study established a factory-level database of 197 cement production lines from 21 provinces covering various capacity scales. On the basis of this database, process, fuel, electricity and synthesized emission factor were computed. Furthermore, bootstrap simulation and Monte Carlo simulation were applied to evaluate the uncertainty of these factors. After corrections for cement kiln dust (CKD), incomplete decomposition, organic carbon and inorganic carbon, the medians of process, fuel and direct emission factors are 525, 369, and 919 kg CO2/t clinker, respectively. Electricity emission factor is 74.9 kg CO2/t clinker. The final synthesized emission factor for cement product is 761 kg CO2/t cement with uncertainties of [-34.8%, to 31.69%]. In this study, two revised calculation methods for the process emission factor are applied. Two calculation methods for the fuel emission factor are adopted as well. These practices seek to improve the reliability and accuracy of cement CO2 emission factor. The simulated results indicate that the revised output method produces more accurate estimation for the process emission factor than the revised input method and unrevised output method. For fuel emission factor, the CC (carbon content) method is more accurate than the NCV (net calorific value) method. Simulated results are also compared with other authoritative estimation to validate the reliability of the CO2 emission factors calculated in the present study.", + "Lower_Bound": "-3.58%", + "Upper_Bound": "1.85%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Output method. This study established a factory-level database of 197 cement production lines from 21 provinces covering various capacity scales. On the basis of a database consisted of 197 cement production samples, the simulation results show that the previous authoritative estimates are likely to deviate from the actual situation of Chinese situation. For process emission factor, it is rather accessible to obtain the data of clinker output other than that of carbonate decomposed in China. The original input method for process emission factor should be converted into a clinker-based method compatible with the output method. As well, the original output method is revised to eliminate the CO2 emission overestimated from the no-carbonate CaO and MgO content .", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.jclepro.2016.08.070", + "creation_date": "2022-03-14T08:02:38.243Z", + "last_change_date": "2022-03-14T08:02:38.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8776, + "fields": { + "EF_ID": 223698, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emissions correction factor for Cement Kiln Dust (CKD), %", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.87", + "Unit": "%", + "Equation": "Equation 2.2 on p.2.9 Chapter 2 Volume 3 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhi Cao, Lei Shen, Jianan Zhao, Litao Liu, Shuai Zhong, Yanzhi Sun, Yan Yang; Toward a better practice for estimating the CO2 emission factors of cement production: An experience from China; Journal of Cleaner Production 139 (2016) 527-539; 0959-6526/© 2016 Elsevier Ltd.", + "English_Abstract": "CO2 emission estimation of cement production is an underlying tool to identify the CO2 sources, to evaluate the reduction efforts and to set prospective reduction targets for the Chinese cement industry. However, lack of domestic data has limited the reliability and accuracy of CO2 emission estimation for Chinese cement industry. To develop an accurate and comprehensive CO2 emission factor for Chinese Cement industry, this study established a factory-level database of 197 cement production lines from 21 provinces covering various capacity scales. On the basis of this database, process, fuel, electricity and synthesized emission factor were computed. Furthermore, bootstrap simulation and Monte Carlo simulation were applied to evaluate the uncertainty of these factors. After corrections for cement kiln dust (CKD), incomplete decomposition, organic carbon and inorganic carbon, the medians of process, fuel and direct emission factors are 525, 369, and 919 kg CO2/t clinker, respectively. Electricity emission factor is 74.9 kg CO2/t clinker. The final synthesized emission factor for cement product is 761 kg CO2/t cement with uncertainties of [-34.8%, to 31.69%]. In this study, two revised calculation methods for the process emission factor are applied. Two calculation methods for the fuel emission factor are adopted as well. These practices seek to improve the reliability and accuracy of cement CO2 emission factor. The simulated results indicate that the revised output method produces more accurate estimation for the process emission factor than the revised input method and unrevised output method. For fuel emission factor, the CC (carbon content) method is more accurate than the NCV (net calorific value) method. Simulated results are also compared with other authoritative estimation to validate the reliability of the CO2 emission factors calculated in the present study.", + "Lower_Bound": "-0.0613%", + "Upper_Bound": "5.67%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "On the basis of a database consisted of 197 cement production samples, the simulation results show that the previous authoritative estimates are likely to deviate from the actual situation of Chinese situation. For process emission factor, it is rather accessible to obtain the data of clinker output other than that of carbonate decomposed in China. The original input method for process emission factor should be converted into a clinker-based method compatible with the output method. As well, the original output method is revised to eliminate the CO2 emission overestimated from the no-carbonate CaO and MgO content .", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.jclepro.2016.08.070", + "creation_date": "2022-03-14T08:02:38.361Z", + "last_change_date": "2022-03-14T08:02:38.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8777, + "fields": { + "EF_ID": 223699, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Feedstock consumption factor for ethylene in the production of Vinyl Chloride Monomer (VCM)", + "Technology_Practices": "VCM plant with air-based oxychlorination", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "undefined", + "Other_Properties": "See Comments from Data Provider", + "Value": "0.46-0.47", + "Unit": "tonne ethylene/tonne of vinyl chloride monomer produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Heino Falcke, Simon Holbrook, Iain Clenahan, Alfredo López Carretero, Teoman Sanalan, Thomas Brinkmann, Joze Roth, Benoit Zerger, Serge Roudier, Luis Delgado Sancho; Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279", + "English_Abstract": "The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of a series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals covers the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. Important issues for the implementation of Directive 2010/75/EU in the production of large volume organic chemicals are the reduction of emissions to air and water from chemical processes, efficient usage of energy and water, resource efficiency, minimisation, recovery and recycling of process residues; as well as an effective implementation of environmental and energy management systems.This BREF contains fourteen Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information, applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The EF 0.46-0.47 kg of ethylene per kg of VCM produced is presented in Table 11.12 (p.506) of BREF 2017. The correspondent EF in 2006 IPCC Guidelines is presented in Table 3.18 (p.3.77). The information presented is based on Dreher et al. (2011), `Chlorethanes and Chloroethylenes` http://onlinelibrary.wiley.com/doi/10.1002/14356007.o06_o01/full#o06_o01-bib-0376, Ullmann`s Encyclopedia of Industrial Chemistry, table 8 (value 0.4656) and TK - Vinnolith (2013), Vinyl chloride and polyvinyl chloride, 2. The Vinnolith VCM process (literature couldn´t be found). According to Ullmans Dictionary there are many differences between the processes in temperature and type of chlorination leading to different abatement and energy requirements. E.g. at temperatures above 350oC (grad.Celcius), substantial amounts of vinyl chloride are obtained. The value of 0.47 is a default unit ratio for a balanced process with air-based oxychlorination.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://publications.jrc.ec.europa.eu/repository/bitstream/JRC109279/jrc109279_lvoc_bref2017(1).pdf", + "creation_date": "2022-03-14T08:02:38.487Z", + "last_change_date": "2022-03-14T08:02:38.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8778, + "fields": { + "EF_ID": 223700, + "IPCC_Category": "2.B.8.d - Ethylene Oxide", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of ethylene oxyde produced", + "Technology_Practices": "Direct oxidation", + "Parameter_Conditions": "Selectivity 70-90%", + "Regional_Conditions": "Europe", + "Control_Technologies": "Catalytic process. The stream is purified and either liquefied by a downstream unit for marketing or released to atmosphere.", + "Other_Properties": "", + "Value": "0.86-0.22", + "Unit": "tonne CO2/tonne of ethylene oxide produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 7 of 12 for 2B8 on p.A1.13 Annex 1 Volume 3 2006 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "Heino Falcke, Simon Holbrook, Iain Clenahan, Alfredo López Carretero, Teoman Sanalan, Thomas Brinkmann, Joze Roth, Benoit Zerger, Serge Roudier, Luis Delgado Sancho; Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279", + "English_Abstract": "The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of a series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals covers the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. Important issues for the implementation of Directive 2010/75/EU in the production of large volume organic chemicals are the reduction of emissions to air and water from chemical processes, efficient usage of energy and water, resource efficiency, minimisation, recovery and recycling of process residues; as well as an effective implementation of environmental and energy management systems.This BREF contains fourteen Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information, applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor is presented in Section 7.3.6.1 (p.377) of BREF 2017.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://publications.jrc.ec.europa.eu/repository/bitstream/JRC109279/jrc109279_lvoc_bref2017(1).pdf", + "creation_date": "2022-03-14T08:02:38.596Z", + "last_change_date": "2022-03-14T08:02:38.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8779, + "fields": { + "EF_ID": 223701, + "IPCC_Category": "2.B.8.d - Ethylene Oxide", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor per tonne of ethylene oxyde produced", + "Technology_Practices": "Oxygen based process", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "None (Emission Factor before treatment/collection of gases)", + "Other_Properties": "", + "Value": "0-1", + "Unit": "kg CH4/tonne of ethylene oxide produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 8 of 12 for 2B8 on p.A1.13 Annex 1 Volume 3 2006 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "Heino Falcke, Simon Holbrook, Iain Clenahan, Alfredo López Carretero, Teoman Sanalan, Thomas Brinkmann, Joze Roth, Benoit Zerger, Serge Roudier, Luis Delgado Sancho; Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279", + "English_Abstract": "The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of a series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals covers the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. Important issues for the implementation of Directive 2010/75/EU in the production of large volume organic chemicals are the reduction of emissions to air and water from chemical processes, efficient usage of energy and water, resource efficiency, minimisation, recovery and recycling of process residues; as well as an effective implementation of environmental and energy management systems.This BREF contains fourteen Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information, applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor is presented in Table 7.3 (p.372) of BREF 2017", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://publications.jrc.ec.europa.eu/repository/bitstream/JRC109279/jrc109279_lvoc_bref2017(1).pdf", + "creation_date": "2022-03-14T08:02:38.705Z", + "last_change_date": "2022-03-14T08:02:38.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8780, + "fields": { + "EF_ID": 223702, + "IPCC_Category": "2.B.8.e - Acrylonitrile", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of acrylonitrile produced", + "Technology_Practices": "Exothermic catalytic ammoxidation of propylene", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "Emission Factor for reactor off-gas after having passed the quenching and absorption sections", + "Value": "0.07-0.4", + "Unit": "tonne CO2/tonne of acrylonitrile produced", + "Equation": "", + "IPCC_Worksheet": "Worksheet 9 of 12 for 2B8 on p.A1.14 Annex 1 Volume 3 2006 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "Heino Falcke, Simon Holbrook, Iain Clenahan, Alfredo López Carretero, Teoman Sanalan, Thomas Brinkmann, Joze Roth, Benoit Zerger, Serge Roudier, Luis Delgado Sancho; Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279", + "English_Abstract": "The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of a series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals covers the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. Important issues for the implementation of Directive 2010/75/EU in the production of large volume organic chemicals are the reduction of emissions to air and water from chemical processes, efficient usage of energy and water, resource efficiency, minimisation, recovery and recycling of process residues; as well as an effective implementation of environmental and energy management systems.This BREF contains fourteen Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information, applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor is presented in the Acrylonitrile summary on p.42 of BREF 2017", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://publications.jrc.ec.europa.eu/repository/bitstream/JRC109279/jrc109279_lvoc_bref2017(1).pdf", + "creation_date": "2022-03-14T08:02:38.813Z", + "last_change_date": "2022-03-14T08:02:38.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8781, + "fields": { + "EF_ID": 223703, + "IPCC_Category": "2.B.8.c - Ethylene Dichloride and Vinyl Chloride Monomer", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Energy (fuel) usage in a Vinyl Chloride Monomer (VCM) production plant", + "Technology_Practices": "undefined", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "undefined", + "Other_Properties": "", + "Value": "3.4-4.2", + "Unit": "MJ/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Heino Falcke, Simon Holbrook, Iain Clenahan, Alfredo López Carretero, Teoman Sanalan, Thomas Brinkmann, Joze Roth, Benoit Zerger, Serge Roudier, Luis Delgado Sancho; Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279", + "English_Abstract": "The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of a series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals covers the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. Important issues for the implementation of Directive 2010/75/EU in the production of large volume organic chemicals are the reduction of emissions to air and water from chemical processes, efficient usage of energy and water, resource efficiency, minimisation, recovery and recycling of process residues; as well as an effective implementation of environmental and energy management systems.This BREF contains fourteen Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information, applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The parameter 3.4-4.2 GJ of fuel per tonne of VCM is presented in Table 11.13 on p.507 of BREF 2017.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://publications.jrc.ec.europa.eu/repository/bitstream/JRC109279/jrc109279_lvoc_bref2017(1).pdf", + "creation_date": "2022-03-14T08:02:38.922Z", + "last_change_date": "2022-03-14T08:02:38.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8782, + "fields": { + "EF_ID": 223704, + "IPCC_Category": "2.B.8.d - Ethylene Oxide", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane emission factor for ethylene oxide production (air-based plants)", + "Technology_Practices": "air-based plants", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/tonne of ethylene oxide produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Heino Falcke, Simon Holbrook, Iain Clenahan, Alfredo López Carretero, Teoman Sanalan, Thomas Brinkmann, Joze Roth, Benoit Zerger, Serge Roudier, Luis Delgado Sancho; Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279", + "English_Abstract": "The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of a series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals covers the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. Important issues for the implementation of Directive 2010/75/EU in the production of large volume organic chemicals are the reduction of emissions to air and water from chemical processes, efficient usage of energy and water, resource efficiency, minimisation, recovery and recycling of process residues; as well as an effective implementation of environmental and energy management systems.This BREF contains fourteen Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information, applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission factor 6 kg per tonne of ethylene oxide produced (air-based plants) is presented in Table 7.2 on p.371 BREF 2017. The information is based on EC VOC Task Force (1990), Emissions of Volatile Organic Compounds (VOC) from stationary sources and possibilities of their control. In air-based plants VOCs mainly arise from the secondary absorber vent and the fractionating tower vent.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://publications.jrc.ec.europa.eu/repository/bitstream/JRC109279/jrc109279_lvoc_bref2017(1).pdf", + "creation_date": "2022-03-14T08:02:39.031Z", + "last_change_date": "2022-03-14T08:02:39.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8783, + "fields": { + "EF_ID": 223705, + "IPCC_Category": "2.B.8.d - Ethylene Oxide", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane emission factor for ethylene oxide production (oxygen-based plants)", + "Technology_Practices": "oxygen-based plants", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/tonne of ethylene oxide produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Heino Falcke, Simon Holbrook, Iain Clenahan, Alfredo López Carretero, Teoman Sanalan, Thomas Brinkmann, Joze Roth, Benoit Zerger, Serge Roudier, Luis Delgado Sancho; Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals; EUR 28882 EN; Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76589-6, doi:10.2760/77304, JRC109279", + "English_Abstract": "The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of a series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals covers the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. Important issues for the implementation of Directive 2010/75/EU in the production of large volume organic chemicals are the reduction of emissions to air and water from chemical processes, efficient usage of energy and water, resource efficiency, minimisation, recovery and recycling of process residues; as well as an effective implementation of environmental and energy management systems.This BREF contains fourteen Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information, applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission factor 3 kg per tonne of ethylene oxide produced (oxygen-based plants) is presented in Table 7.2 on p.371 BREF 2017. The information is based on EC VOC Task Force (1990), Emissions of Volatile Organic Compounds (VOC) from stationary sources and possibilities of their control. In oxygen-based plants the main sources are the vent gas scrubber and the carbon dioxide absorption system.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://publications.jrc.ec.europa.eu/repository/bitstream/JRC109279/jrc109279_lvoc_bref2017(1).pdf", + "creation_date": "2022-03-14T08:02:39.140Z", + "last_change_date": "2022-03-14T08:02:39.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8784, + "fields": { + "EF_ID": 223706, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "NITROUS OXIDE, HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, C2F6, C3F8, C6F14", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Lifetime parameter (years) for Commercial Refrigeration", + "Technology_Practices": "Commercial Refrigeration", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.50", + "Unit": "years", + "Equation": "", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.249Z", + "last_change_date": "2022-03-14T08:02:39.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8785, + "fields": { + "EF_ID": 223707, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Lifetime parameter (years) for Domestic Refrigeration", + "Technology_Practices": "Domestic Refrigeration", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.50", + "Unit": "years", + "Equation": "", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.333Z", + "last_change_date": "2022-03-14T08:02:39.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8786, + "fields": { + "EF_ID": 223708, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Lifetime parameter (years) for Industrial Refrigeration", + "Technology_Practices": "Industrial Refrigeration", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.00", + "Unit": "years", + "Equation": "", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.408Z", + "last_change_date": "2022-03-14T08:02:39.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8787, + "fields": { + "EF_ID": 223709, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Lifetime parameter (years) for Transport Refrigeration", + "Technology_Practices": "Transport Refrigeration", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.50", + "Unit": "years", + "Equation": "", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.500Z", + "last_change_date": "2022-03-14T08:02:39.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8788, + "fields": { + "EF_ID": 223710, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Lifetime parameter (years) for Stationary Air Conditioning", + "Technology_Practices": "Stationary Air Conditioning", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.50", + "Unit": "years", + "Equation": "", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.583Z", + "last_change_date": "2022-03-14T08:02:39.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8789, + "fields": { + "EF_ID": 223711, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (operation emissions) for Stationary Air Conditioning", + "Technology_Practices": "Stationary Air Conditioning", + "Parameter_Conditions": "Operation emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.50", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.13 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.676Z", + "last_change_date": "2022-03-14T08:02:39.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8790, + "fields": { + "EF_ID": 223712, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "NITROUS OXIDE, HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, C2F6, C3F8, C6F14", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (initial emissions) for Commercial Refrigeration and Industrial Refrigeration", + "Technology_Practices": "Commercial Refrigeration and Industrial Refrigeration", + "Parameter_Conditions": "Initial Emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.00", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.12 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.758Z", + "last_change_date": "2022-03-14T08:02:39.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8791, + "fields": { + "EF_ID": 223713, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (initial emissions) for Domestic Refrigeration, Transport Refrigeration and Stationary Air Conditioning", + "Technology_Practices": "Domestic Refrigeration, Transport Refrigeration and Stationary Air Conditioning", + "Parameter_Conditions": "Initial Emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.12 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.852Z", + "last_change_date": "2022-03-14T08:02:39.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8792, + "fields": { + "EF_ID": 223714, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "NITROUS OXIDE, HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, C2F6, C3F8, C6F14", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (operation emissions) for Commercial Refrigeration", + "Technology_Practices": "Commercial Refrigeration", + "Parameter_Conditions": "Operation Emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.00", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.13 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:39.933Z", + "last_change_date": "2022-03-14T08:02:39.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8793, + "fields": { + "EF_ID": 223715, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (operation emissions) for Domestic Refrigeration", + "Technology_Practices": "Domestic Refrigeration", + "Parameter_Conditions": "Operation Emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.13 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.029Z", + "last_change_date": "2022-03-14T08:02:40.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8794, + "fields": { + "EF_ID": 223716, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (operation emissions)", + "Technology_Practices": "Mobile Air Conditioning", + "Parameter_Conditions": "Operation Emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.50", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.13 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.142Z", + "last_change_date": "2022-03-14T08:02:40.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8795, + "fields": { + "EF_ID": 223717, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (operation emissions)", + "Technology_Practices": "Industrial Refrigeration", + "Parameter_Conditions": "Operation Emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.00", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.13 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.239Z", + "last_change_date": "2022-03-14T08:02:40.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8796, + "fields": { + "EF_ID": 223718, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (operation emissions) for Transport Refrigeration", + "Technology_Practices": "Transport Refrigeration", + "Parameter_Conditions": "Operation Emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.50", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.13 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.342Z", + "last_change_date": "2022-03-14T08:02:40.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8797, + "fields": { + "EF_ID": 223719, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "NITROUS OXIDE, HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, C2F6, C3F8, C6F14", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for Recovery Efficiency, End-of-Life Emissions (%) for Commercial Refrigeration, Domestic Refrigeration, Industrial Refrigeration, Transport Refrigeration, Stationary Air conditioning", + "Technology_Practices": "Commercial Refrigeration, Domestic Refrigeration, Industrial Refrigeration, Transport Refrigeration, Stationary Air conditioning", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55.00", + "Unit": "%", + "Equation": "Equation 7.14 on p.7.51 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.448Z", + "last_change_date": "2022-03-14T08:02:40.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8798, + "fields": { + "EF_ID": 223720, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for Recovery Efficiency, End-of-Life Emissions (%) for Mobile Air Conditioning", + "Technology_Practices": "Mobile Air Conditioning", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 7.14 on p.7.51 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.533Z", + "last_change_date": "2022-03-14T08:02:40.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8799, + "fields": { + "EF_ID": 223721, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "NITROUS OXIDE, HFC-23, HFC-32, HFC-125, HFC-134a, HFC-152a, HFC-143a, HFC-227ea, C2F6, C3F8, C6F14", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for Initial Charge Remaining, End-of-Life Emissions (%) for Commercial Refrigeration, Domestic Refrigeration, Industrial Refrigeration, Stationary Air Conditioning", + "Technology_Practices": "Commercial Refrigeration, Domestic Refrigeration, Industrial Refrigeration, Stationary Air Conditioning", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 7.14 on p.7.51 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.640Z", + "last_change_date": "2022-03-14T08:02:40.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8800, + "fields": { + "EF_ID": 223722, + "IPCC_Category": "2.F.1.a - Refrigeration and Stationary Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for Initial Charge Remaining, End-of-Life Emissions (%) for Transport Refrigeration", + "Technology_Practices": "Transport Refrigeration", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 7.14 on p.7.51 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.725Z", + "last_change_date": "2022-03-14T08:02:40.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8801, + "fields": { + "EF_ID": 223723, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-134a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Lifetime parameter (years) for Mobile Air Conditioning", + "Technology_Practices": "Mobile Air Conditioning", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.50", + "Unit": "years", + "Equation": "", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.824Z", + "last_change_date": "2022-03-14T08:02:40.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8802, + "fields": { + "EF_ID": 223724, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for initial charge (initial emissions) for Mobile Air Conditioning", + "Technology_Practices": "Mobile Air Conditioning", + "Parameter_Conditions": "Initial Emissions", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "% of the original HFC charge/year", + "Equation": "Equation 7.12 on p.7.50 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:40.908Z", + "last_change_date": "2022-03-14T08:02:40.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8803, + "fields": { + "EF_ID": 223725, + "IPCC_Category": "2.F.1.b - Mobile Air Conditioning", + "Gases": "HFC-32, HFC-125, HFC-134a, HFC-143a", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for Initial Charge Remaining, End-of-Life Emissions (%) for Mobile Air Conditioning", + "Technology_Practices": "Mobile Air Conditioning", + "Parameter_Conditions": "", + "Regional_Conditions": "Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 7.14 on p.7.51 Chapter 7 Volume 3 2006 IPCC Guidelines", + "IPCC_Worksheet": "2F1 in Annex 1 (page A1.26) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beáta Ondrušová and Eva Krtková (2018) The Phoenix Calculation Model for Emission Estimates of F-gases used in Refrigeration and Air Conditioning. Meteorologické Zprávy 7(1) 2018", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factors are for 2015. Data about the 1st fill and servicing is collected using a specific questionnaire (export, import, quantity, composition and use of F-gases). Data for the 1st fill and servicing are verified by the several experts (inventory and external). Verification is conducted by comparison of the data (ISPOP, F-gas register, the Customs administration and questionnaires). The emission factors are updated annually to ensure that the emission factors reflect more country-specific conditions. The emission factors are verified by comparison with the emission factors for neighbouring countries and for countries with similar state of refrigeration and air conditioning use.", + "Other_Comments": "", + "Data_Provider": "Eva Krtková, Czech Hydrometeorological Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:41.000Z", + "last_change_date": "2022-03-14T08:02:41.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8804, + "fields": { + "EF_ID": 224061, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "New installed plants with new dry process. China’s new suspension preheater/pre-calciner (NSP) kilns", + "Parameter_Conditions": "CaO and MgO content in cement. If the CaO and MgO contents were missing or abnormal, the average values of 64.5% and 2.4% for CaO and MgO were used.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "For large facilities (larger than 4000 tons of clinkers/day). It is worth noting that some enterprises use carbide slag, of which the main content is Ca(OH)2, as the raw material to produce clinker. This production process does not generate process emissions due to no carbonate decomposition in kilns. Therefore, clinkers produced in this production line is subtracted during the calculation of process emissions.", + "Value": "0.518", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.2 of Chapter 2 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bofeng Cai, Jinnan Wanga, Jie He, Yong Geng. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Applied Energy 166 (2016) 191-200, 2016", + "English_Abstract": "This paper targets to evaluate the overall CO2 emissions from cement industry based on the detailed information of China’s total 1574 cement enterprises in 2013. State-owned enterprises and large scale enterprises dominate the total CO2 emissions, accounting for 59.35% and 61.87% of the total emissions respectively. The process emission intensities of all enterprises ranged among 500–600 kg CO2/t clinker, while the energy emission intensities varied among different enterprises, with an average level of 348 kg CO2/t clinker and a standard deviation of 233 kg CO2/t clinker. The average CO2 emissions performance of China’s cement enterprises (806 kg CO2/t clinker) is 35 kg CO2/t clinker lower than the global level in 2013. The CO2 emissions intensity of the best 20th clinker production, which is lower than the IEA’s 2020 target, could be the entry threshold for future new enterprises and top runner bench mark for the existing enterprises. The Yangtze River Delta region is the most important hotspot of the cement CO2 emissions. Wuhu & Tongling are the hottest emission centers, with an average of 8288 ton of CO2 emissions per square kilometers. Ownership of cement enterprises should be carefully considered in the policy preparation. Favorable policies could focus on medium sized facilities and facilities in the ENDI type along the Silk Road Economic Belt.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.060 It is worth noting that some enterprises use carbide slag, of which the main content is Ca(OH) 2, as the raw material to produce clinker. This production process does not generate process emissions due to no carbonate decomposition in kilns. Therefore, clinkers produced in this production line is subtracted during the calculation of process emissions.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1016/j.apenergy.2015.11.006", + "creation_date": "2022-03-14T08:02:41.083Z", + "last_change_date": "2022-03-14T08:02:41.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8805, + "fields": { + "EF_ID": 224062, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "New installed plants with new dry process. China’s new suspension preheater/pre-calciner (NSP) kilns", + "Parameter_Conditions": "CaO and MgO content in cement. If the CaO and MgO contents were missing or abnormal, the average values of 64.5% and 2.4% for CaO and MgO were used.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "For large facilities (larger than 4000 tons of clinkers/day). It is worth noting that some enterprises use carbide slag, of which the main content is Ca(OH)2, as the raw material to produce clinker. This production process does not generate process emissions due to no carbonate decomposition in kilns. Therefore, clinkers produced in this production line is subtracted during the calculation of process emissions.", + "Value": "0.506", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.2 of Chapter 2 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bofeng Cai, Jinnan Wanga, Jie He, Yong Geng. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Applied Energy 166 (2016) 191-200, 2016", + "English_Abstract": "This paper targets to evaluate the overall CO2 emissions from cement industry based on the detailed information of China’s total 1574 cement enterprises in 2013. State-owned enterprises and large scale enterprises dominate the total CO2 emissions, accounting for 59.35% and 61.87% of the total emissions respectively. The process emission intensities of all enterprises ranged among 500–600 kg CO2/t clinker, while the energy emission intensities varied among different enterprises, with an average level of 348 kg CO2/t clinker and a standard deviation of 233 kg CO2/t clinker. The average CO2 emissions performance of China’s cement enterprises (806 kg CO2/t clinker) is 35 kg CO2/t clinker lower than the global level in 2013. The CO2 emissions intensity of the best 20th clinker production, which is lower than the IEA’s 2020 target, could be the entry threshold for future new enterprises and top runner bench mark for the existing enterprises. The Yangtze River Delta region is the most important hotspot of the cement CO2 emissions. Wuhu & Tongling are the hottest emission centers, with an average of 8288 ton of CO2 emissions per square kilometers. Ownership of cement enterprises should be carefully considered in the policy preparation. Favorable policies could focus on medium sized facilities and facilities in the ENDI type along the Silk Road Economic Belt.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.081 It is worth noting that some enterprises use carbide slag, of which the main content is Ca(OH) 2, as the raw material to produce clinker. This production process does not generate process emissions due to no carbonate decomposition in kilns. Therefore, clinkers produced in this production line is subtracted during the calculation of process emissions.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1016/j.apenergy.2015.11.006", + "creation_date": "2022-03-14T08:02:41.176Z", + "last_change_date": "2022-03-14T08:02:41.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8806, + "fields": { + "EF_ID": 224063, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "New installed plants with new dry process. China’s new suspension preheater/pre-calciner (NSP) kilns", + "Parameter_Conditions": "CaO and MgO contenten in cement. If the CaO and MgO contents were missing or abnormal, the average values of 64.5% and 2.4% for CaO and MgO were used.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "For large facilities (larger than 4000 tons of clinkers/day). It is worth noting that some enterprises use carbide slag, of which the main content is Ca(OH)2, as the raw material to produce clinker. This production process does not generate process emissions due to no carbonate decomposition in kilns. Therefore, clinkers produced in this production line is subtracted during the calculation of process emissions.", + "Value": "0.496", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "Equation 2.2 of Chapter 2 Volume 3 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bofeng Cai, Jinnan Wanga, Jie He, Yong Geng. Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective. Applied Energy 166 (2016) 191-200, 2016", + "English_Abstract": "This paper targets to evaluate the overall CO2 emissions from cement industry based on the detailed information of China’s total 1574 cement enterprises in 2013. State-owned enterprises and large scale enterprises dominate the total CO2 emissions, accounting for 59.35% and 61.87% of the total emissions respectively. The process emission intensities of all enterprises ranged among 500–600 kg CO2/t clinker, while the energy emission intensities varied among different enterprises, with an average level of 348 kg CO2/t clinker and a standard deviation of 233 kg CO2/t clinker. The average CO2 emissions performance of China’s cement enterprises (806 kg CO2/t clinker) is 35 kg CO2/t clinker lower than the global level in 2013. The CO2 emissions intensity of the best 20th clinker production, which is lower than the IEA’s 2020 target, could be the entry threshold for future new enterprises and top runner bench mark for the existing enterprises. The Yangtze River Delta region is the most important hotspot of the cement CO2 emissions. Wuhu & Tongling are the hottest emission centers, with an average of 8288 ton of CO2 emissions per square kilometers. Ownership of cement enterprises should be carefully considered in the policy preparation. Favorable policies could focus on medium sized facilities and facilities in the ENDI type along the Silk Road Economic Belt.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.085 It is worth noting that some enterprises use carbide slag, of which the main content is Ca(OH) 2, as the raw material to produce clinker. This production process does not generate process emissions due to no carbonate decomposition in kilns. Therefore, clinkers produced in this production line is subtracted during the calculation of process emissions.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1016/j.apenergy.2015.11.006", + "creation_date": "2022-03-14T08:02:41.277Z", + "last_change_date": "2022-03-14T08:02:41.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8807, + "fields": { + "EF_ID": 224064, + "IPCC_Category": "2.A.4.a - Ceramics", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbonate content (percentage of CaCO3)", + "Technology_Practices": "Three soils samples used for brick making in Karad in Clamp kilns", + "Parameter_Conditions": "The CaCO3 gets decomposed into CaO and CO2 at about 840 °C.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.88 - 13.72", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Nitin G. Kulkarni, Anand B. Rao. Carbon footprint of solid clay bricks fired in clamps of India. Journal of Cleaner Production 135 (2016) 1396 - 1406, 2016", + "English_Abstract": "Carbon footprint is broadly defined as carbon dioxide (CO2.) emissions normalized per unit mass of a product or per unit of an activity. It is considered as an important environmental indicator for comparing various products or activities. Fired solid clay brick is a popular walling material in India. Manufacturing of fired clay bricks involves combustion of fossil fuels during the firing process and during other unit operations and activities. Due to combustion of fossil fuels, dissociation of mineral calcite in the soil during the firing of green bricks and combustion of diesel during transportation of raw materials, the greenhouse gas emissions are associated with the manufacturing of fired clay bricks. About 250 billion bricks are manufactured annually in India. To fire the green bricks, mainly two types of brick kilns are used in India: Bull`s trench kiln and Clamp kilns. The Bull`s trench kilns are mainly used in northern and central India whereas the clamps are used in peninsular India. In the present study, carbon footprint of bricks manufactured in the clamps of a major clamp cluster in peninsular India is estimated and is compared with that of bricks manufactured in other types of kilns in India. Karad, District Satara, Maharashtra (India) located in peninsular India has a major cluster of clamp type brick kilns which has more than 300 clamp kiln sites with annual production of approximately 120 million bricks. A field survey of the clamps of Karad is conducted to collect the data about use of soil, fuels and water and its transportation. The CO2 emissions due to various unit operations and activities in a typical clamp are estimated using guidelines provided by the Intergovernmental Panel on Climate Change. These total emissions are normalized per unit mass of fired brick and are presented as carbon footprint of a brick. The statistical mean of the carbon footprints of bricks manufactured in all the surveyed clamps is presented as the carbon footprint of bricks manufactured in the clamps of Karad. The average carbon footprint of the bricks manufactured in the clamps of Karad is estimated as 195 g CO2/kg of fired brick and 162 g CO2/kg of fired brick respectively, when the CO2 emissions due to the combustion of biofuels and transportation of raw materials are included or excluded. This is comparable to the carbon footprint of the other popular brick-making technologies, and defies the common notion that clamps are highly inefficient. The carbon footprint of bricks manufactured in the clamps of Karad is lower than that reported for the clay bricks manufactured in tunnel kilns in the United States of America, Canada and the United Kingdom.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1016/j.jclepro.2016.06.152", + "creation_date": "2022-03-14T08:02:41.402Z", + "last_change_date": "2022-03-14T08:02:41.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8808, + "fields": { + "EF_ID": 224065, + "IPCC_Category": "2.A.1 - Cement production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor per tonne of clinker produced", + "Technology_Practices": "New suspension pre-heater and pre-calciner (NSP) kilns", + "Parameter_Conditions": "A total of 657 samples were analyzed from 117 production lines of NSP kiln in 21 provinces of China. Sample types included raw material, clinker, cement, coal, CKD, limestone, etc. Raw material carbonate method (RMCM) was used for EF estimation. Cement kiln dust (CKD), carbonate decomposition rate, organic carbon combustion rate in raw materials and coal ash or other non-carbonate components in the form of CaO and MgO in the raw materials were accounted for.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonne CO2/tonne clinker produced", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yuanbo Geng Ziteng Wang Lei Shen Jianan Zhao. Calculating of CO2 emission factors for Chinese cement production based on inorganic carbon and organic carbon. Journal of Cleaner Production v. 217, 2019, pp. 503 – 509", + "English_Abstract": "Cement industry is one of the largest anthropogenic carbon dioxide (CO2) emitters in the world, and its emission accounts for 5-7% of the total anthropogenic CO2 emission. As the biggest cement producer, China has attracted worldwide attention in mitigating cement CO2 emission. Many studies did not reflect China`s actual emission due to not fully knowing the de-facto cement production in China. The carbon emission factors (EFs) are important parameters to calculate CO2 emission. There are uncertainties in determining Chinese carbon emission factors on cement production. This study analyzed the composition of samples from cement production lines in China and used the raw material carbonate method (RMCM) to calculate process-related EFs of new suspension pre-heater and pre-calciner (NSP) kilns, and it shows that RMCM is more accurate and simpler than other methods. This research also indicates that process-related EF is more accurate when calculation is based on the carbonate (inorganic carbon, IC) decomposition ratio, and the combustion-related EF is more proper when multiplying the total organic carbon (TOC) by the organic carbon combustion ratio, because the majority of the clinkers always contain small amounts of the carbonate that are not fully decomposed and small amounts of fossil fuels (FFs) that are not completely combusted.", + "Lower_Bound": "-0.02281", + "Upper_Bound": "+0.02281", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The authors consider their methodology to be more accurate and simpler compared to other methodologies provided by the IPCC Guidelines.", + "Data_Provider_Comments": "EF is 530.00 ± 22.81 kgCO2/tcl according to measured data", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1016/j.jclepro.2019.01.224", + "creation_date": "2022-03-14T08:02:41.503Z", + "last_change_date": "2022-03-14T08:02:41.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8809, + "fields": { + "EF_ID": 224066, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor For Sinter", + "Technology_Practices": "Case study is presented based on two BF-BOF route iron and steel enterprises in China. The production process of enterprise A includes sintering, pelletizing, coking, BF, BOF, casting, HR, CR and OPP. The process of enterprise B, which using purchased coke and pellet, includes sintering, BF, BOF, casting, rolling and OPP. The production scales of A and B are 8 million t-cs/year and 3 million tcs/ year, respectively.", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "tonne CO2/tonne sinter produced", + "Equation": "Equation 4.9 and 4.10 on page 4.22 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yuanbo Geng Ziteng Wang Lei Shen Jianan Zhao. Calculating of CO2 emission factors for Chinese cement production based on inorganic carbon and organic carbon. Journal of Cleaner Production v. 217, 2019, pp. 503 – 509", + "English_Abstract": "As an intensive energy-consuming and carbon-emitting industry, iron and steel manufacturing is vital for meeting the energy conservation and CO2 emission reduction targets of China. A set of methods has been presented to quantify CO2 emission, however, no unified standards are available for the iron and steel industry yet. To analyze the CO2 emission-affecting factors, a carbon flow model and a corresponding calculation method are proposed with consideration of the relationship among emission factor, system boundary, and index. Then, a case study is conducted in two iron and steel mills in China, and carbon element flow diagrams are mapped out graphically. The CO2 emission-affecting factors were analyzed based on material flow analysis. The results show that the Specific CO2 emission of two case mills with different material flows and electricity consumption structures are 2035.06 kg/t-cs and 2497.21 kg/t-cs, respectively. Purchased scrap recycled to basic oxygen furnace reduces the CO2 emission dramatically. By contrast, self-produced scrap, which is controlled by the production yield, increases the emission. Spe- cific CO2 emission decreases dramatically with the reducing of OPP generation rate, maximum reduction can be up to 334.80 kg/t-cs. Using natural gas or steam coal as substitute for BFG consumed in onsite power plant, Specific CO2 emission can be reduced by 299.22 kg/t-cs and 86.97 kg/t-cs, respectively.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1016/j.jclepro.2017.10.211", + "creation_date": "2022-03-14T08:02:41.638Z", + "last_change_date": "2022-03-14T08:02:41.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8810, + "fields": { + "EF_ID": 224067, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor For Pellet", + "Technology_Practices": "Case study is presented based on two BF-BOF route iron and steel enterprises in China. The production process of enterprise A includes sintering, pelletizing, coking, BF, BOF, casting, HR, CR and OPP. The process of enterprise B, which using purchased coke and pellet, includes sintering, BF, BOF, casting, rolling and OPP. The production scales of A and B are 8 million t-cs/year and 3 million tcs/ year, respectively.", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "tonne CO2/tonne pellet produced", + "Equation": "Equation 4.9 and 4.10 on page 4.22 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yuanbo Geng Ziteng Wang Lei Shen Jianan Zhao. Calculating of CO2 emission factors for Chinese cement production based on inorganic carbon and organic carbon. Journal of Cleaner Production v. 217, 2019, pp. 503 – 509", + "English_Abstract": "As an intensive energy-consuming and carbon-emitting industry, iron and steel manufacturing is vital for meeting the energy conservation and CO2 emission reduction targets of China. A set of methods has been presented to quantify CO2 emission, however, no unified standards are available for the iron and steel industry yet. To analyze the CO2 emission-affecting factors, a carbon flow model and a corresponding calculation method are proposed with consideration of the relationship among emission factor, system boundary, and index. Then, a case study is conducted in two iron and steel mills in China, and carbon element flow diagrams are mapped out graphically. The CO2 emission-affecting factors were analyzed based on material flow analysis. The results show that the Specific CO2 emission of two case mills with different material flows and electricity consumption structures are 2035.06 kg/t-cs and 2497.21 kg/t-cs, respectively. Purchased scrap recycled to basic oxygen furnace reduces the CO2 emission dramatically. By contrast, self-produced scrap, which is controlled by the production yield, increases the emission. Spe- cific CO2 emission decreases dramatically with the reducing of OPP generation rate, maximum reduction can be up to 334.80 kg/t-cs. Using natural gas or steam coal as substitute for BFG consumed in onsite power plant, Specific CO2 emission can be reduced by 299.22 kg/t-cs and 86.97 kg/t-cs, respectively.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1016/j.jclepro.2017.10.211", + "creation_date": "2022-03-14T08:02:41.756Z", + "last_change_date": "2022-03-14T08:02:41.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8811, + "fields": { + "EF_ID": 224068, + "IPCC_Category": "2.C.1 - Iron and Steel Production", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor For Steel", + "Technology_Practices": "Case study is presented based on two BF-BOF route iron and steel enterprises in China. The production process of enterprise A includes sintering, pelletizing, coking, BF, BOF, casting, HR, CR and OPP. The process of enterprise B, which using purchased coke and pellet, includes sintering, BF, BOF, casting, rolling and OPP. The production scales of A and B are 8 million t-cs/year and 3 million tcs/ year, respectively.", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.037", + "Unit": "tonne CO2/tonne steel produced", + "Equation": "Equation 4.9 and 4.10 on page 4.22 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yuanbo Geng Ziteng Wang Lei Shen Jianan Zhao. Calculating of CO2 emission factors for Chinese cement production based on inorganic carbon and organic carbon. Journal of Cleaner Production v. 217, 2019, pp. 503 – 509", + "English_Abstract": "As an intensive energy-consuming and carbon-emitting industry, iron and steel manufacturing is vital for meeting the energy conservation and CO2 emission reduction targets of China. A set of methods has been presented to quantify CO2 emission, however, no unified standards are available for the iron and steel industry yet. To analyze the CO2 emission-affecting factors, a carbon flow model and a corresponding calculation method are proposed with consideration of the relationship among emission factor, system boundary, and index. Then, a case study is conducted in two iron and steel mills in China, and carbon element flow diagrams are mapped out graphically. The CO2 emission-affecting factors were analyzed based on material flow analysis. The results show that the Specific CO2 emission of two case mills with different material flows and electricity consumption structures are 2035.06 kg/t-cs and 2497.21 kg/t-cs, respectively. Purchased scrap recycled to basic oxygen furnace reduces the CO2 emission dramatically. By contrast, self-produced scrap, which is controlled by the production yield, increases the emission. Spe- cific CO2 emission decreases dramatically with the reducing of OPP generation rate, maximum reduction can be up to 334.80 kg/t-cs. Using natural gas or steam coal as substitute for BFG consumed in onsite power plant, Specific CO2 emission can be reduced by 299.22 kg/t-cs and 86.97 kg/t-cs, respectively.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1016/j.jclepro.2017.10.211", + "creation_date": "2022-03-14T08:02:41.873Z", + "last_change_date": "2022-03-14T08:02:41.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8812, + "fields": { + "EF_ID": 224069, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Slope Coefficient", + "Technology_Practices": "Cell technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.139", + "Unit": "(kg PFC/tAl)/(AE-Minutes/cellday)", + "Equation": "Equation 4.26 on page 4.51 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C3, Sheet 2 of 3", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lukas Dion, Jerry Marks, László I. Kiss, Sándor Poncsák, Charles-Luc Lagacé. Quantification of perfluorocarbons emissions during high voltage anode effects using non-linear approach. Journal of Cleaner Production, Volume 164, 15 October 2017, Pages 357-366", + "English_Abstract": "Significant amounts of greenhouses gases are produced annually by aluminium smelters around the globe. Most of these emissions are carbon dioxide but perfluorocarbons are nonetheless an essential part of GHG inventories for aluminium smelters. The total mass of perfluorocarbons declared is estimated using a linear relationship between some process parameters and a specific emission coefficient. However, this linear method does not accurately represent the observed behaviour of PFC emissions. Continuous gas measurements were performed using a Fourier-transformed infrared spectrometer connected to the gas treatment centre for several days. With the data collected from individual high voltage anode effects, four new models are proposed to estimate the emissions of tetrafluoromethane, along with three new models to estimate hexafluoroethane emissions. These non-linear models are compared to the existing methods and the overall accuracy of each model is calculated in comparison to in-situ measurements. The accuracy of each model to predict emissions associated to individual anode effects have been investigated as well and the results indicate that tet- rafluoromethane emissions can be more accurately predicted by the proposed non-linear models. Models proposed to predict hexafluoroethane emissions are optimistic, but further refinements are necessary to optimise the accuracy of individual predictions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.jclepro.2017.06.199", + "creation_date": "2022-03-14T08:02:41.998Z", + "last_change_date": "2022-03-14T08:02:41.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8813, + "fields": { + "EF_ID": 224070, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "CF4", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Overvoltage Coefficient", + "Technology_Practices": "Cell technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.62", + "Unit": "(kg PFC/tAl)/(mV/day)", + "Equation": "Equation 4.27 on page 4.52 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C3, Sheet 2 of 3", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lukas Dion, Jerry Marks, László I. Kiss, Sándor Poncsák, Charles-Luc Lagacé. Quantification of perfluorocarbons emissions during high voltage anode effects using non-linear approach. Journal of Cleaner Production, Volume 164, 15 October 2017, Pages 357-366", + "English_Abstract": "Significant amounts of greenhouses gases are produced annually by aluminium smelters around the globe. Most of these emissions are carbon dioxide but perfluorocarbons are nonetheless an essential part of GHG inventories for aluminium smelters. The total mass of perfluorocarbons declared is estimated using a linear relationship between some process parameters and a specific emission coefficient. However, this linear method does not accurately represent the observed behaviour of PFC emissions. Continuous gas measurements were performed using a Fourier-transformed infrared spectrometer connected to the gas treatment centre for several days. With the data collected from individual high voltage anode effects, four new models are proposed to estimate the emissions of tetrafluoromethane, along with three new models to estimate hexafluoroethane emissions. These non-linear models are compared to the existing methods and the overall accuracy of each model is calculated in comparison to in-situ measurements. The accuracy of each model to predict emissions associated to individual anode effects have been investigated as well and the results indicate that tet- rafluoromethane emissions can be more accurately predicted by the proposed non-linear models. Models proposed to predict hexafluoroethane emissions are optimistic, but further refinements are necessary to optimise the accuracy of individual predictions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.jclepro.2017.06.199", + "creation_date": "2022-03-14T08:02:42.115Z", + "last_change_date": "2022-03-14T08:02:42.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8814, + "fields": { + "EF_ID": 224071, + "IPCC_Category": "2.C.3 - Aluminium production", + "Gases": "C2F6", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Weight Fraction C2F6 /CF4", + "Technology_Practices": "Cell technology: Centre Worked Prebaked (CWPB)", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.045", + "Unit": "fraction", + "Equation": "Equation 4.26 on page 4.51 and Equation 4.27 on page 4.52 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 2C3, Sheet 3 of 3", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lukas Dion, Jerry Marks, László I. Kiss, Sándor Poncsák, Charles-Luc Lagacé. Quantification of perfluorocarbons emissions during high voltage anode effects using non-linear approach. Journal of Cleaner Production, Volume 164, 15 October 2017, Pages 357-366", + "English_Abstract": "Significant amounts of greenhouses gases are produced annually by aluminium smelters around the globe. Most of these emissions are carbon dioxide but perfluorocarbons are nonetheless an essential part of GHG inventories for aluminium smelters. The total mass of perfluorocarbons declared is estimated using a linear relationship between some process parameters and a specific emission coefficient. However, this linear method does not accurately represent the observed behaviour of PFC emissions. Continuous gas measurements were performed using a Fourier-transformed infrared spectrometer connected to the gas treatment centre for several days. With the data collected from individual high voltage anode effects, four new models are proposed to estimate the emissions of tetrafluoromethane, along with three new models to estimate hexafluoroethane emissions. These non-linear models are compared to the existing methods and the overall accuracy of each model is calculated in comparison to in-situ measurements. The accuracy of each model to predict emissions associated to individual anode effects have been investigated as well and the results indicate that tet- rafluoromethane emissions can be more accurately predicted by the proposed non-linear models. Models proposed to predict hexafluoroethane emissions are optimistic, but further refinements are necessary to optimise the accuracy of individual predictions.", + "Lower_Bound": "120%", + "Upper_Bound": "120%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "http://dx.doi.org/10.1016/j.jclepro.2017.06.199", + "creation_date": "2022-03-14T08:02:42.249Z", + "last_change_date": "2022-03-14T08:02:42.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8815, + "fields": { + "EF_ID": 314474, + "IPCC_Category": "2.G.3.a - Medical Applications", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for N2O Emissions from Medical Applications", + "Technology_Practices": "Anaesthetic use, Analgestic use and Veterinary use", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "fraction", + "Equation": "Equation 8.24 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G3, Sheet 1 of 2, in Annex 1 (page A1.34) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Page 8.36)", + "Technical_Reference": "Expert judgement by the authors of Chapter 8, Section 8.4, Volume 3 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In the published literature it is widely assumed that none of the N2O inhaled by a patient during anaesthesia is metabolised. N2O is taken up continuously from the lungs as dissolved N2O in blood. The portion which is not taken up is exhaled in the next breath. Uptake by the patient is high initially and falls progressively in a nearexponential fashion over time. It is reasonable to assume that all the administered N2O is eventually returned to the atmosphere and the emission factor is 1.0. This is a pragmatic assumption because there are no reliable data. Any error in the emission factor is likely to be extremely small in comparison with other uncertainties.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:42.358Z", + "last_change_date": "2022-03-14T08:02:42.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8816, + "fields": { + "EF_ID": 314475, + "IPCC_Category": "2.G.3.b - Propellant for pressure and aerosol products", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission Factor for N2O Emissions from Propellant for Pressure and Aerosol Products", + "Technology_Practices": "Propellant in aerosol products primarily in food industry. Typical usage is to make whipped cream, where cartridges filled with N2O are used to blow the cream into foam.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "fraction", + "Equation": "Equation 8.24 in Volume 3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "2G3, Sheet 1 of 2, in Annex 1 (page A1.34) of Volume 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 3, Chapter 8, Page 8.36)", + "Technical_Reference": "Expert judgement by the authors of Chapter 8, Section 8.4, Volume 3 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O is not likely to be reacted during the process. Therefore, it is a pragmatic assumption that emission factor is 1.0, and any error in the emission factor is likely to be extremely small in comparison with other uncertainties.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:42.442Z", + "last_change_date": "2022-03-14T08:02:42.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8817, + "fields": { + "EF_ID": 410574, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Enteric fermentation emission factor for dairy cow", + "Technology_Practices": "Commercialised milk production using high quality forage. During grazing season as follows: grazed grass, barley/oat and concentrates (rape, crushed grain). During winter season: Silage, barley/oat, concentrates (rape and molasses). Grazing season is 120", + "Parameter_Conditions": "Dairy cow,adult female. National gross energy intake (GE), IPCC default methane conversion rate (Ym); average milk production 7445 kg/head/year, life weight 550 kg, fat content of milk 4.22 %", + "Regional_Conditions": "Finland, Boreal region", + "Control_Technologies": "Abatement/control techniques like feed additives, vaccines or alternative feeds not included in calculations", + "Other_Properties": "", + "Value": "115.22", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12, Page 4.25 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Input data of the model is mostly based on national data: agricultural statistics (animal numbers, milk production) or expert judgement (length of grazing season, animal weight, daily weight gain). References are found from Finland´s National Inventory Report 2002. Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-50 %", + "Upper_Bound": "+50 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni,S.&Syri,S.2003.Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory.VTT Research Notes 2209.Technical Resea", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.14, page 4.26 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:42.534Z", + "last_change_date": "2022-03-14T08:02:42.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8818, + "fields": { + "EF_ID": 410581, + "IPCC_Category": "3.A.2.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Manure management emission factor for calf (young cow)", + "Technology_Practices": "Slurry-based system (26%), pasture (33%) and solid storage (42%)included. ", + "Parameter_Conditions": "National gross energy intake 82,4 MJ/head/day(GE), Digestible Energy (DE) 70% and Manure System (MS); IPCC default ash content of manure, Methane Producing Potential (Bo)and Methane Conversion Factor (MCF); age under 1 year, weight 218 kg", + "Regional_Conditions": "Finland, Boreal region", + "Control_Technologies": "No abatement/control technologies e.g. anaerobic digester or diet modifications included.", + "Other_Properties": "", + "Value": "1.69", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15, page 4.30 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finland`s National Inventory Report 2006, Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-30 %", + "Upper_Bound": "+30 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.16, page 4.31 and Equation 4.17, page 4.34 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:42.633Z", + "last_change_date": "2022-03-14T08:02:42.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8819, + "fields": { + "EF_ID": 410585, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Manure management emission factor for dairy cow", + "Technology_Practices": "Slurry-based system (28%), pasture (28%)and solid storage (44%)included.", + "Parameter_Conditions": "National gross energy intake 300.2 MJ/head/day(GE), Digestible Energy (DE)70% and Manure system (MS); IPCC default ash content of manure, Methane Producing Potential (Bo)and Methane Conversion Factor (MCF); average milk production 7626 kg/animal/year, weight 568 kg", + "Regional_Conditions": "Finland, Boreal region", + "Control_Technologies": "No abatement/control technologies e.g. anaerobic digester or diet modifications included.", + "Other_Properties": "", + "Value": "9.37", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15, page 4.30 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finland`s National Inventory Report 2006, Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-30 %", + "Upper_Bound": "+30 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.16, page 4.31 and Equation 4.17, page 4.34 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:42.727Z", + "last_change_date": "2022-03-14T08:02:42.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8820, + "fields": { + "EF_ID": 410586, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Enteric fermentation emission factor for calf (male and female).", + "Technology_Practices": "Commercialised milk production using high quality forage for dairy cows: during grazing season as follows: grazed grass, barley/oat and concentrates (rape, crushed grain). During winter season: Silage, barley/oat, concentrates (rape and molasses). Grazing", + "Parameter_Conditions": "Young calf (male and female).National gross energy intake (GE), IPCC default Methane Conversion Rate(Ym); age under 1 year, live weight 218 kg, mature weight 653 kg (dairy cow), 994 kg (bull), 704 kg (suckler cow), average daily weight gain 0.85 kg, diges", + "Regional_Conditions": "Finland, Boreal region,Climate: northern boreal, average annual temperature -2..+5 Celcius degrees, preciptation 500-650 mm/yr", + "Control_Technologies": "Abatement/control techniques like feed additives, vaccines or alternative feeds not included in calculations", + "Other_Properties": "", + "Value": "32.41", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12, Page 4.25 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Input data of the model is mostly based on national data: agricultural statistics (animal numbers) or expert judgement (length of grazing season, animal weight, daily weight gain). References are found from Finland´s National Inventory Report 2006. Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-50 %", + "Upper_Bound": "+50 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.14, Page 4.26 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:42.817Z", + "last_change_date": "2022-03-14T08:02:42.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8821, + "fields": { + "EF_ID": 410631, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Enteric fermentation emission factor for adult female cow (mother cow). ", + "Technology_Practices": "Commercialised meat production using high quality forage. During grazing season as follows: grazed grass, barley/oat and concentrates (rape, crushed grain). During winter season: Silage, barley/oat, concentrates (rape and molasses). Grazing season is 120", + "Parameter_Conditions": "Adult female (mother cow). National gross energy intake 167.9 MJ/head/day(GE), IPCC default Methane Conversion Rate 0.06 (Ym), average milk production 1620 kg/head /year, life weight 650 kg, fat content of milk 4.24 %, mature weight 750 kg, DE 70 %", + "Regional_Conditions": "Finland, Boreal", + "Control_Technologies": "Abatement/control techniques like feed additives, vaccines or alternative feeds not included in calculations", + "Other_Properties": "", + "Value": "66.04", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12, Page 4.25 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Input data of the model is mostly based on national data: agricultural statistics (animal numbers, milk production) or expert judgement (length of grazing season, animal weight, daily weight gain). References are found from Finland´s National Inventory Report. Statistics Finland 2005. Greenhouse gas emissions in Finland 1990-2003. Finland´s National Inventory Report to the UNFCCC. Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-50 %", + "Upper_Bound": "+50 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.14, Page 4.26 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:42.903Z", + "last_change_date": "2022-03-14T08:02:42.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8822, + "fields": { + "EF_ID": 410632, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Enteric fermentation emission factor for young female cow (heifer)", + "Technology_Practices": "Commercialised meat production using high quality forage. During grazing season as follows: grazed grass, barley/oat and concentrates (rape, crushed grain). During winter season: Silage, barley/oat, concentrates (rape and molasses). Grazing season is 120 days", + "Parameter_Conditions": "Young female cow (heifer). National gross energy intake 143,7 MJ/head/year(GE), National DE (70%) IPCC default Methane Conversion Rate (Ym); live weight 437 kg", + "Regional_Conditions": "Finland, Boreal, Climate: northern boreal, average annual temperature -2..+5 Celcius degrees, precipitation 500-650 mm/yr. ", + "Control_Technologies": "Abatement/control techniques like feed additives, vaccines or alternative feeds not included in calculations", + "Other_Properties": "", + "Value": "56.56", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12, Page 4.25 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Input data of the model is mostly based on national data: agricultural statistics (animal numbers, milk production) or expert judgement (length of grazing season, animal weight, daily weight gain). References are found from Finland´s National Inventory Report.Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-50 %", + "Upper_Bound": "+50 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.14, Page 4.26 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:42.967Z", + "last_change_date": "2022-03-14T08:02:42.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8823, + "fields": { + "EF_ID": 410633, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Enteric fermentation emission factor for young male cow (bull). ", + "Technology_Practices": "Commercialised meat production.", + "Parameter_Conditions": "Young male cow (bull. National gross energy intake 152.8 MJ/head/day(GE), IPCC default Methane Conversion Rate 0.06(Ym); age over 1 year, life weight 500 kg, mature weight 750 kg, DE 70%", + "Regional_Conditions": "Finland, Boreal, Climate: northern boreal, average annual temperature -2..+5 Celcius degrees, precipitation 500-650 mm/yr.", + "Control_Technologies": "Abatement/control techniques like feed additives, vaccines or alternative feeds not included in calculations", + "Other_Properties": "", + "Value": "60.15", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12, Page 4.25 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Input data of the model is mostly based on national data: agricultural statistics (animal numbers, milk production) or expert judgement (length of grazing season, animal weight, daily weight gain). References are found from Finland´s National Inventory Report 2002. Statistics Finland 2005.Greenhouse gas emissions in Finland 1990-2003. Finland´s National Inventory Report to the UNFCCC. Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-50 %", + "Upper_Bound": "+50 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.14, Page 4.26 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:43.087Z", + "last_change_date": "2022-03-14T08:02:43.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8824, + "fields": { + "EF_ID": 410634, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Manure management emission factor for bull (cattle)", + "Technology_Practices": "Slurry-based system (40%), pasture (0%)and solid storage (60%)included.", + "Parameter_Conditions": "National gross energy intake 157,9 MJ/head/day(GE), Digestible Energy (DE) 70% and Manure System (MS); IPCC default ash content of manure, Methane Producing Potential (Bo) and Methane conversion Factor (MCF); age over 1 year, weight 552 kg", + "Regional_Conditions": "Finland, Boreal", + "Control_Technologies": "No abatement/control technologies e.g. anaerobic digester or diet modifications included.", + "Other_Properties": "", + "Value": "4.52", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15, page 4.30 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finland`s National Inventory Report 2006, Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-30 %", + "Upper_Bound": "+30 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.16, page 4.31 and Equation 4.17, page 4.34 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:43.150Z", + "last_change_date": "2022-03-14T08:02:43.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8825, + "fields": { + "EF_ID": 410635, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Manure management emission factor for heifer (young cow)", + "Technology_Practices": "Slurry-based system (24%), pasture (33%)and solid storage (43%)included.", + "Parameter_Conditions": "National gross energy intake 143,7 MJ/head/day(GE), Digestible Energy (DE) 70% and Manure System (MS); IPCC default ash content of manure, Methane Producing Potential (Bo) and Methane Conversion Factor (MCF); weight 437 kg", + "Regional_Conditions": "Finland, Boreal", + "Control_Technologies": "No abatement/control technologies e.g. anaerobic digester or diet modifications included.", + "Other_Properties": "", + "Value": "2.84", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15, page 4.30 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finland`s National Inventory Report 2006, Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-30 %", + "Upper_Bound": "+30 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.16, page 4.31 and Equation 4.17, page 4.34 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:43.240Z", + "last_change_date": "2022-03-14T08:02:43.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8826, + "fields": { + "EF_ID": 410636, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Manure management emission factor for suckler cow (cattle)", + "Technology_Practices": "Slurry-based system (16%), pasture (36%)and solid storage (48%)included.", + "Parameter_Conditions": "National gross energy intake 167,5(GE), Digestible Energy (DE) 70% and Manure System (MS); IPCC default ash content of manure, Methane Producing Potential (Bo) and Methane Conversion Factor (MCF); average milk production 1620 kg/head/year, weight 648 kg", + "Regional_Conditions": "Finland, Boreal", + "Control_Technologies": "No abatement/control technologies e.g. anaerobic digester or diet modifications included.", + "Other_Properties": "", + "Value": "2.56", + "Unit": "kg/head/yr", + "Equation": "Equation 4.15, page 4.30 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Finland`s National Inventory Report 2006, Pipatti, R. 2001. Greenhouse Gas Emissions and Removals in Finland. VTT Research Notes 2094. Technical Research Centre of Finland.", + "English_Abstract": "", + "Lower_Bound": "-30 %", + "Upper_Bound": "+30 %", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "Monni, S. & Syri, S. 2003. Uncertainties in the Finnish 2001 Greenhouse Gas Emission Inventory. VTT Research Notes 2209. Technic", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF is calculated using Equation 4.16, page 4.31 and Equation 4.17, page 4.34 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:43.325Z", + "last_change_date": "2022-03-14T08:02:43.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8827, + "fields": { + "EF_ID": 410637, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Region specific emission factor (Flanders/Belgium) for the direct emissions from N-input (arable land and grassland)(4D) ", + "Technology_Practices": "Surface application , Fertilizer and/or manure amandment (75 kg N/ha- 487 kg N/ha) and/or animal nitrogen deposits (grassland) , No water management , Grass (mown and grazed), sugar beet, maize, peas, cauliflower , Crop management: till", + "Parameter_Conditions": "pH H2O: 5.3-7.6, , SOC: 0.48-4.08%, , Soil N: 0.05-0.3%. , Soil textures: loamy sand (1= number of measured fields), silt loam (2), sandy loam (6), sand (1) (according to Soil Survey Staff (1990)) , Soil moisture content: variable; data were monitored", + "Regional_Conditions": "Country: Belgium (Region: Flanders) , Climate: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "%", + "Equation": "Eq. 1 p. 4.92 of the IPCC Guidelines; Eq. 4.20 p. 4.54 GPG2000", + "IPCC_Worksheet": "Worksheet 4-5, Sheet 1 of 5", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goossens, A., De Visscher, A., Boeckx, P. & Van Cleemput, O. (2001). Two-year field study on the emission of N2O from coarse and middle-textured Belgian soils with different land use. Nutr. Cycl. Agroecosysst. 60:23-34.Goossens, A., De Visscher, A., Boeckx, P. & Van Cleemput, O. A compilation of non-CO2 trace gas measurements from different Belgian soils. In: Van Cleemput, O., Vlassak, K., Goossens, A. & De Wever, H. (eds.) Non-CO2 trace gas emissions from Belgian soils, where research and policy meet. Workshop proceedings, 24 October, 2000, Gent. Academia Press Scientific Publishers, 19-29.Soil Survey Staff (1990). Keys to soil taxonomy. SMSS Technical Monograph No. 19, fourth edition, 422 pp. Blacksburg, Virginia.Bouwman A.F. (1996). Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosyst. 46:53-70De Visscher, A., Goossens, A. & Van Cleemput, O. (2000). Calibration of a multipoint sampling system connected with a photoacoustic detector. Int. J. Environ. An. Ch. 76(2):115-133.", + "English_Abstract": "Nitrous oxide emission from 4 different grasslands (1 mown, 3 grazed) and from 6 different arable lands, representing major agricultural areas with different soil textures and normal agricultural practices in Belgium, have been monitored for 1 to 2 years between 1997 and 2000. One undisturbed soil under deciduous forest was also included in the study. Nitrous oxide emission was measured directly in the field from vented closed chambers through photo-acoustic infrared detection. Annual N2O emission from the arable lands ranged from 0.3 to 30.25 kg N2O-N ha-1 y-1 and represented 0.3 to 8.8% of the fertilizer N applied. Annual N2O emission from the intensively managed grassland and an arable land sown with grass were significantly larger than those from the cropped arable lands. Emissions ranged from 3 to 32 kg N2O-N ha-1 y-1, representing fertilizer N losses between 0.9 and 11.4%. At the forest site a net uptake of 1.3 kg N2O-N ha-1 was recorded over a 2-year period. Following the method of Bouwman (1996) used to calculate the emission factor for direct soil emission (0.0125 kg N2O-N kg-1 N input), we plotted the total annual emissions (14 data-points) against the fertilizer application. Least-squares fitting of the data to a linear function resulted in an equation from which a fertilizer induced emission of 5.3 ± 1.7% could be calculated. This emission factor could be considered specific for intensively managed (Belgian) agricultural soils.", + "Lower_Bound": "0.016", + "Upper_Bound": "0.090", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The study also showed that land use rather than soil properties influenced the N2O emission. In general, the N2O emission from managed grassland, be it temporal or permanent, was higher than from arable land. Different emission factors for grassland and arable land should be preferred, but we felt that our data-set was not elaborate enough to establish these. , Data was provided without the direct consultation of the original author.", + "Other_Comments": "Note from Editorial Board of EFDB: This emission factor includes moderate background (non-anthropogenic) soil N2O emissions as does the , default emission factor for direct N2O emission from soils currently used in the Revised 1996 IPCC Guidelines.", + "Data_Provider": "Pascal Boeckx", + "Link": "", + "creation_date": "2022-03-14T08:02:43.408Z", + "last_change_date": "2022-03-14T08:02:43.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8828, + "fields": { + "EF_ID": 413621, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor for direct N2O emissions from well drained agricultural soils", + "Technology_Practices": "Received 4 split applications of urea (32, 32, 34.5 and 32 N/ha, respectively) amounting to 130 kg N/ha. Legume-based pasture. The farms were rotationally grazed for 12-48 hours by Friesen dairy cows at 2 to 6 weeks interval depending on pasture growth", + "Parameter_Conditions": "Permanent perennial ryegrass-legume pastures of New Zealand under temperate climatic conditions. Pastures grow all the year round with the highest growth rates in spring and the lowest in winter. Dairy grazed pastures, rotationally grazed. Well drained (Weathered Fluvial recent, fine sandy loam). The N contents of the pasture ranged between 16.2 and 39.4 g/kg. The ungrazed areas were fenced off for 6 months (Dairy 3) and 1 year (Dairy 1) before the start of measurements.", + "Regional_Conditions": "Southern Hemisphere, temperate climate; mean annual sunshine ~1900 h. Mean annual air temp is 12.8C (coldest July 6.8C and warmest Jan 18.1 C. Mean rainfall about 965 mm fairly evenly distributed throughout the year, with Jan-March driest months. ", + "Control_Technologies": "None", + "Other_Properties": "Nitrogen excretion values were calculated using an average animal intake of 12 kg pasture dry matter per day, containing 2.5 to 3.0% N. The N retention in animal products was assumed to range between 10–20% of the total N intake and the remaining N excreted via faeces and urine. Therefore daily excretal N ranged between 182 and 398 g N (mean 290 g N). These values were used during each grazing event, based on the number of grazing cows and grazing period to calculate the excretal N inputs.", + "Value": "0.0199", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equations 4.20 and 4.21, Direct N2O emissions from agricultural soils, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000)", + "IPCC_Worksheet": "Worksheet 4-5, sheet 1 of 5", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Saggar, S., R.M. Andrew, K.R. Tate, C.B. Hedley, N.J. Rodda, and J.A. Townsend (2004) Modelling nitrous oxide emissions from dairy-grazed pastures. Nutrient Cycling in Agroecosystems. 68: 243-255", + "English_Abstract": "Soil N2O emissions were measured during four seasons from two highly productive grass-clover dairy pastures to assess the influences of soil moisture, temperature, availability of N (NH4+ and NO3-) and soluble C on N2O emissions, and to use the emission data to validate and refine a simulation model (DNDC). The soils at these pasture sites (Karapoti fine sandy loam, and Tokomaru silt loam) differed in texture and drainage characteristics. Emission peaks for N2O coincided with rainfall events and high soil moisture content. Large inherent variations in N2O fluxes were observed throughout the year in both the ungrazed (control) and grazed pastures. Fluxes averaged 4.3 and 5.0 g N2O/ha/day for the two ungrazed sites. The N2O fluxes from the grazed sites were much higher than for the ungrazed sites, averaging 26.4 g N2O/ha/day for the fine sandy loam soil, and 32.0 g N2O/ha/day for the silt loam soil. Nitrous oxide measurements were made on 70 days representing all the four seasons. Total emissions from the grazed and ungrazed pasture sites for each season were calculated by interpolation between the measured values and were divided by the measurement period to determine the average emissions and standard deviation for each season. Similarly the annual emissions and standard deviation for the grazed and ungrazed sites were determined as the sum of average emissions of each season times the season days. The annual emissions for the well-drained grazed pasture site was 9.65 +/- 1.54 (kg N2O-N/ha) and for the ungrazed site was 1.77 +/- 0.17 kg N2O-N/ha. The annual excretal and fertiliser N inputs for this grazed site was 396 kg N/ha. The difference between the emissions from the grazed site and the ungrazed site represented the anthropogenic annual emissions from grazed pasture. Thus the anthropogenic emissions for the well-drained [(9.65-1.77)/396] were 0.0199. Our results showed that excretal and fertiliser-N input, and water-filled pore space (WFPS) were the variables that most strongly regulated N2O fluxes. The DNDC model was modified to include the effects of day length on pasture growth, and of excretal-N inputs from grazing animals; the value of the WFPS threshold was also modified. The modified model “NZ-DNDC” simulated effectively most of the WFPS and N2O emission pulses and trends from both the ungrazed and grazed pastures. The modified model fairly reproduced the real variability in underlying processes regulating N2O emissions and could be suitable for simulating N2O emissions from a range of New Zealand grazed pastures. The NZ-DNDC estimates of total yearly emissions of N2O from the grazed and ungrazed sites of both farms were within the uncertainty range of the measured emissions. The measured emissions changed with changes in soil moisture resulting from rainfall and were about 20% higher in the poorly drained silt loam soil than in the well-drained sandy loam soil. The model accounts for these climatic variations in rainfall, and was also able to pick up differences in emissions resulting from differences in soil texture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Nitrous oxide measurements (59 measurements) were made periodically from each of the grazed site ( using 18 chambers) and ungrazed site (using 2 chambers) to account for spatial variability. ", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Massey University farms, data was collected under a FRST funded research project.", + "Other_Comments": "", + "Data_Provider": "Surinder Kumar Saggar", + "Link": "", + "creation_date": "2022-03-14T08:02:43.501Z", + "last_change_date": "2022-03-14T08:02:43.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8829, + "fields": { + "EF_ID": 413623, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for enteric fermentation of reindeer (for both male and female)", + "Technology_Practices": "The reindeer are of mixed gender (approximately 50:50) living in unconfined boreal rangeland. During summer, the reindeer eat herbs, hay, twig, shoots and leaves and in the autumn also mushroom. Lichen is the main nutrition in winter until the snow cover gets too thick or icy. When this happens reindeer start eating beard moss that grows on the tree branches. During the winter reindeer loose a remarkable percentage of weight. Mature females give birth to one calf in the spring and suckle it through the summer. Part of the older reindeer not retained as replacement stock are slaughtered for meat production. For more details see abstract or http://www.paliskunnat.fi/default.aspx?kieli=en-US and www.deliporo.fi/porotalous_2.html (in Finnish), www.finfood.fi (in Finnish) or Nieminen, M., Maijala, V. & Soveri, T. 1998. Reindeer feeding. Finnish Game and Fisheries Research Institute. Helsinki. p. 10.(in Finnish).See Reindeer husbandry, http://www.paliskunnat.fi/default.aspx?kieli=en-US ", + "Parameter_Conditions": "Gross energy intake (GE) for adult male is 51.8 MJ/day and for adult female is 49.1 MJ/animal (see Note 1); IPCC default methane conversion rate (Ym) is 0.06. , , Note 1: Equation for GE (McDonald et al. 1988):GE(MJ/kg)=0.0226*crude protein+0.0407*ether extract+0.0192*crude fibre+0.0177*nitrogen free extracts ", + "Regional_Conditions": "Region: Boreal; Country: Finland , ", + "Control_Technologies": "No abatement/control technologies included", + "Other_Properties": "", + "Value": "19.9", + "Unit": "kg/head/yr", + "Equation": "Equation 4.12, Page 4.25 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories ", + "IPCC_Worksheet": "Worksheet 4-1, Sheet 1 of 2 of 1996 IPCC Guidelines, Workbook", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Data source for calculating GE: animal nutrition specialist from MTT Agrifood Research Finland, Finland´s National Inventory Report 2006, chapter 6. Agriculture, p. 110-141, equations for GE described in the Annex of the NIR (p. 137)", + "English_Abstract": "CH4 emissions from enteric fermentation of reindeer is estimated using: , EF=(GE*Ym* 365 days/year)/(55.65 MJ/kg CH4) (IPCC); where, GE = Gross intake (MJ/animal/day); Ym= Methane conversion rate, fraction of gross energy in feed converted to methane (IPCC default value 0.06 used). , Equation for calculating GE for sheep and reindeer (McDonald et al. 1988): , GE (MJ/kg)=0.0226*crude protein (CP)+0.0407*ether extract (EE)+0.0192*crude fibre (CF) +0.0177*nitrogen free extracts (NFE), where CP, EE, CF and NFE are expressed as g/kg (McDonald et al. 1988, p. 349). , It has been estimated that reindeer eats lichen in winter (215 days) and hay in summer (150 days) (no other plant species are taken into account). The total number of food units (rehyksikkö) has been estimated (for male reindeer being 420 for hay and 409 for lichen, for female reindeer 420 for hay and 366 for lichen). The amount of total food units has been divided with 0.8 food unit/kg dm. , GE has been calculated for both hay and lichen. For hay, CP=120, EE=25, CF=360 and NFE=420. For lichen CP=30, EE=20, CF=350 and NFE=580. , For male and female reindeer, the GE (MJ/animal/day) has been calculated as follows: , ((GE (MJ/kg) for lichen * kg dm lichen+ GE (MJ/kg) for hay * kg dm hay)/365 days , , EFs for both animal types were calculated from the IPCC equation above (i.e. for adult male is 20.4 kg/animal/yr and adult female is 19.3 kg/animal/yr). EF is an average of male and female reindeer being 19.9 kg CH4/animal/yr. , ", + "Lower_Bound": "70", + "Upper_Bound": "3", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "EF is considered very uncertain", + "Data_Provider_Comments": "EF is calculated using Equation 4.14, Page 4.26 in IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "Finnish Environment Institute", + "Link": "", + "creation_date": "2022-03-14T08:02:43.593Z", + "last_change_date": "2022-03-14T08:02:43.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8830, + "fields": { + "EF_ID": 413628, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor for direct N2O emissions from poorly drained agricultural soils", + "Technology_Practices": "Received 3 split applications of urea (63.5, 63.5 and 63.5 kg N/ha, respectively) amounting to 190 kg N/ha. Legume-based pasture. The farms were rotationally grazed for 12-48 hours by Friesen dairy cows at 2 to 6 weeks intervals depending on pasture growth.", + "Parameter_Conditions": "Permanent perennial ryegrass-legume pastures of New Zealand under temperate climatic conditions. Pastures grow all the year round with the highest growth rates in spring and the lowest in winter. Dairy grazed pastures, rotationally grazed. Poorly drained (Argillic-fragic Perch-gley Pallic, silt loam). The N contents of the pasture ranged between 16.2 and 39.4 g/kg. The ungrazed areas were fenced off for 6 months (Dairy 3) and 1 year (Dairy 1) before the start of measurements.", + "Regional_Conditions": "Southern Hemisphere, temperate climate; mean annual sunshine ~1900 h. Mean annual air temp is 12.8C (coldest July 6.8C and warmest Jan 18.1 C. Mean rainfall about 965 mm fairly evenly distributed throughout the year, with Jan-March driest months. ", + "Control_Technologies": "None", + "Other_Properties": "Nitrogen excretion values were calculated using an average animal intake of 12 kg pasture dry matter per day, containing 2.5 to 3.0% N. The N retention in animal products was assumed to range between 10–20% of the total N intake and the remaining N excreted via faeces and urine. Therefore daily excretal N ranged between 182 and 398 g N (mean 290 g N). These values were used during each grazing event, based on the number of grazing cows and grazing period to calculate the excretal N inputs.", + "Value": "0.0253", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equations 4.20 and 4.21, Direct N2O emissions from agricultural soils, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000)", + "IPCC_Worksheet": "Worksheet 4-5, sheet 1 of 5", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Saggar, S., R.M. Andrew, K.R. Tate, C.B. Hedley, N.J. Rodda, and J.A. Townsend (2004) Modelling nitrous oxide emissions from dairy-grazed pastures. Nutrient Cycling in Agroecosystems. 68: 243-255", + "English_Abstract": "Soil N2O emissions were measured during four seasons from two highly productive grass-clover dairy pastures to assess the influences of soil moisture, temperature, availability of N (NH4+ and NO3-) and soluble C on N2O emissions, and to use the emission data to validate and refine a simulation model (DNDC). The soils at these pasture sites (Karapoti fine sandy loam, and Tokomaru silt loam) differed in texture and drainage characteristics. Emission peaks for N2O coincided with rainfall events and high soil moisture content. Large inherent variations in N2O fluxes were observed throughout the year in both the ungrazed (control) and grazed pastures. Fluxes averaged 4.3 and 5.0 g N2O/ha/day for the two ungrazed sites. The N2O fluxes from the grazed sites were much higher than for the ungrazed sites, averaging 26.4 g N2O/ha/day for the fine sandy loam soil, and 32.0 g N2O/ha/day for the silt loam soil. Nitrous oxide measurements were made on 70 days representing all the four seasons. Total emissions from the grazed and ungrazed pasture sites for each season were calculated by interpolation between the measured values and were divided by the measurement period to determine the average emissions and standard deviation for each season. Similarly the annual emissions and standard deviation for the grazed and ungrazed sites were determined as the sum of average emissions of each season times the season days. The annual emissions for the poorly drained grazed pasture site were 11.70 +/- 1.81 kg N2O-N/ha and for the ungrazed site were 2.97 +/- 0.18 kg N2O-N/ha. The annual excretal and fertiliser N inputs for this grazed site was 345 kg N/ha. The difference between the emissions from the grazed site and the ungrazed site represented the anthropogenic annual emissions from grazed pasture. Thus the anthropogenic emissions [(11.70-2.97)/345] were 0.0253. Our results showed that excretal and fertiliser-N input, and water-filled pore space (WFPS) were the variables that most strongly regulated N2O fluxes. The DNDC model was modified to include the effects of day length on pasture growth, and of excretal-N inputs from grazing animals; the value of the WFPS threshold was also modified. The modified model “NZ-DNDC” simulated effectively most of the WFPS and N2O emission pulses and trends from both the ungrazed and grazed pastures. The modified model fairly reproduced the real variability in underlying processes regulating N2O emissions and could be suitable for simulating N2O emissions from a range of New Zealand grazed pastures. The NZ-DNDC estimates of total yearly emissions of N2O from the grazed and ungrazed sites of both farms were within the uncertainty range of the measured emissions. The measured emissions changed with changes in soil moisture resulting from rainfall and were about 20% higher in the poorly drained silt loam soil than in the well-drained sandy loam soil. The model accounts for these climatic variations in rainfall, and was also able to pick up differences in emissions resulting from differences in soil texture.  ", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Nitrous oxide measurements (70 measurements) were made periodically from each of the grazed site ( using 18 chambers) and ungrazed site (using 2 chambers) to account for spatial variability. ", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Massey University farms, data was collected under a FRST funded research project.", + "Other_Comments": "", + "Data_Provider": "Surinder Kumar Saggar", + "Link": "", + "creation_date": "2022-03-14T08:02:43.676Z", + "last_change_date": "2022-03-14T08:02:43.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8831, + "fields": { + "EF_ID": 415120, + "IPCC_Category": "3.C.1.c - Burning in Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Savanna and grassland", + "Value": "1613 +/- 95", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1c, Page A1.52, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:43.786Z", + "last_change_date": "2022-03-14T08:02:43.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8832, + "fields": { + "EF_ID": 415121, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Agricultural residues", + "Value": "1515 +/- 177", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1b, Page A1.50, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:43.867Z", + "last_change_date": "2022-03-14T08:02:43.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8833, + "fields": { + "EF_ID": 415125, + "IPCC_Category": "3.C.1.c - Burning in Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Savanna and grassland", + "Value": "65 +/- 20", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1c, Page A1.52, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:43.942Z", + "last_change_date": "2022-03-14T08:02:43.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8834, + "fields": { + "EF_ID": 415126, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Agricultural residues", + "Value": "92 +/- 84", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1b, Page A1.50, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.008Z", + "last_change_date": "2022-03-14T08:02:44.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8835, + "fields": { + "EF_ID": 415130, + "IPCC_Category": "3.C.1.c - Burning in Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Savanna and grassland", + "Value": "2.3 +/- 0.9", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1c, Page A1.52, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.121Z", + "last_change_date": "2022-03-14T08:02:44.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8836, + "fields": { + "EF_ID": 415131, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Agricultural residues", + "Value": "2.7", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1b, Page A1.50, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.200Z", + "last_change_date": "2022-03-14T08:02:44.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8837, + "fields": { + "EF_ID": 415135, + "IPCC_Category": "3.C.1.c - Burning in Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Savanna and grassland", + "Value": "0.21 +/- 0.10", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1c, Page A1.52, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.275Z", + "last_change_date": "2022-03-14T08:02:44.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8838, + "fields": { + "EF_ID": 415136, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Agricultural residues", + "Value": "0.07", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1b, Page A1.50, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.342Z", + "last_change_date": "2022-03-14T08:02:44.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8839, + "fields": { + "EF_ID": 415140, + "IPCC_Category": "3.C.1.c - Burning in Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Savanna and grassland", + "Value": "3.9 +/- 2.4", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1c, Page A1.52, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.408Z", + "last_change_date": "2022-03-14T08:02:44.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8840, + "fields": { + "EF_ID": 415141, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Agricultural residues", + "Value": "2.5 +/- 1.0", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1b, Page A1.50, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.475Z", + "last_change_date": "2022-03-14T08:02:44.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8841, + "fields": { + "EF_ID": 415830, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default methane baseline emission factor", + "Technology_Practices": "Assuming no flooding for less than 180 days prior to rice cultivation, and continuously flooded during rice cultivation without organic amendments", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3 (0.80 - 2.20)", + "Unit": "kg CH4/ha/day", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.11 - Default CH4 baseline emission factor assuming no flooding for less than 180 days prior to rice cultivation, and continuously flooded during rice cultivation without organic amendments, on page 5.49", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.591Z", + "last_change_date": "2022-03-14T08:02:44.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8842, + "fields": { + "EF_ID": 415831, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, disaggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Fields are never flooded for a significant period of time.", + "Parameter_Conditions": "Water regime: Upland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Upland", + "Value": "0", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.675Z", + "last_change_date": "2022-03-14T08:02:44.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8843, + "fields": { + "EF_ID": 415832, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, disaggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Continuously flooded: Fields have standing water throughout the rice growing season and may only dry out for harvest (end-season drainage).", + "Parameter_Conditions": "Water regime: Continuously flooded", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Irrigated", + "Value": "1 (0.79 - 1.26)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.750Z", + "last_change_date": "2022-03-14T08:02:44.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8844, + "fields": { + "EF_ID": 415833, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, disaggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Intermittently flooded : Fields have at least one aeration period of more than 3 days during the cropping season. Single aeration: Fields have a single aeration during the cropping season at any growth stage (except for end-season drainage).", + "Parameter_Conditions": "Water regime: Intermittently flooded - single aeration", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Irrigated", + "Value": "0.60 (0.46 - 0.80)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.825Z", + "last_change_date": "2022-03-14T08:02:44.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8845, + "fields": { + "EF_ID": 415834, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, disaggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Intermittently flooded : Fields have at least one aeration period of more than 3 days during the cropping season. Multiple aeration: Fields have more than one aeration period during the cropping season (except for end-season drainage).", + "Parameter_Conditions": "Water regime: Intermittently flooded - multiple aeration", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Irrigated", + "Value": "0.52 (0.41 - 0.66)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:44.918Z", + "last_change_date": "2022-03-14T08:02:44.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8846, + "fields": { + "EF_ID": 415835, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, disaggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Regular rainfed: The water level may rise up to 50 cm during the cropping season.", + "Parameter_Conditions": "Water regime: Regular rainfed", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Rainfed and Deepwater", + "Value": "0.28 (0.21 - 0.37)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.017Z", + "last_change_date": "2022-03-14T08:02:45.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8847, + "fields": { + "EF_ID": 415836, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, disaggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Drought prone: Drought periods occur during every cropping season.", + "Parameter_Conditions": "Water regime: Drought prone", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Rainfed and Deepwater", + "Value": "0.25 (0.18 - 0.36)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.092Z", + "last_change_date": "2022-03-14T08:02:45.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8848, + "fields": { + "EF_ID": 415837, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, disaggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Deep water rice: Floodwater rises to more than 50 cm for a significant period of time during the cropping season.", + "Parameter_Conditions": "Water regime: Deepwater", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Rainfed and Deepwater", + "Value": "0.31", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.185Z", + "last_change_date": "2022-03-14T08:02:45.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8849, + "fields": { + "EF_ID": 415838, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, aggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Fields are flooded for a significant period of time and water regime is fully controlled.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Irrigated", + "Value": "0.78 (0.62 - 0.98)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.267Z", + "last_change_date": "2022-03-14T08:02:45.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8850, + "fields": { + "EF_ID": 415839, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFw, aggregated case) for water regimes during the cultivation period relative to continuously flooded fields", + "Technology_Practices": "Fields are flooded for a significant period of time and water regime depends solely on precipitation.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Rice ecosystem: Rainfed and Deepwater", + "Value": "0.27 (0.21 - 0.34)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.12 - Default CH4 emission scaling factors for water regimes during the cultivation period relative to continuously flooded fields, on page 5.49", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.333Z", + "last_change_date": "2022-03-14T08:02:45.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8851, + "fields": { + "EF_ID": 415840, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFp, disaggregated case) for water regimes before the cultivation period", + "Technology_Practices": "", + "Parameter_Conditions": "Water regime prior to rice cultivation: non flooded pre-season <180 days", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1 (0.88 - 1.14)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.13 - Default CH4 emission scaling factors for water regimes before the cultivation period, on page 5.50", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.445Z", + "last_change_date": "2022-03-14T08:02:45.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8852, + "fields": { + "EF_ID": 415841, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFp, disaggregated case) for water regimes before the cultivation period", + "Technology_Practices": "", + "Parameter_Conditions": "Water regime prior to rice cultivation: non flooded pre-season >180 days", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68 (0.58 - 0.80)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.13 - Default CH4 emission scaling factors for water regimes before the cultivation period, on page 5.50", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.525Z", + "last_change_date": "2022-03-14T08:02:45.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8853, + "fields": { + "EF_ID": 415842, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFp, disaggregated case) for water regimes before the cultivation period", + "Technology_Practices": "", + "Parameter_Conditions": "Water regime prior to rice cultivation: flooded pre-season (>30 days)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.90 (1.65 - 2.18)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.13 - Default CH4 emission scaling factors for water regimes before the cultivation period, on page 5.50", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Short pre-season flooding periods of less than 30 d are not considered in selection of SFp.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.592Z", + "last_change_date": "2022-03-14T08:02:45.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8854, + "fields": { + "EF_ID": 415843, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default CH4 emission scaling factors (SFp, aggregated case) for water regimes before the cultivation period", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.22 (1.07 - 1.40)", + "Unit": "No dimension", + "Equation": "Equation 5.2 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.13 - Default CH4 emission scaling factors for water regimes before the cultivation period, on page 5.50", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.659Z", + "last_change_date": "2022-03-14T08:02:45.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8855, + "fields": { + "EF_ID": 415844, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default conversion factor for different types of organic amendment", + "Technology_Practices": "Organic amendment: Straw incorporated shortly (<30 days) before cultivation. Straw application means that straw is incorporated into the soil, it does not include case that straw just placed on the soil surface, nor that straw was burnt on the field.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1 (0.97 - 1.04)", + "Unit": "No dimension", + "Equation": "Equation 5.3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.14 - Default conversion factor for different types of organic amendment, on page 5.51", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.746Z", + "last_change_date": "2022-03-14T08:02:45.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8856, + "fields": { + "EF_ID": 415845, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default conversion factor for different types of organic amendment", + "Technology_Practices": "Organic amendment: Straw incorporated long (>30 days) before cultivation. Straw application means that straw is incorporated into the soil, it does not include case that straw just placed on the soil surface, nor that straw was burnt on the field.", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29 (0.20 - 0.40)", + "Unit": "No dimension", + "Equation": "Equation 5.3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.14 - Default conversion factor for different types of organic amendment, on page 5.51", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.825Z", + "last_change_date": "2022-03-14T08:02:45.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8857, + "fields": { + "EF_ID": 415846, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default conversion factor for different types of organic amendment", + "Technology_Practices": "Organic amendment: Compost", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05 (0.01 - 0.08)", + "Unit": "No dimension", + "Equation": "Equation 5.3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.14 - Default conversion factor for different types of organic amendment, on page 5.51", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.892Z", + "last_change_date": "2022-03-14T08:02:45.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8858, + "fields": { + "EF_ID": 415847, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default conversion factor for different types of organic amendment", + "Technology_Practices": "Organic amendment: Farm yard manure", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14 (0.07 - 0.20)", + "Unit": "No dimension", + "Equation": "Equation 5.3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.14 - Default conversion factor for different types of organic amendment, on page 5.51", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:45.958Z", + "last_change_date": "2022-03-14T08:02:45.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8859, + "fields": { + "EF_ID": 415848, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default conversion factor for different types of organic amendment", + "Technology_Practices": "Organic amendment: Green manure", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50 (0.30 - 0.60)", + "Unit": "No dimension", + "Equation": "Equation 5.3 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C7, Page A1.63 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.14 - Default conversion factor for different types of organic amendment, on page 5.51", + "Technical_Reference": "Yan, X., Yagi, K., Akiyama, H. and Akimoto, H. (2005). Statistical analysis of the major variables controlling methane emission from rice fields. Global Change Biology 11, 1131-1141, doi: 10/1111/j.1365-2486.2005.00976.x.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.073Z", + "last_change_date": "2022-03-14T08:02:46.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8860, + "fields": { + "EF_ID": 415880, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Mature swine - confinement", + "Parameter_Conditions": "Main category: Swine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70 - 80", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.150Z", + "last_change_date": "2022-03-14T08:02:46.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8861, + "fields": { + "EF_ID": 415881, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Growing swine - confinement", + "Parameter_Conditions": "Main category: Swine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80 - 90", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.225Z", + "last_change_date": "2022-03-14T08:02:46.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8862, + "fields": { + "EF_ID": 415882, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Swine - free range", + "Parameter_Conditions": "Main category: Swine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50 - 70", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The range in digestibility of feed consumed by free-range swine is extremely variable due to the selective nature of these diets. Often it is likely that the amount of manure produced in these classes will be limited by the amount of feed available for consumption as opposed to its degree of digestibility. In instances where feed is not limiting and high quality feed sources are readily accessible for consumption, digestibility may approach values that are similar to those measured under confinement conditions.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.300Z", + "last_change_date": "2022-03-14T08:02:46.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8863, + "fields": { + "EF_ID": 415883, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Feedlot animals fed with >90% concentrate diet", + "Parameter_Conditions": "Main category: Cattle and other ruminants", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75 - 85", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.450Z", + "last_change_date": "2022-03-14T08:02:46.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8864, + "fields": { + "EF_ID": 415884, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Pasture fed animals", + "Parameter_Conditions": "Main category: Cattle and other ruminants", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55 - 75", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.525Z", + "last_change_date": "2022-03-14T08:02:46.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8865, + "fields": { + "EF_ID": 415885, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Animals fed - low quality forage", + "Parameter_Conditions": "Main category: Cattle and other ruminants", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45 - 55", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.618Z", + "last_change_date": "2022-03-14T08:02:46.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8866, + "fields": { + "EF_ID": 415886, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Broiler Chickens - confinement", + "Parameter_Conditions": "Main category: Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85 - 93", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.709Z", + "last_change_date": "2022-03-14T08:02:46.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8867, + "fields": { + "EF_ID": 415887, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Layer Hens - confinement", + "Parameter_Conditions": "Main category: Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70 - 80", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.817Z", + "last_change_date": "2022-03-14T08:02:46.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8868, + "fields": { + "EF_ID": 415888, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Poultry - free range", + "Parameter_Conditions": "Main category: Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55 - 90", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The range in digestibility of feed consumed by free-range poultry is extremely variable due to the selective nature of these diets. Often it is likely that the amount of manure produced in these classes will be limited by the amount of feed available for consumption as opposed to its degree of digestibility. In instances where feed is not limiting and high quality feed sources are readily accessible for consumption, digestibility may approach values that are similar to those measured under confinement conditions.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.892Z", + "last_change_date": "2022-03-14T08:02:46.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8869, + "fields": { + "EF_ID": 415889, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Turkeys - confinement", + "Parameter_Conditions": "Main category: Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85 - 93", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:46.967Z", + "last_change_date": "2022-03-14T08:02:46.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8870, + "fields": { + "EF_ID": 415890, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Representative feed digestability (DE%)", + "Technology_Practices": "Class: Geese - confinement", + "Parameter_Conditions": "Main category: Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80 - 90", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.2- Representative feed digestibility for various livestock categories, on page 10.14", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.042Z", + "last_change_date": "2022-03-14T08:02:47.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8871, + "fields": { + "EF_ID": 415891, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Coefficients for calculating net energy for maintenance ( NEm )", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Cattle/Buffalo (non-lactating cows, steers and juveniles)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.322", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.4 - Coefficients for calculating net energy for maintenance ( NEm ), on page 10.16", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.134Z", + "last_change_date": "2022-03-14T08:02:47.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8872, + "fields": { + "EF_ID": 415892, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Coefficients for calculating net energy for maintenance ( NEm )", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Cattle/buffalo (lactating cows)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.386", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.4 - Coefficients for calculating net energy for maintenance ( NEm ), on page 10.16", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is 20% higher for maintenance during lactation", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.229Z", + "last_change_date": "2022-03-14T08:02:47.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8873, + "fields": { + "EF_ID": 415893, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Coefficients for calculating net energy for maintenance ( NEm )", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Cattle/buffalo (bulls)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.4 - Coefficients for calculating net energy for maintenance ( NEm ), on page 10.16", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is 15% higher for maintenance of intact males", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.292Z", + "last_change_date": "2022-03-14T08:02:47.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8874, + "fields": { + "EF_ID": 415894, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Coefficients for calculating net energy for maintenance ( NEm )", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (lamb to 1 year)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.236", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.4 - Coefficients for calculating net energy for maintenance ( NEm ), on page 10.16", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value can be increased by 15% for intact males", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.367Z", + "last_change_date": "2022-03-14T08:02:47.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8875, + "fields": { + "EF_ID": 415895, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Coefficients for calculating net energy for maintenance ( NEm )", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (older than 1 year)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.217", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.4 - Coefficients for calculating net energy for maintenance ( NEm ), on page 10.16", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value can be increased by 15% for intact males.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.442Z", + "last_change_date": "2022-03-14T08:02:47.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8876, + "fields": { + "EF_ID": 415896, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Activity coefficients corresponding to animal`s feeding situation (Ca)", + "Technology_Practices": "Situation: Stall - Animals are confined to a small area (i.e., tethered, pen, barn) with the result that they expend very little or no energy to acquire feed.", + "Parameter_Conditions": "Animal category: Cattle and Buffalo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.5 - Activity coefficients corresponding to animal`s feeding situation, on page 10.17", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.525Z", + "last_change_date": "2022-03-14T08:02:47.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8877, + "fields": { + "EF_ID": 415897, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Activity coefficients corresponding to animal`s feeding situation (Ca)", + "Technology_Practices": "Situation: Pasture - Animals are confined in areas with sufficient forage requiring modest energy expense to acquire feed.", + "Parameter_Conditions": "Animal category: Cattle and Buffalo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.5 - Activity coefficients corresponding to animal`s feeding situation, on page 10.17", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.623Z", + "last_change_date": "2022-03-14T08:02:47.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8878, + "fields": { + "EF_ID": 415898, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Activity coefficients corresponding to animal`s feeding situation (Ca)", + "Technology_Practices": "Situation: Grazing large areas - Animals graze in open range land or hilly terrain and expend significant energy to acquire feed.", + "Parameter_Conditions": "Animal category: Cattle and Buffalo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.5 - Activity coefficients corresponding to animal`s feeding situation, on page 10.17", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.700Z", + "last_change_date": "2022-03-14T08:02:47.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8879, + "fields": { + "EF_ID": 415899, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Activity coefficients corresponding to animal`s feeding situation (Ca)", + "Technology_Practices": "Situation: Housed ewes - Animals are confined due to pregnancy in final trimester (50 days).", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.5 - Activity coefficients corresponding to animal`s feeding situation, on page 10.17", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.784Z", + "last_change_date": "2022-03-14T08:02:47.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8880, + "fields": { + "EF_ID": 415900, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Activity coefficients corresponding to animal`s feeding situation (Ca)", + "Technology_Practices": "Situation: Grazing flat pasture - Animals walk up to 1000 meters per day and expend very little energy to acquire feed.", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0107", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.5 - Activity coefficients corresponding to animal`s feeding situation, on page 10.17", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.859Z", + "last_change_date": "2022-03-14T08:02:47.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8881, + "fields": { + "EF_ID": 415901, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Activity coefficients corresponding to animal`s feeding situation (Ca)", + "Technology_Practices": "Situation: Grazing hilly pasture - Animals walk up to 5,000 meters per day and expend significant energy to acquire feed.", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.5 - Activity coefficients corresponding to animal`s feeding situation, on page 10.17", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:47.958Z", + "last_change_date": "2022-03-14T08:02:47.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8882, + "fields": { + "EF_ID": 415902, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Activity coefficients corresponding to animal`s feeding situation (Ca)", + "Technology_Practices": "Situation: Housed fattening lambs - Animals are housed for fattening.", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0067", + "Unit": "MJ/d/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.5 - Activity coefficients corresponding to animal`s feeding situation, on page 10.17", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.042Z", + "last_change_date": "2022-03-14T08:02:48.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8883, + "fields": { + "EF_ID": 415903, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants a for use in calculating NEg for Sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (intact males)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "MJ/kg", + "Equation": "Equation 10.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.6 - Constants for use in calculating NEg for Sheep, on page 10.18", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.117Z", + "last_change_date": "2022-03-14T08:02:48.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8884, + "fields": { + "EF_ID": 415904, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants a for use in calculating NEg for Sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (castrates)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.4", + "Unit": "MJ/kg", + "Equation": "Equation 10.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.6 - Constants for use in calculating NEg for Sheep, on page 10.18", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.192Z", + "last_change_date": "2022-03-14T08:02:48.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8885, + "fields": { + "EF_ID": 415905, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants a for use in calculating NEg for Sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (females)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "MJ/kg", + "Equation": "Equation 10.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.6 - Constants for use in calculating NEg for Sheep, on page 10.18", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.259Z", + "last_change_date": "2022-03-14T08:02:48.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8886, + "fields": { + "EF_ID": 415906, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants b for use in calculating NEg for Sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (intact males)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "MJ/kg^2", + "Equation": "Equation 10.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.6 - Constants for use in calculating NEg for Sheep, on page 10.18", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.353Z", + "last_change_date": "2022-03-14T08:02:48.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8887, + "fields": { + "EF_ID": 415907, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants b for use in calculating NEg for Sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (castrates)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "MJ/kg^2", + "Equation": "Equation 10.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.6 - Constants for use in calculating NEg for Sheep, on page 10.18", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.459Z", + "last_change_date": "2022-03-14T08:02:48.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8888, + "fields": { + "EF_ID": 415908, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants b for use in calculating NEg for Sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (females)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "MJ/kg^2", + "Equation": "Equation 10.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.6 - Constants for use in calculating NEg for Sheep, on page 10.18", + "Technical_Reference": "Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.534Z", + "last_change_date": "2022-03-14T08:02:48.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8889, + "fields": { + "EF_ID": 415909, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants for use in calculating NEp in Equation 10.13 (Cpregnancy)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Cattle and Buffalo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "No dimension", + "Equation": "Equation 10.13 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.7 - Constants for use in calculating NEp in Equation 10.13, on page 10.20", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.609Z", + "last_change_date": "2022-03-14T08:02:48.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8890, + "fields": { + "EF_ID": 415910, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants for use in calculating NEp in Equation 10.13 (Cpregnancy)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep - Single birth", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.077", + "Unit": "No dimension", + "Equation": "Equation 10.13 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.7 - Constants for use in calculating NEp in Equation 10.13, on page 10.20", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.684Z", + "last_change_date": "2022-03-14T08:02:48.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8891, + "fields": { + "EF_ID": 415911, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants for use in calculating NEp in Equation 10.13 (Cpregnancy)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep - Double birth (twins)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.126", + "Unit": "No dimension", + "Equation": "Equation 10.13 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.7 - Constants for use in calculating NEp in Equation 10.13, on page 10.20", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.780Z", + "last_change_date": "2022-03-14T08:02:48.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8892, + "fields": { + "EF_ID": 415912, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Constants for use in calculating NEp in Equation 10.13 (Cpregnancy)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep - Triple birth or more (triplets)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "No dimension", + "Equation": "Equation 10.13 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.7 - Constants for use in calculating NEp in Equation 10.13, on page 10.20", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC Agricultural and Food Research Council (AFRC) Technical Committee on Responses to Nutrients (1993). Energy and Protein Requirements of Ruminants. 24-159, CAB International, Wallingford, U.K.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.859Z", + "last_change_date": "2022-03-14T08:02:48.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8893, + "fields": { + "EF_ID": 415913, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NEma content of typical diets fed to Cattle for estimation of dry matter intake in Equations 10.17 and 10.18 of 2006 Guidelines", + "Technology_Practices": "Diet type: High grain diet > 90%", + "Parameter_Conditions": "Animal category: Cattle", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.5 - 8.5", + "Unit": "MJ/kg d.m.", + "Equation": "Equations 10.17 and 10.18 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.8 - Examples of NEma content of typical diets fed to Cattle for estimation of dry matter intake in Equations 10.17 and 10.18, on page 10.23", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates obtained from predictive models in NRC (1996), NEma can also be estimated using the equation: NEma = REM x 18.45 x DE% / 100.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:48.942Z", + "last_change_date": "2022-03-14T08:02:48.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8894, + "fields": { + "EF_ID": 415914, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NEma content of typical diets fed to Cattle for estimation of dry matter intake in Equations 10.17 and 10.18 of 2006 Guidelines", + "Technology_Practices": "Diet type: High quality forage (e.g., vegetative legumes & grasses )", + "Parameter_Conditions": "Animal category: Cattle", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5 - 7.5", + "Unit": "MJ/kg d.m.", + "Equation": "Equations 10.17 and 10.18 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.8 - Examples of NEma content of typical diets fed to Cattle for estimation of dry matter intake in Equations 10.17 and 10.18, on page 10.23", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates obtained from predictive models in NRC (1996), NEma can also be estimated using the equation: NEma = REM x 18.45 x DE% / 100.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.026Z", + "last_change_date": "2022-03-14T08:02:49.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8895, + "fields": { + "EF_ID": 415915, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NEma content of typical diets fed to Cattle for estimation of dry matter intake in Equations 10.17 and 10.18 of 2006 Guidelines", + "Technology_Practices": "Diet type: Moderate quality forage (e.g., mid season legume & grasses)", + "Parameter_Conditions": "Animal category: Cattle", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.5 - 6.5", + "Unit": "MJ/kg d.m.", + "Equation": "Equations 10.17 and 10.18 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.8 - Examples of NEma content of typical diets fed to Cattle for estimation of dry matter intake in Equations 10.17 and 10.18, on page 10.23", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates obtained from predictive models in NRC (1996), NEma can also be estimated using the equation: NEma = REM x 18.45 x DE% / 100.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.131Z", + "last_change_date": "2022-03-14T08:02:49.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8896, + "fields": { + "EF_ID": 415916, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "NEma content of typical diets fed to Cattle for estimation of dry matter intake in Equations 10.17 and 10.18 of 2006 Guidelines", + "Technology_Practices": "Diet type: Low quality forage (e.g., straws, mature grasses)", + "Parameter_Conditions": "Animal category: Cattle", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5 - 5.5", + "Unit": "MJ/kg d.m.", + "Equation": "Equations 10.17 and 10.18 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.8 - Examples of NEma content of typical diets fed to Cattle for estimation of dry matter intake in Equations 10.17 and 10.18, on page 10.23", + "Technical_Reference": "National Research Council (NRC) (1996). Nutrient Requirements of Beef Cattle, 7th Revised Ed., Nat. Acad. Press, Washington., DC", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates obtained from predictive models in NRC (1996), NEma can also be estimated using the equation: NEma = REM x 18.45 x DE% / 100.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.217Z", + "last_change_date": "2022-03-14T08:02:49.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8897, + "fields": { + "EF_ID": 415917, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo (liveweight = 300 kg)", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Gibbs, M.J. and Johnson, D.E. (1993). Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.300Z", + "last_change_date": "2022-03-14T08:02:49.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8898, + "fields": { + "EF_ID": 415918, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (liveweight = 65 kg)", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.376Z", + "last_change_date": "2022-03-14T08:02:49.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8899, + "fields": { + "EF_ID": 415919, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats (liveweight = 40 kg)", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.475Z", + "last_change_date": "2022-03-14T08:02:49.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8900, + "fields": { + "EF_ID": 415920, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels (liveweight = 570 kg)", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Gibbs, M.J. and Johnson, D.E. (1993). Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.567Z", + "last_change_date": "2022-03-14T08:02:49.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8901, + "fields": { + "EF_ID": 415921, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (liveweight = 550 kg)", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.651Z", + "last_change_date": "2022-03-14T08:02:49.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8902, + "fields": { + "EF_ID": 415922, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mules and Asses (liveweight = 245 kg)", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.734Z", + "last_change_date": "2022-03-14T08:02:49.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8903, + "fields": { + "EF_ID": 415923, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Deer (liveweight = 120 kg)", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Clark, H., Brookes, I. and Walcroft, A. (2003). Enteric methane emissions from New Zealand ruminants 1999-2001 calculated using an IPCC Tier 2 approach. http://www.climatechange.govt.nz/resources/reports/nir-apr03/.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.834Z", + "last_change_date": "2022-03-14T08:02:49.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8904, + "fields": { + "EF_ID": 415924, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Alpacas (liveweight = 65 kg)", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Pinares-Patino, C.S., Ulyatt, M.J., Waghorn, G.C., Lassey, K.R., Barry, T.N., Holmes, C.W. and Johnson, D.E. (2003). Methane emission by alpaca and sheep fed on Lucerne hay or grazed on pastures of perennial ryegrass/white clover or birds foot trefoil. J. Agric. Sci. 140:215-226.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:49.926Z", + "last_change_date": "2022-03-14T08:02:49.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8905, + "fields": { + "EF_ID": 415925, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Country type: Developed country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.001Z", + "last_change_date": "2022-03-14T08:02:50.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8906, + "fields": { + "EF_ID": 415926, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo (liveweight = 300 kg)", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Gibbs, M.J. and Johnson, D.E. (1993). Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.076Z", + "last_change_date": "2022-03-14T08:02:50.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8907, + "fields": { + "EF_ID": 415927, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep (liveweight = 45 kg)", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.162Z", + "last_change_date": "2022-03-14T08:02:50.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8908, + "fields": { + "EF_ID": 415928, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats (liveweight = 40 kg)", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.242Z", + "last_change_date": "2022-03-14T08:02:50.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8909, + "fields": { + "EF_ID": 415929, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels (liveweight = 570 kg)", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Gibbs, M.J. and Johnson, D.E. (1993). Livestock Emissions. In: International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.317Z", + "last_change_date": "2022-03-14T08:02:50.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8910, + "fields": { + "EF_ID": 415930, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (liveweight = 550 kg)", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.392Z", + "last_change_date": "2022-03-14T08:02:50.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8911, + "fields": { + "EF_ID": 415931, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mules and Asses (liveweight = 245 kg)", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.489Z", + "last_change_date": "2022-03-14T08:02:50.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8912, + "fields": { + "EF_ID": 415932, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Deer (liveweight = 120 kg)", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Clark, H., Brookes, I. and Walcroft, A. (2003). Enteric methane emissions from New Zealand ruminants 1999-2001 calculated using an IPCC Tier 2 approach. http://www.climatechange.govt.nz/resources/reports/nir-apr03/.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.567Z", + "last_change_date": "2022-03-14T08:02:50.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8913, + "fields": { + "EF_ID": 415933, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Alpacas (liveweight = 65 kg)", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Pinares-Patino, C.S., Ulyatt, M.J., Waghorn, G.C., Lassey, K.R., Barry, T.N., Holmes, C.W. and Johnson, D.E. (2003). Methane emission by alpaca and sheep fed on Lucerne hay or grazed on pastures of perennial ryegrass/white clover or birds foot trefoil. J. Agric. Sci. 140:215-226.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.642Z", + "last_change_date": "2022-03-14T08:02:50.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8914, + "fields": { + "EF_ID": 415934, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Enteric fermentation emission factors for Tier 1 method", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Country type: Developing country", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.10 - Enteric fermentation emission factors for Tier 1 method, on page 10.28", + "Technical_Reference": "Crutzen, P.J., Aselmann, I. and Seiler, W. (1986). Methane Production by Domestic Animals, Wild Ruminants, Other Herbivorous Fauna, and Humans, Tellus 38B:271-284.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "All estimates have an uncertainty of +/- 30-50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.709Z", + "last_change_date": "2022-03-14T08:02:50.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8915, + "fields": { + "EF_ID": 415935, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Highly productive commercialized dairy sector feeding high quality forage and grain. Separate beef cow herd, primarily grazing with feed supplements seasonally. Fast-growing beef steers/heifers finished in feedlots on grain. Dairy cows are a small part of the population.", + "Parameter_Conditions": "Animal category: Cattle (Dairy)", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Average milk production of 8,400 kg head-1 yr-1.", + "Value": "128", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "IPCC Expert Group, values represent averages within region, where applicable the use of more specific regional milk production data is encouraged. Existing values were derived using Tier 2 method and the data in Tables 10 A.1 and 10A. 2 of the 2006 Guidelines.", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.799Z", + "last_change_date": "2022-03-14T08:02:50.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8916, + "fields": { + "EF_ID": 415936, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Highly productive commercialized dairy sector feeding high quality forage and grain. Separate beef cow herd, primarily grazing with feed supplements seasonally. Fast-growing beef steers/heifers finished in feedlots on grain. Dairy cows are a small part of the population.", + "Parameter_Conditions": "Animal category: Cattle (Other Cattle)", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "Includes beef cows, bulls, calves, growing steers/heifers, and feedlot cattle.", + "Value": "53", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.876Z", + "last_change_date": "2022-03-14T08:02:50.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8917, + "fields": { + "EF_ID": 415937, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Highly productive commercialised dairy sector feeding high quality forage and grain. Dairy cows also used for beef calf production. Very small dedicated beef cow herd. Minor amount of feedlot feeding with grains.", + "Parameter_Conditions": "Animal category: Cattle (Dairy)", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Average milk production of 6,000 kg head-1 yr-1.", + "Value": "117", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "IPCC Expert Group, values represent averages within region, where applicable the use of more specific regional milk production data is encouraged. Existing values were derived using Tier 2 method and the data in Tables 10 A.1 and 10A. 2 of the 2006 Guidelines.", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:50.942Z", + "last_change_date": "2022-03-14T08:02:50.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8918, + "fields": { + "EF_ID": 415938, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Highly productive commercialised dairy sector feeding high quality forage and grain. Dairy cows also used for beef calf production. Very small dedicated beef cow herd. Minor amount of feedlot feeding with grains.", + "Parameter_Conditions": "Animal category: Cattle (Other Cattle)", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "Includes bulls, calves, and growing steers/heifers.", + "Value": "57", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.034Z", + "last_change_date": "2022-03-14T08:02:51.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8919, + "fields": { + "EF_ID": 415939, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector feeding mostly forages. Separate beef cow herd, primarily grazing. Minor amount of feedlot feeding with grains.", + "Parameter_Conditions": "Animal category: Cattle (Dairy)", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Average milk production of 2,550 kg head-1 yr-1.", + "Value": "99", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "IPCC Expert Group, values represent averages within region, where applicable the use of more specific regional milk production data is encouraged. Existing values were derived using Tier 2 method and the data in Tables 10 A.1 and 10A. 2 of the 2006 Guidelines.", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.117Z", + "last_change_date": "2022-03-14T08:02:51.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8920, + "fields": { + "EF_ID": 415940, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector feeding mostly forages. Separate beef cow herd, primarily grazing. Minor amount of feedlot feeding with grains.", + "Parameter_Conditions": "Animal category: Cattle (Other Cattle)", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Includes beef cows, bulls, and young.", + "Value": "58", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.209Z", + "last_change_date": "2022-03-14T08:02:51.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8921, + "fields": { + "EF_ID": 415941, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing. Separate beef cow herd, primarily grazing rangelands of widely varying quality. Growing amount of feedlot feeding with grains. Dairy cows are a small part of the population.", + "Parameter_Conditions": "Animal category: Cattle (Dairy)", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Average milk production of 2,200 kg head-1 yr-1.", + "Value": "100", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "IPCC Expert Group, values represent averages within region, where applicable the use of more specific regional milk production data is encouraged. Existing values were derived using Tier 2 method and the data in Tables 10 A.1 and 10A. 2 of the 2006 Guidelines.", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.301Z", + "last_change_date": "2022-03-14T08:02:51.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8922, + "fields": { + "EF_ID": 415942, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing. Separate beef cow herd, primarily grazing rangelands of widely varying quality. Growing amount of feedlot feeding with grains. Dairy cows are a small part of the population.", + "Parameter_Conditions": "Animal category: Cattle (Other Cattle)", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "Includes beef cows, bulls, and young.", + "Value": "60", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.409Z", + "last_change_date": "2022-03-14T08:02:51.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8923, + "fields": { + "EF_ID": 415943, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing. Separate beef cow herd grazing pastures and rangelands. Minor amount of feedlot feeding with grains. Growing non-dairy cattle comprise a large portion of the population.", + "Parameter_Conditions": "Animal category: Cattle (Dairy)", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Average milk production of 800 kg head-1 yr-1", + "Value": "72", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "IPCC Expert Group, values represent averages within region, where applicable the use of more specific regional milk production data is encouraged. Existing values were derived using Tier 2 method and the data in Tables 10 A.1 and 10A. 2 of the 2006 Guidelines.", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.484Z", + "last_change_date": "2022-03-14T08:02:51.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8924, + "fields": { + "EF_ID": 415944, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing. Separate beef cow herd grazing pastures and rangelands. Minor amount of feedlot feeding with grains. Growing non-dairy cattle comprise a large portion of the population.", + "Parameter_Conditions": "Animal category: Cattle (Other Cattle)", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "Includes beef cows, bulls, and young.", + "Value": "56", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.579Z", + "last_change_date": "2022-03-14T08:02:51.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8925, + "fields": { + "EF_ID": 415945, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Small commercialised dairy sector. Most cattle are multi-purpose, providing draft power and some milk within farming regions. Small grazing population. Cattle of all types are smaller than those found in most other regions.", + "Parameter_Conditions": "Animal category: Cattle (Dairy)", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "Average milk production of 1,650 kg head-1 yr-1", + "Value": "68", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "IPCC Expert Group, values represent averages within region, where applicable the use of more specific regional milk production data is encouraged. Existing values were derived using Tier 2 method and the data in Tables 10 A.1 and 10A. 2 of the 2006 Guidelines.", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.658Z", + "last_change_date": "2022-03-14T08:02:51.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8926, + "fields": { + "EF_ID": 415946, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Small commercialised dairy sector. Most cattle are multi-purpose, providing draft power and some milk within farming regions. Small grazing population. Cattle of all types are smaller than those found in most other regions.", + "Parameter_Conditions": "Animal category: Cattle (Other Cattle)", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "Includes multi-purpose cows, bulls, and young", + "Value": "47", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.726Z", + "last_change_date": "2022-03-14T08:02:51.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8927, + "fields": { + "EF_ID": 415947, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing with low production per cow. Most cattle are multi-purpose, providing draft power and some milk within farming regions. Some cattle graze over very large areas. Cattle are smaller than those found in most other regions.", + "Parameter_Conditions": "Animal category: Cattle (Dairy)", + "Regional_Conditions": "Region: Africa and Middle East", + "Control_Technologies": "", + "Other_Properties": "Average milk production of 475 kg head-1 yr-1", + "Value": "46", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "IPCC Expert Group, values represent averages within region, where applicable the use of more specific regional milk production data is encouraged. Existing values were derived using Tier 2 method and the data in Tables 10 A.1 and 10A. 2 of the 2006 Guidelines.", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.813Z", + "last_change_date": "2022-03-14T08:02:51.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8928, + "fields": { + "EF_ID": 415948, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on grazing with low production per cow. Most cattle are multi-purpose, providing draft power and some milk within farming regions. Some cattle graze over very large areas. Cattle are smaller than those found in most other regions.", + "Parameter_Conditions": "Animal category: Cattle (Other Cattle)", + "Regional_Conditions": "Region: Africa and Middle East", + "Control_Technologies": "", + "Other_Properties": "Includes multi-purpose cows, bulls, and young", + "Value": "31", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.892Z", + "last_change_date": "2022-03-14T08:02:51.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8929, + "fields": { + "EF_ID": 415949, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on crop by-product feeding with low production per cow. Most bullocks provide draft power and cows provide some milk in farming regions. Small grazing population. Cattle in this region are the smallest compared to cattle found in all other regions.", + "Parameter_Conditions": "Animal category: Cattle (Dairy)", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "Average milk production of 900 kg head-1 yr-1", + "Value": "58", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "IPCC Expert Group, values represent averages within region, where applicable the use of more specific regional milk production data is encouraged. Existing values were derived using Tier 2 method and the data in Tables 10 A.1 and 10A. 2 of the 2006 Guidelines.", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:51.967Z", + "last_change_date": "2022-03-14T08:02:51.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8930, + "fields": { + "EF_ID": 415950, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Tier 1 enteric fermentation emission factors for Cattle", + "Technology_Practices": "Commercialised dairy sector based on crop by-product feeding with low production per cow. Most bullocks provide draft power and cows provide some milk in farming regions. Small grazing population. Cattle in this region are the smallest compared to cattle found in all other regions.", + "Parameter_Conditions": "Animal category: Cattle (Other Cattle)", + "Regional_Conditions": "Region: Indian Subcontinent", + "Control_Technologies": "", + "Other_Properties": "Includes cows, bulls, and young. Young comprise a large portion of the population", + "Value": "27", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.19 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A1, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.11 - Tier 1 enteric fermentation emission factors for Cattle, on page 10.29", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors should be derived on the basis of the characteristics of the cattle and feed of interest and need not be restricted solely to within regional characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.073Z", + "last_change_date": "2022-03-14T08:02:52.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8931, + "fields": { + "EF_ID": 415951, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Cattle/buffalo methane conversion factor (Ym )", + "Technology_Practices": "Feedlot fed cattle (when fed diets contain 90 percent or more concentrates).", + "Parameter_Conditions": "Animal category: Cattle/Bufallo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0 +/- 1.0", + "Unit": "%", + "Equation": "Equation 10.21 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.12 - Cattle/buffalo CH4 conversion factors (Ym ), on page 10.30", + "Technical_Reference": "IPCC Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.150Z", + "last_change_date": "2022-03-14T08:02:52.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8932, + "fields": { + "EF_ID": 415952, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Cattle/buffalo methane conversion factor (Ym )", + "Technology_Practices": "Dairy Cows (Cattle and Buffalo) and their young", + "Parameter_Conditions": "Animal category: Cattle/Bufallo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5 +/- 1.0", + "Unit": "%", + "Equation": "Equation 10.21 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.12 - Cattle/buffalo CH4 conversion factors (Ym ), on page 10.30", + "Technical_Reference": "IPCC Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.226Z", + "last_change_date": "2022-03-14T08:02:52.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8933, + "fields": { + "EF_ID": 415953, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Cattle/buffalo methane conversion factor (Ym )", + "Technology_Practices": "Other Cattle and Buffaloes that are primarily fed low quality crop residues and by-products", + "Parameter_Conditions": "Animal category: Cattle/Bufallo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5 +/- 1.0", + "Unit": "%", + "Equation": "Equation 10.21 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.12 - Cattle/buffalo CH4 conversion factors (Ym ), on page 10.30", + "Technical_Reference": "IPCC Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.292Z", + "last_change_date": "2022-03-14T08:02:52.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8934, + "fields": { + "EF_ID": 415954, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Cattle/buffalo methane conversion factor (Ym )", + "Technology_Practices": "Other Cattle or Buffalo – grazing", + "Parameter_Conditions": "Animal category: Cattle/Bufallo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5 +/- 1.0", + "Unit": "%", + "Equation": "Equation 10.21 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.12 - Cattle/buffalo CH4 conversion factors (Ym ), on page 10.30", + "Technical_Reference": "IPCC Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.391Z", + "last_change_date": "2022-03-14T08:02:52.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8935, + "fields": { + "EF_ID": 415955, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Sheep methane conversion factor (Ym )", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep - Lambs (<1 year old)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.5 +/- 1.0", + "Unit": "%", + "Equation": "Equation 10.21 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.13 - Sheep CH4 conversion factors (Ym ), on page 10.31", + "Technical_Reference": "IPCC Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.475Z", + "last_change_date": "2022-03-14T08:02:52.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8936, + "fields": { + "EF_ID": 415956, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Sheep methane conversion factor (Ym )", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mature Sheep", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5 +/- 1.0", + "Unit": "%", + "Equation": "Equation 10.21 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.13 - Sheep CH4 conversion factors (Ym ), on page 10.31", + "Technical_Reference": "IPCC Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.542Z", + "last_change_date": "2022-03-14T08:02:52.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8937, + "fields": { + "EF_ID": 415957, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.625Z", + "last_change_date": "2022-03-14T08:02:52.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8938, + "fields": { + "EF_ID": 415958, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.700Z", + "last_change_date": "2022-03-14T08:02:52.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8939, + "fields": { + "EF_ID": 415959, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.802Z", + "last_change_date": "2022-03-14T08:02:52.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8940, + "fields": { + "EF_ID": 415960, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.884Z", + "last_change_date": "2022-03-14T08:02:52.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8941, + "fields": { + "EF_ID": 415961, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:52.977Z", + "last_change_date": "2022-03-14T08:02:52.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8942, + "fields": { + "EF_ID": 415962, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.067Z", + "last_change_date": "2022-03-14T08:02:53.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8943, + "fields": { + "EF_ID": 415963, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.170Z", + "last_change_date": "2022-03-14T08:02:53.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8944, + "fields": { + "EF_ID": 415964, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.284Z", + "last_change_date": "2022-03-14T08:02:53.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8945, + "fields": { + "EF_ID": 415965, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.380Z", + "last_change_date": "2022-03-14T08:02:53.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8946, + "fields": { + "EF_ID": 415966, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.468Z", + "last_change_date": "2022-03-14T08:02:53.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8947, + "fields": { + "EF_ID": 415967, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.565Z", + "last_change_date": "2022-03-14T08:02:53.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8948, + "fields": { + "EF_ID": 415968, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.651Z", + "last_change_date": "2022-03-14T08:02:53.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8949, + "fields": { + "EF_ID": 415969, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.748Z", + "last_change_date": "2022-03-14T08:02:53.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8950, + "fields": { + "EF_ID": 415970, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "89", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.834Z", + "last_change_date": "2022-03-14T08:02:53.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8951, + "fields": { + "EF_ID": 415971, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:53.933Z", + "last_change_date": "2022-03-14T08:02:53.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8952, + "fields": { + "EF_ID": 415972, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.018Z", + "last_change_date": "2022-03-14T08:02:54.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8953, + "fields": { + "EF_ID": 415973, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.142Z", + "last_change_date": "2022-03-14T08:02:54.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8954, + "fields": { + "EF_ID": 415974, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.226Z", + "last_change_date": "2022-03-14T08:02:54.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8955, + "fields": { + "EF_ID": 415975, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.318Z", + "last_change_date": "2022-03-14T08:02:54.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8956, + "fields": { + "EF_ID": 415976, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.401Z", + "last_change_date": "2022-03-14T08:02:54.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8957, + "fields": { + "EF_ID": 415977, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.494Z", + "last_change_date": "2022-03-14T08:02:54.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8958, + "fields": { + "EF_ID": 415978, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.576Z", + "last_change_date": "2022-03-14T08:02:54.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8959, + "fields": { + "EF_ID": 415979, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.670Z", + "last_change_date": "2022-03-14T08:02:54.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8960, + "fields": { + "EF_ID": 415980, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.768Z", + "last_change_date": "2022-03-14T08:02:54.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8961, + "fields": { + "EF_ID": 415981, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.871Z", + "last_change_date": "2022-03-14T08:02:54.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8962, + "fields": { + "EF_ID": 415982, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:54.968Z", + "last_change_date": "2022-03-14T08:02:54.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8963, + "fields": { + "EF_ID": 415983, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.073Z", + "last_change_date": "2022-03-14T08:02:55.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8964, + "fields": { + "EF_ID": 415984, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.160Z", + "last_change_date": "2022-03-14T08:02:55.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8965, + "fields": { + "EF_ID": 415985, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.258Z", + "last_change_date": "2022-03-14T08:02:55.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8966, + "fields": { + "EF_ID": 415986, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.343Z", + "last_change_date": "2022-03-14T08:02:55.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8967, + "fields": { + "EF_ID": 415987, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.441Z", + "last_change_date": "2022-03-14T08:02:55.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8968, + "fields": { + "EF_ID": 415988, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.527Z", + "last_change_date": "2022-03-14T08:02:55.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8969, + "fields": { + "EF_ID": 415989, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.626Z", + "last_change_date": "2022-03-14T08:02:55.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8970, + "fields": { + "EF_ID": 415990, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.710Z", + "last_change_date": "2022-03-14T08:02:55.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8971, + "fields": { + "EF_ID": 415991, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.810Z", + "last_change_date": "2022-03-14T08:02:55.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8972, + "fields": { + "EF_ID": 415992, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.893Z", + "last_change_date": "2022-03-14T08:02:55.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8973, + "fields": { + "EF_ID": 415993, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:55.986Z", + "last_change_date": "2022-03-14T08:02:55.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8974, + "fields": { + "EF_ID": 415994, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.068Z", + "last_change_date": "2022-03-14T08:02:56.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8975, + "fields": { + "EF_ID": 415995, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.161Z", + "last_change_date": "2022-03-14T08:02:56.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8976, + "fields": { + "EF_ID": 415996, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.243Z", + "last_change_date": "2022-03-14T08:02:56.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8977, + "fields": { + "EF_ID": 415997, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.338Z", + "last_change_date": "2022-03-14T08:02:56.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8978, + "fields": { + "EF_ID": 415998, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.435Z", + "last_change_date": "2022-03-14T08:02:56.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8979, + "fields": { + "EF_ID": 415999, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.538Z", + "last_change_date": "2022-03-14T08:02:56.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8980, + "fields": { + "EF_ID": 416000, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.617Z", + "last_change_date": "2022-03-14T08:02:56.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8981, + "fields": { + "EF_ID": 416001, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.749Z", + "last_change_date": "2022-03-14T08:02:56.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8982, + "fields": { + "EF_ID": 416002, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.835Z", + "last_change_date": "2022-03-14T08:02:56.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8983, + "fields": { + "EF_ID": 416003, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:56.933Z", + "last_change_date": "2022-03-14T08:02:56.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8984, + "fields": { + "EF_ID": 416004, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.018Z", + "last_change_date": "2022-03-14T08:02:57.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8985, + "fields": { + "EF_ID": 416005, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.119Z", + "last_change_date": "2022-03-14T08:02:57.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8986, + "fields": { + "EF_ID": 416006, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.202Z", + "last_change_date": "2022-03-14T08:02:57.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8987, + "fields": { + "EF_ID": 416007, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.302Z", + "last_change_date": "2022-03-14T08:02:57.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8988, + "fields": { + "EF_ID": 416008, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.377Z", + "last_change_date": "2022-03-14T08:02:57.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8989, + "fields": { + "EF_ID": 416009, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.470Z", + "last_change_date": "2022-03-14T08:02:57.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8990, + "fields": { + "EF_ID": 416010, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.552Z", + "last_change_date": "2022-03-14T08:02:57.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8991, + "fields": { + "EF_ID": 416011, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.653Z", + "last_change_date": "2022-03-14T08:02:57.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8992, + "fields": { + "EF_ID": 416012, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.735Z", + "last_change_date": "2022-03-14T08:02:57.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8993, + "fields": { + "EF_ID": 416013, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.829Z", + "last_change_date": "2022-03-14T08:02:57.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8994, + "fields": { + "EF_ID": 416014, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:57.910Z", + "last_change_date": "2022-03-14T08:02:57.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8995, + "fields": { + "EF_ID": 416015, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.005Z", + "last_change_date": "2022-03-14T08:02:58.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8996, + "fields": { + "EF_ID": 416016, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.102Z", + "last_change_date": "2022-03-14T08:02:58.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8997, + "fields": { + "EF_ID": 416017, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.207Z", + "last_change_date": "2022-03-14T08:02:58.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8998, + "fields": { + "EF_ID": 416018, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.302Z", + "last_change_date": "2022-03-14T08:02:58.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 8999, + "fields": { + "EF_ID": 416019, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.400Z", + "last_change_date": "2022-03-14T08:02:58.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9000, + "fields": { + "EF_ID": 416020, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.477Z", + "last_change_date": "2022-03-14T08:02:58.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9001, + "fields": { + "EF_ID": 416021, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.576Z", + "last_change_date": "2022-03-14T08:02:58.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9002, + "fields": { + "EF_ID": 416022, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.652Z", + "last_change_date": "2022-03-14T08:02:58.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9003, + "fields": { + "EF_ID": 416023, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.752Z", + "last_change_date": "2022-03-14T08:02:58.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9004, + "fields": { + "EF_ID": 416024, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.852Z", + "last_change_date": "2022-03-14T08:02:58.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9005, + "fields": { + "EF_ID": 416025, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:58.953Z", + "last_change_date": "2022-03-14T08:02:58.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9006, + "fields": { + "EF_ID": 416026, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.035Z", + "last_change_date": "2022-03-14T08:02:59.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9007, + "fields": { + "EF_ID": 416027, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.129Z", + "last_change_date": "2022-03-14T08:02:59.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9008, + "fields": { + "EF_ID": 416028, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.210Z", + "last_change_date": "2022-03-14T08:02:59.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9009, + "fields": { + "EF_ID": 416029, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.321Z", + "last_change_date": "2022-03-14T08:02:59.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9010, + "fields": { + "EF_ID": 416030, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.394Z", + "last_change_date": "2022-03-14T08:02:59.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9011, + "fields": { + "EF_ID": 416031, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.489Z", + "last_change_date": "2022-03-14T08:02:59.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9012, + "fields": { + "EF_ID": 416032, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid-based systems are commonly used for dairy cows and swine manure. Other cattle manure is usually managed as a solid and deposited on pastures or ranges.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: North America Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.569Z", + "last_change_date": "2022-03-14T08:02:59.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9013, + "fields": { + "EF_ID": 416033, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.665Z", + "last_change_date": "2022-03-14T08:02:59.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9014, + "fields": { + "EF_ID": 416034, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.736Z", + "last_change_date": "2022-03-14T08:02:59.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9015, + "fields": { + "EF_ID": 416035, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.802Z", + "last_change_date": "2022-03-14T08:02:59.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9016, + "fields": { + "EF_ID": 416036, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:02:59.907Z", + "last_change_date": "2022-03-14T08:02:59.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9017, + "fields": { + "EF_ID": 416037, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.002Z", + "last_change_date": "2022-03-14T08:03:00.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9018, + "fields": { + "EF_ID": 416038, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.077Z", + "last_change_date": "2022-03-14T08:03:00.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9019, + "fields": { + "EF_ID": 416039, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.185Z", + "last_change_date": "2022-03-14T08:03:00.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9020, + "fields": { + "EF_ID": 416040, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.260Z", + "last_change_date": "2022-03-14T08:03:00.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9021, + "fields": { + "EF_ID": 416041, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.327Z", + "last_change_date": "2022-03-14T08:03:00.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9022, + "fields": { + "EF_ID": 416042, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.420Z", + "last_change_date": "2022-03-14T08:03:00.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9023, + "fields": { + "EF_ID": 416043, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "51", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.494Z", + "last_change_date": "2022-03-14T08:03:00.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9024, + "fields": { + "EF_ID": 416044, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.561Z", + "last_change_date": "2022-03-14T08:03:00.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9025, + "fields": { + "EF_ID": 416045, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.654Z", + "last_change_date": "2022-03-14T08:03:00.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9026, + "fields": { + "EF_ID": 416046, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.727Z", + "last_change_date": "2022-03-14T08:03:00.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9027, + "fields": { + "EF_ID": 416047, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.794Z", + "last_change_date": "2022-03-14T08:03:00.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9028, + "fields": { + "EF_ID": 416048, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:00.905Z", + "last_change_date": "2022-03-14T08:03:00.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9029, + "fields": { + "EF_ID": 416049, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Western Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.027Z", + "last_change_date": "2022-03-14T08:03:01.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9030, + "fields": { + "EF_ID": 416050, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.085Z", + "last_change_date": "2022-03-14T08:03:01.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9031, + "fields": { + "EF_ID": 416051, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.173Z", + "last_change_date": "2022-03-14T08:03:01.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9032, + "fields": { + "EF_ID": 416052, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.252Z", + "last_change_date": "2022-03-14T08:03:01.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9033, + "fields": { + "EF_ID": 416053, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.325Z", + "last_change_date": "2022-03-14T08:03:01.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9034, + "fields": { + "EF_ID": 416054, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.424Z", + "last_change_date": "2022-03-14T08:03:01.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9035, + "fields": { + "EF_ID": 416055, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.502Z", + "last_change_date": "2022-03-14T08:03:01.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9036, + "fields": { + "EF_ID": 416056, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.567Z", + "last_change_date": "2022-03-14T08:03:01.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9037, + "fields": { + "EF_ID": 416057, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.659Z", + "last_change_date": "2022-03-14T08:03:01.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9038, + "fields": { + "EF_ID": 416058, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.744Z", + "last_change_date": "2022-03-14T08:03:01.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9039, + "fields": { + "EF_ID": 416059, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.825Z", + "last_change_date": "2022-03-14T08:03:01.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9040, + "fields": { + "EF_ID": 416060, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:01.928Z", + "last_change_date": "2022-03-14T08:03:01.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9041, + "fields": { + "EF_ID": 416061, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.002Z", + "last_change_date": "2022-03-14T08:03:02.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9042, + "fields": { + "EF_ID": 416062, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.092Z", + "last_change_date": "2022-03-14T08:03:02.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9043, + "fields": { + "EF_ID": 416063, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.221Z", + "last_change_date": "2022-03-14T08:03:02.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9044, + "fields": { + "EF_ID": 416064, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.286Z", + "last_change_date": "2022-03-14T08:03:02.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9045, + "fields": { + "EF_ID": 416065, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.350Z", + "last_change_date": "2022-03-14T08:03:02.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9046, + "fields": { + "EF_ID": 416066, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.439Z", + "last_change_date": "2022-03-14T08:03:02.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9047, + "fields": { + "EF_ID": 416067, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.519Z", + "last_change_date": "2022-03-14T08:03:02.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9048, + "fields": { + "EF_ID": 416068, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Western Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.584Z", + "last_change_date": "2022-03-14T08:03:02.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9049, + "fields": { + "EF_ID": 416069, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.682Z", + "last_change_date": "2022-03-14T08:03:02.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9050, + "fields": { + "EF_ID": 416070, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.769Z", + "last_change_date": "2022-03-14T08:03:02.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9051, + "fields": { + "EF_ID": 416071, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.834Z", + "last_change_date": "2022-03-14T08:03:02.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9052, + "fields": { + "EF_ID": 416072, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:02.933Z", + "last_change_date": "2022-03-14T08:03:02.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9053, + "fields": { + "EF_ID": 416073, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.025Z", + "last_change_date": "2022-03-14T08:03:03.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9054, + "fields": { + "EF_ID": 416074, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.092Z", + "last_change_date": "2022-03-14T08:03:03.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9055, + "fields": { + "EF_ID": 416075, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.184Z", + "last_change_date": "2022-03-14T08:03:03.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9056, + "fields": { + "EF_ID": 416076, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.259Z", + "last_change_date": "2022-03-14T08:03:03.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9057, + "fields": { + "EF_ID": 416077, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.334Z", + "last_change_date": "2022-03-14T08:03:03.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9058, + "fields": { + "EF_ID": 416078, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.437Z", + "last_change_date": "2022-03-14T08:03:03.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9059, + "fields": { + "EF_ID": 416079, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.534Z", + "last_change_date": "2022-03-14T08:03:03.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9060, + "fields": { + "EF_ID": 416080, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.617Z", + "last_change_date": "2022-03-14T08:03:03.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9061, + "fields": { + "EF_ID": 416081, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.730Z", + "last_change_date": "2022-03-14T08:03:03.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9062, + "fields": { + "EF_ID": 416082, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.834Z", + "last_change_date": "2022-03-14T08:03:03.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9063, + "fields": { + "EF_ID": 416083, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.900Z", + "last_change_date": "2022-03-14T08:03:03.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9064, + "fields": { + "EF_ID": 416084, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:03.998Z", + "last_change_date": "2022-03-14T08:03:03.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9065, + "fields": { + "EF_ID": 416085, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.092Z", + "last_change_date": "2022-03-14T08:03:04.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9066, + "fields": { + "EF_ID": 416086, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.161Z", + "last_change_date": "2022-03-14T08:03:04.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9067, + "fields": { + "EF_ID": 416087, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region:Western Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.257Z", + "last_change_date": "2022-03-14T08:03:04.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9068, + "fields": { + "EF_ID": 416088, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.342Z", + "last_change_date": "2022-03-14T08:03:04.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9069, + "fields": { + "EF_ID": 416089, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.411Z", + "last_change_date": "2022-03-14T08:03:04.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9070, + "fields": { + "EF_ID": 416090, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.509Z", + "last_change_date": "2022-03-14T08:03:04.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9071, + "fields": { + "EF_ID": 416091, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.592Z", + "last_change_date": "2022-03-14T08:03:04.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9072, + "fields": { + "EF_ID": 416092, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.661Z", + "last_change_date": "2022-03-14T08:03:04.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9073, + "fields": { + "EF_ID": 416093, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.752Z", + "last_change_date": "2022-03-14T08:03:04.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9074, + "fields": { + "EF_ID": 416094, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.833Z", + "last_change_date": "2022-03-14T08:03:04.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9075, + "fields": { + "EF_ID": 416095, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:04.903Z", + "last_change_date": "2022-03-14T08:03:04.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9076, + "fields": { + "EF_ID": 416096, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.003Z", + "last_change_date": "2022-03-14T08:03:05.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9077, + "fields": { + "EF_ID": 416097, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.092Z", + "last_change_date": "2022-03-14T08:03:05.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9078, + "fields": { + "EF_ID": 416098, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.161Z", + "last_change_date": "2022-03-14T08:03:05.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9079, + "fields": { + "EF_ID": 416099, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.264Z", + "last_change_date": "2022-03-14T08:03:05.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9080, + "fields": { + "EF_ID": 416100, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.359Z", + "last_change_date": "2022-03-14T08:03:05.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9081, + "fields": { + "EF_ID": 416101, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.436Z", + "last_change_date": "2022-03-14T08:03:05.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9082, + "fields": { + "EF_ID": 416102, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.540Z", + "last_change_date": "2022-03-14T08:03:05.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9083, + "fields": { + "EF_ID": 416103, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.617Z", + "last_change_date": "2022-03-14T08:03:05.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9084, + "fields": { + "EF_ID": 416104, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.686Z", + "last_change_date": "2022-03-14T08:03:05.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9085, + "fields": { + "EF_ID": 416105, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.783Z", + "last_change_date": "2022-03-14T08:03:05.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9086, + "fields": { + "EF_ID": 416106, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region:Western Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.859Z", + "last_change_date": "2022-03-14T08:03:05.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9087, + "fields": { + "EF_ID": 416107, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:05.928Z", + "last_change_date": "2022-03-14T08:03:05.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9088, + "fields": { + "EF_ID": 416108, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.017Z", + "last_change_date": "2022-03-14T08:03:06.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9089, + "fields": { + "EF_ID": 416109, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.095Z", + "last_change_date": "2022-03-14T08:03:06.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9090, + "fields": { + "EF_ID": 416110, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.161Z", + "last_change_date": "2022-03-14T08:03:06.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9091, + "fields": { + "EF_ID": 416111, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.252Z", + "last_change_date": "2022-03-14T08:03:06.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9092, + "fields": { + "EF_ID": 416112, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.328Z", + "last_change_date": "2022-03-14T08:03:06.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9093, + "fields": { + "EF_ID": 416113, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.400Z", + "last_change_date": "2022-03-14T08:03:06.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9094, + "fields": { + "EF_ID": 416114, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.495Z", + "last_change_date": "2022-03-14T08:03:06.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9095, + "fields": { + "EF_ID": 416115, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.570Z", + "last_change_date": "2022-03-14T08:03:06.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9096, + "fields": { + "EF_ID": 416116, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.637Z", + "last_change_date": "2022-03-14T08:03:06.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9097, + "fields": { + "EF_ID": 416117, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.730Z", + "last_change_date": "2022-03-14T08:03:06.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9098, + "fields": { + "EF_ID": 416118, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.812Z", + "last_change_date": "2022-03-14T08:03:06.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9099, + "fields": { + "EF_ID": 416119, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.887Z", + "last_change_date": "2022-03-14T08:03:06.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9100, + "fields": { + "EF_ID": 416120, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:06.990Z", + "last_change_date": "2022-03-14T08:03:06.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9101, + "fields": { + "EF_ID": 416121, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.070Z", + "last_change_date": "2022-03-14T08:03:07.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9102, + "fields": { + "EF_ID": 416122, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.136Z", + "last_change_date": "2022-03-14T08:03:07.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9103, + "fields": { + "EF_ID": 416123, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.475Z", + "last_change_date": "2022-03-14T08:03:07.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9104, + "fields": { + "EF_ID": 416124, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.553Z", + "last_change_date": "2022-03-14T08:03:07.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9105, + "fields": { + "EF_ID": 416125, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Western Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.620Z", + "last_change_date": "2022-03-14T08:03:07.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9106, + "fields": { + "EF_ID": 416126, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.709Z", + "last_change_date": "2022-03-14T08:03:07.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9107, + "fields": { + "EF_ID": 416127, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Liquid/slurry and pit storage systems are commonly used for cattle and swine manure. Limited cropland is available for spreading manure.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.786Z", + "last_change_date": "2022-03-14T08:03:07.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9108, + "fields": { + "EF_ID": 416128, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.853Z", + "last_change_date": "2022-03-14T08:03:07.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9109, + "fields": { + "EF_ID": 416129, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:07.944Z", + "last_change_date": "2022-03-14T08:03:07.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9110, + "fields": { + "EF_ID": 416130, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.020Z", + "last_change_date": "2022-03-14T08:03:08.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9111, + "fields": { + "EF_ID": 416131, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.095Z", + "last_change_date": "2022-03-14T08:03:08.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9112, + "fields": { + "EF_ID": 416132, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.179Z", + "last_change_date": "2022-03-14T08:03:08.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9113, + "fields": { + "EF_ID": 416133, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.236Z", + "last_change_date": "2022-03-14T08:03:08.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9114, + "fields": { + "EF_ID": 416134, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.295Z", + "last_change_date": "2022-03-14T08:03:08.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9115, + "fields": { + "EF_ID": 416135, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.380Z", + "last_change_date": "2022-03-14T08:03:08.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9116, + "fields": { + "EF_ID": 416136, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.462Z", + "last_change_date": "2022-03-14T08:03:08.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9117, + "fields": { + "EF_ID": 416137, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.545Z", + "last_change_date": "2022-03-14T08:03:08.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9118, + "fields": { + "EF_ID": 416138, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.633Z", + "last_change_date": "2022-03-14T08:03:08.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9119, + "fields": { + "EF_ID": 416139, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.703Z", + "last_change_date": "2022-03-14T08:03:08.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9120, + "fields": { + "EF_ID": 416140, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.770Z", + "last_change_date": "2022-03-14T08:03:08.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9121, + "fields": { + "EF_ID": 416141, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.876Z", + "last_change_date": "2022-03-14T08:03:08.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9122, + "fields": { + "EF_ID": 416142, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:08.953Z", + "last_change_date": "2022-03-14T08:03:08.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9123, + "fields": { + "EF_ID": 416143, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.028Z", + "last_change_date": "2022-03-14T08:03:09.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9124, + "fields": { + "EF_ID": 416144, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Eastern Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.118Z", + "last_change_date": "2022-03-14T08:03:09.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9125, + "fields": { + "EF_ID": 416145, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.195Z", + "last_change_date": "2022-03-14T08:03:09.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9126, + "fields": { + "EF_ID": 416146, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.287Z", + "last_change_date": "2022-03-14T08:03:09.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9127, + "fields": { + "EF_ID": 416147, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.378Z", + "last_change_date": "2022-03-14T08:03:09.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9128, + "fields": { + "EF_ID": 416148, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.454Z", + "last_change_date": "2022-03-14T08:03:09.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9129, + "fields": { + "EF_ID": 416149, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.520Z", + "last_change_date": "2022-03-14T08:03:09.520Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9130, + "fields": { + "EF_ID": 416150, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.613Z", + "last_change_date": "2022-03-14T08:03:09.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9131, + "fields": { + "EF_ID": 416151, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.687Z", + "last_change_date": "2022-03-14T08:03:09.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9132, + "fields": { + "EF_ID": 416152, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.754Z", + "last_change_date": "2022-03-14T08:03:09.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9133, + "fields": { + "EF_ID": 416153, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.847Z", + "last_change_date": "2022-03-14T08:03:09.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9134, + "fields": { + "EF_ID": 416154, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.920Z", + "last_change_date": "2022-03-14T08:03:09.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9135, + "fields": { + "EF_ID": 416155, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:09.987Z", + "last_change_date": "2022-03-14T08:03:09.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9136, + "fields": { + "EF_ID": 416156, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.082Z", + "last_change_date": "2022-03-14T08:03:10.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9137, + "fields": { + "EF_ID": 416157, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.170Z", + "last_change_date": "2022-03-14T08:03:10.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9138, + "fields": { + "EF_ID": 416158, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.245Z", + "last_change_date": "2022-03-14T08:03:10.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9139, + "fields": { + "EF_ID": 416159, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.351Z", + "last_change_date": "2022-03-14T08:03:10.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9140, + "fields": { + "EF_ID": 416160, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.429Z", + "last_change_date": "2022-03-14T08:03:10.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9141, + "fields": { + "EF_ID": 416161, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.508Z", + "last_change_date": "2022-03-14T08:03:10.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9142, + "fields": { + "EF_ID": 416162, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.619Z", + "last_change_date": "2022-03-14T08:03:10.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9143, + "fields": { + "EF_ID": 416163, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Eastern Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.697Z", + "last_change_date": "2022-03-14T08:03:10.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9144, + "fields": { + "EF_ID": 416164, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.775Z", + "last_change_date": "2022-03-14T08:03:10.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9145, + "fields": { + "EF_ID": 416165, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.878Z", + "last_change_date": "2022-03-14T08:03:10.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9146, + "fields": { + "EF_ID": 416166, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:10.955Z", + "last_change_date": "2022-03-14T08:03:10.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9147, + "fields": { + "EF_ID": 416167, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.025Z", + "last_change_date": "2022-03-14T08:03:11.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9148, + "fields": { + "EF_ID": 416168, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.121Z", + "last_change_date": "2022-03-14T08:03:11.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9149, + "fields": { + "EF_ID": 416169, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.197Z", + "last_change_date": "2022-03-14T08:03:11.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9150, + "fields": { + "EF_ID": 416170, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.267Z", + "last_change_date": "2022-03-14T08:03:11.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9151, + "fields": { + "EF_ID": 416171, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.372Z", + "last_change_date": "2022-03-14T08:03:11.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9152, + "fields": { + "EF_ID": 416172, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.455Z", + "last_change_date": "2022-03-14T08:03:11.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9153, + "fields": { + "EF_ID": 416173, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.525Z", + "last_change_date": "2022-03-14T08:03:11.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9154, + "fields": { + "EF_ID": 416174, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.624Z", + "last_change_date": "2022-03-14T08:03:11.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9155, + "fields": { + "EF_ID": 416175, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.705Z", + "last_change_date": "2022-03-14T08:03:11.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9156, + "fields": { + "EF_ID": 416176, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.775Z", + "last_change_date": "2022-03-14T08:03:11.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9157, + "fields": { + "EF_ID": 416177, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.876Z", + "last_change_date": "2022-03-14T08:03:11.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9158, + "fields": { + "EF_ID": 416178, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:11.972Z", + "last_change_date": "2022-03-14T08:03:11.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9159, + "fields": { + "EF_ID": 416179, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.042Z", + "last_change_date": "2022-03-14T08:03:12.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9160, + "fields": { + "EF_ID": 416180, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.144Z", + "last_change_date": "2022-03-14T08:03:12.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9161, + "fields": { + "EF_ID": 416181, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.222Z", + "last_change_date": "2022-03-14T08:03:12.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9162, + "fields": { + "EF_ID": 416182, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region:Eastern Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.292Z", + "last_change_date": "2022-03-14T08:03:12.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9163, + "fields": { + "EF_ID": 416183, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.437Z", + "last_change_date": "2022-03-14T08:03:12.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9164, + "fields": { + "EF_ID": 416184, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.497Z", + "last_change_date": "2022-03-14T08:03:12.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9165, + "fields": { + "EF_ID": 416185, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.567Z", + "last_change_date": "2022-03-14T08:03:12.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9166, + "fields": { + "EF_ID": 416186, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.663Z", + "last_change_date": "2022-03-14T08:03:12.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9167, + "fields": { + "EF_ID": 416187, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.738Z", + "last_change_date": "2022-03-14T08:03:12.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9168, + "fields": { + "EF_ID": 416188, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.817Z", + "last_change_date": "2022-03-14T08:03:12.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9169, + "fields": { + "EF_ID": 416189, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.914Z", + "last_change_date": "2022-03-14T08:03:12.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9170, + "fields": { + "EF_ID": 416190, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:12.988Z", + "last_change_date": "2022-03-14T08:03:12.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9171, + "fields": { + "EF_ID": 416191, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.059Z", + "last_change_date": "2022-03-14T08:03:13.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9172, + "fields": { + "EF_ID": 416192, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.157Z", + "last_change_date": "2022-03-14T08:03:13.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9173, + "fields": { + "EF_ID": 416193, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.238Z", + "last_change_date": "2022-03-14T08:03:13.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9174, + "fields": { + "EF_ID": 416194, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.300Z", + "last_change_date": "2022-03-14T08:03:13.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9175, + "fields": { + "EF_ID": 416195, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.426Z", + "last_change_date": "2022-03-14T08:03:13.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9176, + "fields": { + "EF_ID": 416196, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.513Z", + "last_change_date": "2022-03-14T08:03:13.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9177, + "fields": { + "EF_ID": 416197, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.575Z", + "last_change_date": "2022-03-14T08:03:13.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9178, + "fields": { + "EF_ID": 416198, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.670Z", + "last_change_date": "2022-03-14T08:03:13.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9179, + "fields": { + "EF_ID": 416199, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.747Z", + "last_change_date": "2022-03-14T08:03:13.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9180, + "fields": { + "EF_ID": 416200, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.808Z", + "last_change_date": "2022-03-14T08:03:13.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9181, + "fields": { + "EF_ID": 416201, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region:Eastern Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.912Z", + "last_change_date": "2022-03-14T08:03:13.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9182, + "fields": { + "EF_ID": 416202, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:13.989Z", + "last_change_date": "2022-03-14T08:03:13.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9183, + "fields": { + "EF_ID": 416203, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.084Z", + "last_change_date": "2022-03-14T08:03:14.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9184, + "fields": { + "EF_ID": 416204, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.181Z", + "last_change_date": "2022-03-14T08:03:14.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9185, + "fields": { + "EF_ID": 416205, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.247Z", + "last_change_date": "2022-03-14T08:03:14.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9186, + "fields": { + "EF_ID": 416206, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.309Z", + "last_change_date": "2022-03-14T08:03:14.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9187, + "fields": { + "EF_ID": 416207, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.415Z", + "last_change_date": "2022-03-14T08:03:14.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9188, + "fields": { + "EF_ID": 416208, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.497Z", + "last_change_date": "2022-03-14T08:03:14.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9189, + "fields": { + "EF_ID": 416209, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.559Z", + "last_change_date": "2022-03-14T08:03:14.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9190, + "fields": { + "EF_ID": 416210, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.667Z", + "last_change_date": "2022-03-14T08:03:14.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9191, + "fields": { + "EF_ID": 416211, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.750Z", + "last_change_date": "2022-03-14T08:03:14.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9192, + "fields": { + "EF_ID": 416212, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.817Z", + "last_change_date": "2022-03-14T08:03:14.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9193, + "fields": { + "EF_ID": 416213, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.910Z", + "last_change_date": "2022-03-14T08:03:14.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9194, + "fields": { + "EF_ID": 416214, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:14.992Z", + "last_change_date": "2022-03-14T08:03:14.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9195, + "fields": { + "EF_ID": 416215, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.059Z", + "last_change_date": "2022-03-14T08:03:15.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9196, + "fields": { + "EF_ID": 416216, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.154Z", + "last_change_date": "2022-03-14T08:03:15.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9197, + "fields": { + "EF_ID": 416217, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.242Z", + "last_change_date": "2022-03-14T08:03:15.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9198, + "fields": { + "EF_ID": 416218, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.308Z", + "last_change_date": "2022-03-14T08:03:15.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9199, + "fields": { + "EF_ID": 416219, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.421Z", + "last_change_date": "2022-03-14T08:03:15.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9200, + "fields": { + "EF_ID": 416220, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Eastern Europe Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.514Z", + "last_change_date": "2022-03-14T08:03:15.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9201, + "fields": { + "EF_ID": 416221, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.584Z", + "last_change_date": "2022-03-14T08:03:15.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9202, + "fields": { + "EF_ID": 416222, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Solid based systems are used for the majority of manure. About one-third of livestock manure is managed in liquid-based systems.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.681Z", + "last_change_date": "2022-03-14T08:03:15.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9203, + "fields": { + "EF_ID": 416223, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.759Z", + "last_change_date": "2022-03-14T08:03:15.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9204, + "fields": { + "EF_ID": 416224, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.834Z", + "last_change_date": "2022-03-14T08:03:15.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9205, + "fields": { + "EF_ID": 416225, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:15.932Z", + "last_change_date": "2022-03-14T08:03:15.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9206, + "fields": { + "EF_ID": 416226, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.009Z", + "last_change_date": "2022-03-14T08:03:16.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9207, + "fields": { + "EF_ID": 416227, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.116Z", + "last_change_date": "2022-03-14T08:03:16.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9208, + "fields": { + "EF_ID": 416228, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.200Z", + "last_change_date": "2022-03-14T08:03:16.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9209, + "fields": { + "EF_ID": 416229, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.301Z", + "last_change_date": "2022-03-14T08:03:16.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9210, + "fields": { + "EF_ID": 416230, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.375Z", + "last_change_date": "2022-03-14T08:03:16.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9211, + "fields": { + "EF_ID": 416231, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.485Z", + "last_change_date": "2022-03-14T08:03:16.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9212, + "fields": { + "EF_ID": 416232, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.559Z", + "last_change_date": "2022-03-14T08:03:16.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9213, + "fields": { + "EF_ID": 416233, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.644Z", + "last_change_date": "2022-03-14T08:03:16.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9214, + "fields": { + "EF_ID": 416234, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.725Z", + "last_change_date": "2022-03-14T08:03:16.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9215, + "fields": { + "EF_ID": 416235, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.813Z", + "last_change_date": "2022-03-14T08:03:16.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9216, + "fields": { + "EF_ID": 416236, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.900Z", + "last_change_date": "2022-03-14T08:03:16.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9217, + "fields": { + "EF_ID": 416237, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:16.989Z", + "last_change_date": "2022-03-14T08:03:16.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9218, + "fields": { + "EF_ID": 416238, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.067Z", + "last_change_date": "2022-03-14T08:03:17.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9219, + "fields": { + "EF_ID": 416239, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Oceania Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.164Z", + "last_change_date": "2022-03-14T08:03:17.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9220, + "fields": { + "EF_ID": 416240, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.242Z", + "last_change_date": "2022-03-14T08:03:17.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9221, + "fields": { + "EF_ID": 416241, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Oceania Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.341Z", + "last_change_date": "2022-03-14T08:03:17.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9222, + "fields": { + "EF_ID": 416242, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.417Z", + "last_change_date": "2022-03-14T08:03:17.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9223, + "fields": { + "EF_ID": 416243, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.575Z", + "last_change_date": "2022-03-14T08:03:17.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9224, + "fields": { + "EF_ID": 416244, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.734Z", + "last_change_date": "2022-03-14T08:03:17.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9225, + "fields": { + "EF_ID": 416245, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.818Z", + "last_change_date": "2022-03-14T08:03:17.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9226, + "fields": { + "EF_ID": 416246, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.892Z", + "last_change_date": "2022-03-14T08:03:17.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9227, + "fields": { + "EF_ID": 416247, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:17.986Z", + "last_change_date": "2022-03-14T08:03:17.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9228, + "fields": { + "EF_ID": 416248, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.067Z", + "last_change_date": "2022-03-14T08:03:18.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9229, + "fields": { + "EF_ID": 416249, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.170Z", + "last_change_date": "2022-03-14T08:03:18.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9230, + "fields": { + "EF_ID": 416250, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.259Z", + "last_change_date": "2022-03-14T08:03:18.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9231, + "fields": { + "EF_ID": 416251, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.354Z", + "last_change_date": "2022-03-14T08:03:18.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9232, + "fields": { + "EF_ID": 416252, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.434Z", + "last_change_date": "2022-03-14T08:03:18.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9233, + "fields": { + "EF_ID": 416253, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.531Z", + "last_change_date": "2022-03-14T08:03:18.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9234, + "fields": { + "EF_ID": 416254, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.609Z", + "last_change_date": "2022-03-14T08:03:18.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9235, + "fields": { + "EF_ID": 416255, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.706Z", + "last_change_date": "2022-03-14T08:03:18.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9236, + "fields": { + "EF_ID": 416256, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.784Z", + "last_change_date": "2022-03-14T08:03:18.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9237, + "fields": { + "EF_ID": 416257, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.883Z", + "last_change_date": "2022-03-14T08:03:18.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9238, + "fields": { + "EF_ID": 416258, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Oceania Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:18.967Z", + "last_change_date": "2022-03-14T08:03:18.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9239, + "fields": { + "EF_ID": 416259, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.067Z", + "last_change_date": "2022-03-14T08:03:19.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9240, + "fields": { + "EF_ID": 416260, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.150Z", + "last_change_date": "2022-03-14T08:03:19.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9241, + "fields": { + "EF_ID": 416261, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.268Z", + "last_change_date": "2022-03-14T08:03:19.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9242, + "fields": { + "EF_ID": 416262, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.342Z", + "last_change_date": "2022-03-14T08:03:19.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9243, + "fields": { + "EF_ID": 416263, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.435Z", + "last_change_date": "2022-03-14T08:03:19.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9244, + "fields": { + "EF_ID": 416264, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.517Z", + "last_change_date": "2022-03-14T08:03:19.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9245, + "fields": { + "EF_ID": 416265, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.619Z", + "last_change_date": "2022-03-14T08:03:19.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9246, + "fields": { + "EF_ID": 416266, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.725Z", + "last_change_date": "2022-03-14T08:03:19.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9247, + "fields": { + "EF_ID": 416267, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.829Z", + "last_change_date": "2022-03-14T08:03:19.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9248, + "fields": { + "EF_ID": 416268, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:19.900Z", + "last_change_date": "2022-03-14T08:03:19.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9249, + "fields": { + "EF_ID": 416269, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.013Z", + "last_change_date": "2022-03-14T08:03:20.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9250, + "fields": { + "EF_ID": 416270, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.100Z", + "last_change_date": "2022-03-14T08:03:20.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9251, + "fields": { + "EF_ID": 416271, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.206Z", + "last_change_date": "2022-03-14T08:03:20.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9252, + "fields": { + "EF_ID": 416272, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.300Z", + "last_change_date": "2022-03-14T08:03:20.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9253, + "fields": { + "EF_ID": 416273, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.408Z", + "last_change_date": "2022-03-14T08:03:20.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9254, + "fields": { + "EF_ID": 416274, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.492Z", + "last_change_date": "2022-03-14T08:03:20.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9255, + "fields": { + "EF_ID": 416275, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.592Z", + "last_change_date": "2022-03-14T08:03:20.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9256, + "fields": { + "EF_ID": 416276, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.667Z", + "last_change_date": "2022-03-14T08:03:20.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9257, + "fields": { + "EF_ID": 416277, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region:Oceania Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.768Z", + "last_change_date": "2022-03-14T08:03:20.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9258, + "fields": { + "EF_ID": 416278, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.842Z", + "last_change_date": "2022-03-14T08:03:20.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9259, + "fields": { + "EF_ID": 416279, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Market Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Market Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:20.935Z", + "last_change_date": "2022-03-14T08:03:20.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9260, + "fields": { + "EF_ID": 416280, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.008Z", + "last_change_date": "2022-03-14T08:03:21.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9261, + "fields": { + "EF_ID": 416281, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.103Z", + "last_change_date": "2022-03-14T08:03:21.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9262, + "fields": { + "EF_ID": 416282, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.184Z", + "last_change_date": "2022-03-14T08:03:21.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9263, + "fields": { + "EF_ID": 416283, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.279Z", + "last_change_date": "2022-03-14T08:03:21.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9264, + "fields": { + "EF_ID": 416284, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.359Z", + "last_change_date": "2022-03-14T08:03:21.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9265, + "fields": { + "EF_ID": 416285, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.463Z", + "last_change_date": "2022-03-14T08:03:21.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9266, + "fields": { + "EF_ID": 416286, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.534Z", + "last_change_date": "2022-03-14T08:03:21.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9267, + "fields": { + "EF_ID": 416287, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.647Z", + "last_change_date": "2022-03-14T08:03:21.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9268, + "fields": { + "EF_ID": 416288, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.725Z", + "last_change_date": "2022-03-14T08:03:21.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9269, + "fields": { + "EF_ID": 416289, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.840Z", + "last_change_date": "2022-03-14T08:03:21.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9270, + "fields": { + "EF_ID": 416290, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:21.934Z", + "last_change_date": "2022-03-14T08:03:21.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9271, + "fields": { + "EF_ID": 416291, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.034Z", + "last_change_date": "2022-03-14T08:03:22.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9272, + "fields": { + "EF_ID": 416292, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.117Z", + "last_change_date": "2022-03-14T08:03:22.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9273, + "fields": { + "EF_ID": 416293, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.209Z", + "last_change_date": "2022-03-14T08:03:22.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9274, + "fields": { + "EF_ID": 416294, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.292Z", + "last_change_date": "2022-03-14T08:03:22.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9275, + "fields": { + "EF_ID": 416295, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.385Z", + "last_change_date": "2022-03-14T08:03:22.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9276, + "fields": { + "EF_ID": 416296, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region:Oceania Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.467Z", + "last_change_date": "2022-03-14T08:03:22.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9277, + "fields": { + "EF_ID": 416297, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.561Z", + "last_change_date": "2022-03-14T08:03:22.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9278, + "fields": { + "EF_ID": 416298, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Breeding Swine", + "Technology_Practices": "Most cattle manure is managed as a solid on pastures and ranges, except dairy cows where there is some usage of lagoons. About half of the swine manure is managed in anaerobic lagoons.", + "Parameter_Conditions": "Animal category: Breeding Swine", + "Regional_Conditions": "Region: Oceania Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.634Z", + "last_change_date": "2022-03-14T08:03:22.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9279, + "fields": { + "EF_ID": 416299, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.729Z", + "last_change_date": "2022-03-14T08:03:22.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9280, + "fields": { + "EF_ID": 416300, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.800Z", + "last_change_date": "2022-03-14T08:03:22.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9281, + "fields": { + "EF_ID": 416301, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.875Z", + "last_change_date": "2022-03-14T08:03:22.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9282, + "fields": { + "EF_ID": 416302, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:22.972Z", + "last_change_date": "2022-03-14T08:03:22.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9283, + "fields": { + "EF_ID": 416303, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.050Z", + "last_change_date": "2022-03-14T08:03:23.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9284, + "fields": { + "EF_ID": 416304, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.134Z", + "last_change_date": "2022-03-14T08:03:23.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9285, + "fields": { + "EF_ID": 416305, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.240Z", + "last_change_date": "2022-03-14T08:03:23.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9286, + "fields": { + "EF_ID": 416306, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.325Z", + "last_change_date": "2022-03-14T08:03:23.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9287, + "fields": { + "EF_ID": 416307, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.400Z", + "last_change_date": "2022-03-14T08:03:23.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9288, + "fields": { + "EF_ID": 416308, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.508Z", + "last_change_date": "2022-03-14T08:03:23.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9289, + "fields": { + "EF_ID": 416309, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.600Z", + "last_change_date": "2022-03-14T08:03:23.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9290, + "fields": { + "EF_ID": 416310, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.675Z", + "last_change_date": "2022-03-14T08:03:23.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9291, + "fields": { + "EF_ID": 416311, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.768Z", + "last_change_date": "2022-03-14T08:03:23.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9292, + "fields": { + "EF_ID": 416312, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:23.959Z", + "last_change_date": "2022-03-14T08:03:23.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9293, + "fields": { + "EF_ID": 416313, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.034Z", + "last_change_date": "2022-03-14T08:03:24.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9294, + "fields": { + "EF_ID": 416314, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.153Z", + "last_change_date": "2022-03-14T08:03:24.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9295, + "fields": { + "EF_ID": 416315, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Latin America Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.233Z", + "last_change_date": "2022-03-14T08:03:24.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9296, + "fields": { + "EF_ID": 416316, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.309Z", + "last_change_date": "2022-03-14T08:03:24.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9297, + "fields": { + "EF_ID": 416317, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Latin America Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.404Z", + "last_change_date": "2022-03-14T08:03:24.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9298, + "fields": { + "EF_ID": 416318, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.484Z", + "last_change_date": "2022-03-14T08:03:24.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9299, + "fields": { + "EF_ID": 416319, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.559Z", + "last_change_date": "2022-03-14T08:03:24.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9300, + "fields": { + "EF_ID": 416320, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.656Z", + "last_change_date": "2022-03-14T08:03:24.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9301, + "fields": { + "EF_ID": 416321, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.734Z", + "last_change_date": "2022-03-14T08:03:24.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9302, + "fields": { + "EF_ID": 416322, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.817Z", + "last_change_date": "2022-03-14T08:03:24.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9303, + "fields": { + "EF_ID": 416323, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:24.924Z", + "last_change_date": "2022-03-14T08:03:24.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9304, + "fields": { + "EF_ID": 416324, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.009Z", + "last_change_date": "2022-03-14T08:03:25.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9305, + "fields": { + "EF_ID": 416325, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.084Z", + "last_change_date": "2022-03-14T08:03:25.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9306, + "fields": { + "EF_ID": 416326, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.183Z", + "last_change_date": "2022-03-14T08:03:25.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9307, + "fields": { + "EF_ID": 416327, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.284Z", + "last_change_date": "2022-03-14T08:03:25.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9308, + "fields": { + "EF_ID": 416328, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.350Z", + "last_change_date": "2022-03-14T08:03:25.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9309, + "fields": { + "EF_ID": 416329, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.435Z", + "last_change_date": "2022-03-14T08:03:25.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9310, + "fields": { + "EF_ID": 416330, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.517Z", + "last_change_date": "2022-03-14T08:03:25.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9311, + "fields": { + "EF_ID": 416331, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.592Z", + "last_change_date": "2022-03-14T08:03:25.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9312, + "fields": { + "EF_ID": 416332, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.687Z", + "last_change_date": "2022-03-14T08:03:25.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9313, + "fields": { + "EF_ID": 416333, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.775Z", + "last_change_date": "2022-03-14T08:03:25.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9314, + "fields": { + "EF_ID": 416334, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Latin America Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.850Z", + "last_change_date": "2022-03-14T08:03:25.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9315, + "fields": { + "EF_ID": 416335, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:25.946Z", + "last_change_date": "2022-03-14T08:03:25.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9316, + "fields": { + "EF_ID": 416336, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.025Z", + "last_change_date": "2022-03-14T08:03:26.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9317, + "fields": { + "EF_ID": 416337, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.092Z", + "last_change_date": "2022-03-14T08:03:26.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9318, + "fields": { + "EF_ID": 416338, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.189Z", + "last_change_date": "2022-03-14T08:03:26.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9319, + "fields": { + "EF_ID": 416339, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.267Z", + "last_change_date": "2022-03-14T08:03:26.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9320, + "fields": { + "EF_ID": 416340, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.350Z", + "last_change_date": "2022-03-14T08:03:26.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9321, + "fields": { + "EF_ID": 416341, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.458Z", + "last_change_date": "2022-03-14T08:03:26.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9322, + "fields": { + "EF_ID": 416342, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.532Z", + "last_change_date": "2022-03-14T08:03:26.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9323, + "fields": { + "EF_ID": 416343, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.609Z", + "last_change_date": "2022-03-14T08:03:26.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9324, + "fields": { + "EF_ID": 416344, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.708Z", + "last_change_date": "2022-03-14T08:03:26.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9325, + "fields": { + "EF_ID": 416345, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.791Z", + "last_change_date": "2022-03-14T08:03:26.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9326, + "fields": { + "EF_ID": 416346, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.875Z", + "last_change_date": "2022-03-14T08:03:26.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9327, + "fields": { + "EF_ID": 416347, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:26.976Z", + "last_change_date": "2022-03-14T08:03:26.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9328, + "fields": { + "EF_ID": 416348, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.066Z", + "last_change_date": "2022-03-14T08:03:27.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9329, + "fields": { + "EF_ID": 416349, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.134Z", + "last_change_date": "2022-03-14T08:03:27.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9330, + "fields": { + "EF_ID": 416350, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.229Z", + "last_change_date": "2022-03-14T08:03:27.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9331, + "fields": { + "EF_ID": 416351, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.309Z", + "last_change_date": "2022-03-14T08:03:27.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9332, + "fields": { + "EF_ID": 416352, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.384Z", + "last_change_date": "2022-03-14T08:03:27.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9333, + "fields": { + "EF_ID": 416353, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Latin America Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.472Z", + "last_change_date": "2022-03-14T08:03:27.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9334, + "fields": { + "EF_ID": 416354, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.549Z", + "last_change_date": "2022-03-14T08:03:27.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9335, + "fields": { + "EF_ID": 416355, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.617Z", + "last_change_date": "2022-03-14T08:03:27.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9336, + "fields": { + "EF_ID": 416356, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.706Z", + "last_change_date": "2022-03-14T08:03:27.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9337, + "fields": { + "EF_ID": 416357, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.782Z", + "last_change_date": "2022-03-14T08:03:27.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9338, + "fields": { + "EF_ID": 416358, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.850Z", + "last_change_date": "2022-03-14T08:03:27.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9339, + "fields": { + "EF_ID": 416359, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:27.958Z", + "last_change_date": "2022-03-14T08:03:27.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9340, + "fields": { + "EF_ID": 416360, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.058Z", + "last_change_date": "2022-03-14T08:03:28.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9341, + "fields": { + "EF_ID": 416361, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.124Z", + "last_change_date": "2022-03-14T08:03:28.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9342, + "fields": { + "EF_ID": 416362, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.225Z", + "last_change_date": "2022-03-14T08:03:28.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9343, + "fields": { + "EF_ID": 416363, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.309Z", + "last_change_date": "2022-03-14T08:03:28.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9344, + "fields": { + "EF_ID": 416364, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.384Z", + "last_change_date": "2022-03-14T08:03:28.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9345, + "fields": { + "EF_ID": 416365, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.477Z", + "last_change_date": "2022-03-14T08:03:28.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9346, + "fields": { + "EF_ID": 416366, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.559Z", + "last_change_date": "2022-03-14T08:03:28.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9347, + "fields": { + "EF_ID": 416367, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.634Z", + "last_change_date": "2022-03-14T08:03:28.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9348, + "fields": { + "EF_ID": 416368, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.728Z", + "last_change_date": "2022-03-14T08:03:28.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9349, + "fields": { + "EF_ID": 416369, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.817Z", + "last_change_date": "2022-03-14T08:03:28.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9350, + "fields": { + "EF_ID": 416370, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.884Z", + "last_change_date": "2022-03-14T08:03:28.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9351, + "fields": { + "EF_ID": 416371, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:28.972Z", + "last_change_date": "2022-03-14T08:03:28.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9352, + "fields": { + "EF_ID": 416372, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Latin America Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.059Z", + "last_change_date": "2022-03-14T08:03:29.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9353, + "fields": { + "EF_ID": 416373, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.133Z", + "last_change_date": "2022-03-14T08:03:29.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9354, + "fields": { + "EF_ID": 416374, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Almost all livestock manure is managed as a solid on pastures and ranges. Buffalo manure is deposited on pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.232Z", + "last_change_date": "2022-03-14T08:03:29.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9355, + "fields": { + "EF_ID": 416375, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.317Z", + "last_change_date": "2022-03-14T08:03:29.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9356, + "fields": { + "EF_ID": 416376, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.391Z", + "last_change_date": "2022-03-14T08:03:29.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9357, + "fields": { + "EF_ID": 416377, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.500Z", + "last_change_date": "2022-03-14T08:03:29.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9358, + "fields": { + "EF_ID": 416378, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.584Z", + "last_change_date": "2022-03-14T08:03:29.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9359, + "fields": { + "EF_ID": 416379, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Africa Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.657Z", + "last_change_date": "2022-03-14T08:03:29.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9360, + "fields": { + "EF_ID": 416380, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.759Z", + "last_change_date": "2022-03-14T08:03:29.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9361, + "fields": { + "EF_ID": 416381, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.842Z", + "last_change_date": "2022-03-14T08:03:29.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9362, + "fields": { + "EF_ID": 416382, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:29.925Z", + "last_change_date": "2022-03-14T08:03:29.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9363, + "fields": { + "EF_ID": 416383, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.019Z", + "last_change_date": "2022-03-14T08:03:30.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9364, + "fields": { + "EF_ID": 416384, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.117Z", + "last_change_date": "2022-03-14T08:03:30.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9365, + "fields": { + "EF_ID": 416385, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.200Z", + "last_change_date": "2022-03-14T08:03:30.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9366, + "fields": { + "EF_ID": 416386, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.303Z", + "last_change_date": "2022-03-14T08:03:30.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9367, + "fields": { + "EF_ID": 416387, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.384Z", + "last_change_date": "2022-03-14T08:03:30.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9368, + "fields": { + "EF_ID": 416388, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.458Z", + "last_change_date": "2022-03-14T08:03:30.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9369, + "fields": { + "EF_ID": 416389, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.564Z", + "last_change_date": "2022-03-14T08:03:30.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9370, + "fields": { + "EF_ID": 416390, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.651Z", + "last_change_date": "2022-03-14T08:03:30.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9371, + "fields": { + "EF_ID": 416391, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Africa Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.725Z", + "last_change_date": "2022-03-14T08:03:30.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9372, + "fields": { + "EF_ID": 416392, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.832Z", + "last_change_date": "2022-03-14T08:03:30.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9373, + "fields": { + "EF_ID": 416393, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Africa Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.917Z", + "last_change_date": "2022-03-14T08:03:30.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9374, + "fields": { + "EF_ID": 416394, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:30.992Z", + "last_change_date": "2022-03-14T08:03:30.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9375, + "fields": { + "EF_ID": 416395, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.100Z", + "last_change_date": "2022-03-14T08:03:31.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9376, + "fields": { + "EF_ID": 416396, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.184Z", + "last_change_date": "2022-03-14T08:03:31.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9377, + "fields": { + "EF_ID": 416397, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.258Z", + "last_change_date": "2022-03-14T08:03:31.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9378, + "fields": { + "EF_ID": 416398, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Africa Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.368Z", + "last_change_date": "2022-03-14T08:03:31.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9379, + "fields": { + "EF_ID": 416399, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.450Z", + "last_change_date": "2022-03-14T08:03:31.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9380, + "fields": { + "EF_ID": 416400, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.525Z", + "last_change_date": "2022-03-14T08:03:31.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9381, + "fields": { + "EF_ID": 416401, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.627Z", + "last_change_date": "2022-03-14T08:03:31.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9382, + "fields": { + "EF_ID": 416402, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.709Z", + "last_change_date": "2022-03-14T08:03:31.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9383, + "fields": { + "EF_ID": 416403, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.783Z", + "last_change_date": "2022-03-14T08:03:31.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9384, + "fields": { + "EF_ID": 416404, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.887Z", + "last_change_date": "2022-03-14T08:03:31.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9385, + "fields": { + "EF_ID": 416405, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:31.967Z", + "last_change_date": "2022-03-14T08:03:31.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9386, + "fields": { + "EF_ID": 416406, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.050Z", + "last_change_date": "2022-03-14T08:03:32.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9387, + "fields": { + "EF_ID": 416407, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.180Z", + "last_change_date": "2022-03-14T08:03:32.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9388, + "fields": { + "EF_ID": 416408, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.267Z", + "last_change_date": "2022-03-14T08:03:32.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9389, + "fields": { + "EF_ID": 416409, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.351Z", + "last_change_date": "2022-03-14T08:03:32.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9390, + "fields": { + "EF_ID": 416410, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Africa Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.457Z", + "last_change_date": "2022-03-14T08:03:32.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9391, + "fields": { + "EF_ID": 416411, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.550Z", + "last_change_date": "2022-03-14T08:03:32.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9392, + "fields": { + "EF_ID": 416412, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.625Z", + "last_change_date": "2022-03-14T08:03:32.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9393, + "fields": { + "EF_ID": 416413, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.734Z", + "last_change_date": "2022-03-14T08:03:32.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9394, + "fields": { + "EF_ID": 416414, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.817Z", + "last_change_date": "2022-03-14T08:03:32.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9395, + "fields": { + "EF_ID": 416415, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:32.917Z", + "last_change_date": "2022-03-14T08:03:32.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9396, + "fields": { + "EF_ID": 416416, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.018Z", + "last_change_date": "2022-03-14T08:03:33.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9397, + "fields": { + "EF_ID": 416417, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Africa Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.100Z", + "last_change_date": "2022-03-14T08:03:33.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9398, + "fields": { + "EF_ID": 416418, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.175Z", + "last_change_date": "2022-03-14T08:03:33.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9399, + "fields": { + "EF_ID": 416419, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.277Z", + "last_change_date": "2022-03-14T08:03:33.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9400, + "fields": { + "EF_ID": 416420, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.359Z", + "last_change_date": "2022-03-14T08:03:33.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9401, + "fields": { + "EF_ID": 416421, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.434Z", + "last_change_date": "2022-03-14T08:03:33.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9402, + "fields": { + "EF_ID": 416422, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.537Z", + "last_change_date": "2022-03-14T08:03:33.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9403, + "fields": { + "EF_ID": 416423, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.634Z", + "last_change_date": "2022-03-14T08:03:33.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9404, + "fields": { + "EF_ID": 416424, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.708Z", + "last_change_date": "2022-03-14T08:03:33.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9405, + "fields": { + "EF_ID": 416425, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.814Z", + "last_change_date": "2022-03-14T08:03:33.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9406, + "fields": { + "EF_ID": 416426, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.900Z", + "last_change_date": "2022-03-14T08:03:33.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9407, + "fields": { + "EF_ID": 416427, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:33.983Z", + "last_change_date": "2022-03-14T08:03:33.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9408, + "fields": { + "EF_ID": 416428, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.124Z", + "last_change_date": "2022-03-14T08:03:34.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9409, + "fields": { + "EF_ID": 416429, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Africa Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.192Z", + "last_change_date": "2022-03-14T08:03:34.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9410, + "fields": { + "EF_ID": 416430, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.267Z", + "last_change_date": "2022-03-14T08:03:34.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9411, + "fields": { + "EF_ID": 416431, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Most livestock manure is managed as a solid on pastures and ranges. A smaller, but significant fraction is burned as fuel.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.359Z", + "last_change_date": "2022-03-14T08:03:34.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9412, + "fields": { + "EF_ID": 416432, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.442Z", + "last_change_date": "2022-03-14T08:03:34.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9413, + "fields": { + "EF_ID": 416433, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.517Z", + "last_change_date": "2022-03-14T08:03:34.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9414, + "fields": { + "EF_ID": 416434, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.619Z", + "last_change_date": "2022-03-14T08:03:34.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9415, + "fields": { + "EF_ID": 416435, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.700Z", + "last_change_date": "2022-03-14T08:03:34.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9416, + "fields": { + "EF_ID": 416436, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Middle East Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.803Z", + "last_change_date": "2022-03-14T08:03:34.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9417, + "fields": { + "EF_ID": 416437, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.884Z", + "last_change_date": "2022-03-14T08:03:34.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9418, + "fields": { + "EF_ID": 416438, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:34.987Z", + "last_change_date": "2022-03-14T08:03:34.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9419, + "fields": { + "EF_ID": 416439, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.075Z", + "last_change_date": "2022-03-14T08:03:35.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9420, + "fields": { + "EF_ID": 416440, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.180Z", + "last_change_date": "2022-03-14T08:03:35.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9421, + "fields": { + "EF_ID": 416441, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.259Z", + "last_change_date": "2022-03-14T08:03:35.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9422, + "fields": { + "EF_ID": 416442, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.364Z", + "last_change_date": "2022-03-14T08:03:35.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9423, + "fields": { + "EF_ID": 416443, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.467Z", + "last_change_date": "2022-03-14T08:03:35.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9424, + "fields": { + "EF_ID": 416444, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.573Z", + "last_change_date": "2022-03-14T08:03:35.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9425, + "fields": { + "EF_ID": 416445, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.659Z", + "last_change_date": "2022-03-14T08:03:35.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9426, + "fields": { + "EF_ID": 416446, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.774Z", + "last_change_date": "2022-03-14T08:03:35.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9427, + "fields": { + "EF_ID": 416447, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.859Z", + "last_change_date": "2022-03-14T08:03:35.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9428, + "fields": { + "EF_ID": 416448, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Middle East Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:35.968Z", + "last_change_date": "2022-03-14T08:03:35.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9429, + "fields": { + "EF_ID": 416449, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.050Z", + "last_change_date": "2022-03-14T08:03:36.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9430, + "fields": { + "EF_ID": 416450, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Middle East Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.152Z", + "last_change_date": "2022-03-14T08:03:36.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9431, + "fields": { + "EF_ID": 416451, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.233Z", + "last_change_date": "2022-03-14T08:03:36.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9432, + "fields": { + "EF_ID": 416452, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.353Z", + "last_change_date": "2022-03-14T08:03:36.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9433, + "fields": { + "EF_ID": 416453, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.434Z", + "last_change_date": "2022-03-14T08:03:36.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9434, + "fields": { + "EF_ID": 416454, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.537Z", + "last_change_date": "2022-03-14T08:03:36.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9435, + "fields": { + "EF_ID": 416455, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Middle East Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.617Z", + "last_change_date": "2022-03-14T08:03:36.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9436, + "fields": { + "EF_ID": 416456, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.713Z", + "last_change_date": "2022-03-14T08:03:36.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9437, + "fields": { + "EF_ID": 416457, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.809Z", + "last_change_date": "2022-03-14T08:03:36.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9438, + "fields": { + "EF_ID": 416458, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:36.906Z", + "last_change_date": "2022-03-14T08:03:36.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9439, + "fields": { + "EF_ID": 416459, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.009Z", + "last_change_date": "2022-03-14T08:03:37.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9440, + "fields": { + "EF_ID": 416460, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.115Z", + "last_change_date": "2022-03-14T08:03:37.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9441, + "fields": { + "EF_ID": 416461, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.209Z", + "last_change_date": "2022-03-14T08:03:37.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9442, + "fields": { + "EF_ID": 416462, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.307Z", + "last_change_date": "2022-03-14T08:03:37.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9443, + "fields": { + "EF_ID": 416463, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.392Z", + "last_change_date": "2022-03-14T08:03:37.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9444, + "fields": { + "EF_ID": 416464, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.492Z", + "last_change_date": "2022-03-14T08:03:37.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9445, + "fields": { + "EF_ID": 416465, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.576Z", + "last_change_date": "2022-03-14T08:03:37.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9446, + "fields": { + "EF_ID": 416466, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.677Z", + "last_change_date": "2022-03-14T08:03:37.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9447, + "fields": { + "EF_ID": 416467, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Middle East Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.759Z", + "last_change_date": "2022-03-14T08:03:37.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9448, + "fields": { + "EF_ID": 416468, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:37.853Z", + "last_change_date": "2022-03-14T08:03:37.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9449, + "fields": { + "EF_ID": 416469, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.071Z", + "last_change_date": "2022-03-14T08:03:38.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9450, + "fields": { + "EF_ID": 416470, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.170Z", + "last_change_date": "2022-03-14T08:03:38.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9451, + "fields": { + "EF_ID": 416471, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.267Z", + "last_change_date": "2022-03-14T08:03:38.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9452, + "fields": { + "EF_ID": 416472, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.363Z", + "last_change_date": "2022-03-14T08:03:38.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9453, + "fields": { + "EF_ID": 416473, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.459Z", + "last_change_date": "2022-03-14T08:03:38.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9454, + "fields": { + "EF_ID": 416474, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Middle East Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.564Z", + "last_change_date": "2022-03-14T08:03:38.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9455, + "fields": { + "EF_ID": 416475, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.651Z", + "last_change_date": "2022-03-14T08:03:38.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9456, + "fields": { + "EF_ID": 416476, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.748Z", + "last_change_date": "2022-03-14T08:03:38.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9457, + "fields": { + "EF_ID": 416477, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.842Z", + "last_change_date": "2022-03-14T08:03:38.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9458, + "fields": { + "EF_ID": 416478, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:38.941Z", + "last_change_date": "2022-03-14T08:03:38.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9459, + "fields": { + "EF_ID": 416479, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.034Z", + "last_change_date": "2022-03-14T08:03:39.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9460, + "fields": { + "EF_ID": 416480, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.133Z", + "last_change_date": "2022-03-14T08:03:39.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9461, + "fields": { + "EF_ID": 416481, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.217Z", + "last_change_date": "2022-03-14T08:03:39.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9462, + "fields": { + "EF_ID": 416482, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.326Z", + "last_change_date": "2022-03-14T08:03:39.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9463, + "fields": { + "EF_ID": 416483, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.409Z", + "last_change_date": "2022-03-14T08:03:39.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9464, + "fields": { + "EF_ID": 416484, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.511Z", + "last_change_date": "2022-03-14T08:03:39.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9465, + "fields": { + "EF_ID": 416485, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.593Z", + "last_change_date": "2022-03-14T08:03:39.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9466, + "fields": { + "EF_ID": 416486, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Middle East Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.704Z", + "last_change_date": "2022-03-14T08:03:39.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9467, + "fields": { + "EF_ID": 416487, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.784Z", + "last_change_date": "2022-03-14T08:03:39.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9468, + "fields": { + "EF_ID": 416488, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.888Z", + "last_change_date": "2022-03-14T08:03:39.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9469, + "fields": { + "EF_ID": 416489, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:39.968Z", + "last_change_date": "2022-03-14T08:03:39.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9470, + "fields": { + "EF_ID": 416490, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.072Z", + "last_change_date": "2022-03-14T08:03:40.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9471, + "fields": { + "EF_ID": 416491, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.151Z", + "last_change_date": "2022-03-14T08:03:40.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9472, + "fields": { + "EF_ID": 416492, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.273Z", + "last_change_date": "2022-03-14T08:03:40.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9473, + "fields": { + "EF_ID": 416493, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Middle East Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.351Z", + "last_change_date": "2022-03-14T08:03:40.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9474, + "fields": { + "EF_ID": 416494, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.474Z", + "last_change_date": "2022-03-14T08:03:40.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9475, + "fields": { + "EF_ID": 416495, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.568Z", + "last_change_date": "2022-03-14T08:03:40.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9476, + "fields": { + "EF_ID": 416496, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.675Z", + "last_change_date": "2022-03-14T08:03:40.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9477, + "fields": { + "EF_ID": 416497, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.767Z", + "last_change_date": "2022-03-14T08:03:40.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9478, + "fields": { + "EF_ID": 416498, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.876Z", + "last_change_date": "2022-03-14T08:03:40.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9479, + "fields": { + "EF_ID": 416499, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:40.968Z", + "last_change_date": "2022-03-14T08:03:40.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9480, + "fields": { + "EF_ID": 416500, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.077Z", + "last_change_date": "2022-03-14T08:03:41.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9481, + "fields": { + "EF_ID": 416501, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.159Z", + "last_change_date": "2022-03-14T08:03:41.159Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9482, + "fields": { + "EF_ID": 416502, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.270Z", + "last_change_date": "2022-03-14T08:03:41.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9483, + "fields": { + "EF_ID": 416503, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.351Z", + "last_change_date": "2022-03-14T08:03:41.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9484, + "fields": { + "EF_ID": 416504, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.455Z", + "last_change_date": "2022-03-14T08:03:41.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9485, + "fields": { + "EF_ID": 416505, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Middle East Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.534Z", + "last_change_date": "2022-03-14T08:03:41.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9486, + "fields": { + "EF_ID": 416506, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.639Z", + "last_change_date": "2022-03-14T08:03:41.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9487, + "fields": { + "EF_ID": 416507, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "Over two-thirds of cattle manure is deposited on pastures and ranges. About one-third of swine manure is managed in liquid-based systems. Buffalo manure is burned for fuel or managed as a solid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.718Z", + "last_change_date": "2022-03-14T08:03:41.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9488, + "fields": { + "EF_ID": 416508, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.815Z", + "last_change_date": "2022-03-14T08:03:41.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9489, + "fields": { + "EF_ID": 416509, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.893Z", + "last_change_date": "2022-03-14T08:03:41.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9490, + "fields": { + "EF_ID": 416510, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:41.991Z", + "last_change_date": "2022-03-14T08:03:41.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9491, + "fields": { + "EF_ID": 416511, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.068Z", + "last_change_date": "2022-03-14T08:03:42.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9492, + "fields": { + "EF_ID": 416512, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Asia Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.167Z", + "last_change_date": "2022-03-14T08:03:42.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9493, + "fields": { + "EF_ID": 416513, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.252Z", + "last_change_date": "2022-03-14T08:03:42.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9494, + "fields": { + "EF_ID": 416514, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.351Z", + "last_change_date": "2022-03-14T08:03:42.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9495, + "fields": { + "EF_ID": 416515, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.443Z", + "last_change_date": "2022-03-14T08:03:42.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9496, + "fields": { + "EF_ID": 416516, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.618Z", + "last_change_date": "2022-03-14T08:03:42.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9497, + "fields": { + "EF_ID": 416517, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.710Z", + "last_change_date": "2022-03-14T08:03:42.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9498, + "fields": { + "EF_ID": 416518, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.803Z", + "last_change_date": "2022-03-14T08:03:42.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9499, + "fields": { + "EF_ID": 416519, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:42.910Z", + "last_change_date": "2022-03-14T08:03:42.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9500, + "fields": { + "EF_ID": 416520, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:43.004Z", + "last_change_date": "2022-03-14T08:03:43.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9501, + "fields": { + "EF_ID": 416521, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:43.435Z", + "last_change_date": "2022-03-14T08:03:43.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9502, + "fields": { + "EF_ID": 416522, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:43.540Z", + "last_change_date": "2022-03-14T08:03:43.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9503, + "fields": { + "EF_ID": 416523, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:43.617Z", + "last_change_date": "2022-03-14T08:03:43.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9504, + "fields": { + "EF_ID": 416524, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Asia Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:43.715Z", + "last_change_date": "2022-03-14T08:03:43.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9505, + "fields": { + "EF_ID": 416525, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:43.800Z", + "last_change_date": "2022-03-14T08:03:43.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9506, + "fields": { + "EF_ID": 416526, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Asia Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:43.908Z", + "last_change_date": "2022-03-14T08:03:43.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9507, + "fields": { + "EF_ID": 416527, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:43.992Z", + "last_change_date": "2022-03-14T08:03:43.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9508, + "fields": { + "EF_ID": 416528, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.134Z", + "last_change_date": "2022-03-14T08:03:44.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9509, + "fields": { + "EF_ID": 416529, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.217Z", + "last_change_date": "2022-03-14T08:03:44.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9510, + "fields": { + "EF_ID": 416530, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.318Z", + "last_change_date": "2022-03-14T08:03:44.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9511, + "fields": { + "EF_ID": 416531, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Asia Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.392Z", + "last_change_date": "2022-03-14T08:03:44.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9512, + "fields": { + "EF_ID": 416532, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.485Z", + "last_change_date": "2022-03-14T08:03:44.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9513, + "fields": { + "EF_ID": 416533, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.576Z", + "last_change_date": "2022-03-14T08:03:44.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9514, + "fields": { + "EF_ID": 416534, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.687Z", + "last_change_date": "2022-03-14T08:03:44.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9515, + "fields": { + "EF_ID": 416535, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.775Z", + "last_change_date": "2022-03-14T08:03:44.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9516, + "fields": { + "EF_ID": 416536, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.871Z", + "last_change_date": "2022-03-14T08:03:44.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9517, + "fields": { + "EF_ID": 416537, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:44.967Z", + "last_change_date": "2022-03-14T08:03:44.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9518, + "fields": { + "EF_ID": 416538, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.063Z", + "last_change_date": "2022-03-14T08:03:45.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9519, + "fields": { + "EF_ID": 416539, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.142Z", + "last_change_date": "2022-03-14T08:03:45.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9520, + "fields": { + "EF_ID": 416540, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.249Z", + "last_change_date": "2022-03-14T08:03:45.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9521, + "fields": { + "EF_ID": 416541, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.325Z", + "last_change_date": "2022-03-14T08:03:45.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9522, + "fields": { + "EF_ID": 416542, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.424Z", + "last_change_date": "2022-03-14T08:03:45.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9523, + "fields": { + "EF_ID": 416543, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Asia Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.500Z", + "last_change_date": "2022-03-14T08:03:45.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9524, + "fields": { + "EF_ID": 416544, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.600Z", + "last_change_date": "2022-03-14T08:03:45.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9525, + "fields": { + "EF_ID": 416545, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.685Z", + "last_change_date": "2022-03-14T08:03:45.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9526, + "fields": { + "EF_ID": 416546, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.785Z", + "last_change_date": "2022-03-14T08:03:45.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9527, + "fields": { + "EF_ID": 416547, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.869Z", + "last_change_date": "2022-03-14T08:03:45.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9528, + "fields": { + "EF_ID": 416548, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:45.969Z", + "last_change_date": "2022-03-14T08:03:45.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9529, + "fields": { + "EF_ID": 416549, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.052Z", + "last_change_date": "2022-03-14T08:03:46.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9530, + "fields": { + "EF_ID": 416550, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Asia Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.153Z", + "last_change_date": "2022-03-14T08:03:46.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9531, + "fields": { + "EF_ID": 416551, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.235Z", + "last_change_date": "2022-03-14T08:03:46.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9532, + "fields": { + "EF_ID": 416552, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.329Z", + "last_change_date": "2022-03-14T08:03:46.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9533, + "fields": { + "EF_ID": 416553, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.427Z", + "last_change_date": "2022-03-14T08:03:46.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9534, + "fields": { + "EF_ID": 416554, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.530Z", + "last_change_date": "2022-03-14T08:03:46.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9535, + "fields": { + "EF_ID": 416555, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.619Z", + "last_change_date": "2022-03-14T08:03:46.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9536, + "fields": { + "EF_ID": 416556, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.739Z", + "last_change_date": "2022-03-14T08:03:46.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9537, + "fields": { + "EF_ID": 416557, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.836Z", + "last_change_date": "2022-03-14T08:03:46.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9538, + "fields": { + "EF_ID": 416558, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:46.933Z", + "last_change_date": "2022-03-14T08:03:46.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9539, + "fields": { + "EF_ID": 416559, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.010Z", + "last_change_date": "2022-03-14T08:03:47.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9540, + "fields": { + "EF_ID": 416560, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.117Z", + "last_change_date": "2022-03-14T08:03:47.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9541, + "fields": { + "EF_ID": 416561, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.194Z", + "last_change_date": "2022-03-14T08:03:47.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9542, + "fields": { + "EF_ID": 416562, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Asia Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.301Z", + "last_change_date": "2022-03-14T08:03:47.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9543, + "fields": { + "EF_ID": 416563, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.377Z", + "last_change_date": "2022-03-14T08:03:47.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9544, + "fields": { + "EF_ID": 416564, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.477Z", + "last_change_date": "2022-03-14T08:03:47.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9545, + "fields": { + "EF_ID": 416565, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.561Z", + "last_change_date": "2022-03-14T08:03:47.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9546, + "fields": { + "EF_ID": 416566, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.661Z", + "last_change_date": "2022-03-14T08:03:47.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9547, + "fields": { + "EF_ID": 416567, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.744Z", + "last_change_date": "2022-03-14T08:03:47.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9548, + "fields": { + "EF_ID": 416568, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.838Z", + "last_change_date": "2022-03-14T08:03:47.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9549, + "fields": { + "EF_ID": 416569, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Asia Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:47.919Z", + "last_change_date": "2022-03-14T08:03:47.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9550, + "fields": { + "EF_ID": 416570, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.013Z", + "last_change_date": "2022-03-14T08:03:48.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9551, + "fields": { + "EF_ID": 416571, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.102Z", + "last_change_date": "2022-03-14T08:03:48.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9552, + "fields": { + "EF_ID": 416572, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.198Z", + "last_change_date": "2022-03-14T08:03:48.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9553, + "fields": { + "EF_ID": 416573, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.286Z", + "last_change_date": "2022-03-14T08:03:48.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9554, + "fields": { + "EF_ID": 416574, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.382Z", + "last_change_date": "2022-03-14T08:03:48.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9555, + "fields": { + "EF_ID": 416575, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.461Z", + "last_change_date": "2022-03-14T08:03:48.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9556, + "fields": { + "EF_ID": 416576, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.559Z", + "last_change_date": "2022-03-14T08:03:48.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9557, + "fields": { + "EF_ID": 416577, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.636Z", + "last_change_date": "2022-03-14T08:03:48.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9558, + "fields": { + "EF_ID": 416578, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.743Z", + "last_change_date": "2022-03-14T08:03:48.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9559, + "fields": { + "EF_ID": 416579, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.828Z", + "last_change_date": "2022-03-14T08:03:48.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9560, + "fields": { + "EF_ID": 416580, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:48.936Z", + "last_change_date": "2022-03-14T08:03:48.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9561, + "fields": { + "EF_ID": 416581, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Asia Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.011Z", + "last_change_date": "2022-03-14T08:03:49.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9562, + "fields": { + "EF_ID": 416582, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.103Z", + "last_change_date": "2022-03-14T08:03:49.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9563, + "fields": { + "EF_ID": 416583, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle manure is used for fuel with the remainder managed in dry systems. Almost 40% of swine manure is managed as a liquid. Buffalo manure is managed in drylots and deposited in pastures and ranges.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.186Z", + "last_change_date": "2022-03-14T08:03:49.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9564, + "fields": { + "EF_ID": 416584, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.279Z", + "last_change_date": "2022-03-14T08:03:49.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9565, + "fields": { + "EF_ID": 416585, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.361Z", + "last_change_date": "2022-03-14T08:03:49.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9566, + "fields": { + "EF_ID": 416586, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.463Z", + "last_change_date": "2022-03-14T08:03:49.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9567, + "fields": { + "EF_ID": 416587, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.544Z", + "last_change_date": "2022-03-14T08:03:49.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9568, + "fields": { + "EF_ID": 416588, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Indian Subcontinent Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.639Z", + "last_change_date": "2022-03-14T08:03:49.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9569, + "fields": { + "EF_ID": 416589, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.728Z", + "last_change_date": "2022-03-14T08:03:49.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9570, + "fields": { + "EF_ID": 416590, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.823Z", + "last_change_date": "2022-03-14T08:03:49.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9571, + "fields": { + "EF_ID": 416591, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:49.911Z", + "last_change_date": "2022-03-14T08:03:49.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9572, + "fields": { + "EF_ID": 416592, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.016Z", + "last_change_date": "2022-03-14T08:03:50.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9573, + "fields": { + "EF_ID": 416593, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.103Z", + "last_change_date": "2022-03-14T08:03:50.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9574, + "fields": { + "EF_ID": 416594, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.200Z", + "last_change_date": "2022-03-14T08:03:50.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9575, + "fields": { + "EF_ID": 416595, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.278Z", + "last_change_date": "2022-03-14T08:03:50.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9576, + "fields": { + "EF_ID": 416596, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.385Z", + "last_change_date": "2022-03-14T08:03:50.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9577, + "fields": { + "EF_ID": 416597, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.469Z", + "last_change_date": "2022-03-14T08:03:50.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9578, + "fields": { + "EF_ID": 416598, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.570Z", + "last_change_date": "2022-03-14T08:03:50.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9579, + "fields": { + "EF_ID": 416599, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.653Z", + "last_change_date": "2022-03-14T08:03:50.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9580, + "fields": { + "EF_ID": 416600, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region:Indian Subcontinent Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.746Z", + "last_change_date": "2022-03-14T08:03:50.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9581, + "fields": { + "EF_ID": 416601, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.836Z", + "last_change_date": "2022-03-14T08:03:50.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9582, + "fields": { + "EF_ID": 416602, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Dairy Cows", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:50.955Z", + "last_change_date": "2022-03-14T08:03:50.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9583, + "fields": { + "EF_ID": 416603, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.036Z", + "last_change_date": "2022-03-14T08:03:51.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9584, + "fields": { + "EF_ID": 416604, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.139Z", + "last_change_date": "2022-03-14T08:03:51.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9585, + "fields": { + "EF_ID": 416605, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.220Z", + "last_change_date": "2022-03-14T08:03:51.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9586, + "fields": { + "EF_ID": 416606, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.315Z", + "last_change_date": "2022-03-14T08:03:51.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9587, + "fields": { + "EF_ID": 416607, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Indian Subcontinent Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.403Z", + "last_change_date": "2022-03-14T08:03:51.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9588, + "fields": { + "EF_ID": 416608, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.499Z", + "last_change_date": "2022-03-14T08:03:51.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9589, + "fields": { + "EF_ID": 416609, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.586Z", + "last_change_date": "2022-03-14T08:03:51.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9590, + "fields": { + "EF_ID": 416610, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.683Z", + "last_change_date": "2022-03-14T08:03:51.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9591, + "fields": { + "EF_ID": 416611, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.770Z", + "last_change_date": "2022-03-14T08:03:51.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9592, + "fields": { + "EF_ID": 416612, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.868Z", + "last_change_date": "2022-03-14T08:03:51.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9593, + "fields": { + "EF_ID": 416613, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:51.945Z", + "last_change_date": "2022-03-14T08:03:51.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9594, + "fields": { + "EF_ID": 416614, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.045Z", + "last_change_date": "2022-03-14T08:03:52.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9595, + "fields": { + "EF_ID": 416615, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.120Z", + "last_change_date": "2022-03-14T08:03:52.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9596, + "fields": { + "EF_ID": 416616, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.221Z", + "last_change_date": "2022-03-14T08:03:52.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9597, + "fields": { + "EF_ID": 416617, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.295Z", + "last_change_date": "2022-03-14T08:03:52.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9598, + "fields": { + "EF_ID": 416618, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.388Z", + "last_change_date": "2022-03-14T08:03:52.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9599, + "fields": { + "EF_ID": 416619, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region:Indian Subcontinent Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.462Z", + "last_change_date": "2022-03-14T08:03:52.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9600, + "fields": { + "EF_ID": 416620, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.556Z", + "last_change_date": "2022-03-14T08:03:52.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9601, + "fields": { + "EF_ID": 416621, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Other Cattle", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.628Z", + "last_change_date": "2022-03-14T08:03:52.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9602, + "fields": { + "EF_ID": 416622, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.740Z", + "last_change_date": "2022-03-14T08:03:52.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9603, + "fields": { + "EF_ID": 416623, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.803Z", + "last_change_date": "2022-03-14T08:03:52.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9604, + "fields": { + "EF_ID": 416624, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.891Z", + "last_change_date": "2022-03-14T08:03:52.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9605, + "fields": { + "EF_ID": 416625, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:52.970Z", + "last_change_date": "2022-03-14T08:03:52.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9606, + "fields": { + "EF_ID": 416626, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Indian Subcontinent Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.034Z", + "last_change_date": "2022-03-14T08:03:53.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9607, + "fields": { + "EF_ID": 416627, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.134Z", + "last_change_date": "2022-03-14T08:03:53.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9608, + "fields": { + "EF_ID": 416628, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.220Z", + "last_change_date": "2022-03-14T08:03:53.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9609, + "fields": { + "EF_ID": 416629, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.284Z", + "last_change_date": "2022-03-14T08:03:53.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9610, + "fields": { + "EF_ID": 416630, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.385Z", + "last_change_date": "2022-03-14T08:03:53.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9611, + "fields": { + "EF_ID": 416631, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.470Z", + "last_change_date": "2022-03-14T08:03:53.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9612, + "fields": { + "EF_ID": 416632, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.571Z", + "last_change_date": "2022-03-14T08:03:53.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9613, + "fields": { + "EF_ID": 416633, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.645Z", + "last_change_date": "2022-03-14T08:03:53.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9614, + "fields": { + "EF_ID": 416634, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.747Z", + "last_change_date": "2022-03-14T08:03:53.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9615, + "fields": { + "EF_ID": 416635, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.820Z", + "last_change_date": "2022-03-14T08:03:53.820Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9616, + "fields": { + "EF_ID": 416636, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.922Z", + "last_change_date": "2022-03-14T08:03:53.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9617, + "fields": { + "EF_ID": 416637, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:53.995Z", + "last_change_date": "2022-03-14T08:03:53.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9618, + "fields": { + "EF_ID": 416638, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region:Indian Subcontinent Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.124Z", + "last_change_date": "2022-03-14T08:03:54.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9619, + "fields": { + "EF_ID": 416639, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.203Z", + "last_change_date": "2022-03-14T08:03:54.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9620, + "fields": { + "EF_ID": 416640, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Swine", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.267Z", + "last_change_date": "2022-03-14T08:03:54.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9621, + "fields": { + "EF_ID": 416641, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (= or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.367Z", + "last_change_date": "2022-03-14T08:03:54.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9622, + "fields": { + "EF_ID": 416642, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.445Z", + "last_change_date": "2022-03-14T08:03:54.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9623, + "fields": { + "EF_ID": 416643, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.542Z", + "last_change_date": "2022-03-14T08:03:54.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9624, + "fields": { + "EF_ID": 416644, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.620Z", + "last_change_date": "2022-03-14T08:03:54.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9625, + "fields": { + "EF_ID": 416645, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Indian Subcontinent Average annual temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.687Z", + "last_change_date": "2022-03-14T08:03:54.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9626, + "fields": { + "EF_ID": 416646, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.777Z", + "last_change_date": "2022-03-14T08:03:54.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9627, + "fields": { + "EF_ID": 416647, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.862Z", + "last_change_date": "2022-03-14T08:03:54.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9628, + "fields": { + "EF_ID": 416648, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:54.953Z", + "last_change_date": "2022-03-14T08:03:54.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9629, + "fields": { + "EF_ID": 416649, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.045Z", + "last_change_date": "2022-03-14T08:03:55.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9630, + "fields": { + "EF_ID": 416650, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.145Z", + "last_change_date": "2022-03-14T08:03:55.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9631, + "fields": { + "EF_ID": 416651, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.229Z", + "last_change_date": "2022-03-14T08:03:55.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9632, + "fields": { + "EF_ID": 416652, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.331Z", + "last_change_date": "2022-03-14T08:03:55.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9633, + "fields": { + "EF_ID": 416653, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.409Z", + "last_change_date": "2022-03-14T08:03:55.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9634, + "fields": { + "EF_ID": 416654, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.507Z", + "last_change_date": "2022-03-14T08:03:55.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9635, + "fields": { + "EF_ID": 416655, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.584Z", + "last_change_date": "2022-03-14T08:03:55.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9636, + "fields": { + "EF_ID": 416656, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.691Z", + "last_change_date": "2022-03-14T08:03:55.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9637, + "fields": { + "EF_ID": 416657, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region:Indian Subcontinent Average annual temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.767Z", + "last_change_date": "2022-03-14T08:03:55.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9638, + "fields": { + "EF_ID": 416658, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.875Z", + "last_change_date": "2022-03-14T08:03:55.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9639, + "fields": { + "EF_ID": 416659, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for Buffalo", + "Technology_Practices": "About half of cattle and buffalo manure is used for fuel with the remainder managed in dry systems. About one-third of swine manure is managed as a liquid.", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Indian Subcontinent Average annual temperature: Warm (= or > 28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.14 - Manure management methane emission factors by temperature for Cattle, Swine, and Buffalo, on page 10.38", + "Technical_Reference": "See Annex 10A.2, Tables 10A-4 to 10A-8, Volume 4 of 2006 Guidelines, for derivation of these emission factors", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:55.951Z", + "last_change_date": "2022-03-14T08:03:55.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9640, + "fields": { + "EF_ID": 416660, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.059Z", + "last_change_date": "2022-03-14T08:03:56.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9641, + "fields": { + "EF_ID": 416661, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.134Z", + "last_change_date": "2022-03-14T08:03:56.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9642, + "fields": { + "EF_ID": 416662, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.235Z", + "last_change_date": "2022-03-14T08:03:56.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9643, + "fields": { + "EF_ID": 416663, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Country type: Developing countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.309Z", + "last_change_date": "2022-03-14T08:03:56.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9644, + "fields": { + "EF_ID": 416664, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Country type: Developing countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.403Z", + "last_change_date": "2022-03-14T08:03:56.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9645, + "fields": { + "EF_ID": 416665, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Country type: Developing countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.476Z", + "last_change_date": "2022-03-14T08:03:56.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9646, + "fields": { + "EF_ID": 416666, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for goats", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.570Z", + "last_change_date": "2022-03-14T08:03:56.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9647, + "fields": { + "EF_ID": 416667, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for goats", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.659Z", + "last_change_date": "2022-03-14T08:03:56.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9648, + "fields": { + "EF_ID": 416668, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for goats", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.754Z", + "last_change_date": "2022-03-14T08:03:56.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9649, + "fields": { + "EF_ID": 416669, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for goats", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Country type: Developing countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.842Z", + "last_change_date": "2022-03-14T08:03:56.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9650, + "fields": { + "EF_ID": 416670, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for goats", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Country type: Developing countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:56.932Z", + "last_change_date": "2022-03-14T08:03:56.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9651, + "fields": { + "EF_ID": 416671, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for goats", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Country type: Developing countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.009Z", + "last_change_date": "2022-03-14T08:03:57.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9652, + "fields": { + "EF_ID": 416672, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for camels", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.58", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.116Z", + "last_change_date": "2022-03-14T08:03:57.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9653, + "fields": { + "EF_ID": 416673, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for camels", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.37", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.192Z", + "last_change_date": "2022-03-14T08:03:57.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9654, + "fields": { + "EF_ID": 416674, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for camels", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.17", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.292Z", + "last_change_date": "2022-03-14T08:03:57.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9655, + "fields": { + "EF_ID": 416675, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for camels", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Country type: Developing countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.28", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.367Z", + "last_change_date": "2022-03-14T08:03:57.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9656, + "fields": { + "EF_ID": 416676, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for camels", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Country type: Developing countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.92", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.460Z", + "last_change_date": "2022-03-14T08:03:57.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9657, + "fields": { + "EF_ID": 416677, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for camels", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Country type: Developing countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.56", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.534Z", + "last_change_date": "2022-03-14T08:03:57.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9658, + "fields": { + "EF_ID": 416678, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for horses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.56", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.619Z", + "last_change_date": "2022-03-14T08:03:57.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9659, + "fields": { + "EF_ID": 416679, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for horses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.34", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.693Z", + "last_change_date": "2022-03-14T08:03:57.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9660, + "fields": { + "EF_ID": 416680, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for horses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.13", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.795Z", + "last_change_date": "2022-03-14T08:03:57.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9661, + "fields": { + "EF_ID": 416681, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for horses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses", + "Regional_Conditions": "Country type: Developing countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.09", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.867Z", + "last_change_date": "2022-03-14T08:03:57.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9662, + "fields": { + "EF_ID": 416682, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for horses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses", + "Regional_Conditions": "Country type: Developing countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.64", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:57.962Z", + "last_change_date": "2022-03-14T08:03:57.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9663, + "fields": { + "EF_ID": 416683, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for horses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses", + "Regional_Conditions": "Country type: Developing countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.19", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.034Z", + "last_change_date": "2022-03-14T08:03:58.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9664, + "fields": { + "EF_ID": 416684, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for mules and asses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mules and Asses", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.121Z", + "last_change_date": "2022-03-14T08:03:58.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9665, + "fields": { + "EF_ID": 416685, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for mules and asses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mules and Asses", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.192Z", + "last_change_date": "2022-03-14T08:03:58.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9666, + "fields": { + "EF_ID": 416686, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for mules and asses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mules and Asses", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.52", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.280Z", + "last_change_date": "2022-03-14T08:03:58.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9667, + "fields": { + "EF_ID": 416687, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for mules and asses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mules and Asses", + "Regional_Conditions": "Country type: Developing countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.367Z", + "last_change_date": "2022-03-14T08:03:58.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9668, + "fields": { + "EF_ID": 416688, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for mules and asses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mules and Asses", + "Regional_Conditions": "Country type: Developing countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.508Z", + "last_change_date": "2022-03-14T08:03:58.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9669, + "fields": { + "EF_ID": 416689, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for mules and asses", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mules and Asses", + "Regional_Conditions": "Country type: Developing countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "See Annex 10A.1, Volume 4 of 2006 Guidelines, as the basis of developing these emission factors Woodbury, J.W. and Hashimoto, A. (1993). Methane Emissions from Livestock Manure. In International Methane Emissions, US Environmental Protection Agency, Climate Change Division, Washington, D.C., U.S.A.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.584Z", + "last_change_date": "2022-03-14T08:03:58.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9670, + "fields": { + "EF_ID": 416690, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for layers (dry)", + "Technology_Practices": "Layers (dry) represent layers in a without bedding waste management system. Layer operations that manage dry manure", + "Parameter_Conditions": "Animal category: Poultry (layers - dry)", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For layers, volatile solids (VS) are values reported in USDA (1996); typical animal mass values are from ASAE (1999); and Bo values for Layers are values reported by Hill (1982)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.675Z", + "last_change_date": "2022-03-14T08:03:58.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9671, + "fields": { + "EF_ID": 416691, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for layers (dry)", + "Technology_Practices": "Layers (dry) represent layers in a without bedding waste management system. Layer operations that manage dry manure", + "Parameter_Conditions": "Animal category: Poultry (layers - dry)", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For layers, volatile solids (VS) are values reported in USDA (1996); typical animal mass values are from ASAE (1999); and Bo values for Layers are values reported by Hill (1982)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.751Z", + "last_change_date": "2022-03-14T08:03:58.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9672, + "fields": { + "EF_ID": 416692, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for layers (dry)", + "Technology_Practices": "Layers (dry) represent layers in a without bedding waste management system. Layer operations that manage dry manure", + "Parameter_Conditions": "Animal category: Poultry (layers - dry)", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For layers, volatile solids (VS) are values reported in USDA (1996); typical animal mass values are from ASAE (1999); and Bo values for Layers are values reported by Hill (1982)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.835Z", + "last_change_date": "2022-03-14T08:03:58.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9673, + "fields": { + "EF_ID": 416693, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for layers (wet)", + "Technology_Practices": "Layers (wet) represent layers in an anaerobic lagoon waste management system. Layer operations that manage manure as a liquid, such as stored in an anaerobic lagoon.", + "Parameter_Conditions": "Animal category: Poultry (layers - wet)", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For layers, volatile solids (VS) are values reported in USDA (1996); typical animal mass values are from ASAE (1999); and Bo values for Layers are values reported by Hill (1982)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:58.909Z", + "last_change_date": "2022-03-14T08:03:58.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9674, + "fields": { + "EF_ID": 416694, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for layers (wet)", + "Technology_Practices": "Layers (wet) represent layers in an anaerobic lagoon waste management system. Layer operations that manage manure as a liquid, such as stored in an anaerobic lagoon.", + "Parameter_Conditions": "Animal category: Poultry (layers - wet)", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For layers, volatile solids (VS) are values reported in USDA (1996); typical animal mass values are from ASAE (1999); and Bo values for Layers are values reported by Hill (1982)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.002Z", + "last_change_date": "2022-03-14T08:03:59.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9675, + "fields": { + "EF_ID": 416695, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for layers (wet)", + "Technology_Practices": "Layers (wet) represent layers in an anaerobic lagoon waste management system. Layer operations that manage manure as a liquid, such as stored in an anaerobic lagoon.", + "Parameter_Conditions": "Animal category: Poultry (layers - wet)", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For layers, volatile solids (VS) are values reported in USDA (1996); typical animal mass values are from ASAE (1999); and Bo values for Layers are values reported by Hill (1982)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.076Z", + "last_change_date": "2022-03-14T08:03:59.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9676, + "fields": { + "EF_ID": 416696, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for broilers", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (broilers)", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For broilers, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.178Z", + "last_change_date": "2022-03-14T08:03:59.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9677, + "fields": { + "EF_ID": 416697, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for broilers", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (broilers)", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For broilers, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.267Z", + "last_change_date": "2022-03-14T08:03:59.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9678, + "fields": { + "EF_ID": 416698, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for broilers", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (broilers)", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For broilers, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.329Z", + "last_change_date": "2022-03-14T08:03:59.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9679, + "fields": { + "EF_ID": 416699, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for turkeys", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (turkeys)", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.437Z", + "last_change_date": "2022-03-14T08:03:59.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9680, + "fields": { + "EF_ID": 416700, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for turkeys", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (turkeys)", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.526Z", + "last_change_date": "2022-03-14T08:03:59.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9681, + "fields": { + "EF_ID": 416701, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for turkeys", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (turkeys)", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.588Z", + "last_change_date": "2022-03-14T08:03:59.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9682, + "fields": { + "EF_ID": 416702, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for ducks", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (ducks)", + "Regional_Conditions": "Country type: Developed countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.681Z", + "last_change_date": "2022-03-14T08:03:59.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9683, + "fields": { + "EF_ID": 416703, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for ducks", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (ducks)", + "Regional_Conditions": "Country type: Developed countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.759Z", + "last_change_date": "2022-03-14T08:03:59.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9684, + "fields": { + "EF_ID": 416704, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for ducks", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry (ducks)", + "Regional_Conditions": "Country type: Developed countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.826Z", + "last_change_date": "2022-03-14T08:03:59.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9685, + "fields": { + "EF_ID": 416705, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for poultry", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Country type: Developing countries Temperature: Cool (<15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:03:59.924Z", + "last_change_date": "2022-03-14T08:03:59.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9686, + "fields": { + "EF_ID": 416706, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for poultry", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Country type: Developing countries Temperature: Temperate (15 to 25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.001Z", + "last_change_date": "2022-03-14T08:04:00.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9687, + "fields": { + "EF_ID": 416707, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factors by temperature for poultry", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Country type: Developing countries Temperature: Warm (>25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.15 - Manure management methane emission factors by temperature for sheep, goats, camels, horses, mules and asses, and poultry, on page 10.40", + "Technical_Reference": "For turkeys, Bo values are from Hill (1984); typical animal mass values are from ASAE (1999); and VS values are those reported in USDA (1996).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "When selecting a default emission factor, be sure to consult the supporting tables in Annex 10A.2, Volume 4 of 2006 Guidelines, for the distribution of manure management systems and animal waste characteristics used to estimate emissions. Select an emission factor for a region that most closely matches your own in these characteristics.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.067Z", + "last_change_date": "2022-03-14T08:04:00.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9688, + "fields": { + "EF_ID": 416708, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factor for deer", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Deer", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.16 - Manure management methane emission factors for Deer, Reindeer, Rabbits, and fur-bearing animals, on page 10.41", + "Technical_Reference": "Sneath, R.W., Phillips, V.R., Demmers, G.M., Burgess, L.R. and Short, J.L. (1997). Long Term Measurements of Greenhouse Gas Emissions from UK Livestock Buildings. Bio-Engineering Division, Silsoe Research Institute, Wrest Park, Silsoe, Bedford, MK45 4HS. Livestock Environment: Proceedings of the Fifth International Symposium. Bloomington MN. May 29-31, 1997.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.167Z", + "last_change_date": "2022-03-14T08:04:00.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9689, + "fields": { + "EF_ID": 416709, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factor for reindeer", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Reindeer", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.16 - Manure management methane emission factors for Deer, Reindeer, Rabbits, and fur-bearing animals, on page 10.41", + "Technical_Reference": "Estimations of Agricultural University of Norway, Institute of Chemistry and Biotechnology, Section for Microbiology.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.251Z", + "last_change_date": "2022-03-14T08:04:00.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9690, + "fields": { + "EF_ID": 416710, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factor for rabbits", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.16 - Manure management methane emission factors for Deer, Reindeer, Rabbits, and fur-bearing animals, on page 10.41", + "Technical_Reference": "Judgement of the IPCC Expert Group", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.309Z", + "last_change_date": "2022-03-14T08:04:00.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9691, + "fields": { + "EF_ID": 416711, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Manure management methane emission factor for Fur-bearing animals (e.g., fox, mink)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fur-bearing animals (e.g., fox, mink)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "kg CH4/head/yr", + "Equation": "Equation 10.22 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.7 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.16 - Manure management methane emission factors for Deer, Reindeer, Rabbits, and fur-bearing animals, on page 10.41", + "Technical_Reference": "Estimations of Agricultural University of Norway, Institute of Chemistry and Biotechnology, Section for Microbiology.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in this emission factor is +/- 30 %.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.376Z", + "last_change_date": "2022-03-14T08:04:00.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9692, + "fields": { + "EF_ID": 416712, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.469Z", + "last_change_date": "2022-03-14T08:04:00.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9693, + "fields": { + "EF_ID": 416713, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.542Z", + "last_change_date": "2022-03-14T08:04:00.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9694, + "fields": { + "EF_ID": 416714, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.617Z", + "last_change_date": "2022-03-14T08:04:00.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9695, + "fields": { + "EF_ID": 416715, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.692Z", + "last_change_date": "2022-03-14T08:04:00.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9696, + "fields": { + "EF_ID": 416716, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.767Z", + "last_change_date": "2022-03-14T08:04:00.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9697, + "fields": { + "EF_ID": 416717, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.871Z", + "last_change_date": "2022-03-14T08:04:00.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9698, + "fields": { + "EF_ID": 416718, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:00.959Z", + "last_change_date": "2022-03-14T08:04:00.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9699, + "fields": { + "EF_ID": 416719, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.026Z", + "last_change_date": "2022-03-14T08:04:01.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9700, + "fields": { + "EF_ID": 416720, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.092Z", + "last_change_date": "2022-03-14T08:04:01.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9701, + "fields": { + "EF_ID": 416721, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.159Z", + "last_change_date": "2022-03-14T08:04:01.159Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9702, + "fields": { + "EF_ID": 416722, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.273Z", + "last_change_date": "2022-03-14T08:04:01.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9703, + "fields": { + "EF_ID": 416723, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.351Z", + "last_change_date": "2022-03-14T08:04:01.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9704, + "fields": { + "EF_ID": 416724, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.417Z", + "last_change_date": "2022-03-14T08:04:01.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9705, + "fields": { + "EF_ID": 416725, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.484Z", + "last_change_date": "2022-03-14T08:04:01.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9706, + "fields": { + "EF_ID": 416726, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.551Z", + "last_change_date": "2022-03-14T08:04:01.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9707, + "fields": { + "EF_ID": 416727, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.650Z", + "last_change_date": "2022-03-14T08:04:01.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9708, + "fields": { + "EF_ID": 416728, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.726Z", + "last_change_date": "2022-03-14T08:04:01.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9709, + "fields": { + "EF_ID": 416729, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.792Z", + "last_change_date": "2022-03-14T08:04:01.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9710, + "fields": { + "EF_ID": 416730, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The manure from pasture and range grazing animals is allowed to lie as deposited, and is not managed.", + "Parameter_Conditions": "Manure management system: Pasture/range/paddock", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.867Z", + "last_change_date": "2022-03-14T08:04:01.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9711, + "fields": { + "EF_ID": 416731, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:01.934Z", + "last_change_date": "2022-03-14T08:04:01.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9712, + "fields": { + "EF_ID": 416732, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.028Z", + "last_change_date": "2022-03-14T08:04:02.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9713, + "fields": { + "EF_ID": 416733, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.105Z", + "last_change_date": "2022-03-14T08:04:02.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9714, + "fields": { + "EF_ID": 416734, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.184Z", + "last_change_date": "2022-03-14T08:04:02.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9715, + "fields": { + "EF_ID": 416735, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.251Z", + "last_change_date": "2022-03-14T08:04:02.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9716, + "fields": { + "EF_ID": 416736, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.355Z", + "last_change_date": "2022-03-14T08:04:02.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9717, + "fields": { + "EF_ID": 416737, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.442Z", + "last_change_date": "2022-03-14T08:04:02.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9718, + "fields": { + "EF_ID": 416738, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.517Z", + "last_change_date": "2022-03-14T08:04:02.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9719, + "fields": { + "EF_ID": 416739, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.592Z", + "last_change_date": "2022-03-14T08:04:02.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9720, + "fields": { + "EF_ID": 416740, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.698Z", + "last_change_date": "2022-03-14T08:04:02.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9721, + "fields": { + "EF_ID": 416741, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.784Z", + "last_change_date": "2022-03-14T08:04:02.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9722, + "fields": { + "EF_ID": 416742, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.859Z", + "last_change_date": "2022-03-14T08:04:02.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9723, + "fields": { + "EF_ID": 416743, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:02.934Z", + "last_change_date": "2022-03-14T08:04:02.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9724, + "fields": { + "EF_ID": 416744, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.033Z", + "last_change_date": "2022-03-14T08:04:03.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9725, + "fields": { + "EF_ID": 416745, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.109Z", + "last_change_date": "2022-03-14T08:04:03.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9726, + "fields": { + "EF_ID": 416746, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.192Z", + "last_change_date": "2022-03-14T08:04:03.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9727, + "fields": { + "EF_ID": 416747, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.264Z", + "last_change_date": "2022-03-14T08:04:03.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9728, + "fields": { + "EF_ID": 416748, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.360Z", + "last_change_date": "2022-03-14T08:04:03.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9729, + "fields": { + "EF_ID": 416749, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Hashimoto, A. and Steed, J. (1993). Methane emissions from typical U.S. livestock manure management systems. Draft report prepared for ICF Incorporated under contract to the Global Change Division of the Office of Air and Radiation, US Environmental Protection Agency, Washington, D.C.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.442Z", + "last_change_date": "2022-03-14T08:04:03.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9730, + "fields": { + "EF_ID": 416750, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.505Z", + "last_change_date": "2022-03-14T08:04:03.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9731, + "fields": { + "EF_ID": 416751, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.595Z", + "last_change_date": "2022-03-14T08:04:03.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9732, + "fields": { + "EF_ID": 416752, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.692Z", + "last_change_date": "2022-03-14T08:04:03.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9733, + "fields": { + "EF_ID": 416753, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.779Z", + "last_change_date": "2022-03-14T08:04:03.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9734, + "fields": { + "EF_ID": 416754, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.851Z", + "last_change_date": "2022-03-14T08:04:03.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9735, + "fields": { + "EF_ID": 416755, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:03.948Z", + "last_change_date": "2022-03-14T08:04:03.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9736, + "fields": { + "EF_ID": 416756, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.034Z", + "last_change_date": "2022-03-14T08:04:04.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9737, + "fields": { + "EF_ID": 416757, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.148Z", + "last_change_date": "2022-03-14T08:04:04.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9738, + "fields": { + "EF_ID": 416758, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.234Z", + "last_change_date": "2022-03-14T08:04:04.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9739, + "fields": { + "EF_ID": 416759, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.332Z", + "last_change_date": "2022-03-14T08:04:04.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9740, + "fields": { + "EF_ID": 416760, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.417Z", + "last_change_date": "2022-03-14T08:04:04.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9741, + "fields": { + "EF_ID": 416761, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.517Z", + "last_change_date": "2022-03-14T08:04:04.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9742, + "fields": { + "EF_ID": 416762, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.592Z", + "last_change_date": "2022-03-14T08:04:04.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9743, + "fields": { + "EF_ID": 416763, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.701Z", + "last_change_date": "2022-03-14T08:04:04.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9744, + "fields": { + "EF_ID": 416764, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.776Z", + "last_change_date": "2022-03-14T08:04:04.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9745, + "fields": { + "EF_ID": 416765, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.869Z", + "last_change_date": "2022-03-14T08:04:04.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9746, + "fields": { + "EF_ID": 416766, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:04.956Z", + "last_change_date": "2022-03-14T08:04:04.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9747, + "fields": { + "EF_ID": 416767, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.071Z", + "last_change_date": "2022-03-14T08:04:05.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9748, + "fields": { + "EF_ID": 416768, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions of approximately 2% in winter and 4% in summer. Warm climate is based on judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France. Amon, B., Amon, Th., Boxberger, J. and Alt, Ch. (2001). Emissions of NH3, N2O, and CH4 from dairy cows housed in a farmyard manure tying stall (Housing, Manure Storage, Manure Spreading). Nutrient Cycling in Agroecosystems, 60: pp. 103-113.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.150Z", + "last_change_date": "2022-03-14T08:04:05.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9749, + "fields": { + "EF_ID": 416769, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.239Z", + "last_change_date": "2022-03-14T08:04:05.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9750, + "fields": { + "EF_ID": 416770, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.326Z", + "last_change_date": "2022-03-14T08:04:05.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9751, + "fields": { + "EF_ID": 416771, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.398Z", + "last_change_date": "2022-03-14T08:04:05.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9752, + "fields": { + "EF_ID": 416772, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.464Z", + "last_change_date": "2022-03-14T08:04:05.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9753, + "fields": { + "EF_ID": 416773, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.557Z", + "last_change_date": "2022-03-14T08:04:05.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9754, + "fields": { + "EF_ID": 416774, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.642Z", + "last_change_date": "2022-03-14T08:04:05.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9755, + "fields": { + "EF_ID": 416775, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.707Z", + "last_change_date": "2022-03-14T08:04:05.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9756, + "fields": { + "EF_ID": 416776, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.781Z", + "last_change_date": "2022-03-14T08:04:05.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9757, + "fields": { + "EF_ID": 416777, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.848Z", + "last_change_date": "2022-03-14T08:04:05.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9758, + "fields": { + "EF_ID": 416778, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:05.966Z", + "last_change_date": "2022-03-14T08:04:05.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9759, + "fields": { + "EF_ID": 416779, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.067Z", + "last_change_date": "2022-03-14T08:04:06.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9760, + "fields": { + "EF_ID": 416780, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.134Z", + "last_change_date": "2022-03-14T08:04:06.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9761, + "fields": { + "EF_ID": 416781, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.209Z", + "last_change_date": "2022-03-14T08:04:06.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9762, + "fields": { + "EF_ID": 416782, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.284Z", + "last_change_date": "2022-03-14T08:04:06.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9763, + "fields": { + "EF_ID": 416783, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.393Z", + "last_change_date": "2022-03-14T08:04:06.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9764, + "fields": { + "EF_ID": 416784, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.476Z", + "last_change_date": "2022-03-14T08:04:06.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9765, + "fields": { + "EF_ID": 416785, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.551Z", + "last_change_date": "2022-03-14T08:04:06.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9766, + "fields": { + "EF_ID": 416786, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.634Z", + "last_change_date": "2022-03-14T08:04:06.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9767, + "fields": { + "EF_ID": 416787, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Hashimoto and Steed (1994).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.717Z", + "last_change_date": "2022-03-14T08:04:06.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9768, + "fields": { + "EF_ID": 416788, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.830Z", + "last_change_date": "2022-03-14T08:04:06.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9769, + "fields": { + "EF_ID": 416789, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.917Z", + "last_change_date": "2022-03-14T08:04:06.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9770, + "fields": { + "EF_ID": 416790, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:06.992Z", + "last_change_date": "2022-03-14T08:04:06.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9771, + "fields": { + "EF_ID": 416791, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.098Z", + "last_change_date": "2022-03-14T08:04:07.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9772, + "fields": { + "EF_ID": 416792, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.184Z", + "last_change_date": "2022-03-14T08:04:07.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9773, + "fields": { + "EF_ID": 416793, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.259Z", + "last_change_date": "2022-03-14T08:04:07.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9774, + "fields": { + "EF_ID": 416794, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.357Z", + "last_change_date": "2022-03-14T08:04:07.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9775, + "fields": { + "EF_ID": 416795, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.442Z", + "last_change_date": "2022-03-14T08:04:07.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9776, + "fields": { + "EF_ID": 416796, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.534Z", + "last_change_date": "2022-03-14T08:04:07.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9777, + "fields": { + "EF_ID": 416797, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.634Z", + "last_change_date": "2022-03-14T08:04:07.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9778, + "fields": { + "EF_ID": 416798, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.717Z", + "last_change_date": "2022-03-14T08:04:07.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9779, + "fields": { + "EF_ID": 416799, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.792Z", + "last_change_date": "2022-03-14T08:04:07.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9780, + "fields": { + "EF_ID": 416800, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.885Z", + "last_change_date": "2022-03-14T08:04:07.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9781, + "fields": { + "EF_ID": 416801, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:07.959Z", + "last_change_date": "2022-03-14T08:04:07.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9782, + "fields": { + "EF_ID": 416802, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.034Z", + "last_change_date": "2022-03-14T08:04:08.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9783, + "fields": { + "EF_ID": 416803, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.136Z", + "last_change_date": "2022-03-14T08:04:08.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9784, + "fields": { + "EF_ID": 416804, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.209Z", + "last_change_date": "2022-03-14T08:04:08.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9785, + "fields": { + "EF_ID": 416805, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.284Z", + "last_change_date": "2022-03-14T08:04:08.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9786, + "fields": { + "EF_ID": 416806, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001) and Sommer (2000).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The estimated reduction due to the crust cover (40%) is an annual average value based on a limited data set and can be highly variable dependent on temperature, rainfall, and composition. When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.388Z", + "last_change_date": "2022-03-14T08:04:08.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9787, + "fields": { + "EF_ID": 416807, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.459Z", + "last_change_date": "2022-03-14T08:04:08.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9788, + "fields": { + "EF_ID": 416808, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.542Z", + "last_change_date": "2022-03-14T08:04:08.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9789, + "fields": { + "EF_ID": 416809, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.799Z", + "last_change_date": "2022-03-14T08:04:08.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9790, + "fields": { + "EF_ID": 416810, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.892Z", + "last_change_date": "2022-03-14T08:04:08.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9791, + "fields": { + "EF_ID": 416811, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:08.968Z", + "last_change_date": "2022-03-14T08:04:08.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9792, + "fields": { + "EF_ID": 416812, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.066Z", + "last_change_date": "2022-03-14T08:04:09.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9793, + "fields": { + "EF_ID": 416813, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.151Z", + "last_change_date": "2022-03-14T08:04:09.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9794, + "fields": { + "EF_ID": 416814, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.226Z", + "last_change_date": "2022-03-14T08:04:09.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9795, + "fields": { + "EF_ID": 416815, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.326Z", + "last_change_date": "2022-03-14T08:04:09.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9796, + "fields": { + "EF_ID": 416816, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.417Z", + "last_change_date": "2022-03-14T08:04:09.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9797, + "fields": { + "EF_ID": 416817, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.492Z", + "last_change_date": "2022-03-14T08:04:09.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9798, + "fields": { + "EF_ID": 416818, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.602Z", + "last_change_date": "2022-03-14T08:04:09.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9799, + "fields": { + "EF_ID": 416819, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.676Z", + "last_change_date": "2022-03-14T08:04:09.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9800, + "fields": { + "EF_ID": 416820, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.750Z", + "last_change_date": "2022-03-14T08:04:09.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9801, + "fields": { + "EF_ID": 416821, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.845Z", + "last_change_date": "2022-03-14T08:04:09.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9802, + "fields": { + "EF_ID": 416822, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.917Z", + "last_change_date": "2022-03-14T08:04:09.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9803, + "fields": { + "EF_ID": 416823, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:09.984Z", + "last_change_date": "2022-03-14T08:04:09.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9804, + "fields": { + "EF_ID": 416824, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.079Z", + "last_change_date": "2022-03-14T08:04:10.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9805, + "fields": { + "EF_ID": 416825, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water in either tanks or earthen ponds outside the animal housing, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When slurry tanks are used as fed-batch storage/digesters, MCF should be calculated according to Formula 1 (see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.157Z", + "last_change_date": "2022-03-14T08:04:10.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9806, + "fields": { + "EF_ID": 416826, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.224Z", + "last_change_date": "2022-03-14T08:04:10.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9807, + "fields": { + "EF_ID": 416827, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.322Z", + "last_change_date": "2022-03-14T08:04:10.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9808, + "fields": { + "EF_ID": 416828, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.399Z", + "last_change_date": "2022-03-14T08:04:10.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9809, + "fields": { + "EF_ID": 416829, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.500Z", + "last_change_date": "2022-03-14T08:04:10.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9810, + "fields": { + "EF_ID": 416830, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.574Z", + "last_change_date": "2022-03-14T08:04:10.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9811, + "fields": { + "EF_ID": 416831, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.667Z", + "last_change_date": "2022-03-14T08:04:10.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9812, + "fields": { + "EF_ID": 416832, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.765Z", + "last_change_date": "2022-03-14T08:04:10.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9813, + "fields": { + "EF_ID": 416833, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.860Z", + "last_change_date": "2022-03-14T08:04:10.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9814, + "fields": { + "EF_ID": 416834, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:10.941Z", + "last_change_date": "2022-03-14T08:04:10.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9815, + "fields": { + "EF_ID": 416835, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.027Z", + "last_change_date": "2022-03-14T08:04:11.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9816, + "fields": { + "EF_ID": 416836, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.126Z", + "last_change_date": "2022-03-14T08:04:11.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9817, + "fields": { + "EF_ID": 416837, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.220Z", + "last_change_date": "2022-03-14T08:04:11.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9818, + "fields": { + "EF_ID": 416838, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.318Z", + "last_change_date": "2022-03-14T08:04:11.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9819, + "fields": { + "EF_ID": 416839, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.412Z", + "last_change_date": "2022-03-14T08:04:11.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9820, + "fields": { + "EF_ID": 416840, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.501Z", + "last_change_date": "2022-03-14T08:04:11.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9821, + "fields": { + "EF_ID": 416841, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.596Z", + "last_change_date": "2022-03-14T08:04:11.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9822, + "fields": { + "EF_ID": 416842, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.692Z", + "last_change_date": "2022-03-14T08:04:11.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9823, + "fields": { + "EF_ID": 416843, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.789Z", + "last_change_date": "2022-03-14T08:04:11.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9824, + "fields": { + "EF_ID": 416844, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "A type of liquid storage system designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncovered lagoon MCFs vary based on several factors, including temperature, retention time, and loss of volatile solids from the system (through removal of lagoon effluent and/or solids).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.884Z", + "last_change_date": "2022-03-14T08:04:11.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9825, + "fields": { + "EF_ID": 416845, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:11.990Z", + "last_change_date": "2022-03-14T08:04:11.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9826, + "fields": { + "EF_ID": 416846, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.084Z", + "last_change_date": "2022-03-14T08:04:12.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9827, + "fields": { + "EF_ID": 416847, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.184Z", + "last_change_date": "2022-03-14T08:04:12.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9828, + "fields": { + "EF_ID": 416848, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.276Z", + "last_change_date": "2022-03-14T08:04:12.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9829, + "fields": { + "EF_ID": 416849, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.376Z", + "last_change_date": "2022-03-14T08:04:12.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9830, + "fields": { + "EF_ID": 416850, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.451Z", + "last_change_date": "2022-03-14T08:04:12.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9831, + "fields": { + "EF_ID": 416851, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.544Z", + "last_change_date": "2022-03-14T08:04:12.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9832, + "fields": { + "EF_ID": 416852, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.626Z", + "last_change_date": "2022-03-14T08:04:12.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9833, + "fields": { + "EF_ID": 416853, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.711Z", + "last_change_date": "2022-03-14T08:04:12.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9834, + "fields": { + "EF_ID": 416854, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.809Z", + "last_change_date": "2022-03-14T08:04:12.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9835, + "fields": { + "EF_ID": 416855, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.895Z", + "last_change_date": "2022-03-14T08:04:12.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9836, + "fields": { + "EF_ID": 416856, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:12.993Z", + "last_change_date": "2022-03-14T08:04:12.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9837, + "fields": { + "EF_ID": 416857, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.080Z", + "last_change_date": "2022-03-14T08:04:13.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9838, + "fields": { + "EF_ID": 416858, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.167Z", + "last_change_date": "2022-03-14T08:04:13.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9839, + "fields": { + "EF_ID": 416859, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.255Z", + "last_change_date": "2022-03-14T08:04:13.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9840, + "fields": { + "EF_ID": 416860, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.342Z", + "last_change_date": "2022-03-14T08:04:13.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9841, + "fields": { + "EF_ID": 416861, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.440Z", + "last_change_date": "2022-03-14T08:04:13.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9842, + "fields": { + "EF_ID": 416862, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.526Z", + "last_change_date": "2022-03-14T08:04:13.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9843, + "fields": { + "EF_ID": 416863, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (<1 month)", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004) and Zeeman (1994). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36. Zeeman, G. (1994). Methane production/emission in storages for animal manure. Fertilizer Research 37: 207-211, 1994. Kluwer Academic Publishers, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.624Z", + "last_change_date": "2022-03-14T08:04:13.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9844, + "fields": { + "EF_ID": 416864, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.734Z", + "last_change_date": "2022-03-14T08:04:13.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9845, + "fields": { + "EF_ID": 416865, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.860Z", + "last_change_date": "2022-03-14T08:04:13.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9846, + "fields": { + "EF_ID": 416866, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:13.942Z", + "last_change_date": "2022-03-14T08:04:13.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9847, + "fields": { + "EF_ID": 416867, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.016Z", + "last_change_date": "2022-03-14T08:04:14.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9848, + "fields": { + "EF_ID": 416868, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.170Z", + "last_change_date": "2022-03-14T08:04:14.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9849, + "fields": { + "EF_ID": 416869, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.259Z", + "last_change_date": "2022-03-14T08:04:14.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9850, + "fields": { + "EF_ID": 416870, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.325Z", + "last_change_date": "2022-03-14T08:04:14.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9851, + "fields": { + "EF_ID": 416871, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.421Z", + "last_change_date": "2022-03-14T08:04:14.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9852, + "fields": { + "EF_ID": 416872, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.518Z", + "last_change_date": "2022-03-14T08:04:14.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9853, + "fields": { + "EF_ID": 416873, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.593Z", + "last_change_date": "2022-03-14T08:04:14.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9854, + "fields": { + "EF_ID": 416874, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.698Z", + "last_change_date": "2022-03-14T08:04:14.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9855, + "fields": { + "EF_ID": 416875, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.784Z", + "last_change_date": "2022-03-14T08:04:14.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9856, + "fields": { + "EF_ID": 416876, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.859Z", + "last_change_date": "2022-03-14T08:04:14.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9857, + "fields": { + "EF_ID": 416877, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:14.966Z", + "last_change_date": "2022-03-14T08:04:14.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9858, + "fields": { + "EF_ID": 416878, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.051Z", + "last_change_date": "2022-03-14T08:04:15.051Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9859, + "fields": { + "EF_ID": 416879, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.126Z", + "last_change_date": "2022-03-14T08:04:15.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9860, + "fields": { + "EF_ID": 416880, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.234Z", + "last_change_date": "2022-03-14T08:04:15.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9861, + "fields": { + "EF_ID": 416881, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.317Z", + "last_change_date": "2022-03-14T08:04:15.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9862, + "fields": { + "EF_ID": 416882, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility, usually for periods less than one year.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements (>1 month)", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note that the ambient temperature, not the stable temperature is to be used for determining the climatic conditions. When pits used as fed-batch storage/digesters, MCF should be calculated according to Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.392Z", + "last_change_date": "2022-03-14T08:04:15.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9863, + "fields": { + "EF_ID": 416883, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.493Z", + "last_change_date": "2022-03-14T08:04:15.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9864, + "fields": { + "EF_ID": 416884, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.576Z", + "last_change_date": "2022-03-14T08:04:15.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9865, + "fields": { + "EF_ID": 416885, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.651Z", + "last_change_date": "2022-03-14T08:04:15.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9866, + "fields": { + "EF_ID": 416886, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.778Z", + "last_change_date": "2022-03-14T08:04:15.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9867, + "fields": { + "EF_ID": 416887, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.859Z", + "last_change_date": "2022-03-14T08:04:15.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9868, + "fields": { + "EF_ID": 416888, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:15.943Z", + "last_change_date": "2022-03-14T08:04:15.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9869, + "fields": { + "EF_ID": 416889, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.055Z", + "last_change_date": "2022-03-14T08:04:16.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9870, + "fields": { + "EF_ID": 416890, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.151Z", + "last_change_date": "2022-03-14T08:04:16.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9871, + "fields": { + "EF_ID": 416891, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.226Z", + "last_change_date": "2022-03-14T08:04:16.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9872, + "fields": { + "EF_ID": 416892, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.331Z", + "last_change_date": "2022-03-14T08:04:16.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9873, + "fields": { + "EF_ID": 416893, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.426Z", + "last_change_date": "2022-03-14T08:04:16.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9874, + "fields": { + "EF_ID": 416894, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.501Z", + "last_change_date": "2022-03-14T08:04:16.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9875, + "fields": { + "EF_ID": 416895, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.607Z", + "last_change_date": "2022-03-14T08:04:16.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9876, + "fields": { + "EF_ID": 416896, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.692Z", + "last_change_date": "2022-03-14T08:04:16.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9877, + "fields": { + "EF_ID": 416897, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.767Z", + "last_change_date": "2022-03-14T08:04:16.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9878, + "fields": { + "EF_ID": 416898, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.884Z", + "last_change_date": "2022-03-14T08:04:16.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9879, + "fields": { + "EF_ID": 416899, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:16.967Z", + "last_change_date": "2022-03-14T08:04:16.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9880, + "fields": { + "EF_ID": 416900, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.042Z", + "last_change_date": "2022-03-14T08:04:17.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9881, + "fields": { + "EF_ID": 416901, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Animal excreta with or without straw are collected and anaerobically digested in a large containment vessel or covered lagoon. Digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CO2 and CH4, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-100", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Should be subdivided in different categories, considering amount of recovery of the biogas, flaring of the biogas and storage after digestion. Calculation with Formula 1(see footnote of Table 10.17, Volume 4, 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.143Z", + "last_change_date": "2022-03-14T08:04:17.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9882, + "fields": { + "EF_ID": 416902, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.226Z", + "last_change_date": "2022-03-14T08:04:17.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9883, + "fields": { + "EF_ID": 416903, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.301Z", + "last_change_date": "2022-03-14T08:04:17.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9884, + "fields": { + "EF_ID": 416904, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.376Z", + "last_change_date": "2022-03-14T08:04:17.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9885, + "fields": { + "EF_ID": 416905, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.487Z", + "last_change_date": "2022-03-14T08:04:17.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9886, + "fields": { + "EF_ID": 416906, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.567Z", + "last_change_date": "2022-03-14T08:04:17.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9887, + "fields": { + "EF_ID": 416907, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.642Z", + "last_change_date": "2022-03-14T08:04:17.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9888, + "fields": { + "EF_ID": 416908, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.718Z", + "last_change_date": "2022-03-14T08:04:17.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9889, + "fields": { + "EF_ID": 416909, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.847Z", + "last_change_date": "2022-03-14T08:04:17.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9890, + "fields": { + "EF_ID": 416910, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:17.950Z", + "last_change_date": "2022-03-14T08:04:17.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9891, + "fields": { + "EF_ID": 416911, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.034Z", + "last_change_date": "2022-03-14T08:04:18.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9892, + "fields": { + "EF_ID": 416912, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.117Z", + "last_change_date": "2022-03-14T08:04:18.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9893, + "fields": { + "EF_ID": 416913, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.232Z", + "last_change_date": "2022-03-14T08:04:18.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9894, + "fields": { + "EF_ID": 416914, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.318Z", + "last_change_date": "2022-03-14T08:04:18.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9895, + "fields": { + "EF_ID": 416915, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.393Z", + "last_change_date": "2022-03-14T08:04:18.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9896, + "fields": { + "EF_ID": 416916, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.467Z", + "last_change_date": "2022-03-14T08:04:18.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9897, + "fields": { + "EF_ID": 416917, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.576Z", + "last_change_date": "2022-03-14T08:04:18.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9898, + "fields": { + "EF_ID": 416918, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.659Z", + "last_change_date": "2022-03-14T08:04:18.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9899, + "fields": { + "EF_ID": 416919, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.734Z", + "last_change_date": "2022-03-14T08:04:18.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9900, + "fields": { + "EF_ID": 416920, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The dung and urine are excreted on fields. The sun dried dung cakes are burned for fuel.", + "Parameter_Conditions": "Manure management system: Burned for fuel", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Safley et al. (1992). Safley, L.M., Casada, M.E., Woodbury, J.W. and Roos, K.F. (1992). Global Methane Emissions from Livestock and Poultry Manure. US Environmental Protection Agency, Global Change Division, Washington, D.C., February 1992, EPA/400/1091/048.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.809Z", + "last_change_date": "2022-03-14T08:04:18.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9901, + "fields": { + "EF_ID": 416921, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004). Moller, H.B., Sommer, S.G. and Ahring, B. (2004). Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality, 33: pp. 27-36.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.910Z", + "last_change_date": "2022-03-14T08:04:18.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9902, + "fields": { + "EF_ID": 416922, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:18.992Z", + "last_change_date": "2022-03-14T08:04:18.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9903, + "fields": { + "EF_ID": 416923, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.068Z", + "last_change_date": "2022-03-14T08:04:19.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9904, + "fields": { + "EF_ID": 416924, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.170Z", + "last_change_date": "2022-03-14T08:04:19.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9905, + "fields": { + "EF_ID": 416925, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.251Z", + "last_change_date": "2022-03-14T08:04:19.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9906, + "fields": { + "EF_ID": 416926, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.326Z", + "last_change_date": "2022-03-14T08:04:19.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9907, + "fields": { + "EF_ID": 416927, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.431Z", + "last_change_date": "2022-03-14T08:04:19.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9908, + "fields": { + "EF_ID": 416928, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.526Z", + "last_change_date": "2022-03-14T08:04:19.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9909, + "fields": { + "EF_ID": 416929, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.600Z", + "last_change_date": "2022-03-14T08:04:19.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9910, + "fields": { + "EF_ID": 416930, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.716Z", + "last_change_date": "2022-03-14T08:04:19.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9911, + "fields": { + "EF_ID": 416931, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.809Z", + "last_change_date": "2022-03-14T08:04:19.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9912, + "fields": { + "EF_ID": 416932, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:19.892Z", + "last_change_date": "2022-03-14T08:04:19.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9913, + "fields": { + "EF_ID": 416933, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.025Z", + "last_change_date": "2022-03-14T08:04:20.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9914, + "fields": { + "EF_ID": 416934, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.117Z", + "last_change_date": "2022-03-14T08:04:20.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9915, + "fields": { + "EF_ID": 416935, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.201Z", + "last_change_date": "2022-03-14T08:04:20.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9916, + "fields": { + "EF_ID": 416936, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.301Z", + "last_change_date": "2022-03-14T08:04:20.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9917, + "fields": { + "EF_ID": 416937, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.384Z", + "last_change_date": "2022-03-14T08:04:20.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9918, + "fields": { + "EF_ID": 416938, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.451Z", + "last_change_date": "2022-03-14T08:04:20.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9919, + "fields": { + "EF_ID": 416939, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (<1 month)", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Moller et al. (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Expect emissions to be similar, and possibly greater, than pit storage, depending on organic content and moisture content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.544Z", + "last_change_date": "2022-03-14T08:04:20.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9920, + "fields": { + "EF_ID": 416940, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.626Z", + "last_change_date": "2022-03-14T08:04:20.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9921, + "fields": { + "EF_ID": 416941, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.701Z", + "last_change_date": "2022-03-14T08:04:20.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9922, + "fields": { + "EF_ID": 416942, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.795Z", + "last_change_date": "2022-03-14T08:04:20.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9923, + "fields": { + "EF_ID": 416943, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.875Z", + "last_change_date": "2022-03-14T08:04:20.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9924, + "fields": { + "EF_ID": 416944, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:20.942Z", + "last_change_date": "2022-03-14T08:04:20.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9925, + "fields": { + "EF_ID": 416945, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.039Z", + "last_change_date": "2022-03-14T08:04:21.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9926, + "fields": { + "EF_ID": 416946, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.126Z", + "last_change_date": "2022-03-14T08:04:21.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9927, + "fields": { + "EF_ID": 416947, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.192Z", + "last_change_date": "2022-03-14T08:04:21.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9928, + "fields": { + "EF_ID": 416948, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.299Z", + "last_change_date": "2022-03-14T08:04:21.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9929, + "fields": { + "EF_ID": 416949, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.392Z", + "last_change_date": "2022-03-14T08:04:21.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9930, + "fields": { + "EF_ID": 416950, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.467Z", + "last_change_date": "2022-03-14T08:04:21.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9931, + "fields": { + "EF_ID": 416951, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.592Z", + "last_change_date": "2022-03-14T08:04:21.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9932, + "fields": { + "EF_ID": 416952, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.684Z", + "last_change_date": "2022-03-14T08:04:21.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9933, + "fields": { + "EF_ID": 416953, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.750Z", + "last_change_date": "2022-03-14T08:04:21.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9934, + "fields": { + "EF_ID": 416954, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.851Z", + "last_change_date": "2022-03-14T08:04:21.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9935, + "fields": { + "EF_ID": 416955, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:21.934Z", + "last_change_date": "2022-03-14T08:04:21.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9936, + "fields": { + "EF_ID": 416956, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.017Z", + "last_change_date": "2022-03-14T08:04:22.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9937, + "fields": { + "EF_ID": 416957, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.128Z", + "last_change_date": "2022-03-14T08:04:22.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9938, + "fields": { + "EF_ID": 416958, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and Swine deep bedding (>1 month)", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Mangino et al. (2001). Mangino, J., Bartram, D. and Brazy, A. (2001). Development of a methane conversion factor to estimate emissions from animal waste lagoons. Presented at U.S. EPA`s 17th Annual Emission Inventory Conference, Atlanta GA, April 16-18, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.209Z", + "last_change_date": "2022-03-14T08:04:22.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9939, + "fields": { + "EF_ID": 416959, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.292Z", + "last_change_date": "2022-03-14T08:04:22.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9940, + "fields": { + "EF_ID": 416960, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.404Z", + "last_change_date": "2022-03-14T08:04:22.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9941, + "fields": { + "EF_ID": 416961, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.484Z", + "last_change_date": "2022-03-14T08:04:22.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9942, + "fields": { + "EF_ID": 416962, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.559Z", + "last_change_date": "2022-03-14T08:04:22.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9943, + "fields": { + "EF_ID": 416963, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.663Z", + "last_change_date": "2022-03-14T08:04:22.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9944, + "fields": { + "EF_ID": 416964, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.751Z", + "last_change_date": "2022-03-14T08:04:22.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9945, + "fields": { + "EF_ID": 416965, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.825Z", + "last_change_date": "2022-03-14T08:04:22.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9946, + "fields": { + "EF_ID": 416966, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:22.933Z", + "last_change_date": "2022-03-14T08:04:22.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9947, + "fields": { + "EF_ID": 416967, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.017Z", + "last_change_date": "2022-03-14T08:04:23.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9948, + "fields": { + "EF_ID": 416968, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.092Z", + "last_change_date": "2022-03-14T08:04:23.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9949, + "fields": { + "EF_ID": 416969, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.201Z", + "last_change_date": "2022-03-14T08:04:23.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9950, + "fields": { + "EF_ID": 416970, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.292Z", + "last_change_date": "2022-03-14T08:04:23.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9951, + "fields": { + "EF_ID": 416971, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.367Z", + "last_change_date": "2022-03-14T08:04:23.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9952, + "fields": { + "EF_ID": 416972, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.468Z", + "last_change_date": "2022-03-14T08:04:23.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9953, + "fields": { + "EF_ID": 416973, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.551Z", + "last_change_date": "2022-03-14T08:04:23.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9954, + "fields": { + "EF_ID": 416974, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.626Z", + "last_change_date": "2022-03-14T08:04:23.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9955, + "fields": { + "EF_ID": 416975, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.736Z", + "last_change_date": "2022-03-14T08:04:23.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9956, + "fields": { + "EF_ID": 416976, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.817Z", + "last_change_date": "2022-03-14T08:04:23.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9957, + "fields": { + "EF_ID": 416977, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-vessel", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.892Z", + "last_change_date": "2022-03-14T08:04:23.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9958, + "fields": { + "EF_ID": 416978, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:23.996Z", + "last_change_date": "2022-03-14T08:04:23.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9959, + "fields": { + "EF_ID": 416979, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.109Z", + "last_change_date": "2022-03-14T08:04:24.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9960, + "fields": { + "EF_ID": 416980, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.192Z", + "last_change_date": "2022-03-14T08:04:24.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9961, + "fields": { + "EF_ID": 416981, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.306Z", + "last_change_date": "2022-03-14T08:04:24.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9962, + "fields": { + "EF_ID": 416982, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.384Z", + "last_change_date": "2022-03-14T08:04:24.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9963, + "fields": { + "EF_ID": 416983, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.467Z", + "last_change_date": "2022-03-14T08:04:24.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9964, + "fields": { + "EF_ID": 416984, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.575Z", + "last_change_date": "2022-03-14T08:04:24.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9965, + "fields": { + "EF_ID": 416985, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.667Z", + "last_change_date": "2022-03-14T08:04:24.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9966, + "fields": { + "EF_ID": 416986, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.750Z", + "last_change_date": "2022-03-14T08:04:24.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9967, + "fields": { + "EF_ID": 416987, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.851Z", + "last_change_date": "2022-03-14T08:04:24.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9968, + "fields": { + "EF_ID": 416988, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:24.934Z", + "last_change_date": "2022-03-14T08:04:24.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9969, + "fields": { + "EF_ID": 416989, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.009Z", + "last_change_date": "2022-03-14T08:04:25.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9970, + "fields": { + "EF_ID": 416990, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.111Z", + "last_change_date": "2022-03-14T08:04:25.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9971, + "fields": { + "EF_ID": 416991, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.192Z", + "last_change_date": "2022-03-14T08:04:25.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9972, + "fields": { + "EF_ID": 416992, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.267Z", + "last_change_date": "2022-03-14T08:04:25.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9973, + "fields": { + "EF_ID": 416993, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.371Z", + "last_change_date": "2022-03-14T08:04:25.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9974, + "fields": { + "EF_ID": 416994, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.451Z", + "last_change_date": "2022-03-14T08:04:25.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9975, + "fields": { + "EF_ID": 416995, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.526Z", + "last_change_date": "2022-03-14T08:04:25.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9976, + "fields": { + "EF_ID": 416996, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static pile", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.630Z", + "last_change_date": "2022-03-14T08:04:25.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9977, + "fields": { + "EF_ID": 416997, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.709Z", + "last_change_date": "2022-03-14T08:04:25.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9978, + "fields": { + "EF_ID": 416998, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.784Z", + "last_change_date": "2022-03-14T08:04:25.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9979, + "fields": { + "EF_ID": 416999, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.890Z", + "last_change_date": "2022-03-14T08:04:25.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9980, + "fields": { + "EF_ID": 417000, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:25.968Z", + "last_change_date": "2022-03-14T08:04:25.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9981, + "fields": { + "EF_ID": 417001, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.042Z", + "last_change_date": "2022-03-14T08:04:26.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9982, + "fields": { + "EF_ID": 417002, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.158Z", + "last_change_date": "2022-03-14T08:04:26.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9983, + "fields": { + "EF_ID": 417003, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.243Z", + "last_change_date": "2022-03-14T08:04:26.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9984, + "fields": { + "EF_ID": 417004, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.326Z", + "last_change_date": "2022-03-14T08:04:26.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9985, + "fields": { + "EF_ID": 417005, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.436Z", + "last_change_date": "2022-03-14T08:04:26.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9986, + "fields": { + "EF_ID": 417006, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.526Z", + "last_change_date": "2022-03-14T08:04:26.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9987, + "fields": { + "EF_ID": 417007, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.601Z", + "last_change_date": "2022-03-14T08:04:26.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9988, + "fields": { + "EF_ID": 417008, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.695Z", + "last_change_date": "2022-03-14T08:04:26.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9989, + "fields": { + "EF_ID": 417009, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.776Z", + "last_change_date": "2022-03-14T08:04:26.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9990, + "fields": { + "EF_ID": 417010, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.843Z", + "last_change_date": "2022-03-14T08:04:26.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9991, + "fields": { + "EF_ID": 417011, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:26.946Z", + "last_change_date": "2022-03-14T08:04:26.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9992, + "fields": { + "EF_ID": 417012, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.026Z", + "last_change_date": "2022-03-14T08:04:27.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9993, + "fields": { + "EF_ID": 417013, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.092Z", + "last_change_date": "2022-03-14T08:04:27.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9994, + "fields": { + "EF_ID": 417014, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.206Z", + "last_change_date": "2022-03-14T08:04:27.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9995, + "fields": { + "EF_ID": 417015, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with regular (at least daily) turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive windrow", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.293Z", + "last_change_date": "2022-03-14T08:04:27.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9996, + "fields": { + "EF_ID": 417016, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.359Z", + "last_change_date": "2022-03-14T08:04:27.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9997, + "fields": { + "EF_ID": 417017, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.457Z", + "last_change_date": "2022-03-14T08:04:27.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9998, + "fields": { + "EF_ID": 417018, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.543Z", + "last_change_date": "2022-03-14T08:04:27.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 9999, + "fields": { + "EF_ID": 417019, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.609Z", + "last_change_date": "2022-03-14T08:04:27.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10000, + "fields": { + "EF_ID": 417020, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.709Z", + "last_change_date": "2022-03-14T08:04:27.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10001, + "fields": { + "EF_ID": 417021, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.793Z", + "last_change_date": "2022-03-14T08:04:27.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10002, + "fields": { + "EF_ID": 417022, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.876Z", + "last_change_date": "2022-03-14T08:04:27.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10003, + "fields": { + "EF_ID": 417023, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:27.994Z", + "last_change_date": "2022-03-14T08:04:27.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10004, + "fields": { + "EF_ID": 417024, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.093Z", + "last_change_date": "2022-03-14T08:04:28.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10005, + "fields": { + "EF_ID": 417025, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.168Z", + "last_change_date": "2022-03-14T08:04:28.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10006, + "fields": { + "EF_ID": 417026, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.271Z", + "last_change_date": "2022-03-14T08:04:28.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10007, + "fields": { + "EF_ID": 417027, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.368Z", + "last_change_date": "2022-03-14T08:04:28.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10008, + "fields": { + "EF_ID": 417028, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.434Z", + "last_change_date": "2022-03-14T08:04:28.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10009, + "fields": { + "EF_ID": 417029, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.539Z", + "last_change_date": "2022-03-14T08:04:28.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10010, + "fields": { + "EF_ID": 417030, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.626Z", + "last_change_date": "2022-03-14T08:04:28.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10011, + "fields": { + "EF_ID": 417031, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.701Z", + "last_change_date": "2022-03-14T08:04:28.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10012, + "fields": { + "EF_ID": 417032, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.807Z", + "last_change_date": "2022-03-14T08:04:28.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10013, + "fields": { + "EF_ID": 417033, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.893Z", + "last_change_date": "2022-03-14T08:04:28.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10014, + "fields": { + "EF_ID": 417034, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting – Passive windrow", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group and Amon et al. (1998). Amon, B., Amon, Th., Boxberger, J. and Pollinger, A. (1998). Emissions of NH3, N2O, and CH4 from composted and anaerobically stored farmyard manure. Pages 209-216 in Martinez J, Maudet M-N (eds) Ramiran 98, Proc. 8th Int. Conf. on the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture. Rennes, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are less than half of solid storage. Not temperature dependant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:28.968Z", + "last_change_date": "2022-03-14T08:04:28.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10015, + "fields": { + "EF_ID": 417035, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.075Z", + "last_change_date": "2022-03-14T08:04:29.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10016, + "fields": { + "EF_ID": 417036, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.168Z", + "last_change_date": "2022-03-14T08:04:29.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10017, + "fields": { + "EF_ID": 417037, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.243Z", + "last_change_date": "2022-03-14T08:04:29.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10018, + "fields": { + "EF_ID": 417038, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.318Z", + "last_change_date": "2022-03-14T08:04:29.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10019, + "fields": { + "EF_ID": 417039, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.427Z", + "last_change_date": "2022-03-14T08:04:29.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10020, + "fields": { + "EF_ID": 417040, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.509Z", + "last_change_date": "2022-03-14T08:04:29.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10021, + "fields": { + "EF_ID": 417041, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.584Z", + "last_change_date": "2022-03-14T08:04:29.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10022, + "fields": { + "EF_ID": 417042, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.668Z", + "last_change_date": "2022-03-14T08:04:29.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10023, + "fields": { + "EF_ID": 417043, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.779Z", + "last_change_date": "2022-03-14T08:04:29.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10024, + "fields": { + "EF_ID": 417044, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.876Z", + "last_change_date": "2022-03-14T08:04:29.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10025, + "fields": { + "EF_ID": 417045, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:29.960Z", + "last_change_date": "2022-03-14T08:04:29.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10026, + "fields": { + "EF_ID": 417046, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.035Z", + "last_change_date": "2022-03-14T08:04:30.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10027, + "fields": { + "EF_ID": 417047, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.140Z", + "last_change_date": "2022-03-14T08:04:30.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10028, + "fields": { + "EF_ID": 417048, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.226Z", + "last_change_date": "2022-03-14T08:04:30.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10029, + "fields": { + "EF_ID": 417049, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.326Z", + "last_change_date": "2022-03-14T08:04:30.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10030, + "fields": { + "EF_ID": 417050, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.401Z", + "last_change_date": "2022-03-14T08:04:30.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10031, + "fields": { + "EF_ID": 417051, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.500Z", + "last_change_date": "2022-03-14T08:04:30.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10032, + "fields": { + "EF_ID": 417052, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.585Z", + "last_change_date": "2022-03-14T08:04:30.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10033, + "fields": { + "EF_ID": 417053, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "Similar to cattle and swine deep bedding except usually not combined with a dry lot or pasture. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to sol id storage but with generally constant warm temperatures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.660Z", + "last_change_date": "2022-03-14T08:04:30.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10034, + "fields": { + "EF_ID": 417054, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.735Z", + "last_change_date": "2022-03-14T08:04:30.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10035, + "fields": { + "EF_ID": 417055, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.834Z", + "last_change_date": "2022-03-14T08:04:30.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10036, + "fields": { + "EF_ID": 417056, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.918Z", + "last_change_date": "2022-03-14T08:04:30.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10037, + "fields": { + "EF_ID": 417057, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:30.993Z", + "last_change_date": "2022-03-14T08:04:30.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10038, + "fields": { + "EF_ID": 417058, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.068Z", + "last_change_date": "2022-03-14T08:04:31.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10039, + "fields": { + "EF_ID": 417059, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.161Z", + "last_change_date": "2022-03-14T08:04:31.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10040, + "fields": { + "EF_ID": 417060, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.243Z", + "last_change_date": "2022-03-14T08:04:31.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10041, + "fields": { + "EF_ID": 417061, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.326Z", + "last_change_date": "2022-03-14T08:04:31.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10042, + "fields": { + "EF_ID": 417062, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.401Z", + "last_change_date": "2022-03-14T08:04:31.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10043, + "fields": { + "EF_ID": 417063, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.497Z", + "last_change_date": "2022-03-14T08:04:31.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10044, + "fields": { + "EF_ID": 417064, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.593Z", + "last_change_date": "2022-03-14T08:04:31.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10045, + "fields": { + "EF_ID": 417065, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.676Z", + "last_change_date": "2022-03-14T08:04:31.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10046, + "fields": { + "EF_ID": 417066, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.760Z", + "last_change_date": "2022-03-14T08:04:31.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10047, + "fields": { + "EF_ID": 417067, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.865Z", + "last_change_date": "2022-03-14T08:04:31.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10048, + "fields": { + "EF_ID": 417068, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:31.952Z", + "last_change_date": "2022-03-14T08:04:31.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10049, + "fields": { + "EF_ID": 417069, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.026Z", + "last_change_date": "2022-03-14T08:04:32.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10050, + "fields": { + "EF_ID": 417070, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.102Z", + "last_change_date": "2022-03-14T08:04:32.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10051, + "fields": { + "EF_ID": 417071, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.200Z", + "last_change_date": "2022-03-14T08:04:32.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10052, + "fields": { + "EF_ID": 417072, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "Judgement of IPCC Expert Group.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are similar to dry lot at a warm climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.285Z", + "last_change_date": "2022-03-14T08:04:32.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10053, + "fields": { + "EF_ID": 417073, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Cool (equal or < 10°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.360Z", + "last_change_date": "2022-03-14T08:04:32.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10054, + "fields": { + "EF_ID": 417074, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Cool (11°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.443Z", + "last_change_date": "2022-03-14T08:04:32.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10055, + "fields": { + "EF_ID": 417075, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Cool (12°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.535Z", + "last_change_date": "2022-03-14T08:04:32.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10056, + "fields": { + "EF_ID": 417076, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Cool (13°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.618Z", + "last_change_date": "2022-03-14T08:04:32.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10057, + "fields": { + "EF_ID": 417077, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Cool (14°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.693Z", + "last_change_date": "2022-03-14T08:04:32.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10058, + "fields": { + "EF_ID": 417078, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (15°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.787Z", + "last_change_date": "2022-03-14T08:04:32.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10059, + "fields": { + "EF_ID": 417079, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (16°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.868Z", + "last_change_date": "2022-03-14T08:04:32.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10060, + "fields": { + "EF_ID": 417080, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (17°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:32.943Z", + "last_change_date": "2022-03-14T08:04:32.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10061, + "fields": { + "EF_ID": 417081, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (18°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.039Z", + "last_change_date": "2022-03-14T08:04:33.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10062, + "fields": { + "EF_ID": 417082, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (19°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.135Z", + "last_change_date": "2022-03-14T08:04:33.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10063, + "fields": { + "EF_ID": 417083, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (20°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.210Z", + "last_change_date": "2022-03-14T08:04:33.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10064, + "fields": { + "EF_ID": 417084, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (21°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.307Z", + "last_change_date": "2022-03-14T08:04:33.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10065, + "fields": { + "EF_ID": 417085, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (22°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.393Z", + "last_change_date": "2022-03-14T08:04:33.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10066, + "fields": { + "EF_ID": 417086, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (23°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.477Z", + "last_change_date": "2022-03-14T08:04:33.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10067, + "fields": { + "EF_ID": 417087, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (24°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.584Z", + "last_change_date": "2022-03-14T08:04:33.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10068, + "fields": { + "EF_ID": 417088, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Temperate (25°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.668Z", + "last_change_date": "2022-03-14T08:04:33.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10069, + "fields": { + "EF_ID": 417089, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Warm (26°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.752Z", + "last_change_date": "2022-03-14T08:04:33.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10070, + "fields": { + "EF_ID": 417090, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Warm (27°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.860Z", + "last_change_date": "2022-03-14T08:04:33.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10071, + "fields": { + "EF_ID": 417091, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane conversion factor by average annual temperature", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment", + "Regional_Conditions": "Temperature: Warm (equal or >28°C)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 10.23 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.17 - MCF values by temperature for manure management systems, on pages 10.44 - 10.47", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCFs are near zero. Aerobic treatment can result in the accumulation of sludge which may be treated in other systems. Sludge requires removal and has large VS values. It is important to identify the next management process for the sludge and estimate the emissions from that management process if significant.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:33.943Z", + "last_change_date": "2022-03-14T08:04:33.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10072, + "fields": { + "EF_ID": 417092, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cattle", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.010Z", + "last_change_date": "2022-03-14T08:04:34.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10073, + "fields": { + "EF_ID": 417093, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.128Z", + "last_change_date": "2022-03-14T08:04:34.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10074, + "fields": { + "EF_ID": 417094, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40 (0.4)", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "Nitrogen excretion for swine are based on an estimated country population of 90% market swine and 10% breeding swine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.218Z", + "last_change_date": "2022-03-14T08:04:34.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10075, + "fields": { + "EF_ID": 417095, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Market)", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.318Z", + "last_change_date": "2022-03-14T08:04:34.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10076, + "fields": { + "EF_ID": 417096, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Breeding)", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.377Z", + "last_change_date": "2022-03-14T08:04:34.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10077, + "fields": { + "EF_ID": 417097, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.455Z", + "last_change_date": "2022-03-14T08:04:34.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10078, + "fields": { + "EF_ID": 417098, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Hens (equal or > 1 yr)", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.519Z", + "last_change_date": "2022-03-14T08:04:34.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10079, + "fields": { + "EF_ID": 417099, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Pullets", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.585Z", + "last_change_date": "2022-03-14T08:04:34.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10080, + "fields": { + "EF_ID": 417100, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Chickens", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.652Z", + "last_change_date": "2022-03-14T08:04:34.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10081, + "fields": { + "EF_ID": 417101, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Broilers", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.741Z", + "last_change_date": "2022-03-14T08:04:34.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10082, + "fields": { + "EF_ID": 417102, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Turkeys", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.827Z", + "last_change_date": "2022-03-14T08:04:34.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10083, + "fields": { + "EF_ID": 417103, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Ducks", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.894Z", + "last_change_date": "2022-03-14T08:04:34.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10084, + "fields": { + "EF_ID": 417104, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:34.960Z", + "last_change_date": "2022-03-14T08:04:34.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10085, + "fields": { + "EF_ID": 417105, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.059Z", + "last_change_date": "2022-03-14T08:04:35.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10086, + "fields": { + "EF_ID": 417106, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (and mules, asses)", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.160Z", + "last_change_date": "2022-03-14T08:04:35.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10087, + "fields": { + "EF_ID": 417107, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.234Z", + "last_change_date": "2022-03-14T08:04:35.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10088, + "fields": { + "EF_ID": 417108, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.309Z", + "last_change_date": "2022-03-14T08:04:35.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10089, + "fields": { + "EF_ID": 417109, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mink and Polecat", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.402Z", + "last_change_date": "2022-03-14T08:04:35.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10090, + "fields": { + "EF_ID": 417110, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.485Z", + "last_change_date": "2022-03-14T08:04:35.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10091, + "fields": { + "EF_ID": 417111, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fox and Racoon", + "Regional_Conditions": "Region: North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.09", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.559Z", + "last_change_date": "2022-03-14T08:04:35.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10092, + "fields": { + "EF_ID": 417112, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cattle", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.634Z", + "last_change_date": "2022-03-14T08:04:35.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10093, + "fields": { + "EF_ID": 417113, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.717Z", + "last_change_date": "2022-03-14T08:04:35.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10094, + "fields": { + "EF_ID": 417114, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50 (0.5)", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "Nitrogen excretion for swine are based on an estimated country population of 90% market swine and 10% breeding swine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.821Z", + "last_change_date": "2022-03-14T08:04:35.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10095, + "fields": { + "EF_ID": 417115, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Market)", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.902Z", + "last_change_date": "2022-03-14T08:04:35.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10096, + "fields": { + "EF_ID": 417116, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Breeding)", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:35.967Z", + "last_change_date": "2022-03-14T08:04:35.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10097, + "fields": { + "EF_ID": 417117, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.034Z", + "last_change_date": "2022-03-14T08:04:36.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10098, + "fields": { + "EF_ID": 417118, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Hens (equal or > 1 yr)", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.132Z", + "last_change_date": "2022-03-14T08:04:36.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10099, + "fields": { + "EF_ID": 417119, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Pullets", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.219Z", + "last_change_date": "2022-03-14T08:04:36.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10100, + "fields": { + "EF_ID": 417120, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Chickens", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.294Z", + "last_change_date": "2022-03-14T08:04:36.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10101, + "fields": { + "EF_ID": 417121, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Broilers", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.369Z", + "last_change_date": "2022-03-14T08:04:36.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10102, + "fields": { + "EF_ID": 417122, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Turkeys", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.467Z", + "last_change_date": "2022-03-14T08:04:36.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10103, + "fields": { + "EF_ID": 417123, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Ducks", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.552Z", + "last_change_date": "2022-03-14T08:04:36.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10104, + "fields": { + "EF_ID": 417124, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.652Z", + "last_change_date": "2022-03-14T08:04:36.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10105, + "fields": { + "EF_ID": 417125, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.28", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.727Z", + "last_change_date": "2022-03-14T08:04:36.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10106, + "fields": { + "EF_ID": 417126, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (and mules, asses)", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.819Z", + "last_change_date": "2022-03-14T08:04:36.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10107, + "fields": { + "EF_ID": 417127, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.902Z", + "last_change_date": "2022-03-14T08:04:36.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10108, + "fields": { + "EF_ID": 417128, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:36.977Z", + "last_change_date": "2022-03-14T08:04:36.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10109, + "fields": { + "EF_ID": 417129, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mink and Polecat", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.052Z", + "last_change_date": "2022-03-14T08:04:37.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10110, + "fields": { + "EF_ID": 417130, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.127Z", + "last_change_date": "2022-03-14T08:04:37.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10111, + "fields": { + "EF_ID": 417131, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fox and Racoon", + "Regional_Conditions": "Region: Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.09", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.221Z", + "last_change_date": "2022-03-14T08:04:37.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10112, + "fields": { + "EF_ID": 417132, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cattle", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.319Z", + "last_change_date": "2022-03-14T08:04:37.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10113, + "fields": { + "EF_ID": 417133, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.402Z", + "last_change_date": "2022-03-14T08:04:37.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10114, + "fields": { + "EF_ID": 417134, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "Nitrogen excretion for swine are based on an estimated country population of 90% market swine and 10% breeding swine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.485Z", + "last_change_date": "2022-03-14T08:04:37.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10115, + "fields": { + "EF_ID": 417135, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Market)", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.589Z", + "last_change_date": "2022-03-14T08:04:37.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10116, + "fields": { + "EF_ID": 417136, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Breeding)", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.686Z", + "last_change_date": "2022-03-14T08:04:37.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10117, + "fields": { + "EF_ID": 417137, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.761Z", + "last_change_date": "2022-03-14T08:04:37.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10118, + "fields": { + "EF_ID": 417138, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Hens (equal or > 1 yr)", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.836Z", + "last_change_date": "2022-03-14T08:04:37.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10119, + "fields": { + "EF_ID": 417139, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Pullets", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:37.933Z", + "last_change_date": "2022-03-14T08:04:37.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10120, + "fields": { + "EF_ID": 417140, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Chickens", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.019Z", + "last_change_date": "2022-03-14T08:04:38.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10121, + "fields": { + "EF_ID": 417141, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Broilers", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.094Z", + "last_change_date": "2022-03-14T08:04:38.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10122, + "fields": { + "EF_ID": 417142, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Turkeys", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.169Z", + "last_change_date": "2022-03-14T08:04:38.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10123, + "fields": { + "EF_ID": 417143, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Ducks", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.269Z", + "last_change_date": "2022-03-14T08:04:38.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10124, + "fields": { + "EF_ID": 417144, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.352Z", + "last_change_date": "2022-03-14T08:04:38.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10125, + "fields": { + "EF_ID": 417145, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.28", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.428Z", + "last_change_date": "2022-03-14T08:04:38.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10126, + "fields": { + "EF_ID": 417146, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (and mules, asses)", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.502Z", + "last_change_date": "2022-03-14T08:04:38.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10127, + "fields": { + "EF_ID": 417147, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.596Z", + "last_change_date": "2022-03-14T08:04:38.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10128, + "fields": { + "EF_ID": 417148, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.694Z", + "last_change_date": "2022-03-14T08:04:38.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10129, + "fields": { + "EF_ID": 417149, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mink and Polecat", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.769Z", + "last_change_date": "2022-03-14T08:04:38.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10130, + "fields": { + "EF_ID": 417150, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.844Z", + "last_change_date": "2022-03-14T08:04:38.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10131, + "fields": { + "EF_ID": 417151, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fox and Racoon", + "Regional_Conditions": "Region: Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.09", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:38.919Z", + "last_change_date": "2022-03-14T08:04:38.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10132, + "fields": { + "EF_ID": 417152, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cattle", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.014Z", + "last_change_date": "2022-03-14T08:04:39.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10133, + "fields": { + "EF_ID": 417153, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.111Z", + "last_change_date": "2022-03-14T08:04:39.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10134, + "fields": { + "EF_ID": 417154, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "Nitrogen excretion for swine are based on an estimated country population of 90% market swine and 10% breeding swine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.186Z", + "last_change_date": "2022-03-14T08:04:39.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10135, + "fields": { + "EF_ID": 417155, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Market)", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.269Z", + "last_change_date": "2022-03-14T08:04:39.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10136, + "fields": { + "EF_ID": 417156, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Breeding)", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.491Z", + "last_change_date": "2022-03-14T08:04:39.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10137, + "fields": { + "EF_ID": 417157, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.569Z", + "last_change_date": "2022-03-14T08:04:39.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10138, + "fields": { + "EF_ID": 417158, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Hens (equal or > 1 yr)", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.652Z", + "last_change_date": "2022-03-14T08:04:39.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10139, + "fields": { + "EF_ID": 417159, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Pullets", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.736Z", + "last_change_date": "2022-03-14T08:04:39.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10140, + "fields": { + "EF_ID": 417160, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Chickens", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.843Z", + "last_change_date": "2022-03-14T08:04:39.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10141, + "fields": { + "EF_ID": 417161, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Broilers", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:39.927Z", + "last_change_date": "2022-03-14T08:04:39.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10142, + "fields": { + "EF_ID": 417162, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Turkeys", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.002Z", + "last_change_date": "2022-03-14T08:04:40.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10143, + "fields": { + "EF_ID": 417163, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Ducks", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.077Z", + "last_change_date": "2022-03-14T08:04:40.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10144, + "fields": { + "EF_ID": 417164, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.13", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.170Z", + "last_change_date": "2022-03-14T08:04:40.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10145, + "fields": { + "EF_ID": 417165, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.42", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.286Z", + "last_change_date": "2022-03-14T08:04:40.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10146, + "fields": { + "EF_ID": 417166, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (and mules, asses)", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.352Z", + "last_change_date": "2022-03-14T08:04:40.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10147, + "fields": { + "EF_ID": 417167, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.419Z", + "last_change_date": "2022-03-14T08:04:40.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10148, + "fields": { + "EF_ID": 417168, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.505Z", + "last_change_date": "2022-03-14T08:04:40.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10149, + "fields": { + "EF_ID": 417169, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mink and Polecat", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.594Z", + "last_change_date": "2022-03-14T08:04:40.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10150, + "fields": { + "EF_ID": 417170, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.661Z", + "last_change_date": "2022-03-14T08:04:40.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10151, + "fields": { + "EF_ID": 417171, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fox and Racoon", + "Regional_Conditions": "Region: Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.09", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.744Z", + "last_change_date": "2022-03-14T08:04:40.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10152, + "fields": { + "EF_ID": 417172, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cattle", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.819Z", + "last_change_date": "2022-03-14T08:04:40.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10153, + "fields": { + "EF_ID": 417173, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.907Z", + "last_change_date": "2022-03-14T08:04:40.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10154, + "fields": { + "EF_ID": 417174, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.47", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "Nitrogen excretion for swine are based on an estimated country population of 90% market swine and 10% breeding swine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:40.994Z", + "last_change_date": "2022-03-14T08:04:40.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10155, + "fields": { + "EF_ID": 417175, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Market)", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.57", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.069Z", + "last_change_date": "2022-03-14T08:04:41.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10156, + "fields": { + "EF_ID": 417176, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Breeding)", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.144Z", + "last_change_date": "2022-03-14T08:04:41.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10157, + "fields": { + "EF_ID": 417177, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.235Z", + "last_change_date": "2022-03-14T08:04:41.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10158, + "fields": { + "EF_ID": 417178, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Hens (equal or > 1 yr)", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.311Z", + "last_change_date": "2022-03-14T08:04:41.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10159, + "fields": { + "EF_ID": 417179, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Pullets", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.377Z", + "last_change_date": "2022-03-14T08:04:41.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10160, + "fields": { + "EF_ID": 417180, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Chickens", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.442Z", + "last_change_date": "2022-03-14T08:04:41.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10161, + "fields": { + "EF_ID": 417181, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Broilers", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.537Z", + "last_change_date": "2022-03-14T08:04:41.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10162, + "fields": { + "EF_ID": 417182, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Turkeys", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.611Z", + "last_change_date": "2022-03-14T08:04:41.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10163, + "fields": { + "EF_ID": 417183, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Ducks", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.676Z", + "last_change_date": "2022-03-14T08:04:41.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10164, + "fields": { + "EF_ID": 417184, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.751Z", + "last_change_date": "2022-03-14T08:04:41.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10165, + "fields": { + "EF_ID": 417185, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.37", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.847Z", + "last_change_date": "2022-03-14T08:04:41.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10166, + "fields": { + "EF_ID": 417186, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (and mules, asses)", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:41.936Z", + "last_change_date": "2022-03-14T08:04:41.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10167, + "fields": { + "EF_ID": 417187, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.000Z", + "last_change_date": "2022-03-14T08:04:42.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10168, + "fields": { + "EF_ID": 417188, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.067Z", + "last_change_date": "2022-03-14T08:04:42.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10169, + "fields": { + "EF_ID": 417189, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mink and Polecat", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.165Z", + "last_change_date": "2022-03-14T08:04:42.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10170, + "fields": { + "EF_ID": 417190, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.261Z", + "last_change_date": "2022-03-14T08:04:42.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10171, + "fields": { + "EF_ID": 417191, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fox and Racoon", + "Regional_Conditions": "Region: Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.09", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.317Z", + "last_change_date": "2022-03-14T08:04:42.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10172, + "fields": { + "EF_ID": 417192, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cattle", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.376Z", + "last_change_date": "2022-03-14T08:04:42.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10173, + "fields": { + "EF_ID": 417193, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.434Z", + "last_change_date": "2022-03-14T08:04:42.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10174, + "fields": { + "EF_ID": 417194, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.47", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "Nitrogen excretion for swine are based on an estimated country population of 90% market swine and 10% breeding swine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.534Z", + "last_change_date": "2022-03-14T08:04:42.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10175, + "fields": { + "EF_ID": 417195, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Market)", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.57", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.620Z", + "last_change_date": "2022-03-14T08:04:42.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10176, + "fields": { + "EF_ID": 417196, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Breeding)", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.684Z", + "last_change_date": "2022-03-14T08:04:42.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10177, + "fields": { + "EF_ID": 417197, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.750Z", + "last_change_date": "2022-03-14T08:04:42.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10178, + "fields": { + "EF_ID": 417198, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Hens (equal or > 1 yr)", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.919Z", + "last_change_date": "2022-03-14T08:04:42.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10179, + "fields": { + "EF_ID": 417199, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Pullets", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:42.994Z", + "last_change_date": "2022-03-14T08:04:42.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10180, + "fields": { + "EF_ID": 417200, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Chickens", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.059Z", + "last_change_date": "2022-03-14T08:04:43.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10181, + "fields": { + "EF_ID": 417201, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Broilers", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.136Z", + "last_change_date": "2022-03-14T08:04:43.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10182, + "fields": { + "EF_ID": 417202, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Turkeys", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.239Z", + "last_change_date": "2022-03-14T08:04:43.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10183, + "fields": { + "EF_ID": 417203, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Ducks", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.311Z", + "last_change_date": "2022-03-14T08:04:43.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10184, + "fields": { + "EF_ID": 417204, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.386Z", + "last_change_date": "2022-03-14T08:04:43.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10185, + "fields": { + "EF_ID": 417205, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.37", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.453Z", + "last_change_date": "2022-03-14T08:04:43.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10186, + "fields": { + "EF_ID": 417206, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (and mules, asses)", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.557Z", + "last_change_date": "2022-03-14T08:04:43.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10187, + "fields": { + "EF_ID": 417207, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.644Z", + "last_change_date": "2022-03-14T08:04:43.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10188, + "fields": { + "EF_ID": 417208, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.711Z", + "last_change_date": "2022-03-14T08:04:43.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10189, + "fields": { + "EF_ID": 417209, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mink and Polecat", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.778Z", + "last_change_date": "2022-03-14T08:04:43.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10190, + "fields": { + "EF_ID": 417210, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.844Z", + "last_change_date": "2022-03-14T08:04:43.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10191, + "fields": { + "EF_ID": 417211, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fox and Racoon", + "Regional_Conditions": "Region: Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.09", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:43.942Z", + "last_change_date": "2022-03-14T08:04:43.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10192, + "fields": { + "EF_ID": 417212, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cattle", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.019Z", + "last_change_date": "2022-03-14T08:04:44.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10193, + "fields": { + "EF_ID": 417213, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.111Z", + "last_change_date": "2022-03-14T08:04:44.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10194, + "fields": { + "EF_ID": 417214, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.47", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "Nitrogen excretion for swine are based on an estimated country population of 90% market swine and 10% breeding swine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.178Z", + "last_change_date": "2022-03-14T08:04:44.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10195, + "fields": { + "EF_ID": 417215, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Market)", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.57", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.277Z", + "last_change_date": "2022-03-14T08:04:44.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10196, + "fields": { + "EF_ID": 417216, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Breeding)", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.361Z", + "last_change_date": "2022-03-14T08:04:44.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10197, + "fields": { + "EF_ID": 417217, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.428Z", + "last_change_date": "2022-03-14T08:04:44.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10198, + "fields": { + "EF_ID": 417218, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Hens (equal or > 1 yr)", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.495Z", + "last_change_date": "2022-03-14T08:04:44.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10199, + "fields": { + "EF_ID": 417219, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Pullets", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.654Z", + "last_change_date": "2022-03-14T08:04:44.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10200, + "fields": { + "EF_ID": 417220, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Chickens", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.728Z", + "last_change_date": "2022-03-14T08:04:44.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10201, + "fields": { + "EF_ID": 417221, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Broilers", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.811Z", + "last_change_date": "2022-03-14T08:04:44.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10202, + "fields": { + "EF_ID": 417222, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Turkeys", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.894Z", + "last_change_date": "2022-03-14T08:04:44.895Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10203, + "fields": { + "EF_ID": 417223, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Ducks", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:44.991Z", + "last_change_date": "2022-03-14T08:04:44.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10204, + "fields": { + "EF_ID": 417224, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.086Z", + "last_change_date": "2022-03-14T08:04:45.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10205, + "fields": { + "EF_ID": 417225, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.37", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.161Z", + "last_change_date": "2022-03-14T08:04:45.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10206, + "fields": { + "EF_ID": 417226, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (and mules, asses)", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.236Z", + "last_change_date": "2022-03-14T08:04:45.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10207, + "fields": { + "EF_ID": 417227, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.342Z", + "last_change_date": "2022-03-14T08:04:45.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10208, + "fields": { + "EF_ID": 417228, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.428Z", + "last_change_date": "2022-03-14T08:04:45.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10209, + "fields": { + "EF_ID": 417229, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mink and Polecat", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.503Z", + "last_change_date": "2022-03-14T08:04:45.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10210, + "fields": { + "EF_ID": 417230, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.570Z", + "last_change_date": "2022-03-14T08:04:45.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10211, + "fields": { + "EF_ID": 417231, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fox and Racoon", + "Regional_Conditions": "Region: Middle East", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.09", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.636Z", + "last_change_date": "2022-03-14T08:04:45.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10212, + "fields": { + "EF_ID": 417232, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cattle", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.736Z", + "last_change_date": "2022-03-14T08:04:45.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10213, + "fields": { + "EF_ID": 417233, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.836Z", + "last_change_date": "2022-03-14T08:04:45.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10214, + "fields": { + "EF_ID": 417234, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40 (0.4)", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "Nitrogen excretion for swine are based on an estimated country population of 90% market swine and 10% breeding swine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.920Z", + "last_change_date": "2022-03-14T08:04:45.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10215, + "fields": { + "EF_ID": 417235, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Market)", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:45.986Z", + "last_change_date": "2022-03-14T08:04:45.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10216, + "fields": { + "EF_ID": 417236, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine (Breeding)", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.080Z", + "last_change_date": "2022-03-14T08:04:46.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10217, + "fields": { + "EF_ID": 417237, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.161Z", + "last_change_date": "2022-03-14T08:04:46.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10218, + "fields": { + "EF_ID": 417238, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Hens (equal or > 1 yr)", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.228Z", + "last_change_date": "2022-03-14T08:04:46.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10219, + "fields": { + "EF_ID": 417239, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Pullets", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.295Z", + "last_change_date": "2022-03-14T08:04:46.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10220, + "fields": { + "EF_ID": 417240, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Chickens", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.399Z", + "last_change_date": "2022-03-14T08:04:46.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10221, + "fields": { + "EF_ID": 417241, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Broilers", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.495Z", + "last_change_date": "2022-03-14T08:04:46.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10222, + "fields": { + "EF_ID": 417242, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Turkeys", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.570Z", + "last_change_date": "2022-03-14T08:04:46.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10223, + "fields": { + "EF_ID": 417243, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Ducks", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.637Z", + "last_change_date": "2022-03-14T08:04:46.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10224, + "fields": { + "EF_ID": 417244, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.734Z", + "last_change_date": "2022-03-14T08:04:46.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10225, + "fields": { + "EF_ID": 417245, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.37", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.828Z", + "last_change_date": "2022-03-14T08:04:46.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10226, + "fields": { + "EF_ID": 417246, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses (and mules, asses)", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.903Z", + "last_change_date": "2022-03-14T08:04:46.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10227, + "fields": { + "EF_ID": 417247, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:46.995Z", + "last_change_date": "2022-03-14T08:04:46.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10228, + "fields": { + "EF_ID": 417248, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "kg N/1000 kg animal mass/day", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Modified from European Environmental Agency, 2002.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.094Z", + "last_change_date": "2022-03-14T08:04:47.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10229, + "fields": { + "EF_ID": 417249, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Mink and Polecat", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.170Z", + "last_change_date": "2022-03-14T08:04:47.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10230, + "fields": { + "EF_ID": 417250, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Rabbits", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Summarized from 1996 IPCC Guidelines, 1997; European Environmental Agency, 2002; USA EPA National NH3 Inventory Draft Report, 2004; and data of GHG inventories of Annex I Parties submitted to the Secretariat UNFCCC in 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.236Z", + "last_change_date": "2022-03-14T08:04:47.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10231, + "fields": { + "EF_ID": 417251, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen excretion rate", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Fox and Racoon", + "Regional_Conditions": "Region: Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.09", + "Unit": "kg N/head/yr", + "Equation": "Equations 10.25, 10.26, and 10.28 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.19 - Default values for nitrogen excretion rate, on page 10.59", + "Technical_Reference": "Data of Hutchings et al., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.303Z", + "last_change_date": "2022-03-14T08:04:47.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10232, + "fields": { + "EF_ID": 417252, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cows", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.370Z", + "last_change_date": "2022-03-14T08:04:47.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10233, + "fields": { + "EF_ID": 417253, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.463Z", + "last_change_date": "2022-03-14T08:04:47.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10234, + "fields": { + "EF_ID": 417254, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Buffalo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.536Z", + "last_change_date": "2022-03-14T08:04:47.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10235, + "fields": { + "EF_ID": 417255, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Sheep", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.609Z", + "last_change_date": "2022-03-14T08:04:47.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10236, + "fields": { + "EF_ID": 417256, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Goats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.676Z", + "last_change_date": "2022-03-14T08:04:47.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10237, + "fields": { + "EF_ID": 417257, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Camels", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.764Z", + "last_change_date": "2022-03-14T08:04:47.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10238, + "fields": { + "EF_ID": 417258, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.845Z", + "last_change_date": "2022-03-14T08:04:47.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10239, + "fields": { + "EF_ID": 417259, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Horses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.909Z", + "last_change_date": "2022-03-14T08:04:47.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10240, + "fields": { + "EF_ID": 417260, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for the fraction of nitrogen in feed intake of livestock that is retained by the different livestock species/categories", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "[kg N retained/animal/yr]/[kg N intake/animal/yr]", + "Equation": "Equation 10.31 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.20 - Default values for nitrogen excretion rate, on page 10.60", + "Technical_Reference": "Judgement of IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty in these estimates is +/- 50%.", + "Data_Provider_Comments": "This default value is also found in Table 4.15 of the IPCC GPG 2000.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:47.976Z", + "last_change_date": "2022-03-14T08:04:47.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10241, + "fields": { + "EF_ID": 417261, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Manure is routinely removed from a confinement facility and is applied to cropland or pasture within 24 hours of excretion. N2O emissions during storage and treatment are assumed to be zero. N2O emissions from land application are covered under the Agricultural Soils category.", + "Parameter_Conditions": "Manure management system: Daily spread", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement by IPCC Expert Group (see Co-chairs, Editors and Experts; N2O emissions from Manure Management, Volume 4, Chapter 11 of 2006 Guidelines). Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Not applicable", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.076Z", + "last_change_date": "2022-03-14T08:04:48.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10242, + "fields": { + "EF_ID": 417262, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "The storage of manure, typically for a period of several months, in unconfined piles or stacks. Manure is able to be stacked due to the presence of a sufficient amount of bedding material or loss of moisture by evaporation.", + "Parameter_Conditions": "Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Amon et al. (2001), which shows emissions ranging from 0.0027 to 0.01 kg N2O-N (kg N)-1. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "Quantitative data should be used to distinguish whether the system is judged to be a solid storage or liquid/slurry. The borderline between dry and liquid can be drawn at 20% dry matter content.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.162Z", + "last_change_date": "2022-03-14T08:04:48.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10243, + "fields": { + "EF_ID": 417263, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "A paved or unpaved open confinement area without any significant vegetative cover where accumulating manure may be removed periodically. Dry lots are most typically found in dry climates but also are used in humid climates.", + "Parameter_Conditions": "Manure management system: Dry lot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Kulling (2003). Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.251Z", + "last_change_date": "2022-03-14T08:04:48.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10244, + "fields": { + "EF_ID": 417264, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water to facilitate handling and is stored in either tanks or earthen ponds.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (With natural crust cover)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with Sommer et al. (2000). Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.344Z", + "last_change_date": "2022-03-14T08:04:48.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10245, + "fields": { + "EF_ID": 417265, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Manure is stored as excreted or with some minimal addition of water to facilitate handling and is stored in either tanks or earthen ponds.", + "Parameter_Conditions": "Manure management system: Liquid/Slurry (Without natural crust cover)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with the following studies: Harper et al. (2000), Lague et al. (2004), Monteny et al. (2001), and Wagner-Riddle and Marinier (2003). Emissions are believed negligible based on the absence of oxidized forms of nitrogen entering systems in combination with low potential for nitrification and denitrification in the system. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Not applicable", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.420Z", + "last_change_date": "2022-03-14T08:04:48.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10246, + "fields": { + "EF_ID": 417266, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Anaerobic lagoons are designed and operated to combine waste stabilization and storage. Lagoon supernatant is usually used to remove manure from the associated confinement facilities to the lagoon. Anaerobic lagoons are designed with varying lengths of storage (up to a year or greater), depending on the climate region, the volatile solids loading rate, and other operational factors. The water from the lagoon may be recycled as flush water or used to irrigate and fertilise fields.", + "Parameter_Conditions": "Manure management system: Uncovered anaerobic lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with the following studies: Harper et al. (2000), Lague et al. (2004), Monteny et al. (2001), and Wagner-Riddle and Marinier (2003). Emissions are believed negligible based on the absence of oxidized forms of nitrogen entering systems in combination with low potential for nitrification and denitrification in the system. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Not applicable", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.484Z", + "last_change_date": "2022-03-14T08:04:48.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10247, + "fields": { + "EF_ID": 417267, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Collection and storage of manure usually with little or no added water typically below a slatted floor in an enclosed animal confinement facility.", + "Parameter_Conditions": "Manure management system: Pit storage below animal confinements", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with the following studies: Amon et al. (2001), Kulling (2003), and Sneath et al. (1997). Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.586Z", + "last_change_date": "2022-03-14T08:04:48.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10248, + "fields": { + "EF_ID": 417268, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Anaerobic digesters are designed and operated for waste stabilization by the microbial reduction of complex organic compounds to CH4 and CO2, which is captured and flared or used as a fuel.", + "Parameter_Conditions": "Manure management system: Anaerobic digester", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group in combination with the following studies: Harper et al. (2000), Lague et al. (2004) Monteny et al. (2001), and Wagner-Riddle and Marinier (2003). Emissions are believed negligible based on the absence of oxidized forms of nitrogen entering systems in combination with low potential for nitrification and denitrification in the system. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Not applicable", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.662Z", + "last_change_date": "2022-03-14T08:04:48.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10249, + "fields": { + "EF_ID": 417269, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and swine deep bedding (No mixing)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Average value based on Sommer and Moller (2000), Sommer (2000), Amon et al. (1998), and Nicks et al. (2003). Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.771Z", + "last_change_date": "2022-03-14T08:04:48.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10250, + "fields": { + "EF_ID": 417270, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "As manure accumulates, bedding is continually added to absorb moisture over a production cycle and possibly for as long as 6 to 12 months. This manure management system also is known as a bedded pack manure management system and may be combined with a dry lot or pasture.", + "Parameter_Conditions": "Manure management system: Cattle and swine deep bedding (Active mixing)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Average value based on Nicks et al. (2003) and Moller et al. (2000). Some literature cites higher values to 20% for well maintained, active mixing, but those systems included treatment for ammonia which is not typical. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.845Z", + "last_change_date": "2022-03-14T08:04:48.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10251, + "fields": { + "EF_ID": 417271, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Composting, typically in an enclosed channel, with forced aeration and continuous mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - In-Vessel", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group. Expected to be similar to static piles. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:48.909Z", + "last_change_date": "2022-03-14T08:04:48.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10252, + "fields": { + "EF_ID": 417272, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Composting in piles with forced aeration but no mixing. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Static Pile", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Hao et al. (2001). Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.006Z", + "last_change_date": "2022-03-14T08:04:49.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10253, + "fields": { + "EF_ID": 417273, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Composting in windrows with regular turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Intensive Windrow", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group. Expected to be greater than passive windrows and intensive composting operations, as emissions are a function of the turning frequency. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.087Z", + "last_change_date": "2022-03-14T08:04:49.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10254, + "fields": { + "EF_ID": 417274, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Composting in windrows with infrequent turning for mixing and aeration. Definition: Composting is the biological oxidation of a solid waste including manure usually with bedding or another organic carbon source typically at thermophilic temperatures produced by microbial heat production.", + "Parameter_Conditions": "Manure management system: Composting - Passive Windrow", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Hao et al. (2001). Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.151Z", + "last_change_date": "2022-03-14T08:04:49.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10255, + "fields": { + "EF_ID": 417275, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "Similar to deep bedding systems. Typically used for all poultry breeder flocks and for the production of meat type chickens (broilers) and other fowl.", + "Parameter_Conditions": "Manure management system: Poultry manure with litter", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group based on the high loss of ammonia from these systems, which limits the availability of nitrogen for nitrification/denitrification. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.249Z", + "last_change_date": "2022-03-14T08:04:49.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10256, + "fields": { + "EF_ID": 417276, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "May be similar to open pits in enclosed animal confinement facilities or may be designed and operated to dry the manure as it accumulates. The latter is known as a high-rise manure management system and is a form of passive windrow composting when designed and operated properly.", + "Parameter_Conditions": "Manure management system: Poultry manure without litter", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group based on the high loss of ammonia from these systems, which limits the availability of nitrogen for nitrification/denitrification. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.320Z", + "last_change_date": "2022-03-14T08:04:49.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10257, + "fields": { + "EF_ID": 417277, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment (Natural aeration systems)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group. Nitrification-denitrification is used widely for the removal of nitrogen in the biological treatment of municipal and industrial wastewaters with negligible N2O emissions. Limited oxidation may increase emissions compared to forced aeration systems. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.384Z", + "last_change_date": "2022-03-14T08:04:49.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10258, + "fields": { + "EF_ID": 417278, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for direct N2O emissions from manure management", + "Technology_Practices": "The biological oxidation of manure collected as a liquid with either forced or natural aeration. Natural aeration is limited to aerobic and facultative ponds and wetland systems and is due primarily to photosynthesis. Hence, these systems typically become anoxic during periods without sunlight.", + "Parameter_Conditions": "Manure management system: Aerobic treatment (Forced aeration systems)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg N2O-N/kg N excreted", + "Equation": "Equation 10.25 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3A2, Page A1.8 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.21 - Default emission factors for direct N2O emissions from manure management, on pages 10.62 - 10.64", + "Technical_Reference": "Judgement of IPCC Expert Group. Nitrification-denitrification is used widely for the removal of nitrogen in the biological treatment of municipal and industrial wastewaters with negligible N2O emissions. Also see Dustan (2002), which compiled information from some of the original references cited.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Uncertainty ranges of EF3: Factor of 2", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.484Z", + "last_change_date": "2022-03-14T08:04:49.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10259, + "fields": { + "EF_ID": 417279, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Anaerobic lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (25 - 75)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.570Z", + "last_change_date": "2022-03-14T08:04:49.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10260, + "fields": { + "EF_ID": 417280, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Pit storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25 (15 - 30)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.642Z", + "last_change_date": "2022-03-14T08:04:49.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10261, + "fields": { + "EF_ID": 417281, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Deep bedding", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (10 - 60)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.744Z", + "last_change_date": "2022-03-14T08:04:49.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10262, + "fields": { + "EF_ID": 417282, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Liquid/slurry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48 (15 - 60)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.837Z", + "last_change_date": "2022-03-14T08:04:49.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10263, + "fields": { + "EF_ID": 417283, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45 (10 - 65)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.909Z", + "last_change_date": "2022-03-14T08:04:49.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10264, + "fields": { + "EF_ID": 417284, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Anaerobic lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35 (20 - 80)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:49.984Z", + "last_change_date": "2022-03-14T08:04:49.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10265, + "fields": { + "EF_ID": 417285, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Liquid/Slurry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (15 - 45)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.079Z", + "last_change_date": "2022-03-14T08:04:50.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10266, + "fields": { + "EF_ID": 417286, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Pit storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28 (10 - 40)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.162Z", + "last_change_date": "2022-03-14T08:04:50.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10267, + "fields": { + "EF_ID": 417287, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Dry lot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (10 - 35)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.237Z", + "last_change_date": "2022-03-14T08:04:50.237Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10268, + "fields": { + "EF_ID": 417288, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30 (10 - 40)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.312Z", + "last_change_date": "2022-03-14T08:04:50.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10269, + "fields": { + "EF_ID": 417289, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Daily spread", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7 (5 - 60)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.414Z", + "last_change_date": "2022-03-14T08:04:50.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10270, + "fields": { + "EF_ID": 417290, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry Manure management system: Poultry without litter", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55 (40 - 70)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.487Z", + "last_change_date": "2022-03-14T08:04:50.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10271, + "fields": { + "EF_ID": 417291, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry Manure management system: Anaerobic lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (25 - 75)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.562Z", + "last_change_date": "2022-03-14T08:04:50.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10272, + "fields": { + "EF_ID": 417292, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry Manure management system: Poultry with litter", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (10 - 60)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.628Z", + "last_change_date": "2022-03-14T08:04:50.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10273, + "fields": { + "EF_ID": 417293, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle Manure management system: Dry lot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30 (20 - 50)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.732Z", + "last_change_date": "2022-03-14T08:04:50.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10274, + "fields": { + "EF_ID": 417294, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45 (10 - 65)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.812Z", + "last_change_date": "2022-03-14T08:04:50.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10275, + "fields": { + "EF_ID": 417295, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle Manure management system: Deep bedding", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30 (20 - 40)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.878Z", + "last_change_date": "2022-03-14T08:04:50.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10276, + "fields": { + "EF_ID": 417296, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other (includes sheep, horses, and fur-bearing animals) Manure management system: Deep bedding", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25 (10 - 30)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:50.945Z", + "last_change_date": "2022-03-14T08:04:50.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10277, + "fields": { + "EF_ID": 417297, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management (FracgasMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other (includes sheep, horses, and fur-bearing animals) Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12 (5 - 20)", + "Unit": "%", + "Equation": "Equation 10.26 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.22 - Default values for nitrogen loss due to volatilisation of NH3 and NOx from manure management, on page 10.65", + "Technical_Reference": "Volatilization rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.042Z", + "last_change_date": "2022-03-14T08:04:51.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10278, + "fields": { + "EF_ID": 417298, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Anaerobic lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78 (55 - 99)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.145Z", + "last_change_date": "2022-03-14T08:04:51.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10279, + "fields": { + "EF_ID": 417299, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Pit storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25 (15 - 30)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.212Z", + "last_change_date": "2022-03-14T08:04:51.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10280, + "fields": { + "EF_ID": 417300, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Deep bedding", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50 (10 - 60)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.303Z", + "last_change_date": "2022-03-14T08:04:51.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10281, + "fields": { + "EF_ID": 417301, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Liquid/Slurry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48 (15 - 60)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.392Z", + "last_change_date": "2022-03-14T08:04:51.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10282, + "fields": { + "EF_ID": 417302, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Swine Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50 (20 - 70)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.462Z", + "last_change_date": "2022-03-14T08:04:51.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10283, + "fields": { + "EF_ID": 417303, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Anaerobic lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77 (55 - 99)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.555Z", + "last_change_date": "2022-03-14T08:04:51.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10284, + "fields": { + "EF_ID": 417304, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Liquid/Slurry", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (15 - 45)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.634Z", + "last_change_date": "2022-03-14T08:04:51.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10285, + "fields": { + "EF_ID": 417305, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Pit storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28 (10 - 40)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.704Z", + "last_change_date": "2022-03-14T08:04:51.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10286, + "fields": { + "EF_ID": 417306, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Dry lot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30 (10 - 35)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.797Z", + "last_change_date": "2022-03-14T08:04:51.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10287, + "fields": { + "EF_ID": 417307, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (10 - 65)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.876Z", + "last_change_date": "2022-03-14T08:04:51.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10288, + "fields": { + "EF_ID": 417308, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Dairy Cow Manure management system: Daily spread", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22 (15 - 60)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:51.945Z", + "last_change_date": "2022-03-14T08:04:51.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10289, + "fields": { + "EF_ID": 417309, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry Manure management system: Poultry without litter", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55 (40 - 70)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.040Z", + "last_change_date": "2022-03-14T08:04:52.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10290, + "fields": { + "EF_ID": 417310, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry Manure management system: Anaerobic lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77 (50 - 99)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.126Z", + "last_change_date": "2022-03-14T08:04:52.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10291, + "fields": { + "EF_ID": 417311, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Poultry Manure management system: Poultry with litter", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50 (20 - 80)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.195Z", + "last_change_date": "2022-03-14T08:04:52.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10292, + "fields": { + "EF_ID": 417312, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle Manure management system: Dry lot", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (20 - 50)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.300Z", + "last_change_date": "2022-03-14T08:04:52.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10293, + "fields": { + "EF_ID": 417313, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50 (20 - 70)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.376Z", + "last_change_date": "2022-03-14T08:04:52.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10294, + "fields": { + "EF_ID": 417314, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other Cattle Manure management system: Deep bedding", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (10 - 50)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.445Z", + "last_change_date": "2022-03-14T08:04:52.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10295, + "fields": { + "EF_ID": 417315, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other (includes sheep, horses, and fur-bearing animals) Manure management system: Deep bedding", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35 (15 - 40)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.551Z", + "last_change_date": "2022-03-14T08:04:52.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10296, + "fields": { + "EF_ID": 417316, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total N loss from manure management system (FracLossMS)", + "Technology_Practices": "", + "Parameter_Conditions": "Animal category: Other (includes sheep, horses, and fur-bearing animals) Manure management system: Solid storage", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15 (5 - 20)", + "Unit": "%", + "Equation": "Equation 10.34 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 10.23 - Default values for total nitrogen loss from manure management, on page 10.67", + "Technical_Reference": "Total N loss rates based on judgement of IPCC Expert Group and following sources: Rotz ( 2003), Hutchings et al. (2001), and U.S EPA (2004).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Manure Management System here includes associated N losses at housing and final storage system. Rates include losses in forms of NH3, NOx, N2O, and N2 as well from leaching and runoff from solid storage and dry lots. Values represent average rates for typical housing and storage components without any significant nitrogen control measures in place. Ranges reflect values that appear in the literature. Where measures to control nitrogen losses are in place, alternative rates should be developed to reflect those measures.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.626Z", + "last_change_date": "2022-03-14T08:04:52.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10297, + "fields": { + "EF_ID": 417317, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor for N additions from mineral fertilisers, organic amendments and crop residues, and N mineralised from mineral soil as a result of loss of soil carbon (EF1)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01(0.003 - 0.03)", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C4, Page A1.57 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "Bouwman et al. 2002a,b; Stehfest & Bouwman, 2006; Novoa & Tejeda, 2006 in press", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.704Z", + "last_change_date": "2022-03-14T08:04:52.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10298, + "fields": { + "EF_ID": 417318, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor to estimate direct N2O emissions from flooded rice fields (EF1FR)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003 (0.000 - 0.006)", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C4, Page A1.57 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "Akiyama et al., 2005", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.804Z", + "last_change_date": "2022-03-14T08:04:52.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10299, + "fields": { + "EF_ID": 417319, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor to estimate direct N2O emissions from temperate organic crop and grassland soils (EF2 CG, Temp)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 (2 - 24)", + "Unit": "kg N2O–N/ha", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C4, Page A1.58 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "Klemedtsson et al., 1999, IPCC Good Practice Guidance, 2000;", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.876Z", + "last_change_date": "2022-03-14T08:04:52.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10300, + "fields": { + "EF_ID": 417320, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor to estimate direct N2O emissions from tropical organic crop and grassland soils (EF2 CG, Trop )", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16 (5 - 48)", + "Unit": "kg N2O–N/ha", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C4, Page A1.58 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "Alm et al., 1999; Laine et al., 1996; Martikainen et al., 1995; Minkkinen et al., 2002: Regina et al., 1996; Klemedtsson et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:52.945Z", + "last_change_date": "2022-03-14T08:04:52.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10301, + "fields": { + "EF_ID": 417321, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor to estimate direct N2O emissions from temperate and boreal organic nutrient rich forest soils (EF2F, Temp, Org, R )", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6 (0.16 - 2.4)", + "Unit": "kg N2O–N/ha", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C4, Page A1.58 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "Alm et al., 1999; Laine et al., 1996; Martikainen et al., 1995; Minkkinen et al., 2002: Regina et al., 1996; Klemedtsson et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.017Z", + "last_change_date": "2022-03-14T08:04:53.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10302, + "fields": { + "EF_ID": 417322, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor to estimate direct N2O emissions from temperate and boreal organic nutrient poor forest soils (EF2F, Temp, Org, P)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1 (0.02 - 0.3)", + "Unit": "kg N2O–N/ha", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C4, Page A1.58 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "Alm et al., 1999; Laine et al., 1996; Martikainen et al., 1995; Minkkinen et al., 2002: Regina et al., 1996; Klemedtsson et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.084Z", + "last_change_date": "2022-03-14T08:04:53.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10303, + "fields": { + "EF_ID": 417323, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor to estimate direct N2O emissions from tropical organic forest soils (EF2F, Trop)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 (0 - 24)", + "Unit": "kg N2O–N/ha", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C4, Page A1.58 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "Alm et al., 1999; Laine et al., 1996; Martikainen et al., 1995; Minkkinen et al., 2002: Regina et al., 1996; Klemedtsson et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.173Z", + "last_change_date": "2022-03-14T08:04:53.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10304, + "fields": { + "EF_ID": 417324, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor to estimate direct N2O emissions for cattle (dairy, non-dairy and buffalo), poultry and pigs (EF3PRP, CPP)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02 (0.007 - 0.06)", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C4, Page A1.58 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "de Klein, 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.268Z", + "last_change_date": "2022-03-14T08:04:53.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10305, + "fields": { + "EF_ID": 417325, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor to estimate direct N2O emissions for sheep and ‘other animals` (EF3PRP, SO)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01 (0.003 0.03)", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 11.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C4, Page A1.58 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.1 - Default emission factors to estimate direct N2O emissions from managed soils, on page 11.11", + "Technical_Reference": "de Klein, 2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.334Z", + "last_change_date": "2022-03-14T08:04:53.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10306, + "fields": { + "EF_ID": 417326, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Grains", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.401Z", + "last_change_date": "2022-03-14T08:04:53.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10307, + "fields": { + "EF_ID": 417327, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Beans and pulses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The average above-ground residue:grain ratio from all data used was 2.0 and included data for soya bean, dry bean, lentil, cowpea, black gram, and pea.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.467Z", + "last_change_date": "2022-03-14T08:04:53.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10308, + "fields": { + "EF_ID": 417328, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Tubers", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelled after potatoes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.566Z", + "last_change_date": "2022-03-14T08:04:53.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10309, + "fields": { + "EF_ID": 417329, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Root crops, other", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelled after peanuts.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.642Z", + "last_change_date": "2022-03-14T08:04:53.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10310, + "fields": { + "EF_ID": 417330, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: N-fixing forages", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.709Z", + "last_change_date": "2022-03-14T08:04:53.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10311, + "fields": { + "EF_ID": 417331, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Non-N-fixing forages", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.776Z", + "last_change_date": "2022-03-14T08:04:53.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10312, + "fields": { + "EF_ID": 417332, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Perennial grasses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.885Z", + "last_change_date": "2022-03-14T08:04:53.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10313, + "fields": { + "EF_ID": 417333, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Grass-clover mixtures", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:53.959Z", + "last_change_date": "2022-03-14T08:04:53.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10314, + "fields": { + "EF_ID": 417334, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.026Z", + "last_change_date": "2022-03-14T08:04:54.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10315, + "fields": { + "EF_ID": 417335, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.109Z", + "last_change_date": "2022-03-14T08:04:54.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10316, + "fields": { + "EF_ID": 417336, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Winter wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.203Z", + "last_change_date": "2022-03-14T08:04:54.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10317, + "fields": { + "EF_ID": 417337, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Spring wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.284Z", + "last_change_date": "2022-03-14T08:04:54.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10318, + "fields": { + "EF_ID": 417338, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.367Z", + "last_change_date": "2022-03-14T08:04:54.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10319, + "fields": { + "EF_ID": 417339, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.442Z", + "last_change_date": "2022-03-14T08:04:54.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10320, + "fields": { + "EF_ID": 417340, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Oats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.539Z", + "last_change_date": "2022-03-14T08:04:54.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10321, + "fields": { + "EF_ID": 417341, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Millet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.617Z", + "last_change_date": "2022-03-14T08:04:54.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10322, + "fields": { + "EF_ID": 417342, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Sorghum", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.684Z", + "last_change_date": "2022-03-14T08:04:54.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10323, + "fields": { + "EF_ID": 417343, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Rye", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.751Z", + "last_change_date": "2022-03-14T08:04:54.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10324, + "fields": { + "EF_ID": 417344, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Soyabean", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.849Z", + "last_change_date": "2022-03-14T08:04:54.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10325, + "fields": { + "EF_ID": 417345, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Dry bean", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.926Z", + "last_change_date": "2022-03-14T08:04:54.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10326, + "fields": { + "EF_ID": 417346, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Potato", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:54.993Z", + "last_change_date": "2022-03-14T08:04:54.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10327, + "fields": { + "EF_ID": 417347, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Peanut (with pod)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.059Z", + "last_change_date": "2022-03-14T08:04:55.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10328, + "fields": { + "EF_ID": 417348, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Alfalfa", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.160Z", + "last_change_date": "2022-03-14T08:04:55.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10329, + "fields": { + "EF_ID": 417349, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter fraction of harvested product (DRY)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Non-legume hay", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "kg d.m./kg fresh weight", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.234Z", + "last_change_date": "2022-03-14T08:04:55.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10330, + "fields": { + "EF_ID": 417350, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Grains", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.317Z", + "last_change_date": "2022-03-14T08:04:55.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10331, + "fields": { + "EF_ID": 417351, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Beans and pulses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The average above-ground residue:grain ratio from all data used was 2.0 and included data for soya bean, dry bean, lentil, cowpea, black gram, and pea.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.384Z", + "last_change_date": "2022-03-14T08:04:55.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10332, + "fields": { + "EF_ID": 417352, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Tubers", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.019", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelled after potatoes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.494Z", + "last_change_date": "2022-03-14T08:04:55.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10333, + "fields": { + "EF_ID": 417353, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Root crops, other", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelled after peanuts.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.568Z", + "last_change_date": "2022-03-14T08:04:55.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10334, + "fields": { + "EF_ID": 417354, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: N-fixing forages", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.027", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.642Z", + "last_change_date": "2022-03-14T08:04:55.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10335, + "fields": { + "EF_ID": 417355, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Non-N-fixing forages", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.015", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.718Z", + "last_change_date": "2022-03-14T08:04:55.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10336, + "fields": { + "EF_ID": 417356, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Perennial grasses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.015", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.812Z", + "last_change_date": "2022-03-14T08:04:55.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10337, + "fields": { + "EF_ID": 417357, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Grass-clover mixtures", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.901Z", + "last_change_date": "2022-03-14T08:04:55.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10338, + "fields": { + "EF_ID": 417358, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:55.979Z", + "last_change_date": "2022-03-14T08:04:55.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10339, + "fields": { + "EF_ID": 417359, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.054Z", + "last_change_date": "2022-03-14T08:04:56.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10340, + "fields": { + "EF_ID": 417360, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Winter wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.157Z", + "last_change_date": "2022-03-14T08:04:56.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10341, + "fields": { + "EF_ID": 417361, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Spring wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.243Z", + "last_change_date": "2022-03-14T08:04:56.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10342, + "fields": { + "EF_ID": 417362, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.313Z", + "last_change_date": "2022-03-14T08:04:56.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10343, + "fields": { + "EF_ID": 417363, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.379Z", + "last_change_date": "2022-03-14T08:04:56.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10344, + "fields": { + "EF_ID": 417364, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Oats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.476Z", + "last_change_date": "2022-03-14T08:04:56.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10345, + "fields": { + "EF_ID": 417365, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Millet", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.571Z", + "last_change_date": "2022-03-14T08:04:56.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10346, + "fields": { + "EF_ID": 417366, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Sorghum", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.637Z", + "last_change_date": "2022-03-14T08:04:56.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10347, + "fields": { + "EF_ID": 417367, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Rye", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.704Z", + "last_change_date": "2022-03-14T08:04:56.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10348, + "fields": { + "EF_ID": 417368, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Soyabean", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.794Z", + "last_change_date": "2022-03-14T08:04:56.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10349, + "fields": { + "EF_ID": 417369, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Dry bean", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.876Z", + "last_change_date": "2022-03-14T08:04:56.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10350, + "fields": { + "EF_ID": 417370, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Potato", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.019", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:56.946Z", + "last_change_date": "2022-03-14T08:04:56.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10351, + "fields": { + "EF_ID": 417371, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Peanut (with pod)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.013Z", + "last_change_date": "2022-03-14T08:04:57.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10352, + "fields": { + "EF_ID": 417372, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Alfalfa", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.027", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.103Z", + "last_change_date": "2022-03-14T08:04:57.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10353, + "fields": { + "EF_ID": 417373, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of above-ground residues (NAG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Non-legume hay", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.015", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.184Z", + "last_change_date": "2022-03-14T08:04:57.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10354, + "fields": { + "EF_ID": 417374, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Grains", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22 (+/- 16%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.254Z", + "last_change_date": "2022-03-14T08:04:57.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10355, + "fields": { + "EF_ID": 417375, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Beans and pulses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19 (+/- 45%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The average above-ground residue:grain ratio from all data used was 2.0 and included data for soya bean, dry bean, lentil, cowpea, black gram, and pea.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.321Z", + "last_change_date": "2022-03-14T08:04:57.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10356, + "fields": { + "EF_ID": 417376, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Tubers", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelled after potatoes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.396Z", + "last_change_date": "2022-03-14T08:04:57.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10357, + "fields": { + "EF_ID": 417377, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Root crops, other", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelled after peanuts.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.490Z", + "last_change_date": "2022-03-14T08:04:57.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10358, + "fields": { + "EF_ID": 417378, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: N-fixing forages", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.576Z", + "last_change_date": "2022-03-14T08:04:57.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10359, + "fields": { + "EF_ID": 417379, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Non-N-fixing forages", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.654Z", + "last_change_date": "2022-03-14T08:04:57.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10360, + "fields": { + "EF_ID": 417380, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Perennial grasses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.80 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.729Z", + "last_change_date": "2022-03-14T08:04:57.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10361, + "fields": { + "EF_ID": 417381, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Grass-clover mixtures", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.80 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.833Z", + "last_change_date": "2022-03-14T08:04:57.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10362, + "fields": { + "EF_ID": 417382, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22 (+/- 26%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.909Z", + "last_change_date": "2022-03-14T08:04:57.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10363, + "fields": { + "EF_ID": 417383, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24 (+/- 32%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:57.988Z", + "last_change_date": "2022-03-14T08:04:57.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10364, + "fields": { + "EF_ID": 417384, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Winter wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23 (+/- 41%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.063Z", + "last_change_date": "2022-03-14T08:04:58.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10365, + "fields": { + "EF_ID": 417385, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Spring wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28 (+/- 26%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.152Z", + "last_change_date": "2022-03-14T08:04:58.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10366, + "fields": { + "EF_ID": 417386, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Rice", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16 (+/- 35%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.226Z", + "last_change_date": "2022-03-14T08:04:58.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10367, + "fields": { + "EF_ID": 417387, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22 (+/- 33%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.296Z", + "last_change_date": "2022-03-14T08:04:58.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10368, + "fields": { + "EF_ID": 417388, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Oats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25 (+/- 120%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.363Z", + "last_change_date": "2022-03-14T08:04:58.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10369, + "fields": { + "EF_ID": 417389, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Soyabean", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19 (+/- 45%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.454Z", + "last_change_date": "2022-03-14T08:04:58.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10370, + "fields": { + "EF_ID": 417390, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Potato", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.534Z", + "last_change_date": "2022-03-14T08:04:58.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10371, + "fields": { + "EF_ID": 417391, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Alfalfa", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.596Z", + "last_change_date": "2022-03-14T08:04:58.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10372, + "fields": { + "EF_ID": 417392, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground residues to above-ground biomass (RBG-BIO)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Non-legume hay", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54 (+/- 50%)", + "Unit": "kg d.m./kg d.m.", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.663Z", + "last_change_date": "2022-03-14T08:04:58.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10373, + "fields": { + "EF_ID": 417393, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Grains", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.755Z", + "last_change_date": "2022-03-14T08:04:58.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10374, + "fields": { + "EF_ID": 417394, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Beans and pulses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The average above-ground residue:grain ratio from all data used was 2.0 and included data for soya bean, dry bean, lentil, cowpea, black gram, and pea.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.834Z", + "last_change_date": "2022-03-14T08:04:58.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10375, + "fields": { + "EF_ID": 417395, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Tubers", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelled after potatoes.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.896Z", + "last_change_date": "2022-03-14T08:04:58.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10376, + "fields": { + "EF_ID": 417396, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Root crops, other", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelled after peanuts.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:58.963Z", + "last_change_date": "2022-03-14T08:04:58.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10377, + "fields": { + "EF_ID": 417397, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: N-fixing forages", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.022", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.058Z", + "last_change_date": "2022-03-14T08:04:59.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10378, + "fields": { + "EF_ID": 417398, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Non-N-fixing forages", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.143Z", + "last_change_date": "2022-03-14T08:04:59.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10379, + "fields": { + "EF_ID": 417399, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Perennial grasses", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.209Z", + "last_change_date": "2022-03-14T08:04:59.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10380, + "fields": { + "EF_ID": 417400, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Grass-clover mixtures", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.276Z", + "last_change_date": "2022-03-14T08:04:59.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10381, + "fields": { + "EF_ID": 417401, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Maize", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.368Z", + "last_change_date": "2022-03-14T08:04:59.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10382, + "fields": { + "EF_ID": 417402, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.451Z", + "last_change_date": "2022-03-14T08:04:59.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10383, + "fields": { + "EF_ID": 417403, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Winter wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.543Z", + "last_change_date": "2022-03-14T08:04:59.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10384, + "fields": { + "EF_ID": 417404, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Spring wheat", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.617Z", + "last_change_date": "2022-03-14T08:04:59.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10385, + "fields": { + "EF_ID": 417405, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Barley", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.711Z", + "last_change_date": "2022-03-14T08:04:59.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10386, + "fields": { + "EF_ID": 417406, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Oats", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.784Z", + "last_change_date": "2022-03-14T08:04:59.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10387, + "fields": { + "EF_ID": 417407, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Sorghum", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.859Z", + "last_change_date": "2022-03-14T08:04:59.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10388, + "fields": { + "EF_ID": 417408, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Rye", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.011", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:04:59.951Z", + "last_change_date": "2022-03-14T08:04:59.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10389, + "fields": { + "EF_ID": 417409, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Soyabean", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.054Z", + "last_change_date": "2022-03-14T08:05:00.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10390, + "fields": { + "EF_ID": 417410, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Dry bean", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.126Z", + "last_change_date": "2022-03-14T08:05:00.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10391, + "fields": { + "EF_ID": 417411, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Potato", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.193Z", + "last_change_date": "2022-03-14T08:05:00.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10392, + "fields": { + "EF_ID": 417412, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Alfalfa", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.019", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.259Z", + "last_change_date": "2022-03-14T08:05:00.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10393, + "fields": { + "EF_ID": 417413, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N content of below-ground residues (NBG)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop: Non-legume hay", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "kg N/kg of dry biomass", + "Equation": "Equation 11.7 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.2 - Default factors for estimation of N added to soils from crop residues, on pages 11.17 - 11.18", + "Technical_Reference": "Literature review by Stephen A. Williams, Natural Resource Ecology Laboratory, Colorado State University. (Email: stevewi@warnercnr.colostate.edu) for CASMGS (http://www.casmgs.colostate.edu/). A list of the original references is given in Annex 11A.1 of Volume 4, 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.356Z", + "last_change_date": "2022-03-14T08:05:00.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10394, + "fields": { + "EF_ID": 417414, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor for indirect N2O emissions from N volatilisation and re-deposition (EF4)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01 (0.002 - 0.05)", + "Unit": "kg N2O–N/[kg NH3–N + NOX–N volatilised]", + "Equation": "Equations 11.9 and 11.11 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C5, Page A1.59 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.3 - Default emission, volatilisation and leaching factors for indirect soil N2O emissions, on page 11.24", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.442Z", + "last_change_date": "2022-03-14T08:05:00.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10395, + "fields": { + "EF_ID": 417415, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor for indirect N2O emissions from leaching/runoff (EF5)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0075 (0.0005 - 0.025)", + "Unit": "Kg N2O-N/kg N leaching/runoff", + "Equation": "Equation 11.10 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C5, Page A1.60 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.3 - Default emission, volatilisation and leaching factors for indirect soil N2O emissions, on page 11.24", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.509Z", + "last_change_date": "2022-03-14T08:05:00.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10396, + "fields": { + "EF_ID": 417416, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor for indirect N2O emissions from volatilisation of synthetic fertiliser (FracGASF)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10 (0.03 - 0.3)", + "Unit": "[kg NH3–N + NOx–N]/[kg N applied]", + "Equation": "Equations 11.9 and 11.11 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C5, Page A1.59 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.3 - Default emission, volatilisation and leaching factors for indirect soil N2O emissions, on page 11.24", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.576Z", + "last_change_date": "2022-03-14T08:05:00.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10397, + "fields": { + "EF_ID": 417417, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor for indirect N2O emissions from volatilisation of all organic N fertilisers applied , and dung and urine deposited by grazing animals (FracGASM)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (0.05 - 0.5)", + "Unit": "[kg NH3–N + NOx–N]/[kg N applied or deposited]", + "Equation": "Equations 11.9 and 11.11 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3C5, Page A1.59 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.3 - Default emission, volatilisation and leaching factors for indirect soil N2O emissions, on page 11.24", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.642Z", + "last_change_date": "2022-03-14T08:05:00.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10398, + "fields": { + "EF_ID": 417418, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factor for indirect N2O emissions from N losses by leaching/runoff for regions where S(rain in rainy season) - S(PE in same period) > soil water holding capacity, OR where irrigation (except drip irrigation) is employed (FracLEACH-(H))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30 (0.1 - 0.8)", + "Unit": "kg N/[kg N additions or deposition by grazing animals]", + "Equation": "Equation 11.10 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 2, Category Code 3C5, Page A1.60 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 11.3 - Default emission, volatilisation and leaching factors for indirect soil N2O emissions, on page 11.24", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The term FracLEACH previously used has been modified so that it now only applies to regions where soil water-holding capacity is exceeded, as a result of rainfall and/or irrigation (excluding drip irrigation), and leaching/runoff occurs, and redesignated as FracLEACH-(H). In the definition of FracLEACH-(H) above, PE is potential evaporation, and the rainy season(s) can be taken as the period(s) when rainfall > 0.5 * Pan Evaporation. (Explanations of potential and pan evaporation are available in standard meteorological and agricultural texts). For other regions the default FracLEACH is taken as zero.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:05:00.743Z", + "last_change_date": "2022-03-14T08:05:00.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10399, + "fields": { + "EF_ID": 420741, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of winter wheat (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 2500 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and Primorsky region of Far East. Average round-year temperature of regions with winter wheat is +4,89 C, average rainfall is 44,7 mm. Average vegetation season temperature and rainfall are +15,98 C and 59,0 mm respectively. During winter season average temperature and rainfall between regions with winter wheat are -8,97 C and 33,7 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 66,9 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter wheat with its annual productivity in the range from 1000 to 2500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.4; b= 2.6; N=0.45;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:00.818Z", + "last_change_date": "2022-03-14T08:05:00.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10400, + "fields": { + "EF_ID": 420742, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of winter wheat (stubbles) to agricultural soils (Fcr) with its annual productivity from 2600 to 4000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and Primorsky region of Far East. Average round-year temperature of regions with winter wheat is +4,89 C, average rainfall is 44,7 mm. Average vegetation season temperature and rainfall are +15,98 C and 59,0 mm respectively. During winter season average temperature and rainfall between regions with winter wheat are -8,97 C and 33,7 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 66,9 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter wheat with its annual productivity in the range from 2600 to 4000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.1; b= 8.9; N=0.45;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:00.902Z", + "last_change_date": "2022-03-14T08:05:00.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10401, + "fields": { + "EF_ID": 420743, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of spring wheat (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 2000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and few regions of Far East. Average round-year temperature of regions with spring wheat is +3,70 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,7 mm respectively. During winter season average temperature and rainfall between regions with spring wheat are -10,98 C and 30,8 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for spring wheat with its annual productivity in the range from 1000 to 2000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.4; b= 1.8; N=0.65;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.003Z", + "last_change_date": "2022-03-14T08:05:01.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10402, + "fields": { + "EF_ID": 420744, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of spring wheat (stubbles) to agricultural soils (Fcr) with its annual productivity from 2100 to 3000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and few regions of Far East. Average round-year temperature of regions with spring wheat is +3,70 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,7 mm respectively. During winter season average temperature and rainfall between regions with spring wheat are -10,98 C and 30,8 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for spring wheat with its annual productivity in the range from 2100 to 3000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.2; b= 5.4; N=0.65;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.104Z", + "last_change_date": "2022-03-14T08:05:01.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10403, + "fields": { + "EF_ID": 420745, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of winter rye (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 2500 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and south of Far East. Average round-year temperature of regions with winter rye is +3,85 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with winter rye are -10,61 C and 31,4 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter rye with its annual productivity in the range from 1000 to 2500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.3; b= 3.2; N=0.45;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.204Z", + "last_change_date": "2022-03-14T08:05:01.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10404, + "fields": { + "EF_ID": 420746, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of winter rye (stubbles) to agricultural soils (Fcr) with its annual productivity from 2600 to 4000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and south of Far East. Average round-year temperature of regions with winter rye is +3,85 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with winter rye are -10,61 C and 31,4 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter rye with its annual productivity in the range from 2600 to 4000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.2; b= 6.3; N=0.45;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.304Z", + "last_change_date": "2022-03-14T08:05:01.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10405, + "fields": { + "EF_ID": 420747, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of maize on grain (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 3500 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with maize is +5,84 C, average rainfall is 44,4 mm. Average vegetation season temperature and rainfall are +17,06 C and 56,7 mm respectively. During winter season average temperature and rainfall between regions with maize are -8,23 C and 33,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 66,9 and 28,1 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for maize on grain with its annual productivity in the range from 1000 to 3500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.23; b= 3.5; N=0.75;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.405Z", + "last_change_date": "2022-03-14T08:05:01.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10406, + "fields": { + "EF_ID": 420748, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of winter barley (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 2000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "South of the European part of the former Soviet Union. Average round-year temperature of regions with winter barley is +9,74 C, average rainfall is 41,2 mm. Average vegetation season temperature and rainfall are +19,78 C and 48,7 mm respectively. During winter season average temperature and rainfall between regions with winter barley are -2,51 C and 37,0 mm. Maximal and minimum round year temperature of these regions are +12,25 and +5,53 C. Maximal and minimum round year rainfall are 53,6 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter barley with its annual productivity in the range from 1000 to 2000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.4; b= 1.8; N=0.5;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.506Z", + "last_change_date": "2022-03-14T08:05:01.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10407, + "fields": { + "EF_ID": 420749, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of winter barley (stubbles) to agricultural soils (Fcr) with its annual productivity from 2100 to 3500 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "South of the European part of the former Soviet Union. Average round-year temperature of regions with winter barley is +9,74 C, average rainfall is 41,2 mm. Average vegetation season temperature and rainfall are +19,78 C and 48,7 mm respectively. During winter season average temperature and rainfall between regions with winter barley are -2,51 C and 37,0 mm. Maximal and minimum round year temperature of these regions are +12,25 and +5,53 C. Maximal and minimum round year rainfall are 53,6 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter barley with its annual productivity in the range from 2100 to 3500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.09; b= 7.6; N=0.5;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.615Z", + "last_change_date": "2022-03-14T08:05:01.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10408, + "fields": { + "EF_ID": 420750, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of spring barley (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 2000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south and center of Ural, south and center of Siberia and south of Far East. Average round-year temperature of regions with spring barley is +3,75 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,5 mm respectively. During winter season average temperature and rainfall between regions with spring barley are -10,84 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for spring barley with its annual productivity in the range from 1000 to 2000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.4; b= 1.8; N=0.5;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.715Z", + "last_change_date": "2022-03-14T08:05:01.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10409, + "fields": { + "EF_ID": 420751, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of spring barley (stubbles) to agricultural soils (Fcr) with its annual productivity from 2100 to 3500 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south and center of Ural, south and center of Siberia and south of Far East. Average round-year temperature of regions with spring barley is +3,75 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,5 mm respectively. During winter season average temperature and rainfall between regions with spring barley are -10,84 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for spring barley with its annual productivity in the range from 2100 to 3500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.09; b= 7.6; N=0.5;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.841Z", + "last_change_date": "2022-03-14T08:05:01.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10410, + "fields": { + "EF_ID": 420752, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of oats (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 2000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. Temperate north, central territory, south of the European part of the former Soviet Union, center and south of Ural, center and south of Siberia and central and southern part of Far East. Average round-year temperature of regions with oats is +3,75 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,5 mm respectively. During winter season average temperature and rainfall between regions with oats are -10,84 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for oats with its annual productivity in the range from 1000 to 2000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.3; b= 3.2; N=0.6;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:01.941Z", + "last_change_date": "2022-03-14T08:05:01.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10411, + "fields": { + "EF_ID": 420753, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of oats (stubbles) to agricultural soils (Fcr) with its annual productivity from 2100 to 3500 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. Temperate north, central territory, south of the European part of the former Soviet Union, center and south of Ural, center and south of Siberia and central and southern part of Far East. Average round-year temperature of regions with oats is +3,75 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,5 mm respectively. During winter season average temperature and rainfall between regions with oats are -10,84 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for oats with its annual productivity in the range from 2100 to 3500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.15; b= 6.12; N=0.6;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.042Z", + "last_change_date": "2022-03-14T08:05:02.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10412, + "fields": { + "EF_ID": 420754, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of millet (stubbles) to agricultural soils (Fcr) with its annual productivity from 500 to 2000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural and south of Siberia. Average round-year temperature of regions with millet is +4,58 C, average rainfall is 43,7 mm. Average vegetation season temperature and rainfall are +15,98 C and 55,6 mm respectively. During winter season average temperature and rainfall between regions with millet are -9,68 C and 33,3 mm. Maximal and minimum round year temperature of these regions are +11,77 and -5,01 C. Maximal and minimum round year rainfall are 58,4 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for millet with its annual productivity in the range from 500 to 2000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.2; b= 5.0; N=0.5;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.150Z", + "last_change_date": "2022-03-14T08:05:02.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10413, + "fields": { + "EF_ID": 420755, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of millet (stubbles) to agricultural soils (Fcr) with its annual productivity from 2100 to 3000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural and south of Siberia. Average round-year temperature of regions with millet is +4,58 C, average rainfall is 43,7 mm. Average vegetation season temperature and rainfall are +15,98 C and 55,6 mm respectively. During winter season average temperature and rainfall between regions with millet are -9,68 C and 33,3 mm. Maximal and minimum round year temperature of these regions are +11,77 and -5,01 C. Maximal and minimum round year rainfall are 58,4 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for millet with its annual productivity in the range from 2100 to 3000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.3; b= 3.3; N=0.5;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.260Z", + "last_change_date": "2022-03-14T08:05:02.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10414, + "fields": { + "EF_ID": 420756, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of buckwheat (stubbles) to agricultural soils (Fcr) with its annual productivity from 500 to 1500 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, central and southern part of Siberia and south of Far East. Average round-year temperature of regions with buckwheat is +3,76 C, average rainfall is 43,3 mm. Average vegetation season temperature and rainfall are +15,51 C and 58,0 mm respectively. During winter season average temperature and rainfall between regions with buckwheat are -11,11 C and 30,2 mm. Maximal and minimum round year temperature of these regions are +11,77 and -5,01 C. Maximal and minimum round year rainfall are 66,9 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for buckwheat with its annual productivity in the range from 500 to 1500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.25; b= 4.3; N=0.8;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.361Z", + "last_change_date": "2022-03-14T08:05:02.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10415, + "fields": { + "EF_ID": 420757, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of buckwheat (stubbles) to agricultural soils (Fcr) with its annual productivity from 1600 to 3000 kg/ha. Straw that is removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, central and southern part of Siberia and south of Far East. Average round-year temperature of regions with buckwheat is +3,76 C, average rainfall is 43,3 mm. Average vegetation season temperature and rainfall are +15,51 C and 58,0 mm respectively. During winter season average temperature and rainfall between regions with buckwheat are -11,11 C and 30,2 mm. Maximal and minimum round year temperature of these regions are +11,77 and -5,01 C. Maximal and minimum round year rainfall are 66,9 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for buckwheat with its annual productivity in the range from 1600 to 3000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.2; b= 5.2; N=0.8;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.462Z", + "last_change_date": "2022-03-14T08:05:02.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10416, + "fields": { + "EF_ID": 420758, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of sugar beet (stubbles) to agricultural soils (Fcr) with its annual productivity from 20100 to 40000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, 2 regions on the south of Siberia. Average round-year temperature of regions with sugar beet is +6,46 C, average rainfall is 44,5 mm. Average vegetation season temperature and rainfall are +17,33 C and 53,3 mm respectively. During winter season average temperature and rainfall between regions with sugar beet are -6,96 C and 37,0 mm. Maximal and minimum round year temperature of these regions are +11,77 and 0,45 C. Maximal and minimum round year rainfall are 58,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for sugar beet with its annual productivity in the range from 20100 to 40000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.003; b= 2.5; N=1.4;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.562Z", + "last_change_date": "2022-03-14T08:05:02.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10417, + "fields": { + "EF_ID": 420759, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of sugar beet (stubbles) to agricultural soils (Fcr) with its annual productivity from 10000 to 20000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, 2 regions on the south of Siberia. Average round-year temperature of regions with sugar beet is +6,46 C, average rainfall is 44,5 mm. Average vegetation season temperature and rainfall are +17,33 C and 53,3 mm respectively. During winter season average temperature and rainfall between regions with sugar beet are -6,96 C and 37,0 mm. Maximal and minimum round year temperature of these regions are +11,77 and 0,45 C. Maximal and minimum round year rainfall are 58,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for sugar beet with its annual productivity in the range from 10000 to 20000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.02; b= 0.8; N=1.4;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.663Z", + "last_change_date": "2022-03-14T08:05:02.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10418, + "fields": { + "EF_ID": 420760, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of sunflower (stubbles) to agricultural soils (Fcr) with its annual productivity from 800 to 3000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "South of the European part of the former Soviet Union, south of Ural, central and south of Siberia and south of Far East. Average round-year temperature of regions with sunflower is +5,47 C, average rainfall is 42,4 mm. Average vegetation season temperature and rainfall are +16,85 C and 54,2 mm respectively. During winter season average temperature and rainfall between regions with sunflower are -8,81 C and 31,8 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 66,9 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for sunflower with its annual productivity in the range from 800 to 3000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.4; b= 3.1; N=1.4;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.763Z", + "last_change_date": "2022-03-14T08:05:02.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10419, + "fields": { + "EF_ID": 420761, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of potatoes (stubbles) to agricultural soils (Fcr) with its annual productivity from 5000 to 20000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, central part of Siberia and all territory of Far East. Average round-year temperature of regions with potatoes is +3,05 C, average rainfall is 43,5 mm. Average vegetation season temperature and rainfall are +14,67 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with potatoes are -11,56 C and 30,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -11,40 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for potatoes with its annual productivity in the range from 5000 to 20000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.04; b= 1.0; N=1.8;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.864Z", + "last_change_date": "2022-03-14T08:05:02.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10420, + "fields": { + "EF_ID": 420762, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of potatoes (stubbles) to agricultural soils (Fcr) with its annual productivity from 20100 to 35000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, central part of Siberia and all territory of Far East. Average round-year temperature of regions with potatoes is +3,05 C, average rainfall is 43,5 mm. Average vegetation season temperature and rainfall are +14,67 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with potatoes are -11,56 C and 30,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -11,40 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for potatoes with its annual productivity in the range from 20100 to 30500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.03; b= 4.1; N=1.8;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:02.956Z", + "last_change_date": "2022-03-14T08:05:02.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10421, + "fields": { + "EF_ID": 420763, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of vegetables (stubbles) to agricultural soils (Fcr) with its annual productivity from 5000 to 20000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, central part of Siberia and all territory of Far East. Average round-year temperature of regions with vegetables is +3,05 C, average rainfall is 43,5 mm. Average vegetation season temperature and rainfall are +14,67 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with vegetables are -11,56 C and 30,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -11,40 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for vegetables with its annual productivity in the range from 5000 to 20000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.02; b= 1.5; N=0.35;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.048Z", + "last_change_date": "2022-03-14T08:05:03.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10422, + "fields": { + "EF_ID": 420764, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of vegetables (stubbles) to agricultural soils (Fcr) with its annual productivity from 25000 to 40000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, central part of Siberia and all territory of Far East. Average round-year temperature of regions with vegetables is +3,05 C, average rainfall is 43,5 mm. Average vegetation season temperature and rainfall are +14,67 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with vegetables are -11,56 C and 30,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -11,40 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for vegetables with its annual productivity in the range from 25000 to 40000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.006; b= 3.6; N=0.35;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.141Z", + "last_change_date": "2022-03-14T08:05:03.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10423, + "fields": { + "EF_ID": 420765, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of maize on silo (stubbles) to agricultural soils (Fcr) with its annual productivity from 10000 to 20000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with maize is +5,84 C, average rainfall is 44,4 mm. Average vegetation season temperature and rainfall are +17,06 C and 56,7 mm respectively. During winter season average temperature and rainfall between regions with maize are -8,23 C and 33,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 66,9 and 28,1 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for maize on silo with its annual productivity in the range from 10000 to 20000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.03; b= 3.6; N=0.8;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.233Z", + "last_change_date": "2022-03-14T08:05:03.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10424, + "fields": { + "EF_ID": 420766, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of maize on silo (stubbles) to agricultural soils (Fcr) with its annual productivity from 20100 to 35000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with maize is +5,84 C, average rainfall is 44,4 mm. Average vegetation season temperature and rainfall are +17,06 C and 56,7 mm respectively. During winter season average temperature and rainfall between regions with maize are -8,23 C and 33,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 66,9 and 28,1 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for maize on silo with its annual productivity in the range from 20100 to 35000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.02; b= 5.0; N=0.8;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.333Z", + "last_change_date": "2022-03-14T08:05:03.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10425, + "fields": { + "EF_ID": 420767, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of fodder root-crops (stubbles) to agricultural soils (Fcr) with its annual productivity from 20100 to 40000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, central and southern part of Ural, center and south of Siberia and temperate north, center and south of Far East. Average round-year temperature of regions with fodder root-crops is +4,34 C, average rainfall is 45,0 mm. Average vegetation season temperature and rainfall are +13,73 C and 55,4 mm respectively. During winter season average temperature and rainfall between regions with fodder root-crops are -8,81 C and 35,3 mm. Maximal and minimum round year temperature of these regions are +13,06 and -5,89 C. Maximal and minimum round year rainfall are 71,0 and 18,2 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for fodder root-crops with its annual productivity in the range from 20100 to 40000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.003; b= 2.4; N=1.3;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.459Z", + "last_change_date": "2022-03-14T08:05:03.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10426, + "fields": { + "EF_ID": 420768, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of fodder root-crops (stubbles) to agricultural soils (Fcr) with its annual productivity from 5000 to 20000 kg/ha. Straw and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, central and southern part of Ural, center and south of Siberia and temperate north, center and south of Far East. Average round-year temperature of regions with fodder root-crops is +4,34 C, average rainfall is 45,0 mm. Average vegetation season temperature and rainfall are +13,73 C and 55,4 mm respectively. During winter season average temperature and rainfall between regions with fodder root-crops are -8,81 C and 35,3 mm. Maximal and minimum round year temperature of these regions are +13,06 and -5,89 C. Maximal and minimum round year rainfall are 71,0 and 18,2 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for fodder root-crops with its annual productivity in the range from 5000 to 20000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.01; b= 1.0; N=1.3;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.551Z", + "last_change_date": "2022-03-14T08:05:03.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10427, + "fields": { + "EF_ID": 420769, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of perennial herbs (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 3500 kg/ha. Hay and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, center and south of Ural, northern, central and southern part of Siberia and temperate north, center and south of Far East. Average round-year temperature of regions with perennial herbs is +3,31 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +14,85 C and 57,9 mm respectively. During winter season average temperature and rainfall between regions with perennial herbs are -11,21 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -9,38 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for perennial herbs with its annual productivity in the range from 1000 to 3500 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.2; b= 6.0; N=1.9;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.694Z", + "last_change_date": "2022-03-14T08:05:03.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10428, + "fields": { + "EF_ID": 420770, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of perennial herbs (stubbles) to agricultural soils (Fcr) with its annual productivity from 3600 to 6000 kg/ha. Hay and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, center and south of Ural, northern, central and southern part of Siberia and temperate north, center and south of Far East. Average round-year temperature of regions with perennial herbs is +3,31 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +14,85 C and 57,9 mm respectively. During winter season average temperature and rainfall between regions with perennial herbs are -11,21 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -9,38 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for perennial herbs with its annual productivity in the range from 3600 to 6000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.1; b= 10.0; N=1.9;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.803Z", + "last_change_date": "2022-03-14T08:05:03.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10429, + "fields": { + "EF_ID": 420771, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of one-year grasses (stubbles) to agricultural soils (Fcr) with its annual productivity from 1000 to 4000 kg/ha. Hay and other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, northern, central and southern part of Siberia and center and south of Far East. Average round-year temperature of regions with one-year grasses is +3,46 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +14,96 C and 58,0 mm respectively. During winter season average temperature and rainfall between regions with one-year grasses are -11,08 C and 30,8 mm. Maximal and minimum round year temperature of these regions are +12,25 and -9,38 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for one-year grasses with its annual productivity in the range from 1000 to 4000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.13; b= 6.0; N=1.1;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:03.904Z", + "last_change_date": "2022-03-14T08:05:03.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10430, + "fields": { + "EF_ID": 420772, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of pea (stubbles) to agricultural soils (Fcr) with its annual productivity from 500 to 2000 kg/ha. Other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with pea is +4,22 C, average rainfall is 44,6 mm. Average vegetation season temperature and rainfall are +15,57 C and 57,8 mm respectively. During winter season average temperature and rainfall between regions with pea are -10,07 C and 32,6 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 68,4 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for pea with its annual productivity in the range from 500 to 2000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.14; b= 3.5; N=1.25;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.005Z", + "last_change_date": "2022-03-14T08:05:04.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10431, + "fields": { + "EF_ID": 420773, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from aboveground residues of pea (stubbles) to agricultural soils (Fcr) with its annual productivity from 2200 to 3000 kg/ha. Other aboveground residues those are removed from fields or burned are not included in the calculations.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of crop residues (stubbles) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with pea is +4,22 C, average rainfall is 44,6 mm. Average vegetation season temperature and rainfall are +15,57 C and 57,8 mm respectively. During winter season average temperature and rainfall between regions with pea are -10,07 C and 32,6 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 68,4 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for pea with its annual productivity in the range from 2200 to 3000 kg/ha. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.2; b= 1.7; N=1.25;", + "Unit": "dimensionless", + "Equation": "X= (aP+b)*N where ? is nitrogen input to soil with aboveground residues of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of aboveground residues; N is the fraction of nitrogen in aboveground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.122Z", + "last_change_date": "2022-03-14T08:05:04.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10432, + "fields": { + "EF_ID": 420774, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of winter wheat (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 2500 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and Primorsky region of Far East. Average round-year temperature of regions with winter wheat is +4,89 C, average rainfall is 44,7 mm. Average vegetation season temperature and rainfall are +15,98 C and 59,0 mm respectively. During winter season average temperature and rainfall between regions with winter wheat are -8,97 C and 33,7 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 66,9 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter wheat with its annual productivity in the range from 1000 to 2500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.9; b= 5.8; N=0.75;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.223Z", + "last_change_date": "2022-03-14T08:05:04.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10433, + "fields": { + "EF_ID": 420775, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of winter wheat (roots) to agricultural soils (Fcr) with its annual productivity from 2600 to 4000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and Primorsky region of Far East. Average round-year temperature of regions with winter wheat is +4,89 C, average rainfall is 44,7 mm. Average vegetation season temperature and rainfall are +15,98 C and 59,0 mm respectively. During winter season average temperature and rainfall between regions with winter wheat are -8,97 C and 33,7 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 66,9 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter wheat with its annual productivity in the range from 2600 to 4000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.7; b= 10.0; N=0.75;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.315Z", + "last_change_date": "2022-03-14T08:05:04.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10434, + "fields": { + "EF_ID": 420776, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of spring wheat (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 2000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and few regions of Far East. Average round-year temperature of regions with spring wheat is +3,70 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,7 mm respectively. During winter season average temperature and rainfall between regions with spring wheat are -10,98 C and 30,8 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for spring wheat with its annual productivity in the range from 1000 to 2000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.7; b= 10.2; N=0.8;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.424Z", + "last_change_date": "2022-03-14T08:05:04.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10435, + "fields": { + "EF_ID": 420777, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of spring wheat (roots) to agricultural soils (Fcr) with its annual productivity from 2100 to 3000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and few regions of Far East. Average round-year temperature of regions with spring wheat is +3,70 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,7 mm respectively. During winter season average temperature and rainfall between regions with spring wheat are -10,98 C and 30,8 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for spring wheat with its annual productivity in the range from 2100 to 3000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.8; b= 6.0; N=0.8;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.524Z", + "last_change_date": "2022-03-14T08:05:04.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10436, + "fields": { + "EF_ID": 420778, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of winter rye (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 2500 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and south of Far East. Average round-year temperature of regions with winter rye is +3,85 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with winter rye are -10,61 C and 31,4 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter rye with its annual productivity in the range from 1000 to 2500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.6; b= 8.9; N=0.75;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.625Z", + "last_change_date": "2022-03-14T08:05:04.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10437, + "fields": { + "EF_ID": 420779, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of winter rye (roots) to agricultural soils (Fcr) with its annual productivity from 2600 to 4000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south of Ural, Siberia and south of Far East. Average round-year temperature of regions with winter rye is +3,85 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with winter rye are -10,61 C and 31,4 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter rye with its annual productivity in the range from 2600 to 4000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.6; b= 13.9; N=0.75;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.725Z", + "last_change_date": "2022-03-14T08:05:04.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10438, + "fields": { + "EF_ID": 420780, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of maize on grain (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 3500 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with maize is +5,84 C, average rainfall is 44,4 mm. Average vegetation season temperature and rainfall are +17,06 C and 56,7 mm respectively. During winter season average temperature and rainfall between regions with maize are -8,23 C and 33,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 66,9 and 28,1 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for maize on grain with its annual productivity in the range from 1000 to 3500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.8; b= 5.8; N=1.0;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.834Z", + "last_change_date": "2022-03-14T08:05:04.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10439, + "fields": { + "EF_ID": 420781, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of winter barley (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 2000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "South of the European part of the former Soviet Union. Average round-year temperature of regions with winter barley is +9,74 C, average rainfall is 41,2 mm. Average vegetation season temperature and rainfall are +19,78 C and 48,7 mm respectively. During winter season average temperature and rainfall between regions with winter barley are -2,51 C and 37,0 mm. Maximal and minimum round year temperature of these regions are +12,25 and +5,53 C. Maximal and minimum round year rainfall are 53,6 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter barley with its annual productivity in the range from 1000 to 2000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.8; b= 6.5; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:04.926Z", + "last_change_date": "2022-03-14T08:05:04.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10440, + "fields": { + "EF_ID": 420782, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of winter barley (roots) to agricultural soils (Fcr) with its annual productivity from 2100 to 3500 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "South of the European part of the former Soviet Union. Average round-year temperature of regions with winter barley is +9,74 C, average rainfall is 41,2 mm. Average vegetation season temperature and rainfall are +19,78 C and 48,7 mm respectively. During winter season average temperature and rainfall between regions with winter barley are -2,51 C and 37,0 mm. Maximal and minimum round year temperature of these regions are +12,25 and +5,53 C. Maximal and minimum round year rainfall are 53,6 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for winter barley with its annual productivity in the range from 2100 to 3500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.4; b= 13.45; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.052Z", + "last_change_date": "2022-03-14T08:05:05.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10441, + "fields": { + "EF_ID": 420783, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of spring barley (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 2000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south and center of Ural, south and center of Siberia and south of Far East. Average round-year temperature of regions with spring barley is +3,75 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,5 mm respectively. During winter season average temperature and rainfall between regions with spring barley are -10,84 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for spring barley with its annual productivity in the range from 1000 to 2000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.8; b= 6.5; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.137Z", + "last_change_date": "2022-03-14T08:05:05.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10442, + "fields": { + "EF_ID": 420784, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of oats (roots) to agricultural soils (Fcr) with its annual productivity from 2100 to 3500 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. Temperate north, central territory, south of the European part of the former Soviet Union, center and south of Ural, center and south of Siberia and central and southern part of Far East. Average round-year temperature of regions with oats is +3,75 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,5 mm respectively. During winter season average temperature and rainfall between regions with oats are -10,84 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for oats with its annual productivity in the range from 2100 to 3500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.4; b= 16.0; N=0.75;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.229Z", + "last_change_date": "2022-03-14T08:05:05.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10443, + "fields": { + "EF_ID": 420785, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of millet (roots) to agricultural soils (Fcr) with its annual productivity from 500 to 2000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural and south of Siberia. Average round-year temperature of regions with millet is +4,58 C, average rainfall is 43,7 mm. Average vegetation season temperature and rainfall are +15,98 C and 55,6 mm respectively. During winter season average temperature and rainfall between regions with millet are -9,68 C and 33,3 mm. Maximal and minimum round year temperature of these regions are +11,77 and -5,01 C. Maximal and minimum round year rainfall are 58,4 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for millet with its annual productivity in the range from 500 to 2000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.8; b= 7.0; N=0.75;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.330Z", + "last_change_date": "2022-03-14T08:05:05.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10444, + "fields": { + "EF_ID": 420786, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of millet (roots) to agricultural soils (Fcr) with its annual productivity from 2100 to 3000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural and south of Siberia. Average round-year temperature of regions with millet is +4,58 C, average rainfall is 43,7 mm. Average vegetation season temperature and rainfall are +15,98 C and 55,6 mm respectively. During winter season average temperature and rainfall between regions with millet are -9,68 C and 33,3 mm. Maximal and minimum round year temperature of these regions are +11,77 and -5,01 C. Maximal and minimum round year rainfall are 58,4 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for millet with its annual productivity in the range from 2100 to 3000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.56; b= 11.2; N=0.75;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.439Z", + "last_change_date": "2022-03-14T08:05:05.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10445, + "fields": { + "EF_ID": 420787, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of buckwheat (roots) to agricultural soils (Fcr) with its annual productivity from 500 to 1500 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, central and southern part of Siberia and south of Far East. Average round-year temperature of regions with buckwheat is +3,76 C, average rainfall is 43,3 mm. Average vegetation season temperature and rainfall are +15,51 C and 58,0 mm respectively. During winter season average temperature and rainfall between regions with buckwheat are -11,11 C and 30,2 mm. Maximal and minimum round year temperature of these regions are +11,77 and -5,01 C. Maximal and minimum round year rainfall are 66,9 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for buckwheat with its annual productivity in the range from 500 to 1500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=1.1; b= 5.3; N=0.85;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.548Z", + "last_change_date": "2022-03-14T08:05:05.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10446, + "fields": { + "EF_ID": 420788, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of buckwheat (roots) to agricultural soils (Fcr) with its annual productivity from 1600 to 3000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, central and southern part of Siberia and south of Far East. Average round-year temperature of regions with buckwheat is +3,76 C, average rainfall is 43,3 mm. Average vegetation season temperature and rainfall are +15,51 C and 58,0 mm respectively. During winter season average temperature and rainfall between regions with buckwheat are -11,11 C and 30,2 mm. Maximal and minimum round year temperature of these regions are +11,77 and -5,01 C. Maximal and minimum round year rainfall are 66,9 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for buckwheat with its annual productivity in the range from 1600 to 3000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.54; b= 14.1; N=0.85;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.657Z", + "last_change_date": "2022-03-14T08:05:05.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10447, + "fields": { + "EF_ID": 420789, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of sugar beet (roots) to agricultural soils (Fcr) with its annual productivity from 20100 to 40000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, 2 regions on the south of Siberia. Average round-year temperature of regions with sugar beet is +6,46 C, average rainfall is 44,5 mm. Average vegetation season temperature and rainfall are +17,33 C and 53,3 mm respectively. During winter season average temperature and rainfall between regions with sugar beet are -6,96 C and 37,0 mm. Maximal and minimum round year temperature of these regions are +11,77 and 0,45 C. Maximal and minimum round year rainfall are 58,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for sugar beet with its annual productivity in the range from 20100 to 40000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.06; b= 5.45; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.783Z", + "last_change_date": "2022-03-14T08:05:05.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10448, + "fields": { + "EF_ID": 420790, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of sugar beet (roots) to agricultural soils (Fcr) with its annual productivity from 10000 to 20000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, 2 regions on the south of Siberia. Average round-year temperature of regions with sugar beet is +6,46 C, average rainfall is 44,5 mm. Average vegetation season temperature and rainfall are +17,33 C and 53,3 mm respectively. During winter season average temperature and rainfall between regions with sugar beet are -6,96 C and 37,0 mm. Maximal and minimum round year temperature of these regions are +11,77 and 0,45 C. Maximal and minimum round year rainfall are 58,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for sugar beet with its annual productivity in the range from 10000 to 20000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.07; b= 3.5; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:05.892Z", + "last_change_date": "2022-03-14T08:05:05.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10449, + "fields": { + "EF_ID": 420791, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of sunflower (roots) to agricultural soils (Fcr) with its annual productivity from 800 to 3000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "South of the European part of the former Soviet Union, south of Ural, central and south of Siberia and south of Far East. Average round-year temperature of regions with sunflower is +5,47 C, average rainfall is 42,4 mm. Average vegetation season temperature and rainfall are +16,85 C and 54,2 mm respectively. During winter season average temperature and rainfall between regions with sunflower are -8,81 C and 31,8 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 66,9 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for sunflower with its annual productivity in the range from 800 to 3000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=1.0; b= 6.6; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.000Z", + "last_change_date": "2022-03-14T08:05:06.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10450, + "fields": { + "EF_ID": 420792, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of potatoes (roots) to agricultural soils (Fcr) with its annual productivity from 5000 to 20000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, central part of Siberia and all territory of Far East. Average round-year temperature of regions with potatoes is +3,05 C, average rainfall is 43,5 mm. Average vegetation season temperature and rainfall are +14,67 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with potatoes are -11,56 C and 30,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -11,40 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for potatoes with its annual productivity in the range from 5000 to 20000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.08; b= 4.0; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.109Z", + "last_change_date": "2022-03-14T08:05:06.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10451, + "fields": { + "EF_ID": 420793, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of potatoes (roots) to agricultural soils (Fcr) with its annual productivity from 20100 to 35000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, central part of Siberia and all territory of Far East. Average round-year temperature of regions with potatoes is +3,05 C, average rainfall is 43,5 mm. Average vegetation season temperature and rainfall are +14,67 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with potatoes are -11,56 C and 30,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -11,40 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for potatoes with its annual productivity in the range from 20100 to 30500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.06; b= 8.6; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.218Z", + "last_change_date": "2022-03-14T08:05:06.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10452, + "fields": { + "EF_ID": 420794, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of vegetables (roots) to agricultural soils (Fcr) with its annual productivity from 5000 to 20000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, central part of Siberia and all territory of Far East. Average round-year temperature of regions with vegetables is +3,05 C, average rainfall is 43,5 mm. Average vegetation season temperature and rainfall are +14,67 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with vegetables are -11,56 C and 30,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -11,40 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for vegetables with its annual productivity in the range from 5000 to 20000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.06; b= 5.0; N=1.0;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.326Z", + "last_change_date": "2022-03-14T08:05:06.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10453, + "fields": { + "EF_ID": 420795, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of vegetables (roots) to agricultural soils (Fcr) with its annual productivity from 25000 to 40000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, central part of Siberia and all territory of Far East. Average round-year temperature of regions with vegetables is +3,05 C, average rainfall is 43,5 mm. Average vegetation season temperature and rainfall are +14,67 C and 57,4 mm respectively. During winter season average temperature and rainfall between regions with vegetables are -11,56 C and 30,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -11,40 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for vegetables with its annual productivity in the range from 25000 to 40000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.04; b= 6.0; N=1.0;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.427Z", + "last_change_date": "2022-03-14T08:05:06.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10454, + "fields": { + "EF_ID": 420796, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of maize on silo (roots) to agricultural soils (Fcr) with its annual productivity from 10000 to 20000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with maize is +5,84 C, average rainfall is 44,4 mm. Average vegetation season temperature and rainfall are +17,06 C and 56,7 mm respectively. During winter season average temperature and rainfall between regions with maize are -8,23 C and 33,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 66,9 and 28,1 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for maize on silo with its annual productivity in the range from 10000 to 20000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.12; b= 8.7; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.528Z", + "last_change_date": "2022-03-14T08:05:06.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10455, + "fields": { + "EF_ID": 420797, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of maize on silo (roots) to agricultural soils (Fcr) with its annual productivity from 20100 to 35000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Only south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with maize is +5,84 C, average rainfall is 44,4 mm. Average vegetation season temperature and rainfall are +17,06 C and 56,7 mm respectively. During winter season average temperature and rainfall between regions with maize are -8,23 C and 33,5 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 66,9 and 28,1 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for maize on silo with its annual productivity in the range from 20100 to 35000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.08; b= 16.2; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.628Z", + "last_change_date": "2022-03-14T08:05:06.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10456, + "fields": { + "EF_ID": 420798, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of fodder root-crops (roots) to agricultural soils (Fcr) with its annual productivity from 20100 to 40000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, central and southern part of Ural, center and south of Siberia and temperate north, center and south of Far East. Average round-year temperature of regions with fodder root-crops is +4,34 C, average rainfall is 45,0 mm. Average vegetation season temperature and rainfall are +13,73 C and 55,4 mm respectively. During winter season average temperature and rainfall between regions with fodder root-crops are -8,81 C and 35,3 mm. Maximal and minimum round year temperature of these regions are +13,06 and -5,89 C. Maximal and minimum round year rainfall are 71,0 and 18,2 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for fodder root-crops with its annual productivity in the range from 20100 to 40000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.05; b= 5.2; N=1.0;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.729Z", + "last_change_date": "2022-03-14T08:05:06.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10457, + "fields": { + "EF_ID": 420799, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of fodder root-crops (roots) to agricultural soils (Fcr) with its annual productivity from 5000 to 20000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, central and southern part of Ural, center and south of Siberia and temperate north, center and south of Far East. Average round-year temperature of regions with fodder root-crops is +4,34 C, average rainfall is 45,0 mm. Average vegetation season temperature and rainfall are +13,73 C and 55,4 mm respectively. During winter season average temperature and rainfall between regions with fodder root-crops are -8,81 C and 35,3 mm. Maximal and minimum round year temperature of these regions are +13,06 and -5,89 C. Maximal and minimum round year rainfall are 71,0 and 18,2 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for fodder root-crops with its annual productivity in the range from 5000 to 20000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.05; b= 5.5; N=1.0;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.830Z", + "last_change_date": "2022-03-14T08:05:06.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10458, + "fields": { + "EF_ID": 420800, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of perennial herbs (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 3500 kg/ha.", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, center and south of Ural, northern, central and southern part of Siberia and temperate north, center and south of Far East. Average round-year temperature of regions with perennial herbs is +3,31 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +14,85 C and 57,9 mm respectively. During winter season average temperature and rainfall between regions with perennial herbs are -11,21 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -9,38 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for perennial herbs with its annual productivity in the range from 1000 to 3500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.8; b= 11.0; N=2.1;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:06.931Z", + "last_change_date": "2022-03-14T08:05:06.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10459, + "fields": { + "EF_ID": 420801, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of perennial herbs (roots) to agricultural soils (Fcr) with its annual productivity from 3600 to 6000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, center and south of Ural, northern, central and southern part of Siberia and temperate north, center and south of Far East. Average round-year temperature of regions with perennial herbs is +3,31 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +14,85 C and 57,9 mm respectively. During winter season average temperature and rainfall between regions with perennial herbs are -11,21 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -9,38 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for perennial herbs with its annual productivity in the range from 3600 to 6000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=1.0; b= 15.0; N=2.1;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:07.032Z", + "last_change_date": "2022-03-14T08:05:07.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10460, + "fields": { + "EF_ID": 420802, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of one-year grasses (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 4000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. North, central territory, south of the European part of the former Soviet Union, north, center and south of Ural, northern, central and southern part of Siberia and center and south of Far East. Average round-year temperature of regions with one-year grasses is +3,46 C, average rainfall is 43,9 mm. Average vegetation season temperature and rainfall are +14,96 C and 58,0 mm respectively. During winter season average temperature and rainfall between regions with one-year grasses are -11,08 C and 30,8 mm. Maximal and minimum round year temperature of these regions are +12,25 and -9,38 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for one-year grasses with its annual productivity in the range from 1000 to 4000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.7; b= 7.5; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:07.133Z", + "last_change_date": "2022-03-14T08:05:07.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10461, + "fields": { + "EF_ID": 420803, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of pea (roots) to agricultural soils (Fcr) with its annual productivity from 500 to 2000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with pea is +4,22 C, average rainfall is 44,6 mm. Average vegetation season temperature and rainfall are +15,57 C and 57,8 mm respectively. During winter season average temperature and rainfall between regions with pea are -10,07 C and 32,6 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 68,4 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for pea with its annual productivity in the range from 500 to 2000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.66; b= 7.5; N=1.7;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:07.233Z", + "last_change_date": "2022-03-14T08:05:07.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10462, + "fields": { + "EF_ID": 420804, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of pea (roots) to agricultural soils (Fcr) with its annual productivity from 2200 to 3000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Central territory, south of the European part of the former Soviet Union, south of Ural, south of Siberia and south of Far East. Average round-year temperature of regions with pea is +4,22 C, average rainfall is 44,6 mm. Average vegetation season temperature and rainfall are +15,57 C and 57,8 mm respectively. During winter season average temperature and rainfall between regions with pea are -10,07 C and 32,6 mm. Maximal and minimum round year temperature of these regions are +12,25 and -3,02 C. Maximal and minimum round year rainfall are 68,4 and 21,4 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for pea with its annual productivity in the range from 2200 to 3000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.37; b= 12.9; N=1.7;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:07.342Z", + "last_change_date": "2022-03-14T08:05:07.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10463, + "fields": { + "EF_ID": 420805, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of spring barley (roots) to agricultural soils (Fcr) with its annual productivity from 2100 to 3500 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Temperate north, central territory, south of the European part of the former Soviet Union, south and center of Ural, south and center of Siberia and south of Far East. Average round-year temperature of regions with spring barley is +3,75 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,5 mm respectively. During winter season average temperature and rainfall between regions with spring barley are -10,84 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for spring barley with its annual productivity in the range from 2100 to 3500 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=0.4; b= 13.45; N=1.2;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:07.459Z", + "last_change_date": "2022-03-14T08:05:07.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10464, + "fields": { + "EF_ID": 420806, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate nitrogen input from underground residues of oats (roots) to agricultural soils (Fcr) with its annual productivity from 1000 to 2000 kg/ha. ", + "Technology_Practices": "Generalized data of long-term investigations (for 15 years) of the amount of biomass of agricultural crops and crop residues left on filed on the all territory of former USSR. Different practices of crop cultivation applied in USSR were considered in the investigation (irrigated and non-irrigated regimes, synthetic and organic fertilizers of various rates applied, etc.). The cutting height during harvesting by Russian combine harvester could be hovered from 5-10 cm to 18-20 cm.", + "Parameter_Conditions": "Equation is relevant to all soil types used in agriculture in former USSR (mainly those are soddy-podzolic soils and chernozems). The annual amount of underground crop residues (roots) was determined during blooming period and represents maximal amount. The investigation was done under different management conditions applied in Soviet Union for crop production.", + "Regional_Conditions": "Wide distribution on the territory of the former USSR. Temperate north, central territory, south of the European part of the former Soviet Union, center and south of Ural, center and south of Siberia and central and southern part of Far East. Average round-year temperature of regions with oats is +3,75 C, average rainfall is 43,6 mm. Average vegetation season temperature and rainfall are +15,31 C and 57,5 mm respectively. During winter season average temperature and rainfall between regions with oats are -10,84 C and 30,9 mm. Maximal and minimum round year temperature of these regions are +12,25 and -8,12 C. Maximal and minimum round year rainfall are 68,4 and 18,0 mm. Some general information about the climate on the territory of Russia is described on http://www.geographic.org/climate/climate.html.", + "Control_Technologies": "None", + "Other_Properties": "This equation applicable only for oats with its annual productivity in the range from 1000 to 2000 kg/ha. To determine the mass of roots (at blooming period), undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each specie. Numerous data obtained were averaged and used as a base for regression analysis and development of the number of equations to determine mass of crop residues from crops productivity. Correlation coefficient is close to 1. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter.", + "Value": "a=1.0; b= 2.0; N=0.75;", + "Unit": "dimensionless", + "Equation": "In X= (aP+b)*N where ? is nitrogen input to soil with underground residues (roots) of each crop species (kg N/ha); P is the annual productivity of the crop (100kg/ha, dry matter); a and b are coefficients to determine the amount of underground residues; N is the fraction of nitrogen in underground residues, % of N in dry matter; (see `Value` field). This is the alternative way to calculate nitrogen in crop residues (Equation 6, p. 4.36 of Revised 1996 IPCC Guidelines, Equation 4.28 or 4.29, p.4.58 - 4.59 of GPG 2000).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Romanovskaya A.A., M.L. Gytarsky, R.T. Karaban`, I.M. Nazarov. 2002.Nitrous oxide emission from nonutilized mortmass of agricultural crops in agrarian sector of the country. 2002. In Problems of Ecological Monitoring and Ecosystem Modelling, vol.18, pp. 276-286Levin, F.I. 1977. The amounts of crop residues in plantations of field crops and their determination from crop yield data. - Agrokhimia, ? 8, pp. 36-42. (In Russian); Levin, F.I. 1983. Problems of cultivation, degradation, and melioration of plowed soils Moscow: Mosk. Gos. Univ., 93 pp. (In Russian)", + "English_Abstract": "The data of long-term investigations at all climatic zones of USSR on the structure of biomass of agricultural crops were generalized. Regression equations for their stubbles and roots left on field were developed. Due that dependence between crop productivity and crop residues left on fields is not linear, equations developed for two levels of crop productivity: low and high. Correlation coefficient for all equations is close to 1. The dry mass of crop residues was determined during blooming period then biomass was maximal. Undamaged root system was washed off from monolithic samples of soil after samples were slaking in the water for a long time. The size of monolithic samples was corresponding to the growing space for each species. In parallel from all plant samples N content was measured. Obtained data on N content were averaged and expressed in percent of dry matter. Data obtained are in a good agreement with other literature data on residues from various crops on the territory of the former Soviet Union.", + "Lower_Bound": "Not relevant", + "Upper_Bound": "Not relevant", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Formula expected to provide value with accuracy +/- 10%", + "Other_Comments": "", + "Data_Provider": "Anna A. Romanovskaya", + "Link": "", + "creation_date": "2022-03-14T08:05:07.576Z", + "last_change_date": "2022-03-14T08:05:07.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10465, + "fields": { + "EF_ID": 421078, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for fertiliser induced nitrous oxide emissions for all crops on loamy sand soils (weighted mean of all crops including hot-spots)", + "Technology_Practices": "To study the nitrogen (N) fertiliser induced emissions, annual crops and perennial plants received three different levels of N fertilisation: 0, 75, and 150 kg N/ha. N2O was measured by gas chromatography and closed chamber technique. The EFs are calculated by subtracting back ground emissions which were in the range of 0.8+-0.5 kgN2O-N/ha/yr", + "Parameter_Conditions": "The climate on the experimental site is temperate with lower precipitation than in other regions of Germany with mean temperature of 8.6 degrees centigrade and mean precipitation of 595 mm/yr. Between 1999 and 2007, the mean annual temperature increased to 9.9 degrees centigrade and the mean sum of precipitation slightly decreased to 590 mm/yr. Crops suitable for combustion, liquid fuel production or gasification were cultivated. Short rotation coppices such as poplar and willow were grown in rotation with annual crops such as rape, rye, triticale and hemp.", + "Regional_Conditions": "The expertimental site is located in northeast Germany.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.824", + "Unit": "%", + "Equation": "Equation 1, Page 4.92, Chapter 4, 1996 IPCC Guideline; Equation 4.20, Page 4.54, Chapter 4, GPG; Equation 11.1, Page 11.7, Chapter 11, Vol4(2), 2006 IPCC Guidelines", + "IPCC_Worksheet": "Sheet 1 of 5, Worksheet 4-5, Sub-module Agricultural soils, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 2, Category code 3C4, Category: Direct N2O Emissions from Managed Soils, 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hellenbrand, H. J., Scholz, V., Kern, J., 2008. Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmospheric Environment 42, 8403-8411.", + "English_Abstract": "Nitrous oxide (N2O) fluxes from a loamy sand soil have been collected at an experimental field since 1999. To study the nitrogen (N) fertiliser induced emissions, annual crops and perennial plants received three different levels of N fertilisation: 0, 75, and 150 kg N/ha. N2O was measured by gas chromatography and closed chamber technique. Water content of the soil was determined gravimetrically and the soil content of mineral N by ion chromatography. The N2O fluxes were below 30 µgN2Om^2/h during the winter season and varied from 10 to more than 1000 µgN2O m^2/h in the course of the vegetation season. N2O emissions after N fertilisation were assigned to fertiliser induced emissions. High N2O emissions at the end of the vegetation period are the result of increased mineralisation of soil organic matter. N2O emissions from freeze–thaw cycles gave only a small contribution to the total annual N2O emission budget from all blocks studied. Since the mean soil moisture content is very low (10%) and the water-filled pore space (WFPS) correlates negatively with N2O emissions, nitrification is considered the main source for N2O emissions. Evaluation of the data regarding dependence on fertilisation level indicates that N2O fluxes are positively correlated to soil NO3-N content. The N2O fluxes from annual crop plots are higher than those from plots with perennial plants (grass, willow, poplar). The mean N2O-N emission factor for fertiliser induced emissions from tilled soil is 1.0% in contrast to that of non-tilled soil with 0.7%. The mean fertiliser induced N2O-N emissions, averaged over all crops and the total period of nine years, are in the range of 0.8 0.2% of the N fertiliser applied.", + "Lower_Bound": "See `Other Info`.", + "Upper_Bound": "See `Other Info`.", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation = 1.133", + "Data_Provider_Comments": "N2O hot spots are extraordinary high N2O emissions, lasting for weeks or month, at very few measuring spots. Such type of emissions were observed only few times. In this publication both emission factors with and without hot spots are presented.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "www.elsevier.com/locate/atmosenv", + "creation_date": "2022-03-14T08:05:07.693Z", + "last_change_date": "2022-03-14T08:05:07.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10466, + "fields": { + "EF_ID": 421079, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N2O emissions from vegetable production in Nanjing in Jiangsu province in China", + "Technology_Practices": "Five consecutive vegetable crops were grown on a site suburban Nanjing from November 2001 to Jaunary 2003 in a greenhouse vegetable field. The crops were radish, baby bok choy, lettuce, second planting of baby bok choy, and celery. During the second baby bok choy growing season, measurements were carried out at adjacent vegetable field outside the greenhouse. Soils from both fields were derived from Quaternary Xiashu Loess. Local dominant management practices in terms of crop type, rotation regime, tilllage and irrigation and fertilization( including timing rate and source) were followed in the study. The total N application rate for these crops was as high as 1636 kg N/ha. Complex fertilizer i sspecially designed for vegetable crops with N 10%, P 6%, K 9% and other necessary nutrient content greater than 15%. Manure N meant dung and urine diluted with large amounts of water for irrigation and fertilization. Flux measurement were done in triplicate usually once a week throughout each crop growth period with static closed chambers", + "Parameter_Conditions": "Local dominant management practices in terms of crop type, rotation regime, tilllage and irrigation and fertilization (including timing rate and source) were followed in the study.", + "Regional_Conditions": "Nanjing in Jiangsu province in China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "%", + "Equation": "Equation 1, Page 4.92, Chapter 4, 1996 IPCC Guideline; Equation 4.20, Page 4.54, Chapter 4, GPG; Equation 11.1, page 11.7, Chapter 11, Vol4(2), 2006 IPCC Guidelines", + "IPCC_Worksheet": "Sheet 1 of 5, Worksheet 4-5, Sub-module Agricultural soils, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 2, Category code 3C4, Category: Direct N2O Emissions from Managed Soils, 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xiong, Z., Yingxin, X., Guanxi, X., Zhaoliang, Z., Butenhoff, C., 2006. Measurements of nitrous oxide emissions from vegetable production in China. Atmospheric Environement 35, 2225-2234", + "English_Abstract": "Nitrous oxide (N2O) emissions resulting from Chinese vegetable production were measured. A site in suburban Nanjing(east coast; Jingsu province) was monitored from November 2001 to January 2003, in which five consecutive vegetable crops were sown. The crops consisted of radish, baby bok choy, lettuce, second planting of baby bok choy and finally celery, results suggest that N2O emissions events occur in pulses. The average N2O flux for all five crops was 148 +/- 9µg N/m^2/h and the average emission rate was 12 +/- 0.7 kgN/ha. The average seasonal emission fluxes ranged from 37 µg N/m^2/h in the radish plot to 300 µg N/m^2/h in the celery plot. The celery field produced the greatest cumulative emission of 5.8 kg N/ha while the baby bok choy had the lowest rate of 0.96-1.0 kg N/ha. In total, 0.73% of applid fertilzer N was emitted as N2O-N as a whole. The lettuce field had the largest emission factor of 2.2%. Results indicate that emissions form vegetable field are a potential source of national N2O inventory. Temporal variation is much greater than spatial variation and corresponding Cv averaged 115% and 22% respectively. Under the same total sampling quantity, increasing sampling frequency is more important than increasing spatial replicates.", + "Lower_Bound": "0.68", + "Upper_Bound": "0.78", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:07.802Z", + "last_change_date": "2022-03-14T08:05:07.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10467, + "fields": { + "EF_ID": 421096, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for methane(CH4) from manure management from swine husbandry", + "Technology_Practices": "Indoor intensive pig rearing", + "Parameter_Conditions": "Mechanically ventilated swine building, ventilation rate is monitored in continuous by the system FANCOM Easy Flow.", + "Regional_Conditions": "Applicable in regions with a temperate climate, similar to Italy (outside temperature ranged from a minimum of 2 degrees centigrade in winter to 35 degrees centigrade in summer). Outside temperature is essential to determine the inside temperature of the animal house and so the ventilation rate responsible of pollutants inside concentration and emission to the atmosphere", + "Control_Technologies": "Vacuum system manure removal (BAT or Best Available Technique to reduce pollutants emission)", + "Other_Properties": "", + "Value": "[A] 0.38 (weaning); [B] 18.03 (farrowing); [C] 9.01 (fattening); [D] 19.29 (gestating sows)", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.22, Chapter 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.15, Chapter 4, GPG2000", + "IPCC_Worksheet": "Sheet 1/1 of category code 3A1 and 3A2, Vol. 4(2), 2006 IPCC Guidelines; Worksheet 4-1, Workbook, 1996 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Costa A. and M. Guarino. Definition of yearly emission factor of dust and greenhouse gases through continuous measurements in swine husbandry. Atmospheric Environment, 43, 1548-1556;", + "English_Abstract": "The object of this study was to develop an accurate estimation method to evaluate the contribution of the various compartments of swine husbandry to dust and GHG (greenhouse gases, CO2, CH4 and N2O) emission into the atmosphere during one year of observation. A weaning, a gestation, a farrowing and a fattening room in an intensive pig house were observed in three different periods (Autumn - Winter, Springtime and Summer, monitoring at least 60 % of each period (20 % at the beginning, in the middle and at the end) of each cycle. During monitoring, live weight, average live weight gain, number of animals and its variation, type of feed and feeding time were taken into account to evaluate their influence on PM10, or the fraction of suspended particulate matter with an aerodynamic diameter less than or equal to 10 µm (Emission Inventory Guidebook, 2008) and to define GHG emission. The selected piggery had a ventilation control system using a free running impeller to monitor continuously real-time environmental and management parameters with an accuracy of 5% PM10 concentration was monitored by a sampler (Haz Dust- EPAM 5000), either continuously or through traditional gravimetric technique, and the mean value of dust amount collected on the membranes was utilized as a correction factor to be applied to continuously collected data. PM10 concentration amount incoming from inlets was removed from PM10 emission calculation, to estimate the real contribution of pig house dust pollution into atmosphere. Mean yearly emission factor of PM10 was measured in 2 g d-1 LU-1 for the weaning room, 0.09 g d-1 LU-1 for the farrowing room, 2.59 g d-1 LU-1 for the fattening room and 1.23 g d-1 LU-1 for the gestation room. The highest PM10 concentration and emission per LU was recorded in the fattening compartment while the lowest value was recorded in the farrowing room. CO2, CH4 and N2O concentrations were continuously measured in the exhaust ducts using an infrared photoacoustic detector IPD (Brüel & Kjaer, Multi-gas Monitor Type 1302, Multipoint Sampler and Doser Type 1303) sampling data every 15 minutes, for the 60 % of the cycles. Yearly emission factor for CO2 was measured in 5997 g d-1 LU-1 for the weaning room, 1278 g d-1 LU-1 for the farrowing room, 13636 g d-1 LU-1 for the fattening room and 8851 g d-1 LU-1 for the gestation room. Yearly emission factor for CH4 was measured in 24.57 g d-1 LU-1 for the weaning room, 4.68 g d-1 LU-1 for the farrowing room, 189.82 g d-1 LU-1 for the fattening room and 132.12 g d-1 LU-1 for the gestation room. Yearly emission factor for N2O was measured in 3.62 g d-1 LU-1 for the weaning room, 0.66 g d-1 LU-1 for the farrowing room, 3.26 g d-1 LU-1 for the fattening room and 2.72 g d-1 LU-1 for the gestation room.", + "Lower_Bound": "[A] 0.193; [B] 8.151; [C] 4.935; [D] 0.855", + "Upper_Bound": "[A] 0.567; [B] 27.909; [C] 13.085; [D] 37.725", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. CH4 emission was measured as concentration in the building with the aim to calculate emission factors from a mechanical ventilated animal building. 2. All the methane emissions have been attributed to the manure management but some enteric CH4 is inevitably included, as they would be for any similarly-managed swine enclosure.", + "Other_Comments": "", + "Data_Provider": "Annamaria Costa", + "Link": "", + "creation_date": "2022-03-14T08:05:07.903Z", + "last_change_date": "2022-03-14T08:05:07.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10468, + "fields": { + "EF_ID": 421097, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for nitrous oxide(N2O) from manure management from swine husbandry", + "Technology_Practices": "Indoor intensive pig rearing", + "Parameter_Conditions": "Mechanically ventilated swine building, ventilation rate is monitored in continuous by the system FANCOM Easy Flow.", + "Regional_Conditions": "Applicable in regions with a temperate climate, similar to Italy (outside temperature ranged from a minimum of 2 degrees centigrade in winter to 35 degrees centigrade in summer). Outside temperature is essential to determine the inside temperature of the animal house and so the ventilation rate responsible of pollutants inside concentration and emission to the atmosphere", + "Control_Technologies": "Vacuum system manure removal (BAT or Best Available Technique to reduce pollutants emission)", + "Other_Properties": "", + "Value": "[A] 0.06 (weaning); [B] 2.55 (farrowing); [C] 0.15 (fattening); [D] 0.40 (gestating sows)", + "Unit": "kg/animal/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Costa A. and M. Guarino. Definition of yearly emission factor of dust and greenhouse gases through continuous measurements in swine husbandry. Atmospheric Environment, 43, 1548-1556;", + "English_Abstract": "The object of this study was to develop an accurate estimation method to evaluate the contribution of the various compartments of swine husbandry to dust and GHG (greenhouse gases, CO2, CH4 and N2O) emission into the atmosphere during one year of observation. A weaning, a gestation, a farrowing and a fattening room in an intensive pig house were observed in three different periods (Autumn - Winter, Springtime and Summer, monitoring at least 60 % of each period (20 % at the beginning, in the middle and at the end) of each cycle. During monitoring, live weight, average live weight gain, number of animals and its variation, type of feed and feeding time were taken into account to evaluate their influence on PM10, or the fraction of suspended particulate matter with an aerodynamic diameter less than or equal to 10 µm (Emission Inventory Guidebook, 2008) and to define GHG emission. The selected piggery had a ventilation control system using a free running impeller to monitor continuously real-time environmental and management parameters with an accuracy of 5%. PM10 concentration was monitored by a sampler (Haz Dust- EPAM 5000), either continuously or through traditional gravimetric technique, and the mean value of dust amount collected on the membranes was utilized as a correction factor to be applied to continuously collected data. PM10 concentration amount incoming from inlets was removed from PM10 emission calculation, to estimate the real contribution of pig house dust pollution into atmosphere. Mean yearly emission factor of PM10 was measured in 2 g d-1 LU-1 for the weaning room, 0.09 g d-1 LU-1 for the farrowing room, 2.59 g d-1 LU-1 for the fattening room and 1.23 g d-1 LU-1 for the gestation room. The highest PM10 concentration and emission per LU was recorded in the fattening compartment while the lowest value was recorded in the farrowing room. CO2, CH4 and N2O concentrations were continuously measured in the exhaust ducts using an infrared photoacoustic detector IPD (Brüel & Kjaer, Multi-gas Monitor Type 1302, Multipoint Sampler and Doser Type 1303) sampling data every 15 minutes, for the 60 % of the cycles. Yearly emission factor for CO2 was measured in 5997 g d-1 LU-1 for the weaning room, 1278 g d-1 LU-1 for the farrowing room, 13636 g d-1 LU-1 for the fattening room and 8851 g d-1 LU-1 for the gestation room. Yearly emission factor for CH4 was measured in 24.57 g d-1 LU-1 for the weaning room, 4.68 g d-1 LU-1 for the farrowing room, 189.82 g d-1 LU-1 for the fattening room and 132.12 g d-1 LU-1 for the gestation room. Yearly emission factor for N2O was measured in 3.62 g d-1 LU-1 for the weaning room, 0.66 g d-1 LU-1 for the farrowing room, 3.26 g d-1 LU-1 for the fattening room and 2.72 g d-1 LU-1 for the gestation room.", + "Lower_Bound": "[A] 0.039; [B] 0.542; [C] 0.108; [D] 0.200", + "Upper_Bound": "[A] 0.081; [B] 4.558; [C] 0.192; [D] 0.600", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. N2O emission was measured as concentration in the building with the aim to calculate emission factors from a mechanical ventilated animal building. 2. All the nitrous oxide emissions have been attributed to the manure management.", + "Other_Comments": "", + "Data_Provider": "Annamaria Costa", + "Link": "", + "creation_date": "2022-03-14T08:05:08.003Z", + "last_change_date": "2022-03-14T08:05:08.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10469, + "fields": { + "EF_ID": 421098, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation from grazing cattle in the semi-arid rangelands of East Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing East African semi-arid rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to semi-arid rangelands in Tanzania, Kenya, Ethiopia, Uganda, Rwanda and Burundi", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "26", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.104Z", + "last_change_date": "2022-03-14T08:05:08.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10470, + "fields": { + "EF_ID": 421099, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation from grazing cattle in the semi-arid rangelands of Southern Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing Southern African semi-arid rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to semi-arid rangelands in Zimbabwe, Mozambique, South Africa, Zambia, Namibia, Botswana, Swaziland, Malawi, Angola", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "26", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.205Z", + "last_change_date": "2022-03-14T08:05:08.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10471, + "fields": { + "EF_ID": 421100, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation from grazing cattle in the semi-arid rangelands of West Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing West African semi-arid rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to semi-arid rangelands in West Africa (Niger, Nigeria, Mali, Burkina Faso, Ivory Coast, Cameroon, Senegal, Togo, Sierra Leone, others)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "21", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.305Z", + "last_change_date": "2022-03-14T08:05:08.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10472, + "fields": { + "EF_ID": 421101, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the semi-arid rangelands of Central Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing Central African semi-arid rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to semi-arid rangelands in Central Africa (DRC, Congo, Central African Republic, Equatorial Guinea)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "23", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.408Z", + "last_change_date": "2022-03-14T08:05:08.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10473, + "fields": { + "EF_ID": 421102, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the semi-arid rangelands of North Africa and The Horn of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing semi-arid rangelands in North Africa and The Horn of Africa and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to semi-arid rangelands in North Africa and The Horn of Africa (Somalia, Sudan, Eritrea, Djibouti, Algeria, Lybia, Egypt, Tunisia, Mauritania, Morocco)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "21", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.517Z", + "last_change_date": "2022-03-14T08:05:08.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10474, + "fields": { + "EF_ID": 421103, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the humid rangelands of East Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing East African humid rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to humid rangelands in Tanzania, Kenya, Ethiopia, Uganda, Rwanda and Burundi", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "33", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.626Z", + "last_change_date": "2022-03-14T08:05:08.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10475, + "fields": { + "EF_ID": 421104, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the humid rangelands of Southern Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing Southern African humid rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to humid rangelands in Zimbabwe, Mozambique, South Africa, Zambia, Namibia, Botswana, Swaziland, Malawi, Angola", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "33", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.735Z", + "last_change_date": "2022-03-14T08:05:08.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10476, + "fields": { + "EF_ID": 421105, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the humid rangelands of West Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing West African humid rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to humid rangelands in West Africa (Niger, Nigeria, Mali, Burkina Faso, Ivory Coast, Cameroon, Senegal, Togo, Sierra Leone, others)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "27", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.861Z", + "last_change_date": "2022-03-14T08:05:08.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10477, + "fields": { + "EF_ID": 421106, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the humid rangelands of Central Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing Central African humid rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to humid rangelands in Central Africa (DRC, Congo, Central African Republic, Equatorial Guinea)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "29", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:08.970Z", + "last_change_date": "2022-03-14T08:05:08.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10478, + "fields": { + "EF_ID": 421107, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the humid rangelands of North Africa and The Horn of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing humid rangelands in North Africa and The Horn of Africa and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to humid rangelands in North Africa and The Horn of Africa (Somalia, Sudan, Eritrea, Djibouti, Algeria, Lybia, Egypt, Tunisia, Mauritania, Morocco)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "27", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.079Z", + "last_change_date": "2022-03-14T08:05:09.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10479, + "fields": { + "EF_ID": 421108, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the highlands or temperate rangelands of East Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing East African highland or temperate rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to highland and temperate rangelands in Tanzania, Kenya, Ethiopia, Uganda, Rwanda and Burundi", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.188Z", + "last_change_date": "2022-03-14T08:05:09.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10480, + "fields": { + "EF_ID": 421109, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the highland and temperate rangelands of Southern Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing Southern African highland and temperate rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to highlands and temperate rangelands in Zimbabwe, Mozambique, South Africa, Zambia, Namibia, Botswana, Swaziland, Malawi, Angola", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "40", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.304Z", + "last_change_date": "2022-03-14T08:05:09.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10481, + "fields": { + "EF_ID": 421110, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the highlands and temperate rangelands of West Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing West African highlands and temperate rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to highlands and temperate rangelands in West Africa (Niger, Nigeria, Mali, Burkina Faso, Ivory Coast, Cameroon, Senegal, Togo, Sierra Leone, others)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "34", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.413Z", + "last_change_date": "2022-03-14T08:05:09.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10482, + "fields": { + "EF_ID": 421111, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the highlands and temperate rangelands of Central Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing Central African highlands and temperate rangelands and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to highlandns and temperate rangelands in Central Africa (DRC, Congo, Central African Republic, Equatorial Guinea)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "35", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.522Z", + "last_change_date": "2022-03-14T08:05:09.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10483, + "fields": { + "EF_ID": 421112, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the highlands and temperate rangelands of North Africa and The Horn of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing highlands and temperate rangelands in North Africa and The Horn of Africa and receiving no additional supplementation. The parameter applies to herds of pastoralists in the region. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d)", + "Regional_Conditions": "The parameter is applicable to highlands and temperate rangelands in North Africa and The Horn of Africa (Somalia, Sudan, Eritrea, Djibouti, Algeria, Lybia, Egypt, Tunisia, Mauritania, Morocco)", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "34", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.631Z", + "last_change_date": "2022-03-14T08:05:09.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10484, + "fields": { + "EF_ID": 421113, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the semi-arid rangelands of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing semi-arid rangelands in Africa and receiving no additional supplementation. The parameter applies to herds of pastoralists or extensive beef cattle in the region. This is a generic parameter derived as a weighted average from data from semi-arid rangelands from all African regions. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d).", + "Regional_Conditions": "The parameter is applicable to semi-arid rangeland systems in across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "23", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.740Z", + "last_change_date": "2022-03-14T08:05:09.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10485, + "fields": { + "EF_ID": 421114, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the humid rangelands of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing humid rangelands in Africa and receiving no additional supplementation. The parameter applies to herds of pastoralists or extensive beef cattle in the region. This is a generic parameter derived as a weighted average from data from humid rangelands from all African regions. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d).", + "Regional_Conditions": "The parameter is applicable to humid rangeland systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "30", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.858Z", + "last_change_date": "2022-03-14T08:05:09.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10486, + "fields": { + "EF_ID": 421115, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for grazing cattle in the temperate rangelands and highlands of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle grazing temerpate rangelands and highlands in Africa and receiving no additional supplementation. The parameter applies to herds of pastoralists or extensive beef cattle in the region. This is a generic parameter derived as a weighted average from data from temerpate rangelands and highlands from all African regions. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2 kg/d).", + "Regional_Conditions": "The parameter is applicable to highland regions and temperate rangeland systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "36", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:09.967Z", + "last_change_date": "2022-03-14T08:05:09.967Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10487, + "fields": { + "EF_ID": 421116, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for cattle in mixed crop-livestock systems in semi-arid regions of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle in semi-arid mixed crop-livestock systems in Africa. Diets of these animals will usually comprise some grazing, stovers, cut and carry fodders and small amounts of supplementation. This is a generic parameter derived as a weighted average from data from semi-arid rainfed and irrigated mixed crop-livestock systems from all African regions. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2-3 kg/d).", + "Regional_Conditions": "The parameter is applicable to semi-arid mixed crop-livestock systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "27", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:10.137Z", + "last_change_date": "2022-03-14T08:05:10.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10488, + "fields": { + "EF_ID": 421117, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for cattle in mixed crop-livestock systems in humid regions of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle in humid mixed crop-livestock systems in Africa. Diets of these animals will usually comprise some grazing, stovers, cut and carry fodders and small amounts of supplementation. This is a generic parameter derived as a weighted average from data from semi-arid rainfed and irrigated mixed crop-livestock systems from all African regions. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2-3 kg/d).", + "Regional_Conditions": "The parameter is applicable to humid mixed crop-livestock systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "33", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:10.302Z", + "last_change_date": "2022-03-14T08:05:10.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10489, + "fields": { + "EF_ID": 421118, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for cattle in mixed crop-livestock systems in highland and temperate regions of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to cattle in highland and temperate mixed crop-livestock systems in Africa. Diets of these animals will usually comprise some grazing, stovers, cut and carry fodders and small amounts of supplementation. This is a generic parameter derived as a weighted average from data from semi-arid rainfed and irrigated mixed crop-livestock systems from all African regions. Animal weight = 250 kg or 1 tropical livestock unit. This parameter is also applicable to animals producing small amounts of milk (smaller than 2-3 kg/d).", + "Regional_Conditions": "The parameter is applicable to highland and temperate mixed crop-livestock systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "37", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:10.419Z", + "last_change_date": "2022-03-14T08:05:10.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10490, + "fields": { + "EF_ID": 421119, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for sheep and goats in semi-arid rangelands of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to grazing sheep and browsing goats in semi-arid rangelands in Africa and receiving no supplementation. This is a generic parameter derived as a weighted average from data from sheep and goats grazing semi-arid rangelands in all African regions.", + "Regional_Conditions": "The parameter is applicable to sheep and goats in semi-arid rangeland systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:10.528Z", + "last_change_date": "2022-03-14T08:05:10.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10491, + "fields": { + "EF_ID": 421120, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for sheep and goats in the humid rangelands of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to grazing sheep and browsing goats in the humid rangelands in Africa and receiving no supplementation. This is a generic parameter derived as a weighted average from data from sheep and goats grazing semi-arid rangelands in all African regions.", + "Regional_Conditions": "The parameter is applicable to sheep and goats in humid rangeland systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "6", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:10.637Z", + "last_change_date": "2022-03-14T08:05:10.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10492, + "fields": { + "EF_ID": 421121, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for sheep and goats in highland and/or temperate rangelands of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to grazing sheep and browsing goats in highland or temperate rangelands in Africa and receiving no supplementation. This is a generic parameter derived as a weighted average from data from sheep and goats grazing semi-arid rangelands in all African regions.", + "Regional_Conditions": "The parameter is applicable to sheep and goats in highland or temperate rangeland systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:10.763Z", + "last_change_date": "2022-03-14T08:05:10.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10493, + "fields": { + "EF_ID": 421122, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for sheep and goats in mixed crop-livestock systems in semi-arid regions of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to sheep and goats in semi-arid mixed crop-livestock systems in Africa. Diets of these animals will usually comprise some grazing and stovers and very occasional small amounts of crop-byproduct supplementation. This is a generic parameter derived as a weighted average from data from sheep and goats in semi-arid rainfed and irrigated mixed crop-livestock systems from all African regions.", + "Regional_Conditions": "The parameter is applicable to semi-arid mixed crop-livestock systems across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:10.872Z", + "last_change_date": "2022-03-14T08:05:10.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10494, + "fields": { + "EF_ID": 421123, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for sheep and goats in mixed crop-livestock systems in humid regions of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to sheep and goats in humid mixed crop-livestock systems in Africa. Diets of these animals will usually comprise some grazing and stovers and very occasional small amounts of crop-byproduct supplementation. This is a generic parameter derived as a weighted average from data from sheep and goats in humid rainfed and irrigated mixed crop-livestock systems from all African regions.", + "Regional_Conditions": "The parameter is applicable to mixed crop-livestock systems in humid regions across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:10.981Z", + "last_change_date": "2022-03-14T08:05:10.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10495, + "fields": { + "EF_ID": 421124, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for methane from enteric fermentation for sheep and goats in mixed crop-livestock systems in highland or temperate regions of Africa", + "Technology_Practices": "", + "Parameter_Conditions": "This parameter is applicable to sheep and goats in highland or temperate mixed crop-livestock systems in Africa. Diets of these animals will usually comprise some grazing and stovers and very occasional small amounts of crop-byproduct supplementation. This is a generic parameter derived as a weighted average from data from sheep and goats inhighland or temperate rainfed and irrigated mixed crop-livestock systems from all African regions.", + "Regional_Conditions": "The parameter is applicable to mixed crop-livestock systems in highland or temperate regions across the African continent", + "Control_Technologies": "none", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.19, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Chapter 4, GPG2000; Equation page 4.14, Chapter 4, 1996 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Herrero, M., Thornton, PK, Kruska, R, Reid, RS (2008) Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture Ecosystems and Environment 126: 122-137", + "English_Abstract": "Livestock production systems in Africa are experiencing rapid changes in structure and function due to increased demands for livestock products by a more prosperous and ever-increasing human population. Some of these changes could lead to increased emissions of greenhouse gases. This paper explores the magnitudes of changes in production systems as a function of increased population densities and climate change. This paper also quantifies the methane emissions from African cattle, goats and sheep from 2000 to 2030. The study integrates methodologies from different disciplines to derive spatially explicit distributions of methane emissions from domestic ruminants and their changes as livestock production systems evolve. A livestock systems classification framework was used to differentiate pastoral and crop-livestock systems using agro-ecological thresholds based on temperature and length of growing period (hyper-arid, arid, humid and temperate regions), the extent of irrigation and human population densities. Livestock numbers (tropical livestock units, TLU) were estimated from FAO data for each country and production system defined. Projections of livestock populations were derived from analysis of demand shifts in livestock products, and livestock systems changes estimated on the basis of potential climate change and population density change to 2030. For the estimation of diets for ruminants, Africa was split into regions (East, West, Southern, Central and North Africa, and The Horn of Africa) and diets for both the rainy and the dry seasons were estimated from literature reviews for each livestock species in each production system in each region. Feed intake, livestock production and the computation of methane emissions were obtained using a previously validated and widely-used mechanistic model of digestion and metabolism in ruminants. Results suggest that 1) Africa produced around 7.8 million tonnes of methane/yr in 2000. This figure is likely to increase to 11.1 million tonnes/yr by 2030. 2) Methane emissions per tropical livestock unit (TLU, 250 kg bodyweight) can vary from 21 to 40 kg/TLU/year, depending on the production system and the region. 3) The highest emissions per animal come, and will continue to come, from ruminants in mixed crop-livestock systems. 4) The regions producing the highest concentrations of methane, now and in the future, are in general terms, The Horn of Africa, West and East Africa. 5) The average emission factors obtained in this study (31.1 kg/methane/TLU/year) are in close agreement with the emission factors used by the International Panel on Climate Change (IPCC) for African ruminants (32 kg methane per animal per year). 6) The methodology employed in this study permits the disaggregation of methane emissions by country and production system, thus allows us to quantify changes in emissions as climate changes and production systems evolve. The results of the study are compared with those obtained in other studies around the world and its implications are discussed in relation to how systems are likely to evolve in Africa.", + "Lower_Bound": "-15%", + "Upper_Bound": "+15%", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Mario Herrero", + "Link": "", + "creation_date": "2022-03-14T08:05:11.090Z", + "last_change_date": "2022-03-14T08:05:11.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10496, + "fields": { + "EF_ID": 421125, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for dairy cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for dairy Cattle, pasture grazed, average weight 300 kg, average aparent digestibility of 64.66%, 137.2 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "Predominantly Livestok production systems are extensive with low technology", + "Other_Properties": "", + "Value": "53.99", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:11.198Z", + "last_change_date": "2022-03-14T08:05:11.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10497, + "fields": { + "EF_ID": 421126, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for non dairy cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for non dairy Cattle, pasture grazed, average weight 310 kg, average aparent digestibility of 64.66%, 94.8 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "Predominantly Livestok production systems are extensive with low technology", + "Other_Properties": "", + "Value": "43.55", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:11.316Z", + "last_change_date": "2022-03-14T08:05:11.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10498, + "fields": { + "EF_ID": 421127, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for heifer cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for heifer Cattle (Growing Cattle: replacement dairy heifers), pasture grazed, average weight 150 kg, average aparent digestibility of 64.66%, 77.6 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "Predominantly Livestok production systems are extensive with low technology", + "Other_Properties": "", + "Value": "30.53", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:11.433Z", + "last_change_date": "2022-03-14T08:05:11.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10499, + "fields": { + "EF_ID": 421128, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for steers cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for steers Cattle (according 2006 guidelines, mature bullocks used principally for draft power), pasture grazed, average weight 330 kg, average aparent digestibility of 64.66%, 142.4 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "Livestok extensive and half technology", + "Other_Properties": "", + "Value": "56.03", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:11.550Z", + "last_change_date": "2022-03-14T08:05:11.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10500, + "fields": { + "EF_ID": 421129, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for dairy cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for dairy Cattle, pasture grazed, average weight 300 kg, average aparent digestibility of 68.3%, 152.4 MJ/day", + "Regional_Conditions": "Temperate climate: 14 to 23 degrees centigrade", + "Control_Technologies": "Livestok extensive medium technology", + "Other_Properties": "", + "Value": "59.97", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:11.667Z", + "last_change_date": "2022-03-14T08:05:11.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10501, + "fields": { + "EF_ID": 421130, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for non dairy cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for non dairy Cattle, pasture grazed, average weight 310 kg, average aparent digestibility of 68.3%, 96.3 MJ/day", + "Regional_Conditions": "Temperate climate: 14 to 23 degrees centigrade", + "Control_Technologies": "Livestok extensive medium technology", + "Other_Properties": "", + "Value": "44.23", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:11.777Z", + "last_change_date": "2022-03-14T08:05:11.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10502, + "fields": { + "EF_ID": 421131, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for heifer cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for heifer Cattle (Growing Cattle: replacement dairy heifers), pasture grazed, average weight 150 kg, average aparent digestibility of 68.3%, 86.1 MJ/day", + "Regional_Conditions": "Temperate climate: 14 to 23 degrees centigrade", + "Control_Technologies": "Livestok extensive medium technology", + "Other_Properties": "", + "Value": "33.88", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:11.886Z", + "last_change_date": "2022-03-14T08:05:11.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10503, + "fields": { + "EF_ID": 421132, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for steers cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for steers Cattle (according 2006 guidelines, mature bullocks used principally for draft power), pasture grazed, average weight 330 kg, average aparent digestibility of 68.3%, 152.7 MJ/day", + "Regional_Conditions": "Temperate climate: 14 to 23 degrees centigrade", + "Control_Technologies": "Livestok extensive medium technology", + "Other_Properties": "", + "Value": "60.09", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.020Z", + "last_change_date": "2022-03-14T08:05:12.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10504, + "fields": { + "EF_ID": 421133, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for dairy cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for dairy Cattle, pasture grazed, average weight 300 kg, average aparent digestibility of 64.66%, 194.7 MJ/day", + "Regional_Conditions": "Warm climate: greater than24 degrees centigrade", + "Control_Technologies": "Extensive livestok, more technology (Neloreh)", + "Other_Properties": "", + "Value": "76.64", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.137Z", + "last_change_date": "2022-03-14T08:05:12.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10505, + "fields": { + "EF_ID": 421134, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for non dairy cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for non dairy Cattle, pasture grazed, average weight 310 kg, average aparent digestibility of 64.66%, 108.2 MJ/day", + "Regional_Conditions": "Warm climate: greater than24 degrees centigrade", + "Control_Technologies": "Extensive livestok, more technology (Neloreh)", + "Other_Properties": "", + "Value": "49.7", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.255Z", + "last_change_date": "2022-03-14T08:05:12.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10506, + "fields": { + "EF_ID": 421135, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for heifer cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for heifer Cattle (Growing Cattle: replacement dairy heifers), pasture grazed, average weight 150 kg, average aparent digestibility of 64.66%, 107.0 MJ/day", + "Regional_Conditions": "Warm climate: greater than24 degrees centigrade", + "Control_Technologies": "Extensive livestok, more technology (Neloreh)", + "Other_Properties": "", + "Value": "42.09", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.380Z", + "last_change_date": "2022-03-14T08:05:12.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10507, + "fields": { + "EF_ID": 421136, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for steers cattle", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for steers Cattle (according 2006 guidelines, mature bullocks used principally for draft power), pasture grazed, average weight 330 kg, average aparent digestibility of 64.66%, 177.88 MJ/day", + "Regional_Conditions": "Warm climate: greater than24 degrees centigrade", + "Control_Technologies": "Extensive livestok, more technology (Neloreh)", + "Other_Properties": "", + "Value": "70", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.506Z", + "last_change_date": "2022-03-14T08:05:12.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10508, + "fields": { + "EF_ID": 421137, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for sheep, pasture grazed, 17.0 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "Extensive livestok, more technology (Neloreh)", + "Other_Properties": "", + "Value": "7.82", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.631Z", + "last_change_date": "2022-03-14T08:05:12.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10509, + "fields": { + "EF_ID": 421138, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for ewe", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for ewe, pasture grazed, 14.1 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.57", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.749Z", + "last_change_date": "2022-03-14T08:05:12.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10510, + "fields": { + "EF_ID": 421139, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for lamb", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for lamb, pasture grazed, 12.5 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.9", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.866Z", + "last_change_date": "2022-03-14T08:05:12.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10511, + "fields": { + "EF_ID": 421140, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for lactating sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for lactating sheep, pasture grazed, 3 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:12.983Z", + "last_change_date": "2022-03-14T08:05:12.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10512, + "fields": { + "EF_ID": 421141, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for sheep, pasture grazed, 17.0 MJ/day", + "Regional_Conditions": "Temperate climate: 14 to 23 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.79", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:13.100Z", + "last_change_date": "2022-03-14T08:05:13.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10513, + "fields": { + "EF_ID": 421142, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for ewe", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for ewe, pasture grazed, 12.3 MJ/day", + "Regional_Conditions": "Temperate climate: 14 to 23 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.15", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:13.218Z", + "last_change_date": "2022-03-14T08:05:13.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10514, + "fields": { + "EF_ID": 421143, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for lamb", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for lamb, pasture grazed, 14 MJ/day", + "Regional_Conditions": "Temperate climate: 14 to 23 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.4", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:13.335Z", + "last_change_date": "2022-03-14T08:05:13.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10515, + "fields": { + "EF_ID": 421144, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for lactating sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for lactating sheep, pasture grazed, 3 MJ/day", + "Regional_Conditions": "Temperate climate: 14 to 23 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.29", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:13.445Z", + "last_change_date": "2022-03-14T08:05:13.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10516, + "fields": { + "EF_ID": 421145, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for sheep, pasture grazed", + "Regional_Conditions": "Warm climate: greater than24 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.46", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:13.554Z", + "last_change_date": "2022-03-14T08:05:13.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10517, + "fields": { + "EF_ID": 421146, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for ewe", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for ewe, pasture grazed", + "Regional_Conditions": "Warm climate: greater than24 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.41", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:13.663Z", + "last_change_date": "2022-03-14T08:05:13.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10518, + "fields": { + "EF_ID": 421147, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for lamb", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for lamb, pasture grazed", + "Regional_Conditions": "Warm climate: greater than24 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.54", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:13.789Z", + "last_change_date": "2022-03-14T08:05:13.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10519, + "fields": { + "EF_ID": 421148, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for lactating sheep", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for lactating sheep, pasture grazed", + "Regional_Conditions": "Warm climate: greater than24 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.29", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:13.898Z", + "last_change_date": "2022-03-14T08:05:13.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10520, + "fields": { + "EF_ID": 421149, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for adult female llama", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for adult female llama, pasture grazed, average weight 56.06 kg, 62% of digestibility, 25 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.46", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:14.031Z", + "last_change_date": "2022-03-14T08:05:14.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10521, + "fields": { + "EF_ID": 421150, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for adult male llama", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for adult male llama, pasture grazed, average weight 56.06 kg, 62% of digestibility, 25.6 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.76", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:14.166Z", + "last_change_date": "2022-03-14T08:05:14.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10522, + "fields": { + "EF_ID": 421151, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for young female llama", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for young female llama, pasture grazed, average weight 56.06 kg, 62% of digestibility, 17.7 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.83", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:14.300Z", + "last_change_date": "2022-03-14T08:05:14.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10523, + "fields": { + "EF_ID": 421152, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for young male llama", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for young male llama, pasture grazed, average weight 56.06 kg, 62% of digestibility, 9.7 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.95", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:14.425Z", + "last_change_date": "2022-03-14T08:05:14.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10524, + "fields": { + "EF_ID": 421153, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for adult female alpaca", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for adult female alpaca, pasture grazed, average weight 56.06 kg, 62% of digestibility, 25 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.15", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:14.542Z", + "last_change_date": "2022-03-14T08:05:14.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10525, + "fields": { + "EF_ID": 421154, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for adult male alpaca", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for adult male alpaca, pasture grazed, average weight 56.06 kg, 62% of digestibility, 25.6 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.01", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:14.651Z", + "last_change_date": "2022-03-14T08:05:14.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10526, + "fields": { + "EF_ID": 421155, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for young female alpaca", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for young female alpaca, pasture grazed, average weight 56.06 kg, 62% of digestibility, 17.7 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:14.760Z", + "last_change_date": "2022-03-14T08:05:14.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10527, + "fields": { + "EF_ID": 421156, + "IPCC_Category": "3.A.1.j - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for young male alpaca", + "Technology_Practices": "", + "Parameter_Conditions": "Enteric Fermentation Emission Factor for young male alpaca, pasture grazed, average weight 56.06 kg, 62% of digestibility, 9.7 MJ/day", + "Regional_Conditions": "Cool climate: smaller than15 degrees centigrade", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.81", + "Unit": "kg/animal/yr", + "Equation": "[(gross energy intake) * (methane conversion factor/100) * 365]/[55.65]", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "National Commnunications", + "Technical_Reference": "Ministerio de Desarrollo Sostenible, Viceministerio de Recursos Naturales y Medio Ambiente, Programa Nacional de Cambios Climaticos (MDS-VRNMA-PNCC) (2003) Inventario Nacional de Emisiones de Gases de Efecto Invernadero de Bolivia para la Decada 1990-2000 y su Analisis Tendencial. 218 pag. Garcia-Apaza, E., O. Paz and I. Arana (2008) Greenhouse gas emissions from enteric fermentation of livestock in Bolivia: values for 1990-2000 and future projections. Australian Journal of Experimental Agriculture, 2008, 48, 255-259.", + "English_Abstract": "Gas emissions from enteric fermentation of the domestic livestock contribute to greenhouse gas inventories. Farming activities in Bolivia have nearly doubled methane emissions during the past decade. Methane was the second most important greenhouse gas emitted from human activities in Bolivia according the 1990-2000 GHG inventory. Emissions of methane from enteric fermentation of three regions of Bolivia, highland, valley and lowland, were studied. Atmospheric methane concentrations have increased by a factor of 1.1 to 1.3 in response to this increase and continue to rise. The projection of fermentation enteric gas emissions depends on the increase of the livestock, which was assumed for this study to be linear for 2001-2015 with an increment of 2.27%. In this overview, we examine past trends in the emission of methane due to the enteric fermentation and the sources and sinks that determine its growth rate.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emilio Garcia-Apaza", + "Link": "", + "creation_date": "2022-03-14T08:05:14.870Z", + "last_change_date": "2022-03-14T08:05:14.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10528, + "fields": { + "EF_ID": 421419, + "IPCC_Category": "3.A.1 - Enteric Fermentation", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Conversion Factor(MCF) per kilogram of dry matter intake consumed for feeding supplemental lipids added to the diets for cattle and sheep", + "Technology_Practices": "feeding supplemental lipids added to the diet as oilseeds or free oils", + "Parameter_Conditions": "cattle, sheep", + "Regional_Conditions": "Applicable in all regions", + "Control_Technologies": "max 4% added fat", + "Other_Properties": "can cause a decline in dry matter intake if too high a level is applied", + "Value": "See Equation field.", + "Unit": "%", + "Equation": "ym = 6.5 - (6.5*0.05562*% added fat); where ym is methane conversion factor", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beauchemin et al. 2008 Australian Journal of Experimental Agriculture 48:21-27, Meta-analyisis of peer-reviewed scientific literature", + "English_Abstract": "A variety of nutritional management strategies that reduce enteric methane (CH4) production are discussed. Strategies such as increasing the level of grain in the diet, inclusion of lipids and supplementation with ionophores (greater than 24 ppm) are most likely to be implemented by farmers because there is a high probability that they reduce CH4 emissions in addition to improving production efficiency. Improved pasture management, replacing grass silage with maize silage and using legumes hold some promise for CH4 mitigation but as yet their impact is not sufficiently documented. Several new strategies including dietary supplementation with saponins and tannins, selection of yeast cultures and use of fibredigesting enzymes may mitigate CH4, but these still require extensive research. Most of the studies on reductions in CH4 from ruminants due to diet management are short-term and focussed only on changes in enteric emissions. Future research must examine long-termsustainability of reductions in CH4 production and impacts on the entire farmgreenhouse gas budget.", + "Lower_Bound": "0.2", + "Upper_Bound": "0.2", + "Data_Quality": "good", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Karren A Beauchemin", + "Link": "", + "creation_date": "2022-03-14T08:05:14.970Z", + "last_change_date": "2022-03-14T08:05:14.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10529, + "fields": { + "EF_ID": 421420, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil carbon stocks in the 0-30 cm layer under native forest.", + "Technology_Practices": "Conventional low input management of tropical pastures in the the Amazon, without application of fertilizer and liming.", + "Parameter_Conditions": "Soils are classified as Podzo´ licos Vermelho-Amarelo (Red Yellow Podzolic) in the Brazilian classification scheme and as Ultisols (kandiuldults) in the U.S. soil taxonomy.", + "Regional_Conditions": "The study area is located in the Western Brazilian Amazon Basin, in the state of Rondônia, at the Nova Vida Ranch (62 deg. 49 min. 27 sec. West, 10 deg. 10 min. 05 sec. South), between the cities of Ariquemes and Jaru. The climate of the region is humid tropical, with a dry season from May to September. Annual rainfall is 2200 mm. Annual mean temperature is 25.6 degrees Centigrade. Mean temperature for the warmest and coolest months varies by 5 degrees Centigrade and mean annual relative humidity is 89%.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.4", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R., and Cerri, C.C. 2003. Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Science Society of America Journal, 67: 1879-1887.", + "English_Abstract": "Conversion of tropical forest to agricultural management has important implications for C storage in soils and global climate change. The Nova Vida Ranch in the Western Brazilian Amazon basin provided a unique opportunity to study the conversion of tropical forests to pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911, in comparison with uncleared forest. Soils were analyzed for organic C, bulk density, total N, pH, clay content, and biomass C. The forest soil contained 34 Mg C/ha in the 0 to 30-cm layer: modeling clearance and conversion to pasture caused an initial fall in the C stock, followed by a slow rise. After 88 yr, the pasture soil contained 53% more C than the forest soil. The increase in total N on conversion to pasture was less marked, which led to C/N ratios in the pasture soils being higher than in the forest soil. The Rothamsted C turnover model (RothC-26.3) was used to simulate changes in the 0- to 10- and 0- to 30-cm layer of soils when forest was converted to pasture. The model predicted that conversion to pasture would cause a 54% increase in the stock of organic C in the top 30 cm of soil in 100 yr. The modeled input of plant C to the 0- to 30-cm layer of soil under pasture was assumed to be 8.28 Mg C/ha/yr. The model provided a reasonable estimate of the microbial biomass (BIO) C in the 0- to 10-cm soil layer. This was an independent test of model performance, because no adjustments were made to the model to generate output.", + "Lower_Bound": "See the Other info on Data Quality field", + "Upper_Bound": "See the Other info on Data Quality field", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error =2.02", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Marcelo Valadares Galdos", + "Link": "", + "creation_date": "2022-03-14T08:05:15.072Z", + "last_change_date": "2022-03-14T08:05:15.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10530, + "fields": { + "EF_ID": 421421, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil carbon stocks in the 0-30 cm layer under pastures in a chronosequence,41 years after being converted from native forest.", + "Technology_Practices": "Conventional low input management of tropical pastures in the the Amazon, without application of fertilizer and liming.", + "Parameter_Conditions": "Soils are classified as Podzo´ licos Vermelho-Amarelo (Red Yellow Podzolic) in the Brazilian classification scheme and as Ultisols (kandiuldults) in the U.S. soil taxonomy.", + "Regional_Conditions": "The study area is located in the Western Brazilian Amazon Basin, in the state of Rondônia, at the Nova Vida Ranch (62 deg. 49 min. 27 sec. West, 10 deg. 10 min. 05 sec. South), between the cities of Ariquemes and Jaru. The climate of the region is humid tropical, with a dry season from May to September. Annual rainfall is 2200 mm. Annual mean temperature is 25.6 degrees Centigrade. Mean temperature for the warmest and coolest months varies by 5 degrees Centigrade and mean annual relative humidity is 89%.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48.6", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R., and Cerri, C.C. 2003. Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Science Society of America Journal, 67: 1879-1887.", + "English_Abstract": "Conversion of tropical forest to agricultural management has important implications for C storage in soils and global climate change. The Nova Vida Ranch in the Western Brazilian Amazon basin provided a unique opportunity to study the conversion of tropical forests to pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911, in comparison with uncleared forest. Soils were analyzed for organic C, bulk density, total N, pH, clay content, and biomass C. The forest soil contained 34 Mg C/ha in the 0 to 30-cm layer: modeling clearance and conversion to pasture caused an initial fall in the C stock, followed by a slow rise. After 88 yr, the pasture soil contained 53% more C than the forest soil. The increase in total N on conversion to pasture was less marked, which led to C/N ratios in the pasture soils being higher than in the forest soil. The Rothamsted C turnover model (RothC-26.3) was used to simulate changes in the 0- to 10- and 0- to 30-cm layer of soils when forest was converted to pasture. The model predicted that conversion to pasture would cause a 54% increase in the stock of organic C in the top 30 cm of soil in 100 yr. The modeled input of plant C to the 0- to 30-cm layer of soil under pasture was assumed to be 8.28 Mg C/ha/yr. The model provided a reasonable estimate of the microbial biomass (BIO) C in the 0- to 10-cm soil layer. This was an independent test of model performance, because no adjustments were made to the model to generate output.", + "Lower_Bound": "See the Other info on Data Quality field", + "Upper_Bound": "See the Other info on Data Quality field", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error =2.95", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Marcelo Valadares Galdos", + "Link": "", + "creation_date": "2022-03-14T08:05:15.172Z", + "last_change_date": "2022-03-14T08:05:15.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10531, + "fields": { + "EF_ID": 421422, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil carbon stocks in the 0-30 cm layer under pastures in a chronosequence,42 years after being converted from native forest.", + "Technology_Practices": "Conventional low input management of tropical pastures in the the Amazon, without application of fertilizer and liming.", + "Parameter_Conditions": "Soils are classified as Podzo´ licos Vermelho-Amarelo (Red Yellow Podzolic) in the Brazilian classification scheme and as Ultisols (kandiuldults) in the U.S. soil taxonomy.", + "Regional_Conditions": "The study area is located in the Western Brazilian Amazon Basin, in the state of Rondônia, at the Nova Vida Ranch (62 deg. 49 min. 27 sec. West, 10 deg. 10 min. 05 sec. South), between the cities of Ariquemes and Jaru. The climate of the region is humid tropical, with a dry season from May to September. Annual rainfall is 2200 mm. Annual mean temperature is 25.6 degrees Centigrade. Mean temperature for the warmest and coolest months varies by 5 degrees Centigrade and mean annual relative humidity is 89%.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.3", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R., and Cerri, C.C. 2003. Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Science Society of America Journal, 67: 1879-1887.", + "English_Abstract": "Conversion of tropical forest to agricultural management has important implications for C storage in soils and global climate change. The Nova Vida Ranch in the Western Brazilian Amazon basin provided a unique opportunity to study the conversion of tropical forests to pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911, in comparison with uncleared forest. Soils were analyzed for organic C, bulk density, total N, pH, clay content, and biomass C. The forest soil contained 34 Mg C/ha in the 0 to 30-cm layer: modeling clearance and conversion to pasture caused an initial fall in the C stock, followed by a slow rise. After 88 yr, the pasture soil contained 53% more C than the forest soil. The increase in total N on conversion to pasture was less marked, which led to C/N ratios in the pasture soils being higher than in the forest soil. The Rothamsted C turnover model (RothC-26.3) was used to simulate changes in the 0- to 10- and 0- to 30-cm layer of soils when forest was converted to pasture. The model predicted that conversion to pasture would cause a 54% increase in the stock of organic C in the top 30 cm of soil in 100 yr. The modeled input of plant C to the 0- to 30-cm layer of soil under pasture was assumed to be 8.28 Mg C/ha/yr. The model provided a reasonable estimate of the microbial biomass (BIO) C in the 0- to 10-cm soil layer. This was an independent test of model performance, because no adjustments were made to the model to generate output.", + "Lower_Bound": "See the Other info on Data Quality field", + "Upper_Bound": "See the Other info on Data Quality field", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error =3.62", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Marcelo Valadares Galdos", + "Link": "", + "creation_date": "2022-03-14T08:05:15.306Z", + "last_change_date": "2022-03-14T08:05:15.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10532, + "fields": { + "EF_ID": 421423, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil carbon stocks in the 0-30 cm layer under pastures in a chronosequence,81 years after being converted from native forest.", + "Technology_Practices": "Conventional low input management of tropical pastures in the the Amazon, without application of fertilizer and liming.", + "Parameter_Conditions": "Soils are classified as Podzo´ licos Vermelho-Amarelo (Red Yellow Podzolic) in the Brazilian classification scheme and as Ultisols (kandiuldults) in the U.S. soil taxonomy.", + "Regional_Conditions": "The study area is located in the Western Brazilian Amazon Basin, in the state of Rondônia, at the Nova Vida Ranch (62 deg. 49 min. 27 sec. West, 10 deg. 10 min. 05 sec. South), between the cities of Ariquemes and Jaru. The climate of the region is humid tropical, with a dry season from May to September. Annual rainfall is 2200 mm. Annual mean temperature is 25.6 degrees Centigrade. Mean temperature for the warmest and coolest months varies by 5 degrees Centigrade and mean annual relative humidity is 89%.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "51.1", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R., and Cerri, C.C. 2003. Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Science Society of America Journal, 67: 1879-1887.", + "English_Abstract": "Conversion of tropical forest to agricultural management has important implications for C storage in soils and global climate change. The Nova Vida Ranch in the Western Brazilian Amazon basin provided a unique opportunity to study the conversion of tropical forests to pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911, in comparison with uncleared forest. Soils were analyzed for organic C, bulk density, total N, pH, clay content, and biomass C. The forest soil contained 34 Mg C/ha in the 0 to 30-cm layer: modeling clearance and conversion to pasture caused an initial fall in the C stock, followed by a slow rise. After 88 yr, the pasture soil contained 53% more C than the forest soil. The increase in total N on conversion to pasture was less marked, which led to C/N ratios in the pasture soils being higher than in the forest soil. The Rothamsted C turnover model (RothC-26.3) was used to simulate changes in the 0- to 10- and 0- to 30-cm layer of soils when forest was converted to pasture. The model predicted that conversion to pasture would cause a 54% increase in the stock of organic C in the top 30 cm of soil in 100 yr. The modeled input of plant C to the 0- to 30-cm layer of soil under pasture was assumed to be 8.28 Mg C/ha/yr. The model provided a reasonable estimate of the microbial biomass (BIO) C in the 0- to 10-cm soil layer. This was an independent test of model performance, because no adjustments were made to the model to generate output.", + "Lower_Bound": "See the Other info on Data Quality field", + "Upper_Bound": "See the Other info on Data Quality field", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error =1.77", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Marcelo Valadares Galdos", + "Link": "", + "creation_date": "2022-03-14T08:05:15.398Z", + "last_change_date": "2022-03-14T08:05:15.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10533, + "fields": { + "EF_ID": 421424, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil carbon stocks in the 0-30 cm layer under pastures in a chronosequence,82 years after being converted from native forest.", + "Technology_Practices": "Conventional low input management of tropical pastures in the the Amazon, without application of fertilizer and liming.", + "Parameter_Conditions": "Soils are classified as Podzo´ licos Vermelho-Amarelo (Red Yellow Podzolic) in the Brazilian classification scheme and as Ultisols (kandiuldults) in the U.S. soil taxonomy.", + "Regional_Conditions": "The study area is located in the Western Brazilian Amazon Basin, in the state of Rondônia, at the Nova Vida Ranch (62 deg. 49 min. 27 sec. West, 10 deg. 10 min. 05 sec. South), between the cities of Ariquemes and Jaru. The climate of the region is humid tropical, with a dry season from May to September. Annual rainfall is 2200 mm. Annual mean temperature is 25.6 degrees Centigrade. Mean temperature for the warmest and coolest months varies by 5 degrees Centigrade and mean annual relative humidity is 89%.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R., and Cerri, C.C. 2003. Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Science Society of America Journal, 67: 1879-1887.", + "English_Abstract": "Conversion of tropical forest to agricultural management has important implications for C storage in soils and global climate change. The Nova Vida Ranch in the Western Brazilian Amazon basin provided a unique opportunity to study the conversion of tropical forests to pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911, in comparison with uncleared forest. Soils were analyzed for organic C, bulk density, total N, pH, clay content, and biomass C. The forest soil contained 34 Mg C/ha in the 0 to 30-cm layer: modeling clearance and conversion to pasture caused an initial fall in the C stock, followed by a slow rise. After 88 yr, the pasture soil contained 53% more C than the forest soil. The increase in total N on conversion to pasture was less marked, which led to C/N ratios in the pasture soils being higher than in the forest soil. The Rothamsted C turnover model (RothC-26.3) was used to simulate changes in the 0- to 10- and 0- to 30-cm layer of soils when forest was converted to pasture. The model predicted that conversion to pasture would cause a 54% increase in the stock of organic C in the top 30 cm of soil in 100 yr. The modeled input of plant C to the 0- to 30-cm layer of soil under pasture was assumed to be 8.28 Mg C/ha/yr. The model provided a reasonable estimate of the microbial biomass (BIO) C in the 0- to 10-cm soil layer. This was an independent test of model performance, because no adjustments were made to the model to generate output.", + "Lower_Bound": "See the Other info on Data Quality field", + "Upper_Bound": "See the Other info on Data Quality field", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error =1.32", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Marcelo Valadares Galdos", + "Link": "", + "creation_date": "2022-03-14T08:05:15.499Z", + "last_change_date": "2022-03-14T08:05:15.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10534, + "fields": { + "EF_ID": 421425, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil carbon stocks in the 0-30 cm layer under pastures in a chronosequence,88 years after being converted from native forest.", + "Technology_Practices": "Conventional low input management of tropical pastures in the the Amazon, without application of fertilizer and liming.", + "Parameter_Conditions": "Soils are classified as Podzo´ licos Vermelho-Amarelo (Red Yellow Podzolic) in the Brazilian classification scheme and as Ultisols (kandiuldults) in the U.S. soil taxonomy.", + "Regional_Conditions": "The study area is located in the Western Brazilian Amazon Basin, in the state of Rondônia, at the Nova Vida Ranch (62 deg. 49 min. 27 sec. West, 10 deg. 10 min. 05 sec. South), between the cities of Ariquemes and Jaru. The climate of the region is humid tropical, with a dry season from May to September. Annual rainfall is 2200 mm. Annual mean temperature is 25.6 degrees Centigrade. Mean temperature for the warmest and coolest months varies by 5 degrees Centigrade and mean annual relative humidity is 89%.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52.6", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cerri, C.E.P., Coleman, K., Jenkinson, D.S., Bernoux, M., Victoria, R., and Cerri, C.C. 2003. Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Science Society of America Journal, 67: 1879-1887.", + "English_Abstract": "Conversion of tropical forest to agricultural management has important implications for C storage in soils and global climate change. The Nova Vida Ranch in the Western Brazilian Amazon basin provided a unique opportunity to study the conversion of tropical forests to pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911, in comparison with uncleared forest. Soils were analyzed for organic C, bulk density, total N, pH, clay content, and biomass C. The forest soil contained 34 Mg C/ha in the 0 to 30-cm layer: modeling clearance and conversion to pasture caused an initial fall in the C stock, followed by a slow rise. After 88 yr, the pasture soil contained 53% more C than the forest soil. The increase in total N on conversion to pasture was less marked, which led to C/N ratios in the pasture soils being higher than in the forest soil. The Rothamsted C turnover model (RothC-26.3) was used to simulate changes in the 0- to 10- and 0- to 30-cm layer of soils when forest was converted to pasture. The model predicted that conversion to pasture would cause a 54% increase in the stock of organic C in the top 30 cm of soil in 100 yr. The modeled input of plant C to the 0- to 30-cm layer of soil under pasture was assumed to be 8.28 Mg C/ha/yr. The model provided a reasonable estimate of the microbial biomass (BIO) C in the 0- to 10-cm soil layer. This was an independent test of model performance, because no adjustments were made to the model to generate output.", + "Lower_Bound": "See the Other info on Data Quality field", + "Upper_Bound": "See the Other info on Data Quality field", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error =3.12", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Marcelo Valadares Galdos", + "Link": "", + "creation_date": "2022-03-14T08:05:15.600Z", + "last_change_date": "2022-03-14T08:05:15.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10535, + "fields": { + "EF_ID": 421444, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for Beef Cattle", + "Technology_Practices": "Breeding herd on range. Fattening herd on pastures with or without supplementation. Minor amout of feed lot.", + "Parameter_Conditions": "Includes beef cows, bulls, and young ", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "51.12", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National data: Agricultural statistics (animal numbers,categories slaughtered) and expert judgement (feeding, animal weight, productivity). Estimación de los factores de emisión de metano por la fermentación entérica de los bovinos en la República Argentina; Finster, L. and Berra, G.; INTA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Laura Finster", + "Link": "", + "creation_date": "2022-03-14T08:05:15.700Z", + "last_change_date": "2022-03-14T08:05:15.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10536, + "fields": { + "EF_ID": 421445, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for Breeding Cows", + "Technology_Practices": "Feeding situation: Range ", + "Parameter_Conditions": "Type = mature females; weight = 420 kg; weight gain kg/day = 0.0; milk kg/day = 3; work hrs/day = 0; pregnant = 75%; digestibility of feed = 55%; CH4 conversion = 6.0%; day weighted population mix = 39.52% ", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64.4", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National data: Agricultural statistics (animal numbers,categories slaughtered) and expert judgement (feeding, animal weight, productivity). Estimación de los factores de emisión de metano por la fermentación entérica de los bovinos en la República Argentina; Finster, L. and Berra, G.; INTA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Laura Finster", + "Link": "", + "creation_date": "2022-03-14T08:05:15.769Z", + "last_change_date": "2022-03-14T08:05:15.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10537, + "fields": { + "EF_ID": 421446, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for Bulls", + "Technology_Practices": "Feeding situation: Range ", + "Parameter_Conditions": "Type = mature males; weight = 750 kg; weight gain kg/day = 0; milk kg/day = 0; work hrs/day = 0; pregnant = 0%; digestibility of feed = 55%; CH4 conversion = 6.0%; day weighted population mix = 2.2% ", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "82.17", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National data: Agricultural statistics (animal numbers,categories slaughtered) and expert judgement (feeding, animal weight, productivity). Estimación de los factores de emisión de metano por la fermentación entérica de los bovinos en la República Argentina; Finster, L. and Berra, G.; INTA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Laura Finster", + "Link": "", + "creation_date": "2022-03-14T08:05:15.876Z", + "last_change_date": "2022-03-14T08:05:15.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10538, + "fields": { + "EF_ID": 421447, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for Young", + "Technology_Practices": "Feeding situation: Young to replace cows and bulls on range - Young for slaughter on pastures with or without supplementation", + "Parameter_Conditions": "Type = Young (Includes non-weaned calves; weaned calves; heifers and steers); Digestibility of feed = 55% - 65%; CH4 conversion = 6.0%; Day weighted population mix = 58.27%", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.91", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National data: Agricultural statistics (animal numbers,categories slaughtered) and expert judgement (feeding, animal weight, productivity). Estimación de los factores de emisión de metano por la fermentación entérica de los bovinos en la República Argentina; Finster, L. and Berra, G.; INTA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Laura Finster", + "Link": "", + "creation_date": "2022-03-14T08:05:15.969Z", + "last_change_date": "2022-03-14T08:05:15.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10539, + "fields": { + "EF_ID": 421448, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor - Young for replacement", + "Technology_Practices": "Feeding situation: Range ", + "Parameter_Conditions": "Type = Male and female young animals, for cows and bulls replacement; Digestibility of feed = 55%; CH4 conversion = 6.0%; Day weighted population mix = 17.35%  (Considering only emitting categories; non-weaned calves excluded)", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58.76", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National data: Agricultural statistics (animal numbers,categories slaughtered) and expert judgement (feeding, animal weight, productivity). Estimación de los factores de emisión de metano por la fermentación entérica de los bovinos en la República Argentina; Finster, L. and Berra, G.; INTA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Laura Finster", + "Link": "", + "creation_date": "2022-03-14T08:05:16.044Z", + "last_change_date": "2022-03-14T08:05:16.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10540, + "fields": { + "EF_ID": 421449, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor - Young for slaughter", + "Technology_Practices": "Feeding situation: Grazing on pastures with or without supplementation", + "Parameter_Conditions": "Type = Male and female young animals for slaughter; Digestibility of feed = 60% - 65%; CH4 conversion = 6.0%; Day weighted population mix = 33.22%  (Considering only emitting categories; non-weaned calves excluded)", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54.20", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National data: Agricultural statistics (animal numbers,categories slaughtered) and expert judgement (feeding, animal weight, productivity). Estimación de los factores de emisión de metano por la fermentación entérica de los bovinos en la República Argentina; Finster, L. and Berra, G.; INTA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Laura Finster", + "Link": "", + "creation_date": "2022-03-14T08:05:16.111Z", + "last_change_date": "2022-03-14T08:05:16.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10541, + "fields": { + "EF_ID": 421450, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for Dairy Cows", + "Technology_Practices": "Commercialised dairy sector based on grazing with suplementation - Average milk production of 4,500 kg/head/yr", + "Parameter_Conditions": "Type = mature females; weight = 600 kg; weight gain kg/day = 0.0; milk kg/day = 15; work hrs/day = 0; pregnant = 80%; digestibility of feed = 65%; CH4 conversion = 6.0% ", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91.79", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National data: Agricultural statistics (animal numbers,categories slaughtered) and expert judgement (feeding, animal weight, productivity). Estimación de los factores de emisión de metano por la fermentación entérica de los bovinos en la República Argentina; Finster, L. and Berra, G.; INTA", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Laura Finster", + "Link": "", + "creation_date": "2022-03-14T08:05:16.194Z", + "last_change_date": "2022-03-14T08:05:16.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10542, + "fields": { + "EF_ID": 421451, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for split application of 100 kg N/ha fertilizer (50 kgN/ha applied as liquid urea + 50 KgN/ha broadcast as `Nitram`) on 3rd and 4th ratoon rotation of sugarcane", + "Technology_Practices": "2 experiments were conducted on ratooned sugarcane grown under field conditions. In the first experiment, crops received 0,100 or 200 kg N ha 1 as single or split application", + "Parameter_Conditions": "The field experiment was carried out on a sugarcane farm near Jacobs Well, approximately 45 km south east of Brisbane, Australia (27 deg. 43 min. S, 153 deg.16 min. E). The site was cropped for over 10 years with sugarcane (Saccharum sp.). The experimental soils were Hydrosol medium grey-brown clay.", + "Regional_Conditions": "Australia, SE of Brisbane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen D. E., Kingston G., Rennenberg H., Dalal R.C., Schmidt, S., 2010. Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agriculture,Ecosystem and Environment 136:209-217", + "English_Abstract": "Considerable potential for N2O emission from Australian sugarcane systems exists from high N fertilizer application rates and periodic waterlogging. To determine N2O emissions, 2 experiments were conducted on ratooned sugarcane grown under field conditions. In the first experiment, crops received 0, 100 or 200 kg N/ha as single or split application. In the second experiment, a sub-set of the single N application plots was subjected to waterlogging. Higher N2O emissions (350 mg–17 mg N2Om2/h) occurred during warm and wet months (November–February) and coincided with high availability of mineralN in top soil (10–500 mg N/kg soil). Lower emissions (less than 350 mg N2Om2/h) were detected in cool and dry months (March–October) coinciding with availability of low mineral N (less than 10 mg N /kg soil). Regression analysis showed significant positive correlations between N2O emissions and soil temperature, water-filled pore space and mineral N (ammonium and nitrate) content. N2O emissions, soil mineral N content and crop yield followed N application rates (0 less than 100 less than 200 kg N/ha) and waterlogging amplified N2O emission. Split application of N fertilizer reduced annual N2O emissions in the 200 kg N ha 1 treatment. We estimate, using the IPCC Tier 1 approach that between 1.0% and 6.7% of applied N fertilizer was emitted as N2O. Our study demonstrates that immediate reduction of N2O emissions can be achieved by avoiding high levels of soil mineral N pools and waterlogging through appropriate fertilizer rates and time of application and soil management.", + "Lower_Bound": "0.0036", + "Upper_Bound": "0.0164", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:16.286Z", + "last_change_date": "2022-03-14T08:05:16.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10543, + "fields": { + "EF_ID": 421452, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for single application of 100 kgN/ha fertilizer applied as liquid urea on 3rd and 4th ratoon rotation of sugarcane", + "Technology_Practices": "2 experiments were conducted on ratooned sugarcane grown under field conditions. In the first experiment, crops received 0,100 or 200 kg N ha 1 as single or split application", + "Parameter_Conditions": "The field experiment was carried out on a sugarcane farm near Jacobs Well, approximately 45 km south east of Brisbane, Australia (27 deg. 43 min. S, 153 deg.16 min. E). The site was cropped for over 10 years with sugarcane (Saccharum sp.). The experimental soils were Hydrosol medium grey-brown clay.", + "Regional_Conditions": "Australia, SE of Brisbane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0107", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen D. E., Kingston G., Rennenberg H., Dalal R.C., Schmidt, S., 2010. Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agriculture,Ecosystem and Environment 136:209-217", + "English_Abstract": "Considerable potential for N2O emission from Australian sugarcane systems exists from high N fertilizer application rates and periodic waterlogging. To determine N2O emissions, 2 experiments were conducted on ratooned sugarcane grown under field conditions. In the first experiment, crops received 0, 100 or 200 kg N/ha as single or split application. In the second experiment, a sub-set of the single N application plots was subjected to waterlogging. Higher N2O emissions (350 mg–17 mg N2Om2/h) occurred during warm and wet months (November–February) and coincided with high availability of mineralN in top soil (10–500 mg N/kg soil). Lower emissions (less than 350 mg N2Om2/h) were detected in cool and dry months (March–October) coinciding with availability of low mineral N (less than 10 mg N /kg soil). Regression analysis showed significant positive correlations between N2O emissions and soil temperature, water-filled pore space and mineral N (ammonium and nitrate) content. N2O emissions, soil mineral N content and crop yield followed N application rates (0 less than 100 less than 200 kg N/ha) and waterlogging amplified N2O emission. Split application of N fertilizer reduced annual N2O emissions in the 200 kg N ha 1 treatment. We estimate, using the IPCC Tier 1 approach that between 1.0% and 6.7% of applied N fertilizer was emitted as N2O. Our study demonstrates that immediate reduction of N2O emissions can be achieved by avoiding high levels of soil mineral N pools and waterlogging through appropriate fertilizer rates and time of application and soil management.", + "Lower_Bound": "0.0072", + "Upper_Bound": "0.0132", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:16.369Z", + "last_change_date": "2022-03-14T08:05:16.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10544, + "fields": { + "EF_ID": 421453, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for split application of 200 kg N/ha (100 kgN/ha applied as liquid urea + 100 KgN/ha broadcast as `Nitram`) fertilizer on 3rd and 4th ratoon rotation of sugarcane", + "Technology_Practices": "2 experiments were conducted on ratooned sugarcane grown under field conditions. In the first experiment, crops received 0,100 or 200 kg N ha 1 as single or split application", + "Parameter_Conditions": "The field experiment was carried out on a sugarcane farm near Jacobs Well, approximately 45 km south east of Brisbane, Australia (27 deg. 43 min. S, 153 deg.16 min. E). The site was cropped for over 10 years with sugarcane (Saccharum sp.). The experimental soils were Hydrosol medium grey-brown clay.", + "Regional_Conditions": "Australia, SE of Brisbane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0295", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen D. E., Kingston G., Rennenberg H., Dalal R.C., Schmidt, S., 2010. Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agriculture,Ecosystem and Environment 136:209-217", + "English_Abstract": "Considerable potential for N2O emission from Australian sugarcane systems exists from high N fertilizer application rates and periodic waterlogging. To determine N2O emissions, 2 experiments were conducted on ratooned sugarcane grown under field conditions. In the first experiment, crops received 0, 100 or 200 kg N/ha as single or split application. In the second experiment, a sub-set of the single N application plots was subjected to waterlogging. Higher N2O emissions (350 mg–17 mg N2Om2/h) occurred during warm and wet months (November–February) and coincided with high availability of mineralN in top soil (10–500 mg N/kg soil). Lower emissions (less than 350 mg N2Om2/h) were detected in cool and dry months (March–October) coinciding with availability of low mineral N (less than 10 mg N /kg soil). Regression analysis showed significant positive correlations between N2O emissions and soil temperature, water-filled pore space and mineral N (ammonium and nitrate) content. N2O emissions, soil mineral N content and crop yield followed N application rates (0 less than 100 less than 200 kg N/ha) and waterlogging amplified N2O emission. Split application of N fertilizer reduced annual N2O emissions in the 200 kg N ha 1 treatment. We estimate, using the IPCC Tier 1 approach that between 1.0% and 6.7% of applied N fertilizer was emitted as N2O. Our study demonstrates that immediate reduction of N2O emissions can be achieved by avoiding high levels of soil mineral N pools and waterlogging through appropriate fertilizer rates and time of application and soil management.", + "Lower_Bound": "0.0178", + "Upper_Bound": "0.0312", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:16.463Z", + "last_change_date": "2022-03-14T08:05:16.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10545, + "fields": { + "EF_ID": 421454, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for single application of 200 kgN/ha fertilizer applied as liquid urea on 3rd and 4th ratoon rotation of sugarcane", + "Technology_Practices": "2 experiments were conducted on ratooned sugarcane grown under field conditions. In the first experiment, crops received 0,100 or 200 kg N ha 1 as single or split application", + "Parameter_Conditions": "The field experiment was carried out on a sugarcane farm near Jacobs Well, approximately 45 km south east of Brisbane, Australia (27 deg. 43 min. S, 153 deg.16 min. E). The site was cropped for over 10 years with sugarcane (Saccharum sp.). The experimental soils were Hydrosol medium grey-brown clay.", + "Regional_Conditions": "Australia, SE of Brisbane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.067", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Allen D. E., Kingston G., Rennenberg H., Dalal R.C., Schmidt, S., 2010. Effect of nitrogen fertilizer management and waterlogging on nitrous oxide emission from subtropical sugarcane soils. Agriculture,Ecosystem and Environment 136:209-217", + "English_Abstract": "Considerable potential for N2O emission from Australian sugarcane systems exists from high N fertilizer application rates and periodic waterlogging. To determine N2O emissions, 2 experiments were conducted on ratooned sugarcane grown under field conditions. In the first experiment, crops received 0, 100 or 200 kg N/ha as single or split application. In the second experiment, a sub-set of the single N application plots was subjected to waterlogging. Higher N2O emissions (350 mg–17 mg N2Om2/h) occurred during warm and wet months (November–February) and coincided with high availability of mineralN in top soil (10–500 mg N/kg soil). Lower emissions (less than 350 mg N2Om2/h) were detected in cool and dry months (March–October) coinciding with availability of low mineral N (less than 10 mg N /kg soil). Regression analysis showed significant positive correlations between N2O emissions and soil temperature, water-filled pore space and mineral N (ammonium and nitrate) content. N2O emissions, soil mineral N content and crop yield followed N application rates (0 less than 100 less than 200 kg N/ha) and waterlogging amplified N2O emission. Split application of N fertilizer reduced annual N2O emissions in the 200 kg N ha 1 treatment. We estimate, using the IPCC Tier 1 approach that between 1.0% and 6.7% of applied N fertilizer was emitted as N2O. Our study demonstrates that immediate reduction of N2O emissions can be achieved by avoiding high levels of soil mineral N pools and waterlogging through appropriate fertilizer rates and time of application and soil management.", + "Lower_Bound": "0.0607", + "Upper_Bound": "0.0743", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:16.565Z", + "last_change_date": "2022-03-14T08:05:16.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10546, + "fields": { + "EF_ID": 421455, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for direct N2O emissions from soils in fertilized grazed grasslands", + "Technology_Practices": "Nitrous oxide fluxes were measured using closed static chambers at 3 sites in England and Wales over a two-year period. Cumulative fluxes were calculated and the total emission regressed against applied inorganic fertiliser N (NH4NO3). in order to estimate the emission factor for N2O emissions from soils.", + "Parameter_Conditions": "Two sampling sites located in England and Wales. The field sites were Rowden, located at IGER North Wyke in Devon, England (now North Wyke Research at 50:46:10N and 3:54:05W), and Cae Banadl at IGER Aberystwyth in Wales (now IBERS at 52:26:01N and 4:01:02W). The soil at Rowden was of the Halstow series (Findlay et al., 1984), a brownish clay loam and characterised by being waterlogged for considerable periods of the year. The soil at Cae Banadl was on sloping land with good drainage. The soil at Cae Banadl has been mapped as a fine loam of the Denbigh series on the slope and Rheidol series at the foot of the slope (Rudeforth, 1970).", + "Regional_Conditions": "Western UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.039", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas L.M., Thorman R., Ashlee N., Butler M., Chadwick D., Chambers B., Cuttle S.,Donovan N. , Kingston H., Lane S., Dhanoa M.S., Scholefield D., 2010. Agriculture,Ecosystem and Environment 136:218-226", + "English_Abstract": "The objective of the present study was to measure emissions of N2O from fertilized grazed grassland that can be used to add valuable information to the limited existing data on N2O fluxes from grazed grassland and aid the development of new country-specific EFs for direct emissions from soils in the UK. This was done by evaluating the effect on N2O emissions of inorganic fertiliser N applied to grazed grassland soils over the range of N inputs 0–350 kg/ha. Nitrous oxide fluxes were measured using closed static chambers at 3 sites in England and Wales over a two-year period. Cumulative fluxes were calculated and the total emission regressed against applied inorganic fertiliser N in order to estimate the emission factor for N2O emissions from soils. The data showed that, the emission factor for N2O from inorganic fertiliser applied to grazed grassland soils in the UK differs from the IPCC default value of 1.25%. A nonlinear response of N2O emissions to fertiliser N application rates was observed. Annual emissions of N2O were estimated from a modelled function fitted to themeasured data and after subtraction of the background flux resulted in emissions of 0.5 and 3.9 kg N2O–N/ha/yr for an application of 100 kg N for three locations in the UK, one in the East and the other two in the West of the UK (after combining the data from two sites), respectively.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement technique/standard: Closed static chamber technique; Measurement period: April 2006 to March 2008", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:16.665Z", + "last_change_date": "2022-03-14T08:05:16.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10547, + "fields": { + "EF_ID": 421456, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor direct N2O emissions from soils in fertilized grazed grasslands", + "Technology_Practices": "Nitrous oxide fluxes were measured using closed static chambers at 3 sites in England and Wales over a two-year period. Cumulative fluxes were calculated and the total emission regressed against applied inorganic fertiliser N (NH4NO3). in order to estimate the emission factor for N2O emissions from soils.", + "Parameter_Conditions": "One sampling sites located in UK at High Mowthorpe at ADAS in North Yorkshire, England (at 54:06:29N, 0:40:12W). The soils at High Mowthorpe were of the Andover series, which are characteristically shallow, stony, free draining, with silty clay loam over chalk (Cope, 1976).", + "Regional_Conditions": "Eastern UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas L.M., Thorman R., Ashlee N., Butler M., Chadwick D., Chambers B., Cuttle S.,Donovan N. , Kingston H., Lane S., Dhanoa M.S., Scholefield D., 2010. Agriculture,Ecosystem and Environment 136:218-226", + "English_Abstract": "The objective of the present study was to measure emissions of N2O from fertilized grazed grassland that can be used to add valuable information to the limited existing data on N2O fluxes from grazed grassland and aid the development of new country-specific EFs for direct emissions from soils in the UK. This was done by evaluating the effect on N2O emissions of inorganic fertiliser N applied to grazed grassland soils over the range of N inputs 0–350 kg/ha. Nitrous oxide fluxes were measured using closed static chambers at 3 sites in England and Wales over a two-year period. Cumulative fluxes were calculated and the total emission regressed against applied inorganic fertiliser N in order to estimate the emission factor for N2O emissions from soils. The data showed that, the emission factor for N2O from inorganic fertiliser applied to grazed grassland soils in the UK differs from the IPCC default value of 1.25%. A nonlinear response of N2O emissions to fertiliser N application rates was observed. Annual emissions of N2O were estimated from a modelled function fitted to themeasured data and after subtraction of the background flux resulted in emissions of 0.5 and 3.9 kg N2O–N/ha/yr for an application of 100 kg N for three locations in the UK, one in the East and the other two in the West of the UK (after combining the data from two sites), respectively.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement technique/standard: Closed static chamber technique; Measurement period: April 2006 to March 2008", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:16.765Z", + "last_change_date": "2022-03-14T08:05:16.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10548, + "fields": { + "EF_ID": 421457, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor (EF1) for direct N2O emission from soils", + "Technology_Practices": "No tillage practices on Madasgar soils under corn-soybean with low N inputs (55-57 kgN/ha/yr). Management treatments consisted of direct seeding mulch based cropping system (DMC) and traditional hand-ploughing after the preceding crop residues were harvested (HP), both with low N inputs (55–57 kg N ha- 1).", + "Parameter_Conditions": "The experimental site was located at Andranomanelatra (19 deg. 47 min. S; 47 deg. 06 min. E; 1600 m above sea level) near the city of Antsirabe in the Malagasy Highlands. The area is under altitude tropical climate with a dry season from May to October and a humid one from November to April. Annual average rainfall and temperature are 1300 mm and 16 degrees centigrade, respectively. The soil was developed on volcano-lacustrine alluvia (Raunet, 1981), and classified as a clayey Andic Dystrustept in the Soil Taxonomy (Soil Survey Staff, 2003) or a Ferralsol in the FAO classification (FAO, 1998). Upper soil layer (0–10 cm) contained 60% 1:1 clays, presented a pH of 4.9, an available (NaHCO3-extractable) P content of 13.9 mg kg-1 soil, and iron and aluminium oxides contents of 47 and 17 g kg-1 soil respectively (Chapuis-Lardy et al.2009).", + "Regional_Conditions": "Madagascar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chapuis-Lardy L., Metay A., Martinet M., Rabenarivo M.,Toucet J., Douzet J.M., Razafimbelo T., Rabeharisoa L.,Rakotoarisoa, 2009. Nitrous oxide fluxes from Malagasy agricultural soils. Geoderma 148(3-4) 421-427", + "English_Abstract": "In Madagascar, no-tillage practices were developed since the early 90s to prevent soil erosion and improve soil fertility. Although such practices have helped to restore soil carbon in most cases, the impact on N2O emissions has not been investigated yet. The soil N2O fluxes and concentrations were measured during the growing season of an intercropping maize-soybean on a clayey soil of the Malagasy Highlands. Management treatments consisted of direct seeding mulch based cropping system (DMC) and traditional hand-ploughing after the preceding crop residues were harvested (HP), both with low N inputs (55–57 kg N/ha). No significant difference in N2O emissions was observed between treatments (DMC vs. HP). The N2O fluxes were weakly correlated to soil mineral N contents (R2 = 0.13; P = 0.03) while no relationship was emphasized with soil water filled pore space (WFPS). N2O concentrations in the soil atmosphere were correlated to fluxes at the soil surface and to soil WFPS. N2O emissions at the soil surface were low ranging from 0 to 8.84 g N-N2O/ha/d, probably due to the low mineral N content of soil. The cumulative annual N2O emission was 0.26 kg N/ha for both systems. The corresponding N loss as N2O-N was around 0.5% of applied N. This is in the uncertainty range of IPCC N2O emission factor (EF), but the IPCC EF mean estimate (1%) would overestimate true N2O emissions for the soil under evaluation.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.EF is poorly related to mineral N content (which is low) and to pore water content. 2. As the observations mainly covered the wet season which also corresponded roughly to the growing season (Nov–April), the flux value of April was used as an estimate of the monthly emission during the dry season. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V67-4V38XSS-1&_user=10&_coverDate=01%2F15%2F2009&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=fdfa8642275d46d2e182655ab767b882&searchtype=a", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "", + "creation_date": "2022-03-14T08:05:16.874Z", + "last_change_date": "2022-03-14T08:05:16.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10549, + "fields": { + "EF_ID": 421458, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emissions from soils", + "Technology_Practices": "Organic crop rotation with green manure (grass-clover) and with catch crops (s. barley:ley-Grass-clover- Potato- w. wheat)", + "Parameter_Conditions": "The monitoring studies made in a long-term crop rotation experiment on soils at Flakkebjerg (55 deg. 19 min. N, 11 deg. 23 min. E) in Eastern Denmark (Olesen et al., 2000). The soil at Flakkebjerg (FL) is a sandy loam, Typic Agrudalf, with 72.1% sand, 12.4% silt, 15.5% clay; 10 g SOC kg 1; 1.1 g total N /kg; pH 7.4 (CaCl2); 3.0 mg P/100 g; 9.8 mg K/100 g; 10.6 mequiv. CEC/100 g, and a bulk density of 1.63 g/cm3 (Djurhuus and Olesen, 2000). Flakkebjerg receives 626 mm of mean annual rainfall. Mean annual air temperature is 7.8 8C.", + "Regional_Conditions": "Eastern Denmark", + "Control_Technologies": "", + "Other_Properties": "The study was done to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticumaestivum L.) within three organic and one conventional cropping system that differed in the type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha-1 in the form of NH4NO3, while the organic rotations received 100–110 kg N ha-1 as pig slurry (Chirinda et al., 2010).", + "Value": "0.0081", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chirinda N., Carter M. S., Albert K.R., Ambus P., Jørgen E. O., Porter J. R., Petersen S. O. 2010. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136 199–208", + "English_Abstract": "Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year. The main objective of this studywas to compare nitrous oxide (N2O) emissions from soil under winter wheat (TriticumaestivumL.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N/ha in the form of NH4NO3, while the organic rotations received 100– 110 kg N/ha as pig slurry. For at least 11 months, as from September 2007, static chambers were used to measure N2O emissions at least twice every calendar month. Mean daily N2O emissions across the year ranged from 172 to 438 mgN/m2/d at Flakkebjerg, and from 173 to 250 mgN/m2/d at Foulum. A multiple linear regression analysis showed inter-seasonal variations in emissions (P is less than 0.001), but annual N2O emissions from organic and conventional systems were not significantly different despite the lower N input in organic rotations. The annual emissions ranged from 54 to 137 mg N/ m2, which corresponded to 0.5–0.8% of the N applied in manure or mineral fertilizer. Selected soil attributes were monitored to support the interpretation of N2O emission patterns. A second multiple linear regression analysis with potential drivers of N2O emissions showed a negative response to soil temperature (P = 0.008) and percent water-filled pore space (WFPS) (P = 0.052) at Foulum. However, there were positive interactions of both factors with NO3-N, i.e., high N2O emissions occurred during periods when high soil nitrate levels coincided with high soil temperature (P = 0.016) or high soil water content (P = 0.056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:16.975Z", + "last_change_date": "2022-03-14T08:05:16.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10550, + "fields": { + "EF_ID": 421459, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emissions from soils", + "Technology_Practices": "Organic crop rotation without green manure (grass-clover) and with catch crops ((s. barley:ley-Faba bean- Potato- w. wheat)", + "Parameter_Conditions": "The monitoring studies made in a long-term crop rotation experiment on soils at Flakkebjerg (55 deg. 19 min. N, 11 deg. 23 min. E) in Eastern Denmark (Olesen et al., 2000). The soil at Flakkebjerg (FL) is a sandy loam, Typic Agrudalf, with 72.1% sand, 12.4% silt, 15.5% clay; 10 g SOC kg 1; 1.1 g total N /kg; pH 7.4 (CaCl2); 3.0 mg P/100 g; 9.8 mg K/100 g; 10.6 mequiv. CEC/100 g, and a bulk density of 1.63 g/cm3 (Djurhuus and Olesen, 2000). Flakkebjerg receives 626 mm of mean annual rainfall. Mean annual air temperature is 7.8 8C.", + "Regional_Conditions": "Eastern Denmark", + "Control_Technologies": "", + "Other_Properties": "The study was done to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticumaestivum L.) within three organic and one conventional cropping system that differed in the type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha-1 in the form of NH4NO3, while the organic rotations received 100–110 kg N ha-1 as pig slurry (Chirinda et al., 2010).", + "Value": "0.007", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chirinda N., Carter M. S., Albert K.R., Ambus P., Jørgen E. O., Porter J. R., Petersen S. O. 2010. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136 199–208", + "English_Abstract": "Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year. The main objective of this studywas to compare nitrous oxide (N2O) emissions from soil under winter wheat (TriticumaestivumL.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N/ha in the form of NH4NO3, while the organic rotations received 100– 110 kg N/ha as pig slurry. For at least 11 months, as from September 2007, static chambers were used to measure N2O emissions at least twice every calendar month. Mean daily N2O emissions across the year ranged from 172 to 438 mgN/m2/d at Flakkebjerg, and from 173 to 250 mgN/m2/d at Foulum. A multiple linear regression analysis showed inter-seasonal variations in emissions (P is less than 0.001), but annual N2O emissions from organic and conventional systems were not significantly different despite the lower N input in organic rotations. The annual emissions ranged from 54 to 137 mg N/ m2, which corresponded to 0.5–0.8% of the N applied in manure or mineral fertilizer. Selected soil attributes were monitored to support the interpretation of N2O emission patterns. A second multiple linear regression analysis with potential drivers of N2O emissions showed a negative response to soil temperature (P = 0.008) and percent water-filled pore space (WFPS) (P = 0.052) at Foulum. However, there were positive interactions of both factors with NO3-N, i.e., high N2O emissions occurred during periods when high soil nitrate levels coincided with high soil temperature (P = 0.016) or high soil water content (P = 0.056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:17.076Z", + "last_change_date": "2022-03-14T08:05:17.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10551, + "fields": { + "EF_ID": 421460, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emissions from soils", + "Technology_Practices": "Organic crop rotation without green manure (grass-clover) and without catch crops ((s. barley:ley-Faba bean- Potato- w. wheat)", + "Parameter_Conditions": "The monitoring studies made in a long-term crop rotation experiment on soils at Flakkebjerg (55 deg. 19 min. N, 11 deg. 23 min. E) in Eastern Denmark (Olesen et al., 2000). The soil at Flakkebjerg (FL) is a sandy loam, Typic Agrudalf, with 72.1% sand, 12.4% silt, 15.5% clay; 10 g SOC kg 1; 1.1 g total N /kg; pH 7.4 (CaCl2); 3.0 mg P/100 g; 9.8 mg K/100 g; 10.6 mequiv. CEC/100 g, and a bulk density of 1.63 g/cm3 (Djurhuus and Olesen, 2000). Flakkebjerg receives 626 mm of mean annual rainfall. Mean annual air temperature is 7.8 8C.", + "Regional_Conditions": "Eastern Denmark", + "Control_Technologies": "", + "Other_Properties": "The study was done to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticumaestivum L.) within three organic and one conventional cropping system that differed in the type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha-1 in the form of NH4NO3, while the organic rotations received 100–110 kg N ha-1 as pig slurry (Chirinda et al., 2010).", + "Value": "0.0053", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chirinda N., Carter M. S., Albert K.R., Ambus P., Jørgen E. O., Porter J. R., Petersen S. O. 2010. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136 199–208", + "English_Abstract": "Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year. The main objective of this studywas to compare nitrous oxide (N2O) emissions from soil under winter wheat (TriticumaestivumL.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N/ha in the form of NH4NO3, while the organic rotations received 100– 110 kg N/ha as pig slurry. For at least 11 months, as from September 2007, static chambers were used to measure N2O emissions at least twice every calendar month. Mean daily N2O emissions across the year ranged from 172 to 438 mgN/m2/d at Flakkebjerg, and from 173 to 250 mgN/m2/d at Foulum. A multiple linear regression analysis showed inter-seasonal variations in emissions (P is less than 0.001), but annual N2O emissions from organic and conventional systems were not significantly different despite the lower N input in organic rotations. The annual emissions ranged from 54 to 137 mg N/ m2, which corresponded to 0.5–0.8% of the N applied in manure or mineral fertilizer. Selected soil attributes were monitored to support the interpretation of N2O emission patterns. A second multiple linear regression analysis with potential drivers of N2O emissions showed a negative response to soil temperature (P = 0.008) and percent water-filled pore space (WFPS) (P = 0.052) at Foulum. However, there were positive interactions of both factors with NO3-N, i.e., high N2O emissions occurred during periods when high soil nitrate levels coincided with high soil temperature (P = 0.016) or high soil water content (P = 0.056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:17.176Z", + "last_change_date": "2022-03-14T08:05:17.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10552, + "fields": { + "EF_ID": 421461, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emissions from soils", + "Technology_Practices": "Conventional crop rotation without catch crops ((s. barley:ley-Faba bean- Potato- w. wheat)", + "Parameter_Conditions": "The monitoring studies made in a long-term crop rotation experiment on soils at Flakkebjerg (55 deg. 19 min. N, 11 deg. 23 min. E) in Eastern Denmark (Olesen et al., 2000). The soil at Flakkebjerg (FL) is a sandy loam, Typic Agrudalf, with 72.1% sand, 12.4% silt, 15.5% clay; 10 g SOC kg 1; 1.1 g total N /kg; pH 7.4 (CaCl2); 3.0 mg P/100 g; 9.8 mg K/100 g; 10.6 mequiv. CEC/100 g, and a bulk density of 1.63 g/cm3 (Djurhuus and Olesen, 2000). Flakkebjerg receives 626 mm of mean annual rainfall. Mean annual air temperature is 7.8 8C.", + "Regional_Conditions": "Eastern Denmark", + "Control_Technologies": "", + "Other_Properties": "The study was done to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticumaestivum L.) within three organic and one conventional cropping system that differed in the type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha-1 in the form of NH4NO3, while the organic rotations received 100–110 kg N ha-1 as pig slurry (Chirinda et al., 2010).", + "Value": "0.008", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chirinda N., Carter M. S., Albert K.R., Ambus P., Jørgen E. O., Porter J. R., Petersen S. O. 2010. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136 199–208", + "English_Abstract": "Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year. The main objective of this studywas to compare nitrous oxide (N2O) emissions from soil under winter wheat (TriticumaestivumL.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N/ha in the form of NH4NO3, while the organic rotations received 100– 110 kg N/ha as pig slurry. For at least 11 months, as from September 2007, static chambers were used to measure N2O emissions at least twice every calendar month. Mean daily N2O emissions across the year ranged from 172 to 438 mgN/m2/d at Flakkebjerg, and from 173 to 250 mgN/m2/d at Foulum. A multiple linear regression analysis showed inter-seasonal variations in emissions (P is less than 0.001), but annual N2O emissions from organic and conventional systems were not significantly different despite the lower N input in organic rotations. The annual emissions ranged from 54 to 137 mg N/ m2, which corresponded to 0.5–0.8% of the N applied in manure or mineral fertilizer. Selected soil attributes were monitored to support the interpretation of N2O emission patterns. A second multiple linear regression analysis with potential drivers of N2O emissions showed a negative response to soil temperature (P = 0.008) and percent water-filled pore space (WFPS) (P = 0.052) at Foulum. However, there were positive interactions of both factors with NO3-N, i.e., high N2O emissions occurred during periods when high soil nitrate levels coincided with high soil temperature (P = 0.016) or high soil water content (P = 0.056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:17.276Z", + "last_change_date": "2022-03-14T08:05:17.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10553, + "fields": { + "EF_ID": 421462, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emissions from soils", + "Technology_Practices": "Organic crop rotation with green manure (grass-clover) and with catch crops ((s. barley:ley-Grass-clover- Potato- w. wheat)", + "Parameter_Conditions": "The monitoring studies made in a long-term crop rotation experiments on soil at Foulum (56 deg. 30 min. N, 9 deg.34 min. E) in Western Denmark (Olesen et al., 2000). The Foulum (FO) soil is classified as a sandy loam, Typic Hapludult, with 77.9% sand, 13.3% silt and 8.8% clay in the plough layer (ca. 0–25 cm); 23 g SOC kg-1; 1.8 g total N/kg; pH 6.5 (CaCl2); 5.4 mg P/100 g; 13.1 mg K/100 g; 12.3 mequiv. CEC/100 g, and a bulk density of 1.35 g/cm3. The Foulum site has a mean annual rainfall of 704 mm. Mean annual air temperature is 7.3 8C.", + "Regional_Conditions": "Western Denmark", + "Control_Technologies": "", + "Other_Properties": "The study was done to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticumaestivum L.) within three organic and one conventional cropping system that differed in the type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha-1 in the form of NH4NO3, while the organic rotations received 100–110 kg N ha-1 as pig slurry (Chirinda et al., 2010).", + "Value": "0.0056", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chirinda N., Carter M. S., Albert K.R., Ambus P., Jørgen E. O., Porter J. R., Petersen S. O. 2010. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136 199–208", + "English_Abstract": "Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year. The main objective of this studywas to compare nitrous oxide (N2O) emissions from soil under winter wheat (TriticumaestivumL.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N/ha in the form of NH4NO3, while the organic rotations received 100– 110 kg N/ha as pig slurry. For at least 11 months, as from September 2007, static chambers were used to measure N2O emissions at least twice every calendar month. Mean daily N2O emissions across the year ranged from 172 to 438 mgN/m2/d at Flakkebjerg, and from 173 to 250 mgN/m2/d at Foulum. A multiple linear regression analysis showed inter-seasonal variations in emissions (P is less than 0.001), but annual N2O emissions from organic and conventional systems were not significantly different despite the lower N input in organic rotations. The annual emissions ranged from 54 to 137 mg N/ m2, which corresponded to 0.5–0.8% of the N applied in manure or mineral fertilizer. Selected soil attributes were monitored to support the interpretation of N2O emission patterns. A second multiple linear regression analysis with potential drivers of N2O emissions showed a negative response to soil temperature (P = 0.008) and percent water-filled pore space (WFPS) (P = 0.052) at Foulum. However, there were positive interactions of both factors with NO3-N, i.e., high N2O emissions occurred during periods when high soil nitrate levels coincided with high soil temperature (P = 0.016) or high soil water content (P = 0.056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of measurement: From September 2007 (immediately after sowing) and September 2008 (after harvest)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:17.377Z", + "last_change_date": "2022-03-14T08:05:17.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10554, + "fields": { + "EF_ID": 421463, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emissions from soils", + "Technology_Practices": "Organic crop rotation without green manure (grass-clover) and with catch crops ((s. barley:ley-Faba bean- Potato- w. wheat)", + "Parameter_Conditions": "The monitoring studies made in a long-term crop rotation experiments on soil at Foulum (56 deg. 30 min. N, 9 deg.34 min. E) in Western Denmark (Olesen et al., 2000). The Foulum (FO) soil is classified as a sandy loam, Typic Hapludult, with 77.9% sand, 13.3% silt and 8.8% clay in the plough layer (ca. 0–25 cm); 23 g SOC kg-1; 1.8 g total N/kg; pH 6.5 (CaCl2); 5.4 mg P/100 g; 13.1 mg K/100 g; 12.3 mequiv. CEC/100 g, and a bulk density of 1.35 g/cm3. The Foulum site has a mean annual rainfall of 704 mm. Mean annual air temperature is 7.3 8C.", + "Regional_Conditions": "Western Denmark", + "Control_Technologies": "", + "Other_Properties": "The study was done to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticumaestivum L.) within three organic and one conventional cropping system that differed in the type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha-1 in the form of NH4NO3, while the organic rotations received 100–110 kg N ha-1 as pig slurry (Chirinda et al., 2010).", + "Value": "0.0063", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chirinda N., Carter M. S., Albert K.R., Ambus P., Jørgen E. O., Porter J. R., Petersen S. O. 2010. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136 199–208", + "English_Abstract": "Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year. The main objective of this studywas to compare nitrous oxide (N2O) emissions from soil under winter wheat (TriticumaestivumL.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N/ha in the form of NH4NO3, while the organic rotations received 100– 110 kg N/ha as pig slurry. For at least 11 months, as from September 2007, static chambers were used to measure N2O emissions at least twice every calendar month. Mean daily N2O emissions across the year ranged from 172 to 438 mgN/m2/d at Flakkebjerg, and from 173 to 250 mgN/m2/d at Foulum. A multiple linear regression analysis showed inter-seasonal variations in emissions (P is less than 0.001), but annual N2O emissions from organic and conventional systems were not significantly different despite the lower N input in organic rotations. The annual emissions ranged from 54 to 137 mg N/ m2, which corresponded to 0.5–0.8% of the N applied in manure or mineral fertilizer. Selected soil attributes were monitored to support the interpretation of N2O emission patterns. A second multiple linear regression analysis with potential drivers of N2O emissions showed a negative response to soil temperature (P = 0.008) and percent water-filled pore space (WFPS) (P = 0.052) at Foulum. However, there were positive interactions of both factors with NO3-N, i.e., high N2O emissions occurred during periods when high soil nitrate levels coincided with high soil temperature (P = 0.016) or high soil water content (P = 0.056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of measurement: From September 2007 (immediately after sowing) and September 2008 (after harvest)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:17.486Z", + "last_change_date": "2022-03-14T08:05:17.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10555, + "fields": { + "EF_ID": 421464, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emissions from soils", + "Technology_Practices": "Organic crop rotation without green manure (grass-clover) and without catch crops ((s. barley:ley-Faba bean- Potato- w. wheat)", + "Parameter_Conditions": "The monitoring studies made in a long-term crop rotation experiments on soil at Foulum (56 deg. 30 min. N, 9 deg.34 min. E) in Western Denmark (Olesen et al., 2000). The Foulum (FO) soil is classified as a sandy loam, Typic Hapludult, with 77.9% sand, 13.3% silt and 8.8% clay in the plough layer (ca. 0–25 cm); 23 g SOC kg-1; 1.8 g total N/kg; pH 6.5 (CaCl2); 5.4 mg P/100 g; 13.1 mg K/100 g; 12.3 mequiv. CEC/100 g, and a bulk density of 1.35 g/cm3. The Foulum site has a mean annual rainfall of 704 mm. Mean annual air temperature is 7.3 8C.", + "Regional_Conditions": "Western Denmark", + "Control_Technologies": "", + "Other_Properties": "The study was done to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticumaestivum L.) within three organic and one conventional cropping system that differed in the type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha-1 in the form of NH4NO3, while the organic rotations received 100–110 kg N ha-1 as pig slurry (Chirinda et al., 2010).", + "Value": "0.0075", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chirinda N., Carter M. S., Albert K.R., Ambus P., Jørgen E. O., Porter J. R., Petersen S. O. 2010. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136 199–208", + "English_Abstract": "Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year. The main objective of this studywas to compare nitrous oxide (N2O) emissions from soil under winter wheat (TriticumaestivumL.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N/ha in the form of NH4NO3, while the organic rotations received 100– 110 kg N/ha as pig slurry. For at least 11 months, as from September 2007, static chambers were used to measure N2O emissions at least twice every calendar month. Mean daily N2O emissions across the year ranged from 172 to 438 mgN/m2/d at Flakkebjerg, and from 173 to 250 mgN/m2/d at Foulum. A multiple linear regression analysis showed inter-seasonal variations in emissions (P is less than 0.001), but annual N2O emissions from organic and conventional systems were not significantly different despite the lower N input in organic rotations. The annual emissions ranged from 54 to 137 mg N/ m2, which corresponded to 0.5–0.8% of the N applied in manure or mineral fertilizer. Selected soil attributes were monitored to support the interpretation of N2O emission patterns. A second multiple linear regression analysis with potential drivers of N2O emissions showed a negative response to soil temperature (P = 0.008) and percent water-filled pore space (WFPS) (P = 0.052) at Foulum. However, there were positive interactions of both factors with NO3-N, i.e., high N2O emissions occurred during periods when high soil nitrate levels coincided with high soil temperature (P = 0.016) or high soil water content (P = 0.056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of measurement: From September 2007 (immediately after sowing) and September 2008 (after harvest)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:17.595Z", + "last_change_date": "2022-03-14T08:05:17.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10556, + "fields": { + "EF_ID": 421465, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emissions from soils", + "Technology_Practices": "Conventional crop rotation without catch crops ((s. barley:ley-Faba bean- Potato- w. wheat)", + "Parameter_Conditions": "The monitoring studies made in a long-term crop rotation experiments on soil at Foulum (56 deg. 30 min. N, 9 deg.34 min. E) in Western Denmark (Olesen et al., 2000). The Foulum (FO) soil is classified as a sandy loam, Typic Hapludult, with 77.9% sand, 13.3% silt and 8.8% clay in the plough layer (ca. 0–25 cm); 23 g SOC kg-1; 1.8 g total N/kg; pH 6.5 (CaCl2); 5.4 mg P/100 g; 13.1 mg K/100 g; 12.3 mequiv. CEC/100 g, and a bulk density of 1.35 g/cm3. The Foulum site has a mean annual rainfall of 704 mm. Mean annual air temperature is 7.3 8C.", + "Regional_Conditions": "Western Denmark", + "Control_Technologies": "", + "Other_Properties": "The study was done to compare nitrous oxide (N2O) emissions from soil under winter wheat (Triticumaestivum L.) within three organic and one conventional cropping system that differed in the type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N ha-1 in the form of NH4NO3, while the organic rotations received 100–110 kg N ha-1 as pig slurry (Chirinda et al., 2010).", + "Value": "0.0062", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chirinda N., Carter M. S., Albert K.R., Ambus P., Jørgen E. O., Porter J. R., Petersen S. O. 2010. Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136 199–208", + "English_Abstract": "Conventional cropping systems rely on targeted short-term fertility management, whereas organic systems depend, in part, on long-term increase in soil fertility as determined by crop rotation and management. Such differences influence soil nitrogen (N) cycling and availability through the year. The main objective of this studywas to compare nitrous oxide (N2O) emissions from soil under winter wheat (TriticumaestivumL.) within three organic and one conventional cropping system that differed in type of fertilizer, presence of catch crops and proportion of N2-fixing crops. The study was replicated in two identical long-term crop rotation experiments on sandy loam soils under different climatic conditions in Denmark (Flakkebjerg—eastern Denmark and Foulum—western Denmark). The conventional rotation received 165–170 kg N/ha in the form of NH4NO3, while the organic rotations received 100– 110 kg N/ha as pig slurry. For at least 11 months, as from September 2007, static chambers were used to measure N2O emissions at least twice every calendar month. Mean daily N2O emissions across the year ranged from 172 to 438 mgN/m2/d at Flakkebjerg, and from 173 to 250 mgN/m2/d at Foulum. A multiple linear regression analysis showed inter-seasonal variations in emissions (P is less than 0.001), but annual N2O emissions from organic and conventional systems were not significantly different despite the lower N input in organic rotations. The annual emissions ranged from 54 to 137 mg N/ m2, which corresponded to 0.5–0.8% of the N applied in manure or mineral fertilizer. Selected soil attributes were monitored to support the interpretation of N2O emission patterns. A second multiple linear regression analysis with potential drivers of N2O emissions showed a negative response to soil temperature (P = 0.008) and percent water-filled pore space (WFPS) (P = 0.052) at Foulum. However, there were positive interactions of both factors with NO3-N, i.e., high N2O emissions occurred during periods when high soil nitrate levels coincided with high soil temperature (P = 0.016) or high soil water content (P = 0.056). A positive effect (P = 0.03) of soil temperature was identified at Flakkebjerg, but the number of soil samplings was limited. Effects of cropping system on N2O emissions were not observed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of measurement: From September 2007 (immediately after sowing) and September 2008 (after harvest)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:17.687Z", + "last_change_date": "2022-03-14T08:05:17.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10557, + "fields": { + "EF_ID": 421466, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor (EF1) for direct N2O emission from soils for Urea (150 kg N/ha) applied to Vertisols during the sorghum-fallow period in Australia", + "Technology_Practices": "The field experiment consisted of 6 treatments, arranged in a complete randomised block design with 3 replications. Plot size was 10 m width 20 m length. The treatments were: (1) control (2) 10 t/ha FLM (FLM10), (3) 20 t/ha FLM (FLM20), (4) 10 t/ha GWC (GWC10), (5) 10 t/ha of FLM and 10 t/ha GWC (FLM10 + GWC10), and (6) 150 kg N/ha as urea (Urea150). The application of FLM and GWC was made on 5 December 2006 to the sorghum crop. The organic amendments were spread manually and immediately rotovated to mix with soil to approximately 0.1 m depth. For urea N treatment, granular urea was evenly dropped on the soil surface and immediately rotovated to approximately 0.1m soil depth. Sorghum (S. bicolor Moench, cv. Pioneer 86G87) was sown on 21 December 2006, at the rate of about 5 kg/ha (150,000 seeds /ha) at 40mm depth and 750 mm row spacing. Sorghumcrop was harvested on 26 April 2007. The crop was irrigated once (50 mm) using a single jet style winch cannon that travelled down the centre line of the length of the trial in an East-West orientation.Weeds were controlled during fallow by application of glyphosphate. Glyphosphate as Roundup360 was applied at 2 L/ha using a standard fan pattern nozzle on a 12 m boom spray (Dalal et al. 2009)", + "Parameter_Conditions": "The field site was located on a flat alluvial plain on the Lockyer Creek in Gatton, South East Queensland, Australia (27 deg. 33 min. 56 sec.S and 152 deg. 19 min. 33 sec. E). The site was cleared of native bluegum (Eucalyptus tereticornis) and Moreton bay ash (Corymbia tesselaris) in 1897 for agriculture. Irrigation and cropping commenced at the site in 1946. Prior to this study, mostly sorghum crops were grown at the field site, generally fertiliser N applied at 100–150 kg N ha 1 and with 1–3 irrigations during the growing season, followed by 6 months of weed-free fallow. Soil at the field site is classified as a Vertisol (Udic Haplustert, USDA, 1975). The soil contains a high proportion of smectite clay (50–59%). Plant available water capacity of the soil is estimated to be 250 mm (Field Capacity–Wilting Point), with effective rooting depth of 1.2 m (Dalal et al., 2010).", + "Regional_Conditions": "Climate of the region is subtropical, with mean annual temperature of 20.5 deg. C and cumulative annual rainfall of 780 mm; almost 60% of rainfall is received during summer months (November to March inclusive) (Bureau of Meteorology, Australia).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0071", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dalal R.C., Gibson I., Allen D. E., Menzies N. W., 2009. Green waste compost reduces nitrous oxide emissions from feedlot manure applied to soil. Agriculture, Ecosystems and Environment 136 273–281", + "English_Abstract": "Australia produces in excess of 1 million tonnes of feedlotmanure (FLM) annually. Application of FLM to grain cropping and grazing soils could provide a valuable nutrient resource. However, because of high nutrient concentration, especially of N (is greater than 2%), FLM has the potential for environmental pollution, for example, N pollution to the water bodies and N2O emission to the atmosphere. Therefore, controlling N supply from FLM is essential for the judicious utilisation of FLM in the field as well as reducing N2O emission to the atmosphere. We utilised the low N concentration green waste compost (GWC, about 3 million tonnes produced annually) as a potential management tool to assess its effectiveness in regulating N release from FLM and controlling the rates of N2O emission from field application when both FLM and GWCwere applied together to sorghum (Sorghumbicolor Moench) grown on a Vertisol. We measured N2O emission rates during the sorghum crop and clean fallowing over one-year period in the field. Annual soil N2O emissions were 5.0 kg N2O/ha from urea applied at 150 kg N/ha, 5.1 and 5.5 kg N2O/ha from FLM applied at 10 and 20 t/ha respectively, 2.2 kg N2O/ha from GWC applied at 10 t/ha, 4.3 kg N2O/ha from FLM and GWC applied together at 10 t/ha each, and 3.3 kg N2O/ha from the unamended soil. Thus, we found that GWC application reduced N2O emissions below those from an unamended soil while annual emission rate from FLM approached that from fertiliser N application (0.7% N2O emission factor). A mixture of FLM + GWC applied at 10 t/ha each reduced N2O emission factor by 64% (the emission factor was 0.22%),most likely by reducing the amount of mineral N in the soil because soil NH4-N and NO3-N and the rate of N2O emission were significantly correlated in this soil. Since the global warming potential of N2O is 298 times that of CO2, even a small reduction in N2O emission from GWC application has a significant and positive impact on reducing global warming.", + "Lower_Bound": "0.0066", + "Upper_Bound": "0.0076", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "http://infolib.hua.edu.vn/Fulltext/ChuyenDe2009/CD248/46.pdf", + "creation_date": "2022-03-14T08:05:17.796Z", + "last_change_date": "2022-03-14T08:05:17.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10558, + "fields": { + "EF_ID": 421467, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for feed lot manure (FLM) (10 t/ha) applied to Vertisols during the sorghum-fallow period in Australia", + "Technology_Practices": "The field experiment consisted of 6 treatments, arranged in a complete randomised block design with 3 replications. Plot size was 10 m width 20 m length. The treatments were: (1) control (2) 10 t/ha FLM (FLM10), (3) 20 t/ha FLM (FLM20), (4) 10 t/ha GWC (GWC10), (5) 10 t/ha of FLM and 10 t/ha GWC (FLM10 + GWC10), and (6) 150 kg N/ha as urea (Urea150). The application of FLM and GWC was made on 5 December 2006 to the sorghum crop. The organic amendments were spread manually and immediately rotovated to mix with soil to approximately 0.1 m depth. For urea N treatment, granular urea was evenly dropped on the soil surface and immediately rotovated to approximately 0.1m soil depth. Sorghum (S. bicolor Moench, cv. Pioneer 86G87) was sown on 21 December 2006, at the rate of about 5 kg/ha (150,000 seeds /ha) at 40mm depth and 750 mm row spacing. Sorghumcrop was harvested on 26 April 2007. The crop was irrigated once (50 mm) using a single jet style winch cannon that travelled down the centre line of the length of the trial in an East-West orientation.Weeds were controlled during fallow by application of glyphosphate. Glyphosphate as Roundup360 was applied at 2 L/ha using a standard fan pattern nozzle on a 12 m boom spray (Dalal et al. 2009)", + "Parameter_Conditions": "The field site was located on a flat alluvial plain on the Lockyer Creek in Gatton, South East Queensland, Australia (27 deg. 33 min. 56 sec.S and 152 deg. 19 min. 33 sec. E). The site was cleared of native bluegum (Eucalyptus tereticornis) and Moreton bay ash (Corymbia tesselaris) in 1897 for agriculture. Irrigation and cropping commenced at the site in 1946. Prior to this study, mostly sorghum crops were grown at the field site, generally fertiliser N applied at 100–150 kg N ha 1 and with 1–3 irrigations during the growing season, followed by 6 months of weed-free fallow. Soil at the field site is classified as a Vertisol (Udic Haplustert, USDA, 1975). The soil contains a high proportion of smectite clay (50–59%). Plant available water capacity of the soil is estimated to be 250 mm (Field Capacity–Wilting Point), with effective rooting depth of 1.2 m (Dalal et al., 2010).", + "Regional_Conditions": "Climate of the region is subtropical, with mean annual temperature of 20.5 deg. C and cumulative annual rainfall of 780 mm; almost 60% of rainfall is received during summer months (November to March inclusive) (Bureau of Meteorology, Australia).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0061", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dalal R.C., Gibson I., Allen D. E., Menzies N. W., 2009. Green waste compost reduces nitrous oxide emissions from feedlot manure applied to soil. Agriculture, Ecosystems and Environment 136 273–281", + "English_Abstract": "Australia produces in excess of 1 million tonnes of feedlotmanure (FLM) annually. Application of FLM to grain cropping and grazing soils could provide a valuable nutrient resource. However, because of high nutrient concentration, especially of N (is greater than 2%), FLM has the potential for environmental pollution, for example, N pollution to the water bodies and N2O emission to the atmosphere. Therefore, controlling N supply from FLM is essential for the judicious utilisation of FLM in the field as well as reducing N2O emission to the atmosphere. We utilised the low N concentration green waste compost (GWC, about 3 million tonnes produced annually) as a potential management tool to assess its effectiveness in regulating N release from FLM and controlling the rates of N2O emission from field application when both FLM and GWCwere applied together to sorghum (Sorghumbicolor Moench) grown on a Vertisol. We measured N2O emission rates during the sorghum crop and clean fallowing over one-year period in the field. Annual soil N2O emissions were 5.0 kg N2O/ha from urea applied at 150 kg N/ha, 5.1 and 5.5 kg N2O/ha from FLM applied at 10 and 20 t/ha respectively, 2.2 kg N2O/ha from GWC applied at 10 t/ha, 4.3 kg N2O/ha from FLM and GWC applied together at 10 t/ha each, and 3.3 kg N2O/ha from the unamended soil. Thus, we found that GWC application reduced N2O emissions below those from an unamended soil while annual emission rate from FLM approached that from fertiliser N application (0.7% N2O emission factor). A mixture of FLM + GWC applied at 10 t/ha each reduced N2O emission factor by 64% (the emission factor was 0.22%),most likely by reducing the amount of mineral N in the soil because soil NH4-N and NO3-N and the rate of N2O emission were significantly correlated in this soil. Since the global warming potential of N2O is 298 times that of CO2, even a small reduction in N2O emission from GWC application has a significant and positive impact on reducing global warming.", + "Lower_Bound": "0.0056", + "Upper_Bound": "0.0066", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The application rate of FLM refers to oven-dried weight.", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "http://infolib.hua.edu.vn/Fulltext/ChuyenDe2009/CD248/46.pdf", + "creation_date": "2022-03-14T08:05:17.905Z", + "last_change_date": "2022-03-14T08:05:17.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10559, + "fields": { + "EF_ID": 421468, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for feed lot manure (FLM) (20 t/ha) applied to Vertisols during the sorghum-fallow period in Australia", + "Technology_Practices": "The field experiment consisted of 6 treatments, arranged in a complete randomised block design with 3 replications. Plot size was 10 m width 20 m length. The treatments were: (1) control (2) 10 t/ha FLM (FLM10), (3) 20 t/ha FLM (FLM20), (4) 10 t/ha GWC (GWC10), (5) 10 t/ha of FLM and 10 t/ha GWC (FLM10 + GWC10), and (6) 150 kg N/ha as urea (Urea150). The application of FLM and GWC was made on 5 December 2006 to the sorghum crop. The organic amendments were spread manually and immediately rotovated to mix with soil to approximately 0.1 m depth. For urea N treatment, granular urea was evenly dropped on the soil surface and immediately rotovated to approximately 0.1m soil depth. Sorghum (S. bicolor Moench, cv. Pioneer 86G87) was sown on 21 December 2006, at the rate of about 5 kg/ha (150,000 seeds /ha) at 40mm depth and 750 mm row spacing. Sorghumcrop was harvested on 26 April 2007. The crop was irrigated once (50 mm) using a single jet style winch cannon that travelled down the centre line of the length of the trial in an East-West orientation.Weeds were controlled during fallow by application of glyphosphate. Glyphosphate as Roundup360 was applied at 2 L/ha using a standard fan pattern nozzle on a 12 m boom spray (Dalal et al. 2009)", + "Parameter_Conditions": "The field site was located on a flat alluvial plain on the Lockyer Creek in Gatton, South East Queensland, Australia (27 deg. 33 min. 56 sec.S and 152 deg. 19 min. 33 sec. E). The site was cleared of native bluegum (Eucalyptus tereticornis) and Moreton bay ash (Corymbia tesselaris) in 1897 for agriculture. Irrigation and cropping commenced at the site in 1946. Prior to this study, mostly sorghum crops were grown at the field site, generally fertiliser N applied at 100–150 kg N ha 1 and with 1–3 irrigations during the growing season, followed by 6 months of weed-free fallow. Soil at the field site is classified as a Vertisol (Udic Haplustert, USDA, 1975). The soil contains a high proportion of smectite clay (50–59%). Plant available water capacity of the soil is estimated to be 250 mm (Field Capacity–Wilting Point), with effective rooting depth of 1.2 m (Dalal et al., 2010).", + "Regional_Conditions": "Climate of the region is subtropical, with mean annual temperature of 20.5 deg. C and cumulative annual rainfall of 780 mm; almost 60% of rainfall is received during summer months (November to March inclusive) (Bureau of Meteorology, Australia).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0038", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dalal R.C., Gibson I., Allen D. E., Menzies N. W., 2009. Green waste compost reduces nitrous oxide emissions from feedlot manure applied to soil. Agriculture, Ecosystems and Environment 136 273–281", + "English_Abstract": "Australia produces in excess of 1 million tonnes of feedlotmanure (FLM) annually. Application of FLM to grain cropping and grazing soils could provide a valuable nutrient resource. However, because of high nutrient concentration, especially of N (is greater than 2%), FLM has the potential for environmental pollution, for example, N pollution to the water bodies and N2O emission to the atmosphere. Therefore, controlling N supply from FLM is essential for the judicious utilisation of FLM in the field as well as reducing N2O emission to the atmosphere. We utilised the low N concentration green waste compost (GWC, about 3 million tonnes produced annually) as a potential management tool to assess its effectiveness in regulating N release from FLM and controlling the rates of N2O emission from field application when both FLM and GWCwere applied together to sorghum (Sorghumbicolor Moench) grown on a Vertisol. We measured N2O emission rates during the sorghum crop and clean fallowing over one-year period in the field. Annual soil N2O emissions were 5.0 kg N2O/ha from urea applied at 150 kg N/ha, 5.1 and 5.5 kg N2O/ha from FLM applied at 10 and 20 t/ha respectively, 2.2 kg N2O/ha from GWC applied at 10 t/ha, 4.3 kg N2O/ha from FLM and GWC applied together at 10 t/ha each, and 3.3 kg N2O/ha from the unamended soil. Thus, we found that GWC application reduced N2O emissions below those from an unamended soil while annual emission rate from FLM approached that from fertiliser N application (0.7% N2O emission factor). A mixture of FLM + GWC applied at 10 t/ha each reduced N2O emission factor by 64% (the emission factor was 0.22%),most likely by reducing the amount of mineral N in the soil because soil NH4-N and NO3-N and the rate of N2O emission were significantly correlated in this soil. Since the global warming potential of N2O is 298 times that of CO2, even a small reduction in N2O emission from GWC application has a significant and positive impact on reducing global warming.", + "Lower_Bound": "0.0043", + "Upper_Bound": "0.0043", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The application rate of FLM refers to oven-dried weight.", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "http://infolib.hua.edu.vn/Fulltext/ChuyenDe2009/CD248/46.pdf", + "creation_date": "2022-03-14T08:05:18.008Z", + "last_change_date": "2022-03-14T08:05:18.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10560, + "fields": { + "EF_ID": 421469, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for green waste compost (GWC) (10 t/ha) applied to Vertisols during the sorghum-fallow period in Australia", + "Technology_Practices": "The field experiment consisted of 6 treatments, arranged in a complete randomised block design with 3 replications. Plot size was 10 m width 20 m length. The treatments were: (1) control (2) 10 t/ha FLM (FLM10), (3) 20 t/ha FLM (FLM20), (4) 10 t/ha GWC (GWC10), (5) 10 t/ha of FLM and 10 t/ha GWC (FLM10 + GWC10), and (6) 150 kg N/ha as urea (Urea150). The application of FLM and GWC was made on 5 December 2006 to the sorghum crop. The organic amendments were spread manually and immediately rotovated to mix with soil to approximately 0.1 m depth. For urea N treatment, granular urea was evenly dropped on the soil surface and immediately rotovated to approximately 0.1m soil depth. Sorghum (S. bicolor Moench, cv. Pioneer 86G87) was sown on 21 December 2006, at the rate of about 5 kg/ha (150,000 seeds /ha) at 40mm depth and 750 mm row spacing. Sorghumcrop was harvested on 26 April 2007. The crop was irrigated once (50 mm) using a single jet style winch cannon that travelled down the centre line of the length of the trial in an East-West orientation.Weeds were controlled during fallow by application of glyphosphate. Glyphosphate as Roundup360 was applied at 2 L/ha using a standard fan pattern nozzle on a 12 m boom spray (Dalal et al. 2009)", + "Parameter_Conditions": "The field site was located on a flat alluvial plain on the Lockyer Creek in Gatton, South East Queensland, Australia (27 deg. 33 min. 56 sec.S and 152 deg. 19 min. 33 sec. E). The site was cleared of native bluegum (Eucalyptus tereticornis) and Moreton bay ash (Corymbia tesselaris) in 1897 for agriculture. Irrigation and cropping commenced at the site in 1946. Prior to this study, mostly sorghum crops were grown at the field site, generally fertiliser N applied at 100–150 kg N ha 1 and with 1–3 irrigations during the growing season, followed by 6 months of weed-free fallow. Soil at the field site is classified as a Vertisol (Udic Haplustert, USDA, 1975). The soil contains a high proportion of smectite clay (50–59%). Plant available water capacity of the soil is estimated to be 250 mm (Field Capacity–Wilting Point), with effective rooting depth of 1.2 m (Dalal et al., 2010).", + "Regional_Conditions": "Climate of the region is subtropical, with mean annual temperature of 20.5 deg. C and cumulative annual rainfall of 780 mm; almost 60% of rainfall is received during summer months (November to March inclusive) (Bureau of Meteorology, Australia).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-0.0074", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dalal R.C., Gibson I., Allen D. E., Menzies N. W., 2009. Green waste compost reduces nitrous oxide emissions from feedlot manure applied to soil. Agriculture, Ecosystems and Environment 136 273–281", + "English_Abstract": "Australia produces in excess of 1 million tonnes of feedlotmanure (FLM) annually. Application of FLM to grain cropping and grazing soils could provide a valuable nutrient resource. However, because of high nutrient concentration, especially of N (is greater than 2%), FLM has the potential for environmental pollution, for example, N pollution to the water bodies and N2O emission to the atmosphere. Therefore, controlling N supply from FLM is essential for the judicious utilisation of FLM in the field as well as reducing N2O emission to the atmosphere. We utilised the low N concentration green waste compost (GWC, about 3 million tonnes produced annually) as a potential management tool to assess its effectiveness in regulating N release from FLM and controlling the rates of N2O emission from field application when both FLM and GWCwere applied together to sorghum (Sorghumbicolor Moench) grown on a Vertisol. We measured N2O emission rates during the sorghum crop and clean fallowing over one-year period in the field. Annual soil N2O emissions were 5.0 kg N2O/ha from urea applied at 150 kg N/ha, 5.1 and 5.5 kg N2O/ha from FLM applied at 10 and 20 t/ha respectively, 2.2 kg N2O/ha from GWC applied at 10 t/ha, 4.3 kg N2O/ha from FLM and GWC applied together at 10 t/ha each, and 3.3 kg N2O/ha from the unamended soil. Thus, we found that GWC application reduced N2O emissions below those from an unamended soil while annual emission rate from FLM approached that from fertiliser N application (0.7% N2O emission factor). A mixture of FLM + GWC applied at 10 t/ha each reduced N2O emission factor by 64% (the emission factor was 0.22%),most likely by reducing the amount of mineral N in the soil because soil NH4-N and NO3-N and the rate of N2O emission were significantly correlated in this soil. Since the global warming potential of N2O is 298 times that of CO2, even a small reduction in N2O emission from GWC application has a significant and positive impact on reducing global warming.", + "Lower_Bound": "-0.0074", + "Upper_Bound": "-0.0078", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The application rate of GWC refers to oven-dried weight.", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "http://infolib.hua.edu.vn/Fulltext/ChuyenDe2009/CD248/46.pdf", + "creation_date": "2022-03-14T08:05:18.116Z", + "last_change_date": "2022-03-14T08:05:18.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10561, + "fields": { + "EF_ID": 421470, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for feed lot manure (FLM) + green waste compost (GWC) (10 t/ha each) applied to Vertisols during the sorghum-fallow period in Australia", + "Technology_Practices": "The field experiment consisted of 6 treatments, arranged in a complete randomised block design with 3 replications. Plot size was 10 m width 20 m length. The treatments were: (1) control (2) 10 t/ha FLM (FLM10), (3) 20 t/ha FLM (FLM20), (4) 10 t/ha GWC (GWC10), (5) 10 t/ha of FLM and 10 t/ha GWC (FLM10 + GWC10), and (6) 150 kg N/ha as urea (Urea150). The application of FLM and GWC was made on 5 December 2006 to the sorghum crop. The organic amendments were spread manually and immediately rotovated to mix with soil to approximately 0.1 m depth. For urea N treatment, granular urea was evenly dropped on the soil surface and immediately rotovated to approximately 0.1m soil depth. Sorghum (S. bicolor Moench, cv. Pioneer 86G87) was sown on 21 December 2006, at the rate of about 5 kg/ha (150,000 seeds /ha) at 40mm depth and 750 mm row spacing. Sorghumcrop was harvested on 26 April 2007. The crop was irrigated once (50 mm) using a single jet style winch cannon that travelled down the centre line of the length of the trial in an East-West orientation.Weeds were controlled during fallow by application of glyphosphate. Glyphosphate as Roundup360 was applied at 2 L/ha using a standard fan pattern nozzle on a 12 m boom spray (Dalal et al. 2009)", + "Parameter_Conditions": "The field site was located on a flat alluvial plain on the Lockyer Creek in Gatton, South East Queensland, Australia (27 deg. 33 min. 56 sec.S and 152 deg. 19 min. 33 sec. E). The site was cleared of native bluegum (Eucalyptus tereticornis) and Moreton bay ash (Corymbia tesselaris) in 1897 for agriculture. Irrigation and cropping commenced at the site in 1946. Prior to this study, mostly sorghum crops were grown at the field site, generally fertiliser N applied at 100–150 kg N ha 1 and with 1–3 irrigations during the growing season, followed by 6 months of weed-free fallow. Soil at the field site is classified as a Vertisol (Udic Haplustert, USDA, 1975). The soil contains a high proportion of smectite clay (50–59%). Plant available water capacity of the soil is estimated to be 250 mm (Field Capacity–Wilting Point), with effective rooting depth of 1.2 m (Dalal et al., 2010).", + "Regional_Conditions": "Climate of the region is subtropical, with mean annual temperature of 20.5 deg. C and cumulative annual rainfall of 780 mm; almost 60% of rainfall is received during summer months (November to March inclusive) (Bureau of Meteorology, Australia).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0022", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dalal R.C., Gibson I., Allen D. E., Menzies N. W., 2009. Green waste compost reduces nitrous oxide emissions from feedlot manure applied to soil. Agriculture, Ecosystems and Environment 136 273–281", + "English_Abstract": "Australia produces in excess of 1 million tonnes of feedlotmanure (FLM) annually. Application of FLM to grain cropping and grazing soils could provide a valuable nutrient resource. However, because of high nutrient concentration, especially of N (is greater than 2%), FLM has the potential for environmental pollution, for example, N pollution to the water bodies and N2O emission to the atmosphere. Therefore, controlling N supply from FLM is essential for the judicious utilisation of FLM in the field as well as reducing N2O emission to the atmosphere. We utilised the low N concentration green waste compost (GWC, about 3 million tonnes produced annually) as a potential management tool to assess its effectiveness in regulating N release from FLM and controlling the rates of N2O emission from field application when both FLM and GWCwere applied together to sorghum (Sorghumbicolor Moench) grown on a Vertisol. We measured N2O emission rates during the sorghum crop and clean fallowing over one-year period in the field. Annual soil N2O emissions were 5.0 kg N2O/ha from urea applied at 150 kg N/ha, 5.1 and 5.5 kg N2O/ha from FLM applied at 10 and 20 t/ha respectively, 2.2 kg N2O/ha from GWC applied at 10 t/ha, 4.3 kg N2O/ha from FLM and GWC applied together at 10 t/ha each, and 3.3 kg N2O/ha from the unamended soil. Thus, we found that GWC application reduced N2O emissions below those from an unamended soil while annual emission rate from FLM approached that from fertiliser N application (0.7% N2O emission factor). A mixture of FLM + GWC applied at 10 t/ha each reduced N2O emission factor by 64% (the emission factor was 0.22%),most likely by reducing the amount of mineral N in the soil because soil NH4-N and NO3-N and the rate of N2O emission were significantly correlated in this soil. Since the global warming potential of N2O is 298 times that of CO2, even a small reduction in N2O emission from GWC application has a significant and positive impact on reducing global warming.", + "Lower_Bound": "0.0019", + "Upper_Bound": "0.0025", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The application rates of FLM and GWC refers oven-dried weight.", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "http://infolib.hua.edu.vn/Fulltext/ChuyenDe2009/CD248/46.pdf", + "creation_date": "2022-03-14T08:05:18.333Z", + "last_change_date": "2022-03-14T08:05:18.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10562, + "fields": { + "EF_ID": 421471, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils for the application of synthetic fertilizer (calcium ammonium nitrate) in annual crops (rape, rye, triticale, hemp, sorghum)", + "Technology_Practices": "1. Mineral fertilization of annual crops (rape, rye, triticale, hemp, sorghum) with calcium ammonium nitrate; 2. Emission factors were calculated as annual N2O-N flux differences from fertilized and non-fertilized plots related to fertilization, all validated measurements included", + "Parameter_Conditions": "The experimental field with a total area of 4.1 ha was divided into 10 long plots of 0.25 ha each cultivated with annual and perennial crops. Each plot was subdivided into 4 blocks of 624 m2 each. One block of each plot received conventional basic mineral fertilization and 150 kg N ha-1 yr-1. The second and third blocks of each plot received wood and straw ashes as well as 75 kg N ha-1 yr-1. The fourth block of each plot was not fertilized. Gas flux measurements were performed four times a week using closed chamber technique and a gas chromatograph (GC: Shimadzu GC 14A) (Hellebrand et. al., 2008).", + "Regional_Conditions": "Central Europe, loamy sand, Corg below 10 g/kg, mean annual temperature 10 degrees centigrade, mean annual precipitation 600 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00996", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hellebrand, H.J., Scholz, V., Kern, J., 2008. Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmospheric Environment 36, 1635–1644.", + "English_Abstract": "Nitrous oxide (N2O) fluxes from a loamy sand soil have been collected at an experimental field since 1999. To study the nitrogen (N) fertilizer induced emissions, annual crops and perennial plants received three different levels of N fertilization: 0, 75, and 150 kg N ha 1. N2O was measured by gas chromatography and closed chamber technique. Water content of the soil was determined gravimetrically and the soil content of mineral N by ion chromatography. The N2O fluxes were below 30 mgN2Om 2 h 1 during the winter season and varied from 10 to more than 1000 mgN2Om 2 h 1 in the course of the vegetation season. N2O emissions after N fertilization were assigned to fertilizer-induced emissions. High N2O emissions at the end of the vegetation period are the result of increased mineralization of soil organic matter. N2O emissions from freeze–thaw cycles gave only a small contribution to the total annual N2O emission budget from all blocks studied. Since the mean soil moisture content is very low (10%) and the water-filled pore space (WFPS) correlates negatively with N2O emissions, nitrification is considered the main source for N2O emissions. Evaluation of the data regarding dependence on fertilization level indicates that N2O fluxes are positively correlated to soil NO3-N content. The N2O fluxes from annual crop plots are higher than those from plots with perennial plants (grass, willow, poplar). The mean N2O-N emission factor for fertilizer-induced emissions from tilled soil is 1.0% in contrast to that of non-tilled soil with 0.7%. The mean fertilizer-induced N2O-N emissions, averaged over all crops and the total period of nine years, are in the range of 0.8 0.2% of the N fertilizer applied.", + "Lower_Bound": "0.005595", + "Upper_Bound": "0.011562", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "78 emission factors based on 16678 flux results out of a total data set of 39 594 validated results of N2O flux measurements between 1999 and 2007", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "http://dx.doi.org/10.1016/j.atmosenv.2008.08.006 http://linkinghub.elsevier.com/retrieve/pii/S1352231008007504", + "creation_date": "2022-03-14T08:05:18.442Z", + "last_change_date": "2022-03-14T08:05:18.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10563, + "fields": { + "EF_ID": 421472, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor (EF1) for direct N2O emission from soils for the application of synthetic fertilizer (calcium ammonium nitrate) in perennial crops (short-rotation coppice willow and poplar; Orchard grass)", + "Technology_Practices": "1. Mineral fertilization of perennial crops (short-rotation coppice willow and poplar; Orchard grass); 2. Emission factors were calculated as annual N2O-N flux differences from fertilized and non-fertilized plots related to fertilization, all validated measurements included", + "Parameter_Conditions": "The experimental field with a total area of 4.1 ha was divided into 10 long plots of 0.25 ha each cultivated with annual and perennial crops. Each plot was subdivided into 4 blocks of 624 m2 each. One block of each plot received conventional basic mineral fertilization and 150 kg N ha-1 yr-1. The second and third blocks of each plot received wood and straw ashes as well as 75 kg N ha-1 yr-1. The fourth block of each plot was not fertilized. Gas flux measurements were performed four times a week using closed chamber technique and a gas chromatograph (GC: Shimadzu GC 14A) (Hellebrand et. al., 2008).", + "Regional_Conditions": "Central Europe, loamy sand, Corg below 10 g/kg, mean annual temperature 10 degrees centigrade, mean annual precipitation 600 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00674", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hellebrand, H.J., Scholz, V., Kern, J., 2008. Fertiliser induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmospheric Environment 36, 1635–1644.", + "English_Abstract": "Nitrous oxide (N2O) fluxes from a loamy sand soil have been collected at an experimental field since 1999. To study the nitrogen (N) fertilizer induced emissions, annual crops and perennial plants received three different levels of N fertilization: 0, 75, and 150 kg N/ha. N2O was measured by gas chromatography and closed chamber technique. Water content of the soil was determined gravimetrically and the soil content of mineral N by ion chromatography. The N2O fluxes were below 30 mgN2O/m2/h during the winter season and varied from 10 to more than 1000 mgN2O/m2/h in the course of the vegetation season. N2O emissions after N fertilization were assigned to fertilizer-induced emissions. High N2O emissions at the end of the vegetation period are the result of increased mineralization of soil organic matter. N2O emissions from freeze–thaw cycles gave only a small contribution to the total annual N2O emission budget from all blocks studied. Since the mean soil moisture content is very low (10%) and the water-filled pore space (WFPS) correlates negatively with N2O emissions, nitrification is considered the main source for N2O emissions. Evaluation of the data regarding dependence on fertilization level indicates that N2O fluxes are positively correlated to soil NO3-N content. The N2O fluxes from annual crop plots are higher than those from plots with perennial plants (grass, willow, poplar). The mean N2O-N emission factor for fertilizer-induced emissions from tilled soil is 1.0% in contrast to that of non-tilled soil with 0.7%. The mean fertilizer-induced N2O-N emissions, averaged over all crops and the total period of nine years, are in the range of 0.8 0.2% of the N fertilizer applied.", + "Lower_Bound": "0.005942", + "Upper_Bound": "0.010218", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "90 emission factors based on 22916 flux results out of a total data set of 39 594 validated results of N2O flux measurements between 1999 and 2007", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "http://dx.doi.org/10.1016/j.atmosenv.2008.08.006 http://linkinghub.elsevier.com/retrieve/pii/S1352231008007504", + "creation_date": "2022-03-14T08:05:18.551Z", + "last_change_date": "2022-03-14T08:05:18.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10564, + "fields": { + "EF_ID": 421473, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Regression equation for the emission factor for direct N2O emission from soils", + "Technology_Practices": "This regression equation has been derived based on the field trials that were conducted on five Michigan commercially farmed corn fields as reported by Hoben et al. (2010). Fertilizer N was broadcasted and incorporated before planting. Six N rates ranging from 0-255 kg N ha-1 were applied. Regression for daily flux was performed on 48 data points representing 8 site year averages at 6 fertilizer N rates (4 replicate strips at each N rate per site).", + "Parameter_Conditions": "", + "Regional_Conditions": "US Midwest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See the `Equation` field", + "Unit": "kg N2O-N/kg N input", + "Equation": "EF2 = 0.012 x exp[0.00475 x (FSN + FON)] where: EF2 = Emission factor for direct N2O from soils; FSN= Mass of N applied from synthetic fertilizer, kg N/ha/yr; FON = Mass of N applied from organic fertilizer, kg N2O–N/ha/yr", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "1. Millar, N., Robertson. G.P., Grace, P. R., Gehl, J.R., Hoben, J.P., 2010. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture. Mitig Adapt Strateg Glob Change 15:185–204 2. Hoben J., Gehl R. J., Millar N., Grace P.R., Robertson G.P., 2010. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology, doi: 10.1111/j.1365-2486.2010.02349.x", + "English_Abstract": "Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in rowcrop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. The formula has been developed based on data on Michigan soils; 2. This paper does not report experimental results as stated in Technologies/Practices, but encapsulates the measurements undertaken by Hoben et al.; Empirical fit to several measurement-based reports of EF as a function of applied N (see Hoben et al. Global Change Biol. (2010) doi:/j.1365-2486.2010.02349.x", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02349.x/abstract http://www.springerlink.com/content/l2n3gh1370p5h656/fulltext.pdf", + "creation_date": "2022-03-14T08:05:18.668Z", + "last_change_date": "2022-03-14T08:05:18.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10565, + "fields": { + "EF_ID": 421474, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression equation for the emission factor for direct N2O emission from soils due to plant residues N application", + "Technology_Practices": "Plant residue N application to soils", + "Parameter_Conditions": "", + "Regional_Conditions": "World wide", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See the `Equation` field", + "Unit": "kg N2O-N/kg N input", + "Equation": "EF = -0.0404+0.0078*ApM+0.000044*Rain+0.0057*Tem-0.0001975*Tem^2, where EF = N (kg/ha) applied in plant residues (NPR); ApM = Application method of plant residues (0: Incorporated, 1: Mulch); Rain = Av. rain (mm); Tem = Avg. temperature (deg. C)", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Novoa R. S. A., Tejeda H. R.., 2006. Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutrient Cycling in Agroecosystems (2006) 75:29 –46", + "English_Abstract": "A review of the N2O-N emission from crop residues was conducted based on new data published during the last decade. The results indicate that factors as type of crop, biochemical quality of residues,agricultural management, ckimate and season of the year, soil properties,and soil moisture play a significan role in the rate of N2O emissions.An emission factor (EF) equal to 1.055% of N applied in plant residues – derived froma simple linear rewgression of emitted N2O-N (kg/ha) on N applied in crop residues represent an estimate that explains about 60% of emission variations. However, the EF of N applied in plant residies (kg/ha) represent an estimate that explains about 60% of emission variations. However, the EF of N applied in plant residues is not a constant but a variable coefficient that depends on environmental and management variables. The following two linear models – that estimate emitted N2O-N (kg/ha) as a function of the variables N (kg ha)1) applied in plant residues (NPR), rain (mm), temperature ( C) and temperature2 ( C2) – were fitted to the dataset with 45 observations obtained from the reviewed literature. N2O-N = -4.154 + 0.00955 NPR + 1.7278 ApM + 0.003996 Rain + 0.6242 Tem - 0.0230 Tem2 and N2O-N = 0.6535 + [ -0.0404 + 0.0078 ApM + 0:000044 Rain þ 0.00567 Tem - 0:0001975 Tem2 ] NPR. Both models provided almost equally good statistical fit to the data, with R2=0.832 and R2=0.829, respectively, and most regression coefficients being significant at P less than 0.01. Because of its internal structure,the second model is more appealing as it represents N2O-N emission as a transformation that is affected by management and environmental variables. The following expression – that correspond to the quantities in the square bracket at the right hand side of the second model – is the coefficient for the variable N applied in crop residues, and represent the emission factor as a function of application method of plant residues, rain, temperature and temperature2. EF = 0.0404 + 0.0078 ApM + 0.000044 Rain + 0:00567 Tem - 0.0001975 Tem2 Standardization of research methodologies and data gathering and reporting, including kind of crop, N content of applied residues, agricultural management, length of the measuring period, climate, soils properties, soil temperature and water content, would facilitate further advances in studies oriented to increase the precision of N2O-N emission estimates.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "ApM is either 0 (residue incorporated into soil) or 1 (residue left on surface as mulch), Temp is annual mean temperature in degC, and Rain is the annual rainfall (not including irrigation) in mm. Formula was developed through regression analysis for a range of residue types for annual mean temperatures in the range 6-23 deg C, annual rainfall in the range 47-700 mm. The mean EF from all data analysed is 0.0105.", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "DOI 10.1007/s10705-006-9009-y", + "creation_date": "2022-03-14T08:05:18.769Z", + "last_change_date": "2022-03-14T08:05:18.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10566, + "fields": { + "EF_ID": 421475, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factor for direct N2O emission from soils due to plant residues N application", + "Technology_Practices": "Plant residue N application to soils", + "Parameter_Conditions": "", + "Regional_Conditions": "World wide", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0105", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Novoa R. S. A., Tejeda H. R.., 2006. Evaluation of the N2O emissions from N in plant residues as affected by environmental and management factors. Nutrient Cycling in Agroecosystems (2006) 75:29 –46", + "English_Abstract": "A review of the N2O-N emission from crop residues was conducted based on new data published during the last decade. The results indicate that factors as type of crop, biochemical quality of residues,agricultural management, ckimate and season of the year, soil properties,and soil moisture play a significan role in the rate of N2O emissions.An emission factor (EF) equal to 1.055% of N applied in plant residues – derived froma simple linear rewgression of emitted N2O-N (kg/ha) on N applied in crop residues represent an estimate that explains about 60% of emission variations. However, the EF of N applied in plant residies (kg/ha) represent an estimate that explains about 60% of emission variations. However, the EF of N applied in plant residues is not a constant but a variable coefficient that depends on environmental and management variables. The following two linear models – that estimate emitted N2O-N (kg/ha) as a function of the variables N (kg ha)1) applied in plant residues (NPR), rain (mm), temperature ( C) and temperature2 ( C2) – were fitted to the dataset with 45 observations obtained from the reviewed literature. N2O-N = -4.154 + 0.00955 NPR + 1.7278 ApM + 0.003996 Rain + 0.6242 Tem - 0.0230 Tem2 and N2O-N = 0.6535 + [ -0.0404 + 0.0078 ApM + 0:000044 Rain þ 0.00567 Tem - 0:0001975 Tem2 ] NPR. Both models provided almost equally good statistical fit to the data, with R2=0.832 and R2=0.829, respectively, and most regression coefficients being significant at P less than 0.01. Because of its internal structure,the second model is more appealing as it represents N2O-N emission as a transformation that is affected by management and environmental variables. The following expression – that correspond to the quantities in the square bracket at the right hand side of the second model – is the coefficient for the variable N applied in crop residues, and represent the emission factor as a function of application method of plant residues, rain, temperature and temperature2. EF = 0.0404 + 0.0078 ApM + 0.000044 Rain + 0:00567 Tem - 0.0001975 Tem2 Standardization of research methodologies and data gathering and reporting, including kind of crop, N content of applied residues, agricultural management, length of the measuring period, climate, soils properties, soil temperature and water content, would facilitate further advances in studies oriented to increase the precision of N2O-N emission estimates.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "DOI 10.1007/s10705-006-9009-y", + "creation_date": "2022-03-14T08:05:18.870Z", + "last_change_date": "2022-03-14T08:05:18.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10567, + "fields": { + "EF_ID": 421476, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Fraction of all N added to soils as animal excreta or fertilizer lost through leaching or runoff (FracLEACH)", + "Technology_Practices": "The OVERSEER nutrient budget model is an empirical, annual time-step model (Ledgard et al. 1999b; Wheeler et al. 2003). It provides average estimates of nutrient loss N, phosphorus, potassium and sulphur in kg ha 1 yr 1, ignoring yearto- year variability due to climate (Thomas et al., 2005).", + "Parameter_Conditions": "In New Zealand, arable cropping and intensive vegetable farms occupy only a small proportion of land compared to pastoral farming.", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "Kg N2O-N/kg N leaching/runoff", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.10 - N2O Emissions from N leaching/runoff from managed soils in regions where leaching/runoff occurs (Tier 1); 2. GPG: Equation 4.34 - Deposited N from leaching/runoff & Equation 4.35 - Deposited N from leaching/runoff (expanded as to animal manure); 3. 1996 IPCC Guidelines: Equation 3, p. 4.106, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C5(2 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thomas S. M., Ledgard S. F., Francis G. S., 2005. Improving estimates of nitrate leaching for quantifying New Zealand`s indirect nitrous oxide emissions. Nutrient Cycling in Agroecosystems 73:213–226", + "English_Abstract": "New Zealand`s indirect nitrous oxide (N2O) emissions have been estimated to contribute approximately 23% of the national nitrous oxide inventory. However, there is great uncertainty about this figure. Currently the intergovernmental panel for climate change (IPCC) calculation is used, where a proportion (FracLEACH) of nitrogen (N) applied to land as animal excreta or fertiliser is leached or runs off, and a further proportion is later emitted as N2O. New Zealand has been using a value of 0.15 (FracLEACH[NZ]) and this paper examined whether (FracLEACH[NZ]) is appropriate for New Zealand conditions. For a range of typical farming systems, we compared N leaching estimates calculated using the IPCC formula with estimates obtained using the OVERSEER nutrient budget model calibrated for New Zealand conditions. The comparison suggested that FracLEACH[NZ] is too high for dairy and sheep and beef farming systems. In contrast, the FracLEACH values estimated for arable and intensive vegetable systems using the OVERSEER model were much closer to 0.3 (the IPCC default value). However, in New Zealand, arable cropping and intensive vegetable farms occupy only a small proportion of land compared to pastoral farming. Based on this study, we suggest that a FracLEACH value of 0.07 is appropriate for New Zealand conditions; this more accurately reflects the proportion of N applied to pastoral land that may leach or runoff. Using this value in the IPCC calculation for the New Zealand inventory would approximately halve the national estimate of indirect N2O emissions due to leaching or runoff of N, reducing the national estimate of N2O emissions by 12%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "External Quality Control Performed: Outputs from the model have been validated against data on leaching from grazed pastoral systems.", + "Other_Comments": "", + "Data_Provider": "Keith Lassey", + "Link": "", + "creation_date": "2022-03-14T08:05:18.979Z", + "last_change_date": "2022-03-14T08:05:18.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10568, + "fields": { + "EF_ID": 421477, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor (EF1) for direct N2O emission from soils in a fertilized timothy (Phleum pratense L.) sward on the northern island of Hokkaido, Japan", + "Technology_Practices": "Experimental plots using a randomized block design were established in mid-October 2003, with three replicates (blocks) and five treatments: (1) CF (as (NH4)2SO4) application in autumn (27 October 2003, 25 October 2004), (2) ADCS application in autumn (dates as above), (3) no nitrogen application (Control), (4) CF application in spring (22 April 2004, 28 April 2005), (5) ADCS application in spring (dates as above). Both ADCS and CF were manually applied onto the surface of the grassland, (Sawamoto et al., 2010).", + "Parameter_Conditions": "The field study was carried out in timothy (Phleum pratense L.) grassland established in 2002 at the Rakuno Gakuen University, central Hokkaido, Japan (43 04 deg. N, 141 30 deg. E, 61 m a.s.l.). The soil was gray upland soil (Aeric, Typic, Epiaquults). The Ap horizon was at a depth of 0–20 cm. The bulk density and texture were 0.81 Mg m-3 and loam (clay 14%, silt 43% and sand 43%), respectively. The pH (H2O), total carbon content, total nitrogen content and cation exchange capacity were 6.3, 30 g kg)1, 2.5 g kg)1 and 39 cmol(+) kg)-1, respectively. The 5-year (2003–2007) averages of precipitation and air temperature were 928 mm year-1 and 7.0 C, respectively (from the nearest weather station, 7 km north-east of the site [JapanMeteorological Agency 2008]) (Sawamoto et al., 2010).", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0024", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sawamoto T., Yoshida R., Abe K., Matsunaka T., 2010. No significant difference in N2O emission, fertilizer-induced N2O emission factor and CH4 absorption between anaerobically digested cattle slurry and chemical fertilizer applied timothy (Phleum pratense L.) sward in central Hokkaido, Japan. Soil Science and Plant Nutrition 56: 492-502", + "English_Abstract": "Nitrous oxide (N2O) and methane (CH4) fluxes from a fertilized timothy (Phleum pratense L.) sward on the northern island of Japan were measured over 2 years using a randomized block design in the field. The objectives of the present study were to obtain annual N2O and CH4 emission rates and to elucidate the effect of the applied material (control [no nitrogen], anaerobically digested cattle slurry [ADCS] or chemical fertilizer [CF]) and the application season (autumn or spring) on the annual N2O emission, fertilizer-induced N2O emission factor (EF) and the annual CH4 absorption. Ammonium sulfate was applied to the CF plots at the same application rate of NH4-N to the ADCS plots. A three-way ANOVA was used to examine the significance of the factors (the applied material, the application season and the year). The ANOVA for the annual N2O emission rates showed a significant effect with regard to the applied material (P = 0.042). The annual N2O emission rate from the control plots (0.398 kg N2O-N ha)1 year)1) was significantly lower than that from the ADCS plots (0.708 kg N2O-N ha)1 year)1) and the CF plots (0.636 kg N2O-N ha)1 year)1). There was no significant difference in the annual N2O emission rate between the ADCS and CF plots. The ANOVA for the EFs showed insignificance of all factors (P is greater than 0.05). The total mean +/- standard error of the EFs (fertilizer-induced N2O-N emission/ total applied N) was 0.0024 +/- 0.0007 (kg N2O-N [kg N])1), which is similar to the reported EF (0.0032 +/- 0.0013) for well-drained uplands in Japan. The CH4 absorption rates differed significantly between years (P = 0.014). The CH4 absorption rate in the first year (3.28 kg CH4 ha)1 year)1) was higher than that in the second year (2.31 kg CH4 ha)1 year)1), probably as a result of lower precipitation in the first year. In conclusion, under the same application rate of NH4-N, differences in the applied materials (ADCS or CF) and the application season (autumn or spring) led to no significant differences in N2O emission, fertilizer-induced N2O EF and CH4 absorption.", + "Lower_Bound": "0.0017", + "Upper_Bound": "0.0031", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Rafael Novoa", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1747-0765.2010.00465.x/pdf", + "creation_date": "2022-03-14T08:05:19.088Z", + "last_change_date": "2022-03-14T08:05:19.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10569, + "fields": { + "EF_ID": 421478, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils from continuously flooded rice cultivation", + "Technology_Practices": "Measurements of direct N2O emission were complied from rice field studies that were published to date in peer-reviewed Chinese and English journals. Data published in Chinese were gathered from the Chinese Journal Net (CJN) full-text database and those in English from the Science Citation Index (SCI) database. Measurements of N2O flux taken from field studies over an abnormally shorter period (e.g., Xu et al., 1995), from pot experiments (e.g., Xiong et al., 2003a) or from incubation studies (e.g., Yan et al., 2000) were not considered in this study as were obviously abnormal result that N2O fluxes were not detectable when pig manure was incorporated at the rate of 164 kgNha_1 under the water regime of F-D-F (Yang et al., 1996). Measurements from aerobic rice fields (e.g., Xu et al., 2004), and from those in which the controlled release fertilizers were applied (e.g., Li et al., 2004a) or the amount of organic amendments was not presented for nitrogen treatments (e.g., Khalil et al., 1998) and were excluded as well. In the end, 71 field measurements from 17 studies were used to estimate the EF and background emission of N2O during the paddy rice growing season under different water regimes (Zou J,et al., 2009)", + "Parameter_Conditions": "All rice fields in China", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0002", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zou J, Huang Y, Lu Y, Qin Y., Liu S., Shen Q., Pan, G., Lu Y., Liu Q., 2009. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Global Change Biology 15, 229–242", + "English_Abstract": "Nitrogen fertilizer-induced direct nitrous oxide (N2O) emissions depend on water regimes in paddy fields, such as seasonal continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding–moist intermittent irrigation but without water logging (F-D-F-M). In order to estimate the changes in direct N2O emission from paddy fields during the rice-growing season in Mainland of China between the 1950s and the 1990s, the country-specific emission factors of N2O-N under different water regimes combined with rice production data were adopted in the present study. Census statistics on rice production showed that water management and nitrogen input regimes have changed in rice paddies since the 1950s. During the 1950s– 1970s, about 20–25% of the rice paddy was continuously waterlogged, and 75–80% under the water regime of F-D-F. Since the 1980s, about 12–16%, 77%, and 7–12% of paddy fields were under the water regimes of F, F-D-F, and F-D-F-M, respectively. Total nitrogen input during the rice-growing season has increased from 87.5 kgN/ha in the 1950s to 224.6 kgN/ha in the 1990s. The emission factors of N2O-N were estimated to be 0.02%, 0.42%, and 0.73% for rice paddies under the F, F-D-F, and F-D-F-M water regimes, respectively. Seasonal N2O emissions have increased from 9.6Gg N2O-N each year in the 1950s to 32.3Gg N2O-N in the 1990s, which is accompanied by the increase in rice yield over the period 1950s–1990s. The uncertainties in N2O estimate were estimated to be 59.8% in the 1950s and 37.5% in the 1990s. In the 1990s, N2O emissions during the ricegrowing season accounted for 8–11% of the reported annual total of N2O emissions from croplands in China, suggesting that paddy rice development could have contributed to mitigating agricultural N2O emissions in the past decades. However, seasonal N2O emissions would be increased, given that saving-water irrigation and nitrogen inputs are increasingly adopted in rice paddies in China. In the present study, thus, we used a linear regression model (N2O-N= EF N+B+e) with the personality of ordinary least squares (OLS) to fit N2O emissions (N2O-N) by nitrogen inputs (N).In this model, e denotes the error term; EF and B are the simulated parameters that represent N2O EF and background emission, respectively. A t-test was used to examine statistic significance of the parameter estimates. An analysis of variance (ANOVA) F-test partitioned the total variation of N2O-N into the linear relationship with N and the part not explained by the relationship. The model fitness to the data was examined by both residual distribution pattern and power analysis. We also used a one-way ANOVA to test whether seasonal N2O amount depended on the water regime. The statistical analyses were conducted using JMP IN 5.1 (SAS INC., 2003).", + "Lower_Bound": "0.00017", + "Upper_Bound": "0.00023", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The present study is based on 71 measurements from 17 field studies on N2O emission from paddy fields during the rice-growing season only. A pronounced relationship between N2O emission and nitrogen input in the continuous flooding rice paddy was not found. Besides the scanty measurements, low N2O emission may be another important cause. In contrast with continuous flooding, N2O emissions were significantly higher in paddy fields with midseason drainage, and thereby relationship between N2O emission and nitrogen input became pronounced.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2008.01775.x/abstract doi:10.1111/j.1365-2486.2008.01775.x", + "creation_date": "2022-03-14T08:05:19.196Z", + "last_change_date": "2022-03-14T08:05:19.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10570, + "fields": { + "EF_ID": 421479, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission from soils from intermittently flooded rice cultivation", + "Technology_Practices": "Measurements of direct N2O emission were complied from rice field studies that were published to date in peer-reviewed Chinese and English journals. Data published in Chinese were gathered from the Chinese Journal Net (CJN) full-text database and those in English from the Science Citation Index (SCI) database. Measurements of N2O flux taken from field studies over an abnormally shorter period (e.g., Xu et al., 1995), from pot experiments (e.g., Xiong et al., 2003a) or from incubation studies (e.g., Yan et al., 2000) were not considered in this study as were obviously abnormal result that N2O fluxes were not detectable when pig manure was incorporated at the rate of 164 kgNha_1 under the water regime of F-D-F (Yang et al., 1996). Measurements from aerobic rice fields (e.g., Xu et al., 2004), and from those in which the controlled release fertilizers were applied (e.g., Li et al., 2004a) or the amount of organic amendments was not presented for nitrogen treatments (e.g., Khalil et al., 1998) and were excluded as well. In the end, 71 field measurements from 17 studies were used to estimate the EF and background emission of N2O during the paddy rice growing season under different water regimes (Zou J,et al., 2009)", + "Parameter_Conditions": "All rice fields in China", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0042", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zou J, Huang Y, Lu Y, Qin Y., Liu S., Shen Q., Pan, G., Lu Y., Liu Q., 2009. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Global Change Biology 15, 229–242", + "English_Abstract": "Nitrogen fertilizer-induced direct nitrous oxide (N2O) emissions depend on water regimes in paddy fields, such as seasonal continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding–moist intermittent irrigation but without water logging (F-D-F-M). In order to estimate the changes in direct N2O emission from paddy fields during the rice-growing season in Mainland of China between the 1950s and the 1990s, the country-specific emission factors of N2O-N under different water regimes combined with rice production data were adopted in the present study. Census statistics on rice production showed that water management and nitrogen input regimes have changed in rice paddies since the 1950s. During the 1950s– 1970s, about 20–25% of the rice paddy was continuously waterlogged, and 75–80% under the water regime of F-D-F. Since the 1980s, about 12–16%, 77%, and 7–12% of paddy fields were under the water regimes of F, F-D-F, and F-D-F-M, respectively. Total nitrogen input during the rice-growing season has increased from 87.5 kgN/ha in the 1950s to 224.6 kgN/ha in the 1990s. The emission factors of N2O-N were estimated to be 0.02%, 0.42%, and 0.73% for rice paddies under the F, F-D-F, and F-D-F-M water regimes, respectively. Seasonal N2O emissions have increased from 9.6Gg N2O-N each year in the 1950s to 32.3Gg N2O-N in the 1990s, which is accompanied by the increase in rice yield over the period 1950s–1990s. The uncertainties in N2O estimate were estimated to be 59.8% in the 1950s and 37.5% in the 1990s. In the 1990s, N2O emissions during the ricegrowing season accounted for 8–11% of the reported annual total of N2O emissions from croplands in China, suggesting that paddy rice development could have contributed to mitigating agricultural N2O emissions in the past decades. However, seasonal N2O emissions would be increased, given that saving-water irrigation and nitrogen inputs are increasingly adopted in rice paddies in China. In the present study, thus, we used a linear regression model (N2O-N= EF N+B+e) with the personality of ordinary least squares (OLS) to fit N2O emissions (N2O-N) by nitrogen inputs (N).In this model, e denotes the error term; EF and B are the simulated parameters that represent N2O EF and background emission, respectively. A t-test was used to examine statistic significance of the parameter estimates. An analysis of variance (ANOVA) F-test partitioned the total variation of N2O-N into the linear relationship with N and the part not explained by the relationship. The model fitness to the data was examined by both residual distribution pattern and power analysis. We also used a one-way ANOVA to test whether seasonal N2O amount depended on the water regime. The statistical analyses were conducted using JMP IN 5.1 (SAS INC., 2003).", + "Lower_Bound": "0.0032", + "Upper_Bound": "0.0054", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The present study is based on 71 measurements from 17 field studies on N2O emission from paddy fields during the rice-growing season only. A pronounced relationship between N2O emission and nitrogen input in the continuous flooding rice paddy was not found. Besides the scanty measurements, low N2O emission may be another important cause. In contrast with continuous flooding, N2O emissions were significantly higher in paddy fields with midseason drainage, and thereby relationship between N2O emission and nitrogen input became pronounced. The emissionsduring the non-rice season are not measured.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2008.01775.x/abstract doi:10.1111/j.1365-2486.2008.01775.x", + "creation_date": "2022-03-14T08:05:19.313Z", + "last_change_date": "2022-03-14T08:05:19.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10571, + "fields": { + "EF_ID": 421480, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emission for intermittently flooded (flooding–midseason– drainage–reflooding–moist intermittent irrigation but without water logging) rice cultivation", + "Technology_Practices": "Measurements of direct N2O emission were complied from rice field studies that were published to date in peer-reviewed Chinese and English journals. Data published in Chinese were gathered from the Chinese Journal Net (CJN) full-text database and those in English from the Science Citation Index (SCI) database. Measurements of N2O flux taken from field studies over an abnormally shorter period (e.g., Xu et al., 1995), from pot experiments (e.g., Xiong et al., 2003a) or from incubation studies (e.g., Yan et al., 2000) were not considered in this study as were obviously abnormal result that N2O fluxes were not detectable when pig manure was incorporated at the rate of 164 kgNha_1 under the water regime of F-D-F (Yang et al., 1996). Measurements from aerobic rice fields (e.g., Xu et al., 2004), and from those in which the controlled release fertilizers were applied (e.g., Li et al., 2004a) or the amount of organic amendments was not presented for nitrogen treatments (e.g., Khalil et al., 1998) and were excluded as well. In the end, 71 field measurements from 17 studies were used to estimate the EF and background emission of N2O during the paddy rice growing season under different water regimes (Zou J,et al., 2009)", + "Parameter_Conditions": "All rice fields in China", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0073", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b); 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zou J, Huang Y, Lu Y, Qin Y., Liu S., Shen Q., Pan, G., Lu Y., Liu Q., 2009. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s. Global Change Biology 15, 229–242", + "English_Abstract": "Nitrogen fertilizer-induced direct nitrous oxide (N2O) emissions depend on water regimes in paddy fields, such as seasonal continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding–moist intermittent irrigation but without water logging (F-D-F-M). In order to estimate the changes in direct N2O emission from paddy fields during the rice-growing season in Mainland of China between the 1950s and the 1990s, the country-specific emission factors of N2O-N under different water regimes combined with rice production data were adopted in the present study. Census statistics on rice production showed that water management and nitrogen input regimes have changed in rice paddies since the 1950s. During the 1950s– 1970s, about 20–25% of the rice paddy was continuously waterlogged, and 75–80% under the water regime of F-D-F. Since the 1980s, about 12–16%, 77%, and 7–12% of paddy fields were under the water regimes of F, F-D-F, and F-D-F-M, respectively. Total nitrogen input during the rice-growing season has increased from 87.5 kgN/ha in the 1950s to 224.6 kgN/ha in the 1990s. The emission factors of N2O-N were estimated to be 0.02%, 0.42%, and 0.73% for rice paddies under the F, F-D-F, and F-D-F-M water regimes, respectively. Seasonal N2O emissions have increased from 9.6Gg N2O-N each year in the 1950s to 32.3Gg N2O-N in the 1990s, which is accompanied by the increase in rice yield over the period 1950s–1990s. The uncertainties in N2O estimate were estimated to be 59.8% in the 1950s and 37.5% in the 1990s. In the 1990s, N2O emissions during the ricegrowing season accounted for 8–11% of the reported annual total of N2O emissions from croplands in China, suggesting that paddy rice development could have contributed to mitigating agricultural N2O emissions in the past decades. However, seasonal N2O emissions would be increased, given that saving-water irrigation and nitrogen inputs are increasingly adopted in rice paddies in China. In the present study, thus, we used a linear regression model (N2O-N= EF N+B+e) with the personality of ordinary least squares (OLS) to fit N2O emissions (N2O-N) by nitrogen inputs (N).In this model, e denotes the error term; EF and B are the simulated parameters that represent N2O EF and background emission, respectively. A t-test was used to examine statistic significance of the parameter estimates. An analysis of variance (ANOVA) F-test partitioned the total variation of N2O-N into the linear relationship with N and the part not explained by the relationship. The model fitness to the data was examined by both residual distribution pattern and power analysis. We also used a one-way ANOVA to test whether seasonal N2O amount depended on the water regime. The statistical analyses were conducted using JMP IN 5.1 (SAS INC., 2003).", + "Lower_Bound": "0.0051", + "Upper_Bound": "0.0095", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The present study is based on 71 measurements from 17 field studies on N2O emission from paddy fields during the rice-growing season only. A pronounced relationship between N2O emission and nitrogen input in the continuous flooding rice paddy was not found. Besides the scanty measurements, low N2O emission may be another important cause. In contrast with continuous flooding, N2O emissions were significantly higher in paddy fields with midseason drainage, and thereby relationship between N2O emission and nitrogen input became pronounced. The emissionsduring the non-rice season are not measured.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2008.01775.x/abstract doi:10.1111/j.1365-2486.2008.01775.x", + "creation_date": "2022-03-14T08:05:19.422Z", + "last_change_date": "2022-03-14T08:05:19.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10572, + "fields": { + "EF_ID": 421482, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from cropland (corn field) fertilized with dry granular Urea", + "Technology_Practices": "This field experiment evaluated the ability of enhanced-efficiency fertilizer to reduce N2O emissions as compared to the conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. The N2O measurements was conducted in two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N treatments received the same N rate of 246 kg N ha-1 (in 2007) and 202 kg N ha-1 (in 2008).", + "Parameter_Conditions": "North-eastern Colorado, near Fort Collins (40 degrees 39 minutes N, 104 degrees 59 minutes W); 1535 m above sea level, semiarid temperate climate with typical mean annual temperature of 10.6 degrees centigrade and rainfall of 383 mm per year; the soil is a Fort Collins clay loam classified as fine-loamy, mixed, superactive, mesic Aridic Hauplustalfs; irrigated, no-till corn (Zea mays L.); fertilizer Urea.", + "Regional_Conditions": "Semiarid temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.835", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A.D. Halvorson, S.J. Del Grosso, and F. Alluvione. 2010. Nitrogen Source Eff ects on Nitrous Oxide Emissions from Irrigated No-Till Corn. J. Environ. Qual. 39:1554-1562", + "English_Abstract": "Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. Th e study objective was to assess the ability of commercially available enhanced-effi ciency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-effi ciency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrifi cation and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fl uxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-effi ciency fertilizers signifi cantly reduced growingseason N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had signifi cantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. Th e N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having signifi cantly lower losses. Grain production was not reduced by the use of alternative N sources. Th is work shows that enhanced-effi ciency N fertilizers can potentially reduce N2O-N emissions without aff ecting yields from irrigated NT corn systems in the semiarid central Great Plains.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ardell D. Halvorson", + "Link": "", + "creation_date": "2022-03-14T08:05:19.531Z", + "last_change_date": "2022-03-14T08:05:19.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10573, + "fields": { + "EF_ID": 421483, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from cropland (corn field) fertilized with polymer-coated Urea product called ESN", + "Technology_Practices": "This field experiment evaluated the ability of enhanced-efficiency fertilizer to reduce N2O emissions as compared to the conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. The N2O measurements was conducted in two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N treatments received the same N rate of 246 kg N ha-1 (in 2007) and 202 kg N ha-1 (in 2008).", + "Parameter_Conditions": "North-eastern Colorado, near Fort Collins (40 degrees 39 minutes N, 104 degrees 59 minutes W); 1535 m above sea level, semiarid temperate climate with typical mean annual temperature of 10.6 degrees centigrade and rainfall of 383 mm per year; the soil is a Fort Collins clay loam classified as fine-loamy, mixed, superactive, mesic Aridic Hauplustalfs; irrigated, no-till corn (Zea mays L.); fertilizer Urea.", + "Regional_Conditions": "Semiarid temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.554", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A.D. Halvorson, S.J. Del Grosso, and F. Alluvione. 2010. Nitrogen Source Eff ects on Nitrous Oxide Emissions from Irrigated No-Till Corn. J. Environ. Qual. 39:1554-1562", + "English_Abstract": "Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. Th e study objective was to assess the ability of commercially available enhanced-effi ciency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-effi ciency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrifi cation and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fl uxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-effi ciency fertilizers signifi cantly reduced growingseason N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had signifi cantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. Th e N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having signifi cantly lower losses. Grain production was not reduced by the use of alternative N sources. Th is work shows that enhanced-effi ciency N fertilizers can potentially reduce N2O-N emissions without aff ecting yields from irrigated NT corn systems in the semiarid central Great Plains.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ardell D. Halvorson", + "Link": "", + "creation_date": "2022-03-14T08:05:19.641Z", + "last_change_date": "2022-03-14T08:05:19.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10574, + "fields": { + "EF_ID": 421484, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from cropland (corn field) fertilized with polymer-coated urea product called Duration III", + "Technology_Practices": "This field experiment evaluated the ability of enhanced-efficiency fertilizer to reduce N2O emissions as compared to the conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. The N2O measurements was conducted in two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N treatments received the same N rate of 246 kg N ha-1 (in 2007) and 202 kg N ha-1 (in 2008).", + "Parameter_Conditions": "North-eastern Colorado, near Fort Collins (40 degrees 39 minutes N, 104 degrees 59 minutes W); 1535 m above sea level, semiarid temperate climate with typical mean annual temperature of 10.6 degrees centigrade and rainfall of 383 mm per year; the soil is a Fort Collins clay loam classified as fine-loamy, mixed, superactive, mesic Aridic Hauplustalfs; irrigated, no-till corn (Zea mays L.); fertilizer Urea.", + "Regional_Conditions": "Semiarid temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.576", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A.D. Halvorson, S.J. Del Grosso, and F. Alluvione. 2010. Nitrogen Source Eff ects on Nitrous Oxide Emissions from Irrigated No-Till Corn. J. Environ. Qual. 39:1554-1562", + "English_Abstract": "Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. Th e study objective was to assess the ability of commercially available enhanced-effi ciency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-effi ciency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrifi cation and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fl uxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-effi ciency fertilizers signifi cantly reduced growingseason N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had signifi cantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. Th e N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having signifi cantly lower losses. Grain production was not reduced by the use of alternative N sources. Th is work shows that enhanced-effi ciency N fertilizers can potentially reduce N2O-N emissions without aff ecting yields from irrigated NT corn systems in the semiarid central Great Plains.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ardell D. Halvorson", + "Link": "", + "creation_date": "2022-03-14T08:05:19.750Z", + "last_change_date": "2022-03-14T08:05:19.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10575, + "fields": { + "EF_ID": 421485, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from cropland (corn field) fertilized with SuperU (fertilizer containing nitrification and urease inhibitors)", + "Technology_Practices": "This field experiment evaluated the ability of enhanced-efficiency fertilizer to reduce N2O emissions as compared to the conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. The N2O measurements was conducted in two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N treatments received the same N rate of 246 kg N ha-1 (in 2007) and 202 kg N ha-1 (in 2008).", + "Parameter_Conditions": "North-eastern Colorado, near Fort Collins (40 degrees 39 minutes N, 104 degrees 59 minutes W); 1535 m above sea level, semiarid temperate climate with typical mean annual temperature of 10.6 degrees centigrade and rainfall of 383 mm per year; the soil is a Fort Collins clay loam classified as fine-loamy, mixed, superactive, mesic Aridic Hauplustalfs; irrigated, no-till corn (Zea mays L.); fertilizer Urea.", + "Regional_Conditions": "Semiarid temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.432", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A.D. Halvorson, S.J. Del Grosso, and F. Alluvione. 2010. Nitrogen Source Eff ects on Nitrous Oxide Emissions from Irrigated No-Till Corn. J. Environ. Qual. 39:1554-1562", + "English_Abstract": "Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. Th e study objective was to assess the ability of commercially available enhanced-effi ciency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-effi ciency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrifi cation and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fl uxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-effi ciency fertilizers signifi cantly reduced growingseason N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had signifi cantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. Th e N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having signifi cantly lower losses. Grain production was not reduced by the use of alternative N sources. Th is work shows that enhanced-effi ciency N fertilizers can potentially reduce N2O-N emissions without aff ecting yields from irrigated NT corn systems in the semiarid central Great Plains.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ardell D. Halvorson", + "Link": "", + "creation_date": "2022-03-14T08:05:19.859Z", + "last_change_date": "2022-03-14T08:05:19.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10576, + "fields": { + "EF_ID": 421486, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from cropland (corn field) fertilized with urea ammonium nitrate(UAN)", + "Technology_Practices": "This field experiment evaluated the ability of enhanced-efficiency fertilizer to reduce N2O emissions as compared to the conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. The N2O measurements was conducted in two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N treatments received the same N rate of 246 kg N ha-1 (in 2007) and 202 kg N ha-1 (in 2008).", + "Parameter_Conditions": "North-eastern Colorado, near Fort Collins (40 degrees 39 minutes N, 104 degrees 59 minutes W); 1535 m above sea level, semiarid temperate climate with typical mean annual temperature of 10.6 degrees centigrade and rainfall of 383 mm per year; the soil is a Fort Collins clay loam classified as fine-loamy, mixed, superactive, mesic Aridic Hauplustalfs; irrigated, no-till corn (Zea mays L.); fertilizer Urea.", + "Regional_Conditions": "Semiarid temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A.D. Halvorson, S.J. Del Grosso, and F. Alluvione. 2010. Nitrogen Source Eff ects on Nitrous Oxide Emissions from Irrigated No-Till Corn. J. Environ. Qual. 39:1554-1562", + "English_Abstract": "Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. Th e study objective was to assess the ability of commercially available enhanced-effi ciency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-effi ciency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrifi cation and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fl uxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-effi ciency fertilizers signifi cantly reduced growingseason N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had signifi cantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. Th e N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having signifi cantly lower losses. Grain production was not reduced by the use of alternative N sources. Th is work shows that enhanced-effi ciency N fertilizers can potentially reduce N2O-N emissions without aff ecting yields from irrigated NT corn systems in the semiarid central Great Plains.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ardell D. Halvorson", + "Link": "", + "creation_date": "2022-03-14T08:05:19.968Z", + "last_change_date": "2022-03-14T08:05:19.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10577, + "fields": { + "EF_ID": 421487, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from cropland (corn field) fertilized with UAN+AgrotainPlus (fertilizer containing nitrification and urease inhibitors)", + "Technology_Practices": "This field experiment evaluated the ability of enhanced-efficiency fertilizer to reduce N2O emissions as compared to the conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. The N2O measurements was conducted in two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N treatments received the same N rate of 246 kg N ha-1 (in 2007) and 202 kg N ha-1 (in 2008).", + "Parameter_Conditions": "North-eastern Colorado, near Fort Collins (40 degrees 39 minutes N, 104 degrees 59 minutes W); 1535 m above sea level, semiarid temperate climate with typical mean annual temperature of 10.6 degrees centigrade and rainfall of 383 mm per year; the soil is a Fort Collins clay loam classified as fine-loamy, mixed, superactive, mesic Aridic Hauplustalfs; irrigated, no-till corn (Zea mays L.); fertilizer Urea.", + "Regional_Conditions": "Semiarid temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.397", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A.D. Halvorson, S.J. Del Grosso, and F. Alluvione. 2010. Nitrogen Source Eff ects on Nitrous Oxide Emissions from Irrigated No-Till Corn. J. Environ. Qual. 39:1554-1562", + "English_Abstract": "Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. Th e study objective was to assess the ability of commercially available enhanced-effi ciency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-effi ciency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrifi cation and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fl uxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-effi ciency fertilizers signifi cantly reduced growingseason N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had signifi cantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. Th e N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having signifi cantly lower losses. Grain production was not reduced by the use of alternative N sources. Th is work shows that enhanced-effi ciency N fertilizers can potentially reduce N2O-N emissions without aff ecting yields from irrigated NT corn systems in the semiarid central Great Plains.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ardell D. Halvorson", + "Link": "", + "creation_date": "2022-03-14T08:05:20.077Z", + "last_change_date": "2022-03-14T08:05:20.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10578, + "fields": { + "EF_ID": 421488, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from cropland (corn field) with no N application (control treatment)", + "Technology_Practices": "This field experiment evaluated the ability of enhanced-efficiency fertilizer to reduce N2O emissions as compared to the conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. The N2O measurements was conducted in two growing seasons using static, vented chambers and a gas chromatograph analyzer. All N treatments received the same N rate of 246 kg N ha-1 (in 2007) and 202 kg N ha-1 (in 2008).", + "Parameter_Conditions": "North-eastern Colorado, near Fort Collins (40 degrees 39 minutes N, 104 degrees 59 minutes W); 1535 m above sea level, semiarid temperate climate with typical mean annual temperature of 10.6 degrees centigrade and rainfall of 383 mm per year; the soil is a Fort Collins clay loam classified as fine-loamy, mixed, superactive, mesic Aridic Hauplustalfs; irrigated, no-till corn (Zea mays L.); fertilizer Urea.", + "Regional_Conditions": "Semiarid temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.156", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A.D. Halvorson, S.J. Del Grosso, and F. Alluvione. 2010. Nitrogen Source Eff ects on Nitrous Oxide Emissions from Irrigated No-Till Corn. J. Environ. Qual. 39:1554-1562", + "English_Abstract": "Nitrogen fertilization is essential for optimizing crop yields; however, it may potentially increase nitrous oxide (N2O) emissions. Th e study objective was to assess the ability of commercially available enhanced-effi ciency N fertilizers to reduce N2O emissions following their application in comparison with conventional dry granular urea and liquid urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn (Zea mays L.) production system. Four enhanced-effi ciency fertilizers were evaluated: two polymer-coated urea products (ESN and Duration III) and two fertilizers containing nitrifi cation and urease inhibitors (SuperU and UAN+AgrotainPlus). Nitrous oxide fl uxes were measured during two growing seasons using static, vented chambers and a gas chromatograph analyzer. Enhanced-effi ciency fertilizers signifi cantly reduced growingseason N2O-N emissions in comparison with urea, including UAN. SuperU and UAN+AgrotainPlus had signifi cantly lower N2O-N emissions than UAN. Compared with urea, SuperU reduced N2O-N emissions 48%, ESN 34%, Duration III 31%, UAN 27%, and UAN+AgrotainPlus 53% averaged over 2 yr. Compared with UAN, UAN+AgrotainPlus reduced N2O emissions 35% and SuperU 29% averaged over 2 yr. Th e N2O-N loss as a percentage of N applied was 0.3% for urea, with all other N sources having signifi cantly lower losses. Grain production was not reduced by the use of alternative N sources. Th is work shows that enhanced-effi ciency N fertilizers can potentially reduce N2O-N emissions without aff ecting yields from irrigated NT corn systems in the semiarid central Great Plains.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ardell D. Halvorson", + "Link": "", + "creation_date": "2022-03-14T08:05:20.186Z", + "last_change_date": "2022-03-14T08:05:20.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10579, + "fields": { + "EF_ID": 421489, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF1 to estimate direct N2O emissions from well-drained managed soil in Japanese cropland other than tea and paddy fields", + "Technology_Practices": "Field monitoring was conducted at Fukushima, Ibaraki, Tochigi, Chiba, Aichi, and Shimane prefectures (34-38 deg. N, 132-141 deg. E, moist moderate temperate climate). The planted crops tested were vegetables, cereals, grass, and their mixture. Soil types include Andosols, Yellow soils, and Terrestrial Regosols.", + "Parameter_Conditions": "Fifteen (15) field monitoring data reported in peer-reviewed journals and research reports were compiled and analyzed. The data measured with zero-N control treatment and over a period of more than 90 days were used to estimate annual fertilizer-induced emission factors.", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0032", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Akiyama, H., Yan, X., and Yagi, K.: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci. Plant Nutr., 52, 774–787 (2006)", + "English_Abstract": "Agricultural fields are significant sources of anthropogenic atmospheric nitrous oxide (N2O). We compiled and analyzed data on N2O emissions from Japanese agricultural fields (246 measurements from 36 sites) reported in peer-reviewed journals and research reports. Agricultural fields were classified into three categories: upland fields, tea fields and rice paddy fields. In this analysis, data measured over a period of more than 90 days for upland fields and 209 days for tea fields were used to estimate annual fertilizer-induced emission factors (EF) because of limitations in the available data. The EF is defined as the emission from fertilized plots minus the background emission (emission from a zero-N control plot), and is expressed as a percentage of the N applied. The mean of N2O emissions from upland fields with well-drained soils was significantly lower than that from poorly drained soils. Mean (± standard deviation) N2O emissions measured over a period of more than 90 days from fertilized upland fields were 1.03 ± 1.14 kg N/ha and 4.78 ± 5.36 kg N/ha for well-drained and poorly drained soils, respectively. Because the ratio of the total areas of well-drained soils and poorly drained soils was different from the ratio of the number of available EF data for each soil category, we used a weighted mean to estimate EF for all upland fields. The EF was estimated to be 0.62 ± 0.48% for all fertilized upland fields. Mean N2O emissions and the estimated EF for fertilized tea fields measured over a period of more than 209 days were 24.3 ± 16.3 kg N/ha and 2.82 ± 1.80%, respectively. The mean N2O emission and estimated EF from Japanese rice paddy fields were 0.36 kg N/ha and 0.31 ± 0.31% for the cropping season, respectively. Significant uncertainties remain in these results because of limitations in the available data.", + "Lower_Bound": "0", + "Upper_Bound": "0.0081", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement Technique/Standard: Closed chamber method, Date of Measurement: 1996-2003", + "Other_Comments": "", + "Data_Provider": "Toshiaki Ohkura", + "Link": "", + "creation_date": "2022-03-14T08:05:20.311Z", + "last_change_date": "2022-03-14T08:05:20.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10580, + "fields": { + "EF_ID": 421490, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF1 to estimate direct N2O emissions from poorly-drained managed soil in Japanese cropland other than tea and paddy fields", + "Technology_Practices": "Field monitoring was conducted at Hokkaido prefectures (43 deg. N, 142 deg. E, moist cool temperate climate). The planted crops tested were vegetables. Soil types include Brown Lowland Soils.", + "Parameter_Conditions": "Nine (9) field monitoring data reported in peer-reviewed journals and research reports were compiled and analyzed. The data measured with zero-N control treatment and over a period of more than 90 days were used to estimate annual fertilizer-induced emission factors.", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Akiyama, H., Yan, X., and Yagi, K.: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci. Plant Nutr., 52, 774–787 (2006)", + "English_Abstract": "Agricultural fields are significant sources of anthropogenic atmospheric nitrous oxide (N2O). We compiled and analyzed data on N2O emissions from Japanese agricultural fields (246 measurements from 36 sites) reported in peer-reviewed journals and research reports. Agricultural fields were classified into three categories: upland fields, tea fields and rice paddy fields. In this analysis, data measured over a period of more than 90 days for upland fields and 209 days for tea fields were used to estimate annual fertilizer-induced emission factors (EF) because of limitations in the available data. The EF is defined as the emission from fertilized plots minus the background emission (emission from a zero-N control plot), and is expressed as a percentage of the N applied. The mean of N2O emissions from upland fields with well-drained soils was significantly lower than that from poorly drained soils. Mean (± standard deviation) N2O emissions measured over a period of more than 90 days from fertilized upland fields were 1.03 ± 1.14 kg N/ha and 4.78 ± 5.36 kg N/ha for well-drained and poorly drained soils, respectively. Because the ratio of the total areas of well-drained soils and poorly drained soils was different from the ratio of the number of available EF data for each soil category, we used a weighted mean to estimate EF for all upland fields. The EF was estimated to be 0.62 ± 0.48% for all fertilized upland fields. Mean N2O emissions and the estimated EF for fertilized tea fields measured over a period of more than 209 days were 24.3 ± 16.3 kg N/ha and 2.82 ± 1.80%, respectively. The mean N2O emission and estimated EF from Japanese rice paddy fields were 0.36 kg N/ha and 0.31 ± 0.31% for the cropping season, respectively. Significant uncertainties remain in these results because of limitations in the available data.", + "Lower_Bound": "0.0045", + "Upper_Bound": "0.0235", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement Technique/Standard: Closed chamber method, Date of Measurement: 1996-2003", + "Other_Comments": "", + "Data_Provider": "Toshiaki Ohkura", + "Link": "", + "creation_date": "2022-03-14T08:05:20.412Z", + "last_change_date": "2022-03-14T08:05:20.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10581, + "fields": { + "EF_ID": 421491, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF1 to estimate direct N2O emissions from all managed soil in Japanese cropland other than tea and paddy fields", + "Technology_Practices": "Field monitoring was conducted at Hokkaido, Fukushima, Ibaraki, Tochigi, Chiba, Aichi, and Shimane prefectures (34-43 deg. N, 132-142 deg. E, moist moderate/cool temperate climate). The planted crops tested were vegetables, cereals, grass, and their mixture. Soil types include Andosols, Yellow soils, Terrestrial Regosols, and Brown Lowland Soils.", + "Parameter_Conditions": "Twenty-four (24) field monitoring data, at both well- and poorly-drained soils, reported in peer-reviewed journals and research reports were compiled and analyzed. The data measured with zero-N control treatment and over a period of more than 90 days were used to estimate annual fertilizer-induced emission factors.", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0062", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Akiyama, H., Yan, X., and Yagi, K.: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci. Plant Nutr., 52, 774–787 (2006)", + "English_Abstract": "Agricultural fields are significant sources of anthropogenic atmospheric nitrous oxide (N2O). We compiled and analyzed data on N2O emissions from Japanese agricultural fields (246 measurements from 36 sites) reported in peer-reviewed journals and research reports. Agricultural fields were classified into three categories: upland fields, tea fields and rice paddy fields. In this analysis, data measured over a period of more than 90 days for upland fields and 209 days for tea fields were used to estimate annual fertilizer-induced emission factors (EF) because of limitations in the available data. The EF is defined as the emission from fertilized plots minus the background emission (emission from a zero-N control plot), and is expressed as a percentage of the N applied. The mean of N2O emissions from upland fields with well-drained soils was significantly lower than that from poorly drained soils. Mean (± standard deviation) N2O emissions measured over a period of more than 90 days from fertilized upland fields were 1.03 ± 1.14 kg N/ha and 4.78 ± 5.36 kg N/ha for well-drained and poorly drained soils, respectively. Because the ratio of the total areas of well-drained soils and poorly drained soils was different from the ratio of the number of available EF data for each soil category, we used a weighted mean to estimate EF for all upland fields. The EF was estimated to be 0.62 ± 0.48% for all fertilized upland fields. Mean N2O emissions and the estimated EF for fertilized tea fields measured over a period of more than 209 days were 24.3 ± 16.3 kg N/ha and 2.82 ± 1.80%, respectively. The mean N2O emission and estimated EF from Japanese rice paddy fields were 0.36 kg N/ha and 0.31 ± 0.31% for the cropping season, respectively. Significant uncertainties remain in these results because of limitations in the available data.", + "Lower_Bound": "0.0014", + "Upper_Bound": "0.011", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement Technique/Standard: Closed chamber method, Date of Measurement: 1996-2003", + "Other_Comments": "", + "Data_Provider": "Toshiaki Ohkura", + "Link": "", + "creation_date": "2022-03-14T08:05:20.513Z", + "last_change_date": "2022-03-14T08:05:20.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10582, + "fields": { + "EF_ID": 421492, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF1 to estimate direct N2O emissions from all managed soil in Japanese tea fields", + "Technology_Practices": "Field monitoring was conducted at Shizuoka, Aichi, and Yamaguchi prefectures (34-35 deg. N, 131-138 deg. E, moist moderate temperate climate). Soil types include Andosols, Yellow soils, Terrestrial Regosols,Brown Lowland Soils, and Terrestrial Regosols.", + "Parameter_Conditions": "Twenty-six (26) field monitoring data reported in peer-reviewed journals and research reports were compiled and analyzed. The data measured with zero-N control treatment and over a period of more than 90 days were used to estimate annual fertilizer-induced emission factors.", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0282", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Akiyama, H., Yan, X., and Yagi, K.: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data. Soil Sci. Plant Nutr., 52, 774–787 (2006)", + "English_Abstract": "Agricultural fields are significant sources of anthropogenic atmospheric nitrous oxide (N2O). We compiled and analyzed data on N2O emissions from Japanese agricultural fields (246 measurements from 36 sites) reported in peer-reviewed journals and research reports. Agricultural fields were classified into three categories: upland fields, tea fields and rice paddy fields. In this analysis, data measured over a period of more than 90 days for upland fields and 209 days for tea fields were used to estimate annual fertilizer-induced emission factors (EF) because of limitations in the available data. The EF is defined as the emission from fertilized plots minus the background emission (emission from a zero-N control plot), and is expressed as a percentage of the N applied. The mean of N2O emissions from upland fields with well-drained soils was significantly lower than that from poorly drained soils. Mean (± standard deviation) N2O emissions measured over a period of more than 90 days from fertilized upland fields were 1.03 ± 1.14 kg N/ha and 4.78 ± 5.36 kg N/ha for well-drained and poorly drained soils, respectively. Because the ratio of the total areas of well-drained soils and poorly drained soils was different from the ratio of the number of available EF data for each soil category, we used a weighted mean to estimate EF for all upland fields. The EF was estimated to be 0.62 ± 0.48% for all fertilized upland fields. Mean N2O emissions and the estimated EF for fertilized tea fields measured over a period of more than 209 days were 24.3 ± 16.3 kg N/ha and 2.82 ± 1.80%, respectively. The mean N2O emission and estimated EF from Japanese rice paddy fields were 0.36 kg N/ha and 0.31 ± 0.31% for the cropping season, respectively. Significant uncertainties remain in these results because of limitations in the available data.", + "Lower_Bound": "0.0102", + "Upper_Bound": "0.0462", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement Technique/Standard: Closed chamber method, Date of Measurement: 1996-2003", + "Other_Comments": "", + "Data_Provider": "Toshiaki Ohkura", + "Link": "", + "creation_date": "2022-03-14T08:05:20.613Z", + "last_change_date": "2022-03-14T08:05:20.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10583, + "fields": { + "EF_ID": 421493, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from organic rice field with continuous flooding (F) in eastern China", + "Technology_Practices": "Field experiment", + "Parameter_Conditions": "Nanjing Eastern China.Annual precipitation is about 1250 mm, consisting of 650 mm for rice season and 600 mm for non-rice season in the 2007–2008 rotation cycle. Air temperature averages were 25.1 degrees centigrade and 9.3 degrees centigrade during the rice and winter wheat seasons, respectively. The mean annual air temperature was about 15.9 degrees centigrade", + "Regional_Conditions": "Eastern China; temperate climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) and Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b). 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Qin Y., Liu S., Guo Y., Liu Q., Zou J., 2010. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fertil Soils 46:825–834.", + "English_Abstract": "To evaluate the impacts of organic cropping system on global warming potentials (GWPs), field measurements of CH4 and N2O were taken in conventional and organic rice (Oryza sativa L.) cropping systems in southeast China. Rice paddies were under various water regimes, including continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding and moisture but without waterlogging (F-D-F-M). Nitrogen was applied at the rate of 100 kg N ha-1, as urea-N or pelletized, dehydrated manure product in conventional or organic rice paddies, respectively. Seasonal fluxes of CH4 averaged 4.44, 2.14, and 1.75 mg m-2 h-1 for the organic paddy plots under the water regimes of F, F-D-F and F-D-F-M, respectively. Relative to conventional rice paddies, organic cropping systems increased seasonal CH4 emissions by 20%, 23%, and 35% for the plots under the water regimes of F, F-D-F, and F-D-F-M, respectively. Under the water regimes of F-D-F and F-D-F-M, seasonal N2O-N emissions averaged 10.85 and 13.66 µg m-2 h-1 in organic rice paddies, respectively, which were significantly lower than those in conventional rice paddies. The net global warming potentials (GWPs) of CH4 and N2O emissions from organic rice paddies relative to conventional rice paddies were significantly higher or comparable under various water regimes. The greenhouse gas intensities were greater, while carbon efficiency ratios were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping system might not be an effective option for mitigating the combined climatic impacts from CH4 and N2O in paddy rice production.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of Measurement: Transplanted June 10 and harvested on October 10, 2007", + "Other_Comments": "", + "Data_Provider": "Lianfeng Wang", + "Link": "", + "creation_date": "2022-03-14T08:05:20.714Z", + "last_change_date": "2022-03-14T08:05:20.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10584, + "fields": { + "EF_ID": 421494, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from organic rice field with flooding–midseason drainage–reflooding (F-D-F) in eastern China", + "Technology_Practices": "Field experiment", + "Parameter_Conditions": "Nanjing Eastern China.Annual precipitation is about 1250 mm, consisting of 650 mm for rice season and 600 mm for non-rice season in the 2007–2008 rotation cycle. Air temperature averages were 25.1 degrees centigrade and 9.3 degrees centigrade during the rice and winter wheat seasons, respectively. The mean annual air temperature was about 15.9 degrees centigrade", + "Regional_Conditions": "Eastern China; temperate climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) and Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b). 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Qin Y., Liu S., Guo Y., Liu Q., Zou J., 2010. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fertil Soils 46:825–834.", + "English_Abstract": "To evaluate the impacts of organic cropping system on global warming potentials (GWPs), field measurements of CH4 and N2O were taken in conventional and organic rice (Oryza sativa L.) cropping systems in southeast China. Rice paddies were under various water regimes, including continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding and moisture but without waterlogging (F-D-F-M). Nitrogen was applied at the rate of 100 kg N ha-1, as urea-N or pelletized, dehydrated manure product in conventional or organic rice paddies, respectively. Seasonal fluxes of CH4 averaged 4.44, 2.14, and 1.75 mg m-2 h-1 for the organic paddy plots under the water regimes of F, F-D-F and F-D-F-M, respectively. Relative to conventional rice paddies, organic cropping systems increased seasonal CH4 emissions by 20%, 23%, and 35% for the plots under the water regimes of F, F-D-F, and F-D-F-M, respectively. Under the water regimes of F-D-F and F-D-F-M, seasonal N2O-N emissions averaged 10.85 and 13.66 µg m-2 h-1 in organic rice paddies, respectively, which were significantly lower than those in conventional rice paddies. The net global warming potentials (GWPs) of CH4 and N2O emissions from organic rice paddies relative to conventional rice paddies were significantly higher or comparable under various water regimes. The greenhouse gas intensities were greater, while carbon efficiency ratios were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping system might not be an effective option for mitigating the combined climatic impacts from CH4 and N2O in paddy rice production.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of Measurement: Transplanted June 10 and harvested on October 10, 2007", + "Other_Comments": "", + "Data_Provider": "Lianfeng Wang", + "Link": "", + "creation_date": "2022-03-14T08:05:20.823Z", + "last_change_date": "2022-03-14T08:05:20.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10585, + "fields": { + "EF_ID": 421495, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from organic rice field with flooding–midseason drainage–reflooding and moisture but without waterlogging (F-D-F-M) in eastern China", + "Technology_Practices": "Field experiment", + "Parameter_Conditions": "Nanjing Eastern China.Annual precipitation is about 1250 mm, consisting of 650 mm for rice season and 600 mm for non-rice season in the 2007–2008 rotation cycle. Air temperature averages were 25.1 degrees centigrade and 9.3 degrees centigrade during the rice and winter wheat seasons, respectively. The mean annual air temperature was about 15.9 degrees centigrade", + "Regional_Conditions": "Eastern China; temperate climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) and Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b). 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Qin Y., Liu S., Guo Y., Liu Q., Zou J., 2010. Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biol Fertil Soils 46:825–834.", + "English_Abstract": "To evaluate the impacts of organic cropping system on global warming potentials (GWPs), field measurements of CH4 and N2O were taken in conventional and organic rice (Oryza sativa L.) cropping systems in southeast China. Rice paddies were under various water regimes, including continuous flooding (F), flooding–midseason drainage–reflooding (F-D-F), and flooding–midseason drainage–reflooding and moisture but without waterlogging (F-D-F-M). Nitrogen was applied at the rate of 100 kg N ha-1, as urea-N or pelletized, dehydrated manure product in conventional or organic rice paddies, respectively. Seasonal fluxes of CH4 averaged 4.44, 2.14, and 1.75 mg m-2 h-1 for the organic paddy plots under the water regimes of F, F-D-F and F-D-F-M, respectively. Relative to conventional rice paddies, organic cropping systems increased seasonal CH4 emissions by 20%, 23%, and 35% for the plots under the water regimes of F, F-D-F, and F-D-F-M, respectively. Under the water regimes of F-D-F and F-D-F-M, seasonal N2O-N emissions averaged 10.85 and 13.66 µg m-2 h-1 in organic rice paddies, respectively, which were significantly lower than those in conventional rice paddies. The net global warming potentials (GWPs) of CH4 and N2O emissions from organic rice paddies relative to conventional rice paddies were significantly higher or comparable under various water regimes. The greenhouse gas intensities were greater, while carbon efficiency ratios were lower in organic relative to conventional rice paddies. The results of this study suggest that organic cropping system might not be an effective option for mitigating the combined climatic impacts from CH4 and N2O in paddy rice production.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of Measurement: Transplanted June 10 and harvested on October 10, 2007", + "Other_Comments": "", + "Data_Provider": "Lianfeng Wang", + "Link": "", + "creation_date": "2022-03-14T08:05:20.949Z", + "last_change_date": "2022-03-14T08:05:20.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10586, + "fields": { + "EF_ID": 421496, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for direct N2O emission from soils", + "Technology_Practices": "Meta-analysis of data from grasslands of 8 European countries. Most study sites investigated the influence of one or several management practices on N2O exchange, such as nitrogen fertilization and grazing intensity.", + "Parameter_Conditions": "The measurement stations of the GREENGRASS network were selected to be representative of the major grassland types of Western and Central Europe", + "Regional_Conditions": "Eight European countries (Denmark, France, Hungary, Ireland, Italy, The Netherlands, Switzerland and United Kingdom),", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0075", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b). 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Flechard et al., 2007. Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe Agriculture, Ecosystems & Environment Volume 121, Issues 1-2, June 2007, Pages 135-152", + "English_Abstract": "Soil/atmosphere exchange fluxes of nitrous oxide were monitored for a 3-year period at 10 grassland sites in eight European countries (Denmark, France, Hungary, Ireland, Italy, The Netherlands, Switzerland and United Kingdom), spanning a wide range of climatic, environmental and soil conditions. Most study sites investigated the influence of one or several management practices on N2O exchange, such as nitrogen fertilization and grazing intensity. Fluxes were measured using non-steady state chambers at most sites, and alternative measurement techniques such as eddy covariance and fast-box using tunable diode laser spectroscopy were implemented at some sites. The overall uncertainty in annual flux estimates derived from chamber measurements may be as high as 50% due to the temporal and spatial variability in fluxes, which warrants the future use of continuous measurements, if possible at the field scale. Annual emission rates were higher from intensive than from extensive grasslands, by a factor 4 if grazed (1.77 versus 0.48 kg N2O-N/ha/year) and by a factor 3 if ungrazed (0.95 versus 0.32 kg N2O-N/ha/year). Annual emission factors for fertilized systems were highly variable, ranging from 0.01% to 3.56%, but the mean emission factor across all sites (0.75%) was substantially lower than the IPCC default value of 1.25%. Emission factors for individual fertilization events increased with soil temperature and were generally higher for water-filled pore space values in the range 60–90%, though precipitation onto dry soils was also shown to lead to high losses of N2O-N from applied fertilizer. An empirical, multiple regression model to predict N2O emission factors on the basis of soil temperature, moisture and rainfall is developed, explaining half of the variability in observed emission factors.", + "Lower_Bound": "0.0001", + "Upper_Bound": "0.0356", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "Measurement Technique/Standard: Fluxes were measured using non-steady state chambers at most sites, and alternative measurement techniques such as eddy covariance and fast-box using tunable diode laser spectroscopy were implemented at some sites. Periodicity of Measurement: 1. Manual chamber measurements (MCh) were typically carried out at bi-weekly intervals during the growing season; additional and intensified measurement campaigns conducted at some sites when higher N2O emissions were expected to occur, for example, following the application of fertilizer; 2. Automated chambers (ACh) were also tested and implemented at three sites (Nl-LE, CH-OE, Dk-LV), providing a higher time resolution. Date of Measuremant: 2002-2004", + "Data_Provider": "Rafael Novoa", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880906004385", + "creation_date": "2022-03-14T08:05:21.066Z", + "last_change_date": "2022-03-14T08:05:21.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10587, + "fields": { + "EF_ID": 421498, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from soils in cropland", + "Technology_Practices": "Synthetic fertilizer, 410 kg N (Ammonium carbonate+Urea)/ha/yr", + "Parameter_Conditions": "Cropland is under a narrow row of corn (Apr-late Jul)+large area of peanuts (Apr-late October) followed by potatoes (Aug-Mar) on a previous peanut plantation in the middle subtropical region of China at about 133m altitude on Alfisol (Chinese taxo. Sys) (noted as Z1 in the paper)", + "Regional_Conditions": "Middle subtropical region of China (Zigui County, located in Hubei province, China)", + "Control_Technologies": "", + "Other_Properties": "Tillage after harvest, Crop residues removed (peanuts for animal feeding) or burned (corn)", + "Value": "1.33", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Shan Lin, Javed Iqbal, Ronggui Hu*, Minglei Feng. N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 2010, 136: 40-48.", + "English_Abstract": "", + "Lower_Bound": "1.273", + "Upper_Bound": "1.387", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ronggui Hu", + "Link": "www.elsevier.com/locate/agee", + "creation_date": "2022-03-14T08:05:21.174Z", + "last_change_date": "2022-03-14T08:05:21.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10588, + "fields": { + "EF_ID": 421499, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from soils in cropland", + "Technology_Practices": "Synthetic fertilizer, 290-500 kg N (Ammonium carbonate+Urea)/ha/yr", + "Parameter_Conditions": "Cropland is under rapeseed (late Nov-May) followed by sweet potatoes (May-Oct or Nov) in the middle subtropical region of China at about 200m altitude on Alfisol (Chinese taxo. Sys) (noted as Q2 in the paper)", + "Regional_Conditions": "Middle subtropical region of China (Zigui County, located in Hubei province, China)", + "Control_Technologies": "", + "Other_Properties": "Tillage after harvest, Crop residues removed (sweet potatoes for animal feeding) or burned (rapeseed)", + "Value": "1.46", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Shan Lin, Javed Iqbal, Ronggui Hu*, Minglei Feng. N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 2010, 136: 40-48.", + "English_Abstract": "", + "Lower_Bound": "1.324", + "Upper_Bound": "1.596", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ronggui Hu", + "Link": "www.elsevier.com/locate/agee", + "creation_date": "2022-03-14T08:05:21.293Z", + "last_change_date": "2022-03-14T08:05:21.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10589, + "fields": { + "EF_ID": 421500, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from soils in cropland", + "Technology_Practices": "Synthetic fertilizer, 140-280 kg N (Urea)/ha/yr", + "Parameter_Conditions": "Cropland is under chestnuts (5 yrs old at the beginning of the experiment) + rapeseed (late Nov-May) followed by only chestnuts (May-Oct or Nov) in the middle subtropical region of China at about 170m altitude on Alfisol (Chinese taxo. Sys) (noted as Z2 in the paper)", + "Regional_Conditions": "Middle subtropical region of China (Zigui County, located in Hubei province, China)", + "Control_Technologies": "", + "Other_Properties": "Manual tillage to prepare the land for rapeseed plantation", + "Value": "0.59", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Shan Lin, Javed Iqbal, Ronggui Hu*, Minglei Feng. N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 2010, 136: 40-48.", + "English_Abstract": "", + "Lower_Bound": "0.533", + "Upper_Bound": "0.647", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ronggui Hu", + "Link": "www.elsevier.com/locate/agee", + "creation_date": "2022-03-14T08:05:21.371Z", + "last_change_date": "2022-03-14T08:05:21.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10590, + "fields": { + "EF_ID": 421501, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from soils in cropland", + "Technology_Practices": "Synthetic fertilizer, 400-770 kg N (Urea)/ha/yr", + "Parameter_Conditions": "Cropland is under orange (more than 8 yrs old at the beginning of the experiment) in middle subtropical region of China at about 170m altitude on Alfisol (Chinese taxo. Sys) (noted as Z3 in the paper)", + "Regional_Conditions": "Middle subtropical region of China (Zigui County, located in Hubei province, China)", + "Control_Technologies": "", + "Other_Properties": "Incorporating fertilizer around the trees", + "Value": "2.03", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Shan Lin, Javed Iqbal, Ronggui Hu*, Minglei Feng. N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 2010, 136: 40-48.", + "English_Abstract": "", + "Lower_Bound": "1.951", + "Upper_Bound": "2.109", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ronggui Hu", + "Link": "www.elsevier.com/locate/agee", + "creation_date": "2022-03-14T08:05:21.443Z", + "last_change_date": "2022-03-14T08:05:21.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10591, + "fields": { + "EF_ID": 421502, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from soils in cropland", + "Technology_Practices": "Synthetic fertilizer, 400-720 kg N (Urea)/ha/yr", + "Parameter_Conditions": "Cropland has orange (more than 3 yrs old at the beginning of the experiment) in middle subtropical region of China at about 250m altitude on Alfisol (Chinese taxo. Sys) (noted as Q3 in the paper)", + "Regional_Conditions": "Middle subtropical region of China (Zigui County, located in Hubei province, China)", + "Control_Technologies": "", + "Other_Properties": "Manual tillage 2 times a year (in May and in Oct or Nov)", + "Value": "1.55", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Shan Lin, Javed Iqbal, Ronggui Hu*, Minglei Feng. N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 2010, 136: 40-48.", + "English_Abstract": "", + "Lower_Bound": "1.459", + "Upper_Bound": "1.641", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ronggui Hu", + "Link": "www.elsevier.com/locate/agee", + "creation_date": "2022-03-14T08:05:21.526Z", + "last_change_date": "2022-03-14T08:05:21.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10592, + "fields": { + "EF_ID": 421503, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from soils in cropland", + "Technology_Practices": "Synthetic fertilizer and manure, 280-900 kg N (Urea+manure)/ha/yr", + "Parameter_Conditions": "Cropland is under vegetable (cabbage etc. with 3 months per crop) in middle subtropical region of China at about 170m altitude on Alfisol (Chinese taxo. Sys) (noted as Q1 in the paper)", + "Regional_Conditions": "Middle subtropical region of China (Zigui County, located in Hubei province, China)", + "Control_Technologies": "", + "Other_Properties": "Manual tillage at least every 3 months", + "Value": "5.27", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Shan Lin, Javed Iqbal, Ronggui Hu*, Minglei Feng. N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 2010, 136: 40-48.", + "English_Abstract": "", + "Lower_Bound": "5.066", + "Upper_Bound": "5.474", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ronggui Hu", + "Link": "www.elsevier.com/locate/agee", + "creation_date": "2022-03-14T08:05:21.628Z", + "last_change_date": "2022-03-14T08:05:21.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10593, + "fields": { + "EF_ID": 421504, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from agricultural soil (pasture)", + "Technology_Practices": "Fertilizer dosage (32-100 kg/ha/yr) with 32 kg/ha/yr in year1, 50 kg/ha/yr in year2 and 100 kg/ha/yr in year3", + "Parameter_Conditions": "Cambisols; about 30-90m altitude", + "Regional_Conditions": "Hokkaido, Japan; cool temperate climate", + "Control_Technologies": "", + "Other_Properties": "High precipitation is observed for year 2 and no variable met at 0.05 significance level for entry into regression model for year 2", + "Value": "0.42-0.48", + "Unit": "% of fertilized N", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b). 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhijian M., Kimura S.D., Toma Y., Hatano R.. 2008. Nitrous oxide fluxes from upland soils in central Hokkaido, Japan, Journal of Environmental Science, 20 1312–1322.", + "English_Abstract": "Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November), for three years, in a total of 11 upland crop fields in central Hokkaido, Japan. The annual mean N2O fluxes ranged from 2.95 to 164.17 gN/(m2 h), with the lowest observed in a grassland and the highest in an onion field. The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall events around harvesting in autumn. No clear common factor regulating instantaneous N2O fluxes was found at any of the study sites. Instead, instantaneous N2O fluxes at di erent sites were a ected by di erent soil variables. The cumulative N2O emissions during the studyperiod within each year varied from 0.15 to 7.05 kgN/hm2 for di erent sites, which accounted for 0.33% to 5.09% of the applied fertilizer N. No obvious relationship was observed between cumulative N2O emission and applied fertilizer N rate (P > 0.4). However, the cumulative N2O emission was significantly correlated with gross mineralized N as estimated by CO2 emissions from bare soils divided by C/N ratios of each soil, and with soil mineral N pool (i.e., the sum of gross mineralized N and fertilizer N) (P < 0.001).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "MU Zhijian", + "Link": "www.jesc.ac.cn", + "creation_date": "2022-03-14T08:05:21.704Z", + "last_change_date": "2022-03-14T08:05:21.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10594, + "fields": { + "EF_ID": 421505, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from agricultural soil (fallow rotation)", + "Technology_Practices": "Fertilizer dosage (0-40 kg/ha/yr) with 40 kg/ha/yr in year1, 0 kg/ha/yr in year2 and 0 kg/ha/yr in year3", + "Parameter_Conditions": "Cambisols; about 30-90m altitude", + "Regional_Conditions": "Hokkaido, Japan, cool temperate climate", + "Control_Technologies": "", + "Other_Properties": "High precipitation is observed for year 2 and no variable met at 0.05 significance level for entry into regression model for year 2", + "Value": "4.31", + "Unit": "% of fertilized N", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b). 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "2006 IPCC Guidelines: Worksheet 3C4(1 of 2)", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhijian M., Kimura S.D., Toma Y., Hatano R.. 2008. Nitrous oxide fluxes from upland soils in central Hokkaido, Japan, Journal of Environmental Science, 20 1312–1322.", + "English_Abstract": "Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November), for three years, in a total of 11 upland crop fields in central Hokkaido, Japan. The annual mean N2O fluxes ranged from 2.95 to 164.17 gN/(m2 h), with the lowest observed in a grassland and the highest in an onion field. The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall events around harvesting in autumn. No clear common factor regulating instantaneous N2O fluxes was found at any of the study sites. Instead, instantaneous N2O fluxes at di erent sites were a ected by di erent soil variables. The cumulative N2O emissions during the studyperiod within each year varied from 0.15 to 7.05 kgN/hm2 for di erent sites, which accounted for 0.33% to 5.09% of the applied fertilizer N. No obvious relationship was observed between cumulative N2O emission and applied fertilizer N rate (P > 0.4). However, the cumulative N2O emission was significantly correlated with gross mineralized N as estimated by CO2 emissions from bare soils divided by C/N ratios of each soil, and with soil mineral N pool (i.e., the sum of gross mineralized N and fertilizer N) (P < 0.001).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "MU Zhijian", + "Link": "www.jesc.ac.cn", + "creation_date": "2022-03-14T08:05:21.795Z", + "last_change_date": "2022-03-14T08:05:21.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10595, + "fields": { + "EF_ID": 421506, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a wheat crop in a semi-arid environment in Victoria with soil cultivation stubble residue burning form the previous wheat or legume crop.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices in these regions involve stubble burn ing with some stubble retention in some years to conserve soil moisture. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a mottled and bleached sodic dermosol with a sandy clay loam surface soil and medium clay subsoil. The annual rainfall is on average 598mm and the site has been cropped for at least 23 years using a lupin - wheat -rotation. Treament includes Conventional cultivation, stubble burnt no fertiliser; 83 kgN/ha [55.2 kgN/ha applied at sowing and 27.6kgN/ha after 8 weeks]; with 2 replicates each contained one of the Six automatic chambers.", + "Regional_Conditions": "Semi-arid environment in Victoria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0005", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37, 599–607.", + "English_Abstract": "Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:21.896Z", + "last_change_date": "2022-03-14T08:05:21.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10596, + "fields": { + "EF_ID": 421507, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a wheat crop in a semi-arid environment in Victoria with no-tillage and the direct drilling of seed with stubble residue retained from the previous wheat or legume crop.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices in these regions involve stubble burn ing with some stubble retention in some years to conserve soil moisture. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a a mottled and bleached sodic dermosol with a sandy clay loam surface soil and medium clay subsoil. The annual rainfall is on average 598mm and the site has been cropped for at least 23 years using a lupin - wheat -rotation. Treament includes direct drilled and stubble residue nretained with N appliedal 83 kgN/ha [55.2 kgN/ha applied at sowing and 27.6kgN/ha after 8 weeks]; with 2 replicates each contained one of the Six automatic chambers.", + "Regional_Conditions": "Semi-arid environment in Victoria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37, 599–607.", + "English_Abstract": "Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:21.997Z", + "last_change_date": "2022-03-14T08:05:21.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10597, + "fields": { + "EF_ID": 421508, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a irrigated maize crop in a semi-arid environment in Narrabri, NSW with stubble reside burnt and cultivation to form raised beds..", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed and irrigated systems. The major agricultural practices in these regions involve stubble burning with some stubble retention in some years to conserve soil moisture. For maize and other irrigated crops in these regions soil beds are formed with tractors. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "Two treaments(Stubble burning + 300 kgN/ha, and stubble retention + 300 kgN/ha) with 3 replicates each contained one of the six automatic chambers. Measurements of soil parameters were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop.", + "Regional_Conditions": "The site is located on a clay loam. The annual rainfall is 406mm + irrigation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.028", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37, 599–607.", + "English_Abstract": "Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:22.097Z", + "last_change_date": "2022-03-14T08:05:22.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10598, + "fields": { + "EF_ID": 421509, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a irrigated maize crop in a semi-arid environment in Narrabri, NSW with stubble residue retained from previous wheat crop and no cultivation or reforming or seed bed.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed and irrigated systems. The major agricultural practices in these regions involve stubble burning with some stubble retention in some years to conserve soil moisture. For maize and other irrigated crops in these regions soil beds are formed with tractors. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a clay loam. The annual rainfall is 406mm + irrigation Two treaments(Stubble burning + 300 kgN/ha, and stubble retention + 300 kgN/ha) with 3 replicates each contained one of the six automatic chambers. Measurements of soil parameters were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop.", + "Regional_Conditions": "Semi-arid environment in Narrabri, NSW", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37, 599–607.", + "English_Abstract": "Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:22.198Z", + "last_change_date": "2022-03-14T08:05:22.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10599, + "fields": { + "EF_ID": 421510, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a long-term irrigated pasture in Kyabram, NSW with grazing and fertiliser N application.", + "Technology_Practices": "Farming practices in this region include mixed grazing and cropping with many long-term permanent improved pastures containmg mixed swards of legume and grass pastures. Pastures are grazed and fertiliser N is applied occasionally, in genberal N is obtained from animal urine and manure deposition..", + "Parameter_Conditions": "Two treaments; no fertiliser, N fertiliser (150kg/ha), with 3 replicates each contained one of the six automatic chambers. Measurements of soil parameters were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Automatic chambers linked to a FTIR measurement system", + "Regional_Conditions": "The site is located on long-term (23years) perennial pasture site consisting of a red brown earth. The annual rainfall is 406mm. The site is a rainfed region. The region is typically temperate with mixed grazing and cropping systems.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0045", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37, 599–607.", + "English_Abstract": "Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.", + "Lower_Bound": "-0.0004", + "Upper_Bound": "+0.0005", + "Data_Quality": "-", + "Data_Quality_Reference": "Normal (1)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:22.407Z", + "last_change_date": "2022-03-14T08:05:22.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10600, + "fields": { + "EF_ID": 421511, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a long-term irrigated pasture in Kyabram, NSW with grazing and urine deposition.", + "Technology_Practices": "Farming practices in this region include mixed grazing and cropping with many long-term permanent improved pastures containmg mixed swards of legume and grass pastures. Pastures are grazed and fertiliser N is applied occasionally, in general N is obtained from animal urine and manure deposition..", + "Parameter_Conditions": "Treaments include no fertiliser, Urine + fertilisers (2000kg/ha) with 3 replicates each contained one of the six automatic chambers. Measurements of soil parameters were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Automatic chambers linked to a FTIR measurement system", + "Regional_Conditions": "The site is located on long-term (23years) perennial pasture site consisting of a red brown earth. The annual rainfall is 406mm. The site is a rainfed region. The region is typically temperate with mixed grazing and cropping systems.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0045", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37, 599–607.", + "English_Abstract": "Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.", + "Lower_Bound": "-0.0004", + "Upper_Bound": "+0.0005", + "Data_Quality": "-", + "Data_Quality_Reference": "Normal (1)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:22.532Z", + "last_change_date": "2022-03-14T08:05:22.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10601, + "fields": { + "EF_ID": 421512, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a irrigated cotton crop in Narrabri, with stubble residues from the previous wheat or vetch crop burnt.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed and irrigated systems. The major agricultural practices in these regions involve stubble burning with some stubble retention in some years to conserve soil moisture. For cotton and other irrigated crops in these regions soil beds are formed with tractors. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a grey alkaline clay. The annual rainfall is 406mm + irrigation. Three treaments (Continuous cotton 100 and 200 kgN/ha; Wheat-vetch-cotton 100, 200, 300kgN/ha; wheat-cotton 100 and 200kgN/ha) with 3 replicates each containing one of the six automatic chambers. Measurements of soil parameters were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop.", + "Regional_Conditions": "Narrabri. This region is considered temperate with irrigationa and rainfed farming systems.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.028", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37, 599–607.", + "English_Abstract": "Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:22.633Z", + "last_change_date": "2022-03-14T08:05:22.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10602, + "fields": { + "EF_ID": 421513, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a irrigated cotton crop in Narrabri, with stubble residues from the previous wheat or vetch crop retained.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed and irrigated systems. The major agricultural practices in these regions involve stubble burning with some stubble retention in some years to conserve soil moisture. For cotton and other irrigated crops in these regions soil beds are formed with tractors. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a grey alkaline clay. The annual rainfall is 406mm + irrigation. Three treaments (Continuous cotton 100 and 200 kgN/ha; Wheat-vetch-cotton 100, 200, 300kgN/ha; wheat-cotton 100 and 200kgN/ha) with 3 replicates each containing one of the six automatic chambers. Measurements of soil parameters were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop.", + "Regional_Conditions": "Narrabri This region is considered temperate with irrigationa and rainfed farming systems.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Galbally IE, Kirstine WV, Meyer CP, Wang YP (2008) Soil-atmosphere trace gas exchange in semiarid and arid zones. Journal of Environmental Quality, 37, 599–607.", + "English_Abstract": "Australian climate, soils and agricultural management practices are significantly different from those of the northern hemisphere nations. Consequently, experimental data on greenhouse gas production from European and North American agricultural soils and its interpretation are unlikely to be directly applicable to Australian systems. A programme of studies of non-CO2 greenhouse gas emissions from agriculture has been established that is designed to reduce uncertainty of non-CO2 greenhouse gas emissions in the Australian National Greenhouse Gas Inventory and provide outputs that will enable better on-farm management practices for reducing non-CO2 greenhouse gas emissions, particularly nitrous oxide. The systems being examined and their locations are irrigated pasture (Kyabram Victoria), irrigated cotton (Narrabri, NSW), irrigated maize (Griffith, NSW), rain-fed wheat (Rutherglen, Victoria) and rain-fed wheat (Cunderdin, WA). The field studies include treatments with and without fertilizer addition, stubble burning versus stubble retention, conventional cultivation versus direct drilling and crop rotation to determine emission factors and treatment possibilities for best management options. The data to date suggest that nitrous oxide emissions from nitrogen fertilizer, applied to irrigated dairy pastures and rain-fed winter wheat, appear much lower than the average of northern hemisphere grain and pasture studies. More variable emissions have been found in studies of irrigated cotton/vetch/wheat rotation and substantially higher emissions from irrigated maize.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:22.733Z", + "last_change_date": "2022-03-14T08:05:22.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10603, + "fields": { + "EF_ID": 421514, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a wheat crop in a semi-arid environment in Victoria with soil cultivation stubble residue burning form the previous wheat or legume crop.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices in these regions involve stubble burn ing with some stubble retention in some years to conserve soil moisture. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "Three treaments (Conventional cultivation, stubble burnt no fertiliser; conventional cultivation, stubble burnt, 83 kgN/ha [55.2 kgN/ha applied at sowing and 27.6kgN/ha after 8 weeks]; and direct drilled and N applied (as before) with 2 replicates each contained one of the Six automatic chambers. For direct drilled treatments the stubble was retained from the previous crop. Measurements of soil parameters (NH4, NO3, C, N, pH, CEC, BD, texture) were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop.", + "Regional_Conditions": "The site is located on a a mottled and bleached sodic dermosol with a sandy clay loam surface soil and medium clay subsoil. The annual rainfall is on average 598mm and the site has been cropped for at least 23 years using a lupin - wheat -rotation.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0006", + "Unit": "kg N2O-N/kg N input", + "Equation": "1. 2006 IPCC Guidelines: Equation 11.1 - Direct N2O Emissions from Managed Soils (Tier 1); 2. GPG: Equation 4.20 - Direct N2O Emissions from Agricultural Soils (Tier 1a) & Equation 4.21 - Direct N2O Emissions from Agricultural Soils (Tier 1b). 3. 1996 IPCC Guidelines: Equation 1, p. 4.92, Reference Manual", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Barker-Reid F, Gates WP,Wilson K, Baigent R, Galbally IE, Meyer CP, Weeks IA, Eckard RJ (2005) Soil nitrous oxide emission from rainfed wheat in SE Australia. In: Fourth International Symposium Non-CO2 Greenhouse Gases (NCGG-4): Science, Con-trol, Policy and Implementation, pp. 25–32. Millpress, Rotterdam,the N etherlands.", + "English_Abstract": "Greenhouse gas emission estimates from agriculture in Australia currently rely heavily on research conducted in the Northern Hemisphere. Due to substantial differences in soil, climate, cropping systems and cultivation practices between North America or Europe and Australia, there exist high levels of uncertainty in Australian agricultural nitrous oxide (N2O) emission estimates. In addition, little applicable field-based data exists on which to base realistic mitigation strategies for Australian agriculture. In an attempt to address some of these deficiencies, automated chambers were used to collect N2O emissions from soils from a rainfed winter wheat crop in south east Australia to investigate the effect of local tillage management and nitrogen fertiliser application. As expected, rainfall and mineral nitrogen status were found to largely influence N2O fluxes. Greatest fluxes were measured in conjunction with rainfall events after extended periods of hot, dry weather (early winter and late summer), when nitrogen mineralisation had occurred. Minimal fluxes were measured corresponding to post-emergence fertiliser application. Annual emission estimates are low relative to the Australian National Greenhouse Gas Inventory (NGGI) emission estimate for agricultural soils. 1", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:22.852Z", + "last_change_date": "2022-03-14T08:05:22.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10604, + "fields": { + "EF_ID": 421515, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a wheat crop in a semi-arid environment in Victoria with no-tillage and the direct drilling of seed with stubble residue retained from the previous wheat or legume crop.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices in these regions involve stubble burn ing with some stubble retention in some years to conserve soil moisture. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "Three treaments (Conventional cultivation, stubble burnt no fertiliser; conventional cultivation, stubble burnt, 83 kgN/ha [55.2 kgN/ha applied at sowing and 27.6kgN/ha after 8 weeks]; and direct drilled and N applied (as before) with 2 replicates each contained one of the Six automatic chambers. For direct drilled treatments the stubble was retained from the previous crop. Measurements of soil parameters (NH4, NO3, C, N, pH, CEC, BD, texture) were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop.", + "Regional_Conditions": "The site is located on a a mottled and bleached sodic dermosol with a sandy clay loam surface soil and medium clay subsoil. The annual rainfall is on average 598mm and the site has been cropped for at least 23 years using a lupin - wheat -rotation.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0011", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Barker-Reid F, Gates WP,Wilson K, Baigent R, Galbally IE, Meyer CP, Weeks IA, Eckard RJ (2005) Soil nitrous oxide emission from rainfed wheat in SE Australia. In: Fourth International Symposium Non-CO2 Greenhouse Gases (NCGG-4): Science, Con-trol, Policy and Implementation, pp. 25–32. Millpress, Rotterdam,the N etherlands.", + "English_Abstract": "Greenhouse gas emission estimates from agriculture in Australia currently rely heavily on research conducted in the Northern Hemisphere. Due to substantial differences in soil, climate, cropping systems and cultivation practices between North America or Europe and Australia, there exist high levels of uncertainty in Australian agricultural nitrous oxide (N2O) emission estimates. In addition, little applicable field-based data exists on which to base realistic mitigation strategies for Australian agriculture. In an attempt to address some of these deficiencies, automated chambers were used to collect N2O emissions from soils from a rainfed winter wheat crop in south east Australia to investigate the effect of local tillage management and nitrogen fertiliser application. As expected, rainfall and mineral nitrogen status were found to largely influence N2O fluxes. Greatest fluxes were measured in conjunction with rainfall events after extended periods of hot, dry weather (early winter and late summer), when nitrogen mineralisation had occurred. Minimal fluxes were measured corresponding to post-emergence fertiliser application. Annual emission estimates are low relative to the Australian National Greenhouse Gas Inventory (NGGI) emission estimate for agricultural soils. 1", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:22.953Z", + "last_change_date": "2022-03-14T08:05:22.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10605, + "fields": { + "EF_ID": 421516, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a semi-arid soil under a wheat crop in Western Australia with wheat stubble residue retained from previous crop.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices include stubble retention with some burning in some years to control weeds. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a freely draining sand overlayting a poorly drained clay soil. The annual rainfall is on average 368mm and the site has been cropped for at least 5 years using a lupin - wheat -rotation. Two treaments (100kgN [25kgN/ha at sowing followed by 75kgN/ha 6 weeks after planting] and Nil N) with 3 replicates each contained one of the Six automatic chambers. Stubble was retained from the previous crop and contained 9.4kgN/ha. Measurements of soil parameters (C, N, pH, CEC, BD, particle size) were done at the start of the study. Each chamber had 4 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop to a height of 950mm.", + "Regional_Conditions": "Western Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0002", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Barton L, Kiese R, Gatter D, Butterbach-Bahl K, Buck R, Hinz C, Murphy D (2008) Nitrous oxide emissions from a cropped soil in a semi-arid climate. Global Change Biology, 14, 177–192.", + "English_Abstract": "Understanding nitrous oxide (N2O) emissions from agricultural soils in semi-arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain-fed, cropped soil in a semi-arid region of southwestern Australia for one year on a sub-daily basis. The site included N-fertilized (100 kgNha 1 yr 1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low ( 1.8 to 7.3 g N2O-N ha 1 day 1) and culminated in an annual loss of 0.11 kg N2O-N ha 1 from N-fertilized soil and 0.09 kg N2O-Nha 1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally 425 1C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the ‘background` emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi-arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. ‘Background` emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi-arid regions on global terrestrial N2O emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.061Z", + "last_change_date": "2022-03-14T08:05:23.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10606, + "fields": { + "EF_ID": 421517, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from irrigated cotton in Dalby, Queensland with conventional tillage and stubble residue burnt from the previous wheat or vetch crop.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed and irrigated systems. The major agricultural practices in these regions involve stubble burning with some stubble retention in some years to conserve soil moisture. For cotton and other irrigated crops in these regions soil beds are formed with tractors. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a grey alkaline clay. The annual rainfall is 406mm + irrigation. Measurements were recorded from an irrigated cotton crop over 188 days from a system that used convetional tillage practices. Six automatic chambers were used to obtain nitrous oxide data and were placed in the bed and the furrow of the crop. Measurements of soil parameters were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. 207 kgN/ha was applied at the site.", + "Regional_Conditions": "Dalby, Queensland. This region is considered temperate with irrigationa and rainfed farming systems.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Peter Grace, David Rowling, Ian Rochester, Ralf Kiese, and Klaus Butterbach-Bahl (2010) Nitrous oxide emissions from irrigated cotton soils of northern Australia. 19th Wolrld Congress of Soil Science, Soil Solutions for a Changing World.1-6 August 2010, Brisbane, Australia.", + "English_Abstract": "Greenhouse gas emissions from a well established, unfertilized tropical grass-legume pasture were monitored over two consecutive years using high resolution automatic sampling. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than WFPS alone. Mean annual emissions were significantly higher during 2008 (5.7 ± 1.0 g N2O-N/ha/day) than 2007 (3.9 ± 0.4 and g N2O-N/ha/day) despite receiving nearly 500 mm less rain. Mean CO2 (28.2 ± 1.5 kg CO2 C/ha/day) was not significantly different (P < 0.01) between measurement years, emissions being highly dependent on temperature. A negative correlation between CO2 and WFPS at >70% indicated a threshold for soil conditions favouring denitrification. The use of automatic chambers for high resolution greenhouse gas sampling can greatly reduce emission estimation errors associated with temperature and WFPS changes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.187Z", + "last_change_date": "2022-03-14T08:05:23.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10607, + "fields": { + "EF_ID": 421518, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a semi-arid soil under a canola crop in Western Australia with stubble retained from aprevious wheat crop", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices include stubble retention with some burning in some years to control weeds. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a freely draining sand overlayting a poorly drained clay soil. The annual rainfall is on average 368mm and the site has been cropped for at least 5 years using a lupin - wheat -rotation. Two treaments (75kgN [25kgN/ha at sowing followed by 50kgN/ha 6 weeks after planting] and Nil N) with 3 replicates each contained one of the Six automatic chambers. Stubble was retained from the previous crop. Measurements of soil parameters (C, N, pH, CEC, BD, particle size) were done at the start of the study. Each chamber had 4 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop to a height of 950mm.", + "Regional_Conditions": "Western Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0006", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Louise Barton L, Daniel V Murphy, Ralf Kiese, and Klause Butterbach-Bahl (2010) Soil nitrous oxide and methane fluxes are low from a bioenergy crop (canola) grown in a semi-arid climate. Global Change Biology Bioenergy, 2, 1–15.", + "English_Abstract": "Understanding nitrous oxide (N2O) fluxes from grain–legume crops in semiarid and arid regions is necessary if we are to improve our knowledge of global terrestrial N2O losses resulting from biological N2 fixation. N2O fluxes were measured from a rain-fed soil, cropped to a grain–legume in a semiarid region of southwestern Australia for 1 year on a subdaily basis. The site included plots planted to narrow-leafed lupin (Lupinus angustifolius; ‘lupin`) and plots left bare (no lupin). Fluxes were measured using soil chambers connected to a fully automated system that measured N2O by gas chromatography. Daily N2O fluxes were low ( 0.5 to 24 gN2O-N ha 1 day 1) and not different between treatments, culminating in an annual loss of 127 gN2O-N ha 1. Greatest daily N2O fluxes occurred from both treatments in the postharvest period, and following a series of summer and autumn rainfall events. At this time of the year, soil conditions were conducive to soil microbial N2O production: elevated soil water contents, increased inorganic nitrogen (N) and dissolved organic carbon concentrations, and soil temperatures generally 425 1C; furthermore, there was no active plant growth to compete for mineralized N. N2O emissions from the decomposition of legume crop residue were low, and approximately half that predicted using the currently recommended IPCC methodology. Furthermore, the contribution of the biological N2 fixation process to N2O emissions appeared negligible in the present study, supporting its omission as a source of N2O from the IPCC methodology for preparing national greenhouse gas inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.304Z", + "last_change_date": "2022-03-14T08:05:23.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10608, + "fields": { + "EF_ID": 421519, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from a wheat crop in a semi-arid environment in Victoria following a legume pasture.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices in these regions involve stubble burning with some stubble retention in some years to conserve soil moisture. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on an alkaline expanding-clay Grey Fertosol. The annual rainfall was 268mm and the site history was either medic pasture, fieldpeas or canola. Three treaments (wheat after medic with no N fertiliser, wheat after fieldpeas no N fertiliser, wheat with 50kgN/ha after canola; with 3 replicates each contained one of the nine automatic chambers. Measurements of soil parameters (NH4, NO3, C, N, pH, CEC, BD, texture) were done at the start of the study. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. 4 measurements from each chamber were collected daily. Chamber height was progressively increased to accomodate the crop.", + "Regional_Conditions": "Semi-arid environment in Victoria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0014", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sally J. Officer A, Frances Phillips B, Roger Armstrong C and John Graham (2010) Nitrogen fertiliser increases nitrous oxide emissions from a semi-arid Vertosol. 19th Wolrld Congress of Soil Science, Soil Solutions for a Changing World.1-6 August 2010, Brisbane, Australia.", + "English_Abstract": "Nitrous oxide (N2O) has 300 times more climate warming effect than carbon dioxide so the accurate measurement of N2O emissions from agricultural soils is important for the verifiable accounting of greenhouse gas emissions. Studies of wheat production systems in semi arid regions of Australia have so far indicated low emissions of N2O by international standards, however the studies are limited. We examined the emissions from a typical rainfed Vertosol growing winter wheat in south-eastern Australia. Continuous gaseous measurements using an automated enclosure chamber system were combined with the simultaneous monitoring of soil water, temperature, mineral nitrogen (N) and weather parameters. The agronomic treatments were winter wheat grown without N fertiliser, following either a grain legume crop (fieldpeas) or a legume pasture (medic), or wheat grown with N fertiliser following a crop of canola. In a relatively dry year, the N2O emissions were similar in scale to other Australian studies from semiarid climates. The application of N fertiliser at sowing increased N2O emissions for approximately two months. The use of previous legume crops to supply N for following wheat crops may reduce N2O emissions from this cropping system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.421Z", + "last_change_date": "2022-03-14T08:05:23.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10609, + "fields": { + "EF_ID": 421520, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate nitrous oxide emissions from an irrigated pasture in Kyabram, NSW with grazing and fertiliser additions.", + "Technology_Practices": "Farming practices in this region include mixed grazing and cropping with many long-term permanent improved pastures containmg mixed swards of legume and grass pastures. Pastures are grazed and fertiliser N is applied occasionally, in general N is obtained from animal urine and manure deposition..", + "Parameter_Conditions": "Two adjacent border check irrigated bays were monitored over 2 years. The pasture species was dominated by clover and perennial ryegrass. The site was irrigated when pan evap m inus rainfall exceeded 50-70mm. Pastures were grazed at intervals using a 300 head dairy herd. Measurements were made every 30 min. 100 kgN/ha was applied at the site each year.", + "Regional_Conditions": "The site was located on a red brown earth with a clay loam surface soil over an alkaline clay. The annual rainfall for the site is 550mm. The region is typically temperate with mixed grazing and cropping systems.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips FA, Leuning R, Baigent R, Kelly KB, and Denmead OT (2007). Nitrous oxide flux measurements from an intensively managed irrigated pasture using micrometeorological techniques. Agriculture and Forest Meteorology, 143, 92-105.", + "English_Abstract": "Nitrous oxide emissions from flood-irrigated pastures grazed for dairy production were measured over 2 years using micrometeorological techniques. Turbulent atmospheric transfer coefficients derived from fluxes of sensible heat and momentum were used to estimate the N2O fluxes from concentrations measured at two heights. Careful data selection excluded data for periods of very low wind-speed and strong stability when transfer coefficients were unreliable. The measurements demonstrated the dynamic nature of N2O emissions following grazing, fertiliser application and irrigation. Daily-averaged emissions ranged from <4 to close to 170 g N2O-N ha 1 day 1. High emissions due to denitrification occurred when soil temperatures were >15 8C, nitrogen was available following grazing or fertiliser application and the water filled pore space of the soil was in the range 65–95%. N2O emission factors of 0.23 0.06% for grazing were similar to those for fertiliser application plus grazing (0.32 0.12%).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.539Z", + "last_change_date": "2022-03-14T08:05:23.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10610, + "fields": { + "EF_ID": 421521, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate N2O emissions from a sub-tropical (high rainfall) wheat crop in southern Queensland with cultivation and burning.", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices include stubble retention with some burning in some years to control weeds. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "A long-term site with 8 treatments (conventional tillage with stubble retained or bunrt and nil fertiliser or 90kgN/ha and no-till with stubble retained or burnt and nil fertiliser or 90kgN/ha), with 4 replicates. The 9 automatic chambers were located on the stubble retained treatments only and were supplemented with an additional 32 manual chambers with four manual chambers located with automatic chambers for method comparison. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. Measurements of soil properties (mineral N, WFPS, BD, soil C) were also made.", + "Regional_Conditions": "The site is located on a black self mulching clay Vertosol, with an annual rainfall of 728mm. The site is located in a sub-tropical rainfed farming system.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.009", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "W. Wang, R Dalal, S Reeves, K Butterbach-Bahl, R Kiese (in press). Three year N2O, CO2 and CH4 fluxes from a subtropical cropland: effects of long-term no-till, stubble retention and nitrogen fertilisation. AJSR (in press).", + "English_Abstract": "Annual greenhouse gas fluxes and the long-term impacts of management practices have been rarely studied on subtropical rain-fed croplands. Using combined automatic and manual chamber techniques, we measured N2O, CO2, and CH4 fluxes over three consecutive years from a cropped clay soil in southern Queensland, Australia, which has been under contrasting management practices for nearly four decades. Annual N2O emissions varied significantly in different years, highlighting the importance of multi-year measurements. Averaged over three years, annual N2O emissions were 138 g N2O-N ha-1 yr-1 from the unfertilized soil and 902 g N2O-N ha-1 yr-1 from the soil receiving 90 kg N ha-1 yr-1. No-till (NT) reduced annual N2O emissions from the fertilized soil by 35% as compared to conventional tillage (CT; 708 vs. 1096 g N2O-N h ha-1 yr-1), whilst stubble retention (SR) increased the emissions by 34% in comparison to stubble burning (SB; 1032 vs. 772 g N2O-N ha-1 yr-1). The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT-SB, CT-SR, NT-SB and NT-SR treatments, respectively. Cumulative CO2 emissions during the fallow period (December to June) did not differ significantly between CT and NT but were higher under SR than SB and higher under fertilized than unfertilized treatments. CH4 fluxes from the soil were very small (–0.06 to 0.17 kg CH4 ha-1 yr-1). On a CO2-equivalent basis, the increase in N2O emissions in response to N fertilization overshadowed its positive effects on soil organic C sequestration, while NT reduced N2O emissions and enhanced SOC sequestration.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.656Z", + "last_change_date": "2022-03-14T08:05:23.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10611, + "fields": { + "EF_ID": 421522, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate N2O emissions from a sub-tropical (high rainfall) wheat crop in southern Queensland with cultivation and stubble residue retained (incorporated).", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices include stubble retention with some burning in some years to control weeds. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a black self mulching clay Vertosol, with an annual rainfall of 728mm. The site is located in a sub-tropical rainfed farming system. A long-term site with 8 treatments (conventional tillage with stubble retained or bunrt and nil fertiliser or 90kgN/ha and no-till with stubble retained or burnt and nil fertiliser or 90kgN/ha), with 4 replicates. The 9 automatic chambers were located on the stubble retained treatments only and were supplemented with an additional 32 manual chambers with four manual chambers located with automatic chambers for method comparison. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. Measurements of soil properties (mineral N, WFPS, BD, soil C) were also made.", + "Regional_Conditions": "Southern Queensland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "W. Wang, R Dalal, S Reeves, K Butterbach-Bahl, R Kiese (in press). Three year N2O, CO2 and CH4 fluxes from a subtropical cropland: effects of long-term no-till, stubble retention and nitrogen fertilisation. AJSR (in press).", + "English_Abstract": "Annual greenhouse gas fluxes and the long-term impacts of management practices have been rarely studied on subtropical rain-fed croplands. Using combined automatic and manual chamber techniques, we measured N2O, CO2, and CH4 fluxes over three consecutive years from a cropped clay soil in southern Queensland, Australia, which has been under contrasting management practices for nearly four decades. Annual N2O emissions varied significantly in different years, highlighting the importance of multi-year measurements. Averaged over three years, annual N2O emissions were 138 g N2O-N ha-1 yr-1 from the unfertilized soil and 902 g N2O-N ha-1 yr-1 from the soil receiving 90 kg N ha-1 yr-1. No-till (NT) reduced annual N2O emissions from the fertilized soil by 35% as compared to conventional tillage (CT; 708 vs. 1096 g N2O-N h ha-1 yr-1), whilst stubble retention (SR) increased the emissions by 34% in comparison to stubble burning (SB; 1032 vs. 772 g N2O-N ha-1 yr-1). The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT-SB, CT-SR, NT-SB and NT-SR treatments, respectively. Cumulative CO2 emissions during the fallow period (December to June) did not differ significantly between CT and NT but were higher under SR than SB and higher under fertilized than unfertilized treatments. CH4 fluxes from the soil were very small (–0.06 to 0.17 kg CH4 ha-1 yr-1). On a CO2-equivalent basis, the increase in N2O emissions in response to N fertilization overshadowed its positive effects on soil organic C sequestration, while NT reduced N2O emissions and enhanced SOC sequestration.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.765Z", + "last_change_date": "2022-03-14T08:05:23.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10612, + "fields": { + "EF_ID": 421523, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate N2O emissions from a sub-tropical (high rainfall) wheat crop in southern Queensland with no tillage and stubble residue burning..", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices include stubble retention with some burning in some years to control weeds. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a black self mulching clay Vertosol, with an annual rainfall of 728mm. A long-term site with 8 treatments (conventional tillage with stubble retained or bunrt and nil fertiliser or 90kgN/ha and no-till with stubble retained or burnt and nil fertiliser or 90kgN/ha), with 4 replicates. The 9 automatic chambers were located on the stubble retained treatments only and were supplemented with an additional 32 manual chambers with four manual chambers located with automatic chambers for method comparison. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. Measurements of soil properties (mineral N, WFPS, BD, soil C) were also made.", + "Regional_Conditions": "Southern Queensland. The site is located in a sub-tropical rainfed farming system.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "W. Wang, R Dalal, S Reeves, K Butterbach-Bahl, R Kiese (in press). Three year N2O, CO2 and CH4 fluxes from a subtropical cropland: effects of long-term no-till, stubble retention and nitrogen fertilisation. AJSR (in press).", + "English_Abstract": "Annual greenhouse gas fluxes and the long-term impacts of management practices have been rarely studied on subtropical rain-fed croplands. Using combined automatic and manual chamber techniques, we measured N2O, CO2, and CH4 fluxes over three consecutive years from a cropped clay soil in southern Queensland, Australia, which has been under contrasting management practices for nearly four decades. Annual N2O emissions varied significantly in different years, highlighting the importance of multi-year measurements. Averaged over three years, annual N2O emissions were 138 g N2O-N ha-1 yr-1 from the unfertilized soil and 902 g N2O-N ha-1 yr-1 from the soil receiving 90 kg N ha-1 yr-1. No-till (NT) reduced annual N2O emissions from the fertilized soil by 35% as compared to conventional tillage (CT; 708 vs. 1096 g N2O-N h ha-1 yr-1), whilst stubble retention (SR) increased the emissions by 34% in comparison to stubble burning (SB; 1032 vs. 772 g N2O-N ha-1 yr-1). The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT-SB, CT-SR, NT-SB and NT-SR treatments, respectively. Cumulative CO2 emissions during the fallow period (December to June) did not differ significantly between CT and NT but were higher under SR than SB and higher under fertilized than unfertilized treatments. CH4 fluxes from the soil were very small (–0.06 to 0.17 kg CH4 ha-1 yr-1). On a CO2-equivalent basis, the increase in N2O emissions in response to N fertilization overshadowed its positive effects on soil organic C sequestration, while NT reduced N2O emissions and enhanced SOC sequestration.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.874Z", + "last_change_date": "2022-03-14T08:05:23.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10613, + "fields": { + "EF_ID": 421524, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate N2O emissions from a sub-tropical (high rainfall) wheat crop in southern Queensland with no tillage and stubble residue retained..", + "Technology_Practices": "Farming practices in this region involve mixed broad acre cropping in rainfed systems. The major agricultural practices include stubble retention with some burning in some years to control weeds. Land practices involve tractor use and combine harvestors for crop harvesting.", + "Parameter_Conditions": "The site is located on a black self mulching clay Vertosol, with an annual rainfall of 728mm. A long-term site with 8 treatments (conventional tillage with stubble retained or bunrt and nil fertiliser or 90kgN/ha and no-till with stubble retained or burnt and nil fertiliser or 90kgN/ha), with 4 replicates. The 9 automatic chambers were located on the stubble retained treatments only and were supplemented with an additional 32 manual chambers with four manual chambers located with automatic chambers for method comparison. Each chamber had 2 bases and the chamber was moved between the bases weekly to minimise chamber effects on plant growth. Measurements of soil properties (mineral N, WFPS, BD, soil C) were also made.", + "Regional_Conditions": "Southern Queensland. The site is located in a sub-tropical rainfed farming system.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "W. Wang, R Dalal, S Reeves, K Butterbach-Bahl, R Kiese (in press). Three year N2O, CO2 and CH4 fluxes from a subtropical cropland: effects of long-term no-till, stubble retention and nitrogen fertilisation. AJSR (in press).", + "English_Abstract": "Annual greenhouse gas fluxes and the long-term impacts of management practices have been rarely studied on subtropical rain-fed croplands. Using combined automatic and manual chamber techniques, we measured N2O, CO2, and CH4 fluxes over three consecutive years from a cropped clay soil in southern Queensland, Australia, which has been under contrasting management practices for nearly four decades. Annual N2O emissions varied significantly in different years, highlighting the importance of multi-year measurements. Averaged over three years, annual N2O emissions were 138 g N2O-N ha-1 yr-1 from the unfertilized soil and 902 g N2O-N ha-1 yr-1 from the soil receiving 90 kg N ha-1 yr-1. No-till (NT) reduced annual N2O emissions from the fertilized soil by 35% as compared to conventional tillage (CT; 708 vs. 1096 g N2O-N h ha-1 yr-1), whilst stubble retention (SR) increased the emissions by 34% in comparison to stubble burning (SB; 1032 vs. 772 g N2O-N ha-1 yr-1). The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT-SB, CT-SR, NT-SB and NT-SR treatments, respectively. Cumulative CO2 emissions during the fallow period (December to June) did not differ significantly between CT and NT but were higher under SR than SB and higher under fertilized than unfertilized treatments. CH4 fluxes from the soil were very small (–0.06 to 0.17 kg CH4 ha-1 yr-1). On a CO2-equivalent basis, the increase in N2O emissions in response to N fertilization overshadowed its positive effects on soil organic C sequestration, while NT reduced N2O emissions and enhanced SOC sequestration.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Bill John SLATTERY", + "Link": "", + "creation_date": "2022-03-14T08:05:23.983Z", + "last_change_date": "2022-03-14T08:05:23.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10614, + "fields": { + "EF_ID": 421525, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from rice cultivation", + "Technology_Practices": "The control, i.e., continuous flooded and urea fertilization (CU), which is the common agricultural practices of the region, was assigned to plot a. The treatment of continuous flooded and applying slow-releasing urea (CS) was assigned to plot b. The treatment of intermittent irrigation and urea fertilization (IU) was assigned to plot c", + "Parameter_Conditions": "The field experiment was set up at the Hailun Experimental Station of Ecology in Hailun city, Heilongjiang province (47+/- 260 N, 126+/- 380 E) in 2003. The soil is a Phaeozems with 48.2 g/kg of soil organic matter, 2.2 g/kg of total N and a pH of 7.02. The annual precipitation ranges between 500 and 600 mm, and most occurs in summer. The annual average temperature varies from 0 to 6 deg.C, with the lowest monthly average temperature in January from 16.5 to 25.5 deg. C and the warmest monthly average temperature in July from 20 to 25 deg.C. Soil type is locally described as black soil. Soil texture is of clay.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yue J., Shi Y., Liang W., Wu J., Wang C., and Huang G., 2005.Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China. Nutrient Cycling in Agroecosystems 73:293–301.", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) emissions from rice field in black soil were measured in situ by using static chamber techniques during crop growth season in 2001. The experiment fields were divided into three plots for three different treatments, one with continuous flooded and applying urea (CU), one with continuous flooded and applying slow-releasing urea (CS), and one with intermittent irrigation and applying urea (IU). Under the same fertilization application, compared with continuous flooded, intermittent irrigation can significantly reduce CH4 emission and increase N2O emission. But, integrated global warming potentials (GWPS) of CH4 and N2O emission were reduced greatly, while rice yield was not affected. So, the intermittent irrigation is an effective measure to reduce greenhouse gas emissions from paddy fields. The amount of CH4 emission during rice-growing season for the three treatments was all much lower than that from any other region in China. There was a trade-off relationship between CH4 and N2O emissions. We also measured the numbers of methanogens, methanotrophs, nitrifiers and denitrifers from rice field at various growth stages in 2001. Bacteria populations were estimated by the most probable number (MPN) method. Regression analyses show CH4 emissions were closely related to methanogens population for all the three treatments. There was a positive correlation between denitrifiers population level and N2O emission in the treatment of IU.", + "Lower_Bound": "0.002", + "Upper_Bound": "0.008", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data is for the rice growing season", + "Other_Comments": "", + "Data_Provider": "Lianfeng Wang", + "Link": "", + "creation_date": "2022-03-14T08:05:24.125Z", + "last_change_date": "2022-03-14T08:05:24.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10615, + "fields": { + "EF_ID": 421526, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from Australian sugarcane production", + "Technology_Practices": "Burnt-cane sugarcane crop on an acid sulfate soil (ASS) that was fertilised with 160 kg N/ha as urea in the south of the sugarcane belt in Australia", + "Parameter_Conditions": "Northern New South Wales, estuary flood plain (during periods of high rainfall iften inundated), extensive sugarcane production; fertilizer application:160 kg N/ha; acid sulfate soil (ASS); rain fall: 1879 mm: mean temperature: 20.8 degrees centigrade", + "Regional_Conditions": "Sub-tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Denmead O.T., Macdonald B.C.T.,Bryant G., Naylor T., Wilson S., Griffith D.W.T., Wang W.J., Salter B, White I., Moody P.W, 2010. Emissions of methane and nitrous oxide from Australian sugarcane soils. Agricultural and Forest Meteorology 150:748-756.", + "English_Abstract": "Climatic conditions and cultural practices in the sub-tropical and tropical high-rainfall regions in which sugarcane is grown in Australia are conducive to rapid carbon and nitrogen cycling. Previous research has identified substantial exchanges of methane (CH4) and nitrous oxide (N2O) between sugarcane soils and the atmosphere. However, that research has been mostly short-term. This paper describes recent work aimed at quantifying exchanges of CH4 and N2O from fertilised sugarcane soils over whole growing seasons. Micrometeorological and chamber techniques provided continuous measurements of gas emissions in whole-of-season studies in a burnt-cane crop on an acid sulfate soil (ASS) that was fertilised with 160 kg nitrogen (N) ha-1 as urea in the south of the sugarcane belt (Site 1), and in a crop on a more representative trash-blanketed soil fertilised with 150 kg urea-N ha-1 in the north (Site 2). Site 1 was a strong source of CH4 with a seasonal emission (over 342 days) of 19.9 kg CH4 ha-1. That rate corresponds to 0.5–5% of those expected from rice and wetlands. The many drains in the region appear to be the main source. The net annual emission of CH4 at Site 2 over 292 days was essentially zero, which contradicts predictions that trash-blankets on the soil are net CH4 sinks. Emissions of N2O from the ASS at Site 1 were extraordinarily large and prolonged, totalling 72.1 kg N2O ha-1 (45.9 kg N ha-1) and persisting at substantial rates for 5 months. The high porosity and frequent wetting with consequent high water filled pore space and the high carbon content of the soil appear to be important drivers of N2O production. At Site 2, emissions were much smaller, totalling 7.4 kg N2O ha-1 (4.7 kg N ha-1), most of which was emitted in less than 3 months. The emission factors for N2O (the proportion of fertiliser nitrogen emitted as N2O–N) were 21% at Site 1 and 2.8% at Site 2. Both factors exceed the default national inventory value of 1.25%. Calculations suggest that annual N2O production from Australian sugarcane soils is around 3.8 kt N2O, which is about one-half a previous estimate based on short-term measurements, and although ASS constitute only about 4% of Australia`s sugarcane soils, they could contribute about 25% of soil emissions of N2O from sugarcane. The uptake of 50–94 t CO2 ha-1 from the atmosphere by the crops at both sites was offset by emissions of CH4 and N2O to the atmosphere amounting to 22 t CO2-e ha-1 at Site 1 and 2 t CO2-e ha-1 at Site 2.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. Burnt-cane is a sugarcane harvesting system in which the foliage is removed by burning before harvesting the cane stalks. 2. This research has identified for the first time the impact of acid soils in hydrosols that lead to extremely high emissions of nitrous oxide.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:24.217Z", + "last_change_date": "2022-03-14T08:05:24.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10616, + "fields": { + "EF_ID": 421527, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF1 to estimate direct N2O emission from Australian sugarcane production", + "Technology_Practices": "Trash-blanketed sugarcane soil fertilised with 150 kg urea-N/ha in the north of the sugarcane belt in Australia", + "Parameter_Conditions": "Mackay, Queensland, sandy loam soil (Chromosol); fertilizer application: 150 kg N/ha; rain fall: 2142 mm; mean temperature: 22.4 degrees centigrade", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.028", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Denmead O.T., Macdonald B.C.T.,Bryant G., Naylor T., Wilson S., Griffith D.W.T., Wang W.J., Salter B, White I., Moody P.W, 2010. Emissions of methane and nitrous oxide from Australian sugarcane soils. Agricultural and Forest Meteorology 150:748-756.", + "English_Abstract": "Climatic conditions and cultural practices in the sub-tropical and tropical high-rainfall regions in which sugarcane is grown in Australia are conducive to rapid carbon and nitrogen cycling. Previous research has identified substantial exchanges of methane (CH4) and nitrous oxide (N2O) between sugarcane soils and the atmosphere. However, that research has been mostly short-term. This paper describes recent work aimed at quantifying exchanges of CH4 and N2O from fertilised sugarcane soils over whole growing seasons. Micrometeorological and chamber techniques provided continuous measurements of gas emissions in whole-of-season studies in a burnt-cane crop on an acid sulfate soil (ASS) that was fertilised with 160 kg nitrogen (N) ha-1 as urea in the south of the sugarcane belt (Site 1), and in a crop on a more representative trash-blanketed soil fertilised with 150 kg urea-N ha-1 in the north (Site 2). Site 1 was a strong source of CH4 with a seasonal emission (over 342 days) of 19.9 kg CH4 ha-1. That rate corresponds to 0.5–5% of those expected from rice and wetlands. The many drains in the region appear to be the main source. The net annual emission of CH4 at Site 2 over 292 days was essentially zero, which contradicts predictions that trash-blankets on the soil are net CH4 sinks. Emissions of N2O from the ASS at Site 1 were extraordinarily large and prolonged, totalling 72.1 kg N2O ha-1 (45.9 kg N ha-1) and persisting at substantial rates for 5 months. The high porosity and frequent wetting with consequent high water filled pore space and the high carbon content of the soil appear to be important drivers of N2O production. At Site 2, emissions were much smaller, totalling 7.4 kg N2O ha-1 (4.7 kg N ha-1), most of which was emitted in less than 3 months. The emission factors for N2O (the proportion of fertiliser nitrogen emitted as N2O–N) were 21% at Site 1 and 2.8% at Site 2. Both factors exceed the default national inventory value of 1.25%. Calculations suggest that annual N2O production from Australian sugarcane soils is around 3.8 kt N2O, which is about one-half a previous estimate based on short-term measurements, and although ASS constitute only about 4% of Australia`s sugarcane soils, they could contribute about 25% of soil emissions of N2O from sugarcane. The uptake of 50–94 t CO2 ha-1 from the atmosphere by the crops at both sites was offset by emissions of CH4 and N2O to the atmosphere amounting to 22 t CO2-e ha-1 at Site 1 and 2 t CO2-e ha-1 at Site 2.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Trash-blanketing is a system of sugarcane harvesting whereby the green foliage is separated from the cane stalks during the harvesting operation and returned as a trash mulch to the soil surface at a rate of 15– 20 t dry matter (ca. 6–8 t C)/ha", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:24.310Z", + "last_change_date": "2022-03-14T08:05:24.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10617, + "fields": { + "EF_ID": 422663, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Tentative dry season manure management emission factor for manure from Boran cattle managed as a solid on pastures and ranges in East Africa", + "Technology_Practices": "Livestock in east Africa are typically raised in low-input smallholder systems that utilize grazing of low quality fodder. Manure management is basic with much of the excreta left on pasture.", + "Parameter_Conditions": "Highlands, deep, well-drained Nitisol soils, young steers (100 - 150 kg live weight). Measurements were done during the dry season only.", + "Regional_Conditions": "Kenya, sub-tropical dry climate, highland grasslands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.087", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.22, Chapter 10, Volume 4(2) of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "David E. Pelster, Betty Gisore, James K. Koske, John Goopy, Daniel Korir, Mariana C. Rufino, Klaus Butterbach-Bahl, Methane and nitrous oxide emissions from cattle excreta on an East African grassland, Journal of Environmental Quality (2016)", + "English_Abstract": "Greenhouse gas (GHG) emission measurements from livestock excreta in Africa are limited. We measured CH4 and N2O emissions from excreta of six Boran (Bos indicus) and six Friesian (Bos taurus) steers near Nairobi, Kenya. The steers were fed one of three diets (T1 [chaffed wheat straw], T2 [T1 + Calliandra calothyrsus Meissner – 0.2% live weight per day], and T3 [T1 + calliandra –0.4% live weight every 2 d]). The T1 diet is similar in quality to typical diets in the region. Calliandra is a leguminous fodder tree promoted as a feed supplement. Fresh feces and urine were applied to grasslands and emissions measured using static chambers. Cumulative 28-d fecal emissions were 302 +/- 52.4 and 95 +/- 13.8 mg CH4–C kg-1 dry matter for Friesen and Boran steers, respectively, and 11.5 +/- 4.26 and 24.7 +/- 8.32 mg N2O–N kg-1 dry matter for Friesian and Boran steers, respectively. For urine from Friesian steers, the N2O emissions were 2.8 +/- 0.64 mg N2O–N 100 mL urine-1. The CH4 emission factors (EFs) (246 +/- 49.5 and 87 +/- 12.7 g CH4–C yr-1 animal-1 for Friesan and Boran, respectively) were lower than the International Panel on Climate Change EFs (750 g CH4–C animal-1 yr-1), whereas the N2O EFs (0.1 and 0.2% for the Friesian and Boran feces, respectively, and 1.2% for urine) were also lower than International Panel on Climate Change estimates. The low N content of the excreta likely caused the low emissions and indicates that current models probably overestimate CH4 and N2O emissions from African livestock manure.", + "Lower_Bound": "0.074", + "Upper_Bound": "0.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1071/AN15569", + "creation_date": "2022-03-14T08:05:24.403Z", + "last_change_date": "2022-03-14T08:05:24.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10618, + "fields": { + "EF_ID": 422664, + "IPCC_Category": "3.A.2 - Manure Management", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Tentative dry season manure management emission factor for manure from Friesian cattle managed as a solid on pastures and ranges in East Africa", + "Technology_Practices": "Livestock in east Africa are typically raised in low-input smallholder systems that utilize grazing of low quality fodder. Manure management is basic with much of the excreta left on pasture.", + "Parameter_Conditions": "Highlands, deep, well-drained Nitisol soils, young steers (100 - 150 kg live weight). Measurements were done during the dry season only.", + "Regional_Conditions": "Kenya, sub-tropical dry climate, highland grasslands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.246", + "Unit": "kg/animal/yr", + "Equation": "Equation 10.22, Chapter 10, Volume 4(2) of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "David E. Pelster, Betty Gisore, James K. Koske, John Goopy, Daniel Korir, Mariana C. Rufino, Klaus Butterbach-Bahl, Methane and nitrous oxide emissions from cattle excreta on an East African grassland, Journal of Environmental Quality (2016)", + "English_Abstract": "Greenhouse gas (GHG) emission measurements from livestock excreta in Africa are limited. We measured CH4 and N2O emissions from excreta of six Boran (Bos indicus) and six Friesian (Bos taurus) steers near Nairobi, Kenya. The steers were fed one of three diets (T1 [chaffed wheat straw], T2 [T1 + Calliandra calothyrsus Meissner – 0.2% live weight per day], and T3 [T1 + calliandra –0.4% live weight every 2 d]). The T1 diet is similar in quality to typical diets in the region. Calliandra is a leguminous fodder tree promoted as a feed supplement. Fresh feces and urine were applied to grasslands and emissions measured using static chambers. Cumulative 28-d fecal emissions were 302 +/- 52.4 and 95 +/- 13.8 mg CH4–C kg-1 dry matter for Friesen and Boran steers, respectively, and 11.5 +/- 4.26 and 24.7 +/- 8.32 mg N2O–N kg-1 dry matter for Friesian and Boran steers, respectively. For urine from Friesian steers, the N2O emissions were 2.8 +/- 0.64 mg N2O–N 100 mL urine-1. The CH4 emission factors (EFs) (246 +/- 49.5 and 87 +/- 12.7 g CH4–C yr-1 animal-1 for Friesan and Boran, respectively) were lower than the International Panel on Climate Change EFs (750 g CH4–C animal-1 yr-1), whereas the N2O EFs (0.1 and 0.2% for the Friesian and Boran feces, respectively, and 1.2% for urine) were also lower than International Panel on Climate Change estimates. The low N content of the excreta likely caused the low emissions and indicates that current models probably overestimate CH4 and N2O emissions from African livestock manure.", + "Lower_Bound": "0.197", + "Upper_Bound": "0.296", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1071/AN15569", + "creation_date": "2022-03-14T08:05:24.521Z", + "last_change_date": "2022-03-14T08:05:24.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10619, + "fields": { + "EF_ID": 422665, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Tentative dry season emission factor for N2O emissions resulting from application of Boran cattle manure applied to pastures and ranges in East Africa", + "Technology_Practices": "Livestock in east Africa are typically raised in low-input smallholder systems that utilize grazing of low quality fodder. Manure management is basic with much of the excreta left on pasture.", + "Parameter_Conditions": "Highlands, deep, well-drained Nitisol soils, young steers (100 - 150 kg live weight). Measurements were done during the dry season only.", + "Regional_Conditions": "Kenya, sub-tropical dry climate, highland grasslands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 11.2, Chapter 11, Volume 4(2) of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "David E. Pelster, Betty Gisore, James K. Koske, John Goopy, Daniel Korir, Mariana C. Rufino, Klaus Butterbach-Bahl, Methane and nitrous oxide emissions from cattle excreta on an East African grassland, Journal of Environmental Quality (2016)", + "English_Abstract": "Greenhouse gas (GHG) emission measurements from livestock excreta in Africa are limited. We measured CH4 and N2O emissions from excreta of six Boran (Bos indicus) and six Friesian (Bos taurus) steers near Nairobi, Kenya. The steers were fed one of three diets (T1 [chaffed wheat straw], T2 [T1 + Calliandra calothyrsus Meissner – 0.2% live weight per day], and T3 [T1 + calliandra –0.4% live weight every 2 d]). The T1 diet is similar in quality to typical diets in the region. Calliandra is a leguminous fodder tree promoted as a feed supplement. Fresh feces and urine were applied to grasslands and emissions measured using static chambers. Cumulative 28-d fecal emissions were 302 +/- 52.4 and 95 +/- 13.8 mg CH4–C kg-1 dry matter for Friesen and Boran steers, respectively, and 11.5 +/- 4.26 and 24.7 +/- 8.32 mg N2O–N kg-1 dry matter for Friesian and Boran steers, respectively. For urine from Friesian steers, the N2O emissions were 2.8 +/- 0.64 mg N2O–N 100 mL urine-1. The CH4 emission factors (EFs) (246 +/- 49.5 and 87 +/- 12.7 g CH4–C yr-1 animal-1 for Friesan and Boran, respectively) were lower than the International Panel on Climate Change EFs (750 g CH4–C animal-1 yr-1), whereas the N2O EFs (0.1 and 0.2% for the Friesian and Boran feces, respectively, and 1.2% for urine) were also lower than International Panel on Climate Change estimates. The low N content of the excreta likely caused the low emissions and indicates that current models probably overestimate CH4 and N2O emissions from African livestock manure.", + "Lower_Bound": "0.001", + "Upper_Bound": "0.003", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1071/AN15569", + "creation_date": "2022-03-14T08:05:24.621Z", + "last_change_date": "2022-03-14T08:05:24.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10620, + "fields": { + "EF_ID": 422666, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Tentative dry season emission factor for N2O emissions resulting from application of Friesian cattle manure applied to pastures and ranges in East Africa", + "Technology_Practices": "Livestock in east Africa are typically raised in low-input smallholder systems that utilize grazing of low quality fodder. Manure management is basic with much of the excreta left on pasture.", + "Parameter_Conditions": "Highlands, deep, well-drained Nitisol soils, young steers (100 - 150 kg live weight). Measurements were done during the dry season only.", + "Regional_Conditions": "Kenya, sub-tropical dry climate, highland grasslands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 11.2, Chapter 11, Volume 4(2) of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "David E. Pelster, Betty Gisore, James K. Koske, John Goopy, Daniel Korir, Mariana C. Rufino, Klaus Butterbach-Bahl, Methane and nitrous oxide emissions from cattle excreta on an East African grassland, Journal of Environmental Quality (2016)", + "English_Abstract": "Greenhouse gas (GHG) emission measurements from livestock excreta in Africa are limited. We measured CH4 and N2O emissions from excreta of six Boran (Bos indicus) and six Friesian (Bos taurus) steers near Nairobi, Kenya. The steers were fed one of three diets (T1 [chaffed wheat straw], T2 [T1 + Calliandra calothyrsus Meissner – 0.2% live weight per day], and T3 [T1 + calliandra –0.4% live weight every 2 d]). The T1 diet is similar in quality to typical diets in the region. Calliandra is a leguminous fodder tree promoted as a feed supplement. Fresh feces and urine were applied to grasslands and emissions measured using static chambers. Cumulative 28-d fecal emissions were 302 +/- 52.4 and 95 +/- 13.8 mg CH4–C kg-1 dry matter for Friesen and Boran steers, respectively, and 11.5 +/- 4.26 and 24.7 +/- 8.32 mg N2O–N kg-1 dry matter for Friesian and Boran steers, respectively. For urine from Friesian steers, the N2O emissions were 2.8 +/- 0.64 mg N2O–N 100 mL urine-1. The CH4 emission factors (EFs) (246 +/- 49.5 and 87 +/- 12.7 g CH4–C yr-1 animal-1 for Friesan and Boran, respectively) were lower than the International Panel on Climate Change EFs (750 g CH4–C animal-1 yr-1), whereas the N2O EFs (0.1 and 0.2% for the Friesian and Boran feces, respectively, and 1.2% for urine) were also lower than International Panel on Climate Change estimates. The low N content of the excreta likely caused the low emissions and indicates that current models probably overestimate CH4 and N2O emissions from African livestock manure.", + "Lower_Bound": "0", + "Upper_Bound": "0.001", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1071/AN15569", + "creation_date": "2022-03-14T08:05:24.722Z", + "last_change_date": "2022-03-14T08:05:24.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10621, + "fields": { + "EF_ID": 422667, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Tentative dry season emission factor for N2O emissions resulting from application of Friesian cattle urine applied to pastures and ranges in East Africa", + "Technology_Practices": "Livestock in east Africa are typically raised in low-input smallholder systems that utilize grazing of low quality fodder. Manure management is basic with much of the excreta left on pasture.", + "Parameter_Conditions": "Highlands, deep, well-drained Nitisol soils, young steers (100 - 150 kg live weight). Measurements were done during the dry season only.", + "Regional_Conditions": "Kenya, sub-tropical dry climate, highland grasslands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 11.2, Chapter 11, Volume 4(2) of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "David E. Pelster, Betty Gisore, James K. Koske, John Goopy, Daniel Korir, Mariana C. Rufino, Klaus Butterbach-Bahl, Methane and nitrous oxide emissions from cattle excreta on an East African grassland, Journal of Environmental Quality (2016)", + "English_Abstract": "Greenhouse gas (GHG) emission measurements from livestock excreta in Africa are limited. We measured CH4 and N2O emissions from excreta of six Boran (Bos indicus) and six Friesian (Bos taurus) steers near Nairobi, Kenya. The steers were fed one of three diets (T1 [chaffed wheat straw], T2 [T1 + Calliandra calothyrsus Meissner – 0.2% live weight per day], and T3 [T1 + calliandra –0.4% live weight every 2 d]). The T1 diet is similar in quality to typical diets in the region. Calliandra is a leguminous fodder tree promoted as a feed supplement. Fresh feces and urine were applied to grasslands and emissions measured using static chambers. Cumulative 28-d fecal emissions were 302 +/- 52.4 and 95 +/- 13.8 mg CH4–C kg-1 dry matter for Friesen and Boran steers, respectively, and 11.5 +/- 4.26 and 24.7 +/- 8.32 mg N2O–N kg-1 dry matter for Friesian and Boran steers, respectively. For urine from Friesian steers, the N2O emissions were 2.8 +/- 0.64 mg N2O–N 100 mL urine-1. The CH4 emission factors (EFs) (246 +/- 49.5 and 87 +/- 12.7 g CH4–C yr-1 animal-1 for Friesan and Boran, respectively) were lower than the International Panel on Climate Change EFs (750 g CH4–C animal-1 yr-1), whereas the N2O EFs (0.1 and 0.2% for the Friesian and Boran feces, respectively, and 1.2% for urine) were also lower than International Panel on Climate Change estimates. The low N content of the excreta likely caused the low emissions and indicates that current models probably overestimate CH4 and N2O emissions from African livestock manure.", + "Lower_Bound": "0.008", + "Upper_Bound": "0.015", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1071/AN15569", + "creation_date": "2022-03-14T08:05:24.822Z", + "last_change_date": "2022-03-14T08:05:24.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10622, + "fields": { + "EF_ID": 422680, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for Borgou cattle native to Benin, calculated using a Tier 2 methodology with Benin-specific data for the national Borgau herd.", + "Technology_Practices": "Cattle are primarily multi-purpose (other cattle) and raised in traditional farm management system (minimal-input, low-production extensive systems using natural pastures in open rangeland or crop residues within fields)", + "Parameter_Conditions": "Breed= Borgou; Cattle sub-group= Bos taurus; Mature females weight= 239.5 kg ; Bull weight= 275 kg; milk kg/day = 1.5; milk fat= 6.7; calving rate= 65.4; work hrs/day = 0; digestibility of feed = 54%; CH4 conversion = 7.0%; mature year= 4; Age at first calving (months) = 43; Gestation length (months)= 9; Castrated male cattle (%)= 2", + "Regional_Conditions": "Country: Benin; climate zone: tropical soudanian climate in the North and subequatorial climate in the South. EF is also applicable to Borgou cattle from Togo, Méré cattle from Burkina Faso and Keteku cattle from Nigeria.", + "Control_Technologies": "", + "Other_Properties": "Includes mature cows, mature bulls, young bulls, heifer and young under 1 year. Mature cows comprise a large portion of the population ", + "Value": "40.2", + "Unit": "kg/head/yr", + "Equation": "Equation 10.19, Page 10.28, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Page.25, Chapter 4, GPG2000; Equation on page 4.14, Chapter 4, 1996 IPCC Guidelines ", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines ", + "Data_Source": "Peer-reviewed journal  ", + "Technical_Reference": "Kouazounde, J.B.; Gbenou, J.D.; Babatounde, S.; Srivastava, N.; Eggleston, S.H.; Antwi, C.; Baah, J.; McAllister, T.A. Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology. animal 2015, 9, 526", + "English_Abstract": "The objective of this study was to develop emission factors (EF) for methane (CH4) emissions from enteric fermentation in cattle native to Benin. Information on livestock characteristics and diet practices specific to the Benin cattle population were gathered from a variety of sources and used to estimate EF according to Tier 2 methodology of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Most cattle from Benin are Bos taurus represented by Borgou, Somba and Lagune breeds. They are mainly multi-purpose, being used for production of meat, milk, hides and draft power and grazed in open pastures and crop lands comprising tropical forages and crops. Estimated enteric CH4 EFs varied among cattle breeds and subcategory owing to differences in proportions of gross energy intake expended to meet maintenance, production and activity. EFs ranged from 15.0 to 43.6, 16.9 to 46.3 and 24.7 to 64.9 kg CH4/head per year for subcategories of Lagune, Somba and Borgou cattle, respectively. Average EFs for cattle breeds were 24.8, 29.5 and 40.2 kg CH4/head per year for Lagune, Somba and Borgou cattle, respectively. The national EF for cattle from Benin was 39.5 kg CH4/head per year. This estimated EF was 27.4% higher than the default EF suggested by IPCC for African cattle with the exception of dairy cattle. The outcome of the study underscores the importance of obtaining country-specific EF to estimate global enteric CH4 emissions.", + "Lower_Bound": "24", + "Upper_Bound": "56", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "95% confidence limits of +/-40%", + "Data_Provider_Comments": "EF were derived from characterization of Borgou cattle population and performance data which be obtained from Kouazounde et al. (2014) and supplementary material for this paper (Supplementary Table S2 , Supplementary Table S4, Supplementary Table S5, Supplementary Table S6)", + "Other_Comments": "", + "Data_Provider": "", + "Link": "To view supplementary material for Kouazounde et al. (2014), please visit http://dx.doi.org/10.1017/S1751731114002626", + "creation_date": "2022-03-14T08:05:24.939Z", + "last_change_date": "2022-03-14T08:05:24.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10623, + "fields": { + "EF_ID": 422681, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for Lagune cattle native to Benin, calculated using a Tier 2 methodology with Benin-specific data for the national Lagune herd.", + "Technology_Practices": "Cattle are primarily multi-purpose (other cattle) and raised in traditional farm management system (minimal-input, low-production under grazing systems on small natural pastures or fed crop residues, under palm and coconut trees or on fallow land)", + "Parameter_Conditions": "Breed= Lagune; Cattle sub-group= Bos taurus; Mature females weight= 157 kg ; Bull weight= 150-200 kg; milk kg/day = 0.8; milk fat= 5.8; calving rate= 45; work hrs/day = 0; digestibility of feed = 54%; CH4 conversion = 7.0%; mature year= 4; Age at first calving (months) = 36-48; Gestation length (months)= 9; Castrated male cattle (%)= 2", + "Regional_Conditions": "Country: Benin; climate zone: subequatorial climate in the South. EF is also applicable to Lagune from Togo, Ghana and Nigeria.", + "Control_Technologies": "", + "Other_Properties": "Includes mature cows, mature bulls, young bulls, heifer and young under 1 year. Mature cows comprise a large portion of the population ", + "Value": "24.8", + "Unit": "kg/head/yr", + "Equation": "Equation 10.19, Page 10.28, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Page.25, Chapter 4, GPG2000; Equation on page 4.14, Chapter 4, 1996 IPCC Guidelines ", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines ", + "Data_Source": "Peer-reviewed journal  ", + "Technical_Reference": "Kouazounde, J.B.; Gbenou, J.D.; Babatounde, S.; Srivastava, N.; Eggleston, S.H.; Antwi, C.; Baah, J.; McAllister, T.A. Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology. animal 2015, 9, 526", + "English_Abstract": "The objective of this study was to develop emission factors (EF) for methane (CH4) emissions from enteric fermentation in cattle native to Benin. Information on livestock characteristics and diet practices specific to the Benin cattle population were gathered from a variety of sources and used to estimate EF according to Tier 2 methodology of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Most cattle from Benin are Bos taurus represented by Borgou, Somba and Lagune breeds. They are mainly multi-purpose, being used for production of meat, milk, hides and draft power and grazed in open pastures and crop lands comprising tropical forages and crops. Estimated enteric CH4 EFs varied among cattle breeds and subcategory owing to differences in proportions of gross energy intake expended to meet maintenance, production and activity. EFs ranged from 15.0 to 43.6, 16.9 to 46.3 and 24.7 to 64.9 kg CH4/head per year for subcategories of Lagune, Somba and Borgou cattle, respectively. Average EFs for cattle breeds were 24.8, 29.5 and 40.2 kg CH4/head per year for Lagune, Somba and Borgou cattle, respectively. The national EF for cattle from Benin was 39.5 kg CH4/head per year. This estimated EF was 27.4% higher than the default EF suggested by IPCC for African cattle with the exception of dairy cattle. The outcome of the study underscores the importance of obtaining country-specific EF to estimate global enteric CH4 emissions.", + "Lower_Bound": "15", + "Upper_Bound": "35", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "95% confidence limits of +/-40%", + "Data_Provider_Comments": "EF were derived from characterization of Lagune cattle population and performance data which be obtained from Kouazounde et al. (2014) and supplementary material for this paper (Supplementary Table S3 , Supplementary Table S4, Supplementary Table S5, Supplementary Table S6)", + "Other_Comments": "", + "Data_Provider": "", + "Link": "To view supplementary material for Kouazounde et al. (2014), please visit http://dx.doi.org/10.1017/S1751731114002626", + "creation_date": "2022-03-14T08:05:25.057Z", + "last_change_date": "2022-03-14T08:05:25.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10624, + "fields": { + "EF_ID": 422682, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Enteric Fermentation Emission Factor for Somba cattle native to Benin, calculated using a Tier 2 methodology with Benin-specific data for the national Somba herd.", + "Technology_Practices": "Cattle are primarily multi-purpose (other cattle) and raised in traditional farm management system (minimal-input, low-production extensive systems using natural pastures in open rangeland or crop residues within fields)", + "Parameter_Conditions": "Breed= Somba; Cattle sub-group= Bos taurus; Mature females weight= 167 kg ; Bull weight= 173 kg; milk kg/day = 0.8; milk fat= 6; calving rate= 60.9; work hrs/day = 0; digestibility of feed = 54%; CH4 conversion = 7.0%; mature year= 6; Age at first calving (months) = 42-47; Gestation length (months)= 9; Castrated male cattle (%)= 2", + "Regional_Conditions": "Country: Benin; climate zone: tropical soudanian climate in the North. EF is also applicable to Somba cattle from Togo.", + "Control_Technologies": "", + "Other_Properties": "Includes mature cows, mature bulls, young bulls, heifer and young under 1 year. Mature cows comprise a large portion of the population ", + "Value": "29.5", + "Unit": "kg/head/yr", + "Equation": "Equation 10.19, Page 10.28, Ch. 10, Vol. 4(2), 2006 IPCC Guidelines; Equation 4.12, Page.25, Chapter 4, GPG2000; Equation on page 4.14, Chapter 4, 1996 IPCC Guidelines ", + "IPCC_Worksheet": "Worksheet 4-1, Submodule: Methane and Nitrous Oxide emissions from domestic livestock enteric fermentation and manure management, Module: Agriculture, 1996 IPCC Guidelines; Sheet 1 of 1, Category code: 3A1 & 3A2 of 2006 IPCC Guidelines ", + "Data_Source": "Peer-reviewed journal  ", + "Technical_Reference": "Kouazounde, J.B.; Gbenou, J.D.; Babatounde, S.; Srivastava, N.; Eggleston, S.H.; Antwi, C.; Baah, J.; McAllister, T.A. Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology. animal 2015, 9, 526", + "English_Abstract": "The objective of this study was to develop emission factors (EF) for methane (CH4) emissions from enteric fermentation in cattle native to Benin. Information on livestock characteristics and diet practices specific to the Benin cattle population were gathered from a variety of sources and used to estimate EF according to Tier 2 methodology of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Most cattle from Benin are Bos taurus represented by Borgou, Somba and Lagune breeds. They are mainly multi-purpose, being used for production of meat, milk, hides and draft power and grazed in open pastures and crop lands comprising tropical forages and crops. Estimated enteric CH4 EFs varied among cattle breeds and subcategory owing to differences in proportions of gross energy intake expended to meet maintenance, production and activity. EFs ranged from 15.0 to 43.6, 16.9 to 46.3 and 24.7 to 64.9 kg CH4/head per year for subcategories of Lagune, Somba and Borgou cattle, respectively. Average EFs for cattle breeds were 24.8, 29.5 and 40.2 kg CH4/head per year for Lagune, Somba and Borgou cattle, respectively. The national EF for cattle from Benin was 39.5 kg CH4/head per year. This estimated EF was 27.4% higher than the default EF suggested by IPCC for African cattle with the exception of dairy cattle. The outcome of the study underscores the importance of obtaining country-specific EF to estimate global enteric CH4 emissions.", + "Lower_Bound": "18", + "Upper_Bound": "41", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "95% confidence limits of +/-40%", + "Data_Provider_Comments": "EF were derived from characterization of Somba cattle population and performance data which be obtained from Kouazounde et al. (2014) and supplementary material for this paper (Supplementary Table S1, Supplementary Table S4, Supplementary Table S5, Supplementary Table S6)", + "Other_Comments": "", + "Data_Provider": "", + "Link": "To view supplementary material for Kouazounde et al. (2014), please visit http://dx.doi.org/10.1017/S1751731114002626", + "creation_date": "2022-03-14T08:05:25.174Z", + "last_change_date": "2022-03-14T08:05:25.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10625, + "fields": { + "EF_ID": 422683, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Tier 2 Enteric Fermentation Emission Factor for Beef cattle sub category weaning (0-1 year) Female and male for Indonesia", + "Technology_Practices": "Cattle are primarily raised in a stall with traditional system, mostly small scale farm (2-5 head), fed with medium quallity (cultivation grass) and concenrate or leguminous leaves used as feed supplemet to increase nutirent content of ration.", + "Parameter_Conditions": "Species= Bali, Ongole crossbred, Madura, Cattle sub-group= Bos sondaicus, bos indicus; Weaning female and male weight= 100 kg ; digestibility of feed = 51.92%; CH4 conversion = 6.5% + 1% (from IPCC vallue)", + "Regional_Conditions": "Country : Indonesia; Region: West part of Indonesia; Climate zone: Tropic, annual temperature 27,7degrees Celsius (min 25,1degrees Celsius max 31,2degrees Celsius) and annual humidity 82%, rainfall 179,2 mm.", + "Control_Technologies": "", + "Other_Properties": "Weanig beef cattle includes male and female under 1 year. The proportion of weaning is 19.30% of total beef cattle population.", + "Value": "18.18", + "Unit": "kg/head/yr", + "Equation": "Equations number : 10.21; 10.19; 10.20. and Table 10.12, in 2006 IPCC Guidelines for National Greenhouse Gas Inventories, V4_10 Ch.10 Livestock", + "IPCC_Worksheet": "Worksheet : Annex 1, IPCC 2006 Sector Agriculture, forestry, other land use, category methane emission from enteric and manure management. Worksheet 1 of 1. Category code 3A1 and 3A2..", + "Data_Source": "Peer-reviewed journal  ", + "Technical_Reference": "Widiawati, Y., M. N. Rofiq, B. Tiesnamurti. 2016. Methane Emission Factors For Enteric Fermentation In Beef Cattle Using IPCC Tier-2 Method In Indonesia. Journal Ilmu Ternak dan Veteriner (JITV) 21(2): 101-111", + "English_Abstract": "Methane emission from enteric is a sub-category considered under the Agriculture sector greenhouse gas emissions by UNFCCC. Thus Indonesia developed calculation on enteric CH4 EF for ruminant using Tier-2 method as country-specific emission factors (EF). Indonesia has huge amount of beef cattle population, which contributes significant amount to national enteric methane emission. The aim of this study was to estimate enteric methane EF for beef cattle in Indonesia using IPCC Tier-2 method. The EF generated from this study is then used to estimate the methane emitted from beef cattle. Data on beef cattle population was obtained from CSA, data on energy content of feed, feed intake and digestibility were compiled from laboratory analysis and published paper. Equations were adopted and followed the instruction of IPCC 2006. Local cattle has different CH4 EF among each sub-category, which are ranging from 18.18 to 55.89 Kg head-1 yr-1, with the average of 36.75 head-1 yr-1. Imported beef cattle has lower CH4 EF (25.49 kg head-1 yr-1) than the average for local beef cattle. Overall, the national CH4 EF of beef cattle calculated by using IPCC Tier-2 method in Indonesia is 33.14 head-1 yr-1. The value is lower than default EF from IPCC for Asia country (47 kg head-1 yr-1). The conclussion is enteric CH4 EF for beef cattle in Indonesia calculated using Tier-2 method shows the real livestock system in Indonesia condition. Further researchs needed to be addressed are calculation of EFs for various breeds and feeding systems, since large variations of breeds and types of feed among provinces in Indonesia. Key Words: Methane Emission Factors, Enteric Fermentation, Beef Cattle, IPCC Tier-2", + "Lower_Bound": "11.82", + "Upper_Bound": "24.54", + "Data_Quality": "0.95", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF were derived for each sub category of beef cattle according to national statistics, and research findings as mentioned in Widiawati et al. (2016). Measurement Technique/Standard:-feed digestibility and intake are measured directly by dryweighing feed offered and refused, and of undigested feed (faecal output) and EF is then calculated using equation number 10.21. Date of Measurement: 2010-2015", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI: http://dx.doi.org/10.14334/jitv.v21i2.1358", + "creation_date": "2022-03-14T08:05:25.283Z", + "last_change_date": "2022-03-14T08:05:25.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10626, + "fields": { + "EF_ID": 422684, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Tier 2 Enteric Fermentation Emission Factor for Beef cattle sub category yearling (1-2 year) Female and male for Indonesia", + "Technology_Practices": "Cattle are primarily raised in a stall with traditional system, mostly small scale farm (2-5 head), fed with medium to low quallity feed using agricultural and plantation by-product, native grass. leguminous leaves and concentrate used as feed supplemet to increase nutirent content of ration.", + "Parameter_Conditions": "Species= Bali, Ongole crossbred, Madura, Cattle sub-group= Bos sondaicus, bos indicus; yearling female and male weight= 200 kg ; digestibility of feed = 54.92%; CH4 conversion = 6.5% + 1% (from IPCC vallue)", + "Regional_Conditions": "Country : Indonesia; Region: West part of Indonesia; Climate zone: Tropic, annual temperature 27,7degrees Celsius (min 25,1degrees Celsius max 31,2degrees Celsius) and annual humidity 82%, rainfall 179,2 mm.", + "Control_Technologies": "", + "Other_Properties": "Yearling beef cattle includes male and female, the age between 1-2 yearr. The proportion of yearling is 25.85% of total beef cattle population.", + "Value": "27.18", + "Unit": "kg/head/yr", + "Equation": "Equations number : 10.21; 10.19; 10.20. and Table 10.12, in 2006 IPCC Guidelines for National Greenhouse Gas Inventories, V4_10 Ch.10 Livestock", + "IPCC_Worksheet": "Worksheet : Annex 1, IPCC 2006 Sector Agriculture, forestry, other land use, category methane emission from enteric and manure management. Worksheet 1 of 1. Category code 3A1 and 3A2..", + "Data_Source": "Peer-reviewed journal  ", + "Technical_Reference": "Widiawati, Y., M. N. Rofiq, B. Tiesnamurti. 2016. Methane Emission Factors For Enteric Fermentation In Beef Cattle Using IPCC Tier-2 Method In Indonesia. Journal Ilmu Ternak dan Veteriner (JITV) 21(2): 101-111", + "English_Abstract": "Methane emission from enteric is a sub-category considered under the Agriculture sector greenhouse gas emissions by UNFCCC. Thus Indonesia developed calculation on enteric CH4 EF for ruminant using Tier-2 method as country-specific emission factors (EF). Indonesia has huge amount of beef cattle population, which contributes significant amount to national enteric methane emission. The aim of this study was to estimate enteric methane EF for beef cattle in Indonesia using IPCC Tier-2 method. The EF generated from this study is then used to estimate the methane emitted from beef cattle. Data on beef cattle population was obtained from CSA, data on energy content of feed, feed intake and digestibility were compiled from laboratory analysis and published paper. Equations were adopted and followed the instruction of IPCC 2006. Local cattle has different CH4 EF among each sub-category, which are ranging from 18.18 to 55.89 Kg head-1 yr-1, with the average of 36.75 head-1 yr-1. Imported beef cattle has lower CH4 EF (25.49 kg head-1 yr-1) than the average for local beef cattle. Overall, the national CH4 EF of beef cattle calculated by using IPCC Tier-2 method in Indonesia is 33.14 head-1 yr-1. The value is lower than default EF from IPCC for Asia country (47 kg head-1 yr-1). The conclussion is enteric CH4 EF for beef cattle in Indonesia calculated using Tier-2 method shows the real livestock system in Indonesia condition. Further researchs needed to be addressed are calculation of EFs for various breeds and feeding systems, since large variations of breeds and types of feed among provinces in Indonesia. Key Words: Methane Emission Factors, Enteric Fermentation, Beef Cattle, IPCC Tier-2", + "Lower_Bound": "17.67", + "Upper_Bound": "36.69", + "Data_Quality": "0.95", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF were derived for each sub category of beef cattle according to national statistics, and research findings as mentioned in Widiawati et al. (2016). Measurement Technique/Standard:-feed digestibility and intake are measured directly by dryweighing feed offered and refused, and of undigested feed (faecal output) and EF is then calculated using equation number 10.21. Date of Measurement: 2010-2015", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI: http://dx.doi.org/10.14334/jitv.v21i2.1358", + "creation_date": "2022-03-14T08:05:25.392Z", + "last_change_date": "2022-03-14T08:05:25.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10627, + "fields": { + "EF_ID": 422685, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Tier 2 Enteric Fermentation Emission Factor for Beef cattle sub category young (2-4 year) Female and male for Indonesia", + "Technology_Practices": "Cattle are primarily raised in a stall with traditional system, mostly small scale farm (2-5 head), fed with medium to low quallity feed using agricultural and plantation by-product, native grass. leguminous leaves and concentrate used as feed supplemet to increase nutirent content of ration.", + "Parameter_Conditions": "Species= Bali, Ongole crossbred, Madura, Cattle sub-group= Bos sondaicus, bos indicus; mature female and male weight= 250 kg ; digestibility of feed = 59,3%; CH4 conversion = 6.5% + 1% (from IPCC vallue)", + "Regional_Conditions": "Country : Indonesia; Region: West part of Indonesia; Climate zone: Tropic, annual temperature 27,7degrees Celsius (min 25,1degrees Celsius max 31,2degrees Celsius) and annual humidity 82%, rainfall 179,2 mm.", + "Control_Technologies": "", + "Other_Properties": "Young beef cattle includes male and female in age 2-4 year. The proportion of this age is 18.15% of total beef cattle population.", + "Value": "41.77", + "Unit": "kg/head/yr", + "Equation": "Equations number : 10.21; 10.19; 10.20. and Table 10.12, in 2006 IPCC Guidelines for National Greenhouse Gas Inventories, V4_10 Ch.10 Livestock", + "IPCC_Worksheet": "Worksheet : Annex 1, IPCC 2006 Sector Agriculture, forestry, other land use, category methane emission from enteric and manure management. Worksheet 1 of 1. Category code 3A1 and 3A2..", + "Data_Source": "Peer-reviewed journal  ", + "Technical_Reference": "Widiawati, Y., M. N. Rofiq, B. Tiesnamurti. 2016. Methane Emission Factors For Enteric Fermentation In Beef Cattle Using IPCC Tier-2 Method In Indonesia. Journal Ilmu Ternak dan Veteriner (JITV) 21(2): 101-111", + "English_Abstract": "Methane emission from enteric is a sub-category considered under the Agriculture sector greenhouse gas emissions by UNFCCC. Thus Indonesia developed calculation on enteric CH4 EF for ruminant using Tier-2 method as country-specific emission factors (EF). Indonesia has huge amount of beef cattle population, which contributes significant amount to national enteric methane emission. The aim of this study was to estimate enteric methane EF for beef cattle in Indonesia using IPCC Tier-2 method. The EF generated from this study is then used to estimate the methane emitted from beef cattle. Data on beef cattle population was obtained from CSA, data on energy content of feed, feed intake and digestibility were compiled from laboratory analysis and published paper. Equations were adopted and followed the instruction of IPCC 2006. Local cattle has different CH4 EF among each sub-category, which are ranging from 18.18 to 55.89 Kg head-1 yr-1, with the average of 36.75 head-1 yr-1. Imported beef cattle has lower CH4 EF (25.49 kg head-1 yr-1) than the average for local beef cattle. Overall, the national CH4 EF of beef cattle calculated by using IPCC Tier-2 method in Indonesia is 33.14 head-1 yr-1. The value is lower than default EF from IPCC for Asia country (47 kg head-1 yr-1). The conclussion is enteric CH4 EF for beef cattle in Indonesia calculated using Tier-2 method shows the real livestock system in Indonesia condition. Further researchs needed to be addressed are calculation of EFs for various breeds and feeding systems, since large variations of breeds and types of feed among provinces in Indonesia. Key Words: Methane Emission Factors, Enteric Fermentation, Beef Cattle, IPCC Tier-2", + "Lower_Bound": "27.15", + "Upper_Bound": "56.39", + "Data_Quality": "0.95", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF were derived for each sub category of beef cattle according to national statistics, and research findings as mentioned in Widiawati et al. (2016). Measurement Technique/Standard:-feed digestibility and intake are measured directly by dryweighing feed offered and refused, and of undigested feed (faecal output) and EF is then calculated using equation number 10.21. Date of Measurement: 2010-2015", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI: http://dx.doi.org/10.14334/jitv.v21i2.1358", + "creation_date": "2022-03-14T08:05:25.500Z", + "last_change_date": "2022-03-14T08:05:25.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10628, + "fields": { + "EF_ID": 422686, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Tier 2 Enteric Fermentation Emission Factor for Beef cattle sub category mature (> 4year) Female and male for Indonesia", + "Technology_Practices": "Cattle are primarily raised in a stall with traditional system, mostly small scale farm (2-5 head), fed with medium to low quallity feed using agricultural and plantation by-product, native grass. leguminous leaves and concentrate used as feed supplemet to increase nutirent content of ration.", + "Parameter_Conditions": "Species= Bali, Ongole crossbred, Madura, Cattle sub-group= Bos sondaicus, bos indicus; mature female and male weight= 450 kg ; digestibility of feed = 57.66%; CH4 conversion = 6.5% + 1% (from IPCC vallue)", + "Regional_Conditions": "Country : Indonesia; Region: West part of Indonesia; Climate zone: Tropic, annual temperature 27,7degrees Celsius (min 25,1degrees Celsius max 31,2degrees Celsius) and annual humidity 82%, rainfall 179,2 mm.", + "Control_Technologies": "", + "Other_Properties": "Mature beef cattle includes male and female in age >4 year. The proportion of this age is 26.89% of total beef cattle population.", + "Value": "55.89", + "Unit": "kg/head/yr", + "Equation": "Equations number : 10.21; 10.19; 10.20. and Table 10.12, in 2006 IPCC Guidelines for National Greenhouse Gas Inventories, V4_10 Ch.10 Livestock", + "IPCC_Worksheet": "Worksheet : Annex 1, IPCC 2006 Sector Agriculture, forestry, other land use, category methane emission from enteric and manure management. Worksheet 1 of 1. Category code 3A1 and 3A2..", + "Data_Source": "Peer-reviewed journal  ", + "Technical_Reference": "Widiawati, Y., M. N. Rofiq, B. Tiesnamurti. 2016. Methane Emission Factors For Enteric Fermentation In Beef Cattle Using IPCC Tier-2 Method In Indonesia. Journal Ilmu Ternak dan Veteriner (JITV) 21(2): 101-111", + "English_Abstract": "Methane emission from enteric is a sub-category considered under the Agriculture sector greenhouse gas emissions by UNFCCC. Thus Indonesia developed calculation on enteric CH4 EF for ruminant using Tier-2 method as country-specific emission factors (EF). Indonesia has huge amount of beef cattle population, which contributes significant amount to national enteric methane emission. The aim of this study was to estimate enteric methane EF for beef cattle in Indonesia using IPCC Tier-2 method. The EF generated from this study is then used to estimate the methane emitted from beef cattle. Data on beef cattle population was obtained from CSA, data on energy content of feed, feed intake and digestibility were compiled from laboratory analysis and published paper. Equations were adopted and followed the instruction of IPCC 2006. Local cattle has different CH4 EF among each sub-category, which are ranging from 18.18 to 55.89 Kg head-1 yr-1, with the average of 36.75 head-1 yr-1. Imported beef cattle has lower CH4 EF (25.49 kg head-1 yr-1) than the average for local beef cattle. Overall, the national CH4 EF of beef cattle calculated by using IPCC Tier-2 method in Indonesia is 33.14 head-1 yr-1. The value is lower than default EF from IPCC for Asia country (47 kg head-1 yr-1). The conclussion is enteric CH4 EF for beef cattle in Indonesia calculated using Tier-2 method shows the real livestock system in Indonesia condition. Further researchs needed to be addressed are calculation of EFs for various breeds and feeding systems, since large variations of breeds and types of feed among provinces in Indonesia. Key Words: Methane Emission Factors, Enteric Fermentation, Beef Cattle, IPCC Tier-2", + "Lower_Bound": "36.33", + "Upper_Bound": "75.45", + "Data_Quality": "0.95", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF were derived for each sub category of beef cattle according to national statistics, and research findings as mentioned in Widiawati et al. (2016). Measurement Technique/Standard:-feed digestibility and intake are measured directly by dryweighing feed offered and refused, and of undigested feed (faecal output) and EF is then calculated using equation number 10.21. Date of Measurement: 2010-2015", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI: http://dx.doi.org/10.14334/jitv.v21i2.1358", + "creation_date": "2022-03-14T08:05:25.610Z", + "last_change_date": "2022-03-14T08:05:25.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10629, + "fields": { + "EF_ID": 422687, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Tier 2 Enteric Fermentation Emission Factor for Beef cattle sub category imported cattle (fattening) male for Indonesia", + "Technology_Practices": "Cattle are raised in stall all the time for 3-4 months of fattening periode, fed with high quality feed (15-30% of fibrous feed and 85-70% concentrate).", + "Parameter_Conditions": "Most imported cattle are Bos taurus. Fattening periode = 3-4 months, weight 350 kg; difgestibility of feed 80%; CH4 convertion ratio = 3% + 1% (IPCC value)", + "Regional_Conditions": "Country : Indonesia; Region: West part of Indonesia; Climate zone: Tropic, annual temperature 27,7degrees Celsius (min 25,1degrees Celsius max 31,2degrees Celsius) and annual humidity 82%, rainfall 179,2 mm.", + "Control_Technologies": "", + "Other_Properties": "Imported beef cattle (fattening) is cattle that are imported for fattening. The priode of fattening 3-4 months. The proportion of imported cattle is 9.81% of total beef cattle population.", + "Value": "25.49", + "Unit": "kg/head/yr", + "Equation": "Equations number : 10.21; 10.19; 10.20. and Table 10.12, in 2006 IPCC Guidelines for National Greenhouse Gas Inventories, V4_10 Ch.10 Livestock", + "IPCC_Worksheet": "Worksheet : Annex 1, IPCC 2006 Sector Agriculture, forestry, other land use, category methane emission from enteric and manure management. Worksheet 1 of 1. Category code 3A1 and 3A2..", + "Data_Source": "Peer-reviewed journal  ", + "Technical_Reference": "Widiawati, Y., M. N. Rofiq, B. Tiesnamurti. 2016. Methane Emission Factors For Enteric Fermentation In Beef Cattle Using IPCC Tier-2 Method In Indonesia. Journal Ilmu Ternak dan Veteriner (JITV) 21(2): 101-111", + "English_Abstract": "Methane emission from enteric is a sub-category considered under the Agriculture sector greenhouse gas emissions by UNFCCC. Thus Indonesia developed calculation on enteric CH4 EF for ruminant using Tier-2 method as country-specific emission factors (EF). Indonesia has huge amount of beef cattle population, which contributes significant amount to national enteric methane emission. The aim of this study was to estimate enteric methane EF for beef cattle in Indonesia using IPCC Tier-2 method. The EF generated from this study is then used to estimate the methane emitted from beef cattle. Data on beef cattle population was obtained from CSA, data on energy content of feed, feed intake and digestibility were compiled from laboratory analysis and published paper. Equations were adopted and followed the instruction of IPCC 2006. Local cattle has different CH4 EF among each sub-category, which are ranging from 18.18 to 55.89 Kg head-1 yr-1, with the average of 36.75 head-1 yr-1. Imported beef cattle has lower CH4 EF (25.49 kg head-1 yr-1) than the average for local beef cattle. Overall, the national CH4 EF of beef cattle calculated by using IPCC Tier-2 method in Indonesia is 33.14 head-1 yr-1. The value is lower than default EF from IPCC for Asia country (47 kg head-1 yr-1). The conclussion is enteric CH4 EF for beef cattle in Indonesia calculated using Tier-2 method shows the real livestock system in Indonesia condition. Further researchs needed to be addressed are calculation of EFs for various breeds and feeding systems, since large variations of breeds and types of feed among provinces in Indonesia. Key Words: Methane Emission Factors, Enteric Fermentation, Beef Cattle, IPCC Tier-2", + "Lower_Bound": "16.57", + "Upper_Bound": "34.41", + "Data_Quality": "0.95", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF were derived for each sub category of beef cattle according to national statistics, and research findings as mentioned in Widiawati et al. (2016). Measurement Technique/Standard:-feed digestibility and intake are measured directly by dryweighing feed offered and refused, and of undigested feed (faecal output) and EF is then calculated using equation number 10.21. Date of Measurement: 2010-2015", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI: http://dx.doi.org/10.14334/jitv.v21i2.1358", + "creation_date": "2022-03-14T08:05:25.718Z", + "last_change_date": "2022-03-14T08:05:25.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10630, + "fields": { + "EF_ID": 422688, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "An mitigation-efficacy factor FM (in the range 0 to 1) which multiplies FracGASF as reported in 2006 GL Section 11.2.2; this multiplier, unreported in IPCC literature, accounts for the effectiveness of urease inhibitor as a mitigation technology that reduces NH3 volatilisation from applied urea fertiliser at the applicaion rate described below. (This assumes that NOx volatilisation is either negligible or effected in the same proportion as NH3 volatilisation). Thus, FM is 1 in the absence of a mitigation technology, and as small as zero otherwise.", + "Technology_Practices": "Application of urease inhibitor (nBTPT: N-(n-butyl) thiophosphoric triamide) to reduce NH3 volatilisation following fertilisation of pastureland with urea. Urea application is in the range 50-150 kg(N)/ha", + "Parameter_Conditions": "Statistical meta-analysis of several trials spanning New Zealand`s temperate grazed grasslands", + "Regional_Conditions": "New Zealand, temperate climate, various soils", + "Control_Technologies": "Optimal co-application of nBTPT with urea is 0.025% w/w (nBTPT per unit N)", + "Other_Properties": "", + "Value": "0.55", + "Unit": "dimensionless", + "Equation": "Equations (11.9) and (11.11), Pages 11.21 and 11.22, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, in which FM is an additional factor that multiplies FracGASF to account for the effectiveness of the urease inhibitor as a mitigation technology.", + "IPCC_Worksheet": "Worksheet Table 3c5, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Saggar, S.; Singh, J.; Giltrap, D.L.; Zaman, M.; Luo, J.; Rollo, M.; Kim, D.-G.; Rys, G. van der Weerden, T.J. (2013). Quantification of reductions in ammonia emissions from fertiliser urea and animal urine in grazed pastures with urease inhibitors for agriculture inventory: New Zealand as a case study. Science of the Total Environment 465, 136-146.", + "English_Abstract": "Urea is the key nitrogen (N) fertiliser for grazed pastures, and is also present in excreted animal urine. In soil, urea hydrolyses rapidly to ammonium (NH4+) and may be lost as ammonia (NH3) gas. Unlike nitrous oxide (N2O), however, NH3 is not a greenhouse gas although it can act as a secondary source of N2O, and hence contribute indirectly to global warming and stratospheric ozone depletion. Various urease inhibitors (UIs) have been used over the last 30 years to reduce NH3 losses. Among these, N-(n-butyl) hiophosphoric triamide (nBTPT), sold under the trade name Agrotain(r), is currently the most promising and effective when applied with urea or urine. Here we conduct a critical analysis of the published and non-published data on the effectiveness of nBTPT in reducing NH3 emission, from which adjusted values for FracGASF (fraction of total N fertiliser emitted as NH3) and FracGASM (fraction of total N from, animal manure and urine emitted as NH3) for the national agriculture greenhouse gas (GHG) inventory are recommended in order to provide accurate data for the inventory. We use New Zealand as a case study to assess and quantify the overall reduction in NH3 emission from urea and animal urine with the application of UI nBTPT. The available literature indicates that an application rate of 0.025%w/w (nBTPT per unit of N) is optimum for reducing NH3 emissions from temperate grasslands. UI-treated urine studies gave highly variable reductions (11–93%) with an average of 53% and a 95% confidence interval of 33–73%.NewZealand studies, usingUI-treated urea, suggest that nBTPT (0.025% w/w) reduces NH3 emissions by 44.7%, on average,with a confidence interval of 39–50%. On this basis, a New Zealand specific value of 0.055 for FracGASF FNUI (fraction of urease inhibitor treated total fertiliser N emitted as NH3) is recommended for adoption where urea containing UI are applied as nBTPT at a rate of 0.025% w/w. Only a limited number of published data sets are available on the effectiveness of UI for reducing NH3 losses from animal urine-N deposited during grazing in a grazed pasture system. The same can be said about mixing UI with urine, rather than spraying UI before or after urine application. Since it was not possible to accurately measure the efficacy of UI in reducing NH3 emissions from animal urine-N deposited during grazing, we currently cannot recommend the adoption of a FracGASM value adjusted for the inclusion of UI.", + "Lower_Bound": "0.5", + "Upper_Bound": "0.61", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The above confidence limits are 95% confidence, based on `random effect meta-analysis`.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:25.819Z", + "last_change_date": "2022-03-14T08:05:25.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10631, + "fields": { + "EF_ID": 422689, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor EF1, as per 2006 GL Section 11.2.1 and Table 11.1", + "Technology_Practices": "Application of urea as a nitrogen fertiliser on pastureland.", + "Parameter_Conditions": "Statistical meta-analysis of several trials spanning New Zealand`s temperate grazed grasslands", + "Regional_Conditions": "New Zealand, temperate climate, various soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0059", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equations (11.1) and (11.2), Pages 11.7 and 11.10, (also Table 11.1, Page 11.11), 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "IPCC_Worksheet": "Worksheet Table 3c4, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "van der Weerden, T.J.; Cox, N.; Luo, J.; Di, H.J.; Podolyan, A.; Phillips, R.L.; Saggar, S.; de Klein, C.A.M.; Ettema, P.; Rys, G. (2016). Refining the New Zealand nitrous oxide emission factor for urea fertiliser and farm dairy effluent. Agriculture, Ecosystems and Environment 222, 133-137.", + "English_Abstract": "Applications of urea fertiliser and farm dairy effluent (FDE) to New Zealand pastures are the second and third largest sources of nitrous oxide (N2O) emissions, after emissions from excreta deposited during grazing (urine and dung). New Zealand currently employs emission factors (EF1) (percentage of N applied which is emitted as N2O) of 0.48% and 1% for urea fertiliser and FDE, respectively, for calculating its national N2O inventory. The country specific emission factors for urine and dung are 1% and 0.25% respectively. Because FDE has a higher organic nitrogen (N) content than urea, and because it is a diluted mixture of urine and dung, the mean FDE EF1 is expected to be less than 1%. With a recent increase in research trials measuring EF1 for FDE and urea, the objective of this study was to refine New Zealand specific EF1 values for these N sources. We analysed urea fertiliser and FDE N2O emission data from 45 EF1 field trials conducted in New Zealand. This meta-analysis yielded a combined (urea and FDE) EF1 mean of 0.46% (95% confidence interval of 0.07% and 0.90%), with EF1 means for urea and FDE of 0.59% and 0.25%, respectively. There was no statistical difference between urea fertiliser and FDE EF1 values. However, we recommend separate country-specific EF1 means of 0.6 and 0.3% for urea fertiliser and FDE, respectively, for New Zealand`s agricultural soils N2O emissions inventory due to the different origin and characteristics of these N sources.", + "Lower_Bound": "0.0014", + "Upper_Bound": "0.0102", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The above confidence limits are 95% confidence, based on `random effect meta-analysis`.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:25.929Z", + "last_change_date": "2022-03-14T08:05:25.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10632, + "fields": { + "EF_ID": 422690, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor EF1, as per 2006 GL Section 11.2.1 and Table 11.1", + "Technology_Practices": "Application of farm dairy effluent as a nitrogen fertiliser on unoccupied pastureland. Farm dairy effluent is a mixture of excreta and water derived from the washdown of dairy cow milking sheds and associated yards. When not being milked, the cows spend their time on pasturelands.", + "Parameter_Conditions": "Statistical meta-analysis of several trials spanning New Zealand`s temperate grazed grasslands", + "Regional_Conditions": "New Zealand, temperate climate, various soils", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0025", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equations (11.1) and (11.2), Pages 11.7 and 11.10, (also Table 11.1, Page 11.11), 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "IPCC_Worksheet": "Worksheet Table 3c4, Sheet 1 of 2", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "van der Weerden, T.J.; Cox, N.; Luo, J.; Di, H.J.; Podolyan, A.; Phillips, R.L.; Saggar, S.; de Klein, C.A.M.; Ettema, P.; Rys, G. (2016). Refining the New Zealand nitrous oxide emission factor for urea fertiliser and farm dairy effluent. Agriculture, Ecosystems and Environment 222, 133-137.", + "English_Abstract": "Applications of urea fertiliser and farm dairy effluent (FDE) to New Zealand pastures are the second and third largest sources of nitrous oxide (N2O) emissions, after emissions from excreta deposited during grazing (urine and dung). New Zealand currently employs emission factors (EF1) (percentage of N applied which is emitted as N2O) of 0.48% and 1% for urea fertiliser and FDE, respectively, for calculating its national N2O inventory. The country specific emission factors for urine and dung are 1% and 0.25% respectively. Because FDE has a higher organic nitrogen (N) content than urea, and because it is a diluted mixture of urine and dung, the mean FDE EF1 is expected to be less than 1%. With a recent increase in research trials measuring EF1 for FDE and urea, the objective of this study was to refine New Zealand specific EF1 values for these N sources. We analysed urea fertiliser and FDE N2O emission data from 45 EF1 field trials conducted in New Zealand. This meta-analysis yielded a combined (urea and FDE) EF1 mean of 0.46% (95% confidence interval of 0.07% and 0.90%), with EF1 means for urea and FDE of 0.59% and 0.25%, respectively. There was no statistical difference between urea fertiliser and FDE EF1 values. However, we recommend separate country-specific EF1 means of 0.6 and 0.3% for urea fertiliser and FDE, respectively, for New Zealand`s agricultural soils N2O emissions inventory due to the different origin and characteristics of these N sources.", + "Lower_Bound": "0", + "Upper_Bound": "0.0074", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The above confidence limits are 95% confidence, based on `random effect meta-analysis`.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:26.009Z", + "last_change_date": "2022-03-14T08:05:26.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10633, + "fields": { + "EF_ID": 422691, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Open woodland with tussock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "83", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "76.924", + "Upper_Bound": "89.076", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:26.105Z", + "last_change_date": "2022-03-14T08:05:26.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10634, + "fields": { + "EF_ID": 422692, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Open woodland with hummock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "39.5", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "32.5921472341633", + "Upper_Bound": "46.4078527658367", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:26.214Z", + "last_change_date": "2022-03-14T08:05:26.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10635, + "fields": { + "EF_ID": 422693, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Pure spinifex sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "39.9", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "34.203198498103", + "Upper_Bound": "45.596801501897", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:26.323Z", + "last_change_date": "2022-03-14T08:05:26.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10636, + "fields": { + "EF_ID": 422694, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Coarse woody debris (logs >100 mm diameter) burning 1 -2h after the passage of the fire front", + "Value": "83", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "55.0967712673256", + "Upper_Bound": "110.903228732674", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:26.424Z", + "last_change_date": "2022-03-14T08:05:26.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10637, + "fields": { + "EF_ID": 422695, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Open woodland with tussock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "91.969550979109", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "64.137550979109", + "Upper_Bound": "119.801550979109", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:26.566Z", + "last_change_date": "2022-03-14T08:05:26.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10638, + "fields": { + "EF_ID": 422696, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Open woodland with hummock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "44.504089819149", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "32.5192775736554", + "Upper_Bound": "56.4889020646425", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:26.691Z", + "last_change_date": "2022-03-14T08:05:26.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10639, + "fields": { + "EF_ID": 422697, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Pure spinifex sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "32.8461881268979", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "20.5844517538857", + "Upper_Bound": "45.10792449991", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:26.809Z", + "last_change_date": "2022-03-14T08:05:26.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10640, + "fields": { + "EF_ID": 422698, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Pure tussock grass sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "35.772130264776", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "27.0796325504875", + "Upper_Bound": "44.4646279790646", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:26.926Z", + "last_change_date": "2022-03-14T08:05:26.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10641, + "fields": { + "EF_ID": 422699, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Coarse woody debris (logs >100 mm diameter) burning 1 -2h after the passage of the fire front", + "Value": "181.680892794415", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "176.841305603452", + "Upper_Bound": "186.520479985378", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.035Z", + "last_change_date": "2022-03-14T08:05:27.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10642, + "fields": { + "EF_ID": 422700, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Open woodland with tussock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "1.94675153018667", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "1.74646351779032", + "Upper_Bound": "2.14703954258303", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.144Z", + "last_change_date": "2022-03-14T08:05:27.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10643, + "fields": { + "EF_ID": 422701, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Open woodland with hummock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "0.89914131125689", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "0.694541959736466", + "Upper_Bound": "1.10374066277731", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.244Z", + "last_change_date": "2022-03-14T08:05:27.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10644, + "fields": { + "EF_ID": 422702, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Pure spinifex sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "0.689815271463846", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "0.520249212091632", + "Upper_Bound": "0.859381330836059", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.362Z", + "last_change_date": "2022-03-14T08:05:27.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10645, + "fields": { + "EF_ID": 422703, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Coarse woody debris (logs >100 mm diameter) burning 1 -2h after the passage of the fire front", + "Value": "3.83878429877651", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "1.30084894216925", + "Upper_Bound": "6.37671965538377", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.462Z", + "last_change_date": "2022-03-14T08:05:27.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10646, + "fields": { + "EF_ID": 422704, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Open woodland with tussock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "2.03014906456032", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "1.78762973779212", + "Upper_Bound": "2.27266839132851", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.564Z", + "last_change_date": "2022-03-14T08:05:27.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10647, + "fields": { + "EF_ID": 422705, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Open woodland with hummock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "0.883655817593122", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "0.502561989148989", + "Upper_Bound": "1.26474964603725", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.664Z", + "last_change_date": "2022-03-14T08:05:27.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10648, + "fields": { + "EF_ID": 422706, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Pure spinifex (Triodia irritans) sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "0.672723928400532", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "0.461042099236406", + "Upper_Bound": "0.884405757564657", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.773Z", + "last_change_date": "2022-03-14T08:05:27.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10649, + "fields": { + "EF_ID": 422707, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Pure tussock grass (Sorghum sp.) sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "0.731269144261503", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "0.621308200540675", + "Upper_Bound": "0.841230087982331", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.874Z", + "last_change_date": "2022-03-14T08:05:27.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10650, + "fields": { + "EF_ID": 422708, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Coarse woody debris (logs >100 mm diameter) burning 1 -2h after the passage of the fire front", + "Value": "8.90541426512605", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "4.06785031790974", + "Upper_Bound": "13.7429782123424", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:27.975Z", + "last_change_date": "2022-03-14T08:05:27.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10651, + "fields": { + "EF_ID": 422709, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Open woodland with tussock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "6.28343493455535E-02", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "5.87714444199032E-02", + "Upper_Bound": "6.68972542712039E-02", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.092Z", + "last_change_date": "2022-03-14T08:05:28.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10652, + "fields": { + "EF_ID": 422710, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Open woodland with hummock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "4.78148810098826E-02", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "3.67030557761791E-02", + "Upper_Bound": "0.058926706243586", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.209Z", + "last_change_date": "2022-03-14T08:05:28.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10653, + "fields": { + "EF_ID": 422711, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Vegetation: Pure spinifex sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "3.05905292811293E-02", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "0.026406015053748", + "Upper_Bound": "3.47750435085106E-02", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.326Z", + "last_change_date": "2022-03-14T08:05:28.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10654, + "fields": { + "EF_ID": 422712, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Early dry season, low intensity fire. Coarse woody debris (logs >100 mm diameter) burning 1 -2h after the passage of the fire front", + "Value": "2.89982671396136E-02", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "1.21727193167049E-02", + "Upper_Bound": "4.58238149625223E-02", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.436Z", + "last_change_date": "2022-03-14T08:05:28.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10655, + "fields": { + "EF_ID": 422713, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Open woodland with tussock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "5.20409856857826E-02", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "4.89204112724358E-02", + "Upper_Bound": "5.51615600991294E-02", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.544Z", + "last_change_date": "2022-03-14T08:05:28.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10656, + "fields": { + "EF_ID": 422714, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Open woodland with hummock grass understorey. EFs for combustion of fine fuels during passage of the fire front.", + "Value": "5.63773629177534E-02", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "4.58821761539668E-02", + "Upper_Bound": "0.06687254968154", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.670Z", + "last_change_date": "2022-03-14T08:05:28.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10657, + "fields": { + "EF_ID": 422715, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Pure spinifex (Triodia irritans) sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "4.44935628370413E-02", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "3.97638805654222E-02", + "Upper_Bound": "4.92232451086604E-02", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.787Z", + "last_change_date": "2022-03-14T08:05:28.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10658, + "fields": { + "EF_ID": 422716, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Vegetation: Pure tussock grass (Sorghum sp.) sward.EFs for combustion of fine fuels during passage of the fire front.", + "Value": "0.043053879435715", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "3.71690258575499E-02", + "Upper_Bound": "4.89387330138801E-02", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.905Z", + "last_change_date": "2022-03-14T08:05:28.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10659, + "fields": { + "EF_ID": 422717, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Prescribed burning for fuel management", + "Parameter_Conditions": "", + "Regional_Conditions": "Kulgnuki, Western Arnhem Land, Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation)", + "Control_Technologies": "", + "Other_Properties": "Late dry season, low intensity fire. Coarse woody debris (logs >100 mm diameter) burning 1 -2h after the passage of the fire front", + "Value": "2.73675797497689E-02", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Meyer, C. P., G. D. Cook, F. Reisen, T. E. L. Smith, M. Tattaris, J. Russell-Smith, S. W. Maier, C. P. Yates, and M. J. Wooster (2012), Direct measurements of the seasonality of emission factors from savanna fires in northern Australia, J. Geophys. Res., 117, D20305, doi:10.1029/2012JD017671", + "English_Abstract": "Current good practice guidelines for national greenhouse gas inventories requires that seasonal variation in emission factors from savanna fires be considered when compiling national accounts. African studies concluded that the emission factor for methane decreases during the dry season principally due to curing of the fuels. However, available data from Australian tropical savannas shows no effect of seasonality on emission factors, consistent with observations that the fine fuels appear to cure fully soon after the start of the fire season. To test whether the seasonality in greenhouse gas emission factors reported for Africa also occurs in Australia, methane and nitrous oxide emission factors were measured in early and in late dry season fires in Western Arnhem Land, a region typical of much of the northern Australia savanna zone. We found no significant seasonality in methane emission factors, but there was substantial variation in emission factors associated with inter-fire differences in vegetation and fuel. This variation could be explained almost completely by combustion efficiency. Nitrous oxide emission factors were not related to combustion efficiency but showed some variation across vegetation and fuel size class. Both methane and nitrous oxide emission factors were consistent with previous work in northern Australia and with some published values from Africa. The absence of a significant seasonal trend in emission factors indicates that savanna fire emissions in northern Australia can be managed by strategic prescribed burning.", + "Lower_Bound": "1.81604575535012E-02", + "Upper_Bound": "3.65747019460366E-02", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:28.988Z", + "last_change_date": "2022-03-14T08:05:28.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10660, + "fields": { + "EF_ID": 422718, + "IPCC_Category": "3.C.1.c - Burning in Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation). Kulgnuki, Western Arnhem Land, Northern Territory, and Darwin.", + "Control_Technologies": "", + "Other_Properties": "Averge of measurments from 17 fires. EF calculated from concntrations observed in grond level smoke plumes at Kulgnuki, western arnhem Land and elevated smoke plumes rising to the top of the convective boundary layer. Mean EF in the smoke plumes produced by combustion of fine fuels during passage of the fire front.", + "Value": "87", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, T. E. L., Paton-Walsh, C., Meyer, C. P., Cook, G. D., Maier, S. W., Russell-Smith, J., Wooster, M. J., and Yates, C. P.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 2: Australian tropical savanna fires, Atmos. Chem. Phys., 14, 11335-11352, doi:10.5194/acp-14-11335-2014, 2014.", + "English_Abstract": "Savanna fires contribute approximately 40–50% of total global annual biomass burning carbon emissions. Recent comparisons of emission factors from different savanna regions have highlighted the need for a regional approach to emission factor development, and better assessment of the drivers of the temporal and spatial variation in emission factors. This paper describes the results of open-path Fourier transform infrared (OP-FTIR) spectroscopic field measurements at 21 fires occurring in the tropical savannas of the Northern~Territory, Australia, within different vegetation assemblages and at different stages of the dry season. Spectra of infrared light passing through a long (22–70 m) open-path through ground-level smoke released from these fires were collected using an infrared lamp and a field-portable FTIR system. The IR spectra were used to retrieve the mole fractions of 14 different gases present within the smoke, and these measurements used to calculate the emission ratios and emission factors of the various gases emitted by the burning. Only a handful of previous emission factor measures are available specifically for the tropical savannas of Australia and here we present the first reported emission factors for methanol, acetic acid, and formic acid for this biome. Given the relatively large sample size, it was possible to study the potential causes of the within-biome variation of the derived emission factors. We find that the emission factors vary substantially between different savanna vegetation assemblages; with a majority of this variation being mirrored by variations in the modified combustion efficiency (MCE) of different vegetation classes. We conclude that a significant majority of the variation in the emission factor for trace gases can be explained by MCE, irrespective of vegetation class, as illustrated by variations in the calculated methane emission factor for different vegetation classes using data sub-set by different combustion efficiencies. Therefore, the selection of emission factors for emissions modelling purposes need not necessarily require detailed fuel type information, if data on MCE (e.g. from future spaceborne total column measurements) or a correlated variable were available.", + "Lower_Bound": "22.32", + "Upper_Bound": "151.68", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:29.074Z", + "last_change_date": "2022-03-14T08:05:29.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10661, + "fields": { + "EF_ID": 422719, + "IPCC_Category": "3.C.1.c - Burning in Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Northern Territory, Australia. High rainfall savanna (> 1000 mm annual precipitation). Kulgnuki, Western Arnhem Land, Northern Territory, and Darwin.", + "Control_Technologies": "", + "Other_Properties": "These are the averages of 17 separate fires. Mean EF in the smoke plumes produced by combustion of fine fuels during passage of the fire front.", + "Value": "2.1", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, T. E. L., Paton-Walsh, C., Meyer, C. P., Cook, G. D., Maier, S. W., Russell-Smith, J., Wooster, M. J., and Yates, C. P.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 2: Australian tropical savanna fires, Atmos. Chem. Phys., 14, 11335-11352, doi:10.5194/acp-14-11335-2014, 2014.", + "English_Abstract": "Savanna fires contribute approximately 40–50% of total global annual biomass burning carbon emissions. Recent comparisons of emission factors from different savanna regions have highlighted the need for a regional approach to emission factor development, and better assessment of the drivers of the temporal and spatial variation in emission factors. This paper describes the results of open-path Fourier transform infrared (OP-FTIR) spectroscopic field measurements at 21 fires occurring in the tropical savannas of the Northern~Territory, Australia, within different vegetation assemblages and at different stages of the dry season. Spectra of infrared light passing through a long (22–70 m) open-path through ground-level smoke released from these fires were collected using an infrared lamp and a field-portable FTIR system. The IR spectra were used to retrieve the mole fractions of 14 different gases present within the smoke, and these measurements used to calculate the emission ratios and emission factors of the various gases emitted by the burning. Only a handful of previous emission factor measures are available specifically for the tropical savannas of Australia and here we present the first reported emission factors for methanol, acetic acid, and formic acid for this biome. Given the relatively large sample size, it was possible to study the potential causes of the within-biome variation of the derived emission factors. We find that the emission factors vary substantially between different savanna vegetation assemblages; with a majority of this variation being mirrored by variations in the modified combustion efficiency (MCE) of different vegetation classes. We conclude that a significant majority of the variation in the emission factor for trace gases can be explained by MCE, irrespective of vegetation class, as illustrated by variations in the calculated methane emission factor for different vegetation classes using data sub-set by different combustion efficiencies. Therefore, the selection of emission factors for emissions modelling purposes need not necessarily require detailed fuel type information, if data on MCE (e.g. from future spaceborne total column measurements) or a correlated variable were available.", + "Lower_Bound": "0", + "Upper_Bound": "4.3736", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:05:29.192Z", + "last_change_date": "2022-03-14T08:05:29.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10662, + "fields": { + "EF_ID": 423391, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 160 kg N/ha, in three split applications (mid-March, late-March and late-April 2010).", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "0.00125", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.000241125", + "Upper_Bound": "0.002258875", + "Data_Quality": "R.E. Thorman etal ( 2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Nottinghamshire, 2010. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.46-0.26 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (160 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.07 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno381. http://www.environmentdata.org/archive/ghgno:381", + "creation_date": "2022-03-14T08:05:29.309Z", + "last_change_date": "2022-03-14T08:05:29.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10663, + "fields": { + "EF_ID": 423392, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 160 kg N/ha, in three split applications (mid-March, late-March and late-April 2010).", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "0.001625", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.000616125", + "Upper_Bound": "0.002633875", + "Data_Quality": "R.E. Thorman etal ( 2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Nottinghamshire, 2010. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.52-0.26 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (160 kg N/ha. Table1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.07 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno381. http://www.environmentdata.org/archive/ghgno:381", + "creation_date": "2022-03-14T08:05:29.401Z", + "last_change_date": "2022-03-14T08:05:29.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10664, + "fields": { + "EF_ID": 423393, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 160 kg N/ha, in three split applications (mid-March, late-March and late-April 2010). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 160 kg N/ha application.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "0.0008125", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.000196375", + "Upper_Bound": "0.001821375", + "Data_Quality": "R.E. Thorman etal ( 2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Nottinghamshire, 2010. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e.0.39-0.26 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (160 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.07 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno381. http://www.environmentdata.org/archive/ghgno:381", + "creation_date": "2022-03-14T08:05:29.501Z", + "last_change_date": "2022-03-14T08:05:29.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10665, + "fields": { + "EF_ID": 423394, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 160 kg N/ha, in three split applications (mid-March, late-March and late-April 2010). Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 160 kg N/ha application.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "0.0000625", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.000946375", + "Upper_Bound": "0.001071375", + "Data_Quality": "R.E. Thorman etal ( 2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Nottinghamshire, 2010. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e.0.27-0.26 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (160 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.07 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno381. http://www.environmentdata.org/archive/ghgno:381", + "creation_date": "2022-03-14T08:05:29.602Z", + "last_change_date": "2022-03-14T08:05:29.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10666, + "fields": { + "EF_ID": 423395, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (mid and late-April 2010).", + "Parameter_Conditions": "Clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "North Wyke, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "1.13333333333333E-02", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "4.22316666666667E-03", + "Upper_Bound": "0.0184435", + "Data_Quality": "T.H. Misselbrook etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Devon, 2010. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.81-0.45 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.37 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno357. http://www.environmentdata.org/archive/ghgno:357", + "creation_date": "2022-03-14T08:05:29.694Z", + "last_change_date": "2022-03-14T08:05:29.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10667, + "fields": { + "EF_ID": 423396, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (mid and late-April 2010).", + "Parameter_Conditions": "Clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "North Wyke, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "6.91666666666667E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-1.93499999999999E-04", + "Upper_Bound": "1.40268333333333E-02", + "Data_Quality": "T.H. Misselbrook etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Devon, 2010. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e.1.28-0.45 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.37 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno357. http://www.environmentdata.org/archive/ghgno:357", + "creation_date": "2022-03-14T08:05:29.803Z", + "last_change_date": "2022-03-14T08:05:29.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10668, + "fields": { + "EF_ID": 423397, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (mid and late-April 2010). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 120 kg N/ha.", + "Parameter_Conditions": "Clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "North Wyke, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "6.33333333333333E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-7.76833333333333E-04", + "Upper_Bound": "0.0134435", + "Data_Quality": "T.H. Misselbrook etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Devon, 2010. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e.1.21-0.45 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.37 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno357. http://www.environmentdata.org/archive/ghgno:357", + "creation_date": "2022-03-14T08:05:29.912Z", + "last_change_date": "2022-03-14T08:05:29.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10669, + "fields": { + "EF_ID": 423398, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea (46% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (mid and late-April 2010). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 120 kg N/ha.", + "Parameter_Conditions": "Clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "North Wyke, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "3.58333333333333E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-3.52683333333333E-03", + "Upper_Bound": "0.0106935", + "Data_Quality": "T.H. Misselbrook etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Devon, 2010. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.88-0.45 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.37 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno357. http://www.environmentdata.org/archive/ghgno:357", + "creation_date": "2022-03-14T08:05:30.012Z", + "last_change_date": "2022-03-14T08:05:30.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10670, + "fields": { + "EF_ID": 423399, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (late February and late March 2011).", + "Parameter_Conditions": "Clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "Newark, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "1.09166666666667E-02", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "8.80283333333333E-03", + "Upper_Bound": "0.0130305", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Nottinghamshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.47-0.16 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.11 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno365. http://www.environmentdata.org/archive/ghgno:365", + "creation_date": "2022-03-14T08:05:30.130Z", + "last_change_date": "2022-03-14T08:05:30.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10671, + "fields": { + "EF_ID": 423400, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (late February and late March 2011).", + "Parameter_Conditions": "Clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "Newark, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "4.58333333333333E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.0024695", + "Upper_Bound": "6.69716666666667E-03", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Nottinghamshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.71-0.16 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.11 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno365. http://www.environmentdata.org/archive/ghgno:365", + "creation_date": "2022-03-14T08:05:30.248Z", + "last_change_date": "2022-03-14T08:05:30.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10672, + "fields": { + "EF_ID": 423401, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (late February and late March 2011). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 120 kg N/ha.", + "Parameter_Conditions": "Clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "Newark, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0055", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "3.38616666666667E-03", + "Upper_Bound": "7.61383333333333E-03", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Nottinghamshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.82-0.16 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.11 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno365. http://www.environmentdata.org/archive/ghgno:365", + "creation_date": "2022-03-14T08:05:30.364Z", + "last_change_date": "2022-03-14T08:05:30.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10673, + "fields": { + "EF_ID": 423402, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea (46% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (late February and late March 2011). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 120 kg N/ha.", + "Parameter_Conditions": "Clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "Newark, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0005", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-1.61383333333333E-03", + "Upper_Bound": "2.61383333333333E-03", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Nottinghamshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.22-0.16 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.11 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno365. http://www.environmentdata.org/archive/ghgno:365", + "creation_date": "2022-03-14T08:05:30.473Z", + "last_change_date": "2022-03-14T08:05:30.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10674, + "fields": { + "EF_ID": 423403, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (mid and late April 2011).", + "Parameter_Conditions": "Sandy clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "-0.00175", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.005209", + "Upper_Bound": "0.001709", + "Data_Quality": "T.H. Misselbrook etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Devon, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e.-0.31 - -0.10 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.18 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno349. http://www.environmentdata.org/archive/ghgno:349", + "creation_date": "2022-03-14T08:05:30.583Z", + "last_change_date": "2022-03-14T08:05:30.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10675, + "fields": { + "EF_ID": 423404, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (mid and late April 2011).", + "Parameter_Conditions": "Sandy clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "-0.0015", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.004959", + "Upper_Bound": "0.001959", + "Data_Quality": "T.H. Misselbrook etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Devon, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e.-0.28 - -0.10 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.18 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno349. http://www.environmentdata.org/archive/ghgno:349", + "creation_date": "2022-03-14T08:05:30.692Z", + "last_change_date": "2022-03-14T08:05:30.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10676, + "fields": { + "EF_ID": 423405, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate (34.5% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (mid and late April 2011). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 120 kg N/ha.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "-0.00075", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.004209", + "Upper_Bound": "0.002709", + "Data_Quality": "T.H. Misselbrook etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Devon, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e.-0.19 - -0.10 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.18 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno349. http://www.environmentdata.org/archive/ghgno:349", + "creation_date": "2022-03-14T08:05:30.817Z", + "last_change_date": "2022-03-14T08:05:30.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10677, + "fields": { + "EF_ID": 423406, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea (46% N) was applied at a rate of 120 kg N/ha, in two split applications each of 60 kg N/ha (mid and late April 2011). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 120 kg N/ha.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass (first cut silage)", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "1.08333333333333E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-2.37566666666667E-03", + "Upper_Bound": "4.54233333333333E-03", + "Data_Quality": "T.H. Misselbrook etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Devon, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.03 - -0.10 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (120 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.18 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno349. http://www.environmentdata.org/archive/ghgno:349", + "creation_date": "2022-03-14T08:05:30.918Z", + "last_change_date": "2022-03-14T08:05:30.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10678, + "fields": { + "EF_ID": 423407, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 200 kg N/ha, in three split applications (mid-March, mid April and early May 2012).", + "Parameter_Conditions": "Clay topsoil, winter wheat", + "Regional_Conditions": "Boxworth, Cambridgeshire, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0148", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.0122634", + "Upper_Bound": "0.0173366", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 3.72-0.76 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (200 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.22 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno389. http://www.environmentdata.org/archive/ghgno:389", + "creation_date": "2022-03-14T08:05:31.019Z", + "last_change_date": "2022-03-14T08:05:31.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10679, + "fields": { + "EF_ID": 423408, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 200 kg N/ha, in three split applications (mid-March, mid April and early May 2012).", + "Parameter_Conditions": "Clay topsoil, winter wheat", + "Regional_Conditions": "Boxworth, Cambridgeshire, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0081", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.0055634", + "Upper_Bound": "0.0106366", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.38-0.76 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (200 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.22 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno389. http://www.environmentdata.org/archive/ghgno:389", + "creation_date": "2022-03-14T08:05:31.120Z", + "last_change_date": "2022-03-14T08:05:31.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10680, + "fields": { + "EF_ID": 423409, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 200 kg N/ha, in three split applications (mid-March, mid April and early May 2012). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 200 kg N/ha.", + "Parameter_Conditions": "Clay topsoil, winter wheat", + "Regional_Conditions": "Boxworth, Cambridgeshire, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0123", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.0097634", + "Upper_Bound": "0.0148366", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 3.22-0.76 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (200 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.22 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno389. http://www.environmentdata.org/archive/ghgno:389", + "creation_date": "2022-03-14T08:05:31.220Z", + "last_change_date": "2022-03-14T08:05:31.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10681, + "fields": { + "EF_ID": 423410, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 200 kg N/ha, in three split applications (mid-March, mid April and early May 2012). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 200 kg N/ha.", + "Parameter_Conditions": "Clay topsoil, winter wheat", + "Regional_Conditions": "Boxworth, Cambridgeshire, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0006", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.0019366", + "Upper_Bound": "0.0031366", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.88-0.76 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (200 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.22 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno389. http://www.environmentdata.org/archive/ghgno:389", + "creation_date": "2022-03-14T08:05:31.320Z", + "last_change_date": "2022-03-14T08:05:31.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10682, + "fields": { + "EF_ID": 423411, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 160 kg N/ha, in three split applications (mid-March, late March and early April 2012).", + "Parameter_Conditions": "Clay loam topsoil, winter barley", + "Regional_Conditions": "Cockle Park, Northumberland, North East England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.014", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.009243875", + "Upper_Bound": "0.018756125", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.85-0.61 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (160 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.33 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno373. http://www.environmentdata.org/archive/ghgno:373", + "creation_date": "2022-03-14T08:05:31.421Z", + "last_change_date": "2022-03-14T08:05:31.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10683, + "fields": { + "EF_ID": 423412, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 160 kg N/ha, in three split applications (mid-March, late March and early April 2012).", + "Parameter_Conditions": "Clay loam topsoil, winter barley", + "Regional_Conditions": "Cockle Park, Northumberland, North East England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0094375", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.004681375", + "Upper_Bound": "0.014193625", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.12-0.61 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (160 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.33 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno373. http://www.environmentdata.org/archive/ghgno:373", + "creation_date": "2022-03-14T08:05:31.522Z", + "last_change_date": "2022-03-14T08:05:31.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10684, + "fields": { + "EF_ID": 423413, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 160 kg N/ha, in three split applications (mid-March, late March and early April 2012). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 160 kg N/ha.", + "Parameter_Conditions": "Clay loam topsoil, winter barley", + "Regional_Conditions": "Cockle Park, Northumberland, North East England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0066875", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.001931375", + "Upper_Bound": "0.011443625", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.68-0.61 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (160 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.33 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno373. http://www.environmentdata.org/archive/ghgno:373", + "creation_date": "2022-03-14T08:05:31.623Z", + "last_change_date": "2022-03-14T08:05:31.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10685, + "fields": { + "EF_ID": 423414, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser).", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 160 kg N/ha, in three split applications (mid-March, late March and early April 2012). The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 160 kg N/ha.", + "Parameter_Conditions": "Clay loam topsoil, winter barley", + "Regional_Conditions": "Cockle Park, Northumberland, North East England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0044375", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.000318625", + "Upper_Bound": "0.009193625", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.32-0.61 kg N2O N/ha. Table 4) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (160 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.33 kg N2O N/ha (Table 4 in Misselbrook et al., 2014) and the t value (2.306 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno373. http://www.environmentdata.org/archive/ghgno:373", + "creation_date": "2022-03-14T08:05:31.740Z", + "last_change_date": "2022-03-14T08:05:31.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10686, + "fields": { + "EF_ID": 423415, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 625 kg N/ha in early June 2011.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0032", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.002182048", + "Upper_Bound": "0.004217952", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.41-0.41 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (625 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.26 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno341. http://www.environmentdata.org/archive/ghgno:341", + "creation_date": "2022-03-14T08:05:31.857Z", + "last_change_date": "2022-03-14T08:05:31.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10687, + "fields": { + "EF_ID": 423416, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 625 kg N/ha in early June 2011. The Dicyandiamide (DCD) was pre-mixed with the urine.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.001552", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.000534048", + "Upper_Bound": "0.002569952", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.38-0.41 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (625 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.26 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno341. http://www.environmentdata.org/archive/ghgno:341", + "creation_date": "2022-03-14T08:05:31.975Z", + "last_change_date": "2022-03-14T08:05:31.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10688, + "fields": { + "EF_ID": 423417, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 625 kg N/ha in early June 2011. The pyrazole derivatives (1H-1,2,4-triazole and 3-methylpyrazole) were pre-mixed with the urine.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.002912", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "0.001894048", + "Upper_Bound": "0.003929952", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.23-0.41 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (625 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.26 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno341. http://www.environmentdata.org/archive/ghgno:341", + "creation_date": "2022-03-14T08:05:32.101Z", + "last_change_date": "2022-03-14T08:05:32.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10689, + "fields": { + "EF_ID": 423418, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 488 kg N/ha in mid September 2011.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "3.19672131147541E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "6.39405737704918E-04", + "Upper_Bound": "5.7540368852459E-03", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.94-0.38kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (488 kg N/ha. Table 2) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.51 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno341. http://www.environmentdata.org/archive/ghgno:341", + "creation_date": "2022-03-14T08:05:32.201Z", + "last_change_date": "2022-03-14T08:05:32.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10690, + "fields": { + "EF_ID": 423419, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil.", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 488 kg N/ha in mid September 2011. The Dicyandiamide (DCD) was pre-mixed with the urine.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "3.01229508196721E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "4.54979508196722E-04", + "Upper_Bound": "5.56961065573771E-03", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.85-0.38 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (488 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.51 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno341. http://www.environmentdata.org/archive/ghgno:341", + "creation_date": "2022-03-14T08:05:32.302Z", + "last_change_date": "2022-03-14T08:05:32.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10691, + "fields": { + "EF_ID": 423420, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 488 kg N/ha in mid September 2011. The pyrazole derivatives (1H-1,2,4-triazole and 3-methylpyrazole) were pre-mixed with the urine.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "3.9344262295082E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "1.3771106557377E-03", + "Upper_Bound": "6.49174180327869E-03", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Site in Cambridgeshire, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.30-0.38 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (488 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.51 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno341. http://www.environmentdata.org/archive/ghgno:341", + "creation_date": "2022-03-14T08:05:32.402Z", + "last_change_date": "2022-03-14T08:05:32.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10692, + "fields": { + "EF_ID": 423421, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 470 kg N/ha in mid March 2012.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "3.42553191489362E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "2.0198085106383E-03", + "Upper_Bound": "4.83125531914894E-03", + "Data_Quality": "T.H. Misselbrook etal (2012), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Urine site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.57- -0.04 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (470 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.27 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno333. http://www.environmentdata.org/archive/ghgno:333", + "creation_date": "2022-03-14T08:05:32.503Z", + "last_change_date": "2022-03-14T08:05:32.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10693, + "fields": { + "EF_ID": 423422, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 470 kg N/ha in mid March 2012. The Dicyandiamide (DCD) was pre-mixed with the urine.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "5.31914893617021E-04", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-8.73808510638298E-04", + "Upper_Bound": "1.93763829787234E-03", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp and N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Urine site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.21- -0.04 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (470 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.27 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno333. http://www.environmentdata.org/archive/ghgno:333", + "creation_date": "2022-03-14T08:05:32.612Z", + "last_change_date": "2022-03-14T08:05:32.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10694, + "fields": { + "EF_ID": 423423, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 470 kg N/ha in mid March 2012. The pyrazole derivatives (1H-1,2,4-triazole and 3-methylpyrazole) were pre-mixed with the urine.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "2.61702127659574E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "1.21129787234043E-03", + "Upper_Bound": "4.02274468085106E-03", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp and N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Urine site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.19- -0.04 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (470 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.27 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno333. http://www.environmentdata.org/archive/ghgno:333", + "creation_date": "2022-03-14T08:05:32.712Z", + "last_change_date": "2022-03-14T08:05:32.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10695, + "fields": { + "EF_ID": 423424, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 365 kg N/ha in early September 2012.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "6.54794520547945E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "1.38578082191781E-03", + "Upper_Bound": "1.17101095890411E-02", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp and N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Urine site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.79- 0.40 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (365 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.77 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno333. http://www.environmentdata.org/archive/ghgno:333", + "creation_date": "2022-03-14T08:05:32.847Z", + "last_change_date": "2022-03-14T08:05:32.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10696, + "fields": { + "EF_ID": 423425, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 365 kg N/ha in early September 2012. The Dicyandiamide (DCD) was pre-mixed with the urine.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "-2.19178082191781E-04", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-5.38134246575342E-03", + "Upper_Bound": "4.94298630136986E-03", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp and N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Urine site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.32- 0.40 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (365 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.77 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno333. http://www.environmentdata.org/archive/ghgno:333", + "creation_date": "2022-03-14T08:05:32.964Z", + "last_change_date": "2022-03-14T08:05:32.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10697, + "fields": { + "EF_ID": 423426, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals).", + "Technology_Practices": "A single application of cattle urine was applied at 5 litres/m2, equivalent to a N addition of 365 kg N/ha in early September 2012. The pyrazole derivatives (1H-1,2,4-triazole and 3-methylpyrazole) were pre-mixed with the urine.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "4.6027397260274E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-5.59424657534246E-04", + "Upper_Bound": "9.76490410958904E-03", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp and N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Urine site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.08-0.40 kg N2O N/ha. Table 5) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (365 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.77 kg N2O N/ha (Table 5 in Misselbrook et al., 2014) and the t value (2.447 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno333. http://www.environmentdata.org/archive/ghgno:333", + "creation_date": "2022-03-14T08:05:33.073Z", + "last_change_date": "2022-03-14T08:05:33.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10698, + "fields": { + "EF_ID": 423427, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure).", + "Technology_Practices": "A single application of cattle slurry was applied at 50 m3/ha, equivalent to a N addition of 181 kg N/ha in late September 2010.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "1.14917127071823E-02", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-7.83292817679558E-03", + "Upper_Bound": "3.08163535911602E-02", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp & N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Slurry site in Devon, 2010-11. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 2.73-0.65 kg N2O N/ha. Table 6) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (181 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 1.26 kg N2O N/ha (Table 6 in Misselbrook et al., 2014) and the t value (2.776 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno317. http://www.environmentdata.org/archive/ghgno:317", + "creation_date": "2022-03-14T08:05:33.181Z", + "last_change_date": "2022-03-14T08:05:33.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10699, + "fields": { + "EF_ID": 423428, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure).", + "Technology_Practices": "A single application of cattle slurry was applied at 50 m3/ha, equivalent to a N addition of 181 kg N/ha in late September 2010. The Dicyandiamide (DCD) was pre-mixed with the slurry.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2010 to 2011", + "Value": "6.46408839779006E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-1.28605524861878E-02", + "Upper_Bound": "0.025788729281768", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp & N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Slurry site in Devon, 2010-11. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 1.82-0.65 kg N2O N/ha. Table 6) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (181 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 1.26 kg N2O N/ha (Table 6 in Misselbrook et al., 2014) and the t value (2.776 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno317. http://www.environmentdata.org/archive/ghgno:317", + "creation_date": "2022-03-14T08:05:33.282Z", + "last_change_date": "2022-03-14T08:05:33.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10700, + "fields": { + "EF_ID": 423429, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure).", + "Technology_Practices": "A single application of cattle slurry was applied at 50 m3/ha, equivalent to a N addition of 167 kg N/ha in early March 2011.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "2.27544910179641E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-1.21897532934132E-02", + "Upper_Bound": "5.76622754491018E-03", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp & N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Slurry site in Devon, 2010-11. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.77-0.39 kg N2O N/ha. Table 6) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (167 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.21 kg N2O N/ha (Table 6 in Misselbrook et al., 2014) and the t value (2.776 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno317. http://www.environmentdata.org/archive/ghgno:317", + "creation_date": "2022-03-14T08:05:33.391Z", + "last_change_date": "2022-03-14T08:05:33.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10701, + "fields": { + "EF_ID": 423430, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure).", + "Technology_Practices": "A single application of cattle slurry was applied at 50 m3/ha, equivalent to a N addition of 167 kg N/ha in early March 2011. The Dicyandiamide (DCD) was pre-mixed with the slurry.", + "Parameter_Conditions": "Sandy clay loam topsoil, grass", + "Regional_Conditions": "Sampford Chapple, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "1.79640718562874E-04", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-3.32107113772455E-02", + "Upper_Bound": "3.67041916167665E-03", + "Data_Quality": "T.H. Misselbrook, L.M. Cardenas, V. Camp & N. Donovan (2017): Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Slurry site in Devon, 2010-11. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e.0.42-0.39 kg N2O N/ha. Table 6) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (167 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.21 kg N2O N/ha (Table 6 in Misselbrook et al., 2014) and the t value (2.776 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno317. http://www.environmentdata.org/archive/ghgno:317", + "creation_date": "2022-03-14T08:05:33.517Z", + "last_change_date": "2022-03-14T08:05:33.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10702, + "fields": { + "EF_ID": 423431, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure).", + "Technology_Practices": "A single application of cattle slurry was applied at 40 m3/ha, equivalent to a N addition of 106 kg N/ha in mid August 2011.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "1.9811320754717E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.0027", + "Upper_Bound": "0.0067", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Slurry, Nottinghamshire, 2011-12. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.75-0.54 kg N2O N/ha. Table 6) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (106 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.18 kg N2O N/ha (Table 6 in Misselbrook et al., 2014) and the t value (2.776 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno325. http://www.environmentdata.org/archive/ghgno:325", + "creation_date": "2022-03-14T08:05:33.644Z", + "last_change_date": "2022-03-14T08:05:33.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10703, + "fields": { + "EF_ID": 423432, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure).", + "Technology_Practices": "A single application of cattle slurry was applied at 40 m3/ha, equivalent to a N addition of 106 kg N/ha in mid August 2011. The Dicyandiamide (DCD) was pre-mixed with the slurry.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "1.13207547169811E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-0.0036", + "Upper_Bound": "0.0058", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Slurry, Nottinghamshire, 2011-12. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.66-0.54 kg N2O N/ha. Table 6) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (106 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.18 kg N2O N/ha (Table 6 in Misselbrook et al., 2014) and the t value (2.776 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno325. http://www.environmentdata.org/archive/ghgno:325", + "creation_date": "2022-03-14T08:05:33.752Z", + "last_change_date": "2022-03-14T08:05:33.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10704, + "fields": { + "EF_ID": 423433, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure).", + "Technology_Practices": "A single application of cattle slurry was applied at 40 m3/ha, equivalent to a N addition of 146 kg N/ha in late February 2012.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "4.10958904109589E-04", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-3.58191780821918E-03", + "Upper_Bound": "4.40383561643836E-03", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Slurry, Nottinghamshire, 2011-12. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.83-0.77 kg N2O N/ha. Table 6) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (146 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.21 kg N2O N/ha (Table 6 in Misselbrook et al., 2014) and the t value (2.776 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno325. http://www.environmentdata.org/archive/ghgno:325", + "creation_date": "2022-03-14T08:05:33.861Z", + "last_change_date": "2022-03-14T08:05:33.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10705, + "fields": { + "EF_ID": 423434, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure).", + "Technology_Practices": "A single application of cattle slurry was applied at 40 m3/ha, equivalent to a N addition of 146 kg N/ha in late February 2012. The Dicyandiamide (DCD) was pre-mixed with the slurry.", + "Parameter_Conditions": "Sandy loam topsoil, grass", + "Regional_Conditions": "Gleadthorpe, Nottinghamshire, East Midlands, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "-8.21917808219178E-04", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Misselbrook, T.H., Cardenas, L.M., Camp, V., Thorman, R.E., Williams, J.R., Rollett, A.J. and Chambers, B.J. (2014). An assessment of nitrification inhibitors to reduce nitrous oxide emissions from UK agriculture. Environmental Research Letters, 9, 1-11.", + "English_Abstract": "A trial was conducted consisting of 14 experiments across sites in England of contrasting soil type and annual rainfall to assess the effectiveness of nitrification inhibitors (predominantly dicyandiamide (DCD) but limited assessment also of 3, 4-dimethylpyrazole phosphate (DMPP) and a commercial product containing two pyrazole derivatives) in reducing direct nitrous oxide (N2O) emissions from fertilizer nitrogen (N), cattle urine and cattle slurry applications to land. Measurements were also made of the impact on ammonia (NH3) volatilization, nitrate (NO3−) leaching, crop yield and crop N offtake. DCD proved to be very effective in reducing direct N2O emissions following fertilizer and cattle urine applications, with mean reduction efficiencies of 39, 69 and 70% for ammonium nitrate, urea and cattle urine, respectively. When included with cattle slurry a mean, non-significant reduction of 56% was observed. There were no N2O emission reductions observed from the limited assessments of the other nitrification inhibitors. Generally, there were no impacts of the nitrification inhibitors on NH3 volatilization, NO3− leaching, crop yield or crop N offtake. Use of DCD could give up to 20% reduction in N2O emissions from UK agriculture, but cost-effective delivery mechanisms are required to encourage adoption by the sector. Direct N2O emissions from the studied sources were substantially lower than IPCC default values and development of UK country-specific emission factors for use in inventory compilation is warranted.", + "Lower_Bound": "-4.81479452054794E-03", + "Upper_Bound": "3.17095890410959E-03", + "Data_Quality": "R.E. Thorman etal (2017), Nitrification inhibitors and fertiliser nitrogen application timing strategies to reduce N2O. Slurry, Nottinghamshire, 2011-12. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors (net emission: treatment value minus control value, i.e. 0.65-0.77 kg N2O N/ha. Table 6) were calculated using the mean cumulative nitrous oxide emissions over a 12 month period (kg N2O N/ha) divided by the amount of N applied for the treatment (146 kg N/ha. Table 1) from Misselbrook et al., 2014. The confidence interval (CI) was calculated on the net emission using the SED of 0.21 kg N2O N/ha (Table 6 in Misselbrook et al., 2014) and the t value (2.776 from lookup tables), i.e. net emission ± CI (CI = SED x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.1088/1748-9326/9/11/115006; doi:10.17865/ghgno325. http://www.environmentdata.org/archive/ghgno:325", + "creation_date": "2022-03-14T08:05:33.971Z", + "last_change_date": "2022-03-14T08:05:33.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10706, + "fields": { + "EF_ID": 423435, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 300 kg N/ha, in four split applications (early March, late March, mid May and mid July 2004) of 40, 80, 100 and 80 kg N/ha respectively.", + "Parameter_Conditions": "Sandy silt loam topsoil, grassland", + "Regional_Conditions": "Rowden, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0142", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.004976", + "Upper_Bound": "0.023424", + "Data_Quality": "S. Yamulki (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Devon, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 1.42%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.40) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno706 http://www.environmentdata.org/archive/ghgno:706", + "creation_date": "2022-03-14T08:05:34.138Z", + "last_change_date": "2022-03-14T08:05:34.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10707, + "fields": { + "EF_ID": 423436, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 300 kg N/ha, in four split applications (early March, late March, mid May and mid July 2004) of 40, 80, 100 and 80 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy silt loam topsoil, grassland", + "Regional_Conditions": "Rowden, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0127", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "-0.005748", + "Upper_Bound": "0.031148", + "Data_Quality": "S. Yamulki (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Devon, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 1.27%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.80) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno706 http://www.environmentdata.org/archive/ghgno:706", + "creation_date": "2022-03-14T08:05:34.247Z", + "last_change_date": "2022-03-14T08:05:34.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10708, + "fields": { + "EF_ID": 423437, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) granules coated with N-(n-butyl)thiophosphoric triamide (n-BTPT) Urease inhibitor (500 mg/kg active ingredient nBTPT/kg of urea) was applied at a rate of 300 kg N/ha, in four split applications (early March, late March, mid May and mid July 2004) of 40, 80, 100 and 80 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy silt loam topsoil, grassland", + "Regional_Conditions": "Rowden, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0052", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.001741", + "Upper_Bound": "0.008659", + "Data_Quality": "S. Yamulki (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Devon, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.52%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.15) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno706 http://www.environmentdata.org/archive/ghgno:706", + "creation_date": "2022-03-14T08:05:34.355Z", + "last_change_date": "2022-03-14T08:05:34.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10709, + "fields": { + "EF_ID": 423438, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) granules coated with N-(n-butyl)thiophosphoric triamide (n-BTPT) Urease inhibitor (1000 mg/kg active ingredient nBTPT/kg of urea) was applied at a rate of 300 kg N/ha, in four split applications (early March, late March, mid May and mid July 2004) of 40, 80, 100 and 80 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy silt loam topsoil, grassland", + "Regional_Conditions": "Rowden, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.003", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.0011552", + "Upper_Bound": "0.0048448", + "Data_Quality": "S. Yamulki (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Devon, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.30%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.08) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno706 http://www.environmentdata.org/archive/ghgno:706", + "creation_date": "2022-03-14T08:05:34.464Z", + "last_change_date": "2022-03-14T08:05:34.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10710, + "fields": { + "EF_ID": 423439, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea ammonium sulphate (38% N) was applied at a rate of 300 kg N/ha, in four split applications (early March, late March, mid March and mid July 2004) of 40, 80, 100 and 80 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy silt loam topsoil, grassland", + "Regional_Conditions": "Rowden, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0052", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "-0.000565", + "Upper_Bound": "0.010965", + "Data_Quality": "S. Yamulki (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Devon, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.52%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.25) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno706 http://www.environmentdata.org/archive/ghgno:706", + "creation_date": "2022-03-14T08:05:34.574Z", + "last_change_date": "2022-03-14T08:05:34.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10711, + "fields": { + "EF_ID": 423440, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 220 kg N/ha, in three split applications (early March, late March and early May 2004) of 40, 80 and 100 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton, Dumfries, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0061", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.001488", + "Upper_Bound": "0.010712", + "Data_Quality": "K.A. Smith, K.E. Dobbie & B.C. Ball (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Dumfries, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.61%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.20) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno713 http://www.environmentdata.org/archive/ghgno:713", + "creation_date": "2022-03-14T08:05:34.682Z", + "last_change_date": "2022-03-14T08:05:34.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10712, + "fields": { + "EF_ID": 423441, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 220 kg N/ha, in three split applications (early March, late March and early May 2004) of 40, 80 and 100 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton, Dumfries, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0035", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "-8.81400000000001E-04", + "Upper_Bound": "0.0078814", + "Data_Quality": "K.A. Smith, K.E. Dobbie & B.C. Ball (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Dumfries, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.35%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.19) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno713 http://www.environmentdata.org/archive/ghgno:713", + "creation_date": "2022-03-14T08:05:34.800Z", + "last_change_date": "2022-03-14T08:05:34.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10713, + "fields": { + "EF_ID": 423442, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) granules coated with N-(n-butyl)thiophosphoric triamide (n-BTPT) Urease inhibitor (500 mg/kg active ingredient nBTPT/kg of urea) was applied at a rate of 220 kg N/ha, in three split applications (early March, late March and early May 2004) of 40, 80 and 100 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton, Dumfries, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0059", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.000135", + "Upper_Bound": "0.011665", + "Data_Quality": "K.A. Smith, K.E. Dobbie & B.C. Ball (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Dumfries, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.59%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.25) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno713 http://www.environmentdata.org/archive/ghgno:713", + "creation_date": "2022-03-14T08:05:34.925Z", + "last_change_date": "2022-03-14T08:05:34.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10714, + "fields": { + "EF_ID": 423443, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) granules coated with N-(n-butyl)thiophosphoric triamide (n-BTPT) Urease inhibitor (1000 mg/kg active ingredient nBTPT/kg of urea) was applied at a rate of 220 kg N/ha, in three split applications (early March, late March and early May 2004) of 40, 80 and 100 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton, Dumfries, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0021", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "-0.0004366", + "Upper_Bound": "0.0046366", + "Data_Quality": "K.A. Smith, K.E. Dobbie & B.C. Ball (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Dumfries, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.21%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.11) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno713 http://www.environmentdata.org/archive/ghgno:713", + "creation_date": "2022-03-14T08:05:35.043Z", + "last_change_date": "2022-03-14T08:05:35.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10715, + "fields": { + "EF_ID": 423444, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea ammonium sulphate (38% N) was applied at a rate of 220 kg N/ha, in three split applications (early March, late March and early May 2004) of 40, 80 and 100 kg N/ha, respectively.", + "Parameter_Conditions": "Sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton, Dumfries, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0039", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.0002104", + "Upper_Bound": "0.0075896", + "Data_Quality": "K.A. Smith, K.E. Dobbie & B.C. Ball (2017): The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Dumfries, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.39%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.16) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno713 http://www.environmentdata.org/archive/ghgno:713", + "creation_date": "2022-03-14T08:05:35.159Z", + "last_change_date": "2022-03-14T08:05:35.159Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10716, + "fields": { + "EF_ID": 423445, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 220 kg N/ha, in three split applications (early March, early April and early May 2004) of 40, 90 and 90 kg N/ha, respectively.", + "Parameter_Conditions": "Silty clay loam topsoil, winter wheat", + "Regional_Conditions": "Terrington St Clement, Kings Lynn, Norfolk, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0045", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.0024246", + "Upper_Bound": "0.0065754", + "Data_Quality": "R.E. Thorman etal (2017), The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Norfolk, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.45%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.09) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno721 http://www.environmentdata.org/archive/ghgno:721", + "creation_date": "2022-03-14T08:05:35.286Z", + "last_change_date": "2022-03-14T08:05:35.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10717, + "fields": { + "EF_ID": 423446, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 220 kg N/ha, in three split applications (early March, early April and early May 2004) of 40, 90 and 90 kg N/ha, respectively.", + "Parameter_Conditions": "Silty clay loam topsoil, winter wheat", + "Regional_Conditions": "Terrington St Clement, Kings Lynn, Norfolk, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.006", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.0041552", + "Upper_Bound": "0.0078448", + "Data_Quality": "R.E. Thorman etal (2017), The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Norfolk, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.60%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.08) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno721 http://www.environmentdata.org/archive/ghgno:721", + "creation_date": "2022-03-14T08:05:35.395Z", + "last_change_date": "2022-03-14T08:05:35.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10718, + "fields": { + "EF_ID": 423447, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) granules coated with N-(n-butyl)thiophosphoric triamide (n-BTPT) Urease inhibitor (1000 mg/kg active ingredient nBTPT/kg of urea) was applied at a rate of 220 kg N/ha, in three split applications (early March, early April and early May 2004) of 40, 90 and 90 kg N/ha, respectively.", + "Parameter_Conditions": "Silty clay loam topsoil, winter wheat", + "Regional_Conditions": "Terrington St Clement, Kings Lynn, Norfolk, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0069", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.0018268", + "Upper_Bound": "0.0119732", + "Data_Quality": "R.E. Thorman etal (2017), The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Norfolk, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.69%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.22) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno721 http://www.environmentdata.org/archive/ghgno:721", + "creation_date": "2022-03-14T08:05:35.504Z", + "last_change_date": "2022-03-14T08:05:35.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10719, + "fields": { + "EF_ID": 423448, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea ammonium nitrate solution (29% N w/w) was applied at a rate of 220 kg N/ha, in three split applications (early March, early April and early May 2004) of 40, 90 and 90 kg N/ha, respectively.", + "Parameter_Conditions": "Silty clay loam topsoil, winter wheat", + "Regional_Conditions": "Terrington St Clement, Kings Lynn, Norfolk, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0074", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "0.0055552", + "Upper_Bound": "0.0092448", + "Data_Quality": "R.E. Thorman etal (2017), The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Norfolk, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.74%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.08) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno721 http://www.environmentdata.org/archive/ghgno:721", + "creation_date": "2022-03-14T08:05:35.613Z", + "last_change_date": "2022-03-14T08:05:35.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10720, + "fields": { + "EF_ID": 423449, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea ammonium nitrate solution (29% N w/w) and N-(n-butyl) thiophosphoric triamide (n-BTPT) Urease inhibitor (1000 mg/kg active ingredient nBTPT/kg of urea) was applied at a rate of 220 kg N/ha, in three split applications (early March, early April and early May 2004) of 40, 90 and 90 kg N/ha, respectively.", + "Parameter_Conditions": "Silty clay loam topsoil, winter wheat", + "Regional_Conditions": "Terrington St Clement, Kings Lynn, Norfolk, East Anglia, England", + "Control_Technologies": "", + "Other_Properties": "Year 2004-2005", + "Value": "0.0026", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Smith, K.A., Dobbie, K.E., Thorman, R., Watson, C.J., Chadwick, D.R., Yamulki, S. and Ball, B.C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient Cycling in Agroecosystems. 93, 127-149.", + "English_Abstract": "Nitrous oxide emission factors (EFs) were calculated from measurements of emissions from UK wheat crops and grassland, that were part of a wider research programme on N loss pathways and crop responses. Field studies were undertaken in 2003, 2004 and 2005—a total of 12 site-seasons. Nitrous oxide emissions were measured by the closed static chamber method, following the application of various N fertilizer forms (ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea (UR), urea ammonium sulphate and urea ammonium nitrate) at the recommended rates. Emission factors for the growing season (March–September) ranged from less than 0.1–3.9 %. In the 2nd year, measurements continued at three sites until the following February; the resulting annual EFs were one-third greater, on average, than those for the growing season. There was some evidence that N2O emissions from UR were smaller than from AN or CAN, but when this was adjusted for loss of ammonia by volatilization, there was generally little difference between different forms of N. Emissions from UR modified by the addition of the urease inhibitor nBTPT (UR + UI) were lower than corresponding emissions from nitrate forms, except under conditions where emissions were generally low, even allowing for indirect emissions, suggesting that the use of a urease inhibitor can provide some mitigation of N2O, as well as NH3, emissions. The emission data broadly bear out the relationships obtained in earlier UK studies, showing a strong dependence of N2O emission on soil wetness, temperature and the presence of sufficient mineral N in the soil, which decreases rapidly after N application mainly as a result of plant uptake. Overall net mean EFs for the whole season (after subtracting background emissions from unfertilized controls) covered a range wider than the 0.3–3.0 % range of IPCC (2006).", + "Lower_Bound": "-0.0010896", + "Upper_Bound": "0.0062896", + "Data_Quality": "R.E. Thorman etal (2017), The Effect of N Fertiliser forms on N2O emissions from UK arable and grassland. Experimental site in Norfolk, 2004. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the experiment were taken from Smith et al., 2012 (Table 4: 0.26%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.16) of the measured EF from Table 4 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno721 http://www.environmentdata.org/archive/ghgno:721", + "creation_date": "2022-03-14T08:05:35.755Z", + "last_change_date": "2022-03-14T08:05:35.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10721, + "fields": { + "EF_ID": 423450, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine was applied on 15 May 2012 at a rate of 405 kg N/ha", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0296", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Cardenas et al., 2016 (Table 4: 2.96%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:35.864Z", + "last_change_date": "2022-03-14T08:05:35.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10722, + "fields": { + "EF_ID": 423451, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine plus dicyandiamide (DCD) was applied on 15 May 2012 at a rate of 395 kg N/ha. A 1% solution of DCD was mixed with the urine. The N supplied by the DCD was accounted for in the 395 kg N/ha.", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0109", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Cardenas et al., 2016 (Table 4: 1.09%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:35.974Z", + "last_change_date": "2022-03-14T08:05:35.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10723, + "fields": { + "EF_ID": 423452, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of artificial urine was applied on 15 May 2012 at a rate of 440 kg N/ha. Artificial urine was made in the laboratory using chemicals following the method outlined in D.A. Kool et al. (2006) for recipe 2 (R2)", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0223", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Cardenas et al., 2016 (Table 4: 2.23%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:36.083Z", + "last_change_date": "2022-03-14T08:05:36.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10724, + "fields": { + "EF_ID": 423453, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (manure N deposited by grazing animals)", + "Technology_Practices": "A single application of cattle dung was applied on 15 May 2012 at a rate of 911 kg N/ha.", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0014", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Cardenas et al., 2016 (Table 4: 0.14%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:36.191Z", + "last_change_date": "2022-03-14T08:05:36.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10725, + "fields": { + "EF_ID": 423454, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine was applied on 3 July 2012 at a rate of 429 kg N/ha", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0056", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the summer experiment were taken from Cardenas et al., 2016 (Table 4: 0.56%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:36.308Z", + "last_change_date": "2022-03-14T08:05:36.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10726, + "fields": { + "EF_ID": 423455, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine plus dicyandiamide (DCD) was applied on 3 July 2012 at a rate of 436 kg N/ha. A 1% solution of DCD was mixed with the urine. The N supplied by the DCD was accounted for in the 436 kg N/ha.", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0049", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the summer experiment were taken from Cardenas et al., 2016 (Table 4: 0.49%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:36.417Z", + "last_change_date": "2022-03-14T08:05:36.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10727, + "fields": { + "EF_ID": 423456, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of artificial urine was applied on 3 July 2012 at a rate of 481 kg N/ha. Artificial urine was made in the laboratory using chemicals following the method outlined in D.A. Kool et al. (2006) for recipe 2 (R2)", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.007", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the summer experiment were taken from Cardenas et al., 2016 (Table 4: 0.70%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:36.535Z", + "last_change_date": "2022-03-14T08:05:36.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10728, + "fields": { + "EF_ID": 423457, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (manure N deposited by grazing animals)", + "Technology_Practices": "A single application of cattle dung was applied on 3 July 2012 at a rate of 625 kg N/ha.", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0039", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the summer experiment were taken from Cardenas et al., 2016 (Table 4: 0.39%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:36.651Z", + "last_change_date": "2022-03-14T08:05:36.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10729, + "fields": { + "EF_ID": 423458, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine was applied on 26 September 2012 at a rate of 435 kg N/ha", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0011", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Cardenas et al., 2016 (Table 4: 0.11%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:36.761Z", + "last_change_date": "2022-03-14T08:05:36.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10730, + "fields": { + "EF_ID": 423459, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine plus dicyandiamide (DCD) was applied on 26 September 2012 at a rate of 454 kg N/ha. A 1% solution of DCD was mixed with the urine. The N supplied by the DCD was accounted for in the 454 kg N/ha.", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0012", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Cardenas et al., 2016 (Table 4: 0.12%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:36.871Z", + "last_change_date": "2022-03-14T08:05:36.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10731, + "fields": { + "EF_ID": 423460, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of artificial urine was applied on 26 September 2012 at a rate of 423 kg N/ha. Artificial urine was made in the laboratory using chemicals following the method outlined in D.A. Kool et al. (2006) for recipe 2 (R2)", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.00072", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Cardenas et al., 2016 (Table 4: 0.072%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:37.013Z", + "last_change_date": "2022-03-14T08:05:37.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10732, + "fields": { + "EF_ID": 423461, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (manure N deposited by grazing animals)", + "Technology_Practices": "A single application of cattle dung was applied on 26 September 2012 at a rate of 771 kg N/ha.", + "Parameter_Conditions": "Clay topsoil, grassland", + "Regional_Conditions": "North Wyke Farm, Devon, South West England, England", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.001", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardenas, L.M., Misselbrook, T.M., Hodgson, C., Donovan, N., Gilhespy, S., Smith, K.A., Dhanoa, M.S. and Chadwick, D. (2016). Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from UK grassland soil. Agriculture, Ecosystems and Environment. 235, 229-241.", + "English_Abstract": "Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Cardenas et al., 2016 (Table 4: 0.10%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno562. http://www.environmentdata.org/archive/ghgno:562", + "creation_date": "2022-03-14T08:05:37.139Z", + "last_change_date": "2022-03-14T08:05:37.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10733, + "fields": { + "EF_ID": 423462, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Broiler litter was applied in autumn (3 October) 2012 at a rate of 141 kg N/ha and incorporated into the soil within 24 hours after application.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat.", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0108", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "0.0080328", + "Upper_Bound": "0.0135672", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2016 (Supplementary Table 1: 1.08%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.12) of the measured EF from Supplementary Table 1 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:37.264Z", + "last_change_date": "2022-03-14T08:05:37.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10734, + "fields": { + "EF_ID": 423463, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Layer manure was applied in autumn (3 October) 2012 at a rate of 244 kg N/ha and incorporated into the soil within 24 hours after application.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0077", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "-0.0029076", + "Upper_Bound": "0.0183076", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2016 (Supplementary Table 1: 0.77%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.46) of the measured EF from Supplementary Table 1 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:37.390Z", + "last_change_date": "2022-03-14T08:05:37.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10735, + "fields": { + "EF_ID": 423464, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Cattle slurry was applied by surface broadcast application in autumn (3 October) 2012 at a rate of 62.5 kg N/ha and incorporated into the soil within 24 hours after application.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0259", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "0.0037624", + "Upper_Bound": "0.0480376", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2016 (Supplementary Table 1: 2.59%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.96) of the measured EF from Supplementary Table 1 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:37.507Z", + "last_change_date": "2022-03-14T08:05:37.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10736, + "fields": { + "EF_ID": 423465, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Cattle slurry was applied by trailing hose application in autumn (3 October) 2012 at a rate of 62.5 kg N/ha and incorporated into the soil within 24 hours after application.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0253", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "-0.001219", + "Upper_Bound": "0.051819", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2016 (Supplementary Table 1: 2.53%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (1.15) of the measured EF from Supplementary Table 1 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:37.625Z", + "last_change_date": "2022-03-14T08:05:37.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10737, + "fields": { + "EF_ID": 423466, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Cattle farmyard manure (FYM) was top-dressed in autumn (3 October) 2012 at a rate of 175 kg N/ha.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0034", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "-0.0002896", + "Upper_Bound": "0.0070896", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2016 (Supplementary Table 1: 0.34%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.16) of the measured EF from Supplementary Table 1 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:37.741Z", + "last_change_date": "2022-03-14T08:05:37.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10738, + "fields": { + "EF_ID": 423467, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Broiler litter was top-dressed in spring (10 April) 2013 at a rate of 121 kg N/ha.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2013 to 2014", + "Value": "0.0036", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "-0.0083903", + "Upper_Bound": "0.0155903", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Bell et al., 2016 (Supplementary Table 1: 0.36%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.49) of the measured EF from Supplementary Table 1 and the t value for 6 d.f. (2.447 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:37.859Z", + "last_change_date": "2022-03-14T08:05:37.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10739, + "fields": { + "EF_ID": 423468, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Layer manure was top-dressed in spring (10 April) 2013 at a rate of 228 kg N/ha.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2013 to 2014", + "Value": "0.0021", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "-0.005241", + "Upper_Bound": "0.009441", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Bell et al., 2016 (Supplementary Table 1: 0.21%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.30) of the measured EF from Supplementary Table 1 and the t value for 6 d.f. (2.447 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:37.976Z", + "last_change_date": "2022-03-14T08:05:37.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10740, + "fields": { + "EF_ID": 423469, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Cattle slurry was top-dressed by surface broadcast application in spring (10 April) 2013 at a rate of 50 kg N/ha.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2013 to 2014", + "Value": "-0.0079", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "-0.0448497", + "Upper_Bound": "0.0290497", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Bell et al., 2016 (Supplementary Table 1: -0.79%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (1.51) of the measured EF from Supplementary Table 1 and the t value for 6 d.f. (2.447 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:38.094Z", + "last_change_date": "2022-03-14T08:05:38.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10741, + "fields": { + "EF_ID": 423470, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (animal manure)", + "Technology_Practices": "Cattle slurry was top-dressed by trailing hose application in spring (10 April) 2013 at a rate of 50 kg N/ha.", + "Parameter_Conditions": "Sandy loam topsoil, winter wheat", + "Regional_Conditions": "East-Central Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2013 to 2014", + "Value": "-0.0083", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N.J., Cloy, J.M., Topp, C.F.E., Rees, R.M., Williams, J.R., Misselbrook, T.H. and Chadwick, D.R. (2016). How do emission rates and emission factors for nitrous oxide and ammonia vary with manure type and time of application in a Scottish farmland? Geoderma, 264, 81-93.", + "English_Abstract": "The use of livestock manure as an organic fertiliser on agricultural land is an attractive alternative to synthetic fertiliser. The type of manure and the timing and method of application can however be crucial factors in reducing the extent of nitrogen lost from the system. This is important not only to enhance crop production, but in controlling gaseous emissions, including nitrous oxide (N2O) and ammonia (NH3). Emissions of N2O and NH3 were measured for 12 months from two experiments at an arable site in Scotland, to determine the effect of manure type and the timing (season) of application. Emission factors (EFs) were calculated for each manure applied in each season, and compared to IPCC standard EFs of 1% for N2O and 20% for NH3. Cattle farmyard manure, broiler litter, layer manure, and cattle slurry by surface broadcast and trailing hose application were applied to one experiment in October 2012 (autumn applications) and one in April 2013 (spring applications). Experimental areas were sown with winter wheat (Triticum aestivum) and manures were applied at typical rates. Crop yield was recorded to allow calculation of N2O and NH3 emission intensities. Mean annual N2O emissions across all manure treatments were greater from autumn (2 kgN2O–Nha−1) than spring (0.35 kgN2O–Nha−1) applications, and in the spring experiment were significantly lower from cattle slurry than other treatments. Ammonia emissions were generally greater (though not significantly) from spring than autumn applications. Significantly greater NH3 emissions were measured from layer manure than all other manures at both times of application. N2O and NH3 EFs were highly variable depending on the season of application and manure type. The mean autumn and spring N2O EFs across all manure treatments were 1.72% and −0.33% respectively, and mean NH3 EFs across all treatments were 8.2% and 15.0% from autumn and spring applications, respectively. These results demonstrate large deviation from the IPCC default values for N2O and NH3 EFs, and the considerable effect that manure type and time of application have on N2O and NH3 emissions.", + "Lower_Bound": "-0.0447603", + "Upper_Bound": "0.0281603", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Bell et al., 2016 (Supplementary Table 1: -0.83%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (1.49) of the measured EF from Supplementary Table 1 and the t value for 6 d.f. (2.447 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno555 http://www.environmentdata.org/archive/ghgno:555", + "creation_date": "2022-03-14T08:05:38.211Z", + "last_change_date": "2022-03-14T08:05:38.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10742, + "fields": { + "EF_ID": 423471, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 80 kg N/ha, in four equal split applications of 20 kg N/ha in late-March, mid-April, mid-May and early July 2011.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0106", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.0034514", + "Upper_Bound": "0.0177486", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Table 2 (1.06%) Bell et al., 2016 and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.31) of the measured EF from Table 2 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:38.327Z", + "last_change_date": "2022-03-14T08:05:38.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10743, + "fields": { + "EF_ID": 423472, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 160 kg N/ha, in four split applications of 30, 40, 50 and 40 kg N/ha in late-March, mid-April, mid-May and early July 2011, respectively.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0114", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.007941", + "Upper_Bound": "0.014859", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Table 2 (1.14%) Bell et al., 2016 and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.15) of the measured EF from Table 2 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:38.437Z", + "last_change_date": "2022-03-14T08:05:38.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10744, + "fields": { + "EF_ID": 423473, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 240 kg N/ha, in four split applications of 40, 60, 80 and 60 kg N/ha in late-March, mid-April, mid-May and early July 2011, respectively.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0123", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.0051514", + "Upper_Bound": "0.0194486", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Table 2 (1.23%) Bell et al., 2016 and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.31) of the measured EF from Table 2 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:38.537Z", + "last_change_date": "2022-03-14T08:05:38.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10745, + "fields": { + "EF_ID": 423474, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 320 kg N/ha, in four split applications of 70, 70, 100 and 80 kg N/ha in late-March, mid-April, mid-May and early July 2011, respectively.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0134", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.0067126", + "Upper_Bound": "0.0200874", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Table 2 (1.34%) Bell et al., 2016 and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.29) of the measured EF from Table 2 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:38.639Z", + "last_change_date": "2022-03-14T08:05:38.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10746, + "fields": { + "EF_ID": 423475, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil.", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 400 kg N/ha, in four split applications of 90, 90, 120 and 100 kg N/ha in late-March, mid-April, mid-May and early July 2011, respectively.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0174", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.0109432", + "Upper_Bound": "0.0238568", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Table 2 (1.74%) Bell et al., 2016 and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.28) of the measured EF from Table 2 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value)", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:38.739Z", + "last_change_date": "2022-03-14T08:05:38.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10747, + "fields": { + "EF_ID": 423476, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) (+dicyandiamide-DCD) was applied at a rate of 320 kg N/ha, in four split applications of 64 (+6), 64 (+6), 93 (+7) and 73 (+7) kg N/ha in late-March, mid-April, mid-May and early July 2011, respectively. The N supplied by the DCD was accounted for in the 320 kg N/ha application.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.01", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.0086164", + "Upper_Bound": "0.0113836", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the additional split applications, fertiliser type and NIs experiment, were taken from Table 3 (1.00%) Bell et al., 2016 and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.06) of the measured EF from Table 3 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:38.840Z", + "last_change_date": "2022-03-14T08:05:38.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10748, + "fields": { + "EF_ID": 423477, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 320 kg N/ha, in four split applications of 70, 70, 100 and 80 kg N/ha in late-March, mid-April, mid-May and early July 2011, respectively.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0091", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.0058716", + "Upper_Bound": "0.0123284", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the additional split applications, fertiliser type and NIs experiment, were taken from Table 3 (0.91%) Bell et al., 2016 and converted to kg N2ON/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.14) of the measured EF from Table 3 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:38.941Z", + "last_change_date": "2022-03-14T08:05:38.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10749, + "fields": { + "EF_ID": 423478, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) (+dicyandiamide-DCD) was applied at a rate of 320 kg N/ha, in four split applications of 64 (+6), 64 (+6), 93 (+7) and 73 (+7) kg N/ha in late-March, mid-April, mid-May and early July 2011, respectively.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.006", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.0043858", + "Upper_Bound": "0.0076142", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the additional split applications, fertiliser type and NIs experiment, were taken from Table 3 (0.60%) Bell et al., 2016 and converted to kg N2ON/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.07) of the measured EF from Table 3 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:39.058Z", + "last_change_date": "2022-03-14T08:05:39.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10750, + "fields": { + "EF_ID": 423479, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 320 kg N/ha, in six split applications of 40, 30, 40, 30, 100 and 80 kg N/ha in late-March, early April, mid-April, late April, mid-May and early July 2011, respectively.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, permanent grassland", + "Regional_Conditions": "Crichton, Dumfries and Galloway, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0161", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Cloy, J.M., Topp, C.F.E., Ball, B.C., Bagnall, A., Rees, R.M. and Chadwick, D.R. (2016). Quantifying N2O emissions from intensive grassland production: the role of synthetic fertiliser type, application rate, timing and nitrification inhibitors. Journal of Agricultural Science, 154 (5), 812-827.DOI:", + "English_Abstract": "Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O.The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1.19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1.74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.", + "Lower_Bound": "0.0121798", + "Upper_Bound": "0.0200202", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Manure experimental site in Midlothian, 2012-13. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the increased rate, fertiliser type and NIs experiment, were taken from Table 3 (1.61%) Bell et al., 2016 and converted to kg N2ON/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.17) of the measured EF from Table 3 and the t value for 8 d.f. (2.306 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "https://doi.org/10.1017/S0021859615000945; doi:10.17865/ghgno599 http://www.environmentdata.org/archive/ghgno:599", + "creation_date": "2022-03-14T08:05:39.184Z", + "last_change_date": "2022-03-14T08:05:39.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10751, + "fields": { + "EF_ID": 423480, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 60 kg N/ha, in three equal split applications of 20 kg N/ha in early March, early April and early May 2011.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0041", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.001768", + "Upper_Bound": "0.006432", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.41%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.11) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:39.301Z", + "last_change_date": "2022-03-14T08:05:39.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10752, + "fields": { + "EF_ID": 423481, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in three equal split applications of 40 kg N/ha in early March, early April and early May 2011.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0029", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.000144", + "Upper_Bound": "0.005656", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.29%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.13) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:39.426Z", + "last_change_date": "2022-03-14T08:05:39.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10753, + "fields": { + "EF_ID": 423482, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 180 kg N/ha, in three split applications of 40, 70 and 70 kg N/ha in early March, early April and early May 2011, respectively.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.002", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "9.20000000000001E-05", + "Upper_Bound": "0.003908", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.20%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.09) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:39.544Z", + "last_change_date": "2022-03-14T08:05:39.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10754, + "fields": { + "EF_ID": 423483, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 240 kg N/ha, in three split applications of 40, 100 and 100 kg N/ha in early March, early April and early May 2011, respectively.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0018", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.000104", + "Upper_Bound": "0.003496", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.18%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.08) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:39.653Z", + "last_change_date": "2022-03-14T08:05:39.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10755, + "fields": { + "EF_ID": 423484, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 300 kg N/ha, in three split applications of 40, 130 and 130 kg N/ha in early March, early April and early May 2011, respectively.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0013", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.00024", + "Upper_Bound": "0.00236", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.13%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.05) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:39.762Z", + "last_change_date": "2022-03-14T08:05:39.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10756, + "fields": { + "EF_ID": 423485, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 240 kg N/ha, in five split applications of 40, 50, 50, 50 and 50 kg N/ha in early March, early April, mid-April, early May and mid May 2011, respectively.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.001", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.000152", + "Upper_Bound": "0.001848", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.10%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.04) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:39.862Z", + "last_change_date": "2022-03-14T08:05:39.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10757, + "fields": { + "EF_ID": 423486, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 240 kg N/ha, in three split applications of 40, 100 and 100 kg N/ha in early March, early April and early May, respectively.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0013", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.000664", + "Upper_Bound": "0.001936", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.13%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.03) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:39.962Z", + "last_change_date": "2022-03-14T08:05:39.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10758, + "fields": { + "EF_ID": 423487, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) plus dicyandiamide (DCD) was applied at a rate of 240 kg N/ha, in three split applications of 40, 100 and 100 kg N/ha in early March, early April and early May, respectively. The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 240 kg N/ha application.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0005", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.001196", + "Upper_Bound": "0.002196", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.05%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.08) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:40.063Z", + "last_change_date": "2022-03-14T08:05:40.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10759, + "fields": { + "EF_ID": 423488, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) plus dicyandiamide (DCD) was applied at a rate of 240 kg N/ha, in three split applications of 40, 100 and 100 kg N/ha in early March, early April and early May, respectively. The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 240 kg N/ha application.", + "Parameter_Conditions": "Clay loam topsoil, winter wheat", + "Regional_Conditions": "Rosemaund, Hereford, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0011", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.000172", + "Upper_Bound": "0.002372", + "Data_Quality": "J.R. Williams etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Herefordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.11%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.06) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno675 http://www.environmentdata.org/archive/ghgno:675", + "creation_date": "2022-03-14T08:05:40.156Z", + "last_change_date": "2022-03-14T08:05:40.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10760, + "fields": { + "EF_ID": 423489, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 60 kg N/ha, in three equal split applications of 20 kg N/ha in mid March, mid April and early May 2011.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0078", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.002076", + "Upper_Bound": "0.013524", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.78%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.27) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:40.274Z", + "last_change_date": "2022-03-14T08:05:40.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10761, + "fields": { + "EF_ID": 423490, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in three equal split applications of 40 kg N/ha in mid March, mid April and early May 2011.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0029", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.003248", + "Upper_Bound": "0.009048", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.29%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.29) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:40.374Z", + "last_change_date": "2022-03-14T08:05:40.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10762, + "fields": { + "EF_ID": 423491, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 180 kg N/ha, in three split applications of 40, 70 and 70 kg N/ha in mid March, mid April and early May 2011, respectively.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0043", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.002604", + "Upper_Bound": "0.005996", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.43%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.08) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:40.475Z", + "last_change_date": "2022-03-14T08:05:40.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10763, + "fields": { + "EF_ID": 423492, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 240 kg N/ha, in three split applications of 40, 100 and 100 kg N/ha in mid March, mid April and early May 2011, respectively.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0022", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.000928", + "Upper_Bound": "0.003472", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.22%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.06) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:40.584Z", + "last_change_date": "2022-03-14T08:05:40.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10764, + "fields": { + "EF_ID": 423493, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 300 kg N/ha, in three split applications of 40, 130 and 130 kg N/ha in mid March, mid April and early May 2011, respectively.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0035", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.002864", + "Upper_Bound": "0.004136", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.35%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.03) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:40.684Z", + "last_change_date": "2022-03-14T08:05:40.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10765, + "fields": { + "EF_ID": 423494, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 180 kg N/ha, in five split applications of 40, 40, 40, 30 and 30 kg N/ha in mid March, mid April, late April, early May and late May 2011, respectively.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0032", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.001504", + "Upper_Bound": "0.004896", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.32%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.08) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:40.785Z", + "last_change_date": "2022-03-14T08:05:40.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10766, + "fields": { + "EF_ID": 423495, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 180 kg N/ha, in three split applications of 40, 70 and 70 kg N/ha in mid March, mid April and mid May, respectively.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0024", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.000992", + "Upper_Bound": "0.005792", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.24%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.16) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:41.053Z", + "last_change_date": "2022-03-14T08:05:41.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10767, + "fields": { + "EF_ID": 423496, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) plus dicyandiamide (DCD) was applied at a rate of 180 kg N/ha, in three split applications of 40, 70 and 70 kg N/ha in mid March, mid April and early May, respectively. The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 180 kg N/ha application.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0015", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.002316", + "Upper_Bound": "0.005316", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.15%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.18) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:41.178Z", + "last_change_date": "2022-03-14T08:05:41.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10768, + "fields": { + "EF_ID": 423497, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) plus dicyandiamide (DCD) was applied at a rate of 180 kg N/ha, in three split applications of 40, 70 and 70 kg N/ha in mid March, mid April and early May, respectively. The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 180 kg N/ha application.", + "Parameter_Conditions": "Loamy sand over sandy loam topsoil, winter wheat", + "Regional_Conditions": "Woburn, Bedfordshire, England", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0015", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.00062", + "Upper_Bound": "0.00362", + "Data_Quality": "L.M. Cardenas, C. Webster and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in Bedfordshire, 2011. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.15%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.10) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno613 http://www.environmentdata.org/archive/ghgno:613", + "creation_date": "2022-03-14T08:05:41.287Z", + "last_change_date": "2022-03-14T08:05:41.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10769, + "fields": { + "EF_ID": 423498, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 40 kg N/ha, in two equal split applications of 20 kg N/ha in early April and late April.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0084", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.042268", + "Upper_Bound": "0.059068", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.84%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (2.39) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:41.396Z", + "last_change_date": "2022-03-14T08:05:41.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10770, + "fields": { + "EF_ID": 423499, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 80 kg N/ha, in two equal split applications of 40 kg N/ha in early April and late April 2011.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0028", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.011828", + "Upper_Bound": "0.017428", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.28%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.69) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:41.497Z", + "last_change_date": "2022-03-14T08:05:41.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10771, + "fields": { + "EF_ID": 423500, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in two split applications of 40 and 80 kg N/ha in early April and late April 2011, respectively.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0142", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.006144", + "Upper_Bound": "0.022256", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 1.42%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.38) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:41.597Z", + "last_change_date": "2022-03-14T08:05:41.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10772, + "fields": { + "EF_ID": 423501, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 160 kg N/ha, in two split applications of 40 and 120 kg N/ha in early April and late April 2011, respectively.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0098", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.007892", + "Upper_Bound": "0.011708", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.98%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.09) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:41.697Z", + "last_change_date": "2022-03-14T08:05:41.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10773, + "fields": { + "EF_ID": 423502, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 200 kg N/ha, in two split applications of 40 and 160 kg N/ha in early April and late April 2011, respectively.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0106", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.004876", + "Upper_Bound": "0.016324", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 1.06%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.27) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:41.799Z", + "last_change_date": "2022-03-14T08:05:41.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10774, + "fields": { + "EF_ID": 423503, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) was applied at a rate of 120 kg N/ha, in three split applications of 40, 40 and 40 kg N/ha in early April, late April, and early May 2011, respectively.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0111", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "0.005164", + "Upper_Bound": "0.017036", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 1.11%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.28) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:41.900Z", + "last_change_date": "2022-03-14T08:05:41.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10775, + "fields": { + "EF_ID": 423504, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) was applied at a rate of 120 kg N/ha, in two split applications of 40 and 80 kg N/ha in early April and late April, respectively.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0065", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.003676", + "Upper_Bound": "0.016676", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.65%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.48) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:42.000Z", + "last_change_date": "2022-03-14T08:05:42.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10776, + "fields": { + "EF_ID": 423505, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Ammonium nitrate fertiliser (34.5% N) plus dicyandiamide (DCD) was applied at a rate of 120 kg N/ha, in two split applications of 40 and 80 kg N/ha in early April and late April, respectively. The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 120 kg N/ha application.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "0.0041", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.00544", + "Upper_Bound": "0.01364", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: 0.41%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.45) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:42.101Z", + "last_change_date": "2022-03-14T08:05:42.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10777, + "fields": { + "EF_ID": 423506, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (synthetic fertiliser)", + "Technology_Practices": "Urea fertiliser (46% N) plus dicyandiamide (DCD) was applied at a rate of 120 kg N/ha, in two split applications of 40 and 80 kg N/ha in early April and late April, respectively. The Dicyandiamide (DCD) was sprayed onto the plots immediately after each fertilizer application. The N supplied by the DCD was accounted for in the 120 kg N/ha application.", + "Parameter_Conditions": "Sandy clay loam topsoil, spring barley", + "Regional_Conditions": "Gilchriston, East Lothian, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2011 to 2012", + "Value": "-0.0028", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T., Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine, F., Goulding, K.W.T. and Chadwick, D.R. (2015). Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation. Agriculture, Ecosystems and Environment, 212, 134-147.", + "English_Abstract": "Cultivated agricultural soils are the largest anthropogenic source of nitrous oxide (N2O), a greenhouse gas approx. 298 times stronger than carbon dioxide. As agricultural land covers 40–50% of the earth’s surface agricultural N2O emissions could significantly influence future climate. The timing, amount and form of manufactured nitrogen (N) fertiliser applied to soils are major controls on N2O emission magnitude, and various methods are being investigated to quantify and reduce these emissions. A lack of measured N2O emission factors (EFs) means that most countries report N2O emissions using the IPCC’s Tier 1 methodology, where an EF of 1% is applied to mineral soils, regardless of soil type, climate, or location. The aim of this research was to generate evidence from experiments to contribute to improving the UK’s N2O agricultural inventory, by determining whether N2O EFs should vary across soil types and agroclimatic zones. Mitigation methods were also investigated, including assessing the impact of the nitrification inhibitor (NI) dicyandiamide (DCD), the application of more frequent smaller doses of fertiliser, and the impact of different rates and forms of manufactured N fertiliser. Nitrous oxide emissions were measured at one cropland site in Scotland and two in England for 12 months in 2011/2012, along with soil and environmental variables. Crop yield was also measured, and emission intensities were calculated for the contrasting fertiliser treatments. The greatest mean annual cumulative emissions from a range of ammonium nitrate (AN) fertiliser rates were measured at the Scottish site (2301 g N2O-N ha 1), which experienced 822 mm rainfall compared to 418 mm and 472 mm at the English sites, where cumulative annual emissions were lower (929 and 1152 g N2O-N ha 1, respectively). Climate and soil mineral N influenced N2O emissions, with a combination of factors required to occur simultaneously to generate the greatest fluxes. Emissions were related to fertiliser N rate; however the trend was not linear. EFs for AN treatments varied between sites, but at both English sites were much lower than the 1% value used by the IPCC, and as low as 0.20%. DCD reduced AN- and urea-generated N2O emissions and yield-scaled emissions at all sites. AN application in more frequent smaller doses reduced emissions at all sites, however, the type of fertiliser (AN or urea) had no impact. A significant difference in mean annual cumulative emissions between sites reflected differences in rainfall, and suggests that location specific or rainfall driven emission estimates could be considered.", + "Lower_Bound": "-0.016792", + "Upper_Bound": "0.011192", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Fertiliser experimental site in East Lothian, 2011. Version:1. [dataset] Freshwater Biological. Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the rate experiment were taken from Bell et al., 2015 (Supplementary Table 2: -0.28%) and converted to kg N2O-N/kg N input by dividing by 100. The 95% confidence interval (CI) was calculated using the SEM (0.66) of the measured EF from Supplementary Table 2 and the t value for 16 d.f. (2.120 from lookup tables), i.e. net emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "http://dx.doi.org/10.1016/j.agee.2015.07.003; doi:10.17865/ghgno606 http://www.environmentdata.org/archive/ghgno:606", + "creation_date": "2022-03-14T08:05:42.202Z", + "last_change_date": "2022-03-14T08:05:42.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10778, + "fields": { + "EF_ID": 423507, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine was applied in April 2012 at a rate of 480 kg N/ha", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.002", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 0.20%) converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:42.302Z", + "last_change_date": "2022-03-14T08:05:42.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10779, + "fields": { + "EF_ID": 423508, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine plus dicyandiamide (DCD) was applied in April 2012 at a rate of 480 kg N/ha. A 1% solution of DCD was mixed with the urine. The DCD supplied 6.5 kg N/ha giving a total nitrogen application rate of 487 kg N/ha.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0006", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 0.06%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:42.403Z", + "last_change_date": "2022-03-14T08:05:42.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10780, + "fields": { + "EF_ID": 423509, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of artificial urine was applied in April 2012 at a rate of 180 kg N/ha. Artificial urine was made in the laboratory using chemicals following the method outlined in D.A. Kool et al. (2006) for recipe 2 (R2)", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "-0.0008", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: -0.08%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:42.504Z", + "last_change_date": "2022-03-14T08:05:42.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10781, + "fields": { + "EF_ID": 423510, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (manure N deposited by grazing animals)", + "Technology_Practices": "A single application of cattle dung was applied in April 2012 at a rate of 1020 kg N/ha.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0011", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the spring experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 0.11%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:42.621Z", + "last_change_date": "2022-03-14T08:05:42.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10782, + "fields": { + "EF_ID": 423511, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine was applied in June 2012 at a rate of 420 kg N/ha", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0107", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the summer experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 1.07%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:42.738Z", + "last_change_date": "2022-03-14T08:05:42.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10783, + "fields": { + "EF_ID": 423512, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine plus dicyandiamide (DCD) was applied in June 2012 at a rate of 420 kg N/ha. A 1% solution of DCD was mixed with the urine. The DCD supplied 6.5 kg N/ha giving a total nitrogen application rate of 427 kg N/ha.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0103", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the summer experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 1.03%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:42.855Z", + "last_change_date": "2022-03-14T08:05:42.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10784, + "fields": { + "EF_ID": 423513, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of artificial urine was applied in June 2012 at a rate of 425 kg N/ha. Artificial urine was made in the laboratory using chemicals following the method outlined in D.A. Kool et al. (2006) for recipe 2 (R2)", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.011", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the summer experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 1.10%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:42.972Z", + "last_change_date": "2022-03-14T08:05:42.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10785, + "fields": { + "EF_ID": 423514, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (manure N deposited by grazing animals)", + "Technology_Practices": "A single application of cattle dung was applied in June 2012 at a rate of 680 kg N/ha.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.002", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the summer experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 0.20%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:43.089Z", + "last_change_date": "2022-03-14T08:05:43.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10786, + "fields": { + "EF_ID": 423515, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine was applied in October 2012 at a rate of 435 kg N/ha", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0031", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 0.31%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:43.198Z", + "last_change_date": "2022-03-14T08:05:43.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10787, + "fields": { + "EF_ID": 423516, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of urine plus dicyandiamide (DCD) was applied in October 2012 at a rate of 435 kg N/ha. A 1% solution of DCD was mixed with the urine. The DCD supplied 6.5 kg N/ha giving a total nitrogen application rate of 442 kg N/ha.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0021", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 0.21%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:43.307Z", + "last_change_date": "2022-03-14T08:05:43.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10788, + "fields": { + "EF_ID": 423517, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (urine N deposited by grazing animals)", + "Technology_Practices": "A single application of artificial urine was applied in October 2012 at a rate of 425 kg N/ha. Artificial urine was made in the laboratory using chemicals following the method outlined in D.A. Kool et al. (2006) for recipe 2 (R2)", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.0011", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 0.11%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:43.418Z", + "last_change_date": "2022-03-14T08:05:43.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10789, + "fields": { + "EF_ID": 423518, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soil (manure N deposited by grazing animals)", + "Technology_Practices": "A single application of cattle dung was applied in October 2012 at a rate of 720 kg N/ha.", + "Parameter_Conditions": "Sandy to sandy loam topsoil, grassland", + "Regional_Conditions": "Crichton Royal Farm, Dumfries, South West Scotland, Scotland", + "Control_Technologies": "", + "Other_Properties": "Year 2012 to 2013", + "Value": "0.001", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bell, M.J., Rees, R.M., Cloy, J.M., Topp, C.F.E., Bagnall, A. and Chadwick, D.R. (2015). Nitrous oxide emissions from cattle excreta applied to a Scottish grassland: Effects of soil and climatic conditions and a nitrification inhibitor. Science of the Total Environment, 508, 343-353.", + "English_Abstract": "Dung and urine excreted onto grasslands are a major source of nitrous oxide (N2O). These N2O emissions stem from inefficient utilisation of nitrogen (N) ingested by ruminants, and the inability of pasture to utilise the deposited N. Predicted growth in dairy and meat consumption means that there is a requirement to quantify N2O emissions, and investigate emission reduction mechanisms. Three 12 month ‘seasonal’ experiments were undertaken at Crichton, SW Scotland, where N2O emissions were measured from applications of cattle urine, dung, artificial urine and urine + a nitrification inhibitor (NI), dicyandiamide (DCD). The three application timings were ‘spring’, ‘summer’ and ‘autumn’, representative of early-, mid- and late grazing seasons. N2O emissions were measured from static chambers for 12 months. The aim was to quantify emissions from cattle excreta, and determine their dependence on the season of application, and the respective contribution of dung and urine to total excreta emissions. Measurement from NI amended urine was made to assess DCD`s potential as an emission mitigation tool. Emissions were compared to the IPCC`s default emission factor (EF) of 2% for cattle excreted N. Mean annual cumulative emissions from urine were the highest when applied in summer (5034 g N2O-N ha−1), with lower emissions from spring (1903 g N2O-N ha−1) and autumn (2014 g N2O-N ha−1) application, most likely due to higher temperatures and soil moisture conducive to both nitrification and denitrification in the summer months. Calculated EFs were significantly greater from urine (1.1%) than dung (0.2%) when excreta was applied in summer, and EFs varied with season of application, but in all experiments were lower than the IPCC default of 2%. These results support both lowering and disaggregating this EF into individual EFs for dung and urine. Addition of DCD to urine caused no significant reduction in emissions, suggesting that more research is required into its use as a mitigation option.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "M.J. Bell etal (2017), Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Dumfries, 2012. Version:1. [dataset] Freshwater Biological Association [publisher].", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors calculated using the IPCC Tier 1 Methodology (%) for the autumn experiment were taken from Bell et al., 2015 (back transformed value (square root transformation) in Table 3: 0.10%) and converted to kg N2ON/kg N input by dividing by 100.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd", + "Link": "doi:10.17865/ghgno578 http://www.environmentdata.org/archive/ghgno:578", + "creation_date": "2022-03-14T08:05:43.535Z", + "last_change_date": "2022-03-14T08:05:43.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10790, + "fields": { + "EF_ID": 423519, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor for Indirect N2O Emissions from managed soils", + "Technology_Practices": "N2O concentrations in groundwater were monitored temporally over 2 years in piezometers and spatially with two snap-shot sampling campaigns at two contrasted occasions, high and low water tables", + "Parameter_Conditions": "The study site chosen for the piezometer temporal monitoring of groundwater quality is northwestward falling slope reaching the Avaneless River with an average inclination of 2.2%. Most of the Orgeval catchment surface is covered with quaternary loess deposit (up to 10 m thick). Underneath the loess layer, two tertiary aquifier formations separated by the discontinuous grey clay and loamy gypsum layer interact with the streams. Most of the basin`s area is artificially drained (about 90% of the usable agricultural area, 1 m deep, 10-m spacing) and dominated by agricultural land (82%); the remaining surface is covered in forest (17%) and urban zoned or roads (1% of the surface). Agriculture is dominated by grain crop rotation. Within the catchment, groundwater level found ranged from 0.2 to 9.1 below the soil surface.", + "Regional_Conditions": "Orgeval catchment (Seine basin, France), about 70 km east of Paris, 104 km2 drained by the third-order Orgeval stream. The climate is semi-oceanic; the mean annual precipitation is 673 mm, and the mean ambient temperature is 4°C in winter and 19°C - in summer.", + "Control_Technologies": "", + "Other_Properties": "Default EF5 from 2006 IPCC Guidelines (0.0075 kg N2O-N kg N leached) incorporates three components: EF5g, EF5r and EF5e (groundwater and surface drainage, rivers and estuaries, repsectively). In present study, EF5g component is considered.", + "Value": "0.0026", + "Unit": "Kg N2O-N/kg N leaching/runoff", + "Equation": "Equation 11.10 on p. 11.21 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "Category code 3C5, Sheet 2 of 2, 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guillaume Vilain, Josette Garnier, Gaelle Tallec, Julien Tournebize. Indirect N2O emissions from shallow groundwater in an agricultural catchment (Seine Basin, France). Biogeochemistry, Springer Verlag, 2012, 111 (1-3), pp.253-271.", + "English_Abstract": "Production and accumulation of nitrous oxide, a major GHG, in shallow groundwater might contribute to indirect N2O emissions to the atmposphere (e.g. when groundwater flows into a stream or a river). The IPCC has attributed an emission factor (EF5g), associated with nitrate leaching in groundwater and drainage ditches - 0.0025 (corresponding to 0.25% of N leached which is emitted as N2O) - although this is the subject of considerable uncertainty. We investigated and quantified the transport and fate of nitrate and dissolved nitrous oxide from crop fields to groundwater and surface water over a 2-year period (monitoring from April 2008 to April 2010) in a transect from a plateau to a river with three piezometers. In groundwater, nitrate concentrations ranged from 1.0 to 22.7 NO3-N (from 2.8 to 37.6 mg NO3-N in the river) and dissolved N2O from 0.2 to 101.0 mg N2O-N (and from 0.2 to 2.9 mg N2O-N in the river). From these measurements we estimated an EF5g=0.0026 (similar to the value currently used by the IPCC) and an annual indirect N2O flux from groundwater of 0.035 kg N2O-N/ha/year, i.e. 1.8% of the previously measured direct N2O flux from agricultural soils.", + "Lower_Bound": "0.0020", + "Upper_Bound": "0.0032", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "DOI 10.1007/s10533-011-9642-7", + "creation_date": "2022-03-14T08:05:43.644Z", + "last_change_date": "2022-03-14T08:05:43.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10791, + "fields": { + "EF_ID": 423520, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0051", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "B., Gao, X.T., Ju*, F., Su, Q.F., Meng, O., Oenema, P., Christie, X.P., Chen, F.S., Zhang. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Science of the Total Environment. DOI:10.1016/j.scitotenv.2013.11.003 Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0045", + "Upper_Bound": "0.0057", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI:10.1016/j.scitotenv.2013.11.003", + "creation_date": "2022-03-14T08:05:43.761Z", + "last_change_date": "2022-03-14T08:05:43.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10792, + "fields": { + "EF_ID": 423521, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0087", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "B., Gao, X.T., Ju*, F., Su, Q.F., Meng, O., Oenema, P., Christie, X.P., Chen, F.S., Zhang. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Science of the Total Environment. DOI:10.1016/j.scitotenv.2013.11.003. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0078", + "Upper_Bound": "0.0095", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI:10.1016/j.scitotenv.2013.11.003", + "creation_date": "2022-03-14T08:05:43.870Z", + "last_change_date": "2022-03-14T08:05:43.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10793, + "fields": { + "EF_ID": 423522, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0089", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "B., Gao, X.T., Ju*, F., Su, Q.F., Meng, O., Oenema, P., Christie, X.P., Chen, F.S., Zhang. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Science of the Total Environment. DOI:10.1016/j.scitotenv.2013.11.003. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0085", + "Upper_Bound": "0.0092", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI:10.1016/j.scitotenv.2013.11.003", + "creation_date": "2022-03-14T08:05:43.943Z", + "last_change_date": "2022-03-14T08:05:43.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10794, + "fields": { + "EF_ID": 423523, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0082", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "B., Gao, X.T., Ju*, F., Su, Q.F., Meng, O., Oenema, P., Christie, X.P., Chen, F.S., Zhang. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Science of the Total Environment. DOI:10.1016/j.scitotenv.2013.11.003. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0078", + "Upper_Bound": "0.0086", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI:10.1016/j.scitotenv.2013.11.003.", + "creation_date": "2022-03-14T08:05:44.055Z", + "last_change_date": "2022-03-14T08:05:44.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10795, + "fields": { + "EF_ID": 423524, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0113", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "B., Gao, X.T., Ju*, F., Su, Q.F., Meng, O., Oenema, P., Christie, X.P., Chen, F.S., Zhang. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Science of the Total Environment. DOI:10.1016/j.scitotenv.2013.11.003. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0109", + "Upper_Bound": "0.0119", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "DOI:10.1016/j.scitotenv.2013.11.003.", + "creation_date": "2022-03-14T08:05:44.126Z", + "last_change_date": "2022-03-14T08:05:44.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10796, + "fields": { + "EF_ID": 423525, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00444", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bao Q.L., Ju X.T., Qu Z., Gao B., et al. 2012. Response of Nitrous Oxide and Corresponding Bacteria to Managements in an Agricultural Soil. Soil Sci. Soc. Am. J. 76:130–141. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.00256", + "Upper_Bound": "0.00632", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "were very similar to those calculated by quadratic-curve", + "Link": "", + "creation_date": "2022-03-14T08:05:44.223Z", + "last_change_date": "2022-03-14T08:05:44.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10797, + "fields": { + "EF_ID": 423526, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0052", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bao Q.L., Ju X.T., Qu Z., Gao B., et al. 2012. Response of Nitrous Oxide and Corresponding Bacteria to Managements in an Agricultural Soil. Soil Sci. Soc. Am. J. 76:130–141. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0036", + "Upper_Bound": "0.00736", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:44.356Z", + "last_change_date": "2022-03-14T08:05:44.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10798, + "fields": { + "EF_ID": 423527, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00276", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bao Q.L. 2011. The Microbial Mechanism of N2O Production in Dry Farming Agricultural Soil on the North China Plain. PhD Thesis. China Agricultural University. Beijing, China. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.00244", + "Upper_Bound": "0.00308", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:44.465Z", + "last_change_date": "2022-03-14T08:05:44.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10799, + "fields": { + "EF_ID": 423528, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00012", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bao Q.L. 2011. The Microbial Mechanism of N2O Production in Dry Farming Agricultural Soil on the North China Plain. PhD Thesis. China Agricultural University. Beijing, China. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.00008", + "Upper_Bound": "0.00016", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:44.566Z", + "last_change_date": "2022-03-14T08:05:44.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10800, + "fields": { + "EF_ID": 423529, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00004", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bao Q.L. 2011. The Microbial Mechanism of N2O Production in Dry Farming Agricultural Soil on the North China Plain. PhD Thesis. China Agricultural University. Beijing, China. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.00004", + "Upper_Bound": "0.00004", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:44.674Z", + "last_change_date": "2022-03-14T08:05:44.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10801, + "fields": { + "EF_ID": 423530, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.66315789473684E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hu X.K., Su F., Ju X.T. et al. 2013. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes.Environmental Pollution. 176 198-207. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "3.37105263157895E-03", + "Upper_Bound": "3.95526315789474E-03", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264 Mei, B., Zheng, X., Xie, B., Dong, H., Yao, Z., Liu, C., Zhou, Z., Wang, R., Deng, J., Zhu, J., 2011. Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. Journal of Geophysical Research D: Atmospheres 116.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:44.784Z", + "last_change_date": "2022-03-14T08:05:44.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10802, + "fields": { + "EF_ID": 423531, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.08157894736842E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hu X.K., Su F., Ju X.T. et al. 2013. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes.Environmental Pollution. 176 198-207. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "4.58684210526316E-03", + "Upper_Bound": "5.57631578947368E-03", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264 Mei, B., Zheng, X., Xie, B., Dong, H., Yao, Z., Liu, C., Zhou, Z., Wang, R., Deng, J., Zhu, J., 2011. Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. Journal of Geophysical Research D: Atmospheres 116.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:44.894Z", + "last_change_date": "2022-03-14T08:05:44.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10803, + "fields": { + "EF_ID": 423532, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.78978622327791E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hu X.K., Su F., Ju X.T. et al. 2013. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes.Environmental Pollution. 176 198-207. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "1.95249406175772E-03", + "Upper_Bound": "3.6270783847981E-03", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264 Mei, B., Zheng, X., Xie, B., Dong, H., Yao, Z., Liu, C., Zhou, Z., Wang, R., Deng, J., Zhu, J., 2011. Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. Journal of Geophysical Research D: Atmospheres 116.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.002Z", + "last_change_date": "2022-03-14T08:05:45.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10804, + "fields": { + "EF_ID": 423533, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.87631578947368E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hu X.K., Su F., Ju X.T. et al. 2013. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes.Environmental Pollution. 176 198-207. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "1.81578947368421E-03", + "Upper_Bound": "1.93684210526316E-03", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264 Mei, B., Zheng, X., Xie, B., Dong, H., Yao, Z., Liu, C., Zhou, Z., Wang, R., Deng, J., Zhu, J., 2011. Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. Journal of Geophysical Research D: Atmospheres 116.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.103Z", + "last_change_date": "2022-03-14T08:05:45.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10805, + "fields": { + "EF_ID": 423534, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.13684210526316E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hu X.K., Su F., Ju X.T. et al. 2013. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes.Environmental Pollution. 176 198-207. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "4.7078947368421E-03", + "Upper_Bound": "5.56578947368421E-03", + "Data_Quality": "See Row 36", + "Data_Quality_Reference": "Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Docng HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34. Yates, T.T., B.C. Si, R.E. Farrell, and D.J. Pennock. 2006. Wavelet spectra of nitrous oxide emission from hummocky terrain during spring snowmelt. Soil Sci. Soc. Am. J. 70:1110–1120. doi:10.2136/sssaj2005.0264 Mei, B., Zheng, X., Xie, B., Dong, H., Yao, Z., Liu, C., Zhou, Z., Wang, R., Deng, J., Zhu, J., 2011. Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. Journal of Geophysical Research D: Atmospheres 116.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The N2O fl uxes that were calculated by linear regression were very similar to those calculated by quadratic-curve regression analysis, with a range of discrepancy between the two analysis methods of −8.7 to 6.1% because the R2 value of the linear regression analysis between N2O concentration and time was >0.9 in our measuring system. We therefore used the linear regression method to calculate the fl uxes. In the few cases where “rogue” data points occurred, the R2 value of the linear regression was <0.9. We used three points instead of four to calculate the slope of the line that best described the concentration vs.time relationship (Yates et al., 2006). Flux rates were discarded if the regression coeffi cient (R2) was still <0.9 (Barton et al., 2008).", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.204Z", + "last_change_date": "2022-03-14T08:05:45.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10806, + "fields": { + "EF_ID": 423535, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.79166666666667E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Huang T., Gao B., Christie P., Ju X.T. 2013. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences, 10, 7897–7911. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0045", + "Upper_Bound": "7.08333333333333E-03", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Livingston, G. P., Hutchinson, G. L., and Spartalian, K.: Diffusion theory improves chamber-based measurements of trace gas emissions, Geophys. Res. Lett., 32, L24817, doi:10.1029/2005GL024744, 2005.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.304Z", + "last_change_date": "2022-03-14T08:05:45.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10807, + "fields": { + "EF_ID": 423536, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.78571428571429E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Huang T., Gao B., Christie P., Ju X.T. 2013. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences, 10, 7897–7911. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "4.51785714285714E-03", + "Upper_Bound": "5.05357142857143E-03", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Livingston, G. P., Hutchinson, G. L., and Spartalian, K.: Diffusion theory improves chamber-based measurements of trace gas emissions, Geophys. Res. Lett., 32, L24817, doi:10.1029/2005GL024744, 2005.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.413Z", + "last_change_date": "2022-03-14T08:05:45.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10808, + "fields": { + "EF_ID": 423537, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.73228346456693E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Huang T., Gao B., Christie P., Ju X.T. 2013. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences, 10, 7897–7911. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "6.37795275590551E-03", + "Upper_Bound": "7.08661417322835E-03", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Livingston, G. P., Hutchinson, G. L., and Spartalian, K.: Diffusion theory improves chamber-based measurements of trace gas emissions, Geophys. Res. Lett., 32, L24817, doi:10.1029/2005GL024744, 2005.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.484Z", + "last_change_date": "2022-03-14T08:05:45.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10809, + "fields": { + "EF_ID": 423538, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.71428571428571E-03", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Huang T., Gao B., Christie P., Ju X.T. 2013. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences, 10, 7897–7911. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "5.03571428571429E-03", + "Upper_Bound": "0.00875", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase and nonlinear increase, depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Kroon PS, Hensen A, van den Bulk WCM, Jongejan PAC, Vermeulen AT. The importance of reducing the systematic error due to non-linearity in N2O flux measurements by static chambers. Nutr Cycl Agroecosyst 2008;82:175–86. Livingston, G. P., Hutchinson, G. L., and Spartalian, K.: Diffusion theory improves chamber-based measurements of trace gas emissions, Geophys. Res. Lett., 32, L24817, doi:10.1029/2005GL024744, 2005.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.581Z", + "last_change_date": "2022-03-14T08:05:45.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10810, + "fields": { + "EF_ID": 423539, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0108", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ju X.T., Lu X., Gao Z.L. et al. 2011. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions.Environmental Pollution. 159, 1007-1016. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0081", + "Upper_Bound": "0.0135", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Livingston, G.P., Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson, P.A., Harriss, R.C. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water, first ed. Blackwell Science Ltd, London, UK, pp. 14-51", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.655Z", + "last_change_date": "2022-03-14T08:05:45.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10811, + "fields": { + "EF_ID": 423540, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00014", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ju X.T., Lu X., Gao Z.L. et al. 2011. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions.Environmental Pollution. 159, 1007-1016. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "-0.0001", + "Upper_Bound": "0.00038", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Livingston, G.P., Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson, P.A., Harriss, R.C. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water, first ed. Blackwell Science Ltd, London, UK, pp. 14-51", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.748Z", + "last_change_date": "2022-03-14T08:05:45.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10812, + "fields": { + "EF_ID": 423541, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0001", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ju X.T., Lu X., Gao Z.L. et al. 2011. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions.Environmental Pollution. 159, 1007-1016. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "-0.0003", + "Upper_Bound": "0.0005", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Livingston, G.P., Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson, P.A., Harriss, R.C. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water, first ed. Blackwell Science Ltd, London, UK, pp. 14-51", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.838Z", + "last_change_date": "2022-03-14T08:05:45.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10813, + "fields": { + "EF_ID": 423542, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0026", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ju X.T., Lu X., Gao Z.L. et al. 2011. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions.Environmental Pollution. 159, 1007-1016. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0011", + "Upper_Bound": "0.0042", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Livingston, G.P., Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson, P.A., Harriss, R.C. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water, first ed. Blackwell Science Ltd, London, UK, pp. 14-51", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:45.991Z", + "last_change_date": "2022-03-14T08:05:45.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10814, + "fields": { + "EF_ID": 423543, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O emissions from N inputs to soils", + "Technology_Practices": "Local farming practices, 550 kg N ha-1 yr-1 for winter whear-summer maize double cropping system, irrigation rate 275 mm yr-1", + "Parameter_Conditions": "The surface 30 cm of the Fluvo-aquic soil has a bulk density of 1.37 g cm−3, a pH of 7.72 (soil:water ratio 1:2.5), an organic matter content of 12.6 g kg−1, total N of 0.7 g kg−1, Olsen-P of 4.8 mg kg−1 and available K of 72.7 mg kg−1.", + "Regional_Conditions": "Quzhou experimental station (36°87` N, 115°02` E) in Hebei province, North China Plain/sub-humid temperate monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.003", + "Unit": "kg N2O-N/kg N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ju X.T., Lu X., Gao Z.L. et al. 2011. Processes and factors controlling N2O production in an intensively managed low carbon calcareous soil under sub-humid monsoon conditions.Environmental Pollution. 159, 1007-1016. Zheng XH, Mei BL, Wang YH, Xie BH, Wang YS, Dong HB, et al. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant Soil 2008;311:211–34.", + "English_Abstract": "", + "Lower_Bound": "0.0008", + "Upper_Bound": "0.005", + "Data_Quality": "emissions of N2O were estimated in two ways using linear increase depending on the pattern of change in the concentration in the headspace", + "Data_Quality_Reference": "Livingston, G.P., Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson, P.A., Harriss, R.C. (Eds.), Biogenic Trace Gases: Measuring Emissions from Soil and Water, first ed. Blackwell Science Ltd, London, UK, pp. 14-51", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:05:46.088Z", + "last_change_date": "2022-03-14T08:05:46.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10815, + "fields": { + "EF_ID": 423849, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for mature beef cattle (breeding cows)", + "Technology_Practices": "Tier 2 approach from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "The country-specific emission factor for methane emission from mature beef cattle enteric fermentation was derived using intake and production data from local Brakmas cattle. Most data are country specific parameters with indication of sources, few unavailable data are from the 2006 IPCC Guidelines. Methane conversion factor (Ym) is assumed at 6.5% for cattle that are fed low quality crop by-products and/or grazing condition (Vol.4, Ch.10, Table 10.12 of the 2006 IPCC Guidelines).", + "Regional_Conditions": "Malaysia (MLA)", + "Control_Technologies": "", + "Other_Properties": "Quality assurance of data was performed through discussions and workshops held with the Department of Veterinary Services in 2016.", + "Value": "51.6", + "Unit": "kg/animal/yr", + "Equation": "EF was calculated using Equation 10.21 as described in 2006 IPCC Guidelines. Intermediate calculations were based on Equations 10.3, 10.4, 10.8, 10.11, 10.13, 10.14 and 10.16.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Azizi, A.A., Mardhati, M., Mohd Fairuz, M.S., Shaidatul Azdawiyah, A.T., Nurul Ain, A.B., Fauzi, J., Mohamad Hariz, A.R. and Reisinger, A. (2017). Local emission factors estimates for methane emission from cattle enteric fermentation using IPCC-tier 2 methodology. Mal. J. Anim. Sci. 20(2).", + "English_Abstract": "Understanding the magnitude of consequences of climate change caused by greenhouse gases (GHG) emissions largely relies on GHG inventory stocktaking and emission estimates that aggregate activity data and emission factors (EF). For that matter, a specific EF to calculate methane (CH₄) emission from mature beef cattle enteric fermentation has been devised using IPCC Tier-2 methodology for breeding cows and breeding bulls based on local production parameters, which in this case, from local beef breed of Brakmas cattle. EF generated for breeding cows and breeding bulls were 51.6 and 65.7 kg CH₄/animal/year, respectively. The values are higher than the default IPCC value of 47 kg CH₄/animal/year for similar region. Average value for the generated EF, which was 58.65 kg CH₄/animal/year, with an uncertainty range of ±30% was used in the calculation of emission using IPCC Tier-1 methodology. The use of this value resulted in 24.8% higher estimates than when using the default IPCC EF. This EF value is suggested for use in emission estimates for the national GHG inventory reporting.", + "Lower_Bound": "30%", + "Upper_Bound": "30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Azizi A.A. (copy of literature source was provided to TSU by Leandro Buendia)", + "Link": "http://mjas.my/mjas-v2/rf/pages/journal/v20i2/1-Azizi.pdf", + "creation_date": "2022-03-14T08:05:46.201Z", + "last_change_date": "2022-03-14T08:05:46.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10816, + "fields": { + "EF_ID": 423850, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for mature beef cattle (breeding bulls)", + "Technology_Practices": "Tier 2 approach from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "The country-specific emission factor for methane emission from mature beef cattle enteric fermentation was derived using intake and production data from local Brakmas cattle. Most data are country specific parameters with indication of sources, few unavailable data are from the 2006 IPCC Guidelines. Methane conversion factor (Ym) is assumed at 6.5% for cattle that are fed low quality crop by-products and/or grazing condition (Vol.4, Ch.10, Table 10.12 of the 2006 IPCC Guidelines).", + "Regional_Conditions": "Malaysia (MLA)", + "Control_Technologies": "", + "Other_Properties": "Quality assurance of data was performed through discussions and workshops held with the Department of Veterinary Services in 2016.", + "Value": "65.7", + "Unit": "kg/animal/yr", + "Equation": "EF was calculated using Equation 10.21 as described in 2006 IPCC Guidelines. Intermediate calculations were based on Equations 10.3, 10.4, 10.11, 10.14 and 10.16.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Azizi, A.A., Mardhati, M., Mohd Fairuz, M.S., Shaidatul Azdawiyah, A.T., Nurul Ain, A.B., Fauzi, J., Mohamad Hariz, A.R. and Reisinger, A. (2017). Local emission factors estimates for methane emission from cattle enteric fermentation using IPCC-tier 2 methodology. Mal. J. Anim. Sci. 20(2).", + "English_Abstract": "Understanding the magnitude of consequences of climate change caused by greenhouse gases (GHG) emissions largely relies on GHG inventory stocktaking and emission estimates that aggregate activity data and emission factors (EF). For that matter, a specific EF to calculate methane (CH₄) emission from mature beef cattle enteric fermentation has been devised using IPCC Tier-2 methodology for breeding cows and breeding bulls based on local production parameters, which in this case, from local beef breed of Brakmas cattle. EF generated for breeding cows and breeding bulls were 51.6 and 65.7 kg CH₄/animal/year, respectively. The values are higher than the default IPCC value of 47 kg CH₄/animal/year for similar region. Average value for the generated EF, which was 58.65 kg CH₄/animal/year, with an uncertainty range of ±30% was used in the calculation of emission using IPCC Tier-1 methodology. The use of this value resulted in 24.8% higher estimates than when using the default IPCC EF. This EF value is suggested for use in emission estimates for the national GHG inventory reporting.", + "Lower_Bound": "30%", + "Upper_Bound": "30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Azizi A.A. (copy of literature source was provided to TSU by Leandro Buendia)", + "Link": "http://mjas.my/mjas-v2/rf/pages/journal/v20i2/1-Azizi.pdf", + "creation_date": "2022-03-14T08:05:46.318Z", + "last_change_date": "2022-03-14T08:05:46.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10817, + "fields": { + "EF_ID": 423851, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle.", + "Technology_Practices": "The aim of this experiment was to provide the first data for Brazil relating to N₂O emissions from urine deposition by grazing cattle. Specifically, to measure N₂O emissions from urine applied to pasture in the summer in the Southeast region of Brazil.", + "Parameter_Conditions": "The experiment was carried out on a permanent grassland, from 31 January to 29 February of 2012 (summer) at Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Piracicaba, São Paulo state, Brazil (22º 42`07``S; 47º 37`17``W, 530 m above sea level) under tropical climatic conditions (Köppen climatic classification). The soil was a sandy loam classified as a Nitisol (FAO, WRB). Soil properties (upper 10 cm) at the start of the experiment were: total N content of 0.29%, total C content of 3.03%, organic matter content of 35 g dm⁻³, pH of 5.6 and bulk density of 1.13 Mg m⁻³. The pasture was not grazed by livestock before or during the experiment and had not received any N fertilizer for five months prior to the experiment.", + "Regional_Conditions": "Tropical climatic conditions (Köppen climatic classification)", + "Control_Technologies": "", + "Other_Properties": "Permanent grassland", + "Value": "0.2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Barneze, A. S., Mazzetto, A. M., Zani, C. F., Misselbrook, T., & Cerri, C. C. (2014). Nitrous oxide emissions from soil due to urine deposition by grazing cattle in Brazil. Atmospheric environment, 92, 394-397.", + "English_Abstract": "Urine deposition to the soil can result in nitrous oxide emissions through the microbial processes of nitrification and denitrification. The objective of this experiment was to estimate N₂O emissions from urine depositions to grassland during summer in Southeast Brazil. A field experiment was conducted in which N₂O emissions were measured from known volumes of urine applied to the soil, using the static chamber method. Measurements continued for one month after application. Application of urine to soil increased N₂O fluxes compared to those from the control site. There were two significant N₂O emission peaks for the urine treatment at around the 3rd and 13th days after application, the first in response to the urine application and the second most likely in response to a rainfall event. The N₂O emissions accounted for 0.2% of the applied urine N. These represent the first data relating to emissions from urine depositions by grazing cattle in Brazil. Further measurements across a range of soil and weather conditions in Brazil are required to develop national and regional specific emission factors for inventory development.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:46.420Z", + "last_change_date": "2022-03-14T08:05:46.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10818, + "fields": { + "EF_ID": 423852, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of the 2006 IPCC Guidelines) from rice cultivation as influenced by zero application of inorganic and organic amendments", + "Technology_Practices": "No fertilization", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.1", + "Unit": "kg CH4/ha", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Daily EF = 0.313 kg CH₄/ha/day (converted from kg CH₄/ha by dividing the value by 112 days cultivation period of rice).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:46.520Z", + "last_change_date": "2022-03-14T08:05:46.520Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10819, + "fields": { + "EF_ID": 423853, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of the 2006 IPCC Guidelines) from rice cultivation as influenced by inorganic and organic amendments", + "Technology_Practices": "Fertilization at the rate of 100% NPK with N, P, and K at 120, 26 and 50 kg/ha", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.9", + "Unit": "kg CH4/ha", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Daily EF = 0.321 kg CH₄/ha/day (converted from kg CH₄/ha by dividing the value by 112 days cultivation period of rice).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:46.629Z", + "last_change_date": "2022-03-14T08:05:46.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10820, + "fields": { + "EF_ID": 423854, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of the 2006 IPCC Guidelines) from rice cultivation as influenced by inorganic and organic amendments", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK with 25% of inorganic N substituted by N from farm yard manure (FYM)", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49.6", + "Unit": "kg CH4/ha", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Daily EF = 0.443 kg CH₄/ha/day (converted from kg CH₄/ha by dividing the value by 112 days cultivation period of rice).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:46.730Z", + "last_change_date": "2022-03-14T08:05:46.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10821, + "fields": { + "EF_ID": 423855, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of the 2006 IPCC Guidelines) from rice cultivation as influenced by inorganic and organic amendments", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK with 25% of inorganic N substituted by N from green manure (GM)", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.0", + "Unit": "kg CH4/ha", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Daily EF = 0.411 kg CH₄/ha/day (converted from kg CH₄/ha by dividing the value by 112 days cultivation period of rice).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:46.830Z", + "last_change_date": "2022-03-14T08:05:46.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10822, + "fields": { + "EF_ID": 423856, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of the 2006 IPCC Guidelines) from rice cultivation as influenced by inorganic and organic amendments", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK plus residue of the previous crop at 2 tonnes/ha", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.7", + "Unit": "kg CH4/ha", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Daily EF = 0.381 kg CH₄/ha/day (converted from kg CH₄/ha by dividing the value by 112 days cultivation period of rice).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:46.931Z", + "last_change_date": "2022-03-14T08:05:46.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10823, + "fields": { + "EF_ID": 423857, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of the 2006 IPCC Guidelines) from rice cultivation as influenced by inorganic and organic amendments", + "Technology_Practices": "Fertilization at the rate of 120 kg N/ha from organic source (50% farm yard manure +25% biofertilizer+25% residue of the previous crop)", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.1", + "Unit": "kg CH4/ha", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Daily EF = 0.510 kg CH₄/ha/day (converted from kg CH₄/ha by dividing the value by 112 days cultivation period of rice).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.032Z", + "last_change_date": "2022-03-14T08:05:47.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10824, + "fields": { + "EF_ID": 423858, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor for N additions from mineral fertilisers (EF₁fr) in rice system", + "Technology_Practices": "Fertilization at the rate of 100% NPK with N, P, and K at 120, 26 and 50 kg/ha", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "569", + "Unit": "g N₂O-N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2 on p.11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF1fr = 0.0021 kg N₂O-N/kg N (converted from g N₂O-N/ha to kg N₂O-N/kg N by subtracting N₂O emission from unfertilized treatment T1, and by considering that 120 kg N/ha was applied to all treatments except T1).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.132Z", + "last_change_date": "2022-03-14T08:05:47.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10825, + "fields": { + "EF_ID": 423859, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor for N additions from mineral fertilisers (EF₁fr) in rice system", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK with 25% of inorganic N substituted by N from farm yard manure (FYM)", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "503", + "Unit": "g N₂O-N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2 on p.11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF1fr = 0.0015 kg N₂O-N/kg N (converted from g N₂O-N/ha to kg N₂O-N/kg N by subtracting N₂O emission from unfertilized treatment T1, and by considering that 120 kg N/ha was applied to all treatments except T1).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.232Z", + "last_change_date": "2022-03-14T08:05:47.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10826, + "fields": { + "EF_ID": 423860, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor for N additions from mineral fertilisers (EF₁fr) in rice system", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK with 25% of inorganic N substituted by N from green manure (GM)", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "579", + "Unit": "g N₂O-N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2 on p.11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF1fr = 0.0022 kg N₂O-N/kg N (converted from g N₂O-N/ha to kg N₂O-N/kg N by subtracting N₂O emission from unfertilized treatment T1, and by considering that 120 kg N/ha was applied to all treatments except T1).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.333Z", + "last_change_date": "2022-03-14T08:05:47.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10827, + "fields": { + "EF_ID": 423861, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor for N additions from mineral fertilisers (EF₁fr) in rice system", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK plus residue of the previous crop at 2 tonnes/ha", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "549", + "Unit": "g N₂O-N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2 on p.11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF1fr = 0.0019 kg N₂O-N/kg N (converted from g N₂O-N/ha to kg N₂O-N/kg N by subtracting N₂O emission from unfertilized treatment T1, and by considering that 120 kg N/ha was applied to all treatments except T1).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.459Z", + "last_change_date": "2022-03-14T08:05:47.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10828, + "fields": { + "EF_ID": 423862, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor for N additions from mineral fertilisers (EF₁fr) in rice system", + "Technology_Practices": "Fertilization at the rate of 120 kg N/ha from organic source (50% farm yard manure +25% biofertilizer+25% residue of the previous crop)", + "Parameter_Conditions": "Derived from a rice–wheat system in India with a Typic Ustochrept soil type. The climate of the region is subtropical, semi-arid. The area receives an annual rainfall of 750 mm, about 80% of which occurs from June to September. The mean maximum and minimum temperatures from July to October (rice season) are 35 and 18 ºC; while from November to March (wheat season) 22.6 and 6.7 ºC, respectively. The alluvial soil is loam in texture and had an organic carbon, Olsen P, and KMnO4, extractable N contents of 5.9, 0.014, 0.11 g kg⁻¹, respectively.", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "537", + "Unit": "g N₂O-N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2 on p.11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Bhatia A, Pathak H, Jain N, Singh,P.K., and Singh, A.K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment 39 (2005) 6976–6984", + "English_Abstract": "Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice–wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH₄ emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH₄ emissions. The carbon equivalent emission from rice–wheat systems varied between 3816 and 4886 kg C equivalent ha⁻¹ depending upon fertilizer and organic amendment. GWP of rice–wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice–wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF1fr = 0.0018 kg N₂O-N/kg N (converted from g N₂O-N/ha to kg N₂O-N/kg N by subtracting N₂O emission from unfertilized treatment T1, and by considering that 120 kg N/ha was applied to all treatments except T1).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.568Z", + "last_change_date": "2022-03-14T08:05:47.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10829, + "fields": { + "EF_ID": 423863, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 3–7 years old (ca 600 kg); Diet: Grass silage + concentrates (6.5 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Crichton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.06", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.677Z", + "last_change_date": "2022-03-14T08:05:47.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10830, + "fields": { + "EF_ID": 423864, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 3–7 years old (ca 600 kg); Diet: Grass silage + concentrates (6.5 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Crichton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.09", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.18", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.794Z", + "last_change_date": "2022-03-14T08:05:47.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10831, + "fields": { + "EF_ID": 423865, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 3–7 years old (ca 600 kg); Diet: Grass silage + concentrates (6.5 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Crichton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.15", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.896Z", + "last_change_date": "2022-03-14T08:05:47.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10832, + "fields": { + "EF_ID": 423866, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 3–7 years old (ca 600 kg); Diet: Grass silage + concentrates (6.5 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Crichton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.03", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:47.997Z", + "last_change_date": "2022-03-14T08:05:47.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10833, + "fields": { + "EF_ID": 423867, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 3–7 years old (ca 600 kg); Diet: Grass silage + concentrates (6.5 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Crichton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.03", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.105Z", + "last_change_date": "2022-03-14T08:05:48.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10834, + "fields": { + "EF_ID": 423868, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 3–7 years old (ca 600 kg); Diet: Grass silage + concentrates (6.5 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Crichton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.03", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.206Z", + "last_change_date": "2022-03-14T08:05:48.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10835, + "fields": { + "EF_ID": 423869, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Drayton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.03", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.306Z", + "last_change_date": "2022-03-14T08:05:48.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10836, + "fields": { + "EF_ID": 423870, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Drayton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.00", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.407Z", + "last_change_date": "2022-03-14T08:05:48.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10837, + "fields": { + "EF_ID": 423871, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Drayton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.64", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.37", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.508Z", + "last_change_date": "2022-03-14T08:05:48.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10838, + "fields": { + "EF_ID": 423872, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Drayton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.02", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.608Z", + "last_change_date": "2022-03-14T08:05:48.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10839, + "fields": { + "EF_ID": 423873, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Drayton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.01", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.709Z", + "last_change_date": "2022-03-14T08:05:48.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10840, + "fields": { + "EF_ID": 423874, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Drayton, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.04", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.810Z", + "last_change_date": "2022-03-14T08:05:48.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10841, + "fields": { + "EF_ID": 423875, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 3–5 years old (ca. 600 kg); Diet: Grass silage + concentrates (4 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Hillsborough, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.02", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.26", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:48.910Z", + "last_change_date": "2022-03-14T08:05:48.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10842, + "fields": { + "EF_ID": 423876, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 3–5 years old (ca. 600 kg); Diet: Grass silage + concentrates (4 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Hillsborough, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.05", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.036Z", + "last_change_date": "2022-03-14T08:05:49.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10843, + "fields": { + "EF_ID": 423877, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 3–5 years old (ca. 600 kg); Diet: Grass silage + concentrates (4 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Hillsborough, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.03", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.178Z", + "last_change_date": "2022-03-14T08:05:49.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10844, + "fields": { + "EF_ID": 423878, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 3–5 years old (ca. 600 kg); Diet: Grass silage + concentrates (4 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Hillsborough, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.03", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.287Z", + "last_change_date": "2022-03-14T08:05:49.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10845, + "fields": { + "EF_ID": 423879, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 3–5 years old (ca. 600 kg); Diet: Grass silage + concentrates (4 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Hillsborough, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.04", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.397Z", + "last_change_date": "2022-03-14T08:05:49.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10846, + "fields": { + "EF_ID": 423880, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 3–5 years old (ca. 600 kg); Diet: Grass silage + concentrates (4 kg DM head⁻¹ day⁻¹)", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Hillsborough, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.01", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.515Z", + "last_change_date": "2022-03-14T08:05:49.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10847, + "fields": { + "EF_ID": 423881, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "North Wyke, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.96", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.14", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.615Z", + "last_change_date": "2022-03-14T08:05:49.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10848, + "fields": { + "EF_ID": 423882, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "North Wyke, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.11", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.724Z", + "last_change_date": "2022-03-14T08:05:49.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10849, + "fields": { + "EF_ID": 423883, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "North Wyke, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.04", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.833Z", + "last_change_date": "2022-03-14T08:05:49.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10850, + "fields": { + "EF_ID": 423884, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "North Wyke, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.06", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:49.958Z", + "last_change_date": "2022-03-14T08:05:49.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10851, + "fields": { + "EF_ID": 423885, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "North Wyke, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.08", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.067Z", + "last_change_date": "2022-03-14T08:05:50.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10852, + "fields": { + "EF_ID": 423886, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "North Wyke, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.01", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.176Z", + "last_change_date": "2022-03-14T08:05:50.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10853, + "fields": { + "EF_ID": 423887, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Pwllpeiran, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.07", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.285Z", + "last_change_date": "2022-03-14T08:05:50.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10854, + "fields": { + "EF_ID": 423888, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Pwllpeiran, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.03", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.394Z", + "last_change_date": "2022-03-14T08:05:50.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10855, + "fields": { + "EF_ID": 423889, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of urine for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Pwllpeiran, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.09", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.495Z", + "last_change_date": "2022-03-14T08:05:50.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10856, + "fields": { + "EF_ID": 423890, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (early grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Pwllpeiran, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.05", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.595Z", + "last_change_date": "2022-03-14T08:05:50.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10857, + "fields": { + "EF_ID": 423891, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (mid grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Pwllpeiran, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.04", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.696Z", + "last_change_date": "2022-03-14T08:05:50.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10858, + "fields": { + "EF_ID": 423892, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing cattle (late grazing season period)", + "Technology_Practices": "Sources of dung for the experiments: Lactating dairy cows 6 years old (ca. 600 kg); Diet: Concentrate blend, hay, straw, grass silage, maize silage.", + "Parameter_Conditions": "Experiments were conducted on established grasslands where the dominant pasture plant was Lolium perenne, which is typical of UK livestock systems. Applications were made in the spring, summer and autumn (to separate plots), to simulate excretal deposition in early-, mid- and late- grazing season. Livestock were excluded from grazing the experimental areas at least 6 months prior to the start of any experiment. This minimised any direct effect of previous deposition of excreta on N₂O emissions.", + "Regional_Conditions": "Pwllpeiran, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.R. Chadwick, L.M. Cardenas, M.S.Dhanoa, N. Donovan, T.Misselbrook, J.R.Williams, R.E. Thorman, K.L. McGeough, C.J.Watson, M. Bell, S.G. Anthony, R.M. Rees (2018). The contribution of cattle urine and dung to nitrous oxide emissions: Quantification of country specific emission factors and implications for national inventories. Science of the Total Environment 635, 607–617. https://doi.org/10.1016/j.scitotenv.2018.04.152", + "English_Abstract": "Urine patches and dung pats from grazing livestock create hotspots for production and emission of the greenhouse gas, nitrous oxide (N₂O), and represent a large proportion of total N₂O emissions in many national agricultural greenhouse gas inventories. As such, there is much interest in developing country specific N₂O emission factors (EFs) for excretal nitrogen (EF₃, pasture, range and paddock) deposited during gazing. The aims of this study were to generate separate N₂O emissions data for cattle derived urine and dung, to provide an evidence base for the generation of a country specific EF for the UK from this nitrogen source. The experiments were also designed to determine the effects of site and timing of application on emissions, and the efficacy of the nitrification inhibitor, dicyandiamide (DCD) on N₂O losses. This coordinated set of 15 plot-scale, year-long field experiments using static chambers was conducted at five grassland sites, typical of the soil and climatic zones of grazed grassland in the UK. We show that the average urine and dung N₂O EFs were 0.69% and 0.19%, respectively, resulting in a combined excretal N₂O EF (EF₃), of 0.49%, which is <25% of the IPCC default EF₃ for excretal returns from grazing cattle. Regression analysis suggests that urine N₂O EFs were controlled more by composition than was the case for dung, whilst dung N₂O EFs were more related to soil and environmental factors. The urine N₂O EF was significantly greater from the site in SW England, and significantly greater from the early grazing season urine application than later applications. Dycandiamide reduced the N₂O EF from urine patches by an average of 46%. The significantly lower excretal EF₃ than the IPCC default has implications for the UK`s national inventory and for subsequent carbon footprinting of UK ruminant livestock products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error of the mean ±0.09", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.804Z", + "last_change_date": "2022-03-14T08:05:50.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10859, + "fields": { + "EF_ID": 423893, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing dairy cattle in lowland (dominant-land slope < 15°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.16", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.20 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:50.923Z", + "last_change_date": "2022-03-14T08:05:50.923Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10860, + "fields": { + "EF_ID": 423894, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing dairy cattle in hill country, low slope (“local” slope classes < 12°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.20 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.032Z", + "last_change_date": "2022-03-14T08:05:51.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10861, + "fields": { + "EF_ID": 423895, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing dairy cattle in lowland (dominant-land slope < 15°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.05 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.149Z", + "last_change_date": "2022-03-14T08:05:51.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10862, + "fields": { + "EF_ID": 423896, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing dairy cattle in hill country, low slope (“local” slope classes < 12°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.07 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.259Z", + "last_change_date": "2022-03-14T08:05:51.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10863, + "fields": { + "EF_ID": 423897, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing beef cattle in hill country, low slope (“local” slope classes < 12°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.37 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.367Z", + "last_change_date": "2022-03-14T08:05:51.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10864, + "fields": { + "EF_ID": 423898, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing beef cattle in hill country, medium slope (“local” slope classes 12–25°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.12 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.476Z", + "last_change_date": "2022-03-14T08:05:51.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10865, + "fields": { + "EF_ID": 423899, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing beef cattle in hill country, low slope (“local” slope classes < 12°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.06 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.593Z", + "last_change_date": "2022-03-14T08:05:51.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10866, + "fields": { + "EF_ID": 423900, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing beef cattle in hill country, medium slope (“local” slope classes 12–25°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.02 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.702Z", + "last_change_date": "2022-03-14T08:05:51.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10867, + "fields": { + "EF_ID": 423901, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing sheep in lowland (dominant-land slope < 15°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.19 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.819Z", + "last_change_date": "2022-03-14T08:05:51.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10868, + "fields": { + "EF_ID": 423902, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing sheep in hill country, low slope (“local” slope classes < 12°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.10 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:51.921Z", + "last_change_date": "2022-03-14T08:05:51.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10869, + "fields": { + "EF_ID": 423903, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine N deposited by grazing sheep in hill country, medium slope (“local” slope classes 12–25°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.05 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.021Z", + "last_change_date": "2022-03-14T08:05:52.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10870, + "fields": { + "EF_ID": 423904, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing sheep in lowland (dominant-land slope < 15°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.02 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.130Z", + "last_change_date": "2022-03-14T08:05:52.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10871, + "fields": { + "EF_ID": 423905, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung N deposited by grazing sheep in hill country, low slope (“local” slope classes < 12°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.03 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.247Z", + "last_change_date": "2022-03-14T08:05:52.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10872, + "fields": { + "EF_ID": 423906, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from N applied with urea fertilizer in lowland (dominant-land slope < 15°)", + "Technology_Practices": "Kelliher et al. (2014) performed a meta-analysis of 185 field trial data obtained between 11 May 2000 and 31 January 2013 to estimate mean emission factor (EF) values for direct nitrous oxide emissions from nitrogen (excreta and urea) applied to pastoral soils in New Zealand delineated by livestock type and slope.", + "Parameter_Conditions": "Based on soil drainage class, 56% and 44% of the trial sites were freely- and poorly-drained, respectively, slightly under-representing the estimated 75% of NZ’s grassland area with freely-drained soils. By season, 29% of trials began in autumn, 23% in winter, 34% in spring and 14% in summer. If dung EF is mostly influenced by the weather, which can also affect soil conditions, our results suggest the weather and soils were broadly ‘consistent’ during most of the trials. Only 27 of 185 trials began in summer, while during autumn, winter and spring, the sites were usually cool, of order 5-15 °C, and generally subjected to rainfall on a regular basis.", + "Regional_Conditions": "New Zealand (NZL)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "Kg N2O-N/kg -N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kelliher, F.M., Cox, N., van der Weerden, T.J., de Klein, C.A.M., Luo, J., Cameron, K.C., Di, H.J., Giltrap, D., Rys, G., 2014. Statistical analysis of nitrous oxide emission factors from pastoral agriculture field trials conducted in New Zealand. Environ. Pollut. 186, 63–66. https://doi.org/10.1016/j.envpol.2013.11.025", + "English_Abstract": "Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N₂O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 0.13 (SE)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.364Z", + "last_change_date": "2022-03-14T08:05:52.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10873, + "fields": { + "EF_ID": 423907, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Moorepark", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.03", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.04 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.491Z", + "last_change_date": "2022-03-14T08:05:52.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10874, + "fields": { + "EF_ID": 423908, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Moorepark", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.13", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.04 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.608Z", + "last_change_date": "2022-03-14T08:05:52.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10875, + "fields": { + "EF_ID": 423909, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.06", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.06 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.725Z", + "last_change_date": "2022-03-14T08:05:52.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10876, + "fields": { + "EF_ID": 423910, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle during summer.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.16", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.06 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.818Z", + "last_change_date": "2022-03-14T08:05:52.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10877, + "fields": { + "EF_ID": 423911, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.24", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.06 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:52.910Z", + "last_change_date": "2022-03-14T08:05:52.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10878, + "fields": { + "EF_ID": 423912, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.15", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.18 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.010Z", + "last_change_date": "2022-03-14T08:05:53.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10879, + "fields": { + "EF_ID": 423913, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle during summer.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.54", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.22 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.120Z", + "last_change_date": "2022-03-14T08:05:53.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10880, + "fields": { + "EF_ID": 423914, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "1.48", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.21 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.220Z", + "last_change_date": "2022-03-14T08:05:53.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10881, + "fields": { + "EF_ID": 423915, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Moorepark", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.32", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.09 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.320Z", + "last_change_date": "2022-03-14T08:05:53.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10882, + "fields": { + "EF_ID": 423916, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during summer.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Moorepark", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.31", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.14 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.429Z", + "last_change_date": "2022-03-14T08:05:53.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10883, + "fields": { + "EF_ID": 423917, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Moorepark", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.3", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.09 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.538Z", + "last_change_date": "2022-03-14T08:05:53.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10884, + "fields": { + "EF_ID": 423918, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.65", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.26 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.647Z", + "last_change_date": "2022-03-14T08:05:53.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10885, + "fields": { + "EF_ID": 423919, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during summer.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.34", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.06 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.765Z", + "last_change_date": "2022-03-14T08:05:53.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10886, + "fields": { + "EF_ID": 423920, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "1.16", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.1 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.865Z", + "last_change_date": "2022-03-14T08:05:53.865Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10887, + "fields": { + "EF_ID": 423921, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "1.12", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.26 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:53.966Z", + "last_change_date": "2022-03-14T08:05:53.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10888, + "fields": { + "EF_ID": 423922, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during summer.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "1.63", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.39 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.126Z", + "last_change_date": "2022-03-14T08:05:54.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10889, + "fields": { + "EF_ID": 423923, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "4.81", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.97 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.244Z", + "last_change_date": "2022-03-14T08:05:54.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10890, + "fields": { + "EF_ID": 423924, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Moorepark", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.34", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.1 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.377Z", + "last_change_date": "2022-03-14T08:05:54.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10891, + "fields": { + "EF_ID": 423925, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during summer.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Moorepark", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.34", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.13 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.486Z", + "last_change_date": "2022-03-14T08:05:54.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10892, + "fields": { + "EF_ID": 423926, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Moorepark", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.13", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.02 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.587Z", + "last_change_date": "2022-03-14T08:05:54.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10893, + "fields": { + "EF_ID": 423927, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.84", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.35 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.687Z", + "last_change_date": "2022-03-14T08:05:54.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10894, + "fields": { + "EF_ID": 423928, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during summer.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.43", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.11 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.788Z", + "last_change_date": "2022-03-14T08:05:54.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10895, + "fields": { + "EF_ID": 423929, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Johnstown Castle", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.59", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.05 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.889Z", + "last_change_date": "2022-03-14T08:05:54.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10896, + "fields": { + "EF_ID": 423930, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during spring.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "1.79", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.31 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:54.989Z", + "last_change_date": "2022-03-14T08:05:54.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10897, + "fields": { + "EF_ID": 423931, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during summer.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.82", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.33 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:55.107Z", + "last_change_date": "2022-03-14T08:05:55.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10898, + "fields": { + "EF_ID": 423932, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine during autumn.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, Hillsborough", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "3.82", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.98 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:55.216Z", + "last_change_date": "2022-03-14T08:05:55.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10899, + "fields": { + "EF_ID": 423933, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung annual.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, mean of 3 sites", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "0.31", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.16 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:55.332Z", + "last_change_date": "2022-03-14T08:05:55.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10900, + "fields": { + "EF_ID": 423934, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine annual.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, mean of 3 sites", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "1.18", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.48 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:55.442Z", + "last_change_date": "2022-03-14T08:05:55.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10901, + "fields": { + "EF_ID": 423935, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from synthetic urine annual.", + "Technology_Practices": "The aim of this work was to reduce the uncertainty around the quantity of N₂O emitted from agricultural animal excreta deposited on to pasture. Specific objectives of the study were to: 1) investigate the timing of cattle dung and cattle urine deposition and soil type on N₂O emissions from temperate pasture, range, and paddock; and 2) to elucidate the drivers of N₂O emissions from dung and urine returns to temperate pasture, range, and paddock.", + "Parameter_Conditions": "The experiment was carried out across three seasons, at three experimental field sites on contrasting soils across Ireland. The soils were a well drained sandy loam located at Teagasc Moorepark, in Fermoy (52°9′N, 8°14′W), a moderately drained sandy loam located at Teagasc Johnstown Castle in Wexford (52°17′N, 6°30′W), and an imperfectly drained clay loam located at the Agri-Food and Biosciences Institute (AFBI) in Hillsborough (54°45′N, 6°08′W). The climate on all sites is temperate. Moorepark (MP) has an annual rainfall of 1202 mm and a mean annual temperature of 11.3 °C (1981–2010, 30 yr average), Johnstown Castle (JC) has an annual rainfall of 1037 mm and a mean annual temperature of 10.4 °C (1981–2010, 30 yr average), and Hillsborough (HB) has an annual rainfall of 944 mm and a mean annual temperature of 9.9 °C (1981–2010, 30 yr average). Further soil and site details are listed in Table 1. Experimental period rainfall, ambient air and soil temperature information were recorded at meteorological stations ca. 500 m from the experimental sites.", + "Regional_Conditions": "Temperate climate, mean of 3 sites", + "Control_Technologies": "", + "Other_Properties": "Perennial ryegrass", + "Value": "1.01", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "D.J. Krol, R. Carolan, E. Minet, K.L. McGeough, C.J. Watson, P.J. Forrestal, G.J. Lanigan, K.G. Richards, Improving and disaggregating N₂O emission factors for ruminant excreta on temperate pasture soils, Science of The Total Environment, 2016, 568, 327-338. DOI: 10.1016/j.scitotenv.2016.06.016", + "English_Abstract": "Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N₂O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N₂O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N₂O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatmentswere applied in spring, summer and autumn to three temperate grassland siteswith varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N₂O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (−0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N₂O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.39 (SEM)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:55.543Z", + "last_change_date": "2022-03-14T08:05:55.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10902, + "fields": { + "EF_ID": 423936, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from urine deposited by grazing cattle.", + "Technology_Practices": "Urine was collected fresh from crossbred dairy (Nelore/Friesian) cows during milking at dawn on the day the experiment was set up. The animals were kept in the pasture but supplemented with soybean and corn meal.", + "Parameter_Conditions": "The study was carried out on a grass pasture site of the Embrapa Rice and Bean Centre experimental station (16°28′ S–49°17′W, 823 m a.s.l.) located in the Municipality of Santo Antonio de Goiás, State of Goiás. Approximately two decades before this study a Brachiariabrizantha cv Marandu pasture was established on a clay loamsoil (Ferralsol—FAO classification, Oxisol—US Soil Taxonomy) with a texture of 43% clay and 44% sand in the top 20 cm", + "Regional_Conditions": "The climate is Aw, tropical savannah, megathermic, according to the Köppen’s classification (Köppen, 1936). A characteristic of this region is that rainfall is practically absent from June to September. The original vegetation of the region was a forest type with a closed canopy (Cerradão) one of the sub-biomes of the Brazilian Cerrados (Bustamante et al., 2012b).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ana Carolina R. Lessaa, Beata E. Madari, Debora S. Paredes, Robert M. Boddey, Segundo Urquiaga, Claudia P. Jantalia, Bruno J.R. Alves (2014). Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems and Environment 190, 104–111. http://dx.doi.org/10.1016/j.agee.2014.01.010", + "English_Abstract": "Cattle ranching is one of the most important agricultural activities in Brazil. The impact of livestock on soil N₂O emissions in Brazil has only been assessed using a Tier 1 approach of the IPCC guidelines, as there are no data available from field studies. Apart from the need for accumulating data for the development of proper direct N₂O emission factors, we tested for possible differences between urine and dung as N₂O sources and the difference in emissions between the dry and wet season. An area of Brachiaria brizantha at the Embrapa Rice and Bean Centre in the Cerrado (central savannah) region (Goiás state) was subdivided into plots where fresh cattle urine and dung were monitored for three consecutive periods (two in the rainy and one in the dry season) for N losses, principally N₂O emissions and NH₃ volatilization. 15 N-labelled urine N was used in the first monitoring period for an N balance study which indicated that denitrification and NH₃ volatilization were the most important processes for N loss. Percentages of N lost as N₂O and as volatilized NH₃ were greater for urine than for dung. In addition, N losses as N₂O in the rainy season were much greater than during the dry season. Representing the Cerrado region and the extensive pasture systems common in this region, direct emission 0.007 g N₂O–N g⁻¹ (0.7%) excreta N, well below the EF₃PRP of 0.020 g N g⁻¹ (2%) used by IPCC for cattle N in excreta. The fraction of excreta N lost as NH₃ of ∼15% was in line with the IPCC guidelines. Disaggregation of emission factors for excreta type is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Disaggregation of emission factors for excreta type is recommended.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:55.644Z", + "last_change_date": "2022-03-14T08:05:55.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10903, + "fields": { + "EF_ID": 423937, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF from dung deposited by grazing cattle.", + "Technology_Practices": "Dung was collected fresh from crossbred dairy (Nelore/Friesian) cows during milking at dawn on the day theexperiment was set up. The animals were kept in the pasture but supplemented with soybean and corn meal", + "Parameter_Conditions": "The study was carried out on a grass pasture site of the Embrapa Rice and Bean Centre experimental station (16°28′ S–49°17′W, 823 m a.s.l.) located in the Municipality of Santo Antonio de Goiás, State of Goiás. Approximately two decades before this study a Brachiariabrizantha cv Marandu pasture was established on a clay loamsoil (Ferralsol—FAO classification, Oxisol—US Soil Taxonomy) with a texture of 43% clay and 44% sand in the top 20 cm", + "Regional_Conditions": "The climate is Aw, tropical savannah, megathermic, according to the Köppen’s classification (Köppen, 1936). A characteristic of this region is that rainfall is practically absent from June to September. The original vegetation of the region was a forest type with a closed canopy (Cerradão) one of the sub-biomes of the Brazilian Cerrados (Bustamante et al., 2012b).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.001", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ana Carolina R. Lessaa, Beata E. Madari, Debora S. Paredes, Robert M. Boddey, Segundo Urquiaga, Claudia P. Jantalia, Bruno J.R. Alves (2014). Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems and Environment 190, 104–111. http://dx.doi.org/10.1016/j.agee.2014.01.010", + "English_Abstract": "Cattle ranching is one of the most important agricultural activities in Brazil. The impact of livestock on soil N₂O emissions in Brazil has only been assessed using a Tier 1 approach of the IPCC guidelines, as there are no data available from field studies. Apart from the need for accumulating data for the development of proper direct N₂O emission factors, we tested for possible differences between urine and dung as N₂O sources and the difference in emissions between the dry and wet season. An area of Brachiaria brizantha at the Embrapa Rice and Bean Centre in the Cerrado (central savannah) region (Goiás state) was subdivided into plots where fresh cattle urine and dung were monitored for three consecutive periods (two in the rainy and one in the dry season) for N losses, principally N₂O emissions and NH₃ volatilization. 15 N-labelled urine N was used in the first monitoring period for an N balance study which indicated that denitrification and NH₃ volatilization were the most important processes for N loss. Percentages of N lost as N₂O and as volatilized NH₃ were greater for urine than for dung. In addition, N losses as N₂O in the rainy season were much greater than during the dry season. Representing the Cerrado region and the extensive pasture systems common in this region, direct emission 0.007 g N₂O–N g⁻¹ (0.7%) excreta N, well below the EF₃PRP of 0.020 g N g⁻¹ (2%) used by IPCC for cattle N in excreta. The fraction of excreta N lost as NH₃ of ∼15% was in line with the IPCC guidelines. Disaggregation of emission factors for excreta type is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Disaggregation of emission factors for excreta type is recommended.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:55.844Z", + "last_change_date": "2022-03-14T08:05:55.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10904, + "fields": { + "EF_ID": 423938, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Weighted direct N₂O EF from urine and dung deposited by grazing cattle.", + "Technology_Practices": "Urine and dung were collected fresh from crossbred dairy (Nelore/Friesian) cows during milking at dawn on the day the experiment was set up. The animals were kept in the pasture but supplemented with soybean and corn meal", + "Parameter_Conditions": "The study was carried out on a grass pasture site of the Embrapa Rice and Bean Centre experimental station (16°28′ S–49°17′W, 823 m a.s.l.) located in the Municipality of Santo Antonio de Goiás, State of Goiás. Approximately two decades before this study a Brachiariabrizantha cv Marandu pasture was established on a clay loamsoil (Ferralsol—FAO classification, Oxisol—US Soil Taxonomy) with a texture of 43% clay and 44% sand in the top 20 cm", + "Regional_Conditions": "The climate is Aw, tropical savannah, megathermic, according to the Köppen’s classification (Köppen, 1936). A characteristic of this region is that rainfall is practically absent from June to September. The original vegetation of the region was a forest type with a closed canopy (Cerradão) one of the sub-biomes of the Brazilian Cerrados (Bustamante et al., 2012b).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "Kg N2O-N/kg N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ana Carolina R. Lessaa, Beata E. Madari, Debora S. Paredes, Robert M. Boddey, Segundo Urquiaga, Claudia P. Jantalia, Bruno J.R. Alves (2014). Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems and Environment 190, 104–111. http://dx.doi.org/10.1016/j.agee.2014.01.010", + "English_Abstract": "Cattle ranching is one of the most important agricultural activities in Brazil. The impact of livestock on soil N₂O emissions in Brazil has only been assessed using a Tier 1 approach of the IPCC guidelines, as there are no data available from field studies. Apart from the need for accumulating data for the development of proper direct N₂O emission factors, we tested for possible differences between urine and dung as N₂O sources and the difference in emissions between the dry and wet season. An area of Brachiaria brizantha at the Embrapa Rice and Bean Centre in the Cerrado (central savannah) region (Goiás state) was subdivided into plots where fresh cattle urine and dung were monitored for three consecutive periods (two in the rainy and one in the dry season) for N losses, principally N₂O emissions and NH₃ volatilization. 15 N-labelled urine N was used in the first monitoring period for an N balance study which indicated that denitrification and NH₃ volatilization were the most important processes for N loss. Percentages of N lost as N₂O and as volatilized NH₃ were greater for urine than for dung. In addition, N losses as N₂O in the rainy season were much greater than during the dry season. Representing the Cerrado region and the extensive pasture systems common in this region, direct emission 0.007 g N₂O–N g⁻¹ (0.7%) excreta N, well below the EF₃PRP of 0.020 g N g⁻¹ (2%) used by IPCC for cattle N in excreta. The fraction of excreta N lost as NH₃ of ∼15% was in line with the IPCC guidelines. Disaggregation of emission factors for excreta type is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Disaggregation of emission factors for excreta type is recommended.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:55.953Z", + "last_change_date": "2022-03-14T08:05:55.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10905, + "fields": { + "EF_ID": 423939, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Weighted NH₃ volatilization from urine and dung N deposited by grazing cattle.", + "Technology_Practices": "Urine and dung were collected fresh from crossbred dairy (Nelore/Friesian) cows during milking at dawn on the day the experiment was set up. The animals were kept in the pasture but supplemented with soybean and corn meal", + "Parameter_Conditions": "The study was carried out on a grass pasture site of the Embrapa Rice and Bean Centre experimental station (16°28′ S–49°17′W, 823 m a.s.l.) located in the Municipality of Santo Antonio de Goiás, State of Goiás. Approximately two decades before this study a Brachiariabrizantha cv Marandu pasture was established on a clay loamsoil (Ferralsol—FAO classification, Oxisol—US Soil Taxonomy) with a texture of 43% clay and 44% sand in the top 20 cm", + "Regional_Conditions": "The climate is Aw, tropical savannah, megathermic, according to the Köppen’s classification (Köppen, 1936). A characteristic of this region is that rainfall is practically absent from June to September. The original vegetation of the region was a forest type with a closed canopy (Cerradão) one of the sub-biomes of the Brazilian Cerrados (Bustamante et al., 2012b).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.8", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ana Carolina R. Lessaa, Beata E. Madari, Debora S. Paredes, Robert M. Boddey, Segundo Urquiaga, Claudia P. Jantalia, Bruno J.R. Alves (2014). Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems and Environment 190, 104–111. http://dx.doi.org/10.1016/j.agee.2014.01.010", + "English_Abstract": "Cattle ranching is one of the most important agricultural activities in Brazil. The impact of livestock on soil N₂O emissions in Brazil has only been assessed using a Tier 1 approach of the IPCC guidelines, as there are no data available from field studies. Apart from the need for accumulating data for the development of proper direct N₂O emission factors, we tested for possible differences between urine and dung as N₂O sources and the difference in emissions between the dry and wet season. An area of Brachiaria brizantha at the Embrapa Rice and Bean Centre in the Cerrado (central savannah) region (Goiás state) was subdivided into plots where fresh cattle urine and dung were monitored for three consecutive periods (two in the rainy and one in the dry season) for N losses, principally N₂O emissions and NH₃ volatilization. 15 N-labelled urine N was used in the first monitoring period for an N balance study which indicated that denitrification and NH₃ volatilization were the most important processes for N loss. Percentages of N lost as N₂O and as volatilized NH₃ were greater for urine than for dung. In addition, N losses as N₂O in the rainy season were much greater than during the dry season. Representing the Cerrado region and the extensive pasture systems common in this region, direct emission 0.007 g N₂O–N g⁻¹ (0.7%) excreta N, well below the EF₃PRP of 0.020 g N g⁻¹ (2%) used by IPCC for cattle N in excreta. The fraction of excreta N lost as NH₃ of ∼15% was in line with the IPCC guidelines. Disaggregation of emission factors for excreta type is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Fraction of NH₃ volatilized.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.054Z", + "last_change_date": "2022-03-14T08:05:56.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10906, + "fields": { + "EF_ID": 423940, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "NH₃ volatilization from dung N deposited by grazing cattle in the rainy season", + "Technology_Practices": "Dung was collected fresh from crossbred dairy (Nelore/Friesian) cows during milking at dawn on the day the experiment was set up. The animals were kept in the pasture but supplemented with soybean and corn meal", + "Parameter_Conditions": "The study was carried out on a grass pasture site of the Embrapa Rice and Bean Centre experimental station (16°28′ S–49°17′W, 823 m a.s.l.) located in the Municipality of Santo Antonio de Goiás, State of Goiás. Approximately two decades before this study a Brachiariabrizantha cv Marandu pasture was established on a clay loamsoil (Ferralsol—FAO classification, Oxisol—US Soil Taxonomy) with a texture of 43% clay and 44% sand in the top 20 cm", + "Regional_Conditions": "The climate is Aw, tropical savannah, megathermic, according to the Köppen’s classification (Köppen, 1936). A characteristic of this region is that rainfall is practically absent from June to September. The original vegetation of the region was a forest type with a closed canopy (Cerradão) one of the sub-biomes of the Brazilian Cerrados (Bustamante et al., 2012b).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ana Carolina R. Lessaa, Beata E. Madari, Debora S. Paredes, Robert M. Boddey, Segundo Urquiaga, Claudia P. Jantalia, Bruno J.R. Alves (2014). Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems and Environment 190, 104–111. http://dx.doi.org/10.1016/j.agee.2014.01.010", + "English_Abstract": "Cattle ranching is one of the most important agricultural activities in Brazil. The impact of livestock on soil N₂O emissions in Brazil has only been assessed using a Tier 1 approach of the IPCC guidelines, as there are no data available from field studies. Apart from the need for accumulating data for the development of proper direct N₂O emission factors, we tested for possible differences between urine and dung as N₂O sources and the difference in emissions between the dry and wet season. An area of Brachiaria brizantha at the Embrapa Rice and Bean Centre in the Cerrado (central savannah) region (Goiás state) was subdivided into plots where fresh cattle urine and dung were monitored for three consecutive periods (two in the rainy and one in the dry season) for N losses, principally N₂O emissions and NH₃ volatilization. 15 N-labelled urine N was used in the first monitoring period for an N balance study which indicated that denitrification and NH₃ volatilization were the most important processes for N loss. Percentages of N lost as N₂O and as volatilized NH₃ were greater for urine than for dung. In addition, N losses as N₂O in the rainy season were much greater than during the dry season. Representing the Cerrado region and the extensive pasture systems common in this region, direct emission 0.007 g N₂O–N g⁻¹ (0.7%) excreta N, well below the EF₃PRP of 0.020 g N g⁻¹ (2%) used by IPCC for cattle N in excreta. The fraction of excreta N lost as NH₃ of ∼15% was in line with the IPCC guidelines. Disaggregation of emission factors for excreta type is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Disaggregation of indirect factors for fraction of NH₃ volatilized by excreta type is recommended.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.163Z", + "last_change_date": "2022-03-14T08:05:56.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10907, + "fields": { + "EF_ID": 423941, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "NH₃ volatilization from dung N deposited by grazing cattle in the dry season", + "Technology_Practices": "Dung was collected fresh from crossbred dairy (Nelore/Friesian) cows during milking at dawn on the day the experiment was set up. The animals were kept in the pasture but supplemented with soybean and corn meal", + "Parameter_Conditions": "The study was carried out on a grass pasture site of the Embrapa Rice and Bean Centre experimental station (16°28′ S–49°17′W, 823 m a.s.l.) located in the Municipality of Santo Antonio de Goiás, State of Goiás. Approximately two decades before this study a Brachiariabrizantha cv Marandu pasture was established on a clay loamsoil (Ferralsol—FAO classification, Oxisol—US Soil Taxonomy) with a texture of 43% clay and 44% sand in the top 20 cm", + "Regional_Conditions": "The climate is Aw, tropical savannah, megathermic, according to the Köppen’s classification (Köppen, 1936). A characteristic of this region is that rainfall is practically absent from June to September. The original vegetation of the region was a forest type with a closed canopy (Cerradão) one of the sub-biomes of the Brazilian Cerrados (Bustamante et al., 2012b).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.3", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ana Carolina R. Lessaa, Beata E. Madari, Debora S. Paredes, Robert M. Boddey, Segundo Urquiaga, Claudia P. Jantalia, Bruno J.R. Alves (2014). Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems and Environment 190, 104–111. http://dx.doi.org/10.1016/j.agee.2014.01.010", + "English_Abstract": "Cattle ranching is one of the most important agricultural activities in Brazil. The impact of livestock on soil N₂O emissions in Brazil has only been assessed using a Tier 1 approach of the IPCC guidelines, as there are no data available from field studies. Apart from the need for accumulating data for the development of proper direct N₂O emission factors, we tested for possible differences between urine and dung as N₂O sources and the difference in emissions between the dry and wet season. An area of Brachiaria brizantha at the Embrapa Rice and Bean Centre in the Cerrado (central savannah) region (Goiás state) was subdivided into plots where fresh cattle urine and dung were monitored for three consecutive periods (two in the rainy and one in the dry season) for N losses, principally N₂O emissions and NH₃ volatilization. 15 N-labelled urine N was used in the first monitoring period for an N balance study which indicated that denitrification and NH₃ volatilization were the most important processes for N loss. Percentages of N lost as N₂O and as volatilized NH₃ were greater for urine than for dung. In addition, N losses as N₂O in the rainy season were much greater than during the dry season. Representing the Cerrado region and the extensive pasture systems common in this region, direct emission 0.007 g N₂O–N g⁻¹ (0.7%) excreta N, well below the EF₃PRP of 0.020 g N g⁻¹ (2%) used by IPCC for cattle N in excreta. The fraction of excreta N lost as NH₃ of ∼15% was in line with the IPCC guidelines. Disaggregation of emission factors for excreta type is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Disaggregation of indirect factors for fraction of NH₃ volatilized by excreta type is recommended.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.288Z", + "last_change_date": "2022-03-14T08:05:56.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10908, + "fields": { + "EF_ID": 423942, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "NH₃ volatilization from urine N deposited by grazing cattle (considering the 7 months of rainfall per year)", + "Technology_Practices": "Urine was collected fresh from crossbred dairy (Nelore/Friesian) cows during milking at dawn on the day the experiment was set up. The animals were kept in the pasture but supplemented with soybean and corn meal", + "Parameter_Conditions": "The study was carried out on a grass pasture site of the Embrapa Rice and Bean Centre experimental station (16°28′ S–49°17′W, 823 m a.s.l.) located in the Municipality of Santo Antonio de Goiás, State of Goiás. Approximately two decades before this study a Brachiariabrizantha cv Marandu pasture was established on a clay loamsoil (Ferralsol—FAO classification, Oxisol—US Soil Taxonomy) with a texture of 43% clay and 44% sand in the top 20 cm", + "Regional_Conditions": "The climate is Aw, tropical savannah, megathermic, according to the Köppen’s classification (Köppen, 1936). A characteristic of this region is that rainfall is practically absent from June to September. The original vegetation of the region was a forest type with a closed canopy (Cerradão) one of the sub-biomes of the Brazilian Cerrados (Bustamante et al., 2012b).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "% of N deposited", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ana Carolina R. Lessaa, Beata E. Madari, Debora S. Paredes, Robert M. Boddey, Segundo Urquiaga, Claudia P. Jantalia, Bruno J.R. Alves (2014). Bovine urine and dung deposited on Brazilian savannah pastures contribute differently to direct and indirect soil nitrous oxide emissions. Agriculture, Ecosystems and Environment 190, 104–111. http://dx.doi.org/10.1016/j.agee.2014.01.010", + "English_Abstract": "Cattle ranching is one of the most important agricultural activities in Brazil. The impact of livestock on soil N₂O emissions in Brazil has only been assessed using a Tier 1 approach of the IPCC guidelines, as there are no data available from field studies. Apart from the need for accumulating data for the development of proper direct N₂O emission factors, we tested for possible differences between urine and dung as N₂O sources and the difference in emissions between the dry and wet season. An area of Brachiaria brizantha at the Embrapa Rice and Bean Centre in the Cerrado (central savannah) region (Goiás state) was subdivided into plots where fresh cattle urine and dung were monitored for three consecutive periods (two in the rainy and one in the dry season) for N losses, principally N₂O emissions and NH₃ volatilization. 15 N-labelled urine N was used in the first monitoring period for an N balance study which indicated that denitrification and NH₃ volatilization were the most important processes for N loss. Percentages of N lost as N₂O and as volatilized NH₃ were greater for urine than for dung. In addition, N losses as N₂O in the rainy season were much greater than during the dry season. Representing the Cerrado region and the extensive pasture systems common in this region, direct emission 0.007 g N₂O–N g⁻¹ (0.7%) excreta N, well below the EF₃PRP of 0.020 g N g⁻¹ (2%) used by IPCC for cattle N in excreta. The fraction of excreta N lost as NH₃ of ∼15% was in line with the IPCC guidelines. Disaggregation of emission factors for excreta type is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Disaggregation of indirect factors for fraction of NH₃ volatilized by excreta type is recommended.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.381Z", + "last_change_date": "2022-03-14T08:05:56.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10909, + "fields": { + "EF_ID": 423943, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for dairy lactating cows enteric fermentation (local indigenous breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 55% was used for indigenous cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Methane conversion factor Ym 6.5% was used for the local cattle population as given in the 2006 IPCC Guidelines (Table 10.12). Milk yields were derived as weighted-average based on the share of livestock population per different agro-ecological zones of Sri-Lanka (Dry, Intermediate, Wet Hilly and Low country wet).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.473Z", + "last_change_date": "2022-03-14T08:05:56.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10910, + "fields": { + "EF_ID": 423944, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for dairy lactating cows enteric fermentation (improved breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 70% was used for improved cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Lower range of methane conversion factor Ym 6.5% (i.e. 5.5%) was used for the improved cattle as given in 2006 IPCC Guidelines (Table 10.12). Milk yields were derived as weighted-average based on the share of livestock population per different agro-ecological zones of Sri-Lanka (Dry, Intermediate, Wet Hilly and Low country wet).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Improved breeds include Friesian, Ayershire, Jersey, Australian, Sahiwal, Red Sindhi and Tharpakar.", + "Value": "42", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.573Z", + "last_change_date": "2022-03-14T08:05:56.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10911, + "fields": { + "EF_ID": 423945, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for dairy non-lactating cows enteric fermentation (local indigenous breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 55% was used for indigenous cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Methane conversion factor Ym 6.5% was used for the local cattle population as given in the 2006 IPCC Guidelines (Table 10.12).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.682Z", + "last_change_date": "2022-03-14T08:05:56.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10912, + "fields": { + "EF_ID": 423946, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for dairy non-lactating cows enteric fermentation (improved breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 70% was used for improved cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Lower range of methane conversion factor Ym 6.5% (i.e. 5.5%) was used for the improved cattle as given in 2006 IPCC Guidelines (Table 10.12).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Improved breeds include Friesian, Ayershire, Jersey, Australian, Sahiwal, Red Sindhi and Tharpakar.", + "Value": "32", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.792Z", + "last_change_date": "2022-03-14T08:05:56.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10913, + "fields": { + "EF_ID": 423947, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for mature bulls enteric fermentation (local indigenous breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 55% was used for indigenous cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Methane conversion factor Ym 6.5% was used for the local cattle population as given in the 2006 IPCC Guidelines (Table 10.12).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:56.900Z", + "last_change_date": "2022-03-14T08:05:56.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10914, + "fields": { + "EF_ID": 423948, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for mature bulls enteric fermentation (improved breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 70% was used for improved cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Lower range of methane conversion factor Ym 6.5% (i.e. 5.5%) was used for the improved cattle as given in 2006 IPCC Guidelines (Table 10.12).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Improved breeds include Friesian, Ayershire, Jersey, Australian, Sahiwal, Red Sindhi and Tharpakar.", + "Value": "46", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.009Z", + "last_change_date": "2022-03-14T08:05:57.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10915, + "fields": { + "EF_ID": 423949, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for calves enteric fermentation (local indigenous breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 55% was used for indigenous cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Methane conversion factor Ym 6.5% was used for the local cattle population as given in the 2006 IPCC Guidelines (Table 10.12).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.111Z", + "last_change_date": "2022-03-14T08:05:57.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10916, + "fields": { + "EF_ID": 423950, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for calves enteric fermentation (improved breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 70% was used for improved cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Lower range of methane conversion factor Ym 6.5% (i.e. 5.5%) was used for the improved cattle as given in 2006 IPCC Guidelines (Table 10.12).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Improved breeds include Friesian, Ayershire, Jersey, Australian, Sahiwal, Red Sindhi and Tharpakar.", + "Value": "16", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.211Z", + "last_change_date": "2022-03-14T08:05:57.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10917, + "fields": { + "EF_ID": 423951, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for dairy buffaloes enteric fermentation (indigenous and improved breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). The improved buffaloes constituted only 9% of the total population, and thus weighted emission factors were derived using the Tier 2 method for dairy buffaloes, considering the percentage of local and improved buffaloes in the total population. Sixty percent digestible energy was assumed for improved buffaloes, while 55% digestible energy was assumed for local buffaloes based on expert opinion; a methane conversion factor Ym 6.0% was considered. Milk yields were derived as weighted-average based on the share of livestock population per different agro-ecological zones of Sri-Lanka (Dry, Intermediate, Wet Hilly and Low country wet).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Improved breeds include Murrah and Nilli Ravi", + "Value": "65", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.312Z", + "last_change_date": "2022-03-14T08:05:57.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10918, + "fields": { + "EF_ID": 423952, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for other (non-dairy) buffaloes enteric fermentation (indigenous and improved breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). The improved buffaloes constituted only 9% of the total population, and thus weighted emission factors were derived using the Tier 2 method for dairy buffaloes, considering the percentage of local and improved buffaloes in the total population. Sixty percent digestible energy was assumed for improved buffaloes, while 55% digestible energy was assumed for local buffaloes based on expert opinion; a methane conversion factor Ym 6.0% was considered.", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Improved breeds include Murrah and Nilli Ravi", + "Value": "44", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.413Z", + "last_change_date": "2022-03-14T08:05:57.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10919, + "fields": { + "EF_ID": 423953, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for sheep enteric fermentation (indigenous and improved breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym.", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Improved breeds include South Down, Red Madras and Jaffna sheep", + "Value": "3", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.513Z", + "last_change_date": "2022-03-14T08:05:57.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10920, + "fields": { + "EF_ID": 423954, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for Other Cattle enteric fermentation (local indigenous breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 55% was used for indigenous cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Methane conversion factor Ym 6.5% was used for the local cattle population as given in the 2006 IPCC Guidelines (Table 10.12).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Other cattle (for both local and improved breeds) includes non-lactating cows, mature bulls, and calves", + "Value": "32", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.630Z", + "last_change_date": "2022-03-14T08:05:57.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10921, + "fields": { + "EF_ID": 423955, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Country-specific EF for Other Cattle enteric fermentation (improved breeds)", + "Technology_Practices": "Tier 2 from the 2006 IPCC Guidelines was applied to estimate EF", + "Parameter_Conditions": "This EF was estimated using Equation 10.16 of 2006 IPCC Guidelines (to estimate Gross Energy Intake) and Equation 10.21 (to estimate country-specific EF). In estimating EF, the study used country-specific data and IPCC default values for %DE and methane conversion factor Ym. The digestible energy (%DE) value 70% was used for improved cattle, based on the expert opinion and the percentages suggested by IPCC (2006). Lower range of methane conversion factor Ym 6.5% (i.e. 5.5%) was used for the improved cattle as given in 2006 IPCC Guidelines (Table 10.12).", + "Regional_Conditions": "Sri Lanka, South Asia", + "Control_Technologies": "", + "Other_Properties": "Other cattle (for both local and improved breeds) includes non-lactating cows, mature bulls, and calves. Improved breeds include Friesian, Ayershire, Jersey, Australian, Sahiwal, Red Sindhi and Tharpakar.", + "Value": "26", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Lokupitiya (2016). Country-specific emission factors for methane emission from enteric fermentation: a case study from a non-annex 1 country. J.Natn.Sci.Foundation Sri Lanka, 44 (2): 137-144. DOI: http://dx.doi.org/10.4038/jnsfsr.v44i2.7994", + "English_Abstract": "Methane emission from enteric fermentation is a subcategory considered under the Agriculture sector greenhouse gas emissions under the United Nations Framework Convention on Climate Change (UNFCCC). So far, most non-annex 1 member countries have used the default IPCC 1996 revised guidelines in estimating such emissions. The latest IPCC 2006 revised guidelines for national greenhouse gas inventories provide better guidelines for developing country-specific emission factors. Country-specific methane emission factors were developed for estimating methane emission from enteric fermentation in livestock in Sri Lanka, using a Tier 2 approach with energy calculations (IPCC, 2006) based on country-specific activity data. Each animal category was further subdivided for the analyses, and emission estimates incorporated population characteristics in the different agro-climatic zones of the country. Separate emission factors were calculated for sub categories within the local (indigenous) and improved (Indian and European) breeds. The population-weighted methane emission factor (50 kg head⁻¹ yr⁻¹) estimated for dairy cows (i.e. lactating females) was lower than the IPCC default value. The methane emission factors calculated for other cattle categories ranged between 11 – 58 kg head⁻¹ yr⁻¹. However the population-weighted emission factor (32 kg head⁻¹ yr⁻¹) was slightly higher than the IPCC default value (27 kg head⁻¹ yr⁻¹), as the proportion of the calves in the other cattle population was relatively lower (~47 percent) than what the IPCC default emission factor has considered. Overall, the population-weighted emission factors for buffaloes (49 kg head⁻¹ yr⁻¹) and sheep (3 kg head⁻¹ yr⁻¹) were lower than the IPCC default values.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.748Z", + "last_change_date": "2022-03-14T08:05:57.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10922, + "fields": { + "EF_ID": 423956, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Maximum methane producing capacity (Bo) for swine slurry manure stored in open deposit", + "Technology_Practices": "Liquid/slurry MMS (with natural crust cover)", + "Parameter_Conditions": "Industrialized livestock sector", + "Regional_Conditions": "Municipality of Concordia, in the state of Santa Catarina, Southern Brazil (27º18`46S, 51º59`16W, at an altitude of 550 m)", + "Control_Technologies": "Reduction of manure retention time in open deposit from 120 to 50 days", + "Other_Properties": "", + "Value": "0.48", + "Unit": "m³/kg VS", + "Equation": "Equation 10.23 on page 10.41 of the Vol.4, Ch.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Luana Goulart Sardá, Martha Mayumi Higarashi, Rodrigo da Silveira Nicoloso, Paulo Armando Victória de Oliveira, Camila Falkoski, Stephanie Mayara Siega Ribeiro and Arlei Coldebella (2018). Methane emission factor of open deposits used to store swine slurry in Southern Brazil. Pesq. agropec. bras., Brasília, v.53, n.6, p. 657-663. http://dx.doi.org/10.1590/s0100-204x2018000600001", + "English_Abstract": "Abstract – The objective of this work was to contribute to the establishment of a baseline for the methane emission factor for the management of swine manure, considering the current practice of raw manure storage in two open deposits in parallel, in Southern Brazil. Methane (CH₄) emissions were continuously measured in three PVC tanks of 3 m³, during 180 days, in the summer. As the content of volatile solids of pig slurry ran out in approximately 130 days, the CH₄ emission factor was calculated as Bo= 0.48 m³ kg⁻¹ VS. Although this value is higher than the Bo estimated by Intergovernmental Panel on Climate Change for Latin America (0.29 m³ kg⁻¹ VS), it is in agreement with the Bo estimated for developed countries (0.45 and 0.48 m³ kg⁻¹ VS, for the US and EU, respectively). The graphic of accumulated CH₄-C emission x time fitted a sigmoidal, kinetic model (r²=0.998) that showed a good correlation when tested with the emission data collected from a slurry deposit, under field conditions, in winter. This suggests that the model reproduces the CH₄ emission kinetics in the region. By applying the reviewed state law rules (retention time of 50 instead of 120 days), estimates by the sigmoidal equation show that it is possible to reduce in more than 80% methane gas emission.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:57.891Z", + "last_change_date": "2022-03-14T08:05:57.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10923, + "fields": { + "EF_ID": 423957, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of 2006 IPCC Guidelines) from rice cultivation under different fertilizer practices during the rice growing season", + "Technology_Practices": "The experiment was performed over the course of four consecutive rice-wheat rotation cycles from June 2004 to June 2008. The study consisted of three N fertilizer application rates: (i) control treatment (CK) with no nitrogen fertilizer; (ii) alternative practice with reduced nitrogen input (AP); and (iii) conventional farmers’ practice with common nitrogen application rate (FP). The alternative practice (AP) applied 150 kg N/ha for both the rice and wheat seasons. The farmers’ practice (FP) applied 250 and 225 kg N/ha for the rice and wheat season, respectively. The effect of these 3 fertilization practices on methane emission was not consistent and conclusive. Hence, the emission factor was derived by taking the mean of the 3 fertilizer practices.", + "Parameter_Conditions": "Field measurements were conducted in paddy soils located in the north of Jiangsu province, China. This region is a typical rice-winter wheat cropping area, which has a northern subtropical monsoon climate. The mean annual temperature and mean annual rainfall are approximately 15.9 ºC and 924 mm, respectively. The soil is classified as a fluvisol, with sandy loam texture (58% sand and 14% clay) and a pH of 8.0 in the upper 15 cm. The soil organic carbon and nitrogen content in the cultivated layer averaged 18.4 and 1.45 g/kg, respectively.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143.73", + "Unit": "kg C/ha", + "Equation": "Vol.4, Ch.5, Equation 5.1 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yao, Z., X. Zheng, R. Wang, H. Dong, B. Xie, B. Mei, Z. Zhou, and J. Zhu (2013), Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res. Biogeosci., 118, 623–638, doi:10.1002/jgrg.20061.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.000Z", + "last_change_date": "2022-03-14T08:05:58.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10924, + "fields": { + "EF_ID": 423958, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of 2006 IPCC Guidelines) from rice cultivation under different fertilizer practices during the rice-wheat rotation cycle", + "Technology_Practices": "The experiment was performed over the course of four consecutive rice-wheat rotation cycles from June 2004 to June 2008. The study consisted of three N fertilizer application rates: (i) control treatment (CK) with no nitrogen fertilizer; (ii) alternative practice with reduced nitrogen input (AP); and (iii) conventional farmers’ practice with common nitrogen application rate (FP). The alternative practice (AP) applied 150 kg N/ha for both the rice and wheat seasons. The farmers’ practice (FP) applied 250 and 225 kg N/ha for the rice and wheat season, respectively. The effect of these 3 fertilization practices on methane emission was not consistent and conclusive. Hence, the emission factor was derived by taking the mean of the 3 fertilizer practices.", + "Parameter_Conditions": "Field measurements were conducted in paddy soils located in the north of Jiangsu province, China. This region is a typical rice-winter wheat cropping area, which has a northern subtropical monsoon climate. The mean annual temperature and mean annual rainfall are approximately 15.9 ºC and 924 mm, respectively. The soil is classified as a fluvisol, with sandy loam texture (58% sand and 14% clay) and a pH of 8.0 in the upper 15 cm. The soil organic carbon and nitrogen content in the cultivated layer averaged 18.4 and 1.45 g/kg, respectively.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "142.6", + "Unit": "kg C/ha", + "Equation": "Vol.4, Ch.5, Equation 5.1 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yao, Z., X. Zheng, R. Wang, H. Dong, B. Xie, B. Mei, Z. Zhou, and J. Zhu (2013), Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res. Biogeosci., 118, 623–638, doi:10.1002/jgrg.20061.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.116Z", + "last_change_date": "2022-03-14T08:05:58.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10925, + "fields": { + "EF_ID": 423959, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor (EF₁fr) for different fertilizer practices during rice growing season (alternative practice AP with N fertilzer application of 150 kg N/ha)", + "Technology_Practices": "The experiment was performed over the course of four consecutive rice-wheat rotation cycles from June 2004 to June 2008. The study consisted of three N fertilizer application rates: (i) control treatment (CK) with no nitrogen fertilizer; (ii) alternative practice with reduced nitrogen input (AP); and (iii) conventional farmers’ practice with common nitrogen application rate (FP). The alternative practice (AP) applied 150 kg N/ha for both the rice and wheat seasons. The farmers’ practice (FP) applied 250 and 225 kg N/ha for the rice and wheat season, respectively.", + "Parameter_Conditions": "Field measurements were conducted in paddy soils located in the north of Jiangsu province, China. This region is a typical rice-winter wheat cropping area, which has a northern subtropical monsoon climate. The mean annual temperature and mean annual rainfall are approximately 15.9 ºC and 924 mm, respectively. The soil is classified as a fluvisol, with sandy loam texture (58% sand and 14% clay) and a pH of 8.0 in the upper 15 cm. The soil organic carbon and nitrogen content in the cultivated layer averaged 18.4 and 1.45 g/kg, respectively.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yao, Z., X. Zheng, R. Wang, H. Dong, B. Xie, B. Mei, Z. Zhou, and J. Zhu (2013), Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res. Biogeosci., 118, 623–638, doi:10.1002/jgrg.20061.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.201Z", + "last_change_date": "2022-03-14T08:05:58.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10926, + "fields": { + "EF_ID": 423960, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor (EF₁fr) for different fertilizer practices during rice growing season (farmers practice FP with N applied at the rate of 250 kg N/ha)", + "Technology_Practices": "The experiment was performed over the course of four consecutive rice-wheat rotation cycles from June 2004 to June 2008. The study consisted of three N fertilizer application rates: (i) control treatment (CK) with no nitrogen fertilizer; (ii) alternative practice with reduced nitrogen input (AP); and (iii) conventional farmers’ practice with common nitrogen application rate (FP). The alternative practice (AP) applied 150 kg N/ha for both the rice and wheat seasons. The farmers’ practice (FP) applied 250 and 225 kg N/ha for the rice and wheat season, respectively.", + "Parameter_Conditions": "Field measurements were conducted in paddy soils located in the north of Jiangsu province, China. This region is a typical rice-winter wheat cropping area, which has a northern subtropical monsoon climate. The mean annual temperature and mean annual rainfall are approximately 15.9 ºC and 924 mm, respectively. The soil is classified as a fluvisol, with sandy loam texture (58% sand and 14% clay) and a pH of 8.0 in the upper 15 cm. The soil organic carbon and nitrogen content in the cultivated layer averaged 18.4 and 1.45 g/kg, respectively.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yao, Z., X. Zheng, R. Wang, H. Dong, B. Xie, B. Mei, Z. Zhou, and J. Zhu (2013), Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res. Biogeosci., 118, 623–638, doi:10.1002/jgrg.20061.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.309Z", + "last_change_date": "2022-03-14T08:05:58.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10927, + "fields": { + "EF_ID": 423961, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor (EF1) for different fertilizer practices during non-rice season (alternative practice AP with N fertilzer application of 150 kg N/ha)", + "Technology_Practices": "The experiment was performed over the course of four consecutive rice-wheat rotation cycles from June 2004 to June 2008. The study consisted of three N fertilizer application rates: (i) control treatment (CK) with no nitrogen fertilizer; (ii) alternative practice with reduced nitrogen input (AP); and (iii) conventional farmers’ practice with common nitrogen application rate (FP). The alternative practice (AP) applied 150 kg N/ha for both the rice and wheat seasons. The farmers’ practice (FP) applied 250 and 225 kg N/ha for the rice and wheat season, respectively.", + "Parameter_Conditions": "Field measurements were conducted in paddy soils located in the north of Jiangsu province, China. This region is a typical rice-winter wheat cropping area, which has a northern subtropical monsoon climate. The mean annual temperature and mean annual rainfall are approximately 15.9 ºC and 924 mm, respectively. The soil is classified as a fluvisol, with sandy loam texture (58% sand and 14% clay) and a pH of 8.0 in the upper 15 cm. The soil organic carbon and nitrogen content in the cultivated layer averaged 18.4 and 1.45 g/kg, respectively.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yao, Z., X. Zheng, R. Wang, H. Dong, B. Xie, B. Mei, Z. Zhou, and J. Zhu (2013), Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res. Biogeosci., 118, 623–638, doi:10.1002/jgrg.20061.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.393Z", + "last_change_date": "2022-03-14T08:05:58.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10928, + "fields": { + "EF_ID": 423962, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor (EF1) for different fertilizer practices during non-rice season (farmers practice FP with N applied at the rate of 250 kg N/ha)", + "Technology_Practices": "The experiment was performed over the course of four consecutive rice-wheat rotation cycles from June 2004 to June 2008. The study consisted of three N fertilizer application rates: (i) control treatment (CK) with no nitrogen fertilizer; (ii) alternative practice with reduced nitrogen input (AP); and (iii) conventional farmers’ practice with common nitrogen application rate (FP). The alternative practice (AP) applied 150 kg N/ha for both the rice and wheat seasons. The farmers’ practice (FP) applied 250 and 225 kg N/ha for the rice and wheat season, respectively.", + "Parameter_Conditions": "Field measurements were conducted in paddy soils located in the north of Jiangsu province, China. This region is a typical rice-winter wheat cropping area, which has a northern subtropical monsoon climate. The mean annual temperature and mean annual rainfall are approximately 15.9 ºC and 924 mm, respectively. The soil is classified as a fluvisol, with sandy loam texture (58% sand and 14% clay) and a pH of 8.0 in the upper 15 cm. The soil organic carbon and nitrogen content in the cultivated layer averaged 18.4 and 1.45 g/kg, respectively.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.97", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yao, Z., X. Zheng, R. Wang, H. Dong, B. Xie, B. Mei, Z. Zhou, and J. Zhu (2013), Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res. Biogeosci., 118, 623–638, doi:10.1002/jgrg.20061.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.484Z", + "last_change_date": "2022-03-14T08:05:58.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10929, + "fields": { + "EF_ID": 423963, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor (EF1) for different fertilizer practices during rice-wheat rotation (alternative practice AP with N fertilzer application of 150 kg N/ha)", + "Technology_Practices": "The experiment was performed over the course of four consecutive rice-wheat rotation cycles from June 2004 to June 2008. The study consisted of three N fertilizer application rates: (i) control treatment (CK) with no nitrogen fertilizer; (ii) alternative practice with reduced nitrogen input (AP); and (iii) conventional farmers’ practice with common nitrogen application rate (FP). The alternative practice (AP) applied 150 kg N/ha for both the rice and wheat seasons. The farmers’ practice (FP) applied 250 and 225 kg N/ha for the rice and wheat season, respectively.", + "Parameter_Conditions": "Field measurements were conducted in paddy soils located in the north of Jiangsu province, China. This region is a typical rice-winter wheat cropping area, which has a northern subtropical monsoon climate. The mean annual temperature and mean annual rainfall are approximately 15.9 ºC and 924 mm, respectively. The soil is classified as a fluvisol, with sandy loam texture (58% sand and 14% clay) and a pH of 8.0 in the upper 15 cm. The soil organic carbon and nitrogen content in the cultivated layer averaged 18.4 and 1.45 g/kg, respectively.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yao, Z., X. Zheng, R. Wang, H. Dong, B. Xie, B. Mei, Z. Zhou, and J. Zhu (2013), Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res. Biogeosci., 118, 623–638, doi:10.1002/jgrg.20061.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.568Z", + "last_change_date": "2022-03-14T08:05:58.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10930, + "fields": { + "EF_ID": 423964, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission Factor (EF1) for different fertilizer practices during rice-wheat rotation (farmers practice FP with N applied at the rate of 250 kg N/ha)", + "Technology_Practices": "The experiment was performed over the course of four consecutive rice-wheat rotation cycles from June 2004 to June 2008. The study consisted of three N fertilizer application rates: (i) control treatment (CK) with no nitrogen fertilizer; (ii) alternative practice with reduced nitrogen input (AP); and (iii) conventional farmers’ practice with common nitrogen application rate (FP). The alternative practice (AP) applied 150 kg N/ha for both the rice and wheat seasons. The farmers’ practice (FP) applied 250 and 225 kg N/ha for the rice and wheat season, respectively.", + "Parameter_Conditions": "Field measurements were conducted in paddy soils located in the north of Jiangsu province, China. This region is a typical rice-winter wheat cropping area, which has a northern subtropical monsoon climate. The mean annual temperature and mean annual rainfall are approximately 15.9 ºC and 924 mm, respectively. The soil is classified as a fluvisol, with sandy loam texture (58% sand and 14% clay) and a pH of 8.0 in the upper 15 cm. The soil organic carbon and nitrogen content in the cultivated layer averaged 18.4 and 1.45 g/kg, respectively.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yao, Z., X. Zheng, R. Wang, H. Dong, B. Xie, B. Mei, Z. Zhou, and J. Zhu (2013), Greenhouse gas fluxes and NO release from a Chinese subtropical rice-winter wheat rotation system under nitrogen fertilizer management, J. Geophys. Res. Biogeosci., 118, 623–638, doi:10.1002/jgrg.20061.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.661Z", + "last_change_date": "2022-03-14T08:05:58.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10931, + "fields": { + "EF_ID": 423965, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Fraction of N leaching from crop production system (Frac LEACH-(H))", + "Technology_Practices": "Winter wheat-summer maize rotation and vegetable were the dominant cropping systems. N and P fertilizer rates in winter wheat system were all higher than maize system.", + "Parameter_Conditions": "The spatial data of topography, soil texture, and land use were provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). Spatial interpolation methods applied by RESDC were used to estimate the spatial distribution of annual mean temperature and annual precipitation. Based on the available data for counties, a range of parameters including annual precipitation, annual mean temperature, elevation, slope, soil texture, and rural income were examined for their quantitative relationships with N emissions to water at the whole basin level. We further explored the natural (slope and soil texture) and anthropogenic driving factors (planting structure and livestock density, meaning the ratio of livestock unit and arable land area.) in hill and plain areas, respectively.", + "Regional_Conditions": "The Haihe Basin is located in the Northern China. It encompasses the two municipalities Beijing and Tianjin, most of Hebei Province, the eastern part of Shanxi Province, the northern parts of Henan and Shandong provinces, and small parts of Inner Mongolia and Liaoning Province.", + "Control_Technologies": "", + "Other_Properties": "A univariate linear regression model was used to do the analysis (Gu et al., 2013). Significant levels were set at P < 0.05. The regression and statistical analysis was conducted using SPSS (Statistical Package for the Social Science) statistical software (v19.0). To quantify the N emissions to water, we constructed a grid-based NUFER model, based on Ma et al. (2010) and Bai et al. (2016). The main improvements in the grid-based NUFER model were following (1) the model considered detailed chemical fertilizer types (urea, ammonium bicarbonate, ammonium nitrate, ammonium sulfate, diammonium phosphate, compound fertilizer, and other), fertilization methods (basal and top dressing), and livestock manure management systems (liquid and solid subsystems for dairy cattle, beef cattle, and pig farms), based on a comprehensive farm interview covering 400 individual farms in 11 typical counties in the HB (Zhao et al., 2017b); (2) the model could quantify the N emissions to water in high resolution, via estimating gridded emission parameters.", + "Value": "9.1", + "Unit": "% of N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhanqing Zhao, Wei Qin, Zhaohai Bai, Lin Ma (2019). Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China. Agricultural Water management 2012, 262-272. https://doi.org/10.1016/j.agwat.2018.09.002", + "English_Abstract": "Agricultural nitrogen (N) and phosphorus (P) emissions to water bodies remain largely unknown in China, mainly due to the lack of reliable data sources and quantification tools. In this study, we constructed a grid-based NUFER (NUtrient Flow in food chains, Environment and Resources use) model in order to quantify a highresolution agricultural N and P emissions to water bodies in Haihe Basin in 2012, based on data collected from county-level statistics, farm interview, and spatial data of topography, climate, soil texture, and land use. We also explored the mitigation strategies in 2030 via scenario analysis. The results showed that total agricultural N emission to water bodies in Haihe Basin was 1079 Gg N in 2012, of which cropland contributed 54%; total agricultural P emission to water bodies was 208 Gg P, livestock contributed 78%. There were large spatial variations in agricultural N and P emissions. Overall, the plain areas accounted for around 80% of the total agricultural N and P emissions to water in 2012. The highest N and P emission intensities were 10 t N km⁻² and 2 t P km⁻², respectively. N and P emissions were significantly related to anthropogenic factors (such as the livestock density and cropland) in the plain areas; whereas in mountainous areas, both anthropogenic and natural factors (e.g., slope deviation and soil texture) significantly affected N and P emissions. Our scenario analysis suggests that agricultural N and P emissions can be reduced by up to 45% and 77%, respectively for N and P in 2030, via improved agricultural and environmental policies, technologies and managements. The prohibition of direct animal manure discharge to the water system seems to be the most effective measure to mitigate the emissions. Our study provided a high-resolution agricultural N and P emissions to the water bodies of Haihe Basin and identified the most effective options to reduce these emissions in highly intensified agricultural areas.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.743Z", + "last_change_date": "2022-03-14T08:05:58.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10932, + "fields": { + "EF_ID": 423966, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Fraction of N erosion&run-off from crop production system (Frac LEACH-(H))", + "Technology_Practices": "Winter wheat-summer maize rotation and vegetable were the dominant cropping systems. N and P fertilizer rates in winter wheat system were all higher than maize system.", + "Parameter_Conditions": "The spatial data of topography, soil texture, and land use were provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). Spatial interpolation methods applied by RESDC were used to estimate the spatial distribution of annual mean temperature and annual precipitation. Based on the available data for counties, a range of parameters including annual precipitation, annual mean temperature, elevation, slope, soil texture, and rural income were examined for their quantitative relationships with N emissions to water at the whole basin level. We further explored the natural (slope and soil texture) and anthropogenic driving factors (planting structure and livestock density, meaning the ratio of livestock unit and arable land area.) in hill and plain areas, respectively.", + "Regional_Conditions": "The Haihe Basin is located in the Northern China. It encompasses the two municipalities Beijing and Tianjin, most of Hebei Province, the eastern part of Shanxi Province, the northern parts of Henan and Shandong provinces, and small parts of Inner Mongolia and Liaoning Province.", + "Control_Technologies": "", + "Other_Properties": "A univariate linear regression model was used to do the analysis (Gu et al., 2013). Significant levels were set at P < 0.05. The regression and statistical analysis was conducted using SPSS (Statistical Package for the Social Science) statistical software (v19.0). To quantify the N emissions to water, we constructed a grid-based NUFER model, based on Ma et al. (2010) and Bai et al. (2016). The main improvements in the grid-based NUFER model were following (1) the model considered detailed chemical fertilizer types (urea, ammonium bicarbonate, ammonium nitrate, ammonium sulfate, diammonium phosphate, compound fertilizer, and other), fertilization methods (basal and top dressing), and livestock manure management systems (liquid and solid subsystems for dairy cattle, beef cattle, and pig farms), based on a comprehensive farm interview covering 400 individual farms in 11 typical counties in the HB (Zhao et al., 2017b); (2) the model could quantify the N emissions to water in high resolution, via estimating gridded emission parameters.", + "Value": "1.8", + "Unit": "% of N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhanqing Zhao, Wei Qin, Zhaohai Bai, Lin Ma (2019). Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China. Agricultural Water management 2012, 262-272. https://doi.org/10.1016/j.agwat.2018.09.002", + "English_Abstract": "Agricultural nitrogen (N) and phosphorus (P) emissions to water bodies remain largely unknown in China, mainly due to the lack of reliable data sources and quantification tools. In this study, we constructed a grid-based NUFER (NUtrient Flow in food chains, Environment and Resources use) model in order to quantify a highresolution agricultural N and P emissions to water bodies in Haihe Basin in 2012, based on data collected from county-level statistics, farm interview, and spatial data of topography, climate, soil texture, and land use. We also explored the mitigation strategies in 2030 via scenario analysis. The results showed that total agricultural N emission to water bodies in Haihe Basin was 1079 Gg N in 2012, of which cropland contributed 54%; total agricultural P emission to water bodies was 208 Gg P, livestock contributed 78%. There were large spatial variations in agricultural N and P emissions. Overall, the plain areas accounted for around 80% of the total agricultural N and P emissions to water in 2012. The highest N and P emission intensities were 10 t N km⁻² and 2 t P km⁻², respectively. N and P emissions were significantly related to anthropogenic factors (such as the livestock density and cropland) in the plain areas; whereas in mountainous areas, both anthropogenic and natural factors (e.g., slope deviation and soil texture) significantly affected N and P emissions. Our scenario analysis suggests that agricultural N and P emissions can be reduced by up to 45% and 77%, respectively for N and P in 2030, via improved agricultural and environmental policies, technologies and managements. The prohibition of direct animal manure discharge to the water system seems to be the most effective measure to mitigate the emissions. Our study provided a high-resolution agricultural N and P emissions to the water bodies of Haihe Basin and identified the most effective options to reduce these emissions in highly intensified agricultural areas.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.854Z", + "last_change_date": "2022-03-14T08:05:58.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10933, + "fields": { + "EF_ID": 423967, + "IPCC_Category": "3.C.6 - Indirect N2O Emissions from manure management", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Fraction of N in discharged manure from total N excrection in livestock production systems (Frac leachMS)", + "Technology_Practices": "Liquid and solid manure management systems for dairy cattle, beef cattle, and pig farms.", + "Parameter_Conditions": "The spatial data of topography, soil texture, and land use were provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). Spatial interpolation methods applied by RESDC were used to estimate the spatial distribution of annual mean temperature and annual precipitation. Based on the available data for counties, a range of parameters including annual precipitation, annual mean temperature, elevation, slope, soil texture, and rural income were examined for their quantitative relationships with N emissions to water at the whole basin level. We further explored the natural (slope and soil texture) and anthropogenic driving factors (planting structure and livestock density, meaning the ratio of livestock unit and arable land area.) in hill and plain areas, respectively.", + "Regional_Conditions": "The Haihe Basin is located in the Northern China. It encompasses the two municipalities Beijing and Tianjin, most of Hebei Province, the eastern part of Shanxi Province, the northern parts of Henan and Shandong provinces, and small parts of Inner Mongolia and Liaoning Province.", + "Control_Technologies": "", + "Other_Properties": "A univariate linear regression model was used to do the analysis (Gu et al., 2013). Significant levels were set at P < 0.05. The regression and statistical analysis was conducted using SPSS (Statistical Package for the Social Science) statistical software (v19.0). To quantify the N emissions to water, we constructed a grid-based NUFER model, based on Ma et al. (2010) and Bai et al. (2016). The main improvements in the grid-based NUFER model were following (1) the model considered detailed chemical fertilizer types (urea, ammonium bicarbonate, ammonium nitrate, ammonium sulfate, diammonium phosphate, compound fertilizer, and other), fertilization methods (basal and top dressing), and livestock manure management systems (liquid and solid subsystems for dairy cattle, beef cattle, and pig farms), based on a comprehensive farm interview covering 400 individual farms in 11 typical counties in the HB (Zhao et al., 2017b); (2) the model could quantify the N emissions to water in high resolution, via estimating gridded emission parameters.", + "Value": "33", + "Unit": "% of N excreted", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhanqing Zhao, Wei Qin, Zhaohai Bai, Lin Ma (2019). Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China. Agricultural Water management 2012, 262-272. https://doi.org/10.1016/j.agwat.2018.09.002", + "English_Abstract": "Agricultural nitrogen (N) and phosphorus (P) emissions to water bodies remain largely unknown in China, mainly due to the lack of reliable data sources and quantification tools. In this study, we constructed a grid-based NUFER (NUtrient Flow in food chains, Environment and Resources use) model in order to quantify a highresolution agricultural N and P emissions to water bodies in Haihe Basin in 2012, based on data collected from county-level statistics, farm interview, and spatial data of topography, climate, soil texture, and land use. We also explored the mitigation strategies in 2030 via scenario analysis. The results showed that total agricultural N emission to water bodies in Haihe Basin was 1079 Gg N in 2012, of which cropland contributed 54%; total agricultural P emission to water bodies was 208 Gg P, livestock contributed 78%. There were large spatial variations in agricultural N and P emissions. Overall, the plain areas accounted for around 80% of the total agricultural N and P emissions to water in 2012. The highest N and P emission intensities were 10 t N km⁻² and 2 t P km⁻², respectively. N and P emissions were significantly related to anthropogenic factors (such as the livestock density and cropland) in the plain areas; whereas in mountainous areas, both anthropogenic and natural factors (e.g., slope deviation and soil texture) significantly affected N and P emissions. Our scenario analysis suggests that agricultural N and P emissions can be reduced by up to 45% and 77%, respectively for N and P in 2030, via improved agricultural and environmental policies, technologies and managements. The prohibition of direct animal manure discharge to the water system seems to be the most effective measure to mitigate the emissions. Our study provided a high-resolution agricultural N and P emissions to the water bodies of Haihe Basin and identified the most effective options to reduce these emissions in highly intensified agricultural areas.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:58.955Z", + "last_change_date": "2022-03-14T08:05:58.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10934, + "fields": { + "EF_ID": 423968, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of 2006 IPCC Guidelines) from rice cultivation as influenced by synthetic fertiliser", + "Technology_Practices": "The experiment was conducted for three years from 2004 to 2007. The rice season started in May and harvested in early September. The field experiment consisted of three N fertilizer rates (0, 150 and 250 kg N ha⁻¹) with 3 replicates in complete randomized block design with plot size of 4x5 m² and 60 cm wide ridge between plots with an impermeable film inserted into the soil at a depth of 50 cm to avoid horizontal water and nutrient. Phosphorus (90 kg ha⁻¹, as P₂O₅) and potassium (36 kg ha⁻¹, as K₂O) were applied as a basal fertilization for all treatments transfer. The CH₄ emissions between the treatments were not consistent. Therefore the average methane emission from all the N treatments has been given in Value field.", + "Parameter_Conditions": "Derived from a permanently flooded rice–no rice system (Rice-fallow system) in China from Stagnic Anthrosols by the Chinese Soil Taxonomy and Hydragric Anthrosols by the FAO soil classification. The experimental fields are located at the valley bottom and are cultivated with a permanently flooded rice fallow rotation system. This system includes a single rice crop and fallow season with a floodwater layer, from rice harvest to the next rice planting. The area receives the average annual precipitation of 847.6 mm with approximately 76% during the rice-growing period. The mean maximum and minimum temperatures during rice season are 12.8 °C and 21.4 °C.", + "Regional_Conditions": "Southwestern China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "563.8", + "Unit": "kg CH₄-C/ha", + "Equation": "Vol.4, Ch.5, Equation 5.1 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhou M, Wang X, Wang Y, Zhu B. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China: Emission factor, temperature sensitivity and fertilizer nitrogen effect. Agricultural and Forest Meteorology 250–251 (2018) 299–307.", + "English_Abstract": "Annual CH₄ and N₂O emissions from these rice production systems that accounts for over 10% of national rice cultivation of China are rarely reported. To improve understanding of greenhouse gas emissions from croplands in China, we measured methane (CH₄) and nitrous oxide (N₂O) emissions from the subtropical permanently flooded rice paddy fields through a 3-year field experiment that utilized three nitrogen fertilizer application rates (0 [N0], 150 [N150] and 250 [N250] kg N ha⁻¹) in southwestern China. Results showed that seasonal patterns of CH₄ and N₂O emissions were consistent with temporal weather patterns. The average annual cumulative CH₄ fluxes were in the range of 794 to 883 kg CH₄-C ha⁻¹ yr⁻¹ and N₂O fluxes ranged from 1.61 to 3.10 kg N₂O-N ha⁻¹ yr⁻¹ across the experimental treatments. The Q10 values (soil temperature sensitivity coefficient) of CH₄ and N₂O emissions were 2.72–3.67 and 3.32–6.05, respectively, for the three treatments. Inconsistent with our hypothesis, the nitrogen fertilizer application did not increase seasonal and annual N₂O emissions over three years, compared to the control. Thus, the annual direct N₂O emission factors (EFd) averaged 0.07%, which was substantially lower than the IPCC default value of 0.30% for rice paddy fields. Nitrogen fertilizer application significantly decreased the mean seasonal global warming potential (GWP) and yield-scaled GWP for the rice season, whereas this was not true on an annual basis if fallow season was also considered. Since CH₄ emission was the major contributor to total GWP, it is necessary to propose mitigation options, which could include draining the floodwater layer and introducing upland crops during the fallow season. However, it will be challenging to reduce N₂O emissions and retain soil organic carbon if the floodwater layer is drained and upland crops are introduced during the fallow season.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range 508.9-643.3; mean SE±40.7", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:59.057Z", + "last_change_date": "2022-03-14T08:05:59.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10935, + "fields": { + "EF_ID": 423969, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of 2006 IPCC Guidelines) from Fallow land after rice (residual effect of previous crop and synthetic fertiliser)", + "Technology_Practices": "The experiment was conducted for three years from 2004 to 2007. The rice season started in May and harvested in early September. The field experiment consisted of three N fertilizer rates (0, 150 and 250 kg N ha⁻¹) with 3 replicates in complete randomized block design with plot size of 4x5 m² and 60 cm wide ridge between plots with an impermeable film inserted into the soil at a depth of 50 cm to avoid horizontal water and nutrient. Phosphorus (90 kg ha⁻¹, as P₂O₅) and potassium (36 kg ha⁻¹, as K₂O) were applied as a basal fertilization for all treatments transfer. The CH₄ emissions between the treatments were not consistent. Therefore the average methane emission from all the N treatments has been given in Value field.", + "Parameter_Conditions": "Derived from a permanently flooded rice–no rice system (Rice-fallow system) in China from Stagnic Anthrosols by the Chinese Soil Taxonomy and Hydragric Anthrosols by the FAO soil classification. The experimental fields are located at the valley bottom and are conventionally cultivated with a permanently flooded rice fallow rotation system. This system includes a single rice crop and fallow season with a floodwater layer, from rice harvest to the next rice planting. The area receives the average annual precipitation of 847.6 mm with approximately 76% during the rice-growing period. The mean maximum and minimum temperatures during rice season are were 12.8 °C and 21.4 °C.", + "Regional_Conditions": "Southwestern China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "276.5", + "Unit": "kg CH₄-C/ha", + "Equation": "Vol.4, Ch.5, Equation 5.1 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhou M, Wang X, Wang Y, Zhu B. A three-year experiment of annual methane and nitrous oxide emissions from the subtropical permanently flooded rice paddy fields of China: Emission factor, temperature sensitivity and fertilizer nitrogen effect. Agricultural and Forest Meteorology 250–251 (2018) 299–307.", + "English_Abstract": "Annual CH₄ and N₂O emissions from these rice production systems that accounts for over 10% of national rice cultivation of China are rarely reported. To improve understanding of greenhouse gas emissions from croplands in China, we measured methane (CH₄) and nitrous oxide (N₂O) emissions from the subtropical permanently flooded rice paddy fields through a 3-year field experiment that utilized three nitrogen fertilizer application rates (0 [N0], 150 [N150] and 250 [N250] kg N ha⁻¹) in southwestern China. Results showed that seasonal patterns of CH₄ and N₂O emissions were consistent with temporal weather patterns. The average annual cumulative CH₄ fluxes were in the range of 794 to 883 kg CH₄-C ha⁻¹ yr⁻¹ and N₂O fluxes ranged from 1.61 to 3.10 kg N₂O-N ha⁻¹ yr⁻¹ across the experimental treatments. The Q10 values (soil temperature sensitivity coefficient) of CH₄ and N₂O emissions were 2.72–3.67 and 3.32–6.05, respectively, for the three treatments. Inconsistent with our hypothesis, the nitrogen fertilizer application did not increase seasonal and annual N₂O emissions over three years, compared to the control. Thus, the annual direct N₂O emission factors (EFd) averaged 0.07%, which was substantially lower than the IPCC default value of 0.30% for rice paddy fields. Nitrogen fertilizer application significantly decreased the mean seasonal global warming potential (GWP) and yield-scaled GWP for the rice season, whereas this was not true on an annual basis if fallow season was also considered. Since CH₄ emission was the major contributor to total GWP, it is necessary to propose mitigation options, which could include draining the floodwater layer and introducing upland crops during the fallow season. However, it will be challenging to reduce N₂O emissions and retain soil organic carbon if the floodwater layer is drained and upland crops are introduced during the fallow season.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range 239.5-305.1; mean SE±19.4", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:59.156Z", + "last_change_date": "2022-03-14T08:05:59.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10936, + "fields": { + "EF_ID": 423970, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "AMMONIA", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "NH₃ emissions from N fertilization (i.e. 2006 IPCC Guidelines, EQUATION 11.11/ FracGASFi = fraction of synthetic fertiliser N that volatilises as NH₃) of managed soils as influenced by synthetic fertiliser", + "Technology_Practices": "Ammonium nitrate (rate not mentioned)", + "Parameter_Conditions": "The spatio-temporal variability of NH₃ emissions due to mineral N fertilization was esimated using two types of models: the process-based Volt`Air model and georeferenced and temporally explicit databases for soil properties, meteorological conditions and N fertilization in France. Total NH₃ emissions and NH₃ EF (volatilisation) were estimated. The model considers all the factors except the canopy effect on NH₃ volatilization (effect of crop growth after fertiliser application on NH₃ losses). Crop canopy reduces the surface soil temperature that may result in higher emission of NH₃. Crop canopy also absorbs part of the volatilised NH₃. The national mean EF given in Value field can be used with the condition - EF without crop canopy. Crop canopy can be accounted for by applying a reduction factor to NH₃ emission following (Langevin et al. 2015).", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.040", + "Unit": "kg NH₃/kg N applied", + "Equation": "Equation 11.11 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramanantenasoa M M J, Gilliot J M, Mignolet C, Bedos C , Mathias E, Eglin T, Makowski D, Génermont S. A new framework to estimate spatio-temporal ammonia emissions due to nitrogen fertilization in France, Science of the Total Environment 645 (2018) 205–219. https://doi.org/10.1016/j.scitotenv.2018.06.202. Langevin, B., Génermont, S., Basset-Mens, C., Lardon, L., 2015. Simulation of field NH₃ and N₂O emissions from slurry spreading. Agron. Sustain. Dev. 35:347–358. https://doi. org/10.1007/s13593-014-0248-z", + "English_Abstract": "In France, agriculture is responsible for 98% of ammonia (NH₃) emissions with over 50% caused by nitrogen (N) fertilization. The current French national inventory is based on default emission factors (EF) and does not account for the main variables influencing NH₃ emissions. To model the spatio-temporal variability of NH₃ emissions due to mineral and organic N fertilization, we implemented a new method named CADASTRE_NH₃. The novelty lies in the combined use of two types of resources: the process-based Volt`Air model and georeferenced and temporally explicit databases for soil properties, meteorological conditions and N fertilization. Simulation units are the Small Agricultural Regions. Several sources of information were combined to obtain N fertilization management: census and surveys of the French Ministry of Agriculture, statistics on commercial fertilizer deliveries, and French expertise on physicochemical properties of organic manure. The practical interest of this new framework was illustrated for France during the crop year 2005/06. Aggregation at crop year level showed a reasonable agreement between estimated values derived from CADASTRE_NH₃ and those from the French inventory method, for N and ammoniacal-N (TAN) application rates, total NH₃ emissions and NH₃ EF. Discrepancies were large for organic manure only; national TAN application rates and NH₃ emissions were 62–63% lowerwith CADASTRE_NH₃. This was due to divergences in the representation of cattle farmyard manure and in the TAN:N ratio of solid manure. Annual emissions for fertilization in France were estimated to be 270 Gg NH₃, 29% lower than the French national inventory estimate. At the regional level, organic manure contributed to 73% of field NH₃ emissions in intensive livestock husbandry areas and to 41% in the other areas. The CADASTRE_NH₃ framework can be seen as a Tier 3 approach able to estimate specific regional EF for different mineral fertilizers and organic manure.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:59.274Z", + "last_change_date": "2022-03-14T08:05:59.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10937, + "fields": { + "EF_ID": 423971, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "AMMONIA", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "NH₃ emissions from N fertilization (i.e. 2006 IPCC Guidelines, EQUATION 11.11/ FracGASFi = fraction of synthetic fertiliser N that volatilises as NH₃) of managed soils as influenced by synthetic fertiliser", + "Technology_Practices": "N Solution (rate not mentioned)", + "Parameter_Conditions": "The spatio-temporal variability of NH₃ emissions due to mineral N fertilization was esimated using two types of models: the process-based Volt`Air model and georeferenced and temporally explicit databases for soil properties, meteorological conditions and N fertilization in France. Total NH₃ emissions and NH₃ EF (volatilisation) were estimated. The model considers all the factors except the canopy effect on NH₃ volatilization (effect of crop growth after fertiliser application on NH₃ losses). Crop canopy reduces the surface soil temperature that may result in higher emission of NH₃. Crop canopy also absorbs part of the volatilised NH₃. The national mean EF given in Value field can be used with the condition - EF without crop canopy. Crop canopy can be accounted for by applying a reduction factor to NH₃ emission following (Langevin et al. 2015).", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.143", + "Unit": "kg NH₃/kg N applied", + "Equation": "Equation 11.11 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramanantenasoa M M J, Gilliot J M, Mignolet C, Bedos C , Mathias E, Eglin T, Makowski D, Génermont S. A new framework to estimate spatio-temporal ammonia emissions due to nitrogen fertilization in France, Science of the Total Environment 645 (2018) 205–219. https://doi.org/10.1016/j.scitotenv.2018.06.202. Langevin, B., Génermont, S., Basset-Mens, C., Lardon, L., 2015. Simulation of field NH₃ and N₂O emissions from slurry spreading. Agron. Sustain. Dev. 35:347–358. https://doi. org/10.1007/s13593-014-0248-z", + "English_Abstract": "In France, agriculture is responsible for 98% of ammonia (NH₃) emissions with over 50% caused by nitrogen (N) fertilization. The current French national inventory is based on default emission factors (EF) and does not account for the main variables influencing NH₃ emissions. To model the spatio-temporal variability of NH₃ emissions due to mineral and organic N fertilization, we implemented a new method named CADASTRE_NH₃. The novelty lies in the combined use of two types of resources: the process-based Volt`Air model and georeferenced and temporally explicit databases for soil properties, meteorological conditions and N fertilization. Simulation units are the Small Agricultural Regions. Several sources of information were combined to obtain N fertilization management: census and surveys of the French Ministry of Agriculture, statistics on commercial fertilizer deliveries, and French expertise on physicochemical properties of organic manure. The practical interest of this new framework was illustrated for France during the crop year 2005/06. Aggregation at crop year level showed a reasonable agreement between estimated values derived from CADASTRE_NH₃ and those from the French inventory method, for N and ammoniacal-N (TAN) application rates, total NH₃ emissions and NH₃ EF. Discrepancies were large for organic manure only; national TAN application rates and NH₃ emissions were 62–63% lowerwith CADASTRE_NH₃. This was due to divergences in the representation of cattle farmyard manure and in the TAN:N ratio of solid manure. Annual emissions for fertilization in France were estimated to be 270 Gg NH₃, 29% lower than the French national inventory estimate. At the regional level, organic manure contributed to 73% of field NH₃ emissions in intensive livestock husbandry areas and to 41% in the other areas. The CADASTRE_NH₃ framework can be seen as a Tier 3 approach able to estimate specific regional EF for different mineral fertilizers and organic manure.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:59.391Z", + "last_change_date": "2022-03-14T08:05:59.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10938, + "fields": { + "EF_ID": 423972, + "IPCC_Category": "3.C.5 - Indirect N2O Emissions from managed soils", + "Gases": "AMMONIA", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "NH₃ emissions from N fertilization (i.e. 2006 IPCC Guidelines, EQUATION 11.11/ FracGASFi = fraction of synthetic fertiliser N that volatilises as NH₃) of managed soils as influenced by synthetic fertiliser", + "Technology_Practices": "Urea (rate not mentioned)", + "Parameter_Conditions": "The spatio-temporal variability of NH₃ emissions due to mineral N fertilization was esimated using two types of models: the process-based Volt`Air model and georeferenced and temporally explicit databases for soil properties, meteorological conditions and N fertilization in France. Total NH₃ emissions and NH₃ EF (volatilisation) were estimated. The model considers all the factors except the canopy effect on NH₃ volatilization (effect of crop growth after fertiliser application on NH₃ losses). Crop canopy reduces the surface soil temperature that may result in higher emission of NH₃. Crop canopy also absorbs part of the volatilised NH₃. The national mean EF given in Value field can be used with the condition - EF without crop canopy. Crop canopy can be accounted for by applying a reduction factor to NH₃ emission following (Langevin et al. 2015).", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.262", + "Unit": "kg NH₃/kg N applied", + "Equation": "Equation 11.11 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramanantenasoa M M J, Gilliot J M, Mignolet C, Bedos C , Mathias E, Eglin T, Makowski D, Génermont S. A new framework to estimate spatio-temporal ammonia emissions due to nitrogen fertilization in France, Science of the Total Environment 645 (2018) 205–219. https://doi.org/10.1016/j.scitotenv.2018.06.202. Langevin, B., Génermont, S., Basset-Mens, C., Lardon, L., 2015. Simulation of field NH₃ and N₂O emissions from slurry spreading. Agron. Sustain. Dev. 35:347–358. https://doi. org/10.1007/s13593-014-0248-z", + "English_Abstract": "In France, agriculture is responsible for 98% of ammonia (NH₃) emissions with over 50% caused by nitrogen (N) fertilization. The current French national inventory is based on default emission factors (EF) and does not account for the main variables influencing NH₃ emissions. To model the spatio-temporal variability of NH₃ emissions due to mineral and organic N fertilization, we implemented a new method named CADASTRE_NH₃. The novelty lies in the combined use of two types of resources: the process-based Volt`Air model and georeferenced and temporally explicit databases for soil properties, meteorological conditions and N fertilization. Simulation units are the Small Agricultural Regions. Several sources of information were combined to obtain N fertilization management: census and surveys of the French Ministry of Agriculture, statistics on commercial fertilizer deliveries, and French expertise on physicochemical properties of organic manure. The practical interest of this new framework was illustrated for France during the crop year 2005/06. Aggregation at crop year level showed a reasonable agreement between estimated values derived from CADASTRE_NH₃ and those from the French inventory method, for N and ammoniacal-N (TAN) application rates, total NH₃ emissions and NH₃ EF. Discrepancies were large for organic manure only; national TAN application rates and NH₃ emissions were 62–63% lowerwith CADASTRE_NH₃. This was due to divergences in the representation of cattle farmyard manure and in the TAN:N ratio of solid manure. Annual emissions for fertilization in France were estimated to be 270 Gg NH₃, 29% lower than the French national inventory estimate. At the regional level, organic manure contributed to 73% of field NH₃ emissions in intensive livestock husbandry areas and to 41% in the other areas. The CADASTRE_NH₃ framework can be seen as a Tier 3 approach able to estimate specific regional EF for different mineral fertilizers and organic manure.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:05:59.508Z", + "last_change_date": "2022-03-14T08:05:59.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10939, + "fields": { + "EF_ID": 423973, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Holstein Heifers aged 164 +/- 9 days fed on grass silage supplemented with a typical ration used on UK commercial farms", + "Parameter_Conditions": "", + "Regional_Conditions": "Northern Ireland, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93.5", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Jiao, H.P., Yan, T., McDowell, D.A., Carson, A.F., Ferris, C.P., Easson, D.L. and Wills, D. (2013). Enteric methane emissions and efficiency of use of energy in Holstein heifers and steers at age of six months. Journal of Animal Science 91, 356-362.", + "English_Abstract": "Twenty 5-mo-old Holstein cattle (10 steers and 10 heifers) were selected from a dairy herd for a 28 d study of enteric methane emissions and energy utilization. The cattle were offered a completely mixed diet with grass silage and concentrates (0.45 and 0.55, DM basis, respectively). They were housed as a single group in cubicle accommodation for the first 20 d, transferred to metabolism units for 3 d, and subsequently housed in indirect open-circuit respiration calorimeter chambers for next 5 d with measurements of feed intake, feces and urine outputs, and gaseous exchange. There were no significant differences (P>0.05) between the 2 groups in terms of animal performance (feed intake, BW, or BW gain), energy metabolism (energy intake, energy outputs, or energy use efficiency), or methane emission rates (total methane emissions expressed on feed intake or energy intake basis). Therefore, the data from the 2 groups were pooled to develop a range of relationships between inputs and outputs. The regression of energy balance or heat production against ME intake (r2=0.85; P<0.001) indicated a NEm of 0.57 MJ/kg BW0.75, which is greater than reported for adult dairy cattle. The methane energy output was found to be 0.068 of GE intake when the intercept was omitted from the linear equation (r2=0.73; P<0.001), which is greater than the commonly accepted value (0.065) for adult cattle used for development of methane emission inventories for dairy and beef production systems. These data can add useful information, as there is little information available on measurements of maintenance energy requirement or methane emissions in young stock (6 mo old) of the current high-yielding dairy cattle. The use of these data can potentially improve the accuracy of prediction of energy requirement and methane emissions for dairy and beef production systems in these dietary conditions.", + "Lower_Bound": "87.4", + "Upper_Bound": "99.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 4, SED = 5.72). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resuting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.101).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/23048155", + "creation_date": "2022-03-14T08:05:59.625Z", + "last_change_date": "2022-03-14T08:05:59.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10940, + "fields": { + "EF_ID": 423974, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Holstein Heifers aged 164 +/- 9 days fed on grass silage supplemented with a typical ration used on UK commercial farms", + "Parameter_Conditions": "", + "Regional_Conditions": "Northern Ireland, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.068", + "Unit": "GE intake MJ/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Jiao, H.P., Yan, T., McDowell, D.A., Carson, A.F., Ferris, C.P., Easson, D.L. and Wills, D. (2013). Enteric methane emissions and efficiency of use of energy in Holstein heifers and steers at age of six months. Journal of Animal Science 91, 356-362.", + "English_Abstract": "Twenty 5-mo-old Holstein cattle (10 steers and 10 heifers) were selected from a dairy herd for a 28 d study of enteric methane emissions and energy utilization. The cattle were offered a completely mixed diet with grass silage and concentrates (0.45 and 0.55, DM basis, respectively). They were housed as a single group in cubicle accommodation for the first 20 d, transferred to metabolism units for 3 d, and subsequently housed in indirect open-circuit respiration calorimeter chambers for next 5 d with measurements of feed intake, feces and urine outputs, and gaseous exchange. There were no significant differences (P>0.05) between the 2 groups in terms of animal performance (feed intake, BW, or BW gain), energy metabolism (energy intake, energy outputs, or energy use efficiency), or methane emission rates (total methane emissions expressed on feed intake or energy intake basis). Therefore, the data from the 2 groups were pooled to develop a range of relationships between inputs and outputs. The regression of energy balance or heat production against ME intake (r2=0.85; P<0.001) indicated a NEm of 0.57 MJ/kg BW0.75, which is greater than reported for adult dairy cattle. The methane energy output was found to be 0.068 of GE intake when the intercept was omitted from the linear equation (r2=0.73; P<0.001), which is greater than the commonly accepted value (0.065) for adult cattle used for development of methane emission inventories for dairy and beef production systems. These data can add useful information, as there is little information available on measurements of maintenance energy requirement or methane emissions in young stock (6 mo old) of the current high-yielding dairy cattle. The use of these data can potentially improve the accuracy of prediction of energy requirement and methane emissions for dairy and beef production systems in these dietary conditions.", + "Lower_Bound": "0.066", + "Upper_Bound": "0.07", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as MJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 4, SED = 0.0022). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.101).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/23048155", + "creation_date": "2022-03-14T08:05:59.742Z", + "last_change_date": "2022-03-14T08:05:59.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10941, + "fields": { + "EF_ID": 423975, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Dairy and beef composite suckler cows (Limousin x Holstein Friesian and Stabiliser)", + "Parameter_Conditions": "Measurements taken during dry (non-lactating) period when cows were pregnant. Cows fed on a diet of grass silage", + "Regional_Conditions": "Northern Ireland, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zou, C.X., Lively, F.O., Wylie, A.R.G. and Yan, T. (2016). Estimation of the maintenance energy requirements, methane emissions and nitrogen utilisation efficiency of two suckler cow genotypes. Animal: 10 (4): 616-622.", + "English_Abstract": "Seventeen non-lactating dairy-bred suckler cows (LF; Limousin×Holstein-Friesian) and 17 non-lactating beef composite breed suckler cows (ST; Stabiliser) were used to study enteric methane emissions and energy and nitrogen (N) utilization from grass silage diets. Cows were housed in cubicle accommodation for 17 days, and then moved to individual tie-stalls for an 8-day digestibility balance including a 2-day adaption followed by immediate transfer to an indirect, open-circuit, respiration calorimeters for 3 days with gaseous exchange recorded over the last two of these days. Grass silage was offered ad libitum once daily at 0900 h throughout the study. There were no significant differences (P>0.05) between the genotypes for energy intakes, energy outputs or energy use efficiency, or for methane emission rates (methane emissions per unit of dry matter intake or energy intake), or for N metabolism characteristics (N intake or N output in faeces or urine). Accordingly, the data for both cow genotypes were pooled and used to develop relationships between inputs and outputs. Regression of energy retention against ME intake (r 2=0.52; P<0.001) indicated values for net energy requirements for maintenance of 0.386, 0.392 and 0.375 MJ/kg 0.75 for LF+ST, LF and ST respectively. Methane energy output was 0.066 of gross energy intake when the intercept was omitted from the linear equation (r 2=0.59; P<0.001). There were positive linear relationships between N intake and N outputs in manure, and manure N accounted for 0.923 of the N intake. The present results provide approaches to predict maintenance energy requirement, methane emission and manure N output for suckler cows and further information is required to evaluate their application in a wide range of suckler production systems.", + "Lower_Bound": "176.3", + "Upper_Bound": "203.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 4 SED = 13.7 g/day). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/26593693", + "creation_date": "2022-03-14T08:05:59.843Z", + "last_change_date": "2022-03-14T08:05:59.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10942, + "fields": { + "EF_ID": 423976, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Dairy and beef composite suckler cows (Limousin x Holstein Friesian and Stabiliser)", + "Parameter_Conditions": "Measurements taken during dry (non-lactating) period when cows were pregnant. Cows fed on a diet of grass silage", + "Regional_Conditions": "Northern Ireland, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.066", + "Unit": "GE intake MJ/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zou, C.X., Lively, F.O., Wylie, A.R.G. and Yan, T. (2016). Estimation of the maintenance energy requirements, methane emissions and nitrogen utilisation efficiency of two suckler cow genotypes. Animal: 10 (4): 616-622.", + "English_Abstract": "Seventeen non-lactating dairy-bred suckler cows (LF; Limousin×Holstein-Friesian) and 17 non-lactating beef composite breed suckler cows (ST; Stabiliser) were used to study enteric methane emissions and energy and nitrogen (N) utilization from grass silage diets. Cows were housed in cubicle accommodation for 17 days, and then moved to individual tie-stalls for an 8-day digestibility balance including a 2-day adaption followed by immediate transfer to an indirect, open-circuit, respiration calorimeters for 3 days with gaseous exchange recorded over the last two of these days. Grass silage was offered ad libitum once daily at 0900 h throughout the study. There were no significant differences (P>0.05) between the genotypes for energy intakes, energy outputs or energy use efficiency, or for methane emission rates (methane emissions per unit of dry matter intake or energy intake), or for N metabolism characteristics (N intake or N output in faeces or urine). Accordingly, the data for both cow genotypes were pooled and used to develop relationships between inputs and outputs. Regression of energy retention against ME intake (r 2=0.52; P<0.001) indicated values for net energy requirements for maintenance of 0.386, 0.392 and 0.375 MJ/kg 0.75 for LF+ST, LF and ST respectively. Methane energy output was 0.066 of gross energy intake when the intercept was omitted from the linear equation (r 2=0.59; P<0.001). There were positive linear relationships between N intake and N outputs in manure, and manure N accounted for 0.923 of the N intake. The present results provide approaches to predict maintenance energy requirement, methane emission and manure N output for suckler cows and further information is required to evaluate their application in a wide range of suckler production systems.", + "Lower_Bound": "0.062", + "Upper_Bound": "0.069", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as MJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 4 SED = 0.31%). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/26593693", + "creation_date": "2022-03-14T08:05:59.960Z", + "last_change_date": "2022-03-14T08:05:59.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10943, + "fields": { + "EF_ID": 423977, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for sheep", + "Technology_Practices": "Lowland lambs, fed on a diet of fresh perennial ryegrass & concentrate. Lambs from 2 genotypes (Highlander and Texel) and 3 sexes Female, male and wether (castrated males).", + "Parameter_Conditions": "", + "Regional_Conditions": "Northern Ireland, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.2", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zhao, Y.G., Aubry, A., O’Connell, N.E., Annett, R. and Yan, T. (2015). Effects of breed, sex and concentrate supplement on digestibility, enteric methane emissions and nitrogen utilization efficiency in growing lambs offered fresh grass. Journal of Animal Science 93:5764-5773.", + "English_Abstract": "Forty-eight lowland lambs were used in a completely randomized design (23-d period) with a factorial arrangement of treatments: 2 breeds (Highlander vs. Texel) x 3 sexes (female vs. intact male vs. wether) x 2 diets (fresh grass vs. fresh grass plus 0.5 kg/d pelleted concentrate). Animals (n = 48) were approximately 5 mo old and 36 +/- 5.0 kg BW at the commencement of the study with 4 lambs for each breed-sex-diet combination. Fresh grass was harvested daily from the first regrowth of perennial ryegrass sward and offered ad libitum with a similar growth stage throughout the experiment. The animals were individually housed in pens and fed experimental diets for 19 d before being transferred to individual calorimeter chambers for a further 4 d with feed intake, fecal and urine outputs, and methane (CH4) emissions measured. Lambs offered 0.5 kg/d concentrate had greater DM and energy (i.e., GE, DE and ME) intake, BW, and CH4 production (g/d) and greater N intake, fecal and manure N outputs, and fecal N per N intake than those given only fresh grass (P < 0.05). However, diets had no effect on CH4 emission rates (i.e., CH4/DMI [P = 0.408] and CH4 energy/GE intake [P = 0.821]). Texels produced more CH4/DMI (g/kg) than Highlanders (P = 0.044), and sex had no effect on CH4/DMI (g/kg; P = 0.101). Neither breed nor sex had an effect on N utilization efficiency (P > 0.05). The results reflected that high-quality forages may play a role similar to concentrate in mitigation of enteric CH4 emissions. The effects of sex and breed on rumen function require further investigation to understand relationships with CH4 emissions and N excretion in sheep.", + "Lower_Bound": "24.5", + "Upper_Bound": "25.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 5, SED = 0.73 g/d). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.028).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.animalsciencepublications.org/publications/jas/pdfs/93/12/5764?search-result=1", + "creation_date": "2022-03-14T08:06:00.061Z", + "last_change_date": "2022-03-14T08:06:00.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10944, + "fields": { + "EF_ID": 423978, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for sheep.", + "Technology_Practices": "Lowland lambs, fed on a diet of fresh perennial ryegrass & concentrate. Lambs from 2 genotypes (Highlander and Texel) and 3 sexes Female, male and wether (castrated males).", + "Parameter_Conditions": "", + "Regional_Conditions": "Northern Ireland, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.064", + "Unit": "GE intake MJ/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zhao, Y.G., Aubry, A., O’Connell, N.E., Annett, R. and Yan, T. (2015). Effects of breed, sex and concentrate supplement on digestibility, enteric methane emissions and nitrogen utilization efficiency in growing lambs offered fresh grass. Journal of Animal Science 93:5764-5773.", + "English_Abstract": "Forty-eight lowland lambs were used in a completely randomized design (23-d period) with a factorial arrangement of treatments: 2 breeds (Highlander vs. Texel) x 3 sexes (female vs. intact male vs. wether) x 2 diets (fresh grass vs. fresh grass plus 0.5 kg/d pelleted concentrate). Animals (n = 48) were approximately 5 mo old and 36 +/- 5.0 kg BW at the commencement of the study with 4 lambs for each breed-sex-diet combination. Fresh grass was harvested daily from the first regrowth of perennial ryegrass sward and offered ad libitum with a similar growth stage throughout the experiment. The animals were individually housed in pens and fed experimental diets for 19 d before being transferred to individual calorimeter chambers for a further 4 d with feed intake, fecal and urine outputs, and methane (CH4) emissions measured. Lambs offered 0.5 kg/d concentrate had greater DM and energy (i.e., GE, DE and ME) intake, BW, and CH4 production (g/d) and greater N intake, fecal and manure N outputs, and fecal N per N intake than those given only fresh grass (P < 0.05). However, diets had no effect on CH4 emission rates (i.e., CH4/DMI [P = 0.408] and CH4 energy/GE intake [P = 0.821]). Texels produced more CH4/DMI (g/kg) than Highlanders (P = 0.044), and sex had no effect on CH4/DMI (g/kg; P = 0.101). Neither breed nor sex had an effect on N utilization efficiency (P > 0.05). The results reflected that high-quality forages may play a role similar to concentrate in mitigation of enteric CH4 emissions. The effects of sex and breed on rumen function require further investigation to understand relationships with CH4 emissions and N excretion in sheep.", + "Lower_Bound": "0.062", + "Upper_Bound": "0.065", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as MJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 5, SED = 0.0013) and converted to %. Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.028).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.animalsciencepublications.org/publications/jas/pdfs/93/12/5764?search-result=1", + "creation_date": "2022-03-14T08:06:00.162Z", + "last_change_date": "2022-03-14T08:06:00.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10945, + "fields": { + "EF_ID": 423979, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. Limousin-sired from a two-breed (Limousin and Aberdeen Angus-LIMx) reciprocal crossing programme and Luing (LUI) breed, typical of a more extensively managed hardy hill and upland breed.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "LIM and LUI barley straw and grass silage", + "Other_Properties": "Mean age = 5.35 years; mean days pregnant = 219; mean body weight = 598 kg.", + "Value": "156", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Duthie, C-A., Rooke, J.A., Hyslop, J.J. and Waterhouse, A. (2015). Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers’ grains. Animal 9 (10), 1680-1687", + "English_Abstract": "Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two × two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers’ grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n = 48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed × treatment combination (total n = 40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P <0.01). When expressed either as g/kg DMI or kJ/MJ gross energy intake (GEI), BG-fed cows produced less CH4 than GS-fed cows (13.5 v. 16.4 g/kg DMI, P<0.05; 39.2 v. 48.6 kJ/MJ GEI, P<0.01). Breed did not affect daily DMI or CH4 expressed as g/day, g/kg DMI or kJ/MJ GEI ( P>0.05). However, when expressed as a proportion of metabolic BW (BW 0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW 0.75, P<0.05) and produced more CH4 per kg BW 0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher ( P<0.001) and propionate and butyrate lower ( P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI.", + "Lower_Bound": "139.9", + "Upper_Bound": "172.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) reported in Table 3 (SEM = 11.17 g/day or 4.08 kg/yr)) and adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1017/s1751731115001251", + "creation_date": "2022-03-14T08:06:00.272Z", + "last_change_date": "2022-03-14T08:06:00.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10946, + "fields": { + "EF_ID": 423980, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. Limousin-sired from a two-breed (Limousin and Aberdeen Angus-LIMx) reciprocal crossing programme and Luing (LUI) breed, typical of a more extensively managed hardy hill and upland breed.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "LIM and LUI barley straw and grass silage", + "Other_Properties": "Mean age = 5.35 years; mean days pregnant = 219; mean body weight = 598 kg.", + "Value": "48.6", + "Unit": "kJ/MJ GEI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Duthie, C-A., Rooke, J.A., Hyslop, J.J. and Waterhouse, A. (2015). Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers’ grains. Animal 9 (10), 1680-1687", + "English_Abstract": "Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two × two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers’ grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n = 48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed × treatment combination (total n = 40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P <0.01). When expressed either as g/kg DMI or kJ/MJ gross energy intake (GEI), BG-fed cows produced less CH4 than GS-fed cows (13.5 v. 16.4 g/kg DMI, P<0.05; 39.2 v. 48.6 kJ/MJ GEI, P<0.01). Breed did not affect daily DMI or CH4 expressed as g/day, g/kg DMI or kJ/MJ GEI ( P>0.05). However, when expressed as a proportion of metabolic BW (BW 0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW 0.75, P<0.05) and produced more CH4 per kg BW 0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher ( P<0.001) and propionate and butyrate lower ( P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI.", + "Lower_Bound": "42.3", + "Upper_Bound": "54.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as kJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 3 (SEM = 4.36 kJ/MJ or 0.436%) and adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1017/s1751731115001251", + "creation_date": "2022-03-14T08:06:00.356Z", + "last_change_date": "2022-03-14T08:06:00.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10947, + "fields": { + "EF_ID": 423981, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. Limousin-sired from a two-breed (Limousin and Aberdeen Angus-LIMx) reciprocal crossing programme and Luing (LUI) breed, typical of a more extensively managed hardy hill and upland breed.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "LIM and LUI barley straw and brewers` grain", + "Other_Properties": "Mean age = 5.45 years; mean days pregnant = 218; mean body weight = 642 kg.", + "Value": "131", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Duthie, C-A., Rooke, J.A., Hyslop, J.J. and Waterhouse, A. (2015). Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers’ grains. Animal 9 (10), 1680-1687", + "English_Abstract": "Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two × two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers’ grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n = 48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed × treatment combination (total n = 40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P <0.01). When expressed either as g/kg DMI or kJ/MJ gross energy intake (GEI), BG-fed cows produced less CH4 than GS-fed cows (13.5 v. 16.4 g/kg DMI, P<0.05; 39.2 v. 48.6 kJ/MJ GEI, P<0.01). Breed did not affect daily DMI or CH4 expressed as g/day, g/kg DMI or kJ/MJ GEI ( P>0.05). However, when expressed as a proportion of metabolic BW (BW 0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW 0.75, P<0.05) and produced more CH4 per kg BW 0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher ( P<0.001) and propionate and butyrate lower ( P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI.", + "Lower_Bound": "114.9", + "Upper_Bound": "147.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) reported in Table 3 (SEM = 11.17 g/day or 4.08 kg/yr)) and adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1017/s1751731115001251", + "creation_date": "2022-03-14T08:06:00.456Z", + "last_change_date": "2022-03-14T08:06:00.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10948, + "fields": { + "EF_ID": 423982, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. Limousin-sired from a two-breed (Limousin and Aberdeen Angus-LIMx) reciprocal crossing programme and Luing (LUI) breed, typical of a more extensively managed hardy hill and upland breed.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "LIM and LUI barley straw and brewers` grain", + "Other_Properties": "Mean age = 5.45 years; mean days pregnant = 218; mean body weight = 642 kg.", + "Value": "39.25", + "Unit": "kJ/MJ GEI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Duthie, C-A., Rooke, J.A., Hyslop, J.J. and Waterhouse, A. (2015). Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers’ grains. Animal 9 (10), 1680-1687", + "English_Abstract": "Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers’ grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two × two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers’ grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n = 48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed × treatment combination (total n = 40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P <0.01). When expressed either as g/kg DMI or kJ/MJ gross energy intake (GEI), BG-fed cows produced less CH4 than GS-fed cows (13.5 v. 16.4 g/kg DMI, P<0.05; 39.2 v. 48.6 kJ/MJ GEI, P<0.01). Breed did not affect daily DMI or CH4 expressed as g/day, g/kg DMI or kJ/MJ GEI ( P>0.05). However, when expressed as a proportion of metabolic BW (BW 0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW 0.75, P<0.05) and produced more CH4 per kg BW 0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher ( P<0.001) and propionate and butyrate lower ( P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4 emissions from beef cows, with no suppression of DMI.", + "Lower_Bound": "33", + "Upper_Bound": "45.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as kJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 3 (SEM = 4.36 kJ/MJ or 0.436%) and adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1017/s1751731115001251", + "creation_date": "2022-03-14T08:06:00.565Z", + "last_change_date": "2022-03-14T08:06:00.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10949, + "fields": { + "EF_ID": 423983, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "The data were obtained from a 2 × 2 factorial design experiment of breed types and diets using 72 steers from a two-breed rotational cross between Aberdeen Angus (AA) and Limousin (LIM). Equal numbers of experimental animals were sired by purebred AA and LIM. Depending on the purebred sire used, the expected additive genetic contributions were 2/3 and 1/3 from each of the two breeds. Progeny groups were from 5 AA and 4 LIM sires. The average number (range) of progenies per sire were 7 (2 to 12) and 9 (6 to 14) for AA and LIM, respectively. The animals were offered two complete diets ad libitum consisting (g/kg DM) of either 480 forage to 520 concentrate or 75 forage to 925 concentrate; these are subsequently described as forage and concentrate diets, respectively.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "AA and LIM Forage-based diet", + "Other_Properties": "", + "Value": "205.3", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Roehe, R., Dewhurst, R.J., Duthie, C-A., Rooke, J.A., McKain, N., Ross, D.W., Hyslop, J.J., Waterhouse, A., Freeman, T.C., Watson, M. and Wallace, R.J. (2016). Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet 12 (2), e1005846+URL", + "English_Abstract": "Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst hostmicrobiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.", + "Lower_Bound": "193.3", + "Upper_Bound": "217.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from supplementary dataset S1, which was used to calculate SEM and then adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the t value (2.12 from lookup tables), i.e. emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1371/journal.pgen.1005846", + "creation_date": "2022-03-14T08:06:00.674Z", + "last_change_date": "2022-03-14T08:06:00.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10950, + "fields": { + "EF_ID": 423984, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "The data were obtained from a 2 × 2 factorial design experiment of breed types and diets using 72 steers from a two-breed rotational cross between Aberdeen Angus (AA) and Limousin (LIM). Equal numbers of experimental animals were sired by purebred AA and LIM. Depending on the purebred sire used, the expected additive genetic contributions were 2/3 and 1/3 from each of the two breeds. Progeny groups were from 5 AA and 4 LIM sires. The average number (range) of progenies per sire were 7 (2 to 12) and 9 (6 to 14) for AA and LIM, respectively. The animals were offered two complete diets ad libitum consisting (g/kg DM) of either 480 forage to 520 concentrate or 75 forage to 925 concentrate; these are subsequently described as forage and concentrate diets, respectively.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "AA and LIM concentrate-based diet", + "Other_Properties": "", + "Value": "143.3", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Roehe, R., Dewhurst, R.J., Duthie, C-A., Rooke, J.A., McKain, N., Ross, D.W., Hyslop, J.J., Waterhouse, A., Freeman, T.C., Watson, M. and Wallace, R.J. (2016). Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet 12 (2), e1005846+URL", + "English_Abstract": "Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst hostmicrobiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism, health and behaviour, as well as to understand the genetic link between host and microbiome.", + "Lower_Bound": "128.7", + "Upper_Bound": "157.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from supplementary dataset S1, which was used to calculate SEM and then adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the t value (2.12 from lookup tables), i.e. emission ± CI (CI = SEM x t value).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1371/journal.pgen.1005846", + "creation_date": "2022-03-14T08:06:00.774Z", + "last_change_date": "2022-03-14T08:06:00.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10951, + "fields": { + "EF_ID": 423985, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "The seventy-two cross-bred steers used in the experiment were from a rotational cross between purebred Aberdeen Angus or Limousin sires and cross-bred dams of those genotypes and referred to as AAx and LIMx, respectively. The steers were fed two complete diets using a forage wagon, consisting (g/kg DM) of either 480 forage:520 concentrate (mixed) or 75 forage:925 concentrate (concentrate).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "AA and LIM High concentrate diet", + "Other_Properties": "", + "Value": "8.95", + "Unit": "mol/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Rooke, J.A., Wallace, R.J., Duthie, C-A., McKain, N., de Souza, S.M., Hyslop, J.J., Ross, D.W., Waterhouse, T. and Roehe, R. (2014). Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. British Journal of Nutrition 112, 398–407.", + "English_Abstract": "The aims of the present study were to quantify hydrogen (H2) and methane (CH4) emissions from beef cattle under different dietary conditions and to assess how cattle genotype and rumen microbial community affected these emissions. A total of thirty-six Aberdeen Angus-sired (AAx) and thirty-six Limousin-sired (LIMx) steers were fed two diets with forage:concentrate ratios (DM basis) of either 8:92 (concentrate) or 52:48 (mixed). Each diet was fed to eighteen animals of each genotype. Methane (CH4) and H2 emissions were measured individually in indirect respiration chambers. H2 emissions (mmol/min) varied greatly throughout the day, being highest after feed consumption, and averaged about 0.10 mol H2/mol CH4. Higher H2 emissions (mol/kg DM intake) were recorded in steers fed the mixed diet. Higher CH4 emissions (mol/d and mol/kg DM intake) were recorded in steers fed the mixed diet (P<0.001); the AAx steers produced more CH4 on a daily basis (mol/d, P<0.05) but not on a DM intake basis (mol/kg DM intake). Archaea (P=0.002) and protozoa (P<0.001) were found to be more abundant and total bacteria (P<0.001) less abundant (P<0.001) on feeding the mixed diet. The relative abundance of Clostridium cluster IV was found to be greater (P<0·001) and that of cluster XIVa (P=0.025) lower on feeding the mixed diet. The relative abundance of Bacteroides plus Prevotella was greater (P=0·018) and that of Clostridium cluster IV lower (P=0·031) in the LIMx steers. There were no significant relationships between H2 emissions and microbial abundance. In conclusion, the rate of H2 production immediately after feeding may lead to transient overloading of methanogenic archaea capacity to use H2, resulting in peaks in H2 emissions from beef cattle.", + "Lower_Bound": "8.23", + "Upper_Bound": "9.67", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as mol/d in the paper & converted to kg/year. The data in Table 3 was multiplied by 16 to convert from moles of methane to grams of methane before kg/head/year emissions were calculated. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.72 mol/day) and converted as above. Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1017/s0007114514000932", + "creation_date": "2022-03-14T08:06:00.875Z", + "last_change_date": "2022-03-14T08:06:00.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10952, + "fields": { + "EF_ID": 423986, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "The seventy-two cross-bred steers used in the experiment were from a rotational cross between purebred Aberdeen Angus or Limousin sires and cross-bred dams of those genotypes and referred to as AAx and LIMx, respectively. The steers were fed two complete diets using a forage wagon, consisting (g/kg DM) of either 480 forage:520 concentrate (mixed) or 75 forage:925 concentrate (concentrate).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "AA and LIM High concentrate diet", + "Other_Properties": "", + "Value": "39.45", + "Unit": "kJ/MJ GEI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Rooke, J.A., Wallace, R.J., Duthie, C-A., McKain, N., de Souza, S.M., Hyslop, J.J., Ross, D.W., Waterhouse, T. and Roehe, R. (2014). Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. British Journal of Nutrition 112, 398–407.", + "English_Abstract": "The aims of the present study were to quantify hydrogen (H2) and methane (CH4) emissions from beef cattle under different dietary conditions and to assess how cattle genotype and rumen microbial community affected these emissions. A total of thirty-six Aberdeen Angus-sired (AAx) and thirty-six Limousin-sired (LIMx) steers were fed two diets with forage:concentrate ratios (DM basis) of either 8:92 (concentrate) or 52:48 (mixed). Each diet was fed to eighteen animals of each genotype. Methane (CH4) and H2 emissions were measured individually in indirect respiration chambers. H2 emissions (mmol/min) varied greatly throughout the day, being highest after feed consumption, and averaged about 0.10 mol H2/mol CH4. Higher H2 emissions (mol/kg DM intake) were recorded in steers fed the mixed diet. Higher CH4 emissions (mol/d and mol/kg DM intake) were recorded in steers fed the mixed diet (P<0.001); the AAx steers produced more CH4 on a daily basis (mol/d, P<0.05) but not on a DM intake basis (mol/kg DM intake). Archaea (P=0.002) and protozoa (P<0.001) were found to be more abundant and total bacteria (P<0.001) less abundant (P<0.001) on feeding the mixed diet. The relative abundance of Clostridium cluster IV was found to be greater (P<0·001) and that of cluster XIVa (P=0.025) lower on feeding the mixed diet. The relative abundance of Bacteroides plus Prevotella was greater (P=0·018) and that of Clostridium cluster IV lower (P=0·031) in the LIMx steers. There were no significant relationships between H2 emissions and microbial abundance. In conclusion, the rate of H2 production immediately after feeding may lead to transient overloading of methanogenic archaea capacity to use H2, resulting in peaks in H2 emissions from beef cattle.", + "Lower_Bound": "36.1", + "Upper_Bound": "42.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as kJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 3.31 kj/mj). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0) and converting to %. Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1017/s0007114514000932", + "creation_date": "2022-03-14T08:06:00.992Z", + "last_change_date": "2022-03-14T08:06:00.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10953, + "fields": { + "EF_ID": 423987, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "The seventy-two cross-bred steers used in the experiment were from a rotational cross between purebred Aberdeen Angus or Limousin sires and cross-bred dams of those genotypes and referred to as AAx and LIMx, respectively. The steers were fed two complete diets using a forage wagon, consisting (g/kg DM) of either 480 forage:520 concentrate (mixed) or 75 forage:925 concentrate (concentrate).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "AA and LIM mixed diet", + "Other_Properties": "", + "Value": "12.8", + "Unit": "mol/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Rooke, J.A., Wallace, R.J., Duthie, C-A., McKain, N., de Souza, S.M., Hyslop, J.J., Ross, D.W., Waterhouse, T. and Roehe, R. (2014). Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. British Journal of Nutrition 112, 398–407.", + "English_Abstract": "The aims of the present study were to quantify hydrogen (H2) and methane (CH4) emissions from beef cattle under different dietary conditions and to assess how cattle genotype and rumen microbial community affected these emissions. A total of thirty-six Aberdeen Angus-sired (AAx) and thirty-six Limousin-sired (LIMx) steers were fed two diets with forage:concentrate ratios (DM basis) of either 8:92 (concentrate) or 52:48 (mixed). Each diet was fed to eighteen animals of each genotype. Methane (CH4) and H2 emissions were measured individually in indirect respiration chambers. H2 emissions (mmol/min) varied greatly throughout the day, being highest after feed consumption, and averaged about 0.10 mol H2/mol CH4. Higher H2 emissions (mol/kg DM intake) were recorded in steers fed the mixed diet. Higher CH4 emissions (mol/d and mol/kg DM intake) were recorded in steers fed the mixed diet (P<0.001); the AAx steers produced more CH4 on a daily basis (mol/d, P<0.05) but not on a DM intake basis (mol/kg DM intake). Archaea (P=0.002) and protozoa (P<0.001) were found to be more abundant and total bacteria (P<0.001) less abundant (P<0.001) on feeding the mixed diet. The relative abundance of Clostridium cluster IV was found to be greater (P<0·001) and that of cluster XIVa (P=0.025) lower on feeding the mixed diet. The relative abundance of Bacteroides plus Prevotella was greater (P=0·018) and that of Clostridium cluster IV lower (P=0·031) in the LIMx steers. There were no significant relationships between H2 emissions and microbial abundance. In conclusion, the rate of H2 production immediately after feeding may lead to transient overloading of methanogenic archaea capacity to use H2, resulting in peaks in H2 emissions from beef cattle.", + "Lower_Bound": "12.1", + "Upper_Bound": "13.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as mol/d in the paper & converted to kg/year. The data in Table 3 was multiplied by 16 to convert from moles of methane to grams of methane before kg/head/year emissions were calculated. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.72 mol/day) and converted as above. Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1017/s0007114514000932", + "creation_date": "2022-03-14T08:06:01.110Z", + "last_change_date": "2022-03-14T08:06:01.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10954, + "fields": { + "EF_ID": 423988, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "The seventy-two cross-bred steers used in the experiment were from a rotational cross between purebred Aberdeen Angus or Limousin sires and cross-bred dams of those genotypes and referred to as AAx and LIMx, respectively. The steers were fed two complete diets using a forage wagon, consisting (g/kg DM) of either 480 forage:520 concentrate (mixed) or 75 forage:925 concentrate (concentrate).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "AA and LIM mixed diet", + "Other_Properties": "", + "Value": "62.95", + "Unit": "kJ/MJ GEI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Rooke, J.A., Wallace, R.J., Duthie, C-A., McKain, N., de Souza, S.M., Hyslop, J.J., Ross, D.W., Waterhouse, T. and Roehe, R. (2014). Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. British Journal of Nutrition 112, 398–407.", + "English_Abstract": "The aims of the present study were to quantify hydrogen (H2) and methane (CH4) emissions from beef cattle under different dietary conditions and to assess how cattle genotype and rumen microbial community affected these emissions. A total of thirty-six Aberdeen Angus-sired (AAx) and thirty-six Limousin-sired (LIMx) steers were fed two diets with forage:concentrate ratios (DM basis) of either 8:92 (concentrate) or 52:48 (mixed). Each diet was fed to eighteen animals of each genotype. Methane (CH4) and H2 emissions were measured individually in indirect respiration chambers. H2 emissions (mmol/min) varied greatly throughout the day, being highest after feed consumption, and averaged about 0.10 mol H2/mol CH4. Higher H2 emissions (mol/kg DM intake) were recorded in steers fed the mixed diet. Higher CH4 emissions (mol/d and mol/kg DM intake) were recorded in steers fed the mixed diet (P<0.001); the AAx steers produced more CH4 on a daily basis (mol/d, P<0.05) but not on a DM intake basis (mol/kg DM intake). Archaea (P=0.002) and protozoa (P<0.001) were found to be more abundant and total bacteria (P<0.001) less abundant (P<0.001) on feeding the mixed diet. The relative abundance of Clostridium cluster IV was found to be greater (P<0·001) and that of cluster XIVa (P=0.025) lower on feeding the mixed diet. The relative abundance of Bacteroides plus Prevotella was greater (P=0·018) and that of Clostridium cluster IV lower (P=0·031) in the LIMx steers. There were no significant relationships between H2 emissions and microbial abundance. In conclusion, the rate of H2 production immediately after feeding may lead to transient overloading of methanogenic archaea capacity to use H2, resulting in peaks in H2 emissions from beef cattle.", + "Lower_Bound": "59.6", + "Upper_Bound": "66.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as kJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 3.31 kj/mj). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0) and converting to %. Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1017/s0007114514000932", + "creation_date": "2022-03-14T08:06:01.227Z", + "last_change_date": "2022-03-14T08:06:01.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10955, + "fields": { + "EF_ID": 423989, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. They were fed two complete diets via a forage wagon consisting (g/kg DM basis) of either 480 forage: 520 concentrate (medium concentrate diet) or 75 forage: 925 concentrate (high-concentrate diet), respectively. The steers were on the diet for a minimum of 8 weeks before methane measurements were made.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Aberdeen Angus cross and Limousin cross High concentrate diet", + "Other_Properties": "", + "Value": "143.5", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Wallace, R.J., Rooke, J.A., Duthie, C-A, Hyslop, J.J., Ross, D.W., McKain, N., Motta de Souzam, S., Snelling, T., Waterhouse, A. and Roehe, R. (2014). Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Scientific Reports, 4:5892.", + "English_Abstract": "Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. Each group was split to receive either a medium- or high-concentrate diet. Ruminal digesta samples were subsequently removed to investigate correlations between methane emissions and the rumen microbial community, as measured by qPCR of 16S or 18S rRNA genes. Diet had the greatest influence on methane emissions. The high-concentrate diet resulted in lower methane emissions (P <0.001) than the medium-concentrate diet. Methane was correlated, irrespective of breed, with the abundance of archaea (R = 0.39), bacteria (-0.47), protozoa (0.45), Bacteroidetes (-0.37) and Clostridium Cluster XIVa (-0.35). The archaea:bacteria ratio provided a stronger correlation (0.49). A similar correlation was found with digesta samples taken 2–3 weeks later at slaughter. This finding could help enable greenhouse gas emissions of large animal cohorts to be predicted from samples taken conveniently in the abattoir.", + "Lower_Bound": "132", + "Upper_Bound": "155", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 2, SED = 11.5 g/day or 4.2 kg/yr). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep05892", + "creation_date": "2022-03-14T08:06:01.361Z", + "last_change_date": "2022-03-14T08:06:01.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10956, + "fields": { + "EF_ID": 423990, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. They were fed two complete diets via a forage wagon consisting (g/kg DM basis) of either 480 forage: 520 concentrate (medium concentrate diet) or 75 forage: 925 concentrate (high-concentrate diet), respectively. The steers were on the diet for a minimum of 8 weeks before methane measurements were made.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Aberdeen Angus cross and Limousin cross High concentrate diet", + "Other_Properties": "", + "Value": "39.45", + "Unit": "kJ/MJ GEI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Wallace, R.J., Rooke, J.A., Duthie, C-A, Hyslop, J.J., Ross, D.W., McKain, N., Motta de Souzam, S., Snelling, T., Waterhouse, A. and Roehe, R. (2014). Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Scientific Reports, 4:5892.", + "English_Abstract": "Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. Each group was split to receive either a medium- or high-concentrate diet. Ruminal digesta samples were subsequently removed to investigate correlations between methane emissions and the rumen microbial community, as measured by qPCR of 16S or 18S rRNA genes. Diet had the greatest influence on methane emissions. The high-concentrate diet resulted in lower methane emissions (P <0.001) than the medium-concentrate diet. Methane was correlated, irrespective of breed, with the abundance of archaea (R = 0.39), bacteria (-0.47), protozoa (0.45), Bacteroidetes (-0.37) and Clostridium Cluster XIVa (-0.35). The archaea:bacteria ratio provided a stronger correlation (0.49). A similar correlation was found with digesta samples taken 2–3 weeks later at slaughter. This finding could help enable greenhouse gas emissions of large animal cohorts to be predicted from samples taken conveniently in the abattoir.", + "Lower_Bound": "36.1", + "Upper_Bound": "42.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as kJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 2, SED = 3.31 kj/MJ). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep05892", + "creation_date": "2022-03-14T08:06:01.445Z", + "last_change_date": "2022-03-14T08:06:01.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10957, + "fields": { + "EF_ID": 423991, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. They were fed two complete diets via a forage wagon consisting (g/kg DM basis) of either 480 forage: 520 concentrate (medium concentrate diet) or 75 forage: 925 concentrate (high-concentrate diet), respectively. The steers were on the diet for a minimum of 8 weeks before methane measurements were made.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Aberdeen Angus cross and Limousin cross Medium concentrate diet", + "Other_Properties": "", + "Value": "205", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Wallace, R.J., Rooke, J.A., Duthie, C-A, Hyslop, J.J., Ross, D.W., McKain, N., Motta de Souzam, S., Snelling, T., Waterhouse, A. and Roehe, R. (2014). Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Scientific Reports, 4:5892.", + "English_Abstract": "Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. Each group was split to receive either a medium- or high-concentrate diet. Ruminal digesta samples were subsequently removed to investigate correlations between methane emissions and the rumen microbial community, as measured by qPCR of 16S or 18S rRNA genes. Diet had the greatest influence on methane emissions. The high-concentrate diet resulted in lower methane emissions (P <0.001) than the medium-concentrate diet. Methane was correlated, irrespective of breed, with the abundance of archaea (R = 0.39), bacteria (-0.47), protozoa (0.45), Bacteroidetes (-0.37) and Clostridium Cluster XIVa (-0.35). The archaea:bacteria ratio provided a stronger correlation (0.49). A similar correlation was found with digesta samples taken 2–3 weeks later at slaughter. This finding could help enable greenhouse gas emissions of large animal cohorts to be predicted from samples taken conveniently in the abattoir.", + "Lower_Bound": "193.5", + "Upper_Bound": "216.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 2, SED = 11.5 g/day or 4.2 kg/yr). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep05892", + "creation_date": "2022-03-14T08:06:01.529Z", + "last_change_date": "2022-03-14T08:06:01.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10958, + "fields": { + "EF_ID": 423992, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. They were fed two complete diets via a forage wagon consisting (g/kg DM basis) of either 480 forage: 520 concentrate (medium concentrate diet) or 75 forage: 925 concentrate (high-concentrate diet), respectively. The steers were on the diet for a minimum of 8 weeks before methane measurements were made.", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Aberdeen Angus cross and Limousin cross Medium concentrate diet", + "Other_Properties": "", + "Value": "62.95", + "Unit": "kJ/MJ GEI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Wallace, R.J., Rooke, J.A., Duthie, C-A, Hyslop, J.J., Ross, D.W., McKain, N., Motta de Souzam, S., Snelling, T., Waterhouse, A. and Roehe, R. (2014). Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle. Scientific Reports, 4:5892.", + "English_Abstract": "Methane produced from 35 Aberdeen-Angus and 33 Limousin cross steers was measured in respiration chambers. Each group was split to receive either a medium- or high-concentrate diet. Ruminal digesta samples were subsequently removed to investigate correlations between methane emissions and the rumen microbial community, as measured by qPCR of 16S or 18S rRNA genes. Diet had the greatest influence on methane emissions. The high-concentrate diet resulted in lower methane emissions (P <0.001) than the medium-concentrate diet. Methane was correlated, irrespective of breed, with the abundance of archaea (R = 0.39), bacteria (-0.47), protozoa (0.45), Bacteroidetes (-0.37) and Clostridium Cluster XIVa (-0.35). The archaea:bacteria ratio provided a stronger correlation (0.49). A similar correlation was found with digesta samples taken 2–3 weeks later at slaughter. This finding could help enable greenhouse gas emissions of large animal cohorts to be predicted from samples taken conveniently in the abattoir.", + "Lower_Bound": "59.64", + "Upper_Bound": "66.26", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as kJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 2, SED = 3.31 kj/MJ). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep05892", + "creation_date": "2022-03-14T08:06:01.621Z", + "last_change_date": "2022-03-14T08:06:01.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10959, + "fields": { + "EF_ID": 423993, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for sheep", + "Technology_Practices": "Welsh mountain, Scottish Blackface, Welsh Mule (Welsh Mountain x Border Leicester) and Texel sheep fed a diet of monoculture perennial ryegrass (Lolium perenne). Sheep housed and fed herbage cut from a recent re-seed of monoculture perennial ryegrass (Lolium perenne)", + "Parameter_Conditions": "Mature barren Ewes", + "Regional_Conditions": "Wales, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.5", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Moorby, J.M. Fleming, H.R., Theobald, V.J. and Fraser, D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports. 5, 17915; doi: 10.1038/srep17915.", + "English_Abstract": "To test the hypothesis that sheep live weight (LW) could be used to improve enteric methane (CH4) emission calculations, mature ewes of 4 different breeds representative of the UK sheep industry were studied: Welsh Mountain, Scottish Blackface, Welsh Mule and Texel (n = 8 per breed). The ewes were housed and offered ad libitum access to fresh cut pasture of three different types, varying in digestibility: (a) a relatively high digestibility monoculture of perennial ryegrass (Lolium perenne), (b) a medium digestibility permanent pasture comprising a range of grass species, and (c) a relatively low digestibility native grassland pasture comprising mainly Molinia caerulea. Individual LW, feed dry matter intake (DMI), and CH4 emissions in chambers were measured. The linear functional relationship between DMI and CH4 emissions was positive (r = 0.77) with little breed effect. The relationships between LW and DMI, and LW and CH4 emissions were also positive but weaker, regardless of pasture type. It is concluded that change to LW was a poor indicator of DMI and has limited value in the prediction of enteric CH4 emissions from mature ewes.", + "Lower_Bound": "7.7", + "Upper_Bound": "9.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 1.11). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.048).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep17915", + "creation_date": "2022-03-14T08:06:01.723Z", + "last_change_date": "2022-03-14T08:06:01.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10960, + "fields": { + "EF_ID": 423994, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for sheep", + "Technology_Practices": "Welsh mountain, Scottish Blackface, Welsh Mule (Welsh Mountain x Border Leicester) and Texel sheep fed a diet of monoculture perennial ryegrass (Lolium perenne). Sheep housed and fed herbage cut from a recent re-seed of monoculture perennial ryegrass (Lolium perenne)", + "Parameter_Conditions": "Mature barren Ewes", + "Regional_Conditions": "Wales, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.68", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Moorby, J.M. Fleming, H.R., Theobald, V.J. and Fraser, D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports. 5, 17915; doi: 10.1038/srep17915.", + "English_Abstract": "To test the hypothesis that sheep live weight (LW) could be used to improve enteric methane (CH4) emission calculations, mature ewes of 4 different breeds representative of the UK sheep industry were studied: Welsh Mountain, Scottish Blackface, Welsh Mule and Texel (n = 8 per breed). The ewes were housed and offered ad libitum access to fresh cut pasture of three different types, varying in digestibility: (a) a relatively high digestibility monoculture of perennial ryegrass (Lolium perenne), (b) a medium digestibility permanent pasture comprising a range of grass species, and (c) a relatively low digestibility native grassland pasture comprising mainly Molinia caerulea. Individual LW, feed dry matter intake (DMI), and CH4 emissions in chambers were measured. The linear functional relationship between DMI and CH4 emissions was positive (r = 0.77) with little breed effect. The relationships between LW and DMI, and LW and CH4 emissions were also positive but weaker, regardless of pasture type. It is concluded that change to LW was a poor indicator of DMI and has limited value in the prediction of enteric CH4 emissions from mature ewes.", + "Lower_Bound": "5.39", + "Upper_Bound": "5.96", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.39). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.048).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep17915", + "creation_date": "2022-03-14T08:06:01.823Z", + "last_change_date": "2022-03-14T08:06:01.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10961, + "fields": { + "EF_ID": 423995, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for sheep", + "Technology_Practices": "Welsh mountain, Scottish Blackface, Welsh Mule (Welsh Mountain x Border Leicester) and Texel sheep fed a diet of permanent pasture. Sheep housed and fed herbage cut from a permanent pasture with Holcus lanatus (38%), Agrostis spp. (27%), Lolium perenne (15%) and Festuca spp. (15%) as the main components.", + "Parameter_Conditions": "Mature barren Ewes", + "Regional_Conditions": "Wales, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Moorby, J.M. Fleming, H.R., Theobald, V.J. and Fraser, D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports. 5, 17915; doi: 10.1038/srep17915.", + "English_Abstract": "To test the hypothesis that sheep live weight (LW) could be used to improve enteric methane (CH4) emission calculations, mature ewes of 4 different breeds representative of the UK sheep industry were studied: Welsh Mountain, Scottish Blackface, Welsh Mule and Texel (n = 8 per breed). The ewes were housed and offered ad libitum access to fresh cut pasture of three different types, varying in digestibility: (a) a relatively high digestibility monoculture of perennial ryegrass (Lolium perenne), (b) a medium digestibility permanent pasture comprising a range of grass species, and (c) a relatively low digestibility native grassland pasture comprising mainly Molinia caerulea. Individual LW, feed dry matter intake (DMI), and CH4 emissions in chambers were measured. The linear functional relationship between DMI and CH4 emissions was positive (r = 0.77) with little breed effect. The relationships between LW and DMI, and LW and CH4 emissions were also positive but weaker, regardless of pasture type. It is concluded that change to LW was a poor indicator of DMI and has limited value in the prediction of enteric CH4 emissions from mature ewes.", + "Lower_Bound": "4.4", + "Upper_Bound": "5.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.76). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.048).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep17915", + "creation_date": "2022-03-14T08:06:01.924Z", + "last_change_date": "2022-03-14T08:06:01.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10962, + "fields": { + "EF_ID": 423996, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for sheep.", + "Technology_Practices": "Welsh mountain, Scottish Blackface, Welsh Mule (Welsh Mountain x Border Leicester) and Texel sheep fed a diet of permanent pasture. Sheep housed and fed herbage cut from a permanent pasture with Holcus lanatus (38%), Agrostis spp. (27%), Lolium perenne (15%) and Festuca spp. (15%) as the main components.", + "Parameter_Conditions": "Mature barren Ewes", + "Regional_Conditions": "Wales, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.53", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Moorby, J.M. Fleming, H.R., Theobald, V.J. and Fraser, D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports. 5, 17915; doi: 10.1038/srep17915.", + "English_Abstract": "To test the hypothesis that sheep live weight (LW) could be used to improve enteric methane (CH4) emission calculations, mature ewes of 4 different breeds representative of the UK sheep industry were studied: Welsh Mountain, Scottish Blackface, Welsh Mule and Texel (n = 8 per breed). The ewes were housed and offered ad libitum access to fresh cut pasture of three different types, varying in digestibility: (a) a relatively high digestibility monoculture of perennial ryegrass (Lolium perenne), (b) a medium digestibility permanent pasture comprising a range of grass species, and (c) a relatively low digestibility native grassland pasture comprising mainly Molinia caerulea. Individual LW, feed dry matter intake (DMI), and CH4 emissions in chambers were measured. The linear functional relationship between DMI and CH4 emissions was positive (r = 0.77) with little breed effect. The relationships between LW and DMI, and LW and CH4 emissions were also positive but weaker, regardless of pasture type. It is concluded that change to LW was a poor indicator of DMI and has limited value in the prediction of enteric CH4 emissions from mature ewes.", + "Lower_Bound": "4.32", + "Upper_Bound": "4.73", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.28). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.048).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep17915", + "creation_date": "2022-03-14T08:06:02.041Z", + "last_change_date": "2022-03-14T08:06:02.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10963, + "fields": { + "EF_ID": 423997, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for sheep", + "Technology_Practices": "Welsh mountain, Scottish Blackface, Welsh Mule (Welsh Mountain x Border Leicester) and Texel sheep fed on a diet of Molinia caerulea. Sheep housed and fed herbage cut from a Molinia caerulea - dominated native grassland", + "Parameter_Conditions": "Mature barren Ewes", + "Regional_Conditions": "Wales, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.4", + "Unit": "kg/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Moorby, J.M. Fleming, H.R., Theobald, V.J. and Fraser, D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports. 5, 17915; doi: 10.1038/srep17915.", + "English_Abstract": "To test the hypothesis that sheep live weight (LW) could be used to improve enteric methane (CH4) emission calculations, mature ewes of 4 different breeds representative of the UK sheep industry were studied: Welsh Mountain, Scottish Blackface, Welsh Mule and Texel (n = 8 per breed). The ewes were housed and offered ad libitum access to fresh cut pasture of three different types, varying in digestibility: (a) a relatively high digestibility monoculture of perennial ryegrass (Lolium perenne), (b) a medium digestibility permanent pasture comprising a range of grass species, and (c) a relatively low digestibility native grassland pasture comprising mainly Molinia caerulea. Individual LW, feed dry matter intake (DMI), and CH4 emissions in chambers were measured. The linear functional relationship between DMI and CH4 emissions was positive (r = 0.77) with little breed effect. The relationships between LW and DMI, and LW and CH4 emissions were also positive but weaker, regardless of pasture type. It is concluded that change to LW was a poor indicator of DMI and has limited value in the prediction of enteric CH4 emissions from mature ewes.", + "Lower_Bound": "4.03", + "Upper_Bound": "4.67", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.44). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.048).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep17915", + "creation_date": "2022-03-14T08:06:02.142Z", + "last_change_date": "2022-03-14T08:06:02.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10964, + "fields": { + "EF_ID": 423998, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for sheep.", + "Technology_Practices": "Welsh mountain, Scottish Blackface, Welsh Mule (Welsh Mountain x Border Leicester) and Texel sheep fed on a diet of Molinia caerulea. Sheep housed and fed herbage cut from a Molinia caerulea - dominated native grassland", + "Parameter_Conditions": "Mature barren Ewes", + "Regional_Conditions": "Wales, United Kingdom", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.03", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Moorby, J.M. Fleming, H.R., Theobald, V.J. and Fraser, D. (2015). Can live weight be used as a proxy for enteric methane emissions from pasture-fed sheep? Scientific Reports. 5, 17915; doi: 10.1038/srep17915.", + "English_Abstract": "To test the hypothesis that sheep live weight (LW) could be used to improve enteric methane (CH4) emission calculations, mature ewes of 4 different breeds representative of the UK sheep industry were studied: Welsh Mountain, Scottish Blackface, Welsh Mule and Texel (n = 8 per breed). The ewes were housed and offered ad libitum access to fresh cut pasture of three different types, varying in digestibility: (a) a relatively high digestibility monoculture of perennial ryegrass (Lolium perenne), (b) a medium digestibility permanent pasture comprising a range of grass species, and (c) a relatively low digestibility native grassland pasture comprising mainly Molinia caerulea. Individual LW, feed dry matter intake (DMI), and CH4 emissions in chambers were measured. The linear functional relationship between DMI and CH4 emissions was positive (r = 0.77) with little breed effect. The relationships between LW and DMI, and LW and CH4 emissions were also positive but weaker, regardless of pasture type. It is concluded that change to LW was a poor indicator of DMI and has limited value in the prediction of enteric CH4 emissions from mature ewes.", + "Lower_Bound": "3.65", + "Upper_Bound": "4.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.52). Determined by first calculating the standard error of the mean (SEM) adjusted to take into account the increased replication resulting from using the mean of several treatments. The adjusted SEM was then multiplied by the T-value (estimated as 2.048).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.nature.com/articles/srep17915", + "creation_date": "2022-03-14T08:06:02.242Z", + "last_change_date": "2022-03-14T08:06:02.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10965, + "fields": { + "EF_ID": 423999, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for sheep", + "Technology_Practices": "Hill hoggets fed on a diet of pelleted grass", + "Parameter_Conditions": "36 sheep in total, from two genotypes: 18 Scottish blackface and 18 Swaledale x Blackface, all aged 12 months old", + "Regional_Conditions": "Hillsborough, Co. Down, Northern Ireland, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zhao, Y.G., Aubry, A., Annett, R., O’Connell, N.E. and Yan. T. 2016. Enteric methane emissions and nitrogen utilisation efficiency for two genotype of hill hoggets offered fresh, ensiled and pelleted ryegrass. Livestock Science 188: 1-8", + "English_Abstract": "Thirty-six 12-month-old hill hoggets were used in a 2 genotype (18 Scottish Blackface vs. 18 Swaledale x Scottish Blackface) x 3 diet (fresh vs. ensiled vs. pelleted ryegrass) factorial design experiment to evaluate the effects of hogget genotype and forage type on enteric methane (CH4) emissions and nitrogen (N) utilisation. The hoggets were offered 3 diets ad libitum with no concentrate supplementation in a single period study with 6 hoggets for each of the 6 genotype x diet combinations (n=6). Fresh ryegrass was harvested daily in the morning. Pelleted ryegrass was sourced from a commercial supplier (Aylescott Driers & Feeds, Burrington, UK) and the ryegrass silage was ensiled with Ecosyl (Lactobacillus plantarum, Volac International Limited, Hertfordshire, UK) as an additive. The hoggets were housed in individual pens for at least 14 d before being transferred to individual respiration chambers for a further 4 d with feed intake, faeces and urine outputs and CH4 emissions measured. There was no significant interaction between genotype and forage type on any parameter evaluated. Sheep offered pelleted grass had greater feed intake (e.g. DM, energy and N) but less energy and nutrient apparent digestibility (e.g. DM, N and neutral detergent fibre (NDF)) than those given fresh grass or grass silage (P < 0.001). Feeding pelleted grass, rather than fresh grass or grass silage, reduced enteric CH4 emissions as a proportion of DM intake and gross energy (GE) intake (P < 0.01). Sheep offered fresh grass had a significantly lower acid detergent fibre (ADF) apparent digestibility, and CH4 energy output (CH4-E) as a proportion of GE intake than those offered grass silage (P < 0.001). There was no significant difference, in CH4 emission rate or N utilisation efficiency when compared between Scottish Blackface and Swaledale x Scottish Blackface. Linear and multiple regression techniques were used to develop relationships between CH4 emissions or N excretion and dietary and animal variables using data from sheep offered fresh ryegrass and grass silage. The equation relating CH4-E (MJ/d) to GE intake (GEI, MJ/d), energy apparent digestibility (DE/GE) and metabolisability (ME/GE) resulted in a high r2 (CH4-E=0.074 GEI+9.2 DE/GE-10.2 ME/GE-0.37, r2=0.93). N intake (NI) was the best predictor for manure N excretion (Manure N=0.66 NI+0.96, r2=0.85). The use of these relationships can potentially improve the precision and decrease the uncertainty in predicting CH4 emissions and N excretion for sheep production systems managed under the current feeding conditions.", + "Lower_Bound": "21.2", + "Upper_Bound": "26.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 1.90 g/d) converted to kg/head/day. Determined by first calculating the standard error of the mean (SEM) (SED/ √2) and then multiplying the SEM by the T-value (estimated as 2.0595).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S1871141316300518", + "creation_date": "2022-03-14T08:06:02.351Z", + "last_change_date": "2022-03-14T08:06:02.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10966, + "fields": { + "EF_ID": 424000, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for sheep.", + "Technology_Practices": "Hill hoggets fed on a diet of pelleted grass", + "Parameter_Conditions": "36 sheep in total, from two genotypes: 18 Scottish blackface and 18 Swaledale x Blackface, all aged 12 months old", + "Regional_Conditions": "Hillsborough, Co. Down, Northern Ireland, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.044", + "Unit": "GE intake MJ/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zhao, Y.G., Aubry, A., Annett, R., O’Connell, N.E. and Yan. T. 2016. Enteric methane emissions and nitrogen utilisation efficiency for two genotype of hill hoggets offered fresh, ensiled and pelleted ryegrass. Livestock Science 188: 1-8", + "English_Abstract": "Thirty-six 12-month-old hill hoggets were used in a 2 genotype (18 Scottish Blackface vs. 18 Swaledale x Scottish Blackface) x 3 diet (fresh vs. ensiled vs. pelleted ryegrass) factorial design experiment to evaluate the effects of hogget genotype and forage type on enteric methane (CH4) emissions and nitrogen (N) utilisation. The hoggets were offered 3 diets ad libitum with no concentrate supplementation in a single period study with 6 hoggets for each of the 6 genotype x diet combinations (n=6). Fresh ryegrass was harvested daily in the morning. Pelleted ryegrass was sourced from a commercial supplier (Aylescott Driers & Feeds, Burrington, UK) and the ryegrass silage was ensiled with Ecosyl (Lactobacillus plantarum, Volac International Limited, Hertfordshire, UK) as an additive. The hoggets were housed in individual pens for at least 14 d before being transferred to individual respiration chambers for a further 4 d with feed intake, faeces and urine outputs and CH4 emissions measured. There was no significant interaction between genotype and forage type on any parameter evaluated. Sheep offered pelleted grass had greater feed intake (e.g. DM, energy and N) but less energy and nutrient apparent digestibility (e.g. DM, N and neutral detergent fibre (NDF)) than those given fresh grass or grass silage (P < 0.001). Feeding pelleted grass, rather than fresh grass or grass silage, reduced enteric CH4 emissions as a proportion of DM intake and gross energy (GE) intake (P < 0.01). Sheep offered fresh grass had a significantly lower acid detergent fibre (ADF) apparent digestibility, and CH4 energy output (CH4-E) as a proportion of GE intake than those offered grass silage (P < 0.001). There was no significant difference, in CH4 emission rate or N utilisation efficiency when compared between Scottish Blackface and Swaledale x Scottish Blackface. Linear and multiple regression techniques were used to develop relationships between CH4 emissions or N excretion and dietary and animal variables using data from sheep offered fresh ryegrass and grass silage. The equation relating CH4-E (MJ/d) to GE intake (GEI, MJ/d), energy apparent digestibility (DE/GE) and metabolisability (ME/GE) resulted in a high r2 (CH4-E=0.074 GEI+9.2 DE/GE-10.2 ME/GE-0.37, r2=0.93). N intake (NI) was the best predictor for manure N excretion (Manure N=0.66 NI+0.96, r2=0.85). The use of these relationships can potentially improve the precision and decrease the uncertainty in predicting CH4 emissions and N excretion for sheep production systems managed under the current feeding conditions.", + "Lower_Bound": "0.038", + "Upper_Bound": "0.05", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as MJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.0039 mj/mj) converted to %. Determined by first calculating the standard error of the mean (SEM) (SED/ √2) and then multiplying the SEM by the T-value (estimated as 2.0595).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S1871141316300518", + "creation_date": "2022-03-14T08:06:02.468Z", + "last_change_date": "2022-03-14T08:06:02.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10967, + "fields": { + "EF_ID": 424001, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for sheep", + "Technology_Practices": "Hill hoggets fed on a diet of fresh ryegrass", + "Parameter_Conditions": "36 sheep in total, from two genotypes: 18 Scottish blackface and 18 Swaledale x Blackface, all aged 12 months old", + "Regional_Conditions": "Hillsborough, Co. Down, Northern Ireland, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.8", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zhao, Y.G., Aubry, A., Annett, R., O’Connell, N.E. and Yan. T. 2016. Enteric methane emissions and nitrogen utilisation efficiency for two genotype of hill hoggets offered fresh, ensiled and pelleted ryegrass. Livestock Science 188: 1-8", + "English_Abstract": "Thirty-six 12-month-old hill hoggets were used in a 2 genotype (18 Scottish Blackface vs. 18 Swaledale x Scottish Blackface) x 3 diet (fresh vs. ensiled vs. pelleted ryegrass) factorial design experiment to evaluate the effects of hogget genotype and forage type on enteric methane (CH4) emissions and nitrogen (N) utilisation. The hoggets were offered 3 diets ad libitum with no concentrate supplementation in a single period study with 6 hoggets for each of the 6 genotype x diet combinations (n=6). Fresh ryegrass was harvested daily in the morning. Pelleted ryegrass was sourced from a commercial supplier (Aylescott Driers & Feeds, Burrington, UK) and the ryegrass silage was ensiled with Ecosyl (Lactobacillus plantarum, Volac International Limited, Hertfordshire, UK) as an additive. The hoggets were housed in individual pens for at least 14 d before being transferred to individual respiration chambers for a further 4 d with feed intake, faeces and urine outputs and CH4 emissions measured. There was no significant interaction between genotype and forage type on any parameter evaluated. Sheep offered pelleted grass had greater feed intake (e.g. DM, energy and N) but less energy and nutrient apparent digestibility (e.g. DM, N and neutral detergent fibre (NDF)) than those given fresh grass or grass silage (P < 0.001). Feeding pelleted grass, rather than fresh grass or grass silage, reduced enteric CH4 emissions as a proportion of DM intake and gross energy (GE) intake (P < 0.01). Sheep offered fresh grass had a significantly lower acid detergent fibre (ADF) apparent digestibility, and CH4 energy output (CH4-E) as a proportion of GE intake than those offered grass silage (P < 0.001). There was no significant difference, in CH4 emission rate or N utilisation efficiency when compared between Scottish Blackface and Swaledale x Scottish Blackface. Linear and multiple regression techniques were used to develop relationships between CH4 emissions or N excretion and dietary and animal variables using data from sheep offered fresh ryegrass and grass silage. The equation relating CH4-E (MJ/d) to GE intake (GEI, MJ/d), energy apparent digestibility (DE/GE) and metabolisability (ME/GE) resulted in a high r2 (CH4-E=0.074 GEI+9.2 DE/GE-10.2 ME/GE-0.37, r2=0.93). N intake (NI) was the best predictor for manure N excretion (Manure N=0.66 NI+0.96, r2=0.85). The use of these relationships can potentially improve the precision and decrease the uncertainty in predicting CH4 emissions and N excretion for sheep production systems managed under the current feeding conditions.", + "Lower_Bound": "15", + "Upper_Bound": "20.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 1.90 g/d) converted to kg/head/day. Determined by first calculating the standard error of the mean (SEM) (SED/ √2) and then multiplying the SEM by the T-value (estimated as 2.0595).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S1871141316300518", + "creation_date": "2022-03-14T08:06:02.578Z", + "last_change_date": "2022-03-14T08:06:02.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10968, + "fields": { + "EF_ID": 424002, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for sheep.", + "Technology_Practices": "Hill hoggets fed on a diet of fresh ryegrass", + "Parameter_Conditions": "36 sheep in total, from two genotypes: 18 Scottish blackface and 18 Swaledale x Blackface, all aged 12 months old", + "Regional_Conditions": "Hillsborough, Co. Down, Northern Ireland, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.057", + "Unit": "GE intake MJ/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zhao, Y.G., Aubry, A., Annett, R., O’Connell, N.E. and Yan. T. 2016. Enteric methane emissions and nitrogen utilisation efficiency for two genotype of hill hoggets offered fresh, ensiled and pelleted ryegrass. Livestock Science 188: 1-8", + "English_Abstract": "Thirty-six 12-month-old hill hoggets were used in a 2 genotype (18 Scottish Blackface vs. 18 Swaledale x Scottish Blackface) x 3 diet (fresh vs. ensiled vs. pelleted ryegrass) factorial design experiment to evaluate the effects of hogget genotype and forage type on enteric methane (CH4) emissions and nitrogen (N) utilisation. The hoggets were offered 3 diets ad libitum with no concentrate supplementation in a single period study with 6 hoggets for each of the 6 genotype x diet combinations (n=6). Fresh ryegrass was harvested daily in the morning. Pelleted ryegrass was sourced from a commercial supplier (Aylescott Driers & Feeds, Burrington, UK) and the ryegrass silage was ensiled with Ecosyl (Lactobacillus plantarum, Volac International Limited, Hertfordshire, UK) as an additive. The hoggets were housed in individual pens for at least 14 d before being transferred to individual respiration chambers for a further 4 d with feed intake, faeces and urine outputs and CH4 emissions measured. There was no significant interaction between genotype and forage type on any parameter evaluated. Sheep offered pelleted grass had greater feed intake (e.g. DM, energy and N) but less energy and nutrient apparent digestibility (e.g. DM, N and neutral detergent fibre (NDF)) than those given fresh grass or grass silage (P < 0.001). Feeding pelleted grass, rather than fresh grass or grass silage, reduced enteric CH4 emissions as a proportion of DM intake and gross energy (GE) intake (P < 0.01). Sheep offered fresh grass had a significantly lower acid detergent fibre (ADF) apparent digestibility, and CH4 energy output (CH4-E) as a proportion of GE intake than those offered grass silage (P < 0.001). There was no significant difference, in CH4 emission rate or N utilisation efficiency when compared between Scottish Blackface and Swaledale x Scottish Blackface. Linear and multiple regression techniques were used to develop relationships between CH4 emissions or N excretion and dietary and animal variables using data from sheep offered fresh ryegrass and grass silage. The equation relating CH4-E (MJ/d) to GE intake (GEI, MJ/d), energy apparent digestibility (DE/GE) and metabolisability (ME/GE) resulted in a high r2 (CH4-E=0.074 GEI+9.2 DE/GE-10.2 ME/GE-0.37, r2=0.93). N intake (NI) was the best predictor for manure N excretion (Manure N=0.66 NI+0.96, r2=0.85). The use of these relationships can potentially improve the precision and decrease the uncertainty in predicting CH4 emissions and N excretion for sheep production systems managed under the current feeding conditions.", + "Lower_Bound": "0.051", + "Upper_Bound": "0.063", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as MJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.0039 mj/mj) converted to %. Determined by first calculating the standard error of the mean (SEM) (SED/ √2) and then multiplying the SEM by the T-value (estimated as 2.0595).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S1871141316300518", + "creation_date": "2022-03-14T08:06:02.703Z", + "last_change_date": "2022-03-14T08:06:02.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10969, + "fields": { + "EF_ID": 424003, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for sheep", + "Technology_Practices": "Hill hoggets fed on a diet of grass silage", + "Parameter_Conditions": "36 sheep in total, from two genotypes: 18 Scottish blackface and 18 Swaledale x Blackface, all aged 12 months old", + "Regional_Conditions": "Hillsborough, Co. Down, Northern Ireland, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.3", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zhao, Y.G., Aubry, A., Annett, R., O’Connell, N.E. and Yan. T. 2016. Enteric methane emissions and nitrogen utilisation efficiency for two genotype of hill hoggets offered fresh, ensiled and pelleted ryegrass. Livestock Science 188: 1-8", + "English_Abstract": "Thirty-six 12-month-old hill hoggets were used in a 2 genotype (18 Scottish Blackface vs. 18 Swaledale x Scottish Blackface) x 3 diet (fresh vs. ensiled vs. pelleted ryegrass) factorial design experiment to evaluate the effects of hogget genotype and forage type on enteric methane (CH4) emissions and nitrogen (N) utilisation. The hoggets were offered 3 diets ad libitum with no concentrate supplementation in a single period study with 6 hoggets for each of the 6 genotype x diet combinations (n=6). Fresh ryegrass was harvested daily in the morning. Pelleted ryegrass was sourced from a commercial supplier (Aylescott Driers & Feeds, Burrington, UK) and the ryegrass silage was ensiled with Ecosyl (Lactobacillus plantarum, Volac International Limited, Hertfordshire, UK) as an additive. The hoggets were housed in individual pens for at least 14 d before being transferred to individual respiration chambers for a further 4 d with feed intake, faeces and urine outputs and CH4 emissions measured. There was no significant interaction between genotype and forage type on any parameter evaluated. Sheep offered pelleted grass had greater feed intake (e.g. DM, energy and N) but less energy and nutrient apparent digestibility (e.g. DM, N and neutral detergent fibre (NDF)) than those given fresh grass or grass silage (P < 0.001). Feeding pelleted grass, rather than fresh grass or grass silage, reduced enteric CH4 emissions as a proportion of DM intake and gross energy (GE) intake (P < 0.01). Sheep offered fresh grass had a significantly lower acid detergent fibre (ADF) apparent digestibility, and CH4 energy output (CH4-E) as a proportion of GE intake than those offered grass silage (P < 0.001). There was no significant difference, in CH4 emission rate or N utilisation efficiency when compared between Scottish Blackface and Swaledale x Scottish Blackface. Linear and multiple regression techniques were used to develop relationships between CH4 emissions or N excretion and dietary and animal variables using data from sheep offered fresh ryegrass and grass silage. The equation relating CH4-E (MJ/d) to GE intake (GEI, MJ/d), energy apparent digestibility (DE/GE) and metabolisability (ME/GE) resulted in a high r2 (CH4-E=0.074 GEI+9.2 DE/GE-10.2 ME/GE-0.37, r2=0.93). N intake (NI) was the best predictor for manure N excretion (Manure N=0.66 NI+0.96, r2=0.85). The use of these relationships can potentially improve the precision and decrease the uncertainty in predicting CH4 emissions and N excretion for sheep production systems managed under the current feeding conditions.", + "Lower_Bound": "14.5", + "Upper_Bound": "20.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 1.90 g/d) converted to kg/head/day. Determined by first calculating the standard error of the mean (SEM) (SED/ √2) and then multiplying the SEM by the T-value (estimated as 2.0595).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S1871141316300518", + "creation_date": "2022-03-14T08:06:02.812Z", + "last_change_date": "2022-03-14T08:06:02.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10970, + "fields": { + "EF_ID": 424004, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for sheep.", + "Technology_Practices": "Hill hoggets fed on a diet of grass silage", + "Parameter_Conditions": "36 sheep in total, from two genotypes: 18 Scottish blackface and 18 Swaledale x Blackface, all aged 12 months old", + "Regional_Conditions": "Hillsborough, Co. Down, Northern Ireland, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.067", + "Unit": "GE intake MJ/MJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Zhao, Y.G., Aubry, A., Annett, R., O’Connell, N.E. and Yan. T. 2016. Enteric methane emissions and nitrogen utilisation efficiency for two genotype of hill hoggets offered fresh, ensiled and pelleted ryegrass. Livestock Science 188: 1-8", + "English_Abstract": "Thirty-six 12-month-old hill hoggets were used in a 2 genotype (18 Scottish Blackface vs. 18 Swaledale x Scottish Blackface) x 3 diet (fresh vs. ensiled vs. pelleted ryegrass) factorial design experiment to evaluate the effects of hogget genotype and forage type on enteric methane (CH4) emissions and nitrogen (N) utilisation. The hoggets were offered 3 diets ad libitum with no concentrate supplementation in a single period study with 6 hoggets for each of the 6 genotype x diet combinations (n=6). Fresh ryegrass was harvested daily in the morning. Pelleted ryegrass was sourced from a commercial supplier (Aylescott Driers & Feeds, Burrington, UK) and the ryegrass silage was ensiled with Ecosyl (Lactobacillus plantarum, Volac International Limited, Hertfordshire, UK) as an additive. The hoggets were housed in individual pens for at least 14 d before being transferred to individual respiration chambers for a further 4 d with feed intake, faeces and urine outputs and CH4 emissions measured. There was no significant interaction between genotype and forage type on any parameter evaluated. Sheep offered pelleted grass had greater feed intake (e.g. DM, energy and N) but less energy and nutrient apparent digestibility (e.g. DM, N and neutral detergent fibre (NDF)) than those given fresh grass or grass silage (P < 0.001). Feeding pelleted grass, rather than fresh grass or grass silage, reduced enteric CH4 emissions as a proportion of DM intake and gross energy (GE) intake (P < 0.01). Sheep offered fresh grass had a significantly lower acid detergent fibre (ADF) apparent digestibility, and CH4 energy output (CH4-E) as a proportion of GE intake than those offered grass silage (P < 0.001). There was no significant difference, in CH4 emission rate or N utilisation efficiency when compared between Scottish Blackface and Swaledale x Scottish Blackface. Linear and multiple regression techniques were used to develop relationships between CH4 emissions or N excretion and dietary and animal variables using data from sheep offered fresh ryegrass and grass silage. The equation relating CH4-E (MJ/d) to GE intake (GEI, MJ/d), energy apparent digestibility (DE/GE) and metabolisability (ME/GE) resulted in a high r2 (CH4-E=0.074 GEI+9.2 DE/GE-10.2 ME/GE-0.37, r2=0.93). N intake (NI) was the best predictor for manure N excretion (Manure N=0.66 NI+0.96, r2=0.85). The use of these relationships can potentially improve the precision and decrease the uncertainty in predicting CH4 emissions and N excretion for sheep production systems managed under the current feeding conditions.", + "Lower_Bound": "0.061", + "Upper_Bound": "0.073", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane conversion factor reported as MJ/MJ in the paper & converted to %. 95% confidence limits are calculated from the standard error of the difference (SED) between means (as reported in Table 3, SED = 0.0039 mj/mj) converted to %. Determined by first calculating the standard error of the mean (SEM) (SED/ √2) and then multiplying the SEM by the T-value (estimated as 2.0595).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S1871141316300518", + "creation_date": "2022-03-14T08:06:02.921Z", + "last_change_date": "2022-03-14T08:06:02.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10971, + "fields": { + "EF_ID": 424005, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four growing Holstein Friesian dairy heifers were used in a 4 x 4 Latin square design experiment with five week periods. Heifers were incrementally acclimatised to (ryegrass, clover, trefoil or flower based) haylages over four days at the beginning of each period. Thereafter, the first four weeks consisted of adaptation to haylages with feed intakes measured using an electronic Calan Broadbent individual feeding system. In week five, animals were staggered in pairs into two individual respiration chambers for five days. Animals that were not in respiration chambers were housed in a group pen under the same manage-ment regimes. While in respiration chambers measurements of diet composition, dry matter (DM) intake, faecal and urine excretion, and energy and N excretion occurred, with methane emissions measured over the last four days.", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Diet: ryegrass based haylage", + "Other_Properties": "", + "Value": "230", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Humphries, D.J., Westbury, D.B., Thompson, A., Crompton, L.A., Kirton, P., Green, C. and Reynolds, C.K. (2014). The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agriculture, Ecosystems and Environment, 197, 88-95.", + "English_Abstract": "Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 x 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g/kg DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg/day). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g/kg) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. -4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g/kg), 18% lower DMD (P < 0.01, 585 vs. 713 g/kg), 42% lower CPD (P < 0.001, 407 vs. 699 g/kg), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g/kg DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.", + "Lower_Bound": "208", + "Upper_Bound": "252", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 3 (SEM = 9.0 g/day or 3.3 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880914003764", + "creation_date": "2022-03-14T08:06:03.039Z", + "last_change_date": "2022-03-14T08:06:03.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10972, + "fields": { + "EF_ID": 424006, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four growing Holstein Friesian dairy heifers were used in a 4 x 4 Latin square design experiment with five week periods. Heifers were incrementally acclimatised to (ryegrass, clover, trefoil or flower based) haylages over four days at the beginning of each period. Thereafter, the first four weeks consisted of adaptation to haylages with feed intakes measured using an electronic Calan Broadbent individual feeding system. In week five, animals were staggered in pairs into two individual respiration chambers for five days. Animals that were not in respiration chambers were housed in a group pen under the same manage-ment regimes. While in respiration chambers measurements of diet composition, dry matter (DM) intake, faecal and urine excretion, and energy and N excretion occurred, with methane emissions measured over the last four days.", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Diet: ryegrass based haylage", + "Other_Properties": "", + "Value": "8.67", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Humphries, D.J., Westbury, D.B., Thompson, A., Crompton, L.A., Kirton, P., Green, C. and Reynolds, C.K. (2014). The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agriculture, Ecosystems and Environment, 197, 88-95.", + "English_Abstract": "Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 x 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g/kg DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg/day). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g/kg) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. -4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g/kg), 18% lower DMD (P < 0.01, 585 vs. 713 g/kg), 42% lower CPD (P < 0.001, 407 vs. 699 g/kg), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g/kg DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.", + "Lower_Bound": "8.13", + "Upper_Bound": "9.21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 4 (SEM = 0.219) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880914003764", + "creation_date": "2022-03-14T08:06:03.139Z", + "last_change_date": "2022-03-14T08:06:03.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10973, + "fields": { + "EF_ID": 424007, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four growing Holstein Friesian dairy heifers were used in a 4 x 4 Latin square design experiment with five week periods. Heifers were incrementally acclimatised to (ryegrass, clover, trefoil or flower based) haylages over four days at the beginning of each period. Thereafter, the first four weeks consisted of adaptation to haylages with feed intakes measured using an electronic Calan Broadbent individual feeding system. In week five, animals were staggered in pairs into two individual respiration chambers for five days. Animals that were not in respiration chambers were housed in a group pen under the same manage-ment regimes. While in respiration chambers measurements of diet composition, dry matter (DM) intake, faecal and urine excretion, and energy and N excretion occurred, with methane emissions measured over the last four days.", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Diet: clover based haylage", + "Other_Properties": "", + "Value": "200", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Humphries, D.J., Westbury, D.B., Thompson, A., Crompton, L.A., Kirton, P., Green, C. and Reynolds, C.K. (2014). The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agriculture, Ecosystems and Environment, 197, 88-95.", + "English_Abstract": "Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 x 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g/kg DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg/day). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g/kg) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. -4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g/kg), 18% lower DMD (P < 0.01, 585 vs. 713 g/kg), 42% lower CPD (P < 0.001, 407 vs. 699 g/kg), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g/kg DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.", + "Lower_Bound": "178", + "Upper_Bound": "222", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 3 (SEM = 9.0 g/day or 3.3 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880914003764", + "creation_date": "2022-03-14T08:06:03.239Z", + "last_change_date": "2022-03-14T08:06:03.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10974, + "fields": { + "EF_ID": 424008, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four growing Holstein Friesian dairy heifers were used in a 4 x 4 Latin square design experiment with five week periods. Heifers were incrementally acclimatised to (ryegrass, clover, trefoil or flower based) haylages over four days at the beginning of each period. Thereafter, the first four weeks consisted of adaptation to haylages with feed intakes measured using an electronic Calan Broadbent individual feeding system. In week five, animals were staggered in pairs into two individual respiration chambers for five days. Animals that were not in respiration chambers were housed in a group pen under the same manage-ment regimes. While in respiration chambers measurements of diet composition, dry matter (DM) intake, faecal and urine excretion, and energy and N excretion occurred, with methane emissions measured over the last four days.", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Diet: clover based haylage", + "Other_Properties": "", + "Value": "8.85", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Humphries, D.J., Westbury, D.B., Thompson, A., Crompton, L.A., Kirton, P., Green, C. and Reynolds, C.K. (2014). The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agriculture, Ecosystems and Environment, 197, 88-95.", + "English_Abstract": "Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 x 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g/kg DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg/day). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g/kg) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. -4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g/kg), 18% lower DMD (P < 0.01, 585 vs. 713 g/kg), 42% lower CPD (P < 0.001, 407 vs. 699 g/kg), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g/kg DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.", + "Lower_Bound": "8.31", + "Upper_Bound": "9.39", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 4 (SEM = 0.219) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880914003764", + "creation_date": "2022-03-14T08:06:03.341Z", + "last_change_date": "2022-03-14T08:06:03.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10975, + "fields": { + "EF_ID": 424009, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four growing Holstein Friesian dairy heifers were used in a 4 x 4 Latin square design experiment with five week periods. Heifers were incrementally acclimatised to (ryegrass, clover, trefoil or flower based) haylages over four days at the beginning of each period. Thereafter, the first four weeks consisted of adaptation to haylages with feed intakes measured using an electronic Calan Broadbent individual feeding system. In week five, animals were staggered in pairs into two individual respiration chambers for five days. Animals that were not in respiration chambers were housed in a group pen under the same manage-ment regimes. While in respiration chambers measurements of diet composition, dry matter (DM) intake, faecal and urine excretion, and energy and N excretion occurred, with methane emissions measured over the last four days.", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Diet: trefoil based haylage", + "Other_Properties": "", + "Value": "218", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Humphries, D.J., Westbury, D.B., Thompson, A., Crompton, L.A., Kirton, P., Green, C. and Reynolds, C.K. (2014). The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agriculture, Ecosystems and Environment, 197, 88-95.", + "English_Abstract": "Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 x 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g/kg DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg/day). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g/kg) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. -4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g/kg), 18% lower DMD (P < 0.01, 585 vs. 713 g/kg), 42% lower CPD (P < 0.001, 407 vs. 699 g/kg), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g/kg DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.", + "Lower_Bound": "196", + "Upper_Bound": "240", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 3 (SEM = 9.0 g/day or 3.3 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880914003764", + "creation_date": "2022-03-14T08:06:03.442Z", + "last_change_date": "2022-03-14T08:06:03.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10976, + "fields": { + "EF_ID": 424010, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four growing Holstein Friesian dairy heifers were used in a 4 x 4 Latin square design experiment with five week periods. Heifers were incrementally acclimatised to (ryegrass, clover, trefoil or flower based) haylages over four days at the beginning of each period. Thereafter, the first four weeks consisted of adaptation to haylages with feed intakes measured using an electronic Calan Broadbent individual feeding system. In week five, animals were staggered in pairs into two individual respiration chambers for five days. Animals that were not in respiration chambers were housed in a group pen under the same manage-ment regimes. While in respiration chambers measurements of diet composition, dry matter (DM) intake, faecal and urine excretion, and energy and N excretion occurred, with methane emissions measured over the last four days.", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Diet: trefoil based haylage", + "Other_Properties": "", + "Value": "9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Humphries, D.J., Westbury, D.B., Thompson, A., Crompton, L.A., Kirton, P., Green, C. and Reynolds, C.K. (2014). The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agriculture, Ecosystems and Environment, 197, 88-95.", + "English_Abstract": "Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 x 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g/kg DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg/day). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g/kg) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. -4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g/kg), 18% lower DMD (P < 0.01, 585 vs. 713 g/kg), 42% lower CPD (P < 0.001, 407 vs. 699 g/kg), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g/kg DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.", + "Lower_Bound": "8.46", + "Upper_Bound": "9.54", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 4 (SEM = 0.219) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880914003764", + "creation_date": "2022-03-14T08:06:03.542Z", + "last_change_date": "2022-03-14T08:06:03.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10977, + "fields": { + "EF_ID": 424011, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four growing Holstein Friesian dairy heifers were used in a 4 x 4 Latin square design experiment with five week periods. Heifers were incrementally acclimatised to (ryegrass, clover, trefoil or flower based) haylages over four days at the beginning of each period. Thereafter, the first four weeks consisted of adaptation to haylages with feed intakes measured using an electronic Calan Broadbent individual feeding system. In week five, animals were staggered in pairs into two individual respiration chambers for five days. Animals that were not in respiration chambers were housed in a group pen under the same manage-ment regimes. While in respiration chambers measurements of diet composition, dry matter (DM) intake, faecal and urine excretion, and energy and N excretion occurred, with methane emissions measured over the last four days.", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Diet: flower based haylage", + "Other_Properties": "", + "Value": "190", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Humphries, D.J., Westbury, D.B., Thompson, A., Crompton, L.A., Kirton, P., Green, C. and Reynolds, C.K. (2014). The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agriculture, Ecosystems and Environment, 197, 88-95.", + "English_Abstract": "Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 x 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g/kg DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg/day). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g/kg) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. -4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g/kg), 18% lower DMD (P < 0.01, 585 vs. 713 g/kg), 42% lower CPD (P < 0.001, 407 vs. 699 g/kg), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g/kg DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.", + "Lower_Bound": "168", + "Upper_Bound": "212", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 3 (SEM = 9.0 g/day or 3.3 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880914003764", + "creation_date": "2022-03-14T08:06:03.651Z", + "last_change_date": "2022-03-14T08:06:03.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10978, + "fields": { + "EF_ID": 424012, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four growing Holstein Friesian dairy heifers were used in a 4 x 4 Latin square design experiment with five week periods. Heifers were incrementally acclimatised to (ryegrass, clover, trefoil or flower based) haylages over four days at the beginning of each period. Thereafter, the first four weeks consisted of adaptation to haylages with feed intakes measured using an electronic Calan Broadbent individual feeding system. In week five, animals were staggered in pairs into two individual respiration chambers for five days. Animals that were not in respiration chambers were housed in a group pen under the same manage-ment regimes. While in respiration chambers measurements of diet composition, dry matter (DM) intake, faecal and urine excretion, and energy and N excretion occurred, with methane emissions measured over the last four days.", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Diet: flower based haylage", + "Other_Properties": "", + "Value": "8.31", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Humphries, D.J., Westbury, D.B., Thompson, A., Crompton, L.A., Kirton, P., Green, C. and Reynolds, C.K. (2014). The inclusion of forage mixtures in the diet of growing dairy heifers: Impacts on digestion, energy utilisation, and methane emissions. Agriculture, Ecosystems and Environment, 197, 88-95.", + "English_Abstract": "Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 x 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g/kg DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg/day). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g/kg) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. -4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g/kg), 18% lower DMD (P < 0.01, 585 vs. 713 g/kg), 42% lower CPD (P < 0.001, 407 vs. 699 g/kg), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g/kg DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.", + "Lower_Bound": "7.77", + "Upper_Bound": "8.85", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 4 (SEM = 0.219) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.sciencedirect.com/science/article/pii/S0167880914003764", + "creation_date": "2022-03-14T08:06:03.752Z", + "last_change_date": "2022-03-14T08:06:03.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10979, + "fields": { + "EF_ID": 424013, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 13 months. Diet: maize silage", + "Other_Properties": "", + "Value": "220", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "184.8", + "Upper_Bound": "255.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 14.4 g/day or 5.3 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:03.845Z", + "last_change_date": "2022-03-14T08:06:03.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10980, + "fields": { + "EF_ID": 424014, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 13 months. Diet: maize silage", + "Other_Properties": "", + "Value": "6.86", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "5.93", + "Upper_Bound": "7.79", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 6 (SEM = 0.38%) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:03.945Z", + "last_change_date": "2022-03-14T08:06:03.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10981, + "fields": { + "EF_ID": 424015, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 13 months. Diet: maize silage plus linseed", + "Other_Properties": "", + "Value": "197", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "161.8", + "Upper_Bound": "232.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 14.4 g/day or 5.3 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.054Z", + "last_change_date": "2022-03-14T08:06:04.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10982, + "fields": { + "EF_ID": 424016, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 13 months. Diet: maize silage plus linseed", + "Other_Properties": "", + "Value": "6.13", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "5.2", + "Upper_Bound": "7.06", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 6 (SEM = 0.38%) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.162Z", + "last_change_date": "2022-03-14T08:06:04.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10983, + "fields": { + "EF_ID": 424017, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 13 months. Diet: grass silage", + "Other_Properties": "", + "Value": "203", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "167.8", + "Upper_Bound": "238.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 14.4 g/day or 5.3 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.272Z", + "last_change_date": "2022-03-14T08:06:04.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10984, + "fields": { + "EF_ID": 424018, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 13 months. Diet: grass silage", + "Other_Properties": "", + "Value": "8.47", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "7.54", + "Upper_Bound": "9.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 6 (SEM = 0.38%) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.364Z", + "last_change_date": "2022-03-14T08:06:04.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10985, + "fields": { + "EF_ID": 424019, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 13 months. Diet: grass silage plus linseed", + "Other_Properties": "", + "Value": "201", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "165.8", + "Upper_Bound": "236.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 14.4 g/day or 5.3 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.473Z", + "last_change_date": "2022-03-14T08:06:04.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10986, + "fields": { + "EF_ID": 424020, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 13 months. Diet: grass silage plus linseed", + "Other_Properties": "", + "Value": "8.01", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "7.08", + "Upper_Bound": "8.94", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 6 (SEM = 0.38%) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.581Z", + "last_change_date": "2022-03-14T08:06:04.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10987, + "fields": { + "EF_ID": 424021, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 12 months. Diet: maize silage", + "Other_Properties": "", + "Value": "184", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "156.1", + "Upper_Bound": "211.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 11.4 g/day or 4.2 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.690Z", + "last_change_date": "2022-03-14T08:06:04.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10988, + "fields": { + "EF_ID": 424022, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 12 months. Diet: maize silage", + "Other_Properties": "", + "Value": "8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "6.46", + "Upper_Bound": "9.54", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 7 (SEM = 0.63%) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.801Z", + "last_change_date": "2022-03-14T08:06:04.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10989, + "fields": { + "EF_ID": 424023, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 12 months. Diet: maize silage plus linseed", + "Other_Properties": "", + "Value": "193", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "165.1", + "Upper_Bound": "220.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 11.4 g/day or 4.2 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:04.901Z", + "last_change_date": "2022-03-14T08:06:04.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10990, + "fields": { + "EF_ID": 424024, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 12 months. Diet: maize silage plus linseed", + "Other_Properties": "", + "Value": "8.16", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "6.62", + "Upper_Bound": "9.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 7 (SEM = 0.63%) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:05.010Z", + "last_change_date": "2022-03-14T08:06:05.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10991, + "fields": { + "EF_ID": 424025, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 12 months. Diet: grass silage", + "Other_Properties": "", + "Value": "208", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "180.1", + "Upper_Bound": "235.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 11.4 g/day or 4.2 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:05.110Z", + "last_change_date": "2022-03-14T08:06:05.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10992, + "fields": { + "EF_ID": 424026, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 12 months. Diet: grass silage", + "Other_Properties": "", + "Value": "8.91", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "7.37", + "Upper_Bound": "10.45", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 7 (SEM = 0.63%) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:05.211Z", + "last_change_date": "2022-03-14T08:06:05.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10993, + "fields": { + "EF_ID": 424027, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 12 months. Diet: grass silage plus linseed", + "Other_Properties": "", + "Value": "192", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "164.1", + "Upper_Bound": "219.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 11.4 g/day or 4.2 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:05.312Z", + "last_change_date": "2022-03-14T08:06:05.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10994, + "fields": { + "EF_ID": 424028, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ym (methane conversion factor: % of gross energy converted into methane) for cattle.", + "Technology_Practices": "Four Holstein Friesian dairy heifers aged 13 mo with a body weight (BW) range that spanned the experimental duration (from start to finish, respectively) of 382 to 526 kg, were used in experiment 1, and 4 lighter Holstein Friesian heifers, aged 12 mo, with a BW range from start to finish of the experimental duration of 292 to 419 kg were used for experiment 2. Four experimental diets were fed as total mixed rations with forage dry matter-DM composed of maize silage-MS (1) or grass silage-GS (2), with forage-to concentrate proportions (DM basis) of 75:25 (experiment 1) and 60:40 (experiment 2), without or with supplemental oil from extruded linseed (ELS; 260 g of oil/kg of DM) at 6% of ration DM [i.e., maize silage with ELS (3; ML) and grass silage with ELS (4; GL)].", + "Parameter_Conditions": "Dairy heifers", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Heifers aged 12 months. Diet: grass silage plus linseed", + "Other_Properties": "", + "Value": "8.01", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "K. J. Hammond, D. J. Humphries, L. A. Crompton, P. Kirton, and C. K. Reynolds. (2015). Effects of forage source and extruded linseed supplementation on methane emissions from growing dairy cattle of differing body weights. Journal of Dairy Science, 98:8066–8077.", + "English_Abstract": "Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec, BOCM Pauls Ltd., Wherstead, UK; 260 g of oil/kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.", + "Lower_Bound": "6.47", + "Upper_Bound": "9.55", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 7 (SEM = 0.63%) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(15)00654-2/pdf", + "creation_date": "2022-03-14T08:06:05.412Z", + "last_change_date": "2022-03-14T08:06:05.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10995, + "fields": { + "EF_ID": 424029, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle. In experiment 1, cows averaged (±SEM) 74 ± 16.2 days in milk (DIM) at the start of the experiment and a body weight-BW of 670 ± 4.0 kg throughout the experiment. In experiment 2, cows averaged (±SEM) 114 ± 3.3 DIM at the start of the experiment and 678 ± 10.5 kg of BW throughout the experiment. Dietary treatments fed in both experiments were either a high maize silage (375 g/kg of DM) and low grass silage (125 g/kg) diet, or the reverse proportions, without or with additional chopped barley straw and soy hulls incorporated to increase concentration of NDF (+47 g/kg of DM).", + "Parameter_Conditions": "Dairy cattle", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Respiration chamber measurement, High maize silage", + "Other_Properties": "", + "Value": "495", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Jones, A.K., Humphries, D.J., Crompton, L.A. and Reynolds, C.K. (2016). Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques. Journal of Dairy Science. 99:7904–7917.", + "English_Abstract": "Strategies to mitigate greenhouse gas emissions from dairy cattle are unlikely to be adopted if production or profitability is reduced. The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle, using GreenFeed (GF) or respiration chamber (RC) techniques for methane emission measurements. Experiment 1 was 12 wk in duration with a randomized block continuous design and 40 Holstein cows (74 d in milk) in free-stall housing, assigned to 1 of 4 dietary treatments (n = 10 per treatment), according to calving date, parity, and milk yield. Milk production and dry matter intake (DMI) were measured daily, and milk composition measured weekly, with methane yield (g/kg of DMI) estimated using a GF unit (wk 10 to 12). Experiment 2 was a 4 × 4 Latin square design with 5-wk periods and 4 dairy cows (114 d in milk) fed the same 4 dietary treatments as in experiment 1. Measurements of DMI, milk production, and milk composition occurred in wk 4, and DMI, milk production, and methane yield were measured for 2 d in RC during wk 5. Dietary treatments for both experiments were fed as total mixed rations offered ad libitum and containing 500 g of silage/ kg of dry matter composed (DM basis) of either 75:25 MS:GS (MS) or 25:75 MS:GS (GS), without or with added NDF from chopped straw and soy hulls (+47 g of NDF/kg of dry matter). In both experiments, compared with high GS, cows fed high MS had a higher DMI, greater milk production, and lower methane yield (24% lower in experiment 1 using GF and 8% lower in experiment 2 using RC). Added NDF increased (or tended to increase) methane yield for high MS, but not high GS diets. In the separate experiments, the GF and RC methods detected similar dietary treatment effects on methane emission (expressed as g/d and g/kg of DMI), although the magnitude of the differences varied between experiments. Overall methane emission and yield were 448 g/d and 20.9 g/kg of DMI for experiment 1 using GF and 458 g/d and 23.8 g/kg of DMI for experiment 2 using RC, respectively", + "Lower_Bound": "430.2", + "Upper_Bound": "559.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 26.5 g/day or 9.7 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(16)30528-8/pdf", + "creation_date": "2022-03-14T08:06:05.523Z", + "last_change_date": "2022-03-14T08:06:05.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10996, + "fields": { + "EF_ID": 424030, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle. In experiment 1, cows averaged (±SEM) 74 ± 16.2 days in milk (DIM) at the start of the experiment and a body weight-BW of 670 ± 4.0 kg throughout the experiment. In experiment 2, cows averaged (±SEM) 114 ± 3.3 DIM at the start of the experiment and 678 ± 10.5 kg of BW throughout the experiment. Dietary treatments fed in both experiments were either a high maize silage (375 g/kg of DM) and low grass silage (125 g/kg) diet, or the reverse proportions, without or with additional chopped barley straw and soy hulls incorporated to increase concentration of NDF (+47 g/kg of DM).", + "Parameter_Conditions": "Dairy cattle", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Respiration chamber measurement, High maize silage plus NDF", + "Other_Properties": "", + "Value": "472", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Jones, A.K., Humphries, D.J., Crompton, L.A. and Reynolds, C.K. (2016). Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques. Journal of Dairy Science. 99:7904–7917.", + "English_Abstract": "Strategies to mitigate greenhouse gas emissions from dairy cattle are unlikely to be adopted if production or profitability is reduced. The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle, using GreenFeed (GF) or respiration chamber (RC) techniques for methane emission measurements. Experiment 1 was 12 wk in duration with a randomized block continuous design and 40 Holstein cows (74 d in milk) in free-stall housing, assigned to 1 of 4 dietary treatments (n = 10 per treatment), according to calving date, parity, and milk yield. Milk production and dry matter intake (DMI) were measured daily, and milk composition measured weekly, with methane yield (g/kg of DMI) estimated using a GF unit (wk 10 to 12). Experiment 2 was a 4 × 4 Latin square design with 5-wk periods and 4 dairy cows (114 d in milk) fed the same 4 dietary treatments as in experiment 1. Measurements of DMI, milk production, and milk composition occurred in wk 4, and DMI, milk production, and methane yield were measured for 2 d in RC during wk 5. Dietary treatments for both experiments were fed as total mixed rations offered ad libitum and containing 500 g of silage/ kg of dry matter composed (DM basis) of either 75:25 MS:GS (MS) or 25:75 MS:GS (GS), without or with added NDF from chopped straw and soy hulls (+47 g of NDF/kg of dry matter). In both experiments, compared with high GS, cows fed high MS had a higher DMI, greater milk production, and lower methane yield (24% lower in experiment 1 using GF and 8% lower in experiment 2 using RC). Added NDF increased (or tended to increase) methane yield for high MS, but not high GS diets. In the separate experiments, the GF and RC methods detected similar dietary treatment effects on methane emission (expressed as g/d and g/kg of DMI), although the magnitude of the differences varied between experiments. Overall methane emission and yield were 448 g/d and 20.9 g/kg of DMI for experiment 1 using GF and 458 g/d and 23.8 g/kg of DMI for experiment 2 using RC, respectively", + "Lower_Bound": "407.2", + "Upper_Bound": "536.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 26.5 g/day or 9.7 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(16)30528-8/pdf", + "creation_date": "2022-03-14T08:06:05.649Z", + "last_change_date": "2022-03-14T08:06:05.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10997, + "fields": { + "EF_ID": 424031, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle. In experiment 1, cows averaged (±SEM) 74 ± 16.2 days in milk (DIM) at the start of the experiment and a body weight-BW of 670 ± 4.0 kg throughout the experiment. In experiment 2, cows averaged (±SEM) 114 ± 3.3 DIM at the start of the experiment and 678 ± 10.5 kg of BW throughout the experiment. Dietary treatments fed in both experiments were either a high maize silage (375 g/kg of DM) and low grass silage (125 g/kg) diet, or the reverse proportions, without or with additional chopped barley straw and soy hulls incorporated to increase concentration of NDF (+47 g/kg of DM).", + "Parameter_Conditions": "Dairy cattle", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Respiration chamber measurement, High grass silage", + "Other_Properties": "", + "Value": "462", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Jones, A.K., Humphries, D.J., Crompton, L.A. and Reynolds, C.K. (2016). Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques. Journal of Dairy Science. 99:7904–7917.", + "English_Abstract": "Strategies to mitigate greenhouse gas emissions from dairy cattle are unlikely to be adopted if production or profitability is reduced. The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle, using GreenFeed (GF) or respiration chamber (RC) techniques for methane emission measurements. Experiment 1 was 12 wk in duration with a randomized block continuous design and 40 Holstein cows (74 d in milk) in free-stall housing, assigned to 1 of 4 dietary treatments (n = 10 per treatment), according to calving date, parity, and milk yield. Milk production and dry matter intake (DMI) were measured daily, and milk composition measured weekly, with methane yield (g/kg of DMI) estimated using a GF unit (wk 10 to 12). Experiment 2 was a 4 × 4 Latin square design with 5-wk periods and 4 dairy cows (114 d in milk) fed the same 4 dietary treatments as in experiment 1. Measurements of DMI, milk production, and milk composition occurred in wk 4, and DMI, milk production, and methane yield were measured for 2 d in RC during wk 5. Dietary treatments for both experiments were fed as total mixed rations offered ad libitum and containing 500 g of silage/ kg of dry matter composed (DM basis) of either 75:25 MS:GS (MS) or 25:75 MS:GS (GS), without or with added NDF from chopped straw and soy hulls (+47 g of NDF/kg of dry matter). In both experiments, compared with high GS, cows fed high MS had a higher DMI, greater milk production, and lower methane yield (24% lower in experiment 1 using GF and 8% lower in experiment 2 using RC). Added NDF increased (or tended to increase) methane yield for high MS, but not high GS diets. In the separate experiments, the GF and RC methods detected similar dietary treatment effects on methane emission (expressed as g/d and g/kg of DMI), although the magnitude of the differences varied between experiments. Overall methane emission and yield were 448 g/d and 20.9 g/kg of DMI for experiment 1 using GF and 458 g/d and 23.8 g/kg of DMI for experiment 2 using RC, respectively", + "Lower_Bound": "397.2", + "Upper_Bound": "526.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 26.5 g/day or 9.7 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(16)30528-8/pdf", + "creation_date": "2022-03-14T08:06:05.758Z", + "last_change_date": "2022-03-14T08:06:05.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10998, + "fields": { + "EF_ID": 424032, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle. In experiment 1, cows averaged (±SEM) 74 ± 16.2 days in milk (DIM) at the start of the experiment and a body weight-BW of 670 ± 4.0 kg throughout the experiment. In experiment 2, cows averaged (±SEM) 114 ± 3.3 DIM at the start of the experiment and 678 ± 10.5 kg of BW throughout the experiment. Dietary treatments fed in both experiments were either a high maize silage (375 g/kg of DM) and low grass silage (125 g/kg) diet, or the reverse proportions, without or with additional chopped barley straw and soy hulls incorporated to increase concentration of NDF (+47 g/kg of DM).", + "Parameter_Conditions": "Dairy cattle", + "Regional_Conditions": "England, United Kingdom", + "Control_Technologies": "Respiration chamber measurement, High grass silage plus NDF", + "Other_Properties": "", + "Value": "418", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Hammond, K.J., Jones, A.K., Humphries, D.J., Crompton, L.A. and Reynolds, C.K. (2016). Effects of diet forage source and neutral detergent fiber content on milk production of dairy cattle and methane emissions determined using GreenFeed and respiration chamber techniques. Journal of Dairy Science. 99:7904–7917.", + "English_Abstract": "Strategies to mitigate greenhouse gas emissions from dairy cattle are unlikely to be adopted if production or profitability is reduced. The primary objective of this study was to examine the effects of high maize silage (MS) versus high grass silage (GS) diets, without or with added neutral detergent fiber (NDF) on milk production and methane emission of dairy cattle, using GreenFeed (GF) or respiration chamber (RC) techniques for methane emission measurements. Experiment 1 was 12 wk in duration with a randomized block continuous design and 40 Holstein cows (74 d in milk) in free-stall housing, assigned to 1 of 4 dietary treatments (n = 10 per treatment), according to calving date, parity, and milk yield. Milk production and dry matter intake (DMI) were measured daily, and milk composition measured weekly, with methane yield (g/kg of DMI) estimated using a GF unit (wk 10 to 12). Experiment 2 was a 4 × 4 Latin square design with 5-wk periods and 4 dairy cows (114 d in milk) fed the same 4 dietary treatments as in experiment 1. Measurements of DMI, milk production, and milk composition occurred in wk 4, and DMI, milk production, and methane yield were measured for 2 d in RC during wk 5. Dietary treatments for both experiments were fed as total mixed rations offered ad libitum and containing 500 g of silage/ kg of dry matter composed (DM basis) of either 75:25 MS:GS (MS) or 25:75 MS:GS (GS), without or with added NDF from chopped straw and soy hulls (+47 g of NDF/kg of dry matter). In both experiments, compared with high GS, cows fed high MS had a higher DMI, greater milk production, and lower methane yield (24% lower in experiment 1 using GF and 8% lower in experiment 2 using RC). Added NDF increased (or tended to increase) methane yield for high MS, but not high GS diets. In the separate experiments, the GF and RC methods detected similar dietary treatment effects on methane emission (expressed as g/d and g/kg of DMI), although the magnitude of the differences varied between experiments. Overall methane emission and yield were 448 g/d and 20.9 g/kg of DMI for experiment 1 using GF and 458 g/d and 23.8 g/kg of DMI for experiment 2 using RC, respectively", + "Lower_Bound": "353.2", + "Upper_Bound": "482.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the mean (SEM) as reported in Table 5 (SEM = 26.5 g/day or 9.7 kg/yr) by multiplying the SEM by the T-value (estimated as 2.447).", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://www.journalofdairyscience.org/article/S0022-0302(16)30528-8/pdf", + "creation_date": "2022-03-14T08:06:05.877Z", + "last_change_date": "2022-03-14T08:06:05.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 10999, + "fields": { + "EF_ID": 424033, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 1 was a 2 × 2 × 3 factorial design, consisting of 2 breed types (42 cross-bred Charolais steers and 42 pure bred Luing steers), 2 diet types, and 3 dietary treatments. All animals were fed one of two complete basal diets consisting (g/kg, DM basis, forage concentrate) of either 500:500 (Mixed [M1]) or 80:920 (Concentrate [C1]), respectively. There were 3 treatments within both diets M1 and C1 consisting of: a control treatment containing rapeseed meal as the main protein source (M1-CTL and C1-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M1-NIT and C1-NIT); and a treatment in which rapeseed meal was replaced with rapeseed cake to increase the fat content of the diet (M1-RSC and C1-RSC).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Mixed diet - control (M1-CTL)", + "Other_Properties": "", + "Value": "241.2", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "221.26", + "Upper_Bound": "261.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 3, SEM = 9.97 g/day or 3.64 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:05.977Z", + "last_change_date": "2022-03-14T08:06:05.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11000, + "fields": { + "EF_ID": 424034, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 1 was a 2 × 2 × 3 factorial design, consisting of 2 breed types (42 cross-bred Charolais steers and 42 pure bred Luing steers), 2 diet types, and 3 dietary treatments. All animals were fed one of two complete basal diets consisting (g/kg, DM basis, forage concentrate) of either 500:500 (Mixed [M1]) or 80:920 (Concentrate [C1]), respectively. There were 3 treatments within both diets M1 and C1 consisting of: a control treatment containing rapeseed meal as the main protein source (M1-CTL and C1-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M1-NIT and C1-NIT); and a treatment in which rapeseed meal was replaced with rapeseed cake to increase the fat content of the diet (M1-RSC and C1-RSC).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Mixed diet plus nitrate (M1-NIT)", + "Other_Properties": "", + "Value": "212.4", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "192.46", + "Upper_Bound": "232.34", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 3, SEM = 9.97 g/day or 3.64 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.094Z", + "last_change_date": "2022-03-14T08:06:06.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11001, + "fields": { + "EF_ID": 424035, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 1 was a 2 × 2 × 3 factorial design, consisting of 2 breed types (42 cross-bred Charolais steers and 42 pure bred Luing steers), 2 diet types, and 3 dietary treatments. All animals were fed one of two complete basal diets consisting (g/kg, DM basis, forage concentrate) of either 500:500 (Mixed [M1]) or 80:920 (Concentrate [C1]), respectively. There were 3 treatments within both diets M1 and C1 consisting of: a control treatment containing rapeseed meal as the main protein source (M1-CTL and C1-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M1-NIT and C1-NIT); and a treatment in which rapeseed meal was replaced with rapeseed cake to increase the fat content of the diet (M1-RSC and C1-RSC).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Mixed diet plus rapeseed cake (M1-RSC)", + "Other_Properties": "", + "Value": "241.8", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "221.86", + "Upper_Bound": "261.74", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 3, SEM = 9.97 g/day or 3.64 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.221Z", + "last_change_date": "2022-03-14T08:06:06.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11002, + "fields": { + "EF_ID": 424036, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 1 was a 2 × 2 × 3 factorial design, consisting of 2 breed types (42 cross-bred Charolais steers and 42 pure bred Luing steers), 2 diet types, and 3 dietary treatments. All animals were fed one of two complete basal diets consisting (g/kg, DM basis, forage concentrate) of either 500:500 (Mixed [M1]) or 80:920 (Concentrate [C1]), respectively. There were 3 treatments within both diets M1 and C1 consisting of: a control treatment containing rapeseed meal as the main protein source (M1-CTL and C1-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M1-NIT and C1-NIT); and a treatment in which rapeseed meal was replaced with rapeseed cake to increase the fat content of the diet (M1-RSC and C1-RSC). .", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Concentrate diet - control (CI-CTL)", + "Other_Properties": "", + "Value": "148.8", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "128.86", + "Upper_Bound": "168.74", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 3, SEM = 9.97 g/day or 3.64 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.321Z", + "last_change_date": "2022-03-14T08:06:06.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11003, + "fields": { + "EF_ID": 424037, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 1 was a 2 × 2 × 3 factorial design, consisting of 2 breed types (42 cross-bred Charolais steers and 42 pure bred Luing steers), 2 diet types, and 3 dietary treatments. All animals were fed one of two complete basal diets consisting (g/kg, DM basis, forage concentrate) of either 500:500 (Mixed [M1]) or 80:920 (Concentrate [C1]), respectively. There were 3 treatments within both diets M1 and C1 consisting of: a control treatment containing rapeseed meal as the main protein source (M1-CTL and C1-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M1-NIT and C1-NIT); and a treatment in which rapeseed meal was replaced with rapeseed cake to increase the fat content of the diet (M1-RSC and C1-RSC).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Concentrate diet plus nitrate (C1-NIT)", + "Other_Properties": "", + "Value": "136.1", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "116.16", + "Upper_Bound": "156.04", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 3, SEM = 9.97 g/day or 3.64 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.438Z", + "last_change_date": "2022-03-14T08:06:06.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11004, + "fields": { + "EF_ID": 424038, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 1 was a 2 × 2 × 3 factorial design, consisting of 2 breed types (42 cross-bred Charolais steers and 42 pure bred Luing steers), 2 diet types, and 3 dietary treatments. All animals were fed one of two complete basal diets consisting (g/kg, DM basis, forage concentrate) of either 500:500 (Mixed [M1]) or 80:920 (Concentrate [C1]), respectively. There were 3 treatments within both diets M1 and C1 consisting of: a control treatment containing rapeseed meal as the main protein source (M1-CTL and C1-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M1-NIT and C1-NIT); and a treatment in which rapeseed meal was replaced with rapeseed cake to increase the fat content of the diet (M1-RSC and C1-RSC).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Concentrate diet plus rapeseed cake (C1-RSC)", + "Other_Properties": "", + "Value": "149.8", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "129.86", + "Upper_Bound": "169.74", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 3, SEM = 9.97 g/day or 3.64 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.539Z", + "last_change_date": "2022-03-14T08:06:06.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11005, + "fields": { + "EF_ID": 424039, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 2 was a 2 × 2 × 2 factorial design, consisting of two breed types (40 cross-bred Aberdeen Angus steers and 40 cross-bred Limousin steers) and 4 dietary treatments, in a 2 × 2 factorial design containing nitrate and/or high oil. All animals were fed 1 complete basal diet (Mixed [M2]) consisting of 500:500 g/kg forage concentrate (DM basis). The 4 dietary treatment consisted of; a control treatment containing rapeseed meal as the main protein source (M2-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M2-NIT); a treatment in which rapeseed meal was replaced by maize distillers dark grains (M2-MDG) to increase dietary fat concentration, and a treatment combining both nitrate and maize dark grains (M2-CMB).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Mixed diet - control (M2-CTL)", + "Other_Properties": "", + "Value": "245.5", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "226.8", + "Upper_Bound": "264.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 4, SEM = 9.35 g/day or 3.41 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.632Z", + "last_change_date": "2022-03-14T08:06:06.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11006, + "fields": { + "EF_ID": 424040, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 2 was a 2 × 2 × 2 factorial design, consisting of two breed types (40 cross-bred Aberdeen Angus steers and 40 cross-bred Limousin steers) and 4 dietary treatments, in a 2 × 2 factorial design containing nitrate and/or high oil. All animals were fed 1 complete basal diet (Mixed [M2]) consisting of 500:500 g/kg forage concentrate (DM basis). The 4 dietary treatment consisted of; a control treatment containing rapeseed meal as the main protein source (M2-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M2-NIT); a treatment in which rapeseed meal was replaced by maize distillers dark grains (M2-MDG) to increase dietary fat concentration, and a treatment combining both nitrate and maize dark grains (M2-CMB).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Mixed diet plus nitrate (M2-NIT)", + "Other_Properties": "", + "Value": "218.6", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "199.9", + "Upper_Bound": "237.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 4, SEM = 9.35 g/day or 3.41 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.723Z", + "last_change_date": "2022-03-14T08:06:06.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11007, + "fields": { + "EF_ID": 424041, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 2 was a 2 × 2 × 2 factorial design, consisting of two breed types (40 cross-bred Aberdeen Angus steers and 40 cross-bred Limousin steers) and 4 dietary treatments, in a 2 × 2 factorial design containing nitrate and/or high oil. All animals were fed 1 complete basal diet (Mixed [M2]) consisting of 500:500 g/kg forage concentrate (DM basis). The 4 dietary treatment consisted of; a control treatment containing rapeseed meal as the main protein source (M2-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M2-NIT); a treatment in which rapeseed meal was replaced by maize distillers dark grains (M2-MDG) to increase dietary fat concentration, and a treatment combining both nitrate and maize dark grains (M2-CMB).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Mixed diet plus maize dark grains (M2-MDG)", + "Other_Properties": "", + "Value": "238.2", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "219.5", + "Upper_Bound": "256.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 4, SEM = 9.35 g/day or 3.41 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.824Z", + "last_change_date": "2022-03-14T08:06:06.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11008, + "fields": { + "EF_ID": 424042, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Enteric methane emission factor for cattle", + "Technology_Practices": "Experiment 2 was a 2 × 2 × 2 factorial design, consisting of two breed types (40 cross-bred Aberdeen Angus steers and 40 cross-bred Limousin steers) and 4 dietary treatments, in a 2 × 2 factorial design containing nitrate and/or high oil. All animals were fed 1 complete basal diet (Mixed [M2]) consisting of 500:500 g/kg forage concentrate (DM basis). The 4 dietary treatment consisted of; a control treatment containing rapeseed meal as the main protein source (M2-CTL); a treatment in which rapeseed meal was replaced with calcium nitrate to give a dietary nitrate content of 21.5 g nitrate/kg DM (M2-NIT); a treatment in which rapeseed meal was replaced by maize distillers dark grains (M2-MDG) to increase dietary fat concentration, and a treatment combining both nitrate and maize dark grains (M2-CMB).", + "Parameter_Conditions": "Beef cattle", + "Regional_Conditions": "Scotland, United Kingdom", + "Control_Technologies": "Mixed diet combined (nitrate plus fat) (M2-CMB)", + "Other_Properties": "", + "Value": "209.9", + "Unit": "g/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Troy, S.M., Duthie, C-A., Ross, D.W., Hyslop, J.J., Roehe, R., Waterhouse, A. and Rooke, J.A. (2016). A comparison of methane emissions from beef cattle measured using methane hoods with those measured using respiration chambers. Animal Feed Science and Technology, 211, 227-240", + "English_Abstract": "The methane hood (MH) system is a novel method of quantifying methane (CH4) emissions from cattle during feeding. The MH system measures CH4 concentrations exhausted from beneath a hood designed to partially enclose the volume above a feed bin. To test the system two experiments were conducted on two groups (n = 84 and 80) of finishing beef cattle of differing breeds, whereby CH4 measurements taken over 56 days using the MH system were compared to CH4 output measured subsequently on the same animals using respiration chambers (RC). The primary objective of this study was to compare the MH and RC measurements and to develop an equation to predict CH4 measured in RC from measurements taken during group feeding. The second objective was to determine whether the MH system could detect dietary treatment effects from diets designed to reduce CH4 emissions. In experiment 1, cross-bred Charolais and purebred Luing steers were offered 2 contrasting diets consisting of forage to concentrate ratios (g/kg DM) of 500:500 (Mixed, M1) and 80:920 (Concentrate, C1). Within each diet there were 3 treatments: (i) Control, (ii) Nitrate (calcium nitrate with 77% nitrate on a DM basis), and (iii) Rapeseed cake (higher fat content). Both the MH and RC measurements detected differences in CH4 emissions between diets M1 and C1 (P < 0.001), and between the Control and Nitrate treatments within diet M1 (P < 0.05). In experiment 2, cross-bred Aberdeen Angus and cross-bred Limousin steers received the same Mixed diet (M2) with 4 treatments containing nitrate and/or high oil in a 2 × 2 factorial arrangement: (i) Control, (ii) Nitrate, (iii) Maize dark grains (higher fat content) and (iv) Combined (both nitrate and higher fat). Again, both the MH and RC measurements detected reductions in CH4 emissions from animals receiving treatments amended with nitrate (P < 0.001). However, only the MH measurement technique detected differences when animals received treatments with higher fat contents (P < 0.001). Using the CH4 concentrations measured by the MH system and the dry matter intake (DMI) measured during the 56 days test period prediction models for individual animal daily CH4 output were developed and subsequently validated. The best prediction model produced a good correlation between predicted and measured CH4 output (R2= 0.77, P < 0.001), with a concordance correlation coefficient of 0.84. We conclude that the MH system can be used to estimate the effects of dietary mitigation strategies on CH4 emissions. Furthermore, the predicted CH4 output from MH measurement supports the use of this system as a tool for the genetic selection of cattle based on CH4 emissions.", + "Lower_Bound": "191.2", + "Upper_Bound": "228.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission reported as g/d in the paper & converted to kg/year. 95% confidence limits are calculated from the standard error of the means (as reported in Table 4, SEM = 9.35 g/day or 3.41 kg/yr) and determined by multiplying the SEM by the T-value (estimated as 2.0). Note it was not possible to calculate the precise degrees of freedom associated with this experiment (and hence the exact t value) due to limited information on the experimental design.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "http://dx.doi.org/10.1016/j.anifeedsci.2015.12.005", + "creation_date": "2022-03-14T08:06:06.924Z", + "last_change_date": "2022-03-14T08:06:06.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11009, + "fields": { + "EF_ID": 424043, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Volatile solids of stored pig slurry", + "Technology_Practices": "Volatile solids of pig slurry stored in cool conditions (mean air temperature = 9.2 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "g/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.025Z", + "last_change_date": "2022-03-14T08:06:07.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11010, + "fields": { + "EF_ID": 424044, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biological potential for methane production (B0)", + "Technology_Practices": "Biological potential for methane production (B0) of pig slurry stored in cool conditions (mean air temperature = 9.2 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "m3/CH4/kg volatile solid", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.113Z", + "last_change_date": "2022-03-14T08:06:07.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11011, + "fields": { + "EF_ID": 424045, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor (MCF)", + "Technology_Practices": "Methane conversion factor (MCF) for pig slurry stored in cool conditions (mean air temperature = 9.2 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.226Z", + "last_change_date": "2022-03-14T08:06:07.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11012, + "fields": { + "EF_ID": 424046, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Volatile solids of stored pig slurry", + "Technology_Practices": "Volatile solids of pig slurry stored in Temperate conditions (mean air temperature = 11.1 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "g/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.336Z", + "last_change_date": "2022-03-14T08:06:07.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11013, + "fields": { + "EF_ID": 424047, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biological potential for methane production (B0)", + "Technology_Practices": "Biological potential for methane production (B0) of pig slurry stored in Temperate conditions (mean air temperature = 11.1 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "m3/CH4/kg volatile solid", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.437Z", + "last_change_date": "2022-03-14T08:06:07.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11014, + "fields": { + "EF_ID": 424048, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor (MCF)", + "Technology_Practices": "Methane conversion factor (MCF) for pig slurry stored in Temperate conditions (mean air temperature = 11.1 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.537Z", + "last_change_date": "2022-03-14T08:06:07.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11015, + "fields": { + "EF_ID": 424049, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Volatile solids of stored pig slurry", + "Technology_Practices": "Volatile solids of pig slurry stored in Warm conditions (mean air temperature = 17.1 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "g/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.638Z", + "last_change_date": "2022-03-14T08:06:07.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11016, + "fields": { + "EF_ID": 424050, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biological potential for methane production (B0)", + "Technology_Practices": "Biological potential for methane production (B0) of pig slurry stored in Warm conditions (mean air temperature = 17.1 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "m3/CH4/kg volatile solid", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.738Z", + "last_change_date": "2022-03-14T08:06:07.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11017, + "fields": { + "EF_ID": 424051, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor (MCF)", + "Technology_Practices": "Methane conversion factor (MCF) for pig slurry stored in Warm conditions (mean air temperature = 17.1 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.839Z", + "last_change_date": "2022-03-14T08:06:07.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11018, + "fields": { + "EF_ID": 424052, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Volatile solids of stored cattle slurry", + "Technology_Practices": "Volatile solids of cattle slurry stored in cool conditions (mean air temperature = 7.3 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "g/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:07.940Z", + "last_change_date": "2022-03-14T08:06:07.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11019, + "fields": { + "EF_ID": 424053, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biological potential for methane production (B0)", + "Technology_Practices": "Biological potential for methane production (B0) of cattle slurry stored in cool conditions (mean air temperature = 7.3 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "m3/CH4/kg volatile solid", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:08.040Z", + "last_change_date": "2022-03-14T08:06:08.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11020, + "fields": { + "EF_ID": 424054, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor (MCF)", + "Technology_Practices": "Methane conversion factor (MCF) for cattle slurry stored in cool conditions (mean air temperature = 7.3 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:08.141Z", + "last_change_date": "2022-03-14T08:06:08.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11021, + "fields": { + "EF_ID": 424055, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Volatile solids of stored cattle slurry", + "Technology_Practices": "Volatile solids of cattle slurry stored in temperate conditions (mean air temperature = 11.0 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "g/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:08.241Z", + "last_change_date": "2022-03-14T08:06:08.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11022, + "fields": { + "EF_ID": 424056, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biological potential for methane production (B0)", + "Technology_Practices": "Biological potential for methane production (B0) of cattle slurry stored in temperate conditions (mean air temperature = 11.0 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "m3/CH4/kg volatile solid", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:08.342Z", + "last_change_date": "2022-03-14T08:06:08.342Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11023, + "fields": { + "EF_ID": 424057, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor (MCF)", + "Technology_Practices": "Methane conversion factor (MCF) for cattle slurry stored in temperate conditions (mean air temperature = 11.0 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:08.434Z", + "last_change_date": "2022-03-14T08:06:08.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11024, + "fields": { + "EF_ID": 424058, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Volatile solids of stored cattle slurry", + "Technology_Practices": "Volatile solids of cattle slurry stored in warm conditions (mean air temperature = 17.2 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53", + "Unit": "g/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:08.527Z", + "last_change_date": "2022-03-14T08:06:08.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11025, + "fields": { + "EF_ID": 424059, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biological potential for methane production (B0)", + "Technology_Practices": "Biological potential for methane production (B0) of cattle slurry stored in warm conditions (mean air temperature = 17.2 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "m3/CH4/kg volatile solid", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:08.627Z", + "last_change_date": "2022-03-14T08:06:08.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11026, + "fields": { + "EF_ID": 424060, + "IPCC_Category": "3.A.2.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor (MCF)", + "Technology_Practices": "Methane conversion factor (MCF) for cattle slurry stored in warm conditions (mean air temperature = 17.2 °C) for a period of 2 months", + "Parameter_Conditions": "", + "Regional_Conditions": "North Wyke, Okehampton, Devon, UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61.1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal (1)", + "Technical_Reference": "Tom Misselbrook, John Hunt, Francesca Perazzolo, and Giorgio Provolo. (2016). Greenhouse Gas and Ammonia Emissions from Slurry Storage: Impacts of Temperature and Potential Mitigation through Covering (Pig Slurry) or Acidification (Cattle Slurry). Journal of Environmental Quality. 45, 1520 -1530", + "English_Abstract": "Storage of livestock slurries is a significant source of methane (CH4) and ammonia (NH3) emissions to the atmosphere, for which accurate quantification and potential mitigation methods are required. Methane and NH3 emissions were measured from pilot-scale cattle slurry (CS) and pig slurry (PS) stores under cool, temperate, and warm conditions (approximately 8, 11, and 17°C, respectively) and including two potential mitigation practices: (i) a clay granule floating cover (PS) and (ii) slurry acidification (CS). Cumulative emissions of both gases were influenced by mean temperature over the storage period. Methane emissions from the control treatments over the 2-mo storage periods for the cool, temperate, and warm periods were 0.3, 0.1, and 34.3 g CH4/kg slurry volatile solids for CS and 4.4, 20.1, and 27.7 g CH4/kg slurry volatile solids for PS. Respective NH3 emissions for each period were 4, 7, and 12% of initial slurry N content for CS and 12, 18, and 28% of initial slurry N content for PS. Covering PS with clay granules reduced NH3 emissions by 77% across the three storage periods but had no impact on CH emissions. Acidification of CS reduced CH4 and NH3 emissions by 61 and 75%, respectively, across the three storage periods. Nitrous oxide emissions were also monitored but were insignificant. The development of approaches that take into account the influence of storage timing (temperature) and duration on emission estimates for national emission inventory purposes is recommended.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data taken from Misselbrook et al., 2016 Table 4.", + "Other_Comments": "", + "Data_Provider": "RSK ADAS Ltd.", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27695736", + "creation_date": "2022-03-14T08:06:08.745Z", + "last_change_date": "2022-03-14T08:06:08.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11027, + "fields": { + "EF_ID": 424118, + "IPCC_Category": "4 - Waste, 4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Share of produced WWTPs sludge reused in agriculture", + "Technology_Practices": "Sludge management practice", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:06:08.854Z", + "last_change_date": "2022-03-14T08:06:08.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11028, + "fields": { + "EF_ID": 424122, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor for aerobic treatment of swine manure", + "Technology_Practices": "Wastewater purification is used for the prevention of surface and underground water pollution by livestock wastewater. Activated sludge processing facilities are important in the treatment of swine wastewater to remove nitrogen and to reduce the biochemical oxygen demand (BOD).", + "Parameter_Conditions": "Manure management facilities for livestock wastewater purification with activated sludge process, especially for nitrogen removal. Suitable condition for activated sludge process for wastewater purification. Ambient temperature above zero (over 2.8℃) and wastewater in reactor is kept 14~30 celsius condition.", + "Regional_Conditions": "Asia, Japan (Chiba, Okayama and Saga prefectures)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "%", + "Equation": "Equation 10.23 on Page 10.41 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Osada, T., Shiraishi, M., Hasegawa, T., Kawahara, H. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities. Front. Environ. Sci. Eng. 2017, 11(3): 10. DOI 10.1007/s11783-017-0933-6", + "English_Abstract": "The activated sludge process to remove nitrogen and biochemical oxygen demand (BOD) is reportedly cost-effective for swine wastewater treatment, and it use has thus increased in pig farming. Nitrous oxide (N₂O) is generated on farms as an intermediate product in nitrification and denitrification, and methane (CH₄) is also generated from organic degradation under anaerobic conditions by microorganisms in manure or wastewater. This study was carried out at five activated sludge treatment facilities across Japan between August 2014 and January 2015. Measurements were conducted over several weeks at wastewater purification facilities for swine farms: two in Chiba prefecture (East Japan), two in Okayama prefecture (West Japan), and one in Saga (Southern Japan). Taking several environmental fluctuations into account, we collected measurement data continuously day and night, during both high-temperature and low-temperature periods. The results indicated that CH₄ and N₂O emission factors were 0.91% (kg CH₄/kg volatile solids) and 2.87% (g N₂O-N/kg total N), respectively. Ammonia emissions were negligible in all of the measurements from the wastewater facilities. The N₂O emission factor calculated under this experiment was low compared to our previous finding (5.0%; g N₂O-N/kg N) in a laboratory experiment. In contrast, the CH₄ emission factor calculated herein was rather high compared to the laboratory measurements. There was great variation in daily GHG emission factors measured in the actual wastewater treatment facilities. In particular, the N2O emission rate was affected by several environmental conditions at each facility location, as well as by the management of the wastewater treatment.", + "Lower_Bound": "0.64", + "Upper_Bound": "1.18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCF 0.91% is a simple average of the methane conversion factors for the total measurement period. Lower/Upper Confidence Limit was derived by data provider (mean ±1.96×SD).", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:08.972Z", + "last_change_date": "2022-03-14T08:06:08.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11029, + "fields": { + "EF_ID": 424123, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for aerobic treatment of swine manure", + "Technology_Practices": "Wastewater purification is used for the prevention of surface and underground water pollution by livestock wastewater. Activated sludge processing facilities are important in the treatment of swine wastewater to remove nitrogen and to reduce the biochemical oxygen demand (BOD).", + "Parameter_Conditions": "Manure management facilities for livestock wastewater purification with activated sludge process, especially for nitrogen removal. Suitable condition for activated sludge process for wastewater purification. Ambient temperature above zero (over 2.8℃) and wastewater in reactor is kept 14~30 celsius condition.", + "Regional_Conditions": "Asia, Japan (Chiba, Okayama and Saga prefectures)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.87", + "Unit": "%", + "Equation": "Equation 10.25 on Page 10.54 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Osada, T., Shiraishi, M., Hasegawa, T., Kawahara, H. Methane, Nitrous Oxide and Ammonia generation in full-scale swine wastewater purification facilities. Front. Environ. Sci. Eng. 2017, 11(3): 10. DOI 10.1007/s11783-017-0933-6", + "English_Abstract": "The activated sludge process to remove nitrogen and biochemical oxygen demand (BOD) is reportedly cost-effective for swine wastewater treatment, and it use has thus increased in pig farming. Nitrous oxide (N₂O) is generated on farms as an intermediate product in nitrification and denitrification, and methane (CH₄) is also generated from organic degradation under anaerobic conditions by microorganisms in manure or wastewater. This study was carried out at five activated sludge treatment facilities across Japan between August 2014 and January 2015. Measurements were conducted over several weeks at wastewater purification facilities for swine farms: two in Chiba prefecture (East Japan), two in Okayama prefecture (West Japan), and one in Saga (Southern Japan). Taking several environmental fluctuations into account, we collected measurement data continuously day and night, during both high-temperature and low-temperature periods. The results indicated that CH₄ and N₂O emission factors were 0.91% (kg CH₄/kg volatile solids) and 2.87% (g N₂O-N/kg total N), respectively. Ammonia emissions were negligible in all of the measurements from the wastewater facilities. The N₂O emission factor calculated under this experiment was low compared to our previous finding (5.0%; g N₂O-N/kg N) in a laboratory experiment. In contrast, the CH₄ emission factor calculated herein was rather high compared to the laboratory measurements. There was great variation in daily GHG emission factors measured in the actual wastewater treatment facilities. In particular, the N2O emission rate was affected by several environmental conditions at each facility location, as well as by the management of the wastewater treatment.", + "Lower_Bound": "2.34", + "Upper_Bound": "3.40", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCF 2.87 kg N₂O-N/kg N is a simple average of the emission factors for the total measurement period. Lower/Upper Confidence Limit was derived by data provider (mean ±1.96×SD).", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.064Z", + "last_change_date": "2022-03-14T08:06:09.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11030, + "fields": { + "EF_ID": 424124, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor for dairy cattle manure composting in piles", + "Technology_Practices": "Composting for the production of organic fertilizers for agricultural use. Piled about 1.5-2 m height on compost bed or in shed to ferment for several months with occasional turning. Manure was mixed well with wheat straw to adjust to the standard initial moisture contents of piled manure on Japanese farms.", + "Parameter_Conditions": "Composting on a waterproof floor structure that prevents groundwater pollution, and under the roof to avoid rainfall. The conical mixture in the chamber (around 1.2 m height and 2.0 m diameter) was turned weekly or biweekly. Temperature conditions during composting periods: August 2002 (20.9℃) - December 2002 (-1.9℃) and May 2004 (17.7℃) - September 2004 (16.2℃).", + "Regional_Conditions": "Asia, Japan (JPN)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.1", + "Unit": "g CH₄/kg organic matter", + "Equation": "Equation 10.23 on Page 10.41 of the 2006 IPCC Guidelines (Vol.4, Ch.10)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Osada, T., Fukumoto, Y., Tamura, T., Shiraishi, M. & Ishibashi, M (2005). Greenhouse gas generation from livestock waste composting. Proceedings of the Fourth International Symposium NCGG-4. Millpress, Rotterdam, 105-111.", + "English_Abstract": "In Japan, the composting process plays a central role in livestock waste treatment. Since many livestock wastes are processed, greenhouse gas (GHG) generation is also recognized to be substantial. However, few experiments have been undertaken in Japan to quantitatively measure the amount of GHG generation from the pile type composting process, the most representative composting system. Various types of livestock waste were piled together with a moisture conditioner to form significant masses (around 300 kg-1230 kg), and their CH₄ and N₂O emissions were determined during both the high temperature and low temperature seasons. The measurement system we devised consisted of a cylindrical chamber (3 m in diameter, 2.2 m in height, 13 m³), which collected the exhaust gas produced by composting materials, and a measurement device. Our results showed that CH₄ emissions from the composting of dairy cattle waste were high at 36-40g CH₄/kg OM of piled manure; those (0.4-1.6g CH₄/kg OM) for other types of manure were much lower. And N₂O emissions from the composting of poultry waste were low at 0-0.7g N₂O-N/kg Nitrogen of piled manure, while those (6-37g N₂O/kg N) for other types of manure were much higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCF is average of 35.9-40.3 g CH₄/kg OM. Higher emissions were observed from samples with higher moisture content.", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.164Z", + "last_change_date": "2022-03-14T08:06:09.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11031, + "fields": { + "EF_ID": 424125, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor for beef cattle manure composting in piles", + "Technology_Practices": "Composting for the production of organic fertilizers for agricultural use. Piled about 1.5-2 m height on compost bed or in shed to ferment for several months with occasional turning. Manure was mixed well with sawdust to adjust to the standard initial moisture contents of piled manure on Japanese farms.", + "Parameter_Conditions": "Composting on a waterproof floor structure that prevents groundwater pollution, and under the roof to avoid rainfall. The conical mixture in the chamber (around 1.2 m height and 2.0 m diameter) was turned weekly or biweekly. Temperature conditions during composting periods: June 2003 (26.6℃) - August 2003 (26.1℃) and November 2002 (11.0℃) - January 2003 (7.4℃).", + "Regional_Conditions": "Asia, Japan (JPN)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "g CH₄/kg organic matter", + "Equation": "Equation 10.23 on Page 10.41 of the 2006 IPCC Guidelines (Vol.4, Ch.10)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Osada, T., Fukumoto, Y., Tamura, T., Shiraishi, M. & Ishibashi, M (2005). Greenhouse gas generation from livestock waste composting. Proceedings of the Fourth International Symposium NCGG-4. Millpress, Rotterdam, 105-111.", + "English_Abstract": "In Japan, the composting process plays a central role in livestock waste treatment. Since many livestock wastes are processed, greenhouse gas (GHG) generation is also recognized to be substantial. However, few experiments have been undertaken in Japan to quantitatively measure the amount of GHG generation from the pile type composting process, the most representative composting system. Various types of livestock waste were piled together with a moisture conditioner to form significant masses (around 300 kg-1230 kg), and their CH₄ and N₂O emissions were determined during both the high temperature and low temperature seasons. The measurement system we devised consisted of a cylindrical chamber (3 m in diameter, 2.2 m in height, 13 m³), which collected the exhaust gas produced by composting materials, and a measurement device. Our results showed that CH₄ emissions from the composting of dairy cattle waste were high at 36-40g CH₄/kg OM of piled manure; those (0.4-1.6g CH₄/kg OM) for other types of manure were much lower. And N₂O emissions from the composting of poultry waste were low at 0-0.7g N₂O-N/kg Nitrogen of piled manure, while those (6-37g N₂O/kg N) for other types of manure were much higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCF is average of 0.4-2.1 g CH₄/kg OM", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.273Z", + "last_change_date": "2022-03-14T08:06:09.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11032, + "fields": { + "EF_ID": 424126, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor for fattening swine manure composting in piles", + "Technology_Practices": "Composting for the production of organic fertilizers for agricultural use. Piled about 1.5-2 m height on compost bed or in shed to ferment for several months with occasional turning. Manure was mixed well with sawdust to adjust to the standard initial moisture contents of piled manure on Japanese farms.", + "Parameter_Conditions": "Composting on a waterproof floor structure that prevents groundwater pollution, and under the roof to avoid rainfall. The conical mixture in the chamber (around 1.2 m height and 2.0 m diameter) was turned weekly or biweekly. Temperature conditions during composting periods: September 2002 (25.2℃) - November 2002 (8.2℃) and February 2003 (9.1℃) - June 2003 (25.5℃).", + "Regional_Conditions": "Asia, Japan (JPN)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "g CH₄/kg organic matter", + "Equation": "Equation 10.23 on Page 10.41 of the 2006 IPCC Guidelines (Vol.4, Ch.10)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Osada, T., Fukumoto, Y., Tamura, T., Shiraishi, M. & Ishibashi, M (2005). Greenhouse gas generation from livestock waste composting. Proceedings of the Fourth International Symposium NCGG-4. Millpress, Rotterdam, 105-111.", + "English_Abstract": "In Japan, the composting process plays a central role in livestock waste treatment. Since many livestock wastes are processed, greenhouse gas (GHG) generation is also recognized to be substantial. However, few experiments have been undertaken in Japan to quantitatively measure the amount of GHG generation from the pile type composting process, the most representative composting system. Various types of livestock waste were piled together with a moisture conditioner to form significant masses (around 300 kg-1230 kg), and their CH₄ and N₂O emissions were determined during both the high temperature and low temperature seasons. The measurement system we devised consisted of a cylindrical chamber (3 m in diameter, 2.2 m in height, 13 m³), which collected the exhaust gas produced by composting materials, and a measurement device. Our results showed that CH₄ emissions from the composting of dairy cattle waste were high at 36-40g CH₄/kg OM of piled manure; those (0.4-1.6g CH₄/kg OM) for other types of manure were much lower. And N₂O emissions from the composting of poultry waste were low at 0-0.7g N₂O-N/kg Nitrogen of piled manure, while those (6-37g N₂O/kg N) for other types of manure were much higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCF is average of two measurements data.", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.391Z", + "last_change_date": "2022-03-14T08:06:09.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11033, + "fields": { + "EF_ID": 424127, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor for poultry manure composting in piles", + "Technology_Practices": "Composting for the production of organic fertilizers for agricultural use. Piled about 1.5-2 m height on compost bed or in shed to ferment for several months with occasional turning. Manure was mixed well with sawdust to adjust to the standard initial moisture contents of piled manure on Japanese farms.", + "Parameter_Conditions": "Composting on a waterproof floor structure that prevents groundwater pollution, and under the roof to avoid rainfall. The conical mixture in the chamber (around 1.2 m height and 2.0 m diameter) was turned weekly or biweekly. Temperature conditions during composting periods: August 2002 (28.1℃) - October 2002 (23.8℃) and October 2002 (18.2℃) - December 2002 (8.6℃).", + "Regional_Conditions": "Asia, Japan (JPN)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "g CH₄/kg organic matter", + "Equation": "Equation 10.23 on Page 10.41 of the 2006 IPCC Guidelines (Vol.4, Ch.10)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Osada, T., Fukumoto, Y., Tamura, T., Shiraishi, M. & Ishibashi, M (2005). Greenhouse gas generation from livestock waste composting. Proceedings of the Fourth International Symposium NCGG-4. Millpress, Rotterdam, 105-111.", + "English_Abstract": "In Japan, the composting process plays a central role in livestock waste treatment. Since many livestock wastes are processed, greenhouse gas (GHG) generation is also recognized to be substantial. However, few experiments have been undertaken in Japan to quantitatively measure the amount of GHG generation from the pile type composting process, the most representative composting system. Various types of livestock waste were piled together with a moisture conditioner to form significant masses (around 300 kg-1230 kg), and their CH₄ and N₂O emissions were determined during both the high temperature and low temperature seasons. The measurement system we devised consisted of a cylindrical chamber (3 m in diameter, 2.2 m in height, 13 m³), which collected the exhaust gas produced by composting materials, and a measurement device. Our results showed that CH₄ emissions from the composting of dairy cattle waste were high at 36-40g CH₄/kg OM of piled manure; those (0.4-1.6g CH₄/kg OM) for other types of manure were much lower. And N₂O emissions from the composting of poultry waste were low at 0-0.7g N₂O-N/kg Nitrogen of piled manure, while those (6-37g N₂O/kg N) for other types of manure were much higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MCF is average of 1.2-1.5 g CH₄/kg OM", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.508Z", + "last_change_date": "2022-03-14T08:06:09.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11034, + "fields": { + "EF_ID": 424128, + "IPCC_Category": "3.A.2.a.i - Dairy cows", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for dairy cattle manure composting in piles", + "Technology_Practices": "Composting for the production of organic fertilizers for agricultural use. Piled about 1.5-2 m height on compost bed or in shed to ferment for several months with occasional turning. Manure was mixed well with sawdust to adjust to the standard initial moisture contents of piled manure on Japanese farms.", + "Parameter_Conditions": "Composting on a waterproof floor structure that prevents groundwater pollution, and under the roof to avoid rainfall. The conical mixture in the chamber (around 1.2 m height and 2.0 m diameter) was turned weekly or biweekly. Temperature conditions during composting periods: August 2002 (20.9℃) - December 2002 (-1.9℃) and May 2004 (17.7℃) - September 2004 (16.2℃).", + "Regional_Conditions": "Asia, Japan (JPN)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "g N₂O-N/kg N", + "Equation": "Equation 10.25 on Page 10.54 of the 2006 IPCC Guidelines (Vol.4, Ch.10)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Osada, T., Fukumoto, Y., Tamura, T., Shiraishi, M. & Ishibashi, M (2005). Greenhouse gas generation from livestock waste composting. Proceedings of the Fourth International Symposium NCGG-4. Millpress, Rotterdam, 105-111.", + "English_Abstract": "In Japan, the composting process plays a central role in livestock waste treatment. Since many livestock wastes are processed, greenhouse gas (GHG) generation is also recognized to be substantial. However, few experiments have been undertaken in Japan to quantitatively measure the amount of GHG generation from the pile type composting process, the most representative composting system. Various types of livestock waste were piled together with a moisture conditioner to form significant masses (around 300 kg-1230 kg), and their CH₄ and N₂O emissions were determined during both the high temperature and low temperature seasons. The measurement system we devised consisted of a cylindrical chamber (3 m in diameter, 2.2 m in height, 13 m³), which collected the exhaust gas produced by composting materials, and a measurement device. Our results showed that CH₄ emissions from the composting of dairy cattle waste were high at 36-40g CH₄/kg OM of piled manure; those (0.4-1.6g CH₄/kg OM) for other types of manure were much lower. And N₂O emissions from the composting of poultry waste were low at 0-0.7g N₂O-N/kg Nitrogen of piled manure, while those (6-37g N₂O/kg N) for other types of manure were much higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is average of 16.3-30.8 g N₂O–N/kg N. Higher emissions were observed from samples with higher moisture content.", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.609Z", + "last_change_date": "2022-03-14T08:06:09.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11035, + "fields": { + "EF_ID": 424129, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for beef cattle manure composting in piles", + "Technology_Practices": "Composting for the production of organic fertilizers for agricultural use. Piled about 1.5-2 m height on compost bed or in shed to ferment for several months with occasional turning. Manure was mixed well with sawdust to adjust to the standard initial moisture contents of piled manure on Japanese farms.", + "Parameter_Conditions": "Composting on a waterproof floor structure that prevents groundwater pollution, and under the roof to avoid rainfall. The conical mixture in the chamber (around 1.2 m height and 2.0 m diameter) was turned weekly or biweekly. Temperature conditions during composting periods: June 2003 (26.6℃) - August 2003 (26.1℃) and November 2002 (11.0℃) - January 2003 (7.4℃).", + "Regional_Conditions": "Asia, Japan (JPN)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "g N₂O-N/kg N", + "Equation": "Equation 10.25 on Page 10.54 of the 2006 IPCC Guidelines (Vol.4, Ch.10)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Osada, T., Fukumoto, Y., Tamura, T., Shiraishi, M. & Ishibashi, M (2005). Greenhouse gas generation from livestock waste composting. Proceedings of the Fourth International Symposium NCGG-4. Millpress, Rotterdam, 105-111.", + "English_Abstract": "In Japan, the composting process plays a central role in livestock waste treatment. Since many livestock wastes are processed, greenhouse gas (GHG) generation is also recognized to be substantial. However, few experiments have been undertaken in Japan to quantitatively measure the amount of GHG generation from the pile type composting process, the most representative composting system. Various types of livestock waste were piled together with a moisture conditioner to form significant masses (around 300 kg-1230 kg), and their CH₄ and N₂O emissions were determined during both the high temperature and low temperature seasons. The measurement system we devised consisted of a cylindrical chamber (3 m in diameter, 2.2 m in height, 13 m³), which collected the exhaust gas produced by composting materials, and a measurement device. Our results showed that CH₄ emissions from the composting of dairy cattle waste were high at 36-40g CH₄/kg OM of piled manure; those (0.4-1.6g CH₄/kg OM) for other types of manure were much lower. And N₂O emissions from the composting of poultry waste were low at 0-0.7g N₂O-N/kg Nitrogen of piled manure, while those (6-37g N₂O/kg N) for other types of manure were much higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is average of 15.0-15.9 g N₂O–N/kg N.", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.717Z", + "last_change_date": "2022-03-14T08:06:09.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11036, + "fields": { + "EF_ID": 424130, + "IPCC_Category": "3.A.2.h - Swine", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for fattening swine manure composting in piles", + "Technology_Practices": "Composting for the production of organic fertilizers for agricultural use. Piled about 1.5-2 m height on compost bed or in shed to ferment for several months with occasional turning. Manure was mixed well with sawdust to adjust to the standard initial moisture contents of piled manure on Japanese farms.", + "Parameter_Conditions": "Composting on a waterproof floor structure that prevents groundwater pollution, and under the roof to avoid rainfall. The conical mixture in the chamber (around 1.2 m height and 2.0 m diameter) was turned weekly or biweekly. Temperature conditions during composting periods: September 2002 (25.2℃) - November 2002 (8.2℃) and February 2003 (9.1℃) - June 2003 (25.5℃).", + "Regional_Conditions": "Asia, Japan (JPN)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "g N₂O-N/kg N", + "Equation": "Equation 10.25 on Page 10.54 of the 2006 IPCC Guidelines (Vol.4, Ch.10)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Osada, T., Fukumoto, Y., Tamura, T., Shiraishi, M. & Ishibashi, M (2005). Greenhouse gas generation from livestock waste composting. Proceedings of the Fourth International Symposium NCGG-4. Millpress, Rotterdam, 105-111.", + "English_Abstract": "In Japan, the composting process plays a central role in livestock waste treatment. Since many livestock wastes are processed, greenhouse gas (GHG) generation is also recognized to be substantial. However, few experiments have been undertaken in Japan to quantitatively measure the amount of GHG generation from the pile type composting process, the most representative composting system. Various types of livestock waste were piled together with a moisture conditioner to form significant masses (around 300 kg-1230 kg), and their CH₄ and N₂O emissions were determined during both the high temperature and low temperature seasons. The measurement system we devised consisted of a cylindrical chamber (3 m in diameter, 2.2 m in height, 13 m³), which collected the exhaust gas produced by composting materials, and a measurement device. Our results showed that CH₄ emissions from the composting of dairy cattle waste were high at 36-40g CH₄/kg OM of piled manure; those (0.4-1.6g CH₄/kg OM) for other types of manure were much lower. And N₂O emissions from the composting of poultry waste were low at 0-0.7g N₂O-N/kg Nitrogen of piled manure, while those (6-37g N₂O/kg N) for other types of manure were much higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is average of 12.3-37.2 g N₂O–N/kg N.", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.826Z", + "last_change_date": "2022-03-14T08:06:09.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11037, + "fields": { + "EF_ID": 424131, + "IPCC_Category": "3.A.2.i - Poultry", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for poultry manure composting in piles", + "Technology_Practices": "Composting for the production of organic fertilizers for agricultural use. Piled about 1.5-2 m height on compost bed or in shed to ferment for several months with occasional turning. Manure was mixed well with sawdust to adjust to the standard initial moisture contents of piled manure on Japanese farms.", + "Parameter_Conditions": "Composting on a waterproof floor structure that prevents groundwater pollution, and under the roof to avoid rainfall. The conical mixture in the chamber (around 1.2 m height and 2.0 m diameter) was turned weekly or biweekly. Temperature conditions during composting periods: August 2002 (28.1℃) - October 2002 (23.8℃) and October 2002 (18.2℃) - December 2002 (8.6℃).", + "Regional_Conditions": "Asia, Japan (JPN)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5", + "Unit": "g N₂O-N/kg N", + "Equation": "Equation 10.25 on Page 10.54 of the 2006 IPCC Guidelines (Vol.4, Ch.10)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Osada, T., Fukumoto, Y., Tamura, T., Shiraishi, M. & Ishibashi, M (2005). Greenhouse gas generation from livestock waste composting. Proceedings of the Fourth International Symposium NCGG-4. Millpress, Rotterdam, 105-111.", + "English_Abstract": "In Japan, the composting process plays a central role in livestock waste treatment. Since many livestock wastes are processed, greenhouse gas (GHG) generation is also recognized to be substantial. However, few experiments have been undertaken in Japan to quantitatively measure the amount of GHG generation from the pile type composting process, the most representative composting system. Various types of livestock waste were piled together with a moisture conditioner to form significant masses (around 300 kg-1230 kg), and their CH₄ and N₂O emissions were determined during both the high temperature and low temperature seasons. The measurement system we devised consisted of a cylindrical chamber (3 m in diameter, 2.2 m in height, 13 m³), which collected the exhaust gas produced by composting materials, and a measurement device. Our results showed that CH₄ emissions from the composting of dairy cattle waste were high at 36-40g CH₄/kg OM of piled manure; those (0.4-1.6g CH₄/kg OM) for other types of manure were much lower. And N₂O emissions from the composting of poultry waste were low at 0-0.7g N₂O-N/kg Nitrogen of piled manure, while those (6-37g N₂O/kg N) for other types of manure were much higher.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is average of 0.0-0.7 g N₂O–N/kg N.", + "Other_Comments": "", + "Data_Provider": "Takashi Osada", + "Link": "", + "creation_date": "2022-03-14T08:06:09.927Z", + "last_change_date": "2022-03-14T08:06:09.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11038, + "fields": { + "EF_ID": 424132, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "60 kg N/ha of Urea applied", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, São Paulo State (humid subtropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.85", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.027Z", + "last_change_date": "2022-03-14T08:06:10.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11039, + "fields": { + "EF_ID": 424133, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "90 kg N/ha of Urea applied", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, São Paulo State (humid subtropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.59", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.128Z", + "last_change_date": "2022-03-14T08:06:10.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11040, + "fields": { + "EF_ID": 424134, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "120 kg N/ha of Urea", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, São Paulo State (humid subtropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.67", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.205Z", + "last_change_date": "2022-03-14T08:06:10.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11041, + "fields": { + "EF_ID": 424135, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "180 kg N/ha of Urea", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, São Paulo State (humid subtropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.31", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.297Z", + "last_change_date": "2022-03-14T08:06:10.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11042, + "fields": { + "EF_ID": 424136, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "60 kg N/ha of Ammonium nitrate", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, São Paulo State (humid subtropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.372Z", + "last_change_date": "2022-03-14T08:06:10.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11043, + "fields": { + "EF_ID": 424137, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "90 kg N/ha of Ammonium nitrate", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, São Paulo State (humid subtropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.33", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.573Z", + "last_change_date": "2022-03-14T08:06:10.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11044, + "fields": { + "EF_ID": 424138, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "120 kg N/ha of Ammonium nitrate", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, São Paulo State (humid subtropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.21", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.647Z", + "last_change_date": "2022-03-14T08:06:10.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11045, + "fields": { + "EF_ID": 424139, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "180 kg N/ha of Ammonium nitrate", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, São Paulo State (humid subtropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.95", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.749Z", + "last_change_date": "2022-03-14T08:06:10.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11046, + "fields": { + "EF_ID": 424140, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "60 kg N/ha of Urea", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, Goias State (tropical with dry winters)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.839Z", + "last_change_date": "2022-03-14T08:06:10.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11047, + "fields": { + "EF_ID": 424141, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "120 kg N/ha of Urea", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, Goias State (tropical with dry winters)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:10.958Z", + "last_change_date": "2022-03-14T08:06:10.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11048, + "fields": { + "EF_ID": 424142, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "180 kg N/ha of Urea", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, Goias State (tropical with dry winters)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:11.047Z", + "last_change_date": "2022-03-14T08:06:11.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11049, + "fields": { + "EF_ID": 424143, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "60 kg N/ha of Ammonium nitrate", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, Goias State (tropical with dry winters)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.22", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:11.151Z", + "last_change_date": "2022-03-14T08:06:11.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11050, + "fields": { + "EF_ID": 424144, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "120 kg N/ha of Ammonium nitrate", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, Goias State (tropical with dry winters)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.53", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:11.239Z", + "last_change_date": "2022-03-14T08:06:11.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11051, + "fields": { + "EF_ID": 424145, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertiizer application to sugarcane", + "Technology_Practices": "180 kg N/ha of Ammonium nitrate", + "Parameter_Conditions": "Soil type: Oxisols", + "Regional_Conditions": "South America, Brazil, Goias State (tropical with dry winters)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.22", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Signor, D., Cerri, C.E.P., Conant, R. N₂O emissions due to nitrogen fertilizer applications in two regions of sugarcane cultivation in Brazil. Environmental Research Letters, v.8, 2013, p.015013 (9 pp).", + "English_Abstract": "Among the main greenhouse gases (CO₂, CH₄ and N₂O), N₂O has the highest global warming potential. N₂O emission is mainly connected to agricultural activities, increasing as nitrogen concentrations increase in the soil with nitrogen fertilizer application. We evaluated N₂O emissions due to application of increasing doses of ammonium nitrate and urea in two sugarcane fields in the mid-southern region of Brazil: Piracicaba (Sao Paulo state) and Goianesia (Goias state). In Piracicaba, N₂O emissions exponentially increased with increasing N doses and were similar for urea and ammonium nitrate up to a dose of 107.9 kg ha⁻¹ of N. From there on, emissions exponentially increased for ammonium nitrate, whereas for urea they stabilized. In Goianesia, N₂O emissions were lower, although the behavior was similar to that at the Piracicaba site. Ammonium nitrate emissions increased linearly with N dose and urea emissions were adjusted to a quadratic equation with a maximum amount of 113.9 kg N ha⁻¹. This first effort to measure fertilizer induced emissions in Brazilian sugarcane production not only helps to elucidate the behavior of N₂O emissions promoted by different N sources frequently used in Brazilian sugarcane fields but also can be useful for future Brazilian ethanol carbon footprint studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1088/1748-9326/8/1/015013", + "creation_date": "2022-03-14T08:06:11.335Z", + "last_change_date": "2022-03-14T08:06:11.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11052, + "fields": { + "EF_ID": 424146, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for synthetic N fertilizer applied to sugarcane plant", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Ammonium nitrate (60 kg N/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "The straw covering the soil remained throughout the conduction period after the ratoon regrowth, in a cycle of deposition and decomposition", + "Value": "0.44", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:11.414Z", + "last_change_date": "2022-03-14T08:06:11.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11053, + "fields": { + "EF_ID": 424147, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for synthetic N fertilizer applied to sugarcane plant", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Urea (60 kg N/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "The straw covering the soil remained throughout the conduction period after the ratoon regrowth, in a cycle of deposition and decomposition", + "Value": "0.52", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:11.503Z", + "last_change_date": "2022-03-14T08:06:11.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11054, + "fields": { + "EF_ID": 424148, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for organic addtions (filter cake) applied to sugarcane plant", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Filter cake (25 Mg/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.17", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:11.795Z", + "last_change_date": "2022-03-14T08:06:11.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11055, + "fields": { + "EF_ID": 424149, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for organic addtions (filter cake) applied to sugarcane plant", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Filter cake (40 Mg/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:11.954Z", + "last_change_date": "2022-03-14T08:06:11.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11056, + "fields": { + "EF_ID": 424150, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for organic addtions (filter cake) plus synthetic N fertilizer applied to sugarcane plant", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Urea (60 kg N/ha) and filter cake (25 Mg/ha) application.", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.21", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:12.105Z", + "last_change_date": "2022-03-14T08:06:12.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11057, + "fields": { + "EF_ID": 424151, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for synthetic N fertilizer application to sugarcane ratoon.", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Ammonium nitrate (80 kg N/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.25", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:12.214Z", + "last_change_date": "2022-03-14T08:06:12.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11058, + "fields": { + "EF_ID": 424152, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for synthetic N fertilizer application to sugarcane ratoon.", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Ammonium nitrate (120 kg N/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.23", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:12.315Z", + "last_change_date": "2022-03-14T08:06:12.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11059, + "fields": { + "EF_ID": 424153, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for synthetic N fertilizer application to sugarcane ratoon.", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Urea (80 kg N/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.52", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:12.424Z", + "last_change_date": "2022-03-14T08:06:12.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11060, + "fields": { + "EF_ID": 424154, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for synthetic N fertilizer application to sugarcane ratoon.", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Urea (120 kg N/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.83", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:12.534Z", + "last_change_date": "2022-03-14T08:06:12.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11061, + "fields": { + "EF_ID": 424155, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for organic addtions (vinasse) application to sugarcane ratoon.", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Vinasse (150 m³/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.77", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:12.625Z", + "last_change_date": "2022-03-14T08:06:12.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11062, + "fields": { + "EF_ID": 424156, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for organic addtions (vinasse) application to sugarcane ratoon.", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Vinasse (300 m³/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.54", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:12.717Z", + "last_change_date": "2022-03-14T08:06:12.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11063, + "fields": { + "EF_ID": 424157, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor for synthetic N fertilizer plus organic additions (vinasse) application to sugarcane ratoon.", + "Technology_Practices": "The experimental area was cultivated with sugarcane variety RB 86-7515. Urea (80 kg/ha of N) and vinasse (150 m³/ha).", + "Parameter_Conditions": "Typic Acrustox (Oxisol) clayey texture. The mean annual precipitation is 1400 mm/yr, and the mean annual temperature is 22.5°C.", + "Regional_Conditions": "South America, Brazil, São Paulo state, CWA mesothermal humid subtropical climate", + "Control_Technologies": "", + "Other_Properties": "Sugarcane stalks were placed on top of the N-source and the furrows were then covered with soil, as is usually done during the planting process", + "Value": "0.59", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Siqueira Neto, M., Galdos, M.V., Feigl, B.J., Cerri, C.E.P., Cerri, C.C. Direct N₂O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. Global Change Biology Bioenergy (2015), 8: 269-280.", + "English_Abstract": "The production and use of biofuels have increased rapidly in recent decades. Bioethanol derived from sugarcane has become a promising alternative to fossil fuel for use in automotive vehicles. The ‘savings’ calculated from the carbon footprint of this energy source still generates many questions related to nitrous oxide (N₂O) emissions from sugarcane cultivation. We quantified N₂O emissions from soil covered with different amounts of sugarcane straw and determined the direct N₂O emission factors of nitrogen fertilizers (applied at the planting furrows and in the topdressing) and the by-products of sugarcane processing (filter cake and vinasse) applied to sugarcane fields. The results showed that the presence of different amounts of sugarcane straw did not change N₂O emissions relative to bare soil (control). N-fertilizer increased N₂O emissions from the soil, especially when urea was used, both at the planting furrow (plant cane) and during the regrowth process (ratoon cane) in relation to ammonium nitrate. The emission factor for N-fertilizer was 0.46 ± 0.33%. The field application of filter cake and vinasse favored N₂O emissions from the soil, the emission factor for vinasse was 0.65 ± 0.29%, while filter cake had a lower emission factor of 0.13 ± 0.04%. The experimentally obtained N₂O emission factors associated with sugarcane cultivation, specific to the major sugarcane production region of the Brazil, were lower than those considered by the IPCC. Thus, the results of this study should contribute to bioethanol carbon footprint calculations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi: 10.1111/gcbb.12251", + "creation_date": "2022-03-14T08:06:12.826Z", + "last_change_date": "2022-03-14T08:06:12.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11064, + "fields": { + "EF_ID": 424158, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertilizer application under soybean-maize double-cropping system", + "Technology_Practices": "Fertilizer input of 80 kg N/ha (5 kg/ha as ammonium nitrate drilled with seeding and 75 kg N/ha as urea)", + "Parameter_Conditions": "Double-cropped soybeans and maize. Soils are medium textured, highly weathered, base-poor ustic Oxisols (Latossolo vermelho-amarelo distrófico in the Brazilian classification)", + "Regional_Conditions": "South America, Brazil (BRA), Mato Grosso state, Brazilian Amazon.", + "Control_Technologies": "", + "Other_Properties": "Mean annual temperature is 27 °C and mean annual precipitation is 1,800 mm/yr, most of which falls from November to April when crops are grown (1987–2010 mean; Tanguro Ranch).", + "Value": "0.23", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, p.11.10, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jankowski, K., Neill, C., Davidson, E.A., Macedo, M.N., Costa Junior, C., Galford, G., Santos, L.M., Lefebvre, P., Nunes, D., Cerri, C.E.P., Mchorney, R., O´Connell, C., Coe, M.T. 2018. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports , 8: 1-11.", + "English_Abstract": "Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N₂O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N₂O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha⁻¹ yr⁻¹ increased maize yield and N₂O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha⁻¹, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI:10.1038/s41598-018-31175-1", + "creation_date": "2022-03-14T08:06:12.936Z", + "last_change_date": "2022-03-14T08:06:12.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11065, + "fields": { + "EF_ID": 424159, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertilizer application under soybean-maize double-cropping system", + "Technology_Practices": "Fertilizer (urea) input of 120 kg N/ha", + "Parameter_Conditions": "Double-cropped soybeans and maize. Soils are medium textured, highly weathered, base-poor ustic Oxisols (Latossolo vermelho-amarelo distrófico in the Brazilian classification)", + "Regional_Conditions": "South America, Brazil (BRA), Mato Grosso state, Brazilian Amazon.", + "Control_Technologies": "", + "Other_Properties": "Mean annual temperature is 27 °C and mean annual precipitation is 1,800 mm/yr, most of which falls from November to April when crops are grown (1987–2010 mean; Tanguro Ranch).", + "Value": "0.1", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, p.11.10, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jankowski, K., Neill, C., Davidson, E.A., Macedo, M.N., Costa Junior, C., Galford, G., Santos, L.M., Lefebvre, P., Nunes, D., Cerri, C.E.P., Mchorney, R., O´Connell, C., Coe, M.T. 2018. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports , 8: 1-11.", + "English_Abstract": "Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N₂O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N₂O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha⁻¹ yr⁻¹ increased maize yield and N₂O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha⁻¹, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI:10.1038/s41598-018-31175-1", + "creation_date": "2022-03-14T08:06:13.044Z", + "last_change_date": "2022-03-14T08:06:13.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11066, + "fields": { + "EF_ID": 424160, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertilizer application under soybean-maize double-cropping system", + "Technology_Practices": "Fertilizer (urea) input of 160 kg N/ha", + "Parameter_Conditions": "Double-cropped soybeans and maize. Soils are medium textured, highly weathered, base-poor ustic Oxisols (Latossolo vermelho-amarelo distrófico in the Brazilian classification)", + "Regional_Conditions": "South America, Brazil (BRA), Mato Grosso state, Brazilian Amazon.", + "Control_Technologies": "", + "Other_Properties": "Mean annual temperature is 27 °C and mean annual precipitation is 1,800 mm/yr, most of which falls from November to April when crops are grown (1987–2010 mean; Tanguro Ranch).", + "Value": "0.2", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, p.11.10, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jankowski, K., Neill, C., Davidson, E.A., Macedo, M.N., Costa Junior, C., Galford, G., Santos, L.M., Lefebvre, P., Nunes, D., Cerri, C.E.P., Mchorney, R., O´Connell, C., Coe, M.T. 2018. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports , 8: 1-11.", + "English_Abstract": "Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N₂O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N₂O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha⁻¹ yr⁻¹ increased maize yield and N₂O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha⁻¹, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI:10.1038/s41598-018-31175-1", + "creation_date": "2022-03-14T08:06:13.145Z", + "last_change_date": "2022-03-14T08:06:13.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11067, + "fields": { + "EF_ID": 424161, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for synthetic N fertilizer application under soybean-maize double-cropping system", + "Technology_Practices": "Fertilizer (urea) input of 200 kg N/ha", + "Parameter_Conditions": "Double-cropped soybeans and maize. Soils are medium textured, highly weathered, base-poor ustic Oxisols (Latossolo vermelho-amarelo distrófico in the Brazilian classification)", + "Regional_Conditions": "South America, Brazil (BRA), Mato Grosso state, Brazilian Amazon.", + "Control_Technologies": "", + "Other_Properties": "Mean annual temperature is 27 °C and mean annual precipitation is 1,800 mm/yr, most of which falls from November to April when crops are grown (1987–2010 mean; Tanguro Ranch).", + "Value": "0.24", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, p.11.10, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jankowski, K., Neill, C., Davidson, E.A., Macedo, M.N., Costa Junior, C., Galford, G., Santos, L.M., Lefebvre, P., Nunes, D., Cerri, C.E.P., Mchorney, R., O´Connell, C., Coe, M.T. 2018. Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports , 8: 1-11.", + "English_Abstract": "Agricultural intensification offers potential to grow more food while reducing the conversion of native ecosystems to croplands. However, intensification also risks environmental degradation through emissions of the greenhouse gas nitrous oxide (N₂O) and nitrate leaching to ground and surface waters. Intensively-managed croplands and nitrogen (N) fertilizer use are expanding rapidly in tropical regions. We quantified fertilizer responses of maize yield, N₂O emissions, and N leaching in an Amazon soybean-maize double-cropping system on deep, highly-weathered soils in Mato Grosso, Brazil. Application of N fertilizer above 80 kg N ha⁻¹ yr⁻¹ increased maize yield and N₂O emissions only slightly. Unlike experiences in temperate regions, leached nitrate accumulated in deep soils with increased fertilizer and conversion to cropping at N fertilization rates >80 kg N ha⁻¹, which exceeded maize demand. This raises new questions about the capacity of tropical agricultural soils to store nitrogen, which may determine when and how much nitrogen impacts surface waters.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI:10.1038/s41598-018-31175-1", + "creation_date": "2022-03-14T08:06:13.245Z", + "last_change_date": "2022-03-14T08:06:13.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11068, + "fields": { + "EF_ID": 424188, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF for N addition from sugarcane residues", + "Technology_Practices": "No sugarcane straw removal (12 Mg/ha of dry matter maintained on the soil surface).", + "Parameter_Conditions": "Typic Acrudox (Oxisol) clayey texture", + "Regional_Conditions": "South America, Brazil (BRA), São Paulo state, CWA Humid subtropical", + "Control_Technologies": "", + "Other_Properties": "Bare soil is used as a control", + "Value": "0.14", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, p.11.10, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Vasconcelos, A.L.S., Cherubin, M.R., Feigl, B.J., Cerri, C.E.P., Gmach, M.R., Siqueira Neto, M. 2018. Greenhouse gas emission responses to sugarcane straw removal. Biomass & Bioenergy, 113: 15-21.", + "English_Abstract": "Sugarcane straw has been identified as an important feedstock to increase bioenergy production. However, changes in greenhouse gas (GHG) emissions due to straw removal are not yet understood. We hypothesized that partial straw removal changes decomposition rates and could change GHG fluxes. We performed a field experiment within the largest sugarcane-producing region of Brazil (São Paulo state) to assess GHG fluxes and straw decomposition. The treatments were: no-removal (12 Mg ha⁻¹ left on soil surface); medium removal (6 Mg ha⁻¹); high removal (3 Mg ha⁻¹); and total removal (bare soil). Static chambers were used to quantify GHG fluxes, and straw decomposition was measured using bottomless plastic boxes over a period of 180 days. Our findings showed that GHG were affected by the straw removal, although daily emissions were highly variable. Cumulative CO₂ and N₂O emissions were 35–45% lower under bare soil compared to other removal; however under no removal the CH₄ uptake was 40% higher compared to bare soil. High straw decomposition was found in the no-removal, which decreased with the removal intensity. C released by straw decomposition was estimated between 0.5 and 3.1 Mg ha⁻¹. By analyzing the C balance in C equivalent (Ceq) between decomposition and emissions we estimated that about 3.5 Mg ha⁻¹ of straw are necessary to neutralize GHG emissions from soil and straw decomposition. Finally, we suggest that medium straw (∼6 Mg ha⁻¹) maintenance would be a suitable strategy to increase bioenergy production and preserves adequate soil cover, as well as offsetting losses in soil C stocks.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "https://doi.org/10.1016/j.biombioe.2018.03.002", + "creation_date": "2022-03-14T08:06:13.346Z", + "last_change_date": "2022-03-14T08:06:13.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11069, + "fields": { + "EF_ID": 424189, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF for N addition from sugarcane residues", + "Technology_Practices": "Sugarcane straw removal from the soil surface to be used for bioelectricity and/or production of 2G ethanol. Medium sugarcane straw removal (6 Mg/ha of dry matter maintained).", + "Parameter_Conditions": "Typic Acrudox (Oxisol) clayey texture", + "Regional_Conditions": "South America, Brazil (BRA), São Paulo state, CWA Humid subtropical", + "Control_Technologies": "", + "Other_Properties": "Bare soil is used as a control", + "Value": "0.34", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, p.11.10, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Vasconcelos, A.L.S., Cherubin, M.R., Feigl, B.J., Cerri, C.E.P., Gmach, M.R., Siqueira Neto, M. 2018. Greenhouse gas emission responses to sugarcane straw removal. Biomass & Bioenergy, 113: 15-21.", + "English_Abstract": "Sugarcane straw has been identified as an important feedstock to increase bioenergy production. However, changes in greenhouse gas (GHG) emissions due to straw removal are not yet understood. We hypothesized that partial straw removal changes decomposition rates and could change GHG fluxes. We performed a field experiment within the largest sugarcane-producing region of Brazil (São Paulo state) to assess GHG fluxes and straw decomposition. The treatments were: no-removal (12 Mg ha⁻¹ left on soil surface); medium removal (6 Mg ha⁻¹); high removal (3 Mg ha⁻¹); and total removal (bare soil). Static chambers were used to quantify GHG fluxes, and straw decomposition was measured using bottomless plastic boxes over a period of 180 days. Our findings showed that GHG were affected by the straw removal, although daily emissions were highly variable. Cumulative CO₂ and N₂O emissions were 35–45% lower under bare soil compared to other removal; however under no removal the CH₄ uptake was 40% higher compared to bare soil. High straw decomposition was found in the no-removal, which decreased with the removal intensity. C released by straw decomposition was estimated between 0.5 and 3.1 Mg ha⁻¹. By analyzing the C balance in C equivalent (Ceq) between decomposition and emissions we estimated that about 3.5 Mg ha⁻¹ of straw are necessary to neutralize GHG emissions from soil and straw decomposition. Finally, we suggest that medium straw (∼6 Mg ha⁻¹) maintenance would be a suitable strategy to increase bioenergy production and preserves adequate soil cover, as well as offsetting losses in soil C stocks.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "https://doi.org/10.1016/j.biombioe.2018.03.002", + "creation_date": "2022-03-14T08:06:13.446Z", + "last_change_date": "2022-03-14T08:06:13.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11070, + "fields": { + "EF_ID": 424190, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O EF for N addition from sugarcane residues", + "Technology_Practices": "Sugarcane straw removal from the soil surface to be used for bioelectricity and/or production of 2G ethanol. High sugarcane straw removal (3 Mg/ha of dry matter maintained).", + "Parameter_Conditions": "Typic Acrudox (Oxisol) clayey texture", + "Regional_Conditions": "South America, Brazil (BRA), São Paulo state, CWA Humid subtropical", + "Control_Technologies": "", + "Other_Properties": "Bare soil is used as a control", + "Value": "0.72", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, p.11.10, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Vasconcelos, A.L.S., Cherubin, M.R., Feigl, B.J., Cerri, C.E.P., Gmach, M.R., Siqueira Neto, M. 2018. Greenhouse gas emission responses to sugarcane straw removal. Biomass & Bioenergy, 113: 15-21.", + "English_Abstract": "Sugarcane straw has been identified as an important feedstock to increase bioenergy production. However, changes in greenhouse gas (GHG) emissions due to straw removal are not yet understood. We hypothesized that partial straw removal changes decomposition rates and could change GHG fluxes. We performed a field experiment within the largest sugarcane-producing region of Brazil (São Paulo state) to assess GHG fluxes and straw decomposition. The treatments were: no-removal (12 Mg ha⁻¹ left on soil surface); medium removal (6 Mg ha⁻¹); high removal (3 Mg ha⁻¹); and total removal (bare soil). Static chambers were used to quantify GHG fluxes, and straw decomposition was measured using bottomless plastic boxes over a period of 180 days. Our findings showed that GHG were affected by the straw removal, although daily emissions were highly variable. Cumulative CO₂ and N₂O emissions were 35–45% lower under bare soil compared to other removal; however under no removal the CH₄ uptake was 40% higher compared to bare soil. High straw decomposition was found in the no-removal, which decreased with the removal intensity. C released by straw decomposition was estimated between 0.5 and 3.1 Mg ha⁻¹. By analyzing the C balance in C equivalent (Ceq) between decomposition and emissions we estimated that about 3.5 Mg ha⁻¹ of straw are necessary to neutralize GHG emissions from soil and straw decomposition. Finally, we suggest that medium straw (∼6 Mg ha⁻¹) maintenance would be a suitable strategy to increase bioenergy production and preserves adequate soil cover, as well as offsetting losses in soil C stocks.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "https://doi.org/10.1016/j.biombioe.2018.03.002", + "creation_date": "2022-03-14T08:06:13.547Z", + "last_change_date": "2022-03-14T08:06:13.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11071, + "fields": { + "EF_ID": 424283, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Daily methane emission factor for continuously flooded rice field", + "Technology_Practices": "Effect of planting method and Water management-continuously flooded (5 cm of irrigation applied every alternate day), puddled transplanted rice, 2–3 seedlings of 30 days age per hill were transplanted. Distance between row to row and hill to hill was 15 x 20 cm.", + "Parameter_Conditions": "Derived from a rice cultivation in North-West India with a Typic Ustochrept soil type. Mean maximum and minimum temperatures during kharif season (July–September) were 35°C and 25°C respectively in 2009. The region received 502 mm rains from June to September. The alluvial soil at the experimental site had a loamy texture (46% sand, 33% silt, and 21% clay).", + "Regional_Conditions": "Asia; Indo-Gangetic Plains; Subtropical semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.59", + "Unit": "kg CH4/ha", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "N. Jain, R. Dubey, D.S. Dubey, J. Singh, M. Khanna, H. Pathak, A. Bhatia (2013). Mitigation of greenhouse gas emission with system of rice intensification in the Indo- Gangetic Plains. Paddy and Water Environment 12 (3), 355-363.", + "English_Abstract": "System of rice intensification (SRI) is an alternate method of conventional puddled, transplanted, and continuously flooded rice cultivation for higher yield, water saving, and increased farmer’s income. The SRI may also have considerable impact on greenhouse gas emission because of difference in planting, water and nutrient management practices. Methane and nitrous oxide emissions were quantified from three planting methods: conventional puddled transplanted rice (TPR), conventional SRI with 12-days-old seedling (SRI) and modified SRI with 18-days-old seedling (MSRI). Methane emissions with SRI and MSRI decreased by 61.1 and 64%, respectively, compared to the TPR method. An average of 22.5% increase in N₂O–N emission over the TPR method was observed in the SRI and MSRI methods. The global warming potential (GWP), however, reduced by 28% in SRI and 30% in MSRI over the TPR method. A 36% of water saving was observed with both SRI and MSRI methods.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Daily EF converted from kg CH₄/ha by dividing the value by 104 days cultivation period of rice.", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:13.649Z", + "last_change_date": "2022-03-14T08:06:13.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11072, + "fields": { + "EF_ID": 424284, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Scaling factor for water regime, SFw (intermittently flooded-alternate wetting and drying)", + "Technology_Practices": "Effect of planting method and Water management-Irrigation was applied twice a week to keep soil just moist (3.5 cm). One seedling (12 to 18 days old) per hill was transplanted with a spacing of 25 x 25 cm in square pattern.", + "Parameter_Conditions": "Derived from a rice cultivation in North-West India with a Typic Ustochrept soil type. Mean maximum and minimum temperatures during Kharif season (July–September) were 35°C and 25°C respectively in 2009. The region received 502 mm rains from June to September. The alluvial soil at the experimental site had a loamy texture (46% sand, 33% silt, and 21% clay).", + "Regional_Conditions": "Asia; Indo-Gangetic Plains; Subtropical semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62.5", + "Unit": "%", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "N. Jain, R. Dubey, D.S. Dubey, J. Singh, M. Khanna, H. Pathak, A. Bhatia (2013). Mitigation of greenhouse gas emission with system of rice intensification in the Indo- Gangetic Plains. Paddy and Water Environment 12 (3), 355-363.", + "English_Abstract": "System of rice intensification (SRI) is an alternate method of conventional puddled, transplanted, and continuously flooded rice cultivation for higher yield, water saving, and increased farmer’s income. The SRI may also have considerable impact on greenhouse gas emission because of difference in planting, water and nutrient management practices. Methane and nitrous oxide emissions were quantified from three planting methods: conventional puddled transplanted rice (TPR), conventional SRI with 12-days-old seedling (SRI) and modified SRI with 18-days-old seedling (MSRI). Methane emissions with SRI and MSRI decreased by 61.1 and 64%, respectively, compared to the TPR method. An average of 22.5% increase in N₂O–N emission over the TPR method was observed in the SRI and MSRI methods. The global warming potential (GWP), however, reduced by 28% in SRI and 30% in MSRI over the TPR method. A 36% of water saving was observed with both SRI and MSRI methods.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SFw value was taken from study Jain et al. 2013, which states that SRI and MSRI methods reduced the methane emission by 61.1 and 64% (mean 62.5%), respectively.", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:13.749Z", + "last_change_date": "2022-03-14T08:06:13.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11073, + "fields": { + "EF_ID": 424285, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for flooded rice (EF₁fr)", + "Technology_Practices": "Effect of planting method and Water management- continuously flooded (5 cm of irrigation applied every alternate day), puddled transplanted rice, 2–3 seedlings of 30 days age per hill were transplanted. Distance between row to row and hill to hill was 15 x 20 cm.", + "Parameter_Conditions": "Derived from a rice cultivation in North-West India with a Typic Ustochrept soil type. Mean maximum and minimum temperatures during Kharif season (July–September) were 35°C and 25°C respectively in 2009. The region received 502 mm rains from June to September. The alluvial soil at the experimental site had a loamy texture (46% sand, 33% silt, and 21% clay).", + "Regional_Conditions": "Asia; Indo-Gangetic Plains; Subtropical semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "kg N₂O-N/ha", + "Equation": "Vol. 4, Ch. 11, Equation 11.2 on p 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "N. Jain, R. Dubey, D.S. Dubey, J. Singh, M. Khanna, H. Pathak, A. Bhatia (2013). Mitigation of greenhouse gas emission with system of rice intensification in the Indo- Gangetic Plains. Paddy and Water Environment 12 (3), 355-363.", + "English_Abstract": "System of rice intensification (SRI) is an alternate method of conventional puddled, transplanted, and continuously flooded rice cultivation for higher yield, water saving, and increased farmer’s income. The SRI may also have considerable impact on greenhouse gas emission because of difference in planting, water and nutrient management practices. Methane and nitrous oxide emissions were quantified from three planting methods: conventional puddled transplanted rice (TPR), conventional SRI with 12-days-old seedling (SRI) and modified SRI with 18-days-old seedling (MSRI). Methane emissions with SRI and MSRI decreased by 61.1 and 64%, respectively, compared to the TPR method. An average of 22.5% increase in N₂O–N emission over the TPR method was observed in the SRI and MSRI methods. The global warming potential (GWP), however, reduced by 28% in SRI and 30% in MSRI over the TPR method. A 36% of water saving was observed with both SRI and MSRI methods.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in common units (kg N₂O-N/kg N input) was derived by subtracting the value 0.61 kg N₂O-N/ha with emission from control (0.154 kg N₂O-N/ha; Unpublished) and dividing with the amount of applied fertlizer (120 kg N/ha)", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:13.850Z", + "last_change_date": "2022-03-14T08:06:13.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11074, + "fields": { + "EF_ID": 424286, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for flooded rice, EF₁fr (Alternate wetting and drying, System of rice intensification)", + "Technology_Practices": "Effect of planting method and Water management-alternate wetting and drying (3.5 cm of irrigation applied twice a week to keep soil just moist), one seedling of 12 days age per hill was transplanted with a spacing of 25 x 25 cm in square pattern.", + "Parameter_Conditions": "Derived from a rice cultivation in North-West India with a Typic Ustochrept soil type. Mean maximum and minimum temperatures during Kharif season (July–September) were 35°C and 25°C respectively in 2009. The region received 502 mm rains from June to September. The alluvial soil at the experimental site had a loamy texture (46% sand, 33% silt, and 21% clay).", + "Regional_Conditions": "Asia; Indo-Gangetic Plains; Subtropical semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "kg N₂O-N/ha", + "Equation": "Vol. 4, Ch. 11, Equation 11.2 on p 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "N. Jain, R. Dubey, D.S. Dubey, J. Singh, M. Khanna, H. Pathak, A. Bhatia (2013). Mitigation of greenhouse gas emission with system of rice intensification in the Indo- Gangetic Plains. Paddy and Water Environment 12 (3), 355-363.", + "English_Abstract": "System of rice intensification (SRI) is an alternate method of conventional puddled, transplanted, and continuously flooded rice cultivation for higher yield, water saving, and increased farmer’s income. The SRI may also have considerable impact on greenhouse gas emission because of difference in planting, water and nutrient management practices. Methane and nitrous oxide emissions were quantified from three planting methods: conventional puddled transplanted rice (TPR), conventional SRI with 12-days-old seedling (SRI) and modified SRI with 18-days-old seedling (MSRI). Methane emissions with SRI and MSRI decreased by 61.1 and 64%, respectively, compared to the TPR method. An average of 22.5% increase in N₂O–N emission over the TPR method was observed in the SRI and MSRI methods. The global warming potential (GWP), however, reduced by 28% in SRI and 30% in MSRI over the TPR method. A 36% of water saving was observed with both SRI and MSRI methods.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in common units (kg N₂O-N/kg N input) was derived by subtracting the value 0.91 kg N₂O-N/ha with emission from control (0.154 kg N₂O-N/ha; Unpublished) and dividing with the amount of applied fertlizer (120 kg N/ha)", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:13.951Z", + "last_change_date": "2022-03-14T08:06:13.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11075, + "fields": { + "EF_ID": 424287, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for flooded rice, EF₁fr (Alternate wetting and drying, Modified system of rice intensification)", + "Technology_Practices": "Effect of planting method and Water management-alternate wetting and drying (3.5 cm of irrigation applied twice a week to keep soil just moist), one seedling of 18 days per hill was transplanted with a spacing of 25 x 25 cm in square pattern.", + "Parameter_Conditions": "Derived from a rice cultivation in North-West India with a Typic Ustochrept soil type. Mean maximum and minimum temperatures during Kharif season (July–September) were 35°C and 25°C respectively in 2009. The region received 502 mm rains from June to September. The alluvial soil at the experimental site had a loamy texture (46% sand, 33% silt, and 21% clay).", + "Regional_Conditions": "Asia; Indo-Gangetic Plains; Subtropical semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "kg N₂O-N/ha", + "Equation": "Vol. 4, Ch. 11, Equation 11.2 on p 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "N. Jain, R. Dubey, D.S. Dubey, J. Singh, M. Khanna, H. Pathak, A. Bhatia (2013). Mitigation of greenhouse gas emission with system of rice intensification in the Indo- Gangetic Plains. Paddy and Water Environment 12 (3), 355-363.", + "English_Abstract": "System of rice intensification (SRI) is an alternate method of conventional puddled, transplanted, and continuously flooded rice cultivation for higher yield, water saving, and increased farmer’s income. The SRI may also have considerable impact on greenhouse gas emission because of difference in planting, water and nutrient management practices. Methane and nitrous oxide emissions were quantified from three planting methods: conventional puddled transplanted rice (TPR), conventional SRI with 12-days-old seedling (SRI) and modified SRI with 18-days-old seedling (MSRI). Methane emissions with SRI and MSRI decreased by 61.1 and 64%, respectively, compared to the TPR method. An average of 22.5% increase in N₂O–N emission over the TPR method was observed in the SRI and MSRI methods. The global warming potential (GWP), however, reduced by 28% in SRI and 30% in MSRI over the TPR method. A 36% of water saving was observed with both SRI and MSRI methods.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in common units (kg N₂O-N/kg N input) was derived by subtracting the value 0.89 kg N₂O-N/ha with emission from control (0.154 kg N₂O-N/ha; Unpublished) and dividing with the amount of applied fertlizer (120 kg N/ha)", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:14.076Z", + "last_change_date": "2022-03-14T08:06:14.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11076, + "fields": { + "EF_ID": 424288, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Seasonal methane emission (i.e. EF x t in Equation 5.1 of the 2006 IPCC Guidelines) from rice cultivation", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "The region received 583 mm and 502 mm rains during June to September in 2008 and 2009, respectively", + "Value": "28.64", + "Unit": "kg CH4/ha", + "Equation": "Volume 4, Chapter 5, Equation 5.1 on p.5.45 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of CH₄ were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Daily EF converted from kg CH₄/ha by dividing the value by 95 days cultivation period of rice; ±2.0 (Stdev) of crop season emission.", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:14.186Z", + "last_change_date": "2022-03-14T08:06:14.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11077, + "fields": { + "EF_ID": 424289, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O Emission factor for flooded rice fields (EF₁fr)", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "The region received 583 mm and 502 mm rains during June to September in 2008 and 2009, respectively", + "Value": "0.19", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for rice 0.23% was adjusted to 0.19% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:14.286Z", + "last_change_date": "2022-03-14T08:06:14.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11078, + "fields": { + "EF_ID": 424290, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from maize cultivated during Kharif cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.39", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for maize 0.43% was adjusted to 0.39% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:14.386Z", + "last_change_date": "2022-03-14T08:06:14.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11079, + "fields": { + "EF_ID": 424291, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from wheat cultivated during Rabi cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.49", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for wheat 0.53% was adjusted to 0.49% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:14.479Z", + "last_change_date": "2022-03-14T08:06:14.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11080, + "fields": { + "EF_ID": 424292, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from sorghum cultivated during Kharif cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.42", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for sorghum 0.46% was adjusted to 0.42% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:14.596Z", + "last_change_date": "2022-03-14T08:06:14.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11081, + "fields": { + "EF_ID": 424293, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from pearl millet cultivated during Kharif cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.36", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for pearl millet 0.41% was adjusted to 0.36% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:14.713Z", + "last_change_date": "2022-03-14T08:06:14.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11082, + "fields": { + "EF_ID": 424294, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from mustard cultivated during Rabi cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.48", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for mustard 0.55% was adjusted to 0.48% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:14.822Z", + "last_change_date": "2022-03-14T08:06:14.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11083, + "fields": { + "EF_ID": 424295, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from soybean cultivated during Kharif cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.42", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for soybean 0.57% was adjusted to 0.42% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:14.931Z", + "last_change_date": "2022-03-14T08:06:14.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11084, + "fields": { + "EF_ID": 424296, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from groundnut cultivated during Kharif cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.41", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for groundnut 0.52% was adjusted to 0.41% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:15.040Z", + "last_change_date": "2022-03-14T08:06:15.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11085, + "fields": { + "EF_ID": 424297, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from chickpea cultivated during Rabi cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Entire N was applied as basal", + "Value": "0.6", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for chickpea 0.91% was adjusted to 0.6% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:15.150Z", + "last_change_date": "2022-03-14T08:06:15.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11086, + "fields": { + "EF_ID": 424298, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from pigeon pea cultivated during Kharif cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.36", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for pigeon pea 0.56% was adjusted to 0.36% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:15.250Z", + "last_change_date": "2022-03-14T08:06:15.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11087, + "fields": { + "EF_ID": 424299, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Direct N₂O emission factor (EF₁) from green gram cultivated during Kharif cropping season", + "Technology_Practices": "Fertilization at the rate of 120, 26 and 50 kg/ha NPK", + "Parameter_Conditions": "Rice–wheat system in India with a Typic Ustochrept soil type. The alluvial soil is sandy clay loam in texture.", + "Regional_Conditions": "Asia; Indo-Gangetic Plains (North-West India); Subtropical and semi-arid climate", + "Control_Technologies": "", + "Other_Properties": "Nitrogen (N) was applied as urea in three splits (50% basal +25% each as two top dressings)", + "Value": "0.38", + "Unit": "% of fertilized N", + "Equation": "Equation 11.2 in Vol. 4, Ch. 11, p. 11.10 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jain N., Arora P., Tomer R., Mishra S. V., Bhatia A., Pathak H., Chakraborty D., Kumar V., Dubey D.S., Harit R.C., and Singh J.P. Greenhouse gases emission from soils under major crops in Northwest India. Science of the Total Environment (2016), 542, 551–561.", + "English_Abstract": "Quantification of greenhouse gases (GHGs) emissions from agriculture is necessary to prepare the national inventories and to develop the mitigation strategies. Field experiments were conducted during 2008–2010 at the experimental farm of the Indian Agricultural Research Institute, New Delhi, India to quantify nitrous oxide (N₂O), methane (CH₄), and carbon dioxide (CO₂) emissions from soils under cereals, pulses, millets, and oilseed crops. Total cumulative N₂O emissions were significantly different (P>0.05) among the crop types. Emission of N₂O as percentage of applied N was the highest in pulses (0.67%) followed by oilseeds (0.55%), millets (0.43%) and cereals (0.40%). The emission increased with increasing rate of N application (r² = 0.74, P<0.05). The cumulative flux of CH₄ from the rice crop was 28.64 ± 4.40 kg ha⁻¹, while the mean seasonal integrated flux of CO₂ from soils ranged from 3058 ±236 to 3616 ±157 kg CO₂ ha⁻¹ under different crops. The global warming potential (GWP) of crops varied between 3053 kg CO₂ eq. ha⁻¹ (pigeon pea) and 3968 kg CO₂ eq. ha⁻¹ (wheat). The carbon equivalent emission (CEE) was least in pigeon pea (833 kg C ha⁻¹) and largest in wheat (1042 kg C ha⁻¹). The GWP per unit of economic yield was the highest in pulses and the lowest in cereal crops. The uncertainties in emission values varied from 4.6 to 22.0%. These emission values will be useful in updating the GHGs emission inventory of Indian agriculture.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "NIST Traceable standards of N₂O were used", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average EF (% loss of applied N in Table 3 of the published paper) for green gram 0.55% was adjusted to 0.38% to exclude the bare fallow plots without N fertilizer (i.e. control).", + "Other_Comments": "", + "Data_Provider": "Amit Garg", + "Link": "", + "creation_date": "2022-03-14T08:06:15.351Z", + "last_change_date": "2022-03-14T08:06:15.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11088, + "fields": { + "EF_ID": 424300, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for intermittently flooded rice (multiple aeration, water index based category = mild) with application of inorganic and organic N.", + "Technology_Practices": "Intermittent flooding regime = Mild, Water index = - 0.7 ± 33 (SE), Continuous flooding events (that are more than 3 days long) = 3, Inorganic N use = 243 kg/ha, Mineralized organic N = 15-70 kg N/ha, Organic carbon input = 5.6-6.8 tons/ha. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "Alfisols soil type", + "Regional_Conditions": "India (IND), Anantapur district of Andha Pradesh, Agro-ecological region 3.0", + "Control_Technologies": "", + "Other_Properties": "The equation [1] from study by Kritee et al. 2018 can be used to calculate N₂O emissions under other fertilizer use rates and water management regimes (if daily water levels are known). In general, nitrous oxide emissions are inversely related to the total extent of flooding (measured as water index which is cumulative water levels relative to soil level) as well as number of long flooding events.", + "Value": "0.62", + "Unit": "kg N2O/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kritee Kritee, Drishya Nair, Daniel Zavala-Araiza, Jeremy Proville, Joseph Rudek, Tapan K. Adhya, Terrance Loecke, Tashina Esteves, Shalini Balireddygari, Obulapathi Dava, Karthik Ram, Abhilash S. R., Murugan Madasamy, Ramakrishna V. Dokka, Daniel Anandaraj, D. Athiyaman, Malla Reddy, Richie Ahuja, and Steven P. Hamburg. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of National Academy of Sciences, 2018, 115 (39), 9720-9725.", + "English_Abstract": "Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH₄), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N₂O), a long-lived greenhouse gas. Based on the belief that minimizing CH₄ from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N₂O emissions per hectare can be three times higher (33 kg-N₂O⋅ha⁻¹ season⁻¹) than the maximum previously reported. Correlations between N₂O emissions and management parameters suggest that N₂O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N₂O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N₂O and CH₄ emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N₂O and CH₄ emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.47 (kg N₂O/ha). The emission factors were converted from kg N₂O/ha to kg N₂O-N/kg N by multiplying emissions in N₂O/ha with 28/44 and then dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen. See Table S30 in Kritee et al (2018).", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.pnas.org/content/115/39/9720", + "creation_date": "2022-03-14T08:06:15.452Z", + "last_change_date": "2022-03-14T08:06:15.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11089, + "fields": { + "EF_ID": 424301, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for intermittently flooded rice (multiple aeration, water index based category = mild) with application of organic N.", + "Technology_Practices": "Intermittent flooding regime = Mild, Water index = -152 ± 16 (SE), Continuous flooding events (that are more than 3 days long) = 3, Inorganic N use = 0 kg/ha, Mineralized organic N = 24-106 kg N/ha, Organic carbon input = 8.4-10 tons/ha. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "Alfisols soil type", + "Regional_Conditions": "India (IND), Anantapur district of Andha Pradesh, Agro-ecological region 3.0", + "Control_Technologies": "", + "Other_Properties": "The equation [1] from study by Kritee et al. 2018 can be used to calculate N₂O emissions under other fertilizer use rates and water management regimes (if daily water levels are known). In general, nitrous oxide emissions are inversely related to the total extent of flooding (measured as water index which is cumulative water levels relative to soil level) as well as number of long flooding events.", + "Value": "0.10", + "Unit": "kg N2O/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kritee Kritee, Drishya Nair, Daniel Zavala-Araiza, Jeremy Proville, Joseph Rudek, Tapan K. Adhya, Terrance Loecke, Tashina Esteves, Shalini Balireddygari, Obulapathi Dava, Karthik Ram, Abhilash S. R., Murugan Madasamy, Ramakrishna V. Dokka, Daniel Anandaraj, D. Athiyaman, Malla Reddy, Richie Ahuja, and Steven P. Hamburg. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of National Academy of Sciences, 2018, 115 (39), 9720-9725.", + "English_Abstract": "Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH₄), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N₂O), a long-lived greenhouse gas. Based on the belief that minimizing CH₄ from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N₂O emissions per hectare can be three times higher (33 kg-N₂O⋅ha⁻¹ season⁻¹) than the maximum previously reported. Correlations between N₂O emissions and management parameters suggest that N₂O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N₂O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N₂O and CH₄ emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N₂O and CH₄ emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.20 (kg N₂O/ha). The emission factors were converted from kg N₂O/ha to kg N₂O-N/kg N by multiplying emissions in N₂O/ha with 28/44 and then dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen. See Table S30 in Kritee et al (2018).", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.pnas.org/content/115/39/9720", + "creation_date": "2022-03-14T08:06:15.544Z", + "last_change_date": "2022-03-14T08:06:15.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11090, + "fields": { + "EF_ID": 424302, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for intermittently flooded rice (multiple aeration, water index based category = medium) with application of inorganic and organic N.", + "Technology_Practices": "Intermittent flooding regime = Medium, Water index = -416 ± 81 (SE), Continuous flooding events (that are more than 3 days long) = 0, Inorganic N use = 61 kg/ha, Mineralized organic N = 16-56 kg N/ha, Organic carbon input = 2.7-3.7 tons/ha. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Pudukottai district of Tamil Nadu, Agro-ecological region 8.3", + "Control_Technologies": "", + "Other_Properties": "The equation [1] from study by Kritee et al. 2018 can be used to calculate N₂O emissions under other fertilizer use rates and water management regimes (if daily water levels are known). In general, nitrous oxide emissions are inversely related to the total extent of flooding (measured as water index which is cumulative water levels relative to soil level) as well as number of long flooding events.", + "Value": "2.51", + "Unit": "kg N2O/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kritee Kritee, Drishya Nair, Daniel Zavala-Araiza, Jeremy Proville, Joseph Rudek, Tapan K. Adhya, Terrance Loecke, Tashina Esteves, Shalini Balireddygari, Obulapathi Dava, Karthik Ram, Abhilash S. R., Murugan Madasamy, Ramakrishna V. Dokka, Daniel Anandaraj, D. Athiyaman, Malla Reddy, Richie Ahuja, and Steven P. Hamburg. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of National Academy of Sciences, 2018, 115 (39), 9720-9725.", + "English_Abstract": "Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH₄), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N₂O), a long-lived greenhouse gas. Based on the belief that minimizing CH₄ from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N₂O emissions per hectare can be three times higher (33 kg-N₂O⋅ha⁻¹ season⁻¹) than the maximum previously reported. Correlations between N₂O emissions and management parameters suggest that N₂O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N₂O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N₂O and CH₄ emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N₂O and CH₄ emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.69 (kg N₂O/ha). The emission factors were converted from kg N₂O/ha to kg N₂O-N/kg N by multiplying emissions in N₂O/ha with 28/44 and then dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen. See Table S30 in Kritee et al (2018).", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.pnas.org/content/115/39/9720", + "creation_date": "2022-03-14T08:06:15.636Z", + "last_change_date": "2022-03-14T08:06:15.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11091, + "fields": { + "EF_ID": 424303, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for intermittently flooded rice (multiple aeration, water index based category = mild) with application of inorganic and organic N.", + "Technology_Practices": "Intermittent flooding regime = Mild/Medium, Water index = -212 ± 63 (SE), Continuous flooding events (that are more than 3 days long) = 3, Inorganic N use = 174 kg/ha, Mineralized organic N = 5-15 kg N/ha, Organic carbon input = 1.0-1.2 tons/ha. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Pudukottai district of Tamil Nadu, Agro-ecological region 8.3", + "Control_Technologies": "", + "Other_Properties": "The equation [1] from study by Kritee et al. 2018 can be used to calculate N₂O emissions under other fertilizer use rates and water management regimes (if daily water levels are known). In general, nitrous oxide emissions are inversely related to the total extent of flooding (measured as water index which is cumulative water levels relative to soil level) as well as number of long flooding events.", + "Value": "0.88", + "Unit": "kg N2O/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kritee Kritee, Drishya Nair, Daniel Zavala-Araiza, Jeremy Proville, Joseph Rudek, Tapan K. Adhya, Terrance Loecke, Tashina Esteves, Shalini Balireddygari, Obulapathi Dava, Karthik Ram, Abhilash S. R., Murugan Madasamy, Ramakrishna V. Dokka, Daniel Anandaraj, D. Athiyaman, Malla Reddy, Richie Ahuja, and Steven P. Hamburg. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of National Academy of Sciences, 2018, 115 (39), 9720-9725.", + "English_Abstract": "Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH₄), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N₂O), a long-lived greenhouse gas. Based on the belief that minimizing CH₄ from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N₂O emissions per hectare can be three times higher (33 kg-N₂O⋅ha⁻¹ season⁻¹) than the maximum previously reported. Correlations between N₂O emissions and management parameters suggest that N₂O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N₂O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N₂O and CH₄ emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N₂O and CH₄ emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.83 (kg N₂O/ha). The emission factors were converted from kg N₂O/ha to kg N₂O-N/kg N by multiplying emissions in N₂O/ha with 28/44 and then dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen. See Table S30 in Kritee et al (2018).", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.pnas.org/content/115/39/9720", + "creation_date": "2022-03-14T08:06:15.737Z", + "last_change_date": "2022-03-14T08:06:15.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11092, + "fields": { + "EF_ID": 424304, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor forintermittently flooded rice (multiple aeration, water index based category = mild) with application of inorganic and organic N.", + "Technology_Practices": "Intermittent flooding regime = Mild/medium, Water index = -316 ± 147 (SE), Continuous flooding events (that are more than 3 days long) = 5, Inorganic N use = 91 kg/ha, Mineralized organic N = 5.5-17 kg N/ha, Organic carbon input = 1.1-1.4 tons/ha. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Pudukottai district of Tamil Nadu, Agro-ecological region 8.3", + "Control_Technologies": "", + "Other_Properties": "The equation [1] from study by Kritee et al. 2018 can be used to calculate N₂O emissions under other fertilizer use rates and water management regimes (if daily water levels are known). In general, nitrous oxide emissions are inversely related to the total extent of flooding (measured as water index which is cumulative water levels relative to soil level) as well as number of long flooding events.", + "Value": "0.02", + "Unit": "kg N2O/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kritee Kritee, Drishya Nair, Daniel Zavala-Araiza, Jeremy Proville, Joseph Rudek, Tapan K. Adhya, Terrance Loecke, Tashina Esteves, Shalini Balireddygari, Obulapathi Dava, Karthik Ram, Abhilash S. R., Murugan Madasamy, Ramakrishna V. Dokka, Daniel Anandaraj, D. Athiyaman, Malla Reddy, Richie Ahuja, and Steven P. Hamburg. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of National Academy of Sciences, 2018, 115 (39), 9720-9725.", + "English_Abstract": "Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH₄), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N₂O), a long-lived greenhouse gas. Based on the belief that minimizing CH₄ from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N₂O emissions per hectare can be three times higher (33 kg-N₂O⋅ha⁻¹ season⁻¹) than the maximum previously reported. Correlations between N₂O emissions and management parameters suggest that N₂O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N₂O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N₂O and CH₄ emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N₂O and CH₄ emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.20 (kg N₂O/ha). The emission factors were converted from kg N₂O/ha to kg N₂O-N/kg N by multiplying emissions in N₂O/ha with 28/44 and then dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen. See Table S30 in Kritee et al (2018).", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.pnas.org/content/115/39/9720", + "creation_date": "2022-03-14T08:06:15.829Z", + "last_change_date": "2022-03-14T08:06:15.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11093, + "fields": { + "EF_ID": 424305, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for intermittently flooded rice (multiple aeration, water index based category = mild) with application of inorganic and organic N.", + "Technology_Practices": "Intermittent flooding regime = Mild, Water index = 15 ± 65 (SE), Continuous flooding events (that are more than 3 days long) = 3, Inorganic N use = 121 kg/ha, Mineralized organic N = 0 kg N/ha, Organic carbon input = 0 tones/ha. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Tirunelveli district of Tamil Nadu, Agro-ecological region 8.1", + "Control_Technologies": "", + "Other_Properties": "The equation [1] from study by Kritee et al. 2018 can be used to calculate N₂O emissions under other fertilizer use rates and water management regimes (if daily water levels are known). In general, nitrous oxide emissions are inversely related to the total extent of flooding (measured as water index which is cumulative water levels relative to soil level) as well as number of long flooding events.", + "Value": "1.39", + "Unit": "kg N2O/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kritee Kritee, Drishya Nair, Daniel Zavala-Araiza, Jeremy Proville, Joseph Rudek, Tapan K. Adhya, Terrance Loecke, Tashina Esteves, Shalini Balireddygari, Obulapathi Dava, Karthik Ram, Abhilash S. R., Murugan Madasamy, Ramakrishna V. Dokka, Daniel Anandaraj, D. Athiyaman, Malla Reddy, Richie Ahuja, and Steven P. Hamburg. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of National Academy of Sciences, 2018, 115 (39), 9720-9725.", + "English_Abstract": "Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH₄), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N₂O), a long-lived greenhouse gas. Based on the belief that minimizing CH₄ from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N₂O emissions per hectare can be three times higher (33 kg-N₂O⋅ha⁻¹ season⁻¹) than the maximum previously reported. Correlations between N₂O emissions and management parameters suggest that N₂O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N₂O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N₂O and CH₄ emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N₂O and CH₄ emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 1.66 (kg N₂O/ha). The emission factors were converted from kg N₂O/ha to kg N₂O-N/kg N by multiplying emissions in N₂O/ha with 28/44 and then dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen. See Table S30 in Kritee et al (2018).", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.pnas.org/content/115/39/9720", + "creation_date": "2022-03-14T08:06:15.921Z", + "last_change_date": "2022-03-14T08:06:15.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11094, + "fields": { + "EF_ID": 424306, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for intermittently flooded rice (multiple aeration, water index based category = mild) with application of inorganic and organic N.", + "Technology_Practices": "Intermittent flooding regime = Mild, Water index = -155 ± 91 (SE), Continuous flooding events (that are more than 3 days long) = 4, Inorganic N use = 99 kg/ha, Mineralized organic N = 0.2-0.8 kg N/ha, Organic carbon input = 0.01-0.02 tons/ha. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Tirunelveli district of Tamil Nadu, Agro-ecological region 8.2", + "Control_Technologies": "", + "Other_Properties": "The equation [1] from study by Kritee et al. 2018 can be used to calculate N₂O emissions under other fertilizer use rates and water management regimes (if daily water levels are known). In general, nitrous oxide emissions are inversely related to the total extent of flooding (measured as water index which is cumulative water levels relative to soil level) as well as number of long flooding events.", + "Value": "2.47", + "Unit": "kg N2O/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kritee Kritee, Drishya Nair, Daniel Zavala-Araiza, Jeremy Proville, Joseph Rudek, Tapan K. Adhya, Terrance Loecke, Tashina Esteves, Shalini Balireddygari, Obulapathi Dava, Karthik Ram, Abhilash S. R., Murugan Madasamy, Ramakrishna V. Dokka, Daniel Anandaraj, D. Athiyaman, Malla Reddy, Richie Ahuja, and Steven P. Hamburg. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of National Academy of Sciences, 2018, 115 (39), 9720-9725.", + "English_Abstract": "Global rice cultivation is estimated to account for 2.5% of current anthropogenic warming because of emissions of methane (CH₄), a short-lived greenhouse gas. This estimate assumes a widespread prevalence of continuous flooding of most rice fields and hence does not include emissions of nitrous oxide (N₂O), a long-lived greenhouse gas. Based on the belief that minimizing CH₄ from rice cultivation is always climate beneficial, current mitigation policies promote increased use of intermittent flooding. However, results from five intermittently flooded rice farms across three agroecological regions in India indicate that N₂O emissions per hectare can be three times higher (33 kg-N₂O⋅ha⁻¹ season⁻¹) than the maximum previously reported. Correlations between N₂O emissions and management parameters suggest that N₂O emissions from rice across the Indian subcontinent might be 30–45 times higher under intensified use of intermittent flooding than under continuous flooding. Our data further indicate that comanagement of water with inorganic nitrogen and/or organic matter inputs can decrease climate impacts caused by greenhouse gas emissions up to 90% and nitrogen management might not be central to N₂O reduction. An understanding of climate benefits/drawbacks over time of different flooding regimes because of differences in N₂O and CH₄ emissions can help select the most climate-friendly water management regimes for a given area. Region-specific studies of rice farming practices that map flooding regimes and measure effects of multiple comanaged variables on N₂O and CH₄ emissions are necessary to determine and minimize the climate impacts of rice cultivation over both the short term and long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 1.16 (kg N₂O/ha). The emission factors were converted from kg N₂O/ha to kg N₂O-N/kg N by multiplying emissions in N₂O/ha with 28/44 and then dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen. See Table S30 in Kritee et al (2018).", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.pnas.org/content/115/39/9720", + "creation_date": "2022-03-14T08:06:16.014Z", + "last_change_date": "2022-03-14T08:06:16.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11095, + "fields": { + "EF_ID": 424307, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for N fixing crop (groundnut) under rainfed conditions.", + "Technology_Practices": "Very high total nitrogen use of 91 ± 8 (SE) kg/ha, including 77 kg inorganic N/ha and 7-22 kg mineralized organic N/ha at dry rainfed site; 163 ± 17 mm rain. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Anantapur district in Andhra Pradesh, Agro-ecological region 3.0", + "Control_Technologies": "", + "Other_Properties": "Nitrous oxide emissions for other nitrogen use rates can be estimated using our quadratic equation for groundnut provided in Kritee et al (2019)", + "Value": "2.43", + "Unit": "kg N2O–N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "K. Kritee, Drishya Nair, Daniel Zavala-Araiza, Malla Reddy, Jeremy Proville and Richie Ahuja (2019). Climate smart farming in India: A pathway to poverty alleviation, food security, and climate adaptation and mitigation. An online report with greenhouse gas flux data from rice and non-rice cropping systems from four agro-ecological regions in India. Published by Environmental Defense Fund, New York, NY.", + "English_Abstract": "India’s challenge is to combat poverty through a development pathway that enhances the nation’s food and water security and builds climate resilience, while also minimizing GHG emissions. India’s agricultural sector GHG emissions are estimated to be 350 million tons a year (18% of the country’s total). But these emissions are poised to grow dramatically in the next several years, particularly if India emulates China’s over use of nitrogen fertilizer (now 3.5 times that of India) in an effort to achieve higher yields. Fertilizer and water over-use are forms of waste and hurt the economic bottom line of the farmer while also having deleterious effects on the regional environment and our climate. The over-applied (or excess) fertilizer stimulates soil microbes to release nitrous oxide, a gas whose heat-trapping effect is a staggering >260 times that of carbon dioxide. In addition to nitrous oxide, flooded rice farms release methane, another greenhouse gas whose heat trapping effect is ~80 times that of carbon dioxide over the short time frame. It is crucial to note that, for developing countries like India, minimizing future climate footprint by preparing to avoid GHG emissions is as important as reducing current GHG emissions now. There are very limited number of academic or research organizations devoted to precise and accurate study of climate impacts of farming in India and all such organizations are focused on crops in irrigated and fertile Indo-gangetic belt in North and North-western India. To meet the needs of semi-arid dryland crops in peninsular India, we fostered a unique paradigm of establishing research laboratories within the official premises of our NGO partners in rural India. Based on inter-comparison of all existing international recommendations, we developed state-of-the-art protocols for tropical and developing parts of the world to determine both the business-as-usual GHG emissions from four Indian crops (rice, groundnut, finger- and foxtail-millet). We also developed methodologies for determining the extent of mitigation possible via several potential climate smart (or low carbon) farming practices. A summary of our results in presented in Table 1 where we show that smart management of fertilizers and water can increase/maintain yields and economic profits while decreasing GHG emissions under several conditions. For upland crops, because of our use of more than three fertilizer application rates, we have been able to show for the first time for Indian crops that nitrous oxide emissions vary non-linearly with changing nitrogen use. For groundnut N₂O-N (in kg ha⁻¹) = 0.000218(Ntotal)2 - 0.00161Ntotal + 0.668. For millets, N₂O-N (in kg ha⁻¹) = 6.34e-05 (Ntotal)2 + 3.26e-03 (Ntotal) + Constant. We also demonstrate that both the current IPCC and Indian regional linear emission factors of 1% and 0.58%, respectively, are too conservative for high N-input rates. For rice, through our regression and geospatial analysis, we highlight the previously under-appreciated role that nitrous oxide emissions from rice farms can have on increasing global warming. We also show a direct correlation between cumulative extent of flooding at rice farms and nitrous oxide emissions, and demonstrate how both methane and nitrous oxide emissions can both be effectively managed through changing fertilizer and water use.", + "Lower_Bound": "1.59", + "Upper_Bound": "3.27", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.43 (kg N₂O-N/ha). The emission factors were converted from kg N₂O-N/ha to kg N₂O-N/kg N by subtracting control emissions at N = 0 from emissions in N₂O/ha and dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen.", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.edf.org/sites/default/files/documents/Climate-smart-agriculture-India-EDF-report.pdf", + "creation_date": "2022-03-14T08:06:16.131Z", + "last_change_date": "2022-03-14T08:06:16.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11096, + "fields": { + "EF_ID": 424308, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for N fixing crop (groundnut) under rainfed conditions.", + "Technology_Practices": "High total nitrogen use of 53 ± 9 (SE) kg/ha, including 37 ± 9 kg inorganic N/ha and 7-25 kg mineralized organic N/ha at dry rainfed site; 163 ± 17 mm rain. Study was conducted at farmer-managed plots (not typical research plots).", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Anantapur district in Andhra Pradesh, Agro-ecological region 3.0", + "Control_Technologies": "", + "Other_Properties": "Nitrous oxide emissions for other nitrogen use rates can be estimated using our quadratic equation for groundnut provided in Kritee et al (2019)", + "Value": "1.17", + "Unit": "kg N2O–N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "K. Kritee, Drishya Nair, Daniel Zavala-Araiza, Malla Reddy, Jeremy Proville and Richie Ahuja (2019). Climate smart farming in India: A pathway to poverty alleviation, food security, and climate adaptation and mitigation. An online report with greenhouse gas flux data from rice and non-rice cropping systems from four agro-ecological regions in India. Published by Environmental Defense Fund, New York, NY.", + "English_Abstract": "India’s challenge is to combat poverty through a development pathway that enhances the nation’s food and water security and builds climate resilience, while also minimizing GHG emissions. India’s agricultural sector GHG emissions are estimated to be 350 million tons a year (18% of the country’s total). But these emissions are poised to grow dramatically in the next several years, particularly if India emulates China’s over use of nitrogen fertilizer (now 3.5 times that of India) in an effort to achieve higher yields. Fertilizer and water over-use are forms of waste and hurt the economic bottom line of the farmer while also having deleterious effects on the regional environment and our climate. The over-applied (or excess) fertilizer stimulates soil microbes to release nitrous oxide, a gas whose heat-trapping effect is a staggering >260 times that of carbon dioxide. In addition to nitrous oxide, flooded rice farms release methane, another greenhouse gas whose heat trapping effect is ~80 times that of carbon dioxide over the short time frame. It is crucial to note that, for developing countries like India, minimizing future climate footprint by preparing to avoid GHG emissions is as important as reducing current GHG emissions now. There are very limited number of academic or research organizations devoted to precise and accurate study of climate impacts of farming in India and all such organizations are focused on crops in irrigated and fertile Indo-gangetic belt in North and North-western India. To meet the needs of semi-arid dryland crops in peninsular India, we fostered a unique paradigm of establishing research laboratories within the official premises of our NGO partners in rural India. Based on inter-comparison of all existing international recommendations, we developed state-of-the-art protocols for tropical and developing parts of the world to determine both the business-as-usual GHG emissions from four Indian crops (rice, groundnut, finger- and foxtail-millet). We also developed methodologies for determining the extent of mitigation possible via several potential climate smart (or low carbon) farming practices. A summary of our results in presented in Table 1 where we show that smart management of fertilizers and water can increase/maintain yields and economic profits while decreasing GHG emissions under several conditions. For upland crops, because of our use of more than three fertilizer application rates, we have been able to show for the first time for Indian crops that nitrous oxide emissions vary non-linearly with changing nitrogen use. For groundnut N₂O-N (in kg ha⁻¹) = 0.000218(Ntotal)2 - 0.00161Ntotal + 0.668. For millets, N₂O-N (in kg ha⁻¹) = 6.34e-05 (Ntotal)2 + 3.26e-03 (Ntotal) + Constant. We also demonstrate that both the current IPCC and Indian regional linear emission factors of 1% and 0.58%, respectively, are too conservative for high N-input rates. For rice, through our regression and geospatial analysis, we highlight the previously under-appreciated role that nitrous oxide emissions from rice farms can have on increasing global warming. We also show a direct correlation between cumulative extent of flooding at rice farms and nitrous oxide emissions, and demonstrate how both methane and nitrous oxide emissions can both be effectively managed through changing fertilizer and water use.", + "Lower_Bound": "0.95", + "Upper_Bound": "1.39", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.11 (kg N₂O-N/ha). The emission factors were converted from kg N₂O-N/ha to kg N₂O-N/kg N by subtracting control emissions at N = 0 from emissions in N₂O/ha and dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen.", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.edf.org/sites/default/files/documents/Climate-smart-agriculture-India-EDF-report.pdf", + "creation_date": "2022-03-14T08:06:16.240Z", + "last_change_date": "2022-03-14T08:06:16.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11097, + "fields": { + "EF_ID": 424309, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for N fixing crop (groundnut) under rainfed conditions.", + "Technology_Practices": "Low total nitrogen use of 18 ± 11 (SE) kg/ha, including 0 kg inorganic N/ha and 7-29 kg mineralized organic N/ha at dry rainfed site; 163 ± 17 mm rain.", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Anantapur district in Andhra Pradesh, Agro-ecological region 3.0", + "Control_Technologies": "", + "Other_Properties": "Nitrous oxide emissions for other nitrogen use rates can be estimated using our quadratic equation for groundnut provided in Kritee et al (2019)", + "Value": "0.83", + "Unit": "kg N2O–N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "K. Kritee, Drishya Nair, Daniel Zavala-Araiza, Malla Reddy, Jeremy Proville and Richie Ahuja (2019). Climate smart farming in India: A pathway to poverty alleviation, food security, and climate adaptation and mitigation. An online report with greenhouse gas flux data from rice and non-rice cropping systems from four agro-ecological regions in India. Published by Environmental Defense Fund, New York, NY.", + "English_Abstract": "India’s challenge is to combat poverty through a development pathway that enhances the nation’s food and water security and builds climate resilience, while also minimizing GHG emissions. India’s agricultural sector GHG emissions are estimated to be 350 million tons a year (18% of the country’s total). But these emissions are poised to grow dramatically in the next several years, particularly if India emulates China’s over use of nitrogen fertilizer (now 3.5 times that of India) in an effort to achieve higher yields. Fertilizer and water over-use are forms of waste and hurt the economic bottom line of the farmer while also having deleterious effects on the regional environment and our climate. The over-applied (or excess) fertilizer stimulates soil microbes to release nitrous oxide, a gas whose heat-trapping effect is a staggering >260 times that of carbon dioxide. In addition to nitrous oxide, flooded rice farms release methane, another greenhouse gas whose heat trapping effect is ~80 times that of carbon dioxide over the short time frame. It is crucial to note that, for developing countries like India, minimizing future climate footprint by preparing to avoid GHG emissions is as important as reducing current GHG emissions now. There are very limited number of academic or research organizations devoted to precise and accurate study of climate impacts of farming in India and all such organizations are focused on crops in irrigated and fertile Indo-gangetic belt in North and North-western India. To meet the needs of semi-arid dryland crops in peninsular India, we fostered a unique paradigm of establishing research laboratories within the official premises of our NGO partners in rural India. Based on inter-comparison of all existing international recommendations, we developed state-of-the-art protocols for tropical and developing parts of the world to determine both the business-as-usual GHG emissions from four Indian crops (rice, groundnut, finger- and foxtail-millet). We also developed methodologies for determining the extent of mitigation possible via several potential climate smart (or low carbon) farming practices. A summary of our results in presented in Table 1 where we show that smart management of fertilizers and water can increase/maintain yields and economic profits while decreasing GHG emissions under several conditions. For upland crops, because of our use of more than three fertilizer application rates, we have been able to show for the first time for Indian crops that nitrous oxide emissions vary non-linearly with changing nitrogen use. For groundnut N₂O-N (in kg ha⁻¹) = 0.000218(Ntotal)2 - 0.00161Ntotal + 0.668. For millets, N₂O-N (in kg ha⁻¹) = 6.34e-05 (Ntotal)2 + 3.26e-03 (Ntotal) + Constant. We also demonstrate that both the current IPCC and Indian regional linear emission factors of 1% and 0.58%, respectively, are too conservative for high N-input rates. For rice, through our regression and geospatial analysis, we highlight the previously under-appreciated role that nitrous oxide emissions from rice farms can have on increasing global warming. We also show a direct correlation between cumulative extent of flooding at rice farms and nitrous oxide emissions, and demonstrate how both methane and nitrous oxide emissions can both be effectively managed through changing fertilizer and water use.", + "Lower_Bound": "0.65", + "Upper_Bound": "1.01", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.09 (kg N₂O-N/ha). The emission factors were converted from kg N₂O-N/ha to kg N₂O-N/kg N by subtracting control emissions at N = 0 from emissions in N₂O/ha and dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen.", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.edf.org/sites/default/files/documents/Climate-smart-agriculture-India-EDF-report.pdf", + "creation_date": "2022-03-14T08:06:16.357Z", + "last_change_date": "2022-03-14T08:06:16.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11098, + "fields": { + "EF_ID": 424310, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for N fixing crop (groundnut) under irrigated conditions.", + "Technology_Practices": "High total nitrogen use of 90 ± 8 (SE) kg/ha, including 75 kg inorganic N/ha and 8-23 kg mineralized organic N/ha at wet site; 370 mm rain.", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Anantapur district in Andhra Pradesh, Agro-ecological region 3.0", + "Control_Technologies": "", + "Other_Properties": "Nitrous oxide emissions for other nitrogen use rates can be estimated using our quadratic equation for groundnut provided in Kritee et al (2019)", + "Value": "1.89", + "Unit": "kg N2O–N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "K. Kritee, Drishya Nair, Daniel Zavala-Araiza, Malla Reddy, Jeremy Proville and Richie Ahuja (2019). Climate smart farming in India: A pathway to poverty alleviation, food security, and climate adaptation and mitigation. An online report with greenhouse gas flux data from rice and non-rice cropping systems from four agro-ecological regions in India. Published by Environmental Defense Fund, New York, NY.", + "English_Abstract": "India’s challenge is to combat poverty through a development pathway that enhances the nation’s food and water security and builds climate resilience, while also minimizing GHG emissions. India’s agricultural sector GHG emissions are estimated to be 350 million tons a year (18% of the country’s total). But these emissions are poised to grow dramatically in the next several years, particularly if India emulates China’s over use of nitrogen fertilizer (now 3.5 times that of India) in an effort to achieve higher yields. Fertilizer and water over-use are forms of waste and hurt the economic bottom line of the farmer while also having deleterious effects on the regional environment and our climate. The over-applied (or excess) fertilizer stimulates soil microbes to release nitrous oxide, a gas whose heat-trapping effect is a staggering >260 times that of carbon dioxide. In addition to nitrous oxide, flooded rice farms release methane, another greenhouse gas whose heat trapping effect is ~80 times that of carbon dioxide over the short time frame. It is crucial to note that, for developing countries like India, minimizing future climate footprint by preparing to avoid GHG emissions is as important as reducing current GHG emissions now. There are very limited number of academic or research organizations devoted to precise and accurate study of climate impacts of farming in India and all such organizations are focused on crops in irrigated and fertile Indo-gangetic belt in North and North-western India. To meet the needs of semi-arid dryland crops in peninsular India, we fostered a unique paradigm of establishing research laboratories within the official premises of our NGO partners in rural India. Based on inter-comparison of all existing international recommendations, we developed state-of-the-art protocols for tropical and developing parts of the world to determine both the business-as-usual GHG emissions from four Indian crops (rice, groundnut, finger- and foxtail-millet). We also developed methodologies for determining the extent of mitigation possible via several potential climate smart (or low carbon) farming practices. A summary of our results in presented in Table 1 where we show that smart management of fertilizers and water can increase/maintain yields and economic profits while decreasing GHG emissions under several conditions. For upland crops, because of our use of more than three fertilizer application rates, we have been able to show for the first time for Indian crops that nitrous oxide emissions vary non-linearly with changing nitrogen use. For groundnut N₂O-N (in kg ha⁻¹) = 0.000218(Ntotal)2 - 0.00161Ntotal + 0.668. For millets, N₂O-N (in kg ha⁻¹) = 6.34e-05 (Ntotal)2 + 3.26e-03 (Ntotal) + Constant. We also demonstrate that both the current IPCC and Indian regional linear emission factors of 1% and 0.58%, respectively, are too conservative for high N-input rates. For rice, through our regression and geospatial analysis, we highlight the previously under-appreciated role that nitrous oxide emissions from rice farms can have on increasing global warming. We also show a direct correlation between cumulative extent of flooding at rice farms and nitrous oxide emissions, and demonstrate how both methane and nitrous oxide emissions can both be effectively managed through changing fertilizer and water use.", + "Lower_Bound": "1.48", + "Upper_Bound": "2.3", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.55 (kg N₂O-N/ha). The emission factors were converted from kg N₂O-N/ha to kg N₂O-N/kg N by subtracting control emissions at N = 0 from emissions in N₂O/ha and dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen.", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.edf.org/sites/default/files/documents/Climate-smart-agriculture-India-EDF-report.pdf", + "creation_date": "2022-03-14T08:06:16.475Z", + "last_change_date": "2022-03-14T08:06:16.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11099, + "fields": { + "EF_ID": 424311, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for upland finger-millet crop under rainfed (low rainfall) conditions.", + "Technology_Practices": "High total nitrogen use of 213 ± 3 (SE) kg/ha, including 206 kg inorganic N/ha and 3-10 kg mineralized organic N/ha at dry rainfed site; 204 ± 120 mm rain.", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Ramanagara district in the state of Karnataka, Agro-ecological region 8.2", + "Control_Technologies": "", + "Other_Properties": "Nitrous oxide emissions for other nitrogen use rates can be estimated using our quadratic equation for millets provided in Kritee et al (2019)", + "Value": "1.94", + "Unit": "kg N2O–N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "K. Kritee, Drishya Nair, Daniel Zavala-Araiza, Malla Reddy, Jeremy Proville and Richie Ahuja (2019). Climate smart farming in India: A pathway to poverty alleviation, food security, and climate adaptation and mitigation. An online report with greenhouse gas flux data from rice and non-rice cropping systems from four agro-ecological regions in India. Published by Environmental Defense Fund, New York, NY.", + "English_Abstract": "India’s challenge is to combat poverty through a development pathway that enhances the nation’s food and water security and builds climate resilience, while also minimizing GHG emissions. India’s agricultural sector GHG emissions are estimated to be 350 million tons a year (18% of the country’s total). But these emissions are poised to grow dramatically in the next several years, particularly if India emulates China’s over use of nitrogen fertilizer (now 3.5 times that of India) in an effort to achieve higher yields. Fertilizer and water over-use are forms of waste and hurt the economic bottom line of the farmer while also having deleterious effects on the regional environment and our climate. The over-applied (or excess) fertilizer stimulates soil microbes to release nitrous oxide, a gas whose heat-trapping effect is a staggering >260 times that of carbon dioxide. In addition to nitrous oxide, flooded rice farms release methane, another greenhouse gas whose heat trapping effect is ~80 times that of carbon dioxide over the short time frame. It is crucial to note that, for developing countries like India, minimizing future climate footprint by preparing to avoid GHG emissions is as important as reducing current GHG emissions now. There are very limited number of academic or research organizations devoted to precise and accurate study of climate impacts of farming in India and all such organizations are focused on crops in irrigated and fertile Indo-gangetic belt in North and North-western India. To meet the needs of semi-arid dryland crops in peninsular India, we fostered a unique paradigm of establishing research laboratories within the official premises of our NGO partners in rural India. Based on inter-comparison of all existing international recommendations, we developed state-of-the-art protocols for tropical and developing parts of the world to determine both the business-as-usual GHG emissions from four Indian crops (rice, groundnut, finger- and foxtail-millet). We also developed methodologies for determining the extent of mitigation possible via several potential climate smart (or low carbon) farming practices. A summary of our results in presented in Table 1 where we show that smart management of fertilizers and water can increase/maintain yields and economic profits while decreasing GHG emissions under several conditions. For upland crops, because of our use of more than three fertilizer application rates, we have been able to show for the first time for Indian crops that nitrous oxide emissions vary non-linearly with changing nitrogen use. For groundnut N₂O-N (in kg ha⁻¹) = 0.000218(Ntotal)2 - 0.00161Ntotal + 0.668. For millets, N₂O-N (in kg ha⁻¹) = 6.34e-05 (Ntotal)2 + 3.26e-03 (Ntotal) + Constant. We also demonstrate that both the current IPCC and Indian regional linear emission factors of 1% and 0.58%, respectively, are too conservative for high N-input rates. For rice, through our regression and geospatial analysis, we highlight the previously under-appreciated role that nitrous oxide emissions from rice farms can have on increasing global warming. We also show a direct correlation between cumulative extent of flooding at rice farms and nitrous oxide emissions, and demonstrate how both methane and nitrous oxide emissions can both be effectively managed through changing fertilizer and water use.", + "Lower_Bound": "0.86", + "Upper_Bound": "3.01", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.08 (kg N₂O-N/ha). The emission factors were converted from kg N₂O-N/ha to kg N₂O-N/kg N by subtracting control emissions at N = 0 from emissions in N₂O/ha and dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen.", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.edf.org/sites/default/files/documents/Climate-smart-agriculture-India-EDF-report.pdf", + "creation_date": "2022-03-14T08:06:16.583Z", + "last_change_date": "2022-03-14T08:06:16.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11100, + "fields": { + "EF_ID": 424312, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for upland finger-millet crop under rainfed (low rainfall) conditions.", + "Technology_Practices": "Low total nitrogen use of 78 ± 14 (SE) kg/ha, including 50 kg inorganic N/ha and 14-42 kg mineralized organic N/ha at dry rainfed site; 204 ± 120 mm rain.", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Ramanagara district in the state of Karnataka, Agro-ecological region 8.2", + "Control_Technologies": "", + "Other_Properties": "Nitrous oxide emissions for other nitrogen use rates can be estimated using our quadratic equation for millets provided in Kritee et al (2019)", + "Value": "0.34", + "Unit": "kg N2O–N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "K. Kritee, Drishya Nair, Daniel Zavala-Araiza, Malla Reddy, Jeremy Proville and Richie Ahuja (2019). Climate smart farming in India: A pathway to poverty alleviation, food security, and climate adaptation and mitigation. An online report with greenhouse gas flux data from rice and non-rice cropping systems from four agro-ecological regions in India. Published by Environmental Defense Fund, New York, NY.", + "English_Abstract": "India’s challenge is to combat poverty through a development pathway that enhances the nation’s food and water security and builds climate resilience, while also minimizing GHG emissions. India’s agricultural sector GHG emissions are estimated to be 350 million tons a year (18% of the country’s total). But these emissions are poised to grow dramatically in the next several years, particularly if India emulates China’s over use of nitrogen fertilizer (now 3.5 times that of India) in an effort to achieve higher yields. Fertilizer and water over-use are forms of waste and hurt the economic bottom line of the farmer while also having deleterious effects on the regional environment and our climate. The over-applied (or excess) fertilizer stimulates soil microbes to release nitrous oxide, a gas whose heat-trapping effect is a staggering >260 times that of carbon dioxide. In addition to nitrous oxide, flooded rice farms release methane, another greenhouse gas whose heat trapping effect is ~80 times that of carbon dioxide over the short time frame. It is crucial to note that, for developing countries like India, minimizing future climate footprint by preparing to avoid GHG emissions is as important as reducing current GHG emissions now. There are very limited number of academic or research organizations devoted to precise and accurate study of climate impacts of farming in India and all such organizations are focused on crops in irrigated and fertile Indo-gangetic belt in North and North-western India. To meet the needs of semi-arid dryland crops in peninsular India, we fostered a unique paradigm of establishing research laboratories within the official premises of our NGO partners in rural India. Based on inter-comparison of all existing international recommendations, we developed state-of-the-art protocols for tropical and developing parts of the world to determine both the business-as-usual GHG emissions from four Indian crops (rice, groundnut, finger- and foxtail-millet). We also developed methodologies for determining the extent of mitigation possible via several potential climate smart (or low carbon) farming practices. A summary of our results in presented in Table 1 where we show that smart management of fertilizers and water can increase/maintain yields and economic profits while decreasing GHG emissions under several conditions. For upland crops, because of our use of more than three fertilizer application rates, we have been able to show for the first time for Indian crops that nitrous oxide emissions vary non-linearly with changing nitrogen use. For groundnut N₂O-N (in kg ha⁻¹) = 0.000218(Ntotal)2 - 0.00161Ntotal + 0.668. For millets, N₂O-N (in kg ha⁻¹) = 6.34e-05 (Ntotal)2 + 3.26e-03 (Ntotal) + Constant. We also demonstrate that both the current IPCC and Indian regional linear emission factors of 1% and 0.58%, respectively, are too conservative for high N-input rates. For rice, through our regression and geospatial analysis, we highlight the previously under-appreciated role that nitrous oxide emissions from rice farms can have on increasing global warming. We also show a direct correlation between cumulative extent of flooding at rice farms and nitrous oxide emissions, and demonstrate how both methane and nitrous oxide emissions can both be effectively managed through changing fertilizer and water use.", + "Lower_Bound": "0.19", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.05 (kg N₂O-N/ha). The emission factors were converted from kg N₂O-N/ha to kg N₂O-N/kg N by subtracting control emissions at N = 0 from emissions in N₂O/ha and dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen.", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.edf.org/sites/default/files/documents/Climate-smart-agriculture-India-EDF-report.pdf", + "creation_date": "2022-03-14T08:06:16.718Z", + "last_change_date": "2022-03-14T08:06:16.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11101, + "fields": { + "EF_ID": 424313, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for upland finger-millet crop (wet high rainfall conditions)", + "Technology_Practices": "Low total nitrogen use of 50 ± 5 (SE) kg/ha, including 41 kg inorganic N/ha and 5-14 kg mineralized organic N/ha at wet high rainfall site; 480 mm rain.", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Ramanagara district in the state of Karnataka, Agro-ecological region 8.2", + "Control_Technologies": "", + "Other_Properties": "Nitrous oxide emissions for other nitrogen use rates can be estimated using our quadratic equation for millets provided in Kritee et al (2019)", + "Value": "1.27", + "Unit": "kg N2O–N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "K. Kritee, Drishya Nair, Daniel Zavala-Araiza, Malla Reddy, Jeremy Proville and Richie Ahuja (2019). Climate smart farming in India: A pathway to poverty alleviation, food security, and climate adaptation and mitigation. An online report with greenhouse gas flux data from rice and non-rice cropping systems from four agro-ecological regions in India. Published by Environmental Defense Fund, New York, NY.", + "English_Abstract": "India’s challenge is to combat poverty through a development pathway that enhances the nation’s food and water security and builds climate resilience, while also minimizing GHG emissions. India’s agricultural sector GHG emissions are estimated to be 350 million tons a year (18% of the country’s total). But these emissions are poised to grow dramatically in the next several years, particularly if India emulates China’s over use of nitrogen fertilizer (now 3.5 times that of India) in an effort to achieve higher yields. Fertilizer and water over-use are forms of waste and hurt the economic bottom line of the farmer while also having deleterious effects on the regional environment and our climate. The over-applied (or excess) fertilizer stimulates soil microbes to release nitrous oxide, a gas whose heat-trapping effect is a staggering >260 times that of carbon dioxide. In addition to nitrous oxide, flooded rice farms release methane, another greenhouse gas whose heat trapping effect is ~80 times that of carbon dioxide over the short time frame. It is crucial to note that, for developing countries like India, minimizing future climate footprint by preparing to avoid GHG emissions is as important as reducing current GHG emissions now. There are very limited number of academic or research organizations devoted to precise and accurate study of climate impacts of farming in India and all such organizations are focused on crops in irrigated and fertile Indo-gangetic belt in North and North-western India. To meet the needs of semi-arid dryland crops in peninsular India, we fostered a unique paradigm of establishing research laboratories within the official premises of our NGO partners in rural India. Based on inter-comparison of all existing international recommendations, we developed state-of-the-art protocols for tropical and developing parts of the world to determine both the business-as-usual GHG emissions from four Indian crops (rice, groundnut, finger- and foxtail-millet). We also developed methodologies for determining the extent of mitigation possible via several potential climate smart (or low carbon) farming practices. A summary of our results in presented in Table 1 where we show that smart management of fertilizers and water can increase/maintain yields and economic profits while decreasing GHG emissions under several conditions. For upland crops, because of our use of more than three fertilizer application rates, we have been able to show for the first time for Indian crops that nitrous oxide emissions vary non-linearly with changing nitrogen use. For groundnut N₂O-N (in kg ha⁻¹) = 0.000218(Ntotal)2 - 0.00161Ntotal + 0.668. For millets, N₂O-N (in kg ha⁻¹) = 6.34e-05 (Ntotal)2 + 3.26e-03 (Ntotal) + Constant. We also demonstrate that both the current IPCC and Indian regional linear emission factors of 1% and 0.58%, respectively, are too conservative for high N-input rates. For rice, through our regression and geospatial analysis, we highlight the previously under-appreciated role that nitrous oxide emissions from rice farms can have on increasing global warming. We also show a direct correlation between cumulative extent of flooding at rice farms and nitrous oxide emissions, and demonstrate how both methane and nitrous oxide emissions can both be effectively managed through changing fertilizer and water use.", + "Lower_Bound": "1.22", + "Upper_Bound": "1.33", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.03 (kg N₂O-N/ha). The emission factors were converted from kg N₂O-N/ha to kg N₂O-N/kg N by subtracting control emissions at N = 0 from emissions in N₂O/ha and dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen.", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.edf.org/sites/default/files/documents/Climate-smart-agriculture-India-EDF-report.pdf", + "creation_date": "2022-03-14T08:06:16.819Z", + "last_change_date": "2022-03-14T08:06:16.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11102, + "fields": { + "EF_ID": 424314, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission factor for upland foxtail-millet crop under rainfed (low rainfall) conditions.", + "Technology_Practices": "High total nitrogen use of 70 ± 11 (SE) kg/ha, including 49 kg inorganic N/ha and 10-32 kg mineralized organic N/ha at dry rainfed site; 121 mm rain.", + "Parameter_Conditions": "", + "Regional_Conditions": "India (IND), Anantapur district in Andhra Pradesh, Agro-ecological region 3.0", + "Control_Technologies": "", + "Other_Properties": "Nitrous oxide emissions for other nitrogen use rates can be estimated using our quadratic equation for millets provided in Kritee et al (2019)", + "Value": "0.30", + "Unit": "kg N2O–N/ha", + "Equation": "Volume 4, Chapter 11, Equation 11.2, page 11.10 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "K. Kritee, Drishya Nair, Daniel Zavala-Araiza, Malla Reddy, Jeremy Proville and Richie Ahuja (2019). Climate smart farming in India: A pathway to poverty alleviation, food security, and climate adaptation and mitigation. An online report with greenhouse gas flux data from rice and non-rice cropping systems from four agro-ecological regions in India. Published by Environmental Defense Fund, New York, NY.", + "English_Abstract": "India’s challenge is to combat poverty through a development pathway that enhances the nation’s food and water security and builds climate resilience, while also minimizing GHG emissions. India’s agricultural sector GHG emissions are estimated to be 350 million tons a year (18% of the country’s total). But these emissions are poised to grow dramatically in the next several years, particularly if India emulates China’s over use of nitrogen fertilizer (now 3.5 times that of India) in an effort to achieve higher yields. Fertilizer and water over-use are forms of waste and hurt the economic bottom line of the farmer while also having deleterious effects on the regional environment and our climate. The over-applied (or excess) fertilizer stimulates soil microbes to release nitrous oxide, a gas whose heat-trapping effect is a staggering >260 times that of carbon dioxide. In addition to nitrous oxide, flooded rice farms release methane, another greenhouse gas whose heat trapping effect is ~80 times that of carbon dioxide over the short time frame. It is crucial to note that, for developing countries like India, minimizing future climate footprint by preparing to avoid GHG emissions is as important as reducing current GHG emissions now. There are very limited number of academic or research organizations devoted to precise and accurate study of climate impacts of farming in India and all such organizations are focused on crops in irrigated and fertile Indo-gangetic belt in North and North-western India. To meet the needs of semi-arid dryland crops in peninsular India, we fostered a unique paradigm of establishing research laboratories within the official premises of our NGO partners in rural India. Based on inter-comparison of all existing international recommendations, we developed state-of-the-art protocols for tropical and developing parts of the world to determine both the business-as-usual GHG emissions from four Indian crops (rice, groundnut, finger- and foxtail-millet). We also developed methodologies for determining the extent of mitigation possible via several potential climate smart (or low carbon) farming practices. A summary of our results in presented in Table 1 where we show that smart management of fertilizers and water can increase/maintain yields and economic profits while decreasing GHG emissions under several conditions. For upland crops, because of our use of more than three fertilizer application rates, we have been able to show for the first time for Indian crops that nitrous oxide emissions vary non-linearly with changing nitrogen use. For groundnut N₂O-N (in kg ha⁻¹) = 0.000218(Ntotal)2 - 0.00161Ntotal + 0.668. For millets, N₂O-N (in kg ha⁻¹) = 6.34e-05 (Ntotal)2 + 3.26e-03 (Ntotal) + Constant. We also demonstrate that both the current IPCC and Indian regional linear emission factors of 1% and 0.58%, respectively, are too conservative for high N-input rates. For rice, through our regression and geospatial analysis, we highlight the previously under-appreciated role that nitrous oxide emissions from rice farms can have on increasing global warming. We also show a direct correlation between cumulative extent of flooding at rice farms and nitrous oxide emissions, and demonstrate how both methane and nitrous oxide emissions can both be effectively managed through changing fertilizer and water use.", + "Lower_Bound": "0.12", + "Upper_Bound": "0.48", + "Data_Quality": "", + "Data_Quality_Reference": "Tiwari, R., Kritee K. et al. Sampling guidelines and analytical optimization for direct greenhouse gas emissions from tropical rice and upland cropping systems. Carbon Manag. 6, 169-184 (2015).", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error for this treatment is ± 0.09 (kg N₂O-N/ha). The emission factors were converted from kg N₂O-N/ha to kg N₂O-N/kg N by subtracting control emissions at N = 0 from emissions in N₂O/ha and dividing by total N. Total N was calculated by adding inorganic N inputs and average of estimates of mineralized organic nitrogen.", + "Other_Comments": "", + "Data_Provider": "Dr. K. Kritee", + "Link": "https://www.edf.org/sites/default/files/documents/Climate-smart-agriculture-India-EDF-report.pdf", + "creation_date": "2022-03-14T08:06:16.920Z", + "last_change_date": "2022-03-14T08:06:16.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11103, + "fields": { + "EF_ID": 424315, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (females >2 years old) enteric fermentation grazing on highlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 267.3 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "34.1", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.020Z", + "last_change_date": "2022-03-14T08:06:17.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11104, + "fields": { + "EF_ID": 424316, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (females >2 years old) enteric fermentation grazing on lowlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 185 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "26.7", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.112Z", + "last_change_date": "2022-03-14T08:06:17.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11105, + "fields": { + "EF_ID": 424317, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (females >2 years old) enteric fermentation grazing on slopes", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 215.7 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "27.1", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.204Z", + "last_change_date": "2022-03-14T08:06:17.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11106, + "fields": { + "EF_ID": 424318, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (females 1-2 years old) enteric fermentation grazing on highlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 220.6 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "31.7", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.297Z", + "last_change_date": "2022-03-14T08:06:17.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11107, + "fields": { + "EF_ID": 424319, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (females 1-2 years old) enteric fermentation grazing on lowlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 128.4 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "19.3", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.389Z", + "last_change_date": "2022-03-14T08:06:17.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11108, + "fields": { + "EF_ID": 424320, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (females 1-2 years old) enteric fermentation grazing on slopes", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 157.1 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "23.5", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.481Z", + "last_change_date": "2022-03-14T08:06:17.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11109, + "fields": { + "EF_ID": 424321, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (males >2 years old) enteric fermentation grazing on highlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 249.2 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "37.4", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.583Z", + "last_change_date": "2022-03-14T08:06:17.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11110, + "fields": { + "EF_ID": 424322, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (males >2 years old) enteric fermentation grazing on lowlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 196.0 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "34.1", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.691Z", + "last_change_date": "2022-03-14T08:06:17.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11111, + "fields": { + "EF_ID": 424323, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (males >2 years old) enteric fermentation grazing on slopes", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 219.5 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "36.6", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.808Z", + "last_change_date": "2022-03-14T08:06:17.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11112, + "fields": { + "EF_ID": 424324, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (males 1-2 years old) enteric fermentation grazing on highlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 180.0 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "34.5", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:17.926Z", + "last_change_date": "2022-03-14T08:06:17.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11113, + "fields": { + "EF_ID": 424325, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (males 1-2 years old) enteric fermentation grazing on lowlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 129.1 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "28.9", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:18.034Z", + "last_change_date": "2022-03-14T08:06:18.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11114, + "fields": { + "EF_ID": 424326, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (males 1-2 years old) enteric fermentation grazing on slopes", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 139.5 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "27.8", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:18.144Z", + "last_change_date": "2022-03-14T08:06:18.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11115, + "fields": { + "EF_ID": 424327, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (calves <1 year old) enteric fermentation grazing on highlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 87.5 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "18.1", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:18.245Z", + "last_change_date": "2022-03-14T08:06:18.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11116, + "fields": { + "EF_ID": 424328, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (calves <1 year old) enteric fermentation grazing on lowlands", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 62.7 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "13.9", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:18.337Z", + "last_change_date": "2022-03-14T08:06:18.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11117, + "fields": { + "EF_ID": 424329, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (calves <1 year old) enteric fermentation grazing on slopes", + "Technology_Practices": "EFs for cattle were estimated based on the methodology from CSIRO, 2007 using data about seasonal (short dry, short wet, long dry and long wet) live weight, composition of seasonal diets and their dry matter digestibility. Firstly, metabolizable energy requirements were calculated for lactation, maintanence etc. Then sum of all metabolizable energy requirements were converted to digestible energy and divided by feed energy density to get DMI. DMI was multiplied by conversion factor 20.7 to get seasonal daily methane production. Finally EFs were calculated by multiplying seasonal Daily methane production (DMP) by 92 and by summing all seasons.", + "Parameter_Conditions": "The cattle population comprised East African shorthorn zebus and numerous indeterminate zebu x Bos taurus crosses. Pastures in the Nyando region comprise mainly grasses such as Digitaria gazensis, D. ciliaris, Eragrostis superba., E. aspera Hyparrhenia collina, Cynodon dactylon, Cappillipedium parviflorum and Bracharia spp. Pasture, both in smallholder farms and communal areas tends to be subject to continuous year-round grazing.", + "Regional_Conditions": "Nyando Basin of Western Kenya. Climate is humid to sub-humid, with annual rainfall of 1200–1725 mm in a bi-modal pattern, allowing for two cropping seasons a year.", + "Control_Technologies": "", + "Other_Properties": "Live weight 74.6 kg. Animal measurements taken at the beginning and end of dry and wet seasons. Forage sampling and other feed components analized by wet chemistry (n=2). Average DM digestibility estimated as a weighted average of contribution to feed basket.", + "Value": "16.1", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, A.A. Onyango, U. Dickhoefer, K. Butterbach-Bahl (2018). A new approach for improving emission factors for enteric methane emissions of cattle in smallholder systems of East Africa – Results for Nyando, Western Kenya. Agricultural Systems 161, 72–80.", + "English_Abstract": "In Africa, the agricultural sector is the largest sector of the domestic economy, and livestock, are a crucial component of agriculture, accounting for ~45% of the Kenyan agricultural GDP and> 70% of African agricultural greenhouse gas (GHG) emissions. Accurate estimates of GHG emissions from livestock are required for inventory purposes and to assess the efficacy of mitigation measures, but most estimates rely on TIER I (default) IPCC protocols with major uncertainties coming from the IPCC methodology itself. Tier II estimates represent a significant improvement over the default methodology, however in less developed economies the required information is lacking or of uncertain reliability. In this study we developed an alternative methodology based on animal energy requirements derived from field measurements of live weight, live weight change, milk production and locomotion to estimate intake. Using on-farm data, we analysed feed samples to produce estimates of digestibility by season and region, then and used these data to estimate daily methane production by season, area and class of animal to produce new emission factors (EF) for annual enteric CH₄ production. Mean Dry Matter Digestibility of the feed basket was in the range of 58–64%, depending on region and season (around 10% greater than TIER I estimates). EFs were substantially lower for adolescent and adult male (30.1, 35.9 versus 49 kg CH₄) and for adolescent and adult female (23.0, 28.3 versus 41 kg), but not calves (15.7 versus 16 kg) than those given for “other” African cattle in IPCC (Tier I) estimates. It is stressed that this study is the first of its kind for Sub-Sharan Africa relying on animal measurements, but should not automatically be extrapolated outside of its geographic range. It does however, point out the need for further measurements, and highlights the value of using a robust methodology which does not rely on the (often invalid) assumption of ad libitum intake in systems where intake is known or likely to be restricted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1016/j.agsy.2017.12.004", + "creation_date": "2022-03-14T08:06:18.446Z", + "last_change_date": "2022-03-14T08:06:18.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11118, + "fields": { + "EF_ID": 424330, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (females >2 years) enteric fermentation", + "Technology_Practices": "Total metabolic energy requirements of individual cattle on a seasonal basis were calculated by summing the estimated MER for maintenance, live-weight gain or loss, lactation and locomotion/traction. DMI was inferred as a function of MERtotal and the weighted mean DM digestibility (DMD) of the seasonal feed baskets in each Agro-ecological zone. DMI was used as the basis for calculation of daily CH₄ production rate.", + "Parameter_Conditions": "Bos taurus and Bos indicus breeds. In the study area, most animals were kept at pasture, grazing most of the day (Napier and/or Rhodes grass, maize and sugarcane fields after harvest).", + "Regional_Conditions": "Nandi County (located in the western part of the Rift Valley of Kenya)", + "Control_Technologies": "", + "Other_Properties": "Live weight 306.9 kg. All measures were recorded every 3 months after the second household visit, and dates were recorded (November 2015 to October 2016). Intervals coincided with the usual beginning/end of each of the following four subseasons in Nandi region. Each season was assumed to be of equal duration (i.e. 92 days). Nutrient analysis of feed was performed by wet chemistry.", + "Value": "50.6", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "P. W. Ndung’u B. O. Bebe J. O. Ondiek K. Butterbach-Bahl, L. Merbold and J. P. Goopy (2018). Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Animal Production Science 59 (6), 1136-1146.", + "English_Abstract": "National greenhouse-gas (GHG) inventories in most developing countries, and in countries in Sub-Saharan Africa in particular, use default (Tier I) GHG emission factors (EFs) provided by the Intergovernmental Panel on Climate Change (IPCC) to estimate enteric methane (CH₄) emissions from livestock. Because these EFs are based on data primarily from developed countries, there is a high degree of uncertainty associated with CH₄ emission estimates from African 5 livestock systems. Accurate Tier II GHG emission reporting from developing countries becomes particularly important following the Paris Climate agreement made at COP21, which encourages countries to mitigate GHG emissions from agricultural sources. In light of this, the present study provides improved entericCH₄ emission estimates for cattle in Nandi County, Western Kenya, representing a common livestock production system found in East Africa. Using the data from measurements of liveweight and liveweight change, milk production and locomotion collected from 1143 cattle in 127 households across 36 villages over three major agro-ecological zones covering a full year, we estimated total metabolic energy requirements. From this and assessments of digestibility from seasonally available feeds, we estimated feed intake and used this to calculate daily CH₄ production by season, and, subsequently, created new EFs. Mean EFs were 50.6, 45.5, 28.5, 33.2 and 29.0 kg CH₄/head/year for females (>2 years), males (>2 years), heifers (1–2 years), young males (1–2 years) and calves (<1 year) respectively, and were lower than the IPCC Tier I estimates for unspecified African adult cattle, 15 but higher for calves and young males. Thus, using IPCC Tier 1 EFs may overestimate current enteric CH₄ emissions in some African livestock systems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 3.34 (SEM)", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1071/AN17809", + "creation_date": "2022-03-14T08:06:18.555Z", + "last_change_date": "2022-03-14T08:06:18.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11119, + "fields": { + "EF_ID": 424331, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (males >2 years) enteric fermentation", + "Technology_Practices": "Total metabolic energy requirements of individual cattle on a seasonal basis were calculated by summing the estimated MER for maintenance, live-weight gain or loss, lactation and locomotion/traction. DMI was inferred as a function of MERtotal and the weighted mean DM digestibility (DMD) of the seasonal feed baskets in each Agro-ecological zone. DMI was used as the basis for calculation of daily CH₄ production rate.", + "Parameter_Conditions": "Bos taurus and Bos indicus breeds. In the study area, most animals were kept at pasture, grazing most of the day (Napier and/or Rhodes grass, maize and sugarcane fields after harvest).", + "Regional_Conditions": "Nandi County (located in the western part of the Rift Valley of Kenya)", + "Control_Technologies": "", + "Other_Properties": "Live weight 265.9 kg. All measures were recorded every 3 months after the second household visit, and dates were recorded (November 2015 to October 2016). Intervals coincided with the usual beginning/end of each of the following four subseasons in Nandi region. Each season was assumed to be of equal duration (i.e. 92 days). Nutrient analysis of feed was performed by wet chemistry.", + "Value": "45.5", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "P. W. Ndung’u B. O. Bebe J. O. Ondiek K. Butterbach-Bahl, L. Merbold and J. P. Goopy (2018). Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Animal Production Science 59 (6), 1136-1146.", + "English_Abstract": "National greenhouse-gas (GHG) inventories in most developing countries, and in countries in Sub-Saharan Africa in particular, use default (Tier I) GHG emission factors (EFs) provided by the Intergovernmental Panel on Climate Change (IPCC) to estimate enteric methane (CH₄) emissions from livestock. Because these EFs are based on data primarily from developed countries, there is a high degree of uncertainty associated with CH₄ emission estimates from African 5 livestock systems. Accurate Tier II GHG emission reporting from developing countries becomes particularly important following the Paris Climate agreement made at COP21, which encourages countries to mitigate GHG emissions from agricultural sources. In light of this, the present study provides improved entericCH₄ emission estimates for cattle in Nandi County, Western Kenya, representing a common livestock production system found in East Africa. Using the data from measurements of liveweight and liveweight change, milk production and locomotion collected from 1143 cattle in 127 households across 36 villages over three major agro-ecological zones covering a full year, we estimated total metabolic energy requirements. From this and assessments of digestibility from seasonally available feeds, we estimated feed intake and used this to calculate daily CH₄ production by season, and, subsequently, created new EFs. Mean EFs were 50.6, 45.5, 28.5, 33.2 and 29.0 kg CH₄/head/year for females (>2 years), males (>2 years), heifers (1–2 years), young males (1–2 years) and calves (<1 year) respectively, and were lower than the IPCC Tier I estimates for unspecified African adult cattle, 15 but higher for calves and young males. Thus, using IPCC Tier 1 EFs may overestimate current enteric CH₄ emissions in some African livestock systems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 5.12 (SEM)", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1071/AN17809", + "creation_date": "2022-03-14T08:06:18.681Z", + "last_change_date": "2022-03-14T08:06:18.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11120, + "fields": { + "EF_ID": 424332, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (heifers 1-2 years) enteric fermentation", + "Technology_Practices": "Total metabolic energy requirements of individual cattle on a seasonal basis were calculated by summing the estimated MER for maintenance, live-weight gain or loss, lactation and locomotion/traction. DMI was inferred as a function of MERtotal and the weighted mean DM digestibility (DMD) of the seasonal feed baskets in each Agro-ecological zone. DMI was used as the basis for calculation of daily CH₄ production rate.", + "Parameter_Conditions": "Bos taurus and Bos indicus breeds. In the study area, most animals were kept at pasture, grazing most of the day (Napier and/or Rhodes grass, maize and sugarcane fields after harvest).", + "Regional_Conditions": "Nandi County (located in the western part of the Rift Valley of Kenya)", + "Control_Technologies": "", + "Other_Properties": "Live weight 186.8 kg. All measures were recorded every 3 months after the second household visit, and dates were recorded (November 2015 to October 2016). Intervals coincided with the usual beginning/end of each of the following four subseasons in Nandi region. Each season was assumed to be of equal duration (i.e. 92 days). Nutrient analysis of feed was performed by wet chemistry.", + "Value": "28.5", + "Unit": "kg CH4/head/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "P. W. Ndung’u B. O. Bebe J. O. Ondiek K. Butterbach-Bahl, L. Merbold and J. P. Goopy (2018). Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Animal Production Science 59 (6), 1136-1146.", + "English_Abstract": "National greenhouse-gas (GHG) inventories in most developing countries, and in countries in Sub-Saharan Africa in particular, use default (Tier I) GHG emission factors (EFs) provided by the Intergovernmental Panel on Climate Change (IPCC) to estimate enteric methane (CH₄) emissions from livestock. Because these EFs are based on data primarily from developed countries, there is a high degree of uncertainty associated with CH₄ emission estimates from African 5 livestock systems. Accurate Tier II GHG emission reporting from developing countries becomes particularly important following the Paris Climate agreement made at COP21, which encourages countries to mitigate GHG emissions from agricultural sources. In light of this, the present study provides improved entericCH₄ emission estimates for cattle in Nandi County, Western Kenya, representing a common livestock production system found in East Africa. Using the data from measurements of liveweight and liveweight change, milk production and locomotion collected from 1143 cattle in 127 households across 36 villages over three major agro-ecological zones covering a full year, we estimated total metabolic energy requirements. From this and assessments of digestibility from seasonally available feeds, we estimated feed intake and used this to calculate daily CH₄ production by season, and, subsequently, created new EFs. Mean EFs were 50.6, 45.5, 28.5, 33.2 and 29.0 kg CH₄/head/year for females (>2 years), males (>2 years), heifers (1–2 years), young males (1–2 years) and calves (<1 year) respectively, and were lower than the IPCC Tier I estimates for unspecified African adult cattle, 15 but higher for calves and young males. Thus, using IPCC Tier 1 EFs may overestimate current enteric CH₄ emissions in some African livestock systems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 2.18 (SEM)", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1071/AN17809", + "creation_date": "2022-03-14T08:06:18.881Z", + "last_change_date": "2022-03-14T08:06:18.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11121, + "fields": { + "EF_ID": 424333, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (young males 1-2 years) enteric fermentation", + "Technology_Practices": "Total metabolic energy requirements of individual cattle on a seasonal basis were calculated by summing the estimated MER for maintenance, live-weight gain or loss, lactation and locomotion/traction. DMI was inferred as a function of MERtotal and the weighted mean DM digestibility (DMD) of the seasonal feed baskets in each Agro-ecological zone. DMI was used as the basis for calculation of daily CH₄ production rate.", + "Parameter_Conditions": "Bos taurus and Bos indicus breeds. In the study area, most animals were kept at pasture, grazing most of the day (Napier and/or Rhodes grass, maize and sugarcane fields after harvest).", + "Regional_Conditions": "Nandi County (located in the western part of the Rift Valley of Kenya)", + "Control_Technologies": "", + "Other_Properties": "Live weight 156.9 kg. All measures were recorded every 3 months after the second household visit, and dates were recorded (November 2015 to October 2016). Intervals coincided with the usual beginning/end of each of the following four subseasons in Nandi region. Each season was assumed to be of equal duration (i.e. 92 days). Nutrient analysis of feed was performed by wet chemistry.", + "Value": "33.2", + "Unit": "kg CH4/head/yr", + "Equation": "Eq. 10.21 (Vol 4, Chapter 10, section 10.3.2)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "P. W. Ndung’u B. O. Bebe J. O. Ondiek K. Butterbach-Bahl, L. Merbold and J. P. Goopy (2018). Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Animal Production Science 59 (6), 1136-1146.", + "English_Abstract": "National greenhouse-gas (GHG) inventories in most developing countries, and in countries in Sub-Saharan Africa in particular, use default (Tier I) GHG emission factors (EFs) provided by the Intergovernmental Panel on Climate Change (IPCC) to estimate enteric methane (CH₄) emissions from livestock. Because these EFs are based on data primarily from developed countries, there is a high degree of uncertainty associated with CH₄ emission estimates from African 5 livestock systems. Accurate Tier II GHG emission reporting from developing countries becomes particularly important following the Paris Climate agreement made at COP21, which encourages countries to mitigate GHG emissions from agricultural sources. In light of this, the present study provides improved entericCH₄ emission estimates for cattle in Nandi County, Western Kenya, representing a common livestock production system found in East Africa. Using the data from measurements of liveweight and liveweight change, milk production and locomotion collected from 1143 cattle in 127 households across 36 villages over three major agro-ecological zones covering a full year, we estimated total metabolic energy requirements. From this and assessments of digestibility from seasonally available feeds, we estimated feed intake and used this to calculate daily CH₄ production by season, and, subsequently, created new EFs. Mean EFs were 50.6, 45.5, 28.5, 33.2 and 29.0 kg CH₄/head/year for females (>2 years), males (>2 years), heifers (1–2 years), young males (1–2 years) and calves (<1 year) respectively, and were lower than the IPCC Tier I estimates for unspecified African adult cattle, 15 but higher for calves and young males. Thus, using IPCC Tier 1 EFs may overestimate current enteric CH₄ emissions in some African livestock systems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 3.42 (SEM)", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1071/AN17809", + "creation_date": "2022-03-14T08:06:18.990Z", + "last_change_date": "2022-03-14T08:06:18.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11122, + "fields": { + "EF_ID": 424334, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Region-specific EF for cattle (calves <1 year) enteric fermentation", + "Technology_Practices": "Total metabolic energy requirements of individual cattle on a seasonal basis were calculated by summing the estimated MER for maintenance, live-weight gain or loss, lactation and locomotion/traction. DMI was inferred as a function of MERtotal and the weighted mean DM digestibility (DMD) of the seasonal feed baskets in each Agro-ecological zone. DMI was used as the basis for calculation of daily CH₄ production rate.", + "Parameter_Conditions": "Bos taurus and Bos indicus breeds. In the study area, most animals were kept at pasture, grazing most of the day (Napier and/or Rhodes grass, maize and sugarcane fields after harvest). Pre-ruminant calves (0–3.5 months) were excluded from EF calculations for calves on the assumption that calves at this age produce negligible emissions.", + "Regional_Conditions": "Nandi County (located in the western part of the Rift Valley of Kenya)", + "Control_Technologies": "", + "Other_Properties": "Live weight 73.3 kg. All measures were recorded every 3 months after the second household visit, and dates were recorded (November 2015 to October 2016). Intervals coincided with the usual beginning/end of each of the following four subseasons in Nandi region. Each season was assumed to be of equal duration (i.e. 92 days). Nutrient analysis of feed was performed by wet chemistry.", + "Value": "29", + "Unit": "kg CH4/head/yr", + "Equation": "Eq. 10.21 (Vol 4, Chapter 10, section 10.3.2)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "P. W. Ndung’u B. O. Bebe J. O. Ondiek K. Butterbach-Bahl, L. Merbold and J. P. Goopy (2018). Improved region-specific emission factors for enteric methane emissions from cattle in smallholder mixed crop: livestock systems of Nandi County, Kenya. Animal Production Science 59 (6), 1136-1146.", + "English_Abstract": "National greenhouse-gas (GHG) inventories in most developing countries, and in countries in Sub-Saharan Africa in particular, use default (Tier I) GHG emission factors (EFs) provided by the Intergovernmental Panel on Climate Change (IPCC) to estimate enteric methane (CH₄) emissions from livestock. Because these EFs are based on data primarily from developed countries, there is a high degree of uncertainty associated with CH₄ emission estimates from African 5 livestock systems. Accurate Tier II GHG emission reporting from developing countries becomes particularly important following the Paris Climate agreement made at COP21, which encourages countries to mitigate GHG emissions from agricultural sources. In light of this, the present study provides improved entericCH₄ emission estimates for cattle in Nandi County, Western Kenya, representing a common livestock production system found in East Africa. Using the data from measurements of liveweight and liveweight change, milk production and locomotion collected from 1143 cattle in 127 households across 36 villages over three major agro-ecological zones covering a full year, we estimated total metabolic energy requirements. From this and assessments of digestibility from seasonally available feeds, we estimated feed intake and used this to calculate daily CH₄ production by season, and, subsequently, created new EFs. Mean EFs were 50.6, 45.5, 28.5, 33.2 and 29.0 kg CH₄/head/year for females (>2 years), males (>2 years), heifers (1–2 years), young males (1–2 years) and calves (<1 year) respectively, and were lower than the IPCC Tier I estimates for unspecified African adult cattle, 15 but higher for calves and young males. Thus, using IPCC Tier 1 EFs may overestimate current enteric CH₄ emissions in some African livestock systems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "± 2.41 (SEM)", + "Other_Comments": "", + "Data_Provider": "John Patrick Goopy", + "Link": "https://doi.org/10.1071/AN17809", + "creation_date": "2022-03-14T08:06:19.091Z", + "last_change_date": "2022-03-14T08:06:19.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11123, + "fields": { + "EF_ID": 424456, + "IPCC_Category": "3.C.3 - Urea application", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO₂ emission factor from urea application during Rice cropping season", + "Technology_Practices": "Based on the recommendation level of N fertilizer for rice in Korea (90 kg N/ha), four different levels (0, 45, 90 and 180 kg N/ha) of urea treatments were considered. Thirty days old seedlings (3 plants per hill) of rice (Dongjinbyeo cultivar, Japonica) were transplanted by hand with a spacing of 30 cm x 15 cm in the late May 2014 and 2015. Irrigation water was controlled at 5-7 cm depth during the cropping season and drained 3 weeks before rice harvesting. Rice was harvested by early October.", + "Parameter_Conditions": "Soil in this experimental site belongs to the Pyeongtaeg series (fine-silty, mixed, nonacid, mesic Typic haplaquent with somewhat impeded drainage). The soil pH was 5.6 ± 0.2 (1:5 with H₂O). Organic C content of the soil was 8.9 ± 0.6 g kg⁻¹ and the total N content was 0.65 ± 0.08 g kg⁻¹.", + "Regional_Conditions": "Jinju, South Korea", + "Control_Technologies": "", + "Other_Properties": "Carbon dioxide quantification was based on standards (Supelco Inc. Bellefonte, Pa.)", + "Value": "0.0143-0.0156", + "Unit": "Mg C per Mg urea", + "Equation": "Volume 4, Chapter 11, Equation 11.13, page 11.32 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim G.W., Jeong S.T., Lee J.J., Kim G.Y., Kim P.J., Kim S.Y. Evaluation of carbon dioxide emission factor from urea during rice cropping season: A case study in Korean paddy soil. Atmospheric Environment, 139, (2016), 139-146.", + "English_Abstract": "Fertilization with urea can lead to a loss of carbon dioxide (CO₂) that was fixed during the industrial production process. The extent of atmospheric CO₂ removal from urea manufacturing was estimated by the Industrial Processes and Product Use sector (IPPU sector). On its basis, the Intergovernmental Panel on Climate Change (IPCC) has proposed a value of 0.2 Mg C per Mg urea (available in 2006 revised IPCC guidelines for greenhouse gas inventories), which is the mass fractions of C in urea, as the CO₂ emission coefficient from urea for the agricultural sector. Notably, due to the possibility of bicarbonate leaching to waters, all C in urea might not get released as CO₂ to the atmosphere. Hence, in order to provide an accurate value of the CO₂ emission coefficient from applied urea in the rice ecosystem, the CO₂ emission factors were characterized under different levels of ¹³C-urea applied paddy field in the current study. The total CO₂ fluxes and rice grain yields increased significantly with increasing urea application (110 -130 kg N/ha) and thereafter, decreased. However, with increasing ¹³C-urea application, a significant and proportional increase of the ¹³CO₂-C emissions from ¹³C-urea was also observed. From the relationships between urea application levels and ¹³CO₂-C fluxes from ¹³C-urea, the CO₂-C emission factor from urea was estimated to range between 0.0143 and 0.0156 Mg C per Mg urea. Thus, the CO₂-C emission factor of this study is less than that of the value proposed by IPCC. Therefore, for the first time, we propose to revise the current IPCC guideline value of CO₂-C emission factor from urea as 0.0143-0.0156 Mg C per Mg urea for Korean paddy soils.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "http://dx.doi.org/10.1016/j.atmosenv.2016.05.033", + "creation_date": "2022-03-14T08:06:19.192Z", + "last_change_date": "2022-03-14T08:06:19.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11124, + "fields": { + "EF_ID": 424457, + "IPCC_Category": "3.C.3 - Urea application", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO₂ emission factor from urea application to red pepper during the warm season", + "Technology_Practices": "Based on the Korean recommended N fertilization levels for red pepper (190 kg N/ha), 4 different levels (0, 50, 100 and 200% of the recommended N level) of urea were selected as the main treatments. Red pepper (Capsicum annum L., Chungyang variety) was cultivated during the warm season, from late May to the mid-October (125 days).", + "Parameter_Conditions": "Experimental plots were installed in a typical temperate zone under upland soil conditions. The soil belongs to the Jisan series (fine loamy, mixed, mesic family of Fluvaquentic Endoaquepts) and had a pH of 5.7 ± 0.2 (1:5 with H₂O), an organic C concentration of 13.74 ± 0.6 g kg⁻¹, and a total N concentration of 1.5 ± 0.08 g kg⁻¹ before the experiment.", + "Regional_Conditions": "Jinju, South Korea", + "Control_Technologies": "", + "Other_Properties": "Carbon dioxide quantification was based on standards (Supelco Inc. Bellefonte, Pa.)", + "Value": "0.062–0.063", + "Unit": "kg C per kg urea", + "Equation": "Volume 4, Chapter 11, Equation 11.13, page 11.32 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim G.W., Alam M.A., Lee J.J., Kim G.Y., Kim P.J., Khan M.I. Assessment of direct carbon dioxide emission factor from urea fertilizer in temperate upland soil during warm and cold cropping season. European Journal of Soil Biology, 83, (2017), 76–83.", + "English_Abstract": "Urea [(NH₂)₂CO] is synthesized by combining ammonia (NH₃) and carbon dioxide (CO₂). The consumption of atmospheric CO₂ for urea production was considered carbon (C) removal by the Industrial Processes and Product Use sector. Based on this evaluation, the Intergovernmental Panel on Climate Change proposed a default value (0.2 kg C per kg urea) for the CO₂ emission factor from urea, which is equivalent to the mass percent of C in urea. However, all the C in urea might not be discharged to the atmosphere during the cropping season because some bicarbonates can be released from agricultural fields. To estimate the direct CO₂ emission factor, different levels of urea were applied to cultivate red pepper and garlic during the warm and cold seasons, respectively, and CO₂ emission rates were monitored during the cropping seasons. The seasonal CO₂ fluxes increased significantly with increasing urea application levels, reaching maximum values of 268–273 and 233-250 kg N ha⁻¹ for red pepper and garlic, respectively, and clearly decreased thereafter. Calculated by linear regressions between urea application levels and seasonal ¹³CO₂ fluxes originating from ¹³C-urea, the direct CO₂ emission rates from urea were projected to be 0.062–0.063 and 0.050–0.052 kg C per kg urea for red pepper and garlic cultivation, respectively. Thus, we suggest revising the current IPCC default value (0.2 kg C per kg urea) for the CO₂ emission factor from urea to be approximately 0.06 and 0.05 kg C per kg urea for warm and cold cropping seasons, respectively, in temperate upland soils.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "http://dx.doi.org/10.1016/j.ejsobi.2017.10.005", + "creation_date": "2022-03-14T08:06:19.292Z", + "last_change_date": "2022-03-14T08:06:19.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11125, + "fields": { + "EF_ID": 424458, + "IPCC_Category": "3.C.3 - Urea application", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO₂ emission factor from urea application to garlic during the cold season", + "Technology_Practices": "Based on the Korean recommended N fertilization levels for garlic (250 kg N/ha), 4 different levels (0, 50, 100 and 200% of the recommended N level) of urea were selected as the main treatments. Garlic (Allium sativum L., Mayoung variety) was cultivated during the cold season, from late October to mid-May of the following year (220 days).", + "Parameter_Conditions": "Experimental plots were installed in a typical temperate zone under upland soil conditions. The soil belongs to the Jisan series (fine loamy, mixed, mesic family of Fluvaquentic Endoaquepts) and had a pH of 5.7 ± 0.2 (1:5 with H₂O), an organic C concentration of 13.74 ± 0.6 g kg⁻¹, and a total N concentration of 1.5 ± 0.08 g kg⁻¹ before the experiment.", + "Regional_Conditions": "Jinju, South Korea", + "Control_Technologies": "", + "Other_Properties": "Carbon dioxide quantification was based on standards (Supelco Inc. Bellefonte, Pa.)", + "Value": "0.050–0.052", + "Unit": "kg C per kg urea", + "Equation": "Volume 4, Chapter 11, Equation 11.13, page 11.32 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim G.W., Alam M.A., Lee J.J., Kim G.Y., Kim P.J., Khan M.I. Assessment of direct carbon dioxide emission factor from urea fertilizer in temperate upland soil during warm and cold cropping season. European Journal of Soil Biology, 83, (2017), 76–83.", + "English_Abstract": "Urea [(NH₂)₂CO] is synthesized by combining ammonia (NH₃) and carbon dioxide (CO₂). The consumption of atmospheric CO₂ for urea production was considered carbon (C) removal by the Industrial Processes and Product Use sector. Based on this evaluation, the Intergovernmental Panel on Climate Change proposed a default value (0.2 kg C per kg urea) for the CO₂ emission factor from urea, which is equivalent to the mass percent of C in urea. However, all the C in urea might not be discharged to the atmosphere during the cropping season because some bicarbonates can be released from agricultural fields. To estimate the direct CO₂ emission factor, different levels of urea were applied to cultivate red pepper and garlic during the warm and cold seasons, respectively, and CO₂ emission rates were monitored during the cropping seasons. The seasonal CO₂ fluxes increased significantly with increasing urea application levels, reaching maximum values of 268–273 and 233-250 kg N ha⁻¹ for red pepper and garlic, respectively, and clearly decreased thereafter. Calculated by linear regressions between urea application levels and seasonal ¹³CO₂ fluxes originating from ¹³C-urea, the direct CO₂ emission rates from urea were projected to be 0.062–0.063 and 0.050–0.052 kg C per kg urea for red pepper and garlic cultivation, respectively. Thus, we suggest revising the current IPCC default value (0.2 kg C per kg urea) for the CO₂ emission factor from urea to be approximately 0.06 and 0.05 kg C per kg urea for warm and cold cropping seasons, respectively, in temperate upland soils.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "http://dx.doi.org/10.1016/j.ejsobi.2017.10.005", + "creation_date": "2022-03-14T08:06:19.392Z", + "last_change_date": "2022-03-14T08:06:19.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11126, + "fields": { + "EF_ID": 424459, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor from dung N deposited by grazing cattle", + "Technology_Practices": "Dung of different qualities was obtained from a parallel animal feeding trial where 14-month-old boran steers (Bos indicus L.) with an average live weight of 183 kg were fed at different maintenance energy requirement (MER) levels. In addition, dung from pasture-fed steers at ILRI farm (MER levels 130–140%) was included. The fresh dung was applied to the rangeland plots as a patch of approximately 3-cm height covering an area of 16 cm × 20 cm (1 kg) in the middle of each chamber within 2 hr following its collection.", + "Parameter_Conditions": "Wet/dry seasons. Well drained, deep humic nitisols. The pasture was dominated by a mixture of Kikuyu grass and Rhodes grass. The steers fed at either 40 or 60% MER were provided with only Rhodes grass hay, while animals fed at 100% MER were given Rhodes grass hay (at 80% MER) plus cottonseed meal (10% MER) and molasses (10% MER).", + "Regional_Conditions": "Sub-Saharan Africa, Kenya, Nairobi", + "Control_Technologies": "", + "Other_Properties": "Except for the first trial, gas flux measurements started a few days prior to dung application in order to assess the spatial variability of background soil GHG fluxes across the individual chambers. Each trial ended when the GHG fluxes had reached background as found prior to dung application. This normally took around 2 weeks, though measurements continued for another 2 weeks. After each trial chambers were moved to unaffected grassland in order to avoid possible memory effects on GHG fluxes.", + "Value": "-0.01-0.01", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Pelster, D., Diaz-Pines, E., Wanyama, G. N., & Butterbach- Bahl, K. (2018). Effect of dung quantity and quality on greenhouse gas fluxes from tropical pastures in Kenya. Global Biogeochemical Cycles, 32. https://doi. org/10.1029/2018GB005949", + "English_Abstract": "To improve estimates of agricultural greenhouse gas emissions in sub-Saharan Africa, we measured over six individual periods of 25–29 days fluxes of methane (CH₄), carbon dioxide (CO₂), and nitrous oxide (N₂O) with subdaily time resolution from dung patches of different quality (C/N ratio: 23–41) and quantity (0.5 and 1.0 kg) on a Kenyan rangeland during dry and wet seasons. Methane emissions peaked following dung application, whereas N₂O and CO₂ fluxes from dung patches were similar to fluxes from rangeland soils receiving no N additions. Greenhouse gas emissions scaled linearly with dung quantity during both seasons. Dung with a low (23) C/N ratio produced up to 10 times more CH₄ than dung with a high (41) C/N ratio. Overall, CH₄ emission factors (EFs) ranged from 0.001 to 0.042%, lower than those derived in temperate regions. Cumulative CO₂ and N₂O emissions were similar for all treatments across the different seasons. The N₂O EF ranged from 0 to 0.01%, less than 1% of the Intergovernmental Panel on Climate Change Tier 1 default EF (2%) for N₂O emissions from dung and urine patches, likely because of the low dung N content (9.7–16.5 g N kg⁻¹ dry matter). However, these results were consistent with the updated cattle dung EF (0.2%) developed for Kenya in 2016/2017 (EF database ID# 422665). In view of the wide range of climates, soils, and management practices across sub-Saharan Africa, development of robust GHG EFs from dung patches for SSA requires additional studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Negative net cumulative N₂O emissions as in our study, that is, rangeland plots with dung emitting less N₂O than adjacent control plots, have also been observed in other studies that were carried out in temperate (Mori & Hojito, 2015) or tropical grassland (Mazzetto et al., 2014). This observation might be surprising but was mostly detected in studies where dung with low N contents and high C/N ratios was applied to grasslands. One possible reason is that the organic matter from dung, with its high C/N ratio, leaches into the soil, subsequently provoking a net N immobilization in the underlying soil. This would reduce the amount of NO₃- available for denitrification and N₂O production (Xia et al., 2017). Another explanation might be that the wide C/N ratio of the dung and likely of the leachates favors complete denitrification, that is, that N₂ is the sole end product of the denitrification process.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu", + "Link": "http://doi.wiley.com/10.1029/2018GB005949", + "creation_date": "2022-03-14T08:06:19.501Z", + "last_change_date": "2022-03-14T08:06:19.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11127, + "fields": { + "EF_ID": 424460, + "IPCC_Category": "3.A.2.a.ii - Other cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH₄ emission factor from dung deposited by grazing cattle", + "Technology_Practices": "Dung of different qualities was obtained from a parallel animal feeding trial where 14-month-old boran steers (Bos indicus L.) with an average live weight of 183 kg were fed at different maintenance energy requirement (MER) levels. In addition, dung from pasture-fed steers at ILRI farm (MER levels 130–140%) was included. The Fresh dung was applied to the rangeland plots as a patch of approximately 3-cm height covering an area of 16 cm × 20 cm (1 kg) in the middle of each chamber within 2 hr following its collection.", + "Parameter_Conditions": "Wet/dry seasons. Well drained, deep humic nitisols. The pasture was dominated by a mixture of Kikuyu grass and Rhodes grass. The steers fed at either 40 or 60% MER were provided with only Rhodes grass hay, while animals fed at 100% MER were given Rhodes grass hay (at 80% MER) plus cottonseed meal (10% MER) and molasses (10% MER).", + "Regional_Conditions": "Sub-Saharan Africa, Kenya, Nairobi", + "Control_Technologies": "", + "Other_Properties": "Except for the first trial, gas flux measurements started a few days prior to dung application in order to assess the spatial variability of background soil GHG fluxes across the individual chambers. Each trial ended when the GHG fluxes had reached background as found prior to dung application. This normally took around 2 weeks, though measurements continued for another 2 weeks. After each trial chambers were moved to unaffected grassland in order to avoid possible memory effects on GHG fluxes.", + "Value": "0.001-0.042", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Pelster, D., Diaz-Pines, E., Wanyama, G. N., & Butterbach- Bahl, K. (2018). Effect of dung quantity and quality on greenhouse gas fluxes from tropical pastures in Kenya. Global Biogeochemical Cycles, 32. https://doi. org/10.1029/2018GB005949", + "English_Abstract": "To improve estimates of agricultural greenhouse gas emissions in sub-Saharan Africa, we measured over six individual periods of 25–29 days fluxes of methane (CH₄), carbon dioxide (CO₂), and nitrous oxide (N₂O) with subdaily time resolution from dung patches of different quality (C/N ratio: 23–41) and quantity (0.5 and 1.0 kg) on a Kenyan rangeland during dry and wet seasons. Methane emissions peaked following dung application, whereas N₂O and CO₂ fluxes from dung patches were similar to fluxes from rangeland soils receiving no N additions. Greenhouse gas emissions scaled linearly with dung quantity during both seasons. Dung with a low (23) C/N ratio produced up to 10 times more CH₄ than dung with a high (41) C/N ratio. Overall, CH₄ emission factors (EFs) ranged from 0.001 to 0.042%, lower than those derived in temperate regions. Cumulative CO₂ and N₂O emissions were similar for all treatments across the different seasons. The N₂O EF ranged from 0 to 0.01%, less than 1% of the Intergovernmental Panel on Climate Change Tier 1 default EF (2%) for N₂O emissions from dung and urine patches, likely because of the low dung N content (9.7–16.5 g N kg⁻¹ dry matter). However, these results were consistent with the updated cattle dung EF (0.2%) developed for Kenya in 2016/2017 (EF database ID# 422665). In view of the wide range of climates, soils, and management practices across sub-Saharan Africa, development of robust GHG EFs from dung patches for SSA requires additional studies.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu", + "Link": "http://doi.wiley.com/10.1029/2018GB005949", + "creation_date": "2022-03-14T08:06:19.635Z", + "last_change_date": "2022-03-14T08:06:19.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11128, + "fields": { + "EF_ID": 424461, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for dairy lactating cows enteric fermentation", + "Technology_Practices": "Mature dairy cattle (Holstein) with a mean milk production of 22.7 L/d in Summer season, maintained on Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) pasture, fertilized with 400 kg/ha of N and K₂O each splitted five times after grazing. Daily supplemented with 1 kg concentrate per each 3 L milk.", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "LW 571.5 kg; Ym for Holstein animals amounts to 5.8%.", + "Value": "403.2", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:19.745Z", + "last_change_date": "2022-03-14T08:06:19.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11129, + "fields": { + "EF_ID": 424462, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for dairy lactating cows enteric fermentation", + "Technology_Practices": "Mature dairy cattle (Brazilian Dairy Crossbred, Holstein ¾ x Gir (Zebu) ¼), with a mean milk production of 13.3 L/d, in Summer season, maintained on Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pasture, under the same soil fertility conditions of Tanzania grass pasture. Daily supplemented with 3.4 kg concentrate per cow.", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "LW 478.5 kg; Ym for Crossbred animals amounts to 6.6%.", + "Value": "332.6", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:19.846Z", + "last_change_date": "2022-03-14T08:06:19.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11130, + "fields": { + "EF_ID": 424463, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for dry cows enteric fermentation", + "Technology_Practices": "Mature dairy cattle (Holstein) in Summer season, maintained on Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) pasture, fertilized with 400 kg/ha of N and K₂O each splitted five times after grazing. Daily supplemented with 2 kg concentrate per animal.", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "LW 605 kg; Ym for Holstein animals amounts to 5.8%.", + "Value": "280.0", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:19.947Z", + "last_change_date": "2022-03-14T08:06:19.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11131, + "fields": { + "EF_ID": 424464, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for dry cows enteric fermentation", + "Technology_Practices": "Mature dairy cattle (Brazilian Dairy Crossbred, Holstein ¾ x Gir (Zebu) ¼) in Summer season, maintained on Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) pasture, fertilized with 400 kg/ha of N and K₂O each splitted five times after grazing. Daily supplementated with 2 kg concentrate per animal.", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "LW 480 kg; Ym for Crossbred animals amounts to 6.6%.", + "Value": "294.5", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.048Z", + "last_change_date": "2022-03-14T08:06:20.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11132, + "fields": { + "EF_ID": 424465, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for heifers enteric fermentation", + "Technology_Practices": "Dairy heifers (Holstein), in Summer season, grazing fertilized pasture with supplementation (intensive system).", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Mean age 24 months old; LW 501.5 kg; Ym for Holstein animals amounts to 5.8%.", + "Value": "222.2", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.147Z", + "last_change_date": "2022-03-14T08:06:20.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11133, + "fields": { + "EF_ID": 424466, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for heifers enteric fermentation under intensive grazing management", + "Technology_Practices": "Dairy heifers (Brazilian Dairy Crossbred, Holstein ¾ x Gir (Zebu) ¼), in Summer season, grazing fertilized pasture with supplementation (intensive system).", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Mean age 24 months old; LW 365 kg; Ym for Crossbred animals amounts to 6.6%.", + "Value": "232.6", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.248Z", + "last_change_date": "2022-03-14T08:06:20.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11134, + "fields": { + "EF_ID": 424467, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for heifers enteric fermentation under extensive grazing management", + "Technology_Practices": "Dairy heifers (Holstein), in Summer season, grazing Brachiaria-grass pasture, not fertilized and not supplemented with concentrate (extensive system).", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Mean age 24 months old; LW 459 kg; Ym for Holstein animals amounts to 5.8%.", + "Value": "198.4", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.349Z", + "last_change_date": "2022-03-14T08:06:20.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11135, + "fields": { + "EF_ID": 424468, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for heifers enteric fermentation under extensive grazing management", + "Technology_Practices": "Dairy heifers (Brazilian Dairy Crossbred, Holstein ¾ x Gir (Zebu) ¼), in Summer season, grazing Brachiaria-grass pasture, not fertilized and not supplemented with concentrate (extensive system).", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Mean age 24 months old; LW 373.5 kg; Ym for Crossbred animals amounts to 6.6%.", + "Value": "181.0", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.450Z", + "last_change_date": "2022-03-14T08:06:20.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11136, + "fields": { + "EF_ID": 424469, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for dairy lactating cows enteric fermentation", + "Technology_Practices": "Mature dairy cattle (Holstein) with a mean milk production of 24.3 L/d in Fall season, fed with corn silage.", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "LW 569.7 kg; Ym for Holstein animals amounts to 5.8%.", + "Value": "383.2", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.550Z", + "last_change_date": "2022-03-14T08:06:20.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11137, + "fields": { + "EF_ID": 424470, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for dairy lactating cows enteric fermentation", + "Technology_Practices": "Mature dairy cattle (Brazilian Dairy Crossbred, Holstein ¾ x Gir (Zebu) ¼) with a mean milk production of 9.7 L/d, in Fall season, fed with chopped grain millet, maintaining the same concentrate diet of their specific herd, adjusted to production capacity and daily requirements.", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "LW 474.2 kg; Ym for Crossbred animals amounts to 6.6%.", + "Value": "296.3", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.650Z", + "last_change_date": "2022-03-14T08:06:20.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11138, + "fields": { + "EF_ID": 424471, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for dry cows enteric fermentation", + "Technology_Practices": "Mature dairy cattle (Holstein), in Fall season, grazing fertilized Tanzania-grass.", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "LW 641.7 kg; Ym for Holstein animals amounts to 5.8%.", + "Value": "261.3", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.759Z", + "last_change_date": "2022-03-14T08:06:20.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11139, + "fields": { + "EF_ID": 424472, + "IPCC_Category": "3.A.1.a.i - Dairy Cows", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for dry cows enteric fermentation", + "Technology_Practices": "Mature dairy cattle (Brazilian Dairy Crossbred, Holstein ¾ x Gir (Zebu) ¼), in Fall season, grazing fertilized Tanzania-grass.", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "LW 521.7 kg; Ym for Crossbred animals amounts to 6.6%.", + "Value": "238.4", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.885Z", + "last_change_date": "2022-03-14T08:06:20.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11140, + "fields": { + "EF_ID": 424473, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for heifers enteric fermentation under intensive grazing management", + "Technology_Practices": "Dairy heifers (Holstein), in Fall season, grazing fertilized Tanzania-grass pasture (intensive system).", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Mean age 24 months old; LW 520 kg; Ym for Holstein animals amounts to 5.8%.", + "Value": "245.0", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:20.985Z", + "last_change_date": "2022-03-14T08:06:20.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11141, + "fields": { + "EF_ID": 424474, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for heifers enteric fermentation under intensive grazing management", + "Technology_Practices": "Dairy heifers (Brazilian Dairy Crossbred, Holstein ¾ x Gir (Zebu) ¼), in Fall season, grazing fertilized Tanzania-grass pasture (intensive system).", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Mean age 24 months old; LW 399 kg; Ym for Crossbred animals amounts to 6.6%.", + "Value": "190.6", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:21.086Z", + "last_change_date": "2022-03-14T08:06:21.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11142, + "fields": { + "EF_ID": 424475, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for heifers enteric fermentation under extensive grazing management", + "Technology_Practices": "Dairy heifers (Holstein), in Fall season, grazing Brachiaria-grass not fertilized pasture and without supplementation (extensive system).", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Mean age 24 months old; LW 432 kg; Ym for Holstein animals amounts to 5.8%.", + "Value": "157.2", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:21.180Z", + "last_change_date": "2022-03-14T08:06:21.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11143, + "fields": { + "EF_ID": 424476, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for heifers enteric fermentation under extensive grazing management", + "Technology_Practices": "Dairy heifers (Brazilian Dairy Crossbred, Holstein ¾ x Gir (Zebu) ¼), in Fall season, grazing Brachiaria-grass not fertilized pasture and without supplementation (extensive system).", + "Parameter_Conditions": "The climate of the region is tropical with wet summer and dry winter (Aw) or hot-dry winter (Cwa), and original vegetation of the Cerrado biome, with low fertility soils.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Mean age 24 months old; LW 388.5 kg; Ym for Crossbred animals amounts to 6.6%.", + "Value": "180.3", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M.S., Primavesi, O., Lima, M.A., Frighetto, R., de Oliveira, S.G., Berchielli, T.T. Ruminal methane emission by dairy cattle in southeast Brazil. Sci. Agric. (Piracicaba, Braz.), v.66, n.6, p.742-750, November/December 2009.", + "English_Abstract": "Ruminal gases, particularly methane, generated during the fermentative process in rumen, represent a partial loss of feed energy and are also pointed to as an important factors in greenhouse effect. This study aimed at quantifying methane (CH₄) emission rates from lactating and dry cows and heifers, 24 month-old in average, on pasture under Southeast Brazil tropical conditions, using the tracer gas technique, sulphur hexafluoride (SF₆), four animals per category, distributed in four blocks. Measurements were performed in February and June, 2002, with Holstein and Brazilian Dairy Crossbred (Holstein ¾ x Gir (Zebu) ¼), maintained on fertilized Tanzania-grass (Panicum maximum Jacq. cv. Tanzania) and fertilized Brachiaria-grass (Brachiaria decumbens cv. Basilisk) pastures. Heifers of both breeds were maintained on unfertilized Brachiaria-grass to simulate conditions of extensive cattle farming systems. CH₄ and SF₆ levels were measured with gas chromatography. Differences in CH₄ emissions were measured (p < 0.05) for genetical groups. Holstein produced more methane (299.3 g day⁻¹) than the Crossbred (264.2 g day⁻¹). Lactating cows produced more methane (353.8 g day⁻¹) than dry cows (268.8 g day⁻¹) and heifers (222.6 g day⁻¹). Holstein, with greater milk production potential, produced less CH₄ (p < 0.05) per unit of dry matter intake (19.1 g kg⁻¹) than the Crossbred (22.0 g kg⁻¹). Methane emission by heifers grazing fertilized pasture (intensive system) was 222.6 g day⁻¹, greater (p < 0.05) than that of heifers on unfertilized pasture (179.2 g day⁻¹). Methane emission varied as function of animal category and management intensity of production system.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Quality assurance of data was performed through discussions with experts and developers of the method.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000600004", + "creation_date": "2022-03-14T08:06:21.297Z", + "last_change_date": "2022-03-14T08:06:21.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11144, + "fields": { + "EF_ID": 424540, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Mature crossbred bulls (Nelore x Gir)", + "Parameter_Conditions": "The experiment was carried out using four crossbred bulls (Nelore x Gir), rumen cannulae and average weight of 814 kg throughout the experiment. The animals were kept in individual stalls with troughs that allowed the evaluation of food consumption.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "80% grass hay of Cynodon dactylon cultivar coast-cross, with 20% of Leucaena, without yeast", + "Other_Properties": "", + "Value": "53.86", + "Unit": "kg/animal/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J.A.A., Frighetto, R.T.S., Lima, M.A. 2008. Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Revista Brasileira de Zootecnia, v. 37, n. 8, p. 1509-1516.", + "English_Abstract": "This research was carried out to evaluate the effect of Leucaena (Leucaena leucocephala) and yeast (Saccharomyces cerevisiae) in diets for bovines on ruminal metabolism, including pH, volatile fatty acids, and ammonia and methane production. Four crossbred male cattle (800 kg LW) rumen cannulated were distributed to a 4 × 4 Latin Square design, in 2 × 2 factorial arrangement, composed by two levels of Leucaena (20% and 50% DM) and coast-cross grass hay, with or without yeast. No differences were observed in rumen pH (mean 6.82) and ammonia concentrations that varied from 18.71 to 21.28 mg/100 mL of ruminal fluid. There was interaction between Leucaena levels and yeast in the total concentrations of VFA. No differences were observed in the concentrations of acetic acid, but the animals fed 50% of Leucaena with yeast showed higher propionic acid concentration (19.14 mM). Methane emissions were reduced by 12.3% in relation to the same diet without yeast and in 17.2% when the animals were fed 20% of Leucaena with yeast. There was a noticeable associative effect of Leucaena when fed in high level (50% DM) and yeast in the reduction of methane emission and better rumen fermentation with possible reduction of energy loss and better energy efficiency for the animals.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008000800025&lng=pt&tlng=pt", + "creation_date": "2022-03-14T08:06:21.414Z", + "last_change_date": "2022-03-14T08:06:21.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11145, + "fields": { + "EF_ID": 424541, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Mature crossbred bulls (Nelore x Gir)", + "Parameter_Conditions": "The experiment was carried out using four crossbred bulls (Nelore x Gir), rumen cannulae and average weight of 814 kg throughout the experiment. The animals were kept in individual stalls with troughs that allowed the evaluation of food consumption.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "50% grass hay of Cynodon dactylon cultivar coast-cross, with 50% of Leucaena, without yeast", + "Other_Properties": "", + "Value": "47.04", + "Unit": "kg/animal/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J.A.A., Frighetto, R.T.S., Lima, M.A. 2008. Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Revista Brasileira de Zootecnia, v. 37, n. 8, p. 1509-1516.", + "English_Abstract": "This research was carried out to evaluate the effect of Leucaena (Leucaena leucocephala) and yeast (Saccharomyces cerevisiae) in diets for bovines on ruminal metabolism, including pH, volatile fatty acids, and ammonia and methane production. Four crossbred male cattle (800 kg LW) rumen cannulated were distributed to a 4 × 4 Latin Square design, in 2 × 2 factorial arrangement, composed by two levels of Leucaena (20% and 50% DM) and coast-cross grass hay, with or without yeast. No differences were observed in rumen pH (mean 6.82) and ammonia concentrations that varied from 18.71 to 21.28 mg/100 mL of ruminal fluid. There was interaction between Leucaena levels and yeast in the total concentrations of VFA. No differences were observed in the concentrations of acetic acid, but the animals fed 50% of Leucaena with yeast showed higher propionic acid concentration (19.14 mM). Methane emissions were reduced by 12.3% in relation to the same diet without yeast and in 17.2% when the animals were fed 20% of Leucaena with yeast. There was a noticeable associative effect of Leucaena when fed in high level (50% DM) and yeast in the reduction of methane emission and better rumen fermentation with possible reduction of energy loss and better energy efficiency for the animals.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008000800025&lng=pt&tlng=pt", + "creation_date": "2022-03-14T08:06:21.531Z", + "last_change_date": "2022-03-14T08:06:21.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11146, + "fields": { + "EF_ID": 424542, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Mature crossbred bulls (Nelore x Gir)", + "Parameter_Conditions": "The experiment was carried out using four crossbred bulls (Nelore x Gir), rumen cannulae and average weight of 814 kg throughout the experiment. The animals were kept in individual stalls with troughs that allowed the evaluation of food consumption.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "80% grass hay, 20% Leucaena and 10 g of yeast", + "Other_Properties": "", + "Value": "49.17", + "Unit": "kg/animal/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J.A.A., Frighetto, R.T.S., Lima, M.A. 2008. Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Revista Brasileira de Zootecnia, v. 37, n. 8, p. 1509-1516.", + "English_Abstract": "This research was carried out to evaluate the effect of Leucaena (Leucaena leucocephala) and yeast (Saccharomyces cerevisiae) in diets for bovines on ruminal metabolism, including pH, volatile fatty acids, and ammonia and methane production. Four crossbred male cattle (800 kg LW) rumen cannulated were distributed to a 4 × 4 Latin Square design, in 2 × 2 factorial arrangement, composed by two levels of Leucaena (20% and 50% DM) and coast-cross grass hay, with or without yeast. No differences were observed in rumen pH (mean 6.82) and ammonia concentrations that varied from 18.71 to 21.28 mg/100 mL of ruminal fluid. There was interaction between Leucaena levels and yeast in the total concentrations of VFA. No differences were observed in the concentrations of acetic acid, but the animals fed 50% of Leucaena with yeast showed higher propionic acid concentration (19.14 mM). Methane emissions were reduced by 12.3% in relation to the same diet without yeast and in 17.2% when the animals were fed 20% of Leucaena with yeast. There was a noticeable associative effect of Leucaena when fed in high level (50% DM) and yeast in the reduction of methane emission and better rumen fermentation with possible reduction of energy loss and better energy efficiency for the animals.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008000800025&lng=pt&tlng=pt", + "creation_date": "2022-03-14T08:06:21.640Z", + "last_change_date": "2022-03-14T08:06:21.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11147, + "fields": { + "EF_ID": 424543, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Mature crossbred bulls (Nelore x Gir)", + "Parameter_Conditions": "The experiment was carried out using four crossbred bulls (Nelore x Gir), rumen cannulae and average weight of 814 kg throughout the experiment. The animals were kept in individual stalls with troughs that allowed the evaluation of food consumption.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "50% grass hay, 50% Leucaena and 10 g of yeast", + "Other_Properties": "", + "Value": "51.72", + "Unit": "kg/animal/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Possenti, R.A., Franzolin, R., Schammas, E.A., Demarchi, J.J.A.A., Frighetto, R.T.S., Lima, M.A. 2008. Efeitos de dietas contendo Leucaena leucocephala e Saccharomyces cerevisae sobre a fermentação ruminal e a emissão de gás metano em bovinos. Revista Brasileira de Zootecnia, v. 37, n. 8, p. 1509-1516.", + "English_Abstract": "This research was carried out to evaluate the effect of Leucaena (Leucaena leucocephala) and yeast (Saccharomyces cerevisiae) in diets for bovines on ruminal metabolism, including pH, volatile fatty acids, and ammonia and methane production. Four crossbred male cattle (800 kg LW) rumen cannulated were distributed to a 4 × 4 Latin Square design, in 2 × 2 factorial arrangement, composed by two levels of Leucaena (20% and 50% DM) and coast-cross grass hay, with or without yeast. No differences were observed in rumen pH (mean 6.82) and ammonia concentrations that varied from 18.71 to 21.28 mg/100 mL of ruminal fluid. There was interaction between Leucaena levels and yeast in the total concentrations of VFA. No differences were observed in the concentrations of acetic acid, but the animals fed 50% of Leucaena with yeast showed higher propionic acid concentration (19.14 mM). Methane emissions were reduced by 12.3% in relation to the same diet without yeast and in 17.2% when the animals were fed 20% of Leucaena with yeast. There was a noticeable associative effect of Leucaena when fed in high level (50% DM) and yeast in the reduction of methane emission and better rumen fermentation with possible reduction of energy loss and better energy efficiency for the animals.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982008000800025&lng=pt&tlng=pt", + "creation_date": "2022-03-14T08:06:21.749Z", + "last_change_date": "2022-03-14T08:06:21.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11148, + "fields": { + "EF_ID": 424544, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Nelore steers of 18 months old in the Winter season (dry season)", + "Parameter_Conditions": "Soil characterized as dark red yellow latosol (Oxisol). Tropical climate predominates with a mean annual rainfall of 1367 mm and average annual temperature of 21.7 °C. The experimental plot was represented by an area of 3 ha, composed of three paddocks totalling therefore 16 experimental plots. All experimental plots were equally managed so that seasonal effects should remain homogenous across the 16 plots. Pasture used for the trial consisted of the species Urochloa brizantha (syn. Brachiaria brizantha) cultivar Marandu.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Weight 317.56 kg, average daily gain 335 g, methane conversion rate (Ym) 5.12% GE", + "Value": "102.49", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Demarchi, J.J.A.A., Manella, M.Q., Primavesi, O.M.A.S.P.R., Frighetto, R.T.S., Romero, L.A., Berndt, A., Lima, M.A. 2016. Effect of seasons on enteric methane emissions from cattle grazing Urochloa brizantha. Journal of Agricultural Science, Toronto, v. 8, n. 4, p. 106-115.", + "English_Abstract": "The objective of this study was to evaluate the effect of seasons under a tropical climate on forage quality, as well the effect of an Urochloa brizantha cv. Marandu grazing system on enteric methane (CH₄) emissions from Nellore cattle in the Southeast region of Brazil. Sixteen Nellore steers (18 months old and initial weight 318.0 ± 116.59 kg of LW; final weight 469 ± 98.50 kg of LW) were used for a trial period of 10 months, with four collection periods in winter (August), spring (December), summer (February) and autumn (May). Each collection period consisted of 28 days, corresponding to the representative month of each season where the last six days were designed for methane data collection. Animals were randomly distributed within 16 experimental plots, distributed in four random blocks over four trial periods. CH₄ emissions were determined using the sulphur hexafluoride (SF₆) tracer gas technique measured by gas chromatography and fluxes of CH₄ calculated. The forage quality was characterized by higher CP and IVDMD and lower lignin contents in spring, differing specially from winter forage. Average CH₄ emissions were between 102.49 and 220.91 g d⁻¹ (37.4 to 80.6 kg ani⁻¹ yr⁻¹); 16.89 and 30.20 g kg⁻¹ DMI; 1.35 and 2.90 Mcal ani⁻¹ d⁻¹; 0.18 and 0.57 g kg⁻¹ ADG⁻¹ and 5.05 and 8.76% of GE. Emissions in terms of CO₂ equivalents were between 4.68 and 14.22 g CO₂-eq⁻¹ g⁻¹ ADG. Variations in CH₄ emissions were related to seasonal effect on the forage quality and variations in dry matter intake.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range: 89.4-130.8 g/animal/day (standard deviation: ± 19.13 g CH₄/animal/day)", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1054343/effect-of-seasons-on-enteric-methane-emissions-from-cattle-grazing-urochloa-brizantha", + "creation_date": "2022-03-14T08:06:21.858Z", + "last_change_date": "2022-03-14T08:06:21.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11149, + "fields": { + "EF_ID": 424545, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Nelore steers of 18 months old in the Spring season (wet season)", + "Parameter_Conditions": "Soil characterized as dark red yellow latosol (Oxisol). Tropical climate predominates with a mean annual rainfall of 1367 mm and average annual temperature of 21.7 °C. The experimental plot was represented by an area of 3 ha, composed of three paddocks totalling therefore 16 experimental plots. All experimental plots were equally managed so that seasonal effects should remain homogenous across the 16 plots. Pasture used for the trial consisted of the species Urochloa brizantha (syn. Brachiaria brizantha) cultivar Marandu.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Weight 332.75 kg, average daily gain 213.5 g, methane conversion rate (Ym) 5.05% GE", + "Value": "132.00", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Demarchi, J.J.A.A., Manella, M.Q., Primavesi, O.M.A.S.P.R., Frighetto, R.T.S., Romero, L.A., Berndt, A., Lima, M.A. 2016. Effect of seasons on enteric methane emissions from cattle grazing Urochloa brizantha. Journal of Agricultural Science, Toronto, v. 8, n. 4, p. 106-115.", + "English_Abstract": "The objective of this study was to evaluate the effect of seasons under a tropical climate on forage quality, as well the effect of an Urochloa brizantha cv. Marandu grazing system on enteric methane (CH₄) emissions from Nellore cattle in the Southeast region of Brazil. Sixteen Nellore steers (18 months old and initial weight 318.0 ± 116.59 kg of LW; final weight 469 ± 98.50 kg of LW) were used for a trial period of 10 months, with four collection periods in winter (August), spring (December), summer (February) and autumn (May). Each collection period consisted of 28 days, corresponding to the representative month of each season where the last six days were designed for methane data collection. Animals were randomly distributed within 16 experimental plots, distributed in four random blocks over four trial periods. CH₄ emissions were determined using the sulphur hexafluoride (SF₆) tracer gas technique measured by gas chromatography and fluxes of CH₄ calculated. The forage quality was characterized by higher CP and IVDMD and lower lignin contents in spring, differing specially from winter forage. Average CH₄ emissions were between 102.49 and 220.91 g d⁻¹ (37.4 to 80.6 kg ani⁻¹ yr⁻¹); 16.89 and 30.20 g kg⁻¹ DMI; 1.35 and 2.90 Mcal ani⁻¹ d⁻¹; 0.18 and 0.57 g kg⁻¹ ADG⁻¹ and 5.05 and 8.76% of GE. Emissions in terms of CO₂ equivalents were between 4.68 and 14.22 g CO₂-eq⁻¹ g⁻¹ ADG. Variations in CH₄ emissions were related to seasonal effect on the forage quality and variations in dry matter intake.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range: 94.0-191.6 g/animal/day (standard deviation: ± 42.13 g CH₄/animal/day)", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1054343/effect-of-seasons-on-enteric-methane-emissions-from-cattle-grazing-urochloa-brizantha", + "creation_date": "2022-03-14T08:06:21.968Z", + "last_change_date": "2022-03-14T08:06:21.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11150, + "fields": { + "EF_ID": 424546, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Nelore steers of 18 months old in the Summer season (wet season)", + "Parameter_Conditions": "Soil characterized as dark red yellow latosol (Oxisol). Tropical climate predominates with a mean annual rainfall of 1367 mm and average annual temperature of 21.7 °C. The experimental plot was represented by an area of 3 ha, composed of three paddocks totalling therefore 16 experimental plots. All experimental plots were equally managed so that seasonal effects should remain homogenous across the 16 plots. Pasture used for the trial consisted of the species Urochloa brizantha (syn. Brachiaria brizantha) cultivar Marandu.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Weight 410.75 kg, average daily gain 1258.1 g, methane conversion rate (Ym) 8.76% GE", + "Value": "220.91", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Demarchi, J.J.A.A., Manella, M.Q., Primavesi, O.M.A.S.P.R., Frighetto, R.T.S., Romero, L.A., Berndt, A., Lima, M.A. 2016. Effect of seasons on enteric methane emissions from cattle grazing Urochloa brizantha. Journal of Agricultural Science, Toronto, v. 8, n. 4, p. 106-115.", + "English_Abstract": "The objective of this study was to evaluate the effect of seasons under a tropical climate on forage quality, as well the effect of an Urochloa brizantha cv. Marandu grazing system on enteric methane (CH₄) emissions from Nellore cattle in the Southeast region of Brazil. Sixteen Nellore steers (18 months old and initial weight 318.0 ± 116.59 kg of LW; final weight 469 ± 98.50 kg of LW) were used for a trial period of 10 months, with four collection periods in winter (August), spring (December), summer (February) and autumn (May). Each collection period consisted of 28 days, corresponding to the representative month of each season where the last six days were designed for methane data collection. Animals were randomly distributed within 16 experimental plots, distributed in four random blocks over four trial periods. CH₄ emissions were determined using the sulphur hexafluoride (SF₆) tracer gas technique measured by gas chromatography and fluxes of CH₄ calculated. The forage quality was characterized by higher CP and IVDMD and lower lignin contents in spring, differing specially from winter forage. Average CH₄ emissions were between 102.49 and 220.91 g d⁻¹ (37.4 to 80.6 kg ani⁻¹ yr⁻¹); 16.89 and 30.20 g kg⁻¹ DMI; 1.35 and 2.90 Mcal ani⁻¹ d⁻¹; 0.18 and 0.57 g kg⁻¹ ADG⁻¹ and 5.05 and 8.76% of GE. Emissions in terms of CO₂ equivalents were between 4.68 and 14.22 g CO₂-eq⁻¹ g⁻¹ ADG. Variations in CH₄ emissions were related to seasonal effect on the forage quality and variations in dry matter intake.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range:162.3-274.0 g/animal/day (standard deviation: ± 52.25 g CH₄/animal/day)", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1054343/effect-of-seasons-on-enteric-methane-emissions-from-cattle-grazing-urochloa-brizantha", + "creation_date": "2022-03-14T08:06:22.076Z", + "last_change_date": "2022-03-14T08:06:22.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11151, + "fields": { + "EF_ID": 424547, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Nelore steers of 18 months old in the Autumn season (dry season)", + "Parameter_Conditions": "Soil characterized as dark red yellow latosol (Oxisol). Tropical climate predominates with a mean annual rainfall of 1367 mm and average annual temperature of 21.7 °C. The experimental plot was represented by an area of 3 ha, composed of three paddocks totalling therefore 16 experimental plots. All experimental plots were equally managed so that seasonal effects should remain homogenous across the 16 plots. Pasture used for the trial consisted of the species Urochloa brizantha (syn. Brachiaria brizantha) cultivar Marandu.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "", + "Other_Properties": "Weight 448 kg, average daily gain 497.2 g, methane conversion rate (Ym) 6.18% GE", + "Value": "159.98", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Demarchi, J.J.A.A., Manella, M.Q., Primavesi, O., Frighetto, R.T.S., Romero, L.A., Berndt, A., Lima, M.A. 2016. Effect of seasons on enteric methane emissions from cattle grazing Urochloa brizantha. Journal of Agricultural Science, Toronto, v. 8, n. 4, p. 106-115.", + "English_Abstract": "The objective of this study was to evaluate the effect of seasons under a tropical climate on forage quality, as well the effect of an Urochloa brizantha cv. Marandu grazing system on enteric methane (CH₄) emissions from Nellore cattle in the Southeast region of Brazil. Sixteen Nellore steers (18 months old and initial weight 318.0 ± 116.59 kg of LW; final weight 469 ± 98.50 kg of LW) were used for a trial period of 10 months, with four collection periods in winter (August), spring (December), summer (February) and autumn (May). Each collection period consisted of 28 days, corresponding to the representative month of each season where the last six days were designed for methane data collection. Animals were randomly distributed within 16 experimental plots, distributed in four random blocks over four trial periods. CH₄ emissions were determined using the sulphur hexafluoride (SF₆) tracer gas technique measured by gas chromatography and fluxes of CH₄ calculated. The forage quality was characterized by higher CP and IVDMD and lower lignin contents in spring, differing specially from winter forage. Average CH₄ emissions were between 102.49 and 220.91 g d⁻¹ (37.4 to 80.6 kg ani⁻¹ yr⁻¹); 16.89 and 30.20 g kg⁻¹ DMI; 1.35 and 2.90 Mcal ani⁻¹ d⁻¹; 0.18 and 0.57 g kg⁻¹ ADG⁻¹ and 5.05 and 8.76% of GE. Emissions in terms of CO₂ equivalents were between 4.68 and 14.22 g CO₂-eq⁻¹ g⁻¹ ADG. Variations in CH₄ emissions were related to seasonal effect on the forage quality and variations in dry matter intake.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range: 141.0-215.1 g/animal/day (standard deviation: ± 32.08 g CH₄/animal/day)", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/1054343/effect-of-seasons-on-enteric-methane-emissions-from-cattle-grazing-urochloa-brizantha", + "creation_date": "2022-03-14T08:06:22.177Z", + "last_change_date": "2022-03-14T08:06:22.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11152, + "fields": { + "EF_ID": 424548, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Castrated male Nelore beef cattle, in feedlot", + "Parameter_Conditions": "The treatments were Brachiaria brizantha hay cut with 15, 45 and 90 days of maturation. The experimental period consisted of three sub-periods of 20 days each, which were divided into seven days of adaptation, five of feces collection, seven of methane collection and one of ruminal fluid collection. The animals were weighed at the end of each sub-period in the morning. The total duration of the experiment was 60 days.This EF refers to 15 days of maturation of Brachiaria.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "Diet of Brachiaria brizantha at three development stages (15 days)", + "Other_Properties": "Initial LW 402 ± 51.62 kg", + "Value": "49", + "Unit": "kg/animal/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Primavesi, O., Berndt, A., Lima, M.A., Frighetto, R.T.S., Demarchi, J.J.A.A., Pedreira, M.S., Berchielli, T.T., Oliveira, S. G. de. 2014. Greenhouse gas production in agricultural systems: Groundwork for an inventory of methane emissions by ruminants. In: Boddey, R.M. et al. (Ed.). Carbon stocks and greenhouse gas emissions in Brazilian agriculture. Brasília, DF: Embrapa. Chapter 8 (epub).", + "English_Abstract": "In order to meet the national demand for presentation of greenhouse gas emission inventories to the United Nations Framework Convention on Climate Change (UNFCCC), this project determined ruminal methane (CH₄) emission factors for some categories representing Brazilian cattle herds under tropical climate. The experiments were carried out with Holstein and crossbred zebu dairy cows, and Nelore beef cattle on experimental areas located in the Southeastern region of Brazil. The method of sulfur hexafluoride (SF₆), known as the SF₆ tracer method, was adapted and validated to determine ruminal methane in an open environment. It was found that the variables determining emission factors were feed composition and consumption, as well as the specific characteristics of the various animal categories (beef and dairy cattle). Based on experiments assessing methane emission rates under conditions of adequate nutritional levels and balanced diets, polynomial regression equations were developed for categories of beef and dairy cattle, allowing for determination of factors of methane emissions from enteric fermentation specific to the local conditions studied. Mitigation strategies are presented and research gaps are indicated.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "", + "creation_date": "2022-03-14T08:06:22.277Z", + "last_change_date": "2022-03-14T08:06:22.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11153, + "fields": { + "EF_ID": 424549, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Castrated male Nelore beef cattle, in feedlot", + "Parameter_Conditions": "The treatments were Brachiaria brizantha hay cut with 15, 45 and 90 days of maturation. The experimental period consisted of three sub-periods of 20 days each, which were divided into seven days of adaptation, five of feces collection, seven of methane collection and one of ruminal fluid collection. The animals were weighed at the end of each sub-period in the morning. The total duration of the experiment was 60 days.This EF refers to 45 days of maturation of Brachiaria.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "Diet of Brachiaria brizantha at three development stages (45 days)", + "Other_Properties": "Initial LW 402 ± 51.62 kg", + "Value": "49", + "Unit": "kg/animal/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Primavesi, O., Berndt, A., Lima, M.A., Frighetto, R.T.S., Demarchi, J.J.A.A., Pedreira, M.S., Berchielli, T.T., Oliveira, S. G. de. 2014. Greenhouse gas production in agricultural systems: Groundwork for an inventory of methane emissions by ruminants. In: Boddey, R. M. et al. (Ed.). Carbon stocks and greenhouse gas emissions in Brazilian agriculture. Brasília, DF: Embrapa. Chapter 8 (epub).", + "English_Abstract": "In order to meet the national demand for presentation of greenhouse gas emission inventories to the United Nations Framework Convention on Climate Change (UNFCCC), this project determined ruminal methane (CH₄) emission factors for some categories representing Brazilian cattle herds under tropical climate. The experiments were carried out with Holstein and crossbred zebu dairy cows, and Nelore beef cattle on experimental areas located in the Southeastern region of Brazil. The method of sulfur hexafluoride (SF₆), known as the SF₆ tracer method, was adapted and validated to determine ruminal methane in an open environment. It was found that the variables determining emission factors were feed composition and consumption, as well as the specific characteristics of the various animal categories (beef and dairy cattle). Based on experiments assessing methane emission rates under conditions of adequate nutritional levels and balanced diets, polynomial regression equations were developed for categories of beef and dairy cattle, allowing for determination of factors of methane emissions from enteric fermentation specific to the local conditions studied. Mitigation strategies are presented and research gaps are indicated.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "", + "creation_date": "2022-03-14T08:06:22.378Z", + "last_change_date": "2022-03-14T08:06:22.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11154, + "fields": { + "EF_ID": 424550, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Castrated male Nelore beef cattle, in feedlot", + "Parameter_Conditions": "The treatments were Brachiaria brizantha hay cut with 15, 45 and 90 days of maturation. The experimental period consisted of three sub-periods of 20 days each, which were divided into seven days of adaptation, five of feces collection, seven of methane collection and one of ruminal fluid collection. The animals were weighed at the end of each sub-period in the morning. The total duration of the experiment was 60 days.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "Diet of Brachiaria brizantha at three development stages", + "Other_Properties": "Initial LW 402 ± 51.62 kg", + "Value": "50", + "Unit": "kg/animal/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Primavesi, O., Berndt, A., Lima, M.A., Frighetto, R.T.S., Demarchi, J.J.A.A., Pedreira, M.S., Berchielli, T.T., Oliveira, S. G. de. 2014. Greenhouse gas production in agricultural systems: Groundwork for an inventory of methane emissions by ruminants. In: Boddey, R. M. et al. (Ed.). Carbon stocks and greenhouse gas emissions in Brazilian agriculture. Brasília, DF: Embrapa. Chapter 8 (epub).", + "English_Abstract": "In order to meet the national demand for presentation of greenhouse gas emission inventories to the United Nations Framework Convention on Climate Change (UNFCCC), this project determined ruminal methane (CH₄) emission factors for some categories representing Brazilian cattle herds under tropical climate. The experiments were carried out with Holstein and crossbred zebu dairy cows, and Nelore beef cattle on experimental areas located in the Southeastern region of Brazil. The method of sulfur hexafluoride (SF₆), known as the SF₆ tracer method, was adapted and validated to determine ruminal methane in an open environment. It was found that the variables determining emission factors were feed composition and consumption, as well as the specific characteristics of the various animal categories (beef and dairy cattle). Based on experiments assessing methane emission rates under conditions of adequate nutritional levels and balanced diets, polynomial regression equations were developed for categories of beef and dairy cattle, allowing for determination of factors of methane emissions from enteric fermentation specific to the local conditions studied. Mitigation strategies are presented and research gaps are indicated.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "", + "creation_date": "2022-03-14T08:06:22.478Z", + "last_change_date": "2022-03-14T08:06:22.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11155, + "fields": { + "EF_ID": 424551, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Nelore steers in confinement", + "Parameter_Conditions": "The steers were cannulated in the rumen and proximal duodenum using standard surgical procedures approved by the University Animal Care and Use Committee. The experiment was comprised of four periods of 17 days; animals were under 10-day adaptation period after the diet was changed and the following 7 days were used for data sampling. Sorghum silages with lower (1F305) tannin levels were used as roughages. Whole sorghum plant was harvested at 340 g/kg DM and chopped by a conventional forage harvester to a theoretical cut length of 0.95 cm. Diets were formulated according to AFRC (1995) in order to fulfill requirements for microbial growth.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "Diet of lower-tannin sorghum silage, supplemented with urea", + "Other_Properties": "Initial body weight of 215 kg", + "Value": "49.52", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Oliveira, S. G., Berchielli, T. T., Pedreira, M. S., Primavesi, O., Frighetto, R., Lima, M. A. 2007. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Animal Feed Science and Technology, Amsterdam, NL, v. 135, n. 3-4, p. 236-248.", + "English_Abstract": "This study evaluated the effect of diets containing sorghum silages with higher (HT) and lower-tannin (LT) concentrations supplemented with concentrate or urea on intake, digestibility, ruminal digestibility, methane emission and rumen parameters in beef cattle. Four treatments were distributed according to a 2×2 factorial arrangement in a duplicate 4×4 Latin square: LT sorghum silage + urea, LT sorghum silage + concentrate, HT sorghum silage + urea, and HT sorghum silage + concentrate. Total digestibility of the organic matter was higher when concentrate was included in the diet (0.749 and 0.753 in the LT and HT treatments, respectively). It was observed lower ruminal apparent digested matter of neutral detergent fiber in HT diets. There was no effect of tannin levels on digestibility and methane emission. The supplementation with concentrate in the LT diet decreased gas losses as a function of gross energy intake in comparison to the supplementation of the diet with urea. These results suggest the potential of concentrate supplementation to minimize energy loss as methane emission by ruminants and increase the efficiency of energy utilization.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "https://www.sciencedirect.com/science/article/pii/S0377840106003014", + "creation_date": "2022-03-14T08:06:22.579Z", + "last_change_date": "2022-03-14T08:06:22.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11156, + "fields": { + "EF_ID": 424552, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Nelore steers in confinement", + "Parameter_Conditions": "The steers were cannulated in the rumen and proximal duodenum using standard surgical procedures approved by the University Animal Care and Use Committee. The experiment was comprised of four periods of 17 days; animals were under 10-day adaptation period after the diet was changed and the following 7 days were used for data sampling. Sorghum silages with lower (1F305) tannin levels were used as roughages. Whole sorghum plant was harvested at 340 g/kg DM and chopped by a conventional forage harvester to a theoretical cut length of 0.95 cm. Diets were formulated according to AFRC (1995) in order to fulfill requirements for microbial growth.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "Diet of lower-tannin sorghum silage, supplemented with concentrate", + "Other_Properties": "Initial body weight of 215 kg", + "Value": "66.63", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Oliveira, S. G., Berchielli, T. T., Pedreira, M. S., Primavesi, O., Frighetto, R., Lima, M. A. 2007. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Animal Feed Science and Technology, Amsterdam, NL, v. 135, n. 3-4, p. 236-248.", + "English_Abstract": "This study evaluated the effect of diets containing sorghum silages with higher (HT) and lower-tannin (LT) concentrations supplemented with concentrate or urea on intake, digestibility, ruminal digestibility, methane emission and rumen parameters in beef cattle. Four treatments were distributed according to a 2×2 factorial arrangement in a duplicate 4×4 Latin square: LT sorghum silage + urea, LT sorghum silage + concentrate, HT sorghum silage + urea, and HT sorghum silage + concentrate. Total digestibility of the organic matter was higher when concentrate was included in the diet (0.749 and 0.753 in the LT and HT treatments, respectively). It was observed lower ruminal apparent digested matter of neutral detergent fiber in HT diets. There was no effect of tannin levels on digestibility and methane emission. The supplementation with concentrate in the LT diet decreased gas losses as a function of gross energy intake in comparison to the supplementation of the diet with urea. These results suggest the potential of concentrate supplementation to minimize energy loss as methane emission by ruminants and increase the efficiency of energy utilization.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "https://www.sciencedirect.com/science/article/pii/S0377840106003014", + "creation_date": "2022-03-14T08:06:22.681Z", + "last_change_date": "2022-03-14T08:06:22.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11157, + "fields": { + "EF_ID": 424553, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Nelore steers in confinement", + "Parameter_Conditions": "The steers were cannulated in the rumen and proximal duodenum using standard surgical procedures approved by the University Animal Care and Use Committee. The experiment was comprised of four periods of 17 days; animals were under 10-day adaptation period after the diet was changed and the following 7 days were used for data sampling. Sorghum silages with higher (BR 700) tannin levels were used as roughages. Whole sorghum plant was harvested at 340 g/kg DM and chopped by a conventional forage harvester to a theoretical cut length of 0.95 cm. Diets were formulated according to AFRC (1995) in order to fulfill requirements for microbial growth.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "Diet of higher-tannin sorghum silage, supplemented with urea", + "Other_Properties": "Initial body weight of 215 kg", + "Value": "49.27", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Oliveira, S. G., Berchielli, T. T., Pedreira, M. S., Primavesi, O., Frighetto, R., Lima, M. A. 2007. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Animal Feed Science and Technology, Amsterdam, NL, v. 135, n. 3-4, p. 236-248.", + "English_Abstract": "This study evaluated the effect of diets containing sorghum silages with higher (HT) and lower-tannin (LT) concentrations supplemented with concentrate or urea on intake, digestibility, ruminal digestibility, methane emission and rumen parameters in beef cattle. Four treatments were distributed according to a 2×2 factorial arrangement in a duplicate 4×4 Latin square: LT sorghum silage + urea, LT sorghum silage + concentrate, HT sorghum silage + urea, and HT sorghum silage + concentrate. Total digestibility of the organic matter was higher when concentrate was included in the diet (0.749 and 0.753 in the LT and HT treatments, respectively). It was observed lower ruminal apparent digested matter of neutral detergent fiber in HT diets. There was no effect of tannin levels on digestibility and methane emission. The supplementation with concentrate in the LT diet decreased gas losses as a function of gross energy intake in comparison to the supplementation of the diet with urea. These results suggest the potential of concentrate supplementation to minimize energy loss as methane emission by ruminants and increase the efficiency of energy utilization.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "https://www.sciencedirect.com/science/article/pii/S0377840106003014", + "creation_date": "2022-03-14T08:06:22.798Z", + "last_change_date": "2022-03-14T08:06:22.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11158, + "fields": { + "EF_ID": 424554, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Nelore steers in confinement", + "Parameter_Conditions": "The steers were cannulated in the rumen and proximal duodenum using standard surgical procedures approved by the University Animal Care and Use Committee. The experiment was comprised of four periods of 17 days; animals were under 10-day adaptation period after the diet was changed and the following 7 days were used for data sampling. Sorghum silages with lower (1F305) tannin levels were used as roughages. Whole sorghum plant was harvested at 340 g/kg DM and chopped by a conventional forage harvester to a theoretical cut length of 0.95 cm. Diets were formulated according to AFRC (1995) in order to fulfill requirements for microbial growth.", + "Regional_Conditions": "Brazil (BRA), São Paulo state", + "Control_Technologies": "Diet of higher-tannin sorghum silage, supplemented with concentrate", + "Other_Properties": "Initial body weight of 215 kg", + "Value": "70.44", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Oliveira, S. G.; Berchielli, T. T.; Pedreira, M. S.; Primavesi, O.; Frighetto, R.; Lima, M. A. 2007. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Animal Feed Science and Technology, Amsterdam, NL, v. 135, n. 3-4, p. 236-248.", + "English_Abstract": "This study evaluated the effect of diets containing sorghum silages with higher (HT) and lower-tannin (LT) concentrations supplemented with concentrate or urea on intake, digestibility, ruminal digestibility, methane emission and rumen parameters in beef cattle. Four treatments were distributed according to a 2×2 factorial arrangement in a duplicate 4×4 Latin square: LT sorghum silage + urea, LT sorghum silage + concentrate, HT sorghum silage + urea, and HT sorghum silage + concentrate. Total digestibility of the organic matter was higher when concentrate was included in the diet (0.749 and 0.753 in the LT and HT treatments, respectively). It was observed lower ruminal apparent digested matter of neutral detergent fiber in HT diets. There was no effect of tannin levels on digestibility and methane emission. The supplementation with concentrate in the LT diet decreased gas losses as a function of gross energy intake in comparison to the supplementation of the diet with urea. These results suggest the potential of concentrate supplementation to minimize energy loss as methane emission by ruminants and increase the efficiency of energy utilization.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "https://www.sciencedirect.com/science/article/pii/S0377840106003014", + "creation_date": "2022-03-14T08:06:22.924Z", + "last_change_date": "2022-03-14T08:06:22.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11159, + "fields": { + "EF_ID": 424555, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Beef cattle in confinement", + "Parameter_Conditions": "Nine cannulated crossbred steers fitted with a permanent ruminal fistula and duodenal Y-cannula, with a surgical recovery time of two years were used. The experiment comprised three periods of 15 days. The first ten days were used for animal adaptation to diets, and the last five days for the ruminal gas collection, using an experimental protocol adapted from Fu et al. (2001). Diets were composed of different roughage/grain concentrate ratios. The hybrid sorghum variety used was sorghum BR 700, produced by EMBRAPA (Sete Lagoas, MG, Brazil).", + "Regional_Conditions": "Brazil (BRA), São Paulo state. Tropical climate AW.", + "Control_Technologies": "Diet of higher-tannin sorghum sillage and 0% of concentrate (dry matter intake: 5.5 kg/day)", + "Other_Properties": "LW 444±30 kg; Methane energy loss 6.9% GEI", + "Value": "125.2", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M. dos S., Oliveira, S. G. de, Primavesi, O. M. A. S. P. R., Lima, M. A. de,  Frighetto, R. T. S.,  Berchielli, T. T. 2013. Methane emissions and estimates of ruminal fermentation parameters in beef cattle fed different dietary concentrate levels. Revista Brasileira de Zootecnia, Brasília, v. 42, n. 1 , p. 592-598.   ", + "English_Abstract": "Using sorghum silage, the effect of roughage/concentrate ratios was evaluated on nutrient intake, digestibility, ruminal parameters and methane production by beef cattle. Three treatments (0, 30 and 60% of concentrate in DM of the diet) were distributed in three Latin squares, with nine animals and three periods. Dry matter intake increased as the grain concentration in diet increased; pH showed opposite behavior. Methane emissions were lower for animals fed the diet exclusively with sorghum silage as compared with those fed 30% of concentrate, but was similar to that of animals receiving 60% of concentrate. Losses of ingested gross energy as methane were reduced by 33% when grain concentration was increased in the diet. Concentrations of propionic and butyric acids were greater in diets with grain concentrate; acetic acid concentration was not affected. Concentrate in diet increases available energy for the metabolism, measured by lower losses of ingested gross energy as ruminal methane.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982013000800009", + "creation_date": "2022-03-14T08:06:23.041Z", + "last_change_date": "2022-03-14T08:06:23.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11160, + "fields": { + "EF_ID": 424556, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Beef cattle in confinement", + "Parameter_Conditions": "Nine cannulated crossbred steers fitted with a permanent ruminal fistula and duodenal Y-cannula, with a surgical recovery time of two years were used. The experiment comprised three periods of 15 days. The first ten days were used for animal adaptation to diets, and the last five days for the ruminal gas collection, using an experimental protocol adapted from Fu et al. (2001). Diets were composed of different roughage/grain concentrate ratios. The hybrid sorghum variety used was sorghum BR 700, produced by EMBRAPA (Sete Lagoas, MG, Brazil).", + "Regional_Conditions": "Brazil (BRA), São Paulo state. Tropical climate AW.", + "Control_Technologies": "Diet of sorghum sillage and 30% of concentrate (dry matter intake: 7.9 kg/day)", + "Other_Properties": "LW 444±30 kg; Methane energy loss 5.6% GEI", + "Value": "149.9", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M. dos S., Oliveira, S. G. de, Primavesi, O. M. A. S. P. R., Lima, M. A. de,  Frighetto, R. T. S.,  Berchielli, T. T. 2013. Methane emissions and estimates of ruminal fermentation parameters in beef cattle fed different dietary concentrate levels. Revista Brasileira de Zootecnia, Brasília, v. 42, n. 1 , p. 592-598.   ", + "English_Abstract": "Using sorghum silage, the effect of roughage/concentrate ratios was evaluated on nutrient intake, digestibility, ruminal parameters and methane production by beef cattle. Three treatments (0, 30 and 60% of concentrate in DM of the diet) were distributed in three Latin squares, with nine animals and three periods. Dry matter intake increased as the grain concentration in diet increased; pH showed opposite behavior. Methane emissions were lower for animals fed the diet exclusively with sorghum silage as compared with those fed 30% of concentrate, but was similar to that of animals receiving 60% of concentrate. Losses of ingested gross energy as methane were reduced by 33% when grain concentration was increased in the diet. Concentrations of propionic and butyric acids were greater in diets with grain concentrate; acetic acid concentration was not affected. Concentrate in diet increases available energy for the metabolism, measured by lower losses of ingested gross energy as ruminal methane.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982013000800009", + "creation_date": "2022-03-14T08:06:23.150Z", + "last_change_date": "2022-03-14T08:06:23.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11161, + "fields": { + "EF_ID": 424557, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for non-dairy cattle enteric fermentation", + "Technology_Practices": "Beef cattle in confinement", + "Parameter_Conditions": "Nine cannulated crossbred steers fitted with a permanent ruminal fistula and duodenal Y-cannula, with a surgical recovery time of two years were used. The experiment comprised three periods of 15 days. The first ten days were used for animal adaptation to diets, and the last five days for the ruminal gas collection, using an experimental protocol adapted from Fu et al. (2001). Diets were composed of different roughage/grain concentrate ratios. The hybrid sorghum variety used was sorghum BR 700, produced by EMBRAPA (Sete Lagoas, MG, Brazil).", + "Regional_Conditions": "Brazil (BRA), São Paulo state. Tropical climate AW.", + "Control_Technologies": "Diet of sorghum sillage and 60% of concentrate (dry matter intake: 8.7 kg/day)", + "Other_Properties": "LW 444±30 kg; Methane energy loss 4.6% GEI", + "Value": "140.4", + "Unit": "g/animal/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pedreira, M. dos S., Oliveira, S. G. de, Primavesi, O. M. A. S. P. R., Lima, M. A. de,  Frighetto, R. T. S.,  Berchielli, T. T. 2013. Methane emissions and estimates of ruminal fermentation parameters in beef cattle fed different dietary concentrate levels. Revista Brasileira de Zootecnia, Brasília, v. 42, n. 1 , p. 592-598.   ", + "English_Abstract": "Using sorghum silage, the effect of roughage/concentrate ratios was evaluated on nutrient intake, digestibility, ruminal parameters and methane production by beef cattle. Three treatments (0, 30 and 60% of concentrate in DM of the diet) were distributed in three Latin squares, with nine animals and three periods. Dry matter intake increased as the grain concentration in diet increased; pH showed opposite behavior. Methane emissions were lower for animals fed the diet exclusively with sorghum silage as compared with those fed 30% of concentrate, but was similar to that of animals receiving 60% of concentrate. Losses of ingested gross energy as methane were reduced by 33% when grain concentration was increased in the diet. Concentrations of propionic and butyric acids were greater in diets with grain concentrate; acetic acid concentration was not affected. Concentrate in diet increases available energy for the metabolism, measured by lower losses of ingested gross energy as ruminal methane.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Magda Aparecida de Lima", + "Link": "http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-35982013000800009", + "creation_date": "2022-03-14T08:06:23.259Z", + "last_change_date": "2022-03-14T08:06:23.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11162, + "fields": { + "EF_ID": 424897, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Annual N₂O emission factor for dung N deposited by grazing cattle in tropics", + "Technology_Practices": "Fresh dung and manure were collected at the ILRI farm from a cattle herd that was grazed on pasture dominated by a mixture of Kikuyu grass and Rhodes grass during the day and then housed in single-animal pens at night, where they had access to hay from Kikuyu and Rhodes grass. Excreta were collected from the concrete floors of each pen in the mornings, after the animals had been taken outside for grazing", + "Parameter_Conditions": "Soil properties: (i) poorly-drained Gleysols, (ii) well-drained Nitisols, (iii) well-drained Acrisols, (iv) well-drained Cambisols, and (v) well-drained Ferralsols", + "Regional_Conditions": "Sub-Saharan Africa, Nandi County, Western Kenya", + "Control_Technologies": "", + "Other_Properties": "Fresh urine was collected from three steers, each fitted with collection harnesses", + "Value": "0.06", + "Unit": "%", + "Equation": "Eq. 11.1 (Vol 4, Ch. 11, section 11.2.1.1)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D.E., Diaz-Pines, E., Abwanda, S., Mutuo, P.M., Butterbach-Bahl, K. (2020) Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry 140.", + "English_Abstract": "Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N₂O). While a number of studies have investigated the effects of excreta on soil N₂O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N₂O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N₂O and carbon dioxide (CO₂) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N₂O and CO₂ fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO₂ and N₂O fluxes during both dry and wet seasons. On average, the N₂O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N₂O and CO₂ emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N₂O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N₂O EF of 0.14%, which is one magnitude lower than the IPCC default N₂O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N₂O emissions from excreta deposition on tropical rangelands.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values disaggregated by soil types and seasons are not provided due to limitations in the procedure used to calculate N₂O emissions fluxes from N₂O concentrations.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu, Klaus Butterbach-Bahl, Lutz Merbold, Sonja Leitner, David E. Pelster et al.,", + "Link": "https://doi.org/10.1016/j.soilbio.2019.107636", + "creation_date": "2022-03-14T08:06:23.367Z", + "last_change_date": "2022-03-14T08:06:23.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11163, + "fields": { + "EF_ID": 424898, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N₂O emission factor for manure (dung+urine) N deposited by grazing cattle in tropics, wet season", + "Technology_Practices": "Fresh dung and manure were collected at the ILRI farm from a cattle herd that was grazed on pasture dominated by a mixture of Kikuyu grass and Rhodes grass during the day and then housed in single-animal pens at night, where they had access to hay from Kikuyu and Rhodes grass. Excreta were collected from the concrete floors of each pen in the mornings, after the animals had been taken outside for grazing", + "Parameter_Conditions": "Soil properties: (i) poorly-drained Gleysols, (ii) well-drained Nitisols, (iii) well-drained Acrisols, (iv) well-drained Cambisols, and (v) well-drained Ferralsols", + "Regional_Conditions": "Sub-Saharan Africa, Nandi County, Western Kenya", + "Control_Technologies": "", + "Other_Properties": "Fresh urine was collected from three steers, each fitted with collection harnesses", + "Value": "0.23", + "Unit": "%", + "Equation": "Eq. 11.1 (Vol 4, Ch. 11, section 11.2.1.1)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D.E., Diaz-Pines, E., Abwanda, S., Mutuo, P.M., Butterbach-Bahl, K. (2020) Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry 140.", + "English_Abstract": "Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N₂O). While a number of studies have investigated the effects of excreta on soil N₂O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N₂O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N₂O and carbon dioxide (CO₂) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N₂O and CO₂ fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO₂ and N₂O fluxes during both dry and wet seasons. On average, the N₂O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N₂O and CO₂ emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N₂O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N₂O EF of 0.14%, which is one magnitude lower than the IPCC default N₂O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N₂O emissions from excreta deposition on tropical rangelands.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values disaggregated by soil types are not provided due to limitations in the procedure used to calculate N₂O emissions fluxes from N₂O concentrations.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu, Klaus Butterbach-Bahl, Lutz Merbold, Sonja Leitner, David E. Pelster et al.,", + "Link": "https://doi.org/10.1016/j.soilbio.2019.107636", + "creation_date": "2022-03-14T08:06:23.476Z", + "last_change_date": "2022-03-14T08:06:23.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11164, + "fields": { + "EF_ID": 424899, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Annual N₂O emission factor for N excreta (dung+urine) deposited by grazing cattle in tropics using dung to urine ratio 66:34", + "Technology_Practices": "Fresh dung and manure were collected at the ILRI farm from a cattle herd that was grazed on pasture dominated by a mixture of Kikuyu grass and Rhodes grass during the day and then housed in single-animal pens at night, where they had access to hay from Kikuyu and Rhodes grass. Excreta were collected from the concrete floors of each pen in the mornings, after the animals had been taken outside for grazing", + "Parameter_Conditions": "Soil properties: (i) poorly-drained Gleysols, (ii) well-drained Nitisols, (iii) well-drained Acrisols, (iv) well-drained Cambisols, and (v) well-drained Ferralsols", + "Regional_Conditions": "Sub-Saharan Africa, Nandi County, Western Kenya", + "Control_Technologies": "", + "Other_Properties": "Fresh urine was collected from three steers, each fitted with collection harnesses", + "Value": "0.14", + "Unit": "%", + "Equation": "Eq. 11.1 (Vol 4, Ch. 11, section 11.2.1.1)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D.E., Diaz-Pines, E., Abwanda, S., Mutuo, P.M., Butterbach-Bahl, K. (2020) Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry 140.", + "English_Abstract": "Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N₂O). While a number of studies have investigated the effects of excreta on soil N₂O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N₂O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N₂O and carbon dioxide (CO₂) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N₂O and CO₂ fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO₂ and N₂O fluxes during both dry and wet seasons. On average, the N₂O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N₂O and CO₂ emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N₂O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N₂O EF of 0.14%, which is one magnitude lower than the IPCC default N₂O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N₂O emissions from excreta deposition on tropical rangelands.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values disaggregated by soil types and seasons are not provided due to limitations in the procedure used to derive N₂O emissions fluxes from low N₂O concentrations.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu, Klaus Butterbach-Bahl, Lutz Merbold, Sonja Leitner, David E. Pelster et al.,", + "Link": "https://doi.org/10.1016/j.soilbio.2019.107636", + "creation_date": "2022-03-14T08:06:23.577Z", + "last_change_date": "2022-03-14T08:06:23.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11165, + "fields": { + "EF_ID": 424900, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Range of N₂O emission factors for urine N deposited by grazing cattle on Gleysols in tropics", + "Technology_Practices": "Fresh dung and manure were collected at the ILRI farm from a cattle herd that was grazed on pasture dominated by a mixture of Kikuyu grass and Rhodes grass during the day and then housed in single-animal pens at night, where they had access to hay from Kikuyu and Rhodes grass. Excreta were collected from the concrete floors of each pen in the mornings, after the animals had been taken outside for grazing", + "Parameter_Conditions": "Soil properties: poorly-drained Gleysols", + "Regional_Conditions": "Sub-Saharan Africa, Nandi County, Western Kenya", + "Control_Technologies": "", + "Other_Properties": "Fresh urine was collected from three steers, each fitted with collection harnesses", + "Value": "0.01-0.22", + "Unit": "%", + "Equation": "Eq. 11.1 (Vol 4, Ch. 11, section 11.2.1.1)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D.E., Diaz-Pines, E., Abwanda, S., Mutuo, P.M., Butterbach-Bahl, K. (2020) Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry 140.", + "English_Abstract": "Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N₂O). While a number of studies have investigated the effects of excreta on soil N₂O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N₂O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N₂O and carbon dioxide (CO₂) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N₂O and CO₂ fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO₂ and N₂O fluxes during both dry and wet seasons. On average, the N₂O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N₂O and CO₂ emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N₂O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N₂O EF of 0.14%, which is one magnitude lower than the IPCC default N₂O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N₂O emissions from excreta deposition on tropical rangelands.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EFs are expressed as a range due to limitations in the procedure used to calculate N₂O emissions fluxes from N₂O concentrations.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu, Klaus Butterbach-Bahl, Lutz Merbold, Sonja Leitner, David E. Pelster et al.,", + "Link": "https://doi.org/10.1016/j.soilbio.2019.107636", + "creation_date": "2022-03-14T08:06:23.677Z", + "last_change_date": "2022-03-14T08:06:23.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11166, + "fields": { + "EF_ID": 424901, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Range of N₂O emission factors for urine N deposited by grazing cattle on Nitisols in tropics", + "Technology_Practices": "Fresh dung and manure were collected at the ILRI farm from a cattle herd that was grazed on pasture dominated by a mixture of Kikuyu grass and Rhodes grass during the day and then housed in single-animal pens at night, where they had access to hay from Kikuyu and Rhodes grass. Excreta were collected from the concrete floors of each pen in the mornings, after the animals had been taken outside for grazing", + "Parameter_Conditions": "Soil properties: well-drained Nitisols", + "Regional_Conditions": "Sub-Saharan Africa, Nandi County, Western Kenya", + "Control_Technologies": "", + "Other_Properties": "Fresh urine was collected from three steers, each fitted with collection harnesses", + "Value": "0.03-0.54", + "Unit": "%", + "Equation": "Eq. 11.1 (Vol 4, Ch. 11, section 11.2.1.1)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D.E., Diaz-Pines, E., Abwanda, S., Mutuo, P.M., Butterbach-Bahl, K. (2020) Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry 140.", + "English_Abstract": "Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N₂O). While a number of studies have investigated the effects of excreta on soil N₂O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N₂O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N₂O and carbon dioxide (CO₂) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N₂O and CO₂ fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO₂ and N₂O fluxes during both dry and wet seasons. On average, the N₂O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N₂O and CO₂ emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N₂O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N₂O EF of 0.14%, which is one magnitude lower than the IPCC default N₂O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N₂O emissions from excreta deposition on tropical rangelands.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EFs are expressed as a range due to limitations in the procedure used to calculate N₂O emissions fluxes from N₂O concentrations.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu, Klaus Butterbach-Bahl, Lutz Merbold, Sonja Leitner, David E. Pelster et al.,", + "Link": "https://doi.org/10.1016/j.soilbio.2019.107636", + "creation_date": "2022-03-14T08:06:23.778Z", + "last_change_date": "2022-03-14T08:06:23.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11167, + "fields": { + "EF_ID": 424902, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Range of N₂O emission factors for urine N deposited by grazing cattle on Acrisols in tropics", + "Technology_Practices": "Fresh dung and manure were collected at the ILRI farm from a cattle herd that was grazed on pasture dominated by a mixture of Kikuyu grass and Rhodes grass during the day and then housed in single-animal pens at night, where they had access to hay from Kikuyu and Rhodes grass. Excreta were collected from the concrete floors of each pen in the mornings, after the animals had been taken outside for grazing", + "Parameter_Conditions": "Soil properties: well-drained Acrisols", + "Regional_Conditions": "Sub-Saharan Africa, Nandi County, Western Kenya", + "Control_Technologies": "", + "Other_Properties": "Fresh urine was collected from three steers, each fitted with collection harnesses", + "Value": "0.29-1.36", + "Unit": "%", + "Equation": "Eq. 11.1 (Vol 4, Ch. 11, section 11.2.1.1)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D.E., Diaz-Pines, E., Abwanda, S., Mutuo, P.M., Butterbach-Bahl, K. (2020) Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry 140.", + "English_Abstract": "Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N₂O). While a number of studies have investigated the effects of excreta on soil N₂O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N₂O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N₂O and carbon dioxide (CO₂) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N₂O and CO₂ fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO₂ and N₂O fluxes during both dry and wet seasons. On average, the N₂O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N₂O and CO₂ emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N₂O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N₂O EF of 0.14%, which is one magnitude lower than the IPCC default N₂O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N₂O emissions from excreta deposition on tropical rangelands.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EFs are expressed as a range due to limitations in the procedure used to calculate N₂O emissions fluxes from N₂O concentrations.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu, Klaus Butterbach-Bahl, Lutz Merbold, Sonja Leitner, David E. Pelster et al.,", + "Link": "https://doi.org/10.1016/j.soilbio.2019.107636", + "creation_date": "2022-03-14T08:06:23.879Z", + "last_change_date": "2022-03-14T08:06:23.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11168, + "fields": { + "EF_ID": 424903, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Range of N₂O emission factors for urine N deposited by grazing cattle on Cambisols in tropics", + "Technology_Practices": "Fresh dung and manure were collected at the ILRI farm from a cattle herd that was grazed on pasture dominated by a mixture of Kikuyu grass and Rhodes grass during the day and then housed in single-animal pens at night, where they had access to hay from Kikuyu and Rhodes grass. Excreta were collected from the concrete floors of each pen in the mornings, after the animals had been taken outside for grazing", + "Parameter_Conditions": "Soil properties: well-drained Cambisols", + "Regional_Conditions": "Sub-Saharan Africa, Nandi County, Western Kenya", + "Control_Technologies": "", + "Other_Properties": "Fresh urine was collected from three steers, each fitted with collection harnesses", + "Value": "0.02-0.25", + "Unit": "%", + "Equation": "Eq. 11.1 (Vol 4, Ch. 11, section 11.2.1.1)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D.E., Diaz-Pines, E., Abwanda, S., Mutuo, P.M., Butterbach-Bahl, K. (2020) Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry 140.", + "English_Abstract": "Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N₂O). While a number of studies have investigated the effects of excreta on soil N₂O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N₂O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N₂O and carbon dioxide (CO₂) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N₂O and CO₂ fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO₂ and N₂O fluxes during both dry and wet seasons. On average, the N₂O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N₂O and CO₂ emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N₂O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N₂O EF of 0.14%, which is one magnitude lower than the IPCC default N₂O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N₂O emissions from excreta deposition on tropical rangelands.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EFs are expressed as a range due to limitations in the procedure used to calculate N₂O emissions fluxes from N₂O concentrations.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu, Klaus Butterbach-Bahl, Lutz Merbold, Sonja Leitner, David E. Pelster et al.,", + "Link": "https://doi.org/10.1016/j.soilbio.2019.107636", + "creation_date": "2022-03-14T08:06:23.979Z", + "last_change_date": "2022-03-14T08:06:23.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11169, + "fields": { + "EF_ID": 424904, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Range of N₂O emission factors for urine N deposited by grazing cattle on Ferralsols in tropics", + "Technology_Practices": "Fresh dung and manure were collected at the ILRI farm from a cattle herd that was grazed on pasture dominated by a mixture of Kikuyu grass and Rhodes grass during the day and then housed in single-animal pens at night, where they had access to hay from Kikuyu and Rhodes grass. Excreta were collected from the concrete floors of each pen in the mornings, after the animals had been taken outside for grazing", + "Parameter_Conditions": "Soil properties: well-drained Ferralsols", + "Regional_Conditions": "Sub-Saharan Africa, Nandi County, Western Kenya", + "Control_Technologies": "", + "Other_Properties": "Fresh urine was collected from three steers, each fitted with collection harnesses", + "Value": "0.01-0.12", + "Unit": "%", + "Equation": "Eq. 11.1 (Vol 4, Ch. 11, section 11.2.1.1)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhu, Y., Merbold, L., Leitner, S., Xia, L., Pelster, D.E., Diaz-Pines, E., Abwanda, S., Mutuo, P.M., Butterbach-Bahl, K. (2020) Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya. Soil Biology and Biochemistry 140.", + "English_Abstract": "Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N₂O). While a number of studies have investigated the effects of excreta on soil N₂O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N₂O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N₂O and carbon dioxide (CO₂) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N₂O and CO₂ fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO₂ and N₂O fluxes during both dry and wet seasons. On average, the N₂O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N₂O and CO₂ emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N₂O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N₂O EF of 0.14%, which is one magnitude lower than the IPCC default N₂O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N₂O emissions from excreta deposition on tropical rangelands.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EFs are expressed as a range due to limitations in the procedure used to calculate N₂O emissions fluxes from N₂O concentrations.", + "Other_Comments": "", + "Data_Provider": "Yuhao Zhu, Klaus Butterbach-Bahl, Lutz Merbold, Sonja Leitner, David E. Pelster et al.,", + "Link": "https://doi.org/10.1016/j.soilbio.2019.107636", + "creation_date": "2022-03-14T08:06:24.105Z", + "last_change_date": "2022-03-14T08:06:24.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11170, + "fields": { + "EF_ID": 424905, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (AN) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable and Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "1.09", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.97", + "Upper_Bound": "1.22", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 293, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:24.190Z", + "last_change_date": "2022-03-14T08:06:24.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11171, + "fields": { + "EF_ID": 424906, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (AN) application with inhibitor", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable and Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "Nitrification inhibitor (Dicyandiamide, DCD)", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.79", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.54", + "Upper_Bound": "1.16", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 38, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:24.283Z", + "last_change_date": "2022-03-14T08:06:24.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11172, + "fields": { + "EF_ID": 424907, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (CAN) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable and Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.98", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.74", + "Upper_Bound": "1.30", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 63, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:24.383Z", + "last_change_date": "2022-03-14T08:06:24.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11173, + "fields": { + "EF_ID": 424908, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (urea) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable and Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.58", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.48", + "Upper_Bound": "0.72", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 118, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:24.492Z", + "last_change_date": "2022-03-14T08:06:24.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11174, + "fields": { + "EF_ID": 424909, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (urea) application with inhibitor", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable and Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "Nitrification inhibitor (either Dicyandiamide, DCD or N-(n)-butyl) thiophosphorictriamide, NBTP)", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.35", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.29", + "Upper_Bound": "0.41", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 129, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:24.592Z", + "last_change_date": "2022-03-14T08:06:24.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11175, + "fields": { + "EF_ID": 424910, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (AN) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.60", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.50", + "Upper_Bound": "0.72", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 91, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:24.710Z", + "last_change_date": "2022-03-14T08:06:24.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11176, + "fields": { + "EF_ID": 424911, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (AN) application with inhibitor", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "Nitrification inhibitor (Dicyandiamide, DCD)", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.42", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.22", + "Upper_Bound": "0.78", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 14, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:24.827Z", + "last_change_date": "2022-03-14T08:06:24.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11177, + "fields": { + "EF_ID": 424912, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (CAN) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.49", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.29", + "Upper_Bound": "0.88", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 8, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:24.953Z", + "last_change_date": "2022-03-14T08:06:24.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11178, + "fields": { + "EF_ID": 424913, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (urea) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.74", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.38", + "Upper_Bound": "1.38", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 28, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:25.079Z", + "last_change_date": "2022-03-14T08:06:25.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11179, + "fields": { + "EF_ID": 424914, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (urea) application with inhibitor", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Arable fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "Nitrification inhibitor (either Dicyandiamide, DCD or N-(n)-butyl) thiophosphorictriamide, NBTP)", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.47", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.32", + "Upper_Bound": "0.71", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 30, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:25.180Z", + "last_change_date": "2022-03-14T08:06:25.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11180, + "fields": { + "EF_ID": 424915, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (AN) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "1.34", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "1.18", + "Upper_Bound": "1.52", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 202, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:25.330Z", + "last_change_date": "2022-03-14T08:06:25.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11181, + "fields": { + "EF_ID": 424916, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (AN) application with inhibitor", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "Nitrification inhibitor (Dicyandiamide, DCD)", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "1.16", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.71", + "Upper_Bound": "1.95", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 24, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:25.438Z", + "last_change_date": "2022-03-14T08:06:25.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11182, + "fields": { + "EF_ID": 424917, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (CAN) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "1.11", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.81", + "Upper_Bound": "1.51", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 55, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:25.548Z", + "last_change_date": "2022-03-14T08:06:25.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11183, + "fields": { + "EF_ID": 424918, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (urea) application", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.58", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.47", + "Upper_Bound": "0.72", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 90, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:25.657Z", + "last_change_date": "2022-03-14T08:06:25.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11184, + "fields": { + "EF_ID": 424919, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Direct N₂O Emission Factor for mineral fertiliser (urea) application with inhibitor", + "Technology_Practices": "Fertiliser applications varied from 20 to 200 kg N ha⁻¹ for a single event (mean values used when annual EF is reported for multiple events; Fig. 2), using a variety of application methods (e.g. farm machinery or by hand).", + "Parameter_Conditions": "Grassland fields", + "Regional_Conditions": "British Isles (Ireland and United Kingdom)", + "Control_Technologies": "Nitrification inhibitor (either Dicyandiamide, DCD or N-(n)-butyl) thiophosphorictriamide, NBTP)", + "Other_Properties": "Original data from articles considered ‘recent’ (20 years or fewer), i.e. published after January 1998 and submitted before April 2019. The studies report data collected using the flux chamber approach with the exception of a single study which reports data collected using the eddy covariance method.", + "Value": "0.32", + "Unit": "%", + "Equation": "2006 IPCC Guidelines, Vol.4, Ch.11, Equation 11.2", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cowan, N., Carnell, N., Skiba, U., Dragosits, U., Drewer, J., Levy, P. 2020. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environment International 135, 105366.", + "English_Abstract": "In this study, we analysed datasets of N₂O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on lognormal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N₂O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N₂O emissions at regional scales if applied instead of conventional nitrogen fertilisers.", + "Lower_Bound": "0.27", + "Upper_Bound": "0.39", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "n of original data = 99, Bayesian approach for each estimation of the mean EF of a particular fertiliser use to calculate μ, with 95% confidence intervals from the quantiles of the posterior distribution", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.envint.2019.105366", + "creation_date": "2022-03-14T08:06:25.766Z", + "last_change_date": "2022-03-14T08:06:25.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11185, + "fields": { + "EF_ID": 425216, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for enteric fermentation of growing cattle consuming a mix of fumaric acid (FA) and anthraquinone (AQ)", + "Technology_Practices": "Sahiwal male calves fed with basal diet containing wheat straw, mature sorghum (fresh-cut) and concentrate mixture (40:10:50) ad lib. (15% in excess of the previous day’s intake). The calves were housed in a well ventilated stall having facilities for individual feeding and watering. Additives were pre-mixed with concentrate at the time of feeding.", + "Parameter_Conditions": "LW range of 69–153 kg; DMI of 3.6 kg/day; Nitrogen intake and retention of 86.24 and 30.27 g/day respectively", + "Regional_Conditions": "India (IND)", + "Control_Technologies": "Addition of organic acid and anthraquinone to a control diet", + "Other_Properties": "Concentrate contained: rice bran de-oiled, mustard cake, maize, wheat bran, ground nut cake, common salt and mineral mixture (11, 12, 33, 20, 21, 1 and 2% of DM, respectively).", + "Value": "16.88", + "Unit": "g/kg DMI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ebrahimi, S.H., Datta, M.M., Heidarian, V., Sirohi, S.K., and Tyagi, A.K. 2015. Effects of fumaric or malic acid and 9, 10 anthraquinone on digestibility, microbial protein synthesis, methane emission and performance of growing calves. Indian Journal of Animal Sciences 85(9): 1000-1005", + "English_Abstract": "This study was aimed to test whether combination of methanogens inhibitor and a hydrogen sink may result in any complementary effects in vivo. Growing calves (15; average 7-month-old, and weighing 130 kg) were arranged into 3 groups in a randomized complete block design. Treatments were: Control (no additives), FA and AQ (control + 6.5 mM of FA and AQ at the level of 4 ppm) and MA and AQ (control + 6.5 mM of MA and 4 ppm of AQ). AQ in combination with FA or MA had no effect on final BW, ADG and daily feed intake. There was no effect of supplementation of additives on intestinal flow of microbial-N, apparent digestibility of DM, OM, CF, EE, NDF, and ADF but CP digestibility increased as a result of feeding AQ and organic acids. Nitrogen intake was similar in three groups but supplementation of diet with AQ and FA or MA decreased nitrogen losses through feces and urinary losses of nitrogen also slightly declined resulting in a nonsignificant improvement of nitrogen retention in treated groups than control. Feeding AQ and OAs resulted in a significant reduction of 9.5% methane per unit DMI in animals fed AQ and MA. It can be concluded that reduction of methane production caused by feed additives in the present study was not notable and could not improve animal performance and nutrients utilization which challenges previous in vitro findings observed in the use of organic acids and methane inhibitors in combination.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emissions in control treatment (no FA or AQ added) reached 17.85 g/kg DMI. SEM 0.45 (Control and FA and AQ)", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:25.875Z", + "last_change_date": "2022-03-14T08:06:25.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11186, + "fields": { + "EF_ID": 425217, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for enteric fermentation of growing cattle consuming a mix of malic acid (MA) and anthraquinone (AQ)", + "Technology_Practices": "Sahiwal male calves fed with basal diet containing wheat straw, mature sorghum (fresh-cut) and concentrate mixture (40:10:50) ad lib. (15% in excess of the previous day’s intake). The calves were housed in a well ventilated stall having facilities for individual feeding and watering. Additives were pre-mixed with concentrate at the time of feeding.", + "Parameter_Conditions": "LW range of 69–153 kg; DMI of 3.5 kg/day; Nitrogen intake and retention of 84.79 and 29.81 g/day respectively", + "Regional_Conditions": "India (IND)", + "Control_Technologies": "Addition of organic acid and anthraquinone to a control diet", + "Other_Properties": "Concentrate contained: rice bran de-oiled, mustard cake, maize, wheat bran, ground nut cake, common salt and mineral mixture (11, 12, 33, 20, 21, 1 and 2% of DM, respectively).", + "Value": "16.15", + "Unit": "g/kg DMI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ebrahimi, S.H., Datta, M.M., Heidarian, V., Sirohi, S.K., and Tyagi, A.K. 2015. Effects of fumaric or malic acid and 9, 10 anthraquinone on digestibility, microbial protein synthesis, methane emission and performance of growing calves. Indian Journal of Animal Sciences 85(9): 1000-1005", + "English_Abstract": "This study was aimed to test whether combination of methanogens inhibitor and a hydrogen sink may result in any complementary effects in vivo. Growing calves (15; average 7-month-old, and weighing 130 kg) were arranged into 3 groups in a randomized complete block design. Treatments were: Control (no additives), FA and AQ (control + 6.5 mM of FA and AQ at the level of 4 ppm) and MA and AQ (control + 6.5 mM of MA and 4 ppm of AQ). AQ in combination with FA or MA had no effect on final BW, ADG and daily feed intake. There was no effect of supplementation of additives on intestinal flow of microbial-N, apparent digestibility of DM, OM, CF, EE, NDF, and ADF but CP digestibility increased as a result of feeding AQ and organic acids. Nitrogen intake was similar in three groups but supplementation of diet with AQ and FA or MA decreased nitrogen losses through feces and urinary losses of nitrogen also slightly declined resulting in a nonsignificant improvement of nitrogen retention in treated groups than control. Feeding AQ and OAs resulted in a significant reduction of 9.5% methane per unit DMI in animals fed AQ and MA. It can be concluded that reduction of methane production caused by feed additives in the present study was not notable and could not improve animal performance and nutrients utilization which challenges previous in vitro findings observed in the use of organic acids and methane inhibitors in combination.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emissions in control treatment (no MA or AQ added) reached 17.85 g/kg DMI. SEM 0.44 (Control and MA and AQ)", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:25.984Z", + "last_change_date": "2022-03-14T08:06:25.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11187, + "fields": { + "EF_ID": 425218, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor (Ym) for cattle fed at level of maintenance energy requirements (1 MER)", + "Technology_Practices": "Boran yearling steers (B. indicus) with LW 162.3 kg", + "Parameter_Conditions": "Feeding on low-quality tropical forage with a diet of Rhodes grass hay, cottonseed meal and molasses", + "Regional_Conditions": "Sub-Saharan Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.14", + "Unit": "%", + "Equation": "Equation 10.21, Chapter 10, Vol. 4 (2006 IPCC Guidelines)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, D. Korir, D. Pelster, A.I.M. Ali, S.E. Wassie, E. Schlecht, U. Dickhoefer, L. Merbold, and K. Butterbach-Bahl. 2020. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. British Journal of Nutrition 123 (11), pp. 1239-1246.", + "English_Abstract": "The relationship between feed intake at production levels and enteric CH₄ production in ruminants consuming forage-based diets is well described and considered to be strongly linear. Unlike temperate grazing systems, the intake of ruminants in rain-fed tropical systems is typically below maintenance requirements for part of the year (dry seasons). The relationship between CH₄ production and feed intake in animals fed well below maintenance is unexplored, but changes in key digestive parameters in animals fed at low levels suggest that this relationship may be altered. We conducted a study using Boran yearling steers (n 12; live weight: 162·3 kg) in a 4 × 4 Latin square design to assess the effect of moderate to severe undernutrition on apparent digestibility, rumen turnover and enteric CH₄ production of cattle consuming a tropical forage diet. We concluded that while production of CH₄ decreased (1133·3–65·0 g CH₄/d; P < 0·0001), over the range of feeding from about 1·0 to 0·4 maintenance energy requirement, both CH₄ yield (29·0−31·2 g CH₄/kg DM intake; P < 0·001) and CH₄ conversion factor (Ym 9·1–10·1 MJ CH₄/MJ gross energy intake; P < 0·01) increased as intake fell and postulate that this may be attributable to changes in nutrient partitioning. We suggest there is a case for revising emission factors of ruminants where there are seasonal nutritional deficits and both environmental and financial benefits for improved feeding of animals under nutritional stress.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Production Rate of 133.3 g CH₄/day; Methane yield of 29.0 g CH₄/kg DM intake.", + "Other_Comments": "", + "Data_Provider": "J.P. Goopy", + "Link": "doi:10.1017/S0007114519003350", + "creation_date": "2022-03-14T08:06:26.093Z", + "last_change_date": "2022-03-14T08:06:26.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11188, + "fields": { + "EF_ID": 425219, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor (Ym) for cattle under below-maintenance feed intake conditions (0.4 MER)", + "Technology_Practices": "Boran yearling steers (B. indicus) with LW 162.3 kg", + "Parameter_Conditions": "Feeding on low-quality tropical forage with a diet of Rhodes grass hay", + "Regional_Conditions": "Sub-Saharan Africa", + "Control_Technologies": "", + "Other_Properties": "The intake of ruminants in rain-fed tropical systems is typically below maintenance requirements for part of the year (dry seasons)", + "Value": "10.06", + "Unit": "%", + "Equation": "Equation 10.21, Chapter 10, Vol. 4 (2006 IPCC Guidelines)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, D. Korir, D. Pelster, A.I.M. Ali, S.E. Wassie, E. Schlecht, U. Dickhoefer, L. Merbold, and K. Butterbach-Bahl. 2020. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. British Journal of Nutrition 123 (11), pp. 1239-1246.", + "English_Abstract": "The relationship between feed intake at production levels and enteric CH₄ production in ruminants consuming forage-based diets is well described and considered to be strongly linear. Unlike temperate grazing systems, the intake of ruminants in rain-fed tropical systems is typically below maintenance requirements for part of the year (dry seasons). The relationship between CH₄ production and feed intake in animals fed well below maintenance is unexplored, but changes in key digestive parameters in animals fed at low levels suggest that this relationship may be altered. We conducted a study using Boran yearling steers (n 12; live weight: 162·3 kg) in a 4 × 4 Latin square design to assess the effect of moderate to severe undernutrition on apparent digestibility, rumen turnover and enteric CH₄ production of cattle consuming a tropical forage diet. We concluded that while production of CH₄ decreased (1133·3–65·0 g CH₄/d; P < 0·0001), over the range of feeding from about 1·0 to 0·4 maintenance energy requirement, both CH₄ yield (29·0−31·2 g CH₄/kg DM intake; P < 0·001) and CH₄ conversion factor (Ym 9·1–10·1 MJ CH₄/MJ gross energy intake; P < 0·01) increased as intake fell and postulate that this may be attributable to changes in nutrient partitioning. We suggest there is a case for revising emission factors of ruminants where there are seasonal nutritional deficits and both environmental and financial benefits for improved feeding of animals under nutritional stress.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Production Rate of 65.0 g CH₄/day; Methane yield of 31.2 g CH₄/kg DM intake.", + "Other_Comments": "", + "Data_Provider": "J.P. Goopy", + "Link": "doi:10.1017/S0007114519003350", + "creation_date": "2022-03-14T08:06:26.203Z", + "last_change_date": "2022-03-14T08:06:26.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11189, + "fields": { + "EF_ID": 425220, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield for cattle fed at level of maintenance energy requirements (1 MER)", + "Technology_Practices": "Boran yearling steers (B. indicus) with LW 162.3 kg", + "Parameter_Conditions": "Feeding on low-quality tropical forage with a diet of Rhodes grass hay, cottonseed meal and molasses", + "Regional_Conditions": "Sub-Saharan Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.0", + "Unit": "g/kg DMI", + "Equation": "Equation 10.21a, Chapter 10, Vol. 4 (2019 Refinement)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, D. Korir, D. Pelster, A.I.M. Ali, S.E. Wassie, E. Schlecht, U. Dickhoefer, L. Merbold, and K. Butterbach-Bahl. 2020. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. British Journal of Nutrition 123 (11), pp. 1239-1246.", + "English_Abstract": "The relationship between feed intake at production levels and enteric CH₄ production in ruminants consuming forage-based diets is well described and considered to be strongly linear. Unlike temperate grazing systems, the intake of ruminants in rain-fed tropical systems is typically below maintenance requirements for part of the year (dry seasons). The relationship between CH₄ production and feed intake in animals fed well below maintenance is unexplored, but changes in key digestive parameters in animals fed at low levels suggest that this relationship may be altered. We conducted a study using Boran yearling steers (n 12; live weight: 162·3 kg) in a 4 × 4 Latin square design to assess the effect of moderate to severe undernutrition on apparent digestibility, rumen turnover and enteric CH₄ production of cattle consuming a tropical forage diet. We concluded that while production of CH₄ decreased (1133·3–65·0 g CH₄/d; P < 0·0001), over the range of feeding from about 1·0 to 0·4 maintenance energy requirement, both CH₄ yield (29·0−31·2 g CH₄/kg DM intake; P < 0·001) and CH₄ conversion factor (Ym 9·1–10·1 MJ CH₄/MJ gross energy intake; P < 0·01) increased as intake fell and postulate that this may be attributable to changes in nutrient partitioning. We suggest there is a case for revising emission factors of ruminants where there are seasonal nutritional deficits and both environmental and financial benefits for improved feeding of animals under nutritional stress.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Production Rate of 133.3 g CH₄/day.", + "Other_Comments": "", + "Data_Provider": "J.P. Goopy", + "Link": "doi:10.1017/S0007114519003350", + "creation_date": "2022-03-14T08:06:26.303Z", + "last_change_date": "2022-03-14T08:06:26.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11190, + "fields": { + "EF_ID": 425221, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane conversion factor for the cattle under below-maintenance feed intake conditions (0.4 MER).", + "Technology_Practices": "Boran yearling steers (B. indicus) with LW 162.3 kg", + "Parameter_Conditions": "Feeding on low-quality tropical forage with a diet of Rhodes grass hay", + "Regional_Conditions": "Sub-Saharan Africa", + "Control_Technologies": "", + "Other_Properties": "The intake of ruminants in rain-fed tropical systems is typically below maintenance requirements for part of the year (dry seasons)", + "Value": "31.2", + "Unit": "g/kg DMI", + "Equation": "Equation 10.21a, Chapter 10, Vol. 4 (2019 Refinement)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.P. Goopy, D. Korir, D. Pelster, A.I.M. Ali, S.E. Wassie, E. Schlecht, U. Dickhoefer, L. Merbold, and K. Butterbach-Bahl. 2020. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. British Journal of Nutrition 123 (11), pp. 1239-1246.", + "English_Abstract": "The relationship between feed intake at production levels and enteric CH₄ production in ruminants consuming forage-based diets is well described and considered to be strongly linear. Unlike temperate grazing systems, the intake of ruminants in rain-fed tropical systems is typically below maintenance requirements for part of the year (dry seasons). The relationship between CH₄ production and feed intake in animals fed well below maintenance is unexplored, but changes in key digestive parameters in animals fed at low levels suggest that this relationship may be altered. We conducted a study using Boran yearling steers (n 12; live weight: 162·3 kg) in a 4 × 4 Latin square design to assess the effect of moderate to severe undernutrition on apparent digestibility, rumen turnover and enteric CH₄ production of cattle consuming a tropical forage diet. We concluded that while production of CH₄ decreased (1133·3–65·0 g CH₄/d; P < 0·0001), over the range of feeding from about 1·0 to 0·4 maintenance energy requirement, both CH₄ yield (29·0−31·2 g CH₄/kg DM intake; P < 0·001) and CH₄ conversion factor (Ym 9·1–10·1 MJ CH₄/MJ gross energy intake; P < 0·01) increased as intake fell and postulate that this may be attributable to changes in nutrient partitioning. We suggest there is a case for revising emission factors of ruminants where there are seasonal nutritional deficits and both environmental and financial benefits for improved feeding of animals under nutritional stress.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane Production Rate of 65.0 g CH₄/day.", + "Other_Comments": "", + "Data_Provider": "J.P. Goopy", + "Link": "doi:10.1017/S0007114519003350", + "creation_date": "2022-03-14T08:06:26.403Z", + "last_change_date": "2022-03-14T08:06:26.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11191, + "fields": { + "EF_ID": 425247, + "IPCC_Category": "3.A.1.b - Buffalo", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factors for enteric fermentation of buffalo", + "Technology_Practices": "Data derived from 24 peer-reviewed publications with 64 mean observations of emissions measured on 394 buffaloes were synthesized using meta-analysis procedure to predict enteric methane production from buffaloes based on feed intake and composition variables", + "Parameter_Conditions": "Feed intake: 2.6-14.7 kg/day (mean 6.4 kg/day); Metabolizable energy intake: 19.2-158.2 MJ/day (mean 54.4 MJ/day); Body weight: 107-537 kg (mean 327 kg).", + "Regional_Conditions": "Climate zone: tropical", + "Control_Technologies": "", + "Other_Properties": "Respiration chamber or SF6 measurement technique", + "Value": "6.4", + "Unit": "MJ/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Patra, A.K., 2014. Prediction of enteric methane emission from buffaloes using statistical models. Agriculture, Ecosystems & Environment 195: 139-148.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The lower and upper confidence intervals (CI) of mean value are 37.5 and 46.6 kg/head/year, respectively. EFs modeled based on linear and non-linear equations (Equations Linear 1 and Monomolecular 2 in Table 4) and converted to common units amount to 41.5, with lower and upper CI for EF being 39.4 and 43.6 kg/head/year, respectively; or 42.4, with lower and upper CI being 40.3 and 44.4 kg CH4/head/year, respectively. CI were derived based on SD values.", + "Other_Comments": "", + "Data_Provider": "Amlan Kumar Patra", + "Link": "", + "creation_date": "2022-03-14T08:06:26.503Z", + "last_change_date": "2022-03-14T08:06:26.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11192, + "fields": { + "EF_ID": 425248, + "IPCC_Category": "3.A.1.a - Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factors for enteric fermentation of cattle", + "Technology_Practices": "Data derived from 35 publications with 142 mean observations of emissions measured on 830 cattle were synthesized using meta-analysis procedure to predict enteric methane production from tropical cattle based on feed intake and composition variables (limitations for the African cattle due to unavailability of the data).", + "Parameter_Conditions": "Body weight: 52.8-871 kg (mean 361 kg); Feed intake: 1.4-19.2 kg/day (mean 7.7 kg).", + "Regional_Conditions": "Climate zone: tropical", + "Control_Technologies": "", + "Other_Properties": "Respiration chamber or sulphur hexafluoride technique (only in vivo studies on cattle were considered). Data reported in different units were transformed to the same units. Whenever possible, missing chemical composition of the diets was calculated from book values of ingredients (Feedipedia, 2013) or studies included in this dataset with similar ingredients.", + "Value": "7.99", + "Unit": "MJ/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Patra, A.K., 2017. Prediction of enteric methane emission from cattle using linear and non-linear statistical models in tropical production systems. Mitigation and Adaptation Strategies for Global Change 22: 629-650.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The lower and upper confidence intervals (CI) of mean value 52.4 kg/head/year are 47.4 and 57.4 kg/head/year, respectively. EFs modeled based on linear and non-linear equations developed (Equations Linear 1 and Mitscherlich in Table 4) and converted to common units amount to 52.8 kg/head/year (lower and upper CI of 46.9 and 58.7 kg/head/year, respectively); or 53.1 kg/head/year (lower and upper CI of 49.2 and 56.9 kg/head/year, respectively). CI were derived based on SD values.", + "Other_Comments": "", + "Data_Provider": "Amlan Kumar Patra", + "Link": "", + "creation_date": "2022-03-14T08:06:26.585Z", + "last_change_date": "2022-03-14T08:06:26.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11193, + "fields": { + "EF_ID": 425249, + "IPCC_Category": "3.A.1.d - Goats", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factors for enteric fermentation of goats", + "Technology_Practices": "Data derived from 42 peer-reviewed publications with 211 mean observations of emissions measured on 978 goats were synthesized using meta-analysis procedure to predict enteric methane production from goats based on feed intake and composition variables.", + "Parameter_Conditions": "Dry matter intake: 347-2354 g/day (mean 865 g/day); Bodyweight: 14.5-58.7 kg (mean 36.5 kg); Metabolizable energy intake: 3.15-26.4 MJ/day (9.15 MJ/day)", + "Regional_Conditions": "Climate zone: tropical, subtropical, temperate", + "Control_Technologies": "", + "Other_Properties": "Respiration chamber, open circuit mask system or sulphur hexafluoride technique (only in vivo studies on goats were considered). Data reported in different units were transformed to the same units. Whenever possible, missing chemical composition of the diets was calculated from book values of ingredients (Feedipedia, 2013) or studies included in this dataset with similar ingredients.", + "Value": "14.3", + "Unit": "g CH4/head/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Patra, A.K., Lalhriatpuii, M., 2016. Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables. Agriculture, Ecosystems & Environment 215: 89-99.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The lower and upper confidence intervals (CI) of mean value are 4.8 and 5.6 kg/head/year, respectively. EFs modeled based on linear and non-linear equations (Eq. 2 and Eq. Monomolecular 1 from Table 3) and converted to common units amount to 5.2 kg/head/year (lower and upper CI of 4.8 and 5.5 kg/head/year, respectively); or 5.3 kg/head/year (lower and upper CI of 5.2 and 5.5 kg/head/year, respectively). CI were derived based on SD values.", + "Other_Comments": "", + "Data_Provider": "Amlan Kumar Patra", + "Link": "", + "creation_date": "2022-03-14T08:06:26.688Z", + "last_change_date": "2022-03-14T08:06:26.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11194, + "fields": { + "EF_ID": 425250, + "IPCC_Category": "3.A.1.c - Sheep", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factors for enteric fermentation of sheep", + "Technology_Practices": "Data derived from 80 peer-reviewed publications with 449 mean observations of emissions measured on more than 1500 sheep were synthesized using meta-analysis procedure to predict enteric methane production from sheep using feed intake and composition variables.", + "Parameter_Conditions": "Dry matter intake 0.18-2.09 kg/day (mean 0.92 kg/day); Bodyweight 13.8-92.5 kg (mean 48.7 kg); Metabolizable energy intake 1.8-23.6 MJ/day (mean 9.2 MJ/day)", + "Regional_Conditions": "Climate zone: tropical, subtropical, temperate", + "Control_Technologies": "", + "Other_Properties": "Respiration chamber or sulphur hexafluoride technique (only in vivo studies on sheep were considered). Data reported in different units were transformed to the same units. Whenever possible, missing chemical composition of the diets was calculated from book values of ingredients (Feedipedia, 2013) or studies included in this dataset with similar ingredients.", + "Value": "18.3", + "Unit": "g CH4/head/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Patra, A.K., Lalhriatpuii, M., Debnath, B.C., 2016. Predicting enteric methane emission in sheep using linear and non-linear statistical models from dietary variables. Animal Production Science 56: 574-584.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The lower and upper confidence intervals (CI) of mean value are 6.3 and 7.0 kg/head/year, respectively. EFs modeled based on linear and non-linear equations (Equations #2 in Table 2 and Mitscherlich 1 in Table 3) and converted to common units amount to 6.7 kg/head/year (lower and upper CI of 6.5 and 6.9 kg/head/year, respectively) and 6.9 kg/head/year (lower and upper CI of 6.8 and 7.0 kg/head/year, respectively). CI were derived based on SD values.", + "Other_Comments": "", + "Data_Provider": "Amlan Kumar Patra", + "Link": "", + "creation_date": "2022-03-14T08:06:26.777Z", + "last_change_date": "2022-03-14T08:06:26.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11195, + "fields": { + "EF_ID": 425251, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for flooded rice under continuous irrigation and transplanting system", + "Technology_Practices": "135 kg N-urea/ha, on average", + "Parameter_Conditions": "The soil is classified as a Haplic Gleysols (EMBRAPA, 2013) with clayey or loamy-clayey texture. The average annual rainfall is 1,334 mm.", + "Regional_Conditions": "Brazil (BRA), State of São Paulo. The climate is type Cwa (tropical climate of altitude)", + "Control_Technologies": "", + "Other_Properties": "The IAC 103 rice variety was used", + "Value": "18.46", + "Unit": "g/m²", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Adapted from: Lima, M.A., Frighetto, R. T. S., Villela, O. V., Costa, F. de S., Bayer, C., Macedo, V. R. M., Marcolin, E. Methane emissions in flooded rice cultivation. In: Boddey, R. M.; Lima, M.A., Alves, B.J.R., Machado, P.L.O., Urquiaga, S. (Ed.). Carbon stocks and greenhouse gas emissions in Brazilian agriculture. Brasília, DF: Embrapa, 2014. Chapter 6 and Chapter 9 (epub).", + "English_Abstract": "Evaluations of methane emissions in flooded rice cultivation were performed in the Southeast and South regions of Brazil, using the static chamber method. Experiments were conducted with conventional tillage, no tillage and minimum tillage in the South and Southeast regions. Crops under continuous and intermittent water regimes were compared. These areas are located in various climate regions, with different soil types and cultivars. Assessments on the effects of various crop and soil management systems on seasonal methane emissions are presented, as well as the impact of water regimes on crops. In general, lower seasonal methane emission rates were associated with no-tillage and intermittent water regimes, taking into account the three harvests analyzed in these regions of the country. Seasonal emission factors are presented for each crop in the three sites studied (Pindamonhangaba, São Paulo (SP), Cachoeirinha, Rio Grande do Sul (RS), and Uruguaiana, Rio Grande do Sul (RS)). The emission factor refers only to the experimental area of Pindamonhangaba, SP.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents mean of the measured data for four GS (2002-2006). The original values 32.84, 8.92, 18.91 (Chapter 6) and 16.63 (Chapter 9) g CH₄ m⁻² GS⁻¹ were adjusted in order to consider the period of the cropping season since the transplanting day until the harvest (32.98, 8.82, 20.82 and 11.22, respectively). Seasonal emissions were converted to ha and kg, and divided by the number of days in GS (121, 126, 140 and 143 days, respectively), being expressed in kg/ha/day.", + "Other_Comments": "", + "Data_Provider": "Lima, M.A.", + "Link": "", + "creation_date": "2022-03-14T08:06:26.872Z", + "last_change_date": "2022-03-14T08:06:26.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11196, + "fields": { + "EF_ID": 425252, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Scaling factor for water management (SFw) for flooded rice under intermittent irrigation (multiple drainage periods) and transplanting system", + "Technology_Practices": "135 kg N-urea/ha", + "Parameter_Conditions": "The soil is classified as a Haplic Gleysols (EMBRAPA, 2013) with clayey or loamy-clayey texture. The average annual rainfall is 1,334 mm.", + "Regional_Conditions": "Brazil (BRA), State of São Paulo. The climate is type Cwa (tropical climate of altitude)", + "Control_Technologies": "Reduction of the flooding period", + "Other_Properties": "The IAC 103 rice variety was used", + "Value": "0.65", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Adapted from: Lima, M.A., Frighetto, R. T. S., Villela, O. V., Costa, F. de S., Bayer, C., Macedo, V. R. M., Marcolin, E. Methane emissions in flooded rice cultivation. In: Boddey, R. M.; Lima, M.A., Alves, B.J.R., Machado, P.L.O., Urquiaga, S. (Ed.). Carbon stocks and greenhouse gas emissions in Brazilian agriculture. Brasília, DF: Embrapa, 2014. Chapter 6 and Chapter 9 (epub).", + "English_Abstract": "Evaluations of methane emissions in flooded rice cultivation were performed in the Southeast and South regions of Brazil, using the static chamber method. Experiments were conducted with conventional tillage, no tillage and minimum tillage in the South and Southeast regions. Crops under continuous and intermittent water regimes were compared. These areas are located in various climate regions, with different soil types and cultivars. Assessments on the effects of various crop and soil management systems on seasonal methane emissions are presented, as well as the impact of water regimes on crops. In general, lower seasonal methane emission rates were associated with no-tillage and intermittent water regimes, taking into account the three harvests analyzed in these regions of the country. Seasonal emission factors are presented for each crop in the three sites studied (Pindamonhangaba, São Paulo (SP), Cachoeirinha, Rio Grande do Sul (RS), and Uruguaiana, Rio Grande do Sul (RS)). The emission factor refers only to the experimental area of Pindamonhangaba, SP.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The scaling factor was estimated based on the measured EFs for continuously and intermittently flooded rice of 0.69 and 0.45 kg/ha/day respectively.", + "Other_Comments": "", + "Data_Provider": "Lima, M.A.", + "Link": "", + "creation_date": "2022-03-14T08:06:26.990Z", + "last_change_date": "2022-03-14T08:06:26.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11197, + "fields": { + "EF_ID": 425253, + "IPCC_Category": "3.C.7 - Rice cultivations", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF for flooded rice under continuous irrigation, pre-germinated system", + "Technology_Practices": "76 kg N-urea/ha", + "Parameter_Conditions": "The average annual precipitation is 1,334 mm. The soil is classified as a Haplic Gleysol (EMBRAPA, 2013). Straw was previously incorporated into the soil after the previous harvest.", + "Regional_Conditions": "Brazil (BRA), State of São Paulo. The region`s climate is Cwa (tropical altitude climate).", + "Control_Technologies": "", + "Other_Properties": "The medium-cycle variety IAC 105 (average cycle of 125 days) was used", + "Value": "2.27", + "Unit": "kg/ha/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Lima, M.A.; Vieira, R.F.; Luiz, A.J.B.; Galvão, J.A.H. 2019. Emissão de metano em área de arroz irrigado sob sistema pré-germinado em Pindamonhangaba, SP. Jaguariúna: Embrapa Meio Ambiente. 2019 (Boletim de Pesquisa, n. 86), 22p.", + "English_Abstract": "Local studies on measurement of greenhouse gas emission from agricultural areas have been encouraged at the global level as a basis for subsidizing national and state emission estimates. In the face of this demand, a field study was carried out to quantify the methane emission factor from cultivation of flooded rice under pre-germinated system, in the city of Pindamonhangaba, São Paulo, during the 2010/2011 harvest, using the closed chamber method and gas chromatography. The CH₄ emission factor (EF), the partial global warming potential (pGWP) and the grain yield-scaled pGWP (YpGWP) were quantified. These parameters were estimated at 2.27 kg CH₄ ha⁻¹ day⁻¹, 8.26 Mg CO₂ eq ha⁻¹ growing season⁻¹ and 1.13 kg CO₂ eq kg⁻¹ grain, respectively. The CH₄ emission factor obtained under the conditions studied is nearly twice the average indicated by the 2006 IPCC Guidelines while the pGWP and YpGWP were lower than the average found in studies conducted in the country. The results demonstrate the importance of the methane emission quantification under specific management conditions of rice crop, in order to contribute to the improvement of national and regional emission estimates.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Lima, M.A.", + "Link": "https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1115106/emissao-de-metano-em-area-de-arroz-irrigado-sob-sistema-pre-germinado-em-pindamonhangaba-sp", + "creation_date": "2022-03-14T08:06:27.115Z", + "last_change_date": "2022-03-14T08:06:27.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11198, + "fields": { + "EF_ID": 425254, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for enteric fermentation of growing cattle", + "Technology_Practices": "Crossbred (Sahiwal × Holstein Friesian) male calves, ~ 1-year-old, body weight 249.25 to 258.5 kg, were used in a switchover design comprising 4 treatments, 4 animals and 4 periods.", + "Parameter_Conditions": "DM intake of 5.35 kg/day; Digestible DM intake of 3.15 kg/day; Methane production of 150.07 litres/day", + "Regional_Conditions": "India (IND)", + "Control_Technologies": "Group 1 (without monensin) diet: Concentrate mixture and wheat straw ad lib", + "Other_Properties": "", + "Value": "48.80", + "Unit": "l/kg DDMI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Debasis De, Madhu Mohini and G P Singh (2012). Influence of monensin enriched UMMB feeding on in vivo methane emission in crossbred calves fed on wheat straw and concentrate based diet. Indian Journal of Animal Sciences 82(6): 640–644.", + "English_Abstract": "Crossbred (4; Sahiwal × Holstein Friesian) male calves (~1 yr, avg. body weight 249.25 to 258.5 kg) were used in a switchover design to study the effect of monensin addition either in concentrate or enrichment of urea molasses mineral block (UMMB) with monensin on methane emission. In group 1, animals were fed concentrate mixture and wheat straw ad lib, group 2 were supplemented with 30 mg monensin/day, group 3 and 4, a deduction of 30% in concentrate was done, which was fulfill through UMMB. In group 4, UMMB was enriched with monensin (100 ppm). Methane emission (l/d) was affected significantly (P<0.01) due to monensin. It was significantly (P<0.01) lower in group 4 (89.31 l/d) followed by group 2 (117.70 l/d), group 3 (131.49 l/d) and group 1 (150.07 l/d). Methane emission (l/kg DDMI and l/kg DOMI) was significantly (P<0.01) lower in groups 2 (38.69, 40.07) and 4 (32.47, 34.72) as compared to groups 1 (48.80, 51.73) and 3 (47.12, 50.23). However, no significant difference was observed between groups 1 and 3 and also between groups 2 and 4. So, monensin enriched UMMB can reduce the methane production significantly.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in common units (kg/head/yr) was derived as follows: 48.8/22.4*16*DDMI*365/1000", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:27.224Z", + "last_change_date": "2022-03-14T08:06:27.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11199, + "fields": { + "EF_ID": 425255, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for enteric fermentation of growing cattle", + "Technology_Practices": "Crossbred (Sahiwal × Holstein Friesian) male calves, ~ 1-year-old, body weight 249.25 to 258.5 kg, were used in a switchover design comprising 4 treatments, 4 animals and 4 periods.", + "Parameter_Conditions": "DM intake of 5.43 kg/day; Digestible DM intake of 3.07 kg/day; Methane production of 117.70 litres/day", + "Regional_Conditions": "India (IND)", + "Control_Technologies": "Group 2 diet: Wheat straw ad lib. + concentrate mixture + 30 mg monensin/day", + "Other_Properties": "", + "Value": "38.69", + "Unit": "l/kg DDMI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Debasis De, Madhu Mohini and G P Singh (2012). Influence of monensin enriched UMMB feeding on in vivo methane emission in crossbred calves fed on wheat straw and concentrate based diet. Indian Journal of Animal Sciences 82(6): 640–644.", + "English_Abstract": "Crossbred (4; Sahiwal × Holstein Friesian) male calves (~1 yr, avg. body weight 249.25 to 258.5 kg) were used in a switchover design to study the effect of monensin addition either in concentrate or enrichment of urea molasses mineral block (UMMB) with monensin on methane emission. In group 1, animals were fed concentrate mixture and wheat straw ad lib, group 2 were supplemented with 30 mg monensin/day, group 3 and 4, a deduction of 30% in concentrate was done, which was fulfill through UMMB. In group 4, UMMB was enriched with monensin (100 ppm). Methane emission (l/d) was affected significantly (P<0.01) due to monensin. It was significantly (P<0.01) lower in group 4 (89.31 l/d) followed by group 2 (117.70 l/d), group 3 (131.49 l/d) and group 1 (150.07 l/d). Methane emission (l/kg DDMI and l/kg DOMI) was significantly (P<0.01) lower in groups 2 (38.69, 40.07) and 4 (32.47, 34.72) as compared to groups 1 (48.80, 51.73) and 3 (47.12, 50.23). However, no significant difference was observed between groups 1 and 3 and also between groups 2 and 4. So, monensin enriched UMMB can reduce the methane production significantly.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in common units (kg/head/yr) was derived as follows: 38.69/22.4*16*DDMI*365/1000", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:27.334Z", + "last_change_date": "2022-03-14T08:06:27.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11200, + "fields": { + "EF_ID": 425256, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for enteric fermentation of growing cattle", + "Technology_Practices": "Crossbred (Sahiwal × Holstein Friesian) male calves, ~ 1-year-old, body weight 249.25 to 258.5 kg, were used in a switchover design comprising 4 treatments, 4 animals and 4 periods.", + "Parameter_Conditions": "DM intake of 4.62 kg/day; Digestible DM intake of 2.79 kg/day; Methane production of 131.49 litres/day", + "Regional_Conditions": "India (IND)", + "Control_Technologies": "Group 3 diet: Wheat straw ad lib. + 70% concentrate mixture + UMMB", + "Other_Properties": "", + "Value": "47.12", + "Unit": "l/kg DDMI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Debasis De, Madhu Mohini and G P Singh (2012). Influence of monensin enriched UMMB feeding on in vivo methane emission in crossbred calves fed on wheat straw and concentrate based diet. Indian Journal of Animal Sciences 82(6): 640–644.", + "English_Abstract": "Crossbred (4; Sahiwal × Holstein Friesian) male calves (~1 yr, avg. body weight 249.25 to 258.5 kg) were used in a switchover design to study the effect of monensin addition either in concentrate or enrichment of urea molasses mineral block (UMMB) with monensin on methane emission. In group 1, animals were fed concentrate mixture and wheat straw ad lib, group 2 were supplemented with 30 mg monensin/day, group 3 and 4, a deduction of 30% in concentrate was done, which was fulfill through UMMB. In group 4, UMMB was enriched with monensin (100 ppm). Methane emission (l/d) was affected significantly (P<0.01) due to monensin. It was significantly (P<0.01) lower in group 4 (89.31 l/d) followed by group 2 (117.70 l/d), group 3 (131.49 l/d) and group 1 (150.07 l/d). Methane emission (l/kg DDMI and l/kg DOMI) was significantly (P<0.01) lower in groups 2 (38.69, 40.07) and 4 (32.47, 34.72) as compared to groups 1 (48.80, 51.73) and 3 (47.12, 50.23). However, no significant difference was observed between groups 1 and 3 and also between groups 2 and 4. So, monensin enriched UMMB can reduce the methane production significantly.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in common units (kg/head/yr) was derived as follows: 47.12/22.4*16*DDMI*365/1000", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:27.443Z", + "last_change_date": "2022-03-14T08:06:27.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11201, + "fields": { + "EF_ID": 425257, + "IPCC_Category": "3.A.1.a.ii - Other Cattle", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for enteric fermentation of growing cattle", + "Technology_Practices": "Crossbred (Sahiwal × Holstein Friesian) male calves, ~ 1-year-old, body weight 249.25 to 258.5 kg, were used in a switchover design comprising 4 treatments, 4 animals and 4 periods.", + "Parameter_Conditions": "DM intake of 4.60 kg/day; Digestible DM intake of 2.76 kg/day; Methane production of 89.31 litres/day", + "Regional_Conditions": "India (IND)", + "Control_Technologies": "Group 4 diet: Wheat straw ad lib. + 70% concentrate mixture + UMMB + monensin (100 ppm)", + "Other_Properties": "", + "Value": "32.47", + "Unit": "l/kg DDMI", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Debasis De, Madhu Mohini and G P Singh (2012). Influence of monensin enriched UMMB feeding on in vivo methane emission in crossbred calves fed on wheat straw and concentrate based diet. Indian Journal of Animal Sciences 82(6): 640–644.", + "English_Abstract": "Crossbred (4; Sahiwal × Holstein Friesian) male calves (~1 yr, avg. body weight 249.25 to 258.5 kg) were used in a switchover design to study the effect of monensin addition either in concentrate or enrichment of urea molasses mineral block (UMMB) with monensin on methane emission. In group 1, animals were fed concentrate mixture and wheat straw ad lib, group 2 were supplemented with 30 mg monensin/day, group 3 and 4, a deduction of 30% in concentrate was done, which was fulfill through UMMB. In group 4, UMMB was enriched with monensin (100 ppm). Methane emission (l/d) was affected significantly (P<0.01) due to monensin. It was significantly (P<0.01) lower in group 4 (89.31 l/d) followed by group 2 (117.70 l/d), group 3 (131.49 l/d) and group 1 (150.07 l/d). Methane emission (l/kg DDMI and l/kg DOMI) was significantly (P<0.01) lower in groups 2 (38.69, 40.07) and 4 (32.47, 34.72) as compared to groups 1 (48.80, 51.73) and 3 (47.12, 50.23). However, no significant difference was observed between groups 1 and 3 and also between groups 2 and 4. So, monensin enriched UMMB can reduce the methane production significantly.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Value in common units (kg/head/yr) was derived as follows: 32.47/22.4*16*DDMI*365/1000", + "Other_Comments": "", + "Data_Provider": "Niveta Jain", + "Link": "", + "creation_date": "2022-03-14T08:06:27.544Z", + "last_change_date": "2022-03-14T08:06:27.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11202, + "fields": { + "EF_ID": 510725, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Boreal, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25 (10-58)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:27.644Z", + "last_change_date": "2022-03-14T08:06:27.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11203, + "fields": { + "EF_ID": 510726, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Boreal, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39 (11-117)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:27.720Z", + "last_change_date": "2022-03-14T08:06:27.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11204, + "fields": { + "EF_ID": 510727, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28 (23-33)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:27.820Z", + "last_change_date": "2022-03-14T08:06:27.820Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11205, + "fields": { + "EF_ID": 510728, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16 (5-31)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:27.904Z", + "last_change_date": "2022-03-14T08:06:27.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11206, + "fields": { + "EF_ID": 510729, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.2 (23.4-33.0)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.005Z", + "last_change_date": "2022-03-14T08:06:28.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11207, + "fields": { + "EF_ID": 510730, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13 (2-31)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.087Z", + "last_change_date": "2022-03-14T08:06:28.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11208, + "fields": { + "EF_ID": 510731, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8 (2-3)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.180Z", + "last_change_date": "2022-03-14T08:06:28.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11209, + "fields": { + "EF_ID": 510732, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1 (1-3)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.254Z", + "last_change_date": "2022-03-14T08:06:28.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11210, + "fields": { + "EF_ID": 510733, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Boreal, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31 (6-86)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.348Z", + "last_change_date": "2022-03-14T08:06:28.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11211, + "fields": { + "EF_ID": 510734, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Boreal, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55 (7-123)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.437Z", + "last_change_date": "2022-03-14T08:06:28.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11212, + "fields": { + "EF_ID": 510735, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27 (17-42)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.532Z", + "last_change_date": "2022-03-14T08:06:28.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11213, + "fields": { + "EF_ID": 510736, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26 (10-48)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.620Z", + "last_change_date": "2022-03-14T08:06:28.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11214, + "fields": { + "EF_ID": 510737, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.3 (17.3-21.1)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.708Z", + "last_change_date": "2022-03-14T08:06:28.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11215, + "fields": { + "EF_ID": 510738, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22 (6-42)", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.787Z", + "last_change_date": "2022-03-14T08:06:28.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11216, + "fields": { + "EF_ID": 510739, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.1", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.877Z", + "last_change_date": "2022-03-14T08:06:28.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11217, + "fields": { + "EF_ID": 510740, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Litter carbon stock of mature forests", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF; Equation 2.23: Annual change in carbon stocks in dead wood and litter due to land conversion, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.2 (Tier 1 default values for litter and dead wood carbon stocks), on page 2.27", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: These values for litter do not include fine woody debris.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:28.954Z", + "last_change_date": "2022-03-14T08:06:28.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11218, + "fields": { + "EF_ID": 510741, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Boreal, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.053Z", + "last_change_date": "2022-03-14T08:06:29.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11219, + "fields": { + "EF_ID": 510742, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Boreal, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.129Z", + "last_change_date": "2022-03-14T08:06:29.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11220, + "fields": { + "EF_ID": 510743, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.212Z", + "last_change_date": "2022-03-14T08:06:29.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11221, + "fields": { + "EF_ID": 510744, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.279Z", + "last_change_date": "2022-03-14T08:06:29.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11222, + "fields": { + "EF_ID": 510745, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.371Z", + "last_change_date": "2022-03-14T08:06:29.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11223, + "fields": { + "EF_ID": 510746, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.445Z", + "last_change_date": "2022-03-14T08:06:29.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11224, + "fields": { + "EF_ID": 510747, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.512Z", + "last_change_date": "2022-03-14T08:06:29.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11225, + "fields": { + "EF_ID": 510748, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.579Z", + "last_change_date": "2022-03-14T08:06:29.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11226, + "fields": { + "EF_ID": 510749, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Boreal, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.673Z", + "last_change_date": "2022-03-14T08:06:29.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11227, + "fields": { + "EF_ID": 510750, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Boreal, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.746Z", + "last_change_date": "2022-03-14T08:06:29.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11228, + "fields": { + "EF_ID": 510751, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.818Z", + "last_change_date": "2022-03-14T08:06:29.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11229, + "fields": { + "EF_ID": 510752, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.887Z", + "last_change_date": "2022-03-14T08:06:29.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11230, + "fields": { + "EF_ID": 510753, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:29.991Z", + "last_change_date": "2022-03-14T08:06:29.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11231, + "fields": { + "EF_ID": 510754, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.079Z", + "last_change_date": "2022-03-14T08:06:30.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11232, + "fields": { + "EF_ID": 510755, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.145Z", + "last_change_date": "2022-03-14T08:06:30.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11233, + "fields": { + "EF_ID": 510756, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "years", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.212Z", + "last_change_date": "2022-03-14T08:06:30.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11234, + "fields": { + "EF_ID": 510757, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Boreal, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.310Z", + "last_change_date": "2022-03-14T08:06:30.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11235, + "fields": { + "EF_ID": 510758, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Boreal, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.387Z", + "last_change_date": "2022-03-14T08:06:30.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11236, + "fields": { + "EF_ID": 510759, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.454Z", + "last_change_date": "2022-03-14T08:06:30.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11237, + "fields": { + "EF_ID": 510760, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.545Z", + "last_change_date": "2022-03-14T08:06:30.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11238, + "fields": { + "EF_ID": 510761, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.621Z", + "last_change_date": "2022-03-14T08:06:30.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11239, + "fields": { + "EF_ID": 510762, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.696Z", + "last_change_date": "2022-03-14T08:06:30.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11240, + "fields": { + "EF_ID": 510763, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.805Z", + "last_change_date": "2022-03-14T08:06:30.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11241, + "fields": { + "EF_ID": 510764, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.879Z", + "last_change_date": "2022-03-14T08:06:30.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11242, + "fields": { + "EF_ID": 510765, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Boreal, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:30.945Z", + "last_change_date": "2022-03-14T08:06:30.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11243, + "fields": { + "EF_ID": 510766, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Boreal, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.048Z", + "last_change_date": "2022-03-14T08:06:31.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11244, + "fields": { + "EF_ID": 510767, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.121Z", + "last_change_date": "2022-03-14T08:06:31.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11245, + "fields": { + "EF_ID": 510768, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.196Z", + "last_change_date": "2022-03-14T08:06:31.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11246, + "fields": { + "EF_ID": 510769, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.325Z", + "last_change_date": "2022-03-14T08:06:31.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11247, + "fields": { + "EF_ID": 510770, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.396Z", + "last_change_date": "2022-03-14T08:06:31.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11248, + "fields": { + "EF_ID": 510771, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.462Z", + "last_change_date": "2022-03-14T08:06:31.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11249, + "fields": { + "EF_ID": 510772, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon over length of transition period", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest; 2) The value indicates the annual increase in litter carbon when starting from bare ground in land converted to forest land; 3) The accumulation rates are for carbon being absorbed from the atmosphere. However, depending on the methodology, these may be transfers from other pools.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.568Z", + "last_change_date": "2022-03-14T08:06:31.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11250, + "fields": { + "EF_ID": 510773, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Boreal, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.646Z", + "last_change_date": "2022-03-14T08:06:31.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11251, + "fields": { + "EF_ID": 510774, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Boreal, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.712Z", + "last_change_date": "2022-03-14T08:06:31.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11252, + "fields": { + "EF_ID": 510775, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.802Z", + "last_change_date": "2022-03-14T08:06:31.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11253, + "fields": { + "EF_ID": 510776, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.879Z", + "last_change_date": "2022-03-14T08:06:31.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11254, + "fields": { + "EF_ID": 510777, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:31.945Z", + "last_change_date": "2022-03-14T08:06:31.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11255, + "fields": { + "EF_ID": 510778, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.046Z", + "last_change_date": "2022-03-14T08:06:32.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11256, + "fields": { + "EF_ID": 510779, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.137Z", + "last_change_date": "2022-03-14T08:06:32.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11257, + "fields": { + "EF_ID": 510780, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: broadleaf deciduous", + "Regional_Conditions": "Climate: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.204Z", + "last_change_date": "2022-03-14T08:06:32.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11258, + "fields": { + "EF_ID": 510781, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Boreal, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.306Z", + "last_change_date": "2022-03-14T08:06:32.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11259, + "fields": { + "EF_ID": 510782, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Boreal, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.379Z", + "last_change_date": "2022-03-14T08:06:32.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11260, + "fields": { + "EF_ID": 510783, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.446Z", + "last_change_date": "2022-03-14T08:06:32.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11261, + "fields": { + "EF_ID": 510784, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.541Z", + "last_change_date": "2022-03-14T08:06:32.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11262, + "fields": { + "EF_ID": 510785, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.612Z", + "last_change_date": "2022-03-14T08:06:32.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11263, + "fields": { + "EF_ID": 510786, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.679Z", + "last_change_date": "2022-03-14T08:06:32.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11264, + "fields": { + "EF_ID": 510787, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.792Z", + "last_change_date": "2022-03-14T08:06:32.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11265, + "fields": { + "EF_ID": 510788, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Net annual accumulation of litter carbon, based on 20 year default", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: needleleaf evergreen", + "Regional_Conditions": "Climate: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.13: Annual change in carbon stocks in litter in forest land remaining forest land, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1b of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.1 (Updated defaults for litter carbon stocks and transition period), on page 3.36", + "Technical_Reference": "Source: Siltanen et al., 1997; and Smith and Heath, 2002; Tremblay et al., 2002; and Vogt et al.,1996, converted from mass to carbon by multiplying by conversion factor of 0.37 (Smith and Heath, 2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Note: 1) Net annual accumulation of litter carbon is based mostly on data for managed forest and default period of 20 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.888Z", + "last_change_date": "2022-03-14T08:06:32.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11266, + "fields": { + "EF_ID": 510789, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average mortality rate (fraction of standing biomass per year)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0177", + "Unit": "fraction", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 0.616/61", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:32.963Z", + "last_change_date": "2022-03-14T08:06:32.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11267, + "fields": { + "EF_ID": 510790, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average mortality rate (fraction of standing biomass per year)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Evergreen Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0116", + "Unit": "fraction", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 1.059/49", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.060Z", + "last_change_date": "2022-03-14T08:06:33.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11268, + "fields": { + "EF_ID": 510791, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average mortality rate (fraction of standing biomass per year)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Deciduous Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0117", + "Unit": "fraction", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 0.682/29", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.146Z", + "last_change_date": "2022-03-14T08:06:33.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11269, + "fields": { + "EF_ID": 510792, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average (median) dead wood stock", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.2", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 2.12/37", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.213Z", + "last_change_date": "2022-03-14T08:06:33.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11270, + "fields": { + "EF_ID": 510793, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average (median) dead wood stock", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Evergreen Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.4", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 1.12/64", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.279Z", + "last_change_date": "2022-03-14T08:06:33.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11271, + "fields": { + "EF_ID": 510794, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average (median) dead wood stock", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Deciduous Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.7", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 1.00/62", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.378Z", + "last_change_date": "2022-03-14T08:06:33.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11272, + "fields": { + "EF_ID": 510795, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average (median) dead:live ratio", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "No dimension", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 0.75/10", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.454Z", + "last_change_date": "2022-03-14T08:06:33.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11273, + "fields": { + "EF_ID": 510796, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average (median) dead:live ratio", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Evergreen Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "No dimension", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 1.33/18", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.521Z", + "last_change_date": "2022-03-14T08:06:33.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11274, + "fields": { + "EF_ID": 510797, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average (median) dead:live ratio", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Deciduous Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "No dimension", + "Equation": "Equation 3.2.12: Annual change in carbon stocks in dead wood in forest land remaining forest land (Option 2), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.2 (Updated defaults of natural mortality rates, dead wood stocks, and live:dead ratios), on page 3.37", + "Technical_Reference": "Source: Harmon, M.E., O.N. Krankina, M. Yatskov, and E. Matthews. 2001. Predicting broad-scale carbon stores of woody detritus from plot-level data. Pp. 533-552 In: Lal, R. J Kimble, B.A. Stewart, Assessment Methods for Soil Carbon, CRC Press, New York.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Coefficient of Variation/Number of stands = 0.77/19", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.587Z", + "last_change_date": "2022-03-14T08:06:33.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11275, + "fields": { + "EF_ID": 510798, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default values for CO2 (expressed as carbon) Emission Factor for drained organic soils in managed forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.36 (0.82-3.82)", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.15: CO2 emissions from drained organic forest soils, IPCC Good Practice Guidance for LULUCF; Equation 2.26 - Annual carbon loss from drained organic soils, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.3 (Default values for CO2-C emission factor for drained organic soils in managed forests), on page 3.42; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.6 Emission factors for drained organic soils in managed forests, on page 4.53", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.681Z", + "last_change_date": "2022-03-14T08:06:33.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11276, + "fields": { + "EF_ID": 510799, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default values for CO2 (expressed as carbon) Emission Factor for drained organic soils in managed forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperate Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68 (0.41-1.91)", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.15: CO2 emissions from drained organic forest soils, IPCC Good Practice Guidance for LULUCF; Equation 2.26 - Annual carbon loss from drained organic soils, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.3 (Default values for CO2-C emission factor for drained organic soils in managed forests), on page 3.42; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.6 Emission factors for drained organic soils in managed forests, on page 4.53", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.754Z", + "last_change_date": "2022-03-14T08:06:33.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11277, + "fields": { + "EF_ID": 510800, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default values for CO2 (expressed as carbon) Emission Factor for drained organic soils in managed forests", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal Forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16 (0.08-1.09)", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.15: CO2 emissions from drained organic forest soils, IPCC Good Practice Guidance for LULUCF; Equation 2.26 - Annual carbon loss from drained organic soils, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.3 (Default values for CO2-C emission factor for drained organic soils in managed forests), on page 3.42; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.6 Emission factors for drained organic soils in managed forests, on page 4.53", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.821Z", + "last_change_date": "2022-03-14T08:06:33.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11278, + "fields": { + "EF_ID": 510801, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.916Z", + "last_change_date": "2022-03-14T08:06:33.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11279, + "fields": { + "EF_ID": 510802, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:33.988Z", + "last_change_date": "2022-03-14T08:06:33.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11280, + "fields": { + "EF_ID": 510803, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.109Z", + "last_change_date": "2022-03-14T08:06:34.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11281, + "fields": { + "EF_ID": 510804, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.218Z", + "last_change_date": "2022-03-14T08:06:34.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11282, + "fields": { + "EF_ID": 510805, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.318Z", + "last_change_date": "2022-03-14T08:06:34.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11283, + "fields": { + "EF_ID": 510806, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.427Z", + "last_change_date": "2022-03-14T08:06:34.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11284, + "fields": { + "EF_ID": 510807, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.528Z", + "last_change_date": "2022-03-14T08:06:34.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11285, + "fields": { + "EF_ID": 510808, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.628Z", + "last_change_date": "2022-03-14T08:06:34.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11286, + "fields": { + "EF_ID": 510809, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.729Z", + "last_change_date": "2022-03-14T08:06:34.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11287, + "fields": { + "EF_ID": 510810, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.805Z", + "last_change_date": "2022-03-14T08:06:34.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11288, + "fields": { + "EF_ID": 510811, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.896Z", + "last_change_date": "2022-03-14T08:06:34.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11289, + "fields": { + "EF_ID": 510812, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:34.971Z", + "last_change_date": "2022-03-14T08:06:34.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11290, + "fields": { + "EF_ID": 510813, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.065Z", + "last_change_date": "2022-03-14T08:06:35.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11291, + "fields": { + "EF_ID": 510814, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.138Z", + "last_change_date": "2022-03-14T08:06:35.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11292, + "fields": { + "EF_ID": 510815, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.233Z", + "last_change_date": "2022-03-14T08:06:35.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11293, + "fields": { + "EF_ID": 510816, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.313Z", + "last_change_date": "2022-03-14T08:06:35.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11294, + "fields": { + "EF_ID": 510817, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.425Z", + "last_change_date": "2022-03-14T08:06:35.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11295, + "fields": { + "EF_ID": 510818, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.496Z", + "last_change_date": "2022-03-14T08:06:35.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11296, + "fields": { + "EF_ID": 510819, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.593Z", + "last_change_date": "2022-03-14T08:06:35.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11297, + "fields": { + "EF_ID": 510820, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.672Z", + "last_change_date": "2022-03-14T08:06:35.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11298, + "fields": { + "EF_ID": 510821, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.761Z", + "last_change_date": "2022-03-14T08:06:35.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11299, + "fields": { + "EF_ID": 510822, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.846Z", + "last_change_date": "2022-03-14T08:06:35.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11300, + "fields": { + "EF_ID": 510823, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:35.937Z", + "last_change_date": "2022-03-14T08:06:35.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11301, + "fields": { + "EF_ID": 510824, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.022Z", + "last_change_date": "2022-03-14T08:06:36.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11302, + "fields": { + "EF_ID": 510825, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "117", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.121Z", + "last_change_date": "2022-03-14T08:06:36.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11303, + "fields": { + "EF_ID": 510826, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.197Z", + "last_change_date": "2022-03-14T08:06:36.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11304, + "fields": { + "EF_ID": 510827, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.289Z", + "last_change_date": "2022-03-14T08:06:36.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11305, + "fields": { + "EF_ID": 510828, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.363Z", + "last_change_date": "2022-03-14T08:06:36.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11306, + "fields": { + "EF_ID": 510829, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.426Z", + "last_change_date": "2022-03-14T08:06:36.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11307, + "fields": { + "EF_ID": 510830, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.515Z", + "last_change_date": "2022-03-14T08:06:36.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11308, + "fields": { + "EF_ID": 510831, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.597Z", + "last_change_date": "2022-03-14T08:06:36.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11309, + "fields": { + "EF_ID": 510832, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.668Z", + "last_change_date": "2022-03-14T08:06:36.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11310, + "fields": { + "EF_ID": 510833, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.759Z", + "last_change_date": "2022-03-14T08:06:36.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11311, + "fields": { + "EF_ID": 510834, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols). Note the EF value is also the same value provided in the IPCC 1996 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.838Z", + "last_change_date": "2022-03-14T08:06:36.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11312, + "fields": { + "EF_ID": 510835, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols). Note the EF value is also the same value provided in the IPCC 1996 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:36.935Z", + "last_change_date": "2022-03-14T08:06:36.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11313, + "fields": { + "EF_ID": 510836, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols). Note the EF value is also the same value provided in the IPCC 1996 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.010Z", + "last_change_date": "2022-03-14T08:06:37.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11314, + "fields": { + "EF_ID": 510837, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.102Z", + "last_change_date": "2022-03-14T08:06:37.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11315, + "fields": { + "EF_ID": 510838, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols). Note the EF value is also the same value provided in the IPCC 1996 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.410Z", + "last_change_date": "2022-03-14T08:06:37.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11316, + "fields": { + "EF_ID": 510839, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols). Note the EF value is also the same value provided in the IPCC 1996 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.504Z", + "last_change_date": "2022-03-14T08:06:37.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11317, + "fields": { + "EF_ID": 510840, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols). Note the EF value is also the same value provided in the IPCC 1996 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.576Z", + "last_change_date": "2022-03-14T08:06:37.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11318, + "fields": { + "EF_ID": 510841, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "146", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.664Z", + "last_change_date": "2022-03-14T08:06:37.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11319, + "fields": { + "EF_ID": 510842, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.727Z", + "last_change_date": "2022-03-14T08:06:37.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11320, + "fields": { + "EF_ID": 510843, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.822Z", + "last_change_date": "2022-03-14T08:06:37.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11321, + "fields": { + "EF_ID": 510844, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.902Z", + "last_change_date": "2022-03-14T08:06:37.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11322, + "fields": { + "EF_ID": 510845, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:37.998Z", + "last_change_date": "2022-03-14T08:06:37.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11323, + "fields": { + "EF_ID": 510846, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.077Z", + "last_change_date": "2022-03-14T08:06:38.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11324, + "fields": { + "EF_ID": 510847, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.166Z", + "last_change_date": "2022-03-14T08:06:38.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11325, + "fields": { + "EF_ID": 510848, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.14 - Annual change in carbon stocks in mineral soils in forest land remaining forest land; Equation 3.2.31 - Annual change in carbon stocks in mineral soils in land converted to forest land; Equation 3.2.32 - Annual change in carbon stocks in mineral soils upon afforestation, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 - Annual change in organic carbon stocks in mineral soils, of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.2.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.43; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.243Z", + "last_change_date": "2022-03-14T08:06:38.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11326, + "fields": { + "EF_ID": 510849, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default coefficients for Biomass Accumulation Rate (G) for a given aboveground woody biomass and harvest cycles in cropping systems containing perennial species", + "Technology_Practices": "", + "Parameter_Conditions": "Aboveground biomass carbon stock at harvest = 63 tonnes C/ha; Harvest/Maturity Cycle = 30 yr", + "Regional_Conditions": "Temperate (all moisture regimes)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.2 (in Forest Land Section but applicable to Cropland) of the IPCC Good Practice Guidance for LULUCF; Equation 2.7 - Annual change in carbon stocks in biomass in land remaining in a particular land-use category (Gain-Loss method) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet CL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.2 (Default coefficient for aboveground woody biomass and harvest cycles in cropping systems containing perennial species), on page 3.71; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.1 (Default coefficients for above-ground woody biomass and harvest cycles in cropping systems containing perennial species), on page 5.9", + "Technical_Reference": "The value is derived from the literature survey and synthesis published by Schroeder (1994) Carbon storage benefits of agroforestry systems. Agroforestry Systems 27: pp.89-97.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the value is +-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). The value was derived from the aboveground biomass carbon stock at harvest of 63 tonnes C/ha and harvest/maturity cycle of 30 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.335Z", + "last_change_date": "2022-03-14T08:06:38.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11327, + "fields": { + "EF_ID": 510850, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default coefficients for Biomass Accumulation Rate (G) for a given aboveground woody biomass and harvest cycles in cropping systems containing perennial species", + "Technology_Practices": "", + "Parameter_Conditions": "Aboveground biomass carbon stock at harvest = 9 tonnes C/ha; Harvest/Maturity Cycle = 5 yr", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.2 (in Forest Land Section but applicable to Cropland) of the IPCC Good Practice Guidance for LULUCF; Equation 2.7 - Annual change in carbon stocks in biomass in land remaining in a particular land-use category (Gain-Loss method) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet CL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.2 (Default coefficient for aboveground woody biomass and harvest cycles in cropping systems containing perennial species), on page 3.71; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.1 (Default coefficients for above-ground woody biomass and harvest cycles in cropping systems containing perennial species), on page 5.9", + "Technical_Reference": "The value is derived from the literature survey and synthesis published by Schroeder (1994) Carbon storage benefits of agroforestry systems. Agroforestry Systems 27: pp.89-97.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the value is +-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). The value was derived from the aboveground biomass carbon stock at harvest of 9 tonnes C/ha and harvest/maturity cycle of 5 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.410Z", + "last_change_date": "2022-03-14T08:06:38.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11328, + "fields": { + "EF_ID": 510851, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default coefficients for Biomass Accumulation Rate (G) for a given aboveground woody biomass and harvest cycles in cropping systems containing perennial species", + "Technology_Practices": "", + "Parameter_Conditions": "Aboveground biomass carbon stock at harvest = 21 tonnes C/ha; Harvest/Maturity Cycle = 8 yr", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.2 (in Forest Land Section but applicable to Cropland) of the IPCC Good Practice Guidance for LULUCF; Equation 2.7 - Annual change in carbon stocks in biomass in land remaining in a particular land-use category (Gain-Loss method) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet CL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.2 (Default coefficient for aboveground woody biomass and harvest cycles in cropping systems containing perennial species), on page 3.71; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.1 (Default coefficients for above-ground woody biomass and harvest cycles in cropping systems containing perennial species), on page 5.9", + "Technical_Reference": "The value is derived from the literature survey and synthesis published by Schroeder (1994) Carbon storage benefits of agroforestry systems. Agroforestry Systems 27: pp.89-97.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the value is +-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). The value was derived from the aboveground biomass carbon stock at harvest of 21 tonnes C/ha and harvest/maturity cycle of 8 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.502Z", + "last_change_date": "2022-03-14T08:06:38.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11329, + "fields": { + "EF_ID": 510852, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default coefficients for Biomass Accumulation Rate (G) for a given aboveground woody biomass and harvest cycles in cropping systems containing perennial species", + "Technology_Practices": "", + "Parameter_Conditions": "Aboveground biomass carbon stock at harvest = 50 tonnes C/ha; Harvest/Maturity Cycle = 5 yr", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.2.2 (in Forest Land Section but applicable to Cropland) of the IPCC Good Practice Guidance for LULUCF; Equation 2.7 - Annual change in carbon stocks in biomass in land remaining in a particular land-use category (Gain-Loss method) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet CL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.2 (Default coefficient for aboveground woody biomass and harvest cycles in cropping systems containing perennial species), on page 3.71; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.1 (Default coefficients for above-ground woody biomass and harvest cycles in cropping systems containing perennial species), on page 5.9", + "Technical_Reference": "The value is derived from the literature survey and synthesis published by Schroeder (1994) Carbon storage benefits of agroforestry systems. Agroforestry Systems 27: pp.89-97.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the value is +-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). The value was derived from the aboveground biomass carbon stock at harvest of 50 tonnes C/ha and harvest/maturity cycle of 5 years.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.577Z", + "last_change_date": "2022-03-14T08:06:38.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11330, + "fields": { + "EF_ID": 510853, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default coefficients for Biomass Carbon Loss (L) for a given aboveground woody biomass and harvest cycles in cropping systems containing perennial species", + "Technology_Practices": "", + "Parameter_Conditions": "Aboveground biomass carbon stock at harvest = 63 tonnes C/ha; Harvest/Maturity Cycle = 30 yr", + "Regional_Conditions": "Temperate (all moisture regimes)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.2 (in Forest Land Section but applicable to Cropland) of the IPCC Good Practice Guidance for LULUCF; Equation 2.7 - Annual change in carbon stocks in biomass in land remaining in a particular land-use category (Gain-Loss method) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet CL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.2 (Default coefficient for aboveground woody biomass and harvest cycles in cropping systems containing perennial species), on page 3.71; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.1 (Default coefficients for above-ground woody biomass and harvest cycles in cropping systems containing perennial species), on page 5.9", + "Technical_Reference": "The value is derived from the literature survey and synthesis published by Schroeder (1994) Carbon storage benefits of agroforestry systems. Agroforestry Systems 27: pp.89-97.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the value is +-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.678Z", + "last_change_date": "2022-03-14T08:06:38.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11331, + "fields": { + "EF_ID": 510854, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default coefficients for Biomass Carbon Loss (L) for a given aboveground woody biomass and harvest cycles in cropping systems containing perennial species", + "Technology_Practices": "", + "Parameter_Conditions": "Aboveground biomass carbon stock at harvest = 9 tonnes C/ha; Harvest/Maturity Cycle = 5 yr", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.2 (in Forest Land Section but applicable to Cropland) of the IPCC Good Practice Guidance for LULUCF; Equation 2.7 - Annual change in carbon stocks in biomass in land remaining in a particular land-use category (Gain-Loss method) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet CL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.2 (Default coefficient for aboveground woody biomass and harvest cycles in cropping systems containing perennial species), on page 3.71; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.1 (Default coefficients for above-ground woody biomass and harvest cycles in cropping systems containing perennial species), on page 5.9", + "Technical_Reference": "The value is derived from the literature survey and synthesis published by Schroeder (1994) Carbon storage benefits of agroforestry systems. Agroforestry Systems 27: pp.89-97.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the value is +-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.751Z", + "last_change_date": "2022-03-14T08:06:38.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11332, + "fields": { + "EF_ID": 510855, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default coefficients for Biomass Carbon Loss (L) for a given aboveground woody biomass and harvest cycles in cropping systems containing perennial species", + "Technology_Practices": "", + "Parameter_Conditions": "Aboveground biomass carbon stock at harvest = 21 tonnes C/ha; Harvest/Maturity Cycle = 8 yr", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.2 (in Forest Land Section but applicable to Cropland) of the IPCC Good Practice Guidance for LULUCF; Equation 2.7 - Annual change in carbon stocks in biomass in land remaining in a particular land-use category (Gain-Loss method) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet CL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.2 (Default coefficient for aboveground woody biomass and harvest cycles in cropping systems containing perennial species), on page 3.71; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.1 (Default coefficients for above-ground woody biomass and harvest cycles in cropping systems containing perennial species), on page 5.9", + "Technical_Reference": "The value is derived from the literature survey and synthesis published by Schroeder (1994) Carbon storage benefits of agroforestry systems. Agroforestry Systems 27: pp.89-97.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the value is +-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.838Z", + "last_change_date": "2022-03-14T08:06:38.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11333, + "fields": { + "EF_ID": 510856, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default coefficients for Biomass Carbon Loss (L) for a given aboveground woody biomass and harvest cycles in cropping systems containing perennial species", + "Technology_Practices": "", + "Parameter_Conditions": "Aboveground biomass carbon stock at harvest = 50 tonnes C/ha; Harvest/Maturity Cycle = 5 yr", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.2.2 (in Forest Land Section but applicable to Cropland) of the IPCC Good Practice Guidance for LULUCF; Equation 2.7 - Annual change in carbon stocks in biomass in land remaining in a particular land-use category (Gain-Loss method) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet CL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.2 (Default coefficient for aboveground woody biomass and harvest cycles in cropping systems containing perennial species), on page 3.71; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.1 (Default coefficients for above-ground woody biomass and harvest cycles in cropping systems containing perennial species), on page 5.9", + "Technical_Reference": "The value is derived from the literature survey and synthesis published by Schroeder (1994) Carbon storage benefits of agroforestry systems. Agroforestry Systems 27: pp.89-97.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the value is +-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.910Z", + "last_change_date": "2022-03-14T08:06:38.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11334, + "fields": { + "EF_ID": 510857, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:38.997Z", + "last_change_date": "2022-03-14T08:06:38.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11335, + "fields": { + "EF_ID": 510858, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.085Z", + "last_change_date": "2022-03-14T08:06:39.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11336, + "fields": { + "EF_ID": 510859, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.181Z", + "last_change_date": "2022-03-14T08:06:39.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11337, + "fields": { + "EF_ID": 510860, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.268Z", + "last_change_date": "2022-03-14T08:06:39.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11338, + "fields": { + "EF_ID": 510861, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.366Z", + "last_change_date": "2022-03-14T08:06:39.366Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11339, + "fields": { + "EF_ID": 510862, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.452Z", + "last_change_date": "2022-03-14T08:06:39.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11340, + "fields": { + "EF_ID": 510863, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.550Z", + "last_change_date": "2022-03-14T08:06:39.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11341, + "fields": { + "EF_ID": 510864, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.643Z", + "last_change_date": "2022-03-14T08:06:39.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11342, + "fields": { + "EF_ID": 510865, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.735Z", + "last_change_date": "2022-03-14T08:06:39.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11343, + "fields": { + "EF_ID": 510866, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.810Z", + "last_change_date": "2022-03-14T08:06:39.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11344, + "fields": { + "EF_ID": 510867, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.876Z", + "last_change_date": "2022-03-14T08:06:39.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11345, + "fields": { + "EF_ID": 510868, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:39.970Z", + "last_change_date": "2022-03-14T08:06:39.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11346, + "fields": { + "EF_ID": 510869, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.043Z", + "last_change_date": "2022-03-14T08:06:40.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11347, + "fields": { + "EF_ID": 510870, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.138Z", + "last_change_date": "2022-03-14T08:06:40.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11348, + "fields": { + "EF_ID": 510871, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.218Z", + "last_change_date": "2022-03-14T08:06:40.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11349, + "fields": { + "EF_ID": 510872, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.330Z", + "last_change_date": "2022-03-14T08:06:40.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11350, + "fields": { + "EF_ID": 510873, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.406Z", + "last_change_date": "2022-03-14T08:06:40.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11351, + "fields": { + "EF_ID": 510874, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.472Z", + "last_change_date": "2022-03-14T08:06:40.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11352, + "fields": { + "EF_ID": 510875, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.565Z", + "last_change_date": "2022-03-14T08:06:40.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11353, + "fields": { + "EF_ID": 510876, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.652Z", + "last_change_date": "2022-03-14T08:06:40.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11354, + "fields": { + "EF_ID": 510877, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.731Z", + "last_change_date": "2022-03-14T08:06:40.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11355, + "fields": { + "EF_ID": 510878, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.833Z", + "last_change_date": "2022-03-14T08:06:40.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11356, + "fields": { + "EF_ID": 510879, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:40.927Z", + "last_change_date": "2022-03-14T08:06:40.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11357, + "fields": { + "EF_ID": 510880, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.006Z", + "last_change_date": "2022-03-14T08:06:41.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11358, + "fields": { + "EF_ID": 510881, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "117", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.109Z", + "last_change_date": "2022-03-14T08:06:41.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11359, + "fields": { + "EF_ID": 510882, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.185Z", + "last_change_date": "2022-03-14T08:06:41.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11360, + "fields": { + "EF_ID": 510883, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.256Z", + "last_change_date": "2022-03-14T08:06:41.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11361, + "fields": { + "EF_ID": 510884, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.353Z", + "last_change_date": "2022-03-14T08:06:41.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11362, + "fields": { + "EF_ID": 510885, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.427Z", + "last_change_date": "2022-03-14T08:06:41.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11363, + "fields": { + "EF_ID": 510886, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.497Z", + "last_change_date": "2022-03-14T08:06:41.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11364, + "fields": { + "EF_ID": 510887, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.564Z", + "last_change_date": "2022-03-14T08:06:41.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11365, + "fields": { + "EF_ID": 510888, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.655Z", + "last_change_date": "2022-03-14T08:06:41.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11366, + "fields": { + "EF_ID": 510889, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.743Z", + "last_change_date": "2022-03-14T08:06:41.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11367, + "fields": { + "EF_ID": 510890, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.814Z", + "last_change_date": "2022-03-14T08:06:41.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11368, + "fields": { + "EF_ID": 510891, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.906Z", + "last_change_date": "2022-03-14T08:06:41.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11369, + "fields": { + "EF_ID": 510892, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:41.977Z", + "last_change_date": "2022-03-14T08:06:41.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11370, + "fields": { + "EF_ID": 510893, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.048Z", + "last_change_date": "2022-03-14T08:06:42.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11371, + "fields": { + "EF_ID": 510894, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.141Z", + "last_change_date": "2022-03-14T08:06:42.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11372, + "fields": { + "EF_ID": 510895, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.332Z", + "last_change_date": "2022-03-14T08:06:42.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11373, + "fields": { + "EF_ID": 510896, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.498Z", + "last_change_date": "2022-03-14T08:06:42.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11374, + "fields": { + "EF_ID": 510897, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "146", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.592Z", + "last_change_date": "2022-03-14T08:06:42.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11375, + "fields": { + "EF_ID": 510898, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.681Z", + "last_change_date": "2022-03-14T08:06:42.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11376, + "fields": { + "EF_ID": 510899, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.756Z", + "last_change_date": "2022-03-14T08:06:42.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11377, + "fields": { + "EF_ID": 510900, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.852Z", + "last_change_date": "2022-03-14T08:06:42.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11378, + "fields": { + "EF_ID": 510901, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:42.931Z", + "last_change_date": "2022-03-14T08:06:42.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11379, + "fields": { + "EF_ID": 510902, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.015Z", + "last_change_date": "2022-03-14T08:06:43.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11380, + "fields": { + "EF_ID": 510903, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.113Z", + "last_change_date": "2022-03-14T08:06:43.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11381, + "fields": { + "EF_ID": 510904, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.3: Annual change in carbon stocks in mineral soils for a single cropland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.3 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.76", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.189Z", + "last_change_date": "2022-03-14T08:06:43.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11382, + "fields": { + "EF_ID": 510905, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.256Z", + "last_change_date": "2022-03-14T08:06:43.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11383, + "fields": { + "EF_ID": 510906, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.347Z", + "last_change_date": "2022-03-14T08:06:43.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11384, + "fields": { + "EF_ID": 510907, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.423Z", + "last_change_date": "2022-03-14T08:06:43.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11385, + "fields": { + "EF_ID": 510908, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.515Z", + "last_change_date": "2022-03-14T08:06:43.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11386, + "fields": { + "EF_ID": 510909, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.589Z", + "last_change_date": "2022-03-14T08:06:43.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11387, + "fields": { + "EF_ID": 510910, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.683Z", + "last_change_date": "2022-03-14T08:06:43.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11388, + "fields": { + "EF_ID": 510911, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.773Z", + "last_change_date": "2022-03-14T08:06:43.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11389, + "fields": { + "EF_ID": 510912, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.867Z", + "last_change_date": "2022-03-14T08:06:43.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11390, + "fields": { + "EF_ID": 510913, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:43.956Z", + "last_change_date": "2022-03-14T08:06:43.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11391, + "fields": { + "EF_ID": 510914, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.043Z", + "last_change_date": "2022-03-14T08:06:44.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11392, + "fields": { + "EF_ID": 510915, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.123Z", + "last_change_date": "2022-03-14T08:06:44.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11393, + "fields": { + "EF_ID": 510916, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.206Z", + "last_change_date": "2022-03-14T08:06:44.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11394, + "fields": { + "EF_ID": 510917, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.302Z", + "last_change_date": "2022-03-14T08:06:44.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11395, + "fields": { + "EF_ID": 510918, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.381Z", + "last_change_date": "2022-03-14T08:06:44.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11396, + "fields": { + "EF_ID": 510919, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.478Z", + "last_change_date": "2022-03-14T08:06:44.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11397, + "fields": { + "EF_ID": 510920, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.556Z", + "last_change_date": "2022-03-14T08:06:44.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11398, + "fields": { + "EF_ID": 510921, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.647Z", + "last_change_date": "2022-03-14T08:06:44.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11399, + "fields": { + "EF_ID": 510922, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.723Z", + "last_change_date": "2022-03-14T08:06:44.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11400, + "fields": { + "EF_ID": 510923, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.801Z", + "last_change_date": "2022-03-14T08:06:44.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11401, + "fields": { + "EF_ID": 510924, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.890Z", + "last_change_date": "2022-03-14T08:06:44.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11402, + "fields": { + "EF_ID": 510925, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:44.973Z", + "last_change_date": "2022-03-14T08:06:44.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11403, + "fields": { + "EF_ID": 510926, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.043Z", + "last_change_date": "2022-03-14T08:06:45.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11404, + "fields": { + "EF_ID": 510927, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.141Z", + "last_change_date": "2022-03-14T08:06:45.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11405, + "fields": { + "EF_ID": 510928, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.223Z", + "last_change_date": "2022-03-14T08:06:45.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11406, + "fields": { + "EF_ID": 510929, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "117", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.301Z", + "last_change_date": "2022-03-14T08:06:45.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11407, + "fields": { + "EF_ID": 510930, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.401Z", + "last_change_date": "2022-03-14T08:06:45.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11408, + "fields": { + "EF_ID": 510931, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.476Z", + "last_change_date": "2022-03-14T08:06:45.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11409, + "fields": { + "EF_ID": 510932, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.543Z", + "last_change_date": "2022-03-14T08:06:45.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11410, + "fields": { + "EF_ID": 510933, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.636Z", + "last_change_date": "2022-03-14T08:06:45.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11411, + "fields": { + "EF_ID": 510934, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.723Z", + "last_change_date": "2022-03-14T08:06:45.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11412, + "fields": { + "EF_ID": 510935, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.793Z", + "last_change_date": "2022-03-14T08:06:45.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11413, + "fields": { + "EF_ID": 510936, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for spodic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of spodic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "not applicable", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Spodic soils are soils exhibiting strong podzolization (in WRB classification includes Podzols; in USDA classification Spodosols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.877Z", + "last_change_date": "2022-03-14T08:06:45.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11414, + "fields": { + "EF_ID": 510937, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:45.971Z", + "last_change_date": "2022-03-14T08:06:45.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11415, + "fields": { + "EF_ID": 510938, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.048Z", + "last_change_date": "2022-03-14T08:06:46.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11416, + "fields": { + "EF_ID": 510939, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.118Z", + "last_change_date": "2022-03-14T08:06:46.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11417, + "fields": { + "EF_ID": 510940, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.215Z", + "last_change_date": "2022-03-14T08:06:46.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11418, + "fields": { + "EF_ID": 510941, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.290Z", + "last_change_date": "2022-03-14T08:06:46.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11419, + "fields": { + "EF_ID": 510942, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.352Z", + "last_change_date": "2022-03-14T08:06:46.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11420, + "fields": { + "EF_ID": 510943, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.449Z", + "last_change_date": "2022-03-14T08:06:46.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11421, + "fields": { + "EF_ID": 510944, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.532Z", + "last_change_date": "2022-03-14T08:06:46.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11422, + "fields": { + "EF_ID": 510945, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "146", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.593Z", + "last_change_date": "2022-03-14T08:06:46.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11423, + "fields": { + "EF_ID": 510946, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.684Z", + "last_change_date": "2022-03-14T08:06:46.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11424, + "fields": { + "EF_ID": 510947, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "87", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.773Z", + "last_change_date": "2022-03-14T08:06:46.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11425, + "fields": { + "EF_ID": 510948, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.843Z", + "last_change_date": "2022-03-14T08:06:46.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11426, + "fields": { + "EF_ID": 510949, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:46.927Z", + "last_change_date": "2022-03-14T08:06:46.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11427, + "fields": { + "EF_ID": 510950, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.015Z", + "last_change_date": "2022-03-14T08:06:47.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11428, + "fields": { + "EF_ID": 510951, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.076Z", + "last_change_date": "2022-03-14T08:06:47.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11429, + "fields": { + "EF_ID": 510952, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.4.8: Annual change in carbon stocks in mineral soils for a single grassland system of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.4 (Default reference (under native vegetation) soil organic carbon stocks, SOCref), on page 3.117", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Mean stocks are the EF value given. A default error estimate of 95% (expressed as 2x standard deviation, as percent of the mean) is assumed for soil-climate types.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.162Z", + "last_change_date": "2022-03-14T08:06:47.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11430, + "fields": { + "EF_ID": 510953, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land use factor was estimated relative to u", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7, 0.6", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Note: The second EF value applies to the Aquic soil class as defined in the 1996 IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.240Z", + "last_change_date": "2022-03-14T08:06:47.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11431, + "fields": { + "EF_ID": 510954, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land use factor was estimated relative to", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6, 0.5", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Note: The second EF value applies to the Aquic soil class as defined in the 1996 IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.302Z", + "last_change_date": "2022-03-14T08:06:47.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11432, + "fields": { + "EF_ID": 510955, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: paddy rice; Description: Long-term (> 20 year) annual cropping of wetland (paddy rice). Can include double-cropping with non-flooded crops. For paddy rice, tillage and input factors are not used.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.438Z", + "last_change_date": "2022-03-14T08:06:47.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11433, + "fields": { + "EF_ID": 510956, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: set aside (<20 years); Description: Represents temporary set aside of annually cropland (e.g. conservation reserves) or other idle cropland that has been revegetated with perennial grasses.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.515Z", + "last_change_date": "2022-03-14T08:06:47.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11434, + "fields": { + "EF_ID": 510957, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: full tillage; Description: Substantial soil disturbance with full inversion and/or frequent (within year) tillage operations. At planting time, little (e.g. <30%) of the surface is covered by residues.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.577Z", + "last_change_date": "2022-03-14T08:06:47.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11435, + "fields": { + "EF_ID": 510958, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: full tillage; Description: Substantial soil disturbance with full inversion and/or frequent (within year) tillage operations. At planting time, little (e.g. <30%) of the surface is covered by residues.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9, 0.8", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2). Note: The second EF value applies to the Aquic soil class as defined in the 1996 IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.660Z", + "last_change_date": "2022-03-14T08:06:47.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11436, + "fields": { + "EF_ID": 510959, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: reduced tillage; Description: Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.05", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.758Z", + "last_change_date": "2022-03-14T08:06:47.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11437, + "fields": { + "EF_ID": 510960, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: reduced tillage; Description: Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.840Z", + "last_change_date": "2022-03-14T08:06:47.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11438, + "fields": { + "EF_ID": 510961, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: no-till; Description: Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:47.910Z", + "last_change_date": "2022-03-14T08:06:47.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11439, + "fields": { + "EF_ID": 510962, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: no-till; Description: Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.001Z", + "last_change_date": "2022-03-14T08:06:48.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11440, + "fields": { + "EF_ID": 510963, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: low input; Description: Low residue return due to removal of residues (via collection or burning), frequent bare-fallowing or production of crops yielding low residues (e.g. vegetables, tobacco, cotton).", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.076Z", + "last_change_date": "2022-03-14T08:06:48.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11441, + "fields": { + "EF_ID": 510964, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: low input; Description: Low residue return due to removal of residues (via collection or burning), frequent bare-fallowing or production of crops yielding low residues (e.g. vegetables, tobacco, cotton).", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.148Z", + "last_change_date": "2022-03-14T08:06:48.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11442, + "fields": { + "EF_ID": 510965, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: medium input; Description: Representative for annual cropping with cereals where all crop residues are returned to the field. If residues are removed then supplemental organic matter (e.g. manure) is added.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.218Z", + "last_change_date": "2022-03-14T08:06:48.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11443, + "fields": { + "EF_ID": 510966, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: medium input; Description: Representative for annual cropping with cereals where all crop residues are returned to the field. If residues are removed then supplemental organic matter (e.g. manure) is added.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.285Z", + "last_change_date": "2022-03-14T08:06:48.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11444, + "fields": { + "EF_ID": 510967, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: high input without manure; Description: Represents significantly greater crop residue inputs due to production of high residue yielding crops, use of green manures, cover crops, improved vegetated fallows, frequent use of perennial grasses in annua", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.378Z", + "last_change_date": "2022-03-14T08:06:48.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11445, + "fields": { + "EF_ID": 510968, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: high input with manure; Description: Represents high input of crop residues together with regular addition of animal manure.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.473Z", + "last_change_date": "2022-03-14T08:06:48.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11446, + "fields": { + "EF_ID": 510969, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land use factor was estimated relative to", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-10% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.535Z", + "last_change_date": "2022-03-14T08:06:48.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11447, + "fields": { + "EF_ID": 510970, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land use factor was estimated relative to", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-12% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.629Z", + "last_change_date": "2022-03-14T08:06:48.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11448, + "fields": { + "EF_ID": 510971, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land use factor was estimated relative to", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-38% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.707Z", + "last_change_date": "2022-03-14T08:06:48.707Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11449, + "fields": { + "EF_ID": 510972, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land use factor was estimated relative to", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-42% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.797Z", + "last_change_date": "2022-03-14T08:06:48.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11450, + "fields": { + "EF_ID": 510973, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: paddy rice; Description: Long-term (> 20 year) annual cropping of wetland (paddy rice). Can include double-cropping with non-flooded crops. For paddy rice, tillage and input factors are not used.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical; Moisture regime: dry and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-90% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.874Z", + "last_change_date": "2022-03-14T08:06:48.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11451, + "fields": { + "EF_ID": 510974, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: set aside (<20 years); Description: Represents temporary set aside of annually cropland (e.g. conservation reserves) or other idle cropland that has been revegetated with perennial grasses.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-10% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:48.973Z", + "last_change_date": "2022-03-14T08:06:48.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11452, + "fields": { + "EF_ID": 510975, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: set aside (<20 years); Description: Represents temporary set aside of annually cropland (e.g. conservation reserves) or other idle cropland that has been revegetated with perennial grasses.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-18% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.049Z", + "last_change_date": "2022-03-14T08:06:49.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11453, + "fields": { + "EF_ID": 510976, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: full tillage; Description: Substantial soil disturbance with full inversion and/or frequent (within year) tillage operations. At planting time, little (e.g. <30%) of the surface is covered by residues.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: dry and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.148Z", + "last_change_date": "2022-03-14T08:06:49.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11454, + "fields": { + "EF_ID": 510977, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: full tillage; Description: Substantial soil disturbance with full inversion and/or frequent (within year) tillage operations. At planting time, little (e.g. <30%) of the surface is covered by residues.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical; Moisture regime: dry and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.224Z", + "last_change_date": "2022-03-14T08:06:49.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11455, + "fields": { + "EF_ID": 510978, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: reduced tillage; Description: Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.03", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-6% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.293Z", + "last_change_date": "2022-03-14T08:06:49.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11456, + "fields": { + "EF_ID": 510979, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: reduced tillage; Description: Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.09", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-6% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.393Z", + "last_change_date": "2022-03-14T08:06:49.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11457, + "fields": { + "EF_ID": 510980, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: reduced tillage; Description: Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.10", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-10% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.482Z", + "last_change_date": "2022-03-14T08:06:49.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11458, + "fields": { + "EF_ID": 510981, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: reduced tillage; Description: Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.16", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-8% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.577Z", + "last_change_date": "2022-03-14T08:06:49.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11459, + "fields": { + "EF_ID": 510982, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: no-till; Description: Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.10", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-6% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.666Z", + "last_change_date": "2022-03-14T08:06:49.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11460, + "fields": { + "EF_ID": 510983, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: no-till; Description: Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.16", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-4% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.735Z", + "last_change_date": "2022-03-14T08:06:49.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11461, + "fields": { + "EF_ID": 510984, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: no-till; Description: Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-8% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.829Z", + "last_change_date": "2022-03-14T08:06:49.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11462, + "fields": { + "EF_ID": 510985, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: no-till; Description: Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.23", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-8% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.907Z", + "last_change_date": "2022-03-14T08:06:49.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11463, + "fields": { + "EF_ID": 510986, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: low input; Description: Low residue return due to removal of residues (via collection or burning), frequent bare-fallowing or production of crops yielding low residues (e.g. vegetables, tobacco, cotton).", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-4% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:49.968Z", + "last_change_date": "2022-03-14T08:06:49.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11464, + "fields": { + "EF_ID": 510987, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: low input; Description: Low residue return due to removal of residues (via collection or burning), frequent bare-fallowing or production of crops yielding low residues (e.g. vegetables, tobacco, cotton).", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-8% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.071Z", + "last_change_date": "2022-03-14T08:06:50.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11465, + "fields": { + "EF_ID": 510988, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: low input; Description: Low residue return due to removal of residues (via collection or burning), frequent bare-fallowing or production of crops yielding low residues (e.g. vegetables, tobacco, cotton).", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-4% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.157Z", + "last_change_date": "2022-03-14T08:06:50.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11466, + "fields": { + "EF_ID": 510989, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: low input; Description: Low residue return due to removal of residues (via collection or burning), frequent bare-fallowing or production of crops yielding low residues (e.g. vegetables, tobacco, cotton).", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-4% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.218Z", + "last_change_date": "2022-03-14T08:06:50.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11467, + "fields": { + "EF_ID": 510990, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: medium input; Description: Representative for annual cropping with cereals where all crop residues are returned to the field. If residues are removed then supplemental organic matter (e.g. manure) is added.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate; Moisture regime: dry and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.322Z", + "last_change_date": "2022-03-14T08:06:50.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11468, + "fields": { + "EF_ID": 510991, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: medium input; Description: Representative for annual cropping with cereals where all crop residues are returned to the field. If residues are removed then supplemental organic matter (e.g. manure) is added.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: tropical; Moisture regime: dry and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.399Z", + "last_change_date": "2022-03-14T08:06:50.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11469, + "fields": { + "EF_ID": 510992, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: high input without manure; Description: Represents significantly greater crop residue inputs due to production of high residue yielding crops, use of green manures, cover crops, improved vegetated fallows, frequent use of perennial grasses in annua", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.07", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-10% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.460Z", + "last_change_date": "2022-03-14T08:06:50.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11470, + "fields": { + "EF_ID": 510993, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: high input without manure; Description: Represents significantly greater crop residue inputs due to production of high residue yielding crops, use of green manures, cover crops, improved vegetated fallows, frequent use of perennial grasses in annua", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.11", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-10% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.557Z", + "last_change_date": "2022-03-14T08:06:50.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11471, + "fields": { + "EF_ID": 510994, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: high input with manure; Description: Represents high input of crop residues together with regular addition of animal manure.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical; Moisture regime: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.34", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-12% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.632Z", + "last_change_date": "2022-03-14T08:06:50.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11472, + "fields": { + "EF_ID": 510995, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: high input with manure; Description: Represents high input of crop residues together with regular addition of animal manure.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: temperate and tropical; Moisture regime: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.38", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.4 Relative stock change factors (over 20years) for different management activities on cropland, on page 3.77", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-8% which is equivalent to +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis a default, based on expert judgement, of +/- 50% is used. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.725Z", + "last_change_date": "2022-03-14T08:06:50.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11473, + "fields": { + "EF_ID": 510996, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Annual emission factor for cultivated organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climatic Temperature regime: cold temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.3.5 CO2 emissions from cultivated organic soils in cropland remaining cropland, of the IPCC Good Practice Guidance for LULUCF.; Equation 2.26 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.5 Annual emission factor for cultivated organic soils, on page 3.79; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.6 Annual emission factors (EF) for cultivated organic soils, on page 5.19", + "Technical_Reference": "Estimates are based on Glenn et al., 1993; Kasimir-Klemedtsson et al., 1997; Freibauer and Kaltschmitt, 2001; Leifeld et al., 2005; Augustin et al., 1996; Nykänen et al., 1995; Maljanen et al., 2001, 2004; Lohila et al., 2004; Ogle et al., 2003; Armentano and Menges, 1986.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-90% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.799Z", + "last_change_date": "2022-03-14T08:06:50.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11474, + "fields": { + "EF_ID": 510997, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Annual emission factor for cultivated organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climatic Temperature regime: warm temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.3.5 CO2 emissions from cultivated organic soils in cropland remaining cropland, of the IPCC Good Practice Guidance for LULUCF.; Equation 2.26 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.5 Annual emission factor for cultivated organic soils, on page 3.79; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.6 Annual emission factors (EF) for cultivated organic soils, on page 5.19", + "Technical_Reference": "Estimates are based on Glenn et al., 1993; Kasimir-Klemedtsson et al., 1997; Freibauer and Kaltschmitt, 2001; Leifeld et al., 2005; Augustin et al., 1996; Nykänen et al., 1995; Maljanen et al., 2001, 2004; Lohila et al., 2004; Ogle et al., 2003; Armentano and Menges, 1986.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-90% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.868Z", + "last_change_date": "2022-03-14T08:06:50.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11475, + "fields": { + "EF_ID": 510998, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Annual emission factor for cultivated organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climatic Temperature regime: tropical/sub-tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.3.5 CO2 emissions from cultivated organic soils in cropland remaining cropland, of the IPCC Good Practice Guidance for LULUCF.; Equation 2.26 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.5 Annual emission factor for cultivated organic soils, on page 3.79; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.6 Annual emission factors (EF) for cultivated organic soils, on page 5.19", + "Technical_Reference": "Estimates are based on Glenn et al., 1993; Kasimir-Klemedtsson et al., 1997; Freibauer and Kaltschmitt, 2001; Leifeld et al., 2005; Augustin et al., 1996; Nykänen et al., 1995; Maljanen et al., 2001, 2004; Lohila et al., 2004; Ogle et al., 2003; Armentano and Menges, 1986.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-90% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:50.977Z", + "last_change_date": "2022-03-14T08:06:50.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11476, + "fields": { + "EF_ID": 510999, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Carbon stock in biomass after one year (delta C growth)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Crop type: annual cropland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF; Equations 2.15 and 2.16 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.8 Default biomass carbon stocks present on land converted to cropland in the year following conversion, on page 3.88; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.9 - Default biomass carbon stocks present on Land Converted to Cropland in the year following conversion, on page 5.28", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.065Z", + "last_change_date": "2022-03-14T08:06:51.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11477, + "fields": { + "EF_ID": 511000, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Carbon stock in biomass after one year (delta C growth)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop type: perennial cropland", + "Regional_Conditions": "Climate region: temperate (all moisture regimes)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF; Equations 2.15 and 2.16 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.8 Default biomass carbon stocks present on land converted to cropland in the year following conversion, on page 3.88; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.9 - Default biomass carbon stocks present on Land Converted to Cropland in the year following conversion, on page 5.28", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.132Z", + "last_change_date": "2022-03-14T08:06:51.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11478, + "fields": { + "EF_ID": 511001, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Carbon stock in biomass after one year (delta C growth)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop type: perennial cropland", + "Regional_Conditions": "Climate region: tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF; Equations 2.15 and 2.16 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.8 Default biomass carbon stocks present on land converted to cropland in the year following conversion, on page 3.88; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.9 - Default biomass carbon stocks present on Land Converted to Cropland in the year following conversion, on page 5.28", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.229Z", + "last_change_date": "2022-03-14T08:06:51.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11479, + "fields": { + "EF_ID": 511002, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Carbon stock in biomass after one year (delta C growth)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop type: perennial cropland", + "Regional_Conditions": "Climate region: tropical, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF; Equations 2.15 and 2.16 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.8 Default biomass carbon stocks present on land converted to cropland in the year following conversion, on page 3.88; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.9 - Default biomass carbon stocks present on Land Converted to Cropland in the year following conversion, on page 5.28", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.307Z", + "last_change_date": "2022-03-14T08:06:51.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11480, + "fields": { + "EF_ID": 511003, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Carbon stock in biomass after one year (delta C growth)", + "Technology_Practices": "", + "Parameter_Conditions": "Crop type: perennial cropland", + "Regional_Conditions": "Climate region: tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF; Equations 2.15 and 2.16 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.8 Default biomass carbon stocks present on land converted to cropland in the year following conversion, on page 3.88; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.9 - Default biomass carbon stocks present on Land Converted to Cropland in the year following conversion, on page 5.28", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Cropland Remaining Cropland (5-CL-1) and to Land Converted to Cropland (5-CL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.374Z", + "last_change_date": "2022-03-14T08:06:51.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11481, + "fields": { + "EF_ID": 511004, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU) for land-use conversion to cropland", + "Technology_Practices": "Level: native forest or grassland (non-degraded); Definition: Represents native or long-term, non-degraded and sustainably managed forest and grasslands.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.9 Relative soil stock change factors (FLU) for land-use conversions to cropland, on page 3.92; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.10 - Soil stock change factors (FLU, FMG, FI) for land-use conversions to cropland, on page 5.37", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.463Z", + "last_change_date": "2022-03-14T08:06:51.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11482, + "fields": { + "EF_ID": 511005, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU) for land-use conversion to cropland", + "Technology_Practices": "Level: native forest or grassland (non-degraded); Definition: Represents native or long-term, non-degraded and sustainably managed forest and grasslands.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.9 Relative soil stock change factors (FLU) for land-use conversions to cropland, on page 3.92; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.10 - Soil stock change factors (FLU, FMG, FI) for land-use conversions to cropland, on page 5.37", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.541Z", + "last_change_date": "2022-03-14T08:06:51.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11483, + "fields": { + "EF_ID": 511006, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU) for land-use conversion to cropland", + "Technology_Practices": "Level: shifting cultivation, shortened fallow; Definition: Permanent shifting cultivation, where tropical forest or woodland is cleared for planting of annual crops for a short time (e.g. 3-5 yr) period and then abandoned.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.9 Relative soil stock change factors (FLU) for land-use conversions to cropland, on page 3.92; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.10 - Soil stock change factors (FLU, FMG, FI) for land-use conversions to cropland, on page 5.37", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-50% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.607Z", + "last_change_date": "2022-03-14T08:06:51.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11484, + "fields": { + "EF_ID": 511007, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU) for land-use conversion to cropland", + "Technology_Practices": "Level: shifting cultivation, mature fallow; Definition: Permanent shifting cultivation, where tropical forest or woodland is cleared for planting of annual crops for a short time (e.g. 3-5 yr) period and then abandoned.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "Equation 3.3.3 Annual change in carbon stocks in mineral soils for a single cropland system, of the IPCC Good Practice Guidance for LULUCF; Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4).", + "IPCC_Worksheet": "Worksheet CL-2c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.3.9 Relative soil stock change factors (FLU) for land-use conversions to cropland, on page 3.92; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 5.10 - Soil stock change factors (FLU, FMG, FI) for land-use conversions to cropland, on page 5.37", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-50% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.706Z", + "last_change_date": "2022-03-14T08:06:51.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11485, + "fields": { + "EF_ID": 511008, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Peak aboveground live biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: boreal - dry and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Data for standing live biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daac.ornl.gov/NPP/html_docs/npp_site.html].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Due to limited data, dry and moist zones for the boreal temperature regime and moist and wet zones for the tropical temperature regime were combined. The number of studies considered in the estimate is 3. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.782Z", + "last_change_date": "2022-03-14T08:06:51.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11486, + "fields": { + "EF_ID": 511009, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Peak aboveground live biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: cold temperate - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Data for standing live biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daac.ornl.gov/NPP/html_docs/npp_site.html].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 10. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.849Z", + "last_change_date": "2022-03-14T08:06:51.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11487, + "fields": { + "EF_ID": 511010, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Peak aboveground live biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: cold temperate - wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Data for standing live biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daac.ornl.gov/NPP/html_docs/npp_site.html].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 6. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:51.957Z", + "last_change_date": "2022-03-14T08:06:51.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11488, + "fields": { + "EF_ID": 511011, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Peak aboveground live biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: warm temperate - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Data for standing live biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daac.ornl.gov/NPP/html_docs/npp_site.html].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 8. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.032Z", + "last_change_date": "2022-03-14T08:06:52.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11489, + "fields": { + "EF_ID": 511012, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Peak aboveground live biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: warm temperate - wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Data for standing live biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daac.ornl.gov/NPP/html_docs/npp_site.html].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 5. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.099Z", + "last_change_date": "2022-03-14T08:06:52.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11490, + "fields": { + "EF_ID": 511013, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Peak aboveground live biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: tropical - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Data for standing live biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daac.ornl.gov/NPP/html_docs/npp_site.html].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 3. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.174Z", + "last_change_date": "2022-03-14T08:06:52.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11491, + "fields": { + "EF_ID": 511014, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Peak aboveground live biomass", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: tropical - moist and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.2", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Data for standing live biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daac.ornl.gov/NPP/html_docs/npp_site.html].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 4. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.267Z", + "last_change_date": "2022-03-14T08:06:52.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11492, + "fields": { + "EF_ID": 511015, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground net primary production (ANPP)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: boreal - dry and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Estimates for above-ground primary production are from: Olson, R. J., J. M. O. Scurlock, S. D. Prince, D. L. Zheng, and K. R. Johnson (eds.). 2001. NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison. Sources available on-line at [http://www.daac.ornl.gov/NPP/html_docs/EMDI_des.html]).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Due to limited data, dry and moist zones for the boreal temperature regime and moist and wet zones for the tropical temperature regime were combined. The number of studies considered in the estimate is 5. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.343Z", + "last_change_date": "2022-03-14T08:06:52.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11493, + "fields": { + "EF_ID": 511016, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground net primary production (ANPP)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: cold temperate - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Estimates for above-ground primary production are from: Olson, R. J., J. M. O. Scurlock, S. D. Prince, D. L. Zheng, and K. R. Johnson (eds.). 2001. NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison. Sources available on-line at [http://www.daac.ornl.gov/NPP/html_docs/EMDI_des.html]).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 18. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.410Z", + "last_change_date": "2022-03-14T08:06:52.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11494, + "fields": { + "EF_ID": 511017, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground net primary production (ANPP)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: cold temperate - wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.6", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Estimates for above-ground primary production are from: Olson, R. J., J. M. O. Scurlock, S. D. Prince, D. L. Zheng, and K. R. Johnson (eds.). 2001. NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison. Sources available on-line at [http://www.daac.ornl.gov/NPP/html_docs/EMDI_des.html]).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 17. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.511Z", + "last_change_date": "2022-03-14T08:06:52.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11495, + "fields": { + "EF_ID": 511018, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground net primary production (ANPP)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: warm temperate - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Estimates for above-ground primary production are from: Olson, R. J., J. M. O. Scurlock, S. D. Prince, D. L. Zheng, and K. R. Johnson (eds.). 2001. NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison. Sources available on-line at [http://www.daac.ornl.gov/NPP/html_docs/EMDI_des.html]).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 21. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.593Z", + "last_change_date": "2022-03-14T08:06:52.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11496, + "fields": { + "EF_ID": 511019, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground net primary production (ANPP)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: warm temperate - wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.8", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Estimates for above-ground primary production are from: Olson, R. J., J. M. O. Scurlock, S. D. Prince, D. L. Zheng, and K. R. Johnson (eds.). 2001. NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison. Sources available on-line at [http://www.daac.ornl.gov/NPP/html_docs/EMDI_des.html]).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 13. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.668Z", + "last_change_date": "2022-03-14T08:06:52.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11497, + "fields": { + "EF_ID": 511020, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground net primary production (ANPP)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: tropical - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.8", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Estimates for above-ground primary production are from: Olson, R. J., J. M. O. Scurlock, S. D. Prince, D. L. Zheng, and K. R. Johnson (eds.). 2001. NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison. Sources available on-line at [http://www.daac.ornl.gov/NPP/html_docs/EMDI_des.html]).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 13. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.772Z", + "last_change_date": "2022-03-14T08:06:52.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11498, + "fields": { + "EF_ID": 511021, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground net primary production (ANPP)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "IPCC Climate Zone: tropical - moist and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.2", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.2 Default estimates for standing biomass grassland (as dry matter) and aboveground net primary production, classified by IPCC climate zones, on page 3.109", + "Technical_Reference": "Estimates for above-ground primary production are from: Olson, R. J., J. M. O. Scurlock, S. D. Prince, D. L. Zheng, and K. R. Johnson (eds.). 2001. NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison. Sources available on-line at [http://www.daac.ornl.gov/NPP/html_docs/EMDI_des.html]).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 10. The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.860Z", + "last_change_date": "2022-03-14T08:06:52.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11499, + "fields": { + "EF_ID": 511022, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Below-ground biomass to above-ground biomass ratio ( R)", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: steppe/tundra/prairie grassland", + "Regional_Conditions": "Approximate IPCC Climate Zone: boreal (dry and wet), cold temperate wet, warm temperate wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 7. The error range of the EF value is +/-150% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:52.926Z", + "last_change_date": "2022-03-14T08:06:52.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11500, + "fields": { + "EF_ID": 511023, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Below-ground biomass to above-ground biomass ratio ( R)", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: semi-arid grassland", + "Regional_Conditions": "Approximate IPCC Climate Zone: dry (cold temperate, warm temperate and tropical)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 9. The error range of the EF value is +/-95% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.023Z", + "last_change_date": "2022-03-14T08:06:53.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11501, + "fields": { + "EF_ID": 511024, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Below-ground biomass to above-ground biomass ratio ( R)", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: sub-tropical/tropical grassland", + "Regional_Conditions": "Approximate IPCC Climate Zone: tropical moist and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 7. The error range of the EF value is +/-130% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.110Z", + "last_change_date": "2022-03-14T08:06:53.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11502, + "fields": { + "EF_ID": 511025, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Below-ground biomass to above-ground biomass ratio ( R)", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: woodland/savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 19. The error range of the EF value is +/-80% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.185Z", + "last_change_date": "2022-03-14T08:06:53.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11503, + "fields": { + "EF_ID": 511026, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Below-ground biomass to above-ground biomass ratio ( R)", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: shrubland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The number of studies considered in the estimate is 9. The error range of the EF value is +/-144% which represents a nominal estimate of error, equivalent to two times standard deviation, as a percentage of the mean.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.324Z", + "last_change_date": "2022-03-14T08:06:53.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11504, + "fields": { + "EF_ID": 511027, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: all grassland; Definition: All permanent grassland is assigned a land use factor of 1.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: all", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.410Z", + "last_change_date": "2022-03-14T08:06:53.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11505, + "fields": { + "EF_ID": 511028, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: nominally managed (non-degraded); Definition: Represents, non-degraded and sustainably managed grassland, but without significant management improvements.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: all", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.485Z", + "last_change_date": "2022-03-14T08:06:53.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11506, + "fields": { + "EF_ID": 511029, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: moderately degraded grassland; Definition: Represents overgrazed or moderately degraded grassland, with somewhat reduced productivity (relative to the native or nominally managed grassland) and receiving no management inputs.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: temperate/boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-12% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.560Z", + "last_change_date": "2022-03-14T08:06:53.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11507, + "fields": { + "EF_ID": 511030, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: moderately degraded grassland; Definition: Represents overgrazed or moderately degraded grassland, with somewhat reduced productivity (relative to the native or nominally managed grassland) and receiving no management inputs.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.97", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-10% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.676Z", + "last_change_date": "2022-03-14T08:06:53.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11508, + "fields": { + "EF_ID": 511031, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: severly grassland; Definition: Implies major long-term loss of productivity and vegetation cover, due to severe mechanical damage to the vegetation and/or severe soil erosion.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: all", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-50% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.768Z", + "last_change_date": "2022-03-14T08:06:53.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11509, + "fields": { + "EF_ID": 511032, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: improved grassland; Definition: Represents grassland which is sustainably managed with moderate grazing pressure and that receive at least one improvement (e.g. fertilization, species improvement, irrigation).", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: temperate/boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.14", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-10% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.861Z", + "last_change_date": "2022-03-14T08:06:53.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11510, + "fields": { + "EF_ID": 511033, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for management regime or tillage (FMG)", + "Technology_Practices": "Level: improved grassland; Definition: Represents grassland which is sustainably managed with moderate grazing pressure and that receive at least one improvement (e.g. fertilization, species improvement, irrigation).", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-10% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:53.943Z", + "last_change_date": "2022-03-14T08:06:53.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11511, + "fields": { + "EF_ID": 511034, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: nominal input (applied only to improved grassland); Definition: Applies to improved grassland where no additional management inputs have been used.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: all", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.026Z", + "last_change_date": "2022-03-14T08:06:54.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11512, + "fields": { + "EF_ID": 511035, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: high input (applied only to improved grassland); Definition: Applies to improved grassland where one or more additional management inputs/improvements have been used (beyond that required to be classified as improved grassland).", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: temperate/boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.11", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-8% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.130Z", + "last_change_date": "2022-03-14T08:06:54.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11513, + "fields": { + "EF_ID": 511036, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Stock change factor for input of organic matter (FI)", + "Technology_Practices": "Level: high input (applied only to improved grassland); Definition: Applies to improved grassland where one or more additional management inputs/improvements have been used (beyond that required to be classified as improved grassland).", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.11", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.3 Default expansion factors (root-to-shoot [R:S] ratios) for the major savannah/rangeland ecosystems of the world, on page 3.110; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.1 - Default expansion factors of the ratio of below-ground biomass to above-ground biomass (R) for the major grassland ecosystems of the world, on page 6.8", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-8% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "Data are applicable to Grassland Remaining Grassland (5-GL-1) and to Land Converted to Grassland (5-GL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.227Z", + "last_change_date": "2022-03-14T08:06:54.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11514, + "fields": { + "EF_ID": 511037, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Annual emission factor for managed grassland organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climatic Temperature regime: cold temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "tonnes C/ha/yr", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.6 Annual emission factors for managed grassland organic soils, on page 3.118; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.3 - Annual emission factors (EF) for drained grassland organic soils, on page 6.17", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-90% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "These values represent one quarter of the loss on drained croplands (see Table 5.6 in Chapter 5, Volume 4 of 2006 Guidelines), which is approximately the proportional loss of C on drained grassland relative to croplands according to data presented in Armentano and Menges (1986). These values have a degree of uncertainty as reflected in the error column.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.301Z", + "last_change_date": "2022-03-14T08:06:54.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11515, + "fields": { + "EF_ID": 511038, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Annual emission factor for managed grassland organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climatic Temperature regime: warm temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "tonnes C/ha/yr", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.6 Annual emission factors for managed grassland organic soils, on page 3.118; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.3 - Annual emission factors (EF) for drained grassland organic soils, on page 6.17", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-90% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "These values represent one quarter of the loss on drained croplands (see Table 5.6 in Chapter 5, Volume 4 of 2006 Guidelines), which is approximately the proportional loss of C on drained grassland relative to croplands according to data presented in Armentano and Menges (1986). These values have a degree of uncertainty as reflected in the error column.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.398Z", + "last_change_date": "2022-03-14T08:06:54.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11516, + "fields": { + "EF_ID": 511039, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Annual emission factor for managed grassland organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climatic Temperature regime: tropical/sub-tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes C/ha/yr", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-1c2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.6 Annual emission factors for managed grassland organic soils, on page 3.118; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.3 - Annual emission factors (EF) for drained grassland organic soils, on page 6.17", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-90% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "These values represent one quarter of the loss on drained croplands (see Table 5.6 in Chapter 5, Volume 4 of 2006 Guidelines), which is approximately the proportional loss of C on drained grassland relative to croplands according to data presented in Armentano and Menges (1986). These values have a degree of uncertainty as reflected in the error column.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.476Z", + "last_change_date": "2022-03-14T08:06:54.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11517, + "fields": { + "EF_ID": 511040, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Total (aboveground and belowground) non-woody biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Peak above-ground biomass = 1.7 tonnes d.m./ha Data for standing biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daacsti.ornl.gov/NPP/].", + "Regional_Conditions": "IPCC Climate Zone: boreal - dry and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.5", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.9 Default biomass carbon stocks present on land converted to grassland, on page 3.125; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.4 - Default biomass stocks present on grassland , after conversion from other land use, on page 6.27", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean. Due to limited data, dry and moist zones for the boreal temperature regime and moist and wet zones for the tropical temperature regime were combined.", + "Data_Provider_Comments": "Total above-ground and below-ground biomass values are based on the peak above-ground biomass values, and the below-ground biomass to aboveground biomass ratios (Table 6.1, Chapter 6, Volume 4 of 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.543Z", + "last_change_date": "2022-03-14T08:06:54.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11518, + "fields": { + "EF_ID": 511041, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Total (aboveground and belowground) non-woody biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Peak above-ground biomass = 1.7 tonnes d.m./ha Data for standing biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daacsti.ornl.gov/NPP/].", + "Regional_Conditions": "IPCC Climate Zone: cold temperate - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.9 Default biomass carbon stocks present on land converted to grassland, on page 3.125; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.4 - Default biomass stocks present on grassland , after conversion from other land use, on page 6.27", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Total above-ground and below-ground biomass values are based on the peak above-ground biomass values, and the below-ground biomass to aboveground biomass ratios (Table 6.1, Chapter 6, Volume 4 of 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.641Z", + "last_change_date": "2022-03-14T08:06:54.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11519, + "fields": { + "EF_ID": 511042, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Total (aboveground and belowground) non-woody biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Peak above-ground biomass = 2.4 tonnes d.m./ha Data for standing biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daacsti.ornl.gov/NPP/].", + "Regional_Conditions": "IPCC Climate Zone: cold temperate - wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.6", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.9 Default biomass carbon stocks present on land converted to grassland, on page 3.125; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.4 - Default biomass stocks present on grassland , after conversion from other land use, on page 6.27", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Total above-ground and below-ground biomass values are based on the peak above-ground biomass values, and the below-ground biomass to aboveground biomass ratios (Table 6.1, Chapter 6, Volume 4 of 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.718Z", + "last_change_date": "2022-03-14T08:06:54.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11520, + "fields": { + "EF_ID": 511043, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Total (aboveground and belowground) non-woody biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Peak above-ground biomass = 1.6 tonnes d.m./ha Data for standing biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daacsti.ornl.gov/NPP/].", + "Regional_Conditions": "IPCC Climate Zone: warm temperate - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.9 Default biomass carbon stocks present on land converted to grassland, on page 3.125; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.4 - Default biomass stocks present on grassland , after conversion from other land use, on page 6.27", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Total above-ground and below-ground biomass values are based on the peak above-ground biomass values, and the below-ground biomass to aboveground biomass ratios (Table 6.1, Chapter 6, Volume 4 of 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.785Z", + "last_change_date": "2022-03-14T08:06:54.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11521, + "fields": { + "EF_ID": 511044, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Total (aboveground and belowground) non-woody biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Peak above-ground biomass = 2.7 tonnes d.m./ha Data for standing biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daacsti.ornl.gov/NPP/].", + "Regional_Conditions": "IPCC Climate Zone: warm temperate - wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.5", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.9 Default biomass carbon stocks present on land converted to grassland, on page 3.125; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.4 - Default biomass stocks present on grassland , after conversion from other land use, on page 6.27", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Total above-ground and below-ground biomass values are based on the peak above-ground biomass values, and the below-ground biomass to aboveground biomass ratios (Table 6.1, Chapter 6, Volume 4 of 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.884Z", + "last_change_date": "2022-03-14T08:06:54.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11522, + "fields": { + "EF_ID": 511045, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Total (aboveground and belowground) non-woody biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Peak above-ground biomass = 2.3 tonnes d.m./ha Data for standing biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daacsti.ornl.gov/NPP/].", + "Regional_Conditions": "IPCC Climate Zone: tropical - dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.9 Default biomass carbon stocks present on land converted to grassland, on page 3.125; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.4 - Default biomass stocks present on grassland , after conversion from other land use, on page 6.27", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Total above-ground and below-ground biomass values are based on the peak above-ground biomass values, and the below-ground biomass to aboveground biomass ratios (Table 6.1, Chapter 6, Volume 4 of 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:54.968Z", + "last_change_date": "2022-03-14T08:06:54.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11523, + "fields": { + "EF_ID": 511046, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Total (aboveground and belowground) non-woody biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Peak above-ground biomass = 6.2 tonnes d.m./ha Data for standing biomass are compiled from multi-year averages reported at grassland sites registered in the ORNL DAAC NPP database [http://www.daacsti.ornl.gov/NPP/].", + "Regional_Conditions": "IPCC Climate Zone: tropical - moist and wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.1", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.4.9 Default biomass carbon stocks present on land converted to grassland, on page 3.125; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 6.4 - Default biomass stocks present on grassland , after conversion from other land use, on page 6.27", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-75% which represents a nominal estimate of error, equivalent to two times standard deviation, as percentage of the mean.", + "Data_Provider_Comments": "Total above-ground and below-ground biomass values are based on the peak above-ground biomass values, and the below-ground biomass to aboveground biomass ratios (Table 6.1, Chapter 6, Volume 4 of 2006 Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.043Z", + "last_change_date": "2022-03-14T08:06:55.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11524, + "fields": { + "EF_ID": 511047, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission factor for organic soils after drainage (EF Npoor)", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: nutrient poor", + "Regional_Conditions": "boreal and temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2 (0 - 0.63)", + "Unit": "tonnes C/ha/yr", + "Equation": "", + "IPCC_Worksheet": "Worksheet WL-1c of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.5.2 Emission factors and associated uncertainty for organic soils after drainage, on page 3.138; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 7.4 - Emission factors for CO2–C and associated uncertainty for lands managed for peat extraction, by climate zone, on page 7.13", + "Technical_Reference": "Laine and Minkkinen, 1996; Alm et al., 1999; Laine et al., 1996; Minkkinen et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty range of underlying data is from 0 to 0.63 tonne C/ha/yr. The boreal and temperate values have been developed as the log-normal mean from a review of paired plot measurements, assuming that conditions on organic soils converted to peat extraction are lightly drained only. Most of the data are from Europe.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.144Z", + "last_change_date": "2022-03-14T08:06:55.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11525, + "fields": { + "EF_ID": 511048, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission factor for organic soils after drainage (EF Nrich)", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: nutrient rich", + "Regional_Conditions": "boreal and temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1 (0.03 - 2.9)", + "Unit": "tonnes C/ha/yr", + "Equation": "", + "IPCC_Worksheet": "Worksheet WL-1c of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.5.2 Emission factors and associated uncertainty for organic soils after drainage, on page 3.138; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 7.4 - Emission factors for CO2–C and associated uncertainty for lands managed for peat extraction, by climate zone, on page 7.13", + "Technical_Reference": "Laine et al., 1996; LUSTRA, 2002; Minkkinen et al., 2002; Sundh et al., 2000", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty range of underlying data is from 0.03 to 2.9 tonne C/ha/yr. The boreal and temperate values have been developed as the log-normal mean from a review of paired plot measurements, assuming that conditions on organic soils converted to peat extraction are lightly drained only. Most of the data are from Europe.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.227Z", + "last_change_date": "2022-03-14T08:06:55.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11526, + "fields": { + "EF_ID": 511049, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission factor for organic soils after drainage", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0 (0.06 - 7.0)", + "Unit": "tonnes C/ha/yr", + "Equation": "", + "IPCC_Worksheet": "Worksheet WL-1c of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3.5.2 Emission factors and associated uncertainty for organic soils after drainage, on page 3.138; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 7.4 - Emission factors for CO2–C and associated uncertainty for lands managed for peat extraction, by climate zone, on page 7.13", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty range of underlying data is from 0.06 to 6.0 tonne C/ha/yr. The EF value was calculated from the relative difference between temperate (nutrient poor) and tropical in Table 3.3.5 of the IPCC Good Practice Guidance for LULUCF.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.310Z", + "last_change_date": "2022-03-14T08:06:55.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11527, + "fields": { + "EF_ID": 511050, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310 (131 - 513)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.403Z", + "last_change_date": "2022-03-14T08:06:55.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11528, + "fields": { + "EF_ID": 511051, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260 (159 - 433)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.485Z", + "last_change_date": "2022-03-14T08:06:55.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11529, + "fields": { + "EF_ID": 511052, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "123 (120 - 130)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.560Z", + "last_change_date": "2022-03-14T08:06:55.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11530, + "fields": { + "EF_ID": 511053, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72 (16 - 195)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.626Z", + "last_change_date": "2022-03-14T08:06:55.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11531, + "fields": { + "EF_ID": 511054, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "191", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.731Z", + "last_change_date": "2022-03-14T08:06:55.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11532, + "fields": { + "EF_ID": 511055, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.827Z", + "last_change_date": "2022-03-14T08:06:55.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11533, + "fields": { + "EF_ID": 511056, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275 (123 - 683)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.909Z", + "last_change_date": "2022-03-14T08:06:55.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11534, + "fields": { + "EF_ID": 511057, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182 (10 - 562)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:55.993Z", + "last_change_date": "2022-03-14T08:06:55.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11535, + "fields": { + "EF_ID": 511058, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "127 (100 - 155)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.100Z", + "last_change_date": "2022-03-14T08:06:56.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11536, + "fields": { + "EF_ID": 511059, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.176Z", + "last_change_date": "2022-03-14T08:06:56.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11537, + "fields": { + "EF_ID": 511060, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "222 (81 - 310)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.268Z", + "last_change_date": "2022-03-14T08:06:56.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11538, + "fields": { + "EF_ID": 511061, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.335Z", + "last_change_date": "2022-03-14T08:06:56.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11539, + "fields": { + "EF_ID": 511062, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "348 ( 280 - 520)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.434Z", + "last_change_date": "2022-03-14T08:06:56.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11540, + "fields": { + "EF_ID": 511063, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.518Z", + "last_change_date": "2022-03-14T08:06:56.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11541, + "fields": { + "EF_ID": 511064, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.585Z", + "last_change_date": "2022-03-14T08:06:56.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11542, + "fields": { + "EF_ID": 511065, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.652Z", + "last_change_date": "2022-03-14T08:06:56.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11543, + "fields": { + "EF_ID": 511066, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "362 (330 - 505)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.718Z", + "last_change_date": "2022-03-14T08:06:56.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11544, + "fields": { + "EF_ID": 511067, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.811Z", + "last_change_date": "2022-03-14T08:06:56.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11545, + "fields": { + "EF_ID": 511068, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "347 (118 - 860)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.893Z", + "last_change_date": "2022-03-14T08:06:56.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11546, + "fields": { + "EF_ID": 511069, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "217 (212 - 278)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:56.960Z", + "last_change_date": "2022-03-14T08:06:56.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11547, + "fields": { + "EF_ID": 511070, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "212 (202 - 406)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.035Z", + "last_change_date": "2022-03-14T08:06:57.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11548, + "fields": { + "EF_ID": 511071, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78 (45 - 90)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.130Z", + "last_change_date": "2022-03-14T08:06:57.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11549, + "fields": { + "EF_ID": 511072, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "234 (48 - 348)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.218Z", + "last_change_date": "2022-03-14T08:06:57.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11550, + "fields": { + "EF_ID": 511073, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.293Z", + "last_change_date": "2022-03-14T08:06:57.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11551, + "fields": { + "EF_ID": 511074, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100 (17 - 183)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.368Z", + "last_change_date": "2022-03-14T08:06:57.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11552, + "fields": { + "EF_ID": 511075, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.443Z", + "last_change_date": "2022-03-14T08:06:57.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11553, + "fields": { + "EF_ID": 511076, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.550Z", + "last_change_date": "2022-03-14T08:06:57.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11554, + "fields": { + "EF_ID": 511077, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "134 (20 - 600)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.635Z", + "last_change_date": "2022-03-14T08:06:57.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11555, + "fields": { + "EF_ID": 511078, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "122 (18 - 320)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.718Z", + "last_change_date": "2022-03-14T08:06:57.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11556, + "fields": { + "EF_ID": 511079, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "128 (20 - 330)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.793Z", + "last_change_date": "2022-03-14T08:06:57.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11557, + "fields": { + "EF_ID": 511080, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52 (17 - 106)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.877Z", + "last_change_date": "2022-03-14T08:06:57.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11558, + "fields": { + "EF_ID": 511081, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58 (7 - 126)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:57.985Z", + "last_change_date": "2022-03-14T08:06:57.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11559, + "fields": { + "EF_ID": 511082, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49 (19 - 89)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.068Z", + "last_change_date": "2022-03-14T08:06:58.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11560, + "fields": { + "EF_ID": 511083, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "126 (41 - 275)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.143Z", + "last_change_date": "2022-03-14T08:06:58.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11561, + "fields": { + "EF_ID": 511084, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132 (53 - 205)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.218Z", + "last_change_date": "2022-03-14T08:06:58.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11562, + "fields": { + "EF_ID": 511085, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140 (68 - 218)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.293Z", + "last_change_date": "2022-03-14T08:06:58.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11563, + "fields": { + "EF_ID": 511086, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.412Z", + "last_change_date": "2022-03-14T08:06:58.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11564, + "fields": { + "EF_ID": 511087, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.493Z", + "last_change_date": "2022-03-14T08:06:58.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11565, + "fields": { + "EF_ID": 511088, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.552Z", + "last_change_date": "2022-03-14T08:06:58.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11566, + "fields": { + "EF_ID": 511089, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.616Z", + "last_change_date": "2022-03-14T08:06:58.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11567, + "fields": { + "EF_ID": 511090, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60 (12.3 - 131)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.683Z", + "last_change_date": "2022-03-14T08:06:58.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11568, + "fields": { + "EF_ID": 511091, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (21- 81)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.749Z", + "last_change_date": "2022-03-14T08:06:58.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11569, + "fields": { + "EF_ID": 511092, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.848Z", + "last_change_date": "2022-03-14T08:06:58.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11570, + "fields": { + "EF_ID": 511093, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.935Z", + "last_change_date": "2022-03-14T08:06:58.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11571, + "fields": { + "EF_ID": 511094, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:58.999Z", + "last_change_date": "2022-03-14T08:06:58.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11572, + "fields": { + "EF_ID": 511095, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.066Z", + "last_change_date": "2022-03-14T08:06:59.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11573, + "fields": { + "EF_ID": 511096, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.141Z", + "last_change_date": "2022-03-14T08:06:59.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11574, + "fields": { + "EF_ID": 511097, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheets FL-1a and FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.216Z", + "last_change_date": "2022-03-14T08:06:59.216Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11575, + "fields": { + "EF_ID": 511098, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310 (131 - 513)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.309Z", + "last_change_date": "2022-03-14T08:06:59.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11576, + "fields": { + "EF_ID": 511099, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260 (159 - 433)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.410Z", + "last_change_date": "2022-03-14T08:06:59.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11577, + "fields": { + "EF_ID": 511100, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "123 (120 - 130)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.485Z", + "last_change_date": "2022-03-14T08:06:59.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11578, + "fields": { + "EF_ID": 511101, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72 (16 - 195)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.560Z", + "last_change_date": "2022-03-14T08:06:59.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11579, + "fields": { + "EF_ID": 511102, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "191", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.662Z", + "last_change_date": "2022-03-14T08:06:59.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11580, + "fields": { + "EF_ID": 511103, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.743Z", + "last_change_date": "2022-03-14T08:06:59.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11581, + "fields": { + "EF_ID": 511104, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275 (123 - 683)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.826Z", + "last_change_date": "2022-03-14T08:06:59.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11582, + "fields": { + "EF_ID": 511105, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182 (10 - 562)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:06:59.902Z", + "last_change_date": "2022-03-14T08:06:59.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11583, + "fields": { + "EF_ID": 511106, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "127 (100 - 155)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.013Z", + "last_change_date": "2022-03-14T08:07:00.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11584, + "fields": { + "EF_ID": 511107, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.093Z", + "last_change_date": "2022-03-14T08:07:00.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11585, + "fields": { + "EF_ID": 511108, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "222 (81 - 310)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.177Z", + "last_change_date": "2022-03-14T08:07:00.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11586, + "fields": { + "EF_ID": 511109, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.268Z", + "last_change_date": "2022-03-14T08:07:00.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11587, + "fields": { + "EF_ID": 511110, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "348 ( 280 - 520)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.373Z", + "last_change_date": "2022-03-14T08:07:00.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11588, + "fields": { + "EF_ID": 511111, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.460Z", + "last_change_date": "2022-03-14T08:07:00.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11589, + "fields": { + "EF_ID": 511112, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.535Z", + "last_change_date": "2022-03-14T08:07:00.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11590, + "fields": { + "EF_ID": 511113, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.610Z", + "last_change_date": "2022-03-14T08:07:00.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11591, + "fields": { + "EF_ID": 511114, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "362 (330 - 505)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.718Z", + "last_change_date": "2022-03-14T08:07:00.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11592, + "fields": { + "EF_ID": 511115, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.802Z", + "last_change_date": "2022-03-14T08:07:00.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11593, + "fields": { + "EF_ID": 511116, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "347 (118 - 860)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.876Z", + "last_change_date": "2022-03-14T08:07:00.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11594, + "fields": { + "EF_ID": 511117, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "217 (212 - 278)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:00.952Z", + "last_change_date": "2022-03-14T08:07:00.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11595, + "fields": { + "EF_ID": 511118, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "212 (202 - 406)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.053Z", + "last_change_date": "2022-03-14T08:07:01.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11596, + "fields": { + "EF_ID": 511119, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78 (45 - 90)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.143Z", + "last_change_date": "2022-03-14T08:07:01.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11597, + "fields": { + "EF_ID": 511120, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "234 (48 - 348)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.210Z", + "last_change_date": "2022-03-14T08:07:01.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11598, + "fields": { + "EF_ID": 511121, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.277Z", + "last_change_date": "2022-03-14T08:07:01.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11599, + "fields": { + "EF_ID": 511122, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100 (17 - 183)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.379Z", + "last_change_date": "2022-03-14T08:07:01.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11600, + "fields": { + "EF_ID": 511123, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.460Z", + "last_change_date": "2022-03-14T08:07:01.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11601, + "fields": { + "EF_ID": 511124, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.535Z", + "last_change_date": "2022-03-14T08:07:01.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11602, + "fields": { + "EF_ID": 511125, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "134 (20 - 600)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.610Z", + "last_change_date": "2022-03-14T08:07:01.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11603, + "fields": { + "EF_ID": 511126, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "122 (18 - 320)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.693Z", + "last_change_date": "2022-03-14T08:07:01.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11604, + "fields": { + "EF_ID": 511127, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "128 (20 - 330)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.806Z", + "last_change_date": "2022-03-14T08:07:01.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11605, + "fields": { + "EF_ID": 511128, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52 (17 - 106)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.885Z", + "last_change_date": "2022-03-14T08:07:01.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11606, + "fields": { + "EF_ID": 511129, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58 (7 - 126)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:01.968Z", + "last_change_date": "2022-03-14T08:07:01.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11607, + "fields": { + "EF_ID": 511130, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49 (19 - 89)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.052Z", + "last_change_date": "2022-03-14T08:07:02.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11608, + "fields": { + "EF_ID": 511131, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "126 (41 - 275)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.143Z", + "last_change_date": "2022-03-14T08:07:02.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11609, + "fields": { + "EF_ID": 511132, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132 (53 - 205)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.250Z", + "last_change_date": "2022-03-14T08:07:02.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11610, + "fields": { + "EF_ID": 511133, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140 (68 - 218)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.335Z", + "last_change_date": "2022-03-14T08:07:02.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11611, + "fields": { + "EF_ID": 511134, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.410Z", + "last_change_date": "2022-03-14T08:07:02.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11612, + "fields": { + "EF_ID": 511135, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.508Z", + "last_change_date": "2022-03-14T08:07:02.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11613, + "fields": { + "EF_ID": 511136, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.585Z", + "last_change_date": "2022-03-14T08:07:02.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11614, + "fields": { + "EF_ID": 511137, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.686Z", + "last_change_date": "2022-03-14T08:07:02.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11615, + "fields": { + "EF_ID": 511138, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60 (12.3 - 131)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.768Z", + "last_change_date": "2022-03-14T08:07:02.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11616, + "fields": { + "EF_ID": 511139, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (21- 81)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.843Z", + "last_change_date": "2022-03-14T08:07:02.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11617, + "fields": { + "EF_ID": 511140, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.910Z", + "last_change_date": "2022-03-14T08:07:02.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11618, + "fields": { + "EF_ID": 511141, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:02.977Z", + "last_change_date": "2022-03-14T08:07:02.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11619, + "fields": { + "EF_ID": 511142, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.072Z", + "last_change_date": "2022-03-14T08:07:03.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11620, + "fields": { + "EF_ID": 511143, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.152Z", + "last_change_date": "2022-03-14T08:07:03.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11621, + "fields": { + "EF_ID": 511144, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.235Z", + "last_change_date": "2022-03-14T08:07:03.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11622, + "fields": { + "EF_ID": 511145, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.301Z", + "last_change_date": "2022-03-14T08:07:03.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11623, + "fields": { + "EF_ID": 511146, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310 (131 - 513)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.368Z", + "last_change_date": "2022-03-14T08:07:03.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11624, + "fields": { + "EF_ID": 511147, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260 (159 - 433)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.466Z", + "last_change_date": "2022-03-14T08:07:03.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11625, + "fields": { + "EF_ID": 511148, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "123 (120 - 130)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.543Z", + "last_change_date": "2022-03-14T08:07:03.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11626, + "fields": { + "EF_ID": 511149, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72 (16 - 195)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.601Z", + "last_change_date": "2022-03-14T08:07:03.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11627, + "fields": { + "EF_ID": 511150, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "191", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.668Z", + "last_change_date": "2022-03-14T08:07:03.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11628, + "fields": { + "EF_ID": 511151, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Africa; Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.751Z", + "last_change_date": "2022-03-14T08:07:03.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11629, + "fields": { + "EF_ID": 511152, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "275 (123 - 683)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.843Z", + "last_change_date": "2022-03-14T08:07:03.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11630, + "fields": { + "EF_ID": 511153, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182 (10 - 562)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.926Z", + "last_change_date": "2022-03-14T08:07:03.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11631, + "fields": { + "EF_ID": 511154, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "127 (100 - 155)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:03.992Z", + "last_change_date": "2022-03-14T08:07:03.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11632, + "fields": { + "EF_ID": 511155, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.121Z", + "last_change_date": "2022-03-14T08:07:04.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11633, + "fields": { + "EF_ID": 511156, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "222 (81 - 310)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.185Z", + "last_change_date": "2022-03-14T08:07:04.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11634, + "fields": { + "EF_ID": 511157, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Continental); Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.242Z", + "last_change_date": "2022-03-14T08:07:04.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11635, + "fields": { + "EF_ID": 511158, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "348 ( 280 - 520)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.300Z", + "last_change_date": "2022-03-14T08:07:04.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11636, + "fields": { + "EF_ID": 511159, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.389Z", + "last_change_date": "2022-03-14T08:07:04.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11637, + "fields": { + "EF_ID": 511160, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.468Z", + "last_change_date": "2022-03-14T08:07:04.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11638, + "fields": { + "EF_ID": 511161, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.533Z", + "last_change_date": "2022-03-14T08:07:04.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11639, + "fields": { + "EF_ID": 511162, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "362 (330 - 505)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.617Z", + "last_change_date": "2022-03-14T08:07:04.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11640, + "fields": { + "EF_ID": 511163, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "Asia and Oceania (Insular); Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.708Z", + "last_change_date": "2022-03-14T08:07:04.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11641, + "fields": { + "EF_ID": 511164, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "347 (118 - 860)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.785Z", + "last_change_date": "2022-03-14T08:07:04.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11642, + "fields": { + "EF_ID": 511165, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: moist with short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "217 (212 - 278)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.850Z", + "last_change_date": "2022-03-14T08:07:04.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11643, + "fields": { + "EF_ID": 511166, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: moist with long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "212 (202 - 406)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:04.917Z", + "last_change_date": "2022-03-14T08:07:04.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11644, + "fields": { + "EF_ID": 511167, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78 (45 - 90)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.018Z", + "last_change_date": "2022-03-14T08:07:05.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11645, + "fields": { + "EF_ID": 511168, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: montane moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "234 (48 - 348)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.110Z", + "last_change_date": "2022-03-14T08:07:05.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11646, + "fields": { + "EF_ID": 511169, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical forests", + "Regional_Conditions": "America; Climate type: montane dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the IPCC Guidelines (1996).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.185Z", + "last_change_date": "2022-03-14T08:07:05.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11647, + "fields": { + "EF_ID": 511170, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100 (17 - 183)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.260Z", + "last_change_date": "2022-03-14T08:07:05.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11648, + "fields": { + "EF_ID": 511171, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.354Z", + "last_change_date": "2022-03-14T08:07:05.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11649, + "fields": { + "EF_ID": 511172, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.435Z", + "last_change_date": "2022-03-14T08:07:05.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11650, + "fields": { + "EF_ID": 511173, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "134 (20 - 600)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.518Z", + "last_change_date": "2022-03-14T08:07:05.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11651, + "fields": { + "EF_ID": 511174, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "122 (18 - 320)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.593Z", + "last_change_date": "2022-03-14T08:07:05.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11652, + "fields": { + "EF_ID": 511175, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia and Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "128 (20 - 330)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.668Z", + "last_change_date": "2022-03-14T08:07:05.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11653, + "fields": { + "EF_ID": 511176, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52 (17 - 106)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.764Z", + "last_change_date": "2022-03-14T08:07:05.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11654, + "fields": { + "EF_ID": 511177, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58 (7 - 126)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.843Z", + "last_change_date": "2022-03-14T08:07:05.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11655, + "fields": { + "EF_ID": 511178, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49 (19 - 89)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.918Z", + "last_change_date": "2022-03-14T08:07:05.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11656, + "fields": { + "EF_ID": 511179, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "126 (41 - 275)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:05.993Z", + "last_change_date": "2022-03-14T08:07:05.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11657, + "fields": { + "EF_ID": 511180, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132 (53 - 205)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.085Z", + "last_change_date": "2022-03-14T08:07:06.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11658, + "fields": { + "EF_ID": 511181, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140 (68 - 218)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.175Z", + "last_change_date": "2022-03-14T08:07:06.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11659, + "fields": { + "EF_ID": 511182, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.252Z", + "last_change_date": "2022-03-14T08:07:06.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11660, + "fields": { + "EF_ID": 511183, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.327Z", + "last_change_date": "2022-03-14T08:07:06.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11661, + "fields": { + "EF_ID": 511184, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.393Z", + "last_change_date": "2022-03-14T08:07:06.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11662, + "fields": { + "EF_ID": 511185, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.460Z", + "last_change_date": "2022-03-14T08:07:06.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11663, + "fields": { + "EF_ID": 511186, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60 (12.3 - 131)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.552Z", + "last_change_date": "2022-03-14T08:07:06.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11664, + "fields": { + "EF_ID": 511187, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (21- 81)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value is given as mean value and as range of possible values (in parentheses).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.668Z", + "last_change_date": "2022-03-14T08:07:06.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11665, + "fields": { + "EF_ID": 511188, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.743Z", + "last_change_date": "2022-03-14T08:07:06.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11666, + "fields": { + "EF_ID": 511189, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.818Z", + "last_change_date": "2022-03-14T08:07:06.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11667, + "fields": { + "EF_ID": 511190, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: equal or less than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.893Z", + "last_change_date": "2022-03-14T08:07:06.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11668, + "fields": { + "EF_ID": 511191, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, mixed broadleaf-coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:06.989Z", + "last_change_date": "2022-03-14T08:07:06.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11669, + "fields": { + "EF_ID": 511192, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, coniferous; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.068Z", + "last_change_date": "2022-03-14T08:07:07.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11670, + "fields": { + "EF_ID": 511193, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in naturally regenerated forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, forest-tundra; Age class: more than 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.2 Aboveground biomass stock in naturally regenerated forests by broad category, on page 3.157", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.152Z", + "last_change_date": "2022-03-14T08:07:07.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11671, + "fields": { + "EF_ID": 511194, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.235Z", + "last_change_date": "2022-03-14T08:07:07.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11672, + "fields": { + "EF_ID": 511195, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.318Z", + "last_change_date": "2022-03-14T08:07:07.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11673, + "fields": { + "EF_ID": 511196, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.424Z", + "last_change_date": "2022-03-14T08:07:07.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11674, + "fields": { + "EF_ID": 511197, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.510Z", + "last_change_date": "2022-03-14T08:07:07.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11675, + "fields": { + "EF_ID": 511198, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.585Z", + "last_change_date": "2022-03-14T08:07:07.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11676, + "fields": { + "EF_ID": 511199, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.668Z", + "last_change_date": "2022-03-14T08:07:07.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11677, + "fields": { + "EF_ID": 511200, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.743Z", + "last_change_date": "2022-03-14T08:07:07.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11678, + "fields": { + "EF_ID": 511201, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.868Z", + "last_change_date": "2022-03-14T08:07:07.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11679, + "fields": { + "EF_ID": 511202, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:07.960Z", + "last_change_date": "2022-03-14T08:07:07.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11680, + "fields": { + "EF_ID": 511203, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.035Z", + "last_change_date": "2022-03-14T08:07:08.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11681, + "fields": { + "EF_ID": 511204, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.110Z", + "last_change_date": "2022-03-14T08:07:08.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11682, + "fields": { + "EF_ID": 511205, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.185Z", + "last_change_date": "2022-03-14T08:07:08.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11683, + "fields": { + "EF_ID": 511206, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.278Z", + "last_change_date": "2022-03-14T08:07:08.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11684, + "fields": { + "EF_ID": 511207, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.360Z", + "last_change_date": "2022-03-14T08:07:08.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11685, + "fields": { + "EF_ID": 511208, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.435Z", + "last_change_date": "2022-03-14T08:07:08.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11686, + "fields": { + "EF_ID": 511209, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.510Z", + "last_change_date": "2022-03-14T08:07:08.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11687, + "fields": { + "EF_ID": 511210, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.585Z", + "last_change_date": "2022-03-14T08:07:08.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11688, + "fields": { + "EF_ID": 511211, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.698Z", + "last_change_date": "2022-03-14T08:07:08.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11689, + "fields": { + "EF_ID": 511212, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.793Z", + "last_change_date": "2022-03-14T08:07:08.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11690, + "fields": { + "EF_ID": 511213, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.877Z", + "last_change_date": "2022-03-14T08:07:08.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11691, + "fields": { + "EF_ID": 511214, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:08.960Z", + "last_change_date": "2022-03-14T08:07:08.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11692, + "fields": { + "EF_ID": 511215, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.043Z", + "last_change_date": "2022-03-14T08:07:09.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11693, + "fields": { + "EF_ID": 511216, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.151Z", + "last_change_date": "2022-03-14T08:07:09.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11694, + "fields": { + "EF_ID": 511217, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.235Z", + "last_change_date": "2022-03-14T08:07:09.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11695, + "fields": { + "EF_ID": 511218, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.318Z", + "last_change_date": "2022-03-14T08:07:09.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11696, + "fields": { + "EF_ID": 511219, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.402Z", + "last_change_date": "2022-03-14T08:07:09.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11697, + "fields": { + "EF_ID": 511220, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.477Z", + "last_change_date": "2022-03-14T08:07:09.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11698, + "fields": { + "EF_ID": 511221, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.569Z", + "last_change_date": "2022-03-14T08:07:09.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11699, + "fields": { + "EF_ID": 511222, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.660Z", + "last_change_date": "2022-03-14T08:07:09.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11700, + "fields": { + "EF_ID": 511223, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.727Z", + "last_change_date": "2022-03-14T08:07:09.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11701, + "fields": { + "EF_ID": 511224, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.802Z", + "last_change_date": "2022-03-14T08:07:09.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11702, + "fields": { + "EF_ID": 511225, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.868Z", + "last_change_date": "2022-03-14T08:07:09.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11703, + "fields": { + "EF_ID": 511226, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:09.963Z", + "last_change_date": "2022-03-14T08:07:09.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11704, + "fields": { + "EF_ID": 511227, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.044Z", + "last_change_date": "2022-03-14T08:07:10.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11705, + "fields": { + "EF_ID": 511228, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.118Z", + "last_change_date": "2022-03-14T08:07:10.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11706, + "fields": { + "EF_ID": 511229, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.185Z", + "last_change_date": "2022-03-14T08:07:10.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11707, + "fields": { + "EF_ID": 511230, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.251Z", + "last_change_date": "2022-03-14T08:07:10.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11708, + "fields": { + "EF_ID": 511231, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "270", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.341Z", + "last_change_date": "2022-03-14T08:07:10.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11709, + "fields": { + "EF_ID": 511232, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.427Z", + "last_change_date": "2022-03-14T08:07:10.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11710, + "fields": { + "EF_ID": 511233, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.501Z", + "last_change_date": "2022-03-14T08:07:10.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11711, + "fields": { + "EF_ID": 511234, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.568Z", + "last_change_date": "2022-03-14T08:07:10.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11712, + "fields": { + "EF_ID": 511235, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.634Z", + "last_change_date": "2022-03-14T08:07:10.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11713, + "fields": { + "EF_ID": 511236, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.735Z", + "last_change_date": "2022-03-14T08:07:10.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11714, + "fields": { + "EF_ID": 511237, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.852Z", + "last_change_date": "2022-03-14T08:07:10.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11715, + "fields": { + "EF_ID": 511238, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:10.935Z", + "last_change_date": "2022-03-14T08:07:10.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11716, + "fields": { + "EF_ID": 511239, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.018Z", + "last_change_date": "2022-03-14T08:07:11.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11717, + "fields": { + "EF_ID": 511240, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.102Z", + "last_change_date": "2022-03-14T08:07:11.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11718, + "fields": { + "EF_ID": 511241, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.204Z", + "last_change_date": "2022-03-14T08:07:11.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11719, + "fields": { + "EF_ID": 511242, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.302Z", + "last_change_date": "2022-03-14T08:07:11.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11720, + "fields": { + "EF_ID": 511243, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.385Z", + "last_change_date": "2022-03-14T08:07:11.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11721, + "fields": { + "EF_ID": 511244, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.460Z", + "last_change_date": "2022-03-14T08:07:11.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11722, + "fields": { + "EF_ID": 511245, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.535Z", + "last_change_date": "2022-03-14T08:07:11.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11723, + "fields": { + "EF_ID": 511246, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.631Z", + "last_change_date": "2022-03-14T08:07:11.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11724, + "fields": { + "EF_ID": 511247, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.710Z", + "last_change_date": "2022-03-14T08:07:11.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11725, + "fields": { + "EF_ID": 511248, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.785Z", + "last_change_date": "2022-03-14T08:07:11.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11726, + "fields": { + "EF_ID": 511249, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.860Z", + "last_change_date": "2022-03-14T08:07:11.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11727, + "fields": { + "EF_ID": 511250, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:11.935Z", + "last_change_date": "2022-03-14T08:07:11.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11728, + "fields": { + "EF_ID": 511251, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.034Z", + "last_change_date": "2022-03-14T08:07:12.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11729, + "fields": { + "EF_ID": 511252, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.118Z", + "last_change_date": "2022-03-14T08:07:12.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11730, + "fields": { + "EF_ID": 511253, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.202Z", + "last_change_date": "2022-03-14T08:07:12.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11731, + "fields": { + "EF_ID": 511254, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.285Z", + "last_change_date": "2022-03-14T08:07:12.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11732, + "fields": { + "EF_ID": 511255, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.352Z", + "last_change_date": "2022-03-14T08:07:12.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11733, + "fields": { + "EF_ID": 511256, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.437Z", + "last_change_date": "2022-03-14T08:07:12.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11734, + "fields": { + "EF_ID": 511257, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.527Z", + "last_change_date": "2022-03-14T08:07:12.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11735, + "fields": { + "EF_ID": 511258, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.602Z", + "last_change_date": "2022-03-14T08:07:12.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11736, + "fields": { + "EF_ID": 511259, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.677Z", + "last_change_date": "2022-03-14T08:07:12.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11737, + "fields": { + "EF_ID": 511260, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.760Z", + "last_change_date": "2022-03-14T08:07:12.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11738, + "fields": { + "EF_ID": 511261, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.835Z", + "last_change_date": "2022-03-14T08:07:12.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11739, + "fields": { + "EF_ID": 511262, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:12.947Z", + "last_change_date": "2022-03-14T08:07:12.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11740, + "fields": { + "EF_ID": 511263, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.218Z", + "last_change_date": "2022-03-14T08:07:13.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11741, + "fields": { + "EF_ID": 511264, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.302Z", + "last_change_date": "2022-03-14T08:07:13.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11742, + "fields": { + "EF_ID": 511265, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.385Z", + "last_change_date": "2022-03-14T08:07:13.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11743, + "fields": { + "EF_ID": 511266, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.469Z", + "last_change_date": "2022-03-14T08:07:13.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11744, + "fields": { + "EF_ID": 511267, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.543Z", + "last_change_date": "2022-03-14T08:07:13.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11745, + "fields": { + "EF_ID": 511268, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.641Z", + "last_change_date": "2022-03-14T08:07:13.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11746, + "fields": { + "EF_ID": 511269, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.726Z", + "last_change_date": "2022-03-14T08:07:13.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11747, + "fields": { + "EF_ID": 511270, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.802Z", + "last_change_date": "2022-03-14T08:07:13.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11748, + "fields": { + "EF_ID": 511271, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.876Z", + "last_change_date": "2022-03-14T08:07:13.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11749, + "fields": { + "EF_ID": 511272, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:13.952Z", + "last_change_date": "2022-03-14T08:07:13.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11750, + "fields": { + "EF_ID": 511273, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.027Z", + "last_change_date": "2022-03-14T08:07:14.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11751, + "fields": { + "EF_ID": 511274, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.137Z", + "last_change_date": "2022-03-14T08:07:14.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11752, + "fields": { + "EF_ID": 511275, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175 (50 - 275)", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.234Z", + "last_change_date": "2022-03-14T08:07:14.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11753, + "fields": { + "EF_ID": 511276, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.310Z", + "last_change_date": "2022-03-14T08:07:14.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11754, + "fields": { + "EF_ID": 511277, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.385Z", + "last_change_date": "2022-03-14T08:07:14.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11755, + "fields": { + "EF_ID": 511278, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.460Z", + "last_change_date": "2022-03-14T08:07:14.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11756, + "fields": { + "EF_ID": 511279, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.535Z", + "last_change_date": "2022-03-14T08:07:14.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11757, + "fields": { + "EF_ID": 511280, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.631Z", + "last_change_date": "2022-03-14T08:07:14.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11758, + "fields": { + "EF_ID": 511281, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.710Z", + "last_change_date": "2022-03-14T08:07:14.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11759, + "fields": { + "EF_ID": 511282, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.785Z", + "last_change_date": "2022-03-14T08:07:14.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11760, + "fields": { + "EF_ID": 511283, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.868Z", + "last_change_date": "2022-03-14T08:07:14.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11761, + "fields": { + "EF_ID": 511284, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:14.960Z", + "last_change_date": "2022-03-14T08:07:14.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11762, + "fields": { + "EF_ID": 511285, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Bw in Equation 3.2.9 Annual other losses of carbon, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.035Z", + "last_change_date": "2022-03-14T08:07:15.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11763, + "fields": { + "EF_ID": 511286, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.142Z", + "last_change_date": "2022-03-14T08:07:15.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11764, + "fields": { + "EF_ID": 511287, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.227Z", + "last_change_date": "2022-03-14T08:07:15.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11765, + "fields": { + "EF_ID": 511288, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.310Z", + "last_change_date": "2022-03-14T08:07:15.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11766, + "fields": { + "EF_ID": 511289, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.393Z", + "last_change_date": "2022-03-14T08:07:15.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11767, + "fields": { + "EF_ID": 511290, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.468Z", + "last_change_date": "2022-03-14T08:07:15.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11768, + "fields": { + "EF_ID": 511291, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.553Z", + "last_change_date": "2022-03-14T08:07:15.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11769, + "fields": { + "EF_ID": 511292, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.643Z", + "last_change_date": "2022-03-14T08:07:15.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11770, + "fields": { + "EF_ID": 511293, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.710Z", + "last_change_date": "2022-03-14T08:07:15.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11771, + "fields": { + "EF_ID": 511294, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.785Z", + "last_change_date": "2022-03-14T08:07:15.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11772, + "fields": { + "EF_ID": 511295, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.852Z", + "last_change_date": "2022-03-14T08:07:15.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11773, + "fields": { + "EF_ID": 511296, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:15.939Z", + "last_change_date": "2022-03-14T08:07:15.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11774, + "fields": { + "EF_ID": 511297, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.018Z", + "last_change_date": "2022-03-14T08:07:16.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11775, + "fields": { + "EF_ID": 511298, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.085Z", + "last_change_date": "2022-03-14T08:07:16.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11776, + "fields": { + "EF_ID": 511299, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.151Z", + "last_change_date": "2022-03-14T08:07:16.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11777, + "fields": { + "EF_ID": 511300, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.235Z", + "last_change_date": "2022-03-14T08:07:16.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11778, + "fields": { + "EF_ID": 511301, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.341Z", + "last_change_date": "2022-03-14T08:07:16.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11779, + "fields": { + "EF_ID": 511302, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.418Z", + "last_change_date": "2022-03-14T08:07:16.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11780, + "fields": { + "EF_ID": 511303, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.493Z", + "last_change_date": "2022-03-14T08:07:16.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11781, + "fields": { + "EF_ID": 511304, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.568Z", + "last_change_date": "2022-03-14T08:07:16.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11782, + "fields": { + "EF_ID": 511305, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.643Z", + "last_change_date": "2022-03-14T08:07:16.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11783, + "fields": { + "EF_ID": 511306, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.743Z", + "last_change_date": "2022-03-14T08:07:16.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11784, + "fields": { + "EF_ID": 511307, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.843Z", + "last_change_date": "2022-03-14T08:07:16.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11785, + "fields": { + "EF_ID": 511308, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.918Z", + "last_change_date": "2022-03-14T08:07:16.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11786, + "fields": { + "EF_ID": 511309, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:16.993Z", + "last_change_date": "2022-03-14T08:07:16.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11787, + "fields": { + "EF_ID": 511310, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.093Z", + "last_change_date": "2022-03-14T08:07:17.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11788, + "fields": { + "EF_ID": 511311, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.188Z", + "last_change_date": "2022-03-14T08:07:17.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11789, + "fields": { + "EF_ID": 511312, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.268Z", + "last_change_date": "2022-03-14T08:07:17.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11790, + "fields": { + "EF_ID": 511313, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.343Z", + "last_change_date": "2022-03-14T08:07:17.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11791, + "fields": { + "EF_ID": 511314, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.418Z", + "last_change_date": "2022-03-14T08:07:17.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11792, + "fields": { + "EF_ID": 511315, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.493Z", + "last_change_date": "2022-03-14T08:07:17.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11793, + "fields": { + "EF_ID": 511316, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.590Z", + "last_change_date": "2022-03-14T08:07:17.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11794, + "fields": { + "EF_ID": 511317, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.685Z", + "last_change_date": "2022-03-14T08:07:17.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11795, + "fields": { + "EF_ID": 511318, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.768Z", + "last_change_date": "2022-03-14T08:07:17.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11796, + "fields": { + "EF_ID": 511319, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.835Z", + "last_change_date": "2022-03-14T08:07:17.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11797, + "fields": { + "EF_ID": 511320, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.901Z", + "last_change_date": "2022-03-14T08:07:17.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11798, + "fields": { + "EF_ID": 511321, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:17.992Z", + "last_change_date": "2022-03-14T08:07:17.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11799, + "fields": { + "EF_ID": 511322, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.077Z", + "last_change_date": "2022-03-14T08:07:18.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11800, + "fields": { + "EF_ID": 511323, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "270", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.193Z", + "last_change_date": "2022-03-14T08:07:18.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11801, + "fields": { + "EF_ID": 511324, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.268Z", + "last_change_date": "2022-03-14T08:07:18.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11802, + "fields": { + "EF_ID": 511325, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.343Z", + "last_change_date": "2022-03-14T08:07:18.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11803, + "fields": { + "EF_ID": 511326, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.436Z", + "last_change_date": "2022-03-14T08:07:18.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11804, + "fields": { + "EF_ID": 511327, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.527Z", + "last_change_date": "2022-03-14T08:07:18.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11805, + "fields": { + "EF_ID": 511328, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.593Z", + "last_change_date": "2022-03-14T08:07:18.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11806, + "fields": { + "EF_ID": 511329, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.660Z", + "last_change_date": "2022-03-14T08:07:18.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11807, + "fields": { + "EF_ID": 511330, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.727Z", + "last_change_date": "2022-03-14T08:07:18.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11808, + "fields": { + "EF_ID": 511331, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.823Z", + "last_change_date": "2022-03-14T08:07:18.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11809, + "fields": { + "EF_ID": 511332, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.910Z", + "last_change_date": "2022-03-14T08:07:18.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11810, + "fields": { + "EF_ID": 511333, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:18.977Z", + "last_change_date": "2022-03-14T08:07:18.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11811, + "fields": { + "EF_ID": 511334, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.043Z", + "last_change_date": "2022-03-14T08:07:19.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11812, + "fields": { + "EF_ID": 511335, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.127Z", + "last_change_date": "2022-03-14T08:07:19.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11813, + "fields": { + "EF_ID": 511336, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.241Z", + "last_change_date": "2022-03-14T08:07:19.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11814, + "fields": { + "EF_ID": 511337, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.326Z", + "last_change_date": "2022-03-14T08:07:19.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11815, + "fields": { + "EF_ID": 511338, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.401Z", + "last_change_date": "2022-03-14T08:07:19.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11816, + "fields": { + "EF_ID": 511339, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.476Z", + "last_change_date": "2022-03-14T08:07:19.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11817, + "fields": { + "EF_ID": 511340, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.551Z", + "last_change_date": "2022-03-14T08:07:19.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11818, + "fields": { + "EF_ID": 511341, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.652Z", + "last_change_date": "2022-03-14T08:07:19.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11819, + "fields": { + "EF_ID": 511342, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.735Z", + "last_change_date": "2022-03-14T08:07:19.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11820, + "fields": { + "EF_ID": 511343, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.810Z", + "last_change_date": "2022-03-14T08:07:19.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11821, + "fields": { + "EF_ID": 511344, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.876Z", + "last_change_date": "2022-03-14T08:07:19.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11822, + "fields": { + "EF_ID": 511345, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:19.952Z", + "last_change_date": "2022-03-14T08:07:19.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11823, + "fields": { + "EF_ID": 511346, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.062Z", + "last_change_date": "2022-03-14T08:07:20.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11824, + "fields": { + "EF_ID": 511347, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.151Z", + "last_change_date": "2022-03-14T08:07:20.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11825, + "fields": { + "EF_ID": 511348, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.235Z", + "last_change_date": "2022-03-14T08:07:20.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11826, + "fields": { + "EF_ID": 511349, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.310Z", + "last_change_date": "2022-03-14T08:07:20.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11827, + "fields": { + "EF_ID": 511350, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.385Z", + "last_change_date": "2022-03-14T08:07:20.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11828, + "fields": { + "EF_ID": 511351, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.482Z", + "last_change_date": "2022-03-14T08:07:20.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11829, + "fields": { + "EF_ID": 511352, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.568Z", + "last_change_date": "2022-03-14T08:07:20.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11830, + "fields": { + "EF_ID": 511353, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.643Z", + "last_change_date": "2022-03-14T08:07:20.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11831, + "fields": { + "EF_ID": 511354, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.718Z", + "last_change_date": "2022-03-14T08:07:20.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11832, + "fields": { + "EF_ID": 511355, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.793Z", + "last_change_date": "2022-03-14T08:07:20.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11833, + "fields": { + "EF_ID": 511356, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.893Z", + "last_change_date": "2022-03-14T08:07:20.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11834, + "fields": { + "EF_ID": 511357, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:20.977Z", + "last_change_date": "2022-03-14T08:07:20.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11835, + "fields": { + "EF_ID": 511358, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.051Z", + "last_change_date": "2022-03-14T08:07:21.051Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11836, + "fields": { + "EF_ID": 511359, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.127Z", + "last_change_date": "2022-03-14T08:07:21.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11837, + "fields": { + "EF_ID": 511360, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.218Z", + "last_change_date": "2022-03-14T08:07:21.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11838, + "fields": { + "EF_ID": 511361, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.311Z", + "last_change_date": "2022-03-14T08:07:21.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11839, + "fields": { + "EF_ID": 511362, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.393Z", + "last_change_date": "2022-03-14T08:07:21.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11840, + "fields": { + "EF_ID": 511363, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.468Z", + "last_change_date": "2022-03-14T08:07:21.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11841, + "fields": { + "EF_ID": 511364, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.560Z", + "last_change_date": "2022-03-14T08:07:21.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11842, + "fields": { + "EF_ID": 511365, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.652Z", + "last_change_date": "2022-03-14T08:07:21.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11843, + "fields": { + "EF_ID": 511366, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.748Z", + "last_change_date": "2022-03-14T08:07:21.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11844, + "fields": { + "EF_ID": 511367, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175 (50 - 275)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.827Z", + "last_change_date": "2022-03-14T08:07:21.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11845, + "fields": { + "EF_ID": 511368, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.902Z", + "last_change_date": "2022-03-14T08:07:21.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11846, + "fields": { + "EF_ID": 511369, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:21.977Z", + "last_change_date": "2022-03-14T08:07:21.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11847, + "fields": { + "EF_ID": 511370, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.051Z", + "last_change_date": "2022-03-14T08:07:22.051Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11848, + "fields": { + "EF_ID": 511371, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.127Z", + "last_change_date": "2022-03-14T08:07:22.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11849, + "fields": { + "EF_ID": 511372, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.226Z", + "last_change_date": "2022-03-14T08:07:22.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11850, + "fields": { + "EF_ID": 511373, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.310Z", + "last_change_date": "2022-03-14T08:07:22.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11851, + "fields": { + "EF_ID": 511374, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.385Z", + "last_change_date": "2022-03-14T08:07:22.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11852, + "fields": { + "EF_ID": 511375, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.460Z", + "last_change_date": "2022-03-14T08:07:22.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11853, + "fields": { + "EF_ID": 511376, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.535Z", + "last_change_date": "2022-03-14T08:07:22.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11854, + "fields": { + "EF_ID": 511377, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.3.8 Annual change in carbon stocks in living biomass in land converted to cropland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.610Z", + "last_change_date": "2022-03-14T08:07:22.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11855, + "fields": { + "EF_ID": 511378, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.712Z", + "last_change_date": "2022-03-14T08:07:22.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11856, + "fields": { + "EF_ID": 511379, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.777Z", + "last_change_date": "2022-03-14T08:07:22.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11857, + "fields": { + "EF_ID": 511380, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.843Z", + "last_change_date": "2022-03-14T08:07:22.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11858, + "fields": { + "EF_ID": 511381, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.910Z", + "last_change_date": "2022-03-14T08:07:22.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11859, + "fields": { + "EF_ID": 511382, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:22.977Z", + "last_change_date": "2022-03-14T08:07:22.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11860, + "fields": { + "EF_ID": 511383, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.072Z", + "last_change_date": "2022-03-14T08:07:23.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11861, + "fields": { + "EF_ID": 511384, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.168Z", + "last_change_date": "2022-03-14T08:07:23.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11862, + "fields": { + "EF_ID": 511385, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.243Z", + "last_change_date": "2022-03-14T08:07:23.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11863, + "fields": { + "EF_ID": 511386, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.335Z", + "last_change_date": "2022-03-14T08:07:23.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11864, + "fields": { + "EF_ID": 511387, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.418Z", + "last_change_date": "2022-03-14T08:07:23.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11865, + "fields": { + "EF_ID": 511388, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.526Z", + "last_change_date": "2022-03-14T08:07:23.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11866, + "fields": { + "EF_ID": 511389, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf spp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.610Z", + "last_change_date": "2022-03-14T08:07:23.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11867, + "fields": { + "EF_ID": 511390, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.693Z", + "last_change_date": "2022-03-14T08:07:23.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11868, + "fields": { + "EF_ID": 511391, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.768Z", + "last_change_date": "2022-03-14T08:07:23.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11869, + "fields": { + "EF_ID": 511392, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.844Z", + "last_change_date": "2022-03-14T08:07:23.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11870, + "fields": { + "EF_ID": 511393, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:23.936Z", + "last_change_date": "2022-03-14T08:07:23.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11871, + "fields": { + "EF_ID": 511394, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.019Z", + "last_change_date": "2022-03-14T08:07:24.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11872, + "fields": { + "EF_ID": 511395, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: equal or less than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.119Z", + "last_change_date": "2022-03-14T08:07:24.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11873, + "fields": { + "EF_ID": 511396, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.193Z", + "last_change_date": "2022-03-14T08:07:24.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11874, + "fields": { + "EF_ID": 511397, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.260Z", + "last_change_date": "2022-03-14T08:07:24.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11875, + "fields": { + "EF_ID": 511398, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.372Z", + "last_change_date": "2022-03-14T08:07:24.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11876, + "fields": { + "EF_ID": 511399, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.460Z", + "last_change_date": "2022-03-14T08:07:24.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11877, + "fields": { + "EF_ID": 511400, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.527Z", + "last_change_date": "2022-03-14T08:07:24.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11878, + "fields": { + "EF_ID": 511401, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus sp.; Age class: more than 20 years", + "Regional_Conditions": "Africa; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.593Z", + "last_change_date": "2022-03-14T08:07:24.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11879, + "fields": { + "EF_ID": 511402, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.660Z", + "last_change_date": "2022-03-14T08:07:24.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11880, + "fields": { + "EF_ID": 511403, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.749Z", + "last_change_date": "2022-03-14T08:07:24.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11881, + "fields": { + "EF_ID": 511404, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.844Z", + "last_change_date": "2022-03-14T08:07:24.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11882, + "fields": { + "EF_ID": 511405, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:24.927Z", + "last_change_date": "2022-03-14T08:07:24.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11883, + "fields": { + "EF_ID": 511406, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.002Z", + "last_change_date": "2022-03-14T08:07:25.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11884, + "fields": { + "EF_ID": 511407, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, broadleaf; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.085Z", + "last_change_date": "2022-03-14T08:07:25.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11885, + "fields": { + "EF_ID": 511408, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.186Z", + "last_change_date": "2022-03-14T08:07:25.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11886, + "fields": { + "EF_ID": 511409, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.269Z", + "last_change_date": "2022-03-14T08:07:25.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11887, + "fields": { + "EF_ID": 511410, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.360Z", + "last_change_date": "2022-03-14T08:07:25.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11888, + "fields": { + "EF_ID": 511411, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.435Z", + "last_change_date": "2022-03-14T08:07:25.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11889, + "fields": { + "EF_ID": 511412, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.510Z", + "last_change_date": "2022-03-14T08:07:25.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11890, + "fields": { + "EF_ID": 511413, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other species; Age class: all", + "Regional_Conditions": "Asia; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.604Z", + "last_change_date": "2022-03-14T08:07:25.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11891, + "fields": { + "EF_ID": 511414, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.685Z", + "last_change_date": "2022-03-14T08:07:25.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11892, + "fields": { + "EF_ID": 511415, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "270", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.760Z", + "last_change_date": "2022-03-14T08:07:25.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11893, + "fields": { + "EF_ID": 511416, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.835Z", + "last_change_date": "2022-03-14T08:07:25.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11894, + "fields": { + "EF_ID": 511417, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:25.919Z", + "last_change_date": "2022-03-14T08:07:25.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11895, + "fields": { + "EF_ID": 511418, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.015Z", + "last_change_date": "2022-03-14T08:07:26.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11896, + "fields": { + "EF_ID": 511419, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Pinus; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.110Z", + "last_change_date": "2022-03-14T08:07:26.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11897, + "fields": { + "EF_ID": 511420, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.185Z", + "last_change_date": "2022-03-14T08:07:26.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11898, + "fields": { + "EF_ID": 511421, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.260Z", + "last_change_date": "2022-03-14T08:07:26.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11899, + "fields": { + "EF_ID": 511422, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.335Z", + "last_change_date": "2022-03-14T08:07:26.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11900, + "fields": { + "EF_ID": 511423, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.434Z", + "last_change_date": "2022-03-14T08:07:26.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11901, + "fields": { + "EF_ID": 511424, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.519Z", + "last_change_date": "2022-03-14T08:07:26.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11902, + "fields": { + "EF_ID": 511425, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Eucalyptus; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.627Z", + "last_change_date": "2022-03-14T08:07:26.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11903, + "fields": { + "EF_ID": 511426, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.735Z", + "last_change_date": "2022-03-14T08:07:26.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11904, + "fields": { + "EF_ID": 511427, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.819Z", + "last_change_date": "2022-03-14T08:07:26.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11905, + "fields": { + "EF_ID": 511428, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.929Z", + "last_change_date": "2022-03-14T08:07:26.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11906, + "fields": { + "EF_ID": 511429, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:26.994Z", + "last_change_date": "2022-03-14T08:07:26.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11907, + "fields": { + "EF_ID": 511430, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.069Z", + "last_change_date": "2022-03-14T08:07:27.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11908, + "fields": { + "EF_ID": 511431, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, Tectona; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.161Z", + "last_change_date": "2022-03-14T08:07:27.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11909, + "fields": { + "EF_ID": 511432, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: wet, mean annual rainfall is more than 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.235Z", + "last_change_date": "2022-03-14T08:07:27.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11910, + "fields": { + "EF_ID": 511433, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: moist with short dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.332Z", + "last_change_date": "2022-03-14T08:07:27.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11911, + "fields": { + "EF_ID": 511434, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: moist with long dry season, mean annual rainfall is between 1000 mm and 2000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.419Z", + "last_change_date": "2022-03-14T08:07:27.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11912, + "fields": { + "EF_ID": 511435, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.494Z", + "last_change_date": "2022-03-14T08:07:27.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11913, + "fields": { + "EF_ID": 511436, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: montane moist, mean annual rainfall is more than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.569Z", + "last_change_date": "2022-03-14T08:07:27.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11914, + "fields": { + "EF_ID": 511437, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical and sub-tropical forests, other broadleaved; Age class: all", + "Regional_Conditions": "America; Climate type: montane dry, mean annual rainfall is less than 1000 mm", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.652Z", + "last_change_date": "2022-03-14T08:07:27.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11915, + "fields": { + "EF_ID": 511438, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.784Z", + "last_change_date": "2022-03-14T08:07:27.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11916, + "fields": { + "EF_ID": 511439, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.877Z", + "last_change_date": "2022-03-14T08:07:27.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11917, + "fields": { + "EF_ID": 511440, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:27.944Z", + "last_change_date": "2022-03-14T08:07:27.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11918, + "fields": { + "EF_ID": 511441, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.011Z", + "last_change_date": "2022-03-14T08:07:28.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11919, + "fields": { + "EF_ID": 511442, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.086Z", + "last_change_date": "2022-03-14T08:07:28.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11920, + "fields": { + "EF_ID": 511443, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: maritime", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.204Z", + "last_change_date": "2022-03-14T08:07:28.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11921, + "fields": { + "EF_ID": 511444, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.286Z", + "last_change_date": "2022-03-14T08:07:28.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11922, + "fields": { + "EF_ID": 511445, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.361Z", + "last_change_date": "2022-03-14T08:07:28.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11923, + "fields": { + "EF_ID": 511446, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.435Z", + "last_change_date": "2022-03-14T08:07:28.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11924, + "fields": { + "EF_ID": 511447, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.511Z", + "last_change_date": "2022-03-14T08:07:28.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11925, + "fields": { + "EF_ID": 511448, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.606Z", + "last_change_date": "2022-03-14T08:07:28.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11926, + "fields": { + "EF_ID": 511449, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: continental", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.685Z", + "last_change_date": "2022-03-14T08:07:28.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11927, + "fields": { + "EF_ID": 511450, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.777Z", + "last_change_date": "2022-03-14T08:07:28.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11928, + "fields": { + "EF_ID": 511451, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.860Z", + "last_change_date": "2022-03-14T08:07:28.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11929, + "fields": { + "EF_ID": 511452, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:28.944Z", + "last_change_date": "2022-03-14T08:07:28.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11930, + "fields": { + "EF_ID": 511453, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.068Z", + "last_change_date": "2022-03-14T08:07:29.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11931, + "fields": { + "EF_ID": 511454, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.161Z", + "last_change_date": "2022-03-14T08:07:29.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11932, + "fields": { + "EF_ID": 511455, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia; Climate type: Mediterranean and steppe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.236Z", + "last_change_date": "2022-03-14T08:07:29.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11933, + "fields": { + "EF_ID": 511456, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.311Z", + "last_change_date": "2022-03-14T08:07:29.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11934, + "fields": { + "EF_ID": 511457, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.386Z", + "last_change_date": "2022-03-14T08:07:29.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11935, + "fields": { + "EF_ID": 511458, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, broadleaf; Age class: all", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.502Z", + "last_change_date": "2022-03-14T08:07:29.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11936, + "fields": { + "EF_ID": 511459, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, Pine; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "175 (50 - 275)", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.586Z", + "last_change_date": "2022-03-14T08:07:29.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11937, + "fields": { + "EF_ID": 511460, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate forests, other coniferous; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.669Z", + "last_change_date": "2022-03-14T08:07:29.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11938, + "fields": { + "EF_ID": 511461, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.736Z", + "last_change_date": "2022-03-14T08:07:29.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11939, + "fields": { + "EF_ID": 511462, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.802Z", + "last_change_date": "2022-03-14T08:07:29.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11940, + "fields": { + "EF_ID": 511463, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: equal or less than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.869Z", + "last_change_date": "2022-03-14T08:07:29.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11941, + "fields": { + "EF_ID": 511464, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:29.956Z", + "last_change_date": "2022-03-14T08:07:29.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11942, + "fields": { + "EF_ID": 511465, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.036Z", + "last_change_date": "2022-03-14T08:07:30.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11943, + "fields": { + "EF_ID": 511466, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: more than 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.111Z", + "last_change_date": "2022-03-14T08:07:30.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11944, + "fields": { + "EF_ID": 511467, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, Pine; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.177Z", + "last_change_date": "2022-03-14T08:07:30.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11945, + "fields": { + "EF_ID": 511468, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, other coniferous; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.269Z", + "last_change_date": "2022-03-14T08:07:30.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11946, + "fields": { + "EF_ID": 511469, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground biomass stock in plantation forests by broad category", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forests, broadleaf; Age class: all", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "To be used for Lconversion in Equation 3.4.13 Annual change in carbon stocks in living biomass in land converted to grassland, of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.3 Aboveground biomass stock in plantation forests by broad category, on page 3.158", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.344Z", + "last_change_date": "2022-03-14T08:07:30.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11947, + "fields": { + "EF_ID": 511470, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Algeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.433Z", + "last_change_date": "2022-03-14T08:07:30.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11948, + "fields": { + "EF_ID": 511471, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Angola", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.519Z", + "last_change_date": "2022-03-14T08:07:30.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11949, + "fields": { + "EF_ID": 511472, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Benin", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.585Z", + "last_change_date": "2022-03-14T08:07:30.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11950, + "fields": { + "EF_ID": 511473, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Botswana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.660Z", + "last_change_date": "2022-03-14T08:07:30.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11951, + "fields": { + "EF_ID": 511474, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Burkina Faso", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.727Z", + "last_change_date": "2022-03-14T08:07:30.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11952, + "fields": { + "EF_ID": 511475, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Burundi", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.802Z", + "last_change_date": "2022-03-14T08:07:30.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11953, + "fields": { + "EF_ID": 511476, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cameroon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "135", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.868Z", + "last_change_date": "2022-03-14T08:07:30.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11954, + "fields": { + "EF_ID": 511477, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cape Verde", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:30.970Z", + "last_change_date": "2022-03-14T08:07:30.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11955, + "fields": { + "EF_ID": 511478, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Central African Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory and external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.061Z", + "last_change_date": "2022-03-14T08:07:31.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11956, + "fields": { + "EF_ID": 511479, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Chad", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.136Z", + "last_change_date": "2022-03-14T08:07:31.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11957, + "fields": { + "EF_ID": 511480, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Comoros", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.219Z", + "last_change_date": "2022-03-14T08:07:31.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11958, + "fields": { + "EF_ID": 511481, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.302Z", + "last_change_date": "2022-03-14T08:07:31.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11959, + "fields": { + "EF_ID": 511482, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cote d`Ivoire", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.377Z", + "last_change_date": "2022-03-14T08:07:31.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11960, + "fields": { + "EF_ID": 511483, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Dem. Rep. of the Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.461Z", + "last_change_date": "2022-03-14T08:07:31.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11961, + "fields": { + "EF_ID": 511484, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Djibouti", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.557Z", + "last_change_date": "2022-03-14T08:07:31.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11962, + "fields": { + "EF_ID": 511485, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "108", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.661Z", + "last_change_date": "2022-03-14T08:07:31.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11963, + "fields": { + "EF_ID": 511486, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Equatorial Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.736Z", + "last_change_date": "2022-03-14T08:07:31.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11964, + "fields": { + "EF_ID": 511487, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Eritrea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.811Z", + "last_change_date": "2022-03-14T08:07:31.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11965, + "fields": { + "EF_ID": 511488, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Ethiopia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.886Z", + "last_change_date": "2022-03-14T08:07:31.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11966, + "fields": { + "EF_ID": 511489, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Gabon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "128", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:31.961Z", + "last_change_date": "2022-03-14T08:07:31.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11967, + "fields": { + "EF_ID": 511490, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Gambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.036Z", + "last_change_date": "2022-03-14T08:07:32.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11968, + "fields": { + "EF_ID": 511491, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Ghana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.135Z", + "last_change_date": "2022-03-14T08:07:32.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11969, + "fields": { + "EF_ID": 511492, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "117", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.219Z", + "last_change_date": "2022-03-14T08:07:32.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11970, + "fields": { + "EF_ID": 511493, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Guinea-Bissau", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.294Z", + "last_change_date": "2022-03-14T08:07:32.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11971, + "fields": { + "EF_ID": 511494, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.369Z", + "last_change_date": "2022-03-14T08:07:32.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11972, + "fields": { + "EF_ID": 511495, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Lesotho", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.444Z", + "last_change_date": "2022-03-14T08:07:32.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11973, + "fields": { + "EF_ID": 511496, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Liberia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "201", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.519Z", + "last_change_date": "2022-03-14T08:07:32.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11974, + "fields": { + "EF_ID": 511497, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Libyan Arab Jamahiriya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.594Z", + "last_change_date": "2022-03-14T08:07:32.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11975, + "fields": { + "EF_ID": 511498, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Madagascar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.688Z", + "last_change_date": "2022-03-14T08:07:32.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11976, + "fields": { + "EF_ID": 511499, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Malawi", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "103", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.769Z", + "last_change_date": "2022-03-14T08:07:32.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11977, + "fields": { + "EF_ID": 511500, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mali", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.844Z", + "last_change_date": "2022-03-14T08:07:32.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11978, + "fields": { + "EF_ID": 511501, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mauritania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:32.919Z", + "last_change_date": "2022-03-14T08:07:32.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11979, + "fields": { + "EF_ID": 511502, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mauritius", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.003Z", + "last_change_date": "2022-03-14T08:07:33.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11980, + "fields": { + "EF_ID": 511503, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Morocco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.086Z", + "last_change_date": "2022-03-14T08:07:33.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11981, + "fields": { + "EF_ID": 511504, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mozambique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.169Z", + "last_change_date": "2022-03-14T08:07:33.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11982, + "fields": { + "EF_ID": 511505, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Namibia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.267Z", + "last_change_date": "2022-03-14T08:07:33.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11983, + "fields": { + "EF_ID": 511506, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Niger", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.361Z", + "last_change_date": "2022-03-14T08:07:33.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11984, + "fields": { + "EF_ID": 511507, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "82", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.436Z", + "last_change_date": "2022-03-14T08:07:33.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11985, + "fields": { + "EF_ID": 511508, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Reunion", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.544Z", + "last_change_date": "2022-03-14T08:07:33.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11986, + "fields": { + "EF_ID": 511509, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Rwanda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.611Z", + "last_change_date": "2022-03-14T08:07:33.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11987, + "fields": { + "EF_ID": 511510, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sao Tome and Principe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "108", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.694Z", + "last_change_date": "2022-03-14T08:07:33.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11988, + "fields": { + "EF_ID": 511511, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Senegal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.761Z", + "last_change_date": "2022-03-14T08:07:33.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11989, + "fields": { + "EF_ID": 511512, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Seychelles", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.853Z", + "last_change_date": "2022-03-14T08:07:33.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11990, + "fields": { + "EF_ID": 511513, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sierra Leone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:33.936Z", + "last_change_date": "2022-03-14T08:07:33.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11991, + "fields": { + "EF_ID": 511514, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Somalia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.011Z", + "last_change_date": "2022-03-14T08:07:34.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11992, + "fields": { + "EF_ID": 511515, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.103Z", + "last_change_date": "2022-03-14T08:07:34.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11993, + "fields": { + "EF_ID": 511516, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sudan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.178Z", + "last_change_date": "2022-03-14T08:07:34.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11994, + "fields": { + "EF_ID": 511517, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Swaziland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.252Z", + "last_change_date": "2022-03-14T08:07:34.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11995, + "fields": { + "EF_ID": 511518, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Togo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.319Z", + "last_change_date": "2022-03-14T08:07:34.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11996, + "fields": { + "EF_ID": 511519, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Tunisia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.415Z", + "last_change_date": "2022-03-14T08:07:34.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11997, + "fields": { + "EF_ID": 511520, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Uganda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.494Z", + "last_change_date": "2022-03-14T08:07:34.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11998, + "fields": { + "EF_ID": 511521, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; United Republic of Tanzania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.561Z", + "last_change_date": "2022-03-14T08:07:34.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 11999, + "fields": { + "EF_ID": 511522, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Western Sahara", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.636Z", + "last_change_date": "2022-03-14T08:07:34.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12000, + "fields": { + "EF_ID": 511523, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Zambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.703Z", + "last_change_date": "2022-03-14T08:07:34.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12001, + "fields": { + "EF_ID": 511524, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.769Z", + "last_change_date": "2022-03-14T08:07:34.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12002, + "fields": { + "EF_ID": 511525, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Afghanistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.836Z", + "last_change_date": "2022-03-14T08:07:34.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12003, + "fields": { + "EF_ID": 511526, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Armenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "128", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:34.936Z", + "last_change_date": "2022-03-14T08:07:34.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12004, + "fields": { + "EF_ID": 511527, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.028Z", + "last_change_date": "2022-03-14T08:07:35.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12005, + "fields": { + "EF_ID": 511528, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bahrain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.111Z", + "last_change_date": "2022-03-14T08:07:35.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12006, + "fields": { + "EF_ID": 511529, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.186Z", + "last_change_date": "2022-03-14T08:07:35.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12007, + "fields": { + "EF_ID": 511530, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bhutan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "163", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.261Z", + "last_change_date": "2022-03-14T08:07:35.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12008, + "fields": { + "EF_ID": 511531, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Brunei Darussalam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "119", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.336Z", + "last_change_date": "2022-03-14T08:07:35.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12009, + "fields": { + "EF_ID": 511532, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.402Z", + "last_change_date": "2022-03-14T08:07:35.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12010, + "fields": { + "EF_ID": 511533, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.497Z", + "last_change_date": "2022-03-14T08:07:35.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12011, + "fields": { + "EF_ID": 511534, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Cyprus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.578Z", + "last_change_date": "2022-03-14T08:07:35.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12012, + "fields": { + "EF_ID": 511535, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Dem People`s Rep. of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.644Z", + "last_change_date": "2022-03-14T08:07:35.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12013, + "fields": { + "EF_ID": 511536, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; East Timor", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.719Z", + "last_change_date": "2022-03-14T08:07:35.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12014, + "fields": { + "EF_ID": 511537, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Georgia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "145", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.810Z", + "last_change_date": "2022-03-14T08:07:35.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12015, + "fields": { + "EF_ID": 511538, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.877Z", + "last_change_date": "2022-03-14T08:07:35.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12016, + "fields": { + "EF_ID": 511539, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:35.943Z", + "last_change_date": "2022-03-14T08:07:35.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12017, + "fields": { + "EF_ID": 511540, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Iran, Islamic Rep.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.032Z", + "last_change_date": "2022-03-14T08:07:36.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12018, + "fields": { + "EF_ID": 511541, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Iraq", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.111Z", + "last_change_date": "2022-03-14T08:07:36.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12019, + "fields": { + "EF_ID": 511542, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Israel", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.176Z", + "last_change_date": "2022-03-14T08:07:36.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12020, + "fields": { + "EF_ID": 511543, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "145", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.243Z", + "last_change_date": "2022-03-14T08:07:36.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12021, + "fields": { + "EF_ID": 511544, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Jordan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.310Z", + "last_change_date": "2022-03-14T08:07:36.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12022, + "fields": { + "EF_ID": 511545, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.377Z", + "last_change_date": "2022-03-14T08:07:36.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12023, + "fields": { + "EF_ID": 511546, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kuwait", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.443Z", + "last_change_date": "2022-03-14T08:07:36.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12024, + "fields": { + "EF_ID": 511547, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kyrgyzstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.545Z", + "last_change_date": "2022-03-14T08:07:36.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12025, + "fields": { + "EF_ID": 511548, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Lao People`s Dem. Rep", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.645Z", + "last_change_date": "2022-03-14T08:07:36.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12026, + "fields": { + "EF_ID": 511549, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Lebanon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.719Z", + "last_change_date": "2022-03-14T08:07:36.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12027, + "fields": { + "EF_ID": 511550, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "119", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.794Z", + "last_change_date": "2022-03-14T08:07:36.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12028, + "fields": { + "EF_ID": 511551, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Mongolia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "128", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.870Z", + "last_change_date": "2022-03-14T08:07:36.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12029, + "fields": { + "EF_ID": 511552, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:36.953Z", + "last_change_date": "2022-03-14T08:07:36.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12030, + "fields": { + "EF_ID": 511553, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Nepal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.036Z", + "last_change_date": "2022-03-14T08:07:37.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12031, + "fields": { + "EF_ID": 511554, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Oman", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.139Z", + "last_change_date": "2022-03-14T08:07:37.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12032, + "fields": { + "EF_ID": 511555, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.219Z", + "last_change_date": "2022-03-14T08:07:37.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12033, + "fields": { + "EF_ID": 511556, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.295Z", + "last_change_date": "2022-03-14T08:07:37.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12034, + "fields": { + "EF_ID": 511557, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Qatar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.378Z", + "last_change_date": "2022-03-14T08:07:37.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12035, + "fields": { + "EF_ID": 511558, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.453Z", + "last_change_date": "2022-03-14T08:07:37.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12036, + "fields": { + "EF_ID": 511559, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Saudi Arabia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.528Z", + "last_change_date": "2022-03-14T08:07:37.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12037, + "fields": { + "EF_ID": 511560, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Singapore", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "119", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.603Z", + "last_change_date": "2022-03-14T08:07:37.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12038, + "fields": { + "EF_ID": 511561, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.701Z", + "last_change_date": "2022-03-14T08:07:37.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12039, + "fields": { + "EF_ID": 511562, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Syrian Arab Rep.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.786Z", + "last_change_date": "2022-03-14T08:07:37.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12040, + "fields": { + "EF_ID": 511563, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Tajikistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.878Z", + "last_change_date": "2022-03-14T08:07:37.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12041, + "fields": { + "EF_ID": 511564, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:37.953Z", + "last_change_date": "2022-03-14T08:07:37.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12042, + "fields": { + "EF_ID": 511565, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.028Z", + "last_change_date": "2022-03-14T08:07:38.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12043, + "fields": { + "EF_ID": 511566, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.103Z", + "last_change_date": "2022-03-14T08:07:38.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12044, + "fields": { + "EF_ID": 511567, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Uzbekistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.178Z", + "last_change_date": "2022-03-14T08:07:38.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12045, + "fields": { + "EF_ID": 511568, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Viet Nam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.271Z", + "last_change_date": "2022-03-14T08:07:38.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12046, + "fields": { + "EF_ID": 511569, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Yemen", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.353Z", + "last_change_date": "2022-03-14T08:07:38.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12047, + "fields": { + "EF_ID": 511570, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.428Z", + "last_change_date": "2022-03-14T08:07:38.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12048, + "fields": { + "EF_ID": 511571, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "321", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.503Z", + "last_change_date": "2022-03-14T08:07:38.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12049, + "fields": { + "EF_ID": 511572, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; Papua New Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.578Z", + "last_change_date": "2022-03-14T08:07:38.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12050, + "fields": { + "EF_ID": 511573, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Albania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.686Z", + "last_change_date": "2022-03-14T08:07:38.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12051, + "fields": { + "EF_ID": 511574, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Andorra", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.761Z", + "last_change_date": "2022-03-14T08:07:38.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12052, + "fields": { + "EF_ID": 511575, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "286", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.858Z", + "last_change_date": "2022-03-14T08:07:38.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12053, + "fields": { + "EF_ID": 511576, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "153", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:38.936Z", + "last_change_date": "2022-03-14T08:07:38.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12054, + "fields": { + "EF_ID": 511577, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Belgium & Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "218", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.020Z", + "last_change_date": "2022-03-14T08:07:39.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12055, + "fields": { + "EF_ID": 511578, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Bosnia & Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.103Z", + "last_change_date": "2022-03-14T08:07:39.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12056, + "fields": { + "EF_ID": 511579, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.186Z", + "last_change_date": "2022-03-14T08:07:39.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12057, + "fields": { + "EF_ID": 511580, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Croatia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "201", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.270Z", + "last_change_date": "2022-03-14T08:07:39.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12058, + "fields": { + "EF_ID": 511581, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.353Z", + "last_change_date": "2022-03-14T08:07:39.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12059, + "fields": { + "EF_ID": 511582, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "124", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.452Z", + "last_change_date": "2022-03-14T08:07:39.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12060, + "fields": { + "EF_ID": 511583, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "156", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.545Z", + "last_change_date": "2022-03-14T08:07:39.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12061, + "fields": { + "EF_ID": 511584, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "89", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.620Z", + "last_change_date": "2022-03-14T08:07:39.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12062, + "fields": { + "EF_ID": 511585, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "191", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.694Z", + "last_change_date": "2022-03-14T08:07:39.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12063, + "fields": { + "EF_ID": 511586, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "268", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.770Z", + "last_change_date": "2022-03-14T08:07:39.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12064, + "fields": { + "EF_ID": 511587, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.845Z", + "last_change_date": "2022-03-14T08:07:39.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12065, + "fields": { + "EF_ID": 511588, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "174", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:39.936Z", + "last_change_date": "2022-03-14T08:07:39.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12066, + "fields": { + "EF_ID": 511589, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Iceland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.023Z", + "last_change_date": "2022-03-14T08:07:40.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12067, + "fields": { + "EF_ID": 511590, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.103Z", + "last_change_date": "2022-03-14T08:07:40.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12068, + "fields": { + "EF_ID": 511591, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "145", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.178Z", + "last_change_date": "2022-03-14T08:07:40.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12069, + "fields": { + "EF_ID": 511592, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "174", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.278Z", + "last_change_date": "2022-03-14T08:07:40.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12070, + "fields": { + "EF_ID": 511593, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Liechtenstein", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "254", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.345Z", + "last_change_date": "2022-03-14T08:07:40.345Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12071, + "fields": { + "EF_ID": 511594, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "183", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.403Z", + "last_change_date": "2022-03-14T08:07:40.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12072, + "fields": { + "EF_ID": 511595, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Malta", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "232", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.470Z", + "last_change_date": "2022-03-14T08:07:40.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12073, + "fields": { + "EF_ID": 511596, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.558Z", + "last_change_date": "2022-03-14T08:07:40.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12074, + "fields": { + "EF_ID": 511597, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "89", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.636Z", + "last_change_date": "2022-03-14T08:07:40.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12075, + "fields": { + "EF_ID": 511598, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "213", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.703Z", + "last_change_date": "2022-03-14T08:07:40.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12076, + "fields": { + "EF_ID": 511599, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "82", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.778Z", + "last_change_date": "2022-03-14T08:07:40.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12077, + "fields": { + "EF_ID": 511600, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Republic of Moldova", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "128", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.845Z", + "last_change_date": "2022-03-14T08:07:40.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12078, + "fields": { + "EF_ID": 511601, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "213", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.918Z", + "last_change_date": "2022-03-14T08:07:40.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12079, + "fields": { + "EF_ID": 511602, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Russian Federation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:40.985Z", + "last_change_date": "2022-03-14T08:07:40.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12080, + "fields": { + "EF_ID": 511603, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; San Marino", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.071Z", + "last_change_date": "2022-03-14T08:07:41.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12081, + "fields": { + "EF_ID": 511604, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Slovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.153Z", + "last_change_date": "2022-03-14T08:07:41.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12082, + "fields": { + "EF_ID": 511605, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Slovenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "283", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.235Z", + "last_change_date": "2022-03-14T08:07:41.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12083, + "fields": { + "EF_ID": 511606, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.302Z", + "last_change_date": "2022-03-14T08:07:41.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12084, + "fields": { + "EF_ID": 511607, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.368Z", + "last_change_date": "2022-03-14T08:07:41.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12085, + "fields": { + "EF_ID": 511608, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "337", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.435Z", + "last_change_date": "2022-03-14T08:07:41.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12086, + "fields": { + "EF_ID": 511609, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; The FYR of Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.502Z", + "last_change_date": "2022-03-14T08:07:41.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12087, + "fields": { + "EF_ID": 511610, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "179", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.599Z", + "last_change_date": "2022-03-14T08:07:41.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12088, + "fields": { + "EF_ID": 511611, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "128", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.686Z", + "last_change_date": "2022-03-14T08:07:41.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12089, + "fields": { + "EF_ID": 511612, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "111", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.752Z", + "last_change_date": "2022-03-14T08:07:41.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12090, + "fields": { + "EF_ID": 511613, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Antigua and Barbuda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.818Z", + "last_change_date": "2022-03-14T08:07:41.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12091, + "fields": { + "EF_ID": 511614, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Belize", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "202", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.885Z", + "last_change_date": "2022-03-14T08:07:41.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12092, + "fields": { + "EF_ID": 511615, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:41.952Z", + "last_change_date": "2022-03-14T08:07:41.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12093, + "fields": { + "EF_ID": 511616, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Costa Rica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "211", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.043Z", + "last_change_date": "2022-03-14T08:07:42.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12094, + "fields": { + "EF_ID": 511617, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Cuba", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.144Z", + "last_change_date": "2022-03-14T08:07:42.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12095, + "fields": { + "EF_ID": 511618, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Dominica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.220Z", + "last_change_date": "2022-03-14T08:07:42.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12096, + "fields": { + "EF_ID": 511619, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Dominican Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.285Z", + "last_change_date": "2022-03-14T08:07:42.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12097, + "fields": { + "EF_ID": 511620, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; El Salvador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "223", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.352Z", + "last_change_date": "2022-03-14T08:07:42.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12098, + "fields": { + "EF_ID": 511621, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Grenada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.418Z", + "last_change_date": "2022-03-14T08:07:42.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12099, + "fields": { + "EF_ID": 511622, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Guatemala", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "355", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.502Z", + "last_change_date": "2022-03-14T08:07:42.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12100, + "fields": { + "EF_ID": 511623, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Haiti", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.587Z", + "last_change_date": "2022-03-14T08:07:42.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12101, + "fields": { + "EF_ID": 511624, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Honduras", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.689Z", + "last_change_date": "2022-03-14T08:07:42.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12102, + "fields": { + "EF_ID": 511625, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Jamaica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "82", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.770Z", + "last_change_date": "2022-03-14T08:07:42.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12103, + "fields": { + "EF_ID": 511626, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Martinique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.827Z", + "last_change_date": "2022-03-14T08:07:42.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12104, + "fields": { + "EF_ID": 511627, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.885Z", + "last_change_date": "2022-03-14T08:07:42.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12105, + "fields": { + "EF_ID": 511628, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "154", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:42.962Z", + "last_change_date": "2022-03-14T08:07:42.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12106, + "fields": { + "EF_ID": 511629, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "308", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.045Z", + "last_change_date": "2022-03-14T08:07:43.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12107, + "fields": { + "EF_ID": 511630, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Saint Lucia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "190", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.128Z", + "last_change_date": "2022-03-14T08:07:43.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12108, + "fields": { + "EF_ID": 511631, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Saint Vincent and Grenadines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "166", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.235Z", + "last_change_date": "2022-03-14T08:07:43.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12109, + "fields": { + "EF_ID": 511632, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Trinidad and Tobago", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "71", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.303Z", + "last_change_date": "2022-03-14T08:07:43.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12110, + "fields": { + "EF_ID": 511633, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.378Z", + "last_change_date": "2022-03-14T08:07:43.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12111, + "fields": { + "EF_ID": 511634, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.445Z", + "last_change_date": "2022-03-14T08:07:43.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12112, + "fields": { + "EF_ID": 511635, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Bolivia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.512Z", + "last_change_date": "2022-03-14T08:07:43.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12113, + "fields": { + "EF_ID": 511636, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "131", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.578Z", + "last_change_date": "2022-03-14T08:07:43.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12114, + "fields": { + "EF_ID": 511637, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:43.653Z", + "last_change_date": "2022-03-14T08:07:43.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12115, + "fields": { + "EF_ID": 511638, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Colombia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "108", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.089Z", + "last_change_date": "2022-03-14T08:07:44.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12116, + "fields": { + "EF_ID": 511639, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Ecuador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "121", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.187Z", + "last_change_date": "2022-03-14T08:07:44.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12117, + "fields": { + "EF_ID": 511640, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; French Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "145", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.262Z", + "last_change_date": "2022-03-14T08:07:44.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12118, + "fields": { + "EF_ID": 511641, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "145", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.337Z", + "last_change_date": "2022-03-14T08:07:44.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12119, + "fields": { + "EF_ID": 511642, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Paraguay", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.411Z", + "last_change_date": "2022-03-14T08:07:44.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12120, + "fields": { + "EF_ID": 511643, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "158", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.487Z", + "last_change_date": "2022-03-14T08:07:44.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12121, + "fields": { + "EF_ID": 511644, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "145", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.562Z", + "last_change_date": "2022-03-14T08:07:44.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12122, + "fields": { + "EF_ID": 511645, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Growing Stock Volume (aboveground) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "134", + "Unit": "m3/ha", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.659Z", + "last_change_date": "2022-03-14T08:07:44.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12123, + "fields": { + "EF_ID": 511646, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Algeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.745Z", + "last_change_date": "2022-03-14T08:07:44.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12124, + "fields": { + "EF_ID": 511647, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Angola", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.820Z", + "last_change_date": "2022-03-14T08:07:44.820Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12125, + "fields": { + "EF_ID": 511648, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Benin", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "195", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.895Z", + "last_change_date": "2022-03-14T08:07:44.895Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12126, + "fields": { + "EF_ID": 511649, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Botswana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:44.970Z", + "last_change_date": "2022-03-14T08:07:44.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12127, + "fields": { + "EF_ID": 511650, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Burkina Faso", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.045Z", + "last_change_date": "2022-03-14T08:07:45.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12128, + "fields": { + "EF_ID": 511651, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Burundi", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "187", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.145Z", + "last_change_date": "2022-03-14T08:07:45.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12129, + "fields": { + "EF_ID": 511652, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cameroon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "131", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.237Z", + "last_change_date": "2022-03-14T08:07:45.237Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12130, + "fields": { + "EF_ID": 511653, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cape Verde", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "127", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.312Z", + "last_change_date": "2022-03-14T08:07:45.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12131, + "fields": { + "EF_ID": 511654, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Central African Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "113", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory and external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.387Z", + "last_change_date": "2022-03-14T08:07:45.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12132, + "fields": { + "EF_ID": 511655, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Chad", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.453Z", + "last_change_date": "2022-03-14T08:07:45.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12133, + "fields": { + "EF_ID": 511656, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Comoros", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.547Z", + "last_change_date": "2022-03-14T08:07:45.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12134, + "fields": { + "EF_ID": 511657, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "213", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.637Z", + "last_change_date": "2022-03-14T08:07:45.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12135, + "fields": { + "EF_ID": 511658, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cote d`Ivoire", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.711Z", + "last_change_date": "2022-03-14T08:07:45.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12136, + "fields": { + "EF_ID": 511659, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Dem. Rep. of the Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.787Z", + "last_change_date": "2022-03-14T08:07:45.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12137, + "fields": { + "EF_ID": 511660, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Djibouti", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.862Z", + "last_change_date": "2022-03-14T08:07:45.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12138, + "fields": { + "EF_ID": 511661, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:45.959Z", + "last_change_date": "2022-03-14T08:07:45.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12139, + "fields": { + "EF_ID": 511662, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Equatorial Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "158", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.045Z", + "last_change_date": "2022-03-14T08:07:46.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12140, + "fields": { + "EF_ID": 511663, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Eritrea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.112Z", + "last_change_date": "2022-03-14T08:07:46.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12141, + "fields": { + "EF_ID": 511664, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Ethiopia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.212Z", + "last_change_date": "2022-03-14T08:07:46.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12142, + "fields": { + "EF_ID": 511665, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Gabon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "137", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.287Z", + "last_change_date": "2022-03-14T08:07:46.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12143, + "fields": { + "EF_ID": 511666, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Gambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.393Z", + "last_change_date": "2022-03-14T08:07:46.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12144, + "fields": { + "EF_ID": 511667, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Ghana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.470Z", + "last_change_date": "2022-03-14T08:07:46.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12145, + "fields": { + "EF_ID": 511668, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.545Z", + "last_change_date": "2022-03-14T08:07:46.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12146, + "fields": { + "EF_ID": 511669, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Guinea-Bissau", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.628Z", + "last_change_date": "2022-03-14T08:07:46.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12147, + "fields": { + "EF_ID": 511670, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.712Z", + "last_change_date": "2022-03-14T08:07:46.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12148, + "fields": { + "EF_ID": 511671, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Lesotho", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.804Z", + "last_change_date": "2022-03-14T08:07:46.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12149, + "fields": { + "EF_ID": 511672, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Liberia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "196", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.887Z", + "last_change_date": "2022-03-14T08:07:46.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12150, + "fields": { + "EF_ID": 511673, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Libyan Arab Jamahiriya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:46.970Z", + "last_change_date": "2022-03-14T08:07:46.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12151, + "fields": { + "EF_ID": 511674, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Madagascar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "194", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.045Z", + "last_change_date": "2022-03-14T08:07:47.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12152, + "fields": { + "EF_ID": 511675, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Malawi", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.120Z", + "last_change_date": "2022-03-14T08:07:47.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12153, + "fields": { + "EF_ID": 511676, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mali", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.206Z", + "last_change_date": "2022-03-14T08:07:47.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12154, + "fields": { + "EF_ID": 511677, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mauritania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.295Z", + "last_change_date": "2022-03-14T08:07:47.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12155, + "fields": { + "EF_ID": 511678, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mauritius", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.354Z", + "last_change_date": "2022-03-14T08:07:47.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12156, + "fields": { + "EF_ID": 511679, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Morocco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.420Z", + "last_change_date": "2022-03-14T08:07:47.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12157, + "fields": { + "EF_ID": 511680, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mozambique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.487Z", + "last_change_date": "2022-03-14T08:07:47.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12158, + "fields": { + "EF_ID": 511681, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Namibia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.576Z", + "last_change_date": "2022-03-14T08:07:47.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12159, + "fields": { + "EF_ID": 511682, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Niger", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.662Z", + "last_change_date": "2022-03-14T08:07:47.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12160, + "fields": { + "EF_ID": 511683, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "184", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.727Z", + "last_change_date": "2022-03-14T08:07:47.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12161, + "fields": { + "EF_ID": 511684, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Reunion", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.810Z", + "last_change_date": "2022-03-14T08:07:47.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12162, + "fields": { + "EF_ID": 511685, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Rwanda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "187", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.877Z", + "last_change_date": "2022-03-14T08:07:47.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12163, + "fields": { + "EF_ID": 511686, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sao Tome and Principe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:47.978Z", + "last_change_date": "2022-03-14T08:07:47.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12164, + "fields": { + "EF_ID": 511687, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Senegal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.054Z", + "last_change_date": "2022-03-14T08:07:48.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12165, + "fields": { + "EF_ID": 511688, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Seychelles", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.127Z", + "last_change_date": "2022-03-14T08:07:48.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12166, + "fields": { + "EF_ID": 511689, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sierra Leone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "139", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.220Z", + "last_change_date": "2022-03-14T08:07:48.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12167, + "fields": { + "EF_ID": 511690, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Somalia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.293Z", + "last_change_date": "2022-03-14T08:07:48.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12168, + "fields": { + "EF_ID": 511691, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.396Z", + "last_change_date": "2022-03-14T08:07:48.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12169, + "fields": { + "EF_ID": 511692, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sudan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.479Z", + "last_change_date": "2022-03-14T08:07:48.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12170, + "fields": { + "EF_ID": 511693, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Swaziland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.543Z", + "last_change_date": "2022-03-14T08:07:48.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12171, + "fields": { + "EF_ID": 511694, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Togo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "155", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.610Z", + "last_change_date": "2022-03-14T08:07:48.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12172, + "fields": { + "EF_ID": 511695, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Tunisia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.677Z", + "last_change_date": "2022-03-14T08:07:48.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12173, + "fields": { + "EF_ID": 511696, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Uganda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "163", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.774Z", + "last_change_date": "2022-03-14T08:07:48.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12174, + "fields": { + "EF_ID": 511697, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; United Republic of Tanzania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.920Z", + "last_change_date": "2022-03-14T08:07:48.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12175, + "fields": { + "EF_ID": 511698, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Western Sahara", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:48.977Z", + "last_change_date": "2022-03-14T08:07:48.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12176, + "fields": { + "EF_ID": 511699, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Zambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "104", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.035Z", + "last_change_date": "2022-03-14T08:07:49.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12177, + "fields": { + "EF_ID": 511700, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.093Z", + "last_change_date": "2022-03-14T08:07:49.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12178, + "fields": { + "EF_ID": 511701, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Afghanistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.193Z", + "last_change_date": "2022-03-14T08:07:49.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12179, + "fields": { + "EF_ID": 511702, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Armenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.270Z", + "last_change_date": "2022-03-14T08:07:49.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12180, + "fields": { + "EF_ID": 511703, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.337Z", + "last_change_date": "2022-03-14T08:07:49.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12181, + "fields": { + "EF_ID": 511704, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bahrain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.404Z", + "last_change_date": "2022-03-14T08:07:49.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12182, + "fields": { + "EF_ID": 511705, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.470Z", + "last_change_date": "2022-03-14T08:07:49.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12183, + "fields": { + "EF_ID": 511706, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bhutan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "178", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.570Z", + "last_change_date": "2022-03-14T08:07:49.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12184, + "fields": { + "EF_ID": 511707, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Brunei Darussalam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.645Z", + "last_change_date": "2022-03-14T08:07:49.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12185, + "fields": { + "EF_ID": 511708, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.712Z", + "last_change_date": "2022-03-14T08:07:49.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12186, + "fields": { + "EF_ID": 511709, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.779Z", + "last_change_date": "2022-03-14T08:07:49.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12187, + "fields": { + "EF_ID": 511710, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Cyprus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.854Z", + "last_change_date": "2022-03-14T08:07:49.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12188, + "fields": { + "EF_ID": 511711, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Dem People`s Rep. of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:49.956Z", + "last_change_date": "2022-03-14T08:07:49.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12189, + "fields": { + "EF_ID": 511712, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; East Timor", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.037Z", + "last_change_date": "2022-03-14T08:07:50.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12190, + "fields": { + "EF_ID": 511713, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Georgia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.112Z", + "last_change_date": "2022-03-14T08:07:50.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12191, + "fields": { + "EF_ID": 511714, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.187Z", + "last_change_date": "2022-03-14T08:07:50.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12192, + "fields": { + "EF_ID": 511715, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.262Z", + "last_change_date": "2022-03-14T08:07:50.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12193, + "fields": { + "EF_ID": 511716, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Iran, Islamic Rep.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "149", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.375Z", + "last_change_date": "2022-03-14T08:07:50.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12194, + "fields": { + "EF_ID": 511717, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Iraq", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.455Z", + "last_change_date": "2022-03-14T08:07:50.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12195, + "fields": { + "EF_ID": 511718, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.521Z", + "last_change_date": "2022-03-14T08:07:50.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12196, + "fields": { + "EF_ID": 511719, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Jordan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.588Z", + "last_change_date": "2022-03-14T08:07:50.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12197, + "fields": { + "EF_ID": 511720, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.655Z", + "last_change_date": "2022-03-14T08:07:50.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12198, + "fields": { + "EF_ID": 511721, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kuwait", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.752Z", + "last_change_date": "2022-03-14T08:07:50.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12199, + "fields": { + "EF_ID": 511722, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Lao People`s Dem. Rep", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.830Z", + "last_change_date": "2022-03-14T08:07:50.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12200, + "fields": { + "EF_ID": 511723, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Lebanon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.896Z", + "last_change_date": "2022-03-14T08:07:50.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12201, + "fields": { + "EF_ID": 511724, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:50.963Z", + "last_change_date": "2022-03-14T08:07:50.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12202, + "fields": { + "EF_ID": 511725, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Mongolia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.030Z", + "last_change_date": "2022-03-14T08:07:51.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12203, + "fields": { + "EF_ID": 511726, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.122Z", + "last_change_date": "2022-03-14T08:07:51.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12204, + "fields": { + "EF_ID": 511727, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Nepal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "109", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.197Z", + "last_change_date": "2022-03-14T08:07:51.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12205, + "fields": { + "EF_ID": 511728, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Oman", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.263Z", + "last_change_date": "2022-03-14T08:07:51.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12206, + "fields": { + "EF_ID": 511729, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.330Z", + "last_change_date": "2022-03-14T08:07:51.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12207, + "fields": { + "EF_ID": 511730, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.396Z", + "last_change_date": "2022-03-14T08:07:51.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12208, + "fields": { + "EF_ID": 511731, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Qatar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.491Z", + "last_change_date": "2022-03-14T08:07:51.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12209, + "fields": { + "EF_ID": 511732, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.580Z", + "last_change_date": "2022-03-14T08:07:51.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12210, + "fields": { + "EF_ID": 511733, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Saudi Arabia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.647Z", + "last_change_date": "2022-03-14T08:07:51.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12211, + "fields": { + "EF_ID": 511734, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Singapore", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.713Z", + "last_change_date": "2022-03-14T08:07:51.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12212, + "fields": { + "EF_ID": 511735, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.780Z", + "last_change_date": "2022-03-14T08:07:51.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12213, + "fields": { + "EF_ID": 511736, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Syrian Arab Rep.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.884Z", + "last_change_date": "2022-03-14T08:07:51.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12214, + "fields": { + "EF_ID": 511737, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Tajikistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:51.972Z", + "last_change_date": "2022-03-14T08:07:51.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12215, + "fields": { + "EF_ID": 511738, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.047Z", + "last_change_date": "2022-03-14T08:07:52.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12216, + "fields": { + "EF_ID": 511739, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.122Z", + "last_change_date": "2022-03-14T08:07:52.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12217, + "fields": { + "EF_ID": 511740, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.197Z", + "last_change_date": "2022-03-14T08:07:52.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12218, + "fields": { + "EF_ID": 511741, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Viet Nam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.294Z", + "last_change_date": "2022-03-14T08:07:52.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12219, + "fields": { + "EF_ID": 511742, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Yemen", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.389Z", + "last_change_date": "2022-03-14T08:07:52.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12220, + "fields": { + "EF_ID": 511743, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.455Z", + "last_change_date": "2022-03-14T08:07:52.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12221, + "fields": { + "EF_ID": 511744, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "217", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.522Z", + "last_change_date": "2022-03-14T08:07:52.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12222, + "fields": { + "EF_ID": 511745, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; Papua New Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.588Z", + "last_change_date": "2022-03-14T08:07:52.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12223, + "fields": { + "EF_ID": 511746, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Albania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.681Z", + "last_change_date": "2022-03-14T08:07:52.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12224, + "fields": { + "EF_ID": 511747, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Andorra", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.764Z", + "last_change_date": "2022-03-14T08:07:52.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12225, + "fields": { + "EF_ID": 511748, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.830Z", + "last_change_date": "2022-03-14T08:07:52.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12226, + "fields": { + "EF_ID": 511749, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.897Z", + "last_change_date": "2022-03-14T08:07:52.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12227, + "fields": { + "EF_ID": 511750, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Belgium & Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:52.964Z", + "last_change_date": "2022-03-14T08:07:52.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12228, + "fields": { + "EF_ID": 511751, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.058Z", + "last_change_date": "2022-03-14T08:07:53.058Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12229, + "fields": { + "EF_ID": 511752, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Croatia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.147Z", + "last_change_date": "2022-03-14T08:07:53.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12230, + "fields": { + "EF_ID": 511753, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "125", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.214Z", + "last_change_date": "2022-03-14T08:07:53.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12231, + "fields": { + "EF_ID": 511754, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.280Z", + "last_change_date": "2022-03-14T08:07:53.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12232, + "fields": { + "EF_ID": 511755, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.355Z", + "last_change_date": "2022-03-14T08:07:53.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12233, + "fields": { + "EF_ID": 511756, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.460Z", + "last_change_date": "2022-03-14T08:07:53.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12234, + "fields": { + "EF_ID": 511757, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.547Z", + "last_change_date": "2022-03-14T08:07:53.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12235, + "fields": { + "EF_ID": 511758, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "134", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.618Z", + "last_change_date": "2022-03-14T08:07:53.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12236, + "fields": { + "EF_ID": 511759, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.693Z", + "last_change_date": "2022-03-14T08:07:53.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12237, + "fields": { + "EF_ID": 511760, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.760Z", + "last_change_date": "2022-03-14T08:07:53.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12238, + "fields": { + "EF_ID": 511761, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Iceland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.845Z", + "last_change_date": "2022-03-14T08:07:53.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12239, + "fields": { + "EF_ID": 511762, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:53.922Z", + "last_change_date": "2022-03-14T08:07:53.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12240, + "fields": { + "EF_ID": 511763, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.010Z", + "last_change_date": "2022-03-14T08:07:54.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12241, + "fields": { + "EF_ID": 511764, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.110Z", + "last_change_date": "2022-03-14T08:07:54.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12242, + "fields": { + "EF_ID": 511765, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Liechtenstein", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "119", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.177Z", + "last_change_date": "2022-03-14T08:07:54.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12243, + "fields": { + "EF_ID": 511766, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.274Z", + "last_change_date": "2022-03-14T08:07:54.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12244, + "fields": { + "EF_ID": 511767, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.347Z", + "last_change_date": "2022-03-14T08:07:54.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12245, + "fields": { + "EF_ID": 511768, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.418Z", + "last_change_date": "2022-03-14T08:07:54.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12246, + "fields": { + "EF_ID": 511769, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.568Z", + "last_change_date": "2022-03-14T08:07:54.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12247, + "fields": { + "EF_ID": 511770, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.635Z", + "last_change_date": "2022-03-14T08:07:54.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12248, + "fields": { + "EF_ID": 511771, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Republic of Moldova", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.734Z", + "last_change_date": "2022-03-14T08:07:54.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12249, + "fields": { + "EF_ID": 511772, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "124", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.822Z", + "last_change_date": "2022-03-14T08:07:54.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12250, + "fields": { + "EF_ID": 511773, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Russian Federation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.885Z", + "last_change_date": "2022-03-14T08:07:54.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12251, + "fields": { + "EF_ID": 511774, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; San Marino", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:54.955Z", + "last_change_date": "2022-03-14T08:07:54.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12252, + "fields": { + "EF_ID": 511775, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Slovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "142", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.030Z", + "last_change_date": "2022-03-14T08:07:55.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12253, + "fields": { + "EF_ID": 511776, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Slovenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "178", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.120Z", + "last_change_date": "2022-03-14T08:07:55.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12254, + "fields": { + "EF_ID": 511777, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.197Z", + "last_change_date": "2022-03-14T08:07:55.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12255, + "fields": { + "EF_ID": 511778, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.264Z", + "last_change_date": "2022-03-14T08:07:55.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12256, + "fields": { + "EF_ID": 511779, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "165", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.330Z", + "last_change_date": "2022-03-14T08:07:55.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12257, + "fields": { + "EF_ID": 511780, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.397Z", + "last_change_date": "2022-03-14T08:07:55.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12258, + "fields": { + "EF_ID": 511781, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.488Z", + "last_change_date": "2022-03-14T08:07:55.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12259, + "fields": { + "EF_ID": 511782, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Antigua and Barbuda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "210", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.564Z", + "last_change_date": "2022-03-14T08:07:55.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12260, + "fields": { + "EF_ID": 511783, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Belize", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "211", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.630Z", + "last_change_date": "2022-03-14T08:07:55.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12261, + "fields": { + "EF_ID": 511784, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.705Z", + "last_change_date": "2022-03-14T08:07:55.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12262, + "fields": { + "EF_ID": 511785, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Costa Rica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.772Z", + "last_change_date": "2022-03-14T08:07:55.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12263, + "fields": { + "EF_ID": 511786, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Cuba", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.867Z", + "last_change_date": "2022-03-14T08:07:55.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12264, + "fields": { + "EF_ID": 511787, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Dominica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "166", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:55.939Z", + "last_change_date": "2022-03-14T08:07:55.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12265, + "fields": { + "EF_ID": 511788, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Dominican Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.005Z", + "last_change_date": "2022-03-14T08:07:56.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12266, + "fields": { + "EF_ID": 511789, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; El Salvador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "202", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.072Z", + "last_change_date": "2022-03-14T08:07:56.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12267, + "fields": { + "EF_ID": 511790, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Grenada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.139Z", + "last_change_date": "2022-03-14T08:07:56.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12268, + "fields": { + "EF_ID": 511791, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Guatemala", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "371", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.243Z", + "last_change_date": "2022-03-14T08:07:56.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12269, + "fields": { + "EF_ID": 511792, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Haiti", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.331Z", + "last_change_date": "2022-03-14T08:07:56.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12270, + "fields": { + "EF_ID": 511793, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Honduras", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.418Z", + "last_change_date": "2022-03-14T08:07:56.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12271, + "fields": { + "EF_ID": 511794, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Jamaica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "171", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.485Z", + "last_change_date": "2022-03-14T08:07:56.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12272, + "fields": { + "EF_ID": 511795, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Martinique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.568Z", + "last_change_date": "2022-03-14T08:07:56.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12273, + "fields": { + "EF_ID": 511796, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.671Z", + "last_change_date": "2022-03-14T08:07:56.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12274, + "fields": { + "EF_ID": 511797, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "161", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.743Z", + "last_change_date": "2022-03-14T08:07:56.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12275, + "fields": { + "EF_ID": 511798, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "322", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.818Z", + "last_change_date": "2022-03-14T08:07:56.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12276, + "fields": { + "EF_ID": 511799, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Saint Lucia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "198", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.893Z", + "last_change_date": "2022-03-14T08:07:56.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12277, + "fields": { + "EF_ID": 511800, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Saint Vincent and Grenadines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "173", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:56.968Z", + "last_change_date": "2022-03-14T08:07:56.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12278, + "fields": { + "EF_ID": 511801, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Trinidad and Tobago", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "129", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.074Z", + "last_change_date": "2022-03-14T08:07:57.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12279, + "fields": { + "EF_ID": 511802, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "108", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.156Z", + "last_change_date": "2022-03-14T08:07:57.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12280, + "fields": { + "EF_ID": 511803, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.218Z", + "last_change_date": "2022-03-14T08:07:57.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12281, + "fields": { + "EF_ID": 511804, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Bolivia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "183", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.285Z", + "last_change_date": "2022-03-14T08:07:57.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12282, + "fields": { + "EF_ID": 511805, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "209", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.356Z", + "last_change_date": "2022-03-14T08:07:57.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12283, + "fields": { + "EF_ID": 511806, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "268", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.450Z", + "last_change_date": "2022-03-14T08:07:57.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12284, + "fields": { + "EF_ID": 511807, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Colombia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "196", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.522Z", + "last_change_date": "2022-03-14T08:07:57.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12285, + "fields": { + "EF_ID": 511808, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Ecuador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "151", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.593Z", + "last_change_date": "2022-03-14T08:07:57.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12286, + "fields": { + "EF_ID": 511809, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; French Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.668Z", + "last_change_date": "2022-03-14T08:07:57.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12287, + "fields": { + "EF_ID": 511810, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.735Z", + "last_change_date": "2022-03-14T08:07:57.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12288, + "fields": { + "EF_ID": 511811, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Paraguay", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.828Z", + "last_change_date": "2022-03-14T08:07:57.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12289, + "fields": { + "EF_ID": 511812, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "245", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.914Z", + "last_change_date": "2022-03-14T08:07:57.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12290, + "fields": { + "EF_ID": 511813, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:57.977Z", + "last_change_date": "2022-03-14T08:07:57.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12291, + "fields": { + "EF_ID": 511814, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "233", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This value should not be used in Equation 3.2.3 of GPG-LULUCF. Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.043Z", + "last_change_date": "2022-03-14T08:07:58.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12292, + "fields": { + "EF_ID": 511815, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Algeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.110Z", + "last_change_date": "2022-03-14T08:07:58.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12293, + "fields": { + "EF_ID": 511816, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Angola", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.205Z", + "last_change_date": "2022-03-14T08:07:58.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12294, + "fields": { + "EF_ID": 511817, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Benin", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "195", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.297Z", + "last_change_date": "2022-03-14T08:07:58.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12295, + "fields": { + "EF_ID": 511818, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Botswana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.360Z", + "last_change_date": "2022-03-14T08:07:58.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12296, + "fields": { + "EF_ID": 511819, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Burkina Faso", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.426Z", + "last_change_date": "2022-03-14T08:07:58.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12297, + "fields": { + "EF_ID": 511820, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Burundi", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "187", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.494Z", + "last_change_date": "2022-03-14T08:07:58.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12298, + "fields": { + "EF_ID": 511821, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cameroon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "131", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.560Z", + "last_change_date": "2022-03-14T08:07:58.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12299, + "fields": { + "EF_ID": 511822, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cape Verde", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "127", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.652Z", + "last_change_date": "2022-03-14T08:07:58.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12300, + "fields": { + "EF_ID": 511823, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Central African Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "113", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory and external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.758Z", + "last_change_date": "2022-03-14T08:07:58.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12301, + "fields": { + "EF_ID": 511824, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Chad", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.831Z", + "last_change_date": "2022-03-14T08:07:58.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12302, + "fields": { + "EF_ID": 511825, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Comoros", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.897Z", + "last_change_date": "2022-03-14T08:07:58.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12303, + "fields": { + "EF_ID": 511826, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "213", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:58.964Z", + "last_change_date": "2022-03-14T08:07:58.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12304, + "fields": { + "EF_ID": 511827, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cote d`Ivoire", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.039Z", + "last_change_date": "2022-03-14T08:07:59.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12305, + "fields": { + "EF_ID": 511828, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Dem. Rep. of the Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.106Z", + "last_change_date": "2022-03-14T08:07:59.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12306, + "fields": { + "EF_ID": 511829, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Djibouti", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.172Z", + "last_change_date": "2022-03-14T08:07:59.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12307, + "fields": { + "EF_ID": 511830, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.278Z", + "last_change_date": "2022-03-14T08:07:59.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12308, + "fields": { + "EF_ID": 511831, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Equatorial Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "158", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.347Z", + "last_change_date": "2022-03-14T08:07:59.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12309, + "fields": { + "EF_ID": 511832, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Eritrea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.406Z", + "last_change_date": "2022-03-14T08:07:59.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12310, + "fields": { + "EF_ID": 511833, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Ethiopia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.464Z", + "last_change_date": "2022-03-14T08:07:59.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12311, + "fields": { + "EF_ID": 511834, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Gabon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "137", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.522Z", + "last_change_date": "2022-03-14T08:07:59.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12312, + "fields": { + "EF_ID": 511835, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Gambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.589Z", + "last_change_date": "2022-03-14T08:07:59.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12313, + "fields": { + "EF_ID": 511836, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Ghana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.647Z", + "last_change_date": "2022-03-14T08:07:59.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12314, + "fields": { + "EF_ID": 511837, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.739Z", + "last_change_date": "2022-03-14T08:07:59.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12315, + "fields": { + "EF_ID": 511838, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Guinea-Bissau", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.814Z", + "last_change_date": "2022-03-14T08:07:59.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12316, + "fields": { + "EF_ID": 511839, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.881Z", + "last_change_date": "2022-03-14T08:07:59.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12317, + "fields": { + "EF_ID": 511840, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Lesotho", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:07:59.948Z", + "last_change_date": "2022-03-14T08:07:59.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12318, + "fields": { + "EF_ID": 511841, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Liberia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "196", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.014Z", + "last_change_date": "2022-03-14T08:08:00.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12319, + "fields": { + "EF_ID": 511842, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Libyan Arab Jamahiriya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.081Z", + "last_change_date": "2022-03-14T08:08:00.081Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12320, + "fields": { + "EF_ID": 511843, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Madagascar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "194", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.147Z", + "last_change_date": "2022-03-14T08:08:00.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12321, + "fields": { + "EF_ID": 511844, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Malawi", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.244Z", + "last_change_date": "2022-03-14T08:08:00.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12322, + "fields": { + "EF_ID": 511845, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mali", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.314Z", + "last_change_date": "2022-03-14T08:08:00.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12323, + "fields": { + "EF_ID": 511846, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mauritania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.381Z", + "last_change_date": "2022-03-14T08:08:00.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12324, + "fields": { + "EF_ID": 511847, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mauritius", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.447Z", + "last_change_date": "2022-03-14T08:08:00.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12325, + "fields": { + "EF_ID": 511848, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Morocco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.523Z", + "last_change_date": "2022-03-14T08:08:00.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12326, + "fields": { + "EF_ID": 511849, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mozambique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.589Z", + "last_change_date": "2022-03-14T08:08:00.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12327, + "fields": { + "EF_ID": 511850, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Namibia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.656Z", + "last_change_date": "2022-03-14T08:08:00.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12328, + "fields": { + "EF_ID": 511851, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Niger", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.746Z", + "last_change_date": "2022-03-14T08:08:00.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12329, + "fields": { + "EF_ID": 511852, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "184", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.823Z", + "last_change_date": "2022-03-14T08:08:00.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12330, + "fields": { + "EF_ID": 511853, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Reunion", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.889Z", + "last_change_date": "2022-03-14T08:08:00.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12331, + "fields": { + "EF_ID": 511854, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Rwanda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "187", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:00.956Z", + "last_change_date": "2022-03-14T08:08:00.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12332, + "fields": { + "EF_ID": 511855, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sao Tome and Principe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.023Z", + "last_change_date": "2022-03-14T08:08:01.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12333, + "fields": { + "EF_ID": 511856, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Senegal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.089Z", + "last_change_date": "2022-03-14T08:08:01.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12334, + "fields": { + "EF_ID": 511857, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Seychelles", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.156Z", + "last_change_date": "2022-03-14T08:08:01.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12335, + "fields": { + "EF_ID": 511858, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sierra Leone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "139", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.249Z", + "last_change_date": "2022-03-14T08:08:01.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12336, + "fields": { + "EF_ID": 511859, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Somalia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.323Z", + "last_change_date": "2022-03-14T08:08:01.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12337, + "fields": { + "EF_ID": 511860, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.389Z", + "last_change_date": "2022-03-14T08:08:01.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12338, + "fields": { + "EF_ID": 511861, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sudan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.464Z", + "last_change_date": "2022-03-14T08:08:01.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12339, + "fields": { + "EF_ID": 511862, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Swaziland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.531Z", + "last_change_date": "2022-03-14T08:08:01.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12340, + "fields": { + "EF_ID": 511863, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Togo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "155", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.598Z", + "last_change_date": "2022-03-14T08:08:01.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12341, + "fields": { + "EF_ID": 511864, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Tunisia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.664Z", + "last_change_date": "2022-03-14T08:08:01.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12342, + "fields": { + "EF_ID": 511865, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Uganda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "163", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.770Z", + "last_change_date": "2022-03-14T08:08:01.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12343, + "fields": { + "EF_ID": 511866, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; United Republic of Tanzania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.864Z", + "last_change_date": "2022-03-14T08:08:01.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12344, + "fields": { + "EF_ID": 511867, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Western Sahara", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:01.944Z", + "last_change_date": "2022-03-14T08:08:01.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12345, + "fields": { + "EF_ID": 511868, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Zambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "104", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.019Z", + "last_change_date": "2022-03-14T08:08:02.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12346, + "fields": { + "EF_ID": 511869, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.093Z", + "last_change_date": "2022-03-14T08:08:02.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12347, + "fields": { + "EF_ID": 511870, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Afghanistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.160Z", + "last_change_date": "2022-03-14T08:08:02.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12348, + "fields": { + "EF_ID": 511871, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Armenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.227Z", + "last_change_date": "2022-03-14T08:08:02.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12349, + "fields": { + "EF_ID": 511872, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.331Z", + "last_change_date": "2022-03-14T08:08:02.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12350, + "fields": { + "EF_ID": 511873, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bahrain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.410Z", + "last_change_date": "2022-03-14T08:08:02.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12351, + "fields": { + "EF_ID": 511874, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.485Z", + "last_change_date": "2022-03-14T08:08:02.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12352, + "fields": { + "EF_ID": 511875, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bhutan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "178", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.552Z", + "last_change_date": "2022-03-14T08:08:02.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12353, + "fields": { + "EF_ID": 511876, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Brunei Darussalam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.618Z", + "last_change_date": "2022-03-14T08:08:02.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12354, + "fields": { + "EF_ID": 511877, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.685Z", + "last_change_date": "2022-03-14T08:08:02.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12355, + "fields": { + "EF_ID": 511878, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.752Z", + "last_change_date": "2022-03-14T08:08:02.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12356, + "fields": { + "EF_ID": 511879, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Cyprus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.868Z", + "last_change_date": "2022-03-14T08:08:02.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12357, + "fields": { + "EF_ID": 511880, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Dem People`s Rep. of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:02.944Z", + "last_change_date": "2022-03-14T08:08:02.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12358, + "fields": { + "EF_ID": 511881, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; East Timor", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.010Z", + "last_change_date": "2022-03-14T08:08:03.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12359, + "fields": { + "EF_ID": 511882, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Georgia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.077Z", + "last_change_date": "2022-03-14T08:08:03.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12360, + "fields": { + "EF_ID": 511883, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.143Z", + "last_change_date": "2022-03-14T08:08:03.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12361, + "fields": { + "EF_ID": 511884, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.210Z", + "last_change_date": "2022-03-14T08:08:03.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12362, + "fields": { + "EF_ID": 511885, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Iran, Islamic Rep.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "149", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.277Z", + "last_change_date": "2022-03-14T08:08:03.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12363, + "fields": { + "EF_ID": 511886, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Iraq", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.371Z", + "last_change_date": "2022-03-14T08:08:03.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12364, + "fields": { + "EF_ID": 511887, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.460Z", + "last_change_date": "2022-03-14T08:08:03.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12365, + "fields": { + "EF_ID": 511888, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Jordan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.535Z", + "last_change_date": "2022-03-14T08:08:03.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12366, + "fields": { + "EF_ID": 511889, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.610Z", + "last_change_date": "2022-03-14T08:08:03.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12367, + "fields": { + "EF_ID": 511890, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kuwait", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.677Z", + "last_change_date": "2022-03-14T08:08:03.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12368, + "fields": { + "EF_ID": 511891, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Lao People`s Dem. Rep", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.752Z", + "last_change_date": "2022-03-14T08:08:03.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12369, + "fields": { + "EF_ID": 511892, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Lebanon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.827Z", + "last_change_date": "2022-03-14T08:08:03.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12370, + "fields": { + "EF_ID": 511893, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:03.932Z", + "last_change_date": "2022-03-14T08:08:03.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12371, + "fields": { + "EF_ID": 511894, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Mongolia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.018Z", + "last_change_date": "2022-03-14T08:08:04.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12372, + "fields": { + "EF_ID": 511895, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.118Z", + "last_change_date": "2022-03-14T08:08:04.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12373, + "fields": { + "EF_ID": 511896, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Nepal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "109", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.202Z", + "last_change_date": "2022-03-14T08:08:04.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12374, + "fields": { + "EF_ID": 511897, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Oman", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.285Z", + "last_change_date": "2022-03-14T08:08:04.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12375, + "fields": { + "EF_ID": 511898, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.381Z", + "last_change_date": "2022-03-14T08:08:04.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12376, + "fields": { + "EF_ID": 511899, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.456Z", + "last_change_date": "2022-03-14T08:08:04.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12377, + "fields": { + "EF_ID": 511900, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Qatar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.552Z", + "last_change_date": "2022-03-14T08:08:04.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12378, + "fields": { + "EF_ID": 511901, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.635Z", + "last_change_date": "2022-03-14T08:08:04.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12379, + "fields": { + "EF_ID": 511902, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Saudi Arabia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.706Z", + "last_change_date": "2022-03-14T08:08:04.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12380, + "fields": { + "EF_ID": 511903, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Singapore", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.781Z", + "last_change_date": "2022-03-14T08:08:04.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12381, + "fields": { + "EF_ID": 511904, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.873Z", + "last_change_date": "2022-03-14T08:08:04.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12382, + "fields": { + "EF_ID": 511905, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Syrian Arab Rep.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:04.952Z", + "last_change_date": "2022-03-14T08:08:04.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12383, + "fields": { + "EF_ID": 511906, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Tajikistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.023Z", + "last_change_date": "2022-03-14T08:08:05.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12384, + "fields": { + "EF_ID": 511907, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.123Z", + "last_change_date": "2022-03-14T08:08:05.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12385, + "fields": { + "EF_ID": 511908, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.202Z", + "last_change_date": "2022-03-14T08:08:05.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12386, + "fields": { + "EF_ID": 511909, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.273Z", + "last_change_date": "2022-03-14T08:08:05.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12387, + "fields": { + "EF_ID": 511910, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Viet Nam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.344Z", + "last_change_date": "2022-03-14T08:08:05.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12388, + "fields": { + "EF_ID": 511911, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Yemen", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.415Z", + "last_change_date": "2022-03-14T08:08:05.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12389, + "fields": { + "EF_ID": 511912, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.473Z", + "last_change_date": "2022-03-14T08:08:05.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12390, + "fields": { + "EF_ID": 511913, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "217", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.539Z", + "last_change_date": "2022-03-14T08:08:05.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12391, + "fields": { + "EF_ID": 511914, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; Papua New Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.642Z", + "last_change_date": "2022-03-14T08:08:05.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12392, + "fields": { + "EF_ID": 511915, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Albania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.719Z", + "last_change_date": "2022-03-14T08:08:05.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12393, + "fields": { + "EF_ID": 511916, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Andorra", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.785Z", + "last_change_date": "2022-03-14T08:08:05.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12394, + "fields": { + "EF_ID": 511917, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.856Z", + "last_change_date": "2022-03-14T08:08:05.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12395, + "fields": { + "EF_ID": 511918, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:05.931Z", + "last_change_date": "2022-03-14T08:08:05.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12396, + "fields": { + "EF_ID": 511919, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Belgium & Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.006Z", + "last_change_date": "2022-03-14T08:08:06.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12397, + "fields": { + "EF_ID": 511920, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.073Z", + "last_change_date": "2022-03-14T08:08:06.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12398, + "fields": { + "EF_ID": 511921, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Croatia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.162Z", + "last_change_date": "2022-03-14T08:08:06.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12399, + "fields": { + "EF_ID": 511922, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "125", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.244Z", + "last_change_date": "2022-03-14T08:08:06.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12400, + "fields": { + "EF_ID": 511923, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.323Z", + "last_change_date": "2022-03-14T08:08:06.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12401, + "fields": { + "EF_ID": 511924, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.390Z", + "last_change_date": "2022-03-14T08:08:06.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12402, + "fields": { + "EF_ID": 511925, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.456Z", + "last_change_date": "2022-03-14T08:08:06.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12403, + "fields": { + "EF_ID": 511926, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.523Z", + "last_change_date": "2022-03-14T08:08:06.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12404, + "fields": { + "EF_ID": 511927, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "134", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.589Z", + "last_change_date": "2022-03-14T08:08:06.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12405, + "fields": { + "EF_ID": 511928, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.683Z", + "last_change_date": "2022-03-14T08:08:06.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12406, + "fields": { + "EF_ID": 511929, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.760Z", + "last_change_date": "2022-03-14T08:08:06.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12407, + "fields": { + "EF_ID": 511930, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Iceland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.823Z", + "last_change_date": "2022-03-14T08:08:06.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12408, + "fields": { + "EF_ID": 511931, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:06.898Z", + "last_change_date": "2022-03-14T08:08:06.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12409, + "fields": { + "EF_ID": 511932, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.065Z", + "last_change_date": "2022-03-14T08:08:07.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12410, + "fields": { + "EF_ID": 511933, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.131Z", + "last_change_date": "2022-03-14T08:08:07.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12411, + "fields": { + "EF_ID": 511934, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Liechtenstein", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "119", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.198Z", + "last_change_date": "2022-03-14T08:08:07.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12412, + "fields": { + "EF_ID": 511935, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.293Z", + "last_change_date": "2022-03-14T08:08:07.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12413, + "fields": { + "EF_ID": 511936, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.369Z", + "last_change_date": "2022-03-14T08:08:07.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12414, + "fields": { + "EF_ID": 511937, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.440Z", + "last_change_date": "2022-03-14T08:08:07.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12415, + "fields": { + "EF_ID": 511938, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.515Z", + "last_change_date": "2022-03-14T08:08:07.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12416, + "fields": { + "EF_ID": 511939, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.589Z", + "last_change_date": "2022-03-14T08:08:07.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12417, + "fields": { + "EF_ID": 511940, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Republic of Moldova", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.665Z", + "last_change_date": "2022-03-14T08:08:07.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12418, + "fields": { + "EF_ID": 511941, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "124", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.743Z", + "last_change_date": "2022-03-14T08:08:07.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12419, + "fields": { + "EF_ID": 511942, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Russian Federation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.838Z", + "last_change_date": "2022-03-14T08:08:07.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12420, + "fields": { + "EF_ID": 511943, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; San Marino", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.927Z", + "last_change_date": "2022-03-14T08:08:07.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12421, + "fields": { + "EF_ID": 511944, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Slovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "142", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:07.993Z", + "last_change_date": "2022-03-14T08:08:07.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12422, + "fields": { + "EF_ID": 511945, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Slovenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "178", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.069Z", + "last_change_date": "2022-03-14T08:08:08.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12423, + "fields": { + "EF_ID": 511946, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.135Z", + "last_change_date": "2022-03-14T08:08:08.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12424, + "fields": { + "EF_ID": 511947, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.202Z", + "last_change_date": "2022-03-14T08:08:08.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12425, + "fields": { + "EF_ID": 511948, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "165", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.268Z", + "last_change_date": "2022-03-14T08:08:08.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12426, + "fields": { + "EF_ID": 511949, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.367Z", + "last_change_date": "2022-03-14T08:08:08.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12427, + "fields": { + "EF_ID": 511950, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.444Z", + "last_change_date": "2022-03-14T08:08:08.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12428, + "fields": { + "EF_ID": 511951, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Antigua and Barbuda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "210", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.510Z", + "last_change_date": "2022-03-14T08:08:08.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12429, + "fields": { + "EF_ID": 511952, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Belize", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "211", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.577Z", + "last_change_date": "2022-03-14T08:08:08.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12430, + "fields": { + "EF_ID": 511953, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.643Z", + "last_change_date": "2022-03-14T08:08:08.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12431, + "fields": { + "EF_ID": 511954, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Costa Rica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.710Z", + "last_change_date": "2022-03-14T08:08:08.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12432, + "fields": { + "EF_ID": 511955, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Cuba", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.777Z", + "last_change_date": "2022-03-14T08:08:08.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12433, + "fields": { + "EF_ID": 511956, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Dominica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "166", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.878Z", + "last_change_date": "2022-03-14T08:08:08.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12434, + "fields": { + "EF_ID": 511957, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Dominican Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:08.952Z", + "last_change_date": "2022-03-14T08:08:08.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12435, + "fields": { + "EF_ID": 511958, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; El Salvador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "202", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.044Z", + "last_change_date": "2022-03-14T08:08:09.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12436, + "fields": { + "EF_ID": 511959, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Grenada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.102Z", + "last_change_date": "2022-03-14T08:08:09.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12437, + "fields": { + "EF_ID": 511960, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Guatemala", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "371", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.169Z", + "last_change_date": "2022-03-14T08:08:09.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12438, + "fields": { + "EF_ID": 511961, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Haiti", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.227Z", + "last_change_date": "2022-03-14T08:08:09.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12439, + "fields": { + "EF_ID": 511962, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Honduras", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.294Z", + "last_change_date": "2022-03-14T08:08:09.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12440, + "fields": { + "EF_ID": 511963, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Jamaica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "171", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.423Z", + "last_change_date": "2022-03-14T08:08:09.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12441, + "fields": { + "EF_ID": 511964, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Martinique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.510Z", + "last_change_date": "2022-03-14T08:08:09.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12442, + "fields": { + "EF_ID": 511965, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.585Z", + "last_change_date": "2022-03-14T08:08:09.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12443, + "fields": { + "EF_ID": 511966, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "161", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.660Z", + "last_change_date": "2022-03-14T08:08:09.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12444, + "fields": { + "EF_ID": 511967, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "322", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.735Z", + "last_change_date": "2022-03-14T08:08:09.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12445, + "fields": { + "EF_ID": 511968, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Saint Lucia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "198", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.802Z", + "last_change_date": "2022-03-14T08:08:09.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12446, + "fields": { + "EF_ID": 511969, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Saint Vincent and Grenadines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "173", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.869Z", + "last_change_date": "2022-03-14T08:08:09.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12447, + "fields": { + "EF_ID": 511970, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Trinidad and Tobago", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "129", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:09.968Z", + "last_change_date": "2022-03-14T08:08:09.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12448, + "fields": { + "EF_ID": 511971, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "108", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.044Z", + "last_change_date": "2022-03-14T08:08:10.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12449, + "fields": { + "EF_ID": 511972, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.110Z", + "last_change_date": "2022-03-14T08:08:10.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12450, + "fields": { + "EF_ID": 511973, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Bolivia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "183", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.177Z", + "last_change_date": "2022-03-14T08:08:10.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12451, + "fields": { + "EF_ID": 511974, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "209", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.244Z", + "last_change_date": "2022-03-14T08:08:10.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12452, + "fields": { + "EF_ID": 511975, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "268", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.310Z", + "last_change_date": "2022-03-14T08:08:10.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12453, + "fields": { + "EF_ID": 511976, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Colombia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "196", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.377Z", + "last_change_date": "2022-03-14T08:08:10.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12454, + "fields": { + "EF_ID": 511977, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Ecuador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "151", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.470Z", + "last_change_date": "2022-03-14T08:08:10.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12455, + "fields": { + "EF_ID": 511978, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; French Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.552Z", + "last_change_date": "2022-03-14T08:08:10.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12456, + "fields": { + "EF_ID": 511979, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.623Z", + "last_change_date": "2022-03-14T08:08:10.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12457, + "fields": { + "EF_ID": 511980, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Paraguay", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.690Z", + "last_change_date": "2022-03-14T08:08:10.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12458, + "fields": { + "EF_ID": 511981, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "245", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.757Z", + "last_change_date": "2022-03-14T08:08:10.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12459, + "fields": { + "EF_ID": 511982, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.823Z", + "last_change_date": "2022-03-14T08:08:10.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12460, + "fields": { + "EF_ID": 511983, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "233", + "Unit": "t dm/ha", + "Equation": "Equation 3.3.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet CL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.890Z", + "last_change_date": "2022-03-14T08:08:10.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12461, + "fields": { + "EF_ID": 511984, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Algeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:10.982Z", + "last_change_date": "2022-03-14T08:08:10.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12462, + "fields": { + "EF_ID": 511985, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Angola", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.077Z", + "last_change_date": "2022-03-14T08:08:11.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12463, + "fields": { + "EF_ID": 511986, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Benin", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "195", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.157Z", + "last_change_date": "2022-03-14T08:08:11.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12464, + "fields": { + "EF_ID": 511987, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Botswana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.223Z", + "last_change_date": "2022-03-14T08:08:11.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12465, + "fields": { + "EF_ID": 511988, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Burkina Faso", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.290Z", + "last_change_date": "2022-03-14T08:08:11.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12466, + "fields": { + "EF_ID": 511989, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Burundi", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "187", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.357Z", + "last_change_date": "2022-03-14T08:08:11.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12467, + "fields": { + "EF_ID": 511990, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cameroon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "131", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.432Z", + "last_change_date": "2022-03-14T08:08:11.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12468, + "fields": { + "EF_ID": 511991, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cape Verde", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "127", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.520Z", + "last_change_date": "2022-03-14T08:08:11.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12469, + "fields": { + "EF_ID": 511992, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Central African Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "113", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory and external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.593Z", + "last_change_date": "2022-03-14T08:08:11.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12470, + "fields": { + "EF_ID": 511993, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Chad", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.673Z", + "last_change_date": "2022-03-14T08:08:11.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12471, + "fields": { + "EF_ID": 511994, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Comoros", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.740Z", + "last_change_date": "2022-03-14T08:08:11.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12472, + "fields": { + "EF_ID": 511995, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "213", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.807Z", + "last_change_date": "2022-03-14T08:08:11.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12473, + "fields": { + "EF_ID": 511996, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Cote d`Ivoire", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.873Z", + "last_change_date": "2022-03-14T08:08:11.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12474, + "fields": { + "EF_ID": 511997, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Dem. Rep. of the Congo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:11.940Z", + "last_change_date": "2022-03-14T08:08:11.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12475, + "fields": { + "EF_ID": 511998, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Djibouti", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.032Z", + "last_change_date": "2022-03-14T08:08:12.032Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12476, + "fields": { + "EF_ID": 511999, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "106", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.119Z", + "last_change_date": "2022-03-14T08:08:12.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12477, + "fields": { + "EF_ID": 512000, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Equatorial Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "158", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.181Z", + "last_change_date": "2022-03-14T08:08:12.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12478, + "fields": { + "EF_ID": 512001, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Eritrea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.265Z", + "last_change_date": "2022-03-14T08:08:12.265Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12479, + "fields": { + "EF_ID": 512002, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Ethiopia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.323Z", + "last_change_date": "2022-03-14T08:08:12.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12480, + "fields": { + "EF_ID": 512003, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Gabon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "137", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.382Z", + "last_change_date": "2022-03-14T08:08:12.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12481, + "fields": { + "EF_ID": 512004, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Gambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.448Z", + "last_change_date": "2022-03-14T08:08:12.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12482, + "fields": { + "EF_ID": 512005, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Ghana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.551Z", + "last_change_date": "2022-03-14T08:08:12.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12483, + "fields": { + "EF_ID": 512006, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.627Z", + "last_change_date": "2022-03-14T08:08:12.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12484, + "fields": { + "EF_ID": 512007, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Guinea-Bissau", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.690Z", + "last_change_date": "2022-03-14T08:08:12.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12485, + "fields": { + "EF_ID": 512008, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.760Z", + "last_change_date": "2022-03-14T08:08:12.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12486, + "fields": { + "EF_ID": 512009, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Lesotho", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.835Z", + "last_change_date": "2022-03-14T08:08:12.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12487, + "fields": { + "EF_ID": 512010, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Liberia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "196", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.902Z", + "last_change_date": "2022-03-14T08:08:12.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12488, + "fields": { + "EF_ID": 512011, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Libyan Arab Jamahiriya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:12.968Z", + "last_change_date": "2022-03-14T08:08:12.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12489, + "fields": { + "EF_ID": 512012, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Madagascar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "194", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.080Z", + "last_change_date": "2022-03-14T08:08:13.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12490, + "fields": { + "EF_ID": 512013, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Malawi", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.152Z", + "last_change_date": "2022-03-14T08:08:13.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12491, + "fields": { + "EF_ID": 512014, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mali", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.244Z", + "last_change_date": "2022-03-14T08:08:13.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12492, + "fields": { + "EF_ID": 512015, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mauritania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.319Z", + "last_change_date": "2022-03-14T08:08:13.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12493, + "fields": { + "EF_ID": 512016, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mauritius", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "95", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.385Z", + "last_change_date": "2022-03-14T08:08:13.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12494, + "fields": { + "EF_ID": 512017, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Morocco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.452Z", + "last_change_date": "2022-03-14T08:08:13.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12495, + "fields": { + "EF_ID": 512018, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Mozambique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.519Z", + "last_change_date": "2022-03-14T08:08:13.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12496, + "fields": { + "EF_ID": 512019, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Namibia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.616Z", + "last_change_date": "2022-03-14T08:08:13.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12497, + "fields": { + "EF_ID": 512020, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Niger", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.694Z", + "last_change_date": "2022-03-14T08:08:13.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12498, + "fields": { + "EF_ID": 512021, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "184", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.760Z", + "last_change_date": "2022-03-14T08:08:13.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12499, + "fields": { + "EF_ID": 512022, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Reunion", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.827Z", + "last_change_date": "2022-03-14T08:08:13.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12500, + "fields": { + "EF_ID": 512023, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Rwanda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "187", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.894Z", + "last_change_date": "2022-03-14T08:08:13.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12501, + "fields": { + "EF_ID": 512024, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sao Tome and Principe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:13.960Z", + "last_change_date": "2022-03-14T08:08:13.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12502, + "fields": { + "EF_ID": 512025, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Senegal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.027Z", + "last_change_date": "2022-03-14T08:08:14.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12503, + "fields": { + "EF_ID": 512026, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Seychelles", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.143Z", + "last_change_date": "2022-03-14T08:08:14.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12504, + "fields": { + "EF_ID": 512027, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sierra Leone", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "139", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.219Z", + "last_change_date": "2022-03-14T08:08:14.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12505, + "fields": { + "EF_ID": 512028, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Somalia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.285Z", + "last_change_date": "2022-03-14T08:08:14.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12506, + "fields": { + "EF_ID": 512029, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is external data (from other regions)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.352Z", + "last_change_date": "2022-03-14T08:08:14.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12507, + "fields": { + "EF_ID": 512030, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Sudan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.639Z", + "last_change_date": "2022-03-14T08:08:14.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12508, + "fields": { + "EF_ID": 512031, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Swaziland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "115", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.702Z", + "last_change_date": "2022-03-14T08:08:14.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12509, + "fields": { + "EF_ID": 512032, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Togo", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "155", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.769Z", + "last_change_date": "2022-03-14T08:08:14.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12510, + "fields": { + "EF_ID": 512033, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Tunisia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.864Z", + "last_change_date": "2022-03-14T08:08:14.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12511, + "fields": { + "EF_ID": 512034, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Uganda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "163", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:14.952Z", + "last_change_date": "2022-03-14T08:08:14.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12512, + "fields": { + "EF_ID": 512035, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; United Republic of Tanzania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.027Z", + "last_change_date": "2022-03-14T08:08:15.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12513, + "fields": { + "EF_ID": 512036, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Western Sahara", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.102Z", + "last_change_date": "2022-03-14T08:08:15.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12514, + "fields": { + "EF_ID": 512037, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Zambia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "104", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.177Z", + "last_change_date": "2022-03-14T08:08:15.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12515, + "fields": { + "EF_ID": 512038, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa; Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.159", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.260Z", + "last_change_date": "2022-03-14T08:08:15.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12516, + "fields": { + "EF_ID": 512039, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Afghanistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.327Z", + "last_change_date": "2022-03-14T08:08:15.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12517, + "fields": { + "EF_ID": 512040, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Armenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.425Z", + "last_change_date": "2022-03-14T08:08:15.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12518, + "fields": { + "EF_ID": 512041, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Azerbaijan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.502Z", + "last_change_date": "2022-03-14T08:08:15.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12519, + "fields": { + "EF_ID": 512042, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bahrain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.569Z", + "last_change_date": "2022-03-14T08:08:15.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12520, + "fields": { + "EF_ID": 512043, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.635Z", + "last_change_date": "2022-03-14T08:08:15.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12521, + "fields": { + "EF_ID": 512044, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Bhutan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "178", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.702Z", + "last_change_date": "2022-03-14T08:08:15.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12522, + "fields": { + "EF_ID": 512045, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Brunei Darussalam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.768Z", + "last_change_date": "2022-03-14T08:08:15.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12523, + "fields": { + "EF_ID": 512046, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Cambodia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.835Z", + "last_change_date": "2022-03-14T08:08:15.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12524, + "fields": { + "EF_ID": 512047, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:15.928Z", + "last_change_date": "2022-03-14T08:08:15.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12525, + "fields": { + "EF_ID": 512048, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Cyprus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.002Z", + "last_change_date": "2022-03-14T08:08:16.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12526, + "fields": { + "EF_ID": 512049, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Dem People`s Rep. of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.077Z", + "last_change_date": "2022-03-14T08:08:16.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12527, + "fields": { + "EF_ID": 512050, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; East Timor", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.144Z", + "last_change_date": "2022-03-14T08:08:16.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12528, + "fields": { + "EF_ID": 512051, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Georgia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.210Z", + "last_change_date": "2022-03-14T08:08:16.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12529, + "fields": { + "EF_ID": 512052, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.285Z", + "last_change_date": "2022-03-14T08:08:16.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12530, + "fields": { + "EF_ID": 512053, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.352Z", + "last_change_date": "2022-03-14T08:08:16.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12531, + "fields": { + "EF_ID": 512054, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Iran, Islamic Rep.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "149", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.457Z", + "last_change_date": "2022-03-14T08:08:16.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12532, + "fields": { + "EF_ID": 512055, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Iraq", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.546Z", + "last_change_date": "2022-03-14T08:08:16.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12533, + "fields": { + "EF_ID": 512056, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.613Z", + "last_change_date": "2022-03-14T08:08:16.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12534, + "fields": { + "EF_ID": 512057, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Jordan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.680Z", + "last_change_date": "2022-03-14T08:08:16.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12535, + "fields": { + "EF_ID": 512058, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kazakhstan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.746Z", + "last_change_date": "2022-03-14T08:08:16.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12536, + "fields": { + "EF_ID": 512059, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Kuwait", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.821Z", + "last_change_date": "2022-03-14T08:08:16.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12537, + "fields": { + "EF_ID": 512060, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Lao People`s Dem. Rep", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.888Z", + "last_change_date": "2022-03-14T08:08:16.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12538, + "fields": { + "EF_ID": 512061, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Lebanon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:16.985Z", + "last_change_date": "2022-03-14T08:08:16.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12539, + "fields": { + "EF_ID": 512062, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.071Z", + "last_change_date": "2022-03-14T08:08:17.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12540, + "fields": { + "EF_ID": 512063, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Mongolia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.146Z", + "last_change_date": "2022-03-14T08:08:17.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12541, + "fields": { + "EF_ID": 512064, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Myanmar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.221Z", + "last_change_date": "2022-03-14T08:08:17.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12542, + "fields": { + "EF_ID": 512065, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Nepal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "109", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.296Z", + "last_change_date": "2022-03-14T08:08:17.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12543, + "fields": { + "EF_ID": 512066, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Oman", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.388Z", + "last_change_date": "2022-03-14T08:08:17.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12544, + "fields": { + "EF_ID": 512067, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.463Z", + "last_change_date": "2022-03-14T08:08:17.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12545, + "fields": { + "EF_ID": 512068, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Philippines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.562Z", + "last_change_date": "2022-03-14T08:08:17.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12546, + "fields": { + "EF_ID": 512069, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Qatar", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.638Z", + "last_change_date": "2022-03-14T08:08:17.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12547, + "fields": { + "EF_ID": 512070, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.705Z", + "last_change_date": "2022-03-14T08:08:17.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12548, + "fields": { + "EF_ID": 512071, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Saudi Arabia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.771Z", + "last_change_date": "2022-03-14T08:08:17.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12549, + "fields": { + "EF_ID": 512072, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Singapore", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "205", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.838Z", + "last_change_date": "2022-03-14T08:08:17.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12550, + "fields": { + "EF_ID": 512073, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.905Z", + "last_change_date": "2022-03-14T08:08:17.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12551, + "fields": { + "EF_ID": 512074, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Syrian Arab Rep.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:17.971Z", + "last_change_date": "2022-03-14T08:08:17.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12552, + "fields": { + "EF_ID": 512075, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Tajikistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.065Z", + "last_change_date": "2022-03-14T08:08:18.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12553, + "fields": { + "EF_ID": 512076, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.146Z", + "last_change_date": "2022-03-14T08:08:18.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12554, + "fields": { + "EF_ID": 512077, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.219Z", + "last_change_date": "2022-03-14T08:08:18.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12555, + "fields": { + "EF_ID": 512078, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Turkmenistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.285Z", + "last_change_date": "2022-03-14T08:08:18.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12556, + "fields": { + "EF_ID": 512079, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Viet Nam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.352Z", + "last_change_date": "2022-03-14T08:08:18.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12557, + "fields": { + "EF_ID": 512080, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia; Yemen", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.419Z", + "last_change_date": "2022-03-14T08:08:18.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12558, + "fields": { + "EF_ID": 512081, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.160", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.485Z", + "last_change_date": "2022-03-14T08:08:18.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12559, + "fields": { + "EF_ID": 512082, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "217", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.586Z", + "last_change_date": "2022-03-14T08:08:18.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12560, + "fields": { + "EF_ID": 512083, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania; Papua New Guinea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.663Z", + "last_change_date": "2022-03-14T08:08:18.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12561, + "fields": { + "EF_ID": 512084, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Albania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.735Z", + "last_change_date": "2022-03-14T08:08:18.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12562, + "fields": { + "EF_ID": 512085, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Andorra", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.802Z", + "last_change_date": "2022-03-14T08:08:18.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12563, + "fields": { + "EF_ID": 512086, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.877Z", + "last_change_date": "2022-03-14T08:08:18.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12564, + "fields": { + "EF_ID": 512087, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Belarus", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:18.944Z", + "last_change_date": "2022-03-14T08:08:18.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12565, + "fields": { + "EF_ID": 512088, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Belgium & Luxembourg", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.010Z", + "last_change_date": "2022-03-14T08:08:19.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12566, + "fields": { + "EF_ID": 512089, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Bulgaria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.105Z", + "last_change_date": "2022-03-14T08:08:19.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12567, + "fields": { + "EF_ID": 512090, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Croatia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.180Z", + "last_change_date": "2022-03-14T08:08:19.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12568, + "fields": { + "EF_ID": 512091, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Czech Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "125", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.260Z", + "last_change_date": "2022-03-14T08:08:19.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12569, + "fields": { + "EF_ID": 512092, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.327Z", + "last_change_date": "2022-03-14T08:08:19.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12570, + "fields": { + "EF_ID": 512093, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.393Z", + "last_change_date": "2022-03-14T08:08:19.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12571, + "fields": { + "EF_ID": 512094, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.477Z", + "last_change_date": "2022-03-14T08:08:19.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12572, + "fields": { + "EF_ID": 512095, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.543Z", + "last_change_date": "2022-03-14T08:08:19.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12573, + "fields": { + "EF_ID": 512096, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "134", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.674Z", + "last_change_date": "2022-03-14T08:08:19.674Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12574, + "fields": { + "EF_ID": 512097, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.763Z", + "last_change_date": "2022-03-14T08:08:19.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12575, + "fields": { + "EF_ID": 512098, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Hungary", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.827Z", + "last_change_date": "2022-03-14T08:08:19.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12576, + "fields": { + "EF_ID": 512099, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Iceland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.894Z", + "last_change_date": "2022-03-14T08:08:19.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12577, + "fields": { + "EF_ID": 512100, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Ireland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:19.960Z", + "last_change_date": "2022-03-14T08:08:19.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12578, + "fields": { + "EF_ID": 512101, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.027Z", + "last_change_date": "2022-03-14T08:08:20.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12579, + "fields": { + "EF_ID": 512102, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Latvia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.094Z", + "last_change_date": "2022-03-14T08:08:20.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12580, + "fields": { + "EF_ID": 512103, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Liechtenstein", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "119", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.194Z", + "last_change_date": "2022-03-14T08:08:20.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12581, + "fields": { + "EF_ID": 512104, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Lithuania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.271Z", + "last_change_date": "2022-03-14T08:08:20.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12582, + "fields": { + "EF_ID": 512105, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.352Z", + "last_change_date": "2022-03-14T08:08:20.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12583, + "fields": { + "EF_ID": 512106, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Norway", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.419Z", + "last_change_date": "2022-03-14T08:08:20.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12584, + "fields": { + "EF_ID": 512107, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Poland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.485Z", + "last_change_date": "2022-03-14T08:08:20.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12585, + "fields": { + "EF_ID": 512108, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.552Z", + "last_change_date": "2022-03-14T08:08:20.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12586, + "fields": { + "EF_ID": 512109, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Republic of Moldova", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.627Z", + "last_change_date": "2022-03-14T08:08:20.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12587, + "fields": { + "EF_ID": 512110, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Romania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "124", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.723Z", + "last_change_date": "2022-03-14T08:08:20.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12588, + "fields": { + "EF_ID": 512111, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Russian Federation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.796Z", + "last_change_date": "2022-03-14T08:08:20.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12589, + "fields": { + "EF_ID": 512112, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; San Marino", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.869Z", + "last_change_date": "2022-03-14T08:08:20.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12590, + "fields": { + "EF_ID": 512113, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Slovakia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "142", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:20.944Z", + "last_change_date": "2022-03-14T08:08:20.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12591, + "fields": { + "EF_ID": 512114, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Slovenia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "178", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.018Z", + "last_change_date": "2022-03-14T08:08:21.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12592, + "fields": { + "EF_ID": 512115, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.094Z", + "last_change_date": "2022-03-14T08:08:21.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12593, + "fields": { + "EF_ID": 512116, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.168Z", + "last_change_date": "2022-03-14T08:08:21.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12594, + "fields": { + "EF_ID": 512117, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "165", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.267Z", + "last_change_date": "2022-03-14T08:08:21.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12595, + "fields": { + "EF_ID": 512118, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; UK", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.355Z", + "last_change_date": "2022-03-14T08:08:21.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12596, + "fields": { + "EF_ID": 512119, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe; Yugoslavia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.161", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.421Z", + "last_change_date": "2022-03-14T08:08:21.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12597, + "fields": { + "EF_ID": 512120, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Antigua and Barbuda", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "210", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.497Z", + "last_change_date": "2022-03-14T08:08:21.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12598, + "fields": { + "EF_ID": 512121, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Belize", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "211", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.563Z", + "last_change_date": "2022-03-14T08:08:21.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12599, + "fields": { + "EF_ID": 512122, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.630Z", + "last_change_date": "2022-03-14T08:08:21.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12600, + "fields": { + "EF_ID": 512123, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Costa Rica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.696Z", + "last_change_date": "2022-03-14T08:08:21.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12601, + "fields": { + "EF_ID": 512124, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Cuba", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "114", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.788Z", + "last_change_date": "2022-03-14T08:08:21.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12602, + "fields": { + "EF_ID": 512125, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Dominica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "166", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.863Z", + "last_change_date": "2022-03-14T08:08:21.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12603, + "fields": { + "EF_ID": 512126, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Dominican Republic", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.930Z", + "last_change_date": "2022-03-14T08:08:21.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12604, + "fields": { + "EF_ID": 512127, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; El Salvador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "202", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:21.997Z", + "last_change_date": "2022-03-14T08:08:21.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12605, + "fields": { + "EF_ID": 512128, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Grenada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.063Z", + "last_change_date": "2022-03-14T08:08:22.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12606, + "fields": { + "EF_ID": 512129, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Guatemala", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "371", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.130Z", + "last_change_date": "2022-03-14T08:08:22.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12607, + "fields": { + "EF_ID": 512130, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Haiti", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.196Z", + "last_change_date": "2022-03-14T08:08:22.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12608, + "fields": { + "EF_ID": 512131, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Honduras", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.290Z", + "last_change_date": "2022-03-14T08:08:22.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12609, + "fields": { + "EF_ID": 512132, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Jamaica", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "171", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.363Z", + "last_change_date": "2022-03-14T08:08:22.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12610, + "fields": { + "EF_ID": 512133, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Martinique", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.430Z", + "last_change_date": "2022-03-14T08:08:22.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12611, + "fields": { + "EF_ID": 512134, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.497Z", + "last_change_date": "2022-03-14T08:08:22.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12612, + "fields": { + "EF_ID": 512135, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Nicaragua", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "161", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.563Z", + "last_change_date": "2022-03-14T08:08:22.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12613, + "fields": { + "EF_ID": 512136, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Panama", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "322", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.630Z", + "last_change_date": "2022-03-14T08:08:22.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12614, + "fields": { + "EF_ID": 512137, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Saint Lucia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "198", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.713Z", + "last_change_date": "2022-03-14T08:08:22.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12615, + "fields": { + "EF_ID": 512138, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Saint Vincent and Grenadines", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "173", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.817Z", + "last_change_date": "2022-03-14T08:08:22.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12616, + "fields": { + "EF_ID": 512139, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Central America; Trinidad and Tobago", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "129", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.888Z", + "last_change_date": "2022-03-14T08:08:22.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12617, + "fields": { + "EF_ID": 512140, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America; United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "108", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is FAO", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:22.963Z", + "last_change_date": "2022-03-14T08:08:22.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12618, + "fields": { + "EF_ID": 512141, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.039Z", + "last_change_date": "2022-03-14T08:08:23.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12619, + "fields": { + "EF_ID": 512142, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Bolivia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "183", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is partial inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.105Z", + "last_change_date": "2022-03-14T08:08:23.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12620, + "fields": { + "EF_ID": 512143, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "209", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.172Z", + "last_change_date": "2022-03-14T08:08:23.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12621, + "fields": { + "EF_ID": 512144, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Chile", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "268", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.238Z", + "last_change_date": "2022-03-14T08:08:23.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12622, + "fields": { + "EF_ID": 512145, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Colombia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "196", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.330Z", + "last_change_date": "2022-03-14T08:08:23.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12623, + "fields": { + "EF_ID": 512146, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Ecuador", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "151", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.405Z", + "last_change_date": "2022-03-14T08:08:23.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12624, + "fields": { + "EF_ID": 512147, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; French Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.472Z", + "last_change_date": "2022-03-14T08:08:23.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12625, + "fields": { + "EF_ID": 512148, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Guyana", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.538Z", + "last_change_date": "2022-03-14T08:08:23.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12626, + "fields": { + "EF_ID": 512149, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Paraguay", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.622Z", + "last_change_date": "2022-03-14T08:08:23.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12627, + "fields": { + "EF_ID": 512150, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Peru", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "245", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is national inventory", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.688Z", + "last_change_date": "2022-03-14T08:08:23.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12628, + "fields": { + "EF_ID": 512151, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Suriname", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "253", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.755Z", + "last_change_date": "2022-03-14T08:08:23.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12629, + "fields": { + "EF_ID": 512152, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Aboveground Biomass Content (Dry Matter) in Forest in 2000 (Source FRA2000)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "South America; Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "233", + "Unit": "t dm/ha", + "Equation": "Equation 3.4.13, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.4 on page 3.162", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Information source is estimate", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.849Z", + "last_change_date": "2022-03-14T08:08:23.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12630, + "fields": { + "EF_ID": 512153, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Wet, Annual rainfall > 2000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.922Z", + "last_change_date": "2022-03-14T08:08:23.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12631, + "fields": { + "EF_ID": 512154, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:23.988Z", + "last_change_date": "2022-03-14T08:08:23.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12632, + "fields": { + "EF_ID": 512155, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4 (2.3-2.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.080Z", + "last_change_date": "2022-03-14T08:08:24.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12633, + "fields": { + "EF_ID": 512156, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Dry, Annual rainfall < 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2 (0.8-1.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.146Z", + "last_change_date": "2022-03-14T08:08:24.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12634, + "fields": { + "EF_ID": 512157, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Moist, Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.252Z", + "last_change_date": "2022-03-14T08:08:24.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12635, + "fields": { + "EF_ID": 512158, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Dry, Annual rainfall < 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0 (1.0-3.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.330Z", + "last_change_date": "2022-03-14T08:08:24.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12636, + "fields": { + "EF_ID": 512159, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Wet, Annual rainfall > 2000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1 (2.3-3.8)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.402Z", + "last_change_date": "2022-03-14T08:08:24.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12637, + "fields": { + "EF_ID": 512160, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.469Z", + "last_change_date": "2022-03-14T08:08:24.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12638, + "fields": { + "EF_ID": 512161, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8 (0.6-3.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.543Z", + "last_change_date": "2022-03-14T08:08:24.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12639, + "fields": { + "EF_ID": 512162, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Dry, Annual rainfall < 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9 (0.2-1.6)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.646Z", + "last_change_date": "2022-03-14T08:08:24.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12640, + "fields": { + "EF_ID": 512163, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Moist, Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.722Z", + "last_change_date": "2022-03-14T08:08:24.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12641, + "fields": { + "EF_ID": 512164, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Dry, Annual rainfall < 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (0.5-4.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.802Z", + "last_change_date": "2022-03-14T08:08:24.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12642, + "fields": { + "EF_ID": 512165, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Wet, Annual rainfall > 2000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0 (3.0-11.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.868Z", + "last_change_date": "2022-03-14T08:08:24.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12643, + "fields": { + "EF_ID": 512166, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:24.944Z", + "last_change_date": "2022-03-14T08:08:24.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12644, + "fields": { + "EF_ID": 512167, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.040Z", + "last_change_date": "2022-03-14T08:08:25.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12645, + "fields": { + "EF_ID": 512168, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Dry, Annual rainfall < 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.114Z", + "last_change_date": "2022-03-14T08:08:25.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12646, + "fields": { + "EF_ID": 512169, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Moist, Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.185Z", + "last_change_date": "2022-03-14T08:08:25.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12647, + "fields": { + "EF_ID": 512170, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Dry, Annual rainfall < 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.252Z", + "last_change_date": "2022-03-14T08:08:25.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12648, + "fields": { + "EF_ID": 512171, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Wet, Annual rainfall > 2000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2 (1.3-3.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.319Z", + "last_change_date": "2022-03-14T08:08:25.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12649, + "fields": { + "EF_ID": 512172, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.417Z", + "last_change_date": "2022-03-14T08:08:25.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12650, + "fields": { + "EF_ID": 512173, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.497Z", + "last_change_date": "2022-03-14T08:08:25.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12651, + "fields": { + "EF_ID": 512174, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Dry, Annual rainfall < 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3 (1.0-2.2)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.560Z", + "last_change_date": "2022-03-14T08:08:25.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12652, + "fields": { + "EF_ID": 512175, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Moist, Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.627Z", + "last_change_date": "2022-03-14T08:08:25.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12653, + "fields": { + "EF_ID": 512176, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Dry, Annual rainfall < 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.744Z", + "last_change_date": "2022-03-14T08:08:25.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12654, + "fields": { + "EF_ID": 512177, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Wet, Annual rainfall > 2000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.830Z", + "last_change_date": "2022-03-14T08:08:25.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12655, + "fields": { + "EF_ID": 512178, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.902Z", + "last_change_date": "2022-03-14T08:08:25.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12656, + "fields": { + "EF_ID": 512179, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:25.969Z", + "last_change_date": "2022-03-14T08:08:25.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12657, + "fields": { + "EF_ID": 512180, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Dry, Annual rainfall < 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.094Z", + "last_change_date": "2022-03-14T08:08:26.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12658, + "fields": { + "EF_ID": 512181, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Moist, Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.187Z", + "last_change_date": "2022-03-14T08:08:26.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12659, + "fields": { + "EF_ID": 512182, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Dry, Annual rainfall < 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.272Z", + "last_change_date": "2022-03-14T08:08:26.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12660, + "fields": { + "EF_ID": 512183, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Wet, Annual rainfall > 2000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.344Z", + "last_change_date": "2022-03-14T08:08:26.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12661, + "fields": { + "EF_ID": 512184, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.419Z", + "last_change_date": "2022-03-14T08:08:26.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12662, + "fields": { + "EF_ID": 512185, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.494Z", + "last_change_date": "2022-03-14T08:08:26.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12663, + "fields": { + "EF_ID": 512186, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Dry, Annual rainfall < 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.607Z", + "last_change_date": "2022-03-14T08:08:26.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12664, + "fields": { + "EF_ID": 512187, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Moist, Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.680Z", + "last_change_date": "2022-03-14T08:08:26.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12665, + "fields": { + "EF_ID": 512188, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Dry, Annual rainfall < 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "Asia & Oceania (Insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.752Z", + "last_change_date": "2022-03-14T08:08:26.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12666, + "fields": { + "EF_ID": 512189, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Wet, Annual rainfall > 2000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.835Z", + "last_change_date": "2022-03-14T08:08:26.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12667, + "fields": { + "EF_ID": 512190, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:26.919Z", + "last_change_date": "2022-03-14T08:08:26.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12668, + "fields": { + "EF_ID": 512191, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.025Z", + "last_change_date": "2022-03-14T08:08:27.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12669, + "fields": { + "EF_ID": 512192, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Dry, Annual rainfall < 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.114Z", + "last_change_date": "2022-03-14T08:08:27.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12670, + "fields": { + "EF_ID": 512193, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Moist, Annual rainfall > 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.177Z", + "last_change_date": "2022-03-14T08:08:27.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12671, + "fields": { + "EF_ID": 512194, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Dry, Annual rainfall < 1000 mm/yr), Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.247Z", + "last_change_date": "2022-03-14T08:08:27.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12672, + "fields": { + "EF_ID": 512195, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Wet, Annual rainfall > 2000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9 (1.2-2.6)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.322Z", + "last_change_date": "2022-03-14T08:08:27.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12673, + "fields": { + "EF_ID": 512196, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.419Z", + "last_change_date": "2022-03-14T08:08:27.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12674, + "fields": { + "EF_ID": 512197, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.505Z", + "last_change_date": "2022-03-14T08:08:27.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12675, + "fields": { + "EF_ID": 512198, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Dry, Annual rainfall < 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.572Z", + "last_change_date": "2022-03-14T08:08:27.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12676, + "fields": { + "EF_ID": 512199, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Moist, Annual rainfall > 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4 (1.0-2.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.638Z", + "last_change_date": "2022-03-14T08:08:27.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12677, + "fields": { + "EF_ID": 512200, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical and Sub-Tropical Forests (Montane Dry, Annual rainfall < 1000 mm/yr), Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.705Z", + "last_change_date": "2022-03-14T08:08:27.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12678, + "fields": { + "EF_ID": 512201, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Coniferous, Age Class: =< 20 years", + "Regional_Conditions": "Temperate Forests", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0 (0.5-6.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.813Z", + "last_change_date": "2022-03-14T08:08:27.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12679, + "fields": { + "EF_ID": 512202, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Broadleaf, Age Class: =< 20 years", + "Regional_Conditions": "Temperate Forests", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 (0.5-8.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.889Z", + "last_change_date": "2022-03-14T08:08:27.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12680, + "fields": { + "EF_ID": 512203, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Coniferous, Age Class: > 20 years", + "Regional_Conditions": "Temperate Forests", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0 (0.5-6.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:27.955Z", + "last_change_date": "2022-03-14T08:08:27.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12681, + "fields": { + "EF_ID": 512204, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Broadleaf, Age Class: > 20 years", + "Regional_Conditions": "Temperate Forests", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 (0.5-7.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.022Z", + "last_change_date": "2022-03-14T08:08:28.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12682, + "fields": { + "EF_ID": 512205, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Mixed Broadleaf-Coniferous, Age Class: =< 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.097Z", + "last_change_date": "2022-03-14T08:08:28.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12683, + "fields": { + "EF_ID": 512206, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Coniferous, Age Class: =< 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.191Z", + "last_change_date": "2022-03-14T08:08:28.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12684, + "fields": { + "EF_ID": 512207, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Forest-Tundra, Age Class: =< 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (0.2-0.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.264Z", + "last_change_date": "2022-03-14T08:08:28.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12685, + "fields": { + "EF_ID": 512208, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Broadleaf, Age Class: =< 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (1.0-2.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.339Z", + "last_change_date": "2022-03-14T08:08:28.339Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12686, + "fields": { + "EF_ID": 512209, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Mixed Broadleaf-Coniferous, Age Class: > 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.414Z", + "last_change_date": "2022-03-14T08:08:28.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12687, + "fields": { + "EF_ID": 512210, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Coniferous, Age Class: > 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.489Z", + "last_change_date": "2022-03-14T08:08:28.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12688, + "fields": { + "EF_ID": 512211, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Forest-Tundra, Age Class: > 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (0.2-0.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.584Z", + "last_change_date": "2022-03-14T08:08:28.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12689, + "fields": { + "EF_ID": 512212, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Broadleaf, Age Class: > 20 years", + "Regional_Conditions": "Eurasia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.672Z", + "last_change_date": "2022-03-14T08:08:28.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12690, + "fields": { + "EF_ID": 512213, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Mixed Broadleaf-Coniferous, Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1 (0.7-1.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.747Z", + "last_change_date": "2022-03-14T08:08:28.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12691, + "fields": { + "EF_ID": 512214, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Coniferous, Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8 (0.5-1.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.822Z", + "last_change_date": "2022-03-14T08:08:28.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12692, + "fields": { + "EF_ID": 512215, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Forest-Tundra, Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (0.2-0.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:28.897Z", + "last_change_date": "2022-03-14T08:08:28.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12693, + "fields": { + "EF_ID": 512216, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Broadleaf, Age Class: =< 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (1.0-2.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.003Z", + "last_change_date": "2022-03-14T08:08:29.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12694, + "fields": { + "EF_ID": 512217, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Mixed Broadleaf-Coniferous, Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1 (0.7-1.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.089Z", + "last_change_date": "2022-03-14T08:08:29.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12695, + "fields": { + "EF_ID": 512218, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Coniferous, Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (0.5-2.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.155Z", + "last_change_date": "2022-03-14T08:08:29.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12696, + "fields": { + "EF_ID": 512219, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Forest-Tundra, Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (0.2-0.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.222Z", + "last_change_date": "2022-03-14T08:08:29.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12697, + "fields": { + "EF_ID": 512220, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Increment in Aboveground Biomass in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forests, Broadleaf, Age Class: > 20 years", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3 (1.0-1.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.5 on page 3.163", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.289Z", + "last_change_date": "2022-03-14T08:08:29.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12698, + "fields": { + "EF_ID": 512221, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Eucalyptus spp, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.380Z", + "last_change_date": "2022-03-14T08:08:29.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12699, + "fields": { + "EF_ID": 512222, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Eucalyptus spp, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.6", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.456Z", + "last_change_date": "2022-03-14T08:08:29.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12700, + "fields": { + "EF_ID": 512223, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Eucalyptus spp, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.1 (3.0-7.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.522Z", + "last_change_date": "2022-03-14T08:08:29.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12701, + "fields": { + "EF_ID": 512224, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Eucalyptus spp, Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.589Z", + "last_change_date": "2022-03-14T08:08:29.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12702, + "fields": { + "EF_ID": 512225, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Eucalyptus spp, Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0 (4.9-13.6)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.656Z", + "last_change_date": "2022-03-14T08:08:29.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12703, + "fields": { + "EF_ID": 512226, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Wet, Annual rainfall > 2000 mm/yr, Pinus sp, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.750Z", + "last_change_date": "2022-03-14T08:08:29.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12704, + "fields": { + "EF_ID": 512227, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Pinus sp, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.847Z", + "last_change_date": "2022-03-14T08:08:29.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12705, + "fields": { + "EF_ID": 512228, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Pinus sp, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.922Z", + "last_change_date": "2022-03-14T08:08:29.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12706, + "fields": { + "EF_ID": 512229, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Pinus sp, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.3 (0.5-6.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:29.989Z", + "last_change_date": "2022-03-14T08:08:29.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12707, + "fields": { + "EF_ID": 512230, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Pinus sp, Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.060Z", + "last_change_date": "2022-03-14T08:08:30.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12708, + "fields": { + "EF_ID": 512231, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Pinus sp, Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.152Z", + "last_change_date": "2022-03-14T08:08:30.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12709, + "fields": { + "EF_ID": 512232, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Pinus sp, Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.227Z", + "last_change_date": "2022-03-14T08:08:30.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12710, + "fields": { + "EF_ID": 512233, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Wet, Annual rainfall > 2000 mm/yr, others, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5 (5.0-8.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.294Z", + "last_change_date": "2022-03-14T08:08:30.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12711, + "fields": { + "EF_ID": 512234, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.0 (3.0-15.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.361Z", + "last_change_date": "2022-03-14T08:08:30.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12712, + "fields": { + "EF_ID": 512235, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0 (4.0-16.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.427Z", + "last_change_date": "2022-03-14T08:08:30.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12713, + "fields": { + "EF_ID": 512236, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.529Z", + "last_change_date": "2022-03-14T08:08:30.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12714, + "fields": { + "EF_ID": 512237, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Montane Moist, Annual rainfall > 1000 mm/yr, Age Class: =< 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.619Z", + "last_change_date": "2022-03-14T08:08:30.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12715, + "fields": { + "EF_ID": 512238, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Age Class: > 20 years", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.694Z", + "last_change_date": "2022-03-14T08:08:30.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12716, + "fields": { + "EF_ID": 512239, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Wet, Annual rainfall > 2000 mm/yr, Eucalyptus spp, Age Class: All", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0 (3.6-8.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.769Z", + "last_change_date": "2022-03-14T08:08:30.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12717, + "fields": { + "EF_ID": 512240, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Eucalyptus spp, Age Class: All", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.844Z", + "last_change_date": "2022-03-14T08:08:30.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12718, + "fields": { + "EF_ID": 512241, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Eucalyptus spp, Age Class: All", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0 (5.0-25.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:30.947Z", + "last_change_date": "2022-03-14T08:08:30.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12719, + "fields": { + "EF_ID": 512242, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Montane Moist, Annual rainfall > 1000 mm/yr, Eucalyptus spp, Age Class: All", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.027Z", + "last_change_date": "2022-03-14T08:08:31.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12720, + "fields": { + "EF_ID": 512243, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Wet, Annual rainfall > 2000 mm/yr, Species other than Eucalyptus spp", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2 (2.4-8.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.093Z", + "last_change_date": "2022-03-14T08:08:31.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12721, + "fields": { + "EF_ID": 512244, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Species other than Eucalyptus spp", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.8 (2.0-13.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.160Z", + "last_change_date": "2022-03-14T08:08:31.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12722, + "fields": { + "EF_ID": 512245, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Species other than Eucalyptus spp", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1 (1.6-12.6)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.227Z", + "last_change_date": "2022-03-14T08:08:31.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12723, + "fields": { + "EF_ID": 512246, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Species other than Eucalyptus spp", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.45 (1.2-11.7)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.325Z", + "last_change_date": "2022-03-14T08:08:31.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12724, + "fields": { + "EF_ID": 512247, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Montane Moist, Annual rainfall > 1000 mm/yr, Species other than Eucalyptus spp", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0 (1.3-10.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.402Z", + "last_change_date": "2022-03-14T08:08:31.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12725, + "fields": { + "EF_ID": 512248, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Wet, Annual rainfall > 2000 mm/yr, Pinus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.477Z", + "last_change_date": "2022-03-14T08:08:31.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12726, + "fields": { + "EF_ID": 512249, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Pinus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.5 (5.0-19.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.544Z", + "last_change_date": "2022-03-14T08:08:31.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12727, + "fields": { + "EF_ID": 512250, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Pinus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0 (4.0-10.3)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.610Z", + "last_change_date": "2022-03-14T08:08:31.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12728, + "fields": { + "EF_ID": 512251, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Pinus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.711Z", + "last_change_date": "2022-03-14T08:08:31.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12729, + "fields": { + "EF_ID": 512252, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Montane Moist, Annual rainfall > 1000 mm/yr, Pinus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.785Z", + "last_change_date": "2022-03-14T08:08:31.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12730, + "fields": { + "EF_ID": 512253, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Wet, Annual rainfall > 2000 mm/yr, Eucalyptus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.0 (6.4-38.4)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.852Z", + "last_change_date": "2022-03-14T08:08:31.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12731, + "fields": { + "EF_ID": 512254, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Eucalyptus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.0 (6.4-32.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:31.927Z", + "last_change_date": "2022-03-14T08:08:31.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12732, + "fields": { + "EF_ID": 512255, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Eucalyptus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.0 (6.4-32.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.002Z", + "last_change_date": "2022-03-14T08:08:32.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12733, + "fields": { + "EF_ID": 512256, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Dry, Annual rainfall < 1000 mm/yr, Eucalyptus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.114Z", + "last_change_date": "2022-03-14T08:08:32.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12734, + "fields": { + "EF_ID": 512257, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Montane Moist, Annual rainfall > 1000 mm/yr, Eucalyptus", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.0 (8.5-17.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.202Z", + "last_change_date": "2022-03-14T08:08:32.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12735, + "fields": { + "EF_ID": 512258, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Wet, Annual rainfall > 2000 mm/yr, Tectona", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.277Z", + "last_change_date": "2022-03-14T08:08:32.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12736, + "fields": { + "EF_ID": 512259, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Tectona", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0 (3.8-11.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.352Z", + "last_change_date": "2022-03-14T08:08:32.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12737, + "fields": { + "EF_ID": 512260, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Tectona", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0 (3.8-11.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.427Z", + "last_change_date": "2022-03-14T08:08:32.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12738, + "fields": { + "EF_ID": 512261, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Montane Moist, Annual rainfall > 1000 mm/yr, Tectona", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.523Z", + "last_change_date": "2022-03-14T08:08:32.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12739, + "fields": { + "EF_ID": 512262, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Wet, Annual rainfall > 2000 mm/yr, Other broadleaved", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.0 (5.0-35.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.602Z", + "last_change_date": "2022-03-14T08:08:32.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12740, + "fields": { + "EF_ID": 512263, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Short Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Other broadleaved", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.0 (8.0-40.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.669Z", + "last_change_date": "2022-03-14T08:08:32.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12741, + "fields": { + "EF_ID": 512264, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Moist with Long Dry Season, 2000 mm/yr > Annual rainfall > 1000 mm/yr, Other broadleaved", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.5 (3.2-11.8)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value and as the range of possible values.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.735Z", + "last_change_date": "2022-03-14T08:08:32.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12742, + "fields": { + "EF_ID": 512265, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Biomass Increment in Plantation by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Montane Moist, Annual rainfall > 1000 mm/yr, Other broadleaved", + "Regional_Conditions": "America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.6 on page 3.164", + "Technical_Reference": "See references in the IPCC Good Practice Guidance for LULUCF from pages 3.164 to 3.166.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). This datum is given as mean value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.802Z", + "last_change_date": "2022-03-14T08:08:32.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12743, + "fields": { + "EF_ID": 512266, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: E. deglupta", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32 (14 - 50)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.900Z", + "last_change_date": "2022-03-14T08:08:32.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12744, + "fields": { + "EF_ID": 512267, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: E. globulus", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25 (10 - 40)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:32.977Z", + "last_change_date": "2022-03-14T08:08:32.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12745, + "fields": { + "EF_ID": 512268, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: E. grandis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.5 (15 - 50)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.044Z", + "last_change_date": "2022-03-14T08:08:33.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12746, + "fields": { + "EF_ID": 512269, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: E. saligna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.5 (10 - 55)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.110Z", + "last_change_date": "2022-03-14T08:08:33.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12747, + "fields": { + "EF_ID": 512270, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: E. camaldulensis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.5 (15 - 30)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.203Z", + "last_change_date": "2022-03-14T08:08:33.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12748, + "fields": { + "EF_ID": 512271, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: E. urophylla", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40 (20 - 60)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.277Z", + "last_change_date": "2022-03-14T08:08:33.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12749, + "fields": { + "EF_ID": 512272, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: E. robusta", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25 (10 - 40)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.344Z", + "last_change_date": "2022-03-14T08:08:33.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12750, + "fields": { + "EF_ID": 512273, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Pinus caribaea var. caribaea", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19 (10 - 28)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.437Z", + "last_change_date": "2022-03-14T08:08:33.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12751, + "fields": { + "EF_ID": 512274, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Pinus caribaea var. hondurensis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35 (20 - 50)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.527Z", + "last_change_date": "2022-03-14T08:08:33.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12752, + "fields": { + "EF_ID": 512275, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Pinus patula", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24 ( 8 - 40)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.594Z", + "last_change_date": "2022-03-14T08:08:33.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12753, + "fields": { + "EF_ID": 512276, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Pinus radiata", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.5 (12 - 35)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.689Z", + "last_change_date": "2022-03-14T08:08:33.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12754, + "fields": { + "EF_ID": 512277, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Pinus oocarpa", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25 (10 - 40)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.777Z", + "last_change_date": "2022-03-14T08:08:33.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12755, + "fields": { + "EF_ID": 512278, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Araucaria angustifolia", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16 ( 8 - 24)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.852Z", + "last_change_date": "2022-03-14T08:08:33.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12756, + "fields": { + "EF_ID": 512279, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: A. cunninghamii", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14 (10 - 18)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:33.982Z", + "last_change_date": "2022-03-14T08:08:33.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12757, + "fields": { + "EF_ID": 512280, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Gmelina arborea", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31 (12 - 50)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.085Z", + "last_change_date": "2022-03-14T08:08:34.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12758, + "fields": { + "EF_ID": 512281, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Swietenia macrophylla", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.5 ( 7 - 30)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.160Z", + "last_change_date": "2022-03-14T08:08:34.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12759, + "fields": { + "EF_ID": 512282, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Tectona grandis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12 ( 6 - 18)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.267Z", + "last_change_date": "2022-03-14T08:08:34.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12760, + "fields": { + "EF_ID": 512283, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Casuarina equisetifolia", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13 ( 6 - 20)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.344Z", + "last_change_date": "2022-03-14T08:08:34.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12761, + "fields": { + "EF_ID": 512284, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: C. junghuhniana", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9 ( 7 - 11)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.410Z", + "last_change_date": "2022-03-14T08:08:34.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12762, + "fields": { + "EF_ID": 512285, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Cupressus lusitanica", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24 ( 8 - 40)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.509Z", + "last_change_date": "2022-03-14T08:08:34.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12763, + "fields": { + "EF_ID": 512286, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Cordia alliadora", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15 (10 - 20)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.585Z", + "last_change_date": "2022-03-14T08:08:34.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12764, + "fields": { + "EF_ID": 512287, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Leucaena leucocephala", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5 (30 - 55)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.652Z", + "last_change_date": "2022-03-14T08:08:34.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12765, + "fields": { + "EF_ID": 512288, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Acacia auriculiformis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13 ( 6 - 20)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.745Z", + "last_change_date": "2022-03-14T08:08:34.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12766, + "fields": { + "EF_ID": 512289, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Acacia mearnsii", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.5 (14 - 25)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.818Z", + "last_change_date": "2022-03-14T08:08:34.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12767, + "fields": { + "EF_ID": 512290, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Terminalia superba", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12 (10 - 14)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.889Z", + "last_change_date": "2022-03-14T08:08:34.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12768, + "fields": { + "EF_ID": 512291, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Terminalia ivorensis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.5 ( 8 - 17)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:34.980Z", + "last_change_date": "2022-03-14T08:08:34.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12769, + "fields": { + "EF_ID": 512292, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Annual Aboveground Net Increment in Volume in Plantations by Species", + "Technology_Practices": "", + "Parameter_Conditions": "Species: Dalbergia sissoo", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5 (5 - 8)", + "Unit": "m3/ha/year", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.7 on page 3.167", + "Technical_Reference": "Ugalde,L. and Prez,O. Mean annual volume increment of selected industrial forest planatation species. Forest Plantation Thematic Papers, Working paper 1. FAO (2001) Available at http://www.fao.org/DOCREP/004/AC121E/AC121E00.HTM", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.052Z", + "last_change_date": "2022-03-14T08:08:35.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12770, + "fields": { + "EF_ID": 512293, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Tropical/sub-tropical forest, Secondary tropical/sub-tropical forest, Aboveground biomass (t/ha) < 125", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42 (0.14 - 0.83)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 5, 7, 13, 25, 28, 31, 48, 71 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.22", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.123Z", + "last_change_date": "2022-03-14T08:08:35.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12771, + "fields": { + "EF_ID": 512294, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Tropical/sub-tropical forest, Primary tropical/sub-tropical moist forest, Aboveground biomass (t/ha): Not specified", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24 (0.22 - 0.33)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 33, 57, 63, 67, 69 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.03", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.189Z", + "last_change_date": "2022-03-14T08:08:35.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12772, + "fields": { + "EF_ID": 512295, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Tropical/sub-tropical forest, Tropical/sub-tropical dry forest, Aboveground biomass (t/ha): Not specified", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27 (0.27 - 0.28)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See reference 65 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.01", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.290Z", + "last_change_date": "2022-03-14T08:08:35.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12773, + "fields": { + "EF_ID": 512296, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Conifer forest/ plantation, Conifer forest/plantation, Aboveground biomass (t/ha) < 50", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46 (0.21 - 1.06)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 2, 8, 43, 44, 54, 61, 75 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.21", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.377Z", + "last_change_date": "2022-03-14T08:08:35.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12774, + "fields": { + "EF_ID": 512297, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Conifer forest/ plantation, Conifer forest/plantation, Aboveground biomass (t/ha) = 50-150", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32 (0.24 - 0.5)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 6, 36, 54, 55, 58, 61 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.08", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.439Z", + "last_change_date": "2022-03-14T08:08:35.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12775, + "fields": { + "EF_ID": 512298, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Conifer forest/ plantation, Conifer forest/plantation, Aboveground biomass (t/ha) > 150", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23 (0.12 - 0.49)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 1, 6, 20, 40, 53, 61, 67, 77, 79 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.09", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.498Z", + "last_change_date": "2022-03-14T08:08:35.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12776, + "fields": { + "EF_ID": 512299, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Temperate broadleaf forest/ plantation, Oak forest, Aboveground biomass (t/ha) > 70", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35 (0.2 - 1.16)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 15, 60, 64, 67 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.25", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.556Z", + "last_change_date": "2022-03-14T08:08:35.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12777, + "fields": { + "EF_ID": 512300, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Temperate broadleaf forest/ plantation, Eucalypt plantation, Aboveground biomass (t/ha) < 50", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45 (0.29 - 0.81)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 9, 51, 59 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.15", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.642Z", + "last_change_date": "2022-03-14T08:08:35.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12778, + "fields": { + "EF_ID": 512301, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Temperate broadleaf forest/ plantation, Eucalypt plantation, Aboveground biomass (t/ha) = 50-150", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35 (0.15 - 0.81)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 4, 9, 59, 66, 76 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.23", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.718Z", + "last_change_date": "2022-03-14T08:08:35.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12779, + "fields": { + "EF_ID": 512302, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Temperate broadleaf forest/ plantation, Eucalypt forest/plantation, Aboveground biomass (t/ha) > 150", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2 (0.1 - 0.33)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 4, 9, 16, 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.08", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.798Z", + "last_change_date": "2022-03-14T08:08:35.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12780, + "fields": { + "EF_ID": 512303, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Temperate broadleaf forest/ plantation, Other broadleaf forest, Aboveground biomass (t/ha) < 75", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43 (0.12 - 0.93)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 30, 45, 46, 62 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.24", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.873Z", + "last_change_date": "2022-03-14T08:08:35.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12781, + "fields": { + "EF_ID": 512304, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Temperate broadleaf forest/ plantation, Other broadleaf forest, Aboveground biomass (t/ha) = 75-150", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26 (0.13 - 0.52)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 30, 36, 45, 46, 62, 77, 78, 81 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.1", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:35.948Z", + "last_change_date": "2022-03-14T08:08:35.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12782, + "fields": { + "EF_ID": 512305, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Temperate broadleaf forest/ plantation, Other broadleaf forest, Aboveground biomass (t/ha) > 150", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24 (0.17 - 0.3)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 3, 26, 30, 37, 67, 78, 81 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.05", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.144Z", + "last_change_date": "2022-03-14T08:08:36.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12783, + "fields": { + "EF_ID": 512306, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Grassland, Steppe/tundra/prairie grassland, Aboveground biomass (t/ha): Not specified", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.95 (1.92 - 10.51)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 50, 56, 70, 72 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 2.97", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.227Z", + "last_change_date": "2022-03-14T08:08:36.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12784, + "fields": { + "EF_ID": 512307, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Grassland, Temperate/sub-tropical/ tropical grassland, Aboveground biomass (t/ha): Not specified", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.58 (0.59 - 3.11)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 22, 23, 32, 52 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 1.02", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.290Z", + "last_change_date": "2022-03-14T08:08:36.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12785, + "fields": { + "EF_ID": 512308, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Grassland, Semi-arid grassland, Aboveground biomass (t/ha): Not specified", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8 (1.43 - 4.92)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 17-19, 34 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 1.33", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.356Z", + "last_change_date": "2022-03-14T08:08:36.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12786, + "fields": { + "EF_ID": 512309, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Other, Woodland/savanna, Aboveground biomass (t/ha): Not specified", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48 (0.26 - 1.01)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 10-12, 21, 27, 49, 65, 73, 74 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.19", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.423Z", + "last_change_date": "2022-03-14T08:08:36.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12787, + "fields": { + "EF_ID": 512310, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Other, Shrubland, Aboveground biomass (t/ha): Not specified", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.83 (0.34 - 6.49)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 14, 29, 35, 38, 41, 42, 47, 67 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 2.04", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.514Z", + "last_change_date": "2022-03-14T08:08:36.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12788, + "fields": { + "EF_ID": 512311, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Average Belowground to Aboveground Biomass Ratio (Root-Shoot Ratio) in Natural Regeneration by Broad Category", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation type: Other, Tidal marsh, Aboveground biomass (t/ha): Not specified", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.04 (0.74 - 1.23)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.8 on page 3.168", + "Technical_Reference": "See references 24, 39, 68, 80 in the IPCC Good Practice Guidance for LULUCF from pages 3.168 to 3.169.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD = 0.21", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.594Z", + "last_change_date": "2022-03-14T08:08:36.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12789, + "fields": { + "EF_ID": 512312, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Abies", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.656Z", + "last_change_date": "2022-03-14T08:08:36.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12790, + "fields": { + "EF_ID": 512313, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Acer", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.723Z", + "last_change_date": "2022-03-14T08:08:36.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12791, + "fields": { + "EF_ID": 512314, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Alnus", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.815Z", + "last_change_date": "2022-03-14T08:08:36.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12792, + "fields": { + "EF_ID": 512315, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Betula", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.894Z", + "last_change_date": "2022-03-14T08:08:36.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12793, + "fields": { + "EF_ID": 512316, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Carpinus betulus", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "EN 350-2 (1994): Durability of wood and wood products - Natural durability of solid wood - Part 2: Guide to the natural durability and treatability of selected wood species of importance in Europe", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:36.956Z", + "last_change_date": "2022-03-14T08:08:36.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12794, + "fields": { + "EF_ID": 512317, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Castanea sativa", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "EN 350-2 (1994): Durability of wood and wood products - Natural durability of solid wood - Part 2: Guide to the natural durability and treatability of selected wood species of importance in Europe", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.040Z", + "last_change_date": "2022-03-14T08:08:37.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12795, + "fields": { + "EF_ID": 512318, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Fagus sylvatica", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.134Z", + "last_change_date": "2022-03-14T08:08:37.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12796, + "fields": { + "EF_ID": 512319, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Fraxinus", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.210Z", + "last_change_date": "2022-03-14T08:08:37.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12797, + "fields": { + "EF_ID": 512320, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Juglans", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "EN 350-2 (1994): Durability of wood and wood products - Natural durability of solid wood - Part 2: Guide to the natural durability and treatability of selected wood species of importance in Europe", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.273Z", + "last_change_date": "2022-03-14T08:08:37.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12798, + "fields": { + "EF_ID": 512321, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Larix decidua", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.385Z", + "last_change_date": "2022-03-14T08:08:37.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12799, + "fields": { + "EF_ID": 512322, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Larix kaempferi", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "EN 350-2 (1994): Durability of wood and wood products - Natural durability of solid wood - Part 2: Guide to the natural durability and treatability of selected wood species of importance in Europe", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.460Z", + "last_change_date": "2022-03-14T08:08:37.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12800, + "fields": { + "EF_ID": 512323, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Picea abies", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.523Z", + "last_change_date": "2022-03-14T08:08:37.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12801, + "fields": { + "EF_ID": 512324, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Picea sitchensis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Knigge, W.; Schulz, H. 1966: Grundriss der Forstbenutzung. Verlag Paul Parey, Hamburg, Berlin", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.611Z", + "last_change_date": "2022-03-14T08:08:37.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12802, + "fields": { + "EF_ID": 512325, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Pinus pinaster", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Rijsdijk, J.F.; Laming, P.B. 1994: Physical and related properties of 145 timbers. Kluwer Academic Publishers, Dordrecht, Boston, London", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.685Z", + "last_change_date": "2022-03-14T08:08:37.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12803, + "fields": { + "EF_ID": 512326, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Pinus strobus", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.760Z", + "last_change_date": "2022-03-14T08:08:37.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12804, + "fields": { + "EF_ID": 512327, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Pinus sylvestris", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.835Z", + "last_change_date": "2022-03-14T08:08:37.835Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12805, + "fields": { + "EF_ID": 512328, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Populus", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:37.939Z", + "last_change_date": "2022-03-14T08:08:37.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12806, + "fields": { + "EF_ID": 512329, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Prunus", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.019Z", + "last_change_date": "2022-03-14T08:08:38.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12807, + "fields": { + "EF_ID": 512330, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Pseudotsuga menziesii", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.085Z", + "last_change_date": "2022-03-14T08:08:38.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12808, + "fields": { + "EF_ID": 512331, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Quercus", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.177Z", + "last_change_date": "2022-03-14T08:08:38.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12809, + "fields": { + "EF_ID": 512332, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Salix", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.274Z", + "last_change_date": "2022-03-14T08:08:38.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12810, + "fields": { + "EF_ID": 512333, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Thuja plicata", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Forest Products Laboratory: Handbook of wood and wood-based materials. Hemisphere Publishing Corporation, New York, London", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.352Z", + "last_change_date": "2022-03-14T08:08:38.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12811, + "fields": { + "EF_ID": 512334, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Tilia", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.419Z", + "last_change_date": "2022-03-14T08:08:38.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12812, + "fields": { + "EF_ID": 512335, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Tsuga", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-1 on page 3.171; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Forest Products Laboratory: Handbook of wood and wood-based materials. Hemisphere Publishing Corporation, New York, London", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.485Z", + "last_change_date": "2022-03-14T08:08:38.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12813, + "fields": { + "EF_ID": 512336, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Acacia Leucophloea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.584Z", + "last_change_date": "2022-03-14T08:08:38.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12814, + "fields": { + "EF_ID": 512337, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Adina cordifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58, 0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.660Z", + "last_change_date": "2022-03-14T08:08:38.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12815, + "fields": { + "EF_ID": 512338, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Aegle marmelo", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.727Z", + "last_change_date": "2022-03-14T08:08:38.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12816, + "fields": { + "EF_ID": 512339, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Agathis spp", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.827Z", + "last_change_date": "2022-03-14T08:08:38.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12817, + "fields": { + "EF_ID": 512340, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Aglaia llanosiana", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.902Z", + "last_change_date": "2022-03-14T08:08:38.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12818, + "fields": { + "EF_ID": 512341, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alangium longiflorum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:38.969Z", + "last_change_date": "2022-03-14T08:08:38.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12819, + "fields": { + "EF_ID": 512342, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Albizzia amara", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.070Z", + "last_change_date": "2022-03-14T08:08:39.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12820, + "fields": { + "EF_ID": 512343, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Albizzia falcataria", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.144Z", + "last_change_date": "2022-03-14T08:08:39.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12821, + "fields": { + "EF_ID": 512344, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Aleurites trisperma", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.219Z", + "last_change_date": "2022-03-14T08:08:39.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12822, + "fields": { + "EF_ID": 512345, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alnus japonica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.321Z", + "last_change_date": "2022-03-14T08:08:39.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12823, + "fields": { + "EF_ID": 512346, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alphitonia zizyphoides", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.393Z", + "last_change_date": "2022-03-14T08:08:39.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12824, + "fields": { + "EF_ID": 512347, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alphonsea arborea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.469Z", + "last_change_date": "2022-03-14T08:08:39.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12825, + "fields": { + "EF_ID": 512348, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alseodaphne longipes", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.573Z", + "last_change_date": "2022-03-14T08:08:39.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12826, + "fields": { + "EF_ID": 512349, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species:Alstonia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.660Z", + "last_change_date": "2022-03-14T08:08:39.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12827, + "fields": { + "EF_ID": 512350, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Amoora spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.744Z", + "last_change_date": "2022-03-14T08:08:39.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12828, + "fields": { + "EF_ID": 512351, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anisophyllea zeylanica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.841Z", + "last_change_date": "2022-03-14T08:08:39.842Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12829, + "fields": { + "EF_ID": 512352, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anisoptera spp,", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.919Z", + "last_change_date": "2022-03-14T08:08:39.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12830, + "fields": { + "EF_ID": 512353, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anogeissus latifolia .", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78, 0.79", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibliographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:39.985Z", + "last_change_date": "2022-03-14T08:08:39.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12831, + "fields": { + "EF_ID": 512354, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anthocephalus chinensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36, 0.33", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibliographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.118Z", + "last_change_date": "2022-03-14T08:08:40.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12832, + "fields": { + "EF_ID": 512355, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Antidesma pleuricum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.177Z", + "last_change_date": "2022-03-14T08:08:40.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12833, + "fields": { + "EF_ID": 512356, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Aphanamiris perrottetiana", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.260Z", + "last_change_date": "2022-03-14T08:08:40.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12834, + "fields": { + "EF_ID": 512357, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Araucaria bidwillii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.362Z", + "last_change_date": "2022-03-14T08:08:40.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12835, + "fields": { + "EF_ID": 512358, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Artocarpus spp. .", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.435Z", + "last_change_date": "2022-03-14T08:08:40.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12836, + "fields": { + "EF_ID": 512359, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Azadirachta spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.502Z", + "last_change_date": "2022-03-14T08:08:40.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12837, + "fields": { + "EF_ID": 512360, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical tree species: Balanocarpus spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.596Z", + "last_change_date": "2022-03-14T08:08:40.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12838, + "fields": { + "EF_ID": 512361, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Barringtonia edulis *", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.669Z", + "last_change_date": "2022-03-14T08:08:40.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12839, + "fields": { + "EF_ID": 512362, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species:Bauhinia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.735Z", + "last_change_date": "2022-03-14T08:08:40.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12840, + "fields": { + "EF_ID": 512363, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species:Beilschmiedia tawa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.830Z", + "last_change_date": "2022-03-14T08:08:40.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12841, + "fields": { + "EF_ID": 512364, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Berrya cordifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.902Z", + "last_change_date": "2022-03-14T08:08:40.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12842, + "fields": { + "EF_ID": 512365, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species:Bischofia javanica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54, 0.58, 0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibliographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:40.969Z", + "last_change_date": "2022-03-14T08:08:40.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12843, + "fields": { + "EF_ID": 512366, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bleasdalea vitiensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.066Z", + "last_change_date": "2022-03-14T08:08:41.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12844, + "fields": { + "EF_ID": 512367, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bombax ceiba", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.169Z", + "last_change_date": "2022-03-14T08:08:41.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12845, + "fields": { + "EF_ID": 512368, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bombycidendron vidalianum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.244Z", + "last_change_date": "2022-03-14T08:08:41.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12846, + "fields": { + "EF_ID": 512369, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Boswellia serrata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.351Z", + "last_change_date": "2022-03-14T08:08:41.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12847, + "fields": { + "EF_ID": 512370, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bridelia squamosa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.427Z", + "last_change_date": "2022-03-14T08:08:41.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12848, + "fields": { + "EF_ID": 512371, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Buchanania latifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.494Z", + "last_change_date": "2022-03-14T08:08:41.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12849, + "fields": { + "EF_ID": 512372, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bursera serrata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.593Z", + "last_change_date": "2022-03-14T08:08:41.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12850, + "fields": { + "EF_ID": 512373, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Butea monosperma", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.669Z", + "last_change_date": "2022-03-14T08:08:41.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12851, + "fields": { + "EF_ID": 512374, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Calophyllum spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.735Z", + "last_change_date": "2022-03-14T08:08:41.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12852, + "fields": { + "EF_ID": 512375, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Calycarpa arborea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.836Z", + "last_change_date": "2022-03-14T08:08:41.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12853, + "fields": { + "EF_ID": 512376, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cananga odorata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.910Z", + "last_change_date": "2022-03-14T08:08:41.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12854, + "fields": { + "EF_ID": 512377, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Canarium spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:41.977Z", + "last_change_date": "2022-03-14T08:08:41.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12855, + "fields": { + "EF_ID": 512378, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Canthium monstrosum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.071Z", + "last_change_date": "2022-03-14T08:08:42.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12856, + "fields": { + "EF_ID": 512379, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Carallia calycina", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.143Z", + "last_change_date": "2022-03-14T08:08:42.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12857, + "fields": { + "EF_ID": 512380, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cassia javanica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.210Z", + "last_change_date": "2022-03-14T08:08:42.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12858, + "fields": { + "EF_ID": 512381, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Castanopsis philippensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.314Z", + "last_change_date": "2022-03-14T08:08:42.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12859, + "fields": { + "EF_ID": 512382, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Casuarina equisetifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.394Z", + "last_change_date": "2022-03-14T08:08:42.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12860, + "fields": { + "EF_ID": 512383, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Casuarina nodiflora", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.452Z", + "last_change_date": "2022-03-14T08:08:42.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12861, + "fields": { + "EF_ID": 512384, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cedrela odorata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.540Z", + "last_change_date": "2022-03-14T08:08:42.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12862, + "fields": { + "EF_ID": 512385, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cedrela spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.619Z", + "last_change_date": "2022-03-14T08:08:42.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12863, + "fields": { + "EF_ID": 512386, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cedrela toona", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.699Z", + "last_change_date": "2022-03-14T08:08:42.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12864, + "fields": { + "EF_ID": 512387, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ceiba pentandra", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.793Z", + "last_change_date": "2022-03-14T08:08:42.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12865, + "fields": { + "EF_ID": 512388, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Celtis luzonica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.869Z", + "last_change_date": "2022-03-14T08:08:42.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12866, + "fields": { + "EF_ID": 512389, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Chisocheton pentandrus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:42.949Z", + "last_change_date": "2022-03-14T08:08:42.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12867, + "fields": { + "EF_ID": 512390, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Chloroxylon swietenia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76, 0.79, 0.80", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.052Z", + "last_change_date": "2022-03-14T08:08:43.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12868, + "fields": { + "EF_ID": 512391, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Chukrassia tabularis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.127Z", + "last_change_date": "2022-03-14T08:08:43.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12869, + "fields": { + "EF_ID": 512392, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Citrus grandis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.190Z", + "last_change_date": "2022-03-14T08:08:43.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12870, + "fields": { + "EF_ID": 512393, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cleidion speciflorum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.287Z", + "last_change_date": "2022-03-14T08:08:43.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12871, + "fields": { + "EF_ID": 512394, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cleistanthus eollinus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.360Z", + "last_change_date": "2022-03-14T08:08:43.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12872, + "fields": { + "EF_ID": 512395, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cleistocalyx spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.423Z", + "last_change_date": "2022-03-14T08:08:43.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12873, + "fields": { + "EF_ID": 512396, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cochlospermum gossypium+religiosum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.513Z", + "last_change_date": "2022-03-14T08:08:43.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12874, + "fields": { + "EF_ID": 512397, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cocos nucifera", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.593Z", + "last_change_date": "2022-03-14T08:08:43.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12875, + "fields": { + "EF_ID": 512398, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Colona serratifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.657Z", + "last_change_date": "2022-03-14T08:08:43.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12876, + "fields": { + "EF_ID": 512399, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Combretodendron quadrialatum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.748Z", + "last_change_date": "2022-03-14T08:08:43.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12877, + "fields": { + "EF_ID": 512400, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cordia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.827Z", + "last_change_date": "2022-03-14T08:08:43.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12878, + "fields": { + "EF_ID": 512401, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cotylelobium spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.891Z", + "last_change_date": "2022-03-14T08:08:43.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12879, + "fields": { + "EF_ID": 512402, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Crataeva religiosa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:43.991Z", + "last_change_date": "2022-03-14T08:08:43.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12880, + "fields": { + "EF_ID": 512403, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cratoxylon arborescens", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.094Z", + "last_change_date": "2022-03-14T08:08:44.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12881, + "fields": { + "EF_ID": 512404, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cryptocarya spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.157Z", + "last_change_date": "2022-03-14T08:08:44.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12882, + "fields": { + "EF_ID": 512405, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cubilia cubili", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.268Z", + "last_change_date": "2022-03-14T08:08:44.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12883, + "fields": { + "EF_ID": 512406, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cullenia excelsa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.360Z", + "last_change_date": "2022-03-14T08:08:44.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12884, + "fields": { + "EF_ID": 512407, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cynometra spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.449Z", + "last_change_date": "2022-03-14T08:08:44.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12885, + "fields": { + "EF_ID": 512408, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dacrycarpus imbricatus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45, 0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.545Z", + "last_change_date": "2022-03-14T08:08:44.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12886, + "fields": { + "EF_ID": 512409, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dacrydium spp", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.627Z", + "last_change_date": "2022-03-14T08:08:44.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12887, + "fields": { + "EF_ID": 512410, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dacryodes spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.702Z", + "last_change_date": "2022-03-14T08:08:44.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12888, + "fields": { + "EF_ID": 512411, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dalbergia paniculata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.796Z", + "last_change_date": "2022-03-14T08:08:44.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12889, + "fields": { + "EF_ID": 512412, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Decussocarpus vitiensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.869Z", + "last_change_date": "2022-03-14T08:08:44.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12890, + "fields": { + "EF_ID": 512413, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Degeneria vitiensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:44.935Z", + "last_change_date": "2022-03-14T08:08:44.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12891, + "fields": { + "EF_ID": 512414, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dehaasia triandra", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.031Z", + "last_change_date": "2022-03-14T08:08:45.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12892, + "fields": { + "EF_ID": 512415, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dialium spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.110Z", + "last_change_date": "2022-03-14T08:08:45.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12893, + "fields": { + "EF_ID": 512416, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dillenia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.344Z", + "last_change_date": "2022-03-14T08:08:45.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12894, + "fields": { + "EF_ID": 512417, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Diospyros spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.440Z", + "last_change_date": "2022-03-14T08:08:45.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12895, + "fields": { + "EF_ID": 512418, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Diplodiscus paniculatus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.519Z", + "last_change_date": "2022-03-14T08:08:45.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12896, + "fields": { + "EF_ID": 512419, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterocarpus caudatus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.585Z", + "last_change_date": "2022-03-14T08:08:45.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12897, + "fields": { + "EF_ID": 512420, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterocarpus eurynchus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.683Z", + "last_change_date": "2022-03-14T08:08:45.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12898, + "fields": { + "EF_ID": 512421, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterocarpus gracilis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.760Z", + "last_change_date": "2022-03-14T08:08:45.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12899, + "fields": { + "EF_ID": 512422, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterocarpus grandiflorus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.827Z", + "last_change_date": "2022-03-14T08:08:45.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12900, + "fields": { + "EF_ID": 512423, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterocarpus kerrii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:45.934Z", + "last_change_date": "2022-03-14T08:08:45.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12901, + "fields": { + "EF_ID": 512424, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterocarpus kunstlerii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.019Z", + "last_change_date": "2022-03-14T08:08:46.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12902, + "fields": { + "EF_ID": 512425, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterocarpus spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.085Z", + "last_change_date": "2022-03-14T08:08:46.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12903, + "fields": { + "EF_ID": 512426, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterocarpus warburgii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.179Z", + "last_change_date": "2022-03-14T08:08:46.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12904, + "fields": { + "EF_ID": 512427, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dracontomelon spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.257Z", + "last_change_date": "2022-03-14T08:08:46.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12905, + "fields": { + "EF_ID": 512428, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dryobalanops spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.335Z", + "last_change_date": "2022-03-14T08:08:46.335Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12906, + "fields": { + "EF_ID": 512429, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dtypetes bordenii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.430Z", + "last_change_date": "2022-03-14T08:08:46.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12907, + "fields": { + "EF_ID": 512430, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Durio spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.510Z", + "last_change_date": "2022-03-14T08:08:46.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12908, + "fields": { + "EF_ID": 512431, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dyera costulata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.577Z", + "last_change_date": "2022-03-14T08:08:46.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12909, + "fields": { + "EF_ID": 512432, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species:Dysoxylum quercifolium", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.673Z", + "last_change_date": "2022-03-14T08:08:46.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12910, + "fields": { + "EF_ID": 512433, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Elaeocarpus serratus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.749Z", + "last_change_date": "2022-03-14T08:08:46.749Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12911, + "fields": { + "EF_ID": 512434, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Emblica officinalis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.819Z", + "last_change_date": "2022-03-14T08:08:46.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12912, + "fields": { + "EF_ID": 512435, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Endiandra laxiflora", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.907Z", + "last_change_date": "2022-03-14T08:08:46.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12913, + "fields": { + "EF_ID": 512436, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Endospermum spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:46.983Z", + "last_change_date": "2022-03-14T08:08:46.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12914, + "fields": { + "EF_ID": 512437, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Enterolobium cyclocarpum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.052Z", + "last_change_date": "2022-03-14T08:08:47.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12915, + "fields": { + "EF_ID": 512438, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Epicharis cumingiana", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.150Z", + "last_change_date": "2022-03-14T08:08:47.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12916, + "fields": { + "EF_ID": 512439, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Erythrina subumbrans", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.224Z", + "last_change_date": "2022-03-14T08:08:47.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12917, + "fields": { + "EF_ID": 512440, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Erythrophloeum densiflorum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.294Z", + "last_change_date": "2022-03-14T08:08:47.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12918, + "fields": { + "EF_ID": 512441, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eucalyptus citriodora", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.394Z", + "last_change_date": "2022-03-14T08:08:47.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12919, + "fields": { + "EF_ID": 512442, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eucalyptus deglupta", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.483Z", + "last_change_date": "2022-03-14T08:08:47.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12920, + "fields": { + "EF_ID": 512443, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eugenia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.552Z", + "last_change_date": "2022-03-14T08:08:47.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12921, + "fields": { + "EF_ID": 512444, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Fagraea spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.646Z", + "last_change_date": "2022-03-14T08:08:47.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12922, + "fields": { + "EF_ID": 512445, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ficus benjamina", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.735Z", + "last_change_date": "2022-03-14T08:08:47.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12923, + "fields": { + "EF_ID": 512446, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ficus spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.810Z", + "last_change_date": "2022-03-14T08:08:47.810Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12924, + "fields": { + "EF_ID": 512447, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ganua obovatifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.914Z", + "last_change_date": "2022-03-14T08:08:47.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12925, + "fields": { + "EF_ID": 512448, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Garcinia myrtifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:47.991Z", + "last_change_date": "2022-03-14T08:08:47.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12926, + "fields": { + "EF_ID": 512449, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Garcinia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.069Z", + "last_change_date": "2022-03-14T08:08:48.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12927, + "fields": { + "EF_ID": 512450, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gardenia turgida", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.174Z", + "last_change_date": "2022-03-14T08:08:48.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12928, + "fields": { + "EF_ID": 512451, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Garuga pinnata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.249Z", + "last_change_date": "2022-03-14T08:08:48.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12929, + "fields": { + "EF_ID": 512452, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gluta spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.319Z", + "last_change_date": "2022-03-14T08:08:48.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12930, + "fields": { + "EF_ID": 512453, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gmelina arborea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41,0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.416Z", + "last_change_date": "2022-03-14T08:08:48.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12931, + "fields": { + "EF_ID": 512454, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gmelina vitiensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.491Z", + "last_change_date": "2022-03-14T08:08:48.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12932, + "fields": { + "EF_ID": 512455, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gonocaryum calleryanum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.577Z", + "last_change_date": "2022-03-14T08:08:48.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12933, + "fields": { + "EF_ID": 512456, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gonystylus punctatus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.676Z", + "last_change_date": "2022-03-14T08:08:48.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12934, + "fields": { + "EF_ID": 512457, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Grewia tiliaefolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.752Z", + "last_change_date": "2022-03-14T08:08:48.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12935, + "fields": { + "EF_ID": 512458, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hardwickia binata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.819Z", + "last_change_date": "2022-03-14T08:08:48.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12936, + "fields": { + "EF_ID": 512459, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Harpullia arborea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:48.919Z", + "last_change_date": "2022-03-14T08:08:48.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12937, + "fields": { + "EF_ID": 512460, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Heritiera spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.000Z", + "last_change_date": "2022-03-14T08:08:49.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12938, + "fields": { + "EF_ID": 512461, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hevea brasiliensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.069Z", + "last_change_date": "2022-03-14T08:08:49.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12939, + "fields": { + "EF_ID": 512462, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hibiscus tiliaceus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.179Z", + "last_change_date": "2022-03-14T08:08:49.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12940, + "fields": { + "EF_ID": 512463, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Homalanthus populneus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.266Z", + "last_change_date": "2022-03-14T08:08:49.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12941, + "fields": { + "EF_ID": 512464, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Homalium spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.352Z", + "last_change_date": "2022-03-14T08:08:49.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12942, + "fields": { + "EF_ID": 512465, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hopea acuminata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.456Z", + "last_change_date": "2022-03-14T08:08:49.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12943, + "fields": { + "EF_ID": 512466, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hopea spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.533Z", + "last_change_date": "2022-03-14T08:08:49.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12944, + "fields": { + "EF_ID": 512467, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Intsia palembanica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.619Z", + "last_change_date": "2022-03-14T08:08:49.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12945, + "fields": { + "EF_ID": 512468, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Kayea garciae", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.741Z", + "last_change_date": "2022-03-14T08:08:49.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12946, + "fields": { + "EF_ID": 512469, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Kingiodendron alternifolium", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.827Z", + "last_change_date": "2022-03-14T08:08:49.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12947, + "fields": { + "EF_ID": 512470, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Kleinhovia hospita", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:49.910Z", + "last_change_date": "2022-03-14T08:08:49.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12948, + "fields": { + "EF_ID": 512471, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Knema spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.009Z", + "last_change_date": "2022-03-14T08:08:50.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12949, + "fields": { + "EF_ID": 512472, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Koompassia excelsa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.091Z", + "last_change_date": "2022-03-14T08:08:50.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12950, + "fields": { + "EF_ID": 512473, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Koordersiodendron pinnatum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65, 0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.169Z", + "last_change_date": "2022-03-14T08:08:50.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12951, + "fields": { + "EF_ID": 512474, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Kydia calycina", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.302Z", + "last_change_date": "2022-03-14T08:08:50.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12952, + "fields": { + "EF_ID": 512475, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lagerstroemia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.384Z", + "last_change_date": "2022-03-14T08:08:50.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12953, + "fields": { + "EF_ID": 512476, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lannea grandis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.460Z", + "last_change_date": "2022-03-14T08:08:50.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12954, + "fields": { + "EF_ID": 512477, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Leucaena leucocephala", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.570Z", + "last_change_date": "2022-03-14T08:08:50.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12955, + "fields": { + "EF_ID": 512478, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Litchi chinensis ssp. philippinensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.677Z", + "last_change_date": "2022-03-14T08:08:50.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12956, + "fields": { + "EF_ID": 512480, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lithocarpus soleriana", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.752Z", + "last_change_date": "2022-03-14T08:08:50.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12957, + "fields": { + "EF_ID": 512481, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Litsea spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.854Z", + "last_change_date": "2022-03-14T08:08:50.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12958, + "fields": { + "EF_ID": 512482, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lophopetalum spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:50.952Z", + "last_change_date": "2022-03-14T08:08:50.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12959, + "fields": { + "EF_ID": 512483, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Macaranga denticulata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.027Z", + "last_change_date": "2022-03-14T08:08:51.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12960, + "fields": { + "EF_ID": 512484, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Madhuca oblongifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.132Z", + "last_change_date": "2022-03-14T08:08:51.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12961, + "fields": { + "EF_ID": 512485, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mallotus philippensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.219Z", + "last_change_date": "2022-03-14T08:08:51.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12962, + "fields": { + "EF_ID": 512486, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mangifera spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.294Z", + "last_change_date": "2022-03-14T08:08:51.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12963, + "fields": { + "EF_ID": 512487, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Maniltoa minor", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.400Z", + "last_change_date": "2022-03-14T08:08:51.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12964, + "fields": { + "EF_ID": 512488, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mastixia philippinensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.485Z", + "last_change_date": "2022-03-14T08:08:51.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12965, + "fields": { + "EF_ID": 512489, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Melanorrhea spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.560Z", + "last_change_date": "2022-03-14T08:08:51.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12966, + "fields": { + "EF_ID": 512490, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Melia dubia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.659Z", + "last_change_date": "2022-03-14T08:08:51.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12967, + "fields": { + "EF_ID": 512491, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Melicope triphylla", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.743Z", + "last_change_date": "2022-03-14T08:08:51.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12968, + "fields": { + "EF_ID": 512492, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Meliosma macrophylla", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.827Z", + "last_change_date": "2022-03-14T08:08:51.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12969, + "fields": { + "EF_ID": 512493, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Melochia umbellata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:51.936Z", + "last_change_date": "2022-03-14T08:08:51.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12970, + "fields": { + "EF_ID": 512494, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Me&a ferrea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83, 0.85", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.027Z", + "last_change_date": "2022-03-14T08:08:52.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12971, + "fields": { + "EF_ID": 512495, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Metrosideros collina", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70, 0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.102Z", + "last_change_date": "2022-03-14T08:08:52.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12972, + "fields": { + "EF_ID": 512496, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Michelia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.203Z", + "last_change_date": "2022-03-14T08:08:52.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12973, + "fields": { + "EF_ID": 512497, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Microcos stylocarpa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.294Z", + "last_change_date": "2022-03-14T08:08:52.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12974, + "fields": { + "EF_ID": 512498, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Micromelum compressum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.369Z", + "last_change_date": "2022-03-14T08:08:52.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12975, + "fields": { + "EF_ID": 512499, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Milliusa velutina", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.472Z", + "last_change_date": "2022-03-14T08:08:52.472Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12976, + "fields": { + "EF_ID": 512500, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mimusops elengi", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.569Z", + "last_change_date": "2022-03-14T08:08:52.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12977, + "fields": { + "EF_ID": 512501, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mitragyna parviflora", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.652Z", + "last_change_date": "2022-03-14T08:08:52.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12978, + "fields": { + "EF_ID": 512502, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Myristica spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.758Z", + "last_change_date": "2022-03-14T08:08:52.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12979, + "fields": { + "EF_ID": 512503, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Neesia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.844Z", + "last_change_date": "2022-03-14T08:08:52.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12980, + "fields": { + "EF_ID": 512504, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Neonauclea bernardoi", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:52.910Z", + "last_change_date": "2022-03-14T08:08:52.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12981, + "fields": { + "EF_ID": 512505, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Neotrewia cumingii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.009Z", + "last_change_date": "2022-03-14T08:08:53.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12982, + "fields": { + "EF_ID": 512506, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ochna foxworthyi", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.094Z", + "last_change_date": "2022-03-14T08:08:53.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12983, + "fields": { + "EF_ID": 512507, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ochroma pyramidale", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.160Z", + "last_change_date": "2022-03-14T08:08:53.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12984, + "fields": { + "EF_ID": 512508, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Octomeles sumatrana", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27, 0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.268Z", + "last_change_date": "2022-03-14T08:08:53.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12985, + "fields": { + "EF_ID": 512509, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Oroxylon indicum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.352Z", + "last_change_date": "2022-03-14T08:08:53.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12986, + "fields": { + "EF_ID": 512510, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ougenia dalbergiodes", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.427Z", + "last_change_date": "2022-03-14T08:08:53.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12987, + "fields": { + "EF_ID": 512511, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Palaquium spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.537Z", + "last_change_date": "2022-03-14T08:08:53.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12988, + "fields": { + "EF_ID": 512512, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pangium edule", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.619Z", + "last_change_date": "2022-03-14T08:08:53.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12989, + "fields": { + "EF_ID": 512513, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Parashorea malaanonan", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.693Z", + "last_change_date": "2022-03-14T08:08:53.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12990, + "fields": { + "EF_ID": 512514, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Parashorea stellata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.804Z", + "last_change_date": "2022-03-14T08:08:53.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12991, + "fields": { + "EF_ID": 512515, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Paratrophis glabra", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.894Z", + "last_change_date": "2022-03-14T08:08:53.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12992, + "fields": { + "EF_ID": 512516, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Parinari spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:53.976Z", + "last_change_date": "2022-03-14T08:08:53.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12993, + "fields": { + "EF_ID": 512517, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Parkia roxburghii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.122Z", + "last_change_date": "2022-03-14T08:08:54.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12994, + "fields": { + "EF_ID": 512518, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Payena spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.219Z", + "last_change_date": "2022-03-14T08:08:54.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12995, + "fields": { + "EF_ID": 512519, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Peltophorum pterocarpum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.285Z", + "last_change_date": "2022-03-14T08:08:54.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12996, + "fields": { + "EF_ID": 512520, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pentace spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.382Z", + "last_change_date": "2022-03-14T08:08:54.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12997, + "fields": { + "EF_ID": 512521, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Phaeanthus ebracteolatus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.469Z", + "last_change_date": "2022-03-14T08:08:54.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12998, + "fields": { + "EF_ID": 512522, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Phyllocladus hypophyllus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.544Z", + "last_change_date": "2022-03-14T08:08:54.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 12999, + "fields": { + "EF_ID": 512523, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pinus caribaea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.643Z", + "last_change_date": "2022-03-14T08:08:54.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13000, + "fields": { + "EF_ID": 512524, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pinus insularis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47,0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.727Z", + "last_change_date": "2022-03-14T08:08:54.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13001, + "fields": { + "EF_ID": 512525, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pinus merkusii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.810Z", + "last_change_date": "2022-03-14T08:08:54.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13002, + "fields": { + "EF_ID": 512526, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pisonia umbellifera", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.902Z", + "last_change_date": "2022-03-14T08:08:54.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13003, + "fields": { + "EF_ID": 512527, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pittosporum pentandrum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:54.986Z", + "last_change_date": "2022-03-14T08:08:54.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13004, + "fields": { + "EF_ID": 512528, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Planchonia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.060Z", + "last_change_date": "2022-03-14T08:08:55.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13005, + "fields": { + "EF_ID": 512529, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Podocarpus spp", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.170Z", + "last_change_date": "2022-03-14T08:08:55.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13006, + "fields": { + "EF_ID": 512530, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Polyalthia flava", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.252Z", + "last_change_date": "2022-03-14T08:08:55.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13007, + "fields": { + "EF_ID": 512531, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Polyscias nodosa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.336Z", + "last_change_date": "2022-03-14T08:08:55.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13008, + "fields": { + "EF_ID": 512532, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pometia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.447Z", + "last_change_date": "2022-03-14T08:08:55.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13009, + "fields": { + "EF_ID": 512533, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pouteria villamilii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.544Z", + "last_change_date": "2022-03-14T08:08:55.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13010, + "fields": { + "EF_ID": 512534, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Premna tomentosa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.627Z", + "last_change_date": "2022-03-14T08:08:55.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13011, + "fields": { + "EF_ID": 512535, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pterocarpus marsupium", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.748Z", + "last_change_date": "2022-03-14T08:08:55.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13012, + "fields": { + "EF_ID": 512536, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pterocymbium tinctorium", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.844Z", + "last_change_date": "2022-03-14T08:08:55.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13013, + "fields": { + "EF_ID": 512537, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pyge`um vulgare", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:55.919Z", + "last_change_date": "2022-03-14T08:08:55.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13014, + "fields": { + "EF_ID": 512538, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Quercus spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.025Z", + "last_change_date": "2022-03-14T08:08:56.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13015, + "fields": { + "EF_ID": 512539, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Radermachera pinnata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.110Z", + "last_change_date": "2022-03-14T08:08:56.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13016, + "fields": { + "EF_ID": 512540, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Salmalia malabarica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32,0.33", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.185Z", + "last_change_date": "2022-03-14T08:08:56.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13017, + "fields": { + "EF_ID": 512541, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Samanea saman", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45, 0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.293Z", + "last_change_date": "2022-03-14T08:08:56.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13018, + "fields": { + "EF_ID": 512542, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sandoricum vidalii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.377Z", + "last_change_date": "2022-03-14T08:08:56.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13019, + "fields": { + "EF_ID": 512543, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sapindus saponaria", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.452Z", + "last_change_date": "2022-03-14T08:08:56.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13020, + "fields": { + "EF_ID": 512544, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sapium luzontcum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.561Z", + "last_change_date": "2022-03-14T08:08:56.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13021, + "fields": { + "EF_ID": 512545, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Schleichera oleosa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.644Z", + "last_change_date": "2022-03-14T08:08:56.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13022, + "fields": { + "EF_ID": 512546, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Schrebera swietenoides", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.719Z", + "last_change_date": "2022-03-14T08:08:56.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13023, + "fields": { + "EF_ID": 512547, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Semicarpus anacardium", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.846Z", + "last_change_date": "2022-03-14T08:08:56.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13024, + "fields": { + "EF_ID": 512548, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Serialbizia acle", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:56.927Z", + "last_change_date": "2022-03-14T08:08:56.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13025, + "fields": { + "EF_ID": 512549, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Serianthes melanesica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.002Z", + "last_change_date": "2022-03-14T08:08:57.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13026, + "fields": { + "EF_ID": 512550, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species:Sesbania grandiflora", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.106Z", + "last_change_date": "2022-03-14T08:08:57.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13027, + "fields": { + "EF_ID": 512551, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea assamica forma philippinensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.194Z", + "last_change_date": "2022-03-14T08:08:57.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13028, + "fields": { + "EF_ID": 512552, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea astylosa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.277Z", + "last_change_date": "2022-03-14T08:08:57.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13029, + "fields": { + "EF_ID": 512553, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea ciliata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.390Z", + "last_change_date": "2022-03-14T08:08:57.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13030, + "fields": { + "EF_ID": 512554, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea contorta", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.485Z", + "last_change_date": "2022-03-14T08:08:57.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13031, + "fields": { + "EF_ID": 512555, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea gisok", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.569Z", + "last_change_date": "2022-03-14T08:08:57.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13032, + "fields": { + "EF_ID": 512556, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea guiso", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.683Z", + "last_change_date": "2022-03-14T08:08:57.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13033, + "fields": { + "EF_ID": 512557, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea hopeifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.769Z", + "last_change_date": "2022-03-14T08:08:57.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13034, + "fields": { + "EF_ID": 512558, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea malibato", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.844Z", + "last_change_date": "2022-03-14T08:08:57.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13035, + "fields": { + "EF_ID": 512559, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea negrosensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:57.951Z", + "last_change_date": "2022-03-14T08:08:57.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13036, + "fields": { + "EF_ID": 512560, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea palosapis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.035Z", + "last_change_date": "2022-03-14T08:08:58.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13037, + "fields": { + "EF_ID": 512561, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea plagata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.111Z", + "last_change_date": "2022-03-14T08:08:58.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13038, + "fields": { + "EF_ID": 512562, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea polita", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.212Z", + "last_change_date": "2022-03-14T08:08:58.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13039, + "fields": { + "EF_ID": 512563, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea polysperma", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.294Z", + "last_change_date": "2022-03-14T08:08:58.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13040, + "fields": { + "EF_ID": 512564, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea robusta", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.369Z", + "last_change_date": "2022-03-14T08:08:58.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13041, + "fields": { + "EF_ID": 512565, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea spp. balau group", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.471Z", + "last_change_date": "2022-03-14T08:08:58.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13042, + "fields": { + "EF_ID": 512566, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea spp. dark red meranti", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.552Z", + "last_change_date": "2022-03-14T08:08:58.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13043, + "fields": { + "EF_ID": 512567, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea spp. light red meranti", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.636Z", + "last_change_date": "2022-03-14T08:08:58.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13044, + "fields": { + "EF_ID": 512568, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea spp. white meranti", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.739Z", + "last_change_date": "2022-03-14T08:08:58.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13045, + "fields": { + "EF_ID": 512569, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea spp. yellow meranti", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.827Z", + "last_change_date": "2022-03-14T08:08:58.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13046, + "fields": { + "EF_ID": 512570, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Shorea virescens", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:58.910Z", + "last_change_date": "2022-03-14T08:08:58.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13047, + "fields": { + "EF_ID": 512571, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sloanea javanica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.016Z", + "last_change_date": "2022-03-14T08:08:59.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13048, + "fields": { + "EF_ID": 512572, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Soymida febrifuga", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.97", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.110Z", + "last_change_date": "2022-03-14T08:08:59.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13049, + "fields": { + "EF_ID": 512573, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Spathodea campanulata", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.194Z", + "last_change_date": "2022-03-14T08:08:59.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13050, + "fields": { + "EF_ID": 512574, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Stemonurus luzoniensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.308Z", + "last_change_date": "2022-03-14T08:08:59.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13051, + "fields": { + "EF_ID": 512575, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sterculia vitiensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.402Z", + "last_change_date": "2022-03-14T08:08:59.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13052, + "fields": { + "EF_ID": 512576, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Stereospermum suaveolens", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.485Z", + "last_change_date": "2022-03-14T08:08:59.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13053, + "fields": { + "EF_ID": 512577, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Strombosia philippinensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.593Z", + "last_change_date": "2022-03-14T08:08:59.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13054, + "fields": { + "EF_ID": 512578, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Strychnos potatorum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.677Z", + "last_change_date": "2022-03-14T08:08:59.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13055, + "fields": { + "EF_ID": 512579, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Swietenia macrophylla", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49,0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.752Z", + "last_change_date": "2022-03-14T08:08:59.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13056, + "fields": { + "EF_ID": 512580, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Swintonia foxworthyi", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.854Z", + "last_change_date": "2022-03-14T08:08:59.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13057, + "fields": { + "EF_ID": 512581, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Swintonia spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:08:59.935Z", + "last_change_date": "2022-03-14T08:08:59.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13058, + "fields": { + "EF_ID": 512582, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sycopsis dunni", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.010Z", + "last_change_date": "2022-03-14T08:09:00.010Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13059, + "fields": { + "EF_ID": 512583, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Syzygium spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69, 0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.113Z", + "last_change_date": "2022-03-14T08:09:00.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13060, + "fields": { + "EF_ID": 512584, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tamarindus indica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.194Z", + "last_change_date": "2022-03-14T08:09:00.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13061, + "fields": { + "EF_ID": 512585, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tectona grandis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50,0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.261Z", + "last_change_date": "2022-03-14T08:09:00.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13062, + "fields": { + "EF_ID": 512586, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Teijsmanniodendron ahernianum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.356Z", + "last_change_date": "2022-03-14T08:09:00.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13063, + "fields": { + "EF_ID": 512587, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia citrina", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.435Z", + "last_change_date": "2022-03-14T08:09:00.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13064, + "fields": { + "EF_ID": 512588, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia copelandii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.502Z", + "last_change_date": "2022-03-14T08:09:00.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13065, + "fields": { + "EF_ID": 512589, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia foetidissima", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.599Z", + "last_change_date": "2022-03-14T08:09:00.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13066, + "fields": { + "EF_ID": 512590, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia microcarpa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.694Z", + "last_change_date": "2022-03-14T08:09:00.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13067, + "fields": { + "EF_ID": 512591, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia nitens", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.761Z", + "last_change_date": "2022-03-14T08:09:00.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13068, + "fields": { + "EF_ID": 512592, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia pterocarpa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.868Z", + "last_change_date": "2022-03-14T08:09:00.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13069, + "fields": { + "EF_ID": 512593, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia tomentosa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73,0.76, 0.77", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:00.969Z", + "last_change_date": "2022-03-14T08:09:00.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13070, + "fields": { + "EF_ID": 512594, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ternstroemia megacarpa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.044Z", + "last_change_date": "2022-03-14T08:09:01.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13071, + "fields": { + "EF_ID": 512595, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tetrameles nudiflora", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.153Z", + "last_change_date": "2022-03-14T08:09:01.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13072, + "fields": { + "EF_ID": 512596, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tetramerista glabra", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.236Z", + "last_change_date": "2022-03-14T08:09:01.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13073, + "fields": { + "EF_ID": 512597, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Thespesia populnea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.319Z", + "last_change_date": "2022-03-14T08:09:01.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13074, + "fields": { + "EF_ID": 512598, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Toona calantas", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.406Z", + "last_change_date": "2022-03-14T08:09:01.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13075, + "fields": { + "EF_ID": 512599, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trema orientalis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.486Z", + "last_change_date": "2022-03-14T08:09:01.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13076, + "fields": { + "EF_ID": 512600, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trichospermum richii", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.552Z", + "last_change_date": "2022-03-14T08:09:01.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13077, + "fields": { + "EF_ID": 512601, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tristania spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.649Z", + "last_change_date": "2022-03-14T08:09:01.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13078, + "fields": { + "EF_ID": 512602, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Turpinia ovalifolia", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.736Z", + "last_change_date": "2022-03-14T08:09:01.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13079, + "fields": { + "EF_ID": 512603, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vateria indica", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.802Z", + "last_change_date": "2022-03-14T08:09:01.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13080, + "fields": { + "EF_ID": 512604, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vatica spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.901Z", + "last_change_date": "2022-03-14T08:09:01.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13081, + "fields": { + "EF_ID": 512605, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vitex spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:01.986Z", + "last_change_date": "2022-03-14T08:09:01.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13082, + "fields": { + "EF_ID": 512606, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Wallaceodendron celebicum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55, 0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.061Z", + "last_change_date": "2022-03-14T08:09:02.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13083, + "fields": { + "EF_ID": 512607, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Weinmannia luzoniensis", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.177Z", + "last_change_date": "2022-03-14T08:09:02.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13084, + "fields": { + "EF_ID": 512608, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Wrightia tinctorea", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.261Z", + "last_change_date": "2022-03-14T08:09:02.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13085, + "fields": { + "EF_ID": 512609, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Xanthophyllum excelsum", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.336Z", + "last_change_date": "2022-03-14T08:09:02.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13086, + "fields": { + "EF_ID": 512610, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Xanthostemon verdugonianus", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.04", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.437Z", + "last_change_date": "2022-03-14T08:09:02.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13087, + "fields": { + "EF_ID": 512611, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Xylia xylocarpa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73,0.81", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.519Z", + "last_change_date": "2022-03-14T08:09:02.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13088, + "fields": { + "EF_ID": 512612, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Zanthoxylum rhetsa", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.594Z", + "last_change_date": "2022-03-14T08:09:02.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13089, + "fields": { + "EF_ID": 512613, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Zizyphus spp.", + "Regional_Conditions": "Tropical Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.697Z", + "last_change_date": "2022-03-14T08:09:02.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13090, + "fields": { + "EF_ID": 512614, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Albizia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.777Z", + "last_change_date": "2022-03-14T08:09:02.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13091, + "fields": { + "EF_ID": 512615, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alcornea spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.852Z", + "last_change_date": "2022-03-14T08:09:02.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13092, + "fields": { + "EF_ID": 512616, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alexa grandiflora", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:02.957Z", + "last_change_date": "2022-03-14T08:09:02.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13093, + "fields": { + "EF_ID": 512617, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alnus ferruginea", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.036Z", + "last_change_date": "2022-03-14T08:09:03.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13094, + "fields": { + "EF_ID": 512618, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anacardium excelsum", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.111Z", + "last_change_date": "2022-03-14T08:09:03.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13095, + "fields": { + "EF_ID": 512619, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anadenanthera macrocarpa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.217Z", + "last_change_date": "2022-03-14T08:09:03.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13096, + "fields": { + "EF_ID": 512620, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Andira retusa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.303Z", + "last_change_date": "2022-03-14T08:09:03.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13097, + "fields": { + "EF_ID": 512621, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Aniba riparia lduckei", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562. Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.378Z", + "last_change_date": "2022-03-14T08:09:03.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13098, + "fields": { + "EF_ID": 512622, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Antiaris africana", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.485Z", + "last_change_date": "2022-03-14T08:09:03.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13099, + "fields": { + "EF_ID": 512623, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Apeiba echinata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.578Z", + "last_change_date": "2022-03-14T08:09:03.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13100, + "fields": { + "EF_ID": 512624, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Artocarpus comunis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.652Z", + "last_change_date": "2022-03-14T08:09:03.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13101, + "fields": { + "EF_ID": 512625, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Aspidosperma spp. (araracanga group)", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562. Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.761Z", + "last_change_date": "2022-03-14T08:09:03.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13102, + "fields": { + "EF_ID": 512626, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Astronium lecointei", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.844Z", + "last_change_date": "2022-03-14T08:09:03.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13103, + "fields": { + "EF_ID": 512627, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bagassa guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:03.919Z", + "last_change_date": "2022-03-14T08:09:03.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13104, + "fields": { + "EF_ID": 512628, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Banara guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.046Z", + "last_change_date": "2022-03-14T08:09:04.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13105, + "fields": { + "EF_ID": 512629, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Basiloxylon exelsum", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.128Z", + "last_change_date": "2022-03-14T08:09:04.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13106, + "fields": { + "EF_ID": 512630, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Beilschmiedia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.202Z", + "last_change_date": "2022-03-14T08:09:04.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13107, + "fields": { + "EF_ID": 512631, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Berthollettia excelsa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.314Z", + "last_change_date": "2022-03-14T08:09:04.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13108, + "fields": { + "EF_ID": 512632, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bixa arborea", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.394Z", + "last_change_date": "2022-03-14T08:09:04.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13109, + "fields": { + "EF_ID": 512633, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bombacopsis sepium", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.460Z", + "last_change_date": "2022-03-14T08:09:04.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13110, + "fields": { + "EF_ID": 512634, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Borojoa patinoi", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.567Z", + "last_change_date": "2022-03-14T08:09:04.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13111, + "fields": { + "EF_ID": 512635, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bowdichia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Barbosa, R.I. and Fearnside, P.M. (2004). Wood density of trees in open savannas of the Brazilian Amazon. Forest Ecology and Management 199: 115-123. Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.644Z", + "last_change_date": "2022-03-14T08:09:04.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13112, + "fields": { + "EF_ID": 512636, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Brosimum spp. (alicastrum group)", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.711Z", + "last_change_date": "2022-03-14T08:09:04.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13113, + "fields": { + "EF_ID": 512637, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Brosimum utile", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40-0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.818Z", + "last_change_date": "2022-03-14T08:09:04.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13114, + "fields": { + "EF_ID": 512638, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Brysenia adenophylla", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.911Z", + "last_change_date": "2022-03-14T08:09:04.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13115, + "fields": { + "EF_ID": 512639, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Buchenauia capitata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61, 0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:04.986Z", + "last_change_date": "2022-03-14T08:09:04.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13116, + "fields": { + "EF_ID": 512640, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bucida buceras", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.111Z", + "last_change_date": "2022-03-14T08:09:05.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13117, + "fields": { + "EF_ID": 512641, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bulnesia arborea", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562. Barbosa, R.I. and Fearnside, P.M. (2004). Wood density of trees in open savannas of the Brazilian Amazon. Forest Ecology and Management 199: 115-123. Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.195Z", + "last_change_date": "2022-03-14T08:09:05.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13118, + "fields": { + "EF_ID": 512642, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bursera simaruba", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29-0.34", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.269Z", + "last_change_date": "2022-03-14T08:09:05.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13119, + "fields": { + "EF_ID": 512643, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Byrsonima coriacea", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.370Z", + "last_change_date": "2022-03-14T08:09:05.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13120, + "fields": { + "EF_ID": 512644, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cabralea canjerana", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.461Z", + "last_change_date": "2022-03-14T08:09:05.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13121, + "fields": { + "EF_ID": 512645, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Caesalpinia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.05", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.536Z", + "last_change_date": "2022-03-14T08:09:05.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13122, + "fields": { + "EF_ID": 512646, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Calophyllum sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.671Z", + "last_change_date": "2022-03-14T08:09:05.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13123, + "fields": { + "EF_ID": 512647, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Campnosperma panamensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.753Z", + "last_change_date": "2022-03-14T08:09:05.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13124, + "fields": { + "EF_ID": 512648, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Carapa sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.828Z", + "last_change_date": "2022-03-14T08:09:05.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13125, + "fields": { + "EF_ID": 512649, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Caryocar spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69, 0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:05.940Z", + "last_change_date": "2022-03-14T08:09:05.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13126, + "fields": { + "EF_ID": 512650, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Casearia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.011Z", + "last_change_date": "2022-03-14T08:09:06.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13127, + "fields": { + "EF_ID": 512651, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Casia moschata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.094Z", + "last_change_date": "2022-03-14T08:09:06.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13128, + "fields": { + "EF_ID": 512652, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Casuarina equisetifolia", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.81", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.201Z", + "last_change_date": "2022-03-14T08:09:06.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13129, + "fields": { + "EF_ID": 512653, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Catostemma spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.287Z", + "last_change_date": "2022-03-14T08:09:06.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13130, + "fields": { + "EF_ID": 512654, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cecropia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.361Z", + "last_change_date": "2022-03-14T08:09:06.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13131, + "fields": { + "EF_ID": 512655, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cedrela spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40-0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.468Z", + "last_change_date": "2022-03-14T08:09:06.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13132, + "fields": { + "EF_ID": 512656, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cedrelinga catenaeformis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41, 0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.561Z", + "last_change_date": "2022-03-14T08:09:06.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13133, + "fields": { + "EF_ID": 512657, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ceiba pentandra", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23,0.24,0.25, 0.29", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.636Z", + "last_change_date": "2022-03-14T08:09:06.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13134, + "fields": { + "EF_ID": 512658, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Centrolobium spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.746Z", + "last_change_date": "2022-03-14T08:09:06.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13135, + "fields": { + "EF_ID": 512659, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cespedesia macrophylla", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.828Z", + "last_change_date": "2022-03-14T08:09:06.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13136, + "fields": { + "EF_ID": 512660, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Chaetocarpus schomburgkianus", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:06.903Z", + "last_change_date": "2022-03-14T08:09:06.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13137, + "fields": { + "EF_ID": 512661, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Chlorophora tinctoria", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71,0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.005Z", + "last_change_date": "2022-03-14T08:09:07.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13138, + "fields": { + "EF_ID": 512662, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Clarisia racemosa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53,0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.086Z", + "last_change_date": "2022-03-14T08:09:07.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13139, + "fields": { + "EF_ID": 512663, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Clusia rosea", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.161Z", + "last_change_date": "2022-03-14T08:09:07.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13140, + "fields": { + "EF_ID": 512664, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cochlospermum orinocensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.347Z", + "last_change_date": "2022-03-14T08:09:07.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13141, + "fields": { + "EF_ID": 512665, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Copaifera spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46, 0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.428Z", + "last_change_date": "2022-03-14T08:09:07.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13142, + "fields": { + "EF_ID": 512666, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cordia spp. (gerascanthus group)", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.503Z", + "last_change_date": "2022-03-14T08:09:07.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13143, + "fields": { + "EF_ID": 512667, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cordia spp. (alliodora group)", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.606Z", + "last_change_date": "2022-03-14T08:09:07.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13144, + "fields": { + "EF_ID": 512668, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Couepia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.703Z", + "last_change_date": "2022-03-14T08:09:07.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13145, + "fields": { + "EF_ID": 512669, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Couma macrocarpa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50,0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.786Z", + "last_change_date": "2022-03-14T08:09:07.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13146, + "fields": { + "EF_ID": 512670, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Couratari spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.900Z", + "last_change_date": "2022-03-14T08:09:07.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13147, + "fields": { + "EF_ID": 512671, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Croton xanthochloros", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:07.986Z", + "last_change_date": "2022-03-14T08:09:07.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13148, + "fields": { + "EF_ID": 512672, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cupressus lusitanica", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43, 0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.061Z", + "last_change_date": "2022-03-14T08:09:08.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13149, + "fields": { + "EF_ID": 512673, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cyrilla racemiflora", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.169Z", + "last_change_date": "2022-03-14T08:09:08.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13150, + "fields": { + "EF_ID": 512674, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dactyodes colombiana", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.253Z", + "last_change_date": "2022-03-14T08:09:08.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13151, + "fields": { + "EF_ID": 512675, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dacryodes excelsa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52-0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.328Z", + "last_change_date": "2022-03-14T08:09:08.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13152, + "fields": { + "EF_ID": 512676, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dalbergia retusa.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.428Z", + "last_change_date": "2022-03-14T08:09:08.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13153, + "fields": { + "EF_ID": 512677, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dalbergia stevensonii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.512Z", + "last_change_date": "2022-03-14T08:09:08.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13154, + "fields": { + "EF_ID": 512678, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Declinanona calycina", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.587Z", + "last_change_date": "2022-03-14T08:09:08.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13155, + "fields": { + "EF_ID": 512679, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dialium guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.688Z", + "last_change_date": "2022-03-14T08:09:08.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13156, + "fields": { + "EF_ID": 512680, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dialyanthera spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36, 0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.770Z", + "last_change_date": "2022-03-14T08:09:08.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13157, + "fields": { + "EF_ID": 512681, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dicorynia paraensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.845Z", + "last_change_date": "2022-03-14T08:09:08.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13158, + "fields": { + "EF_ID": 512682, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Didymopanax sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:08.948Z", + "last_change_date": "2022-03-14T08:09:08.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13159, + "fields": { + "EF_ID": 512683, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dimorphandra mora", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.028Z", + "last_change_date": "2022-03-14T08:09:09.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13160, + "fields": { + "EF_ID": 512684, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Diplotropis purpurea", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76, 0.77, 0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.103Z", + "last_change_date": "2022-03-14T08:09:09.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13161, + "fields": { + "EF_ID": 512685, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dipterix odorata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.81,0.86,0.89", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.208Z", + "last_change_date": "2022-03-14T08:09:09.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13162, + "fields": { + "EF_ID": 512686, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Drypetes variabilis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.295Z", + "last_change_date": "2022-03-14T08:09:09.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13163, + "fields": { + "EF_ID": 512687, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dussia lehmannii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.370Z", + "last_change_date": "2022-03-14T08:09:09.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13164, + "fields": { + "EF_ID": 512688, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ecclinusa guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.475Z", + "last_change_date": "2022-03-14T08:09:09.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13165, + "fields": { + "EF_ID": 512689, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Endlicheria cocvirey", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.554Z", + "last_change_date": "2022-03-14T08:09:09.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13166, + "fields": { + "EF_ID": 512690, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Enterolobium schomburgkii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.637Z", + "last_change_date": "2022-03-14T08:09:09.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13167, + "fields": { + "EF_ID": 512691, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eperua spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.753Z", + "last_change_date": "2022-03-14T08:09:09.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13168, + "fields": { + "EF_ID": 512692, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eriotheca sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.845Z", + "last_change_date": "2022-03-14T08:09:09.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13169, + "fields": { + "EF_ID": 512693, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Erisma uncinatum", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42, 0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:09.929Z", + "last_change_date": "2022-03-14T08:09:09.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13170, + "fields": { + "EF_ID": 512694, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Erythrina sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.029Z", + "last_change_date": "2022-03-14T08:09:10.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13171, + "fields": { + "EF_ID": 512695, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eschweilera spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71,0.79,0.95", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.120Z", + "last_change_date": "2022-03-14T08:09:10.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13172, + "fields": { + "EF_ID": 512696, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eucalyptus robusta", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.195Z", + "last_change_date": "2022-03-14T08:09:10.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13173, + "fields": { + "EF_ID": 512697, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eugenia stahlii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.297Z", + "last_change_date": "2022-03-14T08:09:10.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13174, + "fields": { + "EF_ID": 512698, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Euxylophora paraensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68,0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.377Z", + "last_change_date": "2022-03-14T08:09:10.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13175, + "fields": { + "EF_ID": 512699, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Fagara spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.445Z", + "last_change_date": "2022-03-14T08:09:10.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13176, + "fields": { + "EF_ID": 512700, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ficus sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.548Z", + "last_change_date": "2022-03-14T08:09:10.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13177, + "fields": { + "EF_ID": 512701, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Genipa spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.627Z", + "last_change_date": "2022-03-14T08:09:10.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13178, + "fields": { + "EF_ID": 512702, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Goupia glabra", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67, 0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.695Z", + "last_change_date": "2022-03-14T08:09:10.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13179, + "fields": { + "EF_ID": 512703, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Guarea chalde", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.833Z", + "last_change_date": "2022-03-14T08:09:10.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13180, + "fields": { + "EF_ID": 512704, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Guarea spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:10.902Z", + "last_change_date": "2022-03-14T08:09:10.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13181, + "fields": { + "EF_ID": 512705, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Guatteria spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.001Z", + "last_change_date": "2022-03-14T08:09:11.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13182, + "fields": { + "EF_ID": 512706, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Guazuma ulmifolia", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52, 0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.060Z", + "last_change_date": "2022-03-14T08:09:11.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13183, + "fields": { + "EF_ID": 512707, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Guettarda scabra", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Barbosa, R.I. and Fearnside, P.M. (2004). Wood density of trees in open savannas of the Brazilian Amazon. Forest Ecology and Management 199: 115-123.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.160Z", + "last_change_date": "2022-03-14T08:09:11.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13184, + "fields": { + "EF_ID": 512708, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Guillielma gasipae", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95, 1.25", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.236Z", + "last_change_date": "2022-03-14T08:09:11.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13185, + "fields": { + "EF_ID": 512709, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gustavia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.379Z", + "last_change_date": "2022-03-14T08:09:11.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13186, + "fields": { + "EF_ID": 512710, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Helicostylis tomentosa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68, 0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.460Z", + "last_change_date": "2022-03-14T08:09:11.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13187, + "fields": { + "EF_ID": 512711, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hernandia Sonora", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.537Z", + "last_change_date": "2022-03-14T08:09:11.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13188, + "fields": { + "EF_ID": 512712, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hevea brasiliense", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.664Z", + "last_change_date": "2022-03-14T08:09:11.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13189, + "fields": { + "EF_ID": 512713, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Himatanthus articulatus", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Barbosa, R.I. and Fearnside, P.M. (2004). Wood density of trees in open savannas of the Brazilian Amazon. Forest Ecology and Management 199: 115-123.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.752Z", + "last_change_date": "2022-03-14T08:09:11.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13190, + "fields": { + "EF_ID": 512714, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hirtella davisii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.821Z", + "last_change_date": "2022-03-14T08:09:11.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13191, + "fields": { + "EF_ID": 512715, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Humiria balsamifera", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66,0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.914Z", + "last_change_date": "2022-03-14T08:09:11.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13192, + "fields": { + "EF_ID": 512716, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Humiriastrum procera", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:11.994Z", + "last_change_date": "2022-03-14T08:09:11.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13193, + "fields": { + "EF_ID": 512717, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hura crepitans", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36, 0.37, 0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.061Z", + "last_change_date": "2022-03-14T08:09:12.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13194, + "fields": { + "EF_ID": 512718, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hyeronima alchorneoides", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60,0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.157Z", + "last_change_date": "2022-03-14T08:09:12.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13195, + "fields": { + "EF_ID": 512719, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hyeronima laxiflora", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.236Z", + "last_change_date": "2022-03-14T08:09:12.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13196, + "fields": { + "EF_ID": 512720, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hymenaea davisii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.302Z", + "last_change_date": "2022-03-14T08:09:12.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13197, + "fields": { + "EF_ID": 512721, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hymenolobium sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.409Z", + "last_change_date": "2022-03-14T08:09:12.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13198, + "fields": { + "EF_ID": 512722, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Inga sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49,0.52,0.58, 0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.485Z", + "last_change_date": "2022-03-14T08:09:12.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13199, + "fields": { + "EF_ID": 512723, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Iryanthera spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.552Z", + "last_change_date": "2022-03-14T08:09:12.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13200, + "fields": { + "EF_ID": 512724, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Jacaranda sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.660Z", + "last_change_date": "2022-03-14T08:09:12.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13201, + "fields": { + "EF_ID": 512725, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Joannesia heveoides", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.736Z", + "last_change_date": "2022-03-14T08:09:12.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13202, + "fields": { + "EF_ID": 512726, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lachmellea speciosa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.802Z", + "last_change_date": "2022-03-14T08:09:12.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13203, + "fields": { + "EF_ID": 512727, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Laetia procera", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.920Z", + "last_change_date": "2022-03-14T08:09:12.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13204, + "fields": { + "EF_ID": 512728, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lecythis spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:12.994Z", + "last_change_date": "2022-03-14T08:09:12.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13205, + "fields": { + "EF_ID": 512729, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Licania spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.069Z", + "last_change_date": "2022-03-14T08:09:13.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13206, + "fields": { + "EF_ID": 512730, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Licaria spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.173Z", + "last_change_date": "2022-03-14T08:09:13.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13207, + "fields": { + "EF_ID": 512731, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lindackeria sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.271Z", + "last_change_date": "2022-03-14T08:09:13.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13208, + "fields": { + "EF_ID": 512732, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Linociera domingensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.81", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.353Z", + "last_change_date": "2022-03-14T08:09:13.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13209, + "fields": { + "EF_ID": 512733, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lonchocarpus spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.465Z", + "last_change_date": "2022-03-14T08:09:13.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13210, + "fields": { + "EF_ID": 512734, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Loxopterygium sagotii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.562Z", + "last_change_date": "2022-03-14T08:09:13.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13211, + "fields": { + "EF_ID": 512735, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lucuma spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.636Z", + "last_change_date": "2022-03-14T08:09:13.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13212, + "fields": { + "EF_ID": 512736, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Luehea spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.741Z", + "last_change_date": "2022-03-14T08:09:13.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13213, + "fields": { + "EF_ID": 512737, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lueheopsis duckeana", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.829Z", + "last_change_date": "2022-03-14T08:09:13.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13214, + "fields": { + "EF_ID": 512738, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mabea piriri", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:13.904Z", + "last_change_date": "2022-03-14T08:09:13.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13215, + "fields": { + "EF_ID": 512739, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Machaerium spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.009Z", + "last_change_date": "2022-03-14T08:09:14.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13216, + "fields": { + "EF_ID": 512740, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Macoubea guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.104Z", + "last_change_date": "2022-03-14T08:09:14.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13217, + "fields": { + "EF_ID": 512741, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Magnolia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.179Z", + "last_change_date": "2022-03-14T08:09:14.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13218, + "fields": { + "EF_ID": 512742, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Maguira sclerophylla", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.286Z", + "last_change_date": "2022-03-14T08:09:14.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13219, + "fields": { + "EF_ID": 512743, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mammea americana", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.371Z", + "last_change_date": "2022-03-14T08:09:14.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13220, + "fields": { + "EF_ID": 512744, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mangifera indica", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.446Z", + "last_change_date": "2022-03-14T08:09:14.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13221, + "fields": { + "EF_ID": 512745, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Manilkara sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.554Z", + "last_change_date": "2022-03-14T08:09:14.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13222, + "fields": { + "EF_ID": 512746, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Marila sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.638Z", + "last_change_date": "2022-03-14T08:09:14.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13223, + "fields": { + "EF_ID": 512747, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Marmaroxylon racemosum", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78*", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.713Z", + "last_change_date": "2022-03-14T08:09:14.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13224, + "fields": { + "EF_ID": 512748, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Matayba domingensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.824Z", + "last_change_date": "2022-03-14T08:09:14.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13225, + "fields": { + "EF_ID": 512749, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Matisia hirta", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.913Z", + "last_change_date": "2022-03-14T08:09:14.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13226, + "fields": { + "EF_ID": 512750, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Maytenus spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:14.987Z", + "last_change_date": "2022-03-14T08:09:14.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13227, + "fields": { + "EF_ID": 512751, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mezilaurus lindaviana", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.099Z", + "last_change_date": "2022-03-14T08:09:15.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13228, + "fields": { + "EF_ID": 512752, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Michropholis spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.196Z", + "last_change_date": "2022-03-14T08:09:15.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13229, + "fields": { + "EF_ID": 512753, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Minquartia guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76,0.79", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.262Z", + "last_change_date": "2022-03-14T08:09:15.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13230, + "fields": { + "EF_ID": 512754, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mora sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.367Z", + "last_change_date": "2022-03-14T08:09:15.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13231, + "fields": { + "EF_ID": 512755, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mouriria sideroxylon", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.479Z", + "last_change_date": "2022-03-14T08:09:15.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13232, + "fields": { + "EF_ID": 512756, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Myrciaria floribunda", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.546Z", + "last_change_date": "2022-03-14T08:09:15.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13233, + "fields": { + "EF_ID": 512757, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Myristica spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.652Z", + "last_change_date": "2022-03-14T08:09:15.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13234, + "fields": { + "EF_ID": 512758, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Myroxylon balsamum", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74, 0.76, 0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.738Z", + "last_change_date": "2022-03-14T08:09:15.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13235, + "fields": { + "EF_ID": 512759, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Nectandra spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:15.804Z", + "last_change_date": "2022-03-14T08:09:15.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13236, + "fields": { + "EF_ID": 512760, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ocotea spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.145Z", + "last_change_date": "2022-03-14T08:09:16.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13237, + "fields": { + "EF_ID": 512761, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Onychopetalum amazonicum", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.244Z", + "last_change_date": "2022-03-14T08:09:16.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13238, + "fields": { + "EF_ID": 512762, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ormosia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.338Z", + "last_change_date": "2022-03-14T08:09:16.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13239, + "fields": { + "EF_ID": 512763, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ouratea sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.446Z", + "last_change_date": "2022-03-14T08:09:16.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13240, + "fields": { + "EF_ID": 512764, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pachira acuatica", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.519Z", + "last_change_date": "2022-03-14T08:09:16.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13241, + "fields": { + "EF_ID": 512765, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Paratecoma peroba", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.596Z", + "last_change_date": "2022-03-14T08:09:16.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13242, + "fields": { + "EF_ID": 512766, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Parinari spp. .", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.698Z", + "last_change_date": "2022-03-14T08:09:16.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13243, + "fields": { + "EF_ID": 512767, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Parkia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.779Z", + "last_change_date": "2022-03-14T08:09:16.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13244, + "fields": { + "EF_ID": 512768, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Peltogyne spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.863Z", + "last_change_date": "2022-03-14T08:09:16.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13245, + "fields": { + "EF_ID": 512769, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pentaclethra macroloba", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65,0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:16.975Z", + "last_change_date": "2022-03-14T08:09:16.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13246, + "fields": { + "EF_ID": 512770, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Peru glabrata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.069Z", + "last_change_date": "2022-03-14T08:09:17.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13247, + "fields": { + "EF_ID": 512771, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Peru schomburgkiana", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.154Z", + "last_change_date": "2022-03-14T08:09:17.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13248, + "fields": { + "EF_ID": 512772, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Persea spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40-0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.268Z", + "last_change_date": "2022-03-14T08:09:17.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13249, + "fields": { + "EF_ID": 512773, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Petitia domingensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.344Z", + "last_change_date": "2022-03-14T08:09:17.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13250, + "fields": { + "EF_ID": 512774, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pinus caribaea", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.413Z", + "last_change_date": "2022-03-14T08:09:17.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13251, + "fields": { + "EF_ID": 512775, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pinus oocarpa", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.527Z", + "last_change_date": "2022-03-14T08:09:17.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13252, + "fields": { + "EF_ID": 512776, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pinus patula", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.611Z", + "last_change_date": "2022-03-14T08:09:17.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13253, + "fields": { + "EF_ID": 512777, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Piptadenia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.696Z", + "last_change_date": "2022-03-14T08:09:17.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13254, + "fields": { + "EF_ID": 512778, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Piranhea longepedunculata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Barbosa, R.I. and Fearnside, P.M. (2004). Wood density of trees in open savannas of the Brazilian Amazon. Forest Ecology and Management 199: 115-123.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.804Z", + "last_change_date": "2022-03-14T08:09:17.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13255, + "fields": { + "EF_ID": 512779, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Piratinera guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.888Z", + "last_change_date": "2022-03-14T08:09:17.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13256, + "fields": { + "EF_ID": 512780, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pithecellobium guachapele (syn. Pseudosamea)", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:17.996Z", + "last_change_date": "2022-03-14T08:09:17.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13257, + "fields": { + "EF_ID": 512781, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Platonia insignis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.080Z", + "last_change_date": "2022-03-14T08:09:18.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13258, + "fields": { + "EF_ID": 512782, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Platymiscium spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71, 0.84", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.146Z", + "last_change_date": "2022-03-14T08:09:18.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13259, + "fields": { + "EF_ID": 512783, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Podocarpus spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.247Z", + "last_change_date": "2022-03-14T08:09:18.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13260, + "fields": { + "EF_ID": 512784, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pourouma aff. melinonii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.338Z", + "last_change_date": "2022-03-14T08:09:18.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13261, + "fields": { + "EF_ID": 512785, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pouteria spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64, 0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.404Z", + "last_change_date": "2022-03-14T08:09:18.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13262, + "fields": { + "EF_ID": 512786, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Prioria copaifera", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40,0.41", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.508Z", + "last_change_date": "2022-03-14T08:09:18.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13263, + "fields": { + "EF_ID": 512787, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Protium spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53,0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.613Z", + "last_change_date": "2022-03-14T08:09:18.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13264, + "fields": { + "EF_ID": 512788, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pseudolmedia laevigata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62-0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.680Z", + "last_change_date": "2022-03-14T08:09:18.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13265, + "fields": { + "EF_ID": 512789, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pterocarpus spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.793Z", + "last_change_date": "2022-03-14T08:09:18.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13266, + "fields": { + "EF_ID": 512790, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pterogyne nitens", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.871Z", + "last_change_date": "2022-03-14T08:09:18.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13267, + "fields": { + "EF_ID": 512791, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Qualea albiflora", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:18.955Z", + "last_change_date": "2022-03-14T08:09:18.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13268, + "fields": { + "EF_ID": 512792, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Qualea cf. lancifolia", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.069Z", + "last_change_date": "2022-03-14T08:09:19.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13269, + "fields": { + "EF_ID": 512793, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Qualea dinizii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.146Z", + "last_change_date": "2022-03-14T08:09:19.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13270, + "fields": { + "EF_ID": 512794, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Qualea spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.221Z", + "last_change_date": "2022-03-14T08:09:19.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13271, + "fields": { + "EF_ID": 512795, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Quararibaea guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.320Z", + "last_change_date": "2022-03-14T08:09:19.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13272, + "fields": { + "EF_ID": 512796, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Quercus alata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.396Z", + "last_change_date": "2022-03-14T08:09:19.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13273, + "fields": { + "EF_ID": 512797, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Quercus costaricensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.463Z", + "last_change_date": "2022-03-14T08:09:19.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13274, + "fields": { + "EF_ID": 512798, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Quercus eugeniaefolia", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.563Z", + "last_change_date": "2022-03-14T08:09:19.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13275, + "fields": { + "EF_ID": 512799, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Quercus spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.646Z", + "last_change_date": "2022-03-14T08:09:19.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13276, + "fields": { + "EF_ID": 512800, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Raputia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.713Z", + "last_change_date": "2022-03-14T08:09:19.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13277, + "fields": { + "EF_ID": 512801, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Rheedia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.806Z", + "last_change_date": "2022-03-14T08:09:19.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13278, + "fields": { + "EF_ID": 512802, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Rollinia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.880Z", + "last_change_date": "2022-03-14T08:09:19.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13279, + "fields": { + "EF_ID": 512803, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Saccoglottis cydonioides", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:19.946Z", + "last_change_date": "2022-03-14T08:09:19.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13280, + "fields": { + "EF_ID": 512804, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sapium ssp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47,0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.041Z", + "last_change_date": "2022-03-14T08:09:20.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13281, + "fields": { + "EF_ID": 512805, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Schinopsis spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Barbosa, R.I. and Fearnside, P.M. (2004). Wood density of trees in open savannas of the Brazilian Amazon. Forest Ecology and Management 199: 115-123.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.130Z", + "last_change_date": "2022-03-14T08:09:20.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13282, + "fields": { + "EF_ID": 512806, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sclerobium spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.226Z", + "last_change_date": "2022-03-14T08:09:20.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13283, + "fields": { + "EF_ID": 512807, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sickingia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.305Z", + "last_change_date": "2022-03-14T08:09:20.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13284, + "fields": { + "EF_ID": 512808, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Simaba multiflora", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.377Z", + "last_change_date": "2022-03-14T08:09:20.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13285, + "fields": { + "EF_ID": 512809, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Simarouba amara", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32, 0.34,0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.477Z", + "last_change_date": "2022-03-14T08:09:20.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13286, + "fields": { + "EF_ID": 512810, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sloanea guianensis .", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.555Z", + "last_change_date": "2022-03-14T08:09:20.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13287, + "fields": { + "EF_ID": 512811, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Spondias mombin", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31-0.35", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.627Z", + "last_change_date": "2022-03-14T08:09:20.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13288, + "fields": { + "EF_ID": 512812, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sterculia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.729Z", + "last_change_date": "2022-03-14T08:09:20.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13289, + "fields": { + "EF_ID": 512813, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Stylogyne spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.805Z", + "last_change_date": "2022-03-14T08:09:20.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13290, + "fields": { + "EF_ID": 512814, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Swartzia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.871Z", + "last_change_date": "2022-03-14T08:09:20.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13291, + "fields": { + "EF_ID": 512815, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Swietenia macrophylla", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42,0.45,0.46, 0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:20.997Z", + "last_change_date": "2022-03-14T08:09:20.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13292, + "fields": { + "EF_ID": 512816, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Symphonia globulifera", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.072Z", + "last_change_date": "2022-03-14T08:09:21.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13293, + "fields": { + "EF_ID": 512817, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tabebuia spp. (lapacho group)", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.173Z", + "last_change_date": "2022-03-14T08:09:21.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13294, + "fields": { + "EF_ID": 512818, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tabebuia spp. (roble)", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.247Z", + "last_change_date": "2022-03-14T08:09:21.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13295, + "fields": { + "EF_ID": 512819, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tabebuia spp. (white cedar)", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.340Z", + "last_change_date": "2022-03-14T08:09:21.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13296, + "fields": { + "EF_ID": 512820, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tabebuia stenocalyx", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55,0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.422Z", + "last_change_date": "2022-03-14T08:09:21.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13297, + "fields": { + "EF_ID": 512821, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tachigalia myrmecophylla", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.486Z", + "last_change_date": "2022-03-14T08:09:21.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13298, + "fields": { + "EF_ID": 512822, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Talisia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.583Z", + "last_change_date": "2022-03-14T08:09:21.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13299, + "fields": { + "EF_ID": 512823, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tapirira guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.697Z", + "last_change_date": "2022-03-14T08:09:21.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13300, + "fields": { + "EF_ID": 512824, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50, 0.51,", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.769Z", + "last_change_date": "2022-03-14T08:09:21.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13301, + "fields": { + "EF_ID": 512825, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tetragastris altisima", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.869Z", + "last_change_date": "2022-03-14T08:09:21.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13302, + "fields": { + "EF_ID": 512826, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Toluifera balsamum", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:21.947Z", + "last_change_date": "2022-03-14T08:09:21.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13303, + "fields": { + "EF_ID": 512827, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Torrubia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.011Z", + "last_change_date": "2022-03-14T08:09:22.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13304, + "fields": { + "EF_ID": 512828, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Toulicia pulvinata", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.104Z", + "last_change_date": "2022-03-14T08:09:22.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13305, + "fields": { + "EF_ID": 512830, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tovomita guianensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.180Z", + "last_change_date": "2022-03-14T08:09:22.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13306, + "fields": { + "EF_ID": 512831, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trattinickia sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.247Z", + "last_change_date": "2022-03-14T08:09:22.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13307, + "fields": { + "EF_ID": 512832, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trichilia propingua", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.338Z", + "last_change_date": "2022-03-14T08:09:22.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13308, + "fields": { + "EF_ID": 512833, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trichosperma mexicanum", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.413Z", + "last_change_date": "2022-03-14T08:09:22.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13309, + "fields": { + "EF_ID": 512834, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Triplaris spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.480Z", + "last_change_date": "2022-03-14T08:09:22.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13310, + "fields": { + "EF_ID": 512835, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trophis sp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.574Z", + "last_change_date": "2022-03-14T08:09:22.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13311, + "fields": { + "EF_ID": 512836, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vatairea spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3, 3.2.5, 3.2.7, 3.2.8, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176", + "Technical_Reference": "Reyes, Gisel; Brown,Sandra; Chapman, Jonathan; Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, L.A: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.647Z", + "last_change_date": "2022-03-14T08:09:22.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13312, + "fields": { + "EF_ID": 512837, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vatairea spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.713Z", + "last_change_date": "2022-03-14T08:09:22.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13313, + "fields": { + "EF_ID": 512838, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Virola spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40, 0.44, 0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.808Z", + "last_change_date": "2022-03-14T08:09:22.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13314, + "fields": { + "EF_ID": 512839, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vismia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.897Z", + "last_change_date": "2022-03-14T08:09:22.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13315, + "fields": { + "EF_ID": 512840, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vitex spp. .", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52,0.56, 0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:22.972Z", + "last_change_date": "2022-03-14T08:09:22.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13316, + "fields": { + "EF_ID": 512841, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vitex stahelii", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.067Z", + "last_change_date": "2022-03-14T08:09:23.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13317, + "fields": { + "EF_ID": 512842, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vochysia spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40,0.47, 0.79", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A., Patiño, S., Pitman, N.C.A., Silva, J.N.M. and Martínez, R.V. (2004b). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology 10: 545-562.; Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood densities pertain to more than one bibiographic source.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.155Z", + "last_change_date": "2022-03-14T08:09:23.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13318, + "fields": { + "EF_ID": 512843, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vouacapoua americana", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.222Z", + "last_change_date": "2022-03-14T08:09:23.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13319, + "fields": { + "EF_ID": 512844, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Warszewicsia coccinea", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.327Z", + "last_change_date": "2022-03-14T08:09:23.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13320, + "fields": { + "EF_ID": 512845, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Xanthoxylum martinicensis", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.422Z", + "last_change_date": "2022-03-14T08:09:23.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13321, + "fields": { + "EF_ID": 512846, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Xanthoxylum spp.", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.497Z", + "last_change_date": "2022-03-14T08:09:23.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13322, + "fields": { + "EF_ID": 512847, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Xylopia frutescens", + "Regional_Conditions": "Tropical America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0 64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.596Z", + "last_change_date": "2022-03-14T08:09:23.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13323, + "fields": { + "EF_ID": 512848, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Afzelia spp. .", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.672Z", + "last_change_date": "2022-03-14T08:09:23.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13324, + "fields": { + "EF_ID": 512849, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Aidia ochroleuca", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.744Z", + "last_change_date": "2022-03-14T08:09:23.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13325, + "fields": { + "EF_ID": 512850, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Albizia spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.864Z", + "last_change_date": "2022-03-14T08:09:23.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13326, + "fields": { + "EF_ID": 512851, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Allanblackia floribunda", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:23.939Z", + "last_change_date": "2022-03-14T08:09:23.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13327, + "fields": { + "EF_ID": 512852, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Allophyllus africanus f. acuminatus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.002Z", + "last_change_date": "2022-03-14T08:09:24.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13328, + "fields": { + "EF_ID": 512853, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Alstonia congensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.115Z", + "last_change_date": "2022-03-14T08:09:24.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13329, + "fields": { + "EF_ID": 512854, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Amphimas pterocarpoides", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.189Z", + "last_change_date": "2022-03-14T08:09:24.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13330, + "fields": { + "EF_ID": 512855, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anisophyllea obtusifolia", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.261Z", + "last_change_date": "2022-03-14T08:09:24.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13331, + "fields": { + "EF_ID": 512856, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Annonidium mannii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.358Z", + "last_change_date": "2022-03-14T08:09:24.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13332, + "fields": { + "EF_ID": 512857, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anopyxis klaineana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.430Z", + "last_change_date": "2022-03-14T08:09:24.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13333, + "fields": { + "EF_ID": 512858, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anthocleista keniensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.494Z", + "last_change_date": "2022-03-14T08:09:24.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13334, + "fields": { + "EF_ID": 512859, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anthonotha macrophylla", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.594Z", + "last_change_date": "2022-03-14T08:09:24.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13335, + "fields": { + "EF_ID": 512860, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Anthostemma aubryanum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.680Z", + "last_change_date": "2022-03-14T08:09:24.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13336, + "fields": { + "EF_ID": 512861, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Antiaris spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.744Z", + "last_change_date": "2022-03-14T08:09:24.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13337, + "fields": { + "EF_ID": 512862, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Antrocaryon klaineanum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.845Z", + "last_change_date": "2022-03-14T08:09:24.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13338, + "fields": { + "EF_ID": 512863, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Aucoumea klaineana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31-0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.930Z", + "last_change_date": "2022-03-14T08:09:24.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13339, + "fields": { + "EF_ID": 512864, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Autranella congolensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:24.994Z", + "last_change_date": "2022-03-14T08:09:24.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13340, + "fields": { + "EF_ID": 512865, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Baillonella toxisperma", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.097Z", + "last_change_date": "2022-03-14T08:09:25.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13341, + "fields": { + "EF_ID": 512866, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Balanites aegyptiaca", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.169Z", + "last_change_date": "2022-03-14T08:09:25.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13342, + "fields": { + "EF_ID": 512867, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Baphia kirkii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.244Z", + "last_change_date": "2022-03-14T08:09:25.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13343, + "fields": { + "EF_ID": 512868, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Beilschmiedia louisii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.365Z", + "last_change_date": "2022-03-14T08:09:25.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13344, + "fields": { + "EF_ID": 512869, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Beilschmiedia nitida", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.439Z", + "last_change_date": "2022-03-14T08:09:25.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13345, + "fields": { + "EF_ID": 512870, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Berlinia spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.511Z", + "last_change_date": "2022-03-14T08:09:25.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13346, + "fields": { + "EF_ID": 512871, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Blighia welwitschii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.617Z", + "last_change_date": "2022-03-14T08:09:25.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13347, + "fields": { + "EF_ID": 512872, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bombax spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.689Z", + "last_change_date": "2022-03-14T08:09:25.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13348, + "fields": { + "EF_ID": 512873, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Brachystegia spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.752Z", + "last_change_date": "2022-03-14T08:09:25.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13349, + "fields": { + "EF_ID": 512874, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Bridelia micrantha", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.884Z", + "last_change_date": "2022-03-14T08:09:25.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13350, + "fields": { + "EF_ID": 512875, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Calpocalyx klainei", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:25.956Z", + "last_change_date": "2022-03-14T08:09:25.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13351, + "fields": { + "EF_ID": 512876, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Canarium schweinfurthii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.019Z", + "last_change_date": "2022-03-14T08:09:26.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13352, + "fields": { + "EF_ID": 512877, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Canthium rubrocostratum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.119Z", + "last_change_date": "2022-03-14T08:09:26.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13353, + "fields": { + "EF_ID": 512878, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Carapa procera", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.206Z", + "last_change_date": "2022-03-14T08:09:26.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13354, + "fields": { + "EF_ID": 512879, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Casearia battiscombei", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.272Z", + "last_change_date": "2022-03-14T08:09:26.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13355, + "fields": { + "EF_ID": 512880, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cassipourea euryoides", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.370Z", + "last_change_date": "2022-03-14T08:09:26.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13356, + "fields": { + "EF_ID": 512881, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cassipourea malosana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.456Z", + "last_change_date": "2022-03-14T08:09:26.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13357, + "fields": { + "EF_ID": 512882, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ceiba pentandra", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18-0.39", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.522Z", + "last_change_date": "2022-03-14T08:09:26.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13358, + "fields": { + "EF_ID": 512883, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Celtis spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.614Z", + "last_change_date": "2022-03-14T08:09:26.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13359, + "fields": { + "EF_ID": 512884, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Chlorophora ercelsa", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48-0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.689Z", + "last_change_date": "2022-03-14T08:09:26.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13360, + "fields": { + "EF_ID": 512885, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Chrysophyllum albidum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.764Z", + "last_change_date": "2022-03-14T08:09:26.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13361, + "fields": { + "EF_ID": 512886, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cleistanthus mildbraedii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.857Z", + "last_change_date": "2022-03-14T08:09:26.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13362, + "fields": { + "EF_ID": 512887, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cleistopholis patens", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:26.939Z", + "last_change_date": "2022-03-14T08:09:26.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13363, + "fields": { + "EF_ID": 512888, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Coelocaryon preussii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.006Z", + "last_change_date": "2022-03-14T08:09:27.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13364, + "fields": { + "EF_ID": 512889, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cola sp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.100Z", + "last_change_date": "2022-03-14T08:09:27.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13365, + "fields": { + "EF_ID": 512890, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Combretodendron macrocarpum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.172Z", + "last_change_date": "2022-03-14T08:09:27.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13366, + "fields": { + "EF_ID": 512891, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Conopharyngia holstii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.247Z", + "last_change_date": "2022-03-14T08:09:27.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13367, + "fields": { + "EF_ID": 512892, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Copaifera religiosa .", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.351Z", + "last_change_date": "2022-03-14T08:09:27.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13368, + "fields": { + "EF_ID": 512893, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cordia millenii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.422Z", + "last_change_date": "2022-03-14T08:09:27.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13369, + "fields": { + "EF_ID": 512894, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cordia platythyrsa", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.489Z", + "last_change_date": "2022-03-14T08:09:27.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13370, + "fields": { + "EF_ID": 512895, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Corynanthe pachyceras", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.594Z", + "last_change_date": "2022-03-14T08:09:27.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13371, + "fields": { + "EF_ID": 512896, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Coda edulis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.677Z", + "last_change_date": "2022-03-14T08:09:27.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13372, + "fields": { + "EF_ID": 512897, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Croton megalocarpus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.748Z", + "last_change_date": "2022-03-14T08:09:27.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13373, + "fields": { + "EF_ID": 512898, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cryptosepalum staudtii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.837Z", + "last_change_date": "2022-03-14T08:09:27.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13374, + "fields": { + "EF_ID": 512899, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ctenolophon englerianus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:27.936Z", + "last_change_date": "2022-03-14T08:09:27.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13375, + "fields": { + "EF_ID": 512900, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cylicodiscus gabonensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.006Z", + "last_change_date": "2022-03-14T08:09:28.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13376, + "fields": { + "EF_ID": 512901, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Cynometra alexandri", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.097Z", + "last_change_date": "2022-03-14T08:09:28.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13377, + "fields": { + "EF_ID": 512902, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dacryodes spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France. Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.177Z", + "last_change_date": "2022-03-14T08:09:28.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13378, + "fields": { + "EF_ID": 512903, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Daniellia ogea", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.248Z", + "last_change_date": "2022-03-14T08:09:28.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13379, + "fields": { + "EF_ID": 512904, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Desbordesia pierreana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.341Z", + "last_change_date": "2022-03-14T08:09:28.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13380, + "fields": { + "EF_ID": 512905, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Detarium senegalensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.419Z", + "last_change_date": "2022-03-14T08:09:28.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13381, + "fields": { + "EF_ID": 512906, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Dialium excelsum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.489Z", + "last_change_date": "2022-03-14T08:09:28.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13382, + "fields": { + "EF_ID": 512907, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Didelotia africana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.584Z", + "last_change_date": "2022-03-14T08:09:28.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13383, + "fields": { + "EF_ID": 512908, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Didelotia letouzeyi", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.661Z", + "last_change_date": "2022-03-14T08:09:28.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13384, + "fields": { + "EF_ID": 512909, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Diospyros spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.739Z", + "last_change_date": "2022-03-14T08:09:28.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13385, + "fields": { + "EF_ID": 512910, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Discoglypremna caloneura", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.843Z", + "last_change_date": "2022-03-14T08:09:28.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13386, + "fields": { + "EF_ID": 512911, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Distemonanthus benthamianus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.919Z", + "last_change_date": "2022-03-14T08:09:28.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13387, + "fields": { + "EF_ID": 512912, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Drypetes sp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:28.998Z", + "last_change_date": "2022-03-14T08:09:28.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13388, + "fields": { + "EF_ID": 512913, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ehretia acuminata", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.103Z", + "last_change_date": "2022-03-14T08:09:29.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13389, + "fields": { + "EF_ID": 512914, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Enantia chlorantha", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.177Z", + "last_change_date": "2022-03-14T08:09:29.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13390, + "fields": { + "EF_ID": 512915, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Endodesmia calophylloides", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.248Z", + "last_change_date": "2022-03-14T08:09:29.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13391, + "fields": { + "EF_ID": 512916, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Entandrophragma utile", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53-0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.346Z", + "last_change_date": "2022-03-14T08:09:29.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13392, + "fields": { + "EF_ID": 512917, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eribroma oblongum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.436Z", + "last_change_date": "2022-03-14T08:09:29.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13393, + "fields": { + "EF_ID": 512918, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Eriocoelum microspermum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.498Z", + "last_change_date": "2022-03-14T08:09:29.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13394, + "fields": { + "EF_ID": 512919, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Erismadelphus ensul", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.589Z", + "last_change_date": "2022-03-14T08:09:29.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13395, + "fields": { + "EF_ID": 512920, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Erythrina vogelii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.677Z", + "last_change_date": "2022-03-14T08:09:29.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13396, + "fields": { + "EF_ID": 512921, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Erythrophleum ivorense", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70-0.88", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.739Z", + "last_change_date": "2022-03-14T08:09:29.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13397, + "fields": { + "EF_ID": 512922, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Erythroxylum mannii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.832Z", + "last_change_date": "2022-03-14T08:09:29.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13398, + "fields": { + "EF_ID": 512923, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Fagara macrophylla", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.911Z", + "last_change_date": "2022-03-14T08:09:29.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13399, + "fields": { + "EF_ID": 512924, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ficus iteophylla", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:29.973Z", + "last_change_date": "2022-03-14T08:09:29.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13400, + "fields": { + "EF_ID": 512925, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Fumtumia latifolia", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.151Z", + "last_change_date": "2022-03-14T08:09:30.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13401, + "fields": { + "EF_ID": 512926, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gambeya spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.227Z", + "last_change_date": "2022-03-14T08:09:30.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13402, + "fields": { + "EF_ID": 512927, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Garcinia punctata", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.289Z", + "last_change_date": "2022-03-14T08:09:30.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13403, + "fields": { + "EF_ID": 512928, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gilletiodendron mildbraedii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.386Z", + "last_change_date": "2022-03-14T08:09:30.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13404, + "fields": { + "EF_ID": 512929, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Gossweilerodendron balsamiferum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.461Z", + "last_change_date": "2022-03-14T08:09:30.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13405, + "fields": { + "EF_ID": 512930, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Guarea thompsonii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.531Z", + "last_change_date": "2022-03-14T08:09:30.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13406, + "fields": { + "EF_ID": 512931, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Guibourtia spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70-0.84", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.637Z", + "last_change_date": "2022-03-14T08:09:30.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13407, + "fields": { + "EF_ID": 512932, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hannoa klaineana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.711Z", + "last_change_date": "2022-03-14T08:09:30.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13408, + "fields": { + "EF_ID": 512933, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Harungana madagascariensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.798Z", + "last_change_date": "2022-03-14T08:09:30.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13409, + "fields": { + "EF_ID": 512934, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hexalobus crispiflorus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.904Z", + "last_change_date": "2022-03-14T08:09:30.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13410, + "fields": { + "EF_ID": 512935, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Holoptelea grandis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:30.977Z", + "last_change_date": "2022-03-14T08:09:30.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13411, + "fields": { + "EF_ID": 512936, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Homalium spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.040Z", + "last_change_date": "2022-03-14T08:09:31.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13412, + "fields": { + "EF_ID": 512937, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hylodendron gabonense.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.140Z", + "last_change_date": "2022-03-14T08:09:31.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13413, + "fields": { + "EF_ID": 512938, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Hymenostegia pellegrini", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.227Z", + "last_change_date": "2022-03-14T08:09:31.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13414, + "fields": { + "EF_ID": 512939, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Irvingia grandifolia", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.469Z", + "last_change_date": "2022-03-14T08:09:31.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13415, + "fields": { + "EF_ID": 512940, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Julbernardia globiflora", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.549Z", + "last_change_date": "2022-03-14T08:09:31.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13416, + "fields": { + "EF_ID": 512941, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Khaya ivorensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40-0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.610Z", + "last_change_date": "2022-03-14T08:09:31.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13417, + "fields": { + "EF_ID": 512942, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Klainedoxa gabonensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.669Z", + "last_change_date": "2022-03-14T08:09:31.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13418, + "fields": { + "EF_ID": 512943, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lannea welwitschii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45”", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.760Z", + "last_change_date": "2022-03-14T08:09:31.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13419, + "fields": { + "EF_ID": 512944, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lecomtedoxa klainenna", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.827Z", + "last_change_date": "2022-03-14T08:09:31.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13420, + "fields": { + "EF_ID": 512945, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Letestua durissima", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.894Z", + "last_change_date": "2022-03-14T08:09:31.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13421, + "fields": { + "EF_ID": 512946, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lophira alata", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84-0.97", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:31.994Z", + "last_change_date": "2022-03-14T08:09:31.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13422, + "fields": { + "EF_ID": 512947, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Lovoa trichilioides", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.086Z", + "last_change_date": "2022-03-14T08:09:32.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13423, + "fields": { + "EF_ID": 512948, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Macaranga kilimandscharica", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.152Z", + "last_change_date": "2022-03-14T08:09:32.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13424, + "fields": { + "EF_ID": 512949, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Maesopsis eminii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.245Z", + "last_change_date": "2022-03-14T08:09:32.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13425, + "fields": { + "EF_ID": 512950, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Malacantha sp. aff. alnifolia", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.319Z", + "last_change_date": "2022-03-14T08:09:32.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13426, + "fields": { + "EF_ID": 512951, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mammea africana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.394Z", + "last_change_date": "2022-03-14T08:09:32.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13427, + "fields": { + "EF_ID": 512952, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Manilkara lacera", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.497Z", + "last_change_date": "2022-03-14T08:09:32.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13428, + "fields": { + "EF_ID": 512953, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Markhamia platycalyx", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.569Z", + "last_change_date": "2022-03-14T08:09:32.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13429, + "fields": { + "EF_ID": 512954, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Memecylon capitellatum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.636Z", + "last_change_date": "2022-03-14T08:09:32.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13430, + "fields": { + "EF_ID": 512955, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Microberlinia brazzavillensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.731Z", + "last_change_date": "2022-03-14T08:09:32.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13431, + "fields": { + "EF_ID": 512956, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Microcos coriaceus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.42", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.827Z", + "last_change_date": "2022-03-14T08:09:32.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13432, + "fields": { + "EF_ID": 512957, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Milletia spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:32.902Z", + "last_change_date": "2022-03-14T08:09:32.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13433, + "fields": { + "EF_ID": 512958, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Mitragyna stipulosa", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.008Z", + "last_change_date": "2022-03-14T08:09:33.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13434, + "fields": { + "EF_ID": 512959, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Monopetalanthus pellegrinii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.094Z", + "last_change_date": "2022-03-14T08:09:33.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13435, + "fields": { + "EF_ID": 512960, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Musanga cecropioides", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.161Z", + "last_change_date": "2022-03-14T08:09:33.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13436, + "fields": { + "EF_ID": 512961, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Nauclea diderrichii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.259Z", + "last_change_date": "2022-03-14T08:09:33.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13437, + "fields": { + "EF_ID": 512962, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Neopoutonia macrocalyx", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.336Z", + "last_change_date": "2022-03-14T08:09:33.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13438, + "fields": { + "EF_ID": 512963, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Nesogordonia papaverifera", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.402Z", + "last_change_date": "2022-03-14T08:09:33.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13439, + "fields": { + "EF_ID": 512964, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ochtocosmus africanus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.503Z", + "last_change_date": "2022-03-14T08:09:33.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13440, + "fields": { + "EF_ID": 512965, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Odyendea spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.577Z", + "last_change_date": "2022-03-14T08:09:33.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13441, + "fields": { + "EF_ID": 512966, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Oldfieldia africana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.644Z", + "last_change_date": "2022-03-14T08:09:33.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13442, + "fields": { + "EF_ID": 512967, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ongokea gore", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.737Z", + "last_change_date": "2022-03-14T08:09:33.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13443, + "fields": { + "EF_ID": 512968, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Oxystigma oxyphyllum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.811Z", + "last_change_date": "2022-03-14T08:09:33.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13444, + "fields": { + "EF_ID": 512969, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pachyelasma tessmannii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.877Z", + "last_change_date": "2022-03-14T08:09:33.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13445, + "fields": { + "EF_ID": 512970, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pachypodanthium staudtii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:33.972Z", + "last_change_date": "2022-03-14T08:09:33.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13446, + "fields": { + "EF_ID": 512971, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Paraberlinia bifoliolata", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.069Z", + "last_change_date": "2022-03-14T08:09:34.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13447, + "fields": { + "EF_ID": 512972, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Parinari glabra", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.165Z", + "last_change_date": "2022-03-14T08:09:34.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13448, + "fields": { + "EF_ID": 512973, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Parkia bicolor", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.249Z", + "last_change_date": "2022-03-14T08:09:34.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13449, + "fields": { + "EF_ID": 512974, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pausinystalia brachythyrsa", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.327Z", + "last_change_date": "2022-03-14T08:09:34.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13450, + "fields": { + "EF_ID": 512975, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pausinystalia cf. talbotii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.402Z", + "last_change_date": "2022-03-14T08:09:34.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13451, + "fields": { + "EF_ID": 512976, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pentaclethra macrophylla", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.509Z", + "last_change_date": "2022-03-14T08:09:34.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13452, + "fields": { + "EF_ID": 512977, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pentadesma butyracea", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.602Z", + "last_change_date": "2022-03-14T08:09:34.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13453, + "fields": { + "EF_ID": 512978, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Phyllanthus discoideus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.682Z", + "last_change_date": "2022-03-14T08:09:34.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13454, + "fields": { + "EF_ID": 512979, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pierreodendron africanum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.784Z", + "last_change_date": "2022-03-14T08:09:34.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13455, + "fields": { + "EF_ID": 512980, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Piptadeniastrum africanum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.861Z", + "last_change_date": "2022-03-14T08:09:34.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13456, + "fields": { + "EF_ID": 512981, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Plagiostyles africana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:34.932Z", + "last_change_date": "2022-03-14T08:09:34.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13457, + "fields": { + "EF_ID": 512982, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Poga oleosa", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.038Z", + "last_change_date": "2022-03-14T08:09:35.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13458, + "fields": { + "EF_ID": 512983, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Polyalthia suaveolens", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.119Z", + "last_change_date": "2022-03-14T08:09:35.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13459, + "fields": { + "EF_ID": 512984, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Premna angolensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.190Z", + "last_change_date": "2022-03-14T08:09:35.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13460, + "fields": { + "EF_ID": 512985, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pteleopsis hylodendron", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.280Z", + "last_change_date": "2022-03-14T08:09:35.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13461, + "fields": { + "EF_ID": 512986, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pterocarpus soyauxii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62-0.79", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.361Z", + "last_change_date": "2022-03-14T08:09:35.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13462, + "fields": { + "EF_ID": 512987, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pterygota spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.432Z", + "last_change_date": "2022-03-14T08:09:35.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13463, + "fields": { + "EF_ID": 512988, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Pycnanthus angolensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4-0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.523Z", + "last_change_date": "2022-03-14T08:09:35.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13464, + "fields": { + "EF_ID": 512989, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Randia cladantha", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.78", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.594Z", + "last_change_date": "2022-03-14T08:09:35.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13465, + "fields": { + "EF_ID": 512990, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Rauwolfia macrophylla", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.665Z", + "last_change_date": "2022-03-14T08:09:35.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13466, + "fields": { + "EF_ID": 512991, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Ricinodendron heudelotii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.758Z", + "last_change_date": "2022-03-14T08:09:35.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13467, + "fields": { + "EF_ID": 512992, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Saccoglottis gabonensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.844Z", + "last_change_date": "2022-03-14T08:09:35.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13468, + "fields": { + "EF_ID": 512993, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Santiria trimera", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:35.915Z", + "last_change_date": "2022-03-14T08:09:35.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13469, + "fields": { + "EF_ID": 512994, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sapium ellipticum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.009Z", + "last_change_date": "2022-03-14T08:09:36.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13470, + "fields": { + "EF_ID": 512995, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Schrebera arborea", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.102Z", + "last_change_date": "2022-03-14T08:09:36.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13471, + "fields": { + "EF_ID": 512996, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sclorodophloeus zenkeri", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.182Z", + "last_change_date": "2022-03-14T08:09:36.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13472, + "fields": { + "EF_ID": 512997, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Scottellia coriacea", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.294Z", + "last_change_date": "2022-03-14T08:09:36.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13473, + "fields": { + "EF_ID": 512998, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Scyphocephalium ochocoa", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.386Z", + "last_change_date": "2022-03-14T08:09:36.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13474, + "fields": { + "EF_ID": 512999, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Scytopetalum tieghemii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.465Z", + "last_change_date": "2022-03-14T08:09:36.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13475, + "fields": { + "EF_ID": 513000, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sindoropsis letestui", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.554Z", + "last_change_date": "2022-03-14T08:09:36.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13476, + "fields": { + "EF_ID": 513001, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Staudtia stipitata", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.627Z", + "last_change_date": "2022-03-14T08:09:36.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13477, + "fields": { + "EF_ID": 513002, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Stemonocoleus micranthus", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.699Z", + "last_change_date": "2022-03-14T08:09:36.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13478, + "fields": { + "EF_ID": 513003, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Sterculia rhinopetala", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.789Z", + "last_change_date": "2022-03-14T08:09:36.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13479, + "fields": { + "EF_ID": 513004, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Strephonema pseudocola", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.860Z", + "last_change_date": "2022-03-14T08:09:36.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13480, + "fields": { + "EF_ID": 513005, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Strombosiopsis tetrandra", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:36.924Z", + "last_change_date": "2022-03-14T08:09:36.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13481, + "fields": { + "EF_ID": 513006, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Swartzia fistuloides", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.015Z", + "last_change_date": "2022-03-14T08:09:37.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13482, + "fields": { + "EF_ID": 513007, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Symphonia globulifera", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.102Z", + "last_change_date": "2022-03-14T08:09:37.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13483, + "fields": { + "EF_ID": 513008, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Syzygium cordatum", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.165Z", + "last_change_date": "2022-03-14T08:09:37.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13484, + "fields": { + "EF_ID": 513009, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Terminalia superba", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.258Z", + "last_change_date": "2022-03-14T08:09:37.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13485, + "fields": { + "EF_ID": 513010, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tessmania africana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.344Z", + "last_change_date": "2022-03-14T08:09:37.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13486, + "fields": { + "EF_ID": 513011, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Testulea gabonensis", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.419Z", + "last_change_date": "2022-03-14T08:09:37.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13487, + "fields": { + "EF_ID": 513012, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tetraberlinia tubmaniana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.510Z", + "last_change_date": "2022-03-14T08:09:37.510Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13488, + "fields": { + "EF_ID": 513013, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tetrapleura tetraptera", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.585Z", + "last_change_date": "2022-03-14T08:09:37.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13489, + "fields": { + "EF_ID": 513014, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Tieghemella heckelii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.652Z", + "last_change_date": "2022-03-14T08:09:37.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13490, + "fields": { + "EF_ID": 513015, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trema sp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.753Z", + "last_change_date": "2022-03-14T08:09:37.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13491, + "fields": { + "EF_ID": 513016, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trichilia prieureana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.836Z", + "last_change_date": "2022-03-14T08:09:37.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13492, + "fields": { + "EF_ID": 513017, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Trichoscypha arborea", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.902Z", + "last_change_date": "2022-03-14T08:09:37.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13493, + "fields": { + "EF_ID": 513018, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Triplochiton scleroxylon.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:37.996Z", + "last_change_date": "2022-03-14T08:09:37.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13494, + "fields": { + "EF_ID": 513019, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Uapaca spp.", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Centre Technique Forestier Tropical (CTFT) (1989). Memento du Forestier, 3e Édition. Ministère Français de la Coopération et du Développement, Paris, France.; Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.074Z", + "last_change_date": "2022-03-14T08:09:38.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13495, + "fields": { + "EF_ID": 513020, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vepris undulata", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.141Z", + "last_change_date": "2022-03-14T08:09:38.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13496, + "fields": { + "EF_ID": 513021, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Vitex doniana", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.231Z", + "last_change_date": "2022-03-14T08:09:38.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13497, + "fields": { + "EF_ID": 513022, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Basic Wood density of stemwood (D)", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical Tree Species: Xylopia staudtii", + "Regional_Conditions": "Tropical Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF; Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.9-2 (Basic wood densities (D) of stemwood for tropical tree species), pages 3.172 to 3.176; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 4.13 Basic wood density (D) of tropical tree species, on pages 4.64 - 4.70", + "Technical_Reference": "Reyes, G., Brown, S., Chapman, J. and Lugo, A.E. (1992). Wood densities of tropical tree species. U.S. Department of Agriculture, Forest Service, New Orleans, LA.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wood density value is derived from the regression equation in Reyes etal (1992)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.307Z", + "last_change_date": "2022-03-14T08:09:38.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13498, + "fields": { + "EF_ID": 513023, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF2 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Confers", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-8.0", + "Value": "1.35 (1.15-3.8)", + "Unit": "fraction", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.382Z", + "last_change_date": "2022-03-14T08:09:38.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13499, + "fields": { + "EF_ID": 513024, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF2 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Broadleaf", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-8.0", + "Value": "1.3 (1.15-4.2)", + "Unit": "fraction", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.474Z", + "last_change_date": "2022-03-14T08:09:38.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13500, + "fields": { + "EF_ID": 513025, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF2 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Conifers - Spruce fir", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-12.5", + "Value": "1.3 (1.15-4.2)", + "Unit": "fraction", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.549Z", + "last_change_date": "2022-03-14T08:09:38.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13501, + "fields": { + "EF_ID": 513026, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF2 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Conifers - Pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-12.5", + "Value": "1.3 (1.15-3.4)", + "Unit": "fraction", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.616Z", + "last_change_date": "2022-03-14T08:09:38.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13502, + "fields": { + "EF_ID": 513027, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF2 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Conifers - Broadleaf", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-12.5", + "Value": "1.4 (1.15-3.2)", + "Unit": "fraction", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.686Z", + "last_change_date": "2022-03-14T08:09:38.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13503, + "fields": { + "EF_ID": 513028, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF2 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Pines", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 10.0", + "Value": "1.3 (1.2-4.0)", + "Unit": "fraction", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.784Z", + "last_change_date": "2022-03-14T08:09:38.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13504, + "fields": { + "EF_ID": 513029, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF2 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Broadleaf", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 10.0", + "Value": "3.4 (2.0-9.0)", + "Unit": "fraction", + "Equation": "Equation 3.2.3, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.874Z", + "last_change_date": "2022-03-14T08:09:38.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13505, + "fields": { + "EF_ID": 513030, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF1 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Confers", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-8.0", + "Value": "1.15 (1-1.3)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:38.944Z", + "last_change_date": "2022-03-14T08:09:38.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13506, + "fields": { + "EF_ID": 513031, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF1 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Broadleaf", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-8.0", + "Value": "1.1 (1-1.3)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.011Z", + "last_change_date": "2022-03-14T08:09:39.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13507, + "fields": { + "EF_ID": 513032, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF1 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Conifers - Spruce fir", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-12.5", + "Value": "1.15 (1-1.3)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.112Z", + "last_change_date": "2022-03-14T08:09:39.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13508, + "fields": { + "EF_ID": 513033, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF1 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Conifers - Pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-12.5", + "Value": "1.05 (1-1.2)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.191Z", + "last_change_date": "2022-03-14T08:09:39.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13509, + "fields": { + "EF_ID": 513034, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF1 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Conifers - Broadleaf", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 0-12.5", + "Value": "1.2 (1.1-1.3)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.261Z", + "last_change_date": "2022-03-14T08:09:39.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13510, + "fields": { + "EF_ID": 513035, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF1 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Pines", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 10.0", + "Value": "1.2 (1.1-1.3)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.327Z", + "last_change_date": "2022-03-14T08:09:39.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13511, + "fields": { + "EF_ID": 513036, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Biomass expansion factors(BEF1 -Overbark)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Broadleaf", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Miniumum dbh (cms): 10.0", + "Value": "1.5 (1.3-1.7)", + "Unit": "fraction", + "Equation": "Equation 3.2.5, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.10 (Default Values of Biomass Expansion Factors (BEFS)), page 3.178.", + "Technical_Reference": "Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; Refer to FRA Working Paper 68 and 69 for average values for developing countries ( http://www.fao.org/forestry/index.jsp)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.421Z", + "last_change_date": "2022-03-14T08:09:39.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13512, + "fields": { + "EF_ID": 513037, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Vlues for fraction out of total harvest left to decay in the forest (FBL)", + "Technology_Practices": "", + "Parameter_Conditions": "Annual carbon loss due to commercial felling", + "Regional_Conditions": "Boreal intensively damaged", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 3.2.7, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.11 (Default Values for fraction out of total harvest left to decay in the forest (FBL), page 3.178.", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.499Z", + "last_change_date": "2022-03-14T08:09:39.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13513, + "fields": { + "EF_ID": 513038, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Vlues for fraction out of total harvest left to decay in the forest (FBL)", + "Technology_Practices": "", + "Parameter_Conditions": "Annual carbon loss due to commercial felling", + "Regional_Conditions": "Temperate intensively managed", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 3.2.7, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.11 (Default Values for fraction out of total harvest left to decay in the forest (FBL), page 3.178.", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.569Z", + "last_change_date": "2022-03-14T08:09:39.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13514, + "fields": { + "EF_ID": 513039, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Vlues for fraction out of total harvest left to decay in the forest (FBL)", + "Technology_Practices": "", + "Parameter_Conditions": "Annual carbon loss due to commercial felling", + "Regional_Conditions": "Temperate semi natural forests", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 3.2.7, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.11 (Default Values for fraction out of total harvest left to decay in the forest (FBL), page 3.178.", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.644Z", + "last_change_date": "2022-03-14T08:09:39.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13515, + "fields": { + "EF_ID": 513040, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Vlues for fraction out of total harvest left to decay in the forest (FBL)", + "Technology_Practices": "", + "Parameter_Conditions": "Annual carbon loss due to commercial felling", + "Regional_Conditions": "Tropical plantation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "fraction", + "Equation": "Equation 3.2.7, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.11 (Default Values for fraction out of total harvest left to decay in the forest (FBL), page 3.178.", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.719Z", + "last_change_date": "2022-03-14T08:09:39.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13516, + "fields": { + "EF_ID": 513041, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Default Vlues for fraction out of total harvest left to decay in the forest (FBL)", + "Technology_Practices": "", + "Parameter_Conditions": "Annual carbon loss due to commercial felling", + "Regional_Conditions": "Tropical selective logging in primary forests", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 3.2.7, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.11 (Default Values for fraction out of total harvest left to decay in the forest (FBL), page 3.178.", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.824Z", + "last_change_date": "2022-03-14T08:09:39.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13517, + "fields": { + "EF_ID": 513042, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary Tropical Forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.12; Number of observations: 14; R2: 12", + "Value": "0.32 (0.20 – 0.62)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 7,8, 15, 56. 66, 3, 16, 53, 17 and 45 in the IPCC Good Practice Guidance for LULUCF from pages pages 3.181and 3.184.; See references 7,8, 15, 56. 66, 3, 16, 53, 17 and 45 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.899Z", + "last_change_date": "2022-03-14T08:09:39.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13518, + "fields": { + "EF_ID": 513043, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary open tropical forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.09; Number of observations: 3; R2: 3", + "Value": "0.45 (0.36 – 0.54)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 21 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 21 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:39.969Z", + "last_change_date": "2022-03-14T08:09:39.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13519, + "fields": { + "EF_ID": 513044, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary tropical moist forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.03; Number of observations: 2; R2: 2", + "Value": "0.50 (0.39 – 0.54)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 37 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 37 and 73 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.075Z", + "last_change_date": "2022-03-14T08:09:40.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13520, + "fields": { + "EF_ID": 513045, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary tropical dry forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 0; R2: 1", + "Value": "0.78 – 0.95", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 66 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.157Z", + "last_change_date": "2022-03-14T08:09:40.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13521, + "fields": { + "EF_ID": 513046, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All primary tropical forests", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.13; Number of observations: 19; R2: 23", + "Value": "0.36 (0.19 – 0.95)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.268Z", + "last_change_date": "2022-03-14T08:09:40.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13522, + "fields": { + "EF_ID": 513047, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary Tropical Forest (slash and burn): Young secondary tropical forest (3-5yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "0.46 (0.43 – 0.52)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 61 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 61 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.357Z", + "last_change_date": "2022-03-14T08:09:40.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13523, + "fields": { + "EF_ID": 513048, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary Tropical Forest (slash and burn): Intermediate secondary tropical forest (6-10 yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.21; Number of observations: 2; R2: 2", + "Value": "0.67 (0.46 – 0.90)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 61 and 35 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 61 and 35 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.469Z", + "last_change_date": "2022-03-14T08:09:40.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13524, + "fields": { + "EF_ID": 513049, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary Tropical Forest (slash and burn): Advanced secondary tropical forest (14-17 yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.1; Number of observations: 2; R2: 2", + "Value": "0.50 (0.36 – 0.79)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 61 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 61 and 73 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.558Z", + "last_change_date": "2022-03-14T08:09:40.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13525, + "fields": { + "EF_ID": 513050, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All secondary tropical forests", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.06; Number of observations: 8; R2: 9", + "Value": "0.55(0.36 – 0.90)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 34, 30, 56 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 34, 30, 56 and 66 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.653Z", + "last_change_date": "2022-03-14T08:09:40.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13526, + "fields": { + "EF_ID": 513051, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All tertiary tropical forests", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 9", + "Value": "0.59(0.47 – 0.88)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 30 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 30 and 66 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.733Z", + "last_change_date": "2022-03-14T08:09:40.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13527, + "fields": { + "EF_ID": 513052, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Wildfire (general )", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.06; Number of observations: 2; R2: 2", + "Value": "0.4(0.36 – 0.45)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 33 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 33 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.821Z", + "last_change_date": "2022-03-14T08:09:40.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13528, + "fields": { + "EF_ID": 513053, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Crown fire (general )", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.21; Number of observations: 3; R2: 6", + "Value": "0.43(0.18 – 0.76)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 41, 63, 64 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 41, 63, 64 and 66 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.900Z", + "last_change_date": "2022-03-14T08:09:40.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13529, + "fields": { + "EF_ID": 513054, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: surface fire", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.08; Number of observations: 3; R2: 3", + "Value": "0.15(0.05 – 0.73)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 63 and 64 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 63 and 64 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:40.997Z", + "last_change_date": "2022-03-14T08:09:40.998Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13530, + "fields": { + "EF_ID": 513055, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Post logging slash burn", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.13; Number of observations: 4 R2: 4", + "Value": "0.33(0.20 – 0.58)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 18, 40 and 49 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 18, 40 and 49 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.075Z", + "last_change_date": "2022-03-14T08:09:41.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13531, + "fields": { + "EF_ID": 513056, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Land clearing fire", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1 R2: 1", + "Value": "0.59(0.50 – 0.70)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 67 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 67 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.164Z", + "last_change_date": "2022-03-14T08:09:41.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13532, + "fields": { + "EF_ID": 513057, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All Boreal Forest", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.17; Number of observations:15; R2: 16", + "Value": "0.34(0.05 – 0.76)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 45 and 47 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 45 and 47 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.241Z", + "last_change_date": "2022-03-14T08:09:41.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13533, + "fields": { + "EF_ID": 513058, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalyptus forests:Prescribed fire – (surface)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.11; Number of observations: 6 R2: 6", + "Value": "0.61(0.50 – 0.77*)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 9, 54, 60 and 72 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 9, 54, 60 and 72 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.341Z", + "last_change_date": "2022-03-14T08:09:41.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13534, + "fields": { + "EF_ID": 513059, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalyptus forests:Post logging slash burn", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.14; Number of observations: 5 R2: 5", + "Value": "0.68(0.49 - 0.82)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 25, 46 and 58 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 25, 46 and 58 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.416Z", + "last_change_date": "2022-03-14T08:09:41.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13535, + "fields": { + "EF_ID": 513060, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalyptus forests:Felled and burned (land-clearing fire)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1 R2: 1", + "Value": "0.49", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 62 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 62 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.560Z", + "last_change_date": "2022-03-14T08:09:41.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13536, + "fields": { + "EF_ID": 513061, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All Eucalyptus Forests", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.13; Number of observations:12; R2: 12", + "Value": "0.63(0.49 – 0.82)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.625Z", + "last_change_date": "2022-03-14T08:09:41.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13537, + "fields": { + "EF_ID": 513062, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Other temperate forests: Post logging slash burn", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "SD: 0.12; Number of observations: 7; R2: 7", + "Value": "0.62(0.48 – 0.84)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 14, 19, 27 and 55 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 14, 19, 27 and 55 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.710Z", + "last_change_date": "2022-03-14T08:09:41.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13538, + "fields": { + "EF_ID": 513063, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Other temperate forests: Felled and burned (land-clearing fire)", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 3", + "Value": "0.51(0.16 – 0.58)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 24, 53 and 71 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 24, 53 and 71 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.783Z", + "last_change_date": "2022-03-14T08:09:41.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13539, + "fields": { + "EF_ID": 513064, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All “other” temperate forests", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "SD: 0.16; Number of observations: 19; R2: 17", + "Value": "0.45(0.16 – 0.84)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 53 and 56 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 53 and 56 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.878Z", + "last_change_date": "2022-03-14T08:09:41.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13540, + "fields": { + "EF_ID": 513065, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Shrubland (general)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 1", + "Value": "0.95", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 44 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 44 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:41.952Z", + "last_change_date": "2022-03-14T08:09:41.952Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13541, + "fields": { + "EF_ID": 513066, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Calluna heath", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.30; Number of observations: 4; R2: 4", + "Value": "0.71(0.27 – 0.98)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 26, 39 and 56 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 26, 39 and 56 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.054Z", + "last_change_date": "2022-03-14T08:09:42.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13542, + "fields": { + "EF_ID": 513067, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Fynbos", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.16; Number of observations:2; R2: 2", + "Value": "0.61(0.50 – 0.87)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 44 and 70 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 44 and 70 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.144Z", + "last_change_date": "2022-03-14T08:09:42.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13543, + "fields": { + "EF_ID": 513068, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All Shrublands", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.25; Number of observations:7; R2: 7", + "Value": "0.72(0.27 – 0.98)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.238Z", + "last_change_date": "2022-03-14T08:09:42.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13544, + "fields": { + "EF_ID": 513069, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (early dry season burns)*: Savanna woodland@", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 1", + "Value": "0.22(0.01 – 0.47)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 28 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 28 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.327Z", + "last_change_date": "2022-03-14T08:09:42.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13545, + "fields": { + "EF_ID": 513070, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (early dry season burns)*: Savanna parkland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 1", + "Value": "0.73(0.44 – 0.87)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 57 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.430Z", + "last_change_date": "2022-03-14T08:09:42.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13546, + "fields": { + "EF_ID": 513071, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (early dry season burns)*: Other savanna woodlands", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.19; Number of observations:4; R2: 4", + "Value": "0.37(0.14 – 0.63)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 22 and 39 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 22 and 39 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.511Z", + "last_change_date": "2022-03-14T08:09:42.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13547, + "fields": { + "EF_ID": 513072, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna woodlands (early dry season burns)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.22; Number of observations: 6; R2: 6", + "Value": "0.40(0.01 – 0.87)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 6 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 6 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.607Z", + "last_change_date": "2022-03-14T08:09:42.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13548, + "fields": { + "EF_ID": 513073, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*: Savanna woodland @", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 2", + "Value": "0.72(0.71 – 0.88)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 57 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 57 and 66 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.686Z", + "last_change_date": "2022-03-14T08:09:42.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13549, + "fields": { + "EF_ID": 513074, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*: Savanna parkland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.07; Number of observations: 6; R2: 6", + "Value": "0.82(0.49 – 0.96)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 6, 51 and 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 6, 51 and 57 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.791Z", + "last_change_date": "2022-03-14T08:09:42.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13550, + "fields": { + "EF_ID": 513075, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*:Tropical savanna#", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.04; Number of observations:3; R2:5", + "Value": "0.73(0.63 – 0.94)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 12, 52, 66 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 12, 52, 66 and 73 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.886Z", + "last_change_date": "2022-03-14T08:09:42.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13551, + "fields": { + "EF_ID": 513076, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*:Other savanna woodlands", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.19; Number of observations: 7; R2:7", + "Value": "0.68(0.38 – 0.96)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 22, 29, 31, 44 and 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 22, 29, 31, 44 and 57 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:42.993Z", + "last_change_date": "2022-03-14T08:09:42.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13552, + "fields": { + "EF_ID": 513077, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna woodlands (mid/late dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.14; Number of observations: 17; R2:20", + "Value": "0.74(0.29 – 0.96)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.069Z", + "last_change_date": "2022-03-14T08:09:43.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13553, + "fields": { + "EF_ID": 513078, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (early dry season burns)*:Tropical/sub-tropical grassland$", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2:1", + "Value": "0.74(0.44 – 0.98)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 28 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 28 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.177Z", + "last_change_date": "2022-03-14T08:09:43.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13554, + "fields": { + "EF_ID": 513079, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (early dry season burns)*: Grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 0; R2:1", + "Value": "0.18 – 0.78", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 48 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 48 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.252Z", + "last_change_date": "2022-03-14T08:09:43.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13555, + "fields": { + "EF_ID": 513080, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna grasslands (early dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 2", + "Value": "0.74(0.18 – 0.98)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.353Z", + "last_change_date": "2022-03-14T08:09:43.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13556, + "fields": { + "EF_ID": 513081, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Tropical/sub-tropical grassland$", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.11; Number of observations: 7; R2:8", + "Value": "0.92(0.71 – 1.00)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 12, 44, 57, 66 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 12, 44, 57, 66 and 73 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.428Z", + "last_change_date": "2022-03-14T08:09:43.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13557, + "fields": { + "EF_ID": 513082, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Tropical pasture~", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.21; Number of observations: 6; R2:7", + "Value": "0.35(0.19 – 0.81)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 4, 23, 38 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 4, 23, 38 and 66 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.521Z", + "last_change_date": "2022-03-14T08:09:43.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13558, + "fields": { + "EF_ID": 513083, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.12; Number of observations: 16; R2:23", + "Value": "0.86(0.44 – 1.00)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 5, 6, 13, 42, 44, 45, 50, 56 and 65 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 5, 6, 13, 42, 44, 45, 50, 56 and 65 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.602Z", + "last_change_date": "2022-03-14T08:09:43.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13559, + "fields": { + "EF_ID": 513084, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna grasslands (mid/late dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.26; Number of observations: 29; R2:38", + "Value": "0.77(0.19 – 1.00)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.705Z", + "last_change_date": "2022-03-14T08:09:43.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13560, + "fields": { + "EF_ID": 513085, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Other Vegetation Types: Peatland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2:2", + "Value": "0.50(0.50 – 0.68)", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See references 20 and 44 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 20 and 44 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.803Z", + "last_change_date": "2022-03-14T08:09:43.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13561, + "fields": { + "EF_ID": 513086, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Other Vegetation Types: Tropical Wetlands", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "0.70", + "Unit": "fraction", + "Equation": "Equations 3.2.9, IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "See reference 44 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 44 in the list of References to Table 2.6 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). When using this value in the Worksheet FL-1a (column U), care should be taken. (In the column U, [1 - (this value)] should be input.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.898Z", + "last_change_date": "2022-03-14T08:09:43.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13562, + "fields": { + "EF_ID": 513087, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary tropical forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE: 25.8; Number of observations: 6; R2:9", + "Value": "83.9(10 – 228)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 3, 7, 15, 16, 17, 45 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 3, 7, 15, 16, 17, 45 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:43.986Z", + "last_change_date": "2022-03-14T08:09:43.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13563, + "fields": { + "EF_ID": 513088, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary open tropical forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE: 52.1; Number of observations: 3; R2: 3", + "Value": "163.6(109.9 – 214)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 21 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 21 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.115Z", + "last_change_date": "2022-03-14T08:09:44.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13564, + "fields": { + "EF_ID": 513089, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary tropical moist forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE: 11.8; Number of observations: 2; R2: 2", + "Value": "160.4(115.7 – 216.6)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 37 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 37 and 73 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.177Z", + "last_change_date": "2022-03-14T08:09:44.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13565, + "fields": { + "EF_ID": 513090, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary tropical dry forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 0; R2: 1", + "Value": "57 – 70", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.266Z", + "last_change_date": "2022-03-14T08:09:44.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13566, + "fields": { + "EF_ID": 513091, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All primary tropical forests", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE: 50.7; Number of observations: 11; R2: 15", + "Value": "119.6(10 – 228)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.361Z", + "last_change_date": "2022-03-14T08:09:44.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13567, + "fields": { + "EF_ID": 513092, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary tropical forest (slash and burn): Young secondary tropical forest (3-5 yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "8.1(7.2 – 9.4)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 61 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 61in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.442Z", + "last_change_date": "2022-03-14T08:09:44.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13568, + "fields": { + "EF_ID": 513093, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary tropical forest (slash and burn): Intermediate secondary tropical forest (6-10 yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE: 27.4; Number of observations: 2; R2: 2", + "Value": "41.1(18.8 – 66)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 35 and 61 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 35 and 61 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.552Z", + "last_change_date": "2022-03-14T08:09:44.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13569, + "fields": { + "EF_ID": 513094, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary tropical forest (slash and burn): Advanced secondary tropical forest (14-17 yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE: 8.0; Number of observations: 2; R2: 2", + "Value": "46.4(29.1 – 63.2)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 61 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 61 and 73 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.644Z", + "last_change_date": "2022-03-14T08:09:44.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13570, + "fields": { + "EF_ID": 513095, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All secondary tropical forests", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE: 23.6; Number of observations: 5; R2: 5", + "Value": "42.2(7.2 – 93.6)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 30 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 30 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.745Z", + "last_change_date": "2022-03-14T08:09:44.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13571, + "fields": { + "EF_ID": 513096, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All Tertiary tropical forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1 R2: 2", + "Value": "54.1(4.5 – 53)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 30 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 30 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.827Z", + "last_change_date": "2022-03-14T08:09:44.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13572, + "fields": { + "EF_ID": 513097, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest:Wildfire (general)", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SE: 48.4; Number of observations: 6; R2: 6", + "Value": "52.8(18 – 149)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 2, 33 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 2, 33 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:44.921Z", + "last_change_date": "2022-03-14T08:09:44.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13573, + "fields": { + "EF_ID": 513098, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest:Crown fire", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SE: 7.9; Number of observations: 10; R2: 10", + "Value": "25.1(15 – 43)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 11, 41, 43, 63, 64 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 11, 41, 43, 63, 64 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.011Z", + "last_change_date": "2022-03-14T08:09:45.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13574, + "fields": { + "EF_ID": 513099, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest:Surface fire", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SE: 25.1; Number of observations: 12; R2: 13", + "Value": "21.6(1.0 – 148)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 1, 43, 63, 64, 66 and 69 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 1, 43, 63, 64, 66 and 69 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.098Z", + "last_change_date": "2022-03-14T08:09:45.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13575, + "fields": { + "EF_ID": 513100, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest:Post logging slash burn", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SE: 44.8; Number of observations: 7; R2: 9", + "Value": "69.6(7 – 202)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 18, 40, 49 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 18, 40, 49 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.169Z", + "last_change_date": "2022-03-14T08:09:45.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13576, + "fields": { + "EF_ID": 513101, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Land clearing fire", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SE: 35.0; Number of observations:3; R2: 3", + "Value": "87.5(48 – 136)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 10 and 67 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 10 and 67 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.256Z", + "last_change_date": "2022-03-14T08:09:45.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13577, + "fields": { + "EF_ID": 513102, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All Boreal Forest", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SE: 36.5; Number of observations:44; R2: 49", + "Value": "41.0(1.0 – 202)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 43, 45, 47 and 69 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 43, 45, 47 and 69 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.344Z", + "last_change_date": "2022-03-14T08:09:45.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13578, + "fields": { + "EF_ID": 513103, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalypt forests: Wildfire", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE: 53.6; Number of observations: 8; R2: 8", + "Value": "53.0(20 – 179)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 9, 32 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 9, 32 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.432Z", + "last_change_date": "2022-03-14T08:09:45.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13579, + "fields": { + "EF_ID": 513104, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalypt forests:Prescribed fire – (surface)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE: 13.7; Number of observations: 8; R2: 8", + "Value": "16.0(4.2 – 17)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 9, 54, 60, 66 and 72 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 9, 54, 60, 66 and 72 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.519Z", + "last_change_date": "2022-03-14T08:09:45.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13580, + "fields": { + "EF_ID": 513105, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalypt forests: Post logging slash burn", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE: 168.8; Number of observations: 5; R2: 5", + "Value": "168.4(34 – 453)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 25, 46 and 58 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 25, 46 and 58 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.608Z", + "last_change_date": "2022-03-14T08:09:45.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13581, + "fields": { + "EF_ID": 513106, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalypt forests: Felled and burned (land-clearing fire)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 2", + "Value": "132.6(50 – 133)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 9 and 62 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 9 and 62 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.686Z", + "last_change_date": "2022-03-14T08:09:45.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13582, + "fields": { + "EF_ID": 513107, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All Eucalypt Forests", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE: 100.8; Number of observations: 22; R2: 23", + "Value": "69.4(4.2 – 453)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.776Z", + "last_change_date": "2022-03-14T08:09:45.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13583, + "fields": { + "EF_ID": 513108, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Other temperate forests: Wildfire", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "SE: 6.3; Number of observations: 4; R2:4", + "Value": "19.8(11 - 25)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 32 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 32 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.853Z", + "last_change_date": "2022-03-14T08:09:45.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13584, + "fields": { + "EF_ID": 513109, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Other temperate forests: Post logging slash burn", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "SE: 65.0; Number of observations: 7; R2: 8", + "Value": "77.5(15 – 220)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 14, 19, 27, 55 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 14, 19, 27, 55 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:45.917Z", + "last_change_date": "2022-03-14T08:09:45.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13585, + "fields": { + "EF_ID": 513110, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Other temperate forests: Felled and burned (land-clearing fire)", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "SE: 62.7, .0; Number of observations: 2; R2: 3", + "Value": "48.4(3 – 130)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 24, 53 and 71 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 24, 53 and 71 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.020Z", + "last_change_date": "2022-03-14T08:09:46.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13586, + "fields": { + "EF_ID": 513111, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All “other” temperate forests", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "SE:53.7; Number of observations: 15; R2: 18", + "Value": "50.4(3 – 220)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 43 and 56 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 43 and 56 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.103Z", + "last_change_date": "2022-03-14T08:09:46.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13587, + "fields": { + "EF_ID": 513112, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Shrubland (general)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:4.2; Number of observations: 3; R2: 3", + "Value": "26.7(22 – 30)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 43 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 43 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.204Z", + "last_change_date": "2022-03-14T08:09:46.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13588, + "fields": { + "EF_ID": 513113, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Calluna heath", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:4.3; Number of observations: 3; R2: 3", + "Value": "11.5(6.5 - 21)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 26 and 39 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 26 and 39 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.277Z", + "last_change_date": "2022-03-14T08:09:46.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13589, + "fields": { + "EF_ID": 513114, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Sagebrush", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:3.8; Number of observations: 3; R2: 4", + "Value": "5.7(1.1 – 18)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.363Z", + "last_change_date": "2022-03-14T08:09:46.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13590, + "fields": { + "EF_ID": 513115, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Fynbos", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:0.1; Number of observations: 2; R2: 2", + "Value": "12.9(5.9 – 23)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 66 and 70 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 66 and 70 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.436Z", + "last_change_date": "2022-03-14T08:09:46.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13591, + "fields": { + "EF_ID": 513116, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All Shrublands", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:9.0; Number of observations: 11; R2: 12", + "Value": "14.3(1.1 – 30)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.523Z", + "last_change_date": "2022-03-14T08:09:46.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13592, + "fields": { + "EF_ID": 513117, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (early dry season burns)*: Savanna woodland@", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "2.5(0.1 – 5.3)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 28 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 28 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.811Z", + "last_change_date": "2022-03-14T08:09:46.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13593, + "fields": { + "EF_ID": 513118, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (early dry season burns)*: Savanna parkland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "2.7(1.4 – 3.9)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 57 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.867Z", + "last_change_date": "2022-03-14T08:09:46.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13594, + "fields": { + "EF_ID": 513119, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna woodlands (early dry season burns)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:0.1; Number of observations: 2; R2: 2", + "Value": "2.6(0.07 – 3.9)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:46.949Z", + "last_change_date": "2022-03-14T08:09:46.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13595, + "fields": { + "EF_ID": 513120, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*: Savanna woodland @", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "3.3(3.2 – 3.3)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 57 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.019Z", + "last_change_date": "2022-03-14T08:09:47.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13596, + "fields": { + "EF_ID": 513121, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*: Savanna parkland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:1.1; Number of observations: 6; R2: 6", + "Value": "4.0(1 – 10.6)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 6, 51 and 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 6, 51 and 57 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.083Z", + "last_change_date": "2022-03-14T08:09:47.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13597, + "fields": { + "EF_ID": 513122, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*: Tropical savanna#", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE:1.8; Number of observations:2; R2:2", + "Value": "6.0(3.7 – 8.4)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 52 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 52 and 73 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.192Z", + "last_change_date": "2022-03-14T08:09:47.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13598, + "fields": { + "EF_ID": 513123, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*: Other savanna woodlands", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:1.7; Number of observations: 3; R2: 3", + "Value": "5.3(3.7 – 7.6)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 31, 57 and 59 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 31, 57 and 59 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.277Z", + "last_change_date": "2022-03-14T08:09:47.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13599, + "fields": { + "EF_ID": 513124, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna woodlands (mid/late dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:1.5; Number of observations: 12; R2: 12", + "Value": "4.6(1.0 – 10.6)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.368Z", + "last_change_date": "2022-03-14T08:09:47.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13600, + "fields": { + "EF_ID": 513125, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (early dry season burns)*: Tropical/sub-tropical grassland$", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "2.1(1.4 – 3.1)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 28 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 28 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.444Z", + "last_change_date": "2022-03-14T08:09:47.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13601, + "fields": { + "EF_ID": 513126, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (early dry season burns)*: Grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2 – 11", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 48 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 48 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.519Z", + "last_change_date": "2022-03-14T08:09:47.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13602, + "fields": { + "EF_ID": 513127, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna grasslands (early dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 2", + "Value": "2.1(1.2 – 11)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.619Z", + "last_change_date": "2022-03-14T08:09:47.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13603, + "fields": { + "EF_ID": 513128, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Tropical/sub-tropical grassland$", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE:1.7; Number of observations:6; R2:6", + "Value": "5.2(2.5 – 7.1)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 9, 12, 57 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 9, 12, 57 and 73 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.703Z", + "last_change_date": "2022-03-14T08:09:47.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13604, + "fields": { + "EF_ID": 513129, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:3.1; Number of observations: 6; R2: 6", + "Value": "4.1(1.5 – 10)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 9 and 43 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 9 and 43 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.786Z", + "last_change_date": "2022-03-14T08:09:47.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13605, + "fields": { + "EF_ID": 513130, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Tropical pasture~", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SE:11.8; Number of observations: 6; R2: 7", + "Value": "23.7(4.7 – 45)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 4, 23, 38 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 4, 23, 38 and 66 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.880Z", + "last_change_date": "2022-03-14T08:09:47.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13606, + "fields": { + "EF_ID": 513131, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:2.7; Number of observations: 6; R2:10", + "Value": "7.0(0.5 – 18)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 6, 13, 42, 45, 50 and 65 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 6, 13, 42, 45, 50 and 65 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:47.961Z", + "last_change_date": "2022-03-14T08:09:47.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13607, + "fields": { + "EF_ID": 513132, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna grasslands (mid/late dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:10.1; Number of observations: 24; R2: 29", + "Value": "10.0(0.5 – 45 )", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.072Z", + "last_change_date": "2022-03-14T08:09:48.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13608, + "fields": { + "EF_ID": 513133, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Other Vegetation Types: Peatland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SE:1.4; Number of observations: 2; R2:2", + "Value": "41.0(40 – 42)", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See references 33 and 68 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See references 33 and 68 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.152Z", + "last_change_date": "2022-03-14T08:09:48.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13609, + "fields": { + "EF_ID": 513134, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Biomass consumption (t/ha) values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Other Vegetation Types: Tundra", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 , IPCC Good Practice Guidance for LULUCF; Equation 2.27, 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4)", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.13 Biomass consumption (t/ha) values for fires in a range of vegetation types pages, 3.180 - 3.181; 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "See reference 33 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.; See reference 33 in the list of References to Table 2.4 in 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 4), pages 2.56 to 2.59", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.227Z", + "last_change_date": "2022-03-14T08:09:48.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13610, + "fields": { + "EF_ID": 513135, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary Tropical Forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.12; Number of observations: 14; R2: 12", + "Value": "0.32 (0.20 – 0.62)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 7,8, 15, 56. 66, 3, 16, 53, 17 and 45 in the IPCC Good Practice Guidance for LULUCF from pages pages 3.181and 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.332Z", + "last_change_date": "2022-03-14T08:09:48.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13611, + "fields": { + "EF_ID": 513136, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary open tropical forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.09; Number of observations: 3; R2: 3", + "Value": "0.45 (0.36 – 0.54)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 21 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.419Z", + "last_change_date": "2022-03-14T08:09:48.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13612, + "fields": { + "EF_ID": 513137, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary tropical moist forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.03; Number of observations: 2; R2: 2", + "Value": "0.50 (0.39 – 0.54)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 37 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.486Z", + "last_change_date": "2022-03-14T08:09:48.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13613, + "fields": { + "EF_ID": 513138, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Primary Tropical Forest (slash and burn): Primary tropical dry forest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 0; R2: 1", + "Value": "0.78 – 0.95", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.553Z", + "last_change_date": "2022-03-14T08:09:48.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13614, + "fields": { + "EF_ID": 513139, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All primary tropical forests", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.13; Number of observations: 19; R2: 23", + "Value": "0.36 (0.19 – 0.95)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.650Z", + "last_change_date": "2022-03-14T08:09:48.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13615, + "fields": { + "EF_ID": 513140, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary Tropical Forest (slash and burn): Young secondary tropical forest (3-5yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "0.46 (0.43 – 0.52)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 61 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.736Z", + "last_change_date": "2022-03-14T08:09:48.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13616, + "fields": { + "EF_ID": 513141, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary Tropical Forest (slash and burn): Intermediate secondary tropical forest (6-10 yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.21; Number of observations: 2; R2: 2", + "Value": "0.67 (0.46 – 0.90)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 61 and 35 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.836Z", + "last_change_date": "2022-03-14T08:09:48.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13617, + "fields": { + "EF_ID": 513142, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Secondary Tropical Forest (slash and burn): Advanced secondary tropical forest (14-17 yrs)", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.1; Number of observations: 2; R2: 2", + "Value": "0.50 (0.36 – 0.79)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 61 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.910Z", + "last_change_date": "2022-03-14T08:09:48.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13618, + "fields": { + "EF_ID": 513143, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All secondary tropical forests", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.06; Number of observations: 8; R2: 9", + "Value": "0.55(0.36 – 0.90)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 34, 30, 56 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:48.986Z", + "last_change_date": "2022-03-14T08:09:48.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13619, + "fields": { + "EF_ID": 513144, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All tertiary tropical forests", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 9", + "Value": "0.59(0.47 – 0.88)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 30 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.086Z", + "last_change_date": "2022-03-14T08:09:49.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13620, + "fields": { + "EF_ID": 513145, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Wildfire (general )", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.06; Number of observations: 2; R2: 2", + "Value": "0.4(0.36 – 0.45)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 33 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.169Z", + "last_change_date": "2022-03-14T08:09:49.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13621, + "fields": { + "EF_ID": 513146, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Crown fire (general )", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.21; Number of observations: 3; R2: 6", + "Value": "0.43(0.18 – 0.76)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 41, 63, 64 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.244Z", + "last_change_date": "2022-03-14T08:09:49.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13622, + "fields": { + "EF_ID": 513147, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: surface fire", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.08; Number of observations: 3; R2: 3", + "Value": "0.15(0.05 – 0.73)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 63 and 64 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.319Z", + "last_change_date": "2022-03-14T08:09:49.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13623, + "fields": { + "EF_ID": 513148, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Post logging slash burn", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.13; Number of observations: 4 R2: 4", + "Value": "0.33(0.20 – 0.58)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 18, 40 and 49 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.394Z", + "last_change_date": "2022-03-14T08:09:49.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13624, + "fields": { + "EF_ID": 513149, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal Forest: Land clearing fire", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1 R2: 1", + "Value": "0.59(0.50 – 0.70)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 67 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.489Z", + "last_change_date": "2022-03-14T08:09:49.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13625, + "fields": { + "EF_ID": 513150, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All Boreal Forest", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "SD: 0.17; Number of observations:15; R2: 16", + "Value": "0.34(0.05 – 0.76)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 45 and 47 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.569Z", + "last_change_date": "2022-03-14T08:09:49.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13626, + "fields": { + "EF_ID": 513151, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalyptus forests:Prescribed fire – (surface)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.11; Number of observations: 6 R2: 6", + "Value": "0.61(0.50 – 0.77*)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 9, 54, 60 and 72 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.644Z", + "last_change_date": "2022-03-14T08:09:49.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13627, + "fields": { + "EF_ID": 513152, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalyptus forests:Post logging slash burn", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.14; Number of observations: 5 R2: 5", + "Value": "0.68(0.49 - 0.82)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 25, 46 and 58 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.719Z", + "last_change_date": "2022-03-14T08:09:49.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13628, + "fields": { + "EF_ID": 513153, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Eucalyptus forests:Felled and burned (land-clearing fire)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1 R2: 1", + "Value": "0.49", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 62 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.794Z", + "last_change_date": "2022-03-14T08:09:49.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13629, + "fields": { + "EF_ID": 513154, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All Eucalyptus Forests", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.13; Number of observations:12; R2: 12", + "Value": "0.63(0.49 – 0.82)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.891Z", + "last_change_date": "2022-03-14T08:09:49.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13630, + "fields": { + "EF_ID": 513155, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Other temperate forests: Post logging slash burn", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "SD: 0.12; Number of observations: 7; R2: 7", + "Value": "0.62(0.48 – 0.84)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 14, 19, 27 and 55 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:49.994Z", + "last_change_date": "2022-03-14T08:09:49.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13631, + "fields": { + "EF_ID": 513156, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Other temperate forests: Felled and burned (land-clearing fire)", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 3", + "Value": "0.51(0.16 – 0.58)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 24, 53 and 71 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.077Z", + "last_change_date": "2022-03-14T08:09:50.077Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13632, + "fields": { + "EF_ID": 513157, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All “other” temperate forests", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "SD: 0.16; Number of observations: 19; R2: 17", + "Value": "0.45(0.16 – 0.84)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 53 and 56 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.161Z", + "last_change_date": "2022-03-14T08:09:50.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13633, + "fields": { + "EF_ID": 513158, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Shrubland (general)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 1", + "Value": "0.95", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 44 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.244Z", + "last_change_date": "2022-03-14T08:09:50.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13634, + "fields": { + "EF_ID": 513159, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Calluna heath", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.30; Number of observations: 4; R2: 4", + "Value": "0.71(0.27 – 0.98)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 26, 39 and 56 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.351Z", + "last_change_date": "2022-03-14T08:09:50.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13635, + "fields": { + "EF_ID": 513160, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Shrublands: Fynbos", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.16; Number of observations:2; R2: 2", + "Value": "0.61(0.50 – 0.87)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 44 and 70 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.436Z", + "last_change_date": "2022-03-14T08:09:50.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13636, + "fields": { + "EF_ID": 513161, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All Shrublands", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.25; Number of observations:7; R2: 7", + "Value": "0.72(0.27 – 0.98)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.511Z", + "last_change_date": "2022-03-14T08:09:50.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13637, + "fields": { + "EF_ID": 513162, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (early dry season burns)*: Savanna woodland@", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 1", + "Value": "0.22(0.01 – 0.47)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 28 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.586Z", + "last_change_date": "2022-03-14T08:09:50.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13638, + "fields": { + "EF_ID": 513163, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (early dry season burns)*: Savanna parkland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 1", + "Value": "0.73(0.44 – 0.87)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.661Z", + "last_change_date": "2022-03-14T08:09:50.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13639, + "fields": { + "EF_ID": 513164, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (early dry season burns)*: Other savanna woodlands", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.19; Number of observations:4; R2: 4", + "Value": "0.37(0.14 – 0.63)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 22 and 39 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.754Z", + "last_change_date": "2022-03-14T08:09:50.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13640, + "fields": { + "EF_ID": 513165, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna woodlands (early dry season burns)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.22; Number of observations: 6; R2: 6", + "Value": "0.40(0.01 – 0.87)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 6 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.836Z", + "last_change_date": "2022-03-14T08:09:50.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13641, + "fields": { + "EF_ID": 513166, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*: Savanna woodland @", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations:1; R2: 2", + "Value": "0.72(0.71 – 0.88)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 57 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:50.928Z", + "last_change_date": "2022-03-14T08:09:50.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13642, + "fields": { + "EF_ID": 513167, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*: Savanna parkland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.07; Number of observations: 6; R2: 6", + "Value": "0.82(0.49 – 0.96)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 6, 51 and 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.002Z", + "last_change_date": "2022-03-14T08:09:51.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13643, + "fields": { + "EF_ID": 513168, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*:Tropical savanna#", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.04; Number of observations:3; R2:5", + "Value": "0.73(0.63 – 0.94)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 12, 52, 66 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.121Z", + "last_change_date": "2022-03-14T08:09:51.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13644, + "fields": { + "EF_ID": 513169, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Woodlands (mid/late dry season burns)*:Other savanna woodlands", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.19; Number of observations: 7; R2:7", + "Value": "0.68(0.38 – 0.96)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 22, 29, 31, 44 and 57 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.203Z", + "last_change_date": "2022-03-14T08:09:51.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13645, + "fields": { + "EF_ID": 513170, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna woodlands (mid/late dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.14; Number of observations: 17; R2:20", + "Value": "0.74(0.29 – 0.96)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.286Z", + "last_change_date": "2022-03-14T08:09:51.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13646, + "fields": { + "EF_ID": 513171, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (early dry season burns)*:Tropical/sub-tropical grassland$", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2:1", + "Value": "0.74(0.44 – 0.98)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 28 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.361Z", + "last_change_date": "2022-03-14T08:09:51.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13647, + "fields": { + "EF_ID": 513172, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (early dry season burns)*: Grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 0; R2:1", + "Value": "0.18 – 0.78", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See reference 48 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.435Z", + "last_change_date": "2022-03-14T08:09:51.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13648, + "fields": { + "EF_ID": 513173, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna grasslands (early dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 2", + "Value": "0.74(0.18 – 0.98)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.524Z", + "last_change_date": "2022-03-14T08:09:51.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13649, + "fields": { + "EF_ID": 513174, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Tropical/sub-tropical grassland$", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.11; Number of observations: 7; R2:8", + "Value": "0.92(0.71 – 1.00)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 12, 44,57, 66 and 73 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.619Z", + "last_change_date": "2022-03-14T08:09:51.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13650, + "fields": { + "EF_ID": 513175, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Tropical pasture~", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "SD: 0.21; Number of observations: 6; R2:7", + "Value": "0.35(0.19 – 0.81)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 4, 23, 38 and 66 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.694Z", + "last_change_date": "2022-03-14T08:09:51.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13651, + "fields": { + "EF_ID": 513176, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna Grasslands / Pastures (mid/late dry season burns)*: Savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.12; Number of observations: 16; R2:23", + "Value": "0.86(0.44 – 1.00)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 5, 6, 13, 42, 44, 45, 50, 56 and 65 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.811Z", + "last_change_date": "2022-03-14T08:09:51.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13652, + "fields": { + "EF_ID": 513177, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "All savanna grasslands (mid/late dry season burns)*", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "SD: 0.26; Number of observations: 29; R2:38", + "Value": "0.77(0.19 – 1.00)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:51.926Z", + "last_change_date": "2022-03-14T08:09:51.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13653, + "fields": { + "EF_ID": 513178, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Other Vegetation Types: Peatland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2:2", + "Value": "0.50(0.50 – 0.68)", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 20 and 44 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Values in parentheses indicate the entire range", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.019Z", + "last_change_date": "2022-03-14T08:09:52.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13654, + "fields": { + "EF_ID": 513179, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Other Vegetation Types: Tropical Wetlands", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "Number of observations: 1; R2: 1", + "Value": "0.70", + "Unit": "fraction", + "Equation": "Equations 3.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.12 Combustion factor values (Proportion of prefire biomass consumed) for fires in a range of vegetation types pages 3.179 - 3.180", + "Technical_Reference": "See references 44 in the IPCC Good Practice Guidance for LULUCF from pages 3.181 to 3.184.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.102Z", + "last_change_date": "2022-03-14T08:09:52.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13655, + "fields": { + "EF_ID": 513180, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (primary); Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15-0.3", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Fearnside (1990), Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.186Z", + "last_change_date": "2022-03-14T08:09:52.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13656, + "fields": { + "EF_ID": 513181, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate Eucalyptus; Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "McArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.261Z", + "last_change_date": "2022-03-14T08:09:52.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13657, + "fields": { + "EF_ID": 513182, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forest; Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "French et. al (2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.361Z", + "last_change_date": "2022-03-14T08:09:52.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13658, + "fields": { + "EF_ID": 513183, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (primary); Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "approx. 0.30", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Fearnside (1990), Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.444Z", + "last_change_date": "2022-03-14T08:09:52.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13659, + "fields": { + "EF_ID": 513184, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (secondary); Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.527Z", + "last_change_date": "2022-03-14T08:09:52.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13660, + "fields": { + "EF_ID": 513185, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, mixed species; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "greater than 0.9", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Kauffmann and Uhl; et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.601Z", + "last_change_date": "2022-03-14T08:09:52.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13661, + "fields": { + "EF_ID": 513186, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate Eucalyptus; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-0.6", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "McArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.668Z", + "last_change_date": "2022-03-14T08:09:52.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13662, + "fields": { + "EF_ID": 513187, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forest; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "French et. al (2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.755Z", + "last_change_date": "2022-03-14T08:09:52.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13663, + "fields": { + "EF_ID": 513188, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, acacia; Burn Type = windrow; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Williams et. al (1970), Cheney (pers. comm. 2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.836Z", + "last_change_date": "2022-03-14T08:09:52.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13664, + "fields": { + "EF_ID": 513189, + "IPCC_Category": "3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, acacia; Burn Type = windrow+stoking; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "approx. 0.95", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in forest land converted to cropland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Williams et. al (1970), Cheney (pers. comm. 2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.901Z", + "last_change_date": "2022-03-14T08:09:52.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13665, + "fields": { + "EF_ID": 513190, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (primary); Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15-0.3", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Fearnside (1990), Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:52.976Z", + "last_change_date": "2022-03-14T08:09:52.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13666, + "fields": { + "EF_ID": 513191, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate Eucalyptus; Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "McArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.043Z", + "last_change_date": "2022-03-14T08:09:53.043Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13667, + "fields": { + "EF_ID": 513192, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forest; Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "French et. al (2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.142Z", + "last_change_date": "2022-03-14T08:09:53.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13668, + "fields": { + "EF_ID": 513193, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (primary); Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "approx. 0.30", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Fearnside (1990), Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.236Z", + "last_change_date": "2022-03-14T08:09:53.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13669, + "fields": { + "EF_ID": 513194, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (secondary); Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.301Z", + "last_change_date": "2022-03-14T08:09:53.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13670, + "fields": { + "EF_ID": 513195, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, mixed species; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "greater than 0.9", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Kauffmann and Uhl; et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.368Z", + "last_change_date": "2022-03-14T08:09:53.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13671, + "fields": { + "EF_ID": 513196, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate Eucalyptus; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-0.6", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "McArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.451Z", + "last_change_date": "2022-03-14T08:09:53.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13672, + "fields": { + "EF_ID": 513197, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forest; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "French et. al (2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.569Z", + "last_change_date": "2022-03-14T08:09:53.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13673, + "fields": { + "EF_ID": 513198, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, acacia; Burn Type = windrow; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Williams et. al (1970), Cheney (pers. comm. 2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.653Z", + "last_change_date": "2022-03-14T08:09:53.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13674, + "fields": { + "EF_ID": 513199, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, acacia; Burn Type = windrow+stoking; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "approx. 0.95", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to grassland section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Williams et. al (1970), Cheney (pers. comm. 2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.728Z", + "last_change_date": "2022-03-14T08:09:53.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13675, + "fields": { + "EF_ID": 513200, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (primary); Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15-0.3", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Fearnside (1990), Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.802Z", + "last_change_date": "2022-03-14T08:09:53.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13676, + "fields": { + "EF_ID": 513201, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate Eucalyptus; Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "McArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.877Z", + "last_change_date": "2022-03-14T08:09:53.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13677, + "fields": { + "EF_ID": 513202, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forest; Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "French et. al (2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:53.971Z", + "last_change_date": "2022-03-14T08:09:53.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13678, + "fields": { + "EF_ID": 513203, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (primary); Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "approx. 0.30", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Fearnside (1990), Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.086Z", + "last_change_date": "2022-03-14T08:09:54.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13679, + "fields": { + "EF_ID": 513204, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (secondary); Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.161Z", + "last_change_date": "2022-03-14T08:09:54.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13680, + "fields": { + "EF_ID": 513205, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, mixed species; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "greater than 0.9", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Kauffmann and Uhl; et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.236Z", + "last_change_date": "2022-03-14T08:09:54.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13681, + "fields": { + "EF_ID": 513206, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate Eucalyptus; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-0.6", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "McArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.311Z", + "last_change_date": "2022-03-14T08:09:54.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13682, + "fields": { + "EF_ID": 513207, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forest; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "French et. al (2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.415Z", + "last_change_date": "2022-03-14T08:09:54.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13683, + "fields": { + "EF_ID": 513208, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, acacia; Burn Type = windrow; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Williams et. al (1970), Cheney (pers. comm. 2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.502Z", + "last_change_date": "2022-03-14T08:09:54.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13684, + "fields": { + "EF_ID": 513209, + "IPCC_Category": "3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, acacia; Burn Type = windrow+stoking; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "approx. 0.95", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Settlements section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Williams et. al (1970), Cheney (pers. comm. 2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.577Z", + "last_change_date": "2022-03-14T08:09:54.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13685, + "fields": { + "EF_ID": 513210, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (primary); Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15-0.3", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Fearnside (1990), Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.653Z", + "last_change_date": "2022-03-14T08:09:54.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13686, + "fields": { + "EF_ID": 513211, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate Eucalyptus; Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "McArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.727Z", + "last_change_date": "2022-03-14T08:09:54.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13687, + "fields": { + "EF_ID": 513212, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forest; Burn Type = broadcast; Drying time = less than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "French et. al (2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.843Z", + "last_change_date": "2022-03-14T08:09:54.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13688, + "fields": { + "EF_ID": 513213, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (primary); Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "approx. 0.30", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Fearnside (1990), Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:54.927Z", + "last_change_date": "2022-03-14T08:09:54.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13689, + "fields": { + "EF_ID": 513214, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical moist (secondary); Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Wei Min Hao et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.003Z", + "last_change_date": "2022-03-14T08:09:55.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13690, + "fields": { + "EF_ID": 513215, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, mixed species; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "greater than 0.9", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Kauffmann and Uhl; et. al (1990)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.094Z", + "last_change_date": "2022-03-14T08:09:55.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13691, + "fields": { + "EF_ID": 513216, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Temperate Eucalyptus; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-0.6", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "McArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.169Z", + "last_change_date": "2022-03-14T08:09:55.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13692, + "fields": { + "EF_ID": 513217, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Boreal forest; Burn Type = broadcast; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "French et. al (2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.278Z", + "last_change_date": "2022-03-14T08:09:55.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13693, + "fields": { + "EF_ID": 513218, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, acacia; Burn Type = windrow; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Williams et. al (1970), Cheney (pers. comm. 2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.361Z", + "last_change_date": "2022-03-14T08:09:55.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13694, + "fields": { + "EF_ID": 513219, + "IPCC_Category": "3.B.6.b - Land Converted to Other land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: Tropical dry, acacia; Burn Type = windrow+stoking; Drying time = more than 6 months", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "approx. 0.95", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.9 and in land converted to Other Land section of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.14, on page 3.184", + "Technical_Reference": "Williams et. al (1970), Cheney (pers. comm. 2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.436Z", + "last_change_date": "2022-03-14T08:09:55.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13695, + "fields": { + "EF_ID": 513220, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b - Land Converted to Settlements", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission ratios for open burning of cleared forest", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.012 (0.009-0.015)", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.19 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.15, on page 3.185", + "Technical_Reference": "Delmas, 1993", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Ratios for carbon compounds, i.e. CH4 and CO, are mass of carbon compound released (in units of C) relative to mass of total carbon released from burning.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.511Z", + "last_change_date": "2022-03-14T08:09:55.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13696, + "fields": { + "EF_ID": 513221, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b - Land Converted to Settlements", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission ratios for open burning of cleared forest", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06 (0.04-0.08)", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.19 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.15, on page 3.185", + "Technical_Reference": "Lacaux et al., 1993, and Crutzen and Andreae, 1990", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Ratios for carbon compounds, i.e. CH4 and CO, are mass of carbon compound released (in units of C) relative to mass of total carbon released from burning.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.586Z", + "last_change_date": "2022-03-14T08:09:55.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13697, + "fields": { + "EF_ID": 513222, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b - Land Converted to Settlements", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission ratios for open burning of cleared forest", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007 (0.005-0.009)", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.19 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.15, on page 3.185", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Those for the nitrogen compounds are expressed as the ratios of emission (in units of N) relative to total nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.698Z", + "last_change_date": "2022-03-14T08:09:55.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13698, + "fields": { + "EF_ID": 513223, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b - Land Converted to Settlements", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission ratios for open burning of cleared forest", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.121 (0.094-0.148)", + "Unit": "No dimension", + "Equation": "To be used in Equation 3.2.19 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.15, on page 3.185", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: Those for the nitrogen compounds are expressed as the ratios of emission (in units of N) relative to total nitrogen released from the fuel.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.794Z", + "last_change_date": "2022-03-14T08:09:55.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13699, + "fields": { + "EF_ID": 513236, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1523", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.869Z", + "last_change_date": "2022-03-14T08:09:55.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13700, + "fields": { + "EF_ID": 513237, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:55.936Z", + "last_change_date": "2022-03-14T08:09:55.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13701, + "fields": { + "EF_ID": 513238, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.002Z", + "last_change_date": "2022-03-14T08:09:56.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13702, + "fields": { + "EF_ID": 513239, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.091Z", + "last_change_date": "2022-03-14T08:09:56.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13703, + "fields": { + "EF_ID": 513240, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.169Z", + "last_change_date": "2022-03-14T08:09:56.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13704, + "fields": { + "EF_ID": 513241, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1524", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.236Z", + "last_change_date": "2022-03-14T08:09:56.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13705, + "fields": { + "EF_ID": 513242, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.303Z", + "last_change_date": "2022-03-14T08:09:56.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13706, + "fields": { + "EF_ID": 513243, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.369Z", + "last_change_date": "2022-03-14T08:09:56.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13707, + "fields": { + "EF_ID": 513244, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.461Z", + "last_change_date": "2022-03-14T08:09:56.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13708, + "fields": { + "EF_ID": 513245, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.544Z", + "last_change_date": "2022-03-14T08:09:56.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13709, + "fields": { + "EF_ID": 513246, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1498", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.628Z", + "last_change_date": "2022-03-14T08:09:56.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13710, + "fields": { + "EF_ID": 513247, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.703Z", + "last_change_date": "2022-03-14T08:09:56.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13711, + "fields": { + "EF_ID": 513248, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.777Z", + "last_change_date": "2022-03-14T08:09:56.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13712, + "fields": { + "EF_ID": 513249, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.871Z", + "last_change_date": "2022-03-14T08:09:56.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13713, + "fields": { + "EF_ID": 513250, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:56.953Z", + "last_change_date": "2022-03-14T08:09:56.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13714, + "fields": { + "EF_ID": 513251, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1540", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.027Z", + "last_change_date": "2022-03-14T08:09:57.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13715, + "fields": { + "EF_ID": 513252, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.094Z", + "last_change_date": "2022-03-14T08:09:57.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13716, + "fields": { + "EF_ID": 513253, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.186Z", + "last_change_date": "2022-03-14T08:09:57.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13717, + "fields": { + "EF_ID": 513254, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.253Z", + "last_change_date": "2022-03-14T08:09:57.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13718, + "fields": { + "EF_ID": 513255, + "IPCC_Category": "3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland, 3.B.5.b.iii - Grassland converted to Settlements", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.348Z", + "last_change_date": "2022-03-14T08:09:57.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13719, + "fields": { + "EF_ID": 513256, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1554", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.427Z", + "last_change_date": "2022-03-14T08:09:57.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13720, + "fields": { + "EF_ID": 513257, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.502Z", + "last_change_date": "2022-03-14T08:09:57.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13721, + "fields": { + "EF_ID": 513258, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.569Z", + "last_change_date": "2022-03-14T08:09:57.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13722, + "fields": { + "EF_ID": 513259, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.644Z", + "last_change_date": "2022-03-14T08:09:57.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13723, + "fields": { + "EF_ID": 513260, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.719Z", + "last_change_date": "2022-03-14T08:09:57.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13724, + "fields": { + "EF_ID": 513261, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1403 - 1503", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.817Z", + "last_change_date": "2022-03-14T08:09:57.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13725, + "fields": { + "EF_ID": 513262, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67 - 120", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.911Z", + "last_change_date": "2022-03-14T08:09:57.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13726, + "fields": { + "EF_ID": 513263, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4 - 7", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:57.986Z", + "last_change_date": "2022-03-14T08:09:57.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13727, + "fields": { + "EF_ID": 513264, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 - 0.8", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.061Z", + "last_change_date": "2022-03-14T08:09:58.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13728, + "fields": { + "EF_ID": 513265, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.5.b.iii - Grassland converted to Settlements, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness; N2O was calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.136Z", + "last_change_date": "2022-03-14T08:09:58.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13729, + "fields": { + "EF_ID": 513266, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1531", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.229Z", + "last_change_date": "2022-03-14T08:09:58.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13730, + "fields": { + "EF_ID": 513267, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.311Z", + "last_change_date": "2022-03-14T08:09:58.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13731, + "fields": { + "EF_ID": 513268, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.386Z", + "last_change_date": "2022-03-14T08:09:58.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13732, + "fields": { + "EF_ID": 513269, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6 - 0.8", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.469Z", + "last_change_date": "2022-03-14T08:09:58.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13733, + "fields": { + "EF_ID": 513270, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.544Z", + "last_change_date": "2022-03-14T08:09:58.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13734, + "fields": { + "EF_ID": 513271, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 - 12", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.620Z", + "last_change_date": "2022-03-14T08:09:58.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13735, + "fields": { + "EF_ID": 513272, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1612", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Ward et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.723Z", + "last_change_date": "2022-03-14T08:09:58.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13736, + "fields": { + "EF_ID": 513273, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "152", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Ward et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.803Z", + "last_change_date": "2022-03-14T08:09:58.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13737, + "fields": { + "EF_ID": 513274, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.8", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Ward et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.886Z", + "last_change_date": "2022-03-14T08:09:58.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13738, + "fields": { + "EF_ID": 513275, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Ward et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:58.969Z", + "last_change_date": "2022-03-14T08:09:58.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13739, + "fields": { + "EF_ID": 513276, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1580", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.053Z", + "last_change_date": "2022-03-14T08:09:59.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13740, + "fields": { + "EF_ID": 513277, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.136Z", + "last_change_date": "2022-03-14T08:09:59.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13741, + "fields": { + "EF_ID": 513278, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.242Z", + "last_change_date": "2022-03-14T08:09:59.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13742, + "fields": { + "EF_ID": 513279, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.328Z", + "last_change_date": "2022-03-14T08:09:59.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13743, + "fields": { + "EF_ID": 513280, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.402Z", + "last_change_date": "2022-03-14T08:09:59.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13744, + "fields": { + "EF_ID": 513281, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.477Z", + "last_change_date": "2022-03-14T08:09:59.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13745, + "fields": { + "EF_ID": 513282, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1640", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.553Z", + "last_change_date": "2022-03-14T08:09:59.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13746, + "fields": { + "EF_ID": 513283, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.628Z", + "last_change_date": "2022-03-14T08:09:59.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13747, + "fields": { + "EF_ID": 513284, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.728Z", + "last_change_date": "2022-03-14T08:09:59.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13748, + "fields": { + "EF_ID": 513285, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.811Z", + "last_change_date": "2022-03-14T08:09:59.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13749, + "fields": { + "EF_ID": 513286, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.886Z", + "last_change_date": "2022-03-14T08:09:59.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13750, + "fields": { + "EF_ID": 513288, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1523", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:09:59.961Z", + "last_change_date": "2022-03-14T08:09:59.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13751, + "fields": { + "EF_ID": 513289, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.036Z", + "last_change_date": "2022-03-14T08:10:00.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13752, + "fields": { + "EF_ID": 513290, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.111Z", + "last_change_date": "2022-03-14T08:10:00.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13753, + "fields": { + "EF_ID": 513291, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.206Z", + "last_change_date": "2022-03-14T08:10:00.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13754, + "fields": { + "EF_ID": 513292, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist/infertile broad-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.286Z", + "last_change_date": "2022-03-14T08:10:00.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13755, + "fields": { + "EF_ID": 513293, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1524", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.361Z", + "last_change_date": "2022-03-14T08:10:00.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13756, + "fields": { + "EF_ID": 513294, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.436Z", + "last_change_date": "2022-03-14T08:10:00.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13757, + "fields": { + "EF_ID": 513295, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.511Z", + "last_change_date": "2022-03-14T08:10:00.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13758, + "fields": { + "EF_ID": 513296, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.586Z", + "last_change_date": "2022-03-14T08:10:00.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13759, + "fields": { + "EF_ID": 513297, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Arid fertile fine-leaved savanna", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.661Z", + "last_change_date": "2022-03-14T08:10:00.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13760, + "fields": { + "EF_ID": 513298, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1498", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.759Z", + "last_change_date": "2022-03-14T08:10:00.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13761, + "fields": { + "EF_ID": 513299, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.844Z", + "last_change_date": "2022-03-14T08:10:00.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13762, + "fields": { + "EF_ID": 513300, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:00.928Z", + "last_change_date": "2022-03-14T08:10:00.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13763, + "fields": { + "EF_ID": 513301, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.011Z", + "last_change_date": "2022-03-14T08:10:01.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13764, + "fields": { + "EF_ID": 513302, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Moist-infertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.086Z", + "last_change_date": "2022-03-14T08:10:01.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13765, + "fields": { + "EF_ID": 513303, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1540", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.169Z", + "last_change_date": "2022-03-14T08:10:01.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13766, + "fields": { + "EF_ID": 513304, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "97", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.244Z", + "last_change_date": "2022-03-14T08:10:01.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13767, + "fields": { + "EF_ID": 513305, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.362Z", + "last_change_date": "2022-03-14T08:10:01.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13768, + "fields": { + "EF_ID": 513306, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.453Z", + "last_change_date": "2022-03-14T08:10:01.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13769, + "fields": { + "EF_ID": 513307, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Aird-fertile grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.519Z", + "last_change_date": "2022-03-14T08:10:01.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13770, + "fields": { + "EF_ID": 513308, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1554", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.586Z", + "last_change_date": "2022-03-14T08:10:01.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13771, + "fields": { + "EF_ID": 513309, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.652Z", + "last_change_date": "2022-03-14T08:10:01.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13772, + "fields": { + "EF_ID": 513310, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.720Z", + "last_change_date": "2022-03-14T08:10:01.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13773, + "fields": { + "EF_ID": 513311, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.786Z", + "last_change_date": "2022-03-14T08:10:01.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13774, + "fields": { + "EF_ID": 513312, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Scholes (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.875Z", + "last_change_date": "2022-03-14T08:10:01.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13775, + "fields": { + "EF_ID": 513313, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1403 - 1503", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:01.953Z", + "last_change_date": "2022-03-14T08:10:01.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13776, + "fields": { + "EF_ID": 513314, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67 - 120", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.019Z", + "last_change_date": "2022-03-14T08:10:02.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13777, + "fields": { + "EF_ID": 513315, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4 - 7", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.095Z", + "last_change_date": "2022-03-14T08:10:02.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13778, + "fields": { + "EF_ID": 513316, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 - 0.8", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.161Z", + "last_change_date": "2022-03-14T08:10:02.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13779, + "fields": { + "EF_ID": 513317, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "All vegetation types", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "IPCC (1994)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Assuming 41-45% carbon content, 85-100% combustion completeness; N2O was calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.228Z", + "last_change_date": "2022-03-14T08:10:02.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13780, + "fields": { + "EF_ID": 513318, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1531", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.295Z", + "last_change_date": "2022-03-14T08:10:02.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13781, + "fields": { + "EF_ID": 513319, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.393Z", + "last_change_date": "2022-03-14T08:10:02.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13782, + "fields": { + "EF_ID": 513320, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.487Z", + "last_change_date": "2022-03-14T08:10:02.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13783, + "fields": { + "EF_ID": 513321, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6 - 0.8", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.561Z", + "last_change_date": "2022-03-14T08:10:02.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13784, + "fields": { + "EF_ID": 513322, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.636Z", + "last_change_date": "2022-03-14T08:10:02.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13785, + "fields": { + "EF_ID": 513323, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 - 12", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Kaufman et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.703Z", + "last_change_date": "2022-03-14T08:10:02.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13786, + "fields": { + "EF_ID": 513324, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1612", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Ward et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.778Z", + "last_change_date": "2022-03-14T08:10:02.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13787, + "fields": { + "EF_ID": 513325, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "152", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Ward et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.845Z", + "last_change_date": "2022-03-14T08:10:02.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13788, + "fields": { + "EF_ID": 513326, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.8", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Ward et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:02.938Z", + "last_change_date": "2022-03-14T08:10:02.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13789, + "fields": { + "EF_ID": 513327, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Ward et al. (1992)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.028Z", + "last_change_date": "2022-03-14T08:10:03.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13790, + "fields": { + "EF_ID": 513328, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1580", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.111Z", + "last_change_date": "2022-03-14T08:10:03.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13791, + "fields": { + "EF_ID": 513329, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.186Z", + "last_change_date": "2022-03-14T08:10:03.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13792, + "fields": { + "EF_ID": 513330, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.261Z", + "last_change_date": "2022-03-14T08:10:03.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13793, + "fields": { + "EF_ID": 513331, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.336Z", + "last_change_date": "2022-03-14T08:10:03.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13794, + "fields": { + "EF_ID": 513332, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.495Z", + "last_change_date": "2022-03-14T08:10:03.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13795, + "fields": { + "EF_ID": 513333, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NON METHANE VOLATILE ORGANIC COMPOUNDS", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.592Z", + "last_change_date": "2022-03-14T08:10:03.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13796, + "fields": { + "EF_ID": 513334, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1640", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.678Z", + "last_change_date": "2022-03-14T08:10:03.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13797, + "fields": { + "EF_ID": 513335, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.753Z", + "last_change_date": "2022-03-14T08:10:03.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13798, + "fields": { + "EF_ID": 513336, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.828Z", + "last_change_date": "2022-03-14T08:10:03.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13799, + "fields": { + "EF_ID": 513338, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 IPCC default", + "Description": "Emission factor (applicable to fuels combusted in various types of vegetation fires)", + "Technology_Practices": "", + "Parameter_Conditions": "Savanna fires", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "g/kg dry matter combusted", + "Equation": "To be used in Equation 3.2.20 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet GL-2d of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Table 3A.1.16, on page 3.185", + "Technical_Reference": "Delmas et al. (1995)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "IPCC default", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:03.903Z", + "last_change_date": "2022-03-14T08:10:03.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13800, + "fields": { + "EF_ID": 513444, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Roundwood harvest (Coniferous)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.45", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:03.978Z", + "last_change_date": "2022-03-14T08:10:03.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13801, + "fields": { + "EF_ID": 513445, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Roundwood harvest (Non-Coniferous)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.56", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.103Z", + "last_change_date": "2022-03-14T08:10:04.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13802, + "fields": { + "EF_ID": 513446, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Solidwood products - Saw wood (Coniferous)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.45", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.203Z", + "last_change_date": "2022-03-14T08:10:04.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13803, + "fields": { + "EF_ID": 513447, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Solidwood products - Saw wood (Non Coniferous)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.56", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.295Z", + "last_change_date": "2022-03-14T08:10:04.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13804, + "fields": { + "EF_ID": 513448, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Solidwood products - Veneer sheets", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.59", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.370Z", + "last_change_date": "2022-03-14T08:10:04.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13805, + "fields": { + "EF_ID": 513449, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Solidwood products - Plywood", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.48", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.445Z", + "last_change_date": "2022-03-14T08:10:04.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13806, + "fields": { + "EF_ID": 513450, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Solidwood products - Particle board", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.26", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.538Z", + "last_change_date": "2022-03-14T08:10:04.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13807, + "fields": { + "EF_ID": 513451, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Solidwood products - Fibreboard Compressed", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-1994", + "Value": "1.02", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.620Z", + "last_change_date": "2022-03-14T08:10:04.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13808, + "fields": { + "EF_ID": 513452, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Solidwood products - Hardboard", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1995-2000", + "Value": "1.02", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.695Z", + "last_change_date": "2022-03-14T08:10:04.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13809, + "fields": { + "EF_ID": 513453, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Solidwood products - MDF", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1995-2000", + "Value": "0.50", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.770Z", + "last_change_date": "2022-03-14T08:10:04.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13810, + "fields": { + "EF_ID": 513454, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Pulp, Paper and Paperboard - Paper and paperboard", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.9", + "Unit": "Gg/Gg", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "One tonne of paper or pulp air dry are assumed to have 0.9 tonne of paper or pulp oven dry. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.866Z", + "last_change_date": "2022-03-14T08:10:04.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13811, + "fields": { + "EF_ID": 513455, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Pulp, Paper and Paperboard - Recovered paper", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1970-2000 (Values set to zero from 1900 to 1969)", + "Value": "0.9", + "Unit": "Gg/Gg", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "One tonne of paper or pulp air dry are assumed to have 0.9 tonne of paper or pulp oven dry. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:04.945Z", + "last_change_date": "2022-03-14T08:10:04.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13812, + "fields": { + "EF_ID": 513456, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Pulp, Paper and Paperboard - Wood pulp", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.9", + "Unit": "Gg/Gg", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "One tonne of paper or pulp air dry are assumed to have 0.9 tonne of paper or pulp oven dry. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.028Z", + "last_change_date": "2022-03-14T08:10:05.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13813, + "fields": { + "EF_ID": 513457, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Pulp, Paper and Paperboard - Recovered fibre pulp", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1998-2000", + "Value": "0.9", + "Unit": "Gg/Gg", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "One tonne of paper or pulp air dry are assumed to have 0.9 tonne of paper or pulp oven dry. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.112Z", + "last_change_date": "2022-03-14T08:10:05.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13814, + "fields": { + "EF_ID": 513458, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Pulp, Paper and Paperboard - Other fiber pulp", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.9", + "Unit": "Gg/Gg", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "One tonne of paper or pulp air dry are assumed to have 0.9 tonne of paper or pulp oven dry. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.217Z", + "last_change_date": "2022-03-14T08:10:05.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13815, + "fields": { + "EF_ID": 513459, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Industrial roundwood (Coniferous)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.49", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.311Z", + "last_change_date": "2022-03-14T08:10:05.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13816, + "fields": { + "EF_ID": 513460, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Industrial roundwood (Non-Coniferous)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1961-2000", + "Value": "0.56", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.387Z", + "last_change_date": "2022-03-14T08:10:05.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13817, + "fields": { + "EF_ID": 513461, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Industrial roundwood (Coniferous)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1990-2000", + "Value": "0.49", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.478Z", + "last_change_date": "2022-03-14T08:10:05.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13818, + "fields": { + "EF_ID": 513462, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Conversion Factor (Gg of oven dry product per m3 or Gg of product)", + "Technology_Practices": "", + "Parameter_Conditions": "Relevant FAO Product Data: Industrial roundwood (Non-Coniferous)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Time period for data: 1990-2000", + "Value": "0.56", + "Unit": "Gg/m3", + "Equation": "Equation 3a.1.1 and Table 3a.1.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "Haynes et al. (1990). An Analysis of the timber situation in the United States: 1989-2040. USDA Forest Service. Gen. Tech. Rpt. RM-199. 268 p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF (in particular, Equation 3a.1.1 and Table 3a.1.1).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.577Z", + "last_change_date": "2022-03-14T08:10:05.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13819, + "fields": { + "EF_ID": 513463, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.661Z", + "last_change_date": "2022-03-14T08:10:05.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13820, + "fields": { + "EF_ID": 513464, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Veneer, plywood and structural panels", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.737Z", + "last_change_date": "2022-03-14T08:10:05.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13821, + "fields": { + "EF_ID": 513465, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Non structural panels", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.811Z", + "last_change_date": "2022-03-14T08:10:05.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13822, + "fields": { + "EF_ID": 513466, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.1", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.904Z", + "last_change_date": "2022-03-14T08:10:05.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13823, + "fields": { + "EF_ID": 513467, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood and plywood (based on change in inventory of products)", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Perälä A.L., and Pussinen A. (2001). Carbon dynamics in wood products. Mitigation and Adaptation Strategies for Global Change 6: pp. 91-111.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:05.995Z", + "last_change_date": "2022-03-14T08:10:05.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13824, + "fields": { + "EF_ID": 513468, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood and plywood average", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Karjalainen T., Kellomaki S., and Pussinen A. (1994). Role of Wood-based Products in Absorbing Atmospheric Carbon. Silva Fennica 28 (2): pp. 67-80.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.070Z", + "last_change_date": "2022-03-14T08:10:06.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13825, + "fields": { + "EF_ID": 513469, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper from mechanical pulp average", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Karjalainen T., Kellomaki S., and Pussinen A. (1994). Role of Wood-based Products in Absorbing Atmospheric Carbon. Silva Fennica 28 (2): pp. 67-80.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.145Z", + "last_change_date": "2022-03-14T08:10:06.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13826, + "fields": { + "EF_ID": 513470, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper from chemical pulp average", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Karjalainen T., Kellomaki S., and Pussinen A. (1994). Role of Wood-based Products in Absorbing Atmospheric Carbon. Silva Fennica 28 (2): pp. 67-80.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.239Z", + "last_change_date": "2022-03-14T08:10:06.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13827, + "fields": { + "EF_ID": 513471, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Average for paper", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.320Z", + "last_change_date": "2022-03-14T08:10:06.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13828, + "fields": { + "EF_ID": 513472, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Newsprint, household, sanitary paper", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.395Z", + "last_change_date": "2022-03-14T08:10:06.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13829, + "fields": { + "EF_ID": 513473, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Linerboard fluting and folding boxboard", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.470Z", + "last_change_date": "2022-03-14T08:10:06.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13830, + "fields": { + "EF_ID": 513474, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: 80 % of printing and writing paper", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.567Z", + "last_change_date": "2022-03-14T08:10:06.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13831, + "fields": { + "EF_ID": 513475, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: 20% of printing and writing paper", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.645Z", + "last_change_date": "2022-03-14T08:10:06.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13832, + "fields": { + "EF_ID": 513476, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.720Z", + "last_change_date": "2022-03-14T08:10:06.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13833, + "fields": { + "EF_ID": 513477, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Packing wood", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.819Z", + "last_change_date": "2022-03-14T08:10:06.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13834, + "fields": { + "EF_ID": 513478, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Particleboard", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.912Z", + "last_change_date": "2022-03-14T08:10:06.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13835, + "fields": { + "EF_ID": 513479, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood average", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:06.995Z", + "last_change_date": "2022-03-14T08:10:06.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13836, + "fields": { + "EF_ID": 513480, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood - spruce & poplar", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.111Z", + "last_change_date": "2022-03-14T08:10:07.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13837, + "fields": { + "EF_ID": 513481, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood - oak & beech", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.194Z", + "last_change_date": "2022-03-14T08:10:07.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13838, + "fields": { + "EF_ID": 513482, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.262Z", + "last_change_date": "2022-03-14T08:10:07.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13839, + "fields": { + "EF_ID": 513483, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Structural panels", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.362Z", + "last_change_date": "2022-03-14T08:10:07.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13840, + "fields": { + "EF_ID": 513484, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Non structural panels", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.453Z", + "last_change_date": "2022-03-14T08:10:07.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13841, + "fields": { + "EF_ID": 513485, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper (free sheet)", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.612Z", + "last_change_date": "2022-03-14T08:10:07.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13842, + "fields": { + "EF_ID": 513486, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half Life of Harvested Wood Products in Use - Example from Studies", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Other paper (Paper other than paper (free sheet))", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "years", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.678Z", + "last_change_date": "2022-03-14T08:10:07.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13843, + "fields": { + "EF_ID": 513487, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0198", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.764Z", + "last_change_date": "2022-03-14T08:10:07.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13844, + "fields": { + "EF_ID": 513488, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Veneer, plywood and structural panels", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0231", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.844Z", + "last_change_date": "2022-03-14T08:10:07.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13845, + "fields": { + "EF_ID": 513489, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Non structural panels", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0347", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.912Z", + "last_change_date": "2022-03-14T08:10:07.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13846, + "fields": { + "EF_ID": 513490, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3466", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:07.978Z", + "last_change_date": "2022-03-14T08:10:07.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13847, + "fields": { + "EF_ID": 513491, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood and plywood (based on change in inventory of products)", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0231", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Perälä A.L., and Pussinen A. (2001). Carbon dynamics in wood products. Mitigation and Adaptation Strategies for Global Change 6: pp. 91-111.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.066Z", + "last_change_date": "2022-03-14T08:10:08.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13848, + "fields": { + "EF_ID": 513492, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood and plywood average", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0139", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Karjalainen T., Kellomaki S., and Pussinen A. (1994). Role of Wood-based Products in Absorbing Atmospheric Carbon. Silva Fennica 28 (2): pp. 67-80.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.144Z", + "last_change_date": "2022-03-14T08:10:08.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13849, + "fields": { + "EF_ID": 513493, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper from mechanical pulp average", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.099", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Karjalainen T., Kellomaki S., and Pussinen A. (1994). Role of Wood-based Products in Absorbing Atmospheric Carbon. Silva Fennica 28 (2): pp. 67-80.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.220Z", + "last_change_date": "2022-03-14T08:10:08.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13850, + "fields": { + "EF_ID": 513494, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper from chemical pulp average", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1308", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Karjalainen T., Kellomaki S., and Pussinen A. (1994). Role of Wood-based Products in Absorbing Atmospheric Carbon. Silva Fennica 28 (2): pp. 67-80.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.295Z", + "last_change_date": "2022-03-14T08:10:08.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13851, + "fields": { + "EF_ID": 513495, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Average for paper", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3851", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.403Z", + "last_change_date": "2022-03-14T08:10:08.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13852, + "fields": { + "EF_ID": 513496, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Newsprint, household, sanitary paper", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3863", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.486Z", + "last_change_date": "2022-03-14T08:10:08.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13853, + "fields": { + "EF_ID": 513497, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Linerboard fluting and folding boxboard", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6931", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.553Z", + "last_change_date": "2022-03-14T08:10:08.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13854, + "fields": { + "EF_ID": 513498, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: 80 % of printing and writing paper", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6931", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.645Z", + "last_change_date": "2022-03-14T08:10:08.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13855, + "fields": { + "EF_ID": 513499, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: 20% of printing and writing paper", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0693", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pingoud K., Savolainen I., and Seppälä H. (1996). Greenhouse impact of the Finnish forest sector including forest products and waste management. Ambio 25: pp. 318-326.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.728Z", + "last_change_date": "2022-03-14T08:10:08.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13856, + "fields": { + "EF_ID": 513500, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3466", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.803Z", + "last_change_date": "2022-03-14T08:10:08.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13857, + "fields": { + "EF_ID": 513501, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Packing wood", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.231", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:08.914Z", + "last_change_date": "2022-03-14T08:10:08.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13858, + "fields": { + "EF_ID": 513502, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Particleboard", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0347", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.011Z", + "last_change_date": "2022-03-14T08:10:09.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13859, + "fields": { + "EF_ID": 513503, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood average", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0198", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.086Z", + "last_change_date": "2022-03-14T08:10:09.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13860, + "fields": { + "EF_ID": 513504, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood - spruce & poplar", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0385", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.181Z", + "last_change_date": "2022-03-14T08:10:09.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13861, + "fields": { + "EF_ID": 513505, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood - oak & beech", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0154", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Nabuurs G.J. and Sikkema R. (1998). Application and Evaluation of the Alternative IPCC Methods for Harvested Wood Products in the National Communications; Proceedings for the IPCC Expert Meeting on Evaluating approaches for estimating net emissions from harvested wood products, Wageningen, The Netherlands", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.261Z", + "last_change_date": "2022-03-14T08:10:09.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13862, + "fields": { + "EF_ID": 513506, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Saw wood", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0173", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.1, Table 3a.1.3", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.327Z", + "last_change_date": "2022-03-14T08:10:09.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13863, + "fields": { + "EF_ID": 513507, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Structural panels", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0154", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.424Z", + "last_change_date": "2022-03-14T08:10:09.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13864, + "fields": { + "EF_ID": 513508, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Non structural panels", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0301", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.503Z", + "last_change_date": "2022-03-14T08:10:09.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13865, + "fields": { + "EF_ID": 513509, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Paper (free sheet)", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1155", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.586Z", + "last_change_date": "2022-03-14T08:10:09.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13866, + "fields": { + "EF_ID": 513510, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of HWP carbon in use in a country in a given year that is discarded in that year (Fraction loss each year)", + "Technology_Practices": "", + "Parameter_Conditions": "Harvested Wood Product Category: Other paper (Paper other than paper (free sheet))", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6931", + "Unit": "fraction", + "Equation": "See page 3.264, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Skog K., and Nicholson G. (1998). Carbon Cycling through Wood Products: The Role of Wood and Paper Products in Carbon Sequestration. Forest Products Journal 48 (7/8): pp. 75-83.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It is recommended that use of these estimated half lives be accompanied with verification of the resulting stock change estimates as indicated, for example, in Section 3a.1.5 of the IPCC Good Practice Guidance for LULUCF. Adjustments in half lives may be needed as a result. Users are highly encouraged to consult Appendix 3a.1 of the IPCC Good Practice Guidance for LULUCF.", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.684Z", + "last_change_date": "2022-03-14T08:10:09.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13867, + "fields": { + "EF_ID": 513511, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for N2O from Drainage of Forest Soils", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Nutrient Poor Organic Soil", + "Regional_Conditions": "Temperate and Boreal Climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 3a.2.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alm J., Saarnio S., Nykanen H., Silvola J. and Martikainen P.J. (1999). Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44: pp. 163-186.; Laine J., Silvola J., Tolonen K., Alm J., Nykanen H., Vasander H., Sallantaus T., Savolainen I., Sinisalo J., and Martikainen P. J. (1996). Effect of water-level drawdown on global climatic warming - northern peatlands. Ambio 25: pp. 179-184.; Martikainen P. J., Nykanen H., Alm J., and Silvola J. (1995). Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant & Soil 169: pp. 571-577.; Regina K., Nykänen H., Silvola J., and Martikainen P. J. (1996). Nitrous oxide production in boreal peatlands of different hydrology and nutrient status. In: Northern peatlands in global climatic change. Proceedings of the international workshop. Academy of Finland, Hyytiälä: pp. 158-166.", + "English_Abstract": "", + "Lower_Bound": "0.02", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.771Z", + "last_change_date": "2022-03-14T08:10:09.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13868, + "fields": { + "EF_ID": 513512, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for N2O from Drainage of Forest Soils", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Nutrient Rich Organic Soil", + "Regional_Conditions": "Temperate and Boreal Climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 3a.2.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Klemedtsson L., Weslien P., Arnold K., Agren G., Nilsson M., and Hanell B. (2002). Greenhouse gas emissions from drained forests in Sweden. In: Olsson M. (ed.) Land use strategies for reckoning net greenhouse gas emissions. Mistra Programme: Progress report 1999-2002. Swedish University of Agricultural Sciences. Uppsala: pp. 44-67.; Laine J., Silvola J., Tolonen K., Alm J., Nykanen H., Vasander H., Sallantaus T., Savolainen I., Sinisalo J., and Martikainen P. J. (1996). Effect of water-level drawdown on global climatic warming - northern peatlands. Ambio 25: pp. 179-184.; Martikainen P. J., Nykanen H., Alm J., and Silvola J. (1995). Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant & Soil 169: pp. 571-577.; Regina K., Nykänen H., Silvola J., and Martikainen P. J. (1996). Nitrous oxide production in boreal peatlands of different hydrology and nutrient status. In: Northern peatlands in global climatic change. Proceedings of the international workshop. Academy of Finland, Hyytiälä: pp. 158-166.", + "English_Abstract": "", + "Lower_Bound": "0.16", + "Upper_Bound": "2.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.845Z", + "last_change_date": "2022-03-14T08:10:09.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13869, + "fields": { + "EF_ID": 513513, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for N2O from Drainage of Forest Soils", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Mineral Soil", + "Regional_Conditions": "Temperate and Boreal Climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 3a.2.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Klemedtsson L., Weslien P., Arnold K., Agren G., Nilsson M., and Hanell B. (2002). Greenhouse gas emissions from drained forests in Sweden. In: Olsson M. (ed.) Land use strategies for reckoning net greenhouse gas emissions. Mistra Programme: Progress report 1999-2002. Swedish University of Agricultural Sciences. Uppsala: pp. 44-67.", + "English_Abstract": "", + "Lower_Bound": "0.02", + "Upper_Bound": "0.24", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:09.936Z", + "last_change_date": "2022-03-14T08:10:09.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13870, + "fields": { + "EF_ID": 513514, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for N2O from Drainage of Forest Soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 3a.2.1, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "See Comments from Data Provider.Compiled by Risto Sievanen and Keith Smith", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "24", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimated as half the factor of drained organic croplands. Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2).", + "Other_Comments": "", + "Data_Provider": "Gert-Jan Nabuurs and N.H. Ravindranath", + "Link": "", + "creation_date": "2022-03-14T08:10:10.021Z", + "last_change_date": "2022-03-14T08:10:10.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13871, + "fields": { + "EF_ID": 513515, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Aspen", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0096", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.104Z", + "last_change_date": "2022-03-14T08:10:10.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13872, + "fields": { + "EF_ID": 513516, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Soft Maple", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0118", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.179Z", + "last_change_date": "2022-03-14T08:10:10.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13873, + "fields": { + "EF_ID": 513517, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Mixed Hardwood", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.271Z", + "last_change_date": "2022-03-14T08:10:10.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13874, + "fields": { + "EF_ID": 513518, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Hardwood Maple", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0142", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.362Z", + "last_change_date": "2022-03-14T08:10:10.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13875, + "fields": { + "EF_ID": 513519, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Juniper", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0033", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.437Z", + "last_change_date": "2022-03-14T08:10:10.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13876, + "fields": { + "EF_ID": 513520, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Cedar/larch", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0072", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.512Z", + "last_change_date": "2022-03-14T08:10:10.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13877, + "fields": { + "EF_ID": 513521, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Douglas fir", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0122", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.595Z", + "last_change_date": "2022-03-14T08:10:10.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13878, + "fields": { + "EF_ID": 513522, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: True fir/Hemlock", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0104", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.687Z", + "last_change_date": "2022-03-14T08:10:10.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13879, + "fields": { + "EF_ID": 513523, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Pine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0087", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.790Z", + "last_change_date": "2022-03-14T08:10:10.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13880, + "fields": { + "EF_ID": 513524, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Average Annual Carbon Accumulation per Tree in Urban Trees by Species Classes", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Spruce", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0092", + "Unit": "tonne C/year", + "Equation": "Equation 3a.4.3B (Tier1b), IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Not applicable", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.2, Table 3a.2.1", + "Technical_Reference": "Nowak, D.J.; Crane, D.E. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116(3): 381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "William Hohenstein", + "Link": "", + "creation_date": "2022-03-14T08:10:10.887Z", + "last_change_date": "2022-03-14T08:10:10.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13881, + "fields": { + "EF_ID": 513525, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for CO2-C from Organic Soils after Drainage (Organic Soils Managed for Peat Extraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Nutrient Poor Organic Soil", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3a.3.6, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1c of GPG-LULUCF", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Laine, J., and K. Minkkinen. (1996). Effect of forest drainage on the carbon balance of a mire - a case study. Scandinavian Journal of Forest Research 11:307-312.; Alm, J., S. Saarnio, H. Nykanen, J. Silvola, and P. J. Martikainen. (1999). Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163-186.; Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykanen, H. Vasander, T. Sallantaus, I. Savolainen, J. Sinisalo, and P. J. Martikainen. (1996). Effect of water-level drawdown on global climatic warming - northern peatlands. Ambio 25:179-184.; Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine.( 2002). Carbon balance and radiative forcing of Finnish peatlands 1900-2100 the impact of forestry drainage. Global Change Biology 8:785-799.", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "0.63", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value has been developed as the mean from a review of paired plot measurements, assuming that conditions on organic soils converted to peat extraction are lightly drained only. Most of the data are from Europe.", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:10.962Z", + "last_change_date": "2022-03-14T08:10:10.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13882, + "fields": { + "EF_ID": 513526, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for CO2-C from Organic Soils after Drainage (Organic Soils Managed for Peat Extraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Nutrient Rich Organic Soil", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3a.3.6, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1c of GPG-LULUCF", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykanen, H. Vasander, T. Sallantaus, I. Savolainen, J. Sinisalo, and P. J. Martikainen. (1996). Effect of water-level drawdown on global climatic warming - northern peatlands. Ambio 25:179-184.; LUSTRA (2002): Land Use Strategies for Reducing Net Greenhouse Gas Emissions. Annual Report 2002, Uppsala, Sweden. http://www.sml.slu.se/lustra/index.phtml; Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine.( 2002). Carbon balance and radiative forcing of Finnish peatlands 1900-2100 the impact of forestry drainage. Global Change Biology 8:785-799.; Sundh, I., Nilsson, M., Mikkela, C., Granberg, G., Svensson, B.H.,( 2000). Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29(8), 499-503.", + "English_Abstract": "", + "Lower_Bound": "0.03", + "Upper_Bound": "2.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value has been developed as the mean from a review of paired plot measurements, assuming that conditions on organic soils converted to peat extraction are lightly drained only. Most of the data are from Europe.", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.037Z", + "last_change_date": "2022-03-14T08:10:11.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13883, + "fields": { + "EF_ID": 513527, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for CO2-C from Organic Soils after Drainage (Organic Soils Managed for Peat Extraction)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3a.3.6, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1c of GPG-LULUCF", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "See Comments from Data Provider.", + "English_Abstract": "", + "Lower_Bound": "0.06", + "Upper_Bound": "6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculated from the relative difference between temperate (nutrient poor) and tropical in Table 3.3.5 of IPCC Good Practice Guidance for LULUCF (page 3.79).", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.134Z", + "last_change_date": "2022-03-14T08:10:11.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13884, + "fields": { + "EF_ID": 513528, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for N2O from Wetlands (Drained Peatland)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Nutrient Poor Organic Soil", + "Regional_Conditions": "Temperate and Boreal Climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 3a.3.7, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d1 of GPG-LULUCF", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alm, J., S. Saarnio, H. Nykanen, J. Silvola, and P. J. Martikainen. (1999). Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163-186.; Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykanen, H. Vasander, T. Sallantaus, I. Savolainen, J. Sinisalo, and P. J. Martikainen. (1996). Effect of water-level drawdown on global climatic warming - northern peatlands. Ambio 25:179-184.; Martikainen, P. J., H. Nykanen, J. Alm, and J. Silvola. (1995). Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant & Soil 169:571-577.; Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine.( 2002). Carbon balance and radiative forcing of Finnish peatlands 1900-2100 the impact of forestry drainage. Global Change Biology 8:785-799.; Regina, K., H. Nykänen, J. Silvola, and P. J. Martikainen. (1996). Nitrous oxide production in boreal peatlands of different hydrology and nutrient status. Pages 158-166 in Northern peatlands in global climatic change. Proceedings of the international workshop. Academy of Finland, Hyytiälä", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.221Z", + "last_change_date": "2022-03-14T08:10:11.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13885, + "fields": { + "EF_ID": 513529, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission Factor for N2O from Wetlands (Drained Peatland)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Nutrient Rich Organic Soil", + "Regional_Conditions": "Temperate and Boreal Climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 3a.3.7, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d1 of GPG-LULUCF", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alm, J., S. Saarnio, H. Nykanen, J. Silvola, and P. J. Martikainen. (1999). Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry 44:163-186.; Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykanen, H. Vasander, T. Sallantaus, I. Savolainen, J. Sinisalo, and P. J. Martikainen. (1996). Effect of water-level drawdown on global climatic warming - northern peatlands. Ambio 25:179-184.; Martikainen, P. J., H. Nykanen, J. Alm, and J. Silvola. (1995). Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant & Soil 169:571-577.; Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine.( 2002). Carbon balance and radiative forcing of Finnish peatlands 1900-2100 the impact of forestry drainage. Global Change Biology 8:785-799.; Regina, K., H. Nykänen, J. Silvola, and P. J. Martikainen. (1996). Nitrous oxide production in boreal peatlands of different hydrology and nutrient status. Pages 158-166 in Northern peatlands in global climatic change. Proceedings of the international workshop. Academy of Finland, Hyytiälä", + "English_Abstract": "", + "Lower_Bound": "0.2", + "Upper_Bound": "2.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.296Z", + "last_change_date": "2022-03-14T08:10:11.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13886, + "fields": { + "EF_ID": 513530, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for N2O from Wetlands (Drained Peatland)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 3a.3.7, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d1 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.4", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "2", + "Upper_Bound": "25", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value for tropical areas is calculated from the relative difference between temperate and tropical in Chapter 4 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories and the IPCC report on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG2000). The same approach was used in Table 3.2.2 of IPCC Good Practice Guidance for LULUCF and the orders of magnitude are similar.", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.393Z", + "last_change_date": "2022-03-14T08:10:11.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13887, + "fields": { + "EF_ID": 513531, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Boreal, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É, (2000), Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Disseration, Université du Québec a Montréal, Montréal (Québec), Canada, 321 p; Huttunen, J.T., T.S. Vaisanen, S. K. Hellsten, M. Heikkinen, H. Nykanen, H. Jungner, A. Niskanen, M. O. Virtanen, O.V. Lindqvist, O. S. Nenonen, and P.J. Martikanen, (2002), Fluxes of CH4, CO2, and N2O in hydroelectric reservoir Lokka and Porttipahata in the northern boreal zone in Finland, Global Biogeochemical Cycles, 16,1.; Schlellhase, H.U. (1994). B.C. Hydro Strategic R&D; Carbon project - Reservoir case study, Powertech Labs inc., Final Report, 1-57.; Duchemin, É., R. Canuel, P. Ferland, and M. Lucotte, (1999), Étude sur la production et l`émission de gaz a effet de serre par les réservoirs hydroélectriques d`Hydro-Québec et des lacs naturels (Volet 2), Scientific report, Direction principal Planification Stratégique - Hydro-Québec, 21046-99027c, 48p.", + "English_Abstract": "", + "Lower_Bound": "-88%", + "Upper_Bound": "+88%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.479Z", + "last_change_date": "2022-03-14T08:10:11.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13888, + "fields": { + "EF_ID": 513532, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Boreal, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.5", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É, (2000), Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Disseration, Université du Québec a Montréal, Montréal (Québec), Canada, 321 p; Huttunen, J.T., T.S. Vaisanen, S. K. Hellsten, M. Heikkinen, H. Nykanen, H. Jungner, A. Niskanen, M. O. Virtanen, O.V. Lindqvist, O. S. Nenonen, and P.J. Martikanen, (2002), Fluxes of CH4, CO2, and N2O in hydroelectric reservoir Lokka and Porttipahata in the northern boreal zone in Finland, Global Biogeochemical Cycles, 16,1.; Schlellhase, H.U. (1994). B.C. Hydro Strategic R&D; Carbon project - Reservoir case study, Powertech Labs inc., Final Report, 1-57.; Duchemin, É., R. Canuel, P. Ferland, and M. Lucotte, (1999), Étude sur la production et l`émission de gaz a effet de serre par les réservoirs hydroélectriques d`Hydro-Québec et des lacs naturels (Volet 2), Scientific report, Direction principal Planification Stratégique - Hydro-Québec, 21046-99027c, 48p.", + "English_Abstract": "", + "Lower_Bound": "-56%", + "Upper_Bound": "+56%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.554Z", + "last_change_date": "2022-03-14T08:10:11.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13889, + "fields": { + "EF_ID": 513533, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Boreal, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d4 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É, (2000), Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Disseration, Université du Québec a Montréal, Montréal (Québec), Canada, 321 p; Huttunen, J.T., T.S. Vaisanen, S. K. Hellsten, M. Heikkinen, H. Nykanen, H. Jungner, A. Niskanen, M. O. Virtanen, O.V. Lindqvist, O. S. Nenonen, and P.J. Martikanen, (2002), Fluxes of CH4, CO2, and N2O in hydroelectric reservoir Lokka and Porttipahata in the northern boreal zone in Finland, Global Biogeochemical Cycles, 16,1.; Schlellhase, H.U. (1994). B.C. Hydro Strategic R&D; Carbon project - Reservoir case study, Powertech Labs inc., Final Report, 1-57.; Duchemin, É., R. Canuel, P. Ferland, and M. Lucotte, (1999), Étude sur la production et l`émission de gaz a effet de serre par les réservoirs hydroélectriques d`Hydro-Québec et des lacs naturels (Volet 2), Scientific report, Direction principal Planification Stratégique - Hydro-Québec, 21046-99027c, 48p.", + "English_Abstract": "", + "Lower_Bound": "-300%", + "Upper_Bound": "+300%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.646Z", + "last_change_date": "2022-03-14T08:10:11.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13890, + "fields": { + "EF_ID": 513534, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Cold temperate, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É, (2000), Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Disseration, Université du Québec a Montréal, Montréal (Québec), Canada, 321 p; Duchemin, É. (2002), Greenhouse gases emissions from US reservoirs: Spot sampling in the Columbia River Basin and in the Sierra Nevada region, Report for Environmental Fund Defense, DREXenvironment, 47p.; St-Louis, V., C. A. Kelly, É. Duchemin, J. W. M. Rudd and D.M. Rosenberg. (2000). Reservoir surfaces as sources of greenhouse gases: a global estimate, Bioscience, 50,9, 766-775.; Smith, L.K., and W.M. Lewis, (1992), Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies, Global Biogeochemical Cycles, 6, 4, 323-338", + "English_Abstract": "", + "Lower_Bound": "-55%", + "Upper_Bound": "+55%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.729Z", + "last_change_date": "2022-03-14T08:10:11.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13891, + "fields": { + "EF_ID": 513535, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Cold temperate, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.3", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É, (2000), Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Disseration, Université du Québec a Montréal, Montréal (Québec), Canada, 321 p; Duchemin, É. (2002), Greenhouse gases emissions from US reservoirs: Spot sampling in the Columbia River Basin and in the Sierra Nevada region, Report for Environmental Fund Defense, DREXenvironment, 47p.; St-Louis, V., C. A. Kelly, É. Duchemin, J. W. M. Rudd and D.M. Rosenberg. (2000). Reservoir surfaces as sources of greenhouse gases: a global estimate, Bioscience, 50,9, 766-775.; Smith, L.K., and W.M. Lewis, (1992), Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies, Global Biogeochemical Cycles, 6, 4, 323-338", + "English_Abstract": "", + "Lower_Bound": "-55%", + "Upper_Bound": "+55%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.822Z", + "last_change_date": "2022-03-14T08:10:11.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13892, + "fields": { + "EF_ID": 513536, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.063", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É., (2002), Canadian Reservoir Database, Environment Canada/DREXenvironment, CD-ROM.", + "English_Abstract": "", + "Lower_Bound": "-0.032", + "Upper_Bound": "+0.032", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.904Z", + "last_change_date": "2022-03-14T08:10:11.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13893, + "fields": { + "EF_ID": 513537, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-3.1", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É., (2002), Canadian Reservoir Database, Environment Canada/DREXenvironment, CD-ROM.", + "English_Abstract": "", + "Lower_Bound": "-3.6", + "Upper_Bound": "+3.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:11.979Z", + "last_change_date": "2022-03-14T08:10:11.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13894, + "fields": { + "EF_ID": 513538, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Warm Temperate, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.096", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É., (2002), Canadian Reservoir Database, Environment Canada/DREXenvironment, CD-ROM.", + "English_Abstract": "", + "Lower_Bound": "-0.074", + "Upper_Bound": "+0.074", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.054Z", + "last_change_date": "2022-03-14T08:10:12.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13895, + "fields": { + "EF_ID": 513539, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Warm Temperate, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.2", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É., (2002), Canadian Reservoir Database, Environment Canada/DREXenvironment, CD-ROM.", + "English_Abstract": "", + "Lower_Bound": "-6.9", + "Upper_Bound": "+6.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.149Z", + "last_change_date": "2022-03-14T08:10:12.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13896, + "fields": { + "EF_ID": 513540, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Keller, M. and R.F. Stallard. (1994). Methane emission by bubbling from Gatun lake, Panama, J. Geophys. Res., 99, D4, 8307-8319.; Galy-Lacaux, C., R. Delmas, C. Jambert, J.-F. Dumestre, L. Labroue, S. Richard and P. Gosse, (1997), Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana, Global Biogeochemical Cycle, 11,4, 471-483.; Duchemin, É., M. Lucotte, R. Canuel, D. Almeida Cruz, H. C. Pereira, J. Dezincourt and A. G. Queiroz, (2000), Comparison of Greenhouse Gas Emissions from an Old Tropical Reservoir and from other Reservoirs Worldwide, Verh. International Verein. Limnol., 27, 3, 1391-1395.; Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.", + "English_Abstract": "", + "Lower_Bound": "-330%", + "Upper_Bound": "+300%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.296Z", + "last_change_date": "2022-03-14T08:10:12.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13897, + "fields": { + "EF_ID": 513541, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60.4", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Keller, M. and R.F. Stallard. (1994). Methane emission by bubbling from Gatun lake, Panama, J. Geophys. Res., 99, D4, 8307-8319.; Galy-Lacaux, C., R. Delmas, C. Jambert, J.-F. Dumestre, L. Labroue, S. Richard and P. Gosse, (1997), Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana, Global Biogeochemical Cycle, 11,4, 471-483.; Duchemin, É., M. Lucotte, R. Canuel, D. Almeida Cruz, H. C. Pereira, J. Dezincourt and A. G. Queiroz, (2000), Comparison of Greenhouse Gas Emissions from an Old Tropical Reservoir and from other Reservoirs Worldwide, Verh. International Verein. Limnol., 27, 3, 1391-1395.; Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.", + "English_Abstract": "", + "Lower_Bound": "-145%", + "Upper_Bound": "+145%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.371Z", + "last_change_date": "2022-03-14T08:10:12.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13898, + "fields": { + "EF_ID": 513542, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.10, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d4 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Keller, M. and R.F. Stallard. (1994). Methane emission by bubbling from Gatun lake, Panama, J. Geophys. Res., 99, D4, 8307-8319.; Galy-Lacaux, C., R. Delmas, C. Jambert, J.-F. Dumestre, L. Labroue, S. Richard and P. Gosse, (1997), Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana, Global Biogeochemical Cycle, 11,4, 471-483.; Duchemin, É., M. Lucotte, R. Canuel, D. Almeida Cruz, H. C. Pereira, J. Dezincourt and A. G. Queiroz, (2000), Comparison of Greenhouse Gas Emissions from an Old Tropical Reservoir and from other Reservoirs Worldwide, Verh. International Verein. Limnol., 27, 3, 1391-1395.; Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.445Z", + "last_change_date": "2022-03-14T08:10:12.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13899, + "fields": { + "EF_ID": 513543, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, moist-long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.; Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "-190%", + "Upper_Bound": "+190%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.543Z", + "last_change_date": "2022-03-14T08:10:12.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13900, + "fields": { + "EF_ID": 513544, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, moist-long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.65", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.; Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "-260%", + "Upper_Bound": "+260%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.629Z", + "last_change_date": "2022-03-14T08:10:12.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13901, + "fields": { + "EF_ID": 513545, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, mosit-short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.; Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "-465%", + "Upper_Bound": "+465%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.704Z", + "last_change_date": "2022-03-14T08:10:12.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13902, + "fields": { + "EF_ID": 513546, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, mosit-short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.1", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.; Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "-290%", + "Upper_Bound": "+290%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.803Z", + "last_change_date": "2022-03-14T08:10:12.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13903, + "fields": { + "EF_ID": 513547, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.; Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "-115%", + "Upper_Bound": "+115%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.887Z", + "last_change_date": "2022-03-14T08:10:12.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13904, + "fields": { + "EF_ID": 513548, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Diffusive Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58.7", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.; Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "-270%", + "Upper_Bound": "+270%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:12.963Z", + "last_change_date": "2022-03-14T08:10:12.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13905, + "fields": { + "EF_ID": 513549, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Bubbles Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Boreal, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É, (2000), Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Disseration, Université du Québec a Montréal, Montréal (Québec), Canada, 321 p; Huttunen, J.T., T.S. Vaisanen, S. K. Hellsten, M. Heikkinen, H. Nykanen, H. Jungner, A. Niskanen, M. O. Virtanen, O.V. Lindqvist, O. S. Nenonen, and P.J. Martikanen, (2002), Fluxes of CH4, CO2, and N2O in hydroelectric reservoir Lokka and Porttipahata in the northern boreal zone in Finland, Global Biogeochemical Cycles, 16,1.; Schlellhase, H.U. (1994). B.C. Hydro Strategic R&D; Carbon project - Reservoir case study, Powertech Labs inc., Final Report, 1-57.", + "English_Abstract": "", + "Lower_Bound": "-160%", + "Upper_Bound": "+160%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.037Z", + "last_change_date": "2022-03-14T08:10:13.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13906, + "fields": { + "EF_ID": 513550, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Bubbles Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Cold temperate, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É. (2002), Greenhouse gases emissions from US reservoirs: Spot sampling in the Columbia River Basin and in the Sierra Nevada region, Report for Environmental Fund Defense, DREXenvironment, 47p.; St-Louis, V., C. A. Kelly, É. Duchemin, J. W. M. Rudd and D.M. Rosenberg. (2000). Reservoir surfaces as sources of greenhouse gases: a global estimate, Bioscience, 50,9, 766-775.; Smith, L.K., and W.M. Lewis, (1992), Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies, Global Biogeochemical Cycles, 6, 4, 323-338.", + "English_Abstract": "", + "Lower_Bound": "-70%", + "Upper_Bound": "+70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.129Z", + "last_change_date": "2022-03-14T08:10:13.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13907, + "fields": { + "EF_ID": 513551, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Bubbles Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.83", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Galy-Lacaux, C., R. Delmas, C. Jambert, J.-F. Dumestre, L. Labroue, S. Richard and P. Gosse, (1997), Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana, Global Biogeochemical Cycle, 11,4, 471-483.; Duchemin, É., M. Lucotte, R. Canuel, D. Almeida Cruz, H. C. Pereira, J. Dezincourt and A. G. Queiroz, (2000), Comparison of Greenhouse Gas Emissions from an Old Tropical Reservoir and from other Reservoirs Worldwide, Verh. International Verein. Limnol., 27, 3, 1391-1395.; Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.", + "English_Abstract": "", + "Lower_Bound": "-45%", + "Upper_Bound": "+45%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.212Z", + "last_change_date": "2022-03-14T08:10:13.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13908, + "fields": { + "EF_ID": 513552, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Bubbles Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, moist-long dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.", + "English_Abstract": "", + "Lower_Bound": "-155%", + "Upper_Bound": "+155%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.287Z", + "last_change_date": "2022-03-14T08:10:13.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13909, + "fields": { + "EF_ID": 513553, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Bubbles Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, moist-short dry season", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.13", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.", + "English_Abstract": "", + "Lower_Bound": "-135%", + "Upper_Bound": "+135%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.381Z", + "last_change_date": "2022-03-14T08:10:13.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13910, + "fields": { + "EF_ID": 513554, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Bubbles Emissions from Reservoirs (Ice-free period)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Pinguelli Rosa, L., B. Matvienko Sikar, M.A. dos Santos, E. Matvienko Sikar, (2002), Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia - Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p.", + "English_Abstract": "", + "Lower_Bound": "-324%", + "Upper_Bound": "+324%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.471Z", + "last_change_date": "2022-03-14T08:10:13.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13911, + "fields": { + "EF_ID": 513555, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Emissions from Reservoirs associated with the ice cover period (Diffusive + Bubbles)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Boreal, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.9 and 3a.3.12, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É, (2000), Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Disseration, Université du Québec a Montréal, Montréal (Québec), Canada, 321 p; Duchemin, É., M. Lucotte, R. Canuel, (2002), CH4 and CO2 emissions from boreal reservoirs upon ice break-up, submitted to Global Biogeochemical Cycles.", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.546Z", + "last_change_date": "2022-03-14T08:10:13.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13912, + "fields": { + "EF_ID": 513556, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Emission Factor for Emissions from Reservoirs associated with the ice cover period (Diffusive + Bubbles)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Boreal, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "kg/ha/day", + "Equation": "Equation 3a.3.8 and 3a.3.11, IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d2 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.5", + "Technical_Reference": "Duchemin, É, (2000), Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Disseration, Université du Québec a Montréal, Montréal (Québec), Canada, 321 p; Duchemin, É., M. Lucotte, R. Canuel, (2002), CH4 and CO2 emissions from boreal reservoirs upon ice break-up, submitted to Global Biogeochemical Cycles.", + "English_Abstract": "", + "Lower_Bound": "-55%", + "Upper_Bound": "+55%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.621Z", + "last_change_date": "2022-03-14T08:10:13.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13913, + "fields": { + "EF_ID": 513557, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.32", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.733Z", + "last_change_date": "2022-03-14T08:10:13.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13914, + "fields": { + "EF_ID": 513560, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (Specific-country data)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.96", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "Malik, L.K., Koronkevich,N.I., Zaitseva, I.S., Barabanova, E.A. (2000). Development of Dams in the Russian Federation and NIS Countries, A WCD briefing paper prepared as an input to the World Commission on Dams, Cape Town, http://www.dams.org; US Army Corps. (1996). United States Army Corps of Engineers` national Inventory of Dams. Metadatabase.US Army Corps (Ed.). USA.; WCD, (2001), Dams and Development a new framework for Decision-Making, The report of the World Commission on Dams, Earthscan Publications Ltd, London and Sterling, VA, 356 p.Xue, Y., D.A. Kovacic, M.B. David, L.E. Gentry, R.L. Mulvaney and C.W. Lindau (1999). In situ measurements of denitrification in constructed wetlands. J. Environ. Qual. 28, 263-269.Xuehui, M, and Yan, H. 1996. Peat and peatlands in China. . In: Lappalainen (Ed.), Global Peat Resources, International Peat Society, Finland, pp 163-168.; Environment Canada Reservoir Database (Duchemin, 2002); Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.829Z", + "last_change_date": "2022-03-14T08:10:13.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13915, + "fields": { + "EF_ID": 513563, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (Specific-country data)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United States", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.98", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "Malik, L.K., Koronkevich,N.I., Zaitseva, I.S., Barabanova, E.A. (2000). Development of Dams in the Russian Federation and NIS Countries, A WCD briefing paper prepared as an input to the World Commission on Dams, Cape Town, http://www.dams.org; US Army Corps. (1996). United States Army Corps of Engineers` national Inventory of Dams. Metadatabase.US Army Corps (Ed.). USA.; WCD, (2001), Dams and Development a new framework for Decision-Making, The report of the World Commission on Dams, Earthscan Publications Ltd, London and Sterling, VA, 356 p.Xue, Y., D.A. Kovacic, M.B. David, L.E. Gentry, R.L. Mulvaney and C.W. Lindau (1999). In situ measurements of denitrification in constructed wetlands. J. Environ. Qual. 28, 263-269.Xuehui, M, and Yan, H. 1996. Peat and peatlands in China. . In: Lappalainen (Ed.), Global Peat Resources, International Peat Society, Finland, pp 163-168.; Environment Canada Reservoir Database (Duchemin, 2002); Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:13.904Z", + "last_change_date": "2022-03-14T08:10:13.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13916, + "fields": { + "EF_ID": 513566, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.009Z", + "last_change_date": "2022-03-14T08:10:14.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13917, + "fields": { + "EF_ID": 513569, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (Specific-country data)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "Malik, L.K., Koronkevich,N.I., Zaitseva, I.S., Barabanova, E.A. (2000). Development of Dams in the Russian Federation and NIS Countries, A WCD briefing paper prepared as an input to the World Commission on Dams, Cape Town, http://www.dams.org; US Army Corps. (1996). United States Army Corps of Engineers` national Inventory of Dams. Metadatabase.US Army Corps (Ed.). USA.; WCD, (2001), Dams and Development a new framework for Decision-Making, The report of the World Commission on Dams, Earthscan Publications Ltd, London and Sterling, VA, 356 p.Xue, Y., D.A. Kovacic, M.B. David, L.E. Gentry, R.L. Mulvaney and C.W. Lindau (1999). In situ measurements of denitrification in constructed wetlands. J. Environ. Qual. 28, 263-269.Xuehui, M, and Yan, H. 1996. Peat and peatlands in China. . In: Lappalainen (Ed.), Global Peat Resources, International Peat Society, Finland, pp 163-168.; Environment Canada Reservoir Database (Duchemin, 2002); Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.113Z", + "last_change_date": "2022-03-14T08:10:14.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13918, + "fields": { + "EF_ID": 513572, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (Specific-country data)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.8", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "Malik, L.K., Koronkevich,N.I., Zaitseva, I.S., Barabanova, E.A. (2000). Development of Dams in the Russian Federation and NIS Countries, A WCD briefing paper prepared as an input to the World Commission on Dams, Cape Town, http://www.dams.org; US Army Corps. (1996). United States Army Corps of Engineers` national Inventory of Dams. Metadatabase.US Army Corps (Ed.). USA.; WCD, (2001), Dams and Development a new framework for Decision-Making, The report of the World Commission on Dams, Earthscan Publications Ltd, London and Sterling, VA, 356 p.Xue, Y., D.A. Kovacic, M.B. David, L.E. Gentry, R.L. Mulvaney and C.W. Lindau (1999). In situ measurements of denitrification in constructed wetlands. J. Environ. Qual. 28, 263-269.Xuehui, M, and Yan, H. 1996. Peat and peatlands in China. . In: Lappalainen (Ed.), Global Peat Resources, International Peat Society, Finland, pp 163-168.; Environment Canada Reservoir Database (Duchemin, 2002); Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.219Z", + "last_change_date": "2022-03-14T08:10:14.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13919, + "fields": { + "EF_ID": 513575, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.57", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.304Z", + "last_change_date": "2022-03-14T08:10:14.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13920, + "fields": { + "EF_ID": 513578, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.411Z", + "last_change_date": "2022-03-14T08:10:14.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13921, + "fields": { + "EF_ID": 513581, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (Specific-country data)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.98", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "Malik, L.K., Koronkevich,N.I., Zaitseva, I.S., Barabanova, E.A. (2000). Development of Dams in the Russian Federation and NIS Countries, A WCD briefing paper prepared as an input to the World Commission on Dams, Cape Town, http://www.dams.org; US Army Corps. (1996). United States Army Corps of Engineers` national Inventory of Dams. Metadatabase.US Army Corps (Ed.). USA.; WCD, (2001), Dams and Development a new framework for Decision-Making, The report of the World Commission on Dams, Earthscan Publications Ltd, London and Sterling, VA, 356 p.Xue, Y., D.A. Kovacic, M.B. David, L.E. Gentry, R.L. Mulvaney and C.W. Lindau (1999). In situ measurements of denitrification in constructed wetlands. J. Environ. Qual. 28, 263-269.Xuehui, M, and Yan, H. 1996. Peat and peatlands in China. . In: Lappalainen (Ed.), Global Peat Resources, International Peat Society, Finland, pp 163-168.; Environment Canada Reservoir Database (Duchemin, 2002); Dos Santos, M.A., (2000), Inventário emissoes de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.496Z", + "last_change_date": "2022-03-14T08:10:14.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13922, + "fields": { + "EF_ID": 513584, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.579Z", + "last_change_date": "2022-03-14T08:10:14.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13923, + "fields": { + "EF_ID": 513587, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.688Z", + "last_change_date": "2022-03-14T08:10:14.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13924, + "fields": { + "EF_ID": 513590, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.70", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.771Z", + "last_change_date": "2022-03-14T08:10:14.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13925, + "fields": { + "EF_ID": 513593, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.846Z", + "last_change_date": "2022-03-14T08:10:14.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13926, + "fields": { + "EF_ID": 513596, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:14.921Z", + "last_change_date": "2022-03-14T08:10:14.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13927, + "fields": { + "EF_ID": 513599, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Zimbabwe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:15.007Z", + "last_change_date": "2022-03-14T08:10:15.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13928, + "fields": { + "EF_ID": 513602, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Venezuela", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:15.104Z", + "last_change_date": "2022-03-14T08:10:15.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13929, + "fields": { + "EF_ID": 513605, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:15.171Z", + "last_change_date": "2022-03-14T08:10:15.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13930, + "fields": { + "EF_ID": 513608, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.50", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:15.238Z", + "last_change_date": "2022-03-14T08:10:15.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13931, + "fields": { + "EF_ID": 513611, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Ivory coast", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:15.334Z", + "last_change_date": "2022-03-14T08:10:15.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13932, + "fields": { + "EF_ID": 513614, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "1996 & 2006 IPCC default", + "Description": "Default Reservoir Surface Area Data (International Commission on Large Dams (ICOLD))", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "Mha", + "Equation": "Equations 3a.3.8, 3a.3.9 and 3a.3.10 of the IPCC Good Practice Guidance for LULUCF", + "IPCC_Worksheet": "Worksheet WL-1d3 of GPG-LULUCF", + "Data_Source": "IPCC Good Practice Guidance for LULUCF, Chapter3, Appendix 3a.3, Table 3a.3.6", + "Technical_Reference": "International Commission on Large Dams (ICOLD). 1998. World register of Dams (1998). Paris. International Comittee on large Dams (Ed.). Metadatabase.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ideally, data on flooded area should be collected from national agencies. If such data are unavailable, however, this information on total flooded surface area that can be used to estimate the emissions under Tier 1. ", + "Other_Comments": "", + "Data_Provider": "Annette Freibauer", + "Link": "", + "creation_date": "2022-03-14T08:10:15.421Z", + "last_change_date": "2022-03-14T08:10:15.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13933, + "fields": { + "EF_ID": 513626, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biomass Expansion Factor (BEF2) converting volumes of extracted rounwood to total aboveground biomass (overbark) for Chinese fir ", + "Technology_Practices": "The rotation is around 25 years. Thinning is usually done. Other management activities include fertilizer application.", + "Parameter_Conditions": "Tree species: Chinese fir (Cunninghamia lanceolata); age ranges from 3 to 60 year-old.", + "Regional_Conditions": "China (Southern); Climate zone: subtropical, very moist climate; Mean annual temperature is 17°C; Mean annual precipitation is 1500mm.", + "Control_Technologies": "Other activities include pest and disease control, and fire control", + "Other_Properties": "tree height ranges from 2 to 28.1 meter, DBH from 2 to 48.1 cm", + "Value": "1.66 (1.21 - 2.97)", + "Unit": "dimensionless", + "Equation": "Equations 3.2.3, 3.2.7, and 3.2.8 in IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry ", + "IPCC_Worksheet": "Worksheet FL-1a of IPCC GPG-LULUCF ", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "hard copies of published articles in Chinese,e.g., 1.Chen, S. 2002. Preliminary studies on growth and biomass of mixed stand of Chinese fir and Chinese date.Fujian Journal of Forestry Science and Technology, 29(4) : 44-46 2.Deng, S.; Wang, K.; Gao, H. 1988. Biomass production and nutrient allocation in old Chinese fir stand. Chinese Journal of Ecology, 7(1) : 13-18 3.Fang, H.; Tian, D.; Kang, W. 1999. 1999. Changes of biomass production of Chinese fir plantation after thinning. Journal of Central and Southern Forestry College, 19(1) : 16-19 4.Hu, F; Xu, X.1994. The growth analysis of Chinese fir plantation in young age in the Huangshan Hill area. Journal of Anhui Agricultural University, supp., 43-45 5.Hui, G.; Tong, S.; Liu, J et al. 1988. Impacts of afforestation density on biomass of young Chinese fir stands. Forest Research, 1(4) : 413-417 6.Jiang, M. 2001. Impacts of thinning on undergrowth vegetation and Chinese fir biomass. Jiangxi Journal of Forestry Science and Technology, (4):5-8 7.Kong, X.; Liu, Z. 1983. Studies on biomass and productivity of Chinese fir plantation. Journal of Guangxi Agricultural University, (2) : 29-40 8.Ling, M. 1995. Comparative studies on biomass of Chinese fir at different slope positions. Fujian Journal of Forestry Science and Technology. 22(supp):74-78 9.Ma, Y; Liao, L; Yang, Y. et al. 1997. Effects of successive rotation soil on the growth of Chinese fir seedlings. Chinese Journal of Ecology, 16(6), 12-16 10.Ma, X; Liu, A; Ma, Z. et al. 2000. A comparative study on nutrient accumulation and distribution of different generations of Chinese Fir plantation. Chinese Journal of Applied Ecology, 11(4):501-506 11.Ma, X; Kang, S; Huang, Y. et al. 2002. Effects of multi-rotation of Chinese fir plantations on granite sites. Journal of Fujian Forestry College of, 22(4), 289-294 12.Pan, W.; Li, L.; Gao, Z. 1980. Comparative studies on the allocation of biomass and nutrient of Chinese fir stand indifferent regions. Journal of Hunan Forestry Science and Technology, (20) : 1-10 13.Sheng, W; Chen, B; Xu, H. et al. 1992. Research on Site Degradation of Timber Plantation. Chinese Sci. & Tech. Press, Beijing 14.Tian, D.; Xiang, W.; Yan, W. et al. 2002. Effect of successive rotation on productivity and biomass of Chinese fir plantation at fast growing stage. Scientia Silvae Sinicae,38(4) : 14-18 15.We, X. 1983. Preliminary studies on mixed stand of loblolly pine and Chinese fir. Chinese Journal of Forestry Science and Technology, (12) : 7-9 16.Yang, Y.; Ye, D.; Yu, X. et al. 1999. A study on biomass of different rotations of Chinese fir.Journal of Northeast Forestry University, 27(4):9-12 17.Ye. Z.; Jiang, Z. 1983. Biomass structure of Chinese fir plantation in southern Jiangsu province. Acta Ecologica Sinica,3(1) ;7-14 18.Ye, J.; Jiang, Z.; Zhou, B. 1984. Annual dynamics of Chinese fir stands in Yangkou of Fujian Province. Journal of Nanjiang Forestry College, (4):1-9 19.Ying, J.; He, Z.; Fan, S. et al. 2001. Biomass allocation of 29-year-old Chinese fir. Journal of Fujian Forestry College, 21(4) : 339-342 20.Zeng, T.; Liu, Y.; Wu, Z. 1990. Studies on aboveground biomass of 5-year-old Chinese fir and broadleaf mixed stand in relation to leaf area index. Guangdong Journal of Forestry Science and Technology, (2) : 17-20, 14", + "English_Abstract": "A lot of measurements (using destructive sampling method) and publications on biomass of Chinese Fir plantation were done in China. The Biomass Expansion Factor (BEF) value, derived from these publications, converts volumes of extracted roundwood to total aboveground biomass (including bark) for Chinese fir plantations. The published data on mean diameter at breast height (DBH), number of tree per hectare, standing volume, total biomass, above-ground biomass, below-ground biomass were compiled. For those studies where only mean height and DBH were available, we used the following binary equation (Chinese Ministry of Forestry. 1978. Binary Equations for Major Tree Species in China) to estimate the standing volume of single trees, Vt \n, Vt = 0.0000581 * D^1.96 * H^0.894 (Jiangxi and Fujian provinces) (1)\n, Vt = 0.0000588 * D^1.97 * H^0.896 (Other provinces) (2) \n, where D and H represent DBH (cm) and tree height (m). Standing volume per unit area, Vs, in m3 ha-1 was then calculated by multiplying Vt by the number of trees per hectare. For those publications that provided only total biomass and below-ground biomass, above-ground biomass was calculated by minus below-ground biomass from total biomass. The database consisted of 121 data set from 39 literatures. ", + "Lower_Bound": "-5.5%", + "Upper_Bound": "+5.5%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The database consisted of 121 data set from 39 literatures. Data for most studies were given as mean values of replicate plots, with varying number of replicates ranging from 1 to 23 replicates.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Xiaoquan Zhang", + "Link": "", + "creation_date": "2022-03-14T08:10:15.496Z", + "last_change_date": "2022-03-14T08:10:15.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13934, + "fields": { + "EF_ID": 513627, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Ratio of below-ground biomass to above-ground biomass (Root-shoot ratio; R) for Chinese fir", + "Technology_Practices": "thinning, harvesting, rotation period around 25 years ", + "Parameter_Conditions": "Tree species: Chinese fir (Cunninghamia lanceolata); age ranges from 3 to 60 year-old. Climate zone: subtropical, very moist climate; Mean annual temperature is 17°C; Mean annual precipitation is 1500mm.", + "Regional_Conditions": "China (Southern)", + "Control_Technologies": "pest and disease control fire control ", + "Other_Properties": "Mean tree height ranges from 2 to 28.1 meter; DBH from 2 to 48.1 cm; and mean above-ground biomass of 57 t/ha", + "Value": "0.27 (0.12 - 0.50)", + "Unit": "dimensionless", + "Equation": "Equations 3.2.3 and 3.2.5, in IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry ", + "IPCC_Worksheet": "Worksheet FL-1a of IPCC GPG-LULUCF ", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "hard copies of published articles in Chinese,e.g., 1.Chen, S. 2002. Preliminary studies on growth and biomass of mixed stand of Chinese fir and Chinese date.Fujian Journal of Forestry Science and Technology, 29(4) : 44-46 2.Deng, S.; Wang, K.; Gao, H. 1988. Biomass production and nutrient allocation in old Chinese fir stand. Chinese Journal of Ecology, 7(1) : 13-18 3.Fang, H.; Tian, D.; Kang, W. 1999. 1999. Changes of biomass production of Chinese fir plantation after thinning. Journal of Central and Southern Forestry College, 19(1) : 16-19 4.Hu, F; Xu, X.1994. The growth analysis of Chinese fir plantation in young age in the Huangshan Hill area. Journal of Anhui Agricultural University, supp., 43-45 5.Hui, G.; Tong, S.; Liu, J et al. 1988. Impacts of afforestation density on biomass of young Chinese fir stands. Forest Research, 1(4) : 413-417 6.Jiang, M. 2001. Impacts of thinning on undergrowth vegetation and Chinese fir biomass. Jiangxi Journal of Forestry Science and Technology, (4):5-8 7.Kong, X.; Liu, Z. 1983. Studies on biomass and productivity of Chinese fir plantation. Journal of Guangxi Agricultural University, (2) : 29-40 8.Ling, M. 1995. Comparative studies on biomass of Chinese fir at different slope positions. Fujian Journal of Forestry Science and Technology. 22(supp):74-78 9.Ma, Y; Liao, L; Yang, Y. et al. 1997. Effects of successive rotation soil on the growth of Chinese fir seedlings. Chinese Journal of Ecology, 16(6), 12-16 10.Ma, X; Liu, A; Ma, Z. et al. 2000. A comparative study on nutrient accumulation and distribution of different generations of Chinese Fir plantation. Chinese Journal of Applied Ecology, 11(4):501-506 11.Ma, X; Kang, S; Huang, Y. et al. 2002. Effects of multi-rotation of Chinese fir plantations on granite sites. Journal of Fujian Forestry College of, 22(4), 289-294 12.Pan, W.; Li, L.; Gao, Z. 1980. Comparative studies on the allocation of biomass and nutrient of Chinese fir stand indifferent regions. Journal of Hunan Forestry Science and Technology, (20) : 1-10 13.Sheng, W; Chen, B; Xu, H. et al. 1992. Research on Site Degradation of Timber Plantation. Chinese Sci. & Tech. Press, Beijing 14.Tian, D.; Xiang, W.; Yan, W. et al. 2002. Effect of successive rotation on productivity and biomass of Chinese fir plantation at fast growing stage. Scientia Silvae Sinicae,38(4) : 14-18 15.We, X. 1983. Preliminary studies on mixed stand of loblolly pine and Chinese fir. Chinese Journal of Forestry Science and Technology, (12) : 7-9 16.Yang, Y.; Ye, D.; Yu, X. et al. 1999. A study on biomass of different rotations of Chinese fir.Journal of Northeast Forestry University, 27(4):9-12 17.Ye. Z.; Jiang, Z. 1983. Biomass structure of Chinese fir plantation in southern Jiangsu province. Acta Ecologica Sinica,3(1) ;7-14 18.Ye, J.; Jiang, Z.; Zhou, B. 1984. Annual dynamics of Chinese fir stands in Yangkou of Fujian Province. Journal of Nanjiang Forestry College, (4):1-9 19.Ying, J.; He, Z.; Fan, S. et al. 2001. Biomass allocation of 29-year-old Chinese fir. Journal of Fujian Forestry College, 21(4) : 339-342 20.Zeng, T.; Liu, Y.; Wu, Z. 1990. Studies on aboveground biomass of 5-year-old Chinese fir and broadleaf mixed stand in relation to leaf area index. Guangdong Journal of Forestry Science and Technology, (2) : 17-20, 14", + "English_Abstract": "In the last decades there are a lot of measurements and publications on biomass of Chinese Fir plantation, using destructive sampling method. The submitted root-shoot ratio was calculated based on these published data. The published data on age of plantation, total biomass, above-ground biomass, below-ground biomass were collected. Below-ground biomass data, for those publications that provided only total biomass and above-ground biomass, were obtained from the difference between the total and above-ground biomasses. The same approach was done for above-ground biomass data. The biomass of non-tree vegetation was not included in the calculation. The final database consisted of 115 data sets from 39 literatures.", + "Lower_Bound": "-5%", + "Upper_Bound": "+5%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The database consisted of 115 data set from 39 literatures. Data for most studies were given as mean values of replicate plots, with varying number of replicates ranging from 1 to 23 replicates.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Xiaoquan Zhang", + "Link": "", + "creation_date": "2022-03-14T08:10:15.602Z", + "last_change_date": "2022-03-14T08:10:15.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13935, + "fields": { + "EF_ID": 513629, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic Wood Density of Stem wood of Acacia mangium Willd (5-year old stand)", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 5 yrs", + "Regional_Conditions": "Indonesia (West Java; Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 475 trees ha-1 ; Dbh: 16.0±3.2 (mean and standard deviation) cm ; Tree height: 15.1±1.4 (mean and standard deviation) m ", + "Value": "0.419", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7, 3.2.8 in the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry ", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "Following the methodology presented by IPCC National Greenhouse Gas Inventories Programme, we calculated basic wood density (D), biomass expansion factors (BEF), and root-to-shoot ratios (R) in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd. trees, using destructive sampling data of 59 trees in West Java, Indonesia. The value of D increased significantly as stand age increased from 3 to 8 years, but did not significantly differ between 8- and 10-year-old stands. The value of BEF did not differ among the 3- to 8-year-old stands (average 1.332) and decreased to 1.180 in the 10-year-old stand. The values of R increased significantly with stand age, from 0.157 to 0.190. The BEF values of A. mangium in this study were smaller than the default values for the tropical broad-leaf forest type (dbh > 10 cm) given by IPCC (mean, 3.4; range, 2.0–9.0). Because many factors may affect the parameter values of log-linear equations and D, BEF, and R for biomass estimation, the equations and values provided in this study are only applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions. ", + "Lower_Bound": "0.395", + "Upper_Bound": "0.444", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 16 trees; Min dbh = 10.6 cm; Max dbh = 20.0 cm; Min tree height = 13.8m; Max tree height = 18.3m. Stem volume including bark was obtained by Smalian's formula ((Area1 + Area2)/2 x Length) for each tree. The parameter is relevant for plantation forestry only.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:15.711Z", + "last_change_date": "2022-03-14T08:10:15.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13936, + "fields": { + "EF_ID": 513630, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic Wood Density of Stem wood of Acacia mangium Willd (3-year old stand)", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 3 yrs", + "Regional_Conditions": "Indonesia (West Java; Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "Fire control", + "Other_Properties": "Tree density: 1838 trees ha-1 ; Dbh: 7.3±2.9 (mean and standard deviation) cm ; Tree height: 7.3±2.0 (mean and standard deviation) m", + "Value": "0.32", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7, 3.2.8 in the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry ", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "Following the methodology presented by IPCC National Greenhouse Gas Inventories Programme, we calculated basic wood density (D), biomass expansion factors (BEF), and root-to-shoot ratios (R) in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd. trees, using destructive sampling data of 59 trees in West Java, Indonesia. The value of D increased significantly as stand age increased from 3 to 8 years, but did not significantly differ between 8- and 10-year-old stands. The value of BEF did not differ among the 3- to 8-year-old stands (average 1.332) and decreased to 1.180 in the 10-year-old stand. The values of R increased significantly with stand age, from 0.157 to 0.190. The BEF values of A. mangium in this study were smaller than the default values for the tropical broad-leaf forest type (dbh > 10 cm) given by IPCC (mean, 3.4; range, 2.0–9.0). Because many factors may affect the parameter values of log-linear equations and D, BEF, and R for biomass estimation, the equations and values provided in this study are only applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "0.289", + "Upper_Bound": "0.351", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 15 trees; Min dbh = 3.5 cm; Max dbh = 12.9 cm; Min tree height = 6.4m; Max tree height = 13.6m. Stem volume including bark was obtained by Smalian's formula ((Area1 + Area2)/2 x Length) for each tree. The parameter is relevant for plantation forestry only.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:15.828Z", + "last_change_date": "2022-03-14T08:10:15.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13937, + "fields": { + "EF_ID": 513631, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic Wood Density of Stem wood of Acacia mangium Willd (8- to 10-year old stand)", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 8 and 10 yrs", + "Regional_Conditions": "Indonesia (West Java; Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 225, 283 trees ha-1 ; Dbh: 21.1±3.5, 27.8±4.4 (mean and standard deviation) cm ; Tree height: 18.5±1.9, 25.1±2.1 (mean and standard deviation) m", + "Value": "0.457", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7, 3.2.8 in the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry ", + "IPCC_Worksheet": "Worksheet FL-1a of GPG-LULUCF", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "Following the methodology presented by IPCC National Greenhouse Gas Inventories Programme, we calculated basic wood density (D), biomass expansion factors (BEF), and root-to-shoot ratios (R) in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd. trees, using destructive sampling data of 59 trees in West Java, Indonesia. The value of D increased significantly as stand age increased from 3 to 8 years, but did not significantly differ between 8- and 10-year-old stands. The value of BEF did not differ among the 3- to 8-year-old stands (average 1.332) and decreased to 1.180 in the 10-year-old stand. The values of R increased significantly with stand age, from 0.157 to 0.190. The BEF values of A. mangium in this study were smaller than the default values for the tropical broad-leaf forest type (dbh > 10 cm) given by IPCC (mean, 3.4; range, 2.0–9.0). Because many factors may affect the parameter values of log-linear equations and D, BEF, and R for biomass estimation, the equations and values provided in this study are only applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "0.447", + "Upper_Bound": "0.469", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 28 trees; Min dbh = 17.2 cm; Max dbh = 34.7 cm; Min tree height = 16.2m; Max tree height = 27.2m. Stem volume including bark was obtained by Smalian's formula ((Area1 + Area2)/2 x Length) for each tree. The parameter is relevant for plantation forestry only.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:15.929Z", + "last_change_date": "2022-03-14T08:10:15.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13938, + "fields": { + "EF_ID": 513632, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate aboveground biomass of individual stand of Acacia mangium Willd. ", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 3 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia; (West Java; Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 1838 trees ha-1 ; Dbh: 7.3±2.9 (mean and standard deviation) cm ; Tree height: 7.3±2.0 (mean and standard deviation) m", + "Value": "a = 0.0414; b = 2.7523", + "Unit": "dimensionless", + "Equation": "Yag = a * dbh^b; where Yag is aboveground biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.9727", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 15 trees; Min dbh = 3.5 cm; Max dbh = 12.9 cm; Min tree height = 6.4m; Max tree height = 13.6m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.029Z", + "last_change_date": "2022-03-14T08:10:16.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13939, + "fields": { + "EF_ID": 513633, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate aboveground biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 5 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Java; Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 475 trees ha-1 ; Dbh: 16.0±3.2 (mean and standard deviation) cm ; Tree height: 15.1±1.4 (mean and standard deviation) m", + "Value": "a = 0.2331; b = 2.1348", + "Unit": "dimensionless", + "Equation": "Yag = a * dbh^b; where Yag is aboveground biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.9013", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 16 trees; Min dbh = 10.6 cm; Max dbh = 20.0 cm; Min tree height = 13.8m; Max tree height = 18.3m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.130Z", + "last_change_date": "2022-03-14T08:10:16.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13940, + "fields": { + "EF_ID": 513634, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate aboveground biomass of individual stand of Acacia mangium Willd. ", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 8 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Java; Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 283 trees ha-1 ; Dbh: 21.1±3.5 (mean and standard deviation) cm ; Tree height: 18.5±1.9 (mean and standard deviation) m", + "Value": "a = 0.0904; b = 2.4906", + "Unit": "dimensionless", + "Equation": "Yag = a * dbh^b; where Yag is aboveground biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.9027", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 12 trees; Min dbh = 17.2 cm; Max dbh = 25.3 cm; Min tree height = 16.2m; Max tree height = 20.4m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.231Z", + "last_change_date": "2022-03-14T08:10:16.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13941, + "fields": { + "EF_ID": 513635, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate aboveground biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 10 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Java; Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 225 trees ha-1 ; Dbh: 27.8±4.4 (mean and standard deviation) cm ; Tree height: 25.1±2.1 (mean and standard deviation) m", + "Value": "a = 0.3944; b = 2.0568", + "Unit": "dimensionless", + "Equation": "Yag = a * dbh^b; where Yag is aboveground biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.9032", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 16 trees; Min dbh = 22.0 cm; Max dbh = 34.7 cm; Min tree height = 21.3m; Max tree height = 27.2m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.332Z", + "last_change_date": "2022-03-14T08:10:16.332Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13942, + "fields": { + "EF_ID": 513636, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate belowground biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 3 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Java, Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 1838 trees ha-1 ; Dbh: 7.3±2.9 (mean and standard deviation) cm ; Tree height: 7.3±2.0 (mean and standard deviation) m", + "Value": "a = 0.0070; b = 2.7043", + "Unit": "dimensionless", + "Equation": "Ybg = a * dbh^b; where Ybg is belowground biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.9498", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 15 trees; Min dbh = 3.5 cm; Max dbh = 12.9 cm; Min tree height = 6.4m; Max tree height = 13.6m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.433Z", + "last_change_date": "2022-03-14T08:10:16.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13943, + "fields": { + "EF_ID": 513637, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate belowground biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 5 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Jav, Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 475 trees ha-1 ; Dbh: 16.0±3.2 (mean and standard deviation) cm ; Tree height: 15.1±1.4 (mean and standard deviation) m", + "Value": "a = 0.0148; b = 2.4849", + "Unit": "dimensionless", + "Equation": "Ybg = a * dbh^b; where Ybg is belowground biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.8958", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 16 trees; Min dbh = 10.6 cm; Max dbh = 20.0 cm; Min tree height = 13.8m; Max tree height = 18.3m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.542Z", + "last_change_date": "2022-03-14T08:10:16.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13944, + "fields": { + "EF_ID": 513638, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate belowground biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 8 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Java, Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 283 trees ha-1 ; Dbh: 21.1±3.5 (mean and standard deviation) cm ; Tree height: 18.5±1.9 (mean and standard deviation) m", + "Value": "a = 0.0285; b = 2.2949", + "Unit": "dimensionless", + "Equation": "Ybg = a * dbh^b; where Ybg is belowground biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.8265", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 12 trees; Min dbh = 17.2 cm; Max dbh = 25.3 cm; Min tree height = 16.2m; Max tree height = 20.4m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.659Z", + "last_change_date": "2022-03-14T08:10:16.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13945, + "fields": { + "EF_ID": 513639, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate belowground biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 10 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Java, Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 225 trees ha-1 ; Dbh: 27.8±4.4 (mean and standard deviation) cm ; Tree height: 25.1±2.1 (mean and standard deviation) m", + "Value": "a = 0.0351; b = 2.2840", + "Unit": "dimensionless", + "Equation": "Ybg = a * dbh^b; where Ybg is belowground biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.8208", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 16 trees; Min dbh = 22.0 cm; Max dbh = 34.7 cm; Min tree height = 21.3m; Max tree height = 27.2m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.777Z", + "last_change_date": "2022-03-14T08:10:16.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13946, + "fields": { + "EF_ID": 513640, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 3 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Java, Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 1838 trees ha-1 ; Dbh: 7.3±2.9 (mean and standard deviation) cm ; Tree height: 7.3±2.0 (mean and standard deviation) m", + "Value": "a = 0.0484; b = 2.7463", + "Unit": "dimensionless", + "Equation": "Ytotal = a * dbh^b; where Ytotal is total biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.9719", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 15 trees; Min dbh = 3.5 cm; Max dbh = 12.9 cm; Min tree height = 6.4m; Max tree height = 13.6m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:16.893Z", + "last_change_date": "2022-03-14T08:10:16.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13947, + "fields": { + "EF_ID": 513641, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 5 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia; (West Java, Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 475 trees ha-1 ; Dbh: 16.0±3.2 (mean and standard deviation) cm ; Tree height: 15.1±1.4 (mean and standard deviation) m", + "Value": "a = 0.2346; b = 2.1892", + "Unit": "dimensionless", + "Equation": "Ytotal = a * dbh^b; where Ytotal is total biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.9232", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 16 trees; Min dbh = 10.6 cm; Max dbh = 20.0 cm; Min tree height = 13.8m; Max tree height = 18.3m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:17.011Z", + "last_change_date": "2022-03-14T08:10:17.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13948, + "fields": { + "EF_ID": 513642, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 8 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia; (Province: West Java; Maribaya and Tenjo district); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 283 trees ha-1 ; Dbh: 21.1±3.5 (mean and standard deviation) cm ; Tree height: 18.5±1.9 (mean and standard deviation) m", + "Value": "a = 0.1159; b = 2.4619", + "Unit": "dimensionless", + "Equation": "Ytotal = a * dbh^b; where Ytotal is total biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.8988", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 12 trees; Min dbh = 17.2 cm; Max dbh = 25.3 cm; Min tree height = 16.2m; Max tree height = 20.4m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:17.111Z", + "last_change_date": "2022-03-14T08:10:17.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13949, + "fields": { + "EF_ID": 513643, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total biomass of individual stand of Acacia mangium Willd.", + "Technology_Practices": "Following PT Perhutani's manual, clear felling systems are selected for forest management. The rotation (harvesting) period is 10 years. Thinning is conducted three times before the final harvest. After the final harvest, the open fields are used as farmland for 1 year by local residents. Peanuts, maize, upland rice, and other crops are usually planted. Before or immediately after harvesting these crops, seedlings of A. mangium are planted. Once the trees have become established, local farmers often graze buffaloes under the forest canopy. They may also sell small dead branches and thinned trees as fuel wood.", + "Parameter_Conditions": "Tree species: Acacia mangium Willd.; Stand age: 10 yrs. The parameters are relevant for plantation forestry in Tropical Wet only.", + "Regional_Conditions": "Indonesia (West Java, Maribaya and Tenjo); Latitude: between 6 deg. 22` and 6 deg. 25` S; Longitude: between 106 deg. 27` and 106 deg. 29` E; Elevation: 60m above sea level ; Mean annual rainfall: 2761 mm ; Soil: Orthic Acrisol ; Terrain: flat and small undulation ; Mean annual temperature: 26.7°C (Estimated from MAT at Jakarta about 50 km off and 60 m lower than the study site with the temperature lapse rate of 0.55°C/100m).", + "Control_Technologies": "", + "Other_Properties": "Tree density: 225 trees ha-1 ; Dbh: 27.8±4.4 (mean and standard deviation) cm ; Tree height: 25.1±2.1 (mean and standard deviation) m", + "Value": "a = 0.4171; b = 2.0926", + "Unit": "dimensionless", + "Equation": "Ytotal = a * dbh^b; where Ytotal is total biomass in kg; dbh is the stem diameter at 1.3m above the ground, in cm; Note: R^2 of the model is 0.9067", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Miyakuni, K., Heriansyah, I; Heriyanto N.M., and Kiyono, Y. (2004) Allometric biomass equations, biomass expansion factors and root-to-shoot ratios of planted Acacia mangium Willd. Forests in West Java, Indonesia, Journal of Forest Planning 10:69-76, Japan Society of Forest Planning", + "English_Abstract": "We devised log-linear equations for the relationship between the tree’s dbh and the biomass of each organ or group of organs in planted stands of 3-, 5-, 8-, and 10-year-old Acacia mangium Willd, using destructive sampling data of 59 trees in West Java, Indonesia. The biomass of A. mangium trees are estimated by the following allometric relationship: Yn = a•dbh^b, where Yn (kg) represents the biomass of various components of the trees: leaf, branch, stem, root (belowground), aboveground, and individual biomass. The parameters a and b are regression constants, and dbh is in cm. Average annual increments of stand-level biomass were estimated at 7.77 to 10.09 t ha-1 y-1 in the planted stands of 3- to 10-year-old, with the largest values in the 5-year-old stand. The equations and values provided in this study are applicable to A. mangium forests growing under comparable climatic, stand age, forest management conditions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Number of samples = 16 trees; Min dbh = 22.0 cm; Max dbh = 34.7 cm; Min tree height = 21.3m; Max tree height = 27.2m", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Yoshiyuki Kiyono", + "Link": "", + "creation_date": "2022-03-14T08:10:17.213Z", + "last_change_date": "2022-03-14T08:10:17.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13950, + "fields": { + "EF_ID": 513646, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: n/a; Diameter above 2 in and below 30 in", + "Regional_Conditions": "United States (West Virginia)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 2.0772; b = 2.508;", + "Unit": "dimensionless", + "Equation": "AB = a*D^b where AB = total aboveground biomass in lb; D = diameter at breast height (1,3 m) in in; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) - Brennemann, B.B., Frederick, D.J., Gardner, W.E., Schoenhofen, L.H., and Marsh, P.L. (1978). Biomass of species and stands of West Virginia hardwoods. Pope, P.E., ed. Proceedings Central Hardwood Forest Conference II. West LaFayette, IN: Pudue Univ.; 159-178.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =27; D_min = 2; D_Max = 30; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:17.471Z", + "last_change_date": "2022-03-14T08:10:17.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13951, + "fields": { + "EF_ID": 513647, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: n/a; Diameter above 3 in and below 12 in", + "Regional_Conditions": "United States (Rhode island)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.10594; b = 2.33968;", + "Unit": "dimensionless", + "Equation": "ln(AB) = a+b*lnD where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in in; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) - Bridge, J.A. (1979). Fuelwood production of mixed hardwoods on mesic sites in Rhode island. Kingston, RI: Univ. of Rhode Island; M.S. Thesis. 72p.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 3; D_Max = 12; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:17.572Z", + "last_change_date": "2022-03-14T08:10:17.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13952, + "fields": { + "EF_ID": 513648, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 4 in", + "Regional_Conditions": "United States (Pennsylvania)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -527.993; b = 111.583;", + "Unit": "dimensionless", + "Equation": "ST = a+b*D where ST = total stem biomass (stem wood+stem bark) in lb; D = diameter at breast height (1,3 m) in in; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) - Dunlap, W.H., and Shipman, R.D. (1967). Density and weught prediction of standing white oak, red maple, and red pine. University Park, PA: Pennsylvania State Univ. School of For. Resour.. Res Briefs 2(3); 66-69", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =55; D_min = 4; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:17.661Z", + "last_change_date": "2022-03-14T08:10:17.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13953, + "fields": { + "EF_ID": 513649, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 0 cm and below 12 cm", + "Regional_Conditions": "United States (New Hampshire)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 4.8183; b = 2.322;", + "Unit": "dimensionless", + "Equation": "ln(ST) = a+b+ln(D) where ST = total stem biomass (stem wood+stem bark) in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Goldsmith, L.J., and Hocker, H.W., Jr. (1978). Preliminary small-tree, aboveground biomass tables for five northern hardwoods. New Hampsire Agric. Exp. Stn. Res. Rep. 68. 30p.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =28; D_min = 0; D_Max = 12; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:17.736Z", + "last_change_date": "2022-03-14T08:10:17.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13954, + "fields": { + "EF_ID": 513650, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 0 cm and below 6 cm", + "Regional_Conditions": "United States (Tennessee)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 1.94; b = 0.7557;", + "Unit": "dimensionless", + "Equation": "LOG(ST+BR) = a+b*LOG(D2*H) where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in g; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hitchcock, H.C., III (1978). Aboveground tree weight equations for hardwood seedlings and saplings. TAPPI: 61(10); 119-120", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =16; D_min = 0; D_Max = 6; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:17.802Z", + "last_change_date": "2022-03-14T08:10:17.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13955, + "fields": { + "EF_ID": 513651, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 0 cm and below 12 cm", + "Regional_Conditions": "United States (New Hampshire)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 2.8492; b = 2.4285;", + "Unit": "dimensionless", + "Equation": "ln(BR) = a+b*ln(D) where BR = biomass of branches in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Goldsmith, L.J., and Hocker, H.W. Jr. (1978). Preliminary small-tree, aboveground biomass tables for five northern hardwoods. New Hampsire Agric. Exp. Stn. Res. Rep. 68. 30p.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =28; D_min = 0; D_Max = 12; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:17.907Z", + "last_change_date": "2022-03-14T08:10:17.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13956, + "fields": { + "EF_ID": 513652, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 0 cm and below 12 cm", + "Regional_Conditions": "United States (New Hampshire)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 4.9828; b = 2.31;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*ln(D) where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Goldsmith, L.J., and Hocker, H.W. Jr. (1978). Preliminary small-tree, aboveground biomass tables for five northern hardwoods. New Hampsire Agric. Exp. Stn. Res. Rep. 68. 30p.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =28; D_min = 0; D_Max = 12; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:17.989Z", + "last_change_date": "2022-03-14T08:10:17.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13957, + "fields": { + "EF_ID": 513653, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 3 cm and below 12 cm", + "Regional_Conditions": "United States (New Hampshire)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 4.856; b = 2.294;", + "Unit": "dimensionless", + "Equation": "ln(ST) = a+b*ln(D) where ST = total stem biomass (stem wood+stem bark) in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Kinerson, R.S., and Bartholomew, I. (1977). Biomass estimation equations and nutrient composition of white pine, white birch, red maple and red oak in New Hampsire. New Hampsire Agric. Exp. Stn. Res. Rep. 62. 8p.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 3; D_Max = 12; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.061Z", + "last_change_date": "2022-03-14T08:10:18.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13958, + "fields": { + "EF_ID": 513654, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 3 cm and below 12 cm", + "Regional_Conditions": "United States (New Hampshire)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 2.896; b = 1.96;", + "Unit": "dimensionless", + "Equation": "ln(BR) = a+b*ln(D) where BR = biomass of branches in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Kinerson, R.S., and Bartholomew, I. (1977). Biomass estimation equations and nutrient composition of white pine, white birch, red maple and red oak in New Hampsire. New Hampsire Agric. Exp. Stn. Res. Rep. 62. 8p.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 3; D_Max = 12; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.128Z", + "last_change_date": "2022-03-14T08:10:18.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13959, + "fields": { + "EF_ID": 513655, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 3 cm and below 12 cm", + "Regional_Conditions": "United States (New Hampshire)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.582; b = 2.777;", + "Unit": "dimensionless", + "Equation": "ln(FL) = a+b*ln(D) where FL = foliage biomass in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Kinerson, R.S., and Bartholomew, I. (1977). Biomass estimation equations and nutrient composition of white pine, white birch, red maple and red oak in New Hampsire. New Hampsire Agric. Exp. Stn. Res. Rep. 62. 8p.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 3; D_Max = 12; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.226Z", + "last_change_date": "2022-03-14T08:10:18.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13960, + "fields": { + "EF_ID": 513656, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: ; Diameter above 25 mm and below 550 mm; Height above 5 m and below 30 m", + "Regional_Conditions": "United States (New York)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 1.3785; b = 0.02279; c = 0.301; d = 0.0002469;", + "Unit": "dimensionless", + "Equation": "AB = a+b(D)-c(H)+d(D2*H) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in mm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Monteith, D.B. (1979). Whole-tree weight tables for New York. Sycacuse: Univ. of New York. AFRI Res. Rep. 40. 67p.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = 25; D_Max = 550; H_Min = 5; H_Max = 30", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.313Z", + "last_change_date": "2022-03-14T08:10:18.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13961, + "fields": { + "EF_ID": 513657, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Sycamore (Acer pseudoplatanus)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer pseudoplatanus; Common name: Sycamore; Native name: Sycamore; Diameter above 3.66 cm and below 30.71 cm", + "Regional_Conditions": "UK (Lake District, Meathop)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.7606; b = 2.5189;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =10; D_min = 3.66; D_Max = 30.71; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.378Z", + "last_change_date": "2022-03-14T08:10:18.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13962, + "fields": { + "EF_ID": 513658, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Sycamore (Acer pseudoplatanus)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer pseudoplatanus; Common name: Sycamore; Native name: Sycamore; Diameter above 3.5 cm and below 27.69 cm", + "Regional_Conditions": "UK (Lake District, Roudsea)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.7018; b = 2.5751;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 3.5; D_Max = 27.69; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.444Z", + "last_change_date": "2022-03-14T08:10:18.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13963, + "fields": { + "EF_ID": 513659, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Black alder (Alnus glutinosa)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Alnus glutinosa; Common name: Black alder; Native name: Black alder", + "Regional_Conditions": "UK (Wynyard Estate)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0859; b = 2.3537;", + "Unit": "dimensionless", + "Equation": "ST+BR = a*D^b where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hughes, M. K. (1971). Tree biocontent, net primary production and litter fall in a deciduous woodland. Oikos 22: 62-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.544Z", + "last_change_date": "2022-03-14T08:10:18.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13964, + "fields": { + "EF_ID": 513660, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Black alder (Alnus glutinosa)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Alnus glutinosa; Common name: Black alder; Native name: Black alder", + "Regional_Conditions": "UK (Wynyard Estate)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0841; b = 2.4501;", + "Unit": "dimensionless", + "Equation": "ST = a*D^b where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hughes, M. K. (1971). Tree biocontent, net primary production and litter fall in a deciduous woodland. Oikos 22: 62-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.630Z", + "last_change_date": "2022-03-14T08:10:18.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13965, + "fields": { + "EF_ID": 513661, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Black alder (Alnus glutinosa)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Alnus glutinosa; Common name: Black alder; Native name: Black alder", + "Regional_Conditions": "UK (Wynyard Estate)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0146; b = 2.5191;", + "Unit": "dimensionless", + "Equation": "BR = a*D^b where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hughes, M. K. (1971). Tree biocontent, net primary production and litter fall in a deciduous woodland. Oikos 22: 62-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.703Z", + "last_change_date": "2022-03-14T08:10:18.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13966, + "fields": { + "EF_ID": 513662, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Grey alder (Alnus incana)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Alnus incana; Common name: Grey alder; Native name: Harmaaleppä", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0023; b = 0.864;", + "Unit": "dimensionless", + "Equation": "BR = a+(D2*H)b where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.778Z", + "last_change_date": "2022-03-14T08:10:18.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13967, + "fields": { + "EF_ID": 513663, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Grey alder (Alnus incana)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Alnus incana; Common name: Grey alder; Native name: Harmaaleppä", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0237; b = 0.634;", + "Unit": "dimensionless", + "Equation": "SB = a+(D2*H)b where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.871Z", + "last_change_date": "2022-03-14T08:10:18.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13968, + "fields": { + "EF_ID": 513664, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Grey alder (Alnus incana)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Alnus incana; Common name: Grey alder; Native name: Harmaaleppä", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0095; b = 0.844;", + "Unit": "dimensionless", + "Equation": "SW = a+(D2*H)b where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:18.964Z", + "last_change_date": "2022-03-14T08:10:18.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13969, + "fields": { + "EF_ID": 513665, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Silver birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Silver birch; Native name: Rauduskoivu", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0279; b = 0.675;", + "Unit": "dimensionless", + "Equation": "BR = a+(D2*H)b where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.044Z", + "last_change_date": "2022-03-14T08:10:19.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13970, + "fields": { + "EF_ID": 513666, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -10.7699; b = 2.6016;", + "Unit": "dimensionless", + "Equation": "CR = a+b*LN(D) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 1991. 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.111Z", + "last_change_date": "2022-03-14T08:10:19.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13971, + "fields": { + "EF_ID": 513667, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -10.2692; b = 2.5124;", + "Unit": "dimensionless", + "Equation": "CR = a+b*LN(D) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 1991. 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.206Z", + "last_change_date": "2022-03-14T08:10:19.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13972, + "fields": { + "EF_ID": 513668, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Silver birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Silver birch; Native name: Rauduskoivu", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0155; b = 0.679;", + "Unit": "dimensionless", + "Equation": "SB = a+(D2*H)b where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.280Z", + "last_change_date": "2022-03-14T08:10:19.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13973, + "fields": { + "EF_ID": 513669, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Silver birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Silver birch; Native name: Rauduskoivu", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0626; b = 0.682;", + "Unit": "dimensionless", + "Equation": "SW = a+(D2*H)b where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.353Z", + "last_change_date": "2022-03-14T08:10:19.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13974, + "fields": { + "EF_ID": 513670, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.51; b = 1.5593;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.428Z", + "last_change_date": "2022-03-14T08:10:19.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13975, + "fields": { + "EF_ID": 513671, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.81; b = 1.2911;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.533Z", + "last_change_date": "2022-03-14T08:10:19.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13976, + "fields": { + "EF_ID": 513672, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.454; b = 1.0961;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LOG(D2*H) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.605Z", + "last_change_date": "2022-03-14T08:10:19.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13977, + "fields": { + "EF_ID": 513673, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.887; b = 1.3668;", + "Unit": "dimensionless", + "Equation": "RT = a+b*LOG(D2*H) where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.669Z", + "last_change_date": "2022-03-14T08:10:19.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13978, + "fields": { + "EF_ID": 513674, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.311; b = 0.9256;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LOG(D2*H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.744Z", + "last_change_date": "2022-03-14T08:10:19.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13979, + "fields": { + "EF_ID": 513675, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stump in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.54; b = 1.1488;", + "Unit": "dimensionless", + "Equation": "SU = a+b*LOG(D2*H) where SU = stump in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.844Z", + "last_change_date": "2022-03-14T08:10:19.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13980, + "fields": { + "EF_ID": 513676, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.785; b = 0.991;", + "Unit": "dimensionless", + "Equation": "SW = a+b*LOG(D2*H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:19.947Z", + "last_change_date": "2022-03-14T08:10:19.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13981, + "fields": { + "EF_ID": 513677, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.9507; b = 7.9266;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+5)] where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.013Z", + "last_change_date": "2022-03-14T08:10:20.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13982, + "fields": { + "EF_ID": 513678, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.6237; b = 11.2872; c = -0.3081; d = 2.6821;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+30)]+c*H+d*LN(H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.080Z", + "last_change_date": "2022-03-14T08:10:20.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13983, + "fields": { + "EF_ID": 513679, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.3633; b = 10.2806;", + "Unit": "dimensionless", + "Equation": "CR = a+b*[D/(D+10)] where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =235; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.170Z", + "last_change_date": "2022-03-14T08:10:20.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13984, + "fields": { + "EF_ID": 513680, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.2518; b = 10.3876;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+14)] where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.255Z", + "last_change_date": "2022-03-14T08:10:20.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13985, + "fields": { + "EF_ID": 513681, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.0778; b = 8.3019; c = 0.7433;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+14)]+cLN(H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.322Z", + "last_change_date": "2022-03-14T08:10:20.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13986, + "fields": { + "EF_ID": 513682, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.5686; b = 8.2827; c = 0.0393; d = 0.5772;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+7)]+c*H+d*LN(H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =240; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.388Z", + "last_change_date": "2022-03-14T08:10:20.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13987, + "fields": { + "EF_ID": 513683, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.0932; b = 11.0735;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+8)] where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =240; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.481Z", + "last_change_date": "2022-03-14T08:10:20.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13988, + "fields": { + "EF_ID": 513684, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.3327; b = 10.8109;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+11)] where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.555Z", + "last_change_date": "2022-03-14T08:10:20.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13989, + "fields": { + "EF_ID": 513685, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.3045; b = 8.1184; c = 0.9783;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+11)]+c*LN(H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.622Z", + "last_change_date": "2022-03-14T08:10:20.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13990, + "fields": { + "EF_ID": 513686, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in White birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: White birch; Native name: White birch", + "Regional_Conditions": "UK (Wynyard Estate)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.2511; b = 2.2865;", + "Unit": "dimensionless", + "Equation": "ST+BR = a*D^b where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hughes, M. K. (1971). Tree biocontent, net primary production and litter fall in a deciduous woodland. Oikos 22: 62-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =13; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.688Z", + "last_change_date": "2022-03-14T08:10:20.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13991, + "fields": { + "EF_ID": 513687, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in White birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: White birch; Native name: White birch", + "Regional_Conditions": "UK (Wynyard Estate)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.1993; b = 2.2491;", + "Unit": "dimensionless", + "Equation": "ST = a*D^b where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hughes, M. K. (1971). Tree biocontent, net primary production and litter fall in a deciduous woodland. Oikos 22: 62-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =13; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.783Z", + "last_change_date": "2022-03-14T08:10:20.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13992, + "fields": { + "EF_ID": 513688, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in White birch (Betula pendula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pendula; Common name: White birch; Native name: White birch", + "Regional_Conditions": "UK (Wynyard Estate)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0742; b = 2.2407;", + "Unit": "dimensionless", + "Equation": "BR = a*D^b where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hughes, M. K. (1971). Tree biocontent, net primary production and litter fall in a deciduous woodland. Oikos 22: 62-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =13; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.855Z", + "last_change_date": "2022-03-14T08:10:20.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13993, + "fields": { + "EF_ID": 513689, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in White birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: White birch; Native name: Hieskoivu", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0081; b = 0.783;", + "Unit": "dimensionless", + "Equation": "BR = a+(D2*H)b where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =82; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:20.930Z", + "last_change_date": "2022-03-14T08:10:20.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13994, + "fields": { + "EF_ID": 513690, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -10.77; b = 2.6017;", + "Unit": "dimensionless", + "Equation": "CR = a+b*LN(D) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.005Z", + "last_change_date": "2022-03-14T08:10:21.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13995, + "fields": { + "EF_ID": 513691, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -10.2693; b = 2.5125;", + "Unit": "dimensionless", + "Equation": "CR = a+b*LN(D) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.109Z", + "last_change_date": "2022-03-14T08:10:21.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13996, + "fields": { + "EF_ID": 513692, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in White birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: White birch; Native name: Hieskoivu", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.1104; b = 1.603;", + "Unit": "dimensionless", + "Equation": "SB = a+Db where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =82; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.181Z", + "last_change_date": "2022-03-14T08:10:21.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13997, + "fields": { + "EF_ID": 513693, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in White birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: White birch; Native name: Hieskoivu", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0262; b = 0.637;", + "Unit": "dimensionless", + "Equation": "SB = a+(D2*H)b where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =82; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.264Z", + "last_change_date": "2022-03-14T08:10:21.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13998, + "fields": { + "EF_ID": 513694, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in White birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: White birch; Native name: Hieskoivu", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0251; b = 0.776;", + "Unit": "dimensionless", + "Equation": "SW = a+(D2*H)b where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Björklund, T. and A. Ferm (1982). Pienikokoisen koivun ja harmaalepän biomassa ja tekniset ominaisuudet. Folia Forestalia, 500: p. 1-37.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =82; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.330Z", + "last_change_date": "2022-03-14T08:10:21.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 13999, + "fields": { + "EF_ID": 513695, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in White birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: White birch; Native name: Hieskoivu; Diameter above 2 cm and below 16 cm; Height above 4.6 m and below 16.7 m", + "Regional_Conditions": "Finland (latitude: N 61°25, longitude:E 21°38)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.1909; b = 0.8808;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LN(D2*H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. and A. Saarsalmi (1982). Hieskoivikon biomassatuotos ja ravinteiden menetys kokopuun korjuussa. Folia Forestalia, 534: p. 1-17.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =53; D_min = 2; D_Max = 16; H_Min = 4.6; H_Max = 16.7", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.405Z", + "last_change_date": "2022-03-14T08:10:21.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14000, + "fields": { + "EF_ID": 513696, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in White birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: White birch; Native name: Hieskoivu; Diameter above 2 cm and below 16 cm; Height above 4.6 m and below 16.7 m", + "Regional_Conditions": "Finland (latitude: N 61°25, longitude:E 21°38)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.6047; b = 0.945;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LN(D2*H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. and A. Saarsalmi (1982). Hieskoivikon biomassatuotos ja ravinteiden menetys kokopuun korjuussa. Folia Forestalia, 534: p. 1-17.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =53; D_min = 2; D_Max = 16; H_Min = 4.6; H_Max = 16.7", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.504Z", + "last_change_date": "2022-03-14T08:10:21.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14001, + "fields": { + "EF_ID": 513697, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.51; b = 1.5593;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 1977. 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.580Z", + "last_change_date": "2022-03-14T08:10:21.580Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14002, + "fields": { + "EF_ID": 513698, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.81; b = 1.2911;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 1977. 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.647Z", + "last_change_date": "2022-03-14T08:10:21.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14003, + "fields": { + "EF_ID": 513699, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.454; b = 1.0961;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LOG(D2*H) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 1977. 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.714Z", + "last_change_date": "2022-03-14T08:10:21.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14004, + "fields": { + "EF_ID": 513700, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.887; b = 1.3668;", + "Unit": "dimensionless", + "Equation": "RT = a+b*LOG(D2*H) where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 1977. 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.805Z", + "last_change_date": "2022-03-14T08:10:21.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14005, + "fields": { + "EF_ID": 513701, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.311; b = 0.9256;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LOG(D2*H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 1977. 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.880Z", + "last_change_date": "2022-03-14T08:10:21.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14006, + "fields": { + "EF_ID": 513702, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.785; b = 0.991;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LOG(D2*H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 1977. 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:21.947Z", + "last_change_date": "2022-03-14T08:10:21.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14007, + "fields": { + "EF_ID": 513703, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stump in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: n/a; Diameter above 9 cm and below 28 cm; Height above 13 m and below 22.4 m", + "Regional_Conditions": "Finland (latitude: N 61°37, longitude:E 24°9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.54; b = 1.1488;", + "Unit": "dimensionless", + "Equation": "SU = a+b*LOG(D2*H) where SU = stump in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1977). Annual primary production and nutrient cycle in a birch stand. Metsäntutkimuslaitoksen tiedonantoja, 1977. 91:5 p. 1-35.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 9; D_Max = 28; H_Min = 13; H_Max = 22.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.022Z", + "last_change_date": "2022-03-14T08:10:22.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14008, + "fields": { + "EF_ID": 513704, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in White birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: White birch; Native name: Hieskoivu; Diameter above 1.3 cm and below 13 cm; Height above 3.3 m and below 13.2 m", + "Regional_Conditions": "Finland (latitude: N 63°07, longitude:E 27°45)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.0706; b = 0.7942;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LN(D2*H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. and A. Saarsalmi (1982).Hieskoivikon biomassatuotos ja ravinteiden menetys kokopuun korjuussa. Folia Forestalia, 534: p. 1-17.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =56; D_min = 1.3; D_Max = 13; H_Min = 3.3; H_Max = 13.2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.116Z", + "last_change_date": "2022-03-14T08:10:22.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14009, + "fields": { + "EF_ID": 513705, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in White birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: White birch; Native name: Hieskoivu; Diameter above 1.3 cm and below 13 cm; Height above 3.3 m and below 13.2 m", + "Regional_Conditions": "Finland (latitude: N 63°07, longitude:E 27°45)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.5195; b = 0.9204;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LN(D2*H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. and A. Saarsalmi (1982).Hieskoivikon biomassatuotos ja ravinteiden menetys kokopuun korjuussa. Folia Forestalia, 534: p. 1-17.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =56; D_min = 1.3; D_Max = 13; H_Min = 3.3; H_Max = 13.2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.203Z", + "last_change_date": "2022-03-14T08:10:22.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14010, + "fields": { + "EF_ID": 513706, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.9507; b = 7.9266;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+5)] where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.272Z", + "last_change_date": "2022-03-14T08:10:22.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14011, + "fields": { + "EF_ID": 513707, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.6237; b = 11.2872; c = -0.3081; d = 2.6821;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+30)]+c*H+d*LN(H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.347Z", + "last_change_date": "2022-03-14T08:10:22.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14012, + "fields": { + "EF_ID": 513708, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.3633; b = 10.2806;", + "Unit": "dimensionless", + "Equation": "CR = a+b*[D/(D+10)] where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =235; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.476Z", + "last_change_date": "2022-03-14T08:10:22.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14013, + "fields": { + "EF_ID": 513709, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.2518; b = 10.3876;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+14)] where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.547Z", + "last_change_date": "2022-03-14T08:10:22.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14014, + "fields": { + "EF_ID": 513710, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.0778; b = 8.3019; c = 0.7433;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+14)]+cLN(H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.622Z", + "last_change_date": "2022-03-14T08:10:22.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14015, + "fields": { + "EF_ID": 513711, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.0932; b = 11.0735;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+8)] where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =240; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.706Z", + "last_change_date": "2022-03-14T08:10:22.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14016, + "fields": { + "EF_ID": 513712, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.5686; b = 8.2827; c = 0.0393; d = 0.5772;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+7)]+c*H+d*LN(H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =240; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.804Z", + "last_change_date": "2022-03-14T08:10:22.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14017, + "fields": { + "EF_ID": 513713, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.3327; b = 10.8109;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+11)] where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.869Z", + "last_change_date": "2022-03-14T08:10:22.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14018, + "fields": { + "EF_ID": 513714, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Birch (Betula pubescens)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula pubescens; Common name: Birch; Native name: Björk; Diameter above 0 cm and below 35 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.3045; b = 8.1184; c = 0.9783;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+11)]+c*LN(H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =212; D_min = 0; D_Max = 35; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:22.939Z", + "last_change_date": "2022-03-14T08:10:22.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14019, + "fields": { + "EF_ID": 513715, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Birch (Betula sp)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula sp; Common name: Birch; Native name: Birch; Diameter above 2.86 cm and below 29.92 cm", + "Regional_Conditions": "UK (Lake District, Meathop)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.4166; b = 2.4227;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =27; D_min = 2.86; D_Max = 29.92; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.006Z", + "last_change_date": "2022-03-14T08:10:23.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14020, + "fields": { + "EF_ID": 513716, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Birch (Betula sp)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula sp; Common name: Birch; Native name: Birch; Diameter above 2.86 cm and below 25.78 cm", + "Regional_Conditions": "UK (Lake District, Roudsea)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.7584; b = 2.6134;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 2.86; D_Max = 25.78; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.097Z", + "last_change_date": "2022-03-14T08:10:23.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14021, + "fields": { + "EF_ID": 513717, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Birch (Betula sp)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula sp; Common name: Birch; Native name: Birch; Diameter above 3.34 cm and below 15.7 cm", + "Regional_Conditions": "UK (Lake District, Force Forge)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.1625; b = 2.3078;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =16; D_min = 3.34; D_Max = 15.7; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.186Z", + "last_change_date": "2022-03-14T08:10:23.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14022, + "fields": { + "EF_ID": 513718, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Birch (Betula sp)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Betula sp; Common name: Birch; Native name: Birch; Diameter above 3.5 cm and below 23.23 cm", + "Regional_Conditions": "UK (Lake District, Coniston)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.6423; b = 2.4678;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 3.5; D_Max = 23.23; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.247Z", + "last_change_date": "2022-03-14T08:10:23.247Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14023, + "fields": { + "EF_ID": 513719, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "France (latitude: N 48°40, longitude:E 07°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.2524; b = 3.328;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LN(D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Le Goff, N., and Ottorini, JM. (2000). Biomass distributions at tree and stand levels in the beech experimental forest of Hesse (NE France).Viterbo (November): 9-11", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.314Z", + "last_change_date": "2022-03-14T08:10:23.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14024, + "fields": { + "EF_ID": 513720, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "France (latitude: N 48°40, longitude:E 07°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.8599; b = 2.1935;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LN(D) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Le Goff, N., and Ottorini, JM. (2000). Biomass distributions at tree and stand levels in the beech experimental forest of Hesse (NE France).Viterbo (November): 9-11", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.407Z", + "last_change_date": "2022-03-14T08:10:23.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14025, + "fields": { + "EF_ID": 513721, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate coarse roots in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "France (latitude: N 48°40, longitude:E 07°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.1302; b = 2.6099;", + "Unit": "dimensionless", + "Equation": "RC = a+b*LN(D) where RC = coarse roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Le Goff, N., and Ottorini, JM. (2000). Biomass distributions at tree and stand levels in the beech experimental forest of Hesse (NE France).Viterbo (November): 9-11", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =16; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.486Z", + "last_change_date": "2022-03-14T08:10:23.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14026, + "fields": { + "EF_ID": 513722, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate fine roots in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "France (latitude: N 48°40, longitude:E 07°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.7948; b = 2.1609;", + "Unit": "dimensionless", + "Equation": "RF = a+b*LN(D) where RF = fine roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Le Goff, N., and Ottorini, JM. (2000). Biomass distributions at tree and stand levels in the beech experimental forest of Hesse (NE France).Viterbo (November): 9-11", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =16; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.547Z", + "last_change_date": "2022-03-14T08:10:23.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14027, + "fields": { + "EF_ID": 513723, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate small roots in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "France (latitude: N 48°40, longitude:E 07°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.4415; b = 2.082;", + "Unit": "dimensionless", + "Equation": "RS = a+b*LN(D) where RS = small roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Le Goff, N., and Ottorini, JM. (2000). Biomass distributions at tree and stand levels in the beech experimental forest of Hesse (NE France).Viterbo (November): 9-11", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =16; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.622Z", + "last_change_date": "2022-03-14T08:10:23.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14028, + "fields": { + "EF_ID": 513724, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "France (latitude: N 48°40, longitude:E 07°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.0741; b = 2.0543;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LN(D) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Le Goff, N., and Ottorini, JM. (2000). Biomass distributions at tree and stand levels in the beech experimental forest of Hesse (NE France).Viterbo (November): 9-11", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.717Z", + "last_change_date": "2022-03-14T08:10:23.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14029, + "fields": { + "EF_ID": 513725, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "France (latitude: N 48°40, longitude:E 07°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.0445; b = 2.3912;", + "Unit": "dimensionless", + "Equation": "SW = a+b*LN(D) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Le Goff, N., and Ottorini, JM. (2000). Biomass distributions at tree and stand levels in the beech experimental forest of Hesse (NE France).Viterbo (November): 9-11", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.809Z", + "last_change_date": "2022-03-14T08:10:23.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14030, + "fields": { + "EF_ID": 513726, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a; Diameter above 4 cm and below 34.5 cm; Height above 6.1 n/a and below 18.4 n/a", + "Regional_Conditions": "Spain (latitude: N 42°20, longitude:E 04°10)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.1315; b = 2.4321;", + "Unit": "dimensionless", + "Equation": "AB = a*D^b where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Santa Regina I., Tarazona T. (2001) Organic matter and nitrogen dynamics in a mature forest of common beech in the Sierra de la Demanda, Spain. Ann. Sci. For. 58 301-314.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 4; D_Max = 34.5; H_Min = 6.1; H_Max = 18.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.889Z", + "last_change_date": "2022-03-14T08:10:23.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14031, + "fields": { + "EF_ID": 513727, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a; Diameter above 4 cm and below 34.5 cm; Height above 6.1 n/a and below 18.4 n/a", + "Regional_Conditions": "Spain (latitude: N 42°20, longitude:E 04°10)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0317; b = 2.3931;", + "Unit": "dimensionless", + "Equation": "BR = a*D^b where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Santa Regina I., Tarazona T. (2001) Organic matter and nitrogen dynamics in a mature forest of common beech in the Sierra de la Demanda, Spain. Ann. Sci. For. 58 301-314.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 4; D_Max = 34.5; H_Min = 6.1; H_Max = 18.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:23.961Z", + "last_change_date": "2022-03-14T08:10:23.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14032, + "fields": { + "EF_ID": 513728, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a; Diameter above 4 cm and below 34.5 cm; Height above 6.1 n/a and below 18.4 n/a", + "Regional_Conditions": "Spain (latitude: N 42°20, longitude:E 04°10)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0145; b = 1.9531;", + "Unit": "dimensionless", + "Equation": "FL = a*D^b where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Santa Regina I., Tarazona T. (2001) Organic matter and nitrogen dynamics in a mature forest of common beech in the Sierra de la Demanda, Spain. Ann. Sci. For. 58 301-314.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 4; D_Max = 34.5; H_Min = 6.1; H_Max = 18.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.121Z", + "last_change_date": "2022-03-14T08:10:24.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14033, + "fields": { + "EF_ID": 513729, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a; Diameter above 4 cm and below 34.5 cm; Height above 6.1 n/a and below 18.4 n/a", + "Regional_Conditions": "Spain (latitude: N 42°20, longitude:E 04°10)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0894; b = 2.4679;", + "Unit": "dimensionless", + "Equation": "ST = a*D^b where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Santa Regina I., Tarazona T. (2001) Organic matter and nitrogen dynamics in a mature forest of common beech in the Sierra de la Demanda, Spain. Ann. Sci. For. 58 301-314.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 4; D_Max = 34.5; H_Min = 6.1; H_Max = 18.4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.194Z", + "last_change_date": "2022-03-14T08:10:24.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14034, + "fields": { + "EF_ID": 513730, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "France (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.8219; b = 2.5382;", + "Unit": "dimensionless", + "Equation": "RT = a+b*LN(D) where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Le Goff, N. and J.-M. Ottorini (2001). Root biomass and biomass increment in a beech (Gagus sylvatica L.) stand in North-East France. Annals of Forest Science, 58: p. 1-13.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =16; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.261Z", + "last_change_date": "2022-03-14T08:10:24.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14035, + "fields": { + "EF_ID": 513731, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0798; b = 2.601;", + "Unit": "dimensionless", + "Equation": "AB = a*D^b where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bartelink, H.H. (1997). Allometric relationship for biomass and leaf area of beech (Fagus sylvatica L). Annals of Forest Science, 54: p. 39-50.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =38; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.356Z", + "last_change_date": "2022-03-14T08:10:24.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14036, + "fields": { + "EF_ID": 513732, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: n/a", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0762; b = 2.523;", + "Unit": "dimensionless", + "Equation": "ST = a*D^b where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bartelink, H.H. (1997). Allometric relationship for biomass and leaf area of beech (Fagus sylvatica L). Annals of Forest Science, 54: p. 39-50.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =38; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.482Z", + "last_change_date": "2022-03-14T08:10:24.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14037, + "fields": { + "EF_ID": 513733, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in European beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: European beech; Native name: Hetres; Diameter above 35.7 cm and below 78.8 cm", + "Regional_Conditions": "Belgium (Mirwart)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 2.85102; b = 2.0666;", + "Unit": "dimensionless", + "Equation": "LOG(AB) = a + b*LOG(D) where AB = total aboveground biomass in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Duvigneaud, P., P. Kestemont, et al. (1977). La hetraie ardennaise a Festuca Altissima a mirwart biomasse et productivite primaire. Productivite biologique en Belgique. P. Duvigneaud and P. Kestemont, Editions Duculot, Paris-Gembloux: 107-154.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =6; D_min = 35.7; D_Max = 78.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.561Z", + "last_change_date": "2022-03-14T08:10:24.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14038, + "fields": { + "EF_ID": 513734, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in European beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: European beech; Native name: Hetres; Diameter above 35.7 cm and below 78.8 cm", + "Regional_Conditions": "Belgium (Mirwart)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 3.44802; b = 1.161783;", + "Unit": "dimensionless", + "Equation": "LOG(ST) = a + b*LOG(D) where ST = total stem biomass (stem wood+stem bark) in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Duvigneaud, P., P. Kestemont, et al. (1977). La hetraie ardennaise a Festuca Altissima a mirwart biomasse et productivite primaire. Productivite biologique en Belgique. P. Duvigneaud and P. Kestemont, Editions Duculot, Paris-Gembloux: 107-154.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =6; D_min = 35.7; D_Max = 78.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.628Z", + "last_change_date": "2022-03-14T08:10:24.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14039, + "fields": { + "EF_ID": 513735, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in European beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: European beech; Native name: Hetres; Diameter above 35.7 cm and below 78.8 cm", + "Regional_Conditions": "Belgium (Mirwart)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.41439; b = 3.18522;", + "Unit": "dimensionless", + "Equation": "LOG(BR) = a + b*LOG(D) where BR = biomass of branches in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Duvigneaud, P., P. Kestemont, et al. (1977). La hetraie ardennaise a Festuca Altissima a mirwart biomasse et productivite primaire. Productivite biologique en Belgique. P. Duvigneaud and P. Kestemont, Editions Duculot, Paris-Gembloux: 107-154.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =6; D_min = 35.7; D_Max = 78.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.694Z", + "last_change_date": "2022-03-14T08:10:24.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14040, + "fields": { + "EF_ID": 513736, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: Rotbuche", + "Regional_Conditions": "Germany (N 51°44, longitude:E09°31)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.1143; b = 2.503;", + "Unit": "dimensionless", + "Equation": "AB = a*D^b where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Pretzsch, H.(2000): Die Regeln von Reineke, Yoda und das Gesetz der räumlichen Allometrie, Allgemeine Forst- und Jagd-Zeitung, 171. Jg, p. 205-210", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.792Z", + "last_change_date": "2022-03-14T08:10:24.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14041, + "fields": { + "EF_ID": 513737, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Beech (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: Beech; Native name: Rotbuche", + "Regional_Conditions": "Austria (latitude: N48°15, longitude:E16°15)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.872; b = 2.095; c = 0.678;", + "Unit": "dimensionless", + "Equation": "AB = a+b LN(D)+cLN(H) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hochbichler, Eduar (2002): Vorläufige Ergebnisse von Biomasseninventuren in Buchen- und Mittelwaldbeständen, In Dietrich, H.-P., Raspe, S., Preushsler, T.: Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen, Forstliche Forschungsberichte, Heft", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =42; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.869Z", + "last_change_date": "2022-03-14T08:10:24.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14042, + "fields": { + "EF_ID": 513738, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in n/a (Fagus sylvatica)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fagus sylvatica; Common name: n/a; Native name: n/a", + "Regional_Conditions": "Sweden (latitude: N55°29, longitude:E 13°10)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.7194; b = 1.0414;", + "Unit": "dimensionless", + "Equation": "AB = a+ blog10(D2H) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cn; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -NIHLGARD, B.(1972): Plant biomass, primary prodauction and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. OIKOS 23: p. 69-81", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =8; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:24.936Z", + "last_change_date": "2022-03-14T08:10:24.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14043, + "fields": { + "EF_ID": 513740, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in European ash (Fraxinus excelsior)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fraxinus excelsior; Common name: European ash; Native name: European ash; Diameter above 2.86 cm and below 33.1 cm", + "Regional_Conditions": "UK (Lake District, Meathop)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.4598; b = 2.4882;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 2.86; D_Max = 33.1; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.003Z", + "last_change_date": "2022-03-14T08:10:25.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14044, + "fields": { + "EF_ID": 513741, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in European ash (Fraxinus excelsior)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Fraxinus excelsior; Common name: European ash; Native name: European ash; Diameter above 3.02 cm and below 18.3 cm", + "Regional_Conditions": "UK (Lake District, Roudsea)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.4718; b = 2.5466;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 3.02; D_Max = 18.3; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.102Z", + "last_change_date": "2022-03-14T08:10:25.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14045, + "fields": { + "EF_ID": 513742, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 19.018; b = -4.806; c = 0.565;", + "Unit": "dimensionless", + "Equation": "AB = a+b*D+c*D2 where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.203Z", + "last_change_date": "2022-03-14T08:10:25.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14046, + "fields": { + "EF_ID": 513743, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.257; b = 0.187; c = 0.01;", + "Unit": "dimensionless", + "Equation": "AB = a+b*D2+c*(D2*H) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.269Z", + "last_change_date": "2022-03-14T08:10:25.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14047, + "fields": { + "EF_ID": 513744, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 2.479; b = -0.552; c = 0.066;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2 where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.328Z", + "last_change_date": "2022-03-14T08:10:25.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14048, + "fields": { + "EF_ID": 513745, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.129; b = 0.076; c = -0.041;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D2+c*D*H where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.446Z", + "last_change_date": "2022-03-14T08:10:25.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14049, + "fields": { + "EF_ID": 513746, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 3.64; b = -0.476; c = 0.063;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2 where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.519Z", + "last_change_date": "2022-03-14T08:10:25.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14050, + "fields": { + "EF_ID": 513747, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 3.225; b = -0.295; c = 0.091; d = -0.045;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2+d*D*H where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.619Z", + "last_change_date": "2022-03-14T08:10:25.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14051, + "fields": { + "EF_ID": 513748, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 3.278; b = -0.728; c = 0.101;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2 where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.686Z", + "last_change_date": "2022-03-14T08:10:25.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14052, + "fields": { + "EF_ID": 513749, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.115; b = 0.13; c = -0.074;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D2+c*D*H where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.783Z", + "last_change_date": "2022-03-14T08:10:25.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14053, + "fields": { + "EF_ID": 513750, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 3.416; b = -0.593; c = 0.14;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D2 where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.845Z", + "last_change_date": "2022-03-14T08:10:25.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14054, + "fields": { + "EF_ID": 513751, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 6.721; b = 0.358; c = 0.119; d = -1.4773; e = 0.03;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D2+d*H+e*(D*H) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d,e = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.919Z", + "last_change_date": "2022-03-14T08:10:25.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14055, + "fields": { + "EF_ID": 513752, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.71; b = 0.10229; c = 0.0000033;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D3 where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:25.994Z", + "last_change_date": "2022-03-14T08:10:25.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14056, + "fields": { + "EF_ID": 513753, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.34; b = 0.11571;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D3 where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.084Z", + "last_change_date": "2022-03-14T08:10:26.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14057, + "fields": { + "EF_ID": 513754, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.4112; b = 0.00026724; c = 0.00000141; d = 0.00043562;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D2+c*D3+d*(D3/H) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.169Z", + "last_change_date": "2022-03-14T08:10:26.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14058, + "fields": { + "EF_ID": 513755, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.4866; b = 0.00035026; c = 0.00000135; d = 0.00042424;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D2+c*D3+d*(D3/H) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.239Z", + "last_change_date": "2022-03-14T08:10:26.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14059, + "fields": { + "EF_ID": 513756, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.647; b = 0.106; c = 0.04;", + "Unit": "dimensionless", + "Equation": "FL = a+b*D+c*D2 where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.306Z", + "last_change_date": "2022-03-14T08:10:26.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14060, + "fields": { + "EF_ID": 513757, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.607; b = 0.095; c = 0.039; d = 0.001;", + "Unit": "dimensionless", + "Equation": "FL = a+b*D+c*D2+d*D*H where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.372Z", + "last_change_date": "2022-03-14T08:10:26.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14061, + "fields": { + "EF_ID": 513758, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 0.3 cm and below 63.4 cm; Height above 1.3 n/a and below 35.6 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.3858; b = 8.604;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+13)] where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Marklund, L.G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Rapporter - Skog, 43: p. 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =1501; D_min = 0.3; D_Max = 63.4; H_Min = 1.3; H_Max = 35.6", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.461Z", + "last_change_date": "2022-03-14T08:10:26.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14062, + "fields": { + "EF_ID": 513759, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 0.3 cm and below 63.4 cm; Height above 1.3 n/a and below 35.6 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.6654; b = 9.955;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+18)] where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Marklund, L.G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Rapporter - Skog, 43: p. 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =525; D_min = 0.3; D_Max = 63.4; H_Min = 1.3; H_Max = 35.6", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.536Z", + "last_change_date": "2022-03-14T08:10:26.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14063, + "fields": { + "EF_ID": 513760, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.3308; b = 9.955;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+12)] where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =525; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.606Z", + "last_change_date": "2022-03-14T08:10:26.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14064, + "fields": { + "EF_ID": 513761, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.6351; b = 3.6518; c = 0.0493; d = 1.0129;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+12)]+c*H+d*LN(H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =525; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.672Z", + "last_change_date": "2022-03-14T08:10:26.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14065, + "fields": { + "EF_ID": 513762, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.2804; b = 8.5242;", + "Unit": "dimensionless", + "Equation": "CR = a+b*[D/(D+13)] where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =544; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.763Z", + "last_change_date": "2022-03-14T08:10:26.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14066, + "fields": { + "EF_ID": 513763, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.2063; b = 10.9708; c = -0.0124; d = -0.4923;", + "Unit": "dimensionless", + "Equation": "CR = a+b*[D/(D+13)]+c*H+d*LN(H) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =544; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.839Z", + "last_change_date": "2022-03-14T08:10:26.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14067, + "fields": { + "EF_ID": 513764, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 0.3 cm and below 63.4 cm; Height above 1.3 n/a and below 35.6 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.033; b = 7.8171;", + "Unit": "dimensionless", + "Equation": "FL = a+b*[D/(D+12)] where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Rapporter - Skog, 43: p. 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =544; D_min = 0.3; D_Max = 63.4; H_Min = 1.3; H_Max = 35.6", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.906Z", + "last_change_date": "2022-03-14T08:10:26.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14068, + "fields": { + "EF_ID": 513765, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.9602; b = 7.8171;", + "Unit": "dimensionless", + "Equation": "FL = a+b*[D/(D+12)] where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =544; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:26.973Z", + "last_change_date": "2022-03-14T08:10:26.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14069, + "fields": { + "EF_ID": 513766, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.8551; b = 9.7809; c = -0.4873;", + "Unit": "dimensionless", + "Equation": "FL = a+b*[D/(D+12)]+c*H+d*LN(H) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =544; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.065Z", + "last_change_date": "2022-03-14T08:10:27.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14070, + "fields": { + "EF_ID": 513767, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate small roots in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.4447; b = 10.5381;", + "Unit": "dimensionless", + "Equation": "RS = a+b*[D/(D+14)] where RS = small roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =316; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.153Z", + "last_change_date": "2022-03-14T08:10:27.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14071, + "fields": { + "EF_ID": 513768, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.3851; b = 13.3703;", + "Unit": "dimensionless", + "Equation": "RT = a+b*[D/(D+8)] where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =281; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.223Z", + "last_change_date": "2022-03-14T08:10:27.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14072, + "fields": { + "EF_ID": 513769, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.5706; b = 7.6283;", + "Unit": "dimensionless", + "Equation": "RT = a+b*[D/(D+12)] where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =329; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.306Z", + "last_change_date": "2022-03-14T08:10:27.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14073, + "fields": { + "EF_ID": 513770, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 0.3 cm and below 63.4 cm; Height above 1.3 n/a and below 35.6 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.4216; b = 9.8364;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+15)] where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Rapporter - Skog, 43: p. 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =505; D_min = 0.3; D_Max = 63.4; H_Min = 1.3; H_Max = 35.6", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.409Z", + "last_change_date": "2022-03-14T08:10:27.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14074, + "fields": { + "EF_ID": 513771, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.3912; b = 9.8364;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+15)] where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =505; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.486Z", + "last_change_date": "2022-03-14T08:10:27.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14075, + "fields": { + "EF_ID": 513772, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.402; b = 8.3089; c = 0.0147; d = 0.2295;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+15)]+c*H+d*LN(H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =505; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.556Z", + "last_change_date": "2022-03-14T08:10:27.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14076, + "fields": { + "EF_ID": 513773, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 0.3 cm and below 63.4 cm; Height above 1.3 m and below 35.6 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.2052; b = 7.4361; c = 0.0186; d = 0.7595;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+14)]+c*H+d*LN(H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Rapporter - Skog, 43: p. 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =1503; D_min = 0.3; D_Max = 63.4; H_Min = 1.3; H_Max = 35.6", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.623Z", + "last_change_date": "2022-03-14T08:10:27.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14077, + "fields": { + "EF_ID": 513774, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 0.3 cm and below 63.4 cm; Height above 1.3 n/a and below 35.6 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.0148; b = 11.1926;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+14)] where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Rapporter - Skog, 43: p. 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =1503; D_min = 0.3; D_Max = 63.4; H_Min = 1.3; H_Max = 35.6", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.719Z", + "last_change_date": "2022-03-14T08:10:27.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14078, + "fields": { + "EF_ID": 513775, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 0.3 cm and below 63.4 cm; Height above 1.3 m and below 35.6 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.3036; b = 7.2309; c = 0.0355; d = 0.703;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+14)]+c*H+d*LN(H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Rapporter - Skog, 43: p. 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =505; D_min = 0.3; D_Max = 63.4; H_Min = 1.3; H_Max = 35.6", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.794Z", + "last_change_date": "2022-03-14T08:10:27.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14079, + "fields": { + "EF_ID": 513776, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 0.3 cm and below 63.4 cm; Height above 1.3 n/a and below 35.6 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.2727; b = 11.4873;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+14)] where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1987). Biomass functions for Norway spruce (Picea abies (L.) Karst.) in Sweden. Sveriges lantbruksuniversitet, Rapporter - Skog, 43: p. 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =505; D_min = 0.3; D_Max = 63.4; H_Min = 1.3; H_Max = 35.6", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.873Z", + "last_change_date": "2022-03-14T08:10:27.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14080, + "fields": { + "EF_ID": 513777, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.0571; b = 11.3341;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+14)] where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =546; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:27.948Z", + "last_change_date": "2022-03-14T08:10:27.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14081, + "fields": { + "EF_ID": 513778, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.1702; b = 7.469; c = 0.0289; d = 0.6858;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+14)]+c*H+d*LN(H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =546; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.054Z", + "last_change_date": "2022-03-14T08:10:28.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14082, + "fields": { + "EF_ID": 513779, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stump in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.3645; b = 10.6686;", + "Unit": "dimensionless", + "Equation": "SU = a+b*[D/(D+17)] where SU = stump in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =328; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.128Z", + "last_change_date": "2022-03-14T08:10:28.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14083, + "fields": { + "EF_ID": 513780, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.2471; b = 11.4873;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+14)] where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =505; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.223Z", + "last_change_date": "2022-03-14T08:10:28.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14084, + "fields": { + "EF_ID": 513781, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Gran; Diameter above 0 cm and below 50 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.3032; b = 7.2309; c = 0.0355; d = 0.703;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+14)]+c*H+d*LN(H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =505; D_min = 0; D_Max = 50; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.298Z", + "last_change_date": "2022-03-14T08:10:28.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14085, + "fields": { + "EF_ID": 513782, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 26 cm and below 60 cm", + "Regional_Conditions": "Germany (Bavaria, Ebersberg)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.2543; b = 2.1872;", + "Unit": "dimensionless", + "Equation": "TB = a*D^b where TB = total biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Schwarzmeier, M. (2000). Erhebung der oberirdischen Biomassvorräte von Fichtenbeständen (Picea abies (L.) Karst.) im Bereich der Waldklimastationen Ebersberg und Flossenbürg. Diploma Thesis, Fachhochschule Weihenstephan, Fachbereich Forstwirtschaft, Germany", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 26; D_Max = 60; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.389Z", + "last_change_date": "2022-03-14T08:10:28.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14086, + "fields": { + "EF_ID": 513783, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 24 cm and below 55.5 cm", + "Regional_Conditions": "Germany (Bavaria, Flossenbürg)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.1245; b = 2.3585;", + "Unit": "dimensionless", + "Equation": "TB = a*D^b where TB = total biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Schwarzmeier, M. (2000). Erhebung der oberirdischen Biomassvorräte von Fichtenbeständen (Picea abies (L.) Karst.) im Bereich der Waldklimastationen Ebersberg und Flossenbürg. Diploma Thesis, Fachhochschule Weihenstephan, Fachbereich Forstwirtschaft, Germany", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 24; D_Max = 55.5; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.469Z", + "last_change_date": "2022-03-14T08:10:28.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14087, + "fields": { + "EF_ID": 513784, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 26 cm and below 60 cm", + "Regional_Conditions": "Germany (Bavaria, Ebersberg)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.408; b = 2.0136;", + "Unit": "dimensionless", + "Equation": "ST = a*D^b where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Schwarzmeier, M. (2000). Erhebung der oberirdischen Biomassvorräte von Fichtenbeständen (Picea abies (L.) Karst.) im Bereich der Waldklimastationen Ebersberg und Flossenbürg. Diploma Thesis, Fachhochschule Weihenstephan, Fachbereich Forstwirtschaft, Germany", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 26; D_Max = 60; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.531Z", + "last_change_date": "2022-03-14T08:10:28.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14088, + "fields": { + "EF_ID": 513785, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 24 cm and below 55.5 cm", + "Regional_Conditions": "Germany (Bavaria, Flossenbürg)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.208; b = 2.1531;", + "Unit": "dimensionless", + "Equation": "ST = a*D^b where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Schwarzmeier, M. (2000). Erhebung der oberirdischen Biomassvorräte von Fichtenbeständen (Picea abies (L.) Karst.) im Bereich der Waldklimastationen Ebersberg und Flossenbürg. Diploma Thesis, Fachhochschule Weihenstephan, Fachbereich Forstwirtschaft, Germany", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 24; D_Max = 55.5; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.598Z", + "last_change_date": "2022-03-14T08:10:28.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14089, + "fields": { + "EF_ID": 513786, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 26 cm and below 60 cm", + "Regional_Conditions": "Germany (Bavaria, Flossenbürg)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0013; b = 3.1784;", + "Unit": "dimensionless", + "Equation": "CR = a*D^b where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Schwarzmeier, M. (2000). Erhebung der oberirdischen Biomassvorräte von Fichtenbeständen (Picea abies (L.) Karst.) im Bereich der Waldklimastationen Ebersberg und Flossenbürg. Diploma Thesis, Fachhochschule Weihenstephan, Fachbereich Forstwirtschaft, Germany", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 26; D_Max = 60; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.690Z", + "last_change_date": "2022-03-14T08:10:28.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14090, + "fields": { + "EF_ID": 513787, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 24 cm and below 55.5 cm", + "Regional_Conditions": "Germany (Bavaria, Flossenbürg)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0009; b = 3.2112;", + "Unit": "dimensionless", + "Equation": "CR = a*D^b where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Schwarzmeier, M. (2000). Erhebung der oberirdischen Biomassvorräte von Fichtenbeständen (Picea abies (L.) Karst.) im Bereich der Waldklimastationen Ebersberg und Flossenbürg. Diploma Thesis, Fachhochschule Weihenstephan, Fachbereich Forstwirtschaft, Germany", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =7; D_min = 24; D_Max = 55.5; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.765Z", + "last_change_date": "2022-03-14T08:10:28.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14091, + "fields": { + "EF_ID": 513788, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground woody biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 16.2 cm and below 32.3 cm", + "Regional_Conditions": "Belgium (Mirwart)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 1.81298; b = 2.51353;", + "Unit": "dimensionless", + "Equation": "LOG(ABW) = a + b*LOG(D) where ABW = total aboveground woody biomass in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Duvigneaud, P., and J. Timperman (1977).Biomasse des epiphytes cryptogamiques dans une hetraie ardennaise.In: Productivite biologique en Belgique. P. Duvigneaud and P. Kestemont, Editions Duculot, Paris-Gembloux: 107-154.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =6; D_min = 16.2; D_Max = 32.3; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.839Z", + "last_change_date": "2022-03-14T08:10:28.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14092, + "fields": { + "EF_ID": 513789, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 16.2 cm and below 32.3 cm", + "Regional_Conditions": "Belgium (Mirwart)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 1.85007; b = 2.4553;", + "Unit": "dimensionless", + "Equation": "LOG(ST) = a + b*LOG(D) where ST = total stem biomass (stem wood+stem bark) in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Duvigneaud, P., and J. Timperman (1977).Biomasse des epiphytes cryptogamiques dans une hetraie ardennaise.In: Productivite biologique en Belgique. P. Duvigneaud and P. Kestemont, Editions Duculot, Paris-Gembloux: 107-154.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =6; D_min = 16.2; D_Max = 32.3; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:28.906Z", + "last_change_date": "2022-03-14T08:10:28.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14093, + "fields": { + "EF_ID": 513790, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 16.2 cm and below 32.3 cm", + "Regional_Conditions": "Belgium (Mirwart)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 2.97965; b = 0.10808;", + "Unit": "dimensionless", + "Equation": "LOG(FL) = a + b*LOG(D) where FL = foliage biomass in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Duvigneaud, P., and J. Timperman (1977).Biomasse des epiphytes cryptogamiques dans une hetraie ardennaise.In: Productivite biologique en Belgique. P. Duvigneaud and P. Kestemont, Editions Duculot, Paris-Gembloux: 107-154.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =6; D_min = 16.2; D_Max = 32.3; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.001Z", + "last_change_date": "2022-03-14T08:10:29.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14094, + "fields": { + "EF_ID": 513791, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate dead branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a; Diameter above 16.2 cm and below 32.3 cm", + "Regional_Conditions": "Belgium (Mirwart)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 1.82795; b = 1.49367;", + "Unit": "dimensionless", + "Equation": "LOG(DB) = a + b*LOG(D) where DB = dead branches in g; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Duvigneaud, P., and J. Timperman (1977).Biomasse des epiphytes cryptogamiques dans une hetraie ardennaise.In: Productivite biologique en Belgique. P. Duvigneaud and P. Kestemont, Editions Duculot, Paris-Gembloux: 107-154.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =6; D_min = 16.2; D_Max = 32.3; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.073Z", + "last_change_date": "2022-03-14T08:10:29.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14095, + "fields": { + "EF_ID": 513792, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 18 cm and below 62 cm", + "Regional_Conditions": "Germany (Freiburg)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.084; b = 2.814;", + "Unit": "dimensionless", + "Equation": "LOG(FL) = a + b*LOG(D) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Schöpfer, W. (1961). Beiträge zur Erfassung des Assimilationsapparates der Fichte. Freiburg, Baden-Württembergische Forstliche Versuchsanstalt, Abteilung Biometrie: 1-127.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =28; D_min = 18; D_Max = 62; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.139Z", + "last_change_date": "2022-03-14T08:10:29.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14096, + "fields": { + "EF_ID": 513793, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 15 cm and below 23 cm", + "Regional_Conditions": "Germany (Harz mountains)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.02; b = 2.36;", + "Unit": "dimensionless", + "Equation": "RT = a*D^b where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Drexhage, M. and F. Gruber (1999). “Above- and below-stump relationships for Picea abies: Estimating root system biomass from breast-height diameters.” Scandinavian Journal of Forest Research 14: 328-333.Drexhage", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 15; D_Max = 23; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.206Z", + "last_change_date": "2022-03-14T08:10:29.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14097, + "fields": { + "EF_ID": 513794, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 17 cm and below 39 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 17.6; b = -2.87; c = 0.141;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D^2 where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Fiedler, F. (1987). “Das Ökologische Meßfeld der Sektion Forstwirtschaft der TU Dresden. V. Die Verteilung der Dendromassekomponenten.” Wissenschaftliche Zeitschrift der Technischen Universität Dresden 36(6): 229-234.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =19; D_min = 17; D_Max = 39; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.311Z", + "last_change_date": "2022-03-14T08:10:29.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14098, + "fields": { + "EF_ID": 513795, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 17 cm and below 39 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -43.13; b = 2.25; c = 0.452;", + "Unit": "dimensionless", + "Equation": "AB = a+b*D+c*D^2 where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Fiedler, F. (1986). “Die Dendromasse eines hiebsreifen Fichtenbestandes.” Beiträge für die Forstwirtschaft 20(4): 171-180.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =19; D_min = 17; D_Max = 39; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.395Z", + "last_change_date": "2022-03-14T08:10:29.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14099, + "fields": { + "EF_ID": 513796, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 17 cm and below 39 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.051; b = 0.0038; c = 0.000344;", + "Unit": "dimensionless", + "Equation": "ST = a+b*D+c*D^2 where ST = total stem biomass (stem wood+stem bark) in t; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Fiedler, F. (1986). “Die Dendromasse eines hiebsreifen Fichtenbestandes.” Beiträge für die Forstwirtschaft 20(4): 171-180.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =19; D_min = 17; D_Max = 39; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.461Z", + "last_change_date": "2022-03-14T08:10:29.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14100, + "fields": { + "EF_ID": 513797, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 16 cm and below 32.5 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -33.225; b = 2.3915;", + "Unit": "dimensionless", + "Equation": "RT = a+b*D where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Lee, D.-H. (1998). Architektur des Wurzelsystems von Fichten (Picea abies [L.] Karst.) auf unterschiedlich versauerten Standorten. Göttingen, Forschungszentrum Waldökosysteme der Universität Göttingen. Reihe A, Bd. 153: 1-142.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 16; D_Max = 32.5; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.536Z", + "last_change_date": "2022-03-14T08:10:29.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14101, + "fields": { + "EF_ID": 513798, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 10.9 cm and below 27.2 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 904 a2)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -61.66142; b = -6.09202; c = 0.17433;", + "Unit": "dimensionless", + "Equation": "ST = a+b*D+c*D^2 where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =8; D_min = 10.9; D_Max = 27.2; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.638Z", + "last_change_date": "2022-03-14T08:10:29.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14102, + "fields": { + "EF_ID": 513799, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 10.9 cm and below 27.2 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 904 a3)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.55542; b = -0.39541; c = 0.09537;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D^2 where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =8; D_min = 10.9; D_Max = 27.2; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.723Z", + "last_change_date": "2022-03-14T08:10:29.723Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14103, + "fields": { + "EF_ID": 513800, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 10.9 cm and below 27.2 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 904 a4)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.55127; b = 0.75517; c = 0.02156;", + "Unit": "dimensionless", + "Equation": "SB = a+b*D+c*D^2 where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =8; D_min = 10.9; D_Max = 27.2; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.803Z", + "last_change_date": "2022-03-14T08:10:29.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14104, + "fields": { + "EF_ID": 513801, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 10.9 cm and below 27.2 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 904 a5)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -12.29769; b = 1.14647; c = 0.00179;", + "Unit": "dimensionless", + "Equation": "FL = a+b*D+c*D^2 where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =8; D_min = 10.9; D_Max = 27.2; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.878Z", + "last_change_date": "2022-03-14T08:10:29.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14105, + "fields": { + "EF_ID": 513802, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 10.9 cm and below 27.2 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 904 a6)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -60.55702; b = 5.46558; c = 0.27567;", + "Unit": "dimensionless", + "Equation": "AB = a+b*D+c*D^2 where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =8; D_min = 10.9; D_Max = 27.2; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:29.973Z", + "last_change_date": "2022-03-14T08:10:29.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14106, + "fields": { + "EF_ID": 513803, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 16.5 cm and below 37.8 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a5)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -212.04143; b = 20.20032; c = -0.08466;", + "Unit": "dimensionless", + "Equation": "ST = a+b*D+c*D^2 where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =9; D_min = 16.5; D_Max = 37.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.061Z", + "last_change_date": "2022-03-14T08:10:30.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14107, + "fields": { + "EF_ID": 513804, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 16.5 cm and below 37.8 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a6)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -70.51964; b = 6.11247; c = -0.04391;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D^2 where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =9; D_min = 16.5; D_Max = 37.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.128Z", + "last_change_date": "2022-03-14T08:10:30.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14108, + "fields": { + "EF_ID": 513805, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 16.5 cm and below 37.8 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a7)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -283.17413; b = 26.32334; c = -0.12856;", + "Unit": "dimensionless", + "Equation": "AB = a+b*D+c*D^2 where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =9; D_min = 16.5; D_Max = 37.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.194Z", + "last_change_date": "2022-03-14T08:10:30.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14109, + "fields": { + "EF_ID": 513806, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 16.5 cm and below 37.8 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a8)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.55127; b = 0.75517; c = 0.02156;", + "Unit": "dimensionless", + "Equation": "SB = a+b*D+c*D^2 where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =9; D_min = 16.5; D_Max = 37.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.309Z", + "last_change_date": "2022-03-14T08:10:30.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14110, + "fields": { + "EF_ID": 513807, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 16.5 cm and below 37.8 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -12.55702; b = 1.14647; c = 0.00179;", + "Unit": "dimensionless", + "Equation": "FL = a+b*D+c*D^2 where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =9; D_min = 16.5; D_Max = 37.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.386Z", + "last_change_date": "2022-03-14T08:10:30.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14111, + "fields": { + "EF_ID": 513808, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 23.2 cm and below 31.1 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a6)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -784.92226; b = 61.58581; c = -0.79535;", + "Unit": "dimensionless", + "Equation": "ST = a+b*D+c*D^2 where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =5; D_min = 23.2; D_Max = 31.1; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.453Z", + "last_change_date": "2022-03-14T08:10:30.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14112, + "fields": { + "EF_ID": 513809, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 23.2 cm and below 31.1 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a7)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -12.29435; b = 1.19256; c = 0.0462;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D^2 where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =5; D_min = 23.2; D_Max = 31.1; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.519Z", + "last_change_date": "2022-03-14T08:10:30.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14113, + "fields": { + "EF_ID": 513810, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 23.2 cm and below 31.1 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a8)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -142.60881; b = 13.63896; c = 0.12593;", + "Unit": "dimensionless", + "Equation": "AB = a+b*D+c*D^2 where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =5; D_min = 23.2; D_Max = 31.1; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.628Z", + "last_change_date": "2022-03-14T08:10:30.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14114, + "fields": { + "EF_ID": 513811, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 23.2 cm and below 31.1 cm", + "Regional_Conditions": "Germany (Saxonia, Tharandt, site 235 a9)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.55127; b = 0.75517; c = 0.02156;", + "Unit": "dimensionless", + "Equation": "SB = a+b*D+c*D^2 where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Poeppel, B. (1989). Untersuchungen der Dendromasse in mittelalten Fichtenbeständen. Forsteinrichtung und Forstliche Ertragskunde. Dredsen, Technische Universität Dresden: 66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =5; D_min = 23.2; D_Max = 31.1; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.715Z", + "last_change_date": "2022-03-14T08:10:30.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14115, + "fields": { + "EF_ID": 513812, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 32 mm and below 207 mm", + "Regional_Conditions": "Austria (Carinthia, control site)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.9745; b = 0.039; c = 0.00382;", + "Unit": "dimensionless", + "Equation": "FL = a+b*D+c*D^2 where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in mm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Neumann, M. and R. Jandl (2002). “Aboveground biomass of two young Norway spruce stands.” unfinished draft - contact robert.jandl@fbva.bmlf.gv.at.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = 32; D_Max = 207; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.778Z", + "last_change_date": "2022-03-14T08:10:30.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14116, + "fields": { + "EF_ID": 513813, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 25 mm and below 179 mm", + "Regional_Conditions": "Austria (Carinthia, fertilised site)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.7095; b = 0.0011; c = 0.00142;", + "Unit": "dimensionless", + "Equation": "FL = a+b*D+c*D^2 where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in mm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Neumann, M. and R. Jandl (2002). “Aboveground biomass of two young Norway spruce stands.” unfinished draft - contact robert.jandl@fbva.bmlf.gv.at.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = 25; D_Max = 179; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.844Z", + "last_change_date": "2022-03-14T08:10:30.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14117, + "fields": { + "EF_ID": 513814, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 32 mm and below 207 mm", + "Regional_Conditions": "Austria (Carinthia, control site)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 5.3727; b = 0.00876;", + "Unit": "dimensionless", + "Equation": "BR = a*exp(b*D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in mm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Neumann, M. and R. Jandl (2002). “Aboveground biomass of two young Norway spruce stands.” unfinished draft - contact robert.jandl@fbva.bmlf.gv.at.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = 32; D_Max = 207; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:30.946Z", + "last_change_date": "2022-03-14T08:10:30.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14118, + "fields": { + "EF_ID": 513815, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Fichte; Diameter above 25 mm and below 179 mm", + "Regional_Conditions": "Austria (Carinthia, fertilised site)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 1.325; b = 0.0135;", + "Unit": "dimensionless", + "Equation": "BR = a*exp(b*D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in mm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Neumann, M. and R. Jandl (2002). “Aboveground biomass of two young Norway spruce stands.” unfinished draft - contact robert.jandl@fbva.bmlf.gv.at.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = 25; D_Max = 179; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.019Z", + "last_change_date": "2022-03-14T08:10:31.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14119, + "fields": { + "EF_ID": 513816, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.12269; b = 2.3272;", + "Unit": "dimensionless", + "Equation": "ST = a*D^b where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Xiao Chunwang?J.Curiel Yuste? I.A.Janssens? P.Roskams? L.Nachtergale? A.Carrara? B.Y.Sanchez ? R. Ceulemans (2003). Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology. 23:505-516", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.098Z", + "last_change_date": "2022-03-14T08:10:31.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14120, + "fields": { + "EF_ID": 513817, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.0022; b = 2.9122;", + "Unit": "dimensionless", + "Equation": "BR = a*D^b where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Xiao Chunwang?J.Curiel Yuste? I.A.Janssens? P.Roskams? L.Nachtergale? A.Carrara? B.Y.Sanchez ? R. Ceulemans (2003). Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology. 23:505-516", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.169Z", + "last_change_date": "2022-03-14T08:10:31.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14121, + "fields": { + "EF_ID": 513818, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.00445; b = 2.2371;", + "Unit": "dimensionless", + "Equation": "FL = a*D^b where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Xiao Chunwang?J.Curiel Yuste? I.A.Janssens? P.Roskams? L.Nachtergale? A.Carrara? B.Y.Sanchez ? R. Ceulemans (2003). Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology. 23:505-516", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.265Z", + "last_change_date": "2022-03-14T08:10:31.265Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14122, + "fields": { + "EF_ID": 513819, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate 1-year-old needle biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.00394; b = 2.1534;", + "Unit": "dimensionless", + "Equation": "FL(1) = a*D^b where FL(1) = 1-year-old needle biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Xiao Chunwang?J.Curiel Yuste? I.A.Janssens? P.Roskams? L.Nachtergale? A.Carrara? B.Y.Sanchez ? R. Ceulemans (2003). Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology. 23:505-516", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.340Z", + "last_change_date": "2022-03-14T08:10:31.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14123, + "fields": { + "EF_ID": 513820, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate n-year-old needle biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.00083; b = 2.4074;", + "Unit": "dimensionless", + "Equation": "FL(2) = a*D^b where FL(n) = n-year-old needle biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Xiao Chunwang?J.Curiel Yuste? I.A.Janssens? P.Roskams? L.Nachtergale? A.Carrara? B.Y.Sanchez ? R. Ceulemans (2003). Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology. 23:505-516", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.411Z", + "last_change_date": "2022-03-14T08:10:31.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14124, + "fields": { + "EF_ID": 513821, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate coarse roots in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.33989; b = 1.4728;", + "Unit": "dimensionless", + "Equation": "RC = a*D^b where RC = coarse roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Xiao Chunwang?J.Curiel Yuste? I.A.Janssens? P.Roskams? L.Nachtergale? A.Carrara? B.Y.Sanchez ? R. Ceulemans (2003). Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology. 23:505-516", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.486Z", + "last_change_date": "2022-03-14T08:10:31.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14125, + "fields": { + "EF_ID": 513822, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Rodgran; Diameter above 14 cm and below 26 cm; Height above 14 m and below 18 m", + "Regional_Conditions": "Denmark (Klosterheden; latitude: N 56°27, longitude:E 08°27)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.24; b = 0.67;", + "Unit": "dimensionless", + "Equation": "ln(FL) = a+b*LOG(D2*H) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Ingerslev, M., Hallbäcken, L. (1999). Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce (Picea abies) plantation. Part II. Accumulation of biomass and nutrients. Forest Ecology and Management, 119, 21-38.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 14; D_Max = 26; H_Min = 14; H_Max = 18", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.591Z", + "last_change_date": "2022-03-14T08:10:31.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14126, + "fields": { + "EF_ID": 513823, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Rodgran; Diameter above 14 cm and below 26 cm; Height above 14 m and below 18 m", + "Regional_Conditions": "Denmark (Klosterheden; latitude: N 56°27, longitude:E 08°27)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.85; b = 0.81;", + "Unit": "dimensionless", + "Equation": "ln(FL) = a+b*LOG(D2*H) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Ingerslev, M., Hallbäcken, L. (1999). Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce (Picea abies) plantation. Part II. Accumulation of biomass and nutrients. Forest Ecology and Management, 119, 21-38.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 14; D_Max = 26; H_Min = 14; H_Max = 18", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.665Z", + "last_change_date": "2022-03-14T08:10:31.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14127, + "fields": { + "EF_ID": 513824, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Rodgran; Diameter above 14 cm and below 26 cm; Height above 14 m and below 18 m", + "Regional_Conditions": "Denmark (Klosterheden; latitude: N 56°27, longitude:E 08°27)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.88; b = 1.02;", + "Unit": "dimensionless", + "Equation": "ln(BR) = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Ingerslev, M., Hallbäcken, L. (1999). Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce (Picea abies) plantation. Part II. Accumulation of biomass and nutrients. Forest Ecology and Management, 119, 21-38.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 14; D_Max = 26; H_Min = 14; H_Max = 18", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.728Z", + "last_change_date": "2022-03-14T08:10:31.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14128, + "fields": { + "EF_ID": 513825, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Rodgran; Diameter above 14 cm and below 26 cm; Height above 14 m and below 18 m", + "Regional_Conditions": "Denmark (Klosterheden; latitude: N 56°27, longitude:E 08°27)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -7.75; b = 1.08;", + "Unit": "dimensionless", + "Equation": "ln(BR) = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Ingerslev, M., Hallbäcken, L. (1999). Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce (Picea abies) plantation. Part II. Accumulation of biomass and nutrients. Forest Ecology and Management, 119, 21-38.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 14; D_Max = 26; H_Min = 14; H_Max = 18", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.790Z", + "last_change_date": "2022-03-14T08:10:31.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14129, + "fields": { + "EF_ID": 513826, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Rodgran; Diameter above 14 cm and below 26 cm; Height above 14 m and below 18 m", + "Regional_Conditions": "Denmark (Klosterheden; latitude: N 56°27, longitude:E 08°27)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.24; b = 0.88;", + "Unit": "dimensionless", + "Equation": "ln(SW) = a+b*LOG(D2*H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Ingerslev, M., Hallbäcken, L. (1999). Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce (Picea abies) plantation. Part II. Accumulation of biomass and nutrients. Forest Ecology and Management, 119, 21-38.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 14; D_Max = 26; H_Min = 14; H_Max = 18", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.886Z", + "last_change_date": "2022-03-14T08:10:31.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14130, + "fields": { + "EF_ID": 513827, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Norway spruce (Picea abies)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Picea abies; Common name: Norway spruce; Native name: Rodgran; Diameter above 14 cm and below 26 cm; Height above 14 m and below 18 m", + "Regional_Conditions": "Denmark (Klosterheden; latitude: N 56°27, longitude:E 08°27)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.51; b = 0.88;", + "Unit": "dimensionless", + "Equation": "ln(SB) = a+b*LOG(D2*H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Ingerslev, M., Hallbäcken, L. (1999). Above ground biomass and nutrient distribution in a limed and fertilized Norway spruce (Picea abies) plantation. Part II. Accumulation of biomass and nutrients. Forest Ecology and Management, 119, 21-38.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 14; D_Max = 26; H_Min = 14; H_Max = 18", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:31.956Z", + "last_change_date": "2022-03-14T08:10:31.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14131, + "fields": { + "EF_ID": 513828, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in European aspen Asp (Populus tremula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Populus tremula; Common name: European aspen Asp; Native name: ; Diameter above 19 mm and below 92 mm; Height above 3.6 m and below 15.8 m", + "Regional_Conditions": "Sweden ; latitude: N 60-65°, longitude:E16-22°)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.000146; b = 2.6035333;", + "Unit": "dimensionless", + "Equation": "AB = a*D^b where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in mm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Johansson, T. (1999). Biomass equations for determining functions of European aspen growing on abandoned farmland and some practical implicatons. Biomass and Bioenergy 17: 471-480.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 19; D_Max = 92; H_Min = 3.6; H_Max = 15.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.023Z", + "last_change_date": "2022-03-14T08:10:32.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14132, + "fields": { + "EF_ID": 513829, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in European aspen Asp (Populus tremula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Populus tremula; Common name: European aspen Asp; Native name: ; Diameter above 19 mm and below 92 mm; Height above 3.6 m and below 15.8 m", + "Regional_Conditions": "Sweden ; latitude: N 60-65°, longitude:E16-22°)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.000065; b = 2.739823;", + "Unit": "dimensionless", + "Equation": "ST = a*D^b where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in mm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Johansson, T. (1999). Biomass equations for determining functions of European aspen growing on abandoned farmland and some practical implicatons. Biomass and Bioenergy 17: 471-480.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 19; D_Max = 92; H_Min = 3.6; H_Max = 15.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.112Z", + "last_change_date": "2022-03-14T08:10:32.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14133, + "fields": { + "EF_ID": 513830, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in European aspen Asp (Populus tremula)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Populus tremula; Common name: European aspen Asp; Native name: ; Diameter above 19 mm and below 92 mm; Height above 3.6 m and below 15.8 m", + "Regional_Conditions": "Sweden ; latitude: N 60-65°, longitude:E16-22°)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.000847; b = 1.481578;", + "Unit": "dimensionless", + "Equation": "FL = a*D^b where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in mm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Johansson, T. (1999). Biomass equations for determining functions of European aspen growing on abandoned farmland and some practical implicatons. Biomass and Bioenergy 17: 471-480.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 19; D_Max = 92; H_Min = 3.6; H_Max = 15.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.206Z", + "last_change_date": "2022-03-14T08:10:32.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14134, + "fields": { + "EF_ID": 513831, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Douglas-fir (Pseudotsuga menziensii (Mirb.))", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pseudotsuga menziensii (Mirb.); Common name: Douglas-fir; Native name: n/a; Diameter above 3 cm and below 38 cm; Height above 6.7 n/a and below 25.9 n/a", + "Regional_Conditions": "Netherlands (latitude: N 52°00, longitude:E 05°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.62; b = 2.41;", + "Unit": "dimensionless", + "Equation": "AB = a+b*LN(D) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bartelink, H.H. (1996) Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management 86: 193-203", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = 3; D_Max = 38; H_Min = 6.7; H_Max = 25.9", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.269Z", + "last_change_date": "2022-03-14T08:10:32.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14135, + "fields": { + "EF_ID": 513832, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Douglas-fir (Pseudotsuga menziensii (Mirb.))", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pseudotsuga menziensii (Mirb.); Common name: Douglas-fir; Native name: n/a; Diameter above 3 cm and below 38 cm; Height above 6.7 n/a and below 25.9 n/a", + "Regional_Conditions": "Netherlands (latitude: N 52°00, longitude:E 05°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.675; b = 4.42; c = -2.784;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LN(D)+c*LN(H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bartelink, H.H. (1996) Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management 86: 193-203", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = 3; D_Max = 38; H_Min = 6.7; H_Max = 25.9", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.336Z", + "last_change_date": "2022-03-14T08:10:32.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14136, + "fields": { + "EF_ID": 513833, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Douglas-fir (Pseudotsuga menziensii (Mirb.))", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pseudotsuga menziensii (Mirb.); Common name: Douglas-fir; Native name: n/a; Diameter above 3 cm and below 38 cm; Height above 6.7 n/a and below 25.9 n/a", + "Regional_Conditions": "Netherlands (latitude: N 52°00, longitude:E 05°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.345; b = 3.924; c = -2.514;", + "Unit": "dimensionless", + "Equation": "CR = a+b*LN(D)+c*LN(H) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bartelink, H.H. (1996) Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management 86: 193-203", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = 3; D_Max = 38; H_Min = 6.7; H_Max = 25.9", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.439Z", + "last_change_date": "2022-03-14T08:10:32.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14137, + "fields": { + "EF_ID": 513834, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Douglas-fir (Pseudotsuga menziensii (Mirb.))", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pseudotsuga menziensii (Mirb.); Common name: Douglas-fir; Native name: n/a; Diameter above 3 cm and below 38 cm; Height above 6.7 n/a and below 25.9 n/a", + "Regional_Conditions": "Netherlands (latitude: N 52°00, longitude:E 05°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.346; b = 3.351; c = -2.201;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LN(D)+c*LN(H) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bartelink, H.H. (1996) Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management 86: 193-203", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = 3; D_Max = 38; H_Min = 6.7; H_Max = 25.9", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.532Z", + "last_change_date": "2022-03-14T08:10:32.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14138, + "fields": { + "EF_ID": 513835, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.355; b = 2.674;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LOG(D) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) - Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =32; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.603Z", + "last_change_date": "2022-03-14T08:10:32.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14139, + "fields": { + "EF_ID": 513836, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.336; b = 2.64;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LOG(D) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) - Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =43; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.678Z", + "last_change_date": "2022-03-14T08:10:32.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14140, + "fields": { + "EF_ID": 513837, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.839; b = 2.156;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LOG(D) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) - Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =28; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.774Z", + "last_change_date": "2022-03-14T08:10:32.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14141, + "fields": { + "EF_ID": 513838, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 m and below 12.8 m", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.088; b = 2.157; c = 0.039;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LOG(D)+c*H where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =65; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.848Z", + "last_change_date": "2022-03-14T08:10:32.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14142, + "fields": { + "EF_ID": 513839, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Douglas-fir (Pseudotsuga menziensii (Mirb.))", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pseudotsuga menziensii (Mirb.); Common name: Douglas-fir; Native name: n/a; Diameter above 3 cm and below 38 cm; Height above 6.7 n/a and below 25.9 n/a", + "Regional_Conditions": "Netherlands (latitude: N 52°00, longitude:E 05°04)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.535; b = 2.009; c = 0.709;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LN(D)+c*LN(H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO)- Bartelink, H.H. (1996) Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management 86: 193-203", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =23; D_min = 3; D_Max = 38; H_Min = 6.7; H_Max = 25.9", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.919Z", + "last_change_date": "2022-03-14T08:10:32.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14143, + "fields": { + "EF_ID": 513840, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.656; b = 2.217;", + "Unit": "dimensionless", + "Equation": "AB = a+b*LOG(D) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) - Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =69; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:32.982Z", + "last_change_date": "2022-03-14T08:10:32.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14144, + "fields": { + "EF_ID": 513841, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.275; b = 1.831;", + "Unit": "dimensionless", + "Equation": "AB = a+b*LOG(D) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.084Z", + "last_change_date": "2022-03-14T08:10:33.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14145, + "fields": { + "EF_ID": 513842, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.854; b = 2.413;", + "Unit": "dimensionless", + "Equation": "AB = a+b*LOG(D) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =30; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.161Z", + "last_change_date": "2022-03-14T08:10:33.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14146, + "fields": { + "EF_ID": 513843, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.902; b = 2.433;", + "Unit": "dimensionless", + "Equation": "AB = a+b*LOG(D) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =41; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.228Z", + "last_change_date": "2022-03-14T08:10:33.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14147, + "fields": { + "EF_ID": 513844, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.313; b = 1.9;", + "Unit": "dimensionless", + "Equation": "AB = a+b*LOG(D) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =28; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.294Z", + "last_change_date": "2022-03-14T08:10:33.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14148, + "fields": { + "EF_ID": 513845, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 m and below 12.8 m", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.568; b = 1.953; c = 0.029;", + "Unit": "dimensionless", + "Equation": "AB = a+b*LOG(D)+c*H where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =63; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.395Z", + "last_change_date": "2022-03-14T08:10:33.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14149, + "fields": { + "EF_ID": 513846, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.704; b = 1.833;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =69; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.469Z", + "last_change_date": "2022-03-14T08:10:33.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14150, + "fields": { + "EF_ID": 513847, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.411; b = 1.546;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.536Z", + "last_change_date": "2022-03-14T08:10:33.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14151, + "fields": { + "EF_ID": 513848, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.825; b = 1.953;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =30; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.607Z", + "last_change_date": "2022-03-14T08:10:33.607Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14152, + "fields": { + "EF_ID": 513849, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.996; b = 2.077;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =41; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.697Z", + "last_change_date": "2022-03-14T08:10:33.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14153, + "fields": { + "EF_ID": 513850, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.37; b = 1.544;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =28; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.786Z", + "last_change_date": "2022-03-14T08:10:33.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14154, + "fields": { + "EF_ID": 513851, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 m and below 12.8 m", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.617; b = 1.672; c = 0.014;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D)+c*H where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =63; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.857Z", + "last_change_date": "2022-03-14T08:10:33.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14155, + "fields": { + "EF_ID": 513852, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.825; b = 1.789;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =56; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:33.923Z", + "last_change_date": "2022-03-14T08:10:33.923Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14156, + "fields": { + "EF_ID": 513853, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.429; b = 2.089;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =69; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.033Z", + "last_change_date": "2022-03-14T08:10:34.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14157, + "fields": { + "EF_ID": 513854, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.624; b = 1.891;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LOG(D) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =69; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.115Z", + "last_change_date": "2022-03-14T08:10:34.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14158, + "fields": { + "EF_ID": 513855, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.347; b = 1.654;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LOG(D) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.190Z", + "last_change_date": "2022-03-14T08:10:34.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14159, + "fields": { + "EF_ID": 513856, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.128; b = 2.309;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LOG(D) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =30; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.257Z", + "last_change_date": "2022-03-14T08:10:34.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14160, + "fields": { + "EF_ID": 513857, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.142; b = 2.269;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LOG(D) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =41; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.350Z", + "last_change_date": "2022-03-14T08:10:34.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14161, + "fields": { + "EF_ID": 513858, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.366; b = 1.774;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LOG(D) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =28; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.428Z", + "last_change_date": "2022-03-14T08:10:34.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14162, + "fields": { + "EF_ID": 513859, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 m and below 12.8 m", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.533; b = 1.808; c = 0.002;", + "Unit": "dimensionless", + "Equation": "FL = a+b*LOG(D)+c*H where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =63; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.532Z", + "last_change_date": "2022-03-14T08:10:34.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14163, + "fields": { + "EF_ID": 513860, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.166; b = 2.478;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LOG(D) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =71; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.598Z", + "last_change_date": "2022-03-14T08:10:34.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14164, + "fields": { + "EF_ID": 513861, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5.3 cm and below 24.4 cm; Height above 4.4 n/a and below 12.8 n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.747; b = 2.044;", + "Unit": "dimensionless", + "Equation": "ST = a+b*LOG(D) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Canadell, J., M. Riba, and P. Andrés (1988). Biomass equations fo Quercus ilex L. in the Montseny Massif, Northeastern Spain. Forestry, 61(2): p. 137-147.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = 5.3; D_Max = 24.4; H_Min = 4.4; H_Max = 12.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.702Z", + "last_change_date": "2022-03-14T08:10:34.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14165, + "fields": { + "EF_ID": 513862, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 18.779; b = -4.328; c = 0.506;", + "Unit": "dimensionless", + "Equation": "AB = a+b*D+c*D2 where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.778Z", + "last_change_date": "2022-03-14T08:10:34.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14166, + "fields": { + "EF_ID": 513863, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 7.041; b = -1.279; c = 0.201;", + "Unit": "dimensionless", + "Equation": "AB = a+b*D+c*D2 where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.857Z", + "last_change_date": "2022-03-14T08:10:34.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14167, + "fields": { + "EF_ID": 513864, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 2.842; b = -0.725; c = 0.06;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2 where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:34.932Z", + "last_change_date": "2022-03-14T08:10:34.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14168, + "fields": { + "EF_ID": 513865, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 3.129; b = -0.536; c = 0.077;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2+d*D*H where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.038Z", + "last_change_date": "2022-03-14T08:10:35.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14169, + "fields": { + "EF_ID": 513866, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 2.171; b = 1.599; c = 0.06;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2 where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.123Z", + "last_change_date": "2022-03-14T08:10:35.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14170, + "fields": { + "EF_ID": 513867, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.398; b = -0.642; c = 0.116; d = 1.0275;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2+d*H where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.190Z", + "last_change_date": "2022-03-14T08:10:35.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14171, + "fields": { + "EF_ID": 513868, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 4.988; b = -1.104; c = 0.087;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2 where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.257Z", + "last_change_date": "2022-03-14T08:10:35.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14172, + "fields": { + "EF_ID": 513869, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.589; b = -0.588; c = 0.145; d = 1.1308; e = -0.143;", + "Unit": "dimensionless", + "Equation": "BR = a+b*D+c*D2+d*H+e*(D*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d,e = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.348Z", + "last_change_date": "2022-03-14T08:10:35.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14173, + "fields": { + "EF_ID": 513870, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 8.033; b = -1.156; c = 0.105;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D2 where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.428Z", + "last_change_date": "2022-03-14T08:10:35.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14174, + "fields": { + "EF_ID": 513871, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.057; b = -0.506; c = 0.176; d = 1.3419; e = -0.173;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*D2+d*H+e*(D*H) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d,e = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.490Z", + "last_change_date": "2022-03-14T08:10:35.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14175, + "fields": { + "EF_ID": 513872, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -9.3954; b = 2.3268;", + "Unit": "dimensionless", + "Equation": "CR = a+b*LN(D) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.565Z", + "last_change_date": "2022-03-14T08:10:35.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14176, + "fields": { + "EF_ID": 513873, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -8.8027; b = 2.2475; c = 0.00000334;", + "Unit": "dimensionless", + "Equation": "CR = a+b*LN(D) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.668Z", + "last_change_date": "2022-03-14T08:10:35.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14177, + "fields": { + "EF_ID": 513874, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.2678; b = 3.4914; c = -1.9498; d = -47.454;", + "Unit": "dimensionless", + "Equation": "CR = a+b*LN(D)+c*LN(H)+d*(D/H2) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.744Z", + "last_change_date": "2022-03-14T08:10:35.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14178, + "fields": { + "EF_ID": 513875, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -9.7486; b = 0.0016023; c = 2.56; d = -0.0063173;", + "Unit": "dimensionless", + "Equation": "CR = a+b*D+c*LN(D)+d*H where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hakkila, P. (1991). Hakkuupoistuman latvusmassa. Folia Forestalia, 773: p. 1-24.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.807Z", + "last_change_date": "2022-03-14T08:10:35.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14179, + "fields": { + "EF_ID": 513876, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.023; b = 0.015;", + "Unit": "dimensionless", + "Equation": "FL = a*D+b*D2 where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.882Z", + "last_change_date": "2022-03-14T08:10:35.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14180, + "fields": { + "EF_ID": 513877, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.105; b = 0.365; c = 0.01;", + "Unit": "dimensionless", + "Equation": "FL = a+b*D+c*D2 where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Briggs, E.F. and T. Cunia (1982). Effect of cluster sampling in biomass tables construction: linear regression models. Canadian Journal of Forest Research, 12(2): p. 255-263.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:35.977Z", + "last_change_date": "2022-03-14T08:10:35.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14181, + "fields": { + "EF_ID": 513878, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 5.6 cm and below 23.6 cm; Height above 8 m and below 18.2 m", + "Regional_Conditions": "Finland (latitude: N 60°31, longitude:E 23°51)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.735; b = 0.8977;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 5.6; D_Max = 23.6; H_Min = 8; H_Max = 18.2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.053Z", + "last_change_date": "2022-03-14T08:10:36.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14182, + "fields": { + "EF_ID": 513879, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 5.6 cm and below 23.6 cm; Height above 8 m and below 18.2 m", + "Regional_Conditions": "Finland (latitude: N 60°31, longitude:E 23°51)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.024; b = 0.7603;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LOG(D2*H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 5.6; D_Max = 23.6; H_Min = 8; H_Max = 18.2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.115Z", + "last_change_date": "2022-03-14T08:10:36.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14183, + "fields": { + "EF_ID": 513880, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 5.6 cm and below 23.6 cm; Height above 8 m and below 18.2 m", + "Regional_Conditions": "Finland (latitude: N 60°31, longitude:E 23°51)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.73; b = 0.9626;", + "Unit": "dimensionless", + "Equation": "SW = a+b*LOG(D2*H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 5.6; D_Max = 23.6; H_Min = 8; H_Max = 18.2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.190Z", + "last_change_date": "2022-03-14T08:10:36.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14184, + "fields": { + "EF_ID": 513881, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 2.4 cm and below 9.7 cm; Height above 3 m and below 7.8 m", + "Regional_Conditions": "Finland (latitude: N 60°31, longitude:E 23°53)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.13; b = 0.6797;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 2.4; D_Max = 9.7; H_Min = 3; H_Max = 7.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.304Z", + "last_change_date": "2022-03-14T08:10:36.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14185, + "fields": { + "EF_ID": 513882, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 2.4 cm and below 9.7 cm; Height above 3 m and below 7.8 m", + "Regional_Conditions": "Finland (latitude: N 60°31, longitude:E 23°53)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.827; b = 0.7183;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LOG(D2*H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 2.4; D_Max = 9.7; H_Min = 3; H_Max = 7.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.378Z", + "last_change_date": "2022-03-14T08:10:36.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14186, + "fields": { + "EF_ID": 513883, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 2.4 cm and below 9.7 cm; Height above 3 m and below 7.8 m", + "Regional_Conditions": "Finland (latitude: N 60°31, longitude:E 23°53)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.411; b = 0.8316;", + "Unit": "dimensionless", + "Equation": "SW = a+b*LOG(D2*H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 2.4; D_Max = 9.7; H_Min = 3; H_Max = 7.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.448Z", + "last_change_date": "2022-03-14T08:10:36.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14187, + "fields": { + "EF_ID": 513884, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 7 cm and below 21.6 cm; Height above 7.9 m and below 14.8 m", + "Regional_Conditions": "Finland (latitude: N 61°40, longitude:E 24°19)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.702; b = 0.8486;", + "Unit": "dimensionless", + "Equation": "BR = a+b*LOG(D2*H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 7; D_Max = 21.6; H_Min = 7.9; H_Max = 14.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.536Z", + "last_change_date": "2022-03-14T08:10:36.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14188, + "fields": { + "EF_ID": 513885, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 7 cm and below 21.6 cm; Height above 7.9 n/a and below 14.8 n/a", + "Regional_Conditions": "Finland (latitude: N 61°40, longitude:E 24°19)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.967; b = 2.458;", + "Unit": "dimensionless", + "Equation": "RT = a+b*LOG(D) where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 7; D_Max = 21.6; H_Min = 7.9; H_Max = 14.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.631Z", + "last_change_date": "2022-03-14T08:10:36.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14189, + "fields": { + "EF_ID": 513886, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 7 cm and below 21.6 cm; Height above 7.9 m and below 14.8 m", + "Regional_Conditions": "Finland (latitude: N 61°40, longitude:E 24°19)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.771; b = 0.7106;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LOG(D2*H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 7; D_Max = 21.6; H_Min = 7.9; H_Max = 14.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.728Z", + "last_change_date": "2022-03-14T08:10:36.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14190, + "fields": { + "EF_ID": 513887, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stump in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 7 cm and below 21.6 cm; Height above 7.9 n/a and below 14.8 n/a", + "Regional_Conditions": "Finland (latitude: N 61°40, longitude:E 24°19)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.74; b = 0.9247;", + "Unit": "dimensionless", + "Equation": "SU = a+b*LOG(D) where SU = stump in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 7; D_Max = 21.6; H_Min = 7.9; H_Max = 14.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.794Z", + "last_change_date": "2022-03-14T08:10:36.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14191, + "fields": { + "EF_ID": 513888, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 7 cm and below 21.6 cm; Height above 7.9 m and below 14.8 m", + "Regional_Conditions": "Finland (latitude: N 61°40, longitude:E 24°19)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -1.663; b = 0.9447;", + "Unit": "dimensionless", + "Equation": "SW = a+b*LOG(D2*H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Mälkönen, E. (1974). Annual primary production and nutrient cycle in some Scots pine stand. Metsäntutkimuslaitoksen tiedonantoja, 84:5 p. 1-87.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 7; D_Max = 21.6; H_Min = 7.9; H_Max = 14.8", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.861Z", + "last_change_date": "2022-03-14T08:10:36.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14192, + "fields": { + "EF_ID": 513889, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Norway spruce (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Norway spruce; Native name: Mänty; Diameter above 121 cm", + "Regional_Conditions": "Finland (Southern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.344; b = 0.885; c = 0.435;", + "Unit": "dimensionless", + "Equation": "SB = a+b*LN(D2)+c*LN(H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Korhonen, K.T. and M. Maltamo (1990). Männyn maanpäällisten osien kuivamassat Etelä-Suomessa. Metsäntutkimuslaitoksen tiedonantoja, 371: p. 1-29.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 121; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:36.958Z", + "last_change_date": "2022-03-14T08:10:36.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14193, + "fields": { + "EF_ID": 513890, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Norway spruce (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Norway spruce; Native name: Mänty; Diameter above 121 cm", + "Regional_Conditions": "Finland (Southern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -4.182; b = 0.879; c = 1.215;", + "Unit": "dimensionless", + "Equation": "SW = a+b*LN(D2)+c*LN(H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Korhonen, K.T. and M. Maltamo (1990). Männyn maanpäällisten osien kuivamassat Etelä-Suomessa. Metsäntutkimuslaitoksen tiedonantoja, 371: p. 1-29.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 121; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.036Z", + "last_change_date": "2022-03-14T08:10:37.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14194, + "fields": { + "EF_ID": 513891, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.3338; b = 9.5938;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+10)] where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =467; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.102Z", + "last_change_date": "2022-03-14T08:10:37.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14195, + "fields": { + "EF_ID": 513892, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate biomass of branches in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -5.8926; b = 7.127; c = -0.0465; d = 1.106;", + "Unit": "dimensionless", + "Equation": "BR = a+b*[D/(D+10)]+c*H+d*LN(H) where BR = biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =467; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.169Z", + "last_change_date": "2022-03-14T08:10:37.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14196, + "fields": { + "EF_ID": 513893, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.8604; b = 9.1015;", + "Unit": "dimensionless", + "Equation": "CR = a+b*[D/(D+16)] where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =482; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.268Z", + "last_change_date": "2022-03-14T08:10:37.268Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14197, + "fields": { + "EF_ID": 513894, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate crown biomass (branches+foliage) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.5413; b = 13.3955; c = -1.1955;", + "Unit": "dimensionless", + "Equation": "CR = a+b*[D/(D+16)]+c*LN(H) where CR = crown biomass (branches+foliage) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =482; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.344Z", + "last_change_date": "2022-03-14T08:10:37.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14198, + "fields": { + "EF_ID": 513895, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.7983; b = 7.7681;", + "Unit": "dimensionless", + "Equation": "FL = a+b*[D/(D+7)] where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =482; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.411Z", + "last_change_date": "2022-03-14T08:10:37.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14199, + "fields": { + "EF_ID": 513896, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate foliage biomass in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.4781; b = 12.1095; c = 0.0413; d = -1.565;", + "Unit": "dimensionless", + "Equation": "FL = a+b*[D/(D+7)]+c*H+d*LN(H) where FL = foliage biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =482; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.478Z", + "last_change_date": "2022-03-14T08:10:37.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14200, + "fields": { + "EF_ID": 513897, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -6.3413; b = 13.2902;", + "Unit": "dimensionless", + "Equation": "RT = a+b*[D/(D+9)] where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =286; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.578Z", + "last_change_date": "2022-03-14T08:10:37.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14201, + "fields": { + "EF_ID": 513898, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total roots in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.8375; b = 8.8795;", + "Unit": "dimensionless", + "Equation": "RT = a+b*[D/(D+10)] where RT = total roots in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =305; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.652Z", + "last_change_date": "2022-03-14T08:10:37.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14202, + "fields": { + "EF_ID": 513899, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.9748; b = 8.8489;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+16)] where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =461; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.719Z", + "last_change_date": "2022-03-14T08:10:37.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14203, + "fields": { + "EF_ID": 513900, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem bark in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.2765; b = 7.2482; c = 0.4487;", + "Unit": "dimensionless", + "Equation": "SB = a+b*[D/(D+16)]+c*H+d*LN(H) where SB = stem bark in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =461; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.794Z", + "last_change_date": "2022-03-14T08:10:37.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14204, + "fields": { + "EF_ID": 513901, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stump-root system in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.3913; b = 11.1106;", + "Unit": "dimensionless", + "Equation": "SR = a+b*[D/(D+10)] where SR = stump-root system in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =296; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.889Z", + "last_change_date": "2022-03-14T08:10:37.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14205, + "fields": { + "EF_ID": 513902, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.3388; b = 11.3264;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+13)] where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =488; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:37.978Z", + "last_change_date": "2022-03-14T08:10:37.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14206, + "fields": { + "EF_ID": 513903, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.6768; b = 7.5939; c = 0.0151; d = 0.8799;", + "Unit": "dimensionless", + "Equation": "ST = a+b*[D/(D+13)]+c*H+d*LN(H) where ST = total stem biomass (stem wood+stem bark) in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =488; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.053Z", + "last_change_date": "2022-03-14T08:10:38.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14207, + "fields": { + "EF_ID": 513904, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stump in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.9657; b = 11.0481;", + "Unit": "dimensionless", + "Equation": "SU = a+b*[D/(D+15)] where SU = stump in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =306; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.127Z", + "last_change_date": "2022-03-14T08:10:38.127Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14208, + "fields": { + "EF_ID": 513905, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 n/a", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.2184; b = 11.4219;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+14)] where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =461; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.233Z", + "last_change_date": "2022-03-14T08:10:38.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14209, + "fields": { + "EF_ID": 513906, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: Tall; Diameter above 0 cm and below 45 cm; Height above 0 m", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.6864; b = 7.6066; c = 0.02; d = 0.8658;", + "Unit": "dimensionless", + "Equation": "SW = a+b*[D/(D+14)]+c*H+d*LN(H) where SW = stem wood in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b, c, d = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Marklund, L.G. (1988). Biomassafunktioner för tall, gran och björk i Sverige. Sveriges lantbruksuniversitet, Rapporter - Skog, 45: p. 1-73.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =461; D_min = 0; D_Max = 45; H_Min = 0; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.311Z", + "last_change_date": "2022-03-14T08:10:38.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14210, + "fields": { + "EF_ID": 513907, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate stem wood in Scots pine (Pinus sylvestris)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Pinus sylvestris; Common name: Scots pine; Native name: n/a; Diameter above 7 cm and below 15 cm", + "Regional_Conditions": "Norway (Vestfold (Akersmyra); latitude: N 59°16, longitude:E 10°19)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 89.24474; b = 64.8925; c = 49;", + "Unit": "dimensionless", + "Equation": "SW = a*D2+b*(D-c) where SW = stem wood in gr; D = diameter at breast height (1,3 m) in cm; a, b, c = parameters (see 'Value' field)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Brakke, F.H. (1986). Distribution and Yield of Biomass from Young Pinus sylvestris and Picea abies Stands on Drained and Fertilized Peatland. Scandinavian Journal of Forest Research, 1, 49-66.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =16; D_min = 7; D_Max = 15; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.377Z", + "last_change_date": "2022-03-14T08:10:38.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14211, + "fields": { + "EF_ID": 513908, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 20 cm and below 90 cm", + "Regional_Conditions": "Italy (Sardinia)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.2306; b = 2.2791;", + "Unit": "dimensionless", + "Equation": "AB = a*D^b where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Susmel, L., F. Viola, and G. Bassalo (1976). Ecologie della Lecceta del Supramonte di Orgosolo. (Sardegna Centro-orientale). Analisi de Centro di Economia Montana delle Venezie 10: 1-216", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =n/a; D_min = 20; D_Max = 90; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.444Z", + "last_change_date": "2022-03-14T08:10:38.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14212, + "fields": { + "EF_ID": 513909, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a", + "Regional_Conditions": "Spain (Northeastern)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.2313; b = 2.2662;", + "Unit": "dimensionless", + "Equation": "AB = a*D^b where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Ferres, L., F. Roda, A. M. C. Verdu, and J. Terradas (1980). Estructura y funcionalismo de un encinar montano en el Montseny. II. Biomasa aera. Mediterranea 4: 23-36", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.543Z", + "last_change_date": "2022-03-14T08:10:38.543Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14213, + "fields": { + "EF_ID": 513910, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Holm oak (Quercus ilex)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus ilex; Common name: Holm oak; Native name: n/a; Diameter above 5 cm and below 20 cm", + "Regional_Conditions": "Italy (Geolocation: Sicily)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.2179; b = 2.0513;", + "Unit": "dimensionless", + "Equation": "AB = a*D^b where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Leonardi, S., and M. Rapp (1982). Phytomasse et mineralomase d`un taillis de Chene Vert du Massif de l`Etna. Ecologia Mediterranea 8: 125-138", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = 5; D_Max = 20; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.636Z", + "last_change_date": "2022-03-14T08:10:38.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14214, + "fields": { + "EF_ID": 513911, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total aboveground biomass in Oak (Quercus spec. (robur or petraea))", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Quercus spec. (robur or petraea); Common name: Oak; Native name: Eiche", + "Regional_Conditions": "Austria (latitude: N48°16, longitude:E16°16)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.883; b = 2.14;", + "Unit": "dimensionless", + "Equation": "AB = a+b LN(D) where AB = total aboveground biomass in kg; D = diameter at breast height (1,3 m) in cm; H = total tree height in m; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Hochbichler, Eduar (2002): Vorläufige Ergebnisse von Biomasseninventuren in Buchen- und Mittelwaldbeständen, In Dietrich, H.-P., Raspe, S., Preushsler, T.: Inventur von Biomasse- und Nährstoffvorräten in Waldbeständen, Forstliche Forschungsberichte, Heft", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =33; D_min = n/a; D_Max = n/a; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.703Z", + "last_change_date": "2022-03-14T08:10:38.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14215, + "fields": { + "EF_ID": 513912, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Oak (Querqus sp)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Querqus sp; Common name: Oak; Native name: Oak; Diameter above 4.45 cm and below 51.72 cm", + "Regional_Conditions": "UK (Lake District, Meathop)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.4232; b = 2.4682;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =20; D_min = 4.45; D_Max = 51.72; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.769Z", + "last_change_date": "2022-03-14T08:10:38.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14216, + "fields": { + "EF_ID": 513913, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Oak (Querqus sp)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Querqus sp; Common name: Oak; Native name: Oak; Diameter above 4.29 cm and below 35.17 cm", + "Regional_Conditions": "UK (Lake District, Roudsea)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.3223; b = 2.4029;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =16; D_min = 4.29; D_Max = 35.17; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.870Z", + "last_change_date": "2022-03-14T08:10:38.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14217, + "fields": { + "EF_ID": 513914, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Oak (Querqus sp)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Querqus sp; Common name: Oak; Native name: Oak; Diameter above 3.81 cm and below 10.66 cm", + "Regional_Conditions": "UK (Lake District, Force Forge)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.1404; b = 2.8113;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =15; D_min = 3.81; D_Max = 10.66; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:38.944Z", + "last_change_date": "2022-03-14T08:10:38.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14218, + "fields": { + "EF_ID": 513915, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Oak (Querqus sp)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Querqus sp; Common name: Oak; Native name: Oak; Diameter above 5.72 cm and below 33.1 cm", + "Regional_Conditions": "UK (Lake District, Coniston)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -3.1009; b = 2.6996;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =18; D_min = 5.72; D_Max = 33.1; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:39.011Z", + "last_change_date": "2022-03-14T08:10:39.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14219, + "fields": { + "EF_ID": 513916, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Lime (Tilia cordata)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Tilia cordata; Common name: Lime; Native name: Lime; Diameter above 3.18 cm and below 14.8 cm", + "Regional_Conditions": "UK (Lake District, Roudsea)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -2.6788; b = 2.4542;", + "Unit": "dimensionless", + "Equation": "ln(ST+BR) = a+b*lnD where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in kg; D = diameter at breast height (1,3 m) in cm; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Bunce, R.G.H. (1968). Biomass and Production of Trees in a Mixed Deciduous Woodland: I. Girth and Height as Parameters for the Estimation of Tree Dry Weight, Journal of Ecology, Vol. 56, No. 3, pp. 759-775.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =10; D_min = 3.18; D_Max = 14.8; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:39.078Z", + "last_change_date": "2022-03-14T08:10:39.078Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14220, + "fields": { + "EF_ID": 513917, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: n/a; Diameter above 1 in and below 5 in", + "Regional_Conditions": "United States (North Carolina)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.70853; b = 0.91763;", + "Unit": "dimensionless", + "Equation": "LOG(ST+BR) = a+[b*LOG(D^2*H)] where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in lb; D = diameter at breast height (1,3 m) in in; H = total tree height in ft; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Phillips, D.R. (1977). Total tree weights and volumes for understory hardwoods. TAPPI 60(6);68-71.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = 1; D_Max = 5; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:39.171Z", + "last_change_date": "2022-03-14T08:10:39.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14221, + "fields": { + "EF_ID": 513918, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters for the allometric equation (see Equation field) to estimate total stem biomass (stem wood+stem bark) + biomass of branches in Red maple (Acer rubrum)", + "Technology_Practices": "", + "Parameter_Conditions": "Tree species: Acer rubrum; Common name: Red maple; Native name: n/a; Diameter above 1 in and below 5 in", + "Regional_Conditions": "United States (Georgia)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = -0.92222; b = 1.00528;", + "Unit": "dimensionless", + "Equation": "LOG(ST+BR) = a+[b*LOG(D^2*H)] where ST+BR = total stem biomass (stem wood+stem bark) + biomass of branches in lb; D = diameter at breast height (1,3 m) in in; H = total tree height in ft; a, b = parameters (see 'Value' field).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Food and Agriculture Organization (FAO) -Phillips, D.R. (1977). Total tree weights and volumes for understory hardwoods. TAPPI 60(6);68-71.", + "English_Abstract": "", + "Lower_Bound": "", + "Upper_Bound": "", + "Data_Quality": "Number of samples =12; D_min = 1; D_Max = 5; H_Min = n/a; H_Max = n/a", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Food and Agriculture Organization (FAO)", + "Link": "", + "creation_date": "2022-03-14T08:10:39.253Z", + "last_change_date": "2022-03-14T08:10:39.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14222, + "fields": { + "EF_ID": 515111, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with high activity clay (HAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of HAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.25, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Data were not available to directly estimate reference C stocks for these soil types in the tropical montane climate so the stocks were based on estimates derived for the warm temperate, moist region, which has similar mean annual temperatures and precipitation.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with high activity clay (HAC) minerals are lightly to moderately weathered soils, which are dominated by 2:1 silicate clay minerals (in the World Reference Base Soil Resources (WRB) classification these include Leptosols, Vertisols, Kastanozems, Chernozems, Phaeozems, Luvisols, Alisols, Albeluvisols, Solonetz, Cacisols, Gypsisols, Umbrisols, Cambisols, Regosols; in USDA classification includes Mollisols, Vertisols, high-base status Alfisols, Aridisols, Inceptisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:39.311Z", + "last_change_date": "2022-03-14T08:10:39.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14223, + "fields": { + "EF_ID": 515112, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for soils with low activity clay (LAC soils); for 0-30 cm depth; see Comments from Data Provider for the definition of LAC soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.25, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Data were not available to directly estimate reference C stocks for these soil types in the tropical montane climate so the stocks were based on estimates derived for the warm temperate, moist region, which has similar mean annual temperatures and precipitation.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Soils with low activity clay (LAC) minerals are highly weathered soils, dominated by 1:1 clay minerals and amorphous iron and aluminum oxides (in WRB classification includes Acrisols, Lixisols, Nitisols, Ferrasols, Durisols; in USDA classification includes Ultisols, Oxisols, acidic Alfisols).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:39.398Z", + "last_change_date": "2022-03-14T08:10:39.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14224, + "fields": { + "EF_ID": 515113, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for sandy soils; for 0-30 cm depth; see Comments from Data Provider for the definition of sandy soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.25, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Data were not available to directly estimate reference C stocks for these soil types in the tropical montane climate so the stocks were based on estimates derived for the warm temperate, moist region, which has similar mean annual temperatures and precipitation.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Sandy soils include all soils (regardless of taxonomic classification) having >70% sand and <8% clay, based on standard textural analyses (in WRB classification includes Arenosols; in USDA classification includes Psamments).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:39.486Z", + "last_change_date": "2022-03-14T08:10:39.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14225, + "fields": { + "EF_ID": 515114, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for volcanic soils; for 0-30 cm depth; see Comments from Data Provider for the definition of volcanic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.25, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Data were not available to directly estimate reference C stocks for these soil types in the tropical montane climate so the stocks were based on estimates derived for the warm temperate, moist region, which has similar mean annual temperatures and precipitation.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Volcanic soils are soils derived from volcanic ash with allophanic mineralogy (in WRB classification Andosols; in USDA classification Andisols)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:39.600Z", + "last_change_date": "2022-03-14T08:10:39.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14226, + "fields": { + "EF_ID": 515115, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default reference (under native vegetation) soil organic C stocks (SOC ref) for wetlands soils; for 0-30 cm depth; see Comments from Data Provider for the definition of wetlands soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.25, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.3 (Default reference (under native vegetation) soil organic C stocks (SOCref) for mineral soils, on page 2.31", + "Technical_Reference": "Data are derived from soil databases described by Jobbagy and Jackson (2000) and Bernoux et al. (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Data were not available to directly estimate reference C stocks for these soil types in the tropical montane climate so the stocks were based on estimates derived for the warm temperate, moist region, which has similar mean annual temperatures and precipitation.", + "Data_Provider_Comments": "Data applicable to Forest Land Remaining Forest Land (5-FL-1) and to Land Converted to Forest Land (5-FL-2). Wetlands soils are soils with restricted drainage leading to periodic flooding and anaerobic conditions (in WRB classification Gleysols; in USDA classification Aquic suborders).", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:39.686Z", + "last_change_date": "2022-03-14T08:10:39.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14227, + "fields": { + "EF_ID": 515116, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Agricultural residues (post harvest field burning): wheat residues", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "t dm/ha", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "Expert assessment by authors of Volume 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:39.761Z", + "last_change_date": "2022-03-14T08:10:39.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14228, + "fields": { + "EF_ID": 515117, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Agricultural residues (post harvest field burning): maize residues", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "t dm/ha", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "Expert assessment by authors of Volume 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:39.860Z", + "last_change_date": "2022-03-14T08:10:39.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14229, + "fields": { + "EF_ID": 515118, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Agricultural residues (post harvest field burning): rice residues", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.5", + "Unit": "t dm/ha", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "Expert assessment by authors of Volume 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:39.936Z", + "last_change_date": "2022-03-14T08:10:39.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14230, + "fields": { + "EF_ID": 515119, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types", + "Technology_Practices": "", + "Parameter_Conditions": "Agricultural residues (post harvest field burning): sugarcane", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.5", + "Unit": "t dm/ha", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.4 Fuel (dead organic matter plus live biomass) biomass consumption values for fires in a range of vegetation types; pages 2.45 - 2.46", + "Technical_Reference": "Expert assessment by authors of Volume 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "For sugarcane, data refer to burning before harvest of the crop.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.003Z", + "last_change_date": "2022-03-14T08:10:40.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14231, + "fields": { + "EF_ID": 515122, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1580 +/- 90", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.070Z", + "last_change_date": "2022-03-14T08:10:40.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14232, + "fields": { + "EF_ID": 515123, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Extra tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1569 +/- 131", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The extra tropical forest category includes all other forest types.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.161Z", + "last_change_date": "2022-03-14T08:10:40.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14233, + "fields": { + "EF_ID": 515124, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Biofuel burning", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1550 +/- 95", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.236Z", + "last_change_date": "2022-03-14T08:10:40.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14234, + "fields": { + "EF_ID": 515127, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "104 +/- 20", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.319Z", + "last_change_date": "2022-03-14T08:10:40.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14235, + "fields": { + "EF_ID": 515128, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Extra tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "107 +/- 37", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The extra tropical forest category includes all other forest types.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.386Z", + "last_change_date": "2022-03-14T08:10:40.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14236, + "fields": { + "EF_ID": 515129, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Biofuel burning", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78 +/- 31", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.453Z", + "last_change_date": "2022-03-14T08:10:40.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14237, + "fields": { + "EF_ID": 515132, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.8 +/- 2.0", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.547Z", + "last_change_date": "2022-03-14T08:10:40.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14238, + "fields": { + "EF_ID": 515133, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Extra tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.7 +/- 1.9", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The extra tropical forest category includes all other forest types.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.619Z", + "last_change_date": "2022-03-14T08:10:40.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14239, + "fields": { + "EF_ID": 515134, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Biofuel burning", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1 +/- 2.2", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.694Z", + "last_change_date": "2022-03-14T08:10:40.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14240, + "fields": { + "EF_ID": 515137, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.769Z", + "last_change_date": "2022-03-14T08:10:40.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14241, + "fields": { + "EF_ID": 515138, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Extra tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The extra tropical forest category includes all other forest types.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.844Z", + "last_change_date": "2022-03-14T08:10:40.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14242, + "fields": { + "EF_ID": 515139, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Biofuel burning", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:40.949Z", + "last_change_date": "2022-03-14T08:10:40.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14243, + "fields": { + "EF_ID": 515142, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6 +/- 0.7", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.044Z", + "last_change_date": "2022-03-14T08:10:41.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14244, + "fields": { + "EF_ID": 515143, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Extra tropical forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0 +/- 1.4", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The extra tropical forest category includes all other forest types.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.119Z", + "last_change_date": "2022-03-14T08:10:41.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14245, + "fields": { + "EF_ID": 515144, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "NITROGEN OXIDES (NO+NO2)", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor for various types of burning", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Biofuel burning", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1 +/- 0.6", + "Unit": "g/kg dry matter combusted", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.5 Emission factor for various types of burning, on page 2.47", + "Technical_Reference": "Based on the comprehensive review by Andreae and Merlet (2001).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.194Z", + "last_change_date": "2022-03-14T08:10:41.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14246, + "fields": { + "EF_ID": 515145, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Agricultural residues (post harvest field burning): wheat residues", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "fraction", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "Expert assessment by authors of Volume 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.261Z", + "last_change_date": "2022-03-14T08:10:41.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14247, + "fields": { + "EF_ID": 515146, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Agricultural residues (post harvest field burning): maize residues", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "Expert assessment by authors of Volume 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.360Z", + "last_change_date": "2022-03-14T08:10:41.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14248, + "fields": { + "EF_ID": 515147, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Agricultural residues (post harvest field burning): rice residues", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "Expert assessment by authors of Volume 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.436Z", + "last_change_date": "2022-03-14T08:10:41.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14249, + "fields": { + "EF_ID": 515148, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.", + "Technology_Practices": "", + "Parameter_Conditions": "Agricultural residues (post harvest field burning): sugarcane", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 2.27, Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 2, Category code 3C1a, Page A1.48, Annex 1 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 2.6 Combustion factor values (proportion of prefire fuel biomass consumed) for fires in a range of vegetation types; pages 2.48 - 2.49", + "Technical_Reference": "Expert assessment by authors of Volume 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "For sugarcane, data refer to burning before harvest of the crop.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.503Z", + "last_change_date": "2022-03-14T08:10:41.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14250, + "fields": { + "EF_ID": 515149, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: All", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "McGroddy et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Default value", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.569Z", + "last_change_date": "2022-03-14T08:10:41.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14251, + "fields": { + "EF_ID": 515150, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: All", + "Regional_Conditions": "Tropical and Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47 (0.44 - 0.49", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Andreae and Merlet, 2001; Chambers et al., 2001; McGroddy et al., 2004; Lasco and Pulhin, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.663Z", + "last_change_date": "2022-03-14T08:10:41.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14252, + "fields": { + "EF_ID": 515151, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: wood", + "Regional_Conditions": "Tropical and Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Feldpausch et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.736Z", + "last_change_date": "2022-03-14T08:10:41.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14253, + "fields": { + "EF_ID": 515152, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: wood, tree diameter < 10cm", + "Regional_Conditions": "Tropical and Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Hughes et al., 2000", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.803Z", + "last_change_date": "2022-03-14T08:10:41.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14254, + "fields": { + "EF_ID": 515153, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: wood, tree diameter equal to or greater than 10cm", + "Regional_Conditions": "Tropical and Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Hughes et al., 2000", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.869Z", + "last_change_date": "2022-03-14T08:10:41.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14255, + "fields": { + "EF_ID": 515154, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: foliage", + "Regional_Conditions": "Tropical and Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Feldpausch et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:41.944Z", + "last_change_date": "2022-03-14T08:10:41.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14256, + "fields": { + "EF_ID": 515155, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: foliage, tree diameter < 10cm", + "Regional_Conditions": "Tropical and Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Hughes et al., 2000", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.039Z", + "last_change_date": "2022-03-14T08:10:42.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14257, + "fields": { + "EF_ID": 515156, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: foliage, tree diameter equal to or greater than 10cm", + "Regional_Conditions": "Tropical and Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Hughes et al., 2000", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.119Z", + "last_change_date": "2022-03-14T08:10:42.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14258, + "fields": { + "EF_ID": 515157, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: All", + "Regional_Conditions": "Temperate and Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47 (0.47 - 0.49)", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Andreae and Merlet, 2001; Gayoso et al., 2002; Matthews, 1993; McGroddy et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.186Z", + "last_change_date": "2022-03-14T08:10:42.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14259, + "fields": { + "EF_ID": 515158, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: broad-leaved", + "Regional_Conditions": "Temperate and Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48 (0.46 - 0.50)", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Lamlom and Savidge, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.261Z", + "last_change_date": "2022-03-14T08:10:42.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14260, + "fields": { + "EF_ID": 515159, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Carbon fraction of above-ground forest biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Part of tree: conifers", + "Regional_Conditions": "Temperate and Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51 (0.47 - 0.55)", + "Unit": "tonnes C/tonne dry matter", + "Equation": "Equations 2.8, 2.9, 2.12, 2.13, 2.14, 2.16, 2.21, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.3 Carbon fraction of above-ground forest biomass; page 4.48", + "Technical_Reference": "Lamlom and Savidge, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.328Z", + "last_change_date": "2022-03-14T08:10:42.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14261, + "fields": { + "EF_ID": 515160, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rainforest", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Fittkau and Klinge, 1973", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.441Z", + "last_change_date": "2022-03-14T08:10:42.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14262, + "fields": { + "EF_ID": 515161, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest: above-ground biomass <125 tonnes/ha", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (0.09 - 0.25)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.502Z", + "last_change_date": "2022-03-14T08:10:42.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14263, + "fields": { + "EF_ID": 515162, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest: above-ground biomass >125 tonnes/ha", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24 (0.22 - 0.33)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.574Z", + "last_change_date": "2022-03-14T08:10:42.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14264, + "fields": { + "EF_ID": 515163, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest: above-ground biomass <20 tonnes/ha", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56 (0.28 - 0.68)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.636Z", + "last_change_date": "2022-03-14T08:10:42.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14265, + "fields": { + "EF_ID": 515164, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest: above-ground biomass >20 tonnes/ha", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28 (0.27 - 0.28)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.708Z", + "last_change_date": "2022-03-14T08:10:42.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14266, + "fields": { + "EF_ID": 515165, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Poupon, 1980", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.803Z", + "last_change_date": "2022-03-14T08:10:42.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14267, + "fields": { + "EF_ID": 515166, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27 (0.27 - 0.28)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Singh et al., 1994", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.878Z", + "last_change_date": "2022-03-14T08:10:42.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14268, + "fields": { + "EF_ID": 515167, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest: above-ground biomass <125 tonnes/ha", + "Regional_Conditions": "Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (0.09 - 0.25)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:42.974Z", + "last_change_date": "2022-03-14T08:10:42.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14269, + "fields": { + "EF_ID": 515168, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest: above-ground biomass >125 tonnes/ha", + "Regional_Conditions": "Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24 (0.22 - 0.33)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.041Z", + "last_change_date": "2022-03-14T08:10:43.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14270, + "fields": { + "EF_ID": 515169, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest: above-ground biomass <20 tonnes/ha", + "Regional_Conditions": "Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56 (0.28 - 0.68)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.103Z", + "last_change_date": "2022-03-14T08:10:43.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14271, + "fields": { + "EF_ID": 515170, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest: above-ground biomass >20 tonnes/ha", + "Regional_Conditions": "Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28 (0.27 - 0.28)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.197Z", + "last_change_date": "2022-03-14T08:10:43.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14272, + "fields": { + "EF_ID": 515171, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32 (0.26 - 0.71)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.269Z", + "last_change_date": "2022-03-14T08:10:43.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14273, + "fields": { + "EF_ID": 515172, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: conifers above-ground biomass < 50 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.40 (0.21 - 1.06)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.341Z", + "last_change_date": "2022-03-14T08:10:43.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14274, + "fields": { + "EF_ID": 515173, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: conifers above-ground biomass 50-150 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29 (0.24 - 0.50)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.408Z", + "last_change_date": "2022-03-14T08:10:43.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14275, + "fields": { + "EF_ID": 515174, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: conifers above-ground biomass > 150 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (0.12 - 0.49)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.474Z", + "last_change_date": "2022-03-14T08:10:43.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14276, + "fields": { + "EF_ID": 515175, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: Quercus spp. above-ground biomass >70 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30 (0.20 - 1.16)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.574Z", + "last_change_date": "2022-03-14T08:10:43.574Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14277, + "fields": { + "EF_ID": 515176, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: Eucalyptus spp. above-ground biomass < 50 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44 (0.29 - 0.81)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.644Z", + "last_change_date": "2022-03-14T08:10:43.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14278, + "fields": { + "EF_ID": 515177, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: Eucalyptus spp. above-ground biomass 50-150 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28 (0.15 - 0.81)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.708Z", + "last_change_date": "2022-03-14T08:10:43.708Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14279, + "fields": { + "EF_ID": 515178, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: Eucalyptus spp. above-ground biomass > 150 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20 (0.10 - 0.33)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.774Z", + "last_change_date": "2022-03-14T08:10:43.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14280, + "fields": { + "EF_ID": 515179, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: other broadleaf above-ground biomass < 75 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46 (0.12 - 0.93)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.841Z", + "last_change_date": "2022-03-14T08:10:43.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14281, + "fields": { + "EF_ID": 515180, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: other broadleaf above-ground biomass 75-150 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23 (0.13 - 0.37)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:43.934Z", + "last_change_date": "2022-03-14T08:10:43.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14282, + "fields": { + "EF_ID": 515181, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest, Temperate continental forest, Temperate mountain systems: other broadleaf above-ground biomass >150 tonnes/ha", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24 (0.17 - 0.44)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.011Z", + "last_change_date": "2022-03-14T08:10:44.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14283, + "fields": { + "EF_ID": 515182, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal coniferous forest, Boreal tundra woodland, Boreal mountain systems: above-ground biomass <75 tonnes/ha", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39 (0.23 - 0.96)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Li et al., 2003; Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.108Z", + "last_change_date": "2022-03-14T08:10:44.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14284, + "fields": { + "EF_ID": 515183, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Ratio of below-ground biomass to above-ground biomass, R", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal coniferous forest, Boreal tundra woodland, Boreal mountain systems: above-ground biomass >75 tonnes/ha", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24 (0.15 - 0.37)", + "Unit": "tonne root d.m./tonne shoot d.m.", + "Equation": "Equations 2.8, 2.10, 2.12, 2.13, 2.14, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.4 Ratio of below-ground biomass to above-ground biomass, R; page 4.49", + "Technical_Reference": "Li et al., 2003; Mokany et al., 2006", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.182Z", + "last_change_date": "2022-03-14T08:10:44.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14285, + "fields": { + "EF_ID": 515184, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.2 (0.85-1.3)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.249Z", + "last_change_date": "2022-03-14T08:10:44.249Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14286, + "fields": { + "EF_ID": 515185, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "0.47", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.346Z", + "last_change_date": "2022-03-14T08:10:44.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14287, + "fields": { + "EF_ID": 515186, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.33", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.403Z", + "last_change_date": "2022-03-14T08:10:44.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14288, + "fields": { + "EF_ID": 515187, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.22 (0.9-1.5)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.483Z", + "last_change_date": "2022-03-14T08:10:44.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14289, + "fields": { + "EF_ID": 515188, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "0.9", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.573Z", + "last_change_date": "2022-03-14T08:10:44.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14290, + "fields": { + "EF_ID": 515189, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.35", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.636Z", + "last_change_date": "2022-03-14T08:10:44.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14291, + "fields": { + "EF_ID": 515190, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.16 (0.8-1.5)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.702Z", + "last_change_date": "2022-03-14T08:10:44.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14292, + "fields": { + "EF_ID": 515191, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "0.55", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.783Z", + "last_change_date": "2022-03-14T08:10:44.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14293, + "fields": { + "EF_ID": 515192, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.29", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.869Z", + "last_change_date": "2022-03-14T08:10:44.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14294, + "fields": { + "EF_ID": 515193, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "0.9 (0.7-1.2)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:44.933Z", + "last_change_date": "2022-03-14T08:10:44.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14295, + "fields": { + "EF_ID": 515194, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "0.65", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.034Z", + "last_change_date": "2022-03-14T08:10:45.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14296, + "fields": { + "EF_ID": 515195, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.128Z", + "last_change_date": "2022-03-14T08:10:45.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14297, + "fields": { + "EF_ID": 515196, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.68 (0.5-0.72)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.191Z", + "last_change_date": "2022-03-14T08:10:45.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14298, + "fields": { + "EF_ID": 515197, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.46", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.294Z", + "last_change_date": "2022-03-14T08:10:45.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14299, + "fields": { + "EF_ID": 515198, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.75", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.394Z", + "last_change_date": "2022-03-14T08:10:45.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14300, + "fields": { + "EF_ID": 515199, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.78 (0.7-0.8)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.466Z", + "last_change_date": "2022-03-14T08:10:45.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14301, + "fields": { + "EF_ID": 515200, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.75", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.571Z", + "last_change_date": "2022-03-14T08:10:45.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14302, + "fields": { + "EF_ID": 515201, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.87", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.652Z", + "last_change_date": "2022-03-14T08:10:45.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14303, + "fields": { + "EF_ID": 515202, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.66 (0.55-0.75)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.716Z", + "last_change_date": "2022-03-14T08:10:45.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14304, + "fields": { + "EF_ID": 515203, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.47", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.806Z", + "last_change_date": "2022-03-14T08:10:45.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14305, + "fields": { + "EF_ID": 515204, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.73", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.883Z", + "last_change_date": "2022-03-14T08:10:45.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14306, + "fields": { + "EF_ID": 515205, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.7 (0.6-0.75)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:45.950Z", + "last_change_date": "2022-03-14T08:10:45.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14307, + "fields": { + "EF_ID": 515206, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.54", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.041Z", + "last_change_date": "2022-03-14T08:10:46.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14308, + "fields": { + "EF_ID": 515207, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-50", + "Value": "0.77", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.116Z", + "last_change_date": "2022-03-14T08:10:46.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14309, + "fields": { + "EF_ID": 515208, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.57 (0.52-0.65)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.191Z", + "last_change_date": "2022-03-14T08:10:46.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14310, + "fields": { + "EF_ID": 515209, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.46", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.284Z", + "last_change_date": "2022-03-14T08:10:46.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14311, + "fields": { + "EF_ID": 515210, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.63", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.358Z", + "last_change_date": "2022-03-14T08:10:46.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14312, + "fields": { + "EF_ID": 515211, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.77 (0.7-0.85)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.424Z", + "last_change_date": "2022-03-14T08:10:46.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14313, + "fields": { + "EF_ID": 515212, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.77", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.527Z", + "last_change_date": "2022-03-14T08:10:46.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14314, + "fields": { + "EF_ID": 515213, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.85", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.600Z", + "last_change_date": "2022-03-14T08:10:46.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14315, + "fields": { + "EF_ID": 515214, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.58 (0.5-0.65)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.669Z", + "last_change_date": "2022-03-14T08:10:46.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14316, + "fields": { + "EF_ID": 515215, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.47", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.770Z", + "last_change_date": "2022-03-14T08:10:46.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14317, + "fields": { + "EF_ID": 515216, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.64", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.858Z", + "last_change_date": "2022-03-14T08:10:46.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14318, + "fields": { + "EF_ID": 515217, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.62 (0.53-0.7)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:46.944Z", + "last_change_date": "2022-03-14T08:10:46.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14319, + "fields": { + "EF_ID": 515218, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.52", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.047Z", + "last_change_date": "2022-03-14T08:10:47.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14320, + "fields": { + "EF_ID": 515219, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 51-100", + "Value": "0.69", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.125Z", + "last_change_date": "2022-03-14T08:10:47.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14321, + "fields": { + "EF_ID": 515220, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.5 (0.45-0.58)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.194Z", + "last_change_date": "2022-03-14T08:10:47.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14322, + "fields": { + "EF_ID": 515221, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.463", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.299Z", + "last_change_date": "2022-03-14T08:10:47.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14323, + "fields": { + "EF_ID": 515222, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.55", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.386Z", + "last_change_date": "2022-03-14T08:10:47.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14324, + "fields": { + "EF_ID": 515223, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.77 (0.7-0.85)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.450Z", + "last_change_date": "2022-03-14T08:10:47.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14325, + "fields": { + "EF_ID": 515224, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.77", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.551Z", + "last_change_date": "2022-03-14T08:10:47.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14326, + "fields": { + "EF_ID": 515225, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: larch", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.85", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.633Z", + "last_change_date": "2022-03-14T08:10:47.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14327, + "fields": { + "EF_ID": 515226, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.53 (0.45-0.605)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.703Z", + "last_change_date": "2022-03-14T08:10:47.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14328, + "fields": { + "EF_ID": 515227, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.464", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.801Z", + "last_change_date": "2022-03-14T08:10:47.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14329, + "fields": { + "EF_ID": 515228, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: firs and spruces", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.59", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.883Z", + "last_change_date": "2022-03-14T08:10:47.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14330, + "fields": { + "EF_ID": 515229, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.55 (0.5-0.65)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:47.953Z", + "last_change_date": "2022-03-14T08:10:47.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14331, + "fields": { + "EF_ID": 515230, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.505", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:48.319Z", + "last_change_date": "2022-03-14T08:10:48.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14332, + "fields": { + "EF_ID": 515231, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >100", + "Value": "0.61", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Boreal forests: Alexeyev V.A. and R.A. Birdseye, 1998; Fang J. and Z.M. Wang, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:48.391Z", + "last_change_date": "2022-03-14T08:10:48.391Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14333, + "fields": { + "EF_ID": 515232, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "3.0 (0.8-4.5)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:48.461Z", + "last_change_date": "2022-03-14T08:10:48.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14334, + "fields": { + "EF_ID": 515233, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.5", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:48.554Z", + "last_change_date": "2022-03-14T08:10:48.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14335, + "fields": { + "EF_ID": 515234, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "3.33", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:48.650Z", + "last_change_date": "2022-03-14T08:10:48.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14336, + "fields": { + "EF_ID": 515235, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.8 (0.6 -2.4)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:48.719Z", + "last_change_date": "2022-03-14T08:10:48.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14337, + "fields": { + "EF_ID": 515236, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.5", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:48.814Z", + "last_change_date": "2022-03-14T08:10:48.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14338, + "fields": { + "EF_ID": 515237, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "2", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:48.911Z", + "last_change_date": "2022-03-14T08:10:48.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14339, + "fields": { + "EF_ID": 515238, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "3.0 (0.7-4.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.000Z", + "last_change_date": "2022-03-14T08:10:49.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14340, + "fields": { + "EF_ID": 515239, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.108Z", + "last_change_date": "2022-03-14T08:10:49.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14341, + "fields": { + "EF_ID": 515240, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "3.33", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.186Z", + "last_change_date": "2022-03-14T08:10:49.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14342, + "fields": { + "EF_ID": 515241, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.7 (0.8-2.6)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.253Z", + "last_change_date": "2022-03-14T08:10:49.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14343, + "fields": { + "EF_ID": 515242, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.3", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.351Z", + "last_change_date": "2022-03-14T08:10:49.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14344, + "fields": { + "EF_ID": 515243, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.89", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.428Z", + "last_change_date": "2022-03-14T08:10:49.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14345, + "fields": { + "EF_ID": 515244, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.0 (0.65 -1.5)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.494Z", + "last_change_date": "2022-03-14T08:10:49.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14346, + "fields": { + "EF_ID": 515245, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "0.75", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.594Z", + "last_change_date": "2022-03-14T08:10:49.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14347, + "fields": { + "EF_ID": 515246, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.11", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.669Z", + "last_change_date": "2022-03-14T08:10:49.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14348, + "fields": { + "EF_ID": 515247, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.4 (0.5-2.5)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.736Z", + "last_change_date": "2022-03-14T08:10:49.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14349, + "fields": { + "EF_ID": 515248, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "0.83", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.837Z", + "last_change_date": "2022-03-14T08:10:49.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14350, + "fields": { + "EF_ID": 515249, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.55", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.911Z", + "last_change_date": "2022-03-14T08:10:49.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14351, + "fields": { + "EF_ID": 515250, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "1.4 (0.7-1.9)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:49.977Z", + "last_change_date": "2022-03-14T08:10:49.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14352, + "fields": { + "EF_ID": 515251, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "0.9", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.072Z", + "last_change_date": "2022-03-14T08:10:50.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14353, + "fields": { + "EF_ID": 515252, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "1.55", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.161Z", + "last_change_date": "2022-03-14T08:10:50.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14354, + "fields": { + "EF_ID": 515253, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "0.75 (0.6-1.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.228Z", + "last_change_date": "2022-03-14T08:10:50.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14355, + "fields": { + "EF_ID": 515254, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "0.6", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.323Z", + "last_change_date": "2022-03-14T08:10:50.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14356, + "fields": { + "EF_ID": 515255, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "0.83", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.411Z", + "last_change_date": "2022-03-14T08:10:50.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14357, + "fields": { + "EF_ID": 515256, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "1.0 (0.5-1.4)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.486Z", + "last_change_date": "2022-03-14T08:10:50.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14358, + "fields": { + "EF_ID": 515257, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "0.57", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.592Z", + "last_change_date": "2022-03-14T08:10:50.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14359, + "fields": { + "EF_ID": 515258, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-100", + "Value": "1.11", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.678Z", + "last_change_date": "2022-03-14T08:10:50.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14360, + "fields": { + "EF_ID": 515259, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "1.05 (0.6-1.4)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.761Z", + "last_change_date": "2022-03-14T08:10:50.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14361, + "fields": { + "EF_ID": 515260, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "0.6", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.869Z", + "last_change_date": "2022-03-14T08:10:50.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14362, + "fields": { + "EF_ID": 515261, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "1.17", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:50.953Z", + "last_change_date": "2022-03-14T08:10:50.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14363, + "fields": { + "EF_ID": 515262, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "0.7 (0.4-1.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.028Z", + "last_change_date": "2022-03-14T08:10:51.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14364, + "fields": { + "EF_ID": 515263, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "0.67", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.203Z", + "last_change_date": "2022-03-14T08:10:51.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14365, + "fields": { + "EF_ID": 515264, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "0.77", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.294Z", + "last_change_date": "2022-03-14T08:10:51.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14366, + "fields": { + "EF_ID": 515265, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "0.75 (0.4-1.2)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.369Z", + "last_change_date": "2022-03-14T08:10:51.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14367, + "fields": { + "EF_ID": 515266, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "0.53", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.463Z", + "last_change_date": "2022-03-14T08:10:51.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14368, + "fields": { + "EF_ID": 515267, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 100-200", + "Value": "0.83", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.561Z", + "last_change_date": "2022-03-14T08:10:51.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14369, + "fields": { + "EF_ID": 515268, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.8 (0.55-1.1)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.636Z", + "last_change_date": "2022-03-14T08:10:51.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14370, + "fields": { + "EF_ID": 515269, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.48", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.731Z", + "last_change_date": "2022-03-14T08:10:51.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14371, + "fields": { + "EF_ID": 515270, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.89", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.828Z", + "last_change_date": "2022-03-14T08:10:51.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14372, + "fields": { + "EF_ID": 515271, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.7 (0.4-1.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.903Z", + "last_change_date": "2022-03-14T08:10:51.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14373, + "fields": { + "EF_ID": 515272, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.69", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:51.999Z", + "last_change_date": "2022-03-14T08:10:51.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14374, + "fields": { + "EF_ID": 515273, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: pines", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.77", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.086Z", + "last_change_date": "2022-03-14T08:10:52.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14375, + "fields": { + "EF_ID": 515274, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.7 (0.35-0.9)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.153Z", + "last_change_date": "2022-03-14T08:10:52.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14376, + "fields": { + "EF_ID": 515275, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.6", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.260Z", + "last_change_date": "2022-03-14T08:10:52.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14377, + "fields": { + "EF_ID": 515276, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: other conifers", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.77", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Temperate forests: Fang J. et al., 2001; Fukuda M. et al., 2003; Schroeder P. et al., 1997; Snowdon P. et.al., 2000; Smith J. et. al., 2002; Brown S., 1999; Schoene D. and A. Schulte, 1999; Smith J. et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.344Z", + "last_change_date": "2022-03-14T08:10:52.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14378, + "fields": { + "EF_ID": 515277, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "5.0 (2.0-8.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.419Z", + "last_change_date": "2022-03-14T08:10:52.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14379, + "fields": { + "EF_ID": 515278, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.5", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.528Z", + "last_change_date": "2022-03-14T08:10:52.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14380, + "fields": { + "EF_ID": 515279, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "5.55", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.603Z", + "last_change_date": "2022-03-14T08:10:52.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14381, + "fields": { + "EF_ID": 515280, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "6.0 (3.0-8.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.667Z", + "last_change_date": "2022-03-14T08:10:52.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14382, + "fields": { + "EF_ID": 515281, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "1.5", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.754Z", + "last_change_date": "2022-03-14T08:10:52.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14383, + "fields": { + "EF_ID": 515282, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <20", + "Value": "6.67", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.836Z", + "last_change_date": "2022-03-14T08:10:52.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14384, + "fields": { + "EF_ID": 515283, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.9 (1.0-2.6)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.909Z", + "last_change_date": "2022-03-14T08:10:52.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14385, + "fields": { + "EF_ID": 515284, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "0.5", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:52.997Z", + "last_change_date": "2022-03-14T08:10:52.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14386, + "fields": { + "EF_ID": 515285, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "2.11", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.086Z", + "last_change_date": "2022-03-14T08:10:53.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14387, + "fields": { + "EF_ID": 515286, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.2 (0.5-2.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.167Z", + "last_change_date": "2022-03-14T08:10:53.167Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14388, + "fields": { + "EF_ID": 515287, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "0.4", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.290Z", + "last_change_date": "2022-03-14T08:10:53.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14389, + "fields": { + "EF_ID": 515288, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.33", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.378Z", + "last_change_date": "2022-03-14T08:10:53.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14390, + "fields": { + "EF_ID": 515289, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-80", + "Value": "0.8 (0.6-1.4)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.442Z", + "last_change_date": "2022-03-14T08:10:53.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14391, + "fields": { + "EF_ID": 515290, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-80", + "Value": "0.55", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.533Z", + "last_change_date": "2022-03-14T08:10:53.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14392, + "fields": { + "EF_ID": 515291, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-80", + "Value": "0.89", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.611Z", + "last_change_date": "2022-03-14T08:10:53.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14393, + "fields": { + "EF_ID": 515292, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-80", + "Value": "0.6 (0.4-0.9)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.684Z", + "last_change_date": "2022-03-14T08:10:53.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14394, + "fields": { + "EF_ID": 515293, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-80", + "Value": "0.45", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.777Z", + "last_change_date": "2022-03-14T08:10:53.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14395, + "fields": { + "EF_ID": 515294, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-80", + "Value": "0.67", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.861Z", + "last_change_date": "2022-03-14T08:10:53.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14396, + "fields": { + "EF_ID": 515295, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >80", + "Value": "0.66 (0.4-0.9)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:53.934Z", + "last_change_date": "2022-03-14T08:10:53.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14397, + "fields": { + "EF_ID": 515296, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >80", + "Value": "0.66", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.062Z", + "last_change_date": "2022-03-14T08:10:54.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14398, + "fields": { + "EF_ID": 515297, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: hardwoods", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >80", + "Value": "0.73", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.144Z", + "last_change_date": "2022-03-14T08:10:54.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14399, + "fields": { + "EF_ID": 515298, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >80", + "Value": "0.55 (0.4-0.7)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.209Z", + "last_change_date": "2022-03-14T08:10:54.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14400, + "fields": { + "EF_ID": 515299, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >80", + "Value": "0.54", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.297Z", + "last_change_date": "2022-03-14T08:10:54.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14401, + "fields": { + "EF_ID": 515300, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Mediterranean, dry tropical, subtropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >80", + "Value": "0.61", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Mediterranean forests: Vayreda et al., 2002; Gracia et al., 2002; Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.378Z", + "last_change_date": "2022-03-14T08:10:54.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14402, + "fields": { + "EF_ID": 515301, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <10", + "Value": "4.0 (3.0-6.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.451Z", + "last_change_date": "2022-03-14T08:10:54.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14403, + "fields": { + "EF_ID": 515302, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <10", + "Value": "2.5", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.540Z", + "last_change_date": "2022-03-14T08:10:54.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14404, + "fields": { + "EF_ID": 515303, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <10", + "Value": "4.44", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.636Z", + "last_change_date": "2022-03-14T08:10:54.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14405, + "fields": { + "EF_ID": 515304, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <10", + "Value": "9.0 (4.0-12.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.701Z", + "last_change_date": "2022-03-14T08:10:54.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14406, + "fields": { + "EF_ID": 515305, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <10", + "Value": "4.5", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.800Z", + "last_change_date": "2022-03-14T08:10:54.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14407, + "fields": { + "EF_ID": 515306, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): <10", + "Value": "10", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.894Z", + "last_change_date": "2022-03-14T08:10:54.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14408, + "fields": { + "EF_ID": 515307, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 11-20", + "Value": "1.75 (1.4-2.4)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:54.961Z", + "last_change_date": "2022-03-14T08:10:54.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14409, + "fields": { + "EF_ID": 515308, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 11-20", + "Value": "0.95", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.068Z", + "last_change_date": "2022-03-14T08:10:55.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14410, + "fields": { + "EF_ID": 515309, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 11-20", + "Value": "1.94", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.153Z", + "last_change_date": "2022-03-14T08:10:55.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14411, + "fields": { + "EF_ID": 515310, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 11-20", + "Value": "4.0 (2.5-4.5)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.253Z", + "last_change_date": "2022-03-14T08:10:55.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14412, + "fields": { + "EF_ID": 515311, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 11-20", + "Value": "1.6", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.354Z", + "last_change_date": "2022-03-14T08:10:55.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14413, + "fields": { + "EF_ID": 515312, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 11-20", + "Value": "4.44", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.436Z", + "last_change_date": "2022-03-14T08:10:55.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14414, + "fields": { + "EF_ID": 515313, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.25 (1.0-1.5)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.511Z", + "last_change_date": "2022-03-14T08:10:55.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14415, + "fields": { + "EF_ID": 515314, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "0.65", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.622Z", + "last_change_date": "2022-03-14T08:10:55.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14416, + "fields": { + "EF_ID": 515315, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.39", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.703Z", + "last_change_date": "2022-03-14T08:10:55.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14417, + "fields": { + "EF_ID": 515316, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "2.8 (1.4-3.4)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.786Z", + "last_change_date": "2022-03-14T08:10:55.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14418, + "fields": { + "EF_ID": 515317, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "1.1", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.899Z", + "last_change_date": "2022-03-14T08:10:55.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14419, + "fields": { + "EF_ID": 515318, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 21-40", + "Value": "3.11", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:55.978Z", + "last_change_date": "2022-03-14T08:10:55.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14420, + "fields": { + "EF_ID": 515319, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-60", + "Value": "1.0 (0.8-1.2)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.053Z", + "last_change_date": "2022-03-14T08:10:56.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14421, + "fields": { + "EF_ID": 515320, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-60", + "Value": "0.55", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.158Z", + "last_change_date": "2022-03-14T08:10:56.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14422, + "fields": { + "EF_ID": 515321, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-60", + "Value": "1.11", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.253Z", + "last_change_date": "2022-03-14T08:10:56.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14423, + "fields": { + "EF_ID": 515322, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-60", + "Value": "2.05 (1.2-2.5)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.336Z", + "last_change_date": "2022-03-14T08:10:56.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14424, + "fields": { + "EF_ID": 515323, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-60", + "Value": "0.93", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.442Z", + "last_change_date": "2022-03-14T08:10:56.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14425, + "fields": { + "EF_ID": 515324, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 41-60", + "Value": "2.28", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.536Z", + "last_change_date": "2022-03-14T08:10:56.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14426, + "fields": { + "EF_ID": 515325, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 61-80", + "Value": "0.8 (0.7-1.2)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.611Z", + "last_change_date": "2022-03-14T08:10:56.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14427, + "fields": { + "EF_ID": 515326, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 61-80", + "Value": "0.53", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.719Z", + "last_change_date": "2022-03-14T08:10:56.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14428, + "fields": { + "EF_ID": 515327, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 61-80", + "Value": "0.89", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.802Z", + "last_change_date": "2022-03-14T08:10:56.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14429, + "fields": { + "EF_ID": 515328, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 61-80", + "Value": "1.7 (1.2-2.2)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.878Z", + "last_change_date": "2022-03-14T08:10:56.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14430, + "fields": { + "EF_ID": 515329, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 61-80", + "Value": "0.9", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:56.980Z", + "last_change_date": "2022-03-14T08:10:56.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14431, + "fields": { + "EF_ID": 515330, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 61-80", + "Value": "1.89", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.061Z", + "last_change_date": "2022-03-14T08:10:57.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14432, + "fields": { + "EF_ID": 515331, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 80-120", + "Value": "0.76 (0.6-1.0)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.144Z", + "last_change_date": "2022-03-14T08:10:57.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14433, + "fields": { + "EF_ID": 515332, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 80-120", + "Value": "0.58", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.248Z", + "last_change_date": "2022-03-14T08:10:57.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14434, + "fields": { + "EF_ID": 515333, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 80-120", + "Value": "0.84", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.344Z", + "last_change_date": "2022-03-14T08:10:57.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14435, + "fields": { + "EF_ID": 515334, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 80-120", + "Value": "1.5 (1.0-1.8)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.419Z", + "last_change_date": "2022-03-14T08:10:57.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14436, + "fields": { + "EF_ID": 515335, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 80-120", + "Value": "0.87", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.541Z", + "last_change_date": "2022-03-14T08:10:57.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14437, + "fields": { + "EF_ID": 515336, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 80-120", + "Value": "1.67", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.619Z", + "last_change_date": "2022-03-14T08:10:57.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14438, + "fields": { + "EF_ID": 515337, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 120-200", + "Value": "0.7 (0.6-0.9)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.694Z", + "last_change_date": "2022-03-14T08:10:57.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14439, + "fields": { + "EF_ID": 515338, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 120-200", + "Value": "0.66", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.818Z", + "last_change_date": "2022-03-14T08:10:57.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14440, + "fields": { + "EF_ID": 515339, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 120-200", + "Value": "0.77", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.911Z", + "last_change_date": "2022-03-14T08:10:57.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14441, + "fields": { + "EF_ID": 515340, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 120-200", + "Value": "1.3(0.9-1.6)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:57.994Z", + "last_change_date": "2022-03-14T08:10:57.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14442, + "fields": { + "EF_ID": 515341, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 120-200", + "Value": "0.86", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.102Z", + "last_change_date": "2022-03-14T08:10:58.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14443, + "fields": { + "EF_ID": 515342, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): 120-200", + "Value": "1.44", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.194Z", + "last_change_date": "2022-03-14T08:10:58.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14444, + "fields": { + "EF_ID": 515343, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.7 (0.6-0.9)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.270Z", + "last_change_date": "2022-03-14T08:10:58.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14445, + "fields": { + "EF_ID": 515344, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.7", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.387Z", + "last_change_date": "2022-03-14T08:10:58.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14446, + "fields": { + "EF_ID": 515345, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: conifers", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.77", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.452Z", + "last_change_date": "2022-03-14T08:10:58.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14447, + "fields": { + "EF_ID": 515346, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for expansion of merchantable growing stock volume to above-ground biomass (BCEFs)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.95 (0.7-1.1)", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.8 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Lower values of the ranges for BCEFs apply if growing stock definition includes branches, stem tops and cull trees; upper values apply if branches and tops are not part of growing stock, minimum top diameters in the definition of growing stock are large, inventoried volume falls near the lower category limit or basic wood densities are relatively high. Continuous graphs, functional forms and updates with new studies can be found at the forest- and climate- change website at: http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.519Z", + "last_change_date": "2022-03-14T08:10:58.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14448, + "fields": { + "EF_ID": 515347, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of net annual increment (BCEFi)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "0.85", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average BCEF for inhomogeneous forests should be derived as far as possible as weighted averages. It is good practice to justify the factors chosen. To apply BCEFi, an estimate of the current average growing stock is necessary. It can be derived from FRA 2005 at http://www.fao.org/forestry/", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.622Z", + "last_change_date": "2022-03-14T08:10:58.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14449, + "fields": { + "EF_ID": 515348, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default biomass conversion and expansion factor for conversion of wood and fuelwood removal volume to above-ground biomass removal (BCEFr)", + "Technology_Practices": "", + "Parameter_Conditions": "Forest type: natural forests", + "Regional_Conditions": "Humid tropical", + "Control_Technologies": "", + "Other_Properties": "Growing stock level (m^3): >200", + "Value": "1.05", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "Equations 2.12, 2.13, and 2.22 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 2 of 4, Category Code 3B1a, Page A1.10 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.5 Default biomass conversion and expansion factors (BCEF); pages 4.50 - 4.52", + "Technical_Reference": "Tropical forests: Brown S. et al., 1989; Brown S. and A. Lugo, 1992; Brown S., 2002; Fang J.Y., 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "BCEFr values are derived by dividing BCEFs by 0.9", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.703Z", + "last_change_date": "2022-03-14T08:10:58.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14450, + "fields": { + "EF_ID": 515349, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310 (130-510)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.786Z", + "last_change_date": "2022-03-14T08:10:58.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14451, + "fields": { + "EF_ID": 515350, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300 (120-400)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "Baker et al., 2004a; Hughes et al., 1999", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.869Z", + "last_change_date": "2022-03-14T08:10:58.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14452, + "fields": { + "EF_ID": 515351, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "280 (120-680)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:58.982Z", + "last_change_date": "2022-03-14T08:10:58.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14453, + "fields": { + "EF_ID": 515352, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "350 (280-520)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.061Z", + "last_change_date": "2022-03-14T08:10:59.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14454, + "fields": { + "EF_ID": 515353, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "260 (160-430)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.144Z", + "last_change_date": "2022-03-14T08:10:59.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14455, + "fields": { + "EF_ID": 515354, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220 (210-280)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.228Z", + "last_change_date": "2022-03-14T08:10:59.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14456, + "fields": { + "EF_ID": 515355, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180 (10-560)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.303Z", + "last_change_date": "2022-03-14T08:10:59.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14457, + "fields": { + "EF_ID": 515356, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.386Z", + "last_change_date": "2022-03-14T08:10:59.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14458, + "fields": { + "EF_ID": 515357, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120 (120-130)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.461Z", + "last_change_date": "2022-03-14T08:10:59.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14459, + "fields": { + "EF_ID": 515358, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "210 (200-410)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.568Z", + "last_change_date": "2022-03-14T08:10:59.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14460, + "fields": { + "EF_ID": 515359, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130 (100-160)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.661Z", + "last_change_date": "2022-03-14T08:10:59.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14461, + "fields": { + "EF_ID": 515360, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.736Z", + "last_change_date": "2022-03-14T08:10:59.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14462, + "fields": { + "EF_ID": 515361, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70 (20-200)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.811Z", + "last_change_date": "2022-03-14T08:10:59.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14463, + "fields": { + "EF_ID": 515362, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80 (40-90)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.886Z", + "last_change_date": "2022-03-14T08:10:59.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14464, + "fields": { + "EF_ID": 515363, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:10:59.961Z", + "last_change_date": "2022-03-14T08:10:59.961Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14465, + "fields": { + "EF_ID": 515364, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.044Z", + "last_change_date": "2022-03-14T08:11:00.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14466, + "fields": { + "EF_ID": 515365, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-190", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.111Z", + "last_change_date": "2022-03-14T08:11:00.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14467, + "fields": { + "EF_ID": 515366, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-230", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.205Z", + "last_change_date": "2022-03-14T08:11:00.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14468, + "fields": { + "EF_ID": 515367, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50-220", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.270Z", + "last_change_date": "2022-03-14T08:11:00.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14469, + "fields": { + "EF_ID": 515368, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50-360", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.336Z", + "last_change_date": "2022-03-14T08:11:00.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14470, + "fields": { + "EF_ID": 515369, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220 (210-280)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.411Z", + "last_change_date": "2022-03-14T08:11:00.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14471, + "fields": { + "EF_ID": 515370, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180 (10-560)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.486Z", + "last_change_date": "2022-03-14T08:11:00.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14472, + "fields": { + "EF_ID": 515371, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "290", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.552Z", + "last_change_date": "2022-03-14T08:11:00.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14473, + "fields": { + "EF_ID": 515372, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "Sebei et al., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.628Z", + "last_change_date": "2022-03-14T08:11:00.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14474, + "fields": { + "EF_ID": 515373, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "210 (200-410)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.734Z", + "last_change_date": "2022-03-14T08:11:00.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14475, + "fields": { + "EF_ID": 515374, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130 (100-160)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.828Z", + "last_change_date": "2022-03-14T08:11:00.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14476, + "fields": { + "EF_ID": 515375, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.911Z", + "last_change_date": "2022-03-14T08:11:00.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14477, + "fields": { + "EF_ID": 515376, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70 (20-200)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:00.995Z", + "last_change_date": "2022-03-14T08:11:00.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14478, + "fields": { + "EF_ID": 515377, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80 (40-90)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.078Z", + "last_change_date": "2022-03-14T08:11:01.078Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14479, + "fields": { + "EF_ID": 515378, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.161Z", + "last_change_date": "2022-03-14T08:11:01.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14480, + "fields": { + "EF_ID": 515379, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.236Z", + "last_change_date": "2022-03-14T08:11:01.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14481, + "fields": { + "EF_ID": 515380, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "Montès et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.311Z", + "last_change_date": "2022-03-14T08:11:01.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14482, + "fields": { + "EF_ID": 515381, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "North and South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-230", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.412Z", + "last_change_date": "2022-03-14T08:11:01.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14483, + "fields": { + "EF_ID": 515382, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia (continental)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50-220", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.494Z", + "last_change_date": "2022-03-14T08:11:01.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14484, + "fields": { + "EF_ID": 515383, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia (insular)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50-360", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.569Z", + "last_change_date": "2022-03-14T08:11:01.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14485, + "fields": { + "EF_ID": 515384, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "-", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.636Z", + "last_change_date": "2022-03-14T08:11:01.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14486, + "fields": { + "EF_ID": 515385, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "660 (80-1200)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "Hessl et al., 2004; Smithwick et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.701Z", + "last_change_date": "2022-03-14T08:11:01.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14487, + "fields": { + "EF_ID": 515386, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "360 (210-430)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "Hall et al., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.768Z", + "last_change_date": "2022-03-14T08:11:01.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14488, + "fields": { + "EF_ID": 515387, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180 (90-310)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "Gayoso and Schlegel, 2003; Battles et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.834Z", + "last_change_date": "2022-03-14T08:11:01.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14489, + "fields": { + "EF_ID": 515388, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest", + "Regional_Conditions": "Asia, Europe (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:01.932Z", + "last_change_date": "2022-03-14T08:11:01.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14490, + "fields": { + "EF_ID": 515389, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest", + "Regional_Conditions": "Asia, Europe (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120 (20-320)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.011Z", + "last_change_date": "2022-03-14T08:11:02.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14491, + "fields": { + "EF_ID": 515390, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60 (10-130)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.085Z", + "last_change_date": "2022-03-14T08:11:02.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14492, + "fields": { + "EF_ID": 515391, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130 (50-200)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.151Z", + "last_change_date": "2022-03-14T08:11:02.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14493, + "fields": { + "EF_ID": 515392, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate mountain systems", + "Regional_Conditions": "Asia, Europe (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100 (20-180)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.226Z", + "last_change_date": "2022-03-14T08:11:02.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14494, + "fields": { + "EF_ID": 515393, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate mountain systems", + "Regional_Conditions": "Asia, Europe (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130 (20-600)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.301Z", + "last_change_date": "2022-03-14T08:11:02.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14495, + "fields": { + "EF_ID": 515394, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate mountain systems", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50 (20-110)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.368Z", + "last_change_date": "2022-03-14T08:11:02.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14496, + "fields": { + "EF_ID": 515395, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate mountain systems", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130 (40-280)", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.477Z", + "last_change_date": "2022-03-14T08:11:02.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14497, + "fields": { + "EF_ID": 515396, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal coniferous forest", + "Regional_Conditions": "Asia, Europe, North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "Gower et al., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.569Z", + "last_change_date": "2022-03-14T08:11:02.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14498, + "fields": { + "EF_ID": 515397, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal tundra woodland", + "Regional_Conditions": "Europe, North America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3-4", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.644Z", + "last_change_date": "2022-03-14T08:11:02.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14499, + "fields": { + "EF_ID": 515398, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal tundra woodland", + "Regional_Conditions": "Asia, Europe, North America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15-20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.719Z", + "last_change_date": "2022-03-14T08:11:02.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14500, + "fields": { + "EF_ID": 515399, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal mountain systems", + "Regional_Conditions": "Asia, Europe, North America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12-15", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.795Z", + "last_change_date": "2022-03-14T08:11:02.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14501, + "fields": { + "EF_ID": 515400, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal mountain systems", + "Regional_Conditions": "Asia, Europe, North America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-50", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.7 Above-ground biomass in forests; pages 4.53-4.54", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.869Z", + "last_change_date": "2022-03-14T08:11:02.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14502, + "fields": { + "EF_ID": 515401, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:02.944Z", + "last_change_date": "2022-03-14T08:11:02.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14503, + "fields": { + "EF_ID": 515402, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.055Z", + "last_change_date": "2022-03-14T08:11:03.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14504, + "fields": { + "EF_ID": 515403, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.136Z", + "last_change_date": "2022-03-14T08:11:03.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14505, + "fields": { + "EF_ID": 515404, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.219Z", + "last_change_date": "2022-03-14T08:11:03.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14506, + "fields": { + "EF_ID": 515405, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.303Z", + "last_change_date": "2022-03-14T08:11:03.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14507, + "fields": { + "EF_ID": 515406, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.386Z", + "last_change_date": "2022-03-14T08:11:03.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14508, + "fields": { + "EF_ID": 515407, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "240", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "Kraenzel et al., 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.653Z", + "last_change_date": "2022-03-14T08:11:03.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14509, + "fields": { + "EF_ID": 515408, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.728Z", + "last_change_date": "2022-03-14T08:11:03.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14510, + "fields": { + "EF_ID": 515409, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.832Z", + "last_change_date": "2022-03-14T08:11:03.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14511, + "fields": { + "EF_ID": 515410, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:03.919Z", + "last_change_date": "2022-03-14T08:11:03.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14512, + "fields": { + "EF_ID": 515411, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.003Z", + "last_change_date": "2022-03-14T08:11:04.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14513, + "fields": { + "EF_ID": 515412, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.094Z", + "last_change_date": "2022-03-14T08:11:04.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14514, + "fields": { + "EF_ID": 515413, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.169Z", + "last_change_date": "2022-03-14T08:11:04.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14515, + "fields": { + "EF_ID": 515414, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.244Z", + "last_change_date": "2022-03-14T08:11:04.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14516, + "fields": { + "EF_ID": 515415, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "Stape et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.319Z", + "last_change_date": "2022-03-14T08:11:04.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14517, + "fields": { + "EF_ID": 515416, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "270", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.420Z", + "last_change_date": "2022-03-14T08:11:04.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14518, + "fields": { + "EF_ID": 515417, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.519Z", + "last_change_date": "2022-03-14T08:11:04.520Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14519, + "fields": { + "EF_ID": 515418, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.594Z", + "last_change_date": "2022-03-14T08:11:04.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14520, + "fields": { + "EF_ID": 515419, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.678Z", + "last_change_date": "2022-03-14T08:11:04.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14521, + "fields": { + "EF_ID": 515420, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.753Z", + "last_change_date": "2022-03-14T08:11:04.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14522, + "fields": { + "EF_ID": 515421, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.828Z", + "last_change_date": "2022-03-14T08:11:04.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14523, + "fields": { + "EF_ID": 515422, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:04.903Z", + "last_change_date": "2022-03-14T08:11:04.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14524, + "fields": { + "EF_ID": 515423, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.006Z", + "last_change_date": "2022-03-14T08:11:05.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14525, + "fields": { + "EF_ID": 515424, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.086Z", + "last_change_date": "2022-03-14T08:11:05.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14526, + "fields": { + "EF_ID": 515425, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "Stape et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.161Z", + "last_change_date": "2022-03-14T08:11:05.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14527, + "fields": { + "EF_ID": 515426, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.236Z", + "last_change_date": "2022-03-14T08:11:05.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14528, + "fields": { + "EF_ID": 515427, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.319Z", + "last_change_date": "2022-03-14T08:11:05.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14529, + "fields": { + "EF_ID": 515428, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.403Z", + "last_change_date": "2022-03-14T08:11:05.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14530, + "fields": { + "EF_ID": 515429, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.486Z", + "last_change_date": "2022-03-14T08:11:05.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14531, + "fields": { + "EF_ID": 515430, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.617Z", + "last_change_date": "2022-03-14T08:11:05.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14532, + "fields": { + "EF_ID": 515431, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.711Z", + "last_change_date": "2022-03-14T08:11:05.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14533, + "fields": { + "EF_ID": 515432, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.786Z", + "last_change_date": "2022-03-14T08:11:05.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14534, + "fields": { + "EF_ID": 515433, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.861Z", + "last_change_date": "2022-03-14T08:11:05.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14535, + "fields": { + "EF_ID": 515434, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:05.936Z", + "last_change_date": "2022-03-14T08:11:05.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14536, + "fields": { + "EF_ID": 515435, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.011Z", + "last_change_date": "2022-03-14T08:11:06.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14537, + "fields": { + "EF_ID": 515436, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.086Z", + "last_change_date": "2022-03-14T08:11:06.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14538, + "fields": { + "EF_ID": 515437, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.187Z", + "last_change_date": "2022-03-14T08:11:06.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14539, + "fields": { + "EF_ID": 515438, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.270Z", + "last_change_date": "2022-03-14T08:11:06.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14540, + "fields": { + "EF_ID": 515439, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.344Z", + "last_change_date": "2022-03-14T08:11:06.344Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14541, + "fields": { + "EF_ID": 515440, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Africa broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-150", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.419Z", + "last_change_date": "2022-03-14T08:11:06.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14542, + "fields": { + "EF_ID": 515441, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Africa broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.494Z", + "last_change_date": "2022-03-14T08:11:06.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14543, + "fields": { + "EF_ID": 515442, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.570Z", + "last_change_date": "2022-03-14T08:11:06.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14544, + "fields": { + "EF_ID": 515443, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-40", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.636Z", + "last_change_date": "2022-03-14T08:11:06.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14545, + "fields": { + "EF_ID": 515444, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.732Z", + "last_change_date": "2022-03-14T08:11:06.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14546, + "fields": { + "EF_ID": 515445, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-170", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.811Z", + "last_change_date": "2022-03-14T08:11:06.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14547, + "fields": { + "EF_ID": 515446, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-130", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.878Z", + "last_change_date": "2022-03-14T08:11:06.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14548, + "fields": { + "EF_ID": 515447, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-80", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:06.953Z", + "last_change_date": "2022-03-14T08:11:06.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14549, + "fields": { + "EF_ID": 515448, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-150", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.028Z", + "last_change_date": "2022-03-14T08:11:07.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14550, + "fields": { + "EF_ID": 515449, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25-80", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.094Z", + "last_change_date": "2022-03-14T08:11:07.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14551, + "fields": { + "EF_ID": 515450, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.152Z", + "last_change_date": "2022-03-14T08:11:07.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14552, + "fields": { + "EF_ID": 515451, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "270", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.251Z", + "last_change_date": "2022-03-14T08:11:07.251Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14553, + "fields": { + "EF_ID": 515452, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.327Z", + "last_change_date": "2022-03-14T08:11:07.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14554, + "fields": { + "EF_ID": 515453, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.411Z", + "last_change_date": "2022-03-14T08:11:07.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14555, + "fields": { + "EF_ID": 515454, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.494Z", + "last_change_date": "2022-03-14T08:11:07.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14556, + "fields": { + "EF_ID": 515455, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.568Z", + "last_change_date": "2022-03-14T08:11:07.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14557, + "fields": { + "EF_ID": 515456, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.643Z", + "last_change_date": "2022-03-14T08:11:07.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14558, + "fields": { + "EF_ID": 515457, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.727Z", + "last_change_date": "2022-03-14T08:11:07.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14559, + "fields": { + "EF_ID": 515458, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.822Z", + "last_change_date": "2022-03-14T08:11:07.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14560, + "fields": { + "EF_ID": 515459, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.902Z", + "last_change_date": "2022-03-14T08:11:07.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14561, + "fields": { + "EF_ID": 515460, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:07.969Z", + "last_change_date": "2022-03-14T08:11:07.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14562, + "fields": { + "EF_ID": 515461, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.035Z", + "last_change_date": "2022-03-14T08:11:08.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14563, + "fields": { + "EF_ID": 515462, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.102Z", + "last_change_date": "2022-03-14T08:11:08.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14564, + "fields": { + "EF_ID": 515463, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.168Z", + "last_change_date": "2022-03-14T08:11:08.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14565, + "fields": { + "EF_ID": 515464, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.244Z", + "last_change_date": "2022-03-14T08:11:08.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14566, + "fields": { + "EF_ID": 515465, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.350Z", + "last_change_date": "2022-03-14T08:11:08.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14567, + "fields": { + "EF_ID": 515466, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.435Z", + "last_change_date": "2022-03-14T08:11:08.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14568, + "fields": { + "EF_ID": 515467, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.511Z", + "last_change_date": "2022-03-14T08:11:08.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14569, + "fields": { + "EF_ID": 515468, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.586Z", + "last_change_date": "2022-03-14T08:11:08.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14570, + "fields": { + "EF_ID": 515469, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.661Z", + "last_change_date": "2022-03-14T08:11:08.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14571, + "fields": { + "EF_ID": 515470, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.736Z", + "last_change_date": "2022-03-14T08:11:08.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14572, + "fields": { + "EF_ID": 515471, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.811Z", + "last_change_date": "2022-03-14T08:11:08.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14573, + "fields": { + "EF_ID": 515472, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:08.919Z", + "last_change_date": "2022-03-14T08:11:08.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14574, + "fields": { + "EF_ID": 515473, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.020Z", + "last_change_date": "2022-03-14T08:11:09.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14575, + "fields": { + "EF_ID": 515474, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.094Z", + "last_change_date": "2022-03-14T08:11:09.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14576, + "fields": { + "EF_ID": 515475, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia coniferous > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.169Z", + "last_change_date": "2022-03-14T08:11:09.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14577, + "fields": { + "EF_ID": 515476, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia coniferous = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100-120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.244Z", + "last_change_date": "2022-03-14T08:11:09.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14578, + "fields": { + "EF_ID": 515477, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Africa broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-150", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.319Z", + "last_change_date": "2022-03-14T08:11:09.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14579, + "fields": { + "EF_ID": 515478, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Africa broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.403Z", + "last_change_date": "2022-03-14T08:11:09.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14580, + "fields": { + "EF_ID": 515479, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.515Z", + "last_change_date": "2022-03-14T08:11:09.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14581, + "fields": { + "EF_ID": 515480, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-40", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.619Z", + "last_change_date": "2022-03-14T08:11:09.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14582, + "fields": { + "EF_ID": 515481, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.769Z", + "last_change_date": "2022-03-14T08:11:09.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14583, + "fields": { + "EF_ID": 515482, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60-170", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.844Z", + "last_change_date": "2022-03-14T08:11:09.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14584, + "fields": { + "EF_ID": 515483, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-130", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.919Z", + "last_change_date": "2022-03-14T08:11:09.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14585, + "fields": { + "EF_ID": 515484, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-80", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:09.995Z", + "last_change_date": "2022-03-14T08:11:09.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14586, + "fields": { + "EF_ID": 515485, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-150", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.069Z", + "last_change_date": "2022-03-14T08:11:10.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14587, + "fields": { + "EF_ID": 515486, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25-80", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.176Z", + "last_change_date": "2022-03-14T08:11:10.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14588, + "fields": { + "EF_ID": 515487, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "Asia, Europe, broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.261Z", + "last_change_date": "2022-03-14T08:11:10.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14589, + "fields": { + "EF_ID": 515488, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "Asia, Europe, broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.336Z", + "last_change_date": "2022-03-14T08:11:10.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14590, + "fields": { + "EF_ID": 515489, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "Asia, Europe, coniferous > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150-250", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.411Z", + "last_change_date": "2022-03-14T08:11:10.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14591, + "fields": { + "EF_ID": 515490, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "Asia, Europe, coniferous = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.486Z", + "last_change_date": "2022-03-14T08:11:10.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14592, + "fields": { + "EF_ID": 515491, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50-300", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.561Z", + "last_change_date": "2022-03-14T08:11:10.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14593, + "fields": { + "EF_ID": 515492, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150-350", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "Hinds and Reid, 1957; Hall and Hollinger, 1997; Hall, 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.636Z", + "last_change_date": "2022-03-14T08:11:10.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14594, + "fields": { + "EF_ID": 515493, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90-120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.737Z", + "last_change_date": "2022-03-14T08:11:10.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14595, + "fields": { + "EF_ID": 515494, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest and mountain systems", + "Regional_Conditions": "Asia, Europe, broadleaf > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "200", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.820Z", + "last_change_date": "2022-03-14T08:11:10.820Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14596, + "fields": { + "EF_ID": 515495, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest and mountain systems", + "Regional_Conditions": "Asia, Europe, broadleaf = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.894Z", + "last_change_date": "2022-03-14T08:11:10.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14597, + "fields": { + "EF_ID": 515496, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest and mountain systems", + "Regional_Conditions": "Asia, Europe, coniferous > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150-200", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:10.969Z", + "last_change_date": "2022-03-14T08:11:10.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14598, + "fields": { + "EF_ID": 515497, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest and mountain systems", + "Regional_Conditions": "Asia, Europe, coniferous = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25-30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.053Z", + "last_change_date": "2022-03-14T08:11:11.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14599, + "fields": { + "EF_ID": 515498, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest and mountain systems", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50-300", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.128Z", + "last_change_date": "2022-03-14T08:11:11.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14600, + "fields": { + "EF_ID": 515499, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest and mountain systems", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90-120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.211Z", + "last_change_date": "2022-03-14T08:11:11.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14601, + "fields": { + "EF_ID": 515500, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal coniferous forest and mountain systems", + "Regional_Conditions": "Asia, Europe > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.324Z", + "last_change_date": "2022-03-14T08:11:11.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14602, + "fields": { + "EF_ID": 515501, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal coniferous forest and mountain systems", + "Regional_Conditions": "Asia, Europe = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.428Z", + "last_change_date": "2022-03-14T08:11:11.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14603, + "fields": { + "EF_ID": 515502, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal coniferous forest and mountain systems", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-50", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.503Z", + "last_change_date": "2022-03-14T08:11:11.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14604, + "fields": { + "EF_ID": 515503, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal tundra woodland", + "Regional_Conditions": "Asia, Europe > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.578Z", + "last_change_date": "2022-03-14T08:11:11.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14605, + "fields": { + "EF_ID": 515504, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal tundra woodland", + "Regional_Conditions": "Asia, Europe = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.661Z", + "last_change_date": "2022-03-14T08:11:11.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14606, + "fields": { + "EF_ID": 515505, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal tundra woodland", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9 and 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.8 Above-ground biomass in forest plantations; pages 4.54-4.56", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.736Z", + "last_change_date": "2022-03-14T08:11:11.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14607, + "fields": { + "EF_ID": 515506, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.811Z", + "last_change_date": "2022-03-14T08:11:11.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14608, + "fields": { + "EF_ID": 515507, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1 (2.3-3.8)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:11.935Z", + "last_change_date": "2022-03-14T08:11:11.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14609, + "fields": { + "EF_ID": 515508, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9-18", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Clark et al., 2003 ; Hughes et al., 1999", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.019Z", + "last_change_date": "2022-03-14T08:11:12.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14610, + "fields": { + "EF_ID": 515509, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Feldpausch et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.094Z", + "last_change_date": "2022-03-14T08:11:12.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14611, + "fields": { + "EF_ID": 515510, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1 (1.5-5.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Malhi et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.169Z", + "last_change_date": "2022-03-14T08:11:12.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14612, + "fields": { + "EF_ID": 515511, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0 (3.0-11.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.244Z", + "last_change_date": "2022-03-14T08:11:12.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14613, + "fields": { + "EF_ID": 515512, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2 (1.3-3.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.320Z", + "last_change_date": "2022-03-14T08:11:12.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14614, + "fields": { + "EF_ID": 515513, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.429Z", + "last_change_date": "2022-03-14T08:11:12.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14615, + "fields": { + "EF_ID": 515514, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.511Z", + "last_change_date": "2022-03-14T08:11:12.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14616, + "fields": { + "EF_ID": 515515, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Harmand et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.578Z", + "last_change_date": "2022-03-14T08:11:12.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14617, + "fields": { + "EF_ID": 515516, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.653Z", + "last_change_date": "2022-03-14T08:11:12.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14618, + "fields": { + "EF_ID": 515517, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.728Z", + "last_change_date": "2022-03-14T08:11:12.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14619, + "fields": { + "EF_ID": 515518, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.803Z", + "last_change_date": "2022-03-14T08:11:12.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14620, + "fields": { + "EF_ID": 515519, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:12.907Z", + "last_change_date": "2022-03-14T08:11:12.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14621, + "fields": { + "EF_ID": 515520, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.003Z", + "last_change_date": "2022-03-14T08:11:13.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14622, + "fields": { + "EF_ID": 515521, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.078Z", + "last_change_date": "2022-03-14T08:11:13.078Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14623, + "fields": { + "EF_ID": 515522, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.153Z", + "last_change_date": "2022-03-14T08:11:13.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14624, + "fields": { + "EF_ID": 515523, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4 (2.3-2.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.227Z", + "last_change_date": "2022-03-14T08:11:13.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14625, + "fields": { + "EF_ID": 515524, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8 (0.6-3.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.303Z", + "last_change_date": "2022-03-14T08:11:13.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14626, + "fields": { + "EF_ID": 515525, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.419Z", + "last_change_date": "2022-03-14T08:11:13.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14627, + "fields": { + "EF_ID": 515526, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.503Z", + "last_change_date": "2022-03-14T08:11:13.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14628, + "fields": { + "EF_ID": 515527, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.586Z", + "last_change_date": "2022-03-14T08:11:13.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14629, + "fields": { + "EF_ID": 515528, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.703Z", + "last_change_date": "2022-03-14T08:11:13.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14630, + "fields": { + "EF_ID": 515529, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.778Z", + "last_change_date": "2022-03-14T08:11:13.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14631, + "fields": { + "EF_ID": 515530, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.844Z", + "last_change_date": "2022-03-14T08:11:13.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14632, + "fields": { + "EF_ID": 515531, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2-0.7", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Nygård et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:13.963Z", + "last_change_date": "2022-03-14T08:11:13.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14633, + "fields": { + "EF_ID": 515532, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9 (0.2-1.6)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.094Z", + "last_change_date": "2022-03-14T08:11:14.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14634, + "fields": { + "EF_ID": 515533, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.153Z", + "last_change_date": "2022-03-14T08:11:14.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14635, + "fields": { + "EF_ID": 515534, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.211Z", + "last_change_date": "2022-03-14T08:11:14.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14636, + "fields": { + "EF_ID": 515535, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.269Z", + "last_change_date": "2022-03-14T08:11:14.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14637, + "fields": { + "EF_ID": 515536, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3 (1.0-2.2)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.328Z", + "last_change_date": "2022-03-14T08:11:14.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14638, + "fields": { + "EF_ID": 515537, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.425Z", + "last_change_date": "2022-03-14T08:11:14.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14639, + "fields": { + "EF_ID": 515538, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.511Z", + "last_change_date": "2022-03-14T08:11:14.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14640, + "fields": { + "EF_ID": 515539, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Africa (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0-5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.578Z", + "last_change_date": "2022-03-14T08:11:14.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14641, + "fields": { + "EF_ID": 515540, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Africa (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.653Z", + "last_change_date": "2022-03-14T08:11:14.653Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14642, + "fields": { + "EF_ID": 515541, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8-5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.728Z", + "last_change_date": "2022-03-14T08:11:14.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14643, + "fields": { + "EF_ID": 515542, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4-1.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.794Z", + "last_change_date": "2022-03-14T08:11:14.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14644, + "fields": { + "EF_ID": 515543, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.902Z", + "last_change_date": "2022-03-14T08:11:14.902Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14645, + "fields": { + "EF_ID": 515544, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:14.978Z", + "last_change_date": "2022-03-14T08:11:14.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14646, + "fields": { + "EF_ID": 515545, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0-12", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.044Z", + "last_change_date": "2022-03-14T08:11:15.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14647, + "fields": { + "EF_ID": 515546, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.120Z", + "last_change_date": "2022-03-14T08:11:15.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14648, + "fields": { + "EF_ID": 515547, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.194Z", + "last_change_date": "2022-03-14T08:11:15.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14649, + "fields": { + "EF_ID": 515548, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.277Z", + "last_change_date": "2022-03-14T08:11:15.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14650, + "fields": { + "EF_ID": 515549, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.388Z", + "last_change_date": "2022-03-14T08:11:15.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14651, + "fields": { + "EF_ID": 515550, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.478Z", + "last_change_date": "2022-03-14T08:11:15.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14652, + "fields": { + "EF_ID": 515551, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.561Z", + "last_change_date": "2022-03-14T08:11:15.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14653, + "fields": { + "EF_ID": 515552, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.636Z", + "last_change_date": "2022-03-14T08:11:15.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14654, + "fields": { + "EF_ID": 515553, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4 (2.3-2.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.711Z", + "last_change_date": "2022-03-14T08:11:15.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14655, + "fields": { + "EF_ID": 515554, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8 (0.6-3.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.786Z", + "last_change_date": "2022-03-14T08:11:15.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14656, + "fields": { + "EF_ID": 515555, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.882Z", + "last_change_date": "2022-03-14T08:11:15.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14657, + "fields": { + "EF_ID": 515556, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:15.969Z", + "last_change_date": "2022-03-14T08:11:15.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14658, + "fields": { + "EF_ID": 515557, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.045Z", + "last_change_date": "2022-03-14T08:11:16.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14659, + "fields": { + "EF_ID": 515558, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.119Z", + "last_change_date": "2022-03-14T08:11:16.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14660, + "fields": { + "EF_ID": 515559, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.195Z", + "last_change_date": "2022-03-14T08:11:16.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14661, + "fields": { + "EF_ID": 515560, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.269Z", + "last_change_date": "2022-03-14T08:11:16.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14662, + "fields": { + "EF_ID": 515561, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2 (0.8-1.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.369Z", + "last_change_date": "2022-03-14T08:11:16.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14663, + "fields": { + "EF_ID": 515562, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9 (0.2-1.6)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.452Z", + "last_change_date": "2022-03-14T08:11:16.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14664, + "fields": { + "EF_ID": 515563, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.528Z", + "last_change_date": "2022-03-14T08:11:16.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14665, + "fields": { + "EF_ID": 515564, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.603Z", + "last_change_date": "2022-03-14T08:11:16.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14666, + "fields": { + "EF_ID": 515565, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.678Z", + "last_change_date": "2022-03-14T08:11:16.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14667, + "fields": { + "EF_ID": 515566, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3 (1.0-2.2)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.753Z", + "last_change_date": "2022-03-14T08:11:16.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14668, + "fields": { + "EF_ID": 515567, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.846Z", + "last_change_date": "2022-03-14T08:11:16.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14669, + "fields": { + "EF_ID": 515568, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:16.944Z", + "last_change_date": "2022-03-14T08:11:16.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14670, + "fields": { + "EF_ID": 515569, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Africa (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0-5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.019Z", + "last_change_date": "2022-03-14T08:11:17.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14671, + "fields": { + "EF_ID": 515570, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Africa (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.103Z", + "last_change_date": "2022-03-14T08:11:17.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14672, + "fields": { + "EF_ID": 515571, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "North and South America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8-5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.186Z", + "last_change_date": "2022-03-14T08:11:17.186Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14673, + "fields": { + "EF_ID": 515572, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "North and South America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4-1.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.261Z", + "last_change_date": "2022-03-14T08:11:17.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14674, + "fields": { + "EF_ID": 515573, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia (continental =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.365Z", + "last_change_date": "2022-03-14T08:11:17.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14675, + "fields": { + "EF_ID": 515574, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia (continental >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5-1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.444Z", + "last_change_date": "2022-03-14T08:11:17.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14676, + "fields": { + "EF_ID": 515575, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia (insular =20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0-12", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.528Z", + "last_change_date": "2022-03-14T08:11:17.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14677, + "fields": { + "EF_ID": 515576, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia (insular >20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.611Z", + "last_change_date": "2022-03-14T08:11:17.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14678, + "fields": { + "EF_ID": 515577, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.686Z", + "last_change_date": "2022-03-14T08:11:17.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14679, + "fields": { + "EF_ID": 515578, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15 (1.2-105)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Hessl et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.770Z", + "last_change_date": "2022-03-14T08:11:17.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14680, + "fields": { + "EF_ID": 515579, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5 (3.2-3.8)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Coomes et al., 2002", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.869Z", + "last_change_date": "2022-03-14T08:11:17.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14681, + "fields": { + "EF_ID": 515580, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate oceanic forest", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4-8.9", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Echevarria and Lara, 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:17.953Z", + "last_change_date": "2022-03-14T08:11:17.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14682, + "fields": { + "EF_ID": 515581, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest", + "Regional_Conditions": "Asia, Europe, North America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 (0.5-8.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.028Z", + "last_change_date": "2022-03-14T08:11:18.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14683, + "fields": { + "EF_ID": 515582, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate continental forest", + "Regional_Conditions": "Asia, Europe, North America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 (0.5-7.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.128Z", + "last_change_date": "2022-03-14T08:11:18.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14684, + "fields": { + "EF_ID": 515583, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Temperate mountain systems", + "Regional_Conditions": "Asia, Europe, North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0 (0.5-6.0)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.203Z", + "last_change_date": "2022-03-14T08:11:18.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14685, + "fields": { + "EF_ID": 515584, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal coniferous forest", + "Regional_Conditions": "Asia, Europe, North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1-2.1", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "Gower et al., 2001", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.278Z", + "last_change_date": "2022-03-14T08:11:18.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14686, + "fields": { + "EF_ID": 515585, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal tundra woodland", + "Regional_Conditions": "Asia, Europe, North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4 (0.2-0.5)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.371Z", + "last_change_date": "2022-03-14T08:11:18.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14687, + "fields": { + "EF_ID": 515586, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal mountain systems", + "Regional_Conditions": "Asia, Europe, North America (=20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-1.1", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.461Z", + "last_change_date": "2022-03-14T08:11:18.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14688, + "fields": { + "EF_ID": 515587, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Boreal mountain systems", + "Regional_Conditions": "Asia, Europe, North America (>20 y)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1-1.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.9 Above-ground net biomass growth in natural forests; pages 4.57-4.58", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.536Z", + "last_change_date": "2022-03-14T08:11:18.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14689, + "fields": { + "EF_ID": 515588, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.611Z", + "last_change_date": "2022-03-14T08:11:18.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14690, + "fields": { + "EF_ID": 515589, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Africa other = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6 (5-8)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.686Z", + "last_change_date": "2022-03-14T08:11:18.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14691, + "fields": { + "EF_ID": 515590, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (6-40)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:18.920Z", + "last_change_date": "2022-03-14T08:11:18.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14692, + "fields": { + "EF_ID": 515591, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.015Z", + "last_change_date": "2022-03-14T08:11:19.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14693, + "fields": { + "EF_ID": 515592, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.103Z", + "last_change_date": "2022-03-14T08:11:19.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14694, + "fields": { + "EF_ID": 515593, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (5-35)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.203Z", + "last_change_date": "2022-03-14T08:11:19.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14695, + "fields": { + "EF_ID": 515594, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5 (4-8)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.303Z", + "last_change_date": "2022-03-14T08:11:19.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14696, + "fields": { + "EF_ID": 515595, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical rain forest", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5 (2-8)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.420Z", + "last_change_date": "2022-03-14T08:11:19.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14697, + "fields": { + "EF_ID": 515596, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa Eucalyptus sp. >20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.584Z", + "last_change_date": "2022-03-14T08:11:19.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14698, + "fields": { + "EF_ID": 515597, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa Eucalyptus sp. =20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.703Z", + "last_change_date": "2022-03-14T08:11:19.703Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14699, + "fields": { + "EF_ID": 515598, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.828Z", + "last_change_date": "2022-03-14T08:11:19.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14700, + "fields": { + "EF_ID": 515599, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.920Z", + "last_change_date": "2022-03-14T08:11:19.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14701, + "fields": { + "EF_ID": 515600, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Africa other = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9 (3-15)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:19.995Z", + "last_change_date": "2022-03-14T08:11:19.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14702, + "fields": { + "EF_ID": 515601, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "Stape et al., 2004", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.079Z", + "last_change_date": "2022-03-14T08:11:20.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14703, + "fields": { + "EF_ID": 515602, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7 (4-10)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.178Z", + "last_change_date": "2022-03-14T08:11:20.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14704, + "fields": { + "EF_ID": 515603, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 (4-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.245Z", + "last_change_date": "2022-03-14T08:11:20.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14705, + "fields": { + "EF_ID": 515604, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6-20", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "Lugo et al., 1990", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.311Z", + "last_change_date": "2022-03-14T08:11:20.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14706, + "fields": { + "EF_ID": 515605, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical moist deciduous forest", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.378Z", + "last_change_date": "2022-03-14T08:11:20.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14707, + "fields": { + "EF_ID": 515606, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa Eucalyptus sp. =20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.464Z", + "last_change_date": "2022-03-14T08:11:20.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14708, + "fields": { + "EF_ID": 515607, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.553Z", + "last_change_date": "2022-03-14T08:11:20.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14709, + "fields": { + "EF_ID": 515608, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.620Z", + "last_change_date": "2022-03-14T08:11:20.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14710, + "fields": { + "EF_ID": 515609, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Africa other = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (4-20)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.686Z", + "last_change_date": "2022-03-14T08:11:20.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14711, + "fields": { + "EF_ID": 515610, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (6-30)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.753Z", + "last_change_date": "2022-03-14T08:11:20.753Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14712, + "fields": { + "EF_ID": 515611, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7 (4-10)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.841Z", + "last_change_date": "2022-03-14T08:11:20.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14713, + "fields": { + "EF_ID": 515612, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 (4-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.928Z", + "last_change_date": "2022-03-14T08:11:20.928Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14714, + "fields": { + "EF_ID": 515613, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (3-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:20.994Z", + "last_change_date": "2022-03-14T08:11:20.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14715, + "fields": { + "EF_ID": 515614, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15 (5-25)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.061Z", + "last_change_date": "2022-03-14T08:11:21.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14716, + "fields": { + "EF_ID": 515615, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical dry forest", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7 (2-13)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.128Z", + "last_change_date": "2022-03-14T08:11:21.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14717, + "fields": { + "EF_ID": 515616, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa Eucalyptus sp. >20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 (5-14)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.219Z", + "last_change_date": "2022-03-14T08:11:21.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14718, + "fields": { + "EF_ID": 515617, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa Eucalyptus sp. =20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5 (3-7)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.303Z", + "last_change_date": "2022-03-14T08:11:21.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14719, + "fields": { + "EF_ID": 515618, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.369Z", + "last_change_date": "2022-03-14T08:11:21.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14720, + "fields": { + "EF_ID": 515619, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3 (0.5-6)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.444Z", + "last_change_date": "2022-03-14T08:11:21.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14721, + "fields": { + "EF_ID": 515620, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa other > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.519Z", + "last_change_date": "2022-03-14T08:11:21.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14722, + "fields": { + "EF_ID": 515621, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Africa other = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.622Z", + "last_change_date": "2022-03-14T08:11:21.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14723, + "fields": { + "EF_ID": 515622, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.728Z", + "last_change_date": "2022-03-14T08:11:21.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14724, + "fields": { + "EF_ID": 515623, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.811Z", + "last_change_date": "2022-03-14T08:11:21.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14725, + "fields": { + "EF_ID": 515624, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical shrubland", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6 (1-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.878Z", + "last_change_date": "2022-03-14T08:11:21.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14726, + "fields": { + "EF_ID": 515625, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:21.953Z", + "last_change_date": "2022-03-14T08:11:21.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14727, + "fields": { + "EF_ID": 515626, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (8-18)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.049Z", + "last_change_date": "2022-03-14T08:11:22.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14728, + "fields": { + "EF_ID": 515627, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.137Z", + "last_change_date": "2022-03-14T08:11:22.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14729, + "fields": { + "EF_ID": 515628, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.212Z", + "last_change_date": "2022-03-14T08:11:22.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14730, + "fields": { + "EF_ID": 515629, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.296Z", + "last_change_date": "2022-03-14T08:11:22.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14731, + "fields": { + "EF_ID": 515630, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.371Z", + "last_change_date": "2022-03-14T08:11:22.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14732, + "fields": { + "EF_ID": 515631, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical mountain systems", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5 (1-10)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.467Z", + "last_change_date": "2022-03-14T08:11:22.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14733, + "fields": { + "EF_ID": 515632, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (6-32)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.554Z", + "last_change_date": "2022-03-14T08:11:22.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14734, + "fields": { + "EF_ID": 515633, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7 (4-10)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.628Z", + "last_change_date": "2022-03-14T08:11:22.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14735, + "fields": { + "EF_ID": 515634, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 (4-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.721Z", + "last_change_date": "2022-03-14T08:11:22.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14736, + "fields": { + "EF_ID": 515635, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (3-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.787Z", + "last_change_date": "2022-03-14T08:11:22.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14737, + "fields": { + "EF_ID": 515636, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical humid forest", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.878Z", + "last_change_date": "2022-03-14T08:11:22.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14738, + "fields": { + "EF_ID": 515637, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa Eucalyptus sp. =20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:22.945Z", + "last_change_date": "2022-03-14T08:11:22.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14739, + "fields": { + "EF_ID": 515638, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.012Z", + "last_change_date": "2022-03-14T08:11:23.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14740, + "fields": { + "EF_ID": 515639, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.096Z", + "last_change_date": "2022-03-14T08:11:23.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14741, + "fields": { + "EF_ID": 515640, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Africa other = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (4-20)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.179Z", + "last_change_date": "2022-03-14T08:11:23.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14742, + "fields": { + "EF_ID": 515641, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 (6-30)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.283Z", + "last_change_date": "2022-03-14T08:11:23.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14743, + "fields": { + "EF_ID": 515642, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7 (4-10)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.379Z", + "last_change_date": "2022-03-14T08:11:23.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14744, + "fields": { + "EF_ID": 515643, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 (4-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.454Z", + "last_change_date": "2022-03-14T08:11:23.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14745, + "fields": { + "EF_ID": 515644, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (3-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.529Z", + "last_change_date": "2022-03-14T08:11:23.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14746, + "fields": { + "EF_ID": 515645, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15 (5-25)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.604Z", + "last_change_date": "2022-03-14T08:11:23.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14747, + "fields": { + "EF_ID": 515646, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical dry forest", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7 (2-13)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.701Z", + "last_change_date": "2022-03-14T08:11:23.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14748, + "fields": { + "EF_ID": 515647, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa Eucalyptus sp. >20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 (5-14)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.788Z", + "last_change_date": "2022-03-14T08:11:23.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14749, + "fields": { + "EF_ID": 515648, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa Eucalyptus sp. =20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5 (3-7)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.862Z", + "last_change_date": "2022-03-14T08:11:23.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14750, + "fields": { + "EF_ID": 515649, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa Pinus sp. > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:23.962Z", + "last_change_date": "2022-03-14T08:11:23.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14751, + "fields": { + "EF_ID": 515650, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa Pinus sp. = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3 (0.5-6)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.038Z", + "last_change_date": "2022-03-14T08:11:24.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14752, + "fields": { + "EF_ID": 515651, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa other > 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.171Z", + "last_change_date": "2022-03-14T08:11:24.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14753, + "fields": { + "EF_ID": 515652, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Africa other = 20 y", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.254Z", + "last_change_date": "2022-03-14T08:11:24.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14754, + "fields": { + "EF_ID": 515653, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.337Z", + "last_change_date": "2022-03-14T08:11:24.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14755, + "fields": { + "EF_ID": 515654, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.413Z", + "last_change_date": "2022-03-14T08:11:24.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14756, + "fields": { + "EF_ID": 515655, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical steppe", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6 (1-12)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.487Z", + "last_change_date": "2022-03-14T08:11:24.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14757, + "fields": { + "EF_ID": 515656, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.581Z", + "last_change_date": "2022-03-14T08:11:24.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14758, + "fields": { + "EF_ID": 515657, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Americas Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10 (8-18)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.679Z", + "last_change_date": "2022-03-14T08:11:24.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14759, + "fields": { + "EF_ID": 515658, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Americas Pinus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.763Z", + "last_change_date": "2022-03-14T08:11:24.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14760, + "fields": { + "EF_ID": 515659, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Americas Tectona grandis", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.854Z", + "last_change_date": "2022-03-14T08:11:24.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14761, + "fields": { + "EF_ID": 515660, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Americas other broadleaf", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:24.938Z", + "last_change_date": "2022-03-14T08:11:24.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14762, + "fields": { + "EF_ID": 515661, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia Eucalyptus sp.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.034Z", + "last_change_date": "2022-03-14T08:11:25.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14763, + "fields": { + "EF_ID": 515662, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in tropical and sub-tropical forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Subtropical mountain systems", + "Regional_Conditions": "Asia other", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5 (1-10)", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.10 Above-ground net biomass growth in tropical and sub-tropical forest plantations, pages 4.59-4.60", + "Technical_Reference": "IPCC, 2003", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.121Z", + "last_change_date": "2022-03-14T08:11:25.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14764, + "fields": { + "EF_ID": 515663, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Acacia mellifera", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2 (min); 4.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.196Z", + "last_change_date": "2022-03-14T08:11:25.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14765, + "fields": { + "EF_ID": 515664, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Acacia nilotica", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0 (min); 20.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.312Z", + "last_change_date": "2022-03-14T08:11:25.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14766, + "fields": { + "EF_ID": 515665, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Acacia senegal", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4 (min); 2.6 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.388Z", + "last_change_date": "2022-03-14T08:11:25.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14767, + "fields": { + "EF_ID": 515666, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Acacia seyal", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0 (min); 6.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.486Z", + "last_change_date": "2022-03-14T08:11:25.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14768, + "fields": { + "EF_ID": 515667, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Ailanthus excelsa", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.6 (min); 9.4 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.571Z", + "last_change_date": "2022-03-14T08:11:25.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14769, + "fields": { + "EF_ID": 515668, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Bamboo bamboo", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0 (min); 7.5 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.646Z", + "last_change_date": "2022-03-14T08:11:25.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14770, + "fields": { + "EF_ID": 515669, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Cupressus spp.", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0 (min); 24.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.721Z", + "last_change_date": "2022-03-14T08:11:25.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14771, + "fields": { + "EF_ID": 515670, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Eucalyptus spp.", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.0 (min); 14.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.796Z", + "last_change_date": "2022-03-14T08:11:25.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14772, + "fields": { + "EF_ID": 515671, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Khaya spp.", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.5 (min); 12.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.889Z", + "last_change_date": "2022-03-14T08:11:25.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14773, + "fields": { + "EF_ID": 515672, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Tectona grandis", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5 (min); 3.5 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:25.979Z", + "last_change_date": "2022-03-14T08:11:25.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14774, + "fields": { + "EF_ID": 515673, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Eucalyptus camaldulensis", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.0 (min); 43.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.054Z", + "last_change_date": "2022-03-14T08:11:26.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14775, + "fields": { + "EF_ID": 515674, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Pinus spp.", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 (min); 15.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.129Z", + "last_change_date": "2022-03-14T08:11:26.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14776, + "fields": { + "EF_ID": 515675, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Tectona grandis", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3 (min); 17.3 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.204Z", + "last_change_date": "2022-03-14T08:11:26.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14777, + "fields": { + "EF_ID": 515676, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Xylia xylocapa", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0 (min); 8.8 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.300Z", + "last_change_date": "2022-03-14T08:11:26.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14778, + "fields": { + "EF_ID": 515677, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Acacia spp.", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0 (min); 30.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.396Z", + "last_change_date": "2022-03-14T08:11:26.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14779, + "fields": { + "EF_ID": 515678, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Araucaria angustifolia", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0 (min); 30.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.471Z", + "last_change_date": "2022-03-14T08:11:26.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14780, + "fields": { + "EF_ID": 515679, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Eucalyptus spp.", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0 (min); 70.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.554Z", + "last_change_date": "2022-03-14T08:11:26.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14781, + "fields": { + "EF_ID": 515680, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Hevea brasiliensis", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0 (min); 20.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.638Z", + "last_change_date": "2022-03-14T08:11:26.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14782, + "fields": { + "EF_ID": 515681, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Mimosa scabrella", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0 (min); 25.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.744Z", + "last_change_date": "2022-03-14T08:11:26.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14783, + "fields": { + "EF_ID": 515682, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Pinus spp.", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.0 (min); 40.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.829Z", + "last_change_date": "2022-03-14T08:11:26.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14784, + "fields": { + "EF_ID": 515683, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Populus spp.", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0 (min); 30.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.913Z", + "last_change_date": "2022-03-14T08:11:26.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14785, + "fields": { + "EF_ID": 515684, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive plantations", + "Parameter_Conditions": "Tree species: Tectona grandis", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0 (min); 35.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:26.988Z", + "last_change_date": "2022-03-14T08:11:26.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14786, + "fields": { + "EF_ID": 515685, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Acacia albida", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 (min); 6.1 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.063Z", + "last_change_date": "2022-03-14T08:11:27.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14787, + "fields": { + "EF_ID": 515686, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Acacia mellifera", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9 (min); 3.5 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.155Z", + "last_change_date": "2022-03-14T08:11:27.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14788, + "fields": { + "EF_ID": 515687, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Acacia nilotica", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.5 (min); 20.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.238Z", + "last_change_date": "2022-03-14T08:11:27.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14789, + "fields": { + "EF_ID": 515688, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Acacia senegal", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1 (min); 2.4 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.321Z", + "last_change_date": "2022-03-14T08:11:27.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14790, + "fields": { + "EF_ID": 515689, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Acacia seyal", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8 (min); 3.2 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.396Z", + "last_change_date": "2022-03-14T08:11:27.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14791, + "fields": { + "EF_ID": 515690, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Acacia tortilis", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2 (min); 3.7 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.471Z", + "last_change_date": "2022-03-14T08:11:27.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14792, + "fields": { + "EF_ID": 515691, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Acacia tortilis var siprocarpa", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (min); 2.4 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.565Z", + "last_change_date": "2022-03-14T08:11:27.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14793, + "fields": { + "EF_ID": 515692, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Balanites aegyptiaca", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2 (min); 1.5 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.654Z", + "last_change_date": "2022-03-14T08:11:27.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14794, + "fields": { + "EF_ID": 515693, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Sclerocarya birrea", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (min); 1.7 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.729Z", + "last_change_date": "2022-03-14T08:11:27.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14795, + "fields": { + "EF_ID": 515694, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Productive, semi-natural forests", + "Parameter_Conditions": "Tree species: Ziziphus mauritiana", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9 (min); 1.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.804Z", + "last_change_date": "2022-03-14T08:11:27.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14796, + "fields": { + "EF_ID": 515695, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Acacia mellifera", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0 (min); 6.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.879Z", + "last_change_date": "2022-03-14T08:11:27.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14797, + "fields": { + "EF_ID": 515696, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Acacia nilotica", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.0 (min); 21.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:27.977Z", + "last_change_date": "2022-03-14T08:11:27.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14798, + "fields": { + "EF_ID": 515697, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Acacia senegal", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4 (min); 2.8 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.063Z", + "last_change_date": "2022-03-14T08:11:28.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14799, + "fields": { + "EF_ID": 515698, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Acacia seyal", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9 (min); 4.3 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.138Z", + "last_change_date": "2022-03-14T08:11:28.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14800, + "fields": { + "EF_ID": 515699, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Ailanthus spp.", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.0 (min); 12.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.213Z", + "last_change_date": "2022-03-14T08:11:28.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14801, + "fields": { + "EF_ID": 515700, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Bamboo bamboo", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 (min); 8.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.280Z", + "last_change_date": "2022-03-14T08:11:28.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14802, + "fields": { + "EF_ID": 515701, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Cupressus spp.", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.0 (min); 20.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.396Z", + "last_change_date": "2022-03-14T08:11:28.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14803, + "fields": { + "EF_ID": 515702, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Eucalyptus spp.", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0 (min); 14.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.480Z", + "last_change_date": "2022-03-14T08:11:28.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14804, + "fields": { + "EF_ID": 515703, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Khaya spp.", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0 (min); 16.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.563Z", + "last_change_date": "2022-03-14T08:11:28.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14805, + "fields": { + "EF_ID": 515704, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective plantations", + "Parameter_Conditions": "Tree species: Tectona grandis", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0 (min); 8.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.646Z", + "last_change_date": "2022-03-14T08:11:28.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14806, + "fields": { + "EF_ID": 515705, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Acacia albida", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0 (min); 6.2 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.730Z", + "last_change_date": "2022-03-14T08:11:28.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14807, + "fields": { + "EF_ID": 515706, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Acacia mellifera", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7 (min); 3.2 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.831Z", + "last_change_date": "2022-03-14T08:11:28.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14808, + "fields": { + "EF_ID": 515707, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Acacia nilotica", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.0 (min); 15.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.921Z", + "last_change_date": "2022-03-14T08:11:28.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14809, + "fields": { + "EF_ID": 515708, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Acacia senegal", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1 (min); 2.4 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:28.986Z", + "last_change_date": "2022-03-14T08:11:28.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14810, + "fields": { + "EF_ID": 515709, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Acacia seyal", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8 (min); 3.3 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.053Z", + "last_change_date": "2022-03-14T08:11:29.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14811, + "fields": { + "EF_ID": 515710, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Acacia tortilis", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3 (min); 3.5 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.120Z", + "last_change_date": "2022-03-14T08:11:29.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14812, + "fields": { + "EF_ID": 515711, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Acacia tortilis var siprocarpa", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6 (min); 2.4 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.216Z", + "last_change_date": "2022-03-14T08:11:29.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14813, + "fields": { + "EF_ID": 515712, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Balanites aegyptiaca", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2 (min); 1.5 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.313Z", + "last_change_date": "2022-03-14T08:11:29.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14814, + "fields": { + "EF_ID": 515713, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Sclerocarya birrea", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5 (min); 1.7 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.378Z", + "last_change_date": "2022-03-14T08:11:29.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14815, + "fields": { + "EF_ID": 515714, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Mean annual increment (growth of merchantable volume) for some forest plantation species", + "Technology_Practices": "Protective Semi-natural plantations", + "Parameter_Conditions": "Tree species: Ziziphus mauritiana", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9 (min); 1.0 (max)", + "Unit": "m3/ha/year", + "Equation": "Equation 2.10 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.11B Mean annual increment (growth of merchantable volume) for some forest plantation species, pages 4.62-4.63", + "Technical_Reference": "Source: FAO at http://www.fao.org/forestry/", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data are minimum (min) and maximum (max) values, respectively, of mean annual increment (MAI) over rotation", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.453Z", + "last_change_date": "2022-03-14T08:11:29.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14816, + "fields": { + "EF_ID": 515715, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical rain forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.519Z", + "last_change_date": "2022-03-14T08:11:29.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14817, + "fields": { + "EF_ID": 515716, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical moist deciduous forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.628Z", + "last_change_date": "2022-03-14T08:11:29.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14818, + "fields": { + "EF_ID": 515717, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical dry forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.713Z", + "last_change_date": "2022-03-14T08:11:29.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14819, + "fields": { + "EF_ID": 515718, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical shrubland", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.786Z", + "last_change_date": "2022-03-14T08:11:29.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14820, + "fields": { + "EF_ID": 515719, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical mountain systems", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.861Z", + "last_change_date": "2022-03-14T08:11:29.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14821, + "fields": { + "EF_ID": 515720, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical humid forest", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "220", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:29.955Z", + "last_change_date": "2022-03-14T08:11:29.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14822, + "fields": { + "EF_ID": 515721, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical dry forest", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "130", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.038Z", + "last_change_date": "2022-03-14T08:11:30.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14823, + "fields": { + "EF_ID": 515722, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical steppe", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.111Z", + "last_change_date": "2022-03-14T08:11:30.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14824, + "fields": { + "EF_ID": 515723, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical mountain systems", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.194Z", + "last_change_date": "2022-03-14T08:11:30.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14825, + "fields": { + "EF_ID": 515724, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate oceanic forest", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "180", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.298Z", + "last_change_date": "2022-03-14T08:11:30.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14826, + "fields": { + "EF_ID": 515725, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate continental forest", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.405Z", + "last_change_date": "2022-03-14T08:11:30.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14827, + "fields": { + "EF_ID": 515726, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate mountain systems", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.488Z", + "last_change_date": "2022-03-14T08:11:30.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14828, + "fields": { + "EF_ID": 515727, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone:", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.571Z", + "last_change_date": "2022-03-14T08:11:30.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14829, + "fields": { + "EF_ID": 515728, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone:", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.667Z", + "last_change_date": "2022-03-14T08:11:30.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14830, + "fields": { + "EF_ID": 515729, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone:", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.755Z", + "last_change_date": "2022-03-14T08:11:30.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14831, + "fields": { + "EF_ID": 515730, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical rain forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.821Z", + "last_change_date": "2022-03-14T08:11:30.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14832, + "fields": { + "EF_ID": 515731, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical moist deciduous forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.888Z", + "last_change_date": "2022-03-14T08:11:30.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14833, + "fields": { + "EF_ID": 515732, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical dry forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:30.985Z", + "last_change_date": "2022-03-14T08:11:30.985Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14834, + "fields": { + "EF_ID": 515733, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical shrubland", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.063Z", + "last_change_date": "2022-03-14T08:11:31.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14835, + "fields": { + "EF_ID": 515734, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical mountain systems", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.130Z", + "last_change_date": "2022-03-14T08:11:31.130Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14836, + "fields": { + "EF_ID": 515735, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical humid forest", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.204Z", + "last_change_date": "2022-03-14T08:11:31.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14837, + "fields": { + "EF_ID": 515736, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical dry forest", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.297Z", + "last_change_date": "2022-03-14T08:11:31.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14838, + "fields": { + "EF_ID": 515737, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical steppe", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.380Z", + "last_change_date": "2022-03-14T08:11:31.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14839, + "fields": { + "EF_ID": 515738, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical mountain systems", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.454Z", + "last_change_date": "2022-03-14T08:11:31.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14840, + "fields": { + "EF_ID": 515739, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate oceanic forest", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "160", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.530Z", + "last_change_date": "2022-03-14T08:11:31.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14841, + "fields": { + "EF_ID": 515740, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate continental forest", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.623Z", + "last_change_date": "2022-03-14T08:11:31.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14842, + "fields": { + "EF_ID": 515741, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate mountain systems", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.705Z", + "last_change_date": "2022-03-14T08:11:31.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14843, + "fields": { + "EF_ID": 515742, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone:", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.788Z", + "last_change_date": "2022-03-14T08:11:31.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14844, + "fields": { + "EF_ID": 515743, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone:", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.871Z", + "last_change_date": "2022-03-14T08:11:31.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14845, + "fields": { + "EF_ID": 515744, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone:", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:31.976Z", + "last_change_date": "2022-03-14T08:11:31.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14846, + "fields": { + "EF_ID": 515745, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical rain forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.072Z", + "last_change_date": "2022-03-14T08:11:32.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14847, + "fields": { + "EF_ID": 515746, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical moist deciduous forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.146Z", + "last_change_date": "2022-03-14T08:11:32.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14848, + "fields": { + "EF_ID": 515747, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical dry forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.221Z", + "last_change_date": "2022-03-14T08:11:32.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14849, + "fields": { + "EF_ID": 515748, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical shrubland", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.319Z", + "last_change_date": "2022-03-14T08:11:32.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14850, + "fields": { + "EF_ID": 515749, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical mountain systems", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.413Z", + "last_change_date": "2022-03-14T08:11:32.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14851, + "fields": { + "EF_ID": 515750, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical humid forest", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.480Z", + "last_change_date": "2022-03-14T08:11:32.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14852, + "fields": { + "EF_ID": 515751, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical dry forest", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.546Z", + "last_change_date": "2022-03-14T08:11:32.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14853, + "fields": { + "EF_ID": 515752, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical steppe", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.654Z", + "last_change_date": "2022-03-14T08:11:32.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14854, + "fields": { + "EF_ID": 515753, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical mountain systems", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.730Z", + "last_change_date": "2022-03-14T08:11:32.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14855, + "fields": { + "EF_ID": 515754, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate oceanic forest", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.797Z", + "last_change_date": "2022-03-14T08:11:32.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14856, + "fields": { + "EF_ID": 515755, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate continental forest", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.872Z", + "last_change_date": "2022-03-14T08:11:32.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14857, + "fields": { + "EF_ID": 515756, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate mountain systems", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:32.965Z", + "last_change_date": "2022-03-14T08:11:32.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14858, + "fields": { + "EF_ID": 515757, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone:", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.047Z", + "last_change_date": "2022-03-14T08:11:33.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14859, + "fields": { + "EF_ID": 515758, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in natural forests", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone:", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.113Z", + "last_change_date": "2022-03-14T08:11:33.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14860, + "fields": { + "EF_ID": 515760, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical rain forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.188Z", + "last_change_date": "2022-03-14T08:11:33.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14861, + "fields": { + "EF_ID": 515761, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical moist deciduous forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.283Z", + "last_change_date": "2022-03-14T08:11:33.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14862, + "fields": { + "EF_ID": 515762, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical dry forest", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.363Z", + "last_change_date": "2022-03-14T08:11:33.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14863, + "fields": { + "EF_ID": 515763, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical shrubland", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.438Z", + "last_change_date": "2022-03-14T08:11:33.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14864, + "fields": { + "EF_ID": 515764, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Tropical mountain systems", + "Regional_Conditions": "Climate domain: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.513Z", + "last_change_date": "2022-03-14T08:11:33.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14865, + "fields": { + "EF_ID": 515765, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical humid forest", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.610Z", + "last_change_date": "2022-03-14T08:11:33.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14866, + "fields": { + "EF_ID": 515766, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical dry forest", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.705Z", + "last_change_date": "2022-03-14T08:11:33.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14867, + "fields": { + "EF_ID": 515767, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical steppe", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.788Z", + "last_change_date": "2022-03-14T08:11:33.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14868, + "fields": { + "EF_ID": 515768, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Subtropical mountain systems", + "Regional_Conditions": "Climate domain: Sub- tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.863Z", + "last_change_date": "2022-03-14T08:11:33.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14869, + "fields": { + "EF_ID": 515769, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate oceanic forest", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:33.971Z", + "last_change_date": "2022-03-14T08:11:33.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14870, + "fields": { + "EF_ID": 515770, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate continental forest", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.105Z", + "last_change_date": "2022-03-14T08:11:34.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14871, + "fields": { + "EF_ID": 515771, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Temperate mountain systems", + "Regional_Conditions": "Climate domain: Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.163Z", + "last_change_date": "2022-03-14T08:11:34.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14872, + "fields": { + "EF_ID": 515772, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Boreal coniferous forest", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.222Z", + "last_change_date": "2022-03-14T08:11:34.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14873, + "fields": { + "EF_ID": 515773, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Boreal tundra woodland", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.307Z", + "last_change_date": "2022-03-14T08:11:34.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14874, + "fields": { + "EF_ID": 515774, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground net biomass growth in forest plantations", + "Technology_Practices": "", + "Parameter_Conditions": "Ecological zone: Boreal mountain systems", + "Regional_Conditions": "Climate domain: Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.9, 2.10, and 2.21 of Volume 4 (AFOLU) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Sheet 1 of 4, Category Code 3B1a, Page A1.9 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.12 Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B), page 4.63", + "Technical_Reference": "Tier 1 estimated biomass values from Tables 4.7–4.11 (except Table 4.11B) of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values are approximate; use only for Tier 1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.388Z", + "last_change_date": "2022-03-14T08:11:34.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14875, + "fields": { + "EF_ID": 515775, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Basic Wood Density of Stemwood", + "Technology_Practices": "", + "Parameter_Conditions": "Species or genus: Pinus radiata", + "Regional_Conditions": "Climate domain: Temperate and Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38 (0.33 - 0.45)", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 3.2.3, 3.2.5, 3.2.7and 3.2.8 of the IPCC Good Practice Guidance for LULUCF Equations 2.13 and 2.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 3 of 4, Category Code 3B1a, Page A1.11 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 4.14 Basic wood density (D) of selected temperate and boreal tree taxa, on page 4.71", + "Technical_Reference": "Beets, P.N., Gilchrist, K. and Jeffreys, M.P. (2001). Wood density of radiata pine: Effect of nitrogen supply. Forest Ecology and Management 145: 173-180.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.464Z", + "last_change_date": "2022-03-14T08:11:34.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14876, + "fields": { + "EF_ID": 515776, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Agrosilvicultural", + "Parameter_Conditions": "Eco-region: Humid tropical high", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41 (29-53)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.530Z", + "last_change_date": "2022-03-14T08:11:34.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14877, + "fields": { + "EF_ID": 515777, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Agrosilvicultural", + "Parameter_Conditions": "Eco-region: Humid tropical low", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70.5 (39-102)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.618Z", + "last_change_date": "2022-03-14T08:11:34.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14878, + "fields": { + "EF_ID": 515778, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Agrosilvicultural", + "Parameter_Conditions": "Eco-region: Dry lowlands", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "117.0 (39-195)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.688Z", + "last_change_date": "2022-03-14T08:11:34.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14879, + "fields": { + "EF_ID": 515779, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Agrosilvicultural", + "Parameter_Conditions": "Eco-region: Humid tropical", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120.0 (12-228)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.764Z", + "last_change_date": "2022-03-14T08:11:34.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14880, + "fields": { + "EF_ID": 515780, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Agrosilvicultural", + "Parameter_Conditions": "Eco-region: Dry lowlands", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75.0 (68-81)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.830Z", + "last_change_date": "2022-03-14T08:11:34.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14881, + "fields": { + "EF_ID": 515781, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Silvopastoral", + "Parameter_Conditions": "Eco-region: Humid tropical", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.5 (28-51)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.895Z", + "last_change_date": "2022-03-14T08:11:34.895Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14882, + "fields": { + "EF_ID": 515782, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Silvopastoral", + "Parameter_Conditions": "Eco-region: Humid tropical high", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "143.5 (133-154)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:34.994Z", + "last_change_date": "2022-03-14T08:11:34.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14883, + "fields": { + "EF_ID": 515783, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Silvopastoral", + "Parameter_Conditions": "Eco-region: Humid tropical low", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "151.0 (104-198)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.088Z", + "last_change_date": "2022-03-14T08:11:35.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14884, + "fields": { + "EF_ID": 515784, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Silvopastoral", + "Parameter_Conditions": "Eco-region: Dry lowlands", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132.5 (90-175)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.161Z", + "last_change_date": "2022-03-14T08:11:35.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14885, + "fields": { + "EF_ID": 515785, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "System: Silvopastoral", + "Parameter_Conditions": "Eco-region: Humid tropical low", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.5 (15-18)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.2 - Potential C storage for agroforestry systems in different ecoregions of the world , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.228Z", + "last_change_date": "2022-03-14T08:11:35.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14886, + "fields": { + "EF_ID": 515786, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Oil Palm", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136 (62-202)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error: 78", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.295Z", + "last_change_date": "2022-03-14T08:11:35.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14887, + "fields": { + "EF_ID": 515787, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Mature rubber", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "178", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Palm, C.A., Woomer, P.L., Alegre, J., Arevalo, L., Castilla, C., Cordeiro, D.G., Feigl, B., Hairiah, K., Kotto-Same, J., Mendes, A., Maukam, A., Murdiyarso, D., Njomgang, R., Parton, W.J., Ricse, A., Rodrigues, V., Sitompus, S.M. and van Noordwijk, M. (1999). Carbon sequestration and trace gas emissions in slash-and-burn and alternative land-uses in the Humid Tropics. ACB Climate Change Working Group. Final Report Phase II, Nairobi, Kenya.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error: 90", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.396Z", + "last_change_date": "2022-03-14T08:11:35.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14888, + "fields": { + "EF_ID": 515788, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Young rubber", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48.0 (16-80)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Wasrin, U.R., Rohiani, A, Putera, A.E. and Hidayat, A. (2000). Assessment of above-ground C-stock using remote sensing and GIS technique. Final Report, Seameo Biotrop, Bogor, 28p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.488Z", + "last_change_date": "2022-03-14T08:11:35.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14889, + "fields": { + "EF_ID": 515789, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Young cinnamon (7 years)", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Siregar, C.A. and Gintings, Ng. (2000). Research activities related to ground biomass measurement at Forestry Research Development Agency. Paper presented at the Workshop on LUCC and Greenhouse Gas Emissions Biophysical Data. Institut Pertanian Bogor. Indonesia, 16 December 2000.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error: 47", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.561Z", + "last_change_date": "2022-03-14T08:11:35.561Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14890, + "fields": { + "EF_ID": 515790, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Coconut", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "196", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Lasco, R.D., Lales, J.S., Arnuevo, M.T., Guillermo, I.Q., de Jesus, A.C., Medrano, R., Bajar, O.F. and Mendoza, C.V. (2002). Carbon dioxide (CO2) storage and sequestration of land cover in the Leyte Geothermal Reservation. Renewable Energy 25: 307-315.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.636Z", + "last_change_date": "2022-03-14T08:11:35.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14891, + "fields": { + "EF_ID": 515791, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Improved fallow (2-year fallow)", + "Parameter_Conditions": "", + "Regional_Conditions": "East Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.0 (27-44)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error: 40", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.742Z", + "last_change_date": "2022-03-14T08:11:35.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14892, + "fields": { + "EF_ID": 515792, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Improved fallow (1-year fallow)", + "Parameter_Conditions": "", + "Regional_Conditions": "East Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.0 (7-21)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Albrecht, A. and Kandji, S.T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosytems and Environment 99: 15-27.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error: 89", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.814Z", + "last_change_date": "2022-03-14T08:11:35.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14893, + "fields": { + "EF_ID": 515793, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Improved fallow (6-year fallow; average)", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.0 (4-64)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Lasco, R.D. and Suson, P.D. (1999). A Leucaena Leucocephala -based indigenous fallow system in central Philippines: the Naalad system. Intl Tree Crops Journal 10: 161-174.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.878Z", + "last_change_date": "2022-03-14T08:11:35.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14894, + "fields": { + "EF_ID": 515794, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Improved fallow (alley cropping)", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9 (1.5-4.5)", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Lasco, R.D., Sales, R.F., Estrella, R., Saplaco, S.R., Castillo, A.S.A., Cruz, R.V.O. and Pulhin, F.B. (2001). Carbon stocks assessment of two agroforestry systems in the Makiling Forest Reserve, Philippines. Philippine Agricultural Scientist 84: 401-407.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error: 105", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:35.944Z", + "last_change_date": "2022-03-14T08:11:35.944Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14895, + "fields": { + "EF_ID": 515795, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Multistory system (jungle rubber)", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "304", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Tomich, T.P., van Noordwijk, M., Budidarsono, S., Gillison, A., Kusumanto, T., Murdiyarso, D., Stolle, T. and Fagi, A.M. (1998). Alternative to slash and burn in Indonesia. Summary Report and Synthesis of Phase II. ASB-Indonesia, Report No. 8, ICRAF, Bogor, Indonesia.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error: 17", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.011Z", + "last_change_date": "2022-03-14T08:11:36.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14896, + "fields": { + "EF_ID": 515796, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Above-ground biomass", + "Technology_Practices": "Cropland type: Multistorey system (Gmelina-cacao)", + "Parameter_Conditions": "", + "Regional_Conditions": "Southeast Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7 and 2.8 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B2a, Page A1.21 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.3 - Default above-ground biomass for various types of perennial croplands , on page 5.9", + "Technical_Reference": "Lasco, R.D., Sales, R.F., Estrella, R., Saplaco, S.R., Castillo, A.S.A., Cruz, R.V.O. and Pulhin, F.B. (2001). Carbon stocks assessment of two agroforestry systems in the Makiling Forest Reserve, Philippines. Philippine Agricultural Scientist 84: 401-407.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error: 53", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.110Z", + "last_change_date": "2022-03-14T08:11:36.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14897, + "fields": { + "EF_ID": 515797, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land-use factor was estimated relative to use of full tillage and nominal (‘medium”) carbon input levels.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Temperate/Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-9%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.189Z", + "last_change_date": "2022-03-14T08:11:36.189Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14898, + "fields": { + "EF_ID": 515798, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land-use factor was estimated relative to use of full tillage and nominal (‘medium”) carbon input levels.", + "Parameter_Conditions": "Moisture regime: Moist", + "Regional_Conditions": "Temperature regime: Temperate/Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-12%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.253Z", + "last_change_date": "2022-03-14T08:11:36.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14899, + "fields": { + "EF_ID": 515799, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land-use factor was estimated relative to use of full tillage and nominal (‘medium”) carbon input levels.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-61%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.353Z", + "last_change_date": "2022-03-14T08:11:36.353Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14900, + "fields": { + "EF_ID": 515800, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land-use factor was estimated relative to use of full tillage and nominal (‘medium”) carbon input levels.", + "Parameter_Conditions": "Moisture regime: Moist/Wet", + "Regional_Conditions": "Temperature regime: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-46%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.430Z", + "last_change_date": "2022-03-14T08:11:36.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14901, + "fields": { + "EF_ID": 515801, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: longterm cultivated; Description: Represents area that has been continuously managed for >20 yrs, to predominantly annual crops. Input and tillage factors are also applied to estimate carbon stock changes. Land-use factor was estimated relative to use of full tillage and nominal (‘medium”) carbon input levels.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: Tropical montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.520Z", + "last_change_date": "2022-03-14T08:11:36.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14902, + "fields": { + "EF_ID": 515802, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: Paddy rice: Long-term (> 20 year) annual cropping of wetlands (paddy rice). Can include double-cropping with non-flooded crops. For paddy rice, tillage and input factors are not used.", + "Parameter_Conditions": "Moisture regime: Dry and Moist/wet", + "Regional_Conditions": "Temperature regime: All", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.605Z", + "last_change_date": "2022-03-14T08:11:36.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14903, + "fields": { + "EF_ID": 515803, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: Perennial/tree crop. Long-term perennial tree crops such as fruit and nut trees, coffee and cacao.", + "Parameter_Conditions": "Moisture regime: Dry and Moist/wet", + "Regional_Conditions": "Temperature regime: All", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.697Z", + "last_change_date": "2022-03-14T08:11:36.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14904, + "fields": { + "EF_ID": 515804, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: Set aside (<20 yrs). Represents temporary set aside of annually cropland (e.g., conservation reserves) or other idle cropland that has been revegetated with perennial grasses.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Temperate/Boreal and Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-11%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.797Z", + "last_change_date": "2022-03-14T08:11:36.797Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14905, + "fields": { + "EF_ID": 515805, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: Set aside (<20 yrs). Represents temporary set aside of annually cropland (e.g., conservation reserves) or other idle cropland that has been revegetated with perennial grasses.", + "Parameter_Conditions": "Moisture regime: Moist/wet", + "Regional_Conditions": "Temperature regime: Temperate/Boreal and Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-17%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.861Z", + "last_change_date": "2022-03-14T08:11:36.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14906, + "fields": { + "EF_ID": 515806, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: Set aside (<20 yrs). Represents temporary set aside of annually cropland (e.g., conservation reserves) or other idle cropland that has been revegetated with perennial grasses.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: Tropical montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.88", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:36.965Z", + "last_change_date": "2022-03-14T08:11:36.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14907, + "fields": { + "EF_ID": 515807, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: Full. Substantial soil disturbance with full inversion and/or frequent (within year) tillage operations. At planting time, little (e.g., <30%) of the surface is covered by residues.", + "Parameter_Conditions": "Moisture regime: Dry and Moist/wet", + "Regional_Conditions": "Temperature regime: All", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.039Z", + "last_change_date": "2022-03-14T08:11:37.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14908, + "fields": { + "EF_ID": 515808, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: Reduced. Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Temperate/Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.02", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-6%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.111Z", + "last_change_date": "2022-03-14T08:11:37.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14909, + "fields": { + "EF_ID": 515809, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: Reduced. Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "Moisture regime: Moist", + "Regional_Conditions": "Temperature regime: Temperate/Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.08", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-5%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.217Z", + "last_change_date": "2022-03-14T08:11:37.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14910, + "fields": { + "EF_ID": 515810, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: Reduced. Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.09", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-9%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.289Z", + "last_change_date": "2022-03-14T08:11:37.289Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14911, + "fields": { + "EF_ID": 515811, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: Reduced. Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "Moisture regime: Moist/Wet", + "Regional_Conditions": "Temperature regime: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.15", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-8%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.355Z", + "last_change_date": "2022-03-14T08:11:37.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14912, + "fields": { + "EF_ID": 515812, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: Reduced. Primary and/or secondary tillage but with reduced soil disturbance (usually shallow and without full soil inversion). Normally leaves surface with >30% coverage by residues at planting.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: Tropical montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.09", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.461Z", + "last_change_date": "2022-03-14T08:11:37.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14913, + "fields": { + "EF_ID": 515813, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: No-till. Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Temperate/Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-5%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.539Z", + "last_change_date": "2022-03-14T08:11:37.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14914, + "fields": { + "EF_ID": 515814, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: No-till. Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "Moisture regime: Moist", + "Regional_Conditions": "Temperature regime: Temperate/Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.15", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-4%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.606Z", + "last_change_date": "2022-03-14T08:11:37.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14915, + "fields": { + "EF_ID": 515815, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for tillage (FMG)", + "Technology_Practices": "Level: No-till. Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-8%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.695Z", + "last_change_date": "2022-03-14T08:11:37.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14916, + "fields": { + "EF_ID": 515816, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: No-till. Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "Moisture regime: Moist/Wet", + "Regional_Conditions": "Temperature regime: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.22", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-7%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.781Z", + "last_change_date": "2022-03-14T08:11:37.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14917, + "fields": { + "EF_ID": 515817, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for land use or land-use change type (FLU)", + "Technology_Practices": "Level: No-till. Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. Herbicides are typically used for weed control.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: Tropical montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.16", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.847Z", + "last_change_date": "2022-03-14T08:11:37.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14918, + "fields": { + "EF_ID": 515818, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: Low. Low residue return occurs when there is due to removal of residues (via collection or burning), frequent bare-fallowing, production of crops yielding low residues (e.g., vegetables, tobacco, cotton), no mineral fertilization or N-fixing crops.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Temperate/Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-13%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:37.938Z", + "last_change_date": "2022-03-14T08:11:37.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14919, + "fields": { + "EF_ID": 515819, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: Low. Low residue return occurs when there is due to removal of residues (via collection or burning), frequent bare-fallowing, production of crops yielding low residues (e.g., vegetables, tobacco, cotton), no mineral fertilization or N-fixing crops.", + "Parameter_Conditions": "Moisture regime: Moist", + "Regional_Conditions": "Temperature regime: Temperate/Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-14%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.022Z", + "last_change_date": "2022-03-14T08:11:38.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14920, + "fields": { + "EF_ID": 515820, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: Low. Low residue return occurs when there is due to removal of residues (via collection or burning), frequent bare-fallowing, production of crops yielding low residues (e.g., vegetables, tobacco, cotton), no mineral fertilization or N-fixing crops.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-13%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.114Z", + "last_change_date": "2022-03-14T08:11:38.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14921, + "fields": { + "EF_ID": 515821, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: Low. Low residue return occurs when there is due to removal of residues (via collection or burning), frequent bare-fallowing, production of crops yielding low residues (e.g., vegetables, tobacco, cotton), no mineral fertilization or N-fixing crops.", + "Parameter_Conditions": "Moisture regime: Moist/Wet", + "Regional_Conditions": "Temperature regime: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-14%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.197Z", + "last_change_date": "2022-03-14T08:11:38.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14922, + "fields": { + "EF_ID": 515822, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: Low. Low residue return occurs when there is due to removal of residues (via collection or burning), frequent bare-fallowing, production of crops yielding low residues (e.g., vegetables, tobacco, cotton), no mineral fertilization or N-fixing crops.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: Tropical montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.94", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.264Z", + "last_change_date": "2022-03-14T08:11:38.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14923, + "fields": { + "EF_ID": 515823, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: Medium. Representative for annual cropping with cereals where all crop residues are returned to the field. If residues are removed then supplemental organic matter (e.g., manure) is added. Also requires mineral fertilization or N-fixing crop in rotation.", + "Parameter_Conditions": "Moisture regime: Dry and Moist/wet", + "Regional_Conditions": "Temperature regime: All", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.357Z", + "last_change_date": "2022-03-14T08:11:38.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14924, + "fields": { + "EF_ID": 515824, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: High without manure. Represents significantly greater crop residue inputs over medium C input cropping systems due to additional practices, such as production of high residue yielding crops, use of green manures, cover crops, improved vegetated fallows, irrigation, frequent use of perennial grasses in annual crop rotations, but without manure applied (see row below).", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Temperate/Boreal and Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.04", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-13%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.431Z", + "last_change_date": "2022-03-14T08:11:38.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14925, + "fields": { + "EF_ID": 515825, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: High without manure. Represents significantly greater crop residue inputs over medium C input cropping systems due to additional practices, such as production of high residue yielding crops, use of green manures, cover crops, improved vegetated fallows, irrigation, frequent use of perennial grasses in annual crop rotations, but without manure applied (see row below).", + "Parameter_Conditions": "Moisture regime: Moist/Wet", + "Regional_Conditions": "Temperature regime: Temperate/Boreal and Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.11", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-10%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.495Z", + "last_change_date": "2022-03-14T08:11:38.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14926, + "fields": { + "EF_ID": 515826, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: High without manure. Represents significantly greater crop residue inputs over medium C input cropping systems due to additional practices, such as production of high residue yielding crops, use of green manures, cover crops, improved vegetated fallows, irrigation, frequent use of perennial grasses in annual crop rotations, but without manure applied (see row below).", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: Tropical montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.08", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.601Z", + "last_change_date": "2022-03-14T08:11:38.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14927, + "fields": { + "EF_ID": 515827, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: High with manure. Represents significantly higher C input over medium C input cropping systems due to an additional practice of regular addition of animal manure.", + "Parameter_Conditions": "Moisture regime: Dry", + "Regional_Conditions": "Temperature regime: Temperate/Boreal and Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.37", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-12%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.678Z", + "last_change_date": "2022-03-14T08:11:38.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14928, + "fields": { + "EF_ID": 515828, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: High with manure. Represents significantly higher C input over medium C input cropping systems due to an additional practice of regular addition of animal manure.", + "Parameter_Conditions": "Moisture regime: Moist/Wet", + "Regional_Conditions": "Temperature regime: Temperate/Boreal and Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.44", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-13%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.786Z", + "last_change_date": "2022-03-14T08:11:38.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14929, + "fields": { + "EF_ID": 515829, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for input(FI)", + "Technology_Practices": "Level: High with manure. Represents significantly higher C input over medium C input cropping systems due to an additional practice of regular addition of animal manure.", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperature regime: Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.41", + "Unit": "No dimension", + "Equation": "Equation 2.25 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B2a, Page A1.22 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 5.5 - Relative stock change factors (FLU, FMG, and FI) (over 20 years) for different management activities on cropland, on page 5.9", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Error:+/-50%: Note: +/- two standard deviations, expressed as a percent of the mean; where sufficient studies were not available for a statistical analysis to derive a default, uncertainty was assumed to be + 50% based on expert opinion. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:38.861Z", + "last_change_date": "2022-03-14T08:11:38.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14930, + "fields": { + "EF_ID": 515849, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for Management (FMG)", + "Technology_Practices": "Level: Moderately degraded grassland; Definition: Represents overgrazed or moderately degraded grassland, with somewhat reduced productivity (relative to the native or nominally managed grassland) and receiving no management inputs.", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B3a, Page A1.28 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 6.2 - Relative stock change factors for grassland management, on page 6.16", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-40% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.020Z", + "last_change_date": "2022-03-14T08:11:39.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14931, + "fields": { + "EF_ID": 515850, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Stock change factor for Management (FMG)", + "Technology_Practices": "Level: Improved grassland; Definition: Represents grassland which is sustainably managed with moderate grazing pressure and that receive at least one improvement (e.g., fertilization, species improvement, irrigation).", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate regime: Tropical Montane", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.16", + "Unit": "No dimension", + "Equation": "", + "IPCC_Worksheet": "Sheet 1 of 2, Category Code 3B3a, Page A1.28 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 6.2 - Relative stock change factors for grassland management, on page 6.16", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The error range of the EF value is +/-40% which is equivalent to two times standard deviations, expressed as a percent of the mean. This error range does not include potential systematic error due to small sample sizes that may not be representative of the true impact for all regions of the world.", + "Data_Provider_Comments": "There were not enough studies to estimate stock change factors for mineral soils in the tropical montane climate region. As an approximation, the average stock change between the temperate and tropical regions was used to approximate the stock change for the tropical montane climate.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.120Z", + "last_change_date": "2022-03-14T08:11:39.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14932, + "fields": { + "EF_ID": 515851, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Conversion factor for CO2-C for volume production data (Cfraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: Nutrient poor", + "Regional_Conditions": "Climate zone: Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "tonnes C/tonne air-dry peat", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 7.5 - Conversion factors for CO2–C for volume and weight production data, on page 7.13", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Computed from US Geological Survey (2004): survey average bulk density, and typical moisture content and carbon contents. Based on a 35-55% moisture content of air-dry peat.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.195Z", + "last_change_date": "2022-03-14T08:11:39.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14933, + "fields": { + "EF_ID": 515852, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Conversion factor for CO2-C for volume production data (Cfraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: Nutrient rich", + "Regional_Conditions": "Climate zone: Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "tonnes C/tonne air-dry peat", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 7.5 - Conversion factors for CO2–C for volume and weight production data, on page 7.13", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Computed from US Geological Survey (2004): survey average bulk density, and typical moisture content and carbon contents. Based on a 35-55% moisture content of air-dry peat.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.264Z", + "last_change_date": "2022-03-14T08:11:39.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14934, + "fields": { + "EF_ID": 515853, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Conversion factor for CO2-C for volume production data (Cfraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: Tropical humus", + "Regional_Conditions": "Climate zone: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "tonnes C/tonne air-dry peat", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 7.5 - Conversion factors for CO2–C for volume and weight production data, on page 7.13", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Computed from US Geological Survey (2004): survey average bulk density, and typical moisture content and carbon contents. Based on a 35-55% moisture content of air-dry peat.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.331Z", + "last_change_date": "2022-03-14T08:11:39.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14935, + "fields": { + "EF_ID": 515854, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Conversion factor for CO2-C for weight production data (Cfraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: Nutrient poor", + "Regional_Conditions": "Climate zone: Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "tonnes C/tonne air-dry peat", + "Equation": "", + "IPCC_Worksheet": "Sheet 3 of 3, Category Code 3B4ai, Page A1.36 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 7.5 - Conversion factors for CO2–C for volume and weight production data, on page 7.13", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Computed from US Geological Survey (2004): survey average bulk density, and typical moisture content and carbon contents. Based on a 35-55% moisture content of air-dry peat.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.422Z", + "last_change_date": "2022-03-14T08:11:39.422Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14936, + "fields": { + "EF_ID": 515855, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Conversion factor for CO2-C for weight production data (Cfraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: Nutrient rich", + "Regional_Conditions": "Climate zone: Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "tonnes C/tonne air-dry peat", + "Equation": "", + "IPCC_Worksheet": "Sheet 3 of 3, Category Code 3B4ai, Page A1.36 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 7.5 - Conversion factors for CO2–C for volume and weight production data, on page 7.13", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Computed from US Geological Survey (2004): survey average bulk density, and typical moisture content and carbon contents. Based on a 35-55% moisture content of air-dry peat.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.511Z", + "last_change_date": "2022-03-14T08:11:39.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14937, + "fields": { + "EF_ID": 515856, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Conversion factor for CO2-C for weight production data (Cfraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: Tropical humus", + "Regional_Conditions": "Climate zone: Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "tonnes C/tonne air-dry peat", + "Equation": "", + "IPCC_Worksheet": "Sheet 3 of 3, Category Code 3B4ai, Page A1.36 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 7.5 - Conversion factors for CO2–C for volume and weight production data, on page 7.13", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Computed from US Geological Survey (2004): survey average bulk density, and typical moisture content and carbon contents. Based on a 35-55% moisture content of air-dry peat.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.581Z", + "last_change_date": "2022-03-14T08:11:39.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14938, + "fields": { + "EF_ID": 515857, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for N2O emissions from managed peatlands", + "Technology_Practices": "", + "Parameter_Conditions": "Peat type: Nutrient-rich organic soil", + "Regional_Conditions": "Climate zone: Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B4ai, Page A1.37 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 7.6 - Default emission factors for N2O emissions from managed peatlands, on page 7.16", + "Technical_Reference": "Alm et al., 1999; Laine et al., 1996; Martikainen et al., 1995; Minkkinen et al., 2002; Regina et al., 1996", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty range is from 0.2 to 2.5 kg N2O-N/ha/yr. Most of the data are from European peatlands not necessarily under production. Climate zones are as described in Chapter 3, Volume 4 of 2006 Guidelines.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.647Z", + "last_change_date": "2022-03-14T08:11:39.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14939, + "fields": { + "EF_ID": 515858, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default emission factors for N2O emissions from managed peatlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate zone: Tropical climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.6", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "Sheet 1 of 1, Category Code 3B4ai, Page A1.37 of Volume 4 of the 2006 IPCC Guidelines", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 7.6 - Default emission factors for N2O emissions from managed peatlands, on page 7.16", + "Technical_Reference": "Alm et al., 1999; Laine et al., 1996; Martikainen et al., 1995; Minkkinen et al., 2002; Regina et al., 1996", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The uncertainty range is from 0.2 to 5.0 kg N2O-N/ha/yr. Most of the data are from European peatlands not necessarily under production. Climate zones are as described in Chapter 3, Volume 4 of 2006 Guidelines.", + "Data_Provider_Comments": "The value for tropical areas is twice that for northern climates, based on the relative difference between temperate and tropical N2O EF in Table 11.1, Chapter 11 of Volume 4 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.722Z", + "last_change_date": "2022-03-14T08:11:39.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14940, + "fields": { + "EF_ID": 515859, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United States (global default)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9", + "Unit": "tonnes C/ha crown cover/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.1 - Tier 2a default crown cover area-based growth rates (CRW) for urban tree crown cover by region, on page 8.9", + "Technical_Reference": "Nowak, D. and Crane, D. (2002). Carbon storage and sequestration by urban trees in the United States. Environmental Pollution 116:381-389.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Default value is the average of 10 US cities.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.824Z", + "last_change_date": "2022-03-14T08:11:39.824Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14941, + "fields": { + "EF_ID": 515860, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.6", + "Unit": "tonnes C/ha crown cover/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.1 - Tier 2a default crown cover area-based growth rates (CRW) for urban tree crown cover by region, on page 8.9", + "Technical_Reference": "Brack, C.L. (2002). Pollution mitigation and carbon sequestration by an urban forest. Environmental Pollution 116:S195-S200.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Default value is the result of modelling analysis in Canberra.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.903Z", + "last_change_date": "2022-03-14T08:11:39.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14942, + "fields": { + "EF_ID": 515861, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Aspen", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0096", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:39.981Z", + "last_change_date": "2022-03-14T08:11:39.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14943, + "fields": { + "EF_ID": 515862, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Soft maple", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0118", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.048Z", + "last_change_date": "2022-03-14T08:11:40.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14944, + "fields": { + "EF_ID": 515863, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Mixed hardwood", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.122Z", + "last_change_date": "2022-03-14T08:11:40.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14945, + "fields": { + "EF_ID": 515864, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Hardwood maple", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0142", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.197Z", + "last_change_date": "2022-03-14T08:11:40.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14946, + "fields": { + "EF_ID": 515865, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Juniper", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0033", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.328Z", + "last_change_date": "2022-03-14T08:11:40.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14947, + "fields": { + "EF_ID": 515866, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Cedar/larch", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0072", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.411Z", + "last_change_date": "2022-03-14T08:11:40.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14948, + "fields": { + "EF_ID": 515867, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Douglas fir", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0122", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.472Z", + "last_change_date": "2022-03-14T08:11:40.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14949, + "fields": { + "EF_ID": 515868, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: True fir/Hemlock", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0104", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.539Z", + "last_change_date": "2022-03-14T08:11:40.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14950, + "fields": { + "EF_ID": 515869, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Pine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0087", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.606Z", + "last_change_date": "2022-03-14T08:11:40.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14951, + "fields": { + "EF_ID": 515870, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default annual carbon accumulation per ha tree crown cover", + "Technology_Practices": "", + "Parameter_Conditions": "Broad species class: Spruce", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0092", + "Unit": "tonne C/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.2 - Tier 2b Default average annual carbon accumulation per tree in urban trees by species classes, on page 8.10", + "Technical_Reference": "D. Nowak (2002; personal communication)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.672Z", + "last_change_date": "2022-03-14T08:11:40.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14952, + "fields": { + "EF_ID": 515871, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent tree cover", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Forest", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.1 (+/- 2.6)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.739Z", + "last_change_date": "2022-03-14T08:11:40.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14953, + "fields": { + "EF_ID": 515872, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent tree cover", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.9 (+/- 1.5)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.831Z", + "last_change_date": "2022-03-14T08:11:40.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14954, + "fields": { + "EF_ID": 515873, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent tree cover", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Desert", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.9 (+/- 2.4)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:40.920Z", + "last_change_date": "2022-03-14T08:11:40.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14955, + "fields": { + "EF_ID": 515874, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent total greenspace", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Forest", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58.4 (+/- 2.9)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.006Z", + "last_change_date": "2022-03-14T08:11:41.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14956, + "fields": { + "EF_ID": 515875, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent total greenspace", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54.8 (+/- 2.1)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.073Z", + "last_change_date": "2022-03-14T08:11:41.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14957, + "fields": { + "EF_ID": 515876, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent total greenspace", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Desert", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64.8 (+/- 4.2)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.139Z", + "last_change_date": "2022-03-14T08:11:41.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14958, + "fields": { + "EF_ID": 515877, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent canopy greenspace", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Forest", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.9 (+/- 3.3)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.214Z", + "last_change_date": "2022-03-14T08:11:41.214Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14959, + "fields": { + "EF_ID": 515878, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent canopy greenspace", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Grassland", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.9 (+/- 2.3)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.317Z", + "last_change_date": "2022-03-14T08:11:41.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14960, + "fields": { + "EF_ID": 515879, + "IPCC_Category": "3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Percent canopy greenspace", + "Technology_Practices": "", + "Parameter_Conditions": "Potential Natural Vegetation (PNV): Desert", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.9 (+/- 4.6)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 8.3- Default activity data by potential natural vegetation (PNV) type (Kuchler, 1969) for percent tree cover, on page 8.11", + "Technical_Reference": "Nowak, D.J., Rowntree, R.A., McPherson, E.G., Sisinni, S.M., Kerkmann, E.R. and Stevens, J.C. (1996). Measuring and analyzing urban tree cover. Landscape and Urban Planning 36:49-57.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Note: Value in brackets is the standard error (SE).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.395Z", + "last_change_date": "2022-03-14T08:11:41.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14961, + "fields": { + "EF_ID": 517419, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default half-life for solidwood products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "years", + "Equation": "Equation 12.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.2 - Default half-lives for “products in use” carbon pools and associated fraction retained each year, page 12.17", + "Technical_Reference": "Based on values used in previous studies summarized in HWP Appendix Table 3a.1.3 of the IPCC report on GPG- LULUCF (IPCC, 2003). Table 3a.1.3 gives values for more product categories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.464Z", + "last_change_date": "2022-03-14T08:11:41.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14962, + "fields": { + "EF_ID": 517420, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default half-life for paper products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "years", + "Equation": "Equation 12.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.2 - Default half-lives for “products in use” carbon pools and associated fraction retained each year, page 12.17", + "Technical_Reference": "Based on values used in previous studies summarized in HWP Appendix Table 3a.1.3 of the IPCC report on GPG- LULUCF (IPCC, 2003). Table 3a.1.3 gives values for more product categories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.539Z", + "last_change_date": "2022-03-14T08:11:41.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14963, + "fields": { + "EF_ID": 517421, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default decay rate (k) for solidwood products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.023", + "Unit": "per year", + "Equation": "Equation 12.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.2 - Default half-lives for “products in use” carbon pools and associated fraction retained each year, page 12.17", + "Technical_Reference": "Based on values used in previous studies summarized in HWP Appendix Table 3a.1.3 of the IPCC report on GPG- LULUCF (IPCC, 2003). Table 3a.1.3 gives values for more product categories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Decay rate k (k = ln(2)/ half-life)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.606Z", + "last_change_date": "2022-03-14T08:11:41.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14964, + "fields": { + "EF_ID": 517422, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Default decay rate (k) for paper products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.347", + "Unit": "per year", + "Equation": "Equation 12.1 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.2 - Default half-lives for “products in use” carbon pools and associated fraction retained each year, page 12.17", + "Technical_Reference": "Based on values used in previous studies summarized in HWP Appendix Table 3a.1.3 of the IPCC report on GPG- LULUCF (IPCC, 2003). Table 3a.1.3 gives values for more product categories.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Decay rate k (k = ln(2)/ half-life)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.694Z", + "last_change_date": "2022-03-14T08:11:41.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14965, + "fields": { + "EF_ID": 517423, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Estimated annual rates of increase (U) for industrial roundwood production (harvest) by world region for the period 1900 to 1961", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Word", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0148", + "Unit": "per year", + "Equation": "Equation 12.6 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.3 - Estimated annual rates of increase for industrial roundwood production (harvest) by world region for the period 1900 to 1961, page 12.18", + "Technical_Reference": "See Table 3a.1.2 in HWP Appendix of GPG-LULUCF (IPCC, 2003).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: For each region the average rate of change over the period 1900 to 1961 is formed by combining a documented actual rate of change from 1950 to 1961 and an estimated rate of change from 1900 to 1950. The estimated rate from 1900 to 1950 is formed by adding together the annual percent change of population growth from 1900 to 1950 and one half the annual percent change in industrial roundwood harvest per capita for the period 1950 to 1975.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.770Z", + "last_change_date": "2022-03-14T08:11:41.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14966, + "fields": { + "EF_ID": 517424, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Estimated annual rates of increase (U) for industrial roundwood production (harvest) by world region for the period 1900 to 1961", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0151", + "Unit": "per year", + "Equation": "Equation 12.6 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.3 - Estimated annual rates of increase for industrial roundwood production (harvest) by world region for the period 1900 to 1961, page 12.18", + "Technical_Reference": "See Table 3a.1.2 in HWP Appendix of GPG-LULUCF (IPCC, 2003).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: For each region the average rate of change over the period 1900 to 1961 is formed by combining a documented actual rate of change from 1950 to 1961 and an estimated rate of change from 1900 to 1950. The estimated rate from 1900 to 1950 is formed by adding together the annual percent change of population growth from 1900 to 1950 and one half the annual percent change in industrial roundwood harvest per capita for the period 1950 to 1975.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.839Z", + "last_change_date": "2022-03-14T08:11:41.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14967, + "fields": { + "EF_ID": 517425, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Estimated annual rates of increase (U) for industrial roundwood production (harvest) by world region for the period 1900 to 1961", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "USSR", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0160", + "Unit": "per year", + "Equation": "Equation 12.6 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.3 - Estimated annual rates of increase for industrial roundwood production (harvest) by world region for the period 1900 to 1961, page 12.18", + "Technical_Reference": "See Table 3a.1.2 in HWP Appendix of GPG-LULUCF (IPCC, 2003).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: For each region the average rate of change over the period 1900 to 1961 is formed by combining a documented actual rate of change from 1950 to 1961 and an estimated rate of change from 1900 to 1950. The estimated rate from 1900 to 1950 is formed by adding together the annual percent change of population growth from 1900 to 1950 and one half the annual percent change in industrial roundwood harvest per capita for the period 1950 to 1975.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:41.914Z", + "last_change_date": "2022-03-14T08:11:41.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14968, + "fields": { + "EF_ID": 517426, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Estimated annual rates of increase (U) for industrial roundwood production (harvest) by world region for the period 1900 to 1961", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0143", + "Unit": "per year", + "Equation": "Equation 12.6 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.3 - Estimated annual rates of increase for industrial roundwood production (harvest) by world region for the period 1900 to 1961, page 12.18", + "Technical_Reference": "See Table 3a.1.2 in HWP Appendix of GPG-LULUCF (IPCC, 2003).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: For each region the average rate of change over the period 1900 to 1961 is formed by combining a documented actual rate of change from 1950 to 1961 and an estimated rate of change from 1900 to 1950. The estimated rate from 1900 to 1950 is formed by adding together the annual percent change of population growth from 1900 to 1950 and one half the annual percent change in industrial roundwood harvest per capita for the period 1950 to 1975.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:42.014Z", + "last_change_date": "2022-03-14T08:11:42.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14969, + "fields": { + "EF_ID": 517427, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Estimated annual rates of increase (U) for industrial roundwood production (harvest) by world region for the period 1900 to 1961", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0220", + "Unit": "per year", + "Equation": "Equation 12.6 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.3 - Estimated annual rates of increase for industrial roundwood production (harvest) by world region for the period 1900 to 1961, page 12.18", + "Technical_Reference": "See Table 3a.1.2 in HWP Appendix of GPG-LULUCF (IPCC, 2003).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: For each region the average rate of change over the period 1900 to 1961 is formed by combining a documented actual rate of change from 1950 to 1961 and an estimated rate of change from 1900 to 1950. The estimated rate from 1900 to 1950 is formed by adding together the annual percent change of population growth from 1900 to 1950 and one half the annual percent change in industrial roundwood harvest per capita for the period 1950 to 1975.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:42.103Z", + "last_change_date": "2022-03-14T08:11:42.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14970, + "fields": { + "EF_ID": 517428, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Estimated annual rates of increase (U) for industrial roundwood production (harvest) by world region for the period 1900 to 1961", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0287", + "Unit": "per year", + "Equation": "Equation 12.6 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.3 - Estimated annual rates of increase for industrial roundwood production (harvest) by world region for the period 1900 to 1961, page 12.18", + "Technical_Reference": "See Table 3a.1.2 in HWP Appendix of GPG-LULUCF (IPCC, 2003).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: For each region the average rate of change over the period 1900 to 1961 is formed by combining a documented actual rate of change from 1950 to 1961 and an estimated rate of change from 1900 to 1950. The estimated rate from 1900 to 1950 is formed by adding together the annual percent change of population growth from 1900 to 1950 and one half the annual percent change in industrial roundwood harvest per capita for the period 1950 to 1975.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:42.164Z", + "last_change_date": "2022-03-14T08:11:42.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14971, + "fields": { + "EF_ID": 517429, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Estimated annual rates of increase (U) for industrial roundwood production (harvest) by world region for the period 1900 to 1961", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0217", + "Unit": "per year", + "Equation": "Equation 12.6 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.3 - Estimated annual rates of increase for industrial roundwood production (harvest) by world region for the period 1900 to 1961, page 12.18", + "Technical_Reference": "See Table 3a.1.2 in HWP Appendix of GPG-LULUCF (IPCC, 2003).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: For each region the average rate of change over the period 1900 to 1961 is formed by combining a documented actual rate of change from 1950 to 1961 and an estimated rate of change from 1900 to 1950. The estimated rate from 1900 to 1950 is formed by adding together the annual percent change of population growth from 1900 to 1950 and one half the annual percent change in industrial roundwood harvest per capita for the period 1950 to 1975.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:42.257Z", + "last_change_date": "2022-03-14T08:11:42.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14972, + "fields": { + "EF_ID": 517430, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Estimated annual rates of increase (U) for industrial roundwood production (harvest) by world region for the period 1900 to 1961", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0231", + "Unit": "per year", + "Equation": "Equation 12.6 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Table 12.3 - Estimated annual rates of increase for industrial roundwood production (harvest) by world region for the period 1900 to 1961, page 12.18", + "Technical_Reference": "See Table 3a.1.2 in HWP Appendix of GPG-LULUCF (IPCC, 2003).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Note: For each region the average rate of change over the period 1900 to 1961 is formed by combining a documented actual rate of change from 1950 to 1961 and an estimated rate of change from 1900 to 1950. The estimated rate from 1900 to 1950 is formed by adding together the annual percent change of population growth from 1900 to 1950 and one half the annual percent change in industrial roundwood harvest per capita for the period 1950 to 1975.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:11:42.336Z", + "last_change_date": "2022-03-14T08:11:42.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14973, + "fields": { + "EF_ID": 517431, + "IPCC_Category": "3.B.4.b.ii - Land converted to flooded land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Diffusive emissions (ice-free period) from flooded land (Ef(CO2)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Polar/Boreal wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.8", + "Unit": "kg CO2/ha/day", + "Equation": "Equation 2A.2 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 2, Table 2a.2", + "Technical_Reference": "Bergström, A.K., Algesten, G., Sobek, S., Tranvik, L. and Jansson, M. (2004). Emission of CO2 from hydroelectric reservoirs in northern Sweden, Arch. Hydrobiol., 159, 1, 25-42. , Åberg, J., Bergström, A.K., Algesten, G., Söderback, K. and Jansson, M. (2004). A comparison of the carbon balances of a natural lake (L. Östräsket) and a hydroelectric reservoir (L. Skinnmuddselet) in northern Sweden, Water Research, 28, 531-538., Huttunen, J.T., Väisänen, T.S., Hellsten, S.K., Heikkinen, M., Nykänen, H., Jungner, H., Niskanen, A., Virtanen, M.O., Lindqvist, O.V., Nenonen, O.S. and Martikainen, P.J. (2002). Fluxes of CH4, CO2, and N2O in hydroelectric reservoir Lokka and Porttipahta in the northern boreal zone in Finland, Global Biogeochemical Cycles, 16, 1, doi:10.1029/2000GB001316.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CO2 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (0.8) and Max (34.5) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 1011; Nres = number of reservoirs sampled = 20.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:42.406Z", + "last_change_date": "2022-03-14T08:11:42.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14974, + "fields": { + "EF_ID": 517432, + "IPCC_Category": "3.B.4.b.ii - Land converted to flooded land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Diffusive emissions (ice-free period) from flooded land (Ef(CO2)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.2", + "Unit": "kg CO2/ha/day", + "Equation": "Equation 2A.2 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 2, Table 2a.2", + "Technical_Reference": "Duchemin É. (2000). Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Dissertation, Université du Québec à Montréal, Montréal (Québec), Canada, 321 p (available on CD-ROM). , Duchemin, É., Canuel, R., Ferland, P. and Lucotte, M. (1999). Étude sur la production et l’émission de gaz à effet de serre par les réservoirs hydroélectriques d’Hydro-Québec et des lacs naturels (Volet 2), Scientific report, Direction principal Planification Stratégique - Hydro-Québec, 21046-99027c, 48p. , Duchemin, É., Lucotte, M., Canuel, R. and Chamberland, A. (1995). Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the boreal region, Global Biogeochemical Cycles, 9, 4, 529-540., Tremblay, A., Therrien, J., Hamlin, B., Wichmann, E. and LeDrew, L. (2005). GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In Tremblay, A., L. Varfalvy, C. Roehm and M. Garneau (Eds.). Greenhouse gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, Berlin, Heidelberg, New York, pp. 209-231.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CO2 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (4.5) and Max (86.3) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 633; Nres = number of reservoirs sampled = 20.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:42.500Z", + "last_change_date": "2022-03-14T08:11:42.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14975, + "fields": { + "EF_ID": 517433, + "IPCC_Category": "3.B.4.b.ii - Land converted to flooded land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Diffusive emissions (ice-free period) from flooded land (Ef(CO2)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "kg CO2/ha/day", + "Equation": "Equation 2A.2 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 2, Table 2a.2", + "Technical_Reference": "Duchemin É. (2000). Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Dissertation, Université du Québec à Montréal, Montréal (Québec), Canada, 321 p (available on CD-ROM). , St-Louis, V., Kelly, C.A., Duchemin, É., Rudd, J.W.M. and Rosenberg, D.M. (2000). Reservoir surfaces as sources of greenhouse gases: A global estimate, Bioscience, 50, 9, 766-775. , Smith, L.K. and Lewis, W.M. (1992). Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies, Global Biogeochemical Cycles, 6, 4, 323-338 , Tremblay, A., Therrien, J., Hamlin, B., Wichmann, E. and LeDrew, L. (2005). GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In Tremblay, A., L. Varfalvy, C. Roehm and M. Garneau (Eds.). Greenhouse gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, Berlin, Heidelberg, New York, pp. 209-231.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CO2 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (-10.3) and Max (57.5) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 507; Nres = number of reservoirs sampled = 33.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:42.593Z", + "last_change_date": "2022-03-14T08:11:42.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14976, + "fields": { + "EF_ID": 517434, + "IPCC_Category": "3.B.4.b.ii - Land converted to flooded land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Diffusive emissions (ice-free period) from flooded land (Ef(CO2)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.2", + "Unit": "kg CO2/ha/day", + "Equation": "Equation 2A.2 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 2, Table 2a.2", + "Technical_Reference": "Soumis, N., Duchemin, É., Canuel, R. and Lucotte, M. (2004). Greenhouse gas emissions from reservoirs of the western United States, Global Biogeochem. Cycles, 18, GB3022, doi:10.1029/2003GB002197. , Therrien, J., Tremblay, A. and Jacques, R. (2005). CO2 Emissions from Semi-arid Reservoirs and Natural Aquatic Ecosystems. In Tremblay, A., L. Varfalvy, C. Roehm et M. Garneau (Eds.). Greenhouse Gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, Berlin, Heidelberg, New York, pp. 233-250. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CO2 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (-12.0) and Max (31.0) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 390; Nres = number of reservoirs sampled = 43.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:42.685Z", + "last_change_date": "2022-03-14T08:11:42.685Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14977, + "fields": { + "EF_ID": 517435, + "IPCC_Category": "3.B.4.b.ii - Land converted to flooded land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Diffusive emissions (ice-free period) from flooded land (Ef(CO2)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.9", + "Unit": "kg CO2/ha/day", + "Equation": "Equation 2A.2 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 2, Table 2a.2", + "Technical_Reference": "Keller, M. and Stallard, R.F. (1994). Methane emission by bubbling from Gatun lake, Panama, J. Geophys. Res., 99, D4, 8307-8319. , Galy-Lacaux, C., Delmas, R., Jambert, C., Dumestre, J.-F., Labroue, L., Richard, S. and Gosse, P. (1997). Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana, Global Biogeochemical Cycles, 11, 4, 471-483., Galy-Lacaux, C. (1996). Modifications des échanges de constituants mineurs atmosphériques liées à la création d`une retenue hydroélectrique. Impact des barrages sur le bilan du méthane dans latmosphère, PhD dissertation, Université Paul Sabatier, Toulouse (France), 200 p., Duchemin, É., Lucotte, M., Canuel, R., Almeida Cruz, D., Pereira, H.C., Dezincourt, J. and Queiroz, A.G. (2000). Comparison of greenhouse gas emissions from an old tropical reservoir and from other reservoirs worldwide, Verh. Internat. Verein. Limnol., 27, 3, 1391-1395. , Rosa, L.P., Matvienko Sikar, B., dos Santos, M.A., Matvienko Sikar, E. (2002). Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia – Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p. , Tavares de Lima, I. (2002). Emissoa de metano em reservatorio hidreletricos amazonicos atraves de leis de potencia (Methane emission from Amazonian hydroelectric reservoirs through power laws), PhD Dissertation, Universidade de Sao Paulo, Sao Paulo, Brazil, 119 p. , Tavares de Lima, I. (2005). Biogeochemical distinction of methane releases from two Amazon hydroreservoirs, Chemosphere, In Press", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CO2 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (11.5) and Max (90.9) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 642; Nres = number of reservoirs sampled = 7.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:42.794Z", + "last_change_date": "2022-03-14T08:11:42.794Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14978, + "fields": { + "EF_ID": 517436, + "IPCC_Category": "3.B.4.b.ii - Land converted to flooded land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CO2 Diffusive emissions (ice-free period) from flooded land (Ef(CO2)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.1", + "Unit": "kg CO2/ha/day", + "Equation": "Equation 2A.2 in Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 2, Table 2a.2", + "Technical_Reference": "Rosa, L.P., Matvienko Sikar, B., dos Santos, M.A., Matvienko Sikar, E. (2002). Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia – Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p. , dos Santos, M.A. (2000). Inventário emissões de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CO2 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (11.7) and Max (58.7) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 197; Nres = number of reservoirs sampled = 5.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:42.902Z", + "last_change_date": "2022-03-14T08:11:42.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14979, + "fields": { + "EF_ID": 517437, + "IPCC_Category": "3.B.4.a.ii - Flooded land remaining flooded land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Diffusive emissions (ice-free period) from flooded land (Ef(CH4)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Polar/Boreal, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.086", + "Unit": "kg CH4/ha/day", + "Equation": "Equation 3A.1, Appendix 3,Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 3, Table 3a.2", + "Technical_Reference": "Blais, A.-M. (2005). Étude des gaz à effet de serre en milieux aquatiques Relevés de terrain 2005. Rapportd`Environnement Illimité à Hydro-Québec Production. 30 p. and annexes. , Tremblay, A., Therrien, J., Hamlin, B., Wichmann, E. and LeDrew, L. (2005). GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In Tremblay, A., L. Varfalvy, C. Roehm and M. Garneau (Eds.). Greenhouse gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, Berlin, Heidelberg, New York, pp. 209-231.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CH4 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (0.011) and Max (0.3) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 253; Nres = number of reservoirs sampled = 13.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:43.011Z", + "last_change_date": "2022-03-14T08:11:43.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14980, + "fields": { + "EF_ID": 517438, + "IPCC_Category": "3.B.4.a.ii - Flooded land remaining flooded land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Diffusive emissions (ice-free period) from flooded land (Ef(CH4)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Cold temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.061", + "Unit": "kg CH4/ha/day", + "Equation": "Equation 3A.1, Appendix 3,Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 3, Table 3a.2", + "Technical_Reference": "Tremblay, A., Therrien, J., Hamlin, B., Wichmann, E. and LeDrew, L. (2005). GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In Tremblay, A., L. Varfalvy, C. Roehm and M. Garneau (Eds.). Greenhouse gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, Berlin, Heidelberg, New York, pp. 209-231. , Therrien, J. (2004). Flux de gaz à effet de serre en milieux aquatiques - Suivi 2003. Rapport de GENIVAR Groupe Conseil Inc. présenté à Hydro-Québec. 52 p. et annexes. , Blais, A.-M. (2005). Étude des gaz à effet de serre en milieux aquatiques Relevés de terrain 2005. Rapport d`Environnement Illimité à Hydro-Québec Production. 30 p. and annexes. , Lambert, M. (2002). Campagne d`échantillonnage sur les émissions de gaz à effet de serre des réservoirs et des lacs environnants - Rapport de terrain 2001. Rapport présenté à la Direction Barrage et environnement par la Direction Environnement, Hydro-Québec, 108 p and appendix. , Duchemin, É., Canuel, R., Ferland, P. and Lucotte, M. (1999). Étude sur la production et l’émission de gaz à effet de serre par les réservoirs hydroélectriques d’Hydro-Québec et des lacs naturels (Volet 2), Scientific report, Direction principal Planification Stratégique - Hydro-Québec, 21046-99027c, 48p. ", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CH4 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (0.011) and Max (0.2) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 233; Nres = number of reservoirs sampled = 10.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:43.103Z", + "last_change_date": "2022-03-14T08:11:43.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14981, + "fields": { + "EF_ID": 517439, + "IPCC_Category": "3.B.4.a.ii - Flooded land remaining flooded land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Diffusive emissions (ice-free period) from flooded land (Ef(CH4)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Warm temperate, moist", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.150", + "Unit": "kg CH4/ha/day", + "Equation": "Equation 3A.1, Appendix 3,Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 3, Table 3a.2", + "Technical_Reference": "Tremblay, A., Therrien, J., Hamlin, B., Wichmann, E. and LeDrew, L. (2005). GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In Tremblay, A., L. Varfalvy, C. Roehm and M. Garneau (Eds.). Greenhouse gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, Berlin, Heidelberg, New York, pp. 209-231., Soumis, N., Duchemin, É., Canuel, R. and Lucotte, M. (2004). Greenhouse gas emissions from reservoirs of the western United States, Global Biogeochem. Cycles, 18, GB3022, doi:10.1029/2003GB002197. , Duchemin, É. (2000). Hydroelectricity and greenhouse gases: Emission evaluation and identification of biogeochemical processes responsible for their production, PhD. Dissertation, Université du Québec à Montréal, Montréal (Québec), Canada, 321 p (available on CD-ROM). , Smith, L.K. and Lewis, W.M. (1992). Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies, Global Biogeochemical Cycles, 6, 4, 323-338", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CH4 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (-0.05) and Max (1.1) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 416; Nres = number of reservoirs sampled = 16.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:43.205Z", + "last_change_date": "2022-03-14T08:11:43.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14982, + "fields": { + "EF_ID": 517440, + "IPCC_Category": "3.B.4.a.ii - Flooded land remaining flooded land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Diffusive emissions (ice-free period) from flooded land (Ef(CH4)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Warm temperate, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.044", + "Unit": "kg CH4/ha/day", + "Equation": "Equation 3A.1, Appendix 3,Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 3, Table 3a.2", + "Technical_Reference": "Therrien, J., Tremblay, A. and Jacques, R. (2005). CO2 Emissions from Semi-arid Reservoirs and Natural Aquatic Ecosystems. In Tremblay, A., L. Varfalvy, C. Roehm et M. Garneau (Eds.). Greenhouse Gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, Berlin, Heidelberg, New York, pp. 233-250. , Therrien, J. (2004). Flux de gaz à effet de serre en milieux aquatiques - Suivi 2003. Rapport de GENIVAR Groupe Conseil Inc. présenté à Hydro-Québec. 52 p. et annexes., Soumis, N., Duchemin, É., Canuel, R. and Lucotte, M. (2004). Greenhouse gas emissions from reservoirs of the western United States, Global Biogeochem. Cycles, 18, GB3022, doi:10.1029/2003GB002197.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CH4 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (0.032) and Max (0.0.09) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 135; Nres = number of reservoirs sampled = 5.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:43.315Z", + "last_change_date": "2022-03-14T08:11:43.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14983, + "fields": { + "EF_ID": 517441, + "IPCC_Category": "3.B.4.a.ii - Flooded land remaining flooded land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Diffusive emissions (ice-free period) from flooded land (Ef(CH4)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, wet", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.630", + "Unit": "kg CH4/ha/day", + "Equation": "Equation 3A.1, Appendix 3,Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 3, Table 3a.2", + "Technical_Reference": "Tavares de Lima, I. (2005). Biogeochemical distinction of methane releases from two Amazon hydroreservoirs, Chemosphere, (in press) , Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A., Varfalvy, L., dos Santos, M.A. and Matvienko, B. (2005). Carbon dioxide and methane emissions and the carbon budget of a 10-years old tropical reservoir (Petit-Saut, French Guiana), Global Biogeochemical Cycle, 19, doi:10292005GB002457., Therrien, J. (2004). Flux de gaz à effet de serre en milieux aquatiques - Suivi 2003. Rapport de GENIVAR Groupe Conseil Inc. présenté à Hydro-Québec. 52 p. et annexes. , Rosa, L.P., Matvienko Sikar, B., dos Santos, M.A., and Matvienko Sikar, E. (2002). Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia – Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p. , Tavares de Lima, I. (2002). Emissoa de metano em reservatorio hidreletricos amazonicos atraves de leis de potencia (Methane emission from Amazonian hydroelectric reservoirs through power laws), PhD Dissertation, Universidade de Sao Paulo, Sao Paulo, Brazil, 119 p. , Duchemin, É., Lucotte, M., Canuel, R., Almeida Cruz, D., Pereira, H.C., Dezincourt, J. and Queiroz, A.G. (2000). Comparison of greenhouse gas emissions from an old tropical reservoir and from other reservoirs worldwide, Verh. Internat. Verein. Limnol., 27, 3, 1391-1395. , Galy-Lacaux, C., Delmas, R., Jambert, C., Dumestre, J.-F., Labroue, L., Richard, S. and Gosse, P. (1997). Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana, Global Biogeochemical Cycles, 11, 4, 471-483. , Galy-Lacaux, C. (1996). Modifications des échanges de constituants mineurs atmosphériques liées à la création d`une retenue hydroélectrique. Impact des barrages sur le bilan du méthane dans l`atmosphère, PhD dissertation, Université Paul Sabatier, Toulouse (France), 200 p. , Keller, M. and Stallard, R.F. (1994). Methane emission by bubbling from Gatun lake, Panama, J. Geophys. Res., 99, D4, 8307-8319.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CH4 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (0.067) and Max (1.3) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 303; Nres = number of reservoirs sampled = 6.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:43.424Z", + "last_change_date": "2022-03-14T08:11:43.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14984, + "fields": { + "EF_ID": 517442, + "IPCC_Category": "3.B.4.a.ii - Flooded land remaining flooded land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 Diffusive emissions (ice-free period) from flooded land (Ef(CH4)diff)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Climate: Tropical, dry", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.295", + "Unit": "kg CH4/ha/day", + "Equation": "Equation 3A.1, Appendix 3,Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4, Appendix 3, Table 3a.2", + "Technical_Reference": "Rosa, L.P., Matvienko Sikar, B., dos Santos, M.A., and Matvienko Sikar, E. (2002). Emissoes de dioxido de carbono e de metano pelos reservatorios hydroelectricos brasileiros, Relatorio de referencia – Inventorio brasileiro de emissoes antropicas de gase de efeito de estufa, Ministerio da Ciencia e tecnologia, Brazil, 199p. , dos Santos, M.A. (2000). Inventário emissões de gases de efeito estufa derivadas de Hidréletricas, PhD. Dissertation, University of Rio de Janeiro, Rio de Janeiro, Brazil, 154p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "The EF value represents the median of CH4 emissions reported in the literature, which themselves are arithmetic means of flux measured above individual reservoirs. The median is used because the frequency distributions of underlying flux measurements are not normal, and their arithmetic means are already skewed by extreme values. Min (0.070) and Max (1.1) values are, respectively, the lowest and highest of all individual measurements within a given climate region; these are provided as an indication of variability only. Nm = number of measurements = 230; Nres = number of reservoirs sampled = 5.", + "Data_Provider_Comments": "These measurements may include non-anthropogenic emissions (e.g., emissions from carbon in the upstream basin) and possible double counting of anthropogenic emissions (e.g., waste water from urban areas in the region of the reservoir) and so may overestimate the emissions.", + "Other_Comments": "", + "Data_Provider": "See data source", + "Link": "", + "creation_date": "2022-03-14T08:11:43.541Z", + "last_change_date": "2022-03-14T08:11:43.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14985, + "fields": { + "EF_ID": 520807, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Gallery forest(living trees);see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.75", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study, PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:43.659Z", + "last_change_date": "2022-03-14T08:11:43.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14986, + "fields": { + "EF_ID": 520808, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Gallery forest(dead trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.22", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study, PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:43.784Z", + "last_change_date": "2022-03-14T08:11:43.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14987, + "fields": { + "EF_ID": 520809, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Closed semi-deciduous forest(living tree);see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.48", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:43.893Z", + "last_change_date": "2022-03-14T08:11:43.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14988, + "fields": { + "EF_ID": 520810, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Closed semi-deciduous forest(dead trees); see also the Region/Regional Conditions and Measuremnt Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.07", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.002Z", + "last_change_date": "2022-03-14T08:11:44.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14989, + "fields": { + "EF_ID": 520811, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Open forest and savannah woodland(living trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.48", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.111Z", + "last_change_date": "2022-03-14T08:11:44.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14990, + "fields": { + "EF_ID": 520812, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Open forest and savannah woodland(dead trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.07", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.219Z", + "last_change_date": "2022-03-14T08:11:44.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14991, + "fields": { + "EF_ID": 520813, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Tree savannah/mixed savannah(living trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.79", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.320Z", + "last_change_date": "2022-03-14T08:11:44.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14992, + "fields": { + "EF_ID": 520814, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Tree savannah/mixed savannah(dead trees); Also see the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.05", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.463Z", + "last_change_date": "2022-03-14T08:11:44.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14993, + "fields": { + "EF_ID": 520815, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Shrub savannah(living tree); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.79", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.555Z", + "last_change_date": "2022-03-14T08:11:44.555Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14994, + "fields": { + "EF_ID": 520816, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Shrub savannah(dead trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.05", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.640Z", + "last_change_date": "2022-03-14T08:11:44.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14995, + "fields": { + "EF_ID": 520818, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass.", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Farmlands(croplands)(living trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.52", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.732Z", + "last_change_date": "2022-03-14T08:11:44.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14996, + "fields": { + "EF_ID": 520819, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Farmlands(croplands)(dead trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.13", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.833Z", + "last_change_date": "2022-03-14T08:11:44.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14997, + "fields": { + "EF_ID": 520820, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Crop/fallow land(living trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.52", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:44.950Z", + "last_change_date": "2022-03-14T08:11:44.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14998, + "fields": { + "EF_ID": 520821, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Crop/fallow land(dead trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.13", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.067Z", + "last_change_date": "2022-03-14T08:11:45.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 14999, + "fields": { + "EF_ID": 520822, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Forest Plantations(living trees); see also the Region/Regional Conditions and Measuremnt Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.31", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.193Z", + "last_change_date": "2022-03-14T08:11:45.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15000, + "fields": { + "EF_ID": 520823, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factor for conversion of merchantable volume to aboveground tree biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Forest Plantations(living trees); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "Derived from National Forest Inventory", + "Value": "1.05", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24, equation 3.2.7, equation 3.2.8 p.3.27 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 2 of 4; 1996 Guidelines 5-1, sheet 2 of 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.310Z", + "last_change_date": "2022-03-14T08:11:45.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15001, + "fields": { + "EF_ID": 520824, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Afzelia africana(humidity content =55%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.71", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.428Z", + "last_change_date": "2022-03-14T08:11:45.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15002, + "fields": { + "EF_ID": 520825, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Anogeissus leiocarpa(humidity content = 46%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.537Z", + "last_change_date": "2022-03-14T08:11:45.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15003, + "fields": { + "EF_ID": 520826, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Burkea africana(humidity content= 0.83); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.83", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.638Z", + "last_change_date": "2022-03-14T08:11:45.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15004, + "fields": { + "EF_ID": 520827, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Combretum spp.(humidity content = 54%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.59", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.738Z", + "last_change_date": "2022-03-14T08:11:45.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15005, + "fields": { + "EF_ID": 520828, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Daniella oliveri (humidity content =67%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.49", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.838Z", + "last_change_date": "2022-03-14T08:11:45.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15006, + "fields": { + "EF_ID": 520829, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Detarium senegalense(humidity content = 51 %); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:45.939Z", + "last_change_date": "2022-03-14T08:11:45.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15007, + "fields": { + "EF_ID": 520830, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Isoberlinia doka(humidity content =56%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.049Z", + "last_change_date": "2022-03-14T08:11:46.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15008, + "fields": { + "EF_ID": 520831, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Khaya senegalensis (humidity content = 59%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.81", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.150Z", + "last_change_date": "2022-03-14T08:11:46.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15009, + "fields": { + "EF_ID": 520832, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Lannea species(humidity content = 66 %); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.267Z", + "last_change_date": "2022-03-14T08:11:46.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15010, + "fields": { + "EF_ID": 520833, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Parkia biglobosa(humidity content = 64%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.52", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.368Z", + "last_change_date": "2022-03-14T08:11:46.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15011, + "fields": { + "EF_ID": 520834, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Prosopis africana( humidity content = 41%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.82", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.477Z", + "last_change_date": "2022-03-14T08:11:46.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15012, + "fields": { + "EF_ID": 520835, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Pterocarpus erinaceus(humidity content = 57 %); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.68", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.594Z", + "last_change_date": "2022-03-14T08:11:46.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15013, + "fields": { + "EF_ID": 520836, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Vitellaria paradoxa.(humidity content = 54%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.712Z", + "last_change_date": "2022-03-14T08:11:46.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15014, + "fields": { + "EF_ID": 520837, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Vitex doniana ( Humidity = 63%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.37", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.828Z", + "last_change_date": "2022-03-14T08:11:46.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15015, + "fields": { + "EF_ID": 520838, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Anacardium spp(humidity content = 58%);see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:46.937Z", + "last_change_date": "2022-03-14T08:11:46.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15016, + "fields": { + "EF_ID": 520839, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Eucalyptus spp.( humidity content = 58%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.7", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.047Z", + "last_change_date": "2022-03-14T08:11:47.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15017, + "fields": { + "EF_ID": 520840, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Tectona grandis(humidity content = 58%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.156Z", + "last_change_date": "2022-03-14T08:11:47.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15018, + "fields": { + "EF_ID": 520841, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Monates kerstingii(Humidity= 50); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.272Z", + "last_change_date": "2022-03-14T08:11:47.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15019, + "fields": { + "EF_ID": 520842, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Uapaca togoensis(humidity content = 59%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.381Z", + "last_change_date": "2022-03-14T08:11:47.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15020, + "fields": { + "EF_ID": 520843, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Clapaca spp. (humidity content = 54%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.46", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.491Z", + "last_change_date": "2022-03-14T08:11:47.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15021, + "fields": { + "EF_ID": 520844, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Lophira lanceolata(humidity content = 48%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.601Z", + "last_change_date": "2022-03-14T08:11:47.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15022, + "fields": { + "EF_ID": 520845, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Pseudocedrela spp. (humidity content = 53%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.57", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.709Z", + "last_change_date": "2022-03-14T08:11:47.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15023, + "fields": { + "EF_ID": 520846, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Parinarium spp.(humidity content = 58%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.48", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.818Z", + "last_change_date": "2022-03-14T08:11:47.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15024, + "fields": { + "EF_ID": 520847, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Other(humidity content = 55%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:47.927Z", + "last_change_date": "2022-03-14T08:11:47.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15025, + "fields": { + "EF_ID": 520848, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Dead Tree(humidity content = 15%); see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "The parameter has been determined jointly by the Laboratory of Applied Ecology and the Faculty of Agronomic Sciences of the National University of Benin.", + "Value": "0.72", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 3 of 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-2%", + "Upper_Bound": "+6%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:48.037Z", + "last_change_date": "2022-03-14T08:11:48.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15026, + "fields": { + "EF_ID": 520849, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-shoot ratio, to estimate below ground biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Tropical forest: gallery forest, closed semi-deciduous forest, open forest; see also the Region/Regional Conditions and Measurement Technique/Standard fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "According to the forest inventory ~30-33% of trees are in the ground. This is ~45-50% of the above ground volume.", + "Value": "0.45-0.50", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3 p.3.24 and equation 3.2.5 p.3.26 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a, sheets 2 and 3", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:48.137Z", + "last_change_date": "2022-03-14T08:11:48.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15027, + "fields": { + "EF_ID": 520850, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Average increment in total biomass", + "Technology_Practices": "Harvesting from natural forest and forest plantations.", + "Parameter_Conditions": "Tropical forest: gallery forest, closed semi-deciduous forest, open forest; see also the Region/Regional Conditionsfields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "", + "Value": "0.79-2.46", + "Unit": "tonnes dm/ha/year", + "Equation": "Equation 3.2.4 p.3.25 GPG-LULUCF.", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 1 of 4; 1996 Guidelines 5-1, sheet 1", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-9%", + "Upper_Bound": "+10%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The IPCC GPG-LULUCF default for the total biomass increment is 1.95 tdm/ha/yr while the average estimate of that parameter from the abovementioned study is 1.63 tdm/ha/yr.", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:48.238Z", + "last_change_date": "2022-03-14T08:11:48.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15028, + "fields": { + "EF_ID": 520851, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of biomass left to decay in forest, transferred to dead organic matter", + "Technology_Practices": "Harvesting from natural and plantations (commercial fellings, fuelwool gathering)", + "Parameter_Conditions": "Tropical forest: gallery forest, closed semi-deciduous forest, open forest; see also the Region/Regional Conditions fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Reduce harvesting, fire control.", + "Other_Properties": "", + "Value": "9-11", + "Unit": "%", + "Equation": "Equation 3.2.7 p.3.27 GPG-LULUCF.", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 4 of 4; 1996 Guidelines 5-2, sheet 4", + "Data_Source": "Other", + "Technical_Reference": "Official national study,Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-4%", + "Upper_Bound": "+5%", + "Data_Quality": "Expert judgement from the data provider.", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In country like Benin where the population has heavily relied on biomass used as energy source, it is expected that little amount of biomass from commercial fellings is left to decay on the ground in forest and other land use categories. In these conditions, the use of the default value 0.4 from the IPCC GPG-LULUCF seems inappropriate since it appears high.", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:48.338Z", + "last_change_date": "2022-03-14T08:11:48.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15029, + "fields": { + "EF_ID": 520852, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Average biomass stock of forest areas", + "Technology_Practices": "Fires", + "Parameter_Conditions": "Tropical forest: gallery forest, closed semi-deciduous forest, open forest; see also the Region/Regional Conditions fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "Fire control", + "Other_Properties": "", + "Value": "25.41-58.17", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 p.3.28 GPG-LULUCF", + "IPCC_Worksheet": "2006 Guidelines 3B1a sheet 4 of 4; 1996 Guidelines 5-1, sheet 1", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-7%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:48.448Z", + "last_change_date": "2022-03-14T08:11:48.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15030, + "fields": { + "EF_ID": 520853, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Transfer rate into dead wood from natural mortality", + "Technology_Practices": "Harvesting from natural and plantations (commercial fellings, fuelwool gathering)", + "Parameter_Conditions": "Tropical forest: gallery forest, closed semi-deciduous forest, open forest; see also the Region/Regional Conditions fields.", + "Regional_Conditions": "Africa (Benin). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1-6.6", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Official national study,PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-9%", + "Upper_Bound": "+10%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The lower uncertainty limit (2.5%ile) estimated from pdf and the upper uncertainty limit (97.5%ile)", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:48.565Z", + "last_change_date": "2022-03-14T08:11:48.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15031, + "fields": { + "EF_ID": 520854, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Decay rate constant", + "Technology_Practices": "Harvesting from natural and plantations (commercial fellings, fuelwool gathering)", + "Parameter_Conditions": "Tropical forest: gallery forest, closed semi-deciduous forest, open forest; Asee also the Region/Regional Conditions fields.", + "Regional_Conditions": "Tropical countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "J.Q. Chambers., et al., February 2000. Decomposition and carbon cycling of dead trees in tropical forest of the central Amazon.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-12%", + "Upper_Bound": "+14%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "The study measured decomposition rate constants for boles of 155 large dead trees (>10cm diameter) in central amazon forests. Mortality data from 21 ha of permanent plots, monitored for 10-15 years, were used to select dead trees for sampling.", + "Data_Provider_Comments": "The lower uncertainty limit (2.5%ile) estimated from pdf and the upper uncertainty limit (97.5%ile)", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:48.665Z", + "last_change_date": "2022-03-14T08:11:48.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15032, + "fields": { + "EF_ID": 520855, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above ground biomass stock", + "Technology_Practices": "", + "Parameter_Conditions": "Tropical forest: gallery forest, closed semi-deciduous forest, open forest; Asee also the Region/Regional Conditions fields.", + "Regional_Conditions": "Benin (West Africa). Mean annual rainfall:1150-1400 mm, mean annual temperature: 20-34 degree Celsius", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.5", + "Unit": "t dm/ha", + "Equation": "Equation 3.2.9 p.3.28 GPG-LULUCF but losses reported under cropland remaining cropland. The disturbance considered is fire which occurs on cropland.", + "IPCC_Worksheet": "2006 Guidelines 3B2a sheet 1 of 1; 5-1 sheet 1", + "Data_Source": "Other", + "Technical_Reference": "Official National Study, PGFTR (octobre 2000). Une etude de base sur la teneur en carbone organique de la biomasse ligneuse et des sols rencontres dans les zones d`intervention du PGFTR. 145 pages.", + "English_Abstract": "In the framework of the elaboration of the Programme of Management of Forests and Riparian Land, a study on carbon sequestration has been carried out from mid July till October 2000. The study covered four sample sites. Forestry officers and academics have been trained and organized in teams to collect data required for the estimation of the above and below ground woody biomass. Another study has been financed to estimate the soil carbon content in the classified forest of Toui. The collected information has been analyzed and served as basis for the estimation of organic carbon stock in wood and soils in the area covered by the PGFTR. Additional data from forest inventories carried out on other forests in Benin and general information concerning measurements of carbon in wood and soil have been added. The woody biomass carbon stock on 1.06 million ha covered by the PGFTR is estimated at 141.0 million metric ton of organic carbon of which 116.6 millions metric ton are in soil and 24.4 millions in living and dead woody biomass. That information has been used to estimate the amount of carbon that can be sequestrated in five (5) to ten (10) years and the amount of wood to be produced in the same period. Only the data related to living biomass have been used for this purpose. A summary of the results is given with regard to carbon sequestration and cost (16.98 million US$ in 2006). One can conclude that the cost of carbon sequestration is relatively low.", + "Lower_Bound": "-8%", + "Upper_Bound": "+9%", + "Data_Quality": "Assessment of the data provider", + "Data_Quality_Reference": "Guendehou, G.H.S. (2006). Land-Use Changes and Greenhouse Gas Fluxes: Scientific Understanding and Contribution to Improving Methodologies for Greenhouse Gas Inventory in BENIN. IGES, Hayama, Japan, 112 pp", + "Other_Data_Quality": "The study estimated the total per ha biomass stock (above and below ground) range 10.8-23.5 tdm/ha. According to the forest inventory, 67% of the total biomass is aboveground biomass, the range of the total biomass burned by fire is 7.3-15.8 tdm/ha.", + "Data_Provider_Comments": "The lower uncertainty limit (2.5%ile) estimated from pdf and the upper uncertainty limit (97.5%ile)", + "Other_Comments": "", + "Data_Provider": "G.H. Sabin Guendehou", + "Link": "http://www.ipcc-nggip.iges.or.jp/efdb/src/sg200810.html", + "creation_date": "2022-03-14T08:11:48.766Z", + "last_change_date": "2022-03-14T08:11:48.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15033, + "fields": { + "EF_ID": 520906, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-shoot ratio of bamboo in pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population has drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "dimensionless", + "Equation": "Equation 3.2.3, Page 3.24, Chapter 3, GPG-LULUCF; Equation 2.8, Page 2.12, Vol. 4(1) , 2006 IPCC Guidelines", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1); 2006 IPCC Guidelines Worksheet 1of 4 of Category 3B1b", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:48.875Z", + "last_change_date": "2022-03-14T08:11:48.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15034, + "fields": { + "EF_ID": 520907, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of culm basal area and biomass (sum of aboveground and belowground biomass) of each individual bamboo in pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "Wt = 7583.3 * ba; where Wt is the weight of an individual bamboo (kg), and ba is the sum of culm basal area (m2) at 1.3-m height.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:48.993Z", + "last_change_date": "2022-03-14T08:11:48.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15035, + "fields": { + "EF_ID": 520908, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of community`s biomass with time since last slash and burn for pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "biomass = 16.483 * Y^0.6801; where biomass represents the community`s biomass (Mg/ha) and Y is the number of years since the last slash-and-burncropping.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:49.119Z", + "last_change_date": "2022-03-14T08:11:49.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15036, + "fields": { + "EF_ID": 520909, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of community`s biomass with total basal area of trees stems and bamboo culms greater than 4 cm for pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "biomass = 4.710 * BA + 19.43; where biomass represents the community`s biomass (Mg/ha) and BA is the sum of basal areas (at 1.3 m height) of tree stems and bamboo culms with dbh greater than 4 cm (m2 /ha).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:49.228Z", + "last_change_date": "2022-03-14T08:11:49.228Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15037, + "fields": { + "EF_ID": 520910, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of community deadwood stock with years since last slash and burn for pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "deadwood = 0.6471 * Y + 2.3165; where deadwood represents the community`s deadwood stock (Mg/ha) and Y is the number of years since the last slash-and-burn cropping.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:49.345Z", + "last_change_date": "2022-03-14T08:11:49.345Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15038, + "fields": { + "EF_ID": 520911, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of total carbon stocks in community`s three carbon pools (Biomass + deadwood +litter) with years since last slash and burn for pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "CB+D+L = 15.378 * ln(Y) + 11.815; where CB+D+L is the sum of carbon stocks in the community`s biomass, deadwood, and litter (Mg C/ha/year) and Y is the number of years since the last slash-and-burn cropping.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:49.579Z", + "last_change_date": "2022-03-14T08:11:49.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15039, + "fields": { + "EF_ID": 520912, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of overstory height to a community`s biomass carbon stock for pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "CB = 3.7415 * Ht^0.9856; where CB is the community`s biomass carbon stock (Mg C/ha) and Ht is the overstory height (m).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:49.679Z", + "last_change_date": "2022-03-14T08:11:49.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15040, + "fields": { + "EF_ID": 520913, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of carbon stocks in a community`s deadwood to the overstory height for pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "CD = 0.5394 * Ht + 0.1253; where CD represents the deadwood carbon stock (Mg C/ha), and Ht is the overstory height (m).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:49.781Z", + "last_change_date": "2022-03-14T08:11:49.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15041, + "fields": { + "EF_ID": 520914, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of carbon stocks in a community`s litter to the overstory height for pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "CL = 0.9135 * Ht^0.1542; where CL represents the litter carbon stock (Mg C/ha), and Ht is the overstory height (m).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:49.881Z", + "last_change_date": "2022-03-14T08:11:49.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15042, + "fields": { + "EF_ID": 520915, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric relationship of community`s carbon stocks in the three carbon pools with overstory height for pachymorph bamboo dominated communities in Lao PDR", + "Technology_Practices": "Recent increases in the human population have drastically reduced the fallow period for slash-and-burn agriculture in the northern part of the Lao People`s Democratic Republic (Laos), that has been widely practised for centuries causing changes in the communities` carbon stocks in three carbon pools of bamboo-dominated communities. Teak(Tectona grandis) plantations mainly established in the 1990s have also reduced the arable land in th region.", + "Parameter_Conditions": "Pachymorph bamboo dominated communities in slash-and-burn agricultural systems with fallow periods of only 1–3 years common in Luang Prabang Province in Lao PDR, where the main livelihood is upland rice farming.", + "Regional_Conditions": "Laos (Northern). Tropical monsoon climate, with a pronounced rainy season from April to September and a dry seasonfrom October to March. Between 1998 and 2005, the mean annual rainfall was 1,312.7 mm and the mean annualtemperature was 25.2 C at Houaykhot (Northern Agriculture and Forestry Research Center). Soils of most slash and-burn fields in northern Laos are Orthic Acrisols, with a reddish-brown color, clay contents ‡ 30%, and a slightly acidic pH. The main livelihood of the population in the region is rain-fed rice farming.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "CB+D+L = 3.7415 * Ht^0.9856 + 0.5394 * Ht + 0.1253 + 0.9135 * Ht^0.1542; where CB+D+L is the sum of a community`s biomass, deadwood, and litter stocks (Mg C/ha) and Ht is the overstory height (m)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kiyono Y. Ochiai Y., Chiba Y., Asai, H., Saito K., Shiraiwa T., Horie, T. Songnoukhai, Navonxai V., Inoue Y.,(2007) Predicting chronosequential changes in carbon stocks of pachymorph bamboon communities in slash-and-burn agricultural fallow, northern Lao People`s Democratic Republic. J For Res, 12: 371-383", + "English_Abstract": "In northern Lao People`s Democratic Republic, rising human population has drastically reduced the fallow period of slash-and-burn agriculture which has led to a considerable decrease in the carbon stock in these communities. We estimated chronosequential changes in the communities` carbon stocks, and established the relationship between the fallow period and fallow-period-averagecarbon stocks in three carbon pools of bamboo-dominated communities in hilly areas of the Luang Prabang Province,northern Lao People`s Democratic Republic. Based on measurements by destructive sampling, we devised amodel and root-to-shoot ratios for estimating bamboo biomass. In six secondary plant communities establishedafter slash-and-burn cropping, we estimated community biomass using the above model and others, and measureddeadwood and litter stocks. The communities` biomass and deadwood significantly increased with time after the last cropping and the former reached about 100 Mg /ha after 15 years, whereas litter stocks did not show significant trends over time. Extending the fallow period from 2 to 5 years would increase fallow-period-average carbon stock from 14.2 to 25.1 Mg C /ha. The overstory height was significantly correlated with biomass, deadwood, and litter carbon stocks of these communities. Based on our findings, changes in a community`s carbon stocks can be estimated using the changes in overstory height, which should be taken into account in future studies to reduce uncertainty in estimating carbon stocks in tropical ecosystems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jumpei Toriyama", + "Link": "", + "creation_date": "2022-03-14T08:11:49.990Z", + "last_change_date": "2022-03-14T08:11:49.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15043, + "fields": { + "EF_ID": 521069, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "South Boreal", + "Value": "14615.0327838566", + "Unit": "kg CO2/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.107Z", + "last_change_date": "2022-03-14T08:11:50.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15044, + "fields": { + "EF_ID": 521070, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Middle Boreal", + "Value": "14249.8004779613", + "Unit": "kg CO2/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.224Z", + "last_change_date": "2022-03-14T08:11:50.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15045, + "fields": { + "EF_ID": 521071, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "North Boreal", + "Value": "13281.9348673389", + "Unit": "kg CO2/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.325Z", + "last_change_date": "2022-03-14T08:11:50.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15046, + "fields": { + "EF_ID": 521072, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "South Boreal", + "Value": "71.8631082045205", + "Unit": "kg CH4/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.425Z", + "last_change_date": "2022-03-14T08:11:50.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15047, + "fields": { + "EF_ID": 521073, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Middle Boreal", + "Value": "71.8631082045205", + "Unit": "kg CH4/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.534Z", + "last_change_date": "2022-03-14T08:11:50.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15048, + "fields": { + "EF_ID": 521074, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "North Boreal", + "Value": "71.8631082045205", + "Unit": "kg CH4/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.670Z", + "last_change_date": "2022-03-14T08:11:50.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15049, + "fields": { + "EF_ID": 521075, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "South Boreal", + "Value": "2.88665923156306", + "Unit": "kg N2O/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.787Z", + "last_change_date": "2022-03-14T08:11:50.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15050, + "fields": { + "EF_ID": 521076, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Middle Boreal", + "Value": "2.88665923156306", + "Unit": "kg N2O/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.896Z", + "last_change_date": "2022-03-14T08:11:50.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15051, + "fields": { + "EF_ID": 521077, + "IPCC_Category": "3.B.4.b - Land Converted to Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O Emission Factor for Peat Extraction Sites, based on measurements that are modelled with daily weather data. Includes stockpiles and ditches", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "North Boreal", + "Value": "2.88665923156306", + "Unit": "kg N2O/ha", + "Equation": "IPCC 2003 GPG LULUCF Equation 3.5.4", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Finland 2009, Alm, J., Shurpali, N. J., Minkkinen, K., Aro, L., Hytonen, J., Laurila, T., Lohila, A., Maljanen, M., Martikainen, P. J., Makiranta, P., Penttila, T., Saarnio, S., Silvan, N., Tuittila, E.-S. & Laine, J. 2007: Emission factors and their uncertainty for the exchange of CO2, CH4 and N2O in Finnish managed peatlands. Boreal Env. Res. 12: 191-209.", + "English_Abstract": "See the Link field.", + "Lower_Bound": "-25%", + "Upper_Bound": "+25%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For stockpiles it was assumed that 70% of those exist from June to August in the full extend (92 days), while between September and April those are used for the energy production (and therefore estimated average wintertime existensy for a stockpile is 4 months, being 122 days). To ensure energy security approximately 30% of stockpiles are kept a year round (365 days), and originating emissions were estimated accordingly. Daily estimates for CO2 fluxes for stockpiles during a summer day were 83 and a winter day 139 kg CO2 eq/ha, for methane values were 0.003 and 0.21 kg CH4 eq/ha and for nitrous oxide those were 0.002 and 0.0004 kg N2O eq/ha, repectively.", + "Other_Comments": "Despite this data had not been formally reviewed by an expert review team under the UNFCCC at the time of its consideration by the EFDB Editorial Board, and this data does neither provide information related to its applicability nor the level of confidence is clearly specified, its scientific worth is still supported by an original peer-reviewed reference to which a link is provided. The original EF Type specified bt the data provider was Measured and modeled, but due to technical limitations it could not be entered in the EF Type field.", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:50.997Z", + "last_change_date": "2022-03-14T08:11:50.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15052, + "fields": { + "EF_ID": 521080, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C stocks in mineral soil in forests in the southern Appalachian Mountains in the United States of America", + "Technology_Practices": "C stocks in forests and the comparable agricultural ecosystems that have replaced them", + "Parameter_Conditions": "Sites with unchanging land use over at least the 45-year time period preceding measurements have been selected for this study. Pasture sites were continuously occupied by grasses as viewed on 1950s, 1970s, and 1990s aerial photographs. Forested sites were on the USDA Forest Service Coweeta Hydrologic Laboratory and had not been harvested, thinned, or undergone human disturbance since 1930. Stands were free from visible signs of significant natural disturbance, although all stands were probably affected by the loss of American chestnut (Castanea dentata) in the 1930s. Forests were uneven-aged. However, trees cored on all sites were between 60 and 90 years old, consistent with previous measurements in the basin. Although forested sites showed no evidence of previous cultivation, humans have farmed in the region since at least 800 AD, and more than 20% of the land was in cultivation during the late 1800s. Forested sites may have been cultivated in the past, but we chose sites to avoid areas that had been in agriculture since 1900. Sites were in similar slope positions, coves, or low flat areas. Sites were also limited to similar igneous parent materials and restricted to a narrow range of elevations, between 670 and 865 m. All sites were on soils in the Saunook complex, comprising deep, well-drained soils formed on colluvium deposited from adjacent gneiss uplands (USDA-Natural Resources Conservation Service (NRCS), 1996", + "Regional_Conditions": "All study sites are located within 10 km of 83 degrees 30 minutes West, 35 degrees 5 minutes North.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "182.1", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "BOLSTAD P. V., AND J. VOSE.2005.Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains. For. Sci.51(4):372-383.", + "English_Abstract": "Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured above- and belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Above- and belowground C pools were significantly larger (P less than 0.01, t-test) at forested sites relative to pasture sites. The largest differences were in aboveground live biomass, which averaged 152 MgC/ha at the forested sites and 1.9 MgC/ha at the pasture sites. Coarse root and stump C and surface detritus were also substantially different, averaging 41.3 and 32.6 MgC/ha, respectively, at the forested sites, and less than 1 MgC/ha at the pasture sites. Fine root C was higher and mineral soil C lower at pasture sites relative to comparable forested sites, but neither difference was statistically significant. Soil respiration at a given temperature was generally lower at pasture sites relative to forest sites. However, soil temperatures at pastures were consistently higher than at forest sites. Estimated annual soil respiration flux averaged 10.9 MgC/ha at the pasture sites and 12.6 MgC/ha at the forested sites.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 41.8", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.097Z", + "last_change_date": "2022-03-14T08:11:51.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15053, + "fields": { + "EF_ID": 521081, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C stocks in fine root (top 30 cm) in the forest in southern Appalachian Mountains in the United States of America", + "Technology_Practices": "C stocks in forests and the comparable agricultural ecosystems that have replaced them", + "Parameter_Conditions": "Sites with unchanging land use over at least the 45-year time period preceding measurements have been selected for this study. Pasture sites were continuously occupied by grasses as viewed on 1950s, 1970s, and 1990s aerial photographs. Forested sites were on the USDA Forest Service Coweeta Hydrologic Laboratory and had not been harvested, thinned, or undergone human disturbance since 1930. Stands were free from visible signs of significant natural disturbance, although all stands were probably affected by the loss of American chestnut (Castanea dentata) in the 1930s. Forests were uneven-aged. However, trees cored on all sites were between 60 and 90 years old, consistent with previous measurements in the basin. Although forested sites showed no evidence of previous cultivation, humans have farmed in the region since at least 800 AD, and more than 20% of the land was in cultivation during the late 1800s. Forested sites may have been cultivated in the past, but we chose sites to avoid areas that had been in agriculture since 1900. Sites were in similar slope positions, coves, or low flat areas. Sites were also limited to similar igneous parent materials and restricted to a narrow range of elevations, between 670 and 865 m. All sites were on soils in the Saunook complex, comprising deep, well-drained soils formed on colluvium deposited from adjacent gneiss uplands (USDA-Natural Resources Conservation Service (NRCS), 1996", + "Regional_Conditions": "All study sites are located within 10 km of 83 degrees 30 minutes West, 35 degrees 5 minutes North.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.6", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "BOLSTAD P. V., AND J. VOSE.2005.Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains. For. Sci.51(4):372-383.", + "English_Abstract": "Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured above- and belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Above- and belowground C pools were significantly larger (P less than 0.01, t-test) at forested sites relative to pasture sites. The largest differences were in aboveground live biomass, which averaged 152 MgC/ha at the forested sites and 1.9 MgC/ha at the pasture sites. Coarse root and stump C and surface detritus were also substantially different, averaging 41.3 and 32.6 MgC/ha, respectively, at the forested sites, and less than 1 MgC/ha at the pasture sites. Fine root C was higher and mineral soil C lower at pasture sites relative to comparable forested sites, but neither difference was statistically significant. Soil respiration at a given temperature was generally lower at pasture sites relative to forest sites. However, soil temperatures at pastures were consistently higher than at forest sites. Estimated annual soil respiration flux averaged 10.9 MgC/ha at the pasture sites and 12.6 MgC/ha at the forested sites.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 2.1", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.198Z", + "last_change_date": "2022-03-14T08:11:51.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15054, + "fields": { + "EF_ID": 521082, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C stocks in coarse root and stump C (all depths)l in the forests in southern Appalachian Mountains in the United States of America", + "Technology_Practices": "C stocks in forests and the comparable agricultural ecosystems that have replaced them", + "Parameter_Conditions": "Sites with unchanging land use over at least the 45-year time period preceding measurements have been selected for this study. Pasture sites were continuously occupied by grasses as viewed on 1950s, 1970s, and 1990s aerial photographs. Forested sites were on the USDA Forest Service Coweeta Hydrologic Laboratory and had not been harvested, thinned, or undergone human disturbance since 1930. Stands were free from visible signs of significant natural disturbance, although all stands were probably affected by the loss of American chestnut (Castanea dentata) in the 1930s. Forests were uneven-aged. However, trees cored on all sites were between 60 and 90 years old, consistent with previous measurements in the basin. Although forested sites showed no evidence of previous cultivation, humans have farmed in the region since at least 800 AD, and more than 20% of the land was in cultivation during the late 1800s. Forested sites may have been cultivated in the past, but we chose sites to avoid areas that had been in agriculture since 1900. Sites were in similar slope positions, coves, or low flat areas. Sites were also limited to similar igneous parent materials and restricted to a narrow range of elevations, between 670 and 865 m. All sites were on soils in the Saunook complex, comprising deep, well-drained soils formed on colluvium deposited from adjacent gneiss uplands (USDA-Natural Resources Conservation Service (NRCS), 1996", + "Regional_Conditions": "All study sites are located within 10 km of 83 degrees 30 minutes West, 35 degrees 5 minutes North.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.3", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "BOLSTAD P. V., AND J. VOSE.2005.Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains. For. Sci.51(4):372-383.", + "English_Abstract": "Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured above- and belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Above- and belowground C pools were significantly larger (P less than 0.01, t-test) at forested sites relative to pasture sites. The largest differences were in aboveground live biomass, which averaged 152 MgC/ha at the forested sites and 1.9 MgC/ha at the pasture sites. Coarse root and stump C and surface detritus were also substantially different, averaging 41.3 and 32.6 MgC/ha, respectively, at the forested sites, and less than 1 MgC/ha at the pasture sites. Fine root C was higher and mineral soil C lower at pasture sites relative to comparable forested sites, but neither difference was statistically significant. Soil respiration at a given temperature was generally lower at pasture sites relative to forest sites. However, soil temperatures at pastures were consistently higher than at forest sites. Estimated annual soil respiration flux averaged 10.9 MgC/ha at the pasture sites and 12.6 MgC/ha at the forested sites.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 10.4", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.298Z", + "last_change_date": "2022-03-14T08:11:51.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15055, + "fields": { + "EF_ID": 521083, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C stocks in surface detritus and standing dead mass in forests in the southern Appalachian Mountains in the United States of America", + "Technology_Practices": "C stocks in forests and the comparable agricultural ecosystems that have replaced them", + "Parameter_Conditions": "Sites with unchanging land use over at least the 45-year time period preceding measurements have been selected for this study. Pasture sites were continuously occupied by grasses as viewed on 1950s, 1970s, and 1990s aerial photographs. Forested sites were on the USDA Forest Service Coweeta Hydrologic Laboratory and had not been harvested, thinned, or undergone human disturbance since 1930. Stands were free from visible signs of significant natural disturbance, although all stands were probably affected by the loss of American chestnut (Castanea dentata) in the 1930s. Forests were uneven-aged. However, trees cored on all sites were between 60 and 90 years old, consistent with previous measurements in the basin. Although forested sites showed no evidence of previous cultivation, humans have farmed in the region since at least 800 AD, and more than 20% of the land was in cultivation during the late 1800s. Forested sites may have been cultivated in the past, but we chose sites to avoid areas that had been in agriculture since 1900. Sites were in similar slope positions, coves, or low flat areas. Sites were also limited to similar igneous parent materials and restricted to a narrow range of elevations, between 670 and 865 m. All sites were on soils in the Saunook complex, comprising deep, well-drained soils formed on colluvium deposited from adjacent gneiss uplands (USDA-Natural Resources Conservation Service (NRCS), 1996", + "Regional_Conditions": "All study sites are located within 10 km of 83 degrees 30 minutes West, 35 degrees 5 minutes North.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.6", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "BOLSTAD P. V., AND J. VOSE.2005.Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains. For. Sci.51(4):372-383.", + "English_Abstract": "Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured above- and belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Above- and belowground C pools were significantly larger (P less than 0.01, t-test) at forested sites relative to pasture sites. The largest differences were in aboveground live biomass, which averaged 152 MgC/ha at the forested sites and 1.9 MgC/ha at the pasture sites. Coarse root and stump C and surface detritus were also substantially different, averaging 41.3 and 32.6 MgC/ha, respectively, at the forested sites, and less than 1 MgC/ha at the pasture sites. Fine root C was higher and mineral soil C lower at pasture sites relative to comparable forested sites, but neither difference was statistically significant. Soil respiration at a given temperature was generally lower at pasture sites relative to forest sites. However, soil temperatures at pastures were consistently higher than at forest sites. Estimated annual soil respiration flux averaged 10.9 MgC/ha at the pasture sites and 12.6 MgC/ha at the forested sites.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 3.4", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.416Z", + "last_change_date": "2022-03-14T08:11:51.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15056, + "fields": { + "EF_ID": 521084, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C stocks in aboveground live biomass C in the forests in southern Appalachian Mountains in the United States of America", + "Technology_Practices": "C stocks in forests and the comparable agricultural ecosystems that have replaced them", + "Parameter_Conditions": "Sites with unchanging land use over at least the 45-year time period preceding measurements have been selected for this study. Pasture sites were continuously occupied by grasses as viewed on 1950s, 1970s, and 1990s aerial photographs. Forested sites were on the USDA Forest Service Coweeta Hydrologic Laboratory and had not been harvested, thinned, or undergone human disturbance since 1930. Stands were free from visible signs of significant natural disturbance, although all stands were probably affected by the loss of American chestnut (Castanea dentata) in the 1930s. Forests were uneven-aged. However, trees cored on all sites were between 60 and 90 years old, consistent with previous measurements in the basin. Although forested sites showed no evidence of previous cultivation, humans have farmed in the region since at least 800 AD, and more than 20% of the land was in cultivation during the late 1800s. Forested sites may have been cultivated in the past, but we chose sites to avoid areas that had been in agriculture since 1900. Sites were in similar slope positions, coves, or low flat areas. Sites were also limited to similar igneous parent materials and restricted to a narrow range of elevations, between 670 and 865 m. All sites were on soils in the Saunook complex, comprising deep, well-drained soils formed on colluvium deposited from adjacent gneiss uplands (USDA-Natural Resources Conservation Service (NRCS), 1996", + "Regional_Conditions": "All study sites are located within 10 km of 83 degrees 30 minutes West, 35 degrees 5 minutes North.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "152", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "BOLSTAD P. V., AND J. VOSE.2005.Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains. For. Sci.51(4):372-383.", + "English_Abstract": "Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured above- and belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Above- and belowground C pools were significantly larger (P less than 0.01, t-test) at forested sites relative to pasture sites. The largest differences were in aboveground live biomass, which averaged 152 MgC/ha at the forested sites and 1.9 MgC/ha at the pasture sites. Coarse root and stump C and surface detritus were also substantially different, averaging 41.3 and 32.6 MgC/ha, respectively, at the forested sites, and less than 1 MgC/ha at the pasture sites. Fine root C was higher and mineral soil C lower at pasture sites relative to comparable forested sites, but neither difference was statistically significant. Soil respiration at a given temperature was generally lower at pasture sites relative to forest sites. However, soil temperatures at pastures were consistently higher than at forest sites. Estimated annual soil respiration flux averaged 10.9 MgC/ha at the pasture sites and 12.6 MgC/ha at the forested sites.", + "Lower_Bound": "See Other Info.", + "Upper_Bound": "See Other Info.", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation = 26.7", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.516Z", + "last_change_date": "2022-03-14T08:11:51.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15057, + "fields": { + "EF_ID": 521085, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C stocks in mineral soils in the pastures in southern Appalachian Mountains in the United States of America", + "Technology_Practices": "C stocks in forests and the comparable agricultural ecosystems that have replaced them", + "Parameter_Conditions": "Sites with unchanging land use over at least the 45-year time period preceding measurements have been selected for this study. Pasture sites were continuously occupied by grasses as viewed on 1950s, 1970s, and 1990s aerial photographs. Forested sites were on the USDA Forest Service Coweeta Hydrologic Laboratory and had not been harvested, thinned, or undergone human disturbance since 1930. Stands were free from visible signs of significant natural disturbance, although all stands were probably affected by the loss of American chestnut (Castanea dentata) in the 1930s. Forests were uneven-aged. However, trees cored on all sites were between 60 and 90 years old, consistent with previous measurements in the basin. Although forested sites showed no evidence of previous cultivation, humans have farmed in the region since at least 800 AD, and more than 20% of the land was in cultivation during the late 1800s. Forested sites may have been cultivated in the past, but we chose sites to avoid areas that had been in agriculture since 1900. Sites were in similar slope positions, coves, or low flat areas. Sites were also limited to similar igneous parent materials and restricted to a narrow range of elevations, between 670 and 865 m. All sites were on soils in the Saunook complex, comprising deep, well-drained soils formed on colluvium deposited from adjacent gneiss uplands (USDA-Natural Resources Conservation Service (NRCS), 1996", + "Regional_Conditions": "All study sites are located within 10 km of 83 degrees 30 minutes West, 35 degrees 5 minutes North.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "146.2", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "BOLSTAD P. V., AND J. VOSE.2005.Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains. For. Sci.51(4):372-383.", + "English_Abstract": "Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured above- and belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Above- and belowground C pools were significantly larger (P less than 0.01, t-test) at forested sites relative to pasture sites. The largest differences were in aboveground live biomass, which averaged 152 MgC/ha at the forested sites and 1.9 MgC/ha at the pasture sites. Coarse root and stump C and surface detritus were also substantially different, averaging 41.3 and 32.6 MgC/ha, respectively, at the forested sites, and less than 1 MgC/ha at the pasture sites. Fine root C was higher and mineral soil C lower at pasture sites relative to comparable forested sites, but neither difference was statistically significant. Soil respiration at a given temperature was generally lower at pasture sites relative to forest sites. However, soil temperatures at pastures were consistently higher than at forest sites. Estimated annual soil respiration flux averaged 10.9 MgC/ha at the pasture sites and 12.6 MgC/ha at the forested sites.", + "Lower_Bound": "See Other Info.", + "Upper_Bound": "See Other Info.", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation = 36.6", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.642Z", + "last_change_date": "2022-03-14T08:11:51.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15058, + "fields": { + "EF_ID": 521086, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C stocks in fine root (top 30 cm) in the pastures in southern Appalachian Mountains in the United States of America", + "Technology_Practices": "C stocks in forests and the comparable agricultural ecosystems that have replaced them", + "Parameter_Conditions": "Sites with unchanging land use over at least the 45-year time period preceding measurements have been selected for this study. Pasture sites were continuously occupied by grasses as viewed on 1950s, 1970s, and 1990s aerial photographs. Forested sites were on the USDA Forest Service Coweeta Hydrologic Laboratory and had not been harvested, thinned, or undergone human disturbance since 1930. Stands were free from visible signs of significant natural disturbance, although all stands were probably affected by the loss of American chestnut (Castanea dentata) in the 1930s. Forests were uneven-aged. However, trees cored on all sites were between 60 and 90 years old, consistent with previous measurements in the basin. Although forested sites showed no evidence of previous cultivation, humans have farmed in the region since at least 800 AD, and more than 20% of the land was in cultivation during the late 1800s. Forested sites may have been cultivated in the past, but we chose sites to avoid areas that had been in agriculture since 1900. Sites were in similar slope positions, coves, or low flat areas. Sites were also limited to similar igneous parent materials and restricted to a narrow range of elevations, between 670 and 865 m. All sites were on soils in the Saunook complex, comprising deep, well-drained soils formed on colluvium deposited from adjacent gneiss uplands (USDA-Natural Resources Conservation Service (NRCS), 1996", + "Regional_Conditions": "All study sites are located within 10 km of 83 degrees 30 minutes West, 35 degrees 5 minutes North.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "BOLSTAD P. V., AND J. VOSE.2005.Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains. For. Sci.51(4):372-383.", + "English_Abstract": "Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured above- and belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Above- and belowground C pools were significantly larger (P less than 0.01, t-test) at forested sites relative to pasture sites. The largest differences were in aboveground live biomass, which averaged 152 MgC/ha at the forested sites and 1.9 MgC/ha at the pasture sites. Coarse root and stump C and surface detritus were also substantially different, averaging 41.3 and 32.6 MgC/ha, respectively, at the forested sites, and less than 1 MgC/ha at the pasture sites. Fine root C was higher and mineral soil C lower at pasture sites relative to comparable forested sites, but neither difference was statistically significant. Soil respiration at a given temperature was generally lower at pasture sites relative to forest sites. However, soil temperatures at pastures were consistently higher than at forest sites. Estimated annual soil respiration flux averaged 10.9 MgC/ha at the pasture sites and 12.6 MgC/ha at the forested sites.", + "Lower_Bound": "See Other Info.", + "Upper_Bound": "See Other Info.", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation = 2.0", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.759Z", + "last_change_date": "2022-03-14T08:11:51.759Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15059, + "fields": { + "EF_ID": 521087, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C stocks in C in the pastures in southern Appalachian Mountains in the United States of America", + "Technology_Practices": "C stocks in forests and the comparable agricultural ecosystems that have replaced them", + "Parameter_Conditions": "Sites with unchanging land use over at least the 45-year time period preceding measurements have been selected for this study. Pasture sites were continuously occupied by grasses as viewed on 1950s, 1970s, and 1990s aerial photographs. Forested sites were on the USDA Forest Service Coweeta Hydrologic Laboratory and had not been harvested, thinned, or undergone human disturbance since 1930. Stands were free from visible signs of significant natural disturbance, although all stands were probably affected by the loss of American chestnut (Castanea dentata) in the 1930s. Forests were uneven-aged. However, trees cored on all sites were between 60 and 90 years old, consistent with previous measurements in the basin. Although forested sites showed no evidence of previous cultivation, humans have farmed in the region since at least 800 AD, and more than 20% of the land was in cultivation during the late 1800s. Forested sites may have been cultivated in the past, but we chose sites to avoid areas that had been in agriculture since 1900. Sites were in similar slope positions, coves, or low flat areas. Sites were also limited to similar igneous parent materials and restricted to a narrow range of elevations, between 670 and 865 m. All sites were on soils in the Saunook complex, comprising deep, well-drained soils formed on colluvium deposited from adjacent gneiss uplands (USDA-Natural Resources Conservation Service (NRCS), 1996", + "Regional_Conditions": "All study sites are located within 10 km of 83 degrees 30 minutes West, 35 degrees 5 minutes North.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "BOLSTAD P. V., AND J. VOSE.2005.Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains. For. Sci.51(4):372-383.", + "English_Abstract": "Our ability to estimate the changes in carbon (C) pools and fluxes due to forest conversion is hampered by a lack of comparative studies. We measured above- and belowground C pools and soil respiration flux at four forested and four pasture sites in the southern Appalachian Mountains. Above- and belowground C pools were significantly larger (P less than 0.01, t-test) at forested sites relative to pasture sites. The largest differences were in aboveground live biomass, which averaged 152 MgC/ha at the forested sites and 1.9 MgC/ha at the pasture sites. Coarse root and stump C and surface detritus were also substantially different, averaging 41.3 and 32.6 MgC/ha, respectively, at the forested sites, and less than 1 MgC/ha at the pasture sites. Fine root C was higher and mineral soil C lower at pasture sites relative to comparable forested sites, but neither difference was statistically significant. Soil respiration at a given temperature was generally lower at pasture sites relative to forest sites. However, soil temperatures at pastures were consistently higher than at forest sites. Estimated annual soil respiration flux averaged 10.9 MgC/ha at the pasture sites and 12.6 MgC/ha at the forested sites.", + "Lower_Bound": "See Other Info.", + "Upper_Bound": "See Other Info.", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation = 0.5", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.876Z", + "last_change_date": "2022-03-14T08:11:51.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15060, + "fields": { + "EF_ID": 521088, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression model for above-ground biomass(AGB) of trees as a function of trunk diameter, total tree height and wood density for dry tropical forest stands", + "Technology_Practices": "Quality and the robustness of different regression models converting inventory data into tree Above-ground biomass (AGB) were assessed across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics.Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests. Best predictive models were selected based on the comparison of the summed AGB as measured at each site and as estimated by the regression models.", + "Parameter_Conditions": "The data used for the study consisted of tree harvest studies carried out since the 1950s from 27 published and unpublished datasets, from tropical forests in three continents: America, Asia, and Oceania. Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests.", + "Regional_Conditions": "Tropical forests from America, Asia and Oceania encompassing a broad array of environmental conditions but limited to forests growing in tropical climates, and that regenerate naturally, thus excluding plantations or managed forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = 0.112*(W*(D^2)*H)^0.916; where AGB is the above-ground biomass(in kg) , D is the trunk diameter (in cm), H is the total tree height (in m) and W is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chave J, Andalo C, Brown S, Cairns M. A., Chambers M Q, Eamus D, Fo¨ lster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Rie´ ra B, Yamakura T(2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99", + "English_Abstract": "Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:51.977Z", + "last_change_date": "2022-03-14T08:11:51.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15061, + "fields": { + "EF_ID": 521089, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression model for above-ground biomass(AGB) of trees as a function of trunk diameter and wood density for dry tropical forest stands", + "Technology_Practices": "Quality and the robustness of different regression models converting inventory data into tree Above-ground biomass (AGB) were assessed across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics.Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests. Best predictive models were selected based on the comparison of the summed AGB as measured at each site and as estimated by the regression models.", + "Parameter_Conditions": "The data used for the study consisted of tree harvest studies carried out since the 1950s from 27 published and unpublished datasets, from tropical forests in three continents: America, Asia, and Oceania. Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests.", + "Regional_Conditions": "Tropical forests from America, Asia and Oceania encompassing a broad array of environmental conditions but limited to forests growing in tropical climates, and that regenerate naturally, thus excluding plantations or managed forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = W*exp(-0.667 + 1.784*ln(D) + 0.207*(ln(D))^2 - 0.0281*(ln(D))^3); where AGB is the above-ground biomass (in kg) , D is the trunk diameter (in m) and W is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chave J, Andalo C, Brown S, Cairns M. A., Chambers M Q, Eamus D, Fo¨ lster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Rie´ ra B, Yamakura T(2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99", + "English_Abstract": "Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:52.095Z", + "last_change_date": "2022-03-14T08:11:52.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15062, + "fields": { + "EF_ID": 521090, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression model for above-ground biomass(AGB) of trees as a function of trunk diameter, total tree height and wood density for moist tropical forest stands", + "Technology_Practices": "Quality and the robustness of different regression models converting inventory data into tree Above-ground biomass (AGB) were assessed across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics.Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests. Best predictive models were selected based on the comparison of the summed AGB as measured at each site and as estimated by the regression models.", + "Parameter_Conditions": "The data used for the study consisted of tree harvest studies carried out since the 1950s from 27 published and unpublished datasets, from tropical forests in three continents: America, Asia, and Oceania. Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests.", + "Regional_Conditions": "Tropical forests from America, Asia and Oceania encompassing a broad array of environmental conditions but limited to forests growing in tropical climates, and that regenerate naturally, thus excluding plantations or managed forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = 0.0509 *(W*(D^2)*H); where AGB is the above-ground biomass (in kg) , D is the trunk diameter (in cm), H is the total tree height (in m) and W is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chave J, Andalo C, Brown S, Cairns M. A., Chambers M Q, Eamus D, Fo¨ lster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Rie´ ra B, Yamakura T(2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99", + "English_Abstract": "Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:52.221Z", + "last_change_date": "2022-03-14T08:11:52.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15063, + "fields": { + "EF_ID": 521091, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression model for above-ground biomass(AGB) of trees as a function of trunk diameter and wood density for moist tropical forest stands", + "Technology_Practices": "Quality and the robustness of different regression models converting inventory data into tree Above-ground biomass (AGB) were assessed across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics.Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests. Best predictive models were selected based on the comparison of the summed AGB as measured at each site and as estimated by the regression models.", + "Parameter_Conditions": "The data used for the study consisted of tree harvest studies carried out since the 1950s from 27 published and unpublished datasets, from tropical forests in three continents: America, Asia, and Oceania. Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests.", + "Regional_Conditions": "Tropical forests from America, Asia and Oceania encompassing a broad array of environmental conditions but limited to forests growing in tropical climates, and that regenerate naturally, thus excluding plantations or managed forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = W*exp(-1.499 + 2.148*ln(D) + 0.207*(ln(D))^2 - 0.0281*(ln(D))^3); where AGB is the above-ground biomass (in kg) , D is the trunk diameter (in m) and W is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chave J, Andalo C, Brown S, Cairns M. A., Chambers M Q, Eamus D, Fo¨ lster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Rie´ ra B, Yamakura T(2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99", + "English_Abstract": "Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:52.338Z", + "last_change_date": "2022-03-14T08:11:52.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15064, + "fields": { + "EF_ID": 521092, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression model for above-ground biomass(AGB) of trees as a function of trunk diameter, total tree height and wood density for mangrove forest stands", + "Technology_Practices": "Quality and the robustness of different regression models converting inventory data into tree Above-ground biomass (AGB) were assessed across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics.Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests. Best predictive models were selected based on the comparison of the summed AGB as measured at each site and as estimated by the regression models.", + "Parameter_Conditions": "The data used for the study consisted of tree harvest studies carried out since the 1950s from 27 published and unpublished datasets, from tropical forests in three continents: America, Asia, and Oceania. Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests.", + "Regional_Conditions": "Tropical forests from America, Asia and Oceania encompassing a broad array of environmental conditions but limited to forests growing in tropical climates, and that regenerate naturally, thus excluding plantations or managed forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = 0.0509 *(W*(D^2)*H); where AGB is the above-ground biomass (in kg) , D is the trunk diameter (in cm), H is the total tree height (in m) and W is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chave J, Andalo C, Brown S, Cairns M. A., Chambers M Q, Eamus D, Fo¨ lster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Rie´ ra B, Yamakura T(2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99", + "English_Abstract": "Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:52.439Z", + "last_change_date": "2022-03-14T08:11:52.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15065, + "fields": { + "EF_ID": 521093, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression model for above-ground biomass(AGB) of trees as a function of trunk diameter and wood density for mangrove forest stands", + "Technology_Practices": "Quality and the robustness of different regression models converting inventory data into tree Above-ground biomass (AGB) were assessed across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics.Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests. Best predictive models were selected based on the comparison of the summed AGB as measured at each site and as estimated by the regression models.", + "Parameter_Conditions": "The data used for the study consisted of tree harvest studies carried out since the 1950s from 27 published and unpublished datasets, from tropical forests in three continents: America, Asia, and Oceania. Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests.", + "Regional_Conditions": "Tropical forests from America, Asia and Oceania encompassing a broad array of environmental conditions but limited to forests growing in tropical climates, and that regenerate naturally, thus excluding plantations or managed forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = W*exp(-1.349 + 1.980*ln(D) + 0.207*(ln(D))^2 - 0.0281*(ln(D))^3); where AGB is the above-ground biomass (in kg) , D is the trunk diameter (in m) and W is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chave J, Andalo C, Brown S, Cairns M. A., Chambers M Q, Eamus D, Fo¨ lster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Rie´ ra B, Yamakura T(2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99", + "English_Abstract": "Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:52.548Z", + "last_change_date": "2022-03-14T08:11:52.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15066, + "fields": { + "EF_ID": 521094, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression model for above-ground biomass(AGB) of trees as a function of trunk diameter, total tree height and wood density for wet forest stands", + "Technology_Practices": "Quality and the robustness of different regression models converting inventory data into tree Above-ground biomass (AGB) were assessed across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics.Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests. Best predictive models were selected based on the comparison of the summed AGB as measured at each site and as estimated by the regression models.", + "Parameter_Conditions": "The data used for the study consisted of tree harvest studies carried out since the 1950s from 27 published and unpublished datasets, from tropical forests in three continents: America, Asia, and Oceania. Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests.", + "Regional_Conditions": "Tropical forests from America, Asia and Oceania encompassing a broad array of environmental conditions but limited to forests growing in tropical climates, and that regenerate naturally, thus excluding plantations or managed forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = 0.0776*(W*(D^2)*H)^0.940; where AGB is the above-ground biomass (in kg), D is the trunk diameter (in cm), H is the total tree height (in m) and W is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chave J, Andalo C, Brown S, Cairns M. A., Chambers M Q, Eamus D, Fo¨ lster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Rie´ ra B, Yamakura T(2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99", + "English_Abstract": "Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:52.665Z", + "last_change_date": "2022-03-14T08:11:52.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15067, + "fields": { + "EF_ID": 521095, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Regression model for above-ground biomass(AGB) of trees as a function of trunk diameter and wood density for wet forest stands", + "Technology_Practices": "Quality and the robustness of different regression models converting inventory data into tree Above-ground biomass (AGB) were assessed across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics.Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests. Best predictive models were selected based on the comparison of the summed AGB as measured at each site and as estimated by the regression models.", + "Parameter_Conditions": "The data used for the study consisted of tree harvest studies carried out since the 1950s from 27 published and unpublished datasets, from tropical forests in three continents: America, Asia, and Oceania. Models were tested for secondary and old-growth forests, dry, moist and wet forests, lowland forests, montane forests, and for mangrove forests.", + "Regional_Conditions": "Tropical forests from America, Asia and Oceania encompassing a broad array of environmental conditions but limited to forests growing in tropical climates, and that regenerate naturally, thus excluding plantations or managed forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = W*exp(-1.239 + 1.980*ln(D) + 0.207*(ln(D))^2- 0.0281*(ln(D))^3); where AGB is the above-ground biomass (in kg), D is the trunk diameter (in m) and W is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chave J, Andalo C, Brown S, Cairns M. A., Chambers M Q, Eamus D, Fo¨ lster H, Fromard F, Higuchi N, Kira T, Lescure J P, Nelson B W, Ogawa H, Puig H, Rie´ ra B, Yamakura T(2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99", + "English_Abstract": "Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees whose diameters are not less than 5 cm, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and oldgrowth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:11:52.774Z", + "last_change_date": "2022-03-14T08:11:52.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15068, + "fields": { + "EF_ID": 521198, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "An aboveground biomass allometric equation for Scots pine (Pinus sylvestris. L.) was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for individual tree aboveground biomass as a function of diameter at breast height, tree height, and altitude.", + "Technology_Practices": "A total of 52 trees were cut down to make a representative universe of typically managed single-species even-aged pine stands. All basic and measurable information was recorded, including tree diameter along the stem axis, tree height, height of the green crown, and bark thickness. The amount of biomass represented by the individual tree aboveground components included tree stem, dead and living branches bark, cones and needles, and the proportion of the latest year foliage was also taken note of. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Each of these components was converted to biomass by multiplying density values of 420 kg/m3 and 300 kg/m3, respectively. Branch biomass was derived from fresh to dry weight ratio, which was estimated from the selected branches from three segments of tree crown that were later oven-dried. These sampled branches were also used to estimate the foliage biomass, which was sampled to assess the share of the most recent year needles in the total foliage biomass. The biomass of eventual cones was also estimated.The total above-ground biomass was taken to be the sum of stem-wood over bark, branches, needles and cones.", + "Parameter_Conditions": "The mathematical expression for computing a value for aboveground biomass over bark is a two-parameter function of diameter at breast height and tree height, with altitude above sea level as multiplicative variable.", + "Regional_Conditions": "Czech Republic; Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (190 m to 700 m), tree age (12-122 years), diameter at breast height (4.5-38.5 cm), tree height (5-31.8 m) and crown length (3.0-11.2 m). All sites represented tipycal growth conditions with medium soil fertility.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "AGB = 0.03385 x (D^2 x H)^0.945 x Z^(-0.03047) where AGB is the above-ground biomass, D is diameter at breast height (m), H is tree-height (m) and Z is altitude above sea level (m). R^2_adj = 0.991.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, M. Cerný, F. Tatarinov, J. Apltauer, Z. Exnerová. 2006. Biomass functions applicable to Scots pine. Trees 20: 483-495.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:52.883Z", + "last_change_date": "2022-03-14T08:11:52.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15069, + "fields": { + "EF_ID": 521199, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A stem biomass (under bark) allometric equation for Scots pine (Pinus sylvestris. L.) was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for individual tree stem biomass (under bark) as a function of diameter at breast height, tree height and altitude..", + "Technology_Practices": "A total of 52 trees were cut down to make a representative universe of typically managed single-species even-aged pine stands. All basic and measurable information was recorded, including tree diameter along the stem axis, tree height, height of the green crown, and bark thickness. The amount of biomass represented by the individual tree aboveground components included tree stem, dead and living branches bark, cones and needles, and the proportion of the latest year foliage was also taken note of. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Each of these components was converted to biomass by multiplying density values of 420 kg/m3 and 300 kg/m3, respectively. Branch biomass was derived from fresh to dry weight ratio, which was estimated from the selected branches from three segments of tree crown that were later oven-dried. These sampled branches were also used to estimate the foliage biomass, which was sampled to assess the share of the most recent year needles in the total foliage biomass. The biomass of eventual cones was also estimated.The total above-ground biomass was taken to be the sum of stem-wood over bark, branches, needles and cones.", + "Parameter_Conditions": "The mathematical expression for computing a value for stem biomass over bark is a logarithmic function of diameter at breast height, tree height, and altitude above sea level.", + "Regional_Conditions": "Czech Republic; Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (190 m to 700 m), tree age (12-122 years), diameter at breast height (4.5-38.5 cm), tree height (5-31.8 m) and crown length (3.0-11.2 m). All sites represented tipycal growth conditions with medium soil fertility.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "ln(Sub) = ln(0.01142) + 1.73246 ln(D) + 1.44476 ln(H) - 0,05882 ln(Z), where Sub is stem biomass (under bark), D is diameter at breast height (m), H is tree-height (m) and Z is altitude above sea level (m). R^2_adj = 0.991.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, M. Cerný, F. Tatarinov, J. Apltauer, Z. Exnerová. 2006. Biomass functions applicable to Scots pine. Trees 20: 483-495.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:52.993Z", + "last_change_date": "2022-03-14T08:11:52.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15070, + "fields": { + "EF_ID": 521200, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A stem biomass (over bark) allometric equation for Scots pine (Pinus sylvestris. L.) was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for individual tree stem biomass (under bark) as a function of diameter at breast height, tree height and altitude.", + "Technology_Practices": "A total of 52 trees were cut down to make a representative universe of typically managed single-species even-aged pine stands. All basic and measurable information was recorded, including tree diameter along the stem axis, tree height, height of the green crown, and bark thickness. The amount of biomass represented by the individual tree aboveground components included tree stem, dead and live branches, bark, cones and needles, and the proportion of the latest year foliage was also taken note of. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Each of these components was converted to biomass by multiplying density values of 420 kg/m3 and 300 kg/m3, respectively. Branch biomass was derived from fresh to dry weight ratio, which was estimated from the selected branches from three segments of tree crown that were later oven-dried. These sampled branches were also used to estimate the foliage biomass, which was sampled to assess the share of the most recent year needles in the total foliage biomass. The biomass of eventual cones was also estimated.The total above-ground biomass was taken to be the sum of stem-wood over bark, branches, needles and cones.", + "Parameter_Conditions": "The mathematical expression for computing a value for stem biomass over bark is a logarithmic function of diameter at breast height, tree height, and altitude above sea level.", + "Regional_Conditions": "Czech Republic; Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (190 m to 700 m), tree age (12-122 years), diameter at breast height (4.5-38.5 cm), tree height (5-31.8 m) and crown length (3.0-11.2 m). All sites represented tipycal growth conditions with medium soil fertility.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "ln(Sob) = ln(0.01397) + 1.71811 ln(D) + 1.40472 ln(H) - 0,05312 ln(Z), where Sub is stem biomass (under bark), D is diameter at breast height (m), H is tree-height (m) and Z is altitude above sea level (m). R^2_adj = 0.991.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, M. Cerný, F. Tatarinov, J. Apltauer, Z. Exnerová. 2006. Biomass functions applicable to Scots pine. Trees 20: 483-495.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:53.101Z", + "last_change_date": "2022-03-14T08:11:53.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15071, + "fields": { + "EF_ID": 521201, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A bark biomass allometric equation for Scots pine (Pinus sylvestris. L.) was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for individual tree bark biomass as a two-parameter function of diameter at breast height and tree height.", + "Technology_Practices": "A total of 52 trees were cut down to make a representative universe of typically managed single-species even-aged pine stands. All basic and measurable information was recorded, including tree diameter along the stem axis, tree height, height of the green crown, and bark thickness. The amount of biomass represented by the individual tree aboveground components included tree stem, dead and live branches, bark, cones and needles, and the proportion of the latest year foliage was also taken note of. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Each of these components was converted to biomass by multiplying density values of 420 kg/m3 and 300 kg/m3, respectively. Branch biomass was derived from fresh to dry weight ratio, which was estimated from the selected branches from three segments of tree crown that were later oven-dried. These sampled branches were also used to estimate the foliage biomass, which was sampled to assess the share of the most recent year needles in the total foliage biomass. The biomass of eventual cones was also estimated.The total above-ground biomass was taken to be the sum of stem-wood over bark, branches, needles and cones.", + "Parameter_Conditions": "The mathematical expression for computing a value for bark biomass is a two-parameter function of diameter at breast height and tree height.", + "Regional_Conditions": "Czech Republic; Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (190 m to 700 m), tree age (12-122 years), diameter at breast height (4.5-38.5 cm), tree height (5-31.8 m) and crown length (3.0-11.2 m). All sites represented tipycal growth conditions with medium soil fertility.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "Brk = 0.00949 x (D^² x H)^0.75334, where Brk is bark biomass, D is diameter at breast height (m), and H is tree-height (m). R^2_adj = 0.93.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, M. Cerný, F. Tatarinov, J. Apltauer, Z. Exnerová. 2006. Biomass functions applicable to Scots pine. Trees 20: 483-495.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:53.210Z", + "last_change_date": "2022-03-14T08:11:53.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15072, + "fields": { + "EF_ID": 521202, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A biomass allometric equation for Scots pine (Pinus sylvestris. L.) needles was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for needles-biomass as a function of diameter at breast height, tree height, tree age, crown length, and altitude.", + "Technology_Practices": "A total of 52 trees were cut down to make a representative universe of typically managed single-species even-aged pine stands. All basic and measurable information was recorded, including tree diameter along the stem axis, tree height, height of the green crown (crown length), and bark thickness. The amount of biomass represented by the individual tree aboveground components included tree stem, dead and live branches, bark, cones and needles, and the proportion of the latest year foliage was also taken note of. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Each of these components was converted to biomass by multiplying density values of 420 kg/m3 and 300 kg/m3, respectively. Branch biomass was derived from fresh to dry weight ratio, which was estimated from the selected branches from three segments of tree crown that were later oven-dried. These sampled branches were also used to estimate the foliage biomass, which was sampled to assess the share of the most recent year needles in the total foliage biomass. The biomass of eventual cones was also estimated.The total above-ground biomass was taken to be the sum of stem-wood over bark, branches, needles and cones.", + "Parameter_Conditions": "The mathematical expression for computing a value for stem biomass over bark is a logarithmic function of diameter at breast height, tree height, tree age, crown length, and altitude above sea level.", + "Regional_Conditions": "Czech Republic; Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (190 m to 700 m), tree age (12-122 years), diameter at breast height (4.5-38.5 cm), tree height (5-31.8 m) and crown length (3.0-11.2 m). All sites represented tipycal growth conditions with medium soil fertility.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "ln(Ndl) = ln(0.16126) + 1.24419 ln(D) - 0.90789 ln(H) + 0.16552 ln(A) + 0.37546 ln(C) + 0.1551 ln(Z), where Ndl is needles biomass, D is diameter at breast height (m), H is tree-height (m), A is tree age (year), C is crown length (m), and Z is altitude above sea level (m). R^2_adj = 0.845.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, M. Cerný, F. Tatarinov, J. Apltauer, Z. Exnerová. 2006. Biomass functions applicable to Scots pine. Trees 20: 483-495.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:53.327Z", + "last_change_date": "2022-03-14T08:11:53.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15073, + "fields": { + "EF_ID": 521203, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A biomass allometric equation for Scots pine (Pinus sylvestris. L.) live branches was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for live branches biomass as a function of diameter at breast height, tree height, tree age, and crown length.", + "Technology_Practices": "A total of 52 trees were cut down to make a representative universe of typically managed single-species even-aged pine stands. All basic and measurable information was recorded, including tree diameter along the stem axis, tree height, height of the green crown (crown length), and bark thickness. The amount of biomass represented by the individual tree aboveground components included tree stem, dead and live branches, bark, cones and needles, and the proportion of the latest year foliage was also taken note of. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Each of these components was converted to biomass by multiplying density values of 420 kg/m3 and 300 kg/m3, respectively. Branch biomass was derived from fresh to dry weight ratio, which was estimated from the selected branches from three segments of tree crown that were later oven-dried. These sampled branches were also used to estimate the foliage biomass, which was sampled to assess the share of the most recent year needles in the total foliage biomass. The biomass of eventual cones was also estimated.The total above-ground biomass was taken to be the sum of stem-wood over bark, branches, needles and cones.", + "Parameter_Conditions": "The mathematical expression for computing a value for stem biomass over bark is a logarithmic function of diameter at breast height, tree height, tree age, and crown length.", + "Regional_Conditions": "Czech Republic; Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (190 m to 700 m), tree age (12-122 years), diameter at breast height (4.5-38.5 cm), tree height (5-31.8 m) and crown length (3.0-11.2 m). All sites represented tipycal growth conditions with medium soil fertility.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "ln(LB) = ln(0.24319) + 2.57769 ln(D) - 2.41794 ln(H) + 0.47756 ln(A) + 0.74574 ln(C), where LB is live branches biomass, D is diameter at breast height (m), H is tree-height (m), A is tree age (year), and C is crown length (m). R^2_adj = 0.885.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, M. Cerný, F. Tatarinov, J. Apltauer, Z. Exnerová. 2006. Biomass functions applicable to Scots pine. Trees 20: 483-495.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:53.428Z", + "last_change_date": "2022-03-14T08:11:53.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15074, + "fields": { + "EF_ID": 521204, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A biomass allometric equation for Scots pine (Pinus sylvestris. L.) dead branches was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for dead branches biomass as a function of diameter at breast height, tree height, and tree age.", + "Technology_Practices": "A total of 52 trees were cut down to make a representative universe of typically managed single-species even-aged pine stands. All basic and measurable information was recorded, including tree diameter along the stem axis, tree height, height of the green crown (crown length), and bark thickness. The amount of biomass represented by the individual tree aboveground components included tree stem, dead and live branches, bark, cones and needles, and the proportion of the latest year foliage was also taken note of. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Each of these components was converted to biomass by multiplying density values of 420 kg/m3 and 300 kg/m3, respectively. Branch biomass was derived from fresh to dry weight ratio, which was estimated from the selected branches from three segments of tree crown that were later oven-dried. These sampled branches were also used to estimate the foliage biomass, which was sampled to assess the share of the most recent year needles in the total foliage biomass. The biomass of eventual cones was also estimated.The total above-ground biomass was taken to be the sum of stem-wood over bark, branches, needles and cones.", + "Parameter_Conditions": "The mathematical expression for computing a value for stem biomass over bark is a logartihmic function of diameter at breast height, tree height, and tree age.", + "Regional_Conditions": "Czech Republic; Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (190 m to 700 m), tree age (12-122 years), diameter at breast height (4.5-38.5 cm), tree height (5-31.8 m) and crown length (3.0-11.2 m). All sites represented tipycal growth conditions with medium soil fertility.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "ln(DB) = ln(0.0549) + 5.26659 ln(D) - 3.33521 ln(H) - 0.54595 ln(A), where DB is dead branches biomass, D is diameter at breast height (m), H is tree-height (m), and A is tree age (year). R^2_adj = 0.771.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, M. Cerný, F. Tatarinov, J. Apltauer, Z. Exnerová. 2006. Biomass functions applicable to Scots pine. Trees 20: 483-495.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:53.545Z", + "last_change_date": "2022-03-14T08:11:53.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15075, + "fields": { + "EF_ID": 521205, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A biomass allometric equation for Scots pine (Pinus sylvestris. L.) cones was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for cone biomass as a function of diameter at breast height, tree height, and tree age.", + "Technology_Practices": "A total of 52 trees were cut down to make a representative universe of typically managed single-species even-aged pine stands. All basic and measurable information was recorded, including tree diameter along the stem axis, tree height, height of the green crown (crown length), and bark thickness. The amount of biomass represented by the individual tree aboveground components included tree stem, dead and live branches, bark, cones and needles, and the proportion of the latest year foliage was also taken note of. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Each of these components was converted to biomass by multiplying density values of 420 kg/m3 and 300 kg/m3, respectively. Branch biomass was derived from fresh to dry weight ratio, which was estimated from the selected branches from three segments of tree crown that were later oven-dried. These sampled branches were also used to estimate the foliage biomass, which was sampled to assess the share of the most recent year needles in the total foliage biomass. The biomass of eventual cones was also estimated.The total above-ground biomass was taken to be the sum of stem-wood over bark, branches, needles and cones.", + "Parameter_Conditions": "The mathematical expression for computing a value for cone biomass is a logarithmic function of diameter at breast height, tree height, and tree age.", + "Regional_Conditions": "Czech Republic; Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (190 m to 700 m), tree age (12-122 years), diameter at breast height (4.5-38.5 cm), tree height (5-31.8 m) and crown length (3.0-11.2 m). All sites represented tipycal growth conditions with medium soil fertility.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "dimensionless", + "Equation": "ln(Co) = ln(4.66E-06) + 0.67914 ln(D) - 0.33241 ln(H) + 2.48193 ln(A), where Co is cone biomass, D is diameter at breast height (m), H is tree-height (m), and A is tree age (year). R^2_adj = 0.423.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, M. Cerný, F. Tatarinov, J. Apltauer, Z. Exnerová. 2006. Biomass functions applicable to Scots pine. Trees 20: 483-495.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:53.655Z", + "last_change_date": "2022-03-14T08:11:53.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15076, + "fields": { + "EF_ID": 521206, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "An above-ground biomass allometric equation for oak was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for individual tree above-ground biomass as a function of diameter at breast height.", + "Technology_Practices": "A total of 51 trees were cut down to make a representative universe of all stands. All basic and measurable information was recorded, including tree diameter along 1 cm- intervals along the stem axis, tree height, crown base and its corresponding stem diamater, height of the green crown, and bark thickness. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried at 90°C for up to 8 days. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Living branch dry-biomass in each sampled tree was estimated from the fresh weights of selected branches from 3 segments of the tree crown times the oven-dry weight ratio. Branch biomass did not include leaf-biomass, because trees were sampled at the leafless stage, prior to bud break. The total above-ground biomass was taken to be the sum of stem-wood over bark and living branch biomasses.", + "Parameter_Conditions": "The mathematical expression for computing tree above-ground biomass is a two-parameter function of diameter at breast height.", + "Regional_Conditions": "Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (150 m to 430 m), site index (soil fertility ranged from fertile to poor) and oak proportion (from 40 % to 100 %).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "kg/unit", + "Equation": "AGB = –2.380 x D^2.549; where AGB is the above-ground biomass and D is diameter at breast height (m). R^2_adj = 0.991.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, J. Apltauer, Z. Exnerová, F. Tatarinov. 2008. Biomass functions applicable to oak trees grown in Central-European forestry. Journal of Forest Science 54 (3): 109-120.", + "English_Abstract": "This study describes the parameterization of biomass functions applicable to oak (Quercus robur, Quercus petraea) trees grown in the conditions of Central-European forestry. It is based on destructive measurements of 51 grown trees sampled from 6 sites in different regions of the Czech Republic important for oak forest management. The samples covered trees of breast height diameter (D) ranging from 6 to 59 cm, tree height (H) from 6 to 32 m and age between 12 and 152 years. The parameterization was performed for total aboveground biomass and its individual components. The two basic levels of biomass functions utilized D either as a single independent variable or in combination with H. The functions of the third level represented the best function for each biomass component with the optimal combination of available independent variables, which included D, H, crown length (CL), crown width (CW), crown ratio (CR = CL/H), tree age and site altitude. D was found to be a particularly strong predictor for total tree aboveground biomass. H was found to always improve the fit, particularly for the individual components of aboveground biomass. The contribution of CW was minor, but significant for all biomass components, whereas CL and CR were found useful for the components of stem and living branches, respectively. Finally, the remaining variables tree age and altitude were each justified only for one component function, namely living branch biomass and stem bark, respectively. The study also compares the fitted functions with other available references applicable to oak trees", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:53.764Z", + "last_change_date": "2022-03-14T08:11:53.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15077, + "fields": { + "EF_ID": 521207, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "An above-ground biomass allometric equation for oak was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for individual tree above-ground biomass as a function of diameter at breast height and height.", + "Technology_Practices": "A total of 51 trees were cut down to make a representative universe of all stands. All basic and measurable information was recorded, including tree diameter along 1 cm- intervals along the stem axis, tree height, crown base and its corresponding stem diamater, height of the green crown, and bark thickness. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried at 90°C for up to 8 days. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Living branch dry-biomass in each sampled tree was estimated from the fresh weights of selected branches from 3 segments of the tree crown times the oven-dry weight ratio. Branch biomass did not include leaf-biomass, because trees were sampled at the leafless stage, prior to bud break. The total above-ground biomass was taken to be the sum of stem-wood over bark and living branch biomasses.", + "Parameter_Conditions": "The mathematical expression for computing above-ground biomass is a three-parameter function of diameter at breast height and tree height.", + "Regional_Conditions": "Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (150 m to 430 m), site index (soil fertility ranged from fertile to poor) and oak proportion (from 40 % to 100 %).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "kg/unit", + "Equation": "AGB = –3.069 x D^2.137 x H^0.661; where AGB is the above-ground biomass, D is diameter at breast height (m) and H is tree height (m). R^2_adj = 0.996", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, J. Apltauer, Z. Exnerová, F. Tatarinov. 2008. Biomass functions applicable to oak trees grown in Central-European forestry. Journal of Forest Science 54 (3): 109-120.", + "English_Abstract": "This study describes the parameterization of biomass functions applicable to oak (Quercus robur, Quercus petraea) trees grown in the conditions of Central-European forestry. It is based on destructive measurements of 51 grown trees sampled from 6 sites in different regions of the Czech Republic important for oak forest management. The samples covered trees of breast height diameter (D) ranging from 6 to 59 cm, tree height (H) from 6 to 32 m and age between 12 and 152 years. The parameterization was performed for total aboveground biomass and its individual components. The two basic levels of biomass functions utilized D either as a single independent variable or in combination with H. The functions of the third level represented the best function for each biomass component with the optimal combination of available independent variables, which included D, H, crown length (CL), crown width (CW), crown ratio (CR = CL/H), tree age and site altitude. D was found to be a particularly strong predictor for total tree aboveground biomass. H was found to always improve the fit, particularly for the individual components of aboveground biomass. The contribution of CW was minor, but significant for all biomass components, whereas CL and CR were found useful for the components of stem and living branches, respectively. Finally, the remaining variables tree age and altitude were each justified only for one component function, namely living branch biomass and stem bark, respectively. The study also compares the fitted functions with other available references applicable to oak trees", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:53.890Z", + "last_change_date": "2022-03-14T08:11:53.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15078, + "fields": { + "EF_ID": 521208, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A stem biomass over bark allometric equation for oak was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for individual tree stem biomass over bark as a function of diameter at breast height.", + "Technology_Practices": "A total of 51 trees were cut down to make a representative universe of all stands. All basic and measurable information was recorded, including tree diameter along 1 cm- intervals along the stem axis, tree height, crown base and its corresponding stem diamater, height of the green crown, and bark thickness. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried at 90°C for up to 8 days. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Living branch dry-biomass in each sampled tree was estimated from the fresh weights of selected branches from 3 segments of the tree crown times the oven-dry weight ratio. Branch biomass did not include leaf-biomass, because trees were sampled at the leafless stage, prior to bud break. The total above-ground biomass was taken to be the sum of stem-wood over bark and living branch biomasses.", + "Parameter_Conditions": "The mathematical expression for computing a value for stem biomass over bark is a two-parameter function of diameter at breast height.", + "Regional_Conditions": "Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (150 m to 430 m), site index (soil fertility ranged from fertile to poor) and oak proportion (from 40 % to 100 %).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "kg/unit", + "Equation": "SB = –2.652 x D^2.578; where SB is the stem biomass over bark and D is diameter at breast height (m). R^2_adj = 0.987.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, J. Apltauer, Z. Exnerová, F. Tatarinov. 2008. Biomass functions applicable to oak trees grown in Central-European forestry. Journal of Forest Science 54 (3): 109-120.", + "English_Abstract": "This study describes the parameterization of biomass functions applicable to oak (Quercus robur, Quercus petraea) trees grown in the conditions of Central-European forestry. It is based on destructive measurements of 51 grown trees sampled from 6 sites in different regions of the Czech Republic important for oak forest management. The samples covered trees of breast height diameter (D) ranging from 6 to 59 cm, tree height (H) from 6 to 32 m and age between 12 and 152 years. The parameterization was performed for total aboveground biomass and its individual components. The two basic levels of biomass functions utilized D either as a single independent variable or in combination with H. The functions of the third level represented the best function for each biomass component with the optimal combination of available independent variables, which included D, H, crown length (CL), crown width (CW), crown ratio (CR = CL/H), tree age and site altitude. D was found to be a particularly strong predictor for total tree aboveground biomass. H was found to always improve the fit, particularly for the individual components of aboveground biomass. The contribution of CW was minor, but significant for all biomass components, whereas CL and CR were found useful for the components of stem and living branches, respectively. Finally, the remaining variables tree age and altitude were each justified only for one component function, namely living branch biomass and stem bark, respectively. The study also compares the fitted functions with other available references applicable to oak trees", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:54.016Z", + "last_change_date": "2022-03-14T08:11:54.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15079, + "fields": { + "EF_ID": 521209, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "A stem biomass over bark allometric equation for oak was derived for individual trees growing in the Czech Republic. The current sheet shows the equation for individual tree stem biomass over bark as a function of diameter at breast height and tree height.", + "Technology_Practices": "A total of 51 trees were cut down to make a representative universe of all stands. All basic and measurable information was recorded, including tree diameter along 1 cm- intervals along the stem axis, tree height, crown base and its corresponding stem diamater, height of the green crown, and bark thickness. Biomass components were directly measured in situ or sub-sambled, weighed and later oven-dried at 90°C for up to 8 days. Stem and stem bark volume was obtained from diameter and bark width measurements taken a 1-m intervals. Living branch dry-biomass in each sampled tree was estimated from the fresh weights of selected branches from 3 segments of the tree crown times the oven-dry weight ratio. Branch biomass did not include leaf-biomass, because trees were sampled at the leafless stage, prior to bud break. The total above-ground biomass was taken to be the sum of stem-wood over bark and living branch biomasses.", + "Parameter_Conditions": "The mathematical expression for computing a value for stem biomass over bark is a three-parameter function of diameter at breast height and tree height.", + "Regional_Conditions": "Sampled stands represented the most important regions for oak. Sampled stands differed as to altitude (150 m to 430 m), site index (soil fertility ranged from fertile to poor) and oak proportion (from 40 % to 100 %).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See `Equation` field", + "Unit": "kg/unit", + "Equation": "SB = –3.731 x D^1.933 x H^1.036; where SB is the stem biomass over bark, D is diameter at breast height (m) and H is tree height (m). R^2_adj = 0.998", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "E. Cienciala, J. Apltauer, Z. Exnerová, F. Tatarinov. 2008. Biomass functions applicable to oak trees grown in Central-European forestry. Journal of Forest Science 54 (3): 109-120.", + "English_Abstract": "This study describes the parameterization of biomass functions applicable to oak (Quercus robur, Quercus petraea) trees grown in the conditions of Central-European forestry. It is based on destructive measurements of 51 grown trees sampled from 6 sites in different regions of the Czech Republic important for oak forest management. The samples covered trees of breast height diameter (D) ranging from 6 to 59 cm, tree height (H) from 6 to 32 m and age between 12 and 152 years. The parameterization was performed for total aboveground biomass and its individual components. The two basic levels of biomass functions utilized D either as a single independent variable or in combination with H. The functions of the third level represented the best function for each biomass component with the optimal combination of available independent variables, which included D, H, crown length (CL), crown width (CW), crown ratio (CR = CL/H), tree age and site altitude. D was found to be a particularly strong predictor for total tree aboveground biomass. H was found to always improve the fit, particularly for the individual components of aboveground biomass. The contribution of CW was minor, but significant for all biomass components, whereas CL and CR were found useful for the components of stem and living branches, respectively. Finally, the remaining variables tree age and altitude were each justified only for one component function, namely living branch biomass and stem bark, respectively. The study also compares the fitted functions with other available references applicable to oak trees", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Emil Cienciala", + "Link": "", + "creation_date": "2022-03-14T08:11:54.141Z", + "last_change_date": "2022-03-14T08:11:54.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15080, + "fields": { + "EF_ID": 521210, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of broadleaved tree species in Finland for a stand age between 10 and 19 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved species were sampled; a total of 153 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age between 10 and 19 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.544", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Nos. FL-1a( sheet 3 of 4) and FL-2a(sheet 1of 1); 2006 IPCC Guidelines Worksheet Nos. 3B1a (sheet 2 of 4; sheet 3 of 4) and 3B1b(sheet 2 of 4; sheet 3 of 4).", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.434", + "Upper_Bound": "0.654", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:54.259Z", + "last_change_date": "2022-03-14T08:11:54.259Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15081, + "fields": { + "EF_ID": 521211, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of broadleaved tree species in Finland for a stand age between 20 and 29 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved species were sampled; a total of 153 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age between 20 and 29 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.551", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Nos. FL-1a( sheet 3 of 4) and FL-2a(sheet 1of 1); 2006 IPCC Guidelines Worksheet Nos. 3B1a (sheet 2 of 4; sheet 3 of 4) and 3B1b(sheet 2 of 4; sheet 3 of 4).", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.471", + "Upper_Bound": "0.631", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:54.376Z", + "last_change_date": "2022-03-14T08:11:54.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15082, + "fields": { + "EF_ID": 521212, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of broadleaved tree species in Finland for a stand age between 30 and 39 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved species were sampled; a total of 153 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age between 30 and 39 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.554", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Nos. FL-1a( sheet 3 of 4) and FL-2a(sheet 1of 1); 2006 IPCC Guidelines Worksheet Nos. 3B1a (sheet 2 of 4; sheet 3 of 4) and 3B1b(sheet 2 of 4; sheet 3 of 4).", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.494", + "Upper_Bound": "0.614", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:54.493Z", + "last_change_date": "2022-03-14T08:11:54.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15083, + "fields": { + "EF_ID": 521213, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of broadleaved tree species in Finland for a stand age between 40 and 49 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved species were sampled; a total of 153 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs– is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age between 40 and 49 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.556", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Nos. FL-1a( sheet 3 of 4) and FL-2a(sheet 1of 1); 2006 IPCC Guidelines Worksheet Nos. 3B1a (sheet 2 of 4; sheet 3 of 4) and 3B1b(sheet 2 of 4; sheet 3 of 4).", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.516", + "Upper_Bound": "0.596", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:54.644Z", + "last_change_date": "2022-03-14T08:11:54.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15084, + "fields": { + "EF_ID": 521214, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of broadleaved tree species in Finland for a stand age between 50 and 59 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved species were sampled; a total of 153 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age between 50 and 59 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.552", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Nos. FL-1a( sheet 3 of 4) and FL-2a(sheet 1of 1); 2006 IPCC Guidelines Worksheet Nos. 3B1a (sheet 2 of 4; sheet 3 of 4) and 3B1b(sheet 2 of 4; sheet 3 of 4).", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.502", + "Upper_Bound": "0.602", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:54.761Z", + "last_change_date": "2022-03-14T08:11:54.761Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15085, + "fields": { + "EF_ID": 521215, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of broadleaved tree species in Finland for a stand age between 60 and 69 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved species were sampled; a total of 153 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age between 60 and 69 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.554", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Nos. FL-1a( sheet 3 of 4) and FL-2a(sheet 1of 1); 2006 IPCC Guidelines Worksheet Nos. 3B1a (sheet 2 of 4; sheet 3 of 4) and 3B1b(sheet 2 of 4; sheet 3 of 4).", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.494", + "Upper_Bound": "0.614", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:54.879Z", + "last_change_date": "2022-03-14T08:11:54.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15086, + "fields": { + "EF_ID": 521216, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of broadleaved tree species in Finland for a stand age between 70 and 89 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved species were sampled; a total of 153 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age between 70 and 79 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.545", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Nos. FL-1a( sheet 3 of 4) and FL-2a(sheet 1of 1); 2006 IPCC Guidelines Worksheet Nos. 3B1a (sheet 2 of 4; sheet 3 of 4) and 3B1b(sheet 2 of 4; sheet 3 of 4).", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.495", + "Upper_Bound": "0.595", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:54.987Z", + "last_change_date": "2022-03-14T08:11:54.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15087, + "fields": { + "EF_ID": 521217, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of broadleaved tree species in Finland for a stand age of 90 years or older.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved species were sampled; a total of 153 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age 90 years and older.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.544", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Nos. FL-1a( sheet 3 of 4) and FL-2a(sheet 1of 1); 2006 IPCC Guidelines Worksheet Nos. 3B1a (sheet 2 of 4; sheet 3 of 4) and 3B1b(sheet 2 of 4; sheet 3 of 4).", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.484", + "Upper_Bound": "0.604", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:55.096Z", + "last_change_date": "2022-03-14T08:11:55.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15088, + "fields": { + "EF_ID": 521218, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for stem biomass as a function of time, for broadleaved tree species stands in Finland aged between 10 and 100 years. Stands with stem volume less than 200 m^3.ha^(-1) were excluded from the computation of BEF`s parameter values.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m^3.ha^(-1).year^(-1) – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved tree species were sampled. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand Biomass Expansion Factor for stem biomass – BEFST – is defined as the quotient between the sum of stem dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this equation is applicable for broadleaved tree species stands aged between 10 and 100 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.3964, b = – 0.0186", + "Unit": "See `Equation` field", + "Equation": "BEF(ST) = a + b x Exp[-0.01t], where BEF(ST) s the biomass expansion factor for stem biomass (tonnes dm/m3 fresh volume); a and b are parameters and t is the stand age.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of BEF as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:55.206Z", + "last_change_date": "2022-03-14T08:11:55.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15089, + "fields": { + "EF_ID": 521219, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for above-ground dry biomass as a function of time, for broadleaved tree species stands in Finland aged between 10 and 100 years. Stands with stem volume less than 200 m^3.ha^(-1) were excluded from the computation of BEF`s parameter values.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m^3.ha^(-1).year^(-1) – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of broadleaved tree species were sampled. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand Biomass Expansion Factor for stem biomass – BEFAG – is defined as the quotient between the sum of total stem, foliage, living branches, dead branches and bark dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this equation is applicable for broadleaved tree species stands aged between 10 and 100 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.5616, b = – 0.0179", + "Unit": "See `Equation` field", + "Equation": "BEF(AG) = a + b x Exp[-0.01t], where BEF(AG) is the biomass expansion factor for total above ground plant biomass (tonnes dm/m3 fresh volume); a and b are parameters and t is the stand age.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of BEF as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:55.315Z", + "last_change_date": "2022-03-14T08:11:55.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15090, + "fields": { + "EF_ID": 521220, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 10 and 19 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 10 and 19 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.697", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.577", + "Upper_Bound": "0.817", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:55.483Z", + "last_change_date": "2022-03-14T08:11:55.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15091, + "fields": { + "EF_ID": 521221, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees for a stand in Finland age between 20 and 29 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 20 and 29 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.705", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.645", + "Upper_Bound": "0.765", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:55.608Z", + "last_change_date": "2022-03-14T08:11:55.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15092, + "fields": { + "EF_ID": 521222, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees for a stand age between 30 and 39 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.710", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.650", + "Upper_Bound": "0.770", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:55.735Z", + "last_change_date": "2022-03-14T08:11:55.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15093, + "fields": { + "EF_ID": 521223, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 40 and 49 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 40 and 49 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.702", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.632", + "Upper_Bound": "0.772", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:55.852Z", + "last_change_date": "2022-03-14T08:11:55.852Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15094, + "fields": { + "EF_ID": 521224, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 50 and 59 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 50 and 59 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.701", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.641", + "Upper_Bound": "0.761", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:55.969Z", + "last_change_date": "2022-03-14T08:11:55.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15095, + "fields": { + "EF_ID": 521225, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 60 and 69 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 60 and 69 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.710", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.660", + "Upper_Bound": "0.760", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:56.086Z", + "last_change_date": "2022-03-14T08:11:56.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15096, + "fields": { + "EF_ID": 521226, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 70 and 79 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 70 and 79 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.708", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.658", + "Upper_Bound": "0.758", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:56.211Z", + "last_change_date": "2022-03-14T08:11:56.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15097, + "fields": { + "EF_ID": 521227, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 80 and 89 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 80 and 89 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.707", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.647", + "Upper_Bound": "0.767", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:56.329Z", + "last_change_date": "2022-03-14T08:11:56.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15098, + "fields": { + "EF_ID": 521228, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 90 and 99 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 90 and 99 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.704", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.664", + "Upper_Bound": "0.764", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:56.446Z", + "last_change_date": "2022-03-14T08:11:56.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15099, + "fields": { + "EF_ID": 521229, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 100 and 119 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 100 and 119 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.703", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.663", + "Upper_Bound": "0.743", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:56.538Z", + "last_change_date": "2022-03-14T08:11:56.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15100, + "fields": { + "EF_ID": 521230, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand age between 120 and 139 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; This value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 120 and 139 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.698", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.638", + "Upper_Bound": "0.758", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:56.630Z", + "last_change_date": "2022-03-14T08:11:56.631Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15101, + "fields": { + "EF_ID": 521231, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Scots pine (Pinus sylvestris) trees in Finland for a stand aged 140 years or older.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 782 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable to broadleaved tree species for a stand age 140 years or older", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.690", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEFS = WS/VS, where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.630", + "Upper_Bound": "0.750", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same given in the IPCC Guidelines. The upper and lower confidence limits were obtained from the maximum relative standard error (RSE). The value of RSE was estimated assuming independence and full correlation between trees in a cluster of sites of the Finnish National Forest Inventory.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:56.725Z", + "last_change_date": "2022-03-14T08:11:56.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15102, + "fields": { + "EF_ID": 521232, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for stem dry biomass as a function of time, for Scots pine (Pinus sylvestris) forest stands aged between 10 and 150 years. Stands with stem volume less than 250 m3.ha-1 were not included.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand Biomass Expansion Factor for stem biomass – BEFST – is defined as the quotient between the sum of stem dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 10 and 150 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.4194, b = – 0.0798", + "Unit": "See `Equation` field", + "Equation": "BEF(ST) = a + b x Exp[-0.01t], where BEF(ST) is the biomass expansion factor for stem biomass (tonnes dm/m3 fresh volume); a and b are parameters and t is the stand age.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:56.850Z", + "last_change_date": "2022-03-14T08:11:56.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15103, + "fields": { + "EF_ID": 521233, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for whole plant dry biomass as a function of time, for Scots pine (Pinus sylvestris) forest stands in Finland aged between 10 and 150 years. Stands with stem volume less than 250 m3.ha-1 were not included.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled. Trees with diameter at breast height less than 5 cm were not included in the measurements. Whole plant biomass is the sum of stem, foliage, branch (live and dead), bark, stump and root – small and coarse – biomasses.", + "Parameter_Conditions": "The stand Biomass Expansion Factor for total plant biomass – BEFT – is defined as the quotient between the sum of total plant dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 10 and 150 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.7018, b = 0.0058", + "Unit": "See `Equation` field", + "Equation": "BEF(T) = a + b x Exp[-0.01t], where BEF(T) is the biomass expansion factor for total plant biomass (tonnes dm/m3 fresh volume); a and b are parameters and t is the stand age.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.001Z", + "last_change_date": "2022-03-14T08:11:57.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15104, + "fields": { + "EF_ID": 521234, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for above-ground dry biomass as a function of time, for Scots pine (Pinus sylvestris) forest stands in Finland aged between 10 and 150 years. Stands with stem volume less than 250 m3.ha-1 were not included.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled. Trees with diameter at breast height less than 5 cm were not included in the measurements. Whole plant biomass is the sum of stem, foliage, branch (live and dead), bark, stump and root – small and coarse – biomasses.", + "Parameter_Conditions": "The stand Biomass Expansion Factor for above-ground biomass – BEFAG – is defined as the quotient between the sum of total stem, foliage, living branches, dead branches and bark dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Scots pine (Pinus sylvestris) trees for a stand age between 10 and 150 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.5436, b = 0.0193", + "Unit": "See `Equation` field", + "Equation": "BEF(AG) = a + b x Exp[-0.01t], where BEF(AG) is the biomass expansion factor for above-ground biomass (tonnes dm/m3 fresh volume), a and b are parameters and t is the stand age (years).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.126Z", + "last_change_date": "2022-03-14T08:11:57.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15105, + "fields": { + "EF_ID": 521235, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees for a stand age between 10 and 19 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs– is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 10 and 19 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.862", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.492", + "Upper_Bound": "1.232", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.252Z", + "last_change_date": "2022-03-14T08:11:57.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15106, + "fields": { + "EF_ID": 521236, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees for a stand age between 20 and 29 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 20 and 29 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.860", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.690", + "Upper_Bound": "1.030", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.377Z", + "last_change_date": "2022-03-14T08:11:57.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15107, + "fields": { + "EF_ID": 521237, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees in Finland for a stand age between 30 and 39 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs– is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 30 and 39 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.841", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.731", + "Upper_Bound": "0.951", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.495Z", + "last_change_date": "2022-03-14T08:11:57.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15108, + "fields": { + "EF_ID": 521238, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees for a stand age in Finland between 40 and 49 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.820", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.760", + "Upper_Bound": "0.880", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.637Z", + "last_change_date": "2022-03-14T08:11:57.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15109, + "fields": { + "EF_ID": 521239, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees for a stand age between 50 and 59 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 50 and 59 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.816", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.756", + "Upper_Bound": "0.876", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.746Z", + "last_change_date": "2022-03-14T08:11:57.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15110, + "fields": { + "EF_ID": 521240, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees for a stand age between 60 and 69 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs– is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 60 and 69 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.791", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.741", + "Upper_Bound": "0.841", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.855Z", + "last_change_date": "2022-03-14T08:11:57.855Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15111, + "fields": { + "EF_ID": 521241, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees for a stand age between 70 and 79 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 70 and 79 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.784", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.734", + "Upper_Bound": "0.834", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:57.981Z", + "last_change_date": "2022-03-14T08:11:57.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15112, + "fields": { + "EF_ID": 521242, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees in Finland for a stand age between 80 and 89 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 80 and 89 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.777", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.727", + "Upper_Bound": "0.827", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:58.090Z", + "last_change_date": "2022-03-14T08:11:58.090Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15113, + "fields": { + "EF_ID": 521243, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees in Finland for a stand age between 90 and 99 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 90 and 99 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.782", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.732", + "Upper_Bound": "0.832", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:58.224Z", + "last_change_date": "2022-03-14T08:11:58.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15114, + "fields": { + "EF_ID": 521244, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees for a stand age between 100 and 119 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 100 and 119 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.784", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.744", + "Upper_Bound": "0.824", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:58.325Z", + "last_change_date": "2022-03-14T08:11:58.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15115, + "fields": { + "EF_ID": 521245, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees in Finland for a stand age between 120 and 139 years.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEF(S) – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 120 and 139 years.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.782", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.712", + "Upper_Bound": "0.852", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:58.426Z", + "last_change_date": "2022-03-14T08:11:58.426Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15116, + "fields": { + "EF_ID": 521246, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for total dry biomass as a function of stem volume of Norway Spruce (Picea abies) trees in Finland for a stand aged 140 years or older.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Scots pine were sampled; a total of 459 trees were measured. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand level Biomass Expansion Factor for total biomass – BEFs – is defined as the quotient between the sum of the dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this value is applicable for Norway Spruce (Picea abies) trees for a stand aged 140 years or older.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.788", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "BEF(S) = W(S)/V(S), where BEFS is the stand biomass expansion factor; WS is the biomass (tonnes dry matter) of trees in a stand, and VS is the volume (m3) of trees in a stand.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "0.738", + "Upper_Bound": "0.838", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Biomass Expansion Factor (BEF) as defined above is not the same as given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:58.535Z", + "last_change_date": "2022-03-14T08:11:58.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15117, + "fields": { + "EF_ID": 521247, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for stem dry biomass as a function of time, for Norway spruce (Picea abies) forest stands aged between 10 and 150 years. Stands with stem volume less than 250 m3.ha-1 were excluded from the computation of BEF`s parameter values.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Norway spruce were sampled. Trees with diameter at breast height less than 5 cm were not included in the measurements.", + "Parameter_Conditions": "The stand Biomass Expansion Factor for stem biomass – BEF(ST)– is defined as the quotient between the sum of stem dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this equation is applicable for Norway spruce (Picea abies) forest stands aged between 10 and 150 years", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.4, b = – 0.0462", + "Unit": "See `Equation` field", + "Equation": "BEF(ST) = a + b x Exp[-0.01t], where BEF(ST) is the biomass expansion factor for stem biomass (tonnes dm/m3 fresh volume); a & b are parameters and t is the stand age.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of Biomass Expansion Factor (BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:58.635Z", + "last_change_date": "2022-03-14T08:11:58.635Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15118, + "fields": { + "EF_ID": 521248, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for whole plant dry biomass as a function of time, for Norway spruce (Picea abies) forest stands aged between 10 and 150 years. Stands with stem volume less than 250 m3.ha-1 were excluded from the computation of BEF`s parameter values.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Norway spruce were sampled. Trees with diameter at breast height less than 5 cm were not included in the measurements. Whole plant biomass is the sum of stem, foliage, branch (live and dead), bark, stump and root – small and coarse – biomasses.", + "Parameter_Conditions": "The stand Biomass Expansion Factor for total plant biomass – BEFT – is defined as the quotient between the sum of total plant dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this equation is applicable for Norway spruce (Picea abies) forest stands aged between 10 and 150 years", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.7406, b = 0.1494", + "Unit": "See `Equation` field", + "Equation": "BEF(T) = a + b x Exp[-0.01t], where BEF(T) is the biomass expansion factor for total plant biomass (tonnes dm/m3 fresh volume); a & b are parameters and t is the stand age.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of Biomass Expansion Factor (BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:58.744Z", + "last_change_date": "2022-03-14T08:11:58.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15119, + "fields": { + "EF_ID": 521249, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Expansion Factor (BEF) for above-ground plant dry biomass as a function of time, for Norway spruce (Picea abies) forest stands aged between 10 and 150 years. Stands with stem volume less than 250 m3.ha-1 were were excluded from the computation of BEF`s parameter values.", + "Technology_Practices": "Data were from sample plots on forest land – tree growth larger than 1 m3.ha-1.year-1 – either on mineral soil or peatlands. These sample plots belonged to a larger set of 3,000 permanent sample plots measured by the Finnish Forest Inventory in 1985-1986. This sampling grid covered whole Finland. Plots with more than 70% basal area made up of Norway spruce were sampled. Trees with diameter at breast height less than 5 cm were not included in the measurements. Whole plant biomass is the sum of stem, foliage, branch (live and dead), bark, stump and root – small and coarse – biomasses.", + "Parameter_Conditions": "The stand Biomass Expansion Factor for stem biomass – BEFAG – is defined as the quotient between the sum of total stem, foliage, living branches, dead branches and bark dry weights of sampled whole trees in a stand, and the sum of tree volumes in the same stand.", + "Regional_Conditions": "Finland; this equation is applicable for Norway spruce (Picea abies) forest stands aged between 10 and 150 years", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "a = 0.5734, b = 0.1272", + "Unit": "See `Equation` field", + "Equation": "BEF(AG) = a + b x Exp[-0.01t], where BEF(AG) is the biomass expansion factor for total above ground plant biomass (tonnes dm/m3 fresh volume); a & b are parameters and t is the stand age.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lethonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R and Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. 2004.", + "English_Abstract": "Assessments of forest resource in national inventories provide a firm basis for quantifying forest biomass and carbon stock. National statistics on forest resources provide estimates of forest area, timber volume, and growth of timber by age classes with known precision. Estimates of carbon stock are, however, obtained by expanding the total stemwood volume to total biomass with simple conversion factors. The objective of this study was to improve the accuracy and reliability of the biomass expansion factors (BEFs) and to develop expansion factors that are dependent on stand age and dominant tree species. For development of BEFs, we applied volume and biomass equations to describe the allometry of single trees and a systematic network of forest inventory data to determine variation in stand structure. The results of this study indicate that the proportions of most biomass components vary considerably during the rotation. We conclude that the reliability of the national carbon stock inventory could be improved by applying these age-dependent BEFs, which are formulated on the basis of representative data and which include an estimate of uncertainty.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The definition of Biomass Expansion Factor (BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Aleksi Lehtonen", + "Link": "", + "creation_date": "2022-03-14T08:11:58.854Z", + "last_change_date": "2022-03-14T08:11:58.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15120, + "fields": { + "EF_ID": 521250, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Japanese cedar (Cryptomeria japonica) (local name Sugi)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Samples were taken from the regions of Tohoku, Kanto, Chubu, and Shikoku. Samples were not collected from Kyushu region because various caltivars that have wide variety of densities may cause to bias of the mean.", + "Value": "0.314", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.50%", + "Upper_Bound": "+2.50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:58.971Z", + "last_change_date": "2022-03-14T08:11:58.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15121, + "fields": { + "EF_ID": 521251, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Japanese cypress (Chamaecyparis obtusa) (local name Hinoki)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Samples were collected from the regions of Kanto, Chubu, Kinki, Shikoku, and Kyushu.", + "Value": "0.407", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-1.70%", + "Upper_Bound": "+1.70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.079Z", + "last_change_date": "2022-03-14T08:11:59.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15122, + "fields": { + "EF_ID": 521252, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Japanese red pine (Pinus densiflora) (local name Akamatsu)", + "Parameter_Conditions": "Planted forests and natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.451", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-7.20%", + "Upper_Bound": "+7.20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.188Z", + "last_change_date": "2022-03-14T08:11:59.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15123, + "fields": { + "EF_ID": 521253, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Hiba arborvitae (Thujposis dolabrata var. hondae) (local name Hiba)", + "Parameter_Conditions": "Planted forests and natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.412", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-4.00%", + "Upper_Bound": "+4.00%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.297Z", + "last_change_date": "2022-03-14T08:11:59.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15124, + "fields": { + "EF_ID": 521254, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Sakhalin fir (Abies sachalinensis) (local name Todamatsu", + "Parameter_Conditions": "Planted forests and natural forests", + "Regional_Conditions": "Cool temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Samples were collected from the region of Hokkaido.", + "Value": "0.318", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.40%", + "Upper_Bound": "+2.40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.407Z", + "last_change_date": "2022-03-14T08:11:59.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15125, + "fields": { + "EF_ID": 521255, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Japanese larch (Larix kaempferi) (local name Karamatsu)", + "Parameter_Conditions": "Planted forests and natural forests", + "Regional_Conditions": "Cool temperate, temperate with moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Samples were taken from central Japan and northern Japan.", + "Value": "0.404", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.50%", + "Upper_Bound": "+2.50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.515Z", + "last_change_date": "2022-03-14T08:11:59.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15126, + "fields": { + "EF_ID": 521256, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Yezo spruce (Picea jezoensis) (local name Ezomatsu", + "Parameter_Conditions": "Planted forests and natural forests", + "Regional_Conditions": "Cool temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Samples were collected from the region of Hokkaido.", + "Value": "0.357", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.30%", + "Upper_Bound": "+2.30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.641Z", + "last_change_date": "2022-03-14T08:11:59.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15127, + "fields": { + "EF_ID": 521257, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Sakhalin spruce (Picea glehnii) (local name Todomatsu)", + "Parameter_Conditions": "Planted forests and natural forests", + "Regional_Conditions": "Cool temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Samples were collected from the region of Hokkaido.", + "Value": "0.362", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-3.00%", + "Upper_Bound": "+3.00%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.750Z", + "last_change_date": "2022-03-14T08:11:59.750Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15128, + "fields": { + "EF_ID": 521258, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Cercidiphyllum japonica (local name Katsura)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.454", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-5.10%", + "Upper_Bound": "+5.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.869Z", + "last_change_date": "2022-03-14T08:11:59.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15129, + "fields": { + "EF_ID": 521259, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Cornus controversa", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.491", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-3.00%", + "Upper_Bound": "+3.00%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:11:59.977Z", + "last_change_date": "2022-03-14T08:11:59.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15130, + "fields": { + "EF_ID": 521260, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Castanea crenata (local name Kuri)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.419", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.80%", + "Upper_Bound": "+2.80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.086Z", + "last_change_date": "2022-03-14T08:12:00.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15131, + "fields": { + "EF_ID": 521261, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Castanopsis cuspidata (local name Tsuburajii)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.431", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-4.30%", + "Upper_Bound": "+4.30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.187Z", + "last_change_date": "2022-03-14T08:12:00.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15132, + "fields": { + "EF_ID": 521262, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Castanopsis cuspidata var. sieboldii (local name Sudajii)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.497", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-4.10%", + "Upper_Bound": "+4.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.287Z", + "last_change_date": "2022-03-14T08:12:00.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15133, + "fields": { + "EF_ID": 521263, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Quercus crispula (local name Mizunara)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.607", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.30%", + "Upper_Bound": "+2.30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.388Z", + "last_change_date": "2022-03-14T08:12:00.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15134, + "fields": { + "EF_ID": 521264, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Quercus serrata (local name Konara)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.633", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-1.30%", + "Upper_Bound": "+1.30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.497Z", + "last_change_date": "2022-03-14T08:12:00.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15135, + "fields": { + "EF_ID": 521265, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Quercus acutissima (local name Kunugi)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.668", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-1.50%", + "Upper_Bound": "+1.50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.598Z", + "last_change_date": "2022-03-14T08:12:00.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15136, + "fields": { + "EF_ID": 521266, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Quercus glauca (local name Arakashi)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.646", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.20%", + "Upper_Bound": "+2.20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.715Z", + "last_change_date": "2022-03-14T08:12:00.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15137, + "fields": { + "EF_ID": 521267, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Fraxinus lanuginose (local name Aodamo)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.566", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.50%", + "Upper_Bound": "+2.50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.832Z", + "last_change_date": "2022-03-14T08:12:00.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15138, + "fields": { + "EF_ID": 521268, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Fraxinus mandshurica var. japonica (local name Yachidamo)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-1.80%", + "Upper_Bound": "+1.80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:00.950Z", + "last_change_date": "2022-03-14T08:12:00.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15139, + "fields": { + "EF_ID": 521269, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Zelkova serrata (local name Keyaki)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.611", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-2.80%", + "Upper_Bound": "+2.80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:01.067Z", + "last_change_date": "2022-03-14T08:12:01.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15140, + "fields": { + "EF_ID": 521270, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Japanese birch (Betula ermanii, B. maximowicziana, B. pentaphyllum var. japonica) (local name Kabanoki)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.481", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-1.80%", + "Upper_Bound": "+1.80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:01.185Z", + "last_change_date": "2022-03-14T08:12:01.185Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15141, + "fields": { + "EF_ID": 521271, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "D (basic wood density)", + "Technology_Practices": "Japanese beech (Fagus crenata) (local name Buna)", + "Parameter_Conditions": "natural and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.573", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheet Numbers 3B1a(sheet 3 of 4)(Page A1.11, Vol.4(2)) and 3B1b(sheet 3 of 4)(Page A1.16, Vol.4(2))", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fujiwara T, Yamashita K, and Kuroda K (2007), Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of Forestry and Forest Product Research Insititute, 6:215-226.", + "English_Abstract": "Basic densities of wood from 10 species (572 trees) of softwoods and 50 species (440 trees) of hardwoods were measured as parameters for estimating the amount of carbon removal by forests following the guidelines described in the Kyoto Protocol and Marrakesh Accord. The basic densities of individual trees were averaged for each species and 95% confi dence limits were calculated for quality control. Furthermore, variations in the mean basic densities within species were assessed by analysis of variation and the effects of stand ages or tree ages on the basic densities were also evaluated. The average and 95% confi dence limits of the basic densities in most species that were collected for a certain number of sample trees converged and most species showed low uncertainty up to 5 %. Some species, such as Larix kaempferi, Picea jezoensis and Picea glehnii, showed significant differences among plots, while other species, such as Chamaecyparis obtusa and Abies sachalinensis did not. When the basic densities were averaged for regional groups, the regional mean did not show signifi cant difference. Thus, the differences found between plots might not have been caused by regional variation. Moreover, neither the tree age nor the stand age showed significant correlation with the basic densities; the basic densities of younger stands (younger than 20 years old) did not differ from those of the older stands. These results suggest that using basic densities as a parameter for estimating carbon removal by forests does not require the preparation of values for districts or age classes.", + "Lower_Bound": "-3.30%", + "Upper_Bound": "+3.30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "http://ss.ffpri.affrc.go.jp/labs/kanko/405-1.pdf", + "creation_date": "2022-03-14T08:12:01.294Z", + "last_change_date": "2022-03-14T08:12:01.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15142, + "fields": { + "EF_ID": 521272, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF (Expansion factor; total biomass/bole biomass)", + "Technology_Practices": "Japanese cedar (Cryptomeria japonica) (Local name Sugi)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Bole (stem) volume is culculated by the Mitscherlich formula. See below.", + "Value": "1.72 (range 1.39-2.86)", + "Unit": "dimensionless", + "Equation": "Total biomass/bole biomass", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fukuda M, Iehara T, and Matsumoto M. (2003), Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184:1-16.", + "English_Abstract": "Forest inventory data are widely used for broad-scale quantification of forest carbon budgets. Such data usually represent forest wood volume (m3 ha-1), which needs to be converted to biomass carbon value (Mg C ha-1) for carbon stock estimates. Our main objective is to estimate the carbon stock for all sugi (Cryptomeria japonica D. Don) and hinoki (Chamaecyparis obtusa Endl.) plantations in Japan on the basis of age-class-based forestry statistics. To achieve this purpose, we estimated regional wood volume accumulation and biomass allocation over time for sugi and hinoki forests to calculate and map the carbon stock in all sugi and hinoki plantations in Japan on the basis of forestry statistics. Hinoki forests showed smaller accumulation of volume than sugi forests from ca. 25 years old to maturity; the accumulation of wood volume per hectare at 80 years old was <600 m3 ha 1 for hinoki and >600 m3 ha 1 for sugi. Patterns of biomass allocation to forest components varied by forest type; the proportion of branch biomass in 0–20-year-old hinoki forests is 5–10% larger than that of sugi; the proportion of stem biomass in the same age range is 5–10% smaller than that of sugi; the ratio of roots was approximately constant as its average value, 20.4% for sugi and 22.7% for hinoki. The ratios of total biomass to bole biomass (i.e., expansion factor (EF), Mg total biomass Mg-1 bole biomass) decreased with increasing age, and became nearly constant after 30 years old for sugi and hinoki. The mean EFs were the same for the two forest types, with a value of 1.72 Mg Mg-1. Our results suggest that sugi and hinoki plantations in Japan, respectively, store 346:4x10^6 and 139:2x10^6 Mg of carbon, with an area-weighted mean of 76.81 and 58.01 Mg C ha-1. High amounts of carbon stock in both sugi and hinoki are located in the southwestern part of Japan.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD 0.22 (n=69)", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "doi:10.1016/S0378-1127(03)00146-4", + "creation_date": "2022-03-14T08:12:01.395Z", + "last_change_date": "2022-03-14T08:12:01.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15143, + "fields": { + "EF_ID": 521273, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF (Expansion factor; total biomass/bole biomass)", + "Technology_Practices": "Japanese cypress (Chamaecyparis obtusa) (Local name Hinoki)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Bole (stem) volume is culculated by the Mitscherlich formula. See below.", + "Value": "1.72 (range 1.48-2.88)", + "Unit": "dimensionless", + "Equation": "Total biomass/bole biomass", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fukuda M, Iehara T, and Matsumoto M. (2003), Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184:1-16.", + "English_Abstract": "Forest inventory data are widely used for broad-scale quantification of forest carbon budgets. Such data usually represent forest wood volume (m3 ha-1), which needs to be converted to biomass carbon value (Mg C ha-1) for carbon stock estimates. Our main objective is to estimate the carbon stock for all sugi (Cryptomeria japonica D. Don) and hinoki (Chamaecyparis obtusa Endl.) plantations in Japan on the basis of age-class-based forestry statistics. To achieve this purpose, we estimated regional wood volume accumulation and biomass allocation over time for sugi and hinoki forests to calculate and map the carbon stock in all sugi and hinoki plantations in Japan on the basis of forestry statistics. Hinoki forests showed smaller accumulation of volume than sugi forests from ca. 25 years old to maturity; the accumulation of wood volume per hectare at 80 years old was <600 m3 ha 1 for hinoki and >600 m3 ha 1 for sugi. Patterns of biomass allocation to forest components varied by forest type; the proportion of branch biomass in 0–20-year-old hinoki forests is 5–10% larger than that of sugi; the proportion of stem biomass in the same age range is 5–10% smaller than that of sugi; the ratio of roots was approximately constant as its average value, 20.4% for sugi and 22.7% for hinoki. The ratios of total biomass to bole biomass (i.e., expansion factor (EF), Mg total biomass Mg-1 bole biomass) decreased with increasing age, and became nearly constant after 30 years old for sugi and hinoki. The mean EFs were the same for the two forest types, with a value of 1.72 Mg Mg-1. Our results suggest that sugi and hinoki plantations in Japan, respectively, store 346:4x10^6 and 139:2x10^6 Mg of carbon, with an area-weighted mean of 76.81 and 58.01 Mg C ha-1. High amounts of carbon stock in both sugi and hinoki are located in the southwestern part of Japan.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD 0.32 (n=21)", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "doi:10.1016/S0378-1127(03)00146-4", + "creation_date": "2022-03-14T08:12:01.496Z", + "last_change_date": "2022-03-14T08:12:01.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15144, + "fields": { + "EF_ID": 521274, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF (total biomass/bole biomass)", + "Technology_Practices": "Japanese cedar (Cryptomeria japonica) (Local name Sugi)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Bole (stem) volume is culculated by the Mitscherlich formula. See below.", + "Value": "0.55 (range 0.44 - 0.91)", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Total biomass Mg/bole volume m3", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fukuda M, Iehara T, and Matsumoto M. (2003), Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184:1-16.", + "English_Abstract": "Forest inventory data are widely used for broad-scale quantification of forest carbon budgets. Such data usually represent forest wood volume (m3 ha-1), which needs to be converted to biomass carbon value (Mg C ha-1) for carbon stock estimates. Our main objective is to estimate the carbon stock for all sugi (Cryptomeria japonica D. Don) and hinoki (Chamaecyparis obtusa Endl.) plantations in Japan on the basis of age-class-based forestry statistics. To achieve this purpose, we estimated regional wood volume accumulation and biomass allocation over time for sugi and hinoki forests to calculate and map the carbon stock in all sugi and hinoki plantations in Japan on the basis of forestry statistics. Hinoki forests showed smaller accumulation of volume than sugi forests from ca. 25 years old to maturity; the accumulation of wood volume per hectare at 80 years old was <600 m3 ha 1 for hinoki and >600 m3 ha 1 for sugi. Patterns of biomass allocation to forest components varied by forest type; the proportion of branch biomass in 0–20-year-old hinoki forests is 5–10% larger than that of sugi; the proportion of stem biomass in the same age range is 5–10% smaller than that of sugi; the ratio of roots was approximately constant as its average value, 20.4% for sugi and 22.7% for hinoki. The ratios of total biomass to bole biomass (i.e., expansion factor (EF), Mg total biomass Mg-1 bole biomass) decreased with increasing age, and became nearly constant after 30 years old for sugi and hinoki. The mean EFs were the same for the two forest types, with a value of 1.72 Mg Mg-1. Our results suggest that sugi and hinoki plantations in Japan, respectively, store 346:4x10^6 and 139:2x10^6 Mg of carbon, with an area-weighted mean of 76.81 and 58.01 Mg C ha-1. High amounts of carbon stock in both sugi and hinoki are located in the southwestern part of Japan.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD 0.07 (n=69)", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "doi:10.1016/S0378-1127(03)00146-4", + "creation_date": "2022-03-14T08:12:01.597Z", + "last_change_date": "2022-03-14T08:12:01.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15145, + "fields": { + "EF_ID": 521275, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "EF (Expansion factor; total biomass/bole biomass)", + "Technology_Practices": "Japanese cypress (Chamaecyparis obtusa) (Local name Hinoki)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "Bole (stem) volume is culculated by the Mitscherlich formula. See below.", + "Value": "0.62 (range 0.53-1.04)", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Total biomass Mg/bole volume m3", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fukuda M, Iehara T, and Matsumoto M. (2003), Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184:1-16.", + "English_Abstract": "Forest inventory data are widely used for broad-scale quantification of forest carbon budgets. Such data usually represent forest wood volume (m3 ha-1), which needs to be converted to biomass carbon value (Mg C ha-1) for carbon stock estimates. Our main objective is to estimate the carbon stock for all sugi (Cryptomeria japonica D. Don) and hinoki (Chamaecyparis obtusa Endl.) plantations in Japan on the basis of age-class-based forestry statistics. To achieve this purpose, we estimated regional wood volume accumulation and biomass allocation over time for sugi and hinoki forests to calculate and map the carbon stock in all sugi and hinoki plantations in Japan on the basis of forestry statistics. Hinoki forests showed smaller accumulation of volume than sugi forests from ca. 25 years old to maturity; the accumulation of wood volume per hectare at 80 years old was <600 m3 ha 1 for hinoki and >600 m3 ha 1 for sugi. Patterns of biomass allocation to forest components varied by forest type; the proportion of branch biomass in 0–20-year-old hinoki forests is 5–10% larger than that of sugi; the proportion of stem biomass in the same age range is 5–10% smaller than that of sugi; the ratio of roots was approximately constant as its average value, 20.4% for sugi and 22.7% for hinoki. The ratios of total biomass to bole biomass (i.e., expansion factor (EF), Mg total biomass Mg-1 bole biomass) decreased with increasing age, and became nearly constant after 30 years old for sugi and hinoki. The mean EFs were the same for the two forest types, with a value of 1.72 Mg Mg-1. Our results suggest that sugi and hinoki plantations in Japan, respectively, store 346:4x10^6 and 139:2x10^6 Mg of carbon, with an area-weighted mean of 76.81 and 58.01 Mg C ha-1. High amounts of carbon stock in both sugi and hinoki are located in the southwestern part of Japan.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "SD 0.12 (n=21)", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "doi:10.1016/S0378-1127(03)00146-4", + "creation_date": "2022-03-14T08:12:01.714Z", + "last_change_date": "2022-03-14T08:12:01.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15146, + "fields": { + "EF_ID": 521276, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese cedar (Cryptomeria japonica) (Local name Sugi)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.57", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have also been done. The mean value (95% confidence interval) of BEF2 of the Japanese cedar in young stands (<20 yrs old) was 1.47 (0.02), n = 147, including 114 litereture data.", + "Lower_Bound": "-3.50%", + "Upper_Bound": "+3.50%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:01.814Z", + "last_change_date": "2022-03-14T08:12:01.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15147, + "fields": { + "EF_ID": 521277, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese cedar (Cryptomeria japonica) (Local name Sugi)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.23", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of Japanese cedar stands (>21 years old) was 1.23 (0.01), n = 204, including 113 literature data.", + "Lower_Bound": "-1.10%", + "Upper_Bound": "+1.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:01.895Z", + "last_change_date": "2022-03-14T08:12:01.895Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15148, + "fields": { + "EF_ID": 521278, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese cypress (Chamaecyparis obtusa) (Local name Hinoki)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.55", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of Japanese cypress stands (< 20 years old) was 1.55 (0.5), n = 76, including 17 litereture data.", + "Lower_Bound": "-3.20%", + "Upper_Bound": "+3.20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.007Z", + "last_change_date": "2022-03-14T08:12:02.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15149, + "fields": { + "EF_ID": 521279, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese cypress (Chamaecyparis obtusa) (Local name Hinoki)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.24", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese cypress (>21 yrs old) was 1.24 (0.02), n = 96, including 65 literature data.", + "Lower_Bound": "-1.60%", + "Upper_Bound": "+1.60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.095Z", + "last_change_date": "2022-03-14T08:12:02.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15150, + "fields": { + "EF_ID": 521280, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese red pine (Pinus densiflora) (Local name Akamatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.63", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese red pine stands (<20 yrs old) was 1.63 (0.10), n=90, including 89 literature data.", + "Lower_Bound": "-6.30%", + "Upper_Bound": "+6.30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.161Z", + "last_change_date": "2022-03-14T08:12:02.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15151, + "fields": { + "EF_ID": 521281, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese red pine (Pinus densiflora) (Local name Akamatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.23", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese red pine in stands (>21 yrs old) was 1.23 (0.03), n = 57, including 47 literature data.", + "Lower_Bound": "-2.20%", + "Upper_Bound": "+2.20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.258Z", + "last_change_date": "2022-03-14T08:12:02.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15152, + "fields": { + "EF_ID": 521282, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese black pine (Pinus Thunbergii) (Local name Kuromatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.39", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese black pine stands (<20 yrs old) was 1.39 (0.17), n=7, including 6 literature data.", + "Lower_Bound": "-12.10%", + "Upper_Bound": "+12.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.354Z", + "last_change_date": "2022-03-14T08:12:02.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15153, + "fields": { + "EF_ID": 521283, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese black pine (Pinus Thunbergii) (Local name Kuromatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.36", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. The mean value (95% confidence interval) of BEF2 of the Japanese black pine in stands (>21 yrs old) was 1.36 (0.08) , n = 14, all literature data.", + "Lower_Bound": "-5.90%", + "Upper_Bound": "+5.90%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.420Z", + "last_change_date": "2022-03-14T08:12:02.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15154, + "fields": { + "EF_ID": 521284, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese larch (Larix kaempferi or L. leptolepis) (Local name Karamatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.5", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese larch stands (<20 yrs old) was 1.50 (0.08), n=37, including 21 literature data.", + "Lower_Bound": "-5.60%", + "Upper_Bound": "+5.60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.518Z", + "last_change_date": "2022-03-14T08:12:02.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15155, + "fields": { + "EF_ID": 521285, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese larch (Larix kaempferi or L. leptolepis) (Local name Karamatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.15", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese black pine stands (>21 yrs old) was 1.15 (0.01), n=78, including 61 literature data.", + "Lower_Bound": "-1.20%", + "Upper_Bound": "+1.20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.604Z", + "last_change_date": "2022-03-14T08:12:02.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15156, + "fields": { + "EF_ID": 521286, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Hiba arborvitae (Thujopsis dolabrata var. Hondae) (Local name Hiba)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "2.38", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "There was no literature data avairable for young Hiba arborvitae stands. Field measurements have been done in the project. The mean value (95% confidence interval) of BEF2 of the Hiba arborvitae stands (<20 yrs old) was 2.38 (0.28), n=7.", + "Lower_Bound": "-11.80%", + "Upper_Bound": "+11.80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.678Z", + "last_change_date": "2022-03-14T08:12:02.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15157, + "fields": { + "EF_ID": 521287, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Hiba arborvitae (Thujopsis dolabrata var. Hondae) (Local name Hiba)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.15", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Hiba arborvitae stands (>21 yrs old) was 1.41 (0.07), n=25, including 13 literature data.", + "Lower_Bound": "-4.60%", + "Upper_Bound": "+4.60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.779Z", + "last_change_date": "2022-03-14T08:12:02.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15158, + "fields": { + "EF_ID": 521288, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Sakhalin fir (Abies sachalinensis), (Local name Todomatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.88", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Sakhaline fir stands (<20 yrs old) was 1.88 (0.15), n=19, including 14 literature data.", + "Lower_Bound": "-8.10%", + "Upper_Bound": "+8.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.862Z", + "last_change_date": "2022-03-14T08:12:02.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15159, + "fields": { + "EF_ID": 521289, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Sakhalin fir (Abies sachalinensis), (Local name Todomatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.38", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Sakhaline fir stands (>21 yrs old) was 1.38 (0.05), n=37, including 22 literature data.", + "Lower_Bound": "-3.90%", + "Upper_Bound": "+3.90%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:02.937Z", + "last_change_date": "2022-03-14T08:12:02.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15160, + "fields": { + "EF_ID": 521290, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Yezo spruce (Picea jezoensis) (local name Ezomatsu", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age <20 years old.", + "Value": "2.18", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "There was no literature data for young Yezo spruce stands. Field measurements have been done in this project. The mean value (95% confidence interval) of BEF2 of the Yezo spruce stands (<20 yrs old) was 2.18 (0.30), n=7.", + "Lower_Bound": "-14.20%", + "Upper_Bound": "+14.20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.039Z", + "last_change_date": "2022-03-14T08:12:03.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15161, + "fields": { + "EF_ID": 521291, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Yezo spruce (Picea jezoensis) (local name Ezomatsu", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.48", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Yezo spruce stands (>21 yrs old) was 1.48 (0.09), n=22, including 1 literature data.", + "Lower_Bound": "-6.40%", + "Upper_Bound": "+6.40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.120Z", + "last_change_date": "2022-03-14T08:12:03.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15162, + "fields": { + "EF_ID": 521292, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Sakhalin spruce (Picea glehnii) (local name Akaezomatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "2.17", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "There was no literature data for young Sakhalin spruce. Field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Sakhalin spruce stands (<20 yrs old) was 2.17 (0.14), n=12.", + "Lower_Bound": "-8.10%", + "Upper_Bound": "+8.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.204Z", + "last_change_date": "2022-03-14T08:12:03.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15163, + "fields": { + "EF_ID": 521293, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Sakhalin spruce (Picea glehnii) (local name Akaezomatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.67", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Sakhalin spruce stands (>21 yrs old) was 1.67 (0.11), n=28, including 6 literature data.", + "Lower_Bound": "-3.90%", + "Upper_Bound": "+3.90%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.306Z", + "last_change_date": "2022-03-14T08:12:03.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15164, + "fields": { + "EF_ID": 521294, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese beech (Fagus crenata and Fagus japonica) (local name Buna)", + "Parameter_Conditions": "Semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.32", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese beech stands (>21 yrs old) was 1.32 (0.03), n=99, including 94 literature data.", + "Lower_Bound": "-1.90%", + "Upper_Bound": "+1.90%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.387Z", + "last_change_date": "2022-03-14T08:12:03.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15165, + "fields": { + "EF_ID": 521295, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Deciduous Japanese oak (Quercus serrata) (local name Konara)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.38", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the deciduous Japanese oak (Konara) (<20 yrs old) was 1.38 (0.10), n=9, including 4 literature data.", + "Lower_Bound": "-7.10%", + "Upper_Bound": "+7.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.462Z", + "last_change_date": "2022-03-14T08:12:03.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15166, + "fields": { + "EF_ID": 521296, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Deciduous Japanese oak (Quercus serrata) (local name Konara)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.26", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the deciduous Japanese oak (Konara) (>21 yrs old) was 1.26 (0.03), n=54, including 38 literature data.", + "Lower_Bound": "-2.30%", + "Upper_Bound": "+2.30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.566Z", + "last_change_date": "2022-03-14T08:12:03.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15167, + "fields": { + "EF_ID": 521297, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese birch (B. Maximowiczii, B. Ermani, B. platyphylla var.japonica) (local name Kamba spp.)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.31", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese birch (<20 yrs old) was 1.31 (0.10), n=23, including 22 literature data.", + "Lower_Bound": "-7.80%", + "Upper_Bound": "+7.80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.654Z", + "last_change_date": "2022-03-14T08:12:03.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15168, + "fields": { + "EF_ID": 521298, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Japanese birch (B. Maximowiczii, B. Ermani, B. platyphylla var.japonica) (local name Kamba spp.)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.2", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the Japanese birch (>21 yrs old) was 1.20 (0.02), n=31, including 30 literature data.", + "Lower_Bound": "-1.70%", + "Upper_Bound": "+1.70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.729Z", + "last_change_date": "2022-03-14T08:12:03.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15169, + "fields": { + "EF_ID": 521299, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Evergreen Japanese oak (Castanopsis cuspdata var. sieboldii, C cuspidata) (local name Shii spp.)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.37", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the evergreen Japanese oak (Shii) (<20 yrs old) was 1.37 (0.08), n=10, including 9 literature data.", + "Lower_Bound": "-5.70%", + "Upper_Bound": "+5.70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:03.918Z", + "last_change_date": "2022-03-14T08:12:03.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15170, + "fields": { + "EF_ID": 521300, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Evergreen Japanese oak (Castanopsis cuspdata var. sieboldii, C cuspidata) (local name Shiispp.)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.37", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the evergreen Japanese oak (Shii) (>21 yrs old) was 1.37 (0.11), n=17, including 8 literature data.", + "Lower_Bound": "-7.60%", + "Upper_Bound": "+7.60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.012Z", + "last_change_date": "2022-03-14T08:12:04.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15171, + "fields": { + "EF_ID": 521301, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Evergreen broad-leaved species in Japan", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.38", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the evergreen broad-leaved species in the Japanese forest (<20 yrs old) was 1.43 (0.09), n=17, including 13 literature data.", + "Lower_Bound": "-6.40%", + "Upper_Bound": "+6.40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.112Z", + "last_change_date": "2022-03-14T08:12:04.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15172, + "fields": { + "EF_ID": 521302, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Evergreen broad-leaved species in Japan", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.28", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the evergreen broad-leaved species in the Japanese forest (>21 yrs old) was 1.38 (0.05), n=43, including 33 literature data.", + "Lower_Bound": "-3.60%", + "Upper_Bound": "+3.60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.211Z", + "last_change_date": "2022-03-14T08:12:04.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15173, + "fields": { + "EF_ID": 521303, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Deciduos broad-leaved species in Japan", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age < 20 years old", + "Value": "1.38", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the deciduos broad-leaved species in the Japanese forest (<20 yrs old) was 1.38 (0.05), n=72, including 47 literature data.", + "Lower_Bound": "-3.80%", + "Upper_Bound": "+3.80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.295Z", + "last_change_date": "2022-03-14T08:12:04.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15174, + "fields": { + "EF_ID": 521304, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF2(Biomass Expansion Factor for growing stock; above-ground biomass/stem biomass)", + "Technology_Practices": "Deciduos broad-leaved species in Japan", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "stand age >21 years old.", + "Value": "1.28", + "Unit": "dimensionless", + "Equation": "aboveground biomass/stem biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of BEF2 of the deciduos broad-leaved species in the Japanese forest (>20 yrs old) was 1.28 (0.02), n=237, including 189 literature data.", + "Lower_Bound": "-1.40%", + "Upper_Bound": "+1.40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.370Z", + "last_change_date": "2022-03-14T08:12:04.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15175, + "fields": { + "EF_ID": 521305, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Japanese cedar (Cryptomeria japonica) (local name Sugi)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of R of the Japanese cedar was 0.25 (0.01), n = 76, including 72 literature data.", + "Lower_Bound": "-4.40%", + "Upper_Bound": "+4.40%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.463Z", + "last_change_date": "2022-03-14T08:12:04.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15176, + "fields": { + "EF_ID": 521306, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Japanese cypress (Chamaecyparis obtusa) (local name Hinoki)", + "Parameter_Conditions": "Mainely planted forests but can be applicable to natural forests.", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Number FL-1a(2 of 4), FL-1a(3 of 4), FL2a(1 of 1)", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature. Additional field measurements have been done the mean value (95% confidence interval) of R of the Japanese cypress was 0.26 (0.01), n=52, including 26 literature data.", + "Lower_Bound": "-5.70%", + "Upper_Bound": "+5.70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.546Z", + "last_change_date": "2022-03-14T08:12:04.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15177, + "fields": { + "EF_ID": 521307, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Japanese red pine (Pinus densiflora) (local name Akamatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheets Numbers3B1a(1-4 of 4)(pages A1.9-A1.12, Vol.4(2)) and 3B1b(1-4 of 4)(pages A1.14-A1.16, Vol.4(2))", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of R of the Japanese red pine was 0.26 (0.02), n=16 including 12 literature data.", + "Lower_Bound": "-8.70%", + "Upper_Bound": "+8.70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.621Z", + "last_change_date": "2022-03-14T08:12:04.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15178, + "fields": { + "EF_ID": 521308, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Japanese larch (Larix kaempferi or L. leptolepis) (local name Karamatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheets Numbers3B1a(1-4 of 4)(pages A1.9-A1.12, Vol.4(2)) and 3B1b(1-4 of 4)(pages A1.14-A1.16, Vol.4(2))", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of R of the Japanese larch was 0.29 (0.02), n=46, including 33 literature data.", + "Lower_Bound": "-6.80%", + "Upper_Bound": "+6.80%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.714Z", + "last_change_date": "2022-03-14T08:12:04.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15179, + "fields": { + "EF_ID": 521309, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Sakhalin fir (Abies sachalinensis) (local name Todomatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheets Numbers3B1a(1-4 of 4)(pages A1.9-A1.12, Vol.4(2)) and 3B1b(1-4 of 4)(pages A1.14-A1.16, Vol.4(2))", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of R of the Sakhalin fir was 0.29 (0.02), n=14, including 7 literature data.", + "Lower_Bound": "-14.20%", + "Upper_Bound": "+14.20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.796Z", + "last_change_date": "2022-03-14T08:12:04.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15180, + "fields": { + "EF_ID": 521310, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Sakhalin spruce (Picea glehnii) (local name Akaezomatsu)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheets Numbers3B1a(1-4 of 4)(pages A1.9-A1.12, Vol.4(2)) and 3B1b(1-4 of 4)(pages A1.14-A1.16, Vol.4(2))", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature. Additional field measurements have been done. The mean value (95% confidence interval) of R of the Sakhalin spruce was 0.21 (0.02), n=9, including 1 literature data.", + "Lower_Bound": "-9.10%", + "Upper_Bound": "+9.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.887Z", + "last_change_date": "2022-03-14T08:12:04.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15181, + "fields": { + "EF_ID": 521311, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Hiba arborvitae (Thujopsis dolabrata var. Hondae) (Local name Hiba)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheets Numbers3B1a(1-4 of 4)(pages A1.9-A1.12, Vol.4(2)) and 3B1b(1-4 of 4)(pages A1.14-A1.16, Vol.4(2))", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "There was no literature data. Field measurements have been done. The mean value (95% confidence interval) of R of the Hiba arborvitae was 0.20 (0.03), n=9.", + "Lower_Bound": "-9.10%", + "Upper_Bound": "+9.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:04.991Z", + "last_change_date": "2022-03-14T08:12:04.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15182, + "fields": { + "EF_ID": 521312, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Broadleaved forests", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheets Numbers3B1a(1-4 of 4)(pages A1.9-A1.12, Vol.4(2)) and 3B1b(1-4 of 4)(pages A1.14-A1.16, Vol.4(2))", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature. Additional field measurements have been done.The mean value (95% confidence interval) of R of the deciduous broadleaved forests was 0.26 (0.02), n=55, including 27 literature.", + "Lower_Bound": "-9.10%", + "Upper_Bound": "+9.10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:05.087Z", + "last_change_date": "2022-03-14T08:12:05.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15183, + "fields": { + "EF_ID": 521313, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Japanese beech (Fagus crenata) (local name Buna)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheets Numbers3B1a(1-4 of 4)(pages A1.9-A1.12, Vol.4(2)) and 3B1b(1-4 of 4)(pages A1.14-A1.16, Vol.4(2))", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature. The mean value (95% confidence interval) of R of the Japanese beech was 0.23 (0.04), n=20.", + "Lower_Bound": "-17.70%", + "Upper_Bound": "+17.70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:05.171Z", + "last_change_date": "2022-03-14T08:12:05.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15184, + "fields": { + "EF_ID": 521314, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R (Root-to-shoot ratio)", + "Technology_Practices": "Quercus serrata (local name Konara)", + "Parameter_Conditions": "Planted and semi-natural forests", + "Regional_Conditions": "Temperate and moist climatic zone.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "dimensionless", + "Equation": "Below-ground biomass/Above-ground biomass", + "IPCC_Worksheet": "GPG-LULUCF Worksheet Numbers FL-1a(1 of 4) and FL-2a(1 of 1); 2006 IPCC Guidelines Worksheets Numbers3B1a(1-4 of 4)(pages A1.9-A1.12, Vol.4(2)) and 3B1b(1-4 of 4)(pages A1.14-A1.16, Vol.4(2))", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Inventory Report of Japan. CGER-1084-2008, CGER/NIER, Chapter 7. Land Use, Land-Use Change and Forestry, page 7-10, Report on Heisei 18 nendo, shinrin kyushugen keisoku katsuyoutaisei seibi kyoka jigyo chosa houkokusho (March 2007), Forestry Agency Japan. (In Japanese)", + "English_Abstract": "Data on aboveground and belowground biomass of Japanese forests were collected from literature and field measurement. The mean value (95% confidence interval) of R of the Q. serrata was 0.28 (0.05), n=10, including 1 literature data.", + "Lower_Bound": "-19.30%", + "Upper_Bound": "+19.30%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masamichi Takahashi", + "Link": "", + "creation_date": "2022-03-14T08:12:05.275Z", + "last_change_date": "2022-03-14T08:12:05.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15185, + "fields": { + "EF_ID": 521315, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Abies alba stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (greater than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Abies alba had over 50% of basal area; the number of sampled stands was 113.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/ha) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3 /ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:05.362Z", + "last_change_date": "2022-03-14T08:12:05.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15186, + "fields": { + "EF_ID": 521316, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Alnus glutinosa stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height ( more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg/m3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg/m3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:05.460Z", + "last_change_date": "2022-03-14T08:12:05.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15187, + "fields": { + "EF_ID": 521317, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Betula pendula stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:05.569Z", + "last_change_date": "2022-03-14T08:12:05.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15188, + "fields": { + "EF_ID": 521318, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Castanea sativa stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:05.678Z", + "last_change_date": "2022-03-14T08:12:05.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15189, + "fields": { + "EF_ID": 521319, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Eucalyptus globulus stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.81", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:05.787Z", + "last_change_date": "2022-03-14T08:12:05.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15190, + "fields": { + "EF_ID": 521320, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Fagus sylvatica stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.81", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:05.896Z", + "last_change_date": "2022-03-14T08:12:05.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15191, + "fields": { + "EF_ID": 521321, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Fraxinus excelsior stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.83", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.005Z", + "last_change_date": "2022-03-14T08:12:06.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15192, + "fields": { + "EF_ID": 521322, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Pinus halepensis stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.123Z", + "last_change_date": "2022-03-14T08:12:06.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15193, + "fields": { + "EF_ID": 521323, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Pinus nigra stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.232Z", + "last_change_date": "2022-03-14T08:12:06.232Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15194, + "fields": { + "EF_ID": 521324, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Pinus pinaster stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.333Z", + "last_change_date": "2022-03-14T08:12:06.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15195, + "fields": { + "EF_ID": 521325, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Pinus pinea stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.459Z", + "last_change_date": "2022-03-14T08:12:06.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15196, + "fields": { + "EF_ID": 521326, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Pinus radiata stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.576Z", + "last_change_date": "2022-03-14T08:12:06.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15197, + "fields": { + "EF_ID": 521327, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Pinus sylvestris stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.684Z", + "last_change_date": "2022-03-14T08:12:06.684Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15198, + "fields": { + "EF_ID": 521328, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Pinus uncinata stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.802Z", + "last_change_date": "2022-03-14T08:12:06.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15199, + "fields": { + "EF_ID": 521329, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Populus nigra stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:06.919Z", + "last_change_date": "2022-03-14T08:12:06.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15200, + "fields": { + "EF_ID": 521330, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Populus tremula stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.020Z", + "last_change_date": "2022-03-14T08:12:07.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15201, + "fields": { + "EF_ID": 521331, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Quercus canariensis stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.120Z", + "last_change_date": "2022-03-14T08:12:07.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15202, + "fields": { + "EF_ID": 521332, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Quercus cerrioides stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.229Z", + "last_change_date": "2022-03-14T08:12:07.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15203, + "fields": { + "EF_ID": 521333, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Quercus faginea stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.11", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.330Z", + "last_change_date": "2022-03-14T08:12:07.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15204, + "fields": { + "EF_ID": 521334, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Quercus humilis stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.89", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.439Z", + "last_change_date": "2022-03-14T08:12:07.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15205, + "fields": { + "EF_ID": 521335, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Quercus ilex stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.28", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.541Z", + "last_change_date": "2022-03-14T08:12:07.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15206, + "fields": { + "EF_ID": 521336, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Quercus petraea stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.633Z", + "last_change_date": "2022-03-14T08:12:07.633Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15207, + "fields": { + "EF_ID": 521337, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass expansion factor (ABEF) as a function of stem volume for Ulmus minor stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the ABEF stem volume over bark was obtained from an equation relating it to stem diameter at breast height (more than 5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times bark density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 21.", + "Parameter_Conditions": "The above-ground biomass expansion factor for a stand was the ratio between aboveground biomass (Mg/ha) and stem volume (m3/h) densities. BEF values were not grouped by stand age, because most of them were made up of unevenly aged trees.", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "ABEF = AGB/V, where ABEF is the above-ground biomass expansion factor, AGB is the above-ground biomass per hectare (tonnes d.m./ha) and V is the stem volume (m3/ha)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.734Z", + "last_change_date": "2022-03-14T08:12:07.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15208, + "fields": { + "EF_ID": 521338, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass(AGB) for Abies alba stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Abies alba had over 50% of basal area; the number of sampled stands was 113.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "207.5", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.834Z", + "last_change_date": "2022-03-14T08:12:07.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15209, + "fields": { + "EF_ID": 521339, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass(AGB) for Alnus glutinosa stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Alnus glutinosa had over 50% of basal area; the number of sampled stands was 19.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66.1", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:07.960Z", + "last_change_date": "2022-03-14T08:12:07.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15210, + "fields": { + "EF_ID": 521340, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass(AGB) for Betula pendula stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Betula pendula had over 50% of basal area; the number of sampled stands was 54.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.5", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.069Z", + "last_change_date": "2022-03-14T08:12:08.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15211, + "fields": { + "EF_ID": 521341, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass(AGB) for Castanea sativa stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Castanea sativa had over 50% of basal area; the number of sampled stands was 101.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66.0", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.178Z", + "last_change_date": "2022-03-14T08:12:08.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15212, + "fields": { + "EF_ID": 521342, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass( AGB) for Eucalyptus globulus stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Eucalyptus globulus had over 50% of basal area; the number of sampled stands was 19.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.0", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.287Z", + "last_change_date": "2022-03-14T08:12:08.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15213, + "fields": { + "EF_ID": 521343, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Fagus sylvatica stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Fagus sylvatica had over 50% of basal area; the number of sampled stands was 266.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136.6", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.396Z", + "last_change_date": "2022-03-14T08:12:08.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15214, + "fields": { + "EF_ID": 521344, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass(AGB) for Fraxinus excelsior stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Fraxinus excelsior had over 50% of basal area; the number of sampled stands was 38.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64.3", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.497Z", + "last_change_date": "2022-03-14T08:12:08.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15215, + "fields": { + "EF_ID": 521345, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Pinus halepensis stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Pinus halepensis had over 50% of basal area; the number of sampled stands was 2,040.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.0", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.597Z", + "last_change_date": "2022-03-14T08:12:08.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15216, + "fields": { + "EF_ID": 521346, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Pinus nigra stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Pinus nigra had over 50% of basal area; the number of sampled stands was 1,260.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55.6", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.706Z", + "last_change_date": "2022-03-14T08:12:08.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15217, + "fields": { + "EF_ID": 521347, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Pinus pinaster stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Pinus pinaster had over 50% of basal area; the number of sampled stands was 120.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "51.1", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.806Z", + "last_change_date": "2022-03-14T08:12:08.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15218, + "fields": { + "EF_ID": 521348, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Pinus pinea stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Pinus pinea had over 50% of basal area; the number of sampled stands was 329.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:08.901Z", + "last_change_date": "2022-03-14T08:12:08.901Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15219, + "fields": { + "EF_ID": 521349, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Pinus radiata stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Pinus radiata had over 50% of basal area; the number of sampled stands was 16.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.009Z", + "last_change_date": "2022-03-14T08:12:09.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15220, + "fields": { + "EF_ID": 521350, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Pinus sylvestris stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Pinus sylvestris had over 50% of basal area; the number of sampled stands was 1,990.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.2", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.118Z", + "last_change_date": "2022-03-14T08:12:09.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15221, + "fields": { + "EF_ID": 521351, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Pinus uncinata stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Pinus uncinata had over 50% of basal area; the number of sampled stands was 489.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91.8", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.227Z", + "last_change_date": "2022-03-14T08:12:09.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15222, + "fields": { + "EF_ID": 521352, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Populus nigra stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Populus nigra had over 50% of basal area; the number of sampled stands was 40.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "86.0", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.336Z", + "last_change_date": "2022-03-14T08:12:09.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15223, + "fields": { + "EF_ID": 521353, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Populus tremula stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Populus tremula had over 50% of basal area; the number of sampled stands was 24.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "103.9", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.436Z", + "last_change_date": "2022-03-14T08:12:09.436Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15224, + "fields": { + "EF_ID": 521354, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Quercus canariensis stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Quercus canariensis had over 50% of basal area; the number of sampled stands was 28.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59.1", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.537Z", + "last_change_date": "2022-03-14T08:12:09.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15225, + "fields": { + "EF_ID": 521355, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Quercus cerrioides stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Quercus cerrioides had over 50% of basal area; the number of sampled stands was 131.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.646Z", + "last_change_date": "2022-03-14T08:12:09.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15226, + "fields": { + "EF_ID": 521356, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Quercus faginea stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Quercus faginea had over 50% of basal area; the number of sampled stands was 66.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33.4", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.755Z", + "last_change_date": "2022-03-14T08:12:09.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15227, + "fields": { + "EF_ID": 521357, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Quercus humilis stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Quercus humilis had over 50% of basal area; the number of sampled stands was 400.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61.8", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.864Z", + "last_change_date": "2022-03-14T08:12:09.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15228, + "fields": { + "EF_ID": 521358, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Quercus ilex stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Quercus ilex had over 50% of basal area; the number of sampled stands was 1,498.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "59.5", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:09.990Z", + "last_change_date": "2022-03-14T08:12:09.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15229, + "fields": { + "EF_ID": 521359, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Quercus petraea stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Quercus petraea had over 50% of basal area; the number of sampled stands was 83.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98.1", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:10.107Z", + "last_change_date": "2022-03-14T08:12:10.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15230, + "fields": { + "EF_ID": 521360, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass (AGB) for Ulmus minor stands growing in Catalonia (Spain)", + "Technology_Practices": "Data from either natural or managed forests were obtained from IEFC (Ecological and Forestry Inventory for Catalonia). The database compiles information from 10,644 10 m-radius sampling plots randomly distributed over the region. For the estimation of the AGB stem volume over bark was obtained from an equation relating it to stem diameter at breast height (>5 cm). Stem volume was multiplied by the density of wood to obtain stem biomass. Bark biomass was obtained from the product of bark volume times brk density. The biomass of each of branches and leaves were derived from the product of respective biomass expansion factors times branch diameter. The above-ground biomass of a tree was the sum of the biomass values for branches, leaves, wood and bark. The above-ground biomass for a stand was the sum of the biomass values of all trees in the stand. Sampled stands were those where Ulmus minor had over 50% of basal area; the number of sampled stands was 9.", + "Parameter_Conditions": "", + "Regional_Conditions": "Spain (Catalonia, 0 degrees 15 minutes E and 3 degrees 15 minutes E longitude and 40 degrees 30 minutes N and 42 degrees 40 minutes N  latitude). The climate is mainly Mediterranean with mild winters, warm and dry summers. There are noticeable topographical climatic gradients where Mediterranean-type biomes gradually change to temperate, boreal-like (sub-alpine) and tundra like (alpine) types, corresponding to the euro-siberian and boreoalpine phytogeographic regions. Continentality increases and rainfall decreases from the coast to the central plateaus, thus creating another major climate gradient from a winter-warm humid climate to a winter-cold semiarid Mediterranean one (where annual rainfall is as low as 300-400 mm and subdesertic types of shrubs vegetation become dominant). Forested land covers 39% (11700 km2) of Catalonia. Extensive areas of this forested land are dominated by holm oak and Aleppo pine forests.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.8", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sabate, S; Gracia, C; Vayreda, J. and Ibanez, J. 2008. Differences among species in aboveground biomass expansion factors in Mediterranean forests. Manuscript Submitted to Forest Ecology and Management", + "English_Abstract": "Forests inventories provide useful data for the estimation of carbon stocks in forests, but this information does not cover all budgets necessary for a global carbon assessment. Nevertheless, some forest inventories offer detailed information of the aboveground carbon that may provide good tools for some of such estimations. The Ecological Forest Inventory of Catalonia (IEFC) which is an extensive database offers such potential application. In this paper the main variables involved in the calculation of aboveground biomass expansion factors (ABEF), i.e. the ratio between the aboveground biomass and the stem volume, at stand level for the main forest tree species occurring in Catalonia (NE Spain) are presented. Furthermore, the contribution of different biomass components associated to it is discussed. The IEFC forest inventory data set is based on 10644 plots where dasometric and dendrometric measurements were carried out. The main results that arise from this analysis are: 1. ABEF values significantly differ between species. 2. Wood density is an important variable to explain differences between species. 3 Differences in the total branch biomass also contribute on these species differences. 4. ABEF values are also influenced by mean stem diameter of the species present in the area; the tendency is that species diminishes their ABEF value astheir mean stem diameter value increases. 5. Stem wood production of the species inversely relates to their ABEF values, thus fast-growing species show the lower values and 6. Carbon content shows small variability between species, given a tree component (leaves, bark or wood). Values of ABEF varies from 1.28 (Quercus ilex) to 0.44 (Pinus radiata) Mg m-3 and branches biomass expansion factors varies from 0.42 (Q. ilex) to 0.04 (P. radiata) Mg m-3. Wood density varies from 0.90 (Q. ilex) to 0.43 (Populus nigra) Mg m-3. Wood carbon content varies from 47.2 (Quercus suber) to 51.1 (Pinus pinaster) % of dry weight. It is concluded that is very essential to differentiate between species in the carbon accounting by using biomass expansion factors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC-TFI-TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:10.199Z", + "last_change_date": "2022-03-14T08:12:10.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15231, + "fields": { + "EF_ID": 521361, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric biomass equation predicting total biomass (above- and belowground) from dbh (cm) and height (m)", + "Technology_Practices": "Sitka spruce has been established as an even-aged monoculture plantation, with an approximate initial stocking of 2500 stems per ha.First thinning accure about years 18 to 20, and there after every c.5 years. Clearfelling often occurs between ages 38 to 45.", + "Parameter_Conditions": "A chronosequence, growing on a wet mineral surface-water gley, consisting of five even-aged monospecies stands (9, 14, 28, 30 and 45 years old), representing the typical commercial rotation of Sitka spruce in Irish forest conditions was identified, Table 1. The general yield class of stands to be chosen was 18 m3/ha a 1, the national average for Sitka spruce in Ireland (current in c. 2004)", + "Regional_Conditions": "Ireland; The research was conducted on a Sitka spruce forest chronosequence growing on a wet mineral soil located in Co. Laois in the Irish midlands ( 52 57¢N, 7 15¢W, altitude of 260 m). The 30-year mean annual temperature was 9.3 C, with a mean rainfall of 850 mm. The site was previously an unmanaged grassland, now planted at a density of ca. 2,500 stem ha 1.", + "Control_Technologies": "", + "Other_Properties": "Chronosequence covers the following ranges: Mean dbh 6 to 32cm; age 9 to 45 years; Mean height 3.5 to 26.7 m; standing stem volume 60.4 to 835.3m3/ha.", + "Value": "a = 0.2667; b = 1.13", + "Unit": "dimensionless", + "Equation": "y = a * (dbh*h)^b where y = total biomass in kg (above- and belowground), dbh is the diameter in cm at breast height (1.3m), and h is height in m. R2 of equation was 0.98.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Black, K., Bolger, T., Davis, P., Nieuwenhuis, M., Reidy, B., Saiz, G., Tobin, B., Osborne, B. 2007. Inventory and eddy covariance-based estimates of annual carbon sequestration in a Sitka spruce (Picea sitchensis (Bong.) Carr.) forest ecosystem . Eur J Forest Res 126: 167-178.", + "English_Abstract": "A comparison was made of annual net ecosystem productivity (NEP) of a closed canopy Sitka spruce forest over 2 years, using either eddy covariance or inventory techniques. Estimates for nnual net uptake of carbon (C) by the forest varied between 7.30 and 11.44 t C ha 1 year 1 using ecological inventory (NEPeco) measures and 7.69–9.44 t C ha 1 year 1 using eddy covariance-based NEP (-NEE) assessments. These differences were not significant due to uncertainties and errors associated with estimates of biomass increment (15–21%) and heterotrophic respiration (12–19%). Carbon-stock change inventory (NEPDC) values were significantly higher (27–32%), when compared to both NEPeco- and -NEE-based estimates. Additional analyses of the data obtained from this study, together with published data, suggest that there was a systematic overestimation of NEPDC-based assessments due to unaccounted decomposition processes and uncertainties in the estimation of soil-C stock changes. In contrast, there was no systematic difference between NEPeco and eddy covariance assessments across a wide range of forest types and geographical locations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Model error was estimated using %SEE from regression analysis of observed and predicted values = 7.97", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:10.308Z", + "last_change_date": "2022-03-14T08:12:10.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15232, + "fields": { + "EF_ID": 521362, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric biomass equation predicting total biomass (above- and belowground) and necromass (attached dead branches) from dbh (cm) and height (m)", + "Technology_Practices": "Sitka spruce has been established as an even-aged monoculture plantation, with an approximate initial stocking of 2500 stems per ha. First thinning accure about years 18 to 20, and there after every c.5 years. Clearfelling often occurs between ages 38 to 45.", + "Parameter_Conditions": "A chronosequence, growing on a wet mineral surface-water gley, consisting of five even-aged monospecies stands (9, 14, 28, 30 and 45 years old), representing the typical commercial rotation of Sitka spruce in Irish forest conditions was identified, Table 1. The general yield class of stands to be chosen was 18 m3/ha a 1, the national average for Sitka spruce in Ireland (current in c. 2004)", + "Regional_Conditions": "Ireland; The research was conducted on a Sitka spruce forest chronosequence growing on a wet mineral soil located in Co. Laois in the Irish midlands ( 52 57¢N, 7 15¢W, altitude of 260 m). The 30-year mean annual temperature was 9.3 C, with a mean rainfall of 850 mm. The site was previously an unmanaged grassland, now planted at a density of ca. 2,500 stem ha 1.", + "Control_Technologies": "", + "Other_Properties": "Chronosequence covers the following ranges: Mean dbh 6 to 32cm; age 9 to 45 years; Mean height 3.5 to 26.7 m; standing stem volume 60.4 to 835.3m3/ha.", + "Value": "a = 0.1403; b = 1.23", + "Unit": "dimensionless", + "Equation": "y = a * (dbh*h)^b where y = total biomass and necromass (includes dead branches attached to the tree) in kg (above- and belowground), dbh is the diameter in cm at breast height (1.3m), and h is height in m. R2 of equation was 0.97.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Black, K., Bolger, T., Davis, P., Nieuwenhuis, M., Reidy, B., Saiz, G., Tobin, B., Osborne, B. 2007. Inventory and eddy covariance-based estimates of annual carbon sequestration in a Sitka spruce (Picea sitchensis (Bong.) Carr.) forest ecosystem . Eur J Forest Res 126: 167-178.", + "English_Abstract": "A comparison was made of annual net ecosystem productivity (NEP) of a closed canopy Sitka spruce forest over 2 years, using either eddy covariance or inventory techniques. Estimates for nnual net uptake of carbon (C) by the forest varied between 7.30 and 11.44 t C ha 1 year 1 using ecological inventory (NEPeco) measures and 7.69–9.44 t C ha 1 year 1 using eddy covariance-based NEP (-NEE) assessments. These differences were not significant due to uncertainties and errors associated with estimates of biomass increment (15–21%) and heterotrophic respiration (12–19%). Carbon-stock change inventory (NEPDC) values were significantly higher (27–32%), when compared to both NEPeco- and -NEE-based estimates. Additional analyses of the data obtained from this study, together with published data, suggest that there was a systematic overestimation of NEPDC-based assessments due to unaccounted decomposition processes and uncertainties in the estimation of soil-C stock changes. In contrast, there was no systematic difference between NEPeco and eddy covariance assessments across a wide range of forest types and geographical locations.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:10.387Z", + "last_change_date": "2022-03-14T08:12:10.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15233, + "fields": { + "EF_ID": 521363, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric equation for predicting aboveground tree biomass using dbh (cm)", + "Technology_Practices": "Establised at slightly greater spacing spacing than normal (2m x 2m) of 2.3m x 2.3m. Unthinned prior to research activities at the stand.", + "Parameter_Conditions": "19-year-old stand of Sitka spruce growing in a peat soil (site previously used for industrial peat extraction).", + "Regional_Conditions": "Ireland; the study was located in an industrial cutaway peatland, which was afforested with Sitka spruce in 1983. The site was previously used for the extraction of peat for fuel and was located at Lullymore, Co. Kildare, Ireland (Longitude W6 56`, Latitude 53 17`). The average recorded mean annual temperature and annual rainfall in the region is 8.8 C and 934 mm, respectively (observations based on a 30-year average at the Mullingar meteorological station, 46 km from the study site). The site, 20 ha in extent, consisted of residual Phragmites fen peat, varying in depth from 0.25 to 0.9 m, and overlying sub peat mineral soil consisting of a calcareous marl layer. With no site preparation prior to planting, parallel drains, 1.3–1.5 m wide and 15 m apart, characteristic of industrial cutaway peatlands, were present between which the commercial crop of Sitka spruce was planted at a spacing of 2.3 m.", + "Control_Technologies": "", + "Other_Properties": "Stand parameters: Age 19 years; stocking 1367 stems per ha; mean dbh 18cm; top height 14.7m; basal area 38.4 m2 ha-1. Stemwood basic density alo determined as 0.38 +/- 6% t/m3. Average R (ratio of aboveground to belowground biomass) value for the stand was found to be 0.23 +/- 10% t/t", + "Value": "a = 0.3635; b = 1.9382", + "Unit": "dimensionless", + "Equation": "y = a * (dbh)^b where y = total aboveground biomass in kg , dbh is the diameter in cm at breast height (1.3m). R2 of equation was 0.96.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Green, C., Tobin, B., O`Sea, M., Farrell, E.P., Byrne, K. 2007. Above- and belowground biomass measurements in an unthinned stand of Sitka spruce (Picea sitchensis (Bong) Carr.). Eur J Forest Res 126: 179 -188.", + "English_Abstract": "Reporting carbon (C) stocks in tree biomass (above- and belowground) to the United Nations Framework Convention on Climate Change (UNFCCC) should be transparent and verifiable. The development of nationally specific data is considered ‘good practice` to assist in meeting these reporting requirements. From this study, biomass functions were developed for estimating above- and belowground C stock in a 19-year-old stand of Sitka spruce (Picea sitchensis (Bong) Carr.). Our estimates were then tested against current default values used for reporting in Ireland and literature equations. Ten trees were destructively sampled to develop aboveground and tree component biomass equations. The roots were excavated and a root:shoot (R) ratio developed to estimate belowground biomass. Application of the total aboveground biomass function yielded a C stock estimate for the stand of 74 tonnes C ha 1, with an uncertainty of 7%. The R ratio was determined to be 0.23, with an uncertainty of 10%. The C stock estimate of the belowground biomass component was then calculated to be 17 tonnes C ha 1, with an uncertainty of 12%. The equivalent C stock estimate from the biomass expansion factor (BEF) method, applying Ireland`s currently reported default values for BEF (inclusive of belowground biomass), wood density and C concentration and methods for estimating volume, was found to be 60 tonnes C ha 1, with an uncertainty of 26%. We found that volume tables, currently used for determining merchantable timber volume in Irish forestry conditions, underestimated volume since they did not extend to the yield of the forest under investigation. Mean stock values for belowground biomass compared well with that generated using published models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:10.485Z", + "last_change_date": "2022-03-14T08:12:10.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15234, + "fields": { + "EF_ID": 521364, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Allometric equation for predicting aboveground tree biomass using height (m)", + "Technology_Practices": "Establised at slightly greater spacing spacing than normal (2m x 2m) of 2.3m x 2.3m. Unthinned prior to research activities at the stand.", + "Parameter_Conditions": "19-year-old stand of Sitka spruce growing in a peat soil (site previously used for industrial peat extraction).", + "Regional_Conditions": "Ireland; the study was located in an industrial cutaway peatland, which was afforested with Sitka spruce in 1983. The site was previously used for the extraction of peat for fuel and was located at Lullymore, Co. Kildare, Ireland (Longitude W6 56`, Latitude 53 17`). The average recorded mean annual temperature and annual rainfall in the region is 8.8 C and 934 mm, respectively (observations based on a 30-year average at the Mullingar meteorological station, 46 km from the study site). The site, 20 ha in extent, consisted of residual Phragmites fen peat, varying in depth from 0.25 to 0.9 m, and overlying sub peat mineral soil consisting of a calcareous marl layer. With no site preparation prior to planting, parallel drains, 1.3–1.5 m wide and 15 m apart, characteristic of industrial cutaway peatlands, were present between which the commercial crop of Sitka spruce was planted at a spacing of 2.3 m.", + "Control_Technologies": "", + "Other_Properties": "Stand parameters: Age 19 years; stocking 1367 stems per ha; mean dbh 18cm; top height 14.7m; basal area 38.4 m2 ha-1. Stemwood basic density alo determined as 0.38 +/- 6% t/m3. Average R (ratio of aboveground to belowground biomass) value for the stand was found to be 0.23 +/- 10% t/t", + "Value": "a = .0056; b = 3.9057", + "Unit": "dimensionless", + "Equation": "y = a * (dbh)^b where y = total aboveground biomass in kg , h is the height in m. R2 of equation was 0.85.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Green, C., Tobin, B., O`Sea, M., Farrell, E.P., Byrne, K. 2007. Above- and belowground biomass measurements in an unthinned stand of Sitka spruce (Picea sitchensis (Bong) Carr.). Eur J Forest Res 126: 179 -188.", + "English_Abstract": "Reporting carbon (C) stocks in tree biomass (above- and belowground) to the United Nations Framework Convention on Climate Change (UNFCCC) should be transparent and verifiable. The development of nationally specific data is considered ‘good practice` to assist in meeting these reporting requirements. From this study, biomass functions were developed for estimating above- and belowground C stock in a 19-year-old stand of Sitka spruce (Picea sitchensis (Bong) Carr.). Our estimates were then tested against current default values used for reporting in Ireland and literature equations. Ten trees were destructively sampled to develop aboveground and tree component biomass equations. The roots were excavated and a root:shoot (R) ratio developed to estimate belowground biomass. Application of the total aboveground biomass function yielded a C stock estimate for the stand of 74 tonnes C ha 1, with an uncertainty of 7%. The R ratio was determined to be 0.23, with an uncertainty of 10%. The C stock estimate of the belowground biomass component was then calculated to be 17 tonnes C ha 1, with an uncertainty of 12%. The equivalent C stock estimate from the biomass expansion factor (BEF) method, applying Ireland`s currently reported default values for BEF (inclusive of belowground biomass), wood density and C concentration and methods for estimating volume, was found to be 60 tonnes C ha 1, with an uncertainty of 26%. We found that volume tables, currently used for determining merchantable timber volume in Irish forestry conditions, underestimated volume since they did not extend to the yield of the forest under investigation. Mean stock values for belowground biomass compared well with that generated using published models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:10.594Z", + "last_change_date": "2022-03-14T08:12:10.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15235, + "fields": { + "EF_ID": 521365, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF -a biomass expansion factor defined as BEFTimber = total / timber stem. This factor expands the input data (timber stem biomass) to total above- and belowground biomass. BEF values were prepared from plot level data across a chronosequence. The 6 chronosequence stages are described by the following parameters to allow the context of the values to be properly understood (age[years]; mean dbh[cm]; mean height[m]basal area[m2 ha-1]; respectively: Stage 1: (9; 6; 3.5; 6.3), Stage 2: (14; 13; 7.3; 34), Stage 3: (14; 16; 9.5; 52.2), Stage 4: (28; 22; 14.3; 48.9), Stage 5: (30; 24; 16.8; 60.7), Stage 6:(45; 32; 26.7; 65.3)", + "Technology_Practices": "Sitka spruce has been established as an even-aged monoculture plantation, with an approximate initial stocking of 2500 stems per ha. First thinning accure about years 18 to 20, and there after every c.5 years. Clearfelling often occurs between ages 38 to 45.", + "Parameter_Conditions": "A chronosequence, growing on a wet mineral surface-water gley, consisting of five even-aged monospecies stands (9, 14, 28, 30 and 45 years old), representing the typical commercial rotation of Sitka spruce in Irish forest conditions was identified, Table 1. The general yield class of stands to be chosen was 18 m3/ha a 1, the national average for Sitka spruce in Ireland (current in c. 2004)", + "Regional_Conditions": "Ireland; the research was conducted on a Sitka spruce forest chronosequence growing on a wet mineral soil located in Co. Laois in the Irish midlands ( 52 57¢N, 7 15¢W, altitude of 260 m). The 30-year mean annual temperature was 9.3 C, with a mean rainfall of 850 mm. The site was previously an unmanaged grassland, now planted at a density of ca. 2,500 stem ha 1.", + "Control_Technologies": "", + "Other_Properties": "Chronosequence covers the following ranges: Mean dbh 6 to 32cm; age 9 to 45 years; Mean height 3.5 to 26.7 m; standing stem volume 60.4 to 835.3m3/ha.", + "Value": "Stage 1: 39.8+/-120.95; Stage 2: 4.6+/-24.19; Stage 3: 2.3+/-13.47; Stage 4: 1.7+/-8.89; Stage 5: 1.7+/-8.89; Stage 6: 1.6+/-5.35.", + "Unit": "dimensionless", + "Equation": "BEF_Timber = total (above and below)ground/ timber stem.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tobin, B., Nieuwenhuis, M. 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. Eur J Forest Res 126: 189-196", + "English_Abstract": "The assessment of a forest resource in national inventories provides a firm basis for the calculation of biomass and carbon (C) stocks of forests. Biomass expansion factors (BEFs) and conversion factors provide a robust and simple method of converting from forest tree stem volume to total forest biomass. These factors should be constructed on the basis of nationally specific data in order to take account of regional differences in growth rates, management practices, etc. The objective of this study is to improve the accuracy of biomass estimation by calculating a range of agedependant BEFs from representative data that more accurately describe the allometry of present forests. The results from this study show that the allocation of biomass to compartments in forest stands and throughout a rotation varies considerably, and that the use of BEFs for the calculation of C stocks in forests of sub-timber dimensions is highly impractical.", + "Lower_Bound": "See Other Info on Data Quality field.", + "Upper_Bound": "See Other Info on Data Quality field.", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "BEF values are entered in the value field as ± the 95% confidence limit (expressed as a percentage of the mean).", + "Data_Provider_Comments": "The definition of Biomass Expansion Factor(BEF) given here is not the same as followed in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:10.704Z", + "last_change_date": "2022-03-14T08:12:10.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15236, + "fields": { + "EF_ID": 521366, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF -a biomass expansion factor defined as BEFAbove = above / complete stem. This factor expands the input data (complete (to tip) stem biomass) to total aboveground biomass. BEF values were prepared from plot level data across a chronosequence. The 6 chronosequence stages are described by the following parameters to allow the context of the values to be properly understood (age[years]; mean dbh[cm]; mean height[m]; basal area[m2 ha-1]; respectively: Stage 1: (9; 6; 3.5; 6.3), Stage 2: (14; 13; 7.3; 34), Stage 3: (14; 16; 9.5; 52.2), Stage 4: (28; 22; 14.3; 48.9), Stage 5: (30; 24; 16.8; 60.7), Stage 6:(45; 32; 26.7; 65.3)", + "Technology_Practices": "Sitka spruce has been established as an even-aged monoculture plantation, with an approximate initial stocking of 2500 stems per ha. First thinning accure about years 18 to 20, and there after every c.5 years. Clearfelling often occurs between ages 38 to 45.", + "Parameter_Conditions": "A chronosequence, growing on a wet mineral surface-water gley, consisting of five even-aged monospecies stands (9, 14, 28, 30 and 45 years old), representing the typical commercial rotation of Sitka spruce in Irish forest conditions was identified, Table 1. The general yield class of stands to be chosen was 18 m3/ha a 1, the national average for Sitka spruce in Ireland (current in c. 2004)", + "Regional_Conditions": "Ireland; the research was conducted on a Sitka spruce forest chronosequence growing on a wet mineral soil located in Co. Laois in the Irish midlands ( 52 57¢N, 7 15¢W, altitude of 260 m). The 30-year mean annual temperature was 9.3 C, with a mean rainfall of 850 mm. The site was previously an unmanaged grassland, now planted at a density of ca. 2,500 stem ha 1.", + "Control_Technologies": "", + "Other_Properties": "Chronosequence covers the following ranges: Mean dbh 6 to 32cm; age 9 to 45 years; Mean height 3.5 to 26.7 m; standing stem volume 60.4 to 835.3m3/ha.", + "Value": "Stage 1: 28.1+/-119.95; Stage 2: 3.2+/-26.83; Stage 3: 1.76+/-13; Stage 4: 1.4+/-14.3; Stage 5: 1.5+/-10.38; Stage 6: 1.3+/-4.54.", + "Unit": "dimensionless", + "Equation": "BEF_Above = above-ground biomass / complete(to tip) stem biomass", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tobin, B., Nieuwenhuis, M. 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. Eur J Forest Res 126: 189-197", + "English_Abstract": "The assessment of a forest resource in national inventories provides a firm basis for the calculation of biomass and carbon (C) stocks of forests. Biomass expansion factors (BEFs) and conversion factors provide a robust and simple method of converting from forest tree stem volume to total forest biomass. These factors should be constructed on the basis of nationally specific data in order to take account of regional differences in growth rates, management practices, etc. The objective of this study is to improve the accuracy of biomass estimation by calculating a range of agedependant BEFs from representative data that more accurately describe the allometry of present forests. The results from this study show that the allocation of biomass to compartments in forest stands and throughout a rotation varies considerably, and that the use of BEFs for the calculation of C stocks in forests of sub-timber dimensions is highly impractical.", + "Lower_Bound": "See Other Info on Data Quality field.", + "Upper_Bound": "See Other Info on Data Quality field.", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "BEF values are entered in the value field as ± the 95% confidence limit (expressed as a percentage of the mean).", + "Data_Provider_Comments": "The definition of Biomass Expansion Factor(BEF) given here is not the same as followed in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:10.812Z", + "last_change_date": "2022-03-14T08:12:10.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15237, + "fields": { + "EF_ID": 521367, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF -a biomass expansion factor defined as BEFTotal = total / complete stem. This factor expands the input data (complete (to tip) stem biomass) to total above- and belowground biomass. BEF values were prepared from plot level data across a chronosequence. The 6 chronosequence stages are described by the following parameters to allow the context of the values to be properly understood (age[years]; mean dbh[cm]; mean height[m]; basal area[m2 ha-1]; respectively: Stage 1: (9; 6; 3.5; 6.3), Stage 2: (14; 13; 7.3; 34), Stage 3: (14; 16; 9.5; 52.2), Stage 4: (28; 22; 14.3; 48.9), Stage 5: (30; 24; 16.8; 60.7), Stage 6:(45; 32; 26.7; 65.3)", + "Technology_Practices": "Sitka spruce has been established as an even-aged monoculture plantation, with an approximate initial stocking of 2500 stems per ha. First thinning accure about years 18 to 20, and there after every c.5 years. Clearfelling often occurs between ages 38 to 45.", + "Parameter_Conditions": "A chronosequence, growing on a wet mineral surface-water gley, consisting of five even-aged monospecies stands (9, 14, 28, 30 and 45 years old), representing the typical commercial rotation of Sitka spruce in Irish forest conditions was identified, Table 1. The general yield class of stands to be chosen was 18 m3/ha a 1, the national average for Sitka spruce in Ireland (current in c. 2004)", + "Regional_Conditions": "Ireland; the research was conducted on a Sitka spruce forest chronosequence growing on a wet mineral soil located in Co. Laois in the Irish midlands ( 52 57¢N, 7 15¢W, altitude of 260 m). The 30-year mean annual temperature was 9.3 C, with a mean rainfall of 850 mm. The site was previously an unmanaged grassland, now planted at a density of ca. 2,500 stem ha 1.", + "Control_Technologies": "", + "Other_Properties": "Chronosequence covers the following ranges: Mean dbh 6 to 32cm; age 9 to 45 years; Mean height 3.5 to 26.7 m; standing stem volume 60.4 to 835.3m3/ha.", + "Value": "Stage 1: 1.3+/-4.54; Stage 2: 2.5+/-22.35; Stage 3: 2.2+/-11.5; Stage 4: 1.5+/-9.21; Stage 5: 1.7+/-21.41; Stage 6: 1.4+/-5.17.", + "Unit": "dimensionless", + "Equation": "BEF_Total = total (above and below) biomass/ complete(to tip) stem biomass", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tobin, B., Nieuwenhuis, M. 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. Eur J Forest Res 126: 189-198", + "English_Abstract": "The assessment of a forest resource in national inventories provides a firm basis for the calculation of biomass and carbon (C) stocks of forests. Biomass expansion factors (BEFs) and conversion factors provide a robust and simple method of converting from forest tree stem volume to total forest biomass. These factors should be constructed on the basis of nationally specific data in order to take account of regional differences in growth rates, management practices, etc. The objective of this study is to improve the accuracy of biomass estimation by calculating a range of agedependant BEFs from representative data that more accurately describe the allometry of present forests. The results from this study show that the allocation of biomass to compartments in forest stands and throughout a rotation varies considerably, and that the use of BEFs for the calculation of C stocks in forests of sub-timber dimensions is highly impractical.", + "Lower_Bound": "See Other Info on Data Quality field.", + "Upper_Bound": "See Other Info on Data Quality field.", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "BEF values are entered in the value field as ± the 95% confidence limit (expressed as a percentage of the mean).", + "Data_Provider_Comments": "The definition of Biomass Expansion Factor(BEF) given here is not the same as followed in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:10.921Z", + "last_change_date": "2022-03-14T08:12:10.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15238, + "fields": { + "EF_ID": 521368, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "R -a ratio of below- to aboveground biomass (belowground biomass / aboveground biomass). This factor can be used to extimate belowground biomass from aboveground biomass. R values were prepared from plot level data across a chronosequence. The 6 chronosequence stages are described by the following parameters to allow the context of the values to be properly understood (age[years]; mean dbh[cm]; mean height; [m]basal area[m2 ha-1]; respectively: Stage 1: (9; 6; 3.5; 6.3), Stage 2: (14; 13; 7.3; 34), Stage 3: (14; 16; 9.5; 52.2), Stage 4: (28; 22; 14.3; 48.9), Stage 5: (30; 24; 16.8; 60.7), Stage 6:(45; 32; 26.7; 65.3)", + "Technology_Practices": "Sitka spruce has been established as an even-aged monoculture plantation, with an approximate initial stocking of 2500 stems per ha. First thinning accure about years 18 to 20, and there after every c.5 years. Clearfelling often occurs between ages 38 to 45.", + "Parameter_Conditions": "A chronosequence, growing on a wet mineral surface-water gley, consisting of five even-aged monospecies stands (9, 14, 28, 30 and 45 years old), representing the typical commercial rotation of Sitka spruce in Irish forest conditions was identified, Table 1. The general yield class of stands to be chosen was 18 m3/ha a 1, the national average for Sitka spruce in Ireland (current in c. 2004)", + "Regional_Conditions": "Ireland; the research was conducted on a Sitka spruce forest chronosequence growing on a wet mineral soil located in Co. Laois in the Irish midlands ( 52 57¢N, 7 15¢W, altitude of 260 m). The 30-year mean annual temperature was 9.3 C, with a mean rainfall of 850 mm. The site was previously an unmanaged grassland, now planted at a density of ca. 2,500 stem ha 1.", + "Control_Technologies": "", + "Other_Properties": "Chronosequence covers the following ranges: Mean dbh 6 to 32cm; age 9 to 45 years; Mean height 3.5 to 26.7 m; standing stem volume 60.4 to 835.3m3/ha.", + "Value": "Stage 1: 0.41+/-7.78; Stage 2: 0.47+/-40.41; Stage 3: 0.33+/-41.75; Stage 4: 0.22+/-42.08; Stage 5: 0.22+/-42.08; Stage 6: 0.22+/-5.02.", + "Unit": "dimensionless", + "Equation": "R = belowground biomass / aboveground biomass", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tobin, B., Nieuwenhuis, M. 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. Eur J Forest Res 126: 189-199", + "English_Abstract": "The assessment of a forest resource in national inventories provides a firm basis for the calculation of biomass and carbon (C) stocks of forests. Biomass expansion factors (BEFs) and conversion factors provide a robust and simple method of converting from forest tree stem volume to total forest biomass. These factors should be constructed on the basis of nationally specific data in order to take account of regional differences in growth rates, management practices, etc. The objective of this study is to improve the accuracy of biomass estimation by calculating a range of agedependant BEFs from representative data that more accurately describe the allometry of present forests. The results from this study show that the allocation of biomass to compartments in forest stands and throughout a rotation varies considerably, and that the use of BEFs for the calculation of C stocks in forests of sub-timber dimensions is highly impractical.", + "Lower_Bound": "See Other Info on Data Quality field.", + "Upper_Bound": "See Other Info on Data Quality field.", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "BEF values are entered in the value field as ± the 95% confidence limit (expressed as a percentage of the mean).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:11.022Z", + "last_change_date": "2022-03-14T08:12:11.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15239, + "fields": { + "EF_ID": 521369, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Stem basic wood density values for an age range of Picea sitchensis. Basic density (dry mass per green volume) is used as a conversion factor to convert wet volume (from forest inventory) to dry biomass. The basic density values are means from measurements taken from plot level data across a chronosequence. The 6 chronosequence stages are described by the following parameters to allow the context of the values to be properly understood (age[years]; mean dbh[cm]; mean height[m]; basal area[m2 ha-1]; respectively: Stage 1: (9; 6; 3.5; 6.3), Stage 2: (14; 13; 7.3; 34), Stage 3: (14; 16; 9.5; 52.2), Stage 4: (28; 22; 14.3; 48.9), Stage 5: (30; 24; 16.8; 60.7), Stage 6:(45; 32; 26.7; 65.3)", + "Technology_Practices": "Sitka spruce has been established as an even-aged monoculture plantation, with an approximate initial stocking of 2500 stems per ha. First thinning accure about years 18 to 20, and there after every c.5 years. Clearfelling often occurs between ages 38 to 45.", + "Parameter_Conditions": "A chronosequence, growing on a wet mineral surface-water gley, consisting of five even-aged monospecies stands (9, 14, 28, 30 and 45 years old), representing the typical commercial rotation of Sitka spruce in Irish forest conditions was identified, Table 1. The general yield class of stands to be chosen was 18 m3/ha a 1, the national average for Sitka spruce in Ireland (current in c. 2004)", + "Regional_Conditions": "Ireland; the research was conducted on a Sitka spruce forest chronosequence growing on a wet mineral soil located in Co. Laois in the Irish midlands ( 52 57¢N, 7 15¢W, altitude of 260 m). The 30-year mean annual temperature was 9.3 C, with a mean rainfall of 850 mm. The site was previously an unmanaged grassland, now planted at a density of ca. 2,500 stem ha 1.", + "Control_Technologies": "", + "Other_Properties": "Chronosequence covers the following ranges: Mean dbh 6 to 32cm; age 9 to 45 years; Mean height 3.5 to 26.7 m; standing stem volume 60.4 to 835.3m3/ha.", + "Value": "Stage 1: 475+/-3.6; Stage 2: 412.8+/-12.96; Stage 3: 375.3+/-11.54; Stage 4: 389.3+/-10.49; Stage 5: 378.5+/-15.11; Stage 6: 365.2+/-5.29.", + "Unit": "kg/m3 wood", + "Equation": "Basic Wood Density= dry mass/ green volume", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tobin, B., Nieuwenhuis, M. 2007. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. Eur J Forest Res 126: 189-200", + "English_Abstract": "The assessment of a forest resource in national inventories provides a firm basis for the calculation of biomass and carbon (C) stocks of forests. Biomass expansion factors (BEFs) and conversion factors provide a robust and simple method of converting from forest tree stem volume to total forest biomass. These factors should be constructed on the basis of nationally specific data in order to take account of regional differences in growth rates, management practices, etc. The objective of this study is to improve the accuracy of biomass estimation by calculating a range of agedependant BEFs from representative data that more accurately describe the allometry of present forests. The results from this study show that the allocation of biomass to compartments in forest stands and throughout a rotation varies considerably, and that the use of BEFs for the calculation of C stocks in forests of sub-timber dimensions is highly impractical.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:11.122Z", + "last_change_date": "2022-03-14T08:12:11.122Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15240, + "fields": { + "EF_ID": 521370, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass expansion factors were calculatd as follows: BEF = total aboveground fresh tree mass / fresh mass of the merchantable timber.", + "Technology_Practices": "Suitable for calculating a species specific BEF value from stand mean height, in order to use with standard carbon stock calculation (i.e. C = {V * D * BEF * FC} where V = volume, D = basic density, BEF = biomass expansion factor, FC = carbon fraction.)", + "Parameter_Conditions": "Species covered include: Pinus nigra, Pseudotsuga menziesii, Larix decidua, Abies grandis, Larix kaempferi, Chamaecyparis lawsoniana, Pinus contorta, Abies procera, Picea abies, Thuja plicata, Pinus sylvestris, Picea sitchensis, Tsuga heterophylla", + "Regional_Conditions": "In a research programme investigating tree stability dating back to 1960, the force required to overturn or break individual trees has been measured experimentally (B.C. Nicoll and B.A. Gardiner, unpublished.). Almost 2000 individual trees have been measured in the course of this programme, from managed forests across GB (Figure 1), covering 13 species and a range of ages, soil types and site cultivation methods. Importantly, the sample was not restricted to small trees, and individuals spanned a wide range of stem diameters, tree heights and ages.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See Equation field. Also, for the aspp values, see Comments from Data Provider field.", + "Unit": "dimensionless", + "Equation": "BEF = aspp + -0.4812 * ln(htree) where aspp is the species specific intercept and htree is the tree mean height in meters.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Levy, P.E., Hale, S.E., Nicoll, B.C. 2004. Biomass expansion factors and root:shoot ratios for coniferous tree species in Great Britain. Forestry 77: 421–430", + "English_Abstract": "Biomass expansion factors (the ratio of the total above-ground tree biomass to the biomass of the merchantable timber, Bef) and root : shoot ratios (R) are commonly used in converting standing volumes of timber into total carbon stocks, for the purpose of national inventories of greenhouse gas emissions and sequestration. However, much of the uncertainty in these estimates of carbon stocks is attributable to uncertainty in the Bef and R parameters, as they are not measured in standard forestry practice and are rarely measured on a large scale in research work. Here, we present measurements which represent the largest available data set on which estimates of Bef and R can be based for coniferous species in Great Britain. Bef varied between 1.04 and 2.32, with a mean of 1.43 +/- 0.008, whilst R varied from 0.12 to 1.21, with a mean of 0.36 +/- 0.008. Tree height accounted for 45 per cent of the variance in Bef in a logarithmic regression. Differences between species accounted for 27 per cent of the remaining variance. Equations to estimate the value of Bef for a given species and tree height are provided. No continuous variable accounted for >5 per cent of the variance in R. Differences between sites accounted for 25 per cent of the variance in R, and the effects of species, soil type and cultivation method were of lesser significance. Values of R used in some recent UK studies are lower than our values. If our results are representative, more carbon is present in UK conifer forests than is estimated in these studies, and the R terms should be increased by up to 0.2.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The aspp values are: Pinus nigra (2.571), Pseudotsuga menziesii (2.816), Larix decidua (2.631), Abies grandis (2.684), Larix kaempferi (2.619), Chamaecyparis lawsoniana (2.758), Pinus contorta (2.674), Abies procera (2.643), Picea abies (2.781), Thuja plicata (2.682), Pinus sylvestris (2.642), Picea sitchensis (2.623), Tsuga heterophylla (2.676). The definition of Biomass Expansion Factor(BEF) given here is not the same as followed in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:11.223Z", + "last_change_date": "2022-03-14T08:12:11.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15241, + "fields": { + "EF_ID": 521371, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root shoot ratio was calculated as follows: R = Fresh mass of the fresh root system / Fresh mass of the total aboveground fresh tree.", + "Technology_Practices": "Suitable for choosing a species specific root shoot ratio (R) value, in order to use with standard carbon stock calculation (i.e. C = {V * D * BEF * FC} * (1+R) where V = volume, D = basic density, BEF = biomass expansion factor, FC = carbon fraction.)", + "Parameter_Conditions": "Species covered include: Pinus nigra, Pseudotsuga menziesii, Larix decidua, Abies grandis, Larix kaempferi, Chamaecyparis lawsoniana, Pinus contorta, Abies procera, Picea abies, Thuja plicata, Pinus sylvestris, Picea sitchensis, Tsuga heterophylla", + "Regional_Conditions": "In a research programme investigating tree stability dating back to 1960, the force required to overturn or break individual trees has been measured experimentally (B.C. Nicoll and B.A. Gardiner, unpublished.). Almost 2000 individual trees have been measured in the course of this programme, from managed forests across GB (Figure 1), covering 13 species and a range of ages, soil types and site cultivation methods. Importantly, the sample was not restricted to small trees, and individuals spanned a wide range of stem diameters, tree heights and ages.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "See Comments from Data Provider field.", + "Unit": "dimensionless", + "Equation": "R = Fresh mass of the fresh root system / Fresh mass of the total aboveground fresh tree", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Levy, P.E., Hale, S.E., Nicoll, B.C. 2004. Biomass expansion factors and root:shoot ratios for coniferous tree species in Great Britain. Forestry 77: 421–431", + "English_Abstract": "Biomass expansion factors (the ratio of the total above-ground tree biomass to the biomass of the merchantable timber, Bef) and root : shoot ratios (R) are commonly used in converting standing volumes of timber into total carbon stocks, for the purpose of national inventories of greenhouse gas emissions and sequestration. However, much of the uncertainty in these estimates of carbon stocks is attributable to uncertainty in the Bef and R parameters, as they are not measured in standard forestry practice and are rarely measured on a large scale in research work. Here, we present measurements which represent the largest available data set on which estimates of Bef and R can be based for coniferous species in Great Britain. Bef varied between 1.04 and 2.32, with a mean of 1.43 +/- 0.008, whilst R varied from 0.12 to 1.21, with a mean of 0.36 +/- 0.008. Tree height accounted for 45 per cent of the variance in Bef in a logarithmic regression. Differences between species accounted for 27 per cent of the remaining variance. Equations to estimate the value of Bef for a given species and tree height are provided. No continuous variable accounted for >5 per cent of the variance in R. Differences between sites accounted for 25 per cent of the variance in R, and the effects of species, soil type and cultivation method were of lesser significance. Values of R used in some recent UK studies are lower than our values. If our results are representative, more carbon is present in UK conifer forests than is estimated in these studies, and the R terms should be increased by up to 0.2.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Values are: Pinus nigra (0.224), Pseudotsuga menziesii (0.256), Larix decidua (0.346), Abies grandis (0.335), Larix kaempferi (0.312), Chamaecyparis lawsoniana (0.329), Pinus contorta (0.248), Abies procera (0.25), Picea abies (0.258), Thuja plicata (0.301), Pinus sylvestris (0.41), Picea sitchensis (0.317), Tsuga heterophylla (0.359). The definition of Root-to-Shoot ratio(R) given here is not the same as followed in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Brian Tobin", + "Link": "", + "creation_date": "2022-03-14T08:12:11.323Z", + "last_change_date": "2022-03-14T08:12:11.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15242, + "fields": { + "EF_ID": 521372, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Abies and Picea in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Abies and Picea in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.4642, b=47.4990", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=13, r^2=0.98", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:11.441Z", + "last_change_date": "2022-03-14T08:12:11.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15243, + "fields": { + "EF_ID": 521373, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Betula in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Betula in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=1.0687, b=10.2370", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=9, r^2=0.70", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:11.558Z", + "last_change_date": "2022-03-14T08:12:11.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15244, + "fields": { + "EF_ID": 521374, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Casuarina in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Casuarina in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.7441, b=3.2377", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=10, r^2=0.95", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:11.668Z", + "last_change_date": "2022-03-14T08:12:11.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15245, + "fields": { + "EF_ID": 521375, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Cunninghamia lanceolata in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Cunninghamia lanceolata in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.3999, b=22.5410", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=56, r^2=0.95", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:11.777Z", + "last_change_date": "2022-03-14T08:12:11.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15246, + "fields": { + "EF_ID": 521376, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Cypress in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Cypress in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.6129, b=46.1451", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=11, r^2=0.96", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:11.886Z", + "last_change_date": "2022-03-14T08:12:11.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15247, + "fields": { + "EF_ID": 521377, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Deciduous oaks in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Deciduous oaks in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=1.1453, b=8.5473", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=12, r^2=0.98", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:11.995Z", + "last_change_date": "2022-03-14T08:12:11.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15248, + "fields": { + "EF_ID": 521378, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Eucalyptus in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Eucalyptus in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.8873, b=4.5539", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=20, r^2=0.80", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.112Z", + "last_change_date": "2022-03-14T08:12:12.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15249, + "fields": { + "EF_ID": 521379, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Larix in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Larix in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.6096, b=33.8060", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=34, r^2=0.82", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.213Z", + "last_change_date": "2022-03-14T08:12:12.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15250, + "fields": { + "EF_ID": 521380, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Lucidophyllous forests in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Lucidophyllous forests in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=1.0357, b=8.0591", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=17, r^2=0.89", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.314Z", + "last_change_date": "2022-03-14T08:12:12.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15251, + "fields": { + "EF_ID": 521381, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Pinus armandii in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Pinus armandii in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.5856, b=18.7435", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=9, r^2=0.91", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.414Z", + "last_change_date": "2022-03-14T08:12:12.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15252, + "fields": { + "EF_ID": 521382, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Pinus koraiensis in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Pinus koraiensis in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.5185, b=18.2200", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=17, r^2=0.90", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.515Z", + "last_change_date": "2022-03-14T08:12:12.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15253, + "fields": { + "EF_ID": 521383, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Pinus massoniana and Pinus yunnanensis in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Pinus massoniana and Pinus yunnanensis in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.5101, b=1.0451", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=12, r^2 =0.92", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.616Z", + "last_change_date": "2022-03-14T08:12:12.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15254, + "fields": { + "EF_ID": 521384, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Pinus sylvestris var. mongolica in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Pinus sylvestris var. mongolica in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=1.0945, b=2.0040", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=11, r^2=0.98", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.716Z", + "last_change_date": "2022-03-14T08:12:12.716Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15255, + "fields": { + "EF_ID": 521385, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Pinus tabulaefomis in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Pinus tabulaefomis in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.7554, b=5.0928", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=82, r^2=0.96", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.833Z", + "last_change_date": "2022-03-14T08:12:12.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15256, + "fields": { + "EF_ID": 521386, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Populus in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Populus in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.4754, b=30.6034", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=10, r^2=0.87", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:12.951Z", + "last_change_date": "2022-03-14T08:12:12.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15257, + "fields": { + "EF_ID": 521387, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Tsuga, Cryptomeria, and Keteleeria in China. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "The forest biomass database obtained from direct field measurements was used to determine BEF values for each forest type using a literature review of forest biomass studies in China.", + "Parameter_Conditions": "Forest type: Tsuga, Cryptomeria, and Keteleeria in China.", + "Regional_Conditions": "China has 133.7 million hectares of forested land that range from tropical forests in the south to boreal forests in the north.", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.4158, b=41.3318", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang, J., A. Chen, C. Peng, S. Zhao, L. Ci, 2001, Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.", + "English_Abstract": "The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=21, r^2 =0.89", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.068Z", + "last_change_date": "2022-03-14T08:12:13.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15258, + "fields": { + "EF_ID": 521388, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Belowground Biomass and Aboveground Biomass for the forest type of Cryptomeria japonica in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Cryptomeria japonica in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between Belowground Biomass and Aboveground Biomass.", + "Value": "a=0.1443, b=1.1100", + "Unit": "dimensionless", + "Equation": "Y(bg)=a{Y(ag)}^2 , where Y(bg) is belowground biomass (Mg/ha), and Y(ag) is aboveground biomass (Mg/ha).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=64, r^2=0.94", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.177Z", + "last_change_date": "2022-03-14T08:12:13.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15259, + "fields": { + "EF_ID": 521389, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Belowground Biomass and Aboveground Biomass for the forest type of Chamaecyparis obtusa in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Chamaecyparis obtuse in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between Belowground Biomass and Aboveground Biomass.", + "Value": "a=0.3181, b=0.9844", + "Unit": "dimensionless", + "Equation": "Y(bg)=a{Y(ag)}^2 , where Y(bg) is belowground biomass (Mg/ha), and Y(ag) is aboveground biomass (Mg/ha).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=33, r^2=0.98", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.287Z", + "last_change_date": "2022-03-14T08:12:13.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15260, + "fields": { + "EF_ID": 521390, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Belowground Biomass and Aboveground Biomass for the forest type of Pinus densiflora in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Pinus densiflora in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between Belowground Biomass and Aboveground Biomass.", + "Value": "a=0.2573, b=1.0038", + "Unit": "dimensionless", + "Equation": "Y(bg)=a{Y(ag)}^2 , where Y(bg) is belowground biomass (Mg/ha), and Y(ag) is aboveground biomass (Mg/ha).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=15, r^2 =0.99", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.396Z", + "last_change_date": "2022-03-14T08:12:13.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15261, + "fields": { + "EF_ID": 521391, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Belowground Biomass and Aboveground Biomass for the forest type of Larix leptolepis in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Larix leptolepis in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between Belowground Biomass and Aboveground Biomass.", + "Value": "a=1.1146, b=0.6872", + "Unit": "dimensionless", + "Equation": "Y(bg)=a{Y(ag)}^2 , where Y(bg) is belowground biomass (Mg/ha), and Y(ag) is aboveground biomass (Mg/ha).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=12, r^2=0.65", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.497Z", + "last_change_date": "2022-03-14T08:12:13.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15262, + "fields": { + "EF_ID": 521392, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Belowground Biomass and Aboveground Biomass for the forest type of Abies and Picea forests in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Abies and Picea forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between Belowground Biomass and Aboveground Biomass.", + "Value": "a=0.2606, b=1.0000", + "Unit": "dimensionless", + "Equation": "Y(bg)=a{Y(ag)}^2 , where Y(bg) is belowground biomass (Mg/ha), and Y(ag) is aboveground biomass (Mg/ha).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004. The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=17, r^2 =0.94", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.606Z", + "last_change_date": "2022-03-14T08:12:13.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15263, + "fields": { + "EF_ID": 521393, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Belowground Biomass and Aboveground Biomass for the forest type of Fagus forests, Quercus forests, and Betula forests in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Fagus forests, Quercus forests, and Betula forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between Belowground Biomass and Aboveground Biomass.", + "Value": "a=0.3112, b=0.9158", + "Unit": "dimensionless", + "Equation": "Y(bg)=a{Y(ag)}^2 , where Y(bg) is belowground biomass (Mg/ha), and Y(ag) is aboveground biomass (Mg/ha).", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=70, r^2 =0.87", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.706Z", + "last_change_date": "2022-03-14T08:12:13.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15264, + "fields": { + "EF_ID": 521394, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Stem Volume and Stem Biomass for the forest type of Cryptomeria japonica in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Cryptomeria japonica in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between stem volume density and stem biomass density.", + "Value": "a=2.9187, b=1.0584", + "Unit": "See `Equation` field", + "Equation": "V(s)=aY(s)+b, where V(s) is stem volume density (m3/ha), and Y(s) is stem biomass density (Mg/ha). a: m3/Mg, b: m3/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=115, r^2=0.98", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.807Z", + "last_change_date": "2022-03-14T08:12:13.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15265, + "fields": { + "EF_ID": 521395, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Stem Volume and Stem Biomass for the forest type of Chamaecyparis obtusa in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Chamaecyparis obtuse in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between stem volume density and stem biomass density.", + "Value": "a=2.4566, b=13.9050", + "Unit": "See `Equation` field", + "Equation": "V(s)=aY(s)+b, where V(s) is stem volume density (m3/ha), and Y(s) is stem biomass density (Mg/ha). a: m3/Mg, b: m3/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=109, r^2=0.97", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:13.908Z", + "last_change_date": "2022-03-14T08:12:13.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15266, + "fields": { + "EF_ID": 521396, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Stem Volume and Stem Biomass for the forest type of Pinus densiflora in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Pinus densiflora in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between stem volume density and stem biomass density.", + "Value": "a=2.3483, b=5.3557", + "Unit": "See `Equation` field", + "Equation": "V(s)=aY(s)+b, where V(s) is stem volume density (m3/ha), and Y(s) is stem biomass density (Mg/ha). a: m3/Mg, b: m3/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=83, r^2=0.95", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.008Z", + "last_change_date": "2022-03-14T08:12:14.008Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15267, + "fields": { + "EF_ID": 521397, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Stem Volume and Stem Biomass for the forest type of Larix leptolepis in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Larix leptolepis in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between stem volume density and stem biomass density.", + "Value": "a=2.1568, b=6.6457", + "Unit": "See `Equation` field", + "Equation": "V(s)=aY(s)+b, where V(s) is stem volume density (m3/ha), and Y(s) is stem biomass density (Mg/ha). a: m3/Mg, b: m3/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004 The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=22, r^2=0.97", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.142Z", + "last_change_date": "2022-03-14T08:12:14.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15268, + "fields": { + "EF_ID": 521398, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Stem Volume and Stem Biomass for the forest type of Abies and Picea in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Abies and Picea forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between stem volume density and stem biomass density.", + "Value": "a=2.8157, b=0", + "Unit": "See `Equation` field", + "Equation": "V(s)=aY(s)+b, where V(s) is stem volume density (m3/ha), and Y(s) is stem biomass density (Mg/ha). a: m3/Mg, b: m3/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004. The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=77, r^2=0.98", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.243Z", + "last_change_date": "2022-03-14T08:12:14.243Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15269, + "fields": { + "EF_ID": 521399, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Stem Volume and Stem Biomass for the forest type of Fagus forests in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Fagus forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between stem volume density and stem biomass density.", + "Value": "a=1.7482, b=8.1335", + "Unit": "See `Equation` field", + "Equation": "V(s)=aY(s)+b, where V(s) is stem volume density (m3/ha), and Y(s) is stem biomass density (Mg/ha). a: m3/Mg, b: m3/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004. The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=69, r^2=0.98", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.352Z", + "last_change_date": "2022-03-14T08:12:14.352Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15270, + "fields": { + "EF_ID": 521400, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Stem Volume and Stem Biomass for the forest type of Quercus forests in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Quercus forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between stem volume density and stem biomass density.", + "Value": "a=1.3200, b=0.9126", + "Unit": "See `Equation` field", + "Equation": "V(s)=aY(s)+b, where V(s) is stem volume density (m3/ha), and Y(s) is stem biomass density (Mg/ha). a: m3/Mg, b: m3/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004. The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=17, r^2 =0.99", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.469Z", + "last_change_date": "2022-03-14T08:12:14.469Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15271, + "fields": { + "EF_ID": 521401, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Relationship between Stem Volume and Stem Biomass for the forest type of Betula forests in Japan.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Betula forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "The relationship is between stem volume density and stem biomass density.", + "Value": "a=1.5521, b=8.3662", + "Unit": "See `Equation` field", + "Equation": "V(s)=aY(s)+b, where V(s) is stem volume density (m3/ha), and Y(s) is stem biomass density (Mg/ha). a: m3/Mg, b: m3/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004. The author have reviewed all literature on Japan`s forest biomass and developed the Japan`s forest biomass database.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=37, r^2 =0.99", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.578Z", + "last_change_date": "2022-03-14T08:12:14.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15272, + "fields": { + "EF_ID": 521402, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Cryptomeria japonica in Japan. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Cryptomeria japonica in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.4878, b=19.4830", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=212, r^2=0.98", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.680Z", + "last_change_date": "2022-03-14T08:12:14.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15273, + "fields": { + "EF_ID": 521403, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Chamaecyparis obtuse in Japan. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Chamaecyparis obtuse in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.5580, b=33.9560", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=149, r^2=0.96", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.780Z", + "last_change_date": "2022-03-14T08:12:14.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15274, + "fields": { + "EF_ID": 521404, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Pinus densiflora in Japan. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Pinus densiflora in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.5687, b=15.3300", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=106, r^2=0.92", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.881Z", + "last_change_date": "2022-03-14T08:12:14.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15275, + "fields": { + "EF_ID": 521405, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Larix leptolepis in Japan. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Larix leptolepis in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.5968, b=16.7000", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=36, r^2=0.95", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:14.982Z", + "last_change_date": "2022-03-14T08:12:14.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15276, + "fields": { + "EF_ID": 521406, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Abies and Picea forests in Japan. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Abies and Picea forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.5139, b=21.8470", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=88, r2=0.97", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:15.141Z", + "last_change_date": "2022-03-14T08:12:15.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15277, + "fields": { + "EF_ID": 521407, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Fagus forests in Japan. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Fagus forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.8320, b=34.7900", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=98, r2=0.93", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:15.233Z", + "last_change_date": "2022-03-14T08:12:15.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15278, + "fields": { + "EF_ID": 521408, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Quercus forests in Japan. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Quercus forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=1.3814, b=17.4450", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=29, r^2=0.94", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:15.334Z", + "last_change_date": "2022-03-14T08:12:15.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15279, + "fields": { + "EF_ID": 521409, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Parameters used to calculate biomass expansion factor (BEF) for forest type of Betula forests in Japan. BEF is expressed as a function of stand timber volume.", + "Technology_Practices": "Data come from literature on Japan`s forest biomass and developed the Japan`s forest biomass database. This database, composed of 945 sets, contains information on forest type, stand age, stand density, total basal area, stand volume, stem biomass, aboveground biomass, belowground biomass,and floor vegetation biomass.", + "Parameter_Conditions": "Forest type: Betula forests in Japan.", + "Regional_Conditions": "Japan has a typical oceanic climate with abundant rainfall, allowing two thirds of its land area to be covered with forest. Japan`s forest is characterized by a large area of recovering forests (plantations) with different age classes, decreasing natural forests, and fast growing forests owing to an appropriate climate (enough warmth and rainfall).", + "Control_Technologies": "None", + "Other_Properties": "BEF varies with forest age, site class, stand density, and other factors that are closely associated with relative stand density, which can be reflected by stand timber volume.", + "Value": "a=0.8792, b=0.8254", + "Unit": "See `Equation` field", + "Equation": "BEF=a+b/x, where BEF (Mg/m3) is defined as the ratio of all stand biomass to growing stock volume, and x is stem timber volume (m3/ha). a: Mg/m3, b: Mg/ha", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Fang JY, Oikawa T, Kato T, Mo WH, Wang ZH. 2005. Biomass carbon accumulation by Japan`s forests from 1947-1995. Global Biogeochemical Cycles, 19, GB2004.", + "English_Abstract": "Forest ecosystems in the Northern Hemisphere function as carbon (C) sinks for atmospheric carbon dioxide; however, the magnitude, location, and cause of the sinks remain uncertain. A number of field measurements of forest biomass and systematic national forest inventories in Japan make it possible to quantify the C sinks and their distribution. Allometric relationships between forest biomass and stem volume were obtained for the major forest types in Japan from 945 sets of direct field measurements across the country. These relationships were used to estimate the changes in C accumulations of aboveground biomass and total living biomass from 1947 to 1995 from the national forest inventories of 1947, 1956, 1961, 1965, 1975, 1980, 1985, 1990, and 1995. The results showed that the C accumulations have significantly increased during the last 50 years. The C density (C stock per hectare) and total C stock of aboveground biomass increased from 27.6 Mg C/ha and 611.7 Tg C in 1947 to 43.2 Mg C/ha and 1027.7 Tg C in 1995, respectively, and those of total living biomass increased from 33.9 Mg C/ha and 751.8 Tg C in 1947 to 53.6 Mg C/ha and 1274.8 Tg C in 1995. These increases were remarkable during 1976–1995, with a net increase of 5.6 Mg C/ha and 369 Tg C for the C density and total living biomass. These results suggest that Japan`s forest vegetation is a significant C sink. In the past 20 years, living vegetation has sequestered 18.5 Tg C annually, 14.6 Tg C of which was accumulated in aboveground biomass. The total C sink for the whole forest sector (including nonliving biomass) of Japan was estimated as 36 Tg C/yr if using the net change ratio of nonliving biomass C to living biomass C derived from the United States and Europe. On the basis of average C sink per hectare, Japan`s forests have a higher sequestration rate (0.77 Mg C ha 1 yr 1) than the average of the other northern countries (0.14–0.19 Mg C ha 1 yr 1). The expansion and regrowth of planted forests are two major causes for this increased C uptake; planted forests contribute 80% of the total C sink in Japan. The suitable oceanic climate for fast forest growth and effective forest management practice may be the principal factors for such a large sink.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N=43, r^2=0.99", + "Data_Provider_Comments": "This definition of Biomass Expansion Factor(BEF) as given above is not the same as that given in the IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "Jin-Yung Fang", + "Link": "", + "creation_date": "2022-03-14T08:12:15.443Z", + "last_change_date": "2022-03-14T08:12:15.443Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15280, + "fields": { + "EF_ID": 521410, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks of Peanut-Maize cropping system after clearing native scrub vine after 55 years of cultivation in Red Ferrosols In South East Queensland", + "Technology_Practices": "Original land use was native scrub. In 1950 some lands with native scrub was cleared and has been continuously cultivated to peanut-maize, with heavy use of machinery and agrochemicals. It is purely a traditional cultivation system.", + "Parameter_Conditions": "The predicted rate of change in total soil C should be applied only to Red Ferrosol soils in the South East Queensland environment (please see regional condition for this). It can be applied in Red Ferrosol soils which has been cultivated with peanut-maize cropping since last 55 years.", + "Regional_Conditions": "In the research area, mean monthly rainfall is always lower than mean monthly evaporation; therefore, soil moisture is the major limiting factor. The soil is classified as a Red Ferrosol according to the Australian Soil Classification of Isbell (2002), or a Tropeptic Eutrustox (i.e., Oxisol) in the USDA Soil Taxonomy. Research site (Kingaroy) is situated approximately 215 km (133.6 mi) northwest of Brisbane and some 130 km (80.8 mi) inland from the coast. Elevation at Kingaroy is 441 m (1,446.5 ft) above sea level. The climate is classified as subtropical, with long summers and mild winters. Annual rainfall varies from 339 to 1,430 mm (13.3 to 56.3 in), with an average of 781 mm (30.7 in), and is summer-dominant with about 70% falling between October and March. Frosts also occur during winter. June, July, and August are the coldest months and on average Kingaroy has 24 heavy and 22 light frosts each year. The hottest months are December-January, averaging only 10 days between them over 32 degrees Centigrade (89.6 deg F ) and usually only one day over 38 degrees Centigrade (100.4 deg F ). The yearly average maximum temperature is 24.7 degrees Centigrade (76.5 deg F ), while the yearly average minimum is 11.4 degrees Centigrade (52.5 deg F ).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maraseni, T.N., N.J. Mathers, B Harms, G Cockfield, A. Apan and J. Maroulis (2008). Comparing and predicting soil carbon quantities under different land use systems on the Red Ferrosol soils of Southeast Queensland, Journal of Soil and Water Conservation vol 63 (4): 250-257", + "English_Abstract": "Conversion of forested lands to agriculture, including cultivation and pasture has been linked to land degradation, including soil compaction, reduced soil fertility, and increased salinity hazard. The Queensland Government is currently providing incentives for landholders to plant ex-pasture and cropping areas with hardwood plantations. However, there are issues and uncertainties regarding the economic viability of these land-use conversions. Carbon credits resulting from additional carbon (C) sequestration achieved in the plantations are now recognised under the Kyoto Protocol, but the nature of the carbon trading scheme that will apply is still unclear, as Australia has not ratified the protocol. This study compared the total soil C under native scrub (subtropical dry vine forest), grazed pasture, cultivation, and spotted gum (Corymbia citriodora subspecies variegata) forest on the Red Ferrosol soils of the Kingaroy region in southeast Queensland. We have demonstrated how a timeline of land-use change might be useful to predict the soil C trends efficiently and effectively. Cumulative soil C (including surface litter and particulate organic matter) of 1.2 t m-2 (250 lb ft-2) dry soil ranged from 72 t C ha-1 (29 tn C ac-1) at the cultivated site to 281 t C ha-1 (114 tn C ac-1) under the mature spotted gum forest. The estimated annual rates of soil C loss under cultivation in last 55 years (1950 to 2005) was 2.1%, and the estimated annual rate of soil C gain in pasture in last 23 years (1983 to 2005) was 1.1%. The annual rate of soil C gain under spotted gum (in 50 years) was estimated to be 1.4%. Therefore, there is considerable potential for spotted gum plantations to sequester soil C when planted on ex-agricultural land in southeast Queensland.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Measured and modelled", + "Data_Quality_Reference": "Maraseni, T.N., N.J. Mathers, B Harms, G Cockfield, A. Apan and J. Maroulis (2008). Comparing and predicting soil carbon quantities under different land use systems on the Red Ferrosol soils of Southeast Queensland, Journal of Soil and Water Conservation vol 63 (4): 250-257", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. Data are of good quality, but conditions (see above on parameters and regional conditions) apply for applicability; 2. when peanut-maize was started in 1950 the soil C stock value was 228 tC/ha.It decreased by by 4.4% from 1950-55; 2.4% from 1955 to 1965; 1.8% from 1965-2000 & 1.48% from 2000 onwards; 3. As there were differences in bulk density between land-uses, soil C comparisons based on cumulative depth may be misleading. If soil C stocks are given in tons per hectare to a certain depth across different land uses, then any apparent increase in soil C in more compacted soil (high bulk density soil) could be due to the greater mass of soil sampled. If results are expressed as a percentage basis, an opposite bias could be encountered. For accuracy in comparing land-use effects on soil C, all calculations are referred to a fixed dry mass of soil per unit ground area as recommended by Gifford and Roderick (2003). As an alternative to the standard depth of 30 cm, soil C in the top 0.4 t dry soil m-2 is adopted. As an alternative to the standard 1-m soil depth, the top 1.2 t m-2 of dry soil is suggested.", + "Other_Comments": "", + "Data_Provider": "Tek Narayan Maraseni", + "Link": "http://www.jswconline.org/content/63/4/250.abstract", + "creation_date": "2022-03-14T08:12:15.552Z", + "last_change_date": "2022-03-14T08:12:15.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15281, + "fields": { + "EF_ID": 521411, + "IPCC_Category": "3.B.3.b - Land Converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks in pasture system 22 years after replacement of peanut-maize cultivation system in Red Ferrosols In South East Queensland", + "Technology_Practices": "Original land use was native scrub. In 1950 some lands with native scrub was cleared and has been continuously cultivated to peanut-maize, with heavy use of machinery and agrochemicals. It is purely a traditional cultivation system. In 1983 some peanut-maize cultivated land was converted to pasture system. This is semi improved pasture (cultivated in every 8-10 year) in subtropical climate of Australia.", + "Parameter_Conditions": "The predicted rate of change in total soil C should be applied only to Red Ferrosol soils in the South East Queensland environment (please see regional condition for this). It can be applied in Red Ferrosol soils which has been in pasture system with original land use system of peanut-maize cropping for around 50 years.", + "Regional_Conditions": "In the research area, mean monthly rainfall is always lower than mean monthly evaporation; therefore, soil moisture is the major limiting factor. The soil is classified as a Red Ferrosol according to the Australian Soil Classification of Isbell (2002), or a Tropeptic Eutrustox (i.e., Oxisol) in the USDA Soil Taxonomy. Research site (Kingaroy) is situated approximately 215 km (133.6 mi) northwest of Brisbane and some 130 km (80.8 mi) inland from the coast. Elevation at Kingaroy is 441 m (1,446.5 ft) above sea level. The climate is classified as subtropical, with long summers and mild winters. Annual rainfall varies from 339 to 1,430 mm (13.3 to 56.3 in), with an average of 781 mm (30.7 in), and is summer-dominant with about 70% falling between October and March. Frosts also occur during winter. June, July, and August are the coldest months and on average Kingaroy has 24 heavy and 22 light frosts each year. The hottest months are December-January, averaging only 10 days between them over 32 degrees Centigrade (89.6 deg F ) and usually only one day over 38 degrees Centigrade (100.4 deg F ). The yearly average maximum temperature is 24.7 degrees Centigrade (76.5 deg F ), while the yearly average minimum is 11.4 degrees Centigrade (52.5 deg F ).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maraseni, T.N., N.J. Mathers, B Harms, G Cockfield, A. Apan and J. Maroulis (2008). Comparing and predicting soil carbon quantities under different land use systems on the Red Ferrosol soils of Southeast Queensland, Journal of Soil and Water Conservation vol 63 (4): 250-257", + "English_Abstract": "Conversion of forested lands to agriculture, including cultivation and pasture has been linked to land degradation, including soil compaction, reduced soil fertility, and increased salinity hazard. The Queensland Government is currently providing incentives for landholders to plant ex-pasture and cropping areas with hardwood plantations. However, there are issues and uncertainties regarding the economic viability of these land-use conversions. Carbon credits resulting from additional carbon (C) sequestration achieved in the plantations are now recognised under the Kyoto Protocol, but the nature of the carbon trading scheme that will apply is still unclear, as Australia has not ratified the protocol. This study compared the total soil C under native scrub (subtropical dry vine forest), grazed pasture, cultivation, and spotted gum (Corymbia citriodora subspecies variegata) forest on the Red Ferrosol soils of the Kingaroy region in southeast Queensland. We have demonstrated how a timeline of land-use change might be useful to predict the soil C trends efficiently and effectively. Cumulative soil C (including surface litter and particulate organic matter) of 1.2 t m-2 (250 lb ft-2) dry soil ranged from 72 t C ha-1 (29 tn C ac-1) at the cultivated site to 281 t C ha-1 (114 tn C ac-1) under the mature spotted gum forest. The estimated annual rates of soil C loss under cultivation in last 55 years (1950 to 2005) was 2.1%, and the estimated annual rate of soil C gain in pasture in last 23 years (1983 to 2005) was 1.1%. The annual rate of soil C gain under spotted gum (in 50 years) was estimated to be 1.4%. Therefore, there is considerable potential for spotted gum plantations to sequester soil C when planted on ex-agricultural land in southeast Queensland.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Maraseni, T.N., N.J. Mathers, B Harms, G Cockfield, A. Apan and J. Maroulis (2008). Comparing and predicting soil carbon quantities under different land use systems on the Red Ferrosol soils of Southeast Queensland, Journal of Soil and Water Conservation vol 63 (4): 250-257", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. Data are of good quality, but conditions (see above on parameters and regional conditions) apply for applicability; 2. when pasture systems was started in 1983 the value of soil C stocks was 106 tC/ha. It increased by 3.74% from 1983-88); by 0.9% from 1988-2000 & 0.45% from 2000 onwards. 3. As there were differences in bulk density between land-uses, soil C comparisons based on cumulative depth may be misleading. If soil C stocks are given in tons per hectare to a certain depth across different land uses, then any apparent increase in soil C in more compacted soil (high bulk density soil) could be due to the greater mass of soil sampled. If results are expressed as a percentage basis, an opposite bias could be encountered. For accuracy in comparing land-use effects on soil C, all calculations are referred to a fixed dry mass of soil per unit ground area as recommended by Gifford and Roderick (2003). As an alternative to the standard depth of 30 cm, soil C in the top 0.4 t dry soil m-2 is adopted. As an alternative to the standard 1-m soil depth, the top 1.2 t m-2 of dry soil is suggested.", + "Other_Comments": "", + "Data_Provider": "Tek Narayan Maraseni", + "Link": "http://www.jswconline.org/content/63/4/250.abstract", + "creation_date": "2022-03-14T08:12:15.669Z", + "last_change_date": "2022-03-14T08:12:15.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15282, + "fields": { + "EF_ID": 521412, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks under no-tillage cultivated with soybean and corn in an Oxisol", + "Technology_Practices": "The area was originally covered by Atlantic Forest, until 1930, being subsequently cultivated for approximately 50 years with subsistence crops, such as maize and bean. The experiment began in 1985 with four tillage systems (no tillage, reduced 1 (disk plow), reduced 2 (heavy harrow) and conventional)", + "Parameter_Conditions": "The study is located in Minas Gerais State, Brazil. (20 degrees 45 minutes south, 42 degrees 51 minutes west, at 700 m altitude). The mean annual temperature and rainfall is 19 degrees Centigrade and 1350 mm, respectively. Therefore, soil C stocks estimated in this study, can be used as a reference for tropical condition and more specifically in an Acrisol cultivated with corn, bean and soybean", + "Regional_Conditions": "Brazil; The mean annual temperature is 19 degrees Centigrade and average rainfall is 1400 mm, and roughly two-thirds of this rain falls in the warmer season of the year from October to April. The soil type at the site is an Ferric Acrisol (FAO Classification) ; Argissolo Vermelho-Amarelo, (Brazilian Soil Classification)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.74", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Leite LFC, Mendonc¸a ES, Machado PLOA, Matos ES (2003) Total C and N storage and organicCpools of a Red-YellowPodzolic under conventional and no tillage at the Atlantic Forest Zone, Southeastern Brazil. Australian Journal of Soil Research 41, 717-730. doi: 10.1071/SR02037", + "English_Abstract": "A 15-year experiment in a clayey Red-Yellow Podzolic in the tropical highlands of Viçosa, Brazil was studied in 2000, aiming to evaluate the impact of different management systems: no tillage, disk plowing, heavy scratcher + disk plowing and heavy scratched, on the total organic carbon (TOC), total nitrogen (TN), and several organic carbon pools. A natural forest, adjacent to the experimental area, was used as reference. The greatest TOC and TN as well as microbial biomass C (CMB), light fraction C (CFL) and labile organic carbon (CL) stocks were observed in the Atlantic Forest, compared with all other systems. The long-term cultivation (+/- 70 years) of this area, prior to the installation of the experiment, has led to soil degradation, slowing the C recovery. No tillage had the higher C and N stocks and greater CL pool at the surface (0-10 cm), indicating improvement in soil nutrient status, although none of the systems presented potential to sequester C-CO2. Sustainable tropical agricultural systems should involve high residue input and conservative soil management in order to act as a C-CO2 sink. The C stocks in the CMB, CFL and CL compartments were reduced in relation to the natural vegetation with higher intensity than the TOC stocks. This result is indicating that these C compartments are more sensible to changes in the soil management", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Measured", + "Data_Quality_Reference": "Leite LFC, Mendonc¸a ES, Machado PLOA, Matos ES (2003) Total C and N storage and organicCpools of a Red-YellowPodzolic under onventional and no tillage at the Atlantic Forest Zone, Southeastern Brazil. Australian Journal of Soil Research 41, 717-730. doi: 10.1071/SR02037", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. good data to be applied in tropical conditions; 2. Mean value has been provided", + "Other_Comments": "", + "Data_Provider": "Luiz Fernando Carvalho Leite", + "Link": "http://www.publish.csiro.au/nid/84/paper/SR02037.htm", + "creation_date": "2022-03-14T08:12:15.787Z", + "last_change_date": "2022-03-14T08:12:15.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15283, + "fields": { + "EF_ID": 521413, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks under reduced tillage (plow disk) system cultivated with soybean and corn in an Oxisol", + "Technology_Practices": "The area was originally covered by Atlantic Forest, until 1930, being subsequently cultivated for approximately 50 years with subsistence crops, such as maize and bean. The experiment began in 1985 with four tillage systems (no tillage, reduced 1 (disk plow), reduced 2 (heavy harrow) and conventional)", + "Parameter_Conditions": "The study is located in Minas Gerais State, Brazil. (20 degrees 45 minutes south, 42 degrees 51 minutes west, at 700 m altitude). The mean annual temperature and rainfall is 19 degrees Centigrade and 1350 mm, respectively. Therefore, soil C stocks estimated in this study, can be used as a reference for tropical condition and more specifically in an Acrisol cultivated with corn, bean and soybean", + "Regional_Conditions": "Brazil; the mean annual temperature is 19 degrees Centigrade and average rainfall is 1400 mm, and roughly two-thirds of this rain falls in the warmer season of the year from October to April. The soil type at the site is an Ferric Acrisol (FAO Classification) ; Argissolo Vermelho-Amarelo, (Brazilian Soil Classification)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.12", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Leite LFC, Mendonc¸a ES, Machado PLOA, Matos ES (2003) Total C and N storage and organicCpools of a Red-YellowPodzolic under conventional and no tillage at the Atlantic Forest Zone, Southeastern Brazil. Australian", + "English_Abstract": "A 15-year experiment in a clayey Red-Yellow Podzolic in the tropical highlands of Viçosa, Brazil was studied in 2000, aiming to evaluate the impact of different management systems: no tillage, disk plowing, heavy scratcher + disk plowing and heavy scratched, on the total organic carbon (TOC), total nitrogen (TN), and several organic carbon pools. A natural forest, adjacent to the experimental area, was used as reference. The greatest TOC and TN as well as microbial biomass C (CMB), light fraction C (CFL) and labile organic carbon (CL) stocks were observed in the Atlantic Forest, compared with all other systems. The long-term cultivation (+/- 70 years) of this area, prior to the installation of the experiment, has led to soil degradation, slowing the C recovery. No tillage had the higher C and N stocks and greater CL pool at the surface (0-10 cm), indicating improvement in soil nutrient status, although none of the systems presented potential to sequester C-CO2. Sustainable tropical agricultural systems should involve high residue input and conservative soil management in order to act as a C-CO2 sink. The C stocks in the CMB, CFL and CL compartments were reduced in relation to the natural vegetation with higher intensity than the TOC stocks. This result is indicating that these C compartments are more sensible to changes in the soil management", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118-125", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. good data to be applied in tropical conditions; 2. Mean value has been provided", + "Other_Comments": "", + "Data_Provider": "Luiz Fernando Carvalho Leite", + "Link": "http://www.publish.csiro.au/nid/84/paper/SR02037.htm", + "creation_date": "2022-03-14T08:12:15.887Z", + "last_change_date": "2022-03-14T08:12:15.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15284, + "fields": { + "EF_ID": 521414, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks under conventional tillage (disk plow and heavy harrow) cultivated with soybean and corn in an Oxisol", + "Technology_Practices": "The area was originally covered by Atlantic Forest, until 1930, being subsequently cultivated for approximately 50 years with subsistence crops, such as maize and bean. The experiment began in 1985 with four tillage systems (no tillage, reduced 1 (disk plow), reduced 2 (heavy harrow) and conventional)", + "Parameter_Conditions": "The study is located in Minas Gerais State, Brazil. (20 degrees 45 minutes south, 42 degrees 51 minutes west, at 700 m altitude). The mean annual temperature and rainfall is 19 degrees Centigrade and 1350 mm, respectively. Therefore, soil C stocks estimated in this study, can be used as a reference for tropical condition and more specifically in an Acrisol cultivated with corn, bean and soybean", + "Regional_Conditions": "Brazil; the mean annual temperature is 19 degrees Centigrade and average rainfall is 1400 mm, and roughly two-thirds of this rain falls in the warmer season of the year from October to April. The soil type at the site is an Ferric Acrisol (FAO Classification) ; Argissolo Vermelho-Amarelo, (Brazilian Soil Classification)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.84", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Leite LFC, Mendonc¸a ES, Machado PLOA, Matos ES (2003) Total C and N storage and organicCpools of a Red-YellowPodzolic under conventional and no tillage at the Atlantic Forest Zone, Southeastern Brazil. Australian Journal of Soil Research 41, 717-730. doi: 10.1071/SR02037", + "English_Abstract": "A 15-year experiment in a clayey Red-Yellow Podzolic in the tropical highlands of Viçosa, Brazil was studied in 2000, aiming to evaluate the impact of different management systems: no tillage, disk plowing, heavy scratcher + disk plowing and heavy scratched, on the total organic carbon (TOC), total nitrogen (TN), and several organic carbon pools. A natural forest, adjacent to the experimental area, was used as reference. The greatest TOC and TN as well as microbial biomass C (CMB), light fraction C (CFL) and labile organic carbon (CL) stocks were observed in the Atlantic Forest, compared with all other systems. The long-term cultivation (+/- 70 years) of this area, prior to the installation of the experiment, has led to soil degradation, slowing the C recovery. No tillage had the higher C and N stocks and greater CL pool at the surface (0-10 cm), indicating improvement in soil nutrient status, although none of the systems presented potential to sequester C-CO2. Sustainable tropical agricultural systems should involve high residue input and conservative soil management in order to act as a C-CO2 sink. The C stocks in the CMB, CFL and CL compartments were reduced in relation to the natural vegetation with higher intensity than the TOC stocks. This result is indicating that these C compartments are more sensible to changes in the soil management", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118-125", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. good data to be applied in tropical conditions; 2. Mean value has been provided", + "Other_Comments": "", + "Data_Provider": "Luiz Fernando Carvalho Leite", + "Link": "http://www.publish.csiro.au/nid/84/paper/SR02037.htm", + "creation_date": "2022-03-14T08:12:15.989Z", + "last_change_date": "2022-03-14T08:12:15.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15285, + "fields": { + "EF_ID": 521415, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks under reduced tillage (heavy harrow) cultivated with soybean and corn in an Oxisol", + "Technology_Practices": "The area was originally covered by Atlantic Forest, until 1930, being subsequently cultivated for approximately 50 years with subsistence crops, such as maize and bean. The experiment began in 1985 with four tillage systems (no tillage, reduced 1 (disk plow), reduced 2 (heavy harrow) and conventional)", + "Parameter_Conditions": "The study is located in Minas Gerais State, Brazil. (20 degrees 45 minutes south, 42 degrees 51 minutes west, at 700 m altitude). The mean annual temperature and rainfall is 19 degrees Centigrade and 1350 mm, respectively. Therefore, soil C stocks estimated in this study, can be used as a reference for tropical condition and more specifically in an Acrisol cultivated with corn, bean and soybean", + "Regional_Conditions": "Brazil: the mean annual temperature is 19 degrees Centigrade and average rainfall is 1400 mm, and roughly two-thirds of this rain falls in the warmer season of the year from October to April. The soil type at the site is an Ferric Acrisol (FAO Classification) ; Argissolo Vermelho-Amarelo, (Brazilian Soil Classification)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.87", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Leite LFC, Mendonc¸a ES, Machado PLOA, Matos ES (2003) Total C and N storage and organicCpools of a Red-YellowPodzolic under conventional and no tillage at the Atlantic Forest Zone, Southeastern Brazil. Australian Journal of Soil Research 41, 717-730. doi: 10.1071/SR02037", + "English_Abstract": "A 15-year experiment in a clayey Red-Yellow Podzolic in the tropical highlands of Viçosa, Brazil was studied in 2000, aiming to evaluate the impact of different management systems: no tillage, disk plowing, heavy scratcher + disk plowing and heavy scratched, on the total organic carbon (TOC), total nitrogen (TN), and several organic carbon pools. A natural forest, adjacent to the experimental area, was used as reference. The greatest TOC and TN as well as microbial biomass C (CMB), light fraction C (CFL) and labile organic carbon (CL) stocks were observed in the Atlantic Forest, compared with all other systems. The long-term cultivation (+/- 70 years) of this area, prior to the installation of the experiment, has led to soil degradation, slowing the C recovery. No tillage had the higher C and N stocks and greater CL pool at the surface (0-10 cm), indicating improvement in soil nutrient status, although none of the systems presented potential to sequester C-CO2. Sustainable tropical agricultural systems should involve high residue input and conservative soil management in order to act as a C-CO2 sink. The C stocks in the CMB, CFL and CL compartments were reduced in relation to the natural vegetation with higher intensity than the TOC stocks. This result is indicating that these C compartments are more sensible to changes in the soil management", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118-125", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. good data to be applied in tropical conditions; 2. Mean value has been provided", + "Other_Comments": "", + "Data_Provider": "Luiz Fernando Carvalho Leite", + "Link": "http://www.publish.csiro.au/nid/84/paper/SR02037.htm", + "creation_date": "2022-03-14T08:12:16.098Z", + "last_change_date": "2022-03-14T08:12:16.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15286, + "fields": { + "EF_ID": 521416, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks under no-tillage cultivated with soybean and corn in an Oxisol where experimentally measured and also used to calibrate CQESTR model to tropical conditions", + "Technology_Practices": "The area was originally covered by Cerrado (CER) vegetation (Savannah Forest) until 1990 and then was cultivated for 4 years with soybean under conventional tillage. An experiment was started at the end of 1994 consisting of three tillage systems arranged in a complete randomized block design with four replications; The soil was cultivated with soybean, maize, or rice (Oryza sativa L.) during the wet season and with millet (Pennisetum glaucum L.) as a cover crop during the dry season", + "Parameter_Conditions": "Soils are Typic Hapludox, which is referred to as ‘‘Latossolo Vermelho–Amarelo`` in the Brazilian classification scheme, with a clay texture (560 g clay/ kg), low pH (5.0), and 1.52% C in the surface horizon. The mean annual air temperature and average rainfall are 25 C and 1200mm at BGR. Two-thirds of this rain falls during the warmest season of the year, from October to April.", + "Regional_Conditions": "Brazil (Piaui` State, Baixa Grande do Ribeiro, 7.55 S 45.23 W)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53.18", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118–125", + "English_Abstract": "CQESTR simulates the effect of management practices on soil organic carbon (SOC) stocks. The beta version of the model had been calibrated and validated for temperate regions. Our objective was to evaluate the CQESTR model performance for simulating carbon dynamics as affected by tillage practices in two tropical soils (Ultisol and Oxisol) in southeastern and northeastern Brazil. In the southeast (20.75 S 42.81 W), tillage systems consisted of no tillage (NT); reduced tillage (RT) (one disc plow and one harrow leveling [RT1] or one heavy disc harrow and one harrow leveling [RT2]); and conventional tillage (CT) (two heavy disc harrows followed by one disc plow and two harrow levelings). In the northeast (7.55 S 45.23 W), tillage systems consisted of NT, RT (one chisel plow and one harrow leveling), and CT (one disk plow, two heavy disk harrowings, and two harrow levelings). CQESTR underestimated SOC at both sites, especially under NT systems, indicating that adjustments (e.g., the inclusion of clay mineralogy factor) are necessary for more accurate simulation of SOC in the tropics. In spite of this, measured and simulated values of SOC in the 0–20 cm depth were well correlated (southeast, R2 = 0.94, p < 0.01; northeast, R2 = 0.88, p < 0.05). With respect to initial conditions (native forest), CQESTR estimated a decrease in SOC stocks in plowed and no-tillage systems. In 2006, in the southeast, SOC stocks were 28.8, 23.7, 23.2, and 22.0 Mg ha 1 under NT, RT2, RT1, and CT, respectively; in the northeast, stocks were 36.0, 33.8, and 32.5 Mg ha 1 under NT, RT, and CT, respectively. The model estimated carbon emissions varying from 0.36 (NT) to 1.05 Mg ha 1 year 1 (CT) in the southeast and from 0.30 (NT) to 0.82 (CT) Mg ha 1 year 1 in the northeast. CQESTR prediction of SOC dynamics illustrates acceptable performance for the two tropical soils of Brazil", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Measured", + "Data_Quality_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118–125", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. good data to be applied in tropical conditions; 2. The value provided is the mean value", + "Other_Comments": "", + "Data_Provider": "Luiz Fernando Carvalho Leite", + "Link": "www.sciencedirect.com /doi:10.1016/j.still.2008.08.003", + "creation_date": "2022-03-14T08:12:16.215Z", + "last_change_date": "2022-03-14T08:12:16.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15287, + "fields": { + "EF_ID": 521417, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks under conventional tillage (disk plow/heavy disk harrowings/harrow leveling) cultivated with soybean and corn in an Oxisol where experimentally measured and also used to calibrate CQESTR model to tropical conditions", + "Technology_Practices": "The area was originally covered by Cerrado (CER) vegetation (Savannah Forest) until 1990 and then was cultivated for 4 years with soybean under conventional tillage. An experiment was started at the end of 1994 consisting of three tillage systems arranged in a complete randomized block design with four replications; The soil was cultivated with soybean, maize, or rice (Oryza sativa L.) during the wet season and with millet (Pennisetum glaucum L.) as a cover crop during the dry season", + "Parameter_Conditions": "Soils are Typic Hapludox, which is referred to as ‘‘Latossolo Vermelho–Amarelo`` in the Brazilian classification scheme, with a clay texture (560 g clay/ kg), low pH (5.0), and 1.52% C in the surface horizon. The mean annual air temperature and average rainfall are 25 C and 1200mm at BGR. Two-thirds of this rain falls during the warmest season of the year, from October to April.", + "Regional_Conditions": "Braxil (Piaui` State, Baixa Grande do Ribeiro, 7.55 S 45.23 W)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.42", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118–125", + "English_Abstract": "CQESTR simulates the effect of management practices on soil organic carbon (SOC) stocks. The beta version of the model had been calibrated and validated for temperate regions. Our objective was to evaluate the CQESTR model performance for simulating carbon dynamics as affected by tillage practices in two tropical soils (Ultisol and Oxisol) in southeastern and northeastern Brazil. In the southeast (20.75 S 42.81 W), tillage systems consisted of no tillage (NT); reduced tillage (RT) (one disc plow and one harrow leveling [RT1] or one heavy disc harrow and one harrow leveling [RT2]); and conventional tillage (CT) (two heavy disc harrows followed by one disc plow and two harrow levelings). In the northeast (7.55 S 45.23 W), tillage systems consisted of NT, RT (one chisel plow and one harrow leveling), and CT (one disk plow, two heavy disk harrowings, and two harrow levelings). CQESTR underestimated SOC at both sites, especially under NT systems, indicating that adjustments (e.g., the inclusion of clay mineralogy factor) are necessary for more accurate simulation of SOC in the tropics. In spite of this, measured and simulated values of SOC in the 0–20 cm depth were well correlated (southeast, R2 = 0.94, p < 0.01; northeast, R2 = 0.88, p < 0.05). With respect to initial conditions (native forest), CQESTR estimated a decrease in SOC stocks in plowed and no-tillage systems. In 2006, in the southeast, SOC stocks were 28.8, 23.7, 23.2, and 22.0 Mg ha 1 under NT, RT2, RT1, and CT, respectively; in the northeast, stocks were 36.0, 33.8, and 32.5 Mg ha 1 under NT, RT, and CT, respectively. The model estimated carbon emissions varying from 0.36 (NT) to 1.05 Mg ha 1 year 1 (CT) in the southeast and from 0.30 (NT) to 0.82 (CT) Mg ha 1 year 1 in the northeast. CQESTR prediction of SOC dynamics illustrates acceptable performance for the two tropical soils of Brazil", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Measured", + "Data_Quality_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118–125", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. good data to be applied in tropical conditions 2. The value provided is the mean value", + "Other_Comments": "", + "Data_Provider": "Luiz Fernando Carvalho Leite", + "Link": "www.sciencedirect.com /doi:10.1016/j.still.2008.08.003", + "creation_date": "2022-03-14T08:12:16.324Z", + "last_change_date": "2022-03-14T08:12:16.324Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15288, + "fields": { + "EF_ID": 521418, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stocks under reduced tillage (chisel plow/harrow leveling) cultivated with soybean and corn in an Oxisol where experimentally measured and also used to calibrate CQESTR model to tropical conditions", + "Technology_Practices": "The area was originally covered by Cerrado (CER) vegetation (Savannah Forest) until 1990 and then was cultivated for 4 years with soybean under conventional tillage. An experiment was started at the end of 1994 consisting of three tillage systems arranged in a complete randomized block design with four replications; The soil was cultivated with soybean, maize, or rice (Oryza sativa L.) during the wet season and with millet (Pennisetum glaucum L.) as a cover crop during the dry season", + "Parameter_Conditions": "Soils are Typic Hapludox, which is referred to as ‘‘Latossolo Vermelho–Amarelo`` in the Brazilian classification scheme, with a clay texture (560 g clay/ kg), low pH (5.0), and 1.52% C in the surface horizon. The mean annual air temperature and average rainfall are 25 C and 1200mm at BGR. Two-thirds of this rain falls during the warmest season of the year, from October to April.", + "Regional_Conditions": "Braxil (Piaui` State, Baixa Grande do Ribeiro, 7.55 S 45.23 W)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47.76", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118–125", + "English_Abstract": "CQESTR simulates the effect of management practices on soil organic carbon (SOC) stocks. The beta version of the model had been calibrated and validated for temperate regions. Our objective was to evaluate the CQESTR model performance for simulating carbon dynamics as affected by tillage practices in two tropical soils (Ultisol and Oxisol) in southeastern and northeastern Brazil. In the southeast (20.75 S 42.81 W), tillage systems consisted of no tillage (NT); reduced tillage (RT) (one disc plow and one harrow leveling [RT1] or one heavy disc harrow and one harrow leveling [RT2]); and conventional tillage (CT) (two heavy disc harrows followed by one disc plow and two harrow levelings). In the northeast (7.55 S 45.23 W), tillage systems consisted of NT, RT (one chisel plow and one harrow leveling), and CT (one disk plow, two heavy disk harrowings, and two harrow levelings). CQESTR underestimated SOC at both sites, especially under NT systems, indicating that adjustments (e.g., the inclusion of clay mineralogy factor) are necessary for more accurate simulation of SOC in the tropics. In spite of this, measured and simulated values of SOC in the 0–20 cm depth were well correlated (southeast, R2 = 0.94, p < 0.01; northeast, R2 = 0.88, p < 0.05). With respect to initial conditions (native forest), CQESTR estimated a decrease in SOC stocks in plowed and no-tillage systems. In 2006, in the southeast, SOC stocks were 28.8, 23.7, 23.2, and 22.0 Mg ha 1 under NT, RT2, RT1, and CT, respectively; in the northeast, stocks were 36.0, 33.8, and 32.5 Mg ha 1 under NT, RT, and CT, respectively. The model estimated carbon emissions varying from 0.36 (NT) to 1.05 Mg ha 1 year 1 (CT) in the southeast and from 0.30 (NT) to 0.82 (CT) Mg ha 1 year 1 in the northeast. CQESTR prediction of SOC dynamics illustrates acceptable performance for the two tropical soils of Brazil", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Measured", + "Data_Quality_Reference": "L.F.C. Leite , P.C. Doraiswamy b, H.J. Causarano b,c, H.T. Gollany d, S. Milak b, E.S. MendoncaModeling organic carbon dynamics under no-tillage and plowed systems in tropical soils of Brazil using CQESTR. L.F.C. Leite et al. / Soil & Tillage Research 102 (2009) 118–125", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1. good data to be applied in tropical conditions 2. The value provided is the mean value", + "Other_Comments": "", + "Data_Provider": "Luiz Fernando Carvalho Leite", + "Link": "www.sciencedirect.com /doi:10.1016/j.still.2008.08.003", + "creation_date": "2022-03-14T08:12:16.441Z", + "last_change_date": "2022-03-14T08:12:16.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15289, + "fields": { + "EF_ID": 521426, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under agriculture in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81.6", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 24.0; Range(minimum and maximum values of carbon content by class sampled): 36.4–144.2; n(Number of sites by class) = 9", + "Data_Provider_Comments": "1) The Land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000); 2) Agriculture includes seasonal (rainfed) agricultural systems, and cultivated land.", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:16.559Z", + "last_change_date": "2022-03-14T08:12:16.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15290, + "fields": { + "EF_ID": 521427, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under grasslands in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "89.9", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 11.7; Range(minimum and maximum values of carbon content by class sampled): 69.4–105.8; n(Number of sites by class) = 3", + "Data_Provider_Comments": "1) The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000); 2) Grassland includes improved, alpine and natural grasslands", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:16.659Z", + "last_change_date": "2022-03-14T08:12:16.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15291, + "fields": { + "EF_ID": 521428, + "IPCC_Category": "3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for scrubland in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; The Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "84.2", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 26.2; Range(minimum and maximum values of carbon content by class sampled): 37.9–148.0; n(Number of sites by class) = 8", + "Data_Provider_Comments": "1) The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000); 2) Scrubland includes subtropical scrublands with shrubs, herbs, and secondary vegetation.", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:16.752Z", + "last_change_date": "2022-03-14T08:12:16.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15292, + "fields": { + "EF_ID": 521429, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under avocado orchards in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "84.9", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 14.3; Range(minimum and maximum values of carbon content by class sampled); 58.0–124.1; n(Number of sites by class) = 8", + "Data_Provider_Comments": "1) The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000); 2) Avocado orchard includes avocado plantations and, to a much lesser extent, perennial crops.", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:16.853Z", + "last_change_date": "2022-03-14T08:12:16.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15293, + "fields": { + "EF_ID": 521430, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under plantation in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76.2", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 28.5; Range(minimum and maximum values of carbon content by class sampled): 24.9–140.9; n(Number of sites by class) = 5", + "Data_Provider_Comments": "1) The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000); 2) Plantations includes different plantation types and includes areas that have been recently reforested.", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:16.962Z", + "last_change_date": "2022-03-14T08:12:16.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15294, + "fields": { + "EF_ID": 521431, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under degraded forests in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.8", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 12.8; Range(minimum and maximum values of carbon content by class sampled): 30.2–144.6; n(Number of sites by class) = 11", + "Data_Provider_Comments": "1) The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000); 2) Degraded forest includes secondary forests and open forests (coming from pine, pine–oak, and oak forests) with shrubs, herbs, and secondary vegetation", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:17.079Z", + "last_change_date": "2022-03-14T08:12:17.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15295, + "fields": { + "EF_ID": 521432, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under pine forests in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93.1", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 23.0; Range(minimum and maximum values of carbon content by class sampled): 34.6–173.2; n(Number of sites by class) = 15", + "Data_Provider_Comments": "The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000);", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:17.188Z", + "last_change_date": "2022-03-14T08:12:17.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15296, + "fields": { + "EF_ID": 521433, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under Pine–oak forest in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101.3", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 25.6; Range(minimum and maximum values of carbon content by class sampled): 41.9–189.8; n(Number of sites by class) = 11", + "Data_Provider_Comments": "1) The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000); 2) Pine–oak forest includes pine–oak and oak–pine forests shrubs, herbs, and secondary vegetation", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:17.305Z", + "last_change_date": "2022-03-14T08:12:17.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15297, + "fields": { + "EF_ID": 521434, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under Oak forest in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "116.4", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 30.5; Range(minimum and maximum values of carbon content by class sampled): 54.6–192.8; n(Number of sites by class) = 8", + "Data_Provider_Comments": "The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000); 2) Oak forest includes oak and broadleaf forests", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:17.405Z", + "last_change_date": "2022-03-14T08:12:17.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15298, + "fields": { + "EF_ID": 521435, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total soil organic carbon content for land under Fir forest in Central Highlands of Michoacan, Mexico", + "Technology_Practices": "", + "Parameter_Conditions": "The natural vegetation type is montane forests of central and southern Mexico, including the following forests classes: fir, pine, pine–oak, and oak forests (Madrigal-Sa´nchez, 1982; Caro, 1987; Caballero et al., 1992). Other vegetation types are Baccharis shrubs, xeric shrubs, and induced grasslands (Caballero et al., 1992). Man-made land-use classes include rainfed agriculture (Corn), avocado orchards and pasture lands.", + "Regional_Conditions": "Mexico; the Central Highlands of Michoacan, also known as the Purepecha Region, comprising 538,000 ha are located in the central-northwest portion of the state of Michoacan between the coordinates 20 deg. 00 min. North, 102 deg. 45 min. West and 19 deg. 15 min. North, 101 deg. 15 min. West. They are located in the physiographic province of the Transversal Volcanic System or Neovolcanic Mountains, Mexico. The total population is 588,666 inhabitants (INEGI, 2000), of which less than 20% are active in the agriculture sector (INEGI, 2000). The geomorphology is complex, with elevations ranging from 1050 m in the valleys to 3860 m in the highest parts, with slopes varying from flat to very steep. Geological materials in the area are basalt, andesite, rhyolite, and feldspartuffs, as well as clastic materials like sands, ashes, fine tuffs and breccias (Bello, 1993). There are a variety of volcanic soils dominated by andosols, with a high variation in soiltextures (Bello op cit). The altitudes above sea level are between 1050 and 3860 m. The climate type is montane climate with rains in summer, annual average precipitation of 900–2000 mm and annual average temperature of 12–18 degrees Centigrade (Garci`a, 1981).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "93.1", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ordonez, J.A.B., De Jong, B.H.J, Garcia-Oliva, F., Avina, F.L., Perez, J.V., Guerrero, G., Martinez, R., Masera, O., 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico.Forest Ecology and Management 255, 2074-2084.", + "English_Abstract": "In this study we estimated the carbon content in vegetation, litter, and soil, under 10 different classes of land-use and land-cover classes (LU/LC) in the Purepecha Region, located in the Central Highlands of Me´xico. Forests in this area are representative of the montane forests of Central and Southern Mexico and are subject to rapid degradation and deforestation by human pressure. Carbon data for each of the LU/LC classes and the main pools (vegetation, soil and litter) were collected at 92 sites in 276 field plots of 0.1 ha each, based on a nested design which allows the collection of samples and their replicates. The following LU/LC classes were identified: pine forest, oak forest, pine–oak forest, fir forest, Plantation, Agricultural fields, Grasslands, Scrublands, Avocado plantation and Degraded forests. The following results were obtained: (a) carbon content in vegetation ranged from 0.2 (grasslands) to 169.7 (fir forest) Mg C ha 1; (b) carbon content in litter ranged from 0.6 (agriculture) to 4.1 (fir forest) Mg C ha 1, and (c) carbon content in soil from the 0–30 cm depth, ranged from 72.8 (degraded forest) to 116.4 (oak forest) Mg C ha 1. Forest classes (pine, oak, fir and pine–oak forest) presented the highest total carbon stocks with values ranging between 220.7 and 266.9 Mg C ha 1; degraded forest contained 169.2 Mg C ha 1; plantation 142 Mg C ha 1 and avocado orchards reported 156.1 Mg C ha 1; scrublands 121 Mg C ha 1; grasslands 90.8 Mg C ha 1 and agriculture 82.7 Mg C ha 1. The total carbon stock in the last three classes was mainly found in the soil. The results of the present study are relevant for national inventories of carbon stocks and can be used to derive greenhouse gas emissions (GHG), once the land-cover change dynamics are known.", + "Lower_Bound": "See `Other Info on Data Quality`", + "Upper_Bound": "See `Other Info on Data Quality`", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard Error = 14.0; Range(minimum and maximum values of carbon content by class sampled): 75.0–117.8; n(Number of sites by class) = 3", + "Data_Provider_Comments": "The land classification system was based on the Mexican National Forest Inventory 2000 (Palacio-Prieto et al., 2000).", + "Other_Comments": "", + "Data_Provider": "José Antonio Benjamín Ordóñez-Díaz", + "Link": "", + "creation_date": "2022-03-14T08:12:17.507Z", + "last_change_date": "2022-03-14T08:12:17.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15299, + "fields": { + "EF_ID": 521436, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stock during 1990-2006 for no fertilization treatment", + "Technology_Practices": "The land has been under wheat-corn rotations for ~20 years. For each year, winter wheat (Triticum Aestivium L.) ‘Xiangmai 4` seeds are sown in strips around November 10, and harvested in early May in the following year. Summer maize (Zea mays L.) hybrid ‘Yedan 13` seeds are sown in holes between the wheat strips in early April, and harvested in July. Herbicides and pesticides are applied during the growth periods when it is needed. Crops are harvested manually by cutting straws close to the ground. Thus, stubble left in the field is negligible, and only roots are left in the soil. All above-ground biomass are removed from the fields. Grains and straws are air dried, threshed, oven dried at 70 C to an uniform moisture level, and then weighted separately.No fertilization was done.", + "Parameter_Conditions": "Ferralic Cambisol with pH of 5.7.", + "Regional_Conditions": "China (Southern) with a subtropical mainland monsoon climate: annual precipitation of 1431 mm, about 70% of which occurs from March to August . The annual evaporation is 1374 mm with a peak in July, and annually averaged temperature 18 degrees Centigrade.", + "Control_Technologies": "", + "Other_Properties": "Soil total N was 1.1 g/kg in 1990.", + "Value": "30.26", + "Unit": "tonnes C/ha", + "Equation": "tonnes C/ha=SOC(kg/ha)*bulk density(g/cm3)*height(cm)*0.1", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "English_Abstract": "A long-term experiment with various fertilizations was carried out during 1990-2006 in a double cropping system rotated with wheat (Triticum Aestivium L.) and corn (Zea mays L.) in the red soil of southern China. The experiment consisted of eight treatments: non-fertilization (CK), nitrogen-phosphorus fertilization (NP), phosphorus-potassium fertilization (PK), nitrogen-phosphorus-potassium fertilization (NPK), pig manure (M), pig manure and NPK fertilization (NPKM), high rates of NPKM (hNPKM), and straw returned with inorganic fertilizer (NPKS). Applications of manure (i.e., M, NPKM and hNPKM) significantly increased soil organic carbon (SOC) and total nitrogen contents. Applications of inorganic fertilizers without manure showed small influences on SOC, but resulted in declines of soil total nitrogen over the long-term experiment. Grain yields were more than doubled under fertilizations for both wheat and corn, with the highest in the NPKM and hNPKM treatments and the lowest under non-fertilization. Long-term cropping practices without fertilization or with unbalanced fertilizations (e.g., NP and PK) caused low grain yields. The balanced fertilization of NPK increased grain yields. However, such practice was not able to maintain high grain yields during the last few years of experiment. Our analyses indicate that both wheat and corn grain yields are significantly correlated with SOC, total and available nitrogen and phosphorus. However, the relationships are stronger with total nitrogen (r = 0.5-0.6) than with available nitrogen (r = 0.26-0.3), indicating the importance of maintaining soil total nitrogen in agricultural practice.", + "Lower_Bound": "27.29", + "Upper_Bound": "33.23", + "Data_Quality": "Measured", + "Data_Quality_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Wendy Wang", + "Link": "http://dx.doi.org/10.1007/s10705-008-9226-7", + "creation_date": "2022-03-14T08:12:17.608Z", + "last_change_date": "2022-03-14T08:12:17.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15300, + "fields": { + "EF_ID": 521437, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stock during 1990-2006 for inorganic nitrogen and phosphorus combination fertilization (NP)", + "Technology_Practices": "The land has been under wheat-corn rotations for ~20 years. For each year, winter wheat (Triticum Aestivium L.) ‘Xiangmai 4` seeds are sown in strips around November 10, and harvested in early May in the following year. Summer maize (Zea mays L.) hybrid ‘Yedan 13` seeds are sown in holes between the wheat strips in early April, and harvested in July. Herbicides and pesticides are applied during the growth periods when it is needed. Crops are harvested manually by cutting straws close to the ground. Thus, stubble left in the field is negligible, and only roots are left in the soil. All above-ground biomass are removed from the fields. Grains and straws are air dried, threshed, oven dried at 70 C to an uniform moisture level, and then weighted separately.Fertilization with inorganic nitrogen and phosphorus combination (NP) is done as follows: Wheat: 90 kg N/ha & 16 kg P/ha; Corn: 210 kg N/ha & 37 kg P/ha. N fertilizer: urea; P fertilizer: calcium superphosphate", + "Parameter_Conditions": "Ferralic Cambisol with pH of 5.7.", + "Regional_Conditions": "China (Southern) with a subtropical mainland monsoon climate: annual precipitation of 1431 mm, about 70% of which occurs from March to August . The annual evaporation is 1374 mm with a peak in July, and annually averaged temperature 18 degrees Centigrade.", + "Control_Technologies": "", + "Other_Properties": "Soil total N was 1.1 g/kg in 1990.", + "Value": "35.02", + "Unit": "tonnes C/ha", + "Equation": "tonnes C/ha=SOC(kg/ha)*bulk density(g/cm3)*height(cm)*0.1", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "English_Abstract": "A long-term experiment with various fertilizations was carried out during 1990-2006 in a double cropping system rotated with wheat (Triticum Aestivium L.) and corn (Zea mays L.) in the red soil of southern China. The experiment consisted of eight treatments: non-fertilization (CK), nitrogen-phosphorus fertilization (NP), phosphorus-potassium fertilization (PK), nitrogen-phosphorus-potassium fertilization (NPK), pig manure (M), pig manure and NPK fertilization (NPKM), high rates of NPKM (hNPKM), and straw returned with inorganic fertilizer (NPKS). Applications of manure (i.e., M, NPKM and hNPKM) significantly increased soil organic carbon (SOC) and total nitrogen contents. Applications of inorganic fertilizers without manure showed small influences on SOC, but resulted in declines of soil total nitrogen over the long-term experiment. Grain yields were more than doubled under fertilizations for both wheat and corn, with the highest in the NPKM and hNPKM treatments and the lowest under non-fertilization. Long-term cropping practices without fertilization or with unbalanced fertilizations (e.g., NP and PK) caused low grain yields. The balanced fertilization of NPK increased grain yields. However, such practice was not able to maintain high grain yields during the last few years of experiment. Our analyses indicate that both wheat and corn grain yields are significantly correlated with SOC, total and available nitrogen and phosphorus. However, the relationships are stronger with total nitrogen (r = 0.5-0.6) than with available nitrogen (r = 0.26-0.3), indicating the importance of maintaining soil total nitrogen in agricultural practice.", + "Lower_Bound": "37.58", + "Upper_Bound": "32.46", + "Data_Quality": "", + "Data_Quality_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Wendy Wang", + "Link": "http://dx.doi.org/10.1007/s10705-008-9226-8", + "creation_date": "2022-03-14T08:12:17.717Z", + "last_change_date": "2022-03-14T08:12:17.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15301, + "fields": { + "EF_ID": 521438, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stock during 1990-2006 for inorganic phosphorus and potassium combination fertilization (PK)", + "Technology_Practices": "The land has been under wheat-corn rotations for ~20 years. For each year, winter wheat (Triticum Aestivium L.) ‘Xiangmai 4` seeds are sown in strips around November 10, and harvested in early May in the following year. Summer maize (Zea mays L.) hybrid ‘Yedan 13` seeds are sown in holes between the wheat strips in early April, and harvested in July. Herbicides and pesticides are applied during the growth periods when it is needed. Crops are harvested manually by cutting straws close to the ground. Thus, stubble left in the field is negligible, and only roots are left in the soil. All above-ground biomass are removed from the fields. Grains and straws are air dried, threshed, oven dried at 70 C to an uniform moisture level, and then weighted separately. inorganic phosphorus and potassium combination fertilization (PK) is done as follows: Wheat: 16 kg P/ha & 31 kg K/ha ; Corn: 37 kg P/ha & 73 kg K/ha. P fertilizer: calcium superphosphate K fertilizer: potassium chloride", + "Parameter_Conditions": "Ferralic Cambisol with pH of 5.7.", + "Regional_Conditions": "China (Southern) with a subtropical mainland monsoon climate: annual precipitation of 1431 mm, about 70% of which occurs from March to August . The annual evaporation is 1374 mm with a peak in July, and annually averaged temperature 18 degrees Centigrade.", + "Control_Technologies": "", + "Other_Properties": "Soil total N was 1.1 g/kg in 1990.", + "Value": "33.8", + "Unit": "tonnes C/ha", + "Equation": "tonnes C/ha=SOC(kg/ha)*bulk density(g/cm3)*height(cm)*0.1", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "English_Abstract": "A long-term experiment with various fertilizations was carried out during 1990-2006 in a double cropping system rotated with wheat (Triticum Aestivium L.) and corn (Zea mays L.) in the red soil of southern China. The experiment consisted of eight treatments: non-fertilization (CK), nitrogen-phosphorus fertilization (NP), phosphorus-potassium fertilization (PK), nitrogen-phosphorus-potassium fertilization (NPK), pig manure (M), pig manure and NPK fertilization (NPKM), high rates of NPKM (hNPKM), and straw returned with inorganic fertilizer (NPKS). Applications of manure (i.e., M, NPKM and hNPKM) significantly increased soil organic carbon (SOC) and total nitrogen contents. Applications of inorganic fertilizers without manure showed small influences on SOC, but resulted in declines of soil total nitrogen over the long-term experiment. Grain yields were more than doubled under fertilizations for both wheat and corn, with the highest in the NPKM and hNPKM treatments and the lowest under non-fertilization. Long-term cropping practices without fertilization or with unbalanced fertilizations (e.g., NP and PK) caused low grain yields. The balanced fertilization of NPK increased grain yields. However, such practice was not able to maintain high grain yields during the last few years of experiment. Our analyses indicate that both wheat and corn grain yields are significantly correlated with SOC, total and available nitrogen and phosphorus. However, the relationships are stronger with total nitrogen (r = 0.5-0.6) than with available nitrogen (r = 0.26-0.3), indicating the importance of maintaining soil total nitrogen in agricultural practice.", + "Lower_Bound": "36.73", + "Upper_Bound": "30.87", + "Data_Quality": "", + "Data_Quality_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Wendy Wang", + "Link": "http://dx.doi.org/10.1007/s10705-008-9226-9", + "creation_date": "2022-03-14T08:12:17.818Z", + "last_change_date": "2022-03-14T08:12:17.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15302, + "fields": { + "EF_ID": 521439, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stock during 1990-2006 for inorganic nitrogen, phosphorus and potassium combination (NPK) fertilization", + "Technology_Practices": "The land has been under wheat-corn rotations for ~20 years. For each year, winter wheat (Triticum Aestivium L.) ‘Xiangmai 4` seeds are sown in strips around November 10, and harvested in early May in the following year. Summer maize (Zea mays L.) hybrid ‘Yedan 13` seeds are sown in holes between the wheat strips in early April, and harvested in July. Herbicides and pesticides are applied during the growth periods when it is needed. Crops are harvested manually by cutting straws close to the ground. Thus, stubble left in the field is negligible, and only roots are left in the soil. All above-ground biomass are removed from the fields. Grains and straws are air dried, threshed, oven dried at 70 C to an uniform moisture level, and then weighted separately. Inorganic nitrogen, phosphorus and potassium combination (NPK) fertilization is done as follows: Wheat: 90 kg N/ha, 16 kg P/ha & 31 kg K/ha; Corn: 210 kg N/ha, 37 kg P/ha & 73 kg K/ha. N fertilizer: urea; P fertilizer: calcium superphosphate; K fertilizer: potassium chloride", + "Parameter_Conditions": "Ferralic Cambisol with pH of 5.7.", + "Regional_Conditions": "China (Southern) with a subtropical mainland monsoon climate: annual precipitation of 1431 mm, about 70% of which occurs from March to August . The annual evaporation is 1374 mm with a peak in July, and annually averaged temperature 18 degrees Centigrade.", + "Control_Technologies": "", + "Other_Properties": "Soil total N was 1.1 g/kg in 1990.", + "Value": "0.57", + "Unit": "tonnes C/ha/yr", + "Equation": "tonnes C/ha/yr=slope_SOC(kg/ha/yr)*bulk density(g/cm3)*height(cm)*0.1", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "English_Abstract": "A long-term experiment with various fertilizations was carried out during 1990-2006 in a double cropping system rotated with wheat (Triticum Aestivium L.) and corn (Zea mays L.) in the red soil of southern China. The experiment consisted of eight treatments: non-fertilization (CK), nitrogen-phosphorus fertilization (NP), phosphorus-potassium fertilization (PK), nitrogen-phosphorus-potassium fertilization (NPK), pig manure (M), pig manure and NPK fertilization (NPKM), high rates of NPKM (hNPKM), and straw returned with inorganic fertilizer (NPKS). Applications of manure (i.e., M, NPKM and hNPKM) significantly increased soil organic carbon (SOC) and total nitrogen contents. Applications of inorganic fertilizers without manure showed small influences on SOC, but resulted in declines of soil total nitrogen over the long-term experiment. Grain yields were more than doubled under fertilizations for both wheat and corn, with the highest in the NPKM and hNPKM treatments and the lowest under non-fertilization. Long-term cropping practices without fertilization or with unbalanced fertilizations (e.g., NP and PK) caused low grain yields. The balanced fertilization of NPK increased grain yields. However, such practice was not able to maintain high grain yields during the last few years of experiment. Our analyses indicate that both wheat and corn grain yields are significantly correlated with SOC, total and available nitrogen and phosphorus. However, the relationships are stronger with total nitrogen (r = 0.5-0.6) than with available nitrogen (r = 0.26-0.3), indicating the importance of maintaining soil total nitrogen in agricultural practice.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Wendy Wang", + "Link": "http://dx.doi.org/10.1007/s10705-008-9226-10", + "creation_date": "2022-03-14T08:12:17.935Z", + "last_change_date": "2022-03-14T08:12:17.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15303, + "fields": { + "EF_ID": 521440, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stock during 1990-2006 for pig manure (M) fertilization", + "Technology_Practices": "The land has been under wheat-corn rotations for ~20 years. For each year, winter wheat (Triticum Aestivium L.) ‘Xiangmai 4` seeds are sown in strips around November 10, and harvested in early May in the following year. Summer maize (Zea mays L.) hybrid ‘Yedan 13` seeds are sown in holes between the wheat strips in early April, and harvested in July. Herbicides and pesticides are applied during the growth periods when it is needed. Crops are harvested manually by cutting straws close to the ground. Thus, stubble left in the field is negligible, and only roots are left in the soil. All above-ground biomass are removed from the fields. Grains and straws are air dried, threshed, oven dried at 70 C to an uniform moisture level, and then weighted separately.Pig manure (M) fertilization is done as follows:Wheat: pig muanure 15~20 Mg /ha; Corn: pig manure 40-45 Mg/ha", + "Parameter_Conditions": "Ferralic Cambisol with pH of 5.7.", + "Regional_Conditions": "China (Southern) with a subtropical mainland monsoon climate: annual precipitation of 1431 mm, about 70% of which occurs from March to August . The annual evaporation is 1374 mm with a peak in July, and annually averaged temperature 18 degrees Centigrade.", + "Control_Technologies": "", + "Other_Properties": "Soil total N was 1.1 g/kg in 1990.", + "Value": "1.29", + "Unit": "tonnes C/ha/yr", + "Equation": "tonnes C/ha/yr=slope_SOC(kg/ha/yr)*bulk density(g/cm3)*height(cm)*0.1", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "English_Abstract": "A long-term experiment with various fertilizations was carried out during 1990-2006 in a double cropping system rotated with wheat (Triticum Aestivium L.) and corn (Zea mays L.) in the red soil of southern China. The experiment consisted of eight treatments: non-fertilization (CK), nitrogen-phosphorus fertilization (NP), phosphorus-potassium fertilization (PK), nitrogen-phosphorus-potassium fertilization (NPK), pig manure (M), pig manure and NPK fertilization (NPKM), high rates of NPKM (hNPKM), and straw returned with inorganic fertilizer (NPKS). Applications of manure (i.e., M, NPKM and hNPKM) significantly increased soil organic carbon (SOC) and total nitrogen contents. Applications of inorganic fertilizers without manure showed small influences on SOC, but resulted in declines of soil total nitrogen over the long-term experiment. Grain yields were more than doubled under fertilizations for both wheat and corn, with the highest in the NPKM and hNPKM treatments and the lowest under non-fertilization. Long-term cropping practices without fertilization or with unbalanced fertilizations (e.g., NP and PK) caused low grain yields. The balanced fertilization of NPK increased grain yields. However, such practice was not able to maintain high grain yields during the last few years of experiment. Our analyses indicate that both wheat and corn grain yields are significantly correlated with SOC, total and available nitrogen and phosphorus. However, the relationships are stronger with total nitrogen (r = 0.5-0.6) than with available nitrogen (r = 0.26-0.3), indicating the importance of maintaining soil total nitrogen in agricultural practice.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Wendy Wang", + "Link": "http://dx.doi.org/10.1007/s10705-008-9226-11", + "creation_date": "2022-03-14T08:12:18.036Z", + "last_change_date": "2022-03-14T08:12:18.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15304, + "fields": { + "EF_ID": 521441, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stock during 1990-2006 for inorganic NPK fertilizers and pig manure combination (NPKM) fertilization", + "Technology_Practices": "The land has been under wheat-corn rotations for ~20 years. For each year, winter wheat (Triticum Aestivium L.) ‘Xiangmai 4` seeds are sown in strips around November 10, and harvested in early May in the following year. Summer maize (Zea mays L.) hybrid ‘Yedan 13` seeds are sown in holes between the wheat strips in early April, and harvested in July. Herbicides and pesticides are applied during the growth periods when it is needed. Crops are harvested manually by cutting straws close to the ground. Thus, stubble left in the field is negligible, and only roots are left in the soil. All above-ground biomass are removed from the fields. Grains and straws are air dried, threshed, oven dried at 70 C to an uniform moisture level, and then weighted separately. for inorganic NPK fertilizers and pig manure combination (NPKM) fertilization", + "Parameter_Conditions": "Ferralic Cambisol with pH of 5.7.", + "Regional_Conditions": "China (Southern) with a subtropical mainland monsoon climate: annual precipitation of 1431 mm, about 70% of which occurs from March to August . The annual evaporation is 1374 mm with a peak in July, and annually averaged temperature 18 degrees Centigrade.", + "Control_Technologies": "", + "Other_Properties": "Soil total N was 1.1 g/kg in 1990.", + "Value": "1.78", + "Unit": "tonnes C/ha/yr", + "Equation": "tonnes C/ha/yr=slope_SOC(kg/ha/yr)*bulk density(g/cm3)*height(cm)*0.1", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "English_Abstract": "A long-term experiment with various fertilizations was carried out during 1990-2006 in a double cropping system rotated with wheat (Triticum Aestivium L.) and corn (Zea mays L.) in the red soil of southern China. The experiment consisted of eight treatments: non-fertilization (CK), nitrogen-phosphorus fertilization (NP), phosphorus-potassium fertilization (PK), nitrogen-phosphorus-potassium fertilization (NPK), pig manure (M), pig manure and NPK fertilization (NPKM), high rates of NPKM (hNPKM), and straw returned with inorganic fertilizer (NPKS). Applications of manure (i.e., M, NPKM and hNPKM) significantly increased soil organic carbon (SOC) and total nitrogen contents. Applications of inorganic fertilizers without manure showed small influences on SOC, but resulted in declines of soil total nitrogen over the long-term experiment. Grain yields were more than doubled under fertilizations for both wheat and corn, with the highest in the NPKM and hNPKM treatments and the lowest under non-fertilization. Long-term cropping practices without fertilization or with unbalanced fertilizations (e.g., NP and PK) caused low grain yields. The balanced fertilization of NPK increased grain yields. However, such practice was not able to maintain high grain yields during the last few years of experiment. Our analyses indicate that both wheat and corn grain yields are significantly correlated with SOC, total and available nitrogen and phosphorus. However, the relationships are stronger with total nitrogen (r = 0.5-0.6) than with available nitrogen (r = 0.26-0.3), indicating the importance of maintaining soil total nitrogen in agricultural practice.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Wendy Wang", + "Link": "http://dx.doi.org/10.1007/s10705-008-9226-12", + "creation_date": "2022-03-14T08:12:18.144Z", + "last_change_date": "2022-03-14T08:12:18.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15305, + "fields": { + "EF_ID": 521442, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stock during 1990-2006 for 150% of the inorganic NPK fertilizers and pig manure combination (hNPKM) fertilization", + "Technology_Practices": "The land has been under wheat-corn rotations for ~20 years. For each year, winter wheat (Triticum Aestivium L.) ‘Xiangmai 4` seeds are sown in strips around November 10, and harvested in early May in the following year. Summer maize (Zea mays L.) hybrid ‘Yedan 13` seeds are sown in holes between the wheat strips in early April, and harvested in July. Herbicides and pesticides are applied during the growth periods when it is needed. Crops are harvested manually by cutting straws close to the ground. Thus, stubble left in the field is negligible, and only roots are left in the soil. All above-ground biomass are removed from the fields. Grains and straws are air dried, threshed, oven dried at 70 C to an uniform moisture level, and then weighted separately. Fertilization is done as follows: Wheat: 40 kg N/ha, 24 kg P/ha, 47 kg K/ha & pig manure 15~20 Mg/ha; Corn: 94 kg N/ha, 55 kg P/ha, 110 kg K/ha & pig manure 40~45 Mg/ha. N fertilizer: urea; P fertilizer: calcium superphosphate; K fertilizer: potassium chloride", + "Parameter_Conditions": "Ferralic Cambisol with pH of 5.7.", + "Regional_Conditions": "China (Southern) with a subtropical mainland monsoon climate: annual precipitation of 1431 mm, about 70% of which occurs from March to August . The annual evaporation is 1374 mm with a peak in July, and annually averaged temperature 18 degrees Centigrade.", + "Control_Technologies": "", + "Other_Properties": "Soil total N was 1.1 g/kg in 1990.", + "Value": "1.89", + "Unit": "tonnes C/ha/yr", + "Equation": "tonnes C/ha/yr=slope_SOC(kg/ha/yr)*bulk density(g/cm3)*height(cm)*0.1", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "English_Abstract": "A long-term experiment with various fertilizations was carried out during 1990-2006 in a double cropping system rotated with wheat (Triticum Aestivium L.) and corn (Zea mays L.) in the red soil of southern China. The experiment consisted of eight treatments: non-fertilization (CK), nitrogen-phosphorus fertilization (NP), phosphorus-potassium fertilization (PK), nitrogen-phosphorus-potassium fertilization (NPK), pig manure (M), pig manure and NPK fertilization (NPKM), high rates of NPKM (hNPKM), and straw returned with inorganic fertilizer (NPKS). Applications of manure (i.e., M, NPKM and hNPKM) significantly increased soil organic carbon (SOC) and total nitrogen contents. Applications of inorganic fertilizers without manure showed small influences on SOC, but resulted in declines of soil total nitrogen over the long-term experiment. Grain yields were more than doubled under fertilizations for both wheat and corn, with the highest in the NPKM and hNPKM treatments and the lowest under non-fertilization. Long-term cropping practices without fertilization or with unbalanced fertilizations (e.g., NP and PK) caused low grain yields. The balanced fertilization of NPK increased grain yields. However, such practice was not able to maintain high grain yields during the last few years of experiment. Our analyses indicate that both wheat and corn grain yields are significantly correlated with SOC, total and available nitrogen and phosphorus. However, the relationships are stronger with total nitrogen (r = 0.5-0.6) than with available nitrogen (r = 0.26-0.3), indicating the importance of maintaining soil total nitrogen in agricultural practice.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Wendy Wang", + "Link": "http://dx.doi.org/10.1007/s10705-008-9226-13", + "creation_date": "2022-03-14T08:12:18.253Z", + "last_change_date": "2022-03-14T08:12:18.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15306, + "fields": { + "EF_ID": 521443, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C stock during 1990-2006 for inorganic NPK fertilizers and straw combination (NPKS) fertilization", + "Technology_Practices": "The land has been under wheat-corn rotations for ~20 years. For each year, winter wheat (Triticum Aestivium L.) ‘Xiangmai 4` seeds are sown in strips around November 10, and harvested in early May in the following year. Summer maize (Zea mays L.) hybrid ‘Yedan 13` seeds are sown in holes between the wheat strips in early April, and harvested in July. Herbicides and pesticides are applied during the growth periods when it is needed. Crops are harvested manually by cutting straws close to the ground. Thus, stubble left in the field is negligible, and only roots are left in the soil. All above-ground biomass are removed from the fields. Grains and straws are air dried, threshed, oven dried at 70 C to an uniform moisture level, and then weighted separately.Fertilization is done as follows: Wheat: 90 kg N/ha, 16 kg P/ha, 31 kg K/ha & straw return; Corn: 210 kg N/ha, 37 kg P/ha, 73 kg K/ha & straw return. N fertilizer: urea; P fertilizer: calcium superphosphate; K fertilizer: potassium chloride", + "Parameter_Conditions": "Ferralic Cambisol with pH of 5.7.", + "Regional_Conditions": "China (Southern) with a subtropical mainland monsoon climate: annual precipitation of 1431 mm, about 70% of which occurs from March to August . The annual evaporation is 1374 mm with a peak in July, and annually averaged temperature 18 degrees Centigrade.", + "Control_Technologies": "", + "Other_Properties": "Soil total N was 1.1 g/kg in 1990.", + "Value": "0.75", + "Unit": "tonnes C/ha/yr", + "Equation": "tonnes C/ha/yr=slope_SOC(kg/ha/yr)*bulk density(g/cm3)*height(cm)*0.1", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "English_Abstract": "A long-term experiment with various fertilizations was carried out during 1990-2006 in a double cropping system rotated with wheat (Triticum Aestivium L.) and corn (Zea mays L.) in the red soil of southern China. The experiment consisted of eight treatments: non-fertilization (CK), nitrogen-phosphorus fertilization (NP), phosphorus-potassium fertilization (PK), nitrogen-phosphorus-potassium fertilization (NPK), pig manure (M), pig manure and NPK fertilization (NPKM), high rates of NPKM (hNPKM), and straw returned with inorganic fertilizer (NPKS). Applications of manure (i.e., M, NPKM and hNPKM) significantly increased soil organic carbon (SOC) and total nitrogen contents. Applications of inorganic fertilizers without manure showed small influences on SOC, but resulted in declines of soil total nitrogen over the long-term experiment. Grain yields were more than doubled under fertilizations for both wheat and corn, with the highest in the NPKM and hNPKM treatments and the lowest under non-fertilization. Long-term cropping practices without fertilization or with unbalanced fertilizations (e.g., NP and PK) caused low grain yields. The balanced fertilization of NPK increased grain yields. However, such practice was not able to maintain high grain yields during the last few years of experiment. Our analyses indicate that both wheat and corn grain yields are significantly correlated with SOC, total and available nitrogen and phosphorus. However, the relationships are stronger with total nitrogen (r = 0.5-0.6) than with available nitrogen (r = 0.26-0.3), indicating the importance of maintaining soil total nitrogen in agricultural practice.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Zhang W.J., M.G. Xu, B.R. Wang, X.J. Wang 2008. Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of Southern China. Nutrient Cycling in Agroecosystem, doi:10.1007/s10705-008-9226-7.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Wendy Wang", + "Link": "http://dx.doi.org/10.1007/s10705-008-9226-14", + "creation_date": "2022-03-14T08:12:18.354Z", + "last_change_date": "2022-03-14T08:12:18.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15307, + "fields": { + "EF_ID": 521497, + "IPCC_Category": "3.C.4 - Direct N2O Emissions from managed soils", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for direct N2O from soils in forestland", + "Technology_Practices": "No fertilizer", + "Parameter_Conditions": "Middle subtropical region. Forestland dominated by evergreen pine species in middle subtropical region of China at about 300m altitude on Alfisol (Chinese taxo. Sys) (noted as Z4 in the paper)", + "Regional_Conditions": "China (Hubei, Zigui)", + "Control_Technologies": "", + "Other_Properties": "Tillage after harvest, Crop residues removed (peanuts for animal feeding) or burned (corn)", + "Value": "0.13", + "Unit": "kg N2O-N/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Shan Lin, Javed Iqbal, Ronggui Hu*, Minglei Feng. N2O emissions from different land uses in mid-subtropical China. Agriculture, Ecosystems and Environment, 2010, 136: 40-48.", + "English_Abstract": "", + "Lower_Bound": "0.107", + "Upper_Bound": "0.153", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ronggui Hu", + "Link": "www.elsevier.com/locate/agee", + "creation_date": "2022-03-14T08:12:18.454Z", + "last_change_date": "2022-03-14T08:12:18.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15308, + "fields": { + "EF_ID": 521784, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor, BEF (dimensionless), which is mathematically convertible to Biomass Conversion and Expansion Factor (BCEF in tonnes biomass - (m3 of wood volume)-1), aligned with those presented in Table 4.5 of 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Technology_Practices": "Commercial pine plantations. Private land. Multiple use forest management.", + "Parameter_Conditions": "Commercial forest plantations of Pinus elliottii Engelm. and Pinus taeda L. in Southern Brazil (subtropical, moist), with ages ranging from 2 to 24 years, planted with spacing of 3 m x 2 m (1,667 trees/ha), without fertilization, under a predominant site index of 23 m of dominant height at 15 years (average for regional conditions). The stands were predominantly managed under an unthinned regime or alternatively under a single selective thinning at age 6-7 years, with removal of 30% of the growing stock.", + "Regional_Conditions": "Brazil (Parana State, Latitude from 24.8 to 26.8 S and Longitude from 49.9 to 50.3 W). The climate type is Cfb according to Köppen classification (subtropical with a relatively uniform rainfall during the year of 1,500 mm/year). Mean temperature is 19oC. Soil texture is clay and pH from slightly acidic to neutral.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.47", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sanquetta, C.R.; Dalla Corte, A.P; Silva, F. 2011. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance and Management, 6:6.", + "English_Abstract": "The Biomass Expansion Factor (BEF) and the Root-to-Shoot Ratio (R) are variables used to quantify carbon stock in forests. They are often considered as constant or species/area specific values in most studies. This study aimed at showing tree size and age dependence upon BEF and R and proposed equations to improve forest biomass and carbon stock. Data from 70 sample Pinus spp. grown in southern Brazil trees in different diameter classes and ages were used to demonstrate the correlation between BEF and R, and forest inventory data, such as DBH, tree height and age. Total dry biomass, carbon stock and CO2 equivalent were simulated using the IPCC default values of BEF and R, corresponding average calculated from data used in this study, as well as the values estimated by regression equations. The mean values of BEF and R calculated in this study were 1.47 and 0.17, respectively. The relationship between BEF and R and the tree measurement variables were inversely related with negative exponential behavior. Simulations indicated that use of fixed values of BEF and R, either IPCC default or current average data, may lead to unreliable estimates of carbon stock inventories. It was concluded that accounting for the variations in BEF and R and using regression equations to relate them to DBH, tree height and age, is fundamental in obtaining reliable estimates of forest tree biomass, carbon sink and CO2 equivalent.", + "Lower_Bound": "1.36", + "Upper_Bound": "1.58", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These data correspond to the average of 70 sample trees, for a mean growing stock of 450 m3/ha. However, BEF values vary from age to age and for this study they were calculated as follows: - 1 to 5 years: 2.28 (1.81 LCI to 2.74 UCI) - mean growing stock of 70 m3.ha-1; - 6 to 10 years: 1.47 (1.36 LCI to 1.58 UCI) - mean growing stock of 350 m3.ha-1; - 11 to 15 years: 1.25 (1.21 LCI to 1.28 UCI) - mean growing stock of 600 m3.ha-1; - 16 to 25 years: 1.16 (1.13 LCI to 1.18 UCI) - mean growing stock of 780 m3.ha-1. These values as well as the average can be converted to BCEF by multiplying them to 0.3817, which is the basic wood density in g.cm-3. BEF and BCEF are mathematically related by: BCEF = BEF x D, according to 2006 IPCC Guidelines for National Greenhouse Gas Inventories, page 4.13.", + "Other_Comments": "", + "Data_Provider": "Carlos Sanquetta", + "Link": "http://www.cbmjournal.com/content/6/1/6", + "creation_date": "2022-03-14T08:12:18.563Z", + "last_change_date": "2022-03-14T08:12:18.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15309, + "fields": { + "EF_ID": 521785, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-shoot ratio, R (tonne root d.m./(tonne shoot d.m.)-1), also called Ratio of Below-ground Biomass to Above-ground Biomass, aligned with those presented in Table 4.4 of 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Technology_Practices": "Commercial pine plantations. Private land. Multiple use forest management.", + "Parameter_Conditions": "Commercial forest plantations of Pinus elliottii Engelm. and Pinus taeda L. in Southern Brazil (subtropical, moist), with ages ranging from 2 to 24 years, planted with spacing of 3 m x 2 m (1,667 trees/ha), without fertilization, under a predominant site index of 23 m of dominant height at 15 years (average for regional conditions). The stands were predominantly managed under an unthinned regime or alternatively under a single selective thinning at age 6-7 years, with removal of 30% of the growing stock.", + "Regional_Conditions": "Brazil (Parana State, Latitude from 24.8 to 26.8 S and Longitude from 49.9 to 50.3 W). The climate type is Cfb according to Köppen classification (subtropical with a relatively uniform rainfall during the year of 1,500 mm/year). Mean temperature is 19oC. Soil texture is clay and pH from slightly acidic to neutral.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "tonne root d.m. / tonne shoot d.m.", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sanquetta, C.R.; Dalla Corte, A.P; Silva, F. 2011. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance and Management, 6:6.", + "English_Abstract": "The Biomass Expansion Factor (BEF) and the Root-to-Shoot Ratio (R) are variables used to quantify carbon stock in forests. They are often considered as constant or species/area specific values in most studies. This study aimed at showing tree size and age dependence upon BEF and R and proposed equations to improve forest biomass and carbon stock. Data from 70 sample Pinus spp. grown in southern Brazil trees in different diameter classes and ages were used to demonstrate the correlation between BEF and R, and forest inventory data, such as DBH, tree height and age. Total dry biomass, carbon stock and CO2 equivalent were simulated using the IPCC default values of BEF and R, corresponding average calculated from data used in this study, as well as the values estimated by regression equations. The mean values of BEF and R calculated in this study were 1.47 and 0.17, respectively. The relationship between BEF and R and the tree measurement variables were inversely related with negative exponential behavior. Simulations indicated that use of fixed values of BEF and R, either IPCC default or current average data, may lead to unreliable estimates of carbon stock inventories. It was concluded that accounting for the variations in BEF and R and using regression equations to relate them to DBH, tree height and age, is fundamental in obtaining reliable estimates of forest tree biomass, carbon sink and CO2 equivalent.", + "Lower_Bound": "0.14", + "Upper_Bound": "0.20", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These data correspond to the average of 70 sample trees, for a mean growing stock of 250 t/ha. However, R values vary from age to age and for this study they were calculated as follows: - 1 to 5 years: 0.33 (0.24 LCI to 0.43 UCI) - above-ground biomass of 200 t.ha-1; - 6 to 10 years: 0.20 (0.14 LCI to 0.27 UCI) - mean above-ground biomass of 200 t.ha-1; - 11 to 15 years: 0.14 (0.07 LCI to 0.21 UCI) - mean above-ground biomass of 290 t.ha-1; - 16 to 25 years: 0.10 (0.04 LCI to 0.17 UCI) - mean above-ground biomass of 340 t.ha-1.", + "Other_Comments": "", + "Data_Provider": "Carlos Sanquetta", + "Link": "http://www.cbmjournal.com/content/6/1/6", + "creation_date": "2022-03-14T08:12:18.673Z", + "last_change_date": "2022-03-14T08:12:18.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15310, + "fields": { + "EF_ID": 521786, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon Fraction, CF (tonne C (tonne d.m.)-1), aligned with Table 4.3 of 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "Technology_Practices": "Commercial pine plantations. Private land. Multiple use forest management.", + "Parameter_Conditions": "Commercial forest plantations of Pinus elliottii Engelm. and Pinus taeda L. in Southern Brazil (subtropical, moist), with ages ranging from 2 to 24 years, planted with spacing of 3 m x 2 m (1,667 trees/ha), without fertilization, under a predominant site index of 23 m of dominant height at 15 years (average for regional conditions). The stands were predominantly managed under an unthinned regime or alternatively under a single selective thinning at age 6-7 years, with removal of 30% of the growing stock.", + "Regional_Conditions": "Brazil (Parana State, Latitude from 24.8 to 26.8 S and Longitude from 49.9 to 50.3 W). The climate type is Cfb according to Köppen classification (subtropical with a relatively uniform rainfall during the year of 1,500 mm/year). Mean temperature is 19oC. Soil texture is clay and pH from slightly acidic to neutral.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "tonne C / tonne d.m.", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sanquetta, C.R.; Dalla Corte, A.P; Silva, F. 2011. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carbon Balance and Management, 6:6.", + "English_Abstract": "The Biomass Expansion Factor (BEF) and the Root-to-Shoot Ratio (R) are variables used to quantify carbon stock in forests. They are often considered as constant or species/area specific values in most studies. This study aimed at showing tree size and age dependence upon BEF and R and proposed equations to improve forest biomass and carbon stock. Data from 70 sample Pinus spp. grown in southern Brazil trees in different diameter classes and ages were used to demonstrate the correlation between BEF and R, and forest inventory data, such as DBH, tree height and age. Total dry biomass, carbon stock and CO2 equivalent were simulated using the IPCC default values of BEF and R, corresponding average calculated from data used in this study, as well as the values estimated by regression equations. The mean values of BEF and R calculated in this study were 1.47 and 0.17, respectively. The relationship between BEF and R and the tree measurement variables were inversely related with negative exponential behavior. Simulations indicated that use of fixed values of BEF and R, either IPCC default or current average data, may lead to unreliable estimates of carbon stock inventories. It was concluded that accounting for the variations in BEF and R and using regression equations to relate them to DBH, tree height and age, is fundamental in obtaining reliable estimates of forest tree biomass, carbon sink and CO2 equivalent.", + "Lower_Bound": "0.40", + "Upper_Bound": "0.42", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These data correspond to the average of 70 sample trees. Carbon fraction was determined by means of infrared chamber combustion and refers to above-ground biomass, compatible with Table 4.3 of 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "Other_Comments": "", + "Data_Provider": "Carlos Sanquetta", + "Link": "http://www.cbmjournal.com/content/6/1/6", + "creation_date": "2022-03-14T08:12:18.790Z", + "last_change_date": "2022-03-14T08:12:18.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15311, + "fields": { + "EF_ID": 521787, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Absolute decay rate of Afzelia africana derived from the single exponential decay model fitted to observations on leaf litter mass loss derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.67", + "Unit": "1/year", + "Equation": "Equation 2.18 chapter 2 vol. 4 of the 2006 IPCC Guidelines. k value can be used to derived the litter(out) in the equation.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "4.67 +/- 0.25 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:18.909Z", + "last_change_date": "2022-03-14T08:12:18.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15312, + "fields": { + "EF_ID": 521788, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of acid hydrolysable compounds in Afzelia africana derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.74", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "4.74 +/- 0.69 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.017Z", + "last_change_date": "2022-03-14T08:12:19.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15313, + "fields": { + "EF_ID": 521789, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of water-soluble compounds in Afzelia africana derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.68", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "7.68 +/- 0.68 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.134Z", + "last_change_date": "2022-03-14T08:12:19.134Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15314, + "fields": { + "EF_ID": 521790, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of ethanol-soluble compounds in Afzelia africana derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.37", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "7.37 +/- 0.43 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.244Z", + "last_change_date": "2022-03-14T08:12:19.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15315, + "fields": { + "EF_ID": 521791, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of lignin compounds in Afzelia africana derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.68", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.68 +/- 0.27 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.361Z", + "last_change_date": "2022-03-14T08:12:19.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15316, + "fields": { + "EF_ID": 521792, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Absolute decay rate of Anogeissus leiocarpa derived from the single exponential decay model fitted to observations on leaf litter mass loss derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.93", + "Unit": "1/year", + "Equation": "Equation 2.18 chapter 2 vol. 4 of the 2006 IPCC Guidelines. k value can be used to derived the litter(out) in the equation.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "2.93 +/- 0.12 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.470Z", + "last_change_date": "2022-03-14T08:12:19.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15317, + "fields": { + "EF_ID": 521793, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of acid hydrolysable compounds in Anogeissus leiocarpa derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.47", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "2.47 +/- 0.15 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.579Z", + "last_change_date": "2022-03-14T08:12:19.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15318, + "fields": { + "EF_ID": 521794, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of water-soluble compounds in Anogeissus leiocarpa derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.98", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "6.98 +/- 0.87 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.688Z", + "last_change_date": "2022-03-14T08:12:19.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15319, + "fields": { + "EF_ID": 521795, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of ethanol-soluble compounds in Anogeissus leiocarpa derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.75", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "16.75 +/- 2.79 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.805Z", + "last_change_date": "2022-03-14T08:12:19.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15320, + "fields": { + "EF_ID": 521796, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of lignin compounds in Anogeissus leiocarpa derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.12 +/- 0.60 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:19.922Z", + "last_change_date": "2022-03-14T08:12:19.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15321, + "fields": { + "EF_ID": 521797, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Absolute decay rate of Ceiba pentandra derived from the single exponential decay model fitted to observations on leaf litter mass loss derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.59", + "Unit": "1/year", + "Equation": "Equation 2.18 chapter 2 vol. 4 of the 2006 IPCC Guidelines. k value can be used to derived the litter(out) in the equation.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "2.95 2.59 +/- 0.15 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:20.040Z", + "last_change_date": "2022-03-14T08:12:20.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15322, + "fields": { + "EF_ID": 521798, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of acid hydrolysable compounds in Ceiba pentandra derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.53", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "3.53 +/- 0.56 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:20.314Z", + "last_change_date": "2022-03-14T08:12:20.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15323, + "fields": { + "EF_ID": 521799, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of water-soluble compounds in Ceiba pentandra derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.61", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "5.61 +/- 1.06 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:20.500Z", + "last_change_date": "2022-03-14T08:12:20.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15324, + "fields": { + "EF_ID": 521800, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of ethanol-soluble compounds in Ceiba pentandra derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.24", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "21.24 +/- 7.17 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:20.626Z", + "last_change_date": "2022-03-14T08:12:20.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15325, + "fields": { + "EF_ID": 521801, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of lignin compounds in Ceiba pentandra derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.19 +/- 0.25 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:20.744Z", + "last_change_date": "2022-03-14T08:12:20.744Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15326, + "fields": { + "EF_ID": 521802, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Absolute decay rate of Dialium guineense derived from the single exponential decay model fitted to observations on leaf litter mass loss derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.78", + "Unit": "1/year", + "Equation": "Equation 2.18 chapter 2 vol. 4 of the 2006 IPCC Guidelines. k value can be used to derived the litter(out) in the equation.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "2.78 +/- 0.08 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:20.861Z", + "last_change_date": "2022-03-14T08:12:20.861Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15327, + "fields": { + "EF_ID": 521803, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of acid hydrolysable compounds in Dialium guineense derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.00", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "2.00 +/- 0.15 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:20.978Z", + "last_change_date": "2022-03-14T08:12:20.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15328, + "fields": { + "EF_ID": 521804, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of water-soluble compounds in Dialium guineense derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.65", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "4.65 +/- 1.06 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.087Z", + "last_change_date": "2022-03-14T08:12:21.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15329, + "fields": { + "EF_ID": 521805, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of ethanol-soluble compounds in Dialium guineense derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.28", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "21.28 +/- 3.99 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.196Z", + "last_change_date": "2022-03-14T08:12:21.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15330, + "fields": { + "EF_ID": 521806, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of lignin compounds in Dialium guineense derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.03", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.03 +/- 0.42 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.305Z", + "last_change_date": "2022-03-14T08:12:21.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15331, + "fields": { + "EF_ID": 521807, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Absolute decay rate of Diospyros mespilifomis derived from the single exponential decay model fitted to observations on leaf litter mass loss derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.69", + "Unit": "1/year", + "Equation": "Equation 2.18 chapter 2 vol. 4 of the 2006 IPCC Guidelines. k value can be used to derived the litter(out) in the equation.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.69 +/- 0.07 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.414Z", + "last_change_date": "2022-03-14T08:12:21.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15332, + "fields": { + "EF_ID": 521808, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of acid hydrolysable compounds in Diospyros mespilifomis derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.14", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.14 +/- 0.08 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.523Z", + "last_change_date": "2022-03-14T08:12:21.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15333, + "fields": { + "EF_ID": 521809, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of water-soluble compounds in Diospyros mespilifomis derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.96", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "11.96 +/- 2.65 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.632Z", + "last_change_date": "2022-03-14T08:12:21.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15334, + "fields": { + "EF_ID": 521810, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of ethanol-soluble compounds in Diospyros mespilifomis derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.06", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "4.06 +/- 0.58 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.741Z", + "last_change_date": "2022-03-14T08:12:21.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15335, + "fields": { + "EF_ID": 521811, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific decay rate of lignin compounds in Diospyros mespilifomis derived from the single exponential decay model fitted to observations on mass loss in acid hydrolysable derived from the litterbag experiment.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the litterbag experiment conducted in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.07", + "Unit": "1/year", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.07 +/- 0.35 (value +/- standard error); Measurement Technique/Standard: Litterbag experiment, External Quality Control Performed: Data published in a peer-reviewed scientific journal, Date of Measurement: 2010", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.867Z", + "last_change_date": "2022-03-14T08:12:21.867Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15336, + "fields": { + "EF_ID": 521812, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of acid-hydrolysable compound in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "544.9", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "544.9 +/- 0.08 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:21.993Z", + "last_change_date": "2022-03-14T08:12:21.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15337, + "fields": { + "EF_ID": 521813, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of water-soluble compound in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "203.4", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "203.4 +/- 0.11 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:22.119Z", + "last_change_date": "2022-03-14T08:12:22.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15338, + "fields": { + "EF_ID": 521814, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of ethanol-soluble compound in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "113.4", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "113.4 +/- 0.07 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:22.236Z", + "last_change_date": "2022-03-14T08:12:22.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15339, + "fields": { + "EF_ID": 521815, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of lignin in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "138.3", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "138.3 +/- 0.16 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:22.345Z", + "last_change_date": "2022-03-14T08:12:22.345Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15340, + "fields": { + "EF_ID": 521816, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of organic matter in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91.80", + "Unit": "percentage of dry matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "91.80 +/- 0.55 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:22.471Z", + "last_change_date": "2022-03-14T08:12:22.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15341, + "fields": { + "EF_ID": 521817, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial carbon content in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49.53", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "49.53 +/- 0.09 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:22.580Z", + "last_change_date": "2022-03-14T08:12:22.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15342, + "fields": { + "EF_ID": 521818, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial nitrogen content in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.84", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "2.84 +/- 0.10 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:22.689Z", + "last_change_date": "2022-03-14T08:12:22.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15343, + "fields": { + "EF_ID": 521819, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C/N ratio in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.47", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "17.47 +/- 0.68 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:22.798Z", + "last_change_date": "2022-03-14T08:12:22.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15344, + "fields": { + "EF_ID": 521820, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Lignin/N ratio in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.87", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "4.87 +/- 0.76 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:22.915Z", + "last_change_date": "2022-03-14T08:12:22.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15345, + "fields": { + "EF_ID": 521821, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial ash content in leaf litter of Afzelia africana derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "Africa, Benin, (6 degrees, 55 minuites N. - 7 degrees, 00 minutes, N. 2 degrees, 04 minutes E. - 2 degrees, 12 minutes, E.)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.22", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "7.22 +/- 0.003 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.025Z", + "last_change_date": "2022-03-14T08:12:23.025Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15346, + "fields": { + "EF_ID": 521822, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of acid-hydrolysable compound in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "525.6", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "525.6 +/- 0.02 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.150Z", + "last_change_date": "2022-03-14T08:12:23.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15347, + "fields": { + "EF_ID": 521823, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of water-soluble compound in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "188.7", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "188.7 +/- 0.05 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.276Z", + "last_change_date": "2022-03-14T08:12:23.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15348, + "fields": { + "EF_ID": 521824, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of ethanol-soluble compound in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "176.0", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "176.0 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.401Z", + "last_change_date": "2022-03-14T08:12:23.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15349, + "fields": { + "EF_ID": 521825, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of lignin in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "109.7", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "109.7 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.527Z", + "last_change_date": "2022-03-14T08:12:23.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15350, + "fields": { + "EF_ID": 521826, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of organic matter in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "89.50", + "Unit": "percentage of dry matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "89.50 +/- 0.1 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.653Z", + "last_change_date": "2022-03-14T08:12:23.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15351, + "fields": { + "EF_ID": 521827, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial carbon content in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47.80", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "47.80 +/- 0.06 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.762Z", + "last_change_date": "2022-03-14T08:12:23.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15352, + "fields": { + "EF_ID": 521828, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial nitrogen content in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.85", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.85 +/- 0.00 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.872Z", + "last_change_date": "2022-03-14T08:12:23.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15353, + "fields": { + "EF_ID": 521829, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C/N ratio in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.84", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "25.84 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:23.980Z", + "last_change_date": "2022-03-14T08:12:23.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15354, + "fields": { + "EF_ID": 521830, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Lignin/N ratio in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.93", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "5.93 +/- 0.18 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:24.115Z", + "last_change_date": "2022-03-14T08:12:24.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15355, + "fields": { + "EF_ID": 521831, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial ash content in leaf litter of Anogeissus leiocarpa derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.00", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "9.00 +/- 0.006 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:24.207Z", + "last_change_date": "2022-03-14T08:12:24.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15356, + "fields": { + "EF_ID": 521832, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of acid-hydrolysable compound in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "541", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "541 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:24.299Z", + "last_change_date": "2022-03-14T08:12:24.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15357, + "fields": { + "EF_ID": 521833, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of water-soluble compound in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "147.8", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "147.8 +/- 0.02 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:24.400Z", + "last_change_date": "2022-03-14T08:12:24.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15358, + "fields": { + "EF_ID": 521834, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of ethanol-soluble compound in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88.4", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "88.4 +/- 0.02 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:24.601Z", + "last_change_date": "2022-03-14T08:12:24.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15359, + "fields": { + "EF_ID": 521835, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of lignin in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "222.8", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "222.8 +/- 0.01 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:24.709Z", + "last_change_date": "2022-03-14T08:12:24.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15360, + "fields": { + "EF_ID": 521836, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of organic matter in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92.57", + "Unit": "percentage of dry matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "92.57 +/- 0.18 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:24.827Z", + "last_change_date": "2022-03-14T08:12:24.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15361, + "fields": { + "EF_ID": 521837, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial carbon content in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.13", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "50.13 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:24.953Z", + "last_change_date": "2022-03-14T08:12:24.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15362, + "fields": { + "EF_ID": 521838, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial nitrogen content in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.73", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "2.73 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:25.078Z", + "last_change_date": "2022-03-14T08:12:25.078Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15363, + "fields": { + "EF_ID": 521839, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C/N ratio in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.37", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "18.37 +/- 0.23 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:25.196Z", + "last_change_date": "2022-03-14T08:12:25.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15364, + "fields": { + "EF_ID": 521840, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Lignin/N ratio in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.16", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "8.16 +/- 0.08 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:25.330Z", + "last_change_date": "2022-03-14T08:12:25.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15365, + "fields": { + "EF_ID": 521841, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial ash content in leaf litter of Ceiba pentandra derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.68", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "6.68 +/- 0.002 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:25.439Z", + "last_change_date": "2022-03-14T08:12:25.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15366, + "fields": { + "EF_ID": 521842, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of acid-hydrolysable compound in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "447.4", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "447.4 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:25.548Z", + "last_change_date": "2022-03-14T08:12:25.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15367, + "fields": { + "EF_ID": 521843, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of water-soluble compound in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "138.3", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "138.3 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:25.657Z", + "last_change_date": "2022-03-14T08:12:25.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15368, + "fields": { + "EF_ID": 521844, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of ethanol-soluble compound in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "221.9", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "221.9 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:25.766Z", + "last_change_date": "2022-03-14T08:12:25.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15369, + "fields": { + "EF_ID": 521845, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of lignin in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "192.3", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "192.3 +/- 0.01 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:25.884Z", + "last_change_date": "2022-03-14T08:12:25.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15370, + "fields": { + "EF_ID": 521846, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of organic matter in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "88.63", + "Unit": "percentage of dry matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "88.63 +/- 0.59 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.001Z", + "last_change_date": "2022-03-14T08:12:26.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15371, + "fields": { + "EF_ID": 521847, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial carbon content in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.40", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "46.40 +/- 0.10 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.109Z", + "last_change_date": "2022-03-14T08:12:26.109Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15372, + "fields": { + "EF_ID": 521848, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial nitrogen content in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.93", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.93 +/- 0.03 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.219Z", + "last_change_date": "2022-03-14T08:12:26.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15373, + "fields": { + "EF_ID": 521849, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C/N ratio in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.05", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "24.05 +/- 0.38 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.319Z", + "last_change_date": "2022-03-14T08:12:26.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15374, + "fields": { + "EF_ID": 521850, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Lignin/N ratio in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.96", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "9.96 +/- 0.21 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.445Z", + "last_change_date": "2022-03-14T08:12:26.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15375, + "fields": { + "EF_ID": 521851, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial ash content in leaf litter of Dialium guineense derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.02", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "11.02 +/- 0.006 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.562Z", + "last_change_date": "2022-03-14T08:12:26.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15376, + "fields": { + "EF_ID": 521852, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of acid-hydrolysable compound in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "431.7", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "431.7 +/- 0.14 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.681Z", + "last_change_date": "2022-03-14T08:12:26.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15377, + "fields": { + "EF_ID": 521853, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of water-soluble compound in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "281.7", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "281.7 +/- 0.05 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.781Z", + "last_change_date": "2022-03-14T08:12:26.781Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15378, + "fields": { + "EF_ID": 521854, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of ethanol-soluble compound in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "153.3", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "153.3 +/- 0.02 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.882Z", + "last_change_date": "2022-03-14T08:12:26.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15379, + "fields": { + "EF_ID": 521855, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of lignin in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133.2", + "Unit": "mg/g", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "133.2 +/- 0.14 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:26.982Z", + "last_change_date": "2022-03-14T08:12:26.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15380, + "fields": { + "EF_ID": 521856, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial concentration of organic matter in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85.33", + "Unit": "percentage of dry matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "85.33 +/-0.29 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:27.084Z", + "last_change_date": "2022-03-14T08:12:27.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15381, + "fields": { + "EF_ID": 521857, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial carbon content in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47.63", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "47.63 +/- 0.22 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:27.192Z", + "last_change_date": "2022-03-14T08:12:27.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15382, + "fields": { + "EF_ID": 521858, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial nitrogen content in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.89", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "1.89 +/- 0.05 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:27.293Z", + "last_change_date": "2022-03-14T08:12:27.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15383, + "fields": { + "EF_ID": 521859, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "C/N ratio in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.20", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "25.20 +/- 0.83 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:27.418Z", + "last_change_date": "2022-03-14T08:12:27.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15384, + "fields": { + "EF_ID": 521860, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Lignin/N ratio in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.05", + "Unit": "dimensionless", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "7.05 +/- 0.69 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:27.520Z", + "last_change_date": "2022-03-14T08:12:27.520Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15385, + "fields": { + "EF_ID": 521861, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Initial ash content in leaf litter of Diospyros mespiliformis derived from the chemical analyses conducted in laboratory.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from the chemical analyses for determining leaf litter quality conducted in laboratory. The leaf litter was collected in a tropical semi-deciduous forest in West Africa. Climate: tropical moist zone according to the classification scheme for climate of the IPCC. Soil: hydromorphic clayey vertisol (40 – 60% of clay)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.58", + "Unit": "percentage of organic matter", + "Equation": "The parameter can be used in tier 3 model either to test the validity of the decomposition model or to apply the model.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Guendehou, G. H., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B., and Makipaa, R. 2014. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology 55(2): 207-220.", + "English_Abstract": "The objective of the research was to study the rate of decomposition and changes in the chemical characteristics in the leaf litter of selected tree species using a litterbag experiment. The decomposition of leaf litter from five dominant tree species, Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense, and Diospyros mespiliformis was studied in the Lama forest reserve, a tropical vertisol forest in Benin. Changes in litter mass and organic compounds, including acid-hydrolysable (AH), water-soluble (WS) and ethanolsoluble (ES) compounds and Klason lignin, were determined every 4 weeks over 6-months period. The carbon (C), nitrogen (N), organic matter (OM) and ash contents of fresh litter were also determined. The high differences in the initial litter quality across the species resulted in a large variation of the absolute decay rate (ka values), ranging from 1.69 to 4.67 year-1. The key chemical controls of leaf decomposition were the initial concentrations of AH, lignin and N. The specific decay rates (ks values) of AH, WS, ES and Klason lignin varied significantly within and across species and described leaf litter as composed of labile and recalcitrant C pools having different decay patterns. WS and ES had the highest ks values of 4.65 to 11.96 year-1 and 4.06 to 21.27 year-1, respectively, whereas AH had ks values of 1.14 to 4.74 year-1 and seemed to impose its decay pattern on the whole litter. The results supported the hypothesis that litter chemistry was the main factor controlling the decomposition process at a local scale.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "13.58 +/- 0.005 (value +/- standard error)", + "Other_Comments": "", + "Data_Provider": "Sabin Guendehou", + "Link": "http://www.tropecol.com/volumes/toc/en/toc55-2.htm", + "creation_date": "2022-03-14T08:12:27.603Z", + "last_change_date": "2022-03-14T08:12:27.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15386, + "fields": { + "EF_ID": 522621, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground biomass (AGB)", + "Technology_Practices": "The data used for this study was derived from the annual monitoring of five Permanent Monitoring Plots (PMP`s), 1 ha each, totaling 50,000 m2 (5 ha) of sampled area performed at Rio Doce State Park (RDSP) – the largest remain of Atlantic Rainforest in Minas Gerais, southeastern Brazil. The PMP`s were demarcated according to the criteria established by TEAM (2009), described in Metzker et al. (2011) and Metzker et al. (2012). In these PMP`s, all trees (including palms) were marked, painted and measured, and each year their diameters were re-measured and new trees in the sample were assessed (recruits with DBH > 10 cm), as well as the trees considered dead.", + "Parameter_Conditions": "The aboveground biomass (AGB in Mg.ha-1) was calculated for each living individual with DBH > 10 cm found in the monitoring plots including palm trees (95% CI). The allometric equations of Chave et al., (2005) were used for trees including three variables (DAP, Ht and wood specif gravity).", + "Regional_Conditions": "Brazil (Minas Gerais); this study was conducted in the largest remain of Atlantic Rainforest (tropical forest). Accordance with Köppen`s classification, the climate in the RDSP (Rio Doce State Park) region is classified as type Aw, with an average annual temperature of 22 degrees Celsius (+/- 2.2 degrees Celsius). The average annual precipitation found for the period was 1,542 mm, ranging from 1,281 mm in the year 2007 to 1,845 mm in the year 2008.", + "Control_Technologies": "", + "Other_Properties": "The Atlantic Forest is considered one of the world`s most endangered tropical forests and there is little information available about its carbon stock levels and vegetation dynamics", + "Value": "Primary forest: 184.93", + "Unit": "Mg.ha-1", + "Equation": "Trees: AGB=exp(–2.977+ln(p*DBH^2*H)) Palms: AGB=exp((5.7236+0.9285*ln(DBH^2))*1.05001)/10^3 where AGB is the above-ground biomass (in kg) , DBH is the trunk diameter (in m) and p is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Metzker, T., Spósito, T.C., Martins, M.T.F., Horta, M.B., and Garcia, Q. 2011. Forest dynamics and carbon stocks in Rio Doce State Park – an Atlantic rainforest hotspot. Curr. Sci. 100, 2093-2098. http://www.currentscience.ac.in/Volumes/100/12/1855.pdf", + "English_Abstract": "Tropical forests are significant biodiversity epicentres and work as important modulators of climatic change. In natural cycles, carbon stocks are regulated by vegetation dynamics through the rates of mortality,recruitment and turnover. This study was conductedin five permanent monitoring plots (1 ha each: total 5 ha) in the Rio Doce State Park (RDSP), the most continuous Atlantic Forest remaining in Minas Gerais, Brazil and considered one of the world`s hotspots. The aboveground biomass ranged from 201 Mg/ha in the primary forest to 92 Mg/ha in the secondary forest. The recruitment rate (1.8) was higher than the mortality rate (1.1); however, the average diameter of dead trees was higher than that of the recruited trees. Notwithstanding this result, the internal diametric increment (ingrowth) in RDSP was compensated by the biomass loss of dead trees, producing positive growth in the annual biomass and increasing their carbon stocks by 1.0 Mg C/ha/yr. Interest in conservation and management of tropical forests has intensified since the 2007 IPCC results. Thus, our study provides data that will help calibrate the use of international methodologies in local projects using data previously collected with a standardized methodology.", + "Lower_Bound": "168.84994748301", + "Upper_Bound": "201.016719183657", + "Data_Quality": "http://cdn.intechopen.com/pdfs/38675/InTech-Tropical_forest_and_carbon_stock_s_valuation_a_monitoring_policy.pdf", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Phytophysiognomy of the Atlantic Forest in this study: Seasonal Semi-Deciduous Submontane Forest", + "Other_Comments": "", + "Data_Provider": "Thiago Metzker", + "Link": "http://www.currentscience.ac.in/Volumes/100/12/1855.pdf", + "creation_date": "2022-03-14T08:12:27.704Z", + "last_change_date": "2022-03-14T08:12:27.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15387, + "fields": { + "EF_ID": 522622, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground biomass (AGB)", + "Technology_Practices": "The data used for this study was derived from the annual monitoring of five Permanent Monitoring Plots (PMP`s), 1 ha each, totaling 50,000 m2 (5 ha) of sampled area performed at Rio Doce State Park (RDSP) – the largest remain of Atlantic Rainforest in Minas Gerais, southeastern Brazil. The PMP`s were demarcated according to the criteria established by TEAM (2009), described in Metzker et al. (2011) and Metzker et al. (2012). In these PMP`s, all trees (including palms) were marked, painted and measured, and each year their diameters were re-measured and new trees in the sample were assessed (recruits with DBH > 10 cm), as well as the trees considered dead.", + "Parameter_Conditions": "The aboveground biomass (AGB in Mg.ha-1) was calculated for each living individual with DBH > 10 cm found in the monitoring plots including palm trees (95% CI). The allometric equations of Chave et al., (2005) were used for trees including three variables (DAP, Ht and wood specif gravity).", + "Regional_Conditions": "Brazil (Minas Gerais); this study was conducted in the largest remain of Atlantic Rainforest (tropical forest). Accordance with Köppen`s classification, the climate in the RDSP (Rio Doce State Park) region is classified as type Aw, with an average annual temperature of 22 degrees Celsius (+/- 2.2 degrees Celsius). The average annual precipitation found for the period was 1,542 mm, ranging from 1,281 mm in the year 2007 to 1,845 mm in the year 2008.", + "Control_Technologies": "", + "Other_Properties": "The Atlantic Forest is considered one of the world`s most endangered tropical forests and there is little information available about its carbon stock levels and vegetation dynamics", + "Value": "Secundary forest: 99.5", + "Unit": "Mg.ha-1", + "Equation": "Trees: AGB=exp(–2.977+ln(p*DBH^2*H)) Palms: AGB=exp((5.7236+0.9285*ln(DBH^2))*1.05001)/10^3 where AGB is the above-ground biomass (in kg) , DBH is the trunk diameter (in m) and p is the wood density (in g/cm^3)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Metzker, T., Spósito, T.C., Martins, M.T.F., Horta, M.B., and Garcia, Q. 2011. Forest dynamics and carbon stocks in Rio Doce State Park – an Atlantic rainforest hotspot. Curr. Sci. 100, 2093-2098. http://www.currentscience.ac.in/Volumes/100/12/1855.pdf", + "English_Abstract": "Tropical forests are significant biodiversity epicentres and work as important modulators of climatic change. In natural cycles, carbon stocks are regulated by vegetation dynamics through the rates of mortality,recruitment and turnover. This study was conductedin five permanent monitoring plots (1 ha each: total 5 ha) in the Rio Doce State Park (RDSP), the most continuous Atlantic Forest remaining in Minas Gerais, Brazil and considered one of the world`s hotspots. The aboveground biomass ranged from 201 Mg/ha in the primary forest to 92 Mg/ha in the secondary forest. The recruitment rate (1.8) was higher than the mortality rate (1.1); however, the average diameter of dead trees was higher than that of the recruited trees. Notwithstanding this result, the internal diametric increment (ingrowth) in RDSP was compensated by the biomass loss of dead trees, producing positive growth in the annual biomass and increasing their carbon stocks by 1.0 Mg C/ha/yr. Interest in conservation and management of tropical forests has intensified since the 2007 IPCC results. Thus, our study provides data that will help calibrate the use of international methodologies in local projects using data previously collected with a standardized methodology.", + "Lower_Bound": "84.8002701159496", + "Upper_Bound": "114.19972988405", + "Data_Quality": "http://cdn.intechopen.com/pdfs/38675/InTech-Tropical_forest_and_carbon_stock_s_valuation_a_monitoring_policy.pdf", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Phytophysiognomy of the Atlantic Forest in this study: Seasonal Semi-Deciduous Submontane Forest", + "Other_Comments": "", + "Data_Provider": "Thiago Metzker", + "Link": "http://www.currentscience.ac.in/Volumes/100/12/1855.pdf", + "creation_date": "2022-03-14T08:12:27.813Z", + "last_change_date": "2022-03-14T08:12:27.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15388, + "fields": { + "EF_ID": 522624, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground biomass", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Tropical moist forest", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "Mangrove plantations. Number of plots: 490", + "Value": "43.58 (SD = 28.17981)", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Costello, L., Sola, G. Akhter, M, Henry, M. (2016). Forest Biomass in Bangladesh: An historical review of forest inventories to assist national estimates. Bangladesh Forest Department and Food and Agricultural Organization of the United Nations. Dhaka, Bangladesh.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:27.930Z", + "last_change_date": "2022-03-14T08:12:27.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15389, + "fields": { + "EF_ID": 522625, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground biomass", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Tropical rainforest", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "Mangrove plantations. Number of plots: 120", + "Value": "15.32 (SD=16.60089)", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Costello, L., Sola, G. Akhter, M, Henry, M. (2016). Forest Biomass in Bangladesh: An historical review of forest inventories to assist national estimates. Bangladesh Forest Department and Food and Agricultural Organization of the United Nations. Dhaka, Bangladesh.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:28.049Z", + "last_change_date": "2022-03-14T08:12:28.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15390, + "fields": { + "EF_ID": 522626, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground biomass", + "Technology_Practices": "Forests", + "Parameter_Conditions": "Tropical moist forest", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "Sal Forest. Number of plots: 3686", + "Value": "57.41 (SD= 51.80962 )", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Costello, L., Sola, G. Akhter, M, Henry, M. (2016). Forest Biomass in Bangladesh: An historical review of forest inventories to assist national estimates. Bangladesh Forest Department and Food and Agricultural Organization of the United Nations. Dhaka, Bangladesh.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:28.128Z", + "last_change_date": "2022-03-14T08:12:28.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15391, + "fields": { + "EF_ID": 522627, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground biomass", + "Technology_Practices": "Forests", + "Parameter_Conditions": "Tropical rainforest", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "Sal Forest. Number of plots: 59", + "Value": "63.82 (SD= 46.18761 )", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Costello, L., Sola, G. Akhter, M, Henry, M. (2016). Forest Biomass in Bangladesh: An historical review of forest inventories to assist national estimates. Bangladesh Forest Department and Food and Agricultural Organization of the United Nations. Dhaka, Bangladesh.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:28.204Z", + "last_change_date": "2022-03-14T08:12:28.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15392, + "fields": { + "EF_ID": 522628, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground biomass", + "Technology_Practices": "Sundarbans natural mangrove forest", + "Parameter_Conditions": "Tropical moist forest", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "Mangrove forest Forest. Number of plots: 1352", + "Value": "50.45(SD= 32.22282 )", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Costello, L., Sola, G. Akhter, M, Henry, M. (2016). Forest Biomass in Bangladesh: An historical review of forest inventories to assist national estimates. Bangladesh Forest Department and Food and Agricultural Organization of the United Nations. Dhaka, Bangladesh.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:28.287Z", + "last_change_date": "2022-03-14T08:12:28.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15393, + "fields": { + "EF_ID": 522629, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground biomass", + "Technology_Practices": "Evergreen and semi-evergreen Forest (Hill Forest)", + "Parameter_Conditions": "Tropical rainforest", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "Hill Forest. Number of plots: 3402", + "Value": "50.00 (SD= 61.01852)", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Costello, L., Sola, G. Akhter, M, Henry, M. (2016). Forest Biomass in Bangladesh: An historical review of forest inventories to assist national estimates. Bangladesh Forest Department and Food and Agricultural Organization of the United Nations. Dhaka, Bangladesh.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:28.371Z", + "last_change_date": "2022-03-14T08:12:28.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15394, + "fields": { + "EF_ID": 522630, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Primary forest to Grassland", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.879", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "0.833", + "Upper_Bound": "0.902", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:28.454Z", + "last_change_date": "2022-03-14T08:12:28.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15395, + "fields": { + "EF_ID": 522631, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Primary forest to Cropland", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.748", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "0.682", + "Upper_Bound": "0.781", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:28.559Z", + "last_change_date": "2022-03-14T08:12:28.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15396, + "fields": { + "EF_ID": 522632, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Primary forest to Perennial crops", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.697", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "0.643", + "Upper_Bound": "0.724", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:28.677Z", + "last_change_date": "2022-03-14T08:12:28.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15397, + "fields": { + "EF_ID": 522633, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Primary forest to Secondary forest", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.914", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "0.874", + "Upper_Bound": "0.934", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:28.802Z", + "last_change_date": "2022-03-14T08:12:28.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15398, + "fields": { + "EF_ID": 522634, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Secondry forest to grassland", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.936", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "0.886", + "Upper_Bound": "0.961", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:28.911Z", + "last_change_date": "2022-03-14T08:12:28.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15399, + "fields": { + "EF_ID": 522635, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Secondry forest to cropland", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.787", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "0.705", + "Upper_Bound": "0.828", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:29.012Z", + "last_change_date": "2022-03-14T08:12:29.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15400, + "fields": { + "EF_ID": 522636, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Secondry forest to perennial crop", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.976", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "0.892", + "Upper_Bound": "1.018", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:29.112Z", + "last_change_date": "2022-03-14T08:12:29.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15401, + "fields": { + "EF_ID": 522637, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Grassland to Secondary forest", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.175", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "1.015", + "Upper_Bound": "1.255", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:29.213Z", + "last_change_date": "2022-03-14T08:12:29.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15402, + "fields": { + "EF_ID": 522638, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Cropland to Secondry forest", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.503", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "1.265", + "Upper_Bound": "1.622", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:29.314Z", + "last_change_date": "2022-03-14T08:12:29.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15403, + "fields": { + "EF_ID": 522639, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Grassland to Cropland", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.896", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "0.774", + "Upper_Bound": "0.957", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:29.414Z", + "last_change_date": "2022-03-14T08:12:29.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15404, + "fields": { + "EF_ID": 522640, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Cropland to Grassland", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.257", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "1.035", + "Upper_Bound": "1.368", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:29.533Z", + "last_change_date": "2022-03-14T08:12:29.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15405, + "fields": { + "EF_ID": 522641, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 7 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Land use change", + "Parameter_Conditions": "Cropland to fallow", + "Regional_Conditions": "Tropics", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.322", + "Unit": "fraction", + "Equation": "Eqn. 2.25 page 2.30, IPCC GL 2006", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Don A, Schumacher J and Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology (2011) 17, 1658–1670, doi: 10.1111/j.1365-2486.2010.02336.x", + "English_Abstract": "Land-use changes are the second largest source of human-induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land-use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta-analysis, 385 studies on land-use change in the tropics were explored to estimate the SOC stock changes for all major land-use change types. The highest SOC losses were caused by conversion of primary forest into cropland ( 25%) and perennial crops (30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests ( 9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (129%) or under cropland fallow (132%) and with cropland conversion into grassland (126%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land-use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land-use types on the same basis of soil mass. Without soil mass correction, land-use change effects would have been underestimated by 28%. Land-use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.", + "Lower_Bound": "1", + "Upper_Bound": "1.484", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The upper and lower confidence limits are the 95% confidential intervals", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02336.x/suppinfo", + "creation_date": "2022-03-14T08:12:29.642Z", + "last_change_date": "2022-03-14T08:12:29.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15406, + "fields": { + "EF_ID": 522642, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Smallholder, with minimal inputs. Land clearing by burning. Cultivation was using hand tools to plant oil palm, and cacao on each planting spot, and localized weeding was done manually. Oil palm was monocultures, cacao trees were understory of remnant trees. These were first-generation plantations with forest as the previous land use.", + "Parameter_Conditions": "Forest to Oil palm and Cacao plantations. Soils were deeply weathered, either Ferralsols or Acrisols (FAO) on flat to moderately sloping topography, low soil pH, low base saturation, and moderate levels of precipitation", + "Regional_Conditions": "Indonesia (Jambi); Cameroon (Southern); Peru (Ucaly)", + "Control_Technologies": "", + "Other_Properties": "Carbon stock under Oil palm and cocoa plantations compared to that of forest", + "Value": "0.6", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "van Straaten O, Corre MD, Wolf K, Tchienkoua M, Cuellarc E, Matthews RB, Veldkamp E. 2015. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. PNAS Early Edition 1-5.", + "English_Abstract": "Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion—the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 +/- 0.1 for oil palm and cacao agroforestry plantations and 0.8 +/- 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses.", + "Lower_Bound": "0.4", + "Upper_Bound": "0.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The age of the plantation varies but the soil carbon stock stabilized after 20 years since conversion.", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "www.pnas.org/cgi/doi/10.1073/pnas.1504628112 and Supporting information at online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1504628112/-/DCSupplemental", + "creation_date": "2022-03-14T08:12:29.751Z", + "last_change_date": "2022-03-14T08:12:29.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15407, + "fields": { + "EF_ID": 522643, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic carbon (SOC) stock change factor for land use change. The value is the fraction of remaining SOC after 20 years of conversion, relative to the initial SOC stock", + "Technology_Practices": "Smallholder, with minimal inputs. Land clearing by burning. Cultivation was using hand tools to plant oil palm, and cacao on each planting spot, and localized weeding was done manually. Oil palm was monocultures, cacao trees were understory of remnant trees. These were first-generation plantations with forest as the previous land use.", + "Parameter_Conditions": "Forest to Oil palm and Cacao plantations. Soils were deeply weathered, either Ferralsols or Acrisols (FAO) on flat to moderately sloping topography, low soil pH, low base saturation, and moderate levels of precipitation", + "Regional_Conditions": "Indonesia (Jambi); Cameroon (Southern); Peru (Ucaly)", + "Control_Technologies": "", + "Other_Properties": "Carbon stock under Oil palm and cocoa plantations compared to that of forest", + "Value": "0.8", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "van Straaten O, Corre MD, Wolf K, Tchienkoua M, Cuellarc E, Matthews RB, Veldkamp E. 2015. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. PNAS Early Edition 1-5.", + "English_Abstract": "Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion—the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 +/- 0.1 for oil palm and cacao agroforestry plantations and 0.8 +/- 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses.", + "Lower_Bound": "0.2", + "Upper_Bound": "1.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The age of the plantation varies but the soil carbon stock stabilized after 20 years since conversion.", + "Other_Comments": "", + "Data_Provider": "Fahmuddin Agus", + "Link": "www.pnas.org/cgi/doi/10.1073/pnas.1504628112 and Supporting information at online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1504628112/-/DCSupplemental", + "creation_date": "2022-03-14T08:12:29.860Z", + "last_change_date": "2022-03-14T08:12:29.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15408, + "fields": { + "EF_ID": 522644, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average carbon stocks of aboveground trees pool of mangrove forest", + "Technology_Practices": "Relatively undisturbed mangrove forests", + "Parameter_Conditions": "Tropical mangrove forest", + "Regional_Conditions": "Indonesia (Sumatra, Kalimantan, Java, Sulawesi, Papua)", + "Control_Technologies": "", + "Other_Properties": "Dominant species: Rhizophora apiculata, Bruguiera gymnorrhiza", + "Value": "187.3 (6.9 - 323.6)", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Murdiyarso, M., Purbopuspito, J., Kauffman, J.B., Warren, M.W., Sasmito, S.D., Donato, D.C., Manuri, M., Krisnawati, H., Taberima, S., and Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change 5 (12): 1089-1092. DOI: 10.1038/NCLIMATE2734.", + "English_Abstract": "Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage1. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. 2). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. 3), Indonesia`s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves4, mainly as a result of aquaculture development5. This has resulted in annual emissions of 0.07–0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss6; however, if this were halted, total emissions would be reduced by an amount equal to 10–31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data is applicable for tropical mangrove forest", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.nature.com/nclimate/journal/v5/n12/full/nclimate2734.html; http://www.nature.com/nclimate/journal/v5/n12/extref/nclimate2734-s1.pdf", + "creation_date": "2022-03-14T08:12:29.969Z", + "last_change_date": "2022-03-14T08:12:29.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15409, + "fields": { + "EF_ID": 522645, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average carbon stocks of belowground trees (roots) pool of mangrove forest", + "Technology_Practices": "Relatively undisturbed mangrove forests", + "Parameter_Conditions": "Tropical mangrove forest", + "Regional_Conditions": "Indonesia (Sumatra, Kalimantan, Java, Sulawesi, Papua)", + "Control_Technologies": "", + "Other_Properties": "Dominant species: Rhizophora apiculata, Bruguiera gymnorrhiza", + "Value": "24.1 (2.5 - 43.6)", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Murdiyarso, M., Purbopuspito, J., Kauffman, J.B., Warren, M.W., Sasmito, S.D., Donato, D.C., Manuri, M., Krisnawati, H., Taberima, S., and Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change 5 (12): 1089-1092. DOI: 10.1038/NCLIMATE2734.", + "English_Abstract": "Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage1. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. 2). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. 3), Indonesia`s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves4, mainly as a result of aquaculture development5. This has resulted in annual emissions of 0.07–0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss6; however, if this were halted, total emissions would be reduced by an amount equal to 10–31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data is applicable for tropical mangrove forest", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.nature.com/nclimate/journal/v5/n12/full/nclimate2734.html; http://www.nature.com/nclimate/journal/v5/n12/extref/nclimate2734-s1.pdf", + "creation_date": "2022-03-14T08:12:30.078Z", + "last_change_date": "2022-03-14T08:12:30.078Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15410, + "fields": { + "EF_ID": 522646, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average carbon stocks of woody debris pool of mangrove forest", + "Technology_Practices": "Relatively undisturbed mangrove forests", + "Parameter_Conditions": "Tropical mangrove forest", + "Regional_Conditions": "Indonesia (Sumatra, Kalimantan, Java, Sulawesi, Papua)", + "Control_Technologies": "", + "Other_Properties": "Dominant species: Rhizophora apiculata, Bruguiera gymnorrhiza", + "Value": "22.1 (11.3 - 42.7)", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Murdiyarso, M., Purbopuspito, J., Kauffman, J.B., Warren, M.W., Sasmito, S.D., Donato, D.C., Manuri, M., Krisnawati, H., Taberima, S., and Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change 5 (12): 1089-1092. DOI: 10.1038/NCLIMATE2734.", + "English_Abstract": "Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage1. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. 2). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. 3), Indonesia`s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves4, mainly as a result of aquaculture development5. This has resulted in annual emissions of 0.07–0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss6; however, if this were halted, total emissions would be reduced by an amount equal to 10–31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data is applicable for tropical mangrove forest", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.nature.com/nclimate/journal/v5/n12/full/nclimate2734.html; http://www.nature.com/nclimate/journal/v5/n12/extref/nclimate2734-s1.pdf", + "creation_date": "2022-03-14T08:12:30.186Z", + "last_change_date": "2022-03-14T08:12:30.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15411, + "fields": { + "EF_ID": 522647, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average carbon stocks of soil pool of mangrove forest", + "Technology_Practices": "Relatively undisturbed mangrove forests", + "Parameter_Conditions": "Tropical mangrove forest", + "Regional_Conditions": "Indonesia (Sumatra, Kalimantan, Java, Sulawesi, Papua)", + "Control_Technologies": "", + "Other_Properties": "Dominant species: Rhizophora apiculata, Bruguiera gymnorrhiza; soil depth: up to 300 cm", + "Value": "848.9 (571.6 - 1059.2)", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Murdiyarso, M., Purbopuspito, J., Kauffman, J.B., Warren, M.W., Sasmito, S.D., Donato, D.C., Manuri, M., Krisnawati, H., Taberima, S., and Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change 5 (12): 1089-1092. DOI: 10.1038/NCLIMATE2734.", + "English_Abstract": "Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage1. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. 2). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. 3), Indonesia`s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves4, mainly as a result of aquaculture development5. This has resulted in annual emissions of 0.07–0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss6; however, if this were halted, total emissions would be reduced by an amount equal to 10–31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.", + "Lower_Bound": "526", + "Upper_Bound": "1172", + "Data_Quality": "Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data is applicable for tropical mangrove forest", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.nature.com/nclimate/journal/v5/n12/full/nclimate2734.html; http://www.nature.com/nclimate/journal/v5/n12/extref/nclimate2734-s1.pdf", + "creation_date": "2022-03-14T08:12:30.287Z", + "last_change_date": "2022-03-14T08:12:30.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15412, + "fields": { + "EF_ID": 522648, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average total carbon stocks of mangrove forest (AGB+BGB+woody debris+soil); litter was was assumed to be zero", + "Technology_Practices": "Relatively undisturbed mangrove forests", + "Parameter_Conditions": "Tropical mangrove forest", + "Regional_Conditions": "Indonesia (Sumatra, Kalimantan, Java, Sulawesi, Papua)", + "Control_Technologies": "", + "Other_Properties": "Dominant species: Rhizophora apiculata, Bruguiera gymnorrhiza", + "Value": "1082.6 (592.8 - 1396.9)", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Murdiyarso, M., Purbopuspito, J., Kauffman, J.B., Warren, M.W., Sasmito, S.D., Donato, D.C., Manuri, M., Krisnawati, H., Taberima, S., and Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change 5 (12): 1089-1092. DOI: 10.1038/NCLIMATE2734.", + "English_Abstract": "Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage1. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. 2). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. 3), Indonesia`s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves4, mainly as a result of aquaculture development5. This has resulted in annual emissions of 0.07–0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss6; however, if this were halted, total emissions would be reduced by an amount equal to 10–31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.", + "Lower_Bound": "705", + "Upper_Bound": "1461", + "Data_Quality": "Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data is applicable for tropical mangrove forest", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.nature.com/nclimate/journal/v5/n12/full/nclimate2734.html; http://www.nature.com/nclimate/journal/v5/n12/extref/nclimate2734-s1.pdf", + "creation_date": "2022-03-14T08:12:30.388Z", + "last_change_date": "2022-03-14T08:12:30.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15413, + "fields": { + "EF_ID": 522649, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.4.b - Land Converted to Wetlands, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.6.b.i - Forest Land converted to Other Land, 3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon stocks of aboveground biomass (culms+branches+leaves) of bamboo forest", + "Technology_Practices": "Selective cutting of larger clumps is typically practiced once a year and and the younger clumps are retained in the clump for regrowth", + "Parameter_Conditions": "Community managed bamboo forest", + "Regional_Conditions": "Indonesia; Forest type: community managed bamboo forest; annual rainfall 2000-2500 mm; temperature ranges from 18 to 30 degrees Celsius", + "Control_Technologies": "The carbon stock in the forest as a whole is maintained at a reasonably constant amount over the year", + "Other_Properties": "The bambo forest is dominated by Giantochloa apus and G. aya", + "Value": "38.71", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sujarwo, W. (2016). Stand biomass and carbon storage of bamboo forest in Penglipuran traditional village, Bali (Indonesia). Journal of Forestry Research 27 (4): 913-917", + "English_Abstract": "Bamboo forest is an important land use in the traditional village of Penglipuran, Bali Indonesia. Bamboo growing in the rural areas can be a good choice for capturing CO2. I harvested selected culms to determine biomass content, and 50 % of dry weight biomass was calculated as carbon content. The Penglipuran bamboo forest supported six bamboo species in a one hectare sampling plot, all of the genus Gigantochloa. The clump and culm densities were 339 and 7190 ha-1, respectively. Total above- plus below-ground biomass was 87.35 Mg ha-1, and carbon storage was 43.67 Mg ha-1. Carbon storage estimated in the bamboo forest at Penglipuran offers insight into the opportunity for PES (payment for ecosystem services) through emission trading mechanisms.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Carbon stocks of bamboo forest were estimated from a 1-ha plot (25 nested subplots). Additional plots covering various sites will be valuable to represent the diversity and range of the estimates. However, given the lack of data for bamboo forest, this data would be very useful", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://link.springer.com/article/10.1007/s11676-016-0227-0?view=classic", + "creation_date": "2022-03-14T08:12:30.488Z", + "last_change_date": "2022-03-14T08:12:30.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15414, + "fields": { + "EF_ID": 522650, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.4.b - Land Converted to Wetlands, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.6.b.i - Forest Land converted to Other Land, 3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon stocks of belowground biomass (rhizomes+roots) of bamboo forest", + "Technology_Practices": "Selective cutting of larger clumps is typically practiced once a year and and the younger clumps are retained in the clump for regrowth", + "Parameter_Conditions": "Community managed bamboo forest", + "Regional_Conditions": "Indonesia; Forest type: community managed bamboo forest; annual rainfall 2000-2500 mm; temperature ranges from 18 to 30 degrees Celsius", + "Control_Technologies": "The carbon stock in the forest as a whole is maintained at a reasonably constant amount over the year", + "Other_Properties": "The bambo forest is dominated by Giantochloa apus and G. aya", + "Value": "4.95", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sujarwo, W. (2016). Stand biomass and carbon storage of bamboo forest in Penglipuran traditional village, Bali (Indonesia). Journal of Forestry Research 27 (4): 913-917", + "English_Abstract": "Bamboo forest is an important land use in the traditional village of Penglipuran, Bali Indonesia. Bamboo growing in the rural areas can be a good choice for capturing CO2. I harvested selected culms to determine biomass content, and 50 % of dry weight biomass was calculated as carbon content. The Penglipuran bamboo forest supported six bamboo species in a one hectare sampling plot, all of the genus Gigantochloa. The clump and culm densities were 339 and 7190 ha-1, respectively. Total above- plus below-ground biomass was 87.35 Mg ha-1, and carbon storage was 43.67 Mg ha-1. Carbon storage estimated in the bamboo forest at Penglipuran offers insight into the opportunity for PES (payment for ecosystem services) through emission trading mechanisms.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Carbon stocks of bamboo forest were estimated from a 1-ha plot (25 nested subplots). Additional plots covering various sites will be valuable to represent the diversity and range of the estimates. However, given the lack of data for bamboo forest, this data would be very useful", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://link.springer.com/article/10.1007/s11676-016-0227-0?view=classic", + "creation_date": "2022-03-14T08:12:30.589Z", + "last_change_date": "2022-03-14T08:12:30.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15415, + "fields": { + "EF_ID": 522651, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.4.b - Land Converted to Wetlands, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.6.b.i - Forest Land converted to Other Land, 3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon stocks of total biomass (above + belowground biomass) of bamboo forest", + "Technology_Practices": "Selective cutting of larger clumps is typically practiced once a year and and the younger clumps are retained in the clump for regrowth", + "Parameter_Conditions": "Community managed bamboo forest", + "Regional_Conditions": "Indonesia; Forest type: community managed bamboo forest; annual rainfall 2000-2500 mm; temperature ranges from 18 to 30 degrees Celsius", + "Control_Technologies": "The carbon stock in the forest as a whole is maintained at a reasonably constant amount over the year", + "Other_Properties": "The bambo forest is dominated by Giantochloa apus and G. aya", + "Value": "43.67", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sujarwo, W. (2016). Stand biomass and carbon storage of bamboo forest in Penglipuran traditional village, Bali (Indonesia). Journal of Forestry Research 27 (4): 913-917", + "English_Abstract": "Bamboo forest is an important land use in the traditional village of Penglipuran, Bali Indonesia. Bamboo growing in the rural areas can be a good choice for capturing CO2. I harvested selected culms to determine biomass content, and 50 % of dry weight biomass was calculated as carbon content. The Penglipuran bamboo forest supported six bamboo species in a one hectare sampling plot, all of the genus Gigantochloa. The clump and culm densities were 339 and 7190 ha-1, respectively. Total above- plus below-ground biomass was 87.35 Mg ha-1, and carbon storage was 43.67 Mg ha-1. Carbon storage estimated in the bamboo forest at Penglipuran offers insight into the opportunity for PES (payment for ecosystem services) through emission trading mechanisms.", + "Lower_Bound": "42.18", + "Upper_Bound": "45.16", + "Data_Quality": "Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Carbon stocks of bamboo forest were estimated from a 1-ha plot (25 nested subplots). Additional plots covering various sites will be valuable to represent the diversity and range of the estimates. However, given the lack of data for bamboo forest, this data would be very useful", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://link.springer.com/article/10.1007/s11676-016-0227-0?view=classic", + "creation_date": "2022-03-14T08:12:30.690Z", + "last_change_date": "2022-03-14T08:12:30.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15416, + "fields": { + "EF_ID": 522652, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.4.b - Land Converted to Wetlands, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.6.b.i - Forest Land converted to Other Land, 3.C.1.a - Burning in Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon stocks of litter pool of bamboo forest", + "Technology_Practices": "Selective cutting of larger clumps is typically practiced once a year and and the younger clumps are retained in the clump for regrowth", + "Parameter_Conditions": "Community managed bamboo forest", + "Regional_Conditions": "Indonesia; Forest type: community managed bamboo forest; annual rainfall 2000-2500 mm; temperature ranges from 18 to 30 degrees Celsius", + "Control_Technologies": "The carbon stock in the forest as a whole is maintained at a reasonably constant amount over the year", + "Other_Properties": "The bambo forest is dominated by Giantochloa apus and G. aya", + "Value": "2.1 - 3.1", + "Unit": "tonnes C/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sujarwo, W. (2016). Stand biomass and carbon storage of bamboo forest in Penglipuran traditional village, Bali (Indonesia). Journal of Forestry Research 27 (4): 913-917", + "English_Abstract": "Bamboo forest is an important land use in the traditional village of Penglipuran, Bali Indonesia. Bamboo growing in the rural areas can be a good choice for capturing CO2. I harvested selected culms to determine biomass content, and 50 % of dry weight biomass was calculated as carbon content. The Penglipuran bamboo forest supported six bamboo species in a one hectare sampling plot, all of the genus Gigantochloa. The clump and culm densities were 339 and 7190 ha-1, respectively. Total above- plus below-ground biomass was 87.35 Mg ha-1, and carbon storage was 43.67 Mg ha-1. Carbon storage estimated in the bamboo forest at Penglipuran offers insight into the opportunity for PES (payment for ecosystem services) through emission trading mechanisms.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Carbon stocks of bamboo forest were estimated from a 1-ha plot (25 nested subplots). Additional plots covering various sites will be valuable to represent the diversity and range of the estimates. However, given the lack of data for bamboo forest, this data would be very useful", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://link.springer.com/article/10.1007/s11676-016-0227-0?view=classic", + "creation_date": "2022-03-14T08:12:30.807Z", + "last_change_date": "2022-03-14T08:12:30.807Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15417, + "fields": { + "EF_ID": 522653, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average annual increase of aboveground biomass", + "Technology_Practices": "Unmanaged natural forest", + "Parameter_Conditions": "Tropical dryland natural forest; lowland tropical (dryland) forest; average annual rainfall 1682-2314 mm; average temperature 26-28 degrees Celsius", + "Regional_Conditions": "Indonesia (East Kalimantan)", + "Control_Technologies": "", + "Other_Properties": "Dipterocarpaceae family was the richest in species (more than 20 species found in each measurement", + "Value": "7.7 (4.9 - 9.2)", + "Unit": "tonnes dm/ha/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Krisnawati, H., Wahjono, D. and Imanuddin, R. (2011). Changes in the species composition, stand structure and aboveground biomass of a lowland dipterocarp forest in Samboja, East Kalimantan. Indonesian Journal of Forestry Research 8 (1): 1-16. DOI: http://dx.doi.org/10.20886/ijfr.2011.8.1.1-16", + "English_Abstract": "The dynamics of species composition, stand structure and aboveground biomass were studied over a 4.3-yr period (December 2004 – April 2009) in a lowland dipterocarp forest of Samboja, East Kalimantan. This study was conducted in six permanent sample plots (100 m x 100 m each) distributed over an area of 26.5 ha of Samboja Research Forest. All woody plants = 10 cm dbh (diameter at 1.3 m aboveground) were identified. In December 2004, 2.143 trees were measured in the six plots, consisting of 39 families, 82 genera and 111 species. The condition in April 2009 (after 4.3 yr) was: 2,466 trees, 40 families, 86 genera and 123 species. Most species were found in both occasions. Fourteen new species were registered, which contributed to 9.8% of a net addition of the total number of species found in the six plots. Over the 4.3-yr period, there was also an increase of 15.1% in density, 12.9% in basal area, and 11.6% in aboveground biomass, respectively. The density increased from 357 to 411 trees per ha; the basal area increased from 20.09 to 22.67 m2 ha-1; and the aboveground biomass increased from 286.3 to 319.4 ton ha. The family Dipterocarpaceae was the richest in species (more than 20 species found in both occasions), followed by Euphorbiaceae, Burseraceae, Fabaceae, and Anacardiaceae (more than five species). Most genera (80%) contained just one species, but Shorea with 13 species was the richest. Four families (Dipterocarpaceae, Fabaceae, Myrtaceae and Lauraceae) contained more than 80% of the aboveground biomass in both occasions (75% of them from Dipterocarpaceae family). The increases in species richness and density did not cause any significant differences in the diversity index and diameter distribution. This condition suggested that forest vegetation of the study site maintains its diversity composition and structural features over the period of study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Field measurement data used to calculate aboveground biomass have been carefully checked. 95% confidence interval will be made available", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Before selecting the allometric equation used to estimate AGB of trees, several published allometric equations developed for natural/tropical forest were tested. The best performance one was selected", + "Data_Provider_Comments": "This data is applicable for tropical rain forest (especially lowland forest with relatively undisturbed)", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://ejournal.forda-mof.org/ejournal-litbang/index.php/IJFR/article/view/46", + "creation_date": "2022-03-14T08:12:30.916Z", + "last_change_date": "2022-03-14T08:12:30.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15418, + "fields": { + "EF_ID": 522654, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Relatively undisturbed forest (old-growth)", + "Parameter_Conditions": "Old-growth tropical forest; hill dipterocarp forest; mean annual rainfall: 2500-3500 mm", + "Regional_Conditions": "Indonesia (Sumatra)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "361 (271 - 478)", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Laumonier, Y., Edin, A., Kanninen, M., Munandar, A.W. (2010). Landscape-scale variation in the stucture and biomass of the hill dipterocarp forest of Sumatra: implications for carbon stock assessments. Forest Ecology and Management 259 (3): 505-513", + "English_Abstract": "One of the first steps in estimating the potential for reducing emissions from deforestation and forest degradation (REDD) initiatives is the proper estimation of the carbon components. There are still considerable uncertainties about carbon stocks in tropical rain forest, coming essentially from poor knowledge of the quantity and spatial distribution of forest biomass at the landscape level. We evaluate the influence of site and topography on forest structure, biomass and carbon stock over a forested landscape in Sumatra. Sixteen sites were selected across a landscape of ca. 1000 km2, and within each site, a network of small 0.1 ha plots was laid down perpendicular to the major topographical gradient. Structural parameters for trees with diameter bigger or equal to 10 cm and major life forms were recorded for each plot. The total sampled area was 70.2 ha. The above-ground biomass (AGBM) in the 16 sites ranged from 271 +/- 19 to 478 +/- 38 Mg ha-1, with a mean of 361 +/- 7 Mg ha-1. This value is similar to the global ‘tropical wet forest` estimate of Keith et al. (2009), but 23% higher than the biome default value given in the IPCC (2006) guidelines. Plots on acid tuff were the most distinctive in having fewer and smaller trees, with a resulting low AGBM. The number of stems was low, but the average tree diameter was larger on the nutrient-rich young volcanic andesitic soils. Landscape-scale variability of forest structure and dynamics was considerable. Within sites, there was little variation of mean height or mean diameter of the trees, but significant differences in stem density, basal area and AGBM between land facets. Both topography and geology appeared to affect the dynamics and the biomass of the forest. At the same time, our findings confirm the need for caution in extrapolating data from small plots to larger spatial scales when estimating carbon stocks for a given forest type or a region. Our results for C stock values for Sumatra lowland and hill dipterocarp forests (135–240 Mg ha-1, with a mean of 180 Mg ha-1) showed higher variability in C stock values at landscape level than generally reported in the literature. Based on our results, stratified sampling is recommended for biomass and carbon estimation. Within an error range of 6–8% of the AGBM, a minimum area of 4–6 ha should be sufficient to estimate biomass with satisfactory accuracy at the landscape scale. Networks of several small plots across landscape are preferable to fewer larger plots, providing that the sampling is representative of the land facets in the area.", + "Lower_Bound": "353", + "Upper_Bound": "368", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data is applicable for tropical mountain forest", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.sciencedirect.com/science/article/pii/S0378112709008159", + "creation_date": "2022-03-14T08:12:31.026Z", + "last_change_date": "2022-03-14T08:12:31.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15419, + "fields": { + "EF_ID": 522655, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Undisturbed", + "Parameter_Conditions": "climatic zone: tropic (Precipitation 1500-3000 mm); forest type: primary dryland forest", + "Regional_Conditions": "Indonesia (Central Kalimantan);", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "296.8", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Krisnawati, H., Adinugroho, W.C., Imanuddin, R., Hutabarat, S. (2014). Estimation of Forest Biomass for Quantifying CO2 Emissions in Central Kalimantan. Forestry Research and Development Agency, Bogor", + "English_Abstract": "This study provides a comprehensive assessment of forest biomass and carbon stocks for natural forests in Central Kalimantan. Total forest biomass estimates are presented for three main natural forest types (dryland, swamp and mangrove forests) with two different conditions (primary and secondary forests). These values quantify initial forest biomass conditions for modeling greenhouse gas (GHG) emissions and removals, as used in the Indonesian National Carbon Accounting System (INCAS), or to calculate CO 2 emission factors for quantifying GHG emissions due to forest clearing or deforestation in Central Kalimantan. Several sources of forest inventory data and information available from previous study were used in estimating forest biomass. This result provides an improved and more comprehensive analysis of emissions factors for forests by using Central Kalimantan-based forest inventory plots and allometric guidelines for quantifying forest biomass and forest carbon content. In addition, it includes all components of aboveground biomass of forest ecosystem. Further research is needed to relate forest biomass and carbon stocks to other determining factors such as forest type, soil type and climate, as well as the proportions of biomass immediately emitted due to forest management activities and the portion of biomass decomposed over specified time intervals.", + "Lower_Bound": "281.8", + "Upper_Bound": "312", + "Data_Quality": "Individual tree data of the plots have been carefully checked. Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.incas-indonesia.org/publication/estimation-of-forest-biomass-for-quantifying-co2-emissions-in-central-kalimantan/", + "creation_date": "2022-03-14T08:12:31.152Z", + "last_change_date": "2022-03-14T08:12:31.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15420, + "fields": { + "EF_ID": 522656, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Secondary forest", + "Parameter_Conditions": "climatic zone: tropic (Precipitation 1500-3000 mm); forest type: secondary dryland forest", + "Regional_Conditions": "Indonesia (Central Kalimantan)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "212.4", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Krisnawati, H., Adinugroho, W.C., Imanuddin, R., Hutabarat, S. (2014). Estimation of Forest Biomass for Quantifying CO2 Emissions in Central Kalimantan. Forestry Research and Development Agency, Bogor", + "English_Abstract": "This study provides a comprehensive assessment of forest biomass and carbon stocks for natural forests in Central Kalimantan. Total forest biomass estimates are presented for three main natural forest types (dryland, swamp and mangrove forests) with two different conditions (primary and secondary forests). These values quantify initial forest biomass conditions for modeling greenhouse gas (GHG) emissions and removals, as used in the Indonesian National Carbon Accounting System (INCAS), or to calculate CO 2 emission factors for quantifying GHG emissions due to forest clearing or deforestation in Central Kalimantan. Several sources of forest inventory data and information available from previous study were used in estimating forest biomass. This result provides an improved and more comprehensive analysis of emissions factors for forests by using Central Kalimantan-based forest inventory plots and allometric guidelines for quantifying forest biomass and forest carbon content. In addition, it includes all components of aboveground biomass of forest ecosystem. Further research is needed to relate forest biomass and carbon stocks to other determining factors such as forest type, soil type and climate, as well as the proportions of biomass immediately emitted due to forest management activities and the portion of biomass decomposed over specified time intervals.", + "Lower_Bound": "210.3", + "Upper_Bound": "214.6", + "Data_Quality": "Individual tree data of the plots have been carefully checked. Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.incas-indonesia.org/publication/estimation-of-forest-biomass-for-quantifying-co2-emissions-in-central-kalimantan/", + "creation_date": "2022-03-14T08:12:31.269Z", + "last_change_date": "2022-03-14T08:12:31.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15421, + "fields": { + "EF_ID": 522657, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Undisturbed", + "Parameter_Conditions": "climatic zone: tropic (Precipitation 1500-3000 mm); forest type: primary swamp forest", + "Regional_Conditions": "Indonesia (Central Kalimantan)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "216.2", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Krisnawati, H., Adinugroho, W.C., Imanuddin, R., Hutabarat, S. (2014). Estimation of Forest Biomass for Quantifying CO2 Emissions in Central Kalimantan. Forestry Research and Development Agency, Bogor", + "English_Abstract": "This study provides a comprehensive assessment of forest biomass and carbon stocks for natural forests in Central Kalimantan. Total forest biomass estimates are presented for three main natural forest types (dryland, swamp and mangrove forests) with two different conditions (primary and secondary forests). These values quantify initial forest biomass conditions for modeling greenhouse gas (GHG) emissions and removals, as used in the Indonesian National Carbon Accounting System (INCAS), or to calculate CO 2 emission factors for quantifying GHG emissions due to forest clearing or deforestation in Central Kalimantan. Several sources of forest inventory data and information available from previous study were used in estimating forest biomass. This result provides an improved and more comprehensive analysis of emissions factors for forests by using Central Kalimantan-based forest inventory plots and allometric guidelines for quantifying forest biomass and forest carbon content. In addition, it includes all components of aboveground biomass of forest ecosystem. Further research is needed to relate forest biomass and carbon stocks to other determining factors such as forest type, soil type and climate, as well as the proportions of biomass immediately emitted due to forest management activities and the portion of biomass decomposed over specified time intervals.", + "Lower_Bound": "187.3", + "Upper_Bound": "245.2", + "Data_Quality": "Individual tree data of the plots have been carefully checked. Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.incas-indonesia.org/publication/estimation-of-forest-biomass-for-quantifying-co2-emissions-in-central-kalimantan/", + "creation_date": "2022-03-14T08:12:31.386Z", + "last_change_date": "2022-03-14T08:12:31.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15422, + "fields": { + "EF_ID": 522658, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Secondary forest", + "Parameter_Conditions": "climatic zone: tropic (Precipitation 1500-3000 mm); forest type: secondary swamp forest", + "Regional_Conditions": "Indonesia (Central Kalimantan)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "183.1", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Krisnawati, H., Adinugroho, W.C., Imanuddin, R., Hutabarat, S. (2014). Estimation of Forest Biomass for Quantifying CO2 Emissions in Central Kalimantan. Forestry Research and Development Agency, Bogor", + "English_Abstract": "This study provides a comprehensive assessment of forest biomass and carbon stocks for natural forests in Central Kalimantan. Total forest biomass estimates are presented for three main natural forest types (dryland, swamp and mangrove forests) with two different conditions (primary and secondary forests). These values quantify initial forest biomass conditions for modeling greenhouse gas (GHG) emissions and removals, as used in the Indonesian National Carbon Accounting System (INCAS), or to calculate CO 2 emission factors for quantifying GHG emissions due to forest clearing or deforestation in Central Kalimantan. Several sources of forest inventory data and information available from previous study were used in estimating forest biomass. This result provides an improved and more comprehensive analysis of emissions factors for forests by using Central Kalimantan-based forest inventory plots and allometric guidelines for quantifying forest biomass and forest carbon content. In addition, it includes all components of aboveground biomass of forest ecosystem. Further research is needed to relate forest biomass and carbon stocks to other determining factors such as forest type, soil type and climate, as well as the proportions of biomass immediately emitted due to forest management activities and the portion of biomass decomposed over specified time intervals.", + "Lower_Bound": "180.5", + "Upper_Bound": "185.8", + "Data_Quality": "Individual tree data of the plots have been carefully checked. Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "http://www.incas-indonesia.org/publication/estimation-of-forest-biomass-for-quantifying-co2-emissions-in-central-kalimantan/", + "creation_date": "2022-03-14T08:12:31.487Z", + "last_change_date": "2022-03-14T08:12:31.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15423, + "fields": { + "EF_ID": 522659, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Undisturbed", + "Parameter_Conditions": "Precipitation 1500-3000 mm; primary dryland forest", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "266", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Directorate General of Forestry Planning (2014). Forest Resource Potency from National Forest Inventory Plots. Ministry of Environmental and Forestry Indonesia", + "English_Abstract": "", + "Lower_Bound": "259.5", + "Upper_Bound": "272.5", + "Data_Quality": "Individual tree data of the plots have been carefully checked. Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data have been used to estimate emission factors for deforestation and forest degradation activities in INDONESIA FREL SUBMISSION to UNFCCC. The confidence intervals used are 95%.", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "", + "creation_date": "2022-03-14T08:12:31.587Z", + "last_change_date": "2022-03-14T08:12:31.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15424, + "fields": { + "EF_ID": 522660, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Secondary forest", + "Parameter_Conditions": "Precipitation 1500-3000 mm; secondary dryland forest", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "197.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Directorate General of Forestry Planning (2014). Forest Resource Potency from National Forest Inventory Plots. Ministry of Environmental and Forestry Indonesia", + "English_Abstract": "", + "Lower_Bound": "192.9", + "Upper_Bound": "202.5", + "Data_Quality": "Individual tree data of the plots have been carefully checked. Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data have been used to estimate emission factors for deforestation and forest degradation activities in INDONESIA FREL SUBMISSION to UNFCCC. The confidence intervals used are 95%.", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "", + "creation_date": "2022-03-14T08:12:31.663Z", + "last_change_date": "2022-03-14T08:12:31.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15425, + "fields": { + "EF_ID": 522661, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Undisturbed", + "Parameter_Conditions": "Precipitation 1500-3000 mm; primary swamp forest", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "192.7", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Directorate General of Forestry Planning (2014). Forest Resource Potency from National Forest Inventory Plots. Ministry of Environmental and Forestry Indonesia", + "English_Abstract": "", + "Lower_Bound": "174.6", + "Upper_Bound": "210.8", + "Data_Quality": "Individual tree data of the plots have been carefully checked. Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data have been used to estimate emission factors for deforestation and forest degradation activities in INDONESIA FREL SUBMISSION to UNFCCC. The confidence intervals used are 95%.", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "", + "creation_date": "2022-03-14T08:12:31.738Z", + "last_change_date": "2022-03-14T08:12:31.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15426, + "fields": { + "EF_ID": 522662, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average aboveground biomass", + "Technology_Practices": "Secondary forest", + "Parameter_Conditions": "Precipitation 1500-3000 mm; secondary swamp forest", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "159.3", + "Unit": "t dm/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Directorate General of Forestry Planning (2014). Forest Resource Potency from National Forest Inventory Plots. Ministry of Environmental and Forestry Indonesia", + "English_Abstract": "", + "Lower_Bound": "151.4", + "Upper_Bound": "167.3", + "Data_Quality": "Individual tree data of the plots have been carefully checked. Uncertainty used 95% confidence interval", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data have been used to estimate emission factors for deforestation and forest degradation activities in INDONESIA FREL SUBMISSION to UNFCCC. The confidence intervals used are 95%.", + "Other_Comments": "", + "Data_Provider": "Haruni Krisnawati", + "Link": "", + "creation_date": "2022-03-14T08:12:31.831Z", + "last_change_date": "2022-03-14T08:12:31.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15427, + "fields": { + "EF_ID": 522668, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Vegetation biomass stock (total number from understorey, seedling, sapling, pole, and tree) at the three years after peat forest burning at Katingan District, Central Kalimantan Province", + "Technology_Practices": "ANR (Assisted Natural Regeneration) after fire", + "Parameter_Conditions": "Climate zone: tropic, moist climate. Annual precipitation is 2,621 - 3,339 mm/year. Tree species: mix species.", + "Regional_Conditions": "Indonesia; (Central Kalimantan)", + "Control_Technologies": "", + "Other_Properties": "Diameter at breast height (DBH) ranges 2.6 cm - 12.8 cm. Height ranges from 4.80 m - 13.30 m.", + "Value": "32.32 (26.95 - 37.69)", + "Unit": "t dm/ha", + "Equation": "Equation 2.14 (average above-ground biomass of areas affected, tonnes dm ha-1) in 2006 IPCC GL for National GHG Inventories for Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "Worksheet FL remaining FL Category Code 3B1a of 2006 IPCC GL for National GHG Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dharmawan, I.W.S., Saharjo, B.H., Supriyanto, Arifin, H.S. and Siregar, C.A. 2013. Allometric equation and vegetation carbon stock at primary and burnt peat forest. Jurnal Penelitian Hutan dan Konservasi Alam (Journal of Forest Research and Natural Conservation) Vol. 10 No. 2: 175-191.", + "English_Abstract": "Bio-sequestration is one of the important carbon stock management that was underlined in several international meetings. Data on carbon stocks of vegetation and peat soil are very important to minimize variation of the carbon stock estimates in peat forests. The objectives of this research were to formulate the allometric equation for estimating tree biomass of the primary and burnt peat forests and to analyze the vegetation carbon stocks of the primary and burnt peat forests. The research was carried out in the primary peat forest (HGP), peat forest repeatedly-burnt annualy (HG1), peat forest three years after fire (HG3), and peat forest eight years after fire (HG8). Cluster plots were established in each forest type representing the period after burning and undisturbed condition. Each cluster plot consisted of four circular subplots (radius of 7.32 m) and four circular annular plots (radius of 17.95 m). The total number of both circular subplots and annular plots was 16 respectively. Data on biomass carbon stock were collected on those plots. Results of this research showed that for estimating total tree biomass for all cluster, the most reliable allometric equation was Y = 0.061 (DBHx?xT)1.464 .General allometric equation of all cluster is used for users in the field to calculate of stand biomass carbon stock. This general equation can be applied in all cluster due to the similarity of rainfall climatic zone range as 2,621-3,339 mm/year belongs to climatic zone of moist 1,500- 4,000 mm/year (Brown et al., 1989). Allometric equation in each cluster was used for estimation of stand biomass carbon stock in each cluster. The most reliable allometric equation in primary peat forest was Y = 0.040 (DBHx?xT)1.52; in peat forest repeatedly-burnt annualy was Y = 0.098 (DBH)2.350; in peat forest three years after fire was Y = 0.084 (DBHx?xT)1.376; in peat forest eight years after fire was Y = 0.024 (DBHx?xT)1.667. Total biomass stock from understorey, seedlings, saplings, poles and trees at the three years after peat forest burning was 32.32 +/- 5.37 t dm/ha.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data applicable for three years after peat forest burning at Katingan District, Central Kalimantan Province; Data applicable to FL remaining FL Category Code 3B1a of 2006 IPCC GL for National GHG Inventories", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:31.913Z", + "last_change_date": "2022-03-14T08:12:31.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15428, + "fields": { + "EF_ID": 522669, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Vegetation biomass stock (total number from understorey, seedling, sapling, pole, and tree) at the eight years after peat forest burning at Katingan District, Central Kalimantan Province", + "Technology_Practices": "ANR (Assisted Natural Regeneration) after fire", + "Parameter_Conditions": "Tree species: mix species. Climate zone: tropic, moist climate. Annual precipitation is 2,621 - 3,339 mm/year.", + "Regional_Conditions": "Indonesia (Central Kalimantan)", + "Control_Technologies": "", + "Other_Properties": "Diameter at breast height (DBH) ranges 2.5 cm - 29.0 cm. Height ranges from 5.08 m - 19.30 m.", + "Value": "60.62 (53.18 - 68.06)", + "Unit": "t dm/ha", + "Equation": "Equation 2.14 (average above-ground biomass of areas affected, tonnes dm ha-1) in 2006 IPCC GL for National GHG Inventories for Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "Worksheet FL remaining FL Category Code 3B1a of 2006 IPCC GL for National GHG Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dharmawan, I.W.S., Saharjo, B.H., Supriyanto, Arifin, H.S. and Siregar, C.A. 2013. Allometric equation and vegetation carbon stock at primary and burnt peat forest. Jurnal Penelitian Hutan dan Konservasi Alam (Journal of Forest Research and Natural Conservation) Vol. 10 No. 2: 175-191.", + "English_Abstract": "Bio-sequestration is one of the important carbon stock management that was underlined in several international meetings. Data on carbon stocks of vegetation and peat soil are very important to minimize variation of the carbon stock estimates in peat forests. The objectives of this research were to formulate the allometric equation for estimating tree biomass of the primary and burnt peat forests and to analyze the vegetation carbon stocks of the primary and burnt peat forests. The research was carried out in the primary peat forest (HGP), peat forest repeatedly-burnt annualy (HG1), peat forest three years after fire (HG3), and peat forest eight years after fire (HG8). Cluster plots were established in each forest type representing the period after burning and undisturbed condition. Each cluster plot consisted of four circular subplots (radius of 7.32 m) and four circular annular plots (radius of 17.95 m). The total number of both circular subplots and annular plots was 16 respectively. Data on biomass carbon stock were collected on those plots. Results of this research showed that for estimating total tree biomass for all cluster, the most reliable allometric equation was Y = 0.061 (DBHx?xT)1.464 .General allometric equation of all cluster is used for users in the field to calculate of stand biomass carbon stock. This general equation can be applied in all cluster due to the similarity of rainfall climatic zone range as 2,621-3,339 mm/year belongs to climatic zone of moist 1,500- 4,000 mm/year (Brown et al., 1989). Allometric equation in each cluster was used for estimation of stand biomass carbon stock in each cluster. The most reliable allometric equation in primary peat forest was Y = 0.040 (DBHx?xT)1.52; in peat forest repeatedly-burnt annualy was Y = 0.098 (DBH)2.350; in peat forest three years after fire was Y = 0.084 (DBHx?xT)1.376; in peat forest eight years after fire was Y = 0.024 (DBHx?xT)1.667. Total biomass stock from understorey, seedlings, saplings, poles and trees at the eight years after peat forest burning was 60.62 +/- 7.44 t dm/ha.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data applicable for eight years after peat forest burning at Katingan District, Central Kalimantan Province; Data applicable to FL remaining FL Category Code 3B1a of 2006 IPCC GL for National GHG Inventories", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:32.006Z", + "last_change_date": "2022-03-14T08:12:32.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15429, + "fields": { + "EF_ID": 522670, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "C3F8", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Vegetation biomass stock (total number from understorey, seedling, sapling, pole, and tree) at the primary peat forest at Katingan District, Central Kalimantan Province", + "Technology_Practices": "Undisturbed", + "Parameter_Conditions": "Tree species: mix species and dominated by Dipterocarpaceae family. Climate zone: tropic, moist climate. Annual precipitation is 2,621 - 3,339 mm/year.", + "Regional_Conditions": "Indonesia (Central Kalimantan)", + "Control_Technologies": "", + "Other_Properties": "Diameter at breast height (DBH) ranges 2.5 cm - 71.6 cm. Height ranges from 4.8 m - 37.3 m.", + "Value": "169.90 (129.32 - 210.48)", + "Unit": "t dm/ha", + "Equation": "Equation 2.14 (average above-ground biomass of areas affected, tonnes dm ha-1) in 2006 IPCC GL for National GHG Inventories for Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "Worksheet FL remaining FL Category Code 3B1a of 2006 IPCC GL for National GHG Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dharmawan, I.W.S., Saharjo, B.H., Supriyanto, Arifin, H.S. and Siregar, C.A. 2013. Allometric equation and vegetation carbon stock at primary and burnt peat forest. Jurnal Penelitian Hutan dan Konservasi Alam (Journal of Forest Research and Natural Conservation) Vol. 10 No. 2: 175-191.", + "English_Abstract": "Bio-sequestration is one of the important carbon stock management that was underlined in several international meetings. Data on carbon stocks of vegetation and peat soil are very important to minimize variation of the carbon stock estimates in peat forests. The objectives of this research were to formulate the allometric equation for estimating tree biomass of the primary and burnt peat forests and to analyze the vegetation carbon stocks of the primary and burnt peat forests. The research was carried out in the primary peat forest (HGP), peat forest repeatedly-burnt annualy (HG1), peat forest three years after fire (HG3), and peat forest eight years after fire (HG8). Cluster plots were established in each forest type representing the period after burning and undisturbed condition. Each cluster plot consisted of four circular subplots (radius of 7.32 m) and four circular annular plots (radius of 17.95 m). The total number of both circular subplots and annular plots was 16 respectively. Data on biomass carbon stock were collected on those plots. Results of this research showed that for estimating total tree biomass for all cluster, the most reliable allometric equation was Y = 0.061 (DBHx?xT)1.464 .General allometric equation of all cluster is used for users in the field to calculate of stand biomass carbon stock. This general equation can be applied in all cluster due to the similarity of rainfall climatic zone range as 2,621-3,339 mm/year belongs to climatic zone of moist 1,500- 4,000 mm/year (Brown et al., 1989). Allometric equation in each cluster was used for estimation of stand biomass carbon stock in each cluster. The most reliable allometric equation in primary peat forest was Y = 0.040 (DBHx?xT)1.52; in peat forest repeatedly-burnt annualy was Y = 0.098 (DBH)2.350; in peat forest three years after fire was Y = 0.084 (DBHx?xT)1.376; in peat forest eight years after fire was Y = 0.024 (DBHx?xT)1.667. Total biomass stock from understorey, seedlings, saplings, poles and trees at primary peat forest was 169.90 +/- 40.58 t dm/ha.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data applicable for primary peat forest at Katingan District, Central Kalimantan Province; Data applicable to FL remaining FL Category Code 3B1a of 2006 IPCC GL for National GHG Inventories", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:32.107Z", + "last_change_date": "2022-03-14T08:12:32.107Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15430, + "fields": { + "EF_ID": 522671, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Vegetation biomass stock (total number from understorey, seedling, sapling, pole, and tree) at the peat forest repeatedly-burnt annualy at Pulang Pisau District, Central Kalimantan Province", + "Technology_Practices": "ANR (Assisted Natural Regeneration) after fire", + "Parameter_Conditions": "Climate zone: tropic, moist climate. Annual precipitation is 2,621 - 3,339 mm/year. Tree species: Cratoxylon arborescens and Combretocarpus rotundatus.", + "Regional_Conditions": "Indonesia (Central Kalimantan)", + "Control_Technologies": "", + "Other_Properties": "Diameter at breast height (DBH) ranges 3.0 cm - 15.3 cm. Height ranges from 3.25 m - 11.35 m.", + "Value": "11.60 (5.99 - 17.21)", + "Unit": "t dm/ha", + "Equation": "Equation 2.14 (average above-ground biomass of areas affected, tonnes dm ha-1) in 2006 IPCC GL for National GHG Inventories for Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "Worksheet FL remaining FL Category Code 3B1a of 2006 IPCC GL for National GHG Inventories", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dharmawan, I.W.S., Saharjo, B.H., Supriyanto, Arifin, H.S. and Siregar, C.A. 2013. Allometric equation and vegetation carbon stock at primary and burnt peat forest. Jurnal Penelitian Hutan dan Konservasi Alam (Journal of Forest Research and Natural Conservation) Vol. 10 No. 2: 175-191.", + "English_Abstract": "Bio-sequestration is one of the important carbon stock management that was underlined in several international meetings. Data on carbon stocks of vegetation and peat soil are very important to minimize variation of the carbon stock estimates in peat forests. The objectives of this research were to formulate the allometric equation for estimating tree biomass of the primary and burnt peat forests and to analyze the vegetation carbon stocks of the primary and burnt peat forests. The research was carried out in the primary peat forest (HGP), peat forest repeatedly-burnt annualy (HG1), peat forest three years after fire (HG3), and peat forest eight years after fire (HG8). Cluster plots were established in each forest type representing the period after burning and undisturbed condition. Each cluster plot consisted of four circular subplots (radius of 7.32 m) and four circular annular plots (radius of 17.95 m). The total number of both circular subplots and annular plots was 16 respectively. Data on biomass carbon stock were collected on those plots. Results of this research showed that for estimating total tree biomass for all cluster, the most reliable allometric equation was Y = 0.061 (DBHx?xT)1.464 .General allometric equation of all cluster is used for users in the field to calculate of stand biomass carbon stock. This general equation can be applied in all cluster due to the similarity of rainfall climatic zone range as 2,621-3,339 mm/year belongs to climatic zone of moist 1,500- 4,000 mm/year (Brown et al., 1989). Allometric equation in each cluster was used for estimation of stand biomass carbon stock in each cluster. The most reliable allometric equation in primary peat forest was Y = 0.040 (DBHx?xT)1.52; in peat forest repeatedly-burnt annualy was Y = 0.098 (DBH)2.350; in peat forest three years after fire was Y = 0.084 (DBHx?xT)1.376; in peat forest eight years after fire was Y = 0.024 (DBHx?xT)1.667. Total biomass stock from understorey, seedlings, saplings, poles and trees at peat forest repeatedly-burnt annualy was 11.60 +/- 5.61 t dm/ha.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data applicable for peat forest repeatedly-burnt annualy at Pulang Pisau District, Central Kalimantan Province; Data applicable to FL remaining FL Category Code 3B1a of 2006 IPCC GL for National GHG Inventories", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:12:32.208Z", + "last_change_date": "2022-03-14T08:12:32.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15431, + "fields": { + "EF_ID": 522672, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emissions factor representing carbon removals (CO2-C emissions) from tropical peatland soils drained for short-rotation forest plantations on an annual area basis.", + "Technology_Practices": "Peatland drainage depth", + "Parameter_Conditions": "Tropical peatlands converted to or remaining as drained short rotation forestry plantations (i.e., acacia). Initial land use could be natural forest or any other land use type. Groundwater measurements rather than field drain water table measurements. Annual mean water table depths 30-50 cm.", + "Regional_Conditions": "Tropical Southeast Asia - measurements from Indonesia (Jambi, Riau) and Malaysia (Johor, Sarawak). Mean annual precipitation 2500-3500 mm.", + "Control_Technologies": "", + "Other_Properties": "EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)", + "Value": "13.8", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 in IPCC Wetlands Supplement (Page 2.9)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Carlson K.M., L.K. Goodman, and C.C. May-Tobin. 2015. Modeling relationships between water table depth and soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10:074006.", + "English_Abstract": "Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 +/- 20 cm (mean +/- standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45–63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18–22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17–24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14–20 tC-CO2 ha-1 yr-1), ~82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 +/- 16 cm) than oil palm (59 +/- 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.", + "Lower_Bound": "8.044701", + "Upper_Bound": "18.11162", + "Data_Quality": "Meta-analysis of 27 sites from 4 studies", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This EF was derived from a linear model relating long term water table depth (cm) to total annual carbon loss (tonnes C/ha/yr) as measured using subsidence-based methods. We assume that this carbon is emitted as CO2. The EF represents carbon loss at a 40 cm water table depth. The lower confidence bound represents the lower 95% confidence value at a 30 cm water table depth. The upper confidence bound represents the upper 95% confidence value at 50 cm water table depth. If the mean annual water table depth is known and differs from 40 cm, the equation [EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)] can be used to calculate the EF.", + "Other_Comments": "", + "Data_Provider": "Kimberly M. Carlson", + "Link": "http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074006", + "creation_date": "2022-03-14T08:12:32.308Z", + "last_change_date": "2022-03-14T08:12:32.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15432, + "fields": { + "EF_ID": 522673, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emissions factor representing carbon removals (CO2-C emissions) from tropical peatland soils drained for short-rotation forest plantations on an annual area basis.", + "Technology_Practices": "Peatland drainage depth", + "Parameter_Conditions": "Tropical peatlands converted to or remaining as drained short rotation forestry plantations (i.e., acacia). Initial land use could be natural forest or any other land use type. Groundwater measurements rather than field drain water table measurements. Annual mean water table depths 50-70 cm.", + "Regional_Conditions": "Tropical Southeast Asia - measurements from Indonesia (Jambi, Riau) and Malaysia (Johor, Sarawak). Mean annual precipitation 2500-3500 mm.", + "Control_Technologies": "", + "Other_Properties": "EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)", + "Value": "18.09272", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 in IPCC Wetlands Supplement (Page 2.9)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Carlson K.M., L.K. Goodman, and C.C. May-Tobin. 2015. Modeling relationships between water table depth and soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10:074006.", + "English_Abstract": "Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 +/- 20 cm (mean +/- standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45–63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18–22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17–24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14–20 tC-CO2 ha-1 yr-1), ~82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 +/- 16 cm) than oil palm (59 +/- 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.", + "Lower_Bound": "13.82918", + "Upper_Bound": "21.94192", + "Data_Quality": "Meta-analysis of 27 sites from 4 studies", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This EF was derived from a linear model relating long term water table depth (cm) to total annual carbon loss (tonnes C/ha/yr) as measured using subsidence-based methods. We assume that this carbon is emitted as CO2. The EF represents carbon loss at a 60 cm water table depth. The lower confidence bound represents the lower 95% confidence value at a 50 cm water table depth. The upper confidence bound represents the upper 95% confidence value at 70 cm water table depth. If the mean annual water table depth is known and differs from 60 cm, the equation [EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)] can be used to calculate the EF.", + "Other_Comments": "", + "Data_Provider": "Kimberly M. Carlson", + "Link": "http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074006", + "creation_date": "2022-03-14T08:12:32.409Z", + "last_change_date": "2022-03-14T08:12:32.409Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15433, + "fields": { + "EF_ID": 522674, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emissions factor representing carbon removals (CO2-C emissions) from tropical peatland soils drained for short-rotation forest plantations on an annual area basis.", + "Technology_Practices": "Peatland drainage depth", + "Parameter_Conditions": "Tropical peatlands converted to or remaining as drained short rotation forestry plantations (i.e., acacia). Initial land use could be natural forest or any other land use type. Groundwater measurements rather than field drain water table measurements. Annual mean water table depths 70-90 cm.", + "Regional_Conditions": "Tropical Southeast Asia - measurements from Indonesia (Jambi, Riau) and Malaysia (Johor, Sarawak). Mean annual precipitation 2500-3500 mm.", + "Control_Technologies": "", + "Other_Properties": "EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)", + "Value": "22.33736", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 in IPCC Wetlands Supplement (Page 2.9)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Carlson K.M., L.K. Goodman, and C.C. May-Tobin. 2015. Modeling relationships between water table depth and soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10:074006.", + "English_Abstract": "Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 +/- 20 cm (mean +/- standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45–63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18–22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17–24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14–20 tC-CO2 ha-1 yr-1), ~82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 +/- 16 cm) than oil palm (59 +/- 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.", + "Lower_Bound": "18.48816", + "Upper_Bound": "27.41637", + "Data_Quality": "Meta-analysis of 27 sites from 4 studies", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This EF was derived from a linear model relating long term water table depth (cm) to total annual carbon loss (tonnes C/ha/yr) as measured using subsidence-based methods. We assume that this carbon is emitted as CO2. The EF represents carbon loss at a 80 cm water table depth. The lower confidence bound represents the lower 95% confidence value at a 70 cm water table depth. The upper confidence bound represents the upper 95% confidence value at 90 cm water table depth. If the mean annual water table depth is known and differs from 80 cm, the equation [EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)] can be used to calculate the EF.", + "Other_Comments": "", + "Data_Provider": "Kimberly M. Carlson", + "Link": "http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074006", + "creation_date": "2022-03-14T08:12:32.520Z", + "last_change_date": "2022-03-14T08:12:32.520Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15434, + "fields": { + "EF_ID": 522675, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emissions factor representing carbon removals (CO2-C emissions) from tropical peatland soils drained for short-rotation forest plantations on an annual area basis.", + "Technology_Practices": "Peatland drainage depth", + "Parameter_Conditions": "Tropical peatlands converted to or remaining as drained short rotation forestry plantations (i.e., acacia). Initial land use could be natural forest or any other land use type. Groundwater measurements rather than field drain water table measurements. Annual mean water table depths 90-110 cm.", + "Regional_Conditions": "Tropical Southeast Asia - measurements from Indonesia (Jambi, Riau) and Malaysia (Johor, Sarawak). Mean annual precipitation 2500-3500 mm.", + "Control_Technologies": "", + "Other_Properties": "EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)", + "Value": "26.58199", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 in IPCC Wetlands Supplement (Page 2.9)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Carlson K.M., L.K. Goodman, and C.C. May-Tobin. 2015. Modeling relationships between water table depth and soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10:074006.", + "English_Abstract": "Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 +/- 20 cm (mean +/- standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45–63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18–22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17–24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14–20 tC-CO2 ha-1 yr-1), ~82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 +/- 16 cm) than oil palm (59 +/- 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.", + "Lower_Bound": "21.50298", + "Upper_Bound": "33.38027", + "Data_Quality": "Meta-analysis of 27 sites from 4 studies", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This EF was derived from a linear model relating long term water table depth (cm) to total annual carbon loss (tonnes CO2-C/ha/yr) as measured using subsidence-based methods. We assume that this carbon is emitted as CO2. The EF represents carbon loss at a 100 cm water table depth. The lower confidence bound represents the lower 95% confidence value at a 90 cm water table depth. The upper confidence bound represents the upper 95% confidence value at 110 cm water table depth. If the mean annual water table depth is known and differs from 100 cm, the equation [EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)] can be used to calculate the EF.", + "Other_Comments": "", + "Data_Provider": "Kimberly M. Carlson", + "Link": "http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074006", + "creation_date": "2022-03-14T08:12:32.636Z", + "last_change_date": "2022-03-14T08:12:32.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15435, + "fields": { + "EF_ID": 522676, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emissions factor representing carbon removals (CO2-C emissions) from tropical peatland soils drained for tree plantations on an annual area basis.", + "Technology_Practices": "Peatland drainage depth", + "Parameter_Conditions": "Tropical peatlands converted to or remaining as drained perennial tree crop plantations (i.e., oil palm). Initial land use could be natural forest or any other land use type. Groundwater measurements rather than field drain water table measurements. Annual mean water table depths 30-50 cm.", + "Regional_Conditions": "Tropical Southeast Asia - measurements from Indonesia (Jambi, Riau) and Malaysia (Johor, Sarawak). Mean annual precipitation 2500-3500 mm.", + "Control_Technologies": "", + "Other_Properties": "EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)", + "Value": "13.8", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 in IPCC Wetlands Supplement (Page 2.9)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Carlson K.M., L.K. Goodman, and C.C. May-Tobin. 2015. Modeling relationships between water table depth and soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10:074006.", + "English_Abstract": "Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 +/- 20 cm (mean +/- standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45–63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18–22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17–24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14–20 tC-CO2 ha-1 yr-1), ~82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 +/- 16 cm) than oil palm (59 +/- 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.", + "Lower_Bound": "8.044701", + "Upper_Bound": "18.11162", + "Data_Quality": "Meta-analysis of 27 sites from 4 studies", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This EF was derived from a linear model relating long term water table depth (cm) to total annual carbon loss (tonnes C/ha/yr) as measured using subsidence-based methods applied to oil palm and acacia plantations. We assume that this carbon is emitted as CO2. The EF represents carbon loss at a 40 cm water table depth. The lower confidence bound represents the lower 95% confidence value at a 30 cm water table depth. The upper confidence bound represents the upper 95% confidence value at 50 cm water table depth. If the mean annual water table depth is known and differs from 40 cm, the equation [EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)] can be used to calculate the EF.", + "Other_Comments": "", + "Data_Provider": "Kimberly M. Carlson", + "Link": "http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074006", + "creation_date": "2022-03-14T08:12:32.754Z", + "last_change_date": "2022-03-14T08:12:32.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15436, + "fields": { + "EF_ID": 522677, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emissions factor representing carbon removals (CO2-C emissions) from tropical peatland soils drained for tree plantations on an annual area basis.", + "Technology_Practices": "Peatland drainage depth", + "Parameter_Conditions": "Tropical peatlands converted to or remaining as drained perennial tree crop plantations (i.e., oil palm). Initial land use could be natural forest or any other land use type. Groundwater measurements rather than field drain water table measurements. Annual mean water table depths 50-70 cm.", + "Regional_Conditions": "Tropical Southeast Asia - measurements from Indonesia (Jambi, Riau) and Malaysia (Johor, Sarawak). Mean annual precipitation 2500-3500 mm.", + "Control_Technologies": "", + "Other_Properties": "EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)", + "Value": "18.09272", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 in IPCC Wetlands Supplement (Page 2.9)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Carlson K.M., L.K. Goodman, and C.C. May-Tobin. 2015. Modeling relationships between water table depth and soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10:074006.", + "English_Abstract": "Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 +/- 20 cm (mean +/- standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45–63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18–22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17–24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14–20 tC-CO2 ha-1 yr-1), ~82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 +/- 16 cm) than oil palm (59 +/- 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.", + "Lower_Bound": "13.82918", + "Upper_Bound": "21.94192", + "Data_Quality": "Meta-analysis of 27 sites from 4 studies", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This EF was derived from a linear model relating long term water table depth (cm) to total annual carbon loss (tonnes C/ha/yr) as measured using subsidence-based methods applied to oil palm and acacia plantations. We assume that this carbon is emitted as CO2. The EF represents carbon loss at a 60 cm water table depth. The lower confidence bound represents the lower 95% confidence value at a 50 cm water table depth. The upper confidence bound represents the upper 95% confidence value at 70 cm water table depth. If the mean annual water table depth is known and differs from 60 cm, the equation [EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)] can be used to calculate the EF.", + "Other_Comments": "", + "Data_Provider": "Kimberly M. Carlson", + "Link": "http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074006", + "creation_date": "2022-03-14T08:12:32.871Z", + "last_change_date": "2022-03-14T08:12:32.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15437, + "fields": { + "EF_ID": 522678, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emissions factor representing carbon removals (CO2-C emissions) from tropical peatland soils drained for tree plantations on an annual area basis.", + "Technology_Practices": "Peatland drainage depth", + "Parameter_Conditions": "Tropical peatlands converted to or remaining as drained perennial tree crop plantations (i.e., oil palm). Initial land use could be natural forest or any other land use type. Groundwater measurements rather than field drain water table measurements. Annual mean water table depths 70-90 cm.", + "Regional_Conditions": "Tropical Southeast Asia - measurements from Indonesia (Jambi, Riau) and Malaysia (Johor, Sarawak). Mean annual precipitation 2500-3500 mm.", + "Control_Technologies": "", + "Other_Properties": "EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)", + "Value": "22.33736", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 in IPCC Wetlands Supplement (Page 2.9)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Carlson K.M., L.K. Goodman, and C.C. May-Tobin. 2015. Modeling relationships between water table depth and soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10:074006.", + "English_Abstract": "Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 +/- 20 cm (mean +/- standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45–63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18–22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17–24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14–20 tC-CO2 ha-1 yr-1), ~82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 +/- 16 cm) than oil palm (59 +/- 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.", + "Lower_Bound": "18.48816", + "Upper_Bound": "27.41637", + "Data_Quality": "Meta-analysis of 27 sites from 4 studies", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This EF was derived from a linear model relating long term water table depth (cm) to total annual carbon loss (tonnes C/ha/yr) as measured using subsidence-based methods applied to oil palm and acacia plantations. We assume that this carbon is emitted as CO2. The EF represents carbon loss at a 80 cm water table depth. The lower confidence bound represents the lower 95% confidence value at a 70 cm water table depth. The upper confidence bound represents the upper 95% confidence value at 90 cm water table depth. If the mean annual water table depth is known and differs from 80 cm, the equation [EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)] can be used to calculate the EF.", + "Other_Comments": "", + "Data_Provider": "Kimberly M. Carlson", + "Link": "http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074006", + "creation_date": "2022-03-14T08:12:32.971Z", + "last_change_date": "2022-03-14T08:12:32.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15438, + "fields": { + "EF_ID": 522679, + "IPCC_Category": "3.B.2.b.iii - Wetlands converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emissions factor representing carbon removals (CO2-C emissions) from tropical peatland soils drained for tree plantations on an annual area basis.", + "Technology_Practices": "Peatland drainage depth", + "Parameter_Conditions": "Tropical peatlands converted to or remaining as drained perennial tree crop plantations (i.e., oil palm). Initial land use could be natural forest or any other land use type. Groundwater measurements rather than field drain water table measurements. Annual mean water table depths 90-110 cm.", + "Regional_Conditions": "Tropical Southeast Asia - measurements from Indonesia (Jambi, Riau) and Malaysia (Johor, Sarawak). Mean annual precipitation 2500-3500 mm.", + "Control_Technologies": "", + "Other_Properties": "EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)", + "Value": "26.58199", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 in IPCC Wetlands Supplement (Page 2.9)", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Carlson K.M., L.K. Goodman, and C.C. May-Tobin. 2015. Modeling relationships between water table depth and soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10:074006.", + "English_Abstract": "Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 +/- 20 cm (mean +/- standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45–63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18–22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17–24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14–20 tC-CO2 ha-1 yr-1), ~82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 +/- 16 cm) than oil palm (59 +/- 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.", + "Lower_Bound": "21.50298", + "Upper_Bound": "33.38027", + "Data_Quality": "Meta-analysis of 27 sites from 4 studies", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This EF was derived from a linear model relating long term water table depth (cm) to total annual carbon loss (tonnes CO2-C/ha/yr) as measured using subsidence-based methods applied to oil palm and acacia plantations. We assume that this carbon is emitted as CO2. The EF represents carbon loss at a 100 cm water table depth. The lower confidence bound represents the lower 95% confidence value at a 90 cm water table depth. The upper confidence bound represents the upper 95% confidence value at 110 cm water table depth. If the mean annual water table depth is known and differs from 100 cm, the equation [EF = 5.4 + 0.21*WT (EF = total carbon loss in tonnes CO2-C/ha/yr, WT = water table depth in cm)] can be used to calculate the EF.", + "Other_Comments": "", + "Data_Provider": "Kimberly M. Carlson", + "Link": "http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074006", + "creation_date": "2022-03-14T08:12:33.072Z", + "last_change_date": "2022-03-14T08:12:33.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15439, + "fields": { + "EF_ID": 522720, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Gas emission factor (Gef)", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Heading fire", + "Value": "1594", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "1594", + "Upper_Bound": "1594", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:33.173Z", + "last_change_date": "2022-03-14T08:12:33.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15440, + "fields": { + "EF_ID": 522721, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Flanking fire", + "Value": "1709", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "1709", + "Upper_Bound": "1709", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:33.274Z", + "last_change_date": "2022-03-14T08:12:33.274Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15441, + "fields": { + "EF_ID": 522722, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Backing fire", + "Value": "1716", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "1716", + "Upper_Bound": "1716", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:33.374Z", + "last_change_date": "2022-03-14T08:12:33.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15442, + "fields": { + "EF_ID": 522723, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Heading fire", + "Value": "172", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "172", + "Upper_Bound": "172", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:33.592Z", + "last_change_date": "2022-03-14T08:12:33.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15443, + "fields": { + "EF_ID": 522724, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Flanking fire", + "Value": "98", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "98", + "Upper_Bound": "98", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:33.693Z", + "last_change_date": "2022-03-14T08:12:33.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15444, + "fields": { + "EF_ID": 522725, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Backing fire", + "Value": "95", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "95", + "Upper_Bound": "95", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:33.779Z", + "last_change_date": "2022-03-14T08:12:33.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15445, + "fields": { + "EF_ID": 522726, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Heading fire", + "Value": "4.2", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "4.2", + "Upper_Bound": "4.2", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:33.887Z", + "last_change_date": "2022-03-14T08:12:33.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15446, + "fields": { + "EF_ID": 522727, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Flanking fire", + "Value": "4.3", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "4.3", + "Upper_Bound": "4.3", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.038Z", + "last_change_date": "2022-03-14T08:12:34.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15447, + "fields": { + "EF_ID": 522728, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Backing fire", + "Value": "3.3", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "3.3", + "Upper_Bound": "3.3", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.163Z", + "last_change_date": "2022-03-14T08:12:34.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15448, + "fields": { + "EF_ID": 522729, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Heading fire", + "Value": "0.089", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "0.089", + "Upper_Bound": "0.089", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.272Z", + "last_change_date": "2022-03-14T08:12:34.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15449, + "fields": { + "EF_ID": 522730, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Flanking fire", + "Value": "0.117", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "0.117", + "Upper_Bound": "0.117", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.373Z", + "last_change_date": "2022-03-14T08:12:34.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15450, + "fields": { + "EF_ID": 522731, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Low intensity prescribed fires", + "Parameter_Conditions": "Eucalyptus litter", + "Regional_Conditions": "Australia (New South Wales, Canberra)", + "Control_Technologies": "", + "Other_Properties": "Average of continuous measurment of smoke plume emitted during fire progression over a defined fuel bed of leaf litter (< 6mm). Backing fire", + "Value": "0.064", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Surawski N.C., Sullivan A.L., Meyer C.P., Roxburgh S.H., Polglase P.J. (2015) Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion. Atmospheric Chemistry and Physics 15:5259-5273. DOI: 10.5194/acp-15-5259-2015.", + "English_Abstract": "Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integratedcavity- output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17%more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.", + "Lower_Bound": "0.064", + "Upper_Bound": "0.064", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.474Z", + "last_change_date": "2022-03-14T08:12:34.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15451, + "fields": { + "EF_ID": 522732, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "Eucalypt Forest,", + "Regional_Conditions": "Australia (New South Wales, Sydney Basin)", + "Control_Technologies": "", + "Other_Properties": "Average of five prescribed burns conducted for fuel load management. Each measurement is the man emissions factor observed in the smoke plume produced at the fire front.", + "Value": "1620", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, É.-A.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 1: Methods and Australian temperate forest fires, Atmos. Chem. Phys., 14, 11313-11333, doi:10.5194/acp-14-11313-2014, 2014.", + "English_Abstract": "Biomass burning releases trace gases and aerosol particles that significantly affect the composition and chemistry of the atmosphere. Australia contributes approximately 8% of gross global carbon emissions from biomass burning, yet there are few previous measurements of emissions from Australian forest fires available in the literature. This paper describes the results of field measurements of trace gases emitted during hazard reduction burns in Australian temperate forests using open-path Fourier transform infrared spectroscopy. In a companion paper, similar techniques are used to characterise the emissions from hazard reduction burns in the savanna regions of the Northern Territory. Details of the experimental methods are explained, including both the measurement set-up and the analysis techniques employed. The advantages and disadvantages of different ways to estimate whole-fire emission factors are discussed and a measurement uncertainty budget is developed. Emission factors for Australian temperate forest fires are measured locally for the first time for many trace gases. Where ecosystem-relevant data are required, we recommend the following emission factors for Australian temperate forest fires (in grams of gas emitted per kilogram of dry fuel burned) which are our mean measured values: 1620 +/- 160 g kg-1 of carbon dioxide; 120 +/- 20 g kg-1 of carbon monoxide; 3.6 +/- 1.1 g kg-1 of methane; 1.3 +/- 0.3 g kg-1 of ethylene; 1.7 +/- 0.4 g kg-1 of formaldehyde; 2.4 +/- 1.2 g kg-1 of methanol; 3.8 +/- 1.3 g kg-1 of acetic acid; 0.4 +/- 0.2 g kg-1 of formic acid; 1.6 +/- 0.6 g kg-1 of ammonia; 0.15 +/- 0.09 g kg-1 of nitrous oxide and 0.5 +/- 0.2 g kg-1 of ethane.", + "Lower_Bound": "1520", + "Upper_Bound": "1680", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.583Z", + "last_change_date": "2022-03-14T08:12:34.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15452, + "fields": { + "EF_ID": 522733, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "Eucalypt Forest,", + "Regional_Conditions": "Australia (New South Wales, Sydney Basin)", + "Control_Technologies": "", + "Other_Properties": "Average of five prescribed burns conducted for fuel load management. Each measurement is the man emissions factor observed in the smoke plume produced at the fire front.", + "Value": "118", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, É.-A.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 1: Methods and Australian temperate forest fires, Atmos. Chem. Phys., 14, 11313-11333, doi:10.5194/acp-14-11313-2014, 2014.", + "English_Abstract": "Biomass burning releases trace gases and aerosol particles that significantly affect the composition and chemistry of the atmosphere. Australia contributes approximately 8% of gross global carbon emissions from biomass burning, yet there are few previous measurements of emissions from Australian forest fires available in the literature. This paper describes the results of field measurements of trace gases emitted during hazard reduction burns in Australian temperate forests using open-path Fourier transform infrared spectroscopy. In a companion paper, similar techniques are used to characterise the emissions from hazard reduction burns in the savanna regions of the Northern Territory. Details of the experimental methods are explained, including both the measurement set-up and the analysis techniques employed. The advantages and disadvantages of different ways to estimate whole-fire emission factors are discussed and a measurement uncertainty budget is developed. Emission factors for Australian temperate forest fires are measured locally for the first time for many trace gases. Where ecosystem-relevant data are required, we recommend the following emission factors for Australian temperate forest fires (in grams of gas emitted per kilogram of dry fuel burned) which are our mean measured values: 1620 +/- 160 g kg-1 of carbon dioxide; 120 +/- 20 g kg-1 of carbon monoxide; 3.6 +/- 1.1 g kg-1 of methane; 1.3 +/- 0.3 g kg-1 of ethylene; 1.7 +/- 0.4 g kg-1 of formaldehyde; 2.4 +/- 1.2 g kg-1 of methanol; 3.8 +/- 1.3 g kg-1 of acetic acid; 0.4 +/- 0.2 g kg-1 of formic acid; 1.6 +/- 0.6 g kg-1 of ammonia; 0.15 +/- 0.09 g kg-1 of nitrous oxide and 0.5 +/- 0.2 g kg-1 of ethane.", + "Lower_Bound": "86.64", + "Upper_Bound": "149.36", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.726Z", + "last_change_date": "2022-03-14T08:12:34.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15453, + "fields": { + "EF_ID": 522734, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "Eucalypt Forest,", + "Regional_Conditions": "Australia (New South Wales, Sydney Basin)", + "Control_Technologies": "", + "Other_Properties": "Average of five prescribed burns conducted for fuel load management. Each measurement is the man emissions factor observed in the smoke plume produced at the fire front.", + "Value": "3.6", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, É.-A.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 1: Methods and Australian temperate forest fires, Atmos. Chem. Phys., 14, 11313-11333, doi:10.5194/acp-14-11313-2014, 2014.", + "English_Abstract": "Biomass burning releases trace gases and aerosol particles that significantly affect the composition and chemistry of the atmosphere. Australia contributes approximately 8% of gross global carbon emissions from biomass burning, yet there are few previous measurements of emissions from Australian forest fires available in the literature. This paper describes the results of field measurements of trace gases emitted during hazard reduction burns in Australian temperate forests using open-path Fourier transform infrared spectroscopy. In a companion paper, similar techniques are used to characterise the emissions from hazard reduction burns in the savanna regions of the Northern Territory. Details of the experimental methods are explained, including both the measurement set-up and the analysis techniques employed. The advantages and disadvantages of different ways to estimate whole-fire emission factors are discussed and a measurement uncertainty budget is developed. Emission factors for Australian temperate forest fires are measured locally for the first time for many trace gases. Where ecosystem-relevant data are required, we recommend the following emission factors for Australian temperate forest fires (in grams of gas emitted per kilogram of dry fuel burned) which are our mean measured values: 1620 +/- 160 g kg-1 of carbon dioxide; 120 +/- 20 g kg-1 of carbon monoxide; 3.6 +/- 1.1 g kg-1 of methane; 1.3 +/- 0.3 g kg-1 of ethylene; 1.7 +/- 0.4 g kg-1 of formaldehyde; 2.4 +/- 1.2 g kg-1 of methanol; 3.8 +/- 1.3 g kg-1 of acetic acid; 0.4 +/- 0.2 g kg-1 of formic acid; 1.6 +/- 0.6 g kg-1 of ammonia; 0.15 +/- 0.09 g kg-1 of nitrous oxide and 0.5 +/- 0.2 g kg-1 of ethane.", + "Lower_Bound": "1.444", + "Upper_Bound": "5.756", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.826Z", + "last_change_date": "2022-03-14T08:12:34.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15454, + "fields": { + "EF_ID": 522735, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "Eucalypt Forest,", + "Regional_Conditions": "Australia (New South Wales, Sydney Basin)", + "Control_Technologies": "", + "Other_Properties": "Average of five prescribed burns conducted for fuel load management. Each measurement is the man emissions factor observed in the smoke plume produced at the fire front.", + "Value": "0.15", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, É.-A.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy – Part 1: Methods and Australian temperate forest fires, Atmos. Chem. Phys., 14, 11313-11333, doi:10.5194/acp-14-11313-2014, 2014.", + "English_Abstract": "Biomass burning releases trace gases and aerosol particles that significantly affect the composition and chemistry of the atmosphere. Australia contributes approximately 8% of gross global carbon emissions from biomass burning, yet there are few previous measurements of emissions from Australian forest fires available in the literature. This paper describes the results of field measurements of trace gases emitted during hazard reduction burns in Australian temperate forests using open-path Fourier transform infrared spectroscopy. In a companion paper, similar techniques are used to characterise the emissions from hazard reduction burns in the savanna regions of the Northern Territory. Details of the experimental methods are explained, including both the measurement set-up and the analysis techniques employed. The advantages and disadvantages of different ways to estimate whole-fire emission factors are discussed and a measurement uncertainty budget is developed. Emission factors for Australian temperate forest fires are measured locally for the first time for many trace gases. Where ecosystem-relevant data are required, we recommend the following emission factors for Australian temperate forest fires (in grams of gas emitted per kilogram of dry fuel burned) which are our mean measured values: 1620 +/- 160 g kg-1 of carbon dioxide; 120 +/- 20 g kg-1 of carbon monoxide; 3.6 +/- 1.1 g kg-1 of methane; 1.3 +/- 0.3 g kg-1 of ethylene; 1.7 +/- 0.4 g kg-1 of formaldehyde; 2.4 +/- 1.2 g kg-1 of methanol; 3.8 +/- 1.3 g kg-1 of acetic acid; 0.4 +/- 0.2 g kg-1 of formic acid; 1.6 +/- 0.6 g kg-1 of ammonia; 0.15 +/- 0.09 g kg-1 of nitrous oxide and 0.5 +/- 0.2 g kg-1 of ethane.", + "Lower_Bound": "0", + "Upper_Bound": "0.3264", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:34.936Z", + "last_change_date": "2022-03-14T08:12:34.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15455, + "fields": { + "EF_ID": 522736, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia (Victoria, Heyfield)", + "Control_Technologies": "", + "Other_Properties": "Average EF from fine fuels (leaf litter and grass, twigs < 6mm) and coarse fuels (6mm - 25mm diameter) burned during the passage of the fire front.", + "Value": "1730", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Volkova Liubov, Meyer C. P. (Mick), Murphy Simon, Fairman Thomas, Reisen Fabienne, Weston Christopher (2014) Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. International Journal of Wildland Fire 23, 771-780.", + "English_Abstract": "A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.", + "Lower_Bound": "1710", + "Upper_Bound": "1748.4", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:35.036Z", + "last_change_date": "2022-03-14T08:12:35.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15456, + "fields": { + "EF_ID": 522737, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia (Victoria, Heyfield)", + "Control_Technologies": "", + "Other_Properties": "Average EF from fine fuels (leaf litter and grass, twigs < 6mm) and coarse fuels (6mm - 25mm diameter) burned during the passage of the fire front.", + "Value": "47", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Volkova Liubov, Meyer C. P. (Mick), Murphy Simon, Fairman Thomas, Reisen Fabienne, Weston Christopher (2014) Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. International Journal of Wildland Fire 23, 771-780.", + "English_Abstract": "A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.", + "Lower_Bound": "35.5", + "Upper_Bound": "58.5", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:35.138Z", + "last_change_date": "2022-03-14T08:12:35.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15457, + "fields": { + "EF_ID": 522738, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia (Victoria, Heyfield)", + "Control_Technologies": "", + "Other_Properties": "Average EF from fine fuels (leaf litter and grass, twigs < 6mm) and coarse fuels (6mm - 25mm diameter) burned during the passage of the fire front.", + "Value": "1.24", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Volkova Liubov, Meyer C. P. (Mick), Murphy Simon, Fairman Thomas, Reisen Fabienne, Weston Christopher (2014) Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. International Journal of Wildland Fire 23, 771-780.", + "English_Abstract": "A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.", + "Lower_Bound": "0.872", + "Upper_Bound": "1.608", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:35.212Z", + "last_change_date": "2022-03-14T08:12:35.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15458, + "fields": { + "EF_ID": 522739, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia (Victoria, Heyfield)", + "Control_Technologies": "", + "Other_Properties": "Average EF from fine fuels (leaf litter and grass, twigs < 6mm) and coarse fuels (6mm - 25mm diameter) burned during the passage of the fire front.", + "Value": "0.087", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Volkova Liubov, Meyer C. P. (Mick), Murphy Simon, Fairman Thomas, Reisen Fabienne, Weston Christopher (2014) Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. International Journal of Wildland Fire 23, 771-780.", + "English_Abstract": "A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.", + "Lower_Bound": "0.0755", + "Upper_Bound": "0.0985", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:35.314Z", + "last_change_date": "2022-03-14T08:12:35.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15459, + "fields": { + "EF_ID": 522740, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia (Victoria, Heyfield)", + "Control_Technologies": "", + "Other_Properties": "Average of approximately 10 smoke samples of smoke produced by smoldering heavy fuel elements between 1 and 2h after the passage of the fire front. The fuels are organic matter comprising dead fallen branches and logs > 100 mm diameter.", + "Value": "1505", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Volkova Liubov, Meyer C. P. (Mick), Murphy Simon, Fairman Thomas, Reisen Fabienne, Weston Christopher (2014) Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. International Journal of Wildland Fire 23, 771-780.", + "English_Abstract": "A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.", + "Lower_Bound": "1400", + "Upper_Bound": "1523.4", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:35.403Z", + "last_change_date": "2022-03-14T08:12:35.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15460, + "fields": { + "EF_ID": 522741, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON MONOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia (Victoria, Heyfield)", + "Control_Technologies": "", + "Other_Properties": "Average of approximately 10 smoke samples of smoke produced by smoldering heavy fuel elements between 1 and 2h after the passage of the fire front. The fuels are organic matter comprising dead fallen branches and logs > 100 mm diameter.", + "Value": "218", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Volkova Liubov, Meyer C. P. (Mick), Murphy Simon, Fairman Thomas, Reisen Fabienne, Weston Christopher (2014) Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. International Journal of Wildland Fire 23, 771-780.", + "English_Abstract": "A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.", + "Lower_Bound": "148", + "Upper_Bound": "288", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:35.499Z", + "last_change_date": "2022-03-14T08:12:35.499Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15461, + "fields": { + "EF_ID": 522742, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia (Victoria, Heyfield)", + "Control_Technologies": "", + "Other_Properties": "Average of approximately 10 smoke samples of smoke produced by smoldering heavy fuel elements between 1 and 2h after the passage of the fire front. The fuels are organic matter comprising dead fallen branches and logs > 100 mm diameter.", + "Value": "9.97", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Volkova Liubov, Meyer C. P. (Mick), Murphy Simon, Fairman Thomas, Reisen Fabienne, Weston Christopher (2014) Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. International Journal of Wildland Fire 23, 771-780.", + "English_Abstract": "A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.", + "Lower_Bound": "4.97", + "Upper_Bound": "14.97", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:35.603Z", + "last_change_date": "2022-03-14T08:12:35.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15462, + "fields": { + "EF_ID": 522743, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Fuel reduction prescribed fire", + "Parameter_Conditions": "", + "Regional_Conditions": "Australia (Victoria, Heyfield)", + "Control_Technologies": "", + "Other_Properties": "Average of approximately 10 smoke samples of smoke produced by smoldering heavy fuel elements between 1 and 2h after the passage of the fire front. The fuels are organic matter comprising dead fallen branches and logs > 100 mm diameter.", + "Value": "0.048", + "Unit": "g/kg fuel", + "Equation": "Eq 2.27, 2006 GL Vol 4, p2.42", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Volkova Liubov, Meyer C. P. (Mick), Murphy Simon, Fairman Thomas, Reisen Fabienne, Weston Christopher (2014) Fuel reduction burning mitigates wildfire effects on forest carbon and greenhouse gas emission. International Journal of Wildland Fire 23, 771-780.", + "English_Abstract": "A high-intensity wildfire burnt through a dry Eucalyptus forest in south-eastern Australia that had been fuel reduced with fire 3 months prior, presenting a unique opportunity to measure the effects of fuel reduction (FR) on forest carbon and greenhouse gas (GHG) emissions from wildfires at the start of the fuel accumulation cycle. Less than 3% of total forest carbon to 30-cm soil depth was transferred to the atmosphere in FR burning; the subsequent wildfire transferred a further 6% to the atmosphere. There was a 9% loss in carbon for the FR–wildfire sequence. In nearby forest, last burnt 25 years previously, the wildfire burning transferred 16% of forest carbon to the atmosphere and was characterised by more complete combustion of all fuels and less surface charcoal deposition, compared with fuel-reduced forest. Compared to the fuel-reduced forests, release of non-CO2 GHG doubled following wildfire in long-unburnt forest. Although this is the maximum emission mitigation likely within a planned burning cycle, it suggests a significant potential for FR burns to mitigate GHG emissions in forests at high risk from wildfires.", + "Lower_Bound": "0.033", + "Upper_Bound": "0.063", + "Data_Quality": "High", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "C.P. Meyer", + "Link": "", + "creation_date": "2022-03-14T08:12:35.699Z", + "last_change_date": "2022-03-14T08:12:35.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15463, + "fields": { + "EF_ID": 522818, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for sawn wood (aggregate)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.229", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1. Calculated from the weighted average of coniferous and non-coniferous sawnwood production volumes (FAOSTAT average of the years 2006-2010) of the countries as listed in Appendix of the Annex of Decision 2/CMP.7", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:35.778Z", + "last_change_date": "2022-03-14T08:12:35.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15464, + "fields": { + "EF_ID": 522819, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for coniferous sawnwood", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.225", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:35.875Z", + "last_change_date": "2022-03-14T08:12:35.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15465, + "fields": { + "EF_ID": 522820, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for non-coniferous sawnwood", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:35.953Z", + "last_change_date": "2022-03-14T08:12:35.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15466, + "fields": { + "EF_ID": 522821, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for wood-based panels (aggregate)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.269", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1 Calculated from the weighted average of included subcategories of the production volumes (FAOSTAT average of the years 2006-2010) of the countries as listed in Appendix of the Annex of Decision 2/CMP.7", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.016Z", + "last_change_date": "2022-03-14T08:12:36.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15467, + "fields": { + "EF_ID": 522822, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for hardboard (HDF)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.335", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.082Z", + "last_change_date": "2022-03-14T08:12:36.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15468, + "fields": { + "EF_ID": 522823, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for insulating board (Other board, LDF)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.075", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.157Z", + "last_change_date": "2022-03-14T08:12:36.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15469, + "fields": { + "EF_ID": 522824, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for fibreboard compressed", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.315", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.252Z", + "last_change_date": "2022-03-14T08:12:36.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15470, + "fields": { + "EF_ID": 522825, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for medium-density fibreboard (MDF)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.295", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.328Z", + "last_change_date": "2022-03-14T08:12:36.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15471, + "fields": { + "EF_ID": 522826, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for particle board", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.269", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.399Z", + "last_change_date": "2022-03-14T08:12:36.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15472, + "fields": { + "EF_ID": 522827, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for plywood", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.267", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.474Z", + "last_change_date": "2022-03-14T08:12:36.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15473, + "fields": { + "EF_ID": 522828, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry volume) for veneer sheets", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.253", + "Unit": "Mg C/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.549Z", + "last_change_date": "2022-03-14T08:12:36.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15474, + "fields": { + "EF_ID": 522829, + "IPCC_Category": "3.D.1 - Harvested Wood Products", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 KP default", + "Description": "Carbon conversion factor (per air dry mass) for paper and paperboard (aggregate)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.386", + "Unit": "Mg C/Mg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds), Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 2.8.1 Calculated from the weighted average of included subcategories of the production volumes (FAOSTAT average of the years 2006-2010) of the countries as listed in Appendix of the Annex of Decision 2/CMP.7, including information derived from Fengel and Wegener (1984), Paulapuro (2000), Gronfors (2010) and industry information.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/kpsg/index.html", + "creation_date": "2022-03-14T08:12:36.624Z", + "last_change_date": "2022-03-14T08:12:36.624Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15475, + "fields": { + "EF_ID": 522836, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Nutrient-poor drained organic soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Forest Land, drained, including drained shrubland that may not classify as forest; broader than FAO definition of forest", + "Value": "0.37", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "-0.11", + "Upper_Bound": "0.84", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 63 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux and subsidence methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:36.722Z", + "last_change_date": "2022-03-14T08:12:36.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15476, + "fields": { + "EF_ID": 522837, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Nutrient-poor drained organic soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Forest Land, drained that complies with the FAO definition of forest", + "Value": "0.25", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "-0.23", + "Upper_Bound": "0.73", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 59 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux and subsidence methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:36.812Z", + "last_change_date": "2022-03-14T08:12:36.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15477, + "fields": { + "EF_ID": 522838, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Nutrient-rich drained organic soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "Forest Land, drained that complies with the FAO definition of forest", + "Value": "0.93", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "0.54", + "Upper_Bound": "1.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 62 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux and subsidence methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:36.874Z", + "last_change_date": "2022-03-14T08:12:36.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15478, + "fields": { + "EF_ID": 522839, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained organic soil regardless of nutrient status", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Forest Land, drained that complies with the FAO definition of forest", + "Value": "2.6", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "2", + "Upper_Bound": "3.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 8 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:36.974Z", + "last_change_date": "2022-03-14T08:12:36.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15479, + "fields": { + "EF_ID": 522840, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Cropland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained organic soil planted in various crops; nutrient status unspecified but generally rich", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.9", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "6.5", + "Upper_Bound": "9.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 39 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.053Z", + "last_change_date": "2022-03-14T08:12:37.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15480, + "fields": { + "EF_ID": 522841, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to various or unspecified depths; nutrient status unspecified", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.7", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "2.9", + "Upper_Bound": "8.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 8 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.116Z", + "last_change_date": "2022-03-14T08:12:37.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15481, + "fields": { + "EF_ID": 522842, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to various or unspecified depths; nutrient status is poor", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "3.7", + "Upper_Bound": "6.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 7 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.208Z", + "last_change_date": "2022-03-14T08:12:37.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15482, + "fields": { + "EF_ID": 522843, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to depths >30 cm; nutrient status is rich", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "5", + "Upper_Bound": "7.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 39 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.287Z", + "last_change_date": "2022-03-14T08:12:37.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15483, + "fields": { + "EF_ID": 522844, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained inland Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to depths =30 cm; nutrient status is rich", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.6", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "1.8", + "Upper_Bound": "5.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 13 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.349Z", + "last_change_date": "2022-03-14T08:12:37.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15484, + "fields": { + "EF_ID": 522845, + "IPCC_Category": "3.B.4.a.i - Peat Extraction remaining Peat Extraction", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CO2-C from decomposition of soil organic matter in drained Peatland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained peatland that is managed for peat extraction", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 2.3 of Chapter 2, 2006 IPCC Guidelines (restated as Equation 2.1 of the Wetlands Supplement); Also Equation. 2.2 and 2.3 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.11-2.15, Table 2.1", + "English_Abstract": "", + "Lower_Bound": "1.1", + "Upper_Bound": "4.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 20 sites where CO2-C emissions from decomposition of organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.452Z", + "last_change_date": "2022-03-14T08:12:37.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15485, + "fields": { + "EF_ID": 522846, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Nutrient-poor drained organic soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "2.9", + "Upper_Bound": "11", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 47 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.528Z", + "last_change_date": "2022-03-14T08:12:37.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15486, + "fields": { + "EF_ID": 522847, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Nutrient-rich drained organic soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "-1.6", + "Upper_Bound": "5.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 83 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.591Z", + "last_change_date": "2022-03-14T08:12:37.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15487, + "fields": { + "EF_ID": 522848, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained organic soil regardless of nutrient status", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "-0.6", + "Upper_Bound": "5.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 13 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.670Z", + "last_change_date": "2022-03-14T08:12:37.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15488, + "fields": { + "EF_ID": 522849, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Cropland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained organic soil planted in various crops; nutrient status unspecified but generally rich", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "-2.8", + "Upper_Bound": "2.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 38 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.770Z", + "last_change_date": "2022-03-14T08:12:37.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15489, + "fields": { + "EF_ID": 522850, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to various or unspecified depths; nutrient status unspecified", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "-1.6", + "Upper_Bound": "4.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 12 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.845Z", + "last_change_date": "2022-03-14T08:12:37.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15490, + "fields": { + "EF_ID": 522851, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to various or unspecified depths; nutrient status is poor", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "0.72", + "Upper_Bound": "2.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 9 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.912Z", + "last_change_date": "2022-03-14T08:12:37.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15491, + "fields": { + "EF_ID": 522852, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to depths >30 cm; nutrient status is rich", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "2.4", + "Upper_Bound": "29", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 44 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:37.978Z", + "last_change_date": "2022-03-14T08:12:37.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15492, + "fields": { + "EF_ID": 522853, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to depths =30 cm; nutrient status is rich", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "-2.9", + "Upper_Bound": "81", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 16 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.072Z", + "last_change_date": "2022-03-14T08:12:38.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15493, + "fields": { + "EF_ID": 522854, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4-C from drained Peatland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained peatland that is managed for peat extraction", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.25-2.27, Table 2.3", + "English_Abstract": "", + "Lower_Bound": "1.6", + "Upper_Bound": "11", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 15 sites where CH4 emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.145Z", + "last_change_date": "2022-03-14T08:12:38.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15494, + "fields": { + "EF_ID": 522855, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Nutrient-poor drained organic soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "0.15", + "Upper_Bound": "0.28", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 43 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.220Z", + "last_change_date": "2022-03-14T08:12:38.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15495, + "fields": { + "EF_ID": 522856, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Nutrient-rich drained organic soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "1.9", + "Upper_Bound": "4.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 75 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.303Z", + "last_change_date": "2022-03-14T08:12:38.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15496, + "fields": { + "EF_ID": 522857, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Forest Land", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained organic soil regardless of nutrient status", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "-0.57", + "Upper_Bound": "6.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 13 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.408Z", + "last_change_date": "2022-03-14T08:12:38.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15497, + "fields": { + "EF_ID": 522858, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Cropland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained organic soil planted in various crops; nutrient status unspecified but generally rich", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "8.2", + "Upper_Bound": "18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 36 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.495Z", + "last_change_date": "2022-03-14T08:12:38.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15498, + "fields": { + "EF_ID": 522859, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to various or unspecified depths; nutrient status unspecified", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.5", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "4.6", + "Upper_Bound": "14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 16 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.562Z", + "last_change_date": "2022-03-14T08:12:38.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15499, + "fields": { + "EF_ID": 522860, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to various or unspecified depths; nutrient status is poor", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.3", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "1.9", + "Upper_Bound": "6.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 7 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.628Z", + "last_change_date": "2022-03-14T08:12:38.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15500, + "fields": { + "EF_ID": 522861, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to depths >30 cm; nutrient status is rich", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.2", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "4.9", + "Upper_Bound": "11", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 47 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.726Z", + "last_change_date": "2022-03-14T08:12:38.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15501, + "fields": { + "EF_ID": 522862, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Grassland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Organic soil planted in various grasses and drained to depths =30 cm; nutrient status is rich", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "0.56", + "Upper_Bound": "2.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 13 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.803Z", + "last_change_date": "2022-03-14T08:12:38.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15502, + "fields": { + "EF_ID": 522863, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Direct Emission Factor for N2O-N from drained Peatland", + "Technology_Practices": "", + "Parameter_Conditions": "Soil Type: Drained peatland that is managed for peat extraction", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "kg N2O-N/ha/yr", + "Equation": "Equation 2.7 of the Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "The 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), Chapter 2, page 2.33-2.34, Table 2.5. These values replace those in the 2006 IPCC Guidelines, Vol. 4, Ch. 7, Table 7.6", + "English_Abstract": "", + "Lower_Bound": "-0.03", + "Upper_Bound": "0.64", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contributed by Richard Bourbonniere on behalf of Chapter 2 authors. This EF was developed as the mean from studies on 4 sites where N2O emissions from organic soils were determined. Measurements obtained by flux methodologies were included", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.870Z", + "last_change_date": "2022-03-14T08:12:38.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15503, + "fields": { + "EF_ID": 522864, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for off-site CO2-C emissions due to DOC loss from drained organic soils (all boreal land-use categories)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "tonne C/year", + "Equation": "Equation 2.5, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.07", + "Upper_Bound": "0.19", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF calculated as the mean measured DOC fluxes from natural peatlands in this climate zone (references given above), multiplied by an average increase in DOC concentration or flux observed (across all climate zones) in comparisons of drained and undrained sites (0.6), and an estimate of the proportion of DOC converted to CO2 (0.9). For fulll details of this calculation and associated data sources see Annex 2A.3 of the IPCC 2013 Wetland Supplement (Compiled by Chris Evans); Referenced papers are:Juutinen, S., Väliranta, M, Kuutti, V., Laine, A.M., Virtanen, T., Seppä, H., Weckström, J. and Tuittila, E.-S. (2013). Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: a catchment approach. Journal of Geophysical Research: Biogeosciences 118: 171–183; Moore, T.R. (2003). Dissolved organic carbon in a northern boreal landscape. Global Biogeochemical Cycles 17: 1109, doi: 10.1029/2003GB002050; Koprivnjak, J.-F. and Moore, T.R. 1992. Sources, sinks and fluxes of dissolved organic carbon in subarctic fen catchments. Arctic and Alpine Research 24: 204–210; Kortelainen, P., Mattsson, T., Finér, L., Ahtiainen, M., Saukkonen, S. and Sallantaus, T. (2006). Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Science 68: 453–468; Jager, D.F., Wilmking, M. and Kukkonen, J.V.K. (2009). The influence of summer seasonal extremes on dissolved organic carbon export from a boreal peatland catchment: evidence from one dry and one wet growing season. Science of the Total Environment 407: 1373–1382; Ågren, A., Jansson, M., Ivarsson, H., Bishop, K. and Seibert, J. (2008). Seasonal and runoff-related changes in total organic carbon concentrations in the River Öre, Northern Sweden. Aquatic Science 70: 21–29; Rantakari, M., Mattsson, T., Kortelainen, P., Piirainen, S., Finér, L. and Ahtiainen, M. (2010). Organic and inorganic carbon concentrations and fluxes from managed and unmanaged boreal first-order catchments. Science of the Total Environment 408: 1649–1658; Nilsson, M., Sagerfors, J., Buffam, I., Laudon, H., Eriksson, T., Grelle, A., Klemedtsson, L., Weslien, P. and Lindroth, A. (2008). Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes. Global Change Biology 14: 2317–2332. (Compiled by Chris Evans); Referenced papers are: Juutinen, S., Väliranta, M, Kuutti, V., Laine, A.M., Virtanen, T., Seppä, H., Weckström, J. and Tuittila, E.-S. (2013). Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: a catchment approach. Journal of Geophysical Research: Biogeosciences 118: 171–183; Moore, T.R. (2003). Dissolved organic carbon in a northern boreal landscape. Global Biogeochemical Cycles 17: 1109, doi: 10.1029/2003GB002050; Koprivnjak, J.-F. and Moore, T.R. 1992. Sources, sinks and fluxes of dissolved organic carbon in subarctic fen catchments. Arctic and Alpine Research 24: 204–210; Kortelainen, P., Mattsson, T., Finér, L., Ahtiainen, M., Saukkonen, S. and Sallantaus, T. (2006). Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Science 68: 453–468; Jager, D.F., Wilmking, M. and Kukkonen, J.V.K. (2009). The influence of summer seasonal extremes on dissolved organic carbon export from a boreal peatland catchment: evidence from one dry and one wet growing season. Science of the Total Environment 407: 1373–1382; Ågren, A., Jansson, M., Ivarsson, H., Bishop, K. and Seibert, J. (2008). Seasonal and runoff-related changes in total organic carbon concentrations in the River Öre, Northern Sweden. Aquatic Science 70: 21–29; Rantakari, M., Mattsson, T., Kortelainen, P., Piirainen, S., Finér, L. and Ahtiainen, M. (2010). Organic and inorganic carbon concentrations and fluxes from managed and unmanaged boreal first-order catchments. Science of the Total Environment 408: 1649–1658; Nilsson, M., Sagerfors, J., Buffam, I., Laudon, H., Eriksson, T., Grelle, A., Klemedtsson, L., Weslien, P. and Lindroth, A. (2008). Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C-fluxes. Global Change Biology 14: 2317–2332.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:38.936Z", + "last_change_date": "2022-03-14T08:12:38.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15504, + "fields": { + "EF_ID": 522865, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for off-site CO2-C emissions due to DOC loss from drained organic soils (all temperate land-use categories)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "tonne C/year", + "Equation": "Equation 2.5, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.19", + "Upper_Bound": "0.46", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF calculated as the mean measured DOC fluxes from natural peatlands in this climate zone (references given above), multiplied by an average increase in DOC concentration or flux observed (across all climate zones) in comparisons of drained and undrained sites (0.6), and an estimate of the proportion of DOC converted to CO2 (0.9). For fulll details of this calculation and associated data sources see Annex 2A.3 of the IPCC 2013 Wetland Supplement (Compiled by Chris Evans); Referenced papers are:Strack, M., Waddington, J.M., Bourbonniere, R.A., Buckton, L., Shaw, K. Whittington, P. and Price, J.S. (2008). Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes 22: 3373–3385; Roulet, N.T., LaFleur, P.M., Richards, P.J., Moore, T.R., Humphreys, E.R. and Bubier, J. (2007). Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13: 397–411; Urban, N.R., Bayley, S.E. and Eisenreich, S.J. (1989). Export of dissolved organic carbon and acidity from peatlands. Water Resources Research 25: 1619–1628; Kolka, R.K., Grigal, D.F., Verry, E.S. and Nater, E.A. (1999). Mercury and organic carbon relationships in streams draining forested upland peatland watersheds. Journal of Environmental Quality 28: 766–775; Clair, T.A., Arp, P., Moore, T.R., Dalvac, M. and Meng, F.-R. (2002). Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Environmental Pollution 116: S143–S148.; Dawson, J.J.C., Billett, M.F., Hope, D., Palmer, S.M. and Deacon, C.M. (2004). Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry 70: 71–92; Dinsmore, K.J., Billett, M.F., Skiba, U.M., Rees, R.M., Drewer, J. and Helfter, C. (2010). Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biology 16: 2750–2762; Billett M.F., Charman, D.J., Clark, J.M., Evans, C.D., Evans, M.G., Ostle, N.J., Worrall, F., Burden, A., Dinsmore, K.J., Jones, T., McNamara, N.P., Parry, L., Rowson, J.G. and Rose, R. (2010). Carbon balance of UK peatlands: current state of knowledge and future research challenges. Climate Research 45: 13–29; Koehler, A.-K., Murphy, K., Kiely, G. and Sottocornola, M. (2009). Seasonal variation of DOC concentration and annual loss of DOC from an Atlantic blanket bog in South Western Ireland. Biogeochemistry 95: 231–242; Koehler, A.-K., Sottocornola, M. and Kiely, G. (2011). How strong is the current carbon sequestration of an Atlantic blanket bog? Global Change Biology 17: 309–319; di Folco, M.-B. and Kirkpatrick, J.B. (2011). Topographic variation in burning-induced loss of carbon from organic soils in Tasmanian moorlands. Catena 87: 216–255. (Compiled by Chris Evans); Referenced papers are: Strack, M., Waddington, J.M., Bourbonniere, R.A., Buckton, L., Shaw, K. Whittington, P. and Price, J.S. (2008). Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes 22: 3373–3385; Roulet, N.T., LaFleur, P.M., Richards, P.J., Moore, T.R., Humphreys, E.R. and Bubier, J. (2007). Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biology 13: 397–411; Urban, N.R., Bayley, S.E. and Eisenreich, S.J. (1989). Export of dissolved organic carbon and acidity from peatlands. Water Resources Research 25: 1619–1628; Kolka, R.K., Grigal, D.F., Verry, E.S. and Nater, E.A. (1999). Mercury and organic carbon relationships in streams draining forested upland peatland watersheds. Journal of Environmental Quality 28: 766–775; Clair, T.A., Arp, P., Moore, T.R., Dalvac, M. and Meng, F.-R. (2002). Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Environmental Pollution 116: S143–S148.; Dawson, J.J.C., Billett, M.F., Hope, D., Palmer, S.M. and Deacon, C.M. (2004). Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry 70: 71–92; Dinsmore, K.J., Billett, M.F., Skiba, U.M., Rees, R.M., Drewer, J. and Helfter, C. (2010). Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Global Change Biology 16: 2750–2762; Billett M.F., Charman, D.J., Clark, J.M., Evans, C.D., Evans, M.G., Ostle, N.J., Worrall, F., Burden, A., Dinsmore, K.J., Jones, T., McNamara, N.P., Parry, L., Rowson, J.G. and Rose, R. (2010). Carbon balance of UK peatlands: current state of knowledge and future research challenges. Climate Research 45: 13–29; Koehler, A.-K., Murphy, K., Kiely, G. and Sottocornola, M. (2009). Seasonal variation of DOC concentration and annual loss of DOC from an Atlantic blanket bog in South Western Ireland. Biogeochemistry 95: 231–242; Koehler, A.-K., Sottocornola, M. and Kiely, G. (2011). How strong is the current carbon sequestration of an Atlantic blanket bog? Global Change Biology 17: 309–319; di Folco, M.-B. and Kirkpatrick, J.B. (2011). Topographic variation in burning-induced loss of carbon from organic soils in Tasmanian moorlands. Catena 87: 216–255.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.136Z", + "last_change_date": "2022-03-14T08:12:39.136Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15505, + "fields": { + "EF_ID": 522866, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for off-site CO2-C emissions due to DOC loss from drained organic soils (all tropical land-use categories)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.82", + "Unit": "tonne C/year", + "Equation": "Equation 2.5, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.56", + "Upper_Bound": "1.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF calculated as the mean measured DOC fluxes from natural peatlands in this climate zone (references given above), multiplied by an average increase in DOC concentration or flux observed (across all climate zones) in comparisons of drained and undrained sites (0.6), and an estimate of the proportion of DOC converted to CO2 (0.9). For fulll details of this calculation and associated data sources see Annex 2A.3 of the IPCC 2013 Wetland Supplement (Compiled by Chris Evans); Referenced papers are:Baum, A., Rixen, T. and Samiaji, J. (2007). Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuarine, Coastal and Shelf Science 73: 563–580; Alkhatib, M., Jennerjahn, T.C. and Samiaji, J. (2007). Biogeochemistry of the Dumai River estuary, Sumatra, Indonesia, a tropical blackwater river. Limnology and Oceanography 52: 2410–241; Yule, C.M. and Gomez, L.N. (2009). Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetlands Ecology and Management 17: 231–241; Zulkifli, Y. (2002). Hydrological attributes of a disturbed peat swamp forest, in: Parish, F., Padmanabhan, E., Lee, C.L. and Thang, H.C. (eds) Prevention and control of fire in peatlands, Proceedings of Workshop on Prevention and Control of Fire in Peatlands, Kuala Lumpur, 19–21 March, pp. 51–55. Global Environment Centre and Forestry Department Peninsular Malaysia, Cetaktama, Kuala Lumpur; Moore, S., Evans, C.D., Page, S.E., Garnett, M.G., Jones, T.G., Freeman, C., Hooijer A., Wiltshire, A., Limin, S. and Gauci, V. (2013). Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493: 660–664. (Compiled by Chris Evans); Referenced papers are: Baum, A., Rixen, T. and Samiaji, J. (2007). Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuarine, Coastal and Shelf Science 73: 563–580; Alkhatib, M., Jennerjahn, T.C. and Samiaji, J. (2007). Biogeochemistry of the Dumai River estuary, Sumatra, Indonesia, a tropical blackwater river. Limnology and Oceanography 52: 2410–241; Yule, C.M. and Gomez, L.N. (2009). Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetlands Ecology and Management 17: 231–241; Zulkifli, Y. (2002). Hydrological attributes of a disturbed peat swamp forest, in: Parish, F., Padmanabhan, E., Lee, C.L. and Thang, H.C. (eds) Prevention and control of fire in peatlands, Proceedings of Workshop on Prevention and Control of Fire in Peatlands, Kuala Lumpur, 19–21 March, pp. 51–55. Global Environment Centre and Forestry Department Peninsular Malaysia, Cetaktama, Kuala Lumpur; Moore, S., Evans, C.D., Page, S.E., Garnett, M.G., Jones, T.G., Freeman, C., Hooijer A., Wiltshire, A., Limin, S. and Gauci, V. (2013). Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493: 660–664.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.236Z", + "last_change_date": "2022-03-14T08:12:39.237Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15506, + "fields": { + "EF_ID": 522867, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Multiplier for the effects of drainage on DOC fluxes from organic soils, used in the calculation of off-site CO2 emissions from waterborne DOC loss.", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "All", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "", + "Equation": "Equation 2.5, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.43", + "Upper_Bound": "0.78", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean increase in DOC concentration or flux reported in published comparisons of drained and undrained organic soils, delta DOCdrainage. Due to a limited number of published studies, a single value of this parameter was derived for all climate zones and all forms of drainage. (Compiled by Chris Evans); Referenced papers are:Glatzel, S., Kalbitz, K., Dalva, M. and Moore, T. (2003). Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma 113: 397–411; Strack, M., Waddington, J.M., Bourbonniere, R.A., Buckton, L., Shaw, K. Whittington, P. and Price, J.S. (2008). Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes 22: 3373–3385; Kane, E.S., Turetsky, M.R., Harden, J.W., McGuire, A.D. and Waddington, J.M. (2010) Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen. Journal of Geophysical Research 115: G04012, doi:10.1029/2010JG001366.; Heikkinen, K. (1990). Transport of organic and inorganic matter in river, brook and peat mining water in the drainage basin of the River Kiiminkijoki. Aqua Fennica 20: 143–155; Banas, K. and Gos, K. (2004). Effect of peat-bog reclamation on the physico-chemical characteristics of ground water in peat. Polish Journal of Ecology 52: 69–74; Moore, T.R. and Clarkson, B.R. (2007). Dissolved organic carbon in New Zealand peatlands. New Zealand Journal of Marine and Freshwater Research 41: 137–141; Urbanová, Z., Picek, T. and Bárta, J. (2011). Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecological Engineering 37: 1017–1026; Wallage, Z.E., Holden, J. and McDonald, A.T. (2006). Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Science of the Total Environment 367: 811–821; Inubushi, K., Hadi, A., Okazaki, M. and Yonebayashi, K. (1998). Effect of converting wetland forest to sago palm plantations on methane gas flux and organic carbon dynamics in tropical peat soil. Hydrological Processes 12: 2073–2080; Moore, S., Evans, C.D., Page, S.E., Garnett, M.G., Jones, T.G., Freeman, C., Hooijer A., Wiltshire, A., Limin, S. and Gauci, V. (2013). Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493: 660–664. (Compiled by Chris Evans); Referenced papers are: Glatzel, S., Kalbitz, K., Dalva, M. and Moore, T. (2003). Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs. Geoderma 113: 397–411; Strack, M., Waddington, J.M., Bourbonniere, R.A., Buckton, L., Shaw, K. Whittington, P. and Price, J.S. (2008). Effect of water table drawdown on peatland dissolved organic carbon export and dynamics. Hydrological Processes 22: 3373–3385; Kane, E.S., Turetsky, M.R., Harden, J.W., McGuire, A.D. and Waddington, J.M. (2010) Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen. Journal of Geophysical Research 115: G04012, doi:10.1029/2010JG001366.; Heikkinen, K. (1990). Transport of organic and inorganic matter in river, brook and peat mining water in the drainage basin of the River Kiiminkijoki. Aqua Fennica 20: 143–155; Banas, K. and Gos, K. (2004). Effect of peat-bog reclamation on the physico-chemical characteristics of ground water in peat. Polish Journal of Ecology 52: 69–74; Moore, T.R. and Clarkson, B.R. (2007). Dissolved organic carbon in New Zealand peatlands. New Zealand Journal of Marine and Freshwater Research 41: 137–141; Urbanová, Z., Picek, T. and Bárta, J. (2011). Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecological Engineering 37: 1017–1026; Wallage, Z.E., Holden, J. and McDonald, A.T. (2006). Drain blocking: an effective treatment for reducing dissolved organic carbon loss and water discolouration in a drained peatland. Science of the Total Environment 367: 811–821; Inubushi, K., Hadi, A., Okazaki, M. and Yonebayashi, K. (1998). Effect of converting wetland forest to sago palm plantations on methane gas flux and organic carbon dynamics in tropical peat soil. Hydrological Processes 12: 2073–2080; Moore, S., Evans, C.D., Page, S.E., Garnett, M.G., Jones, T.G., Freeman, C., Hooijer A., Wiltshire, A., Limin, S. and Gauci, V. (2013). Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493: 660–664.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.337Z", + "last_change_date": "2022-03-14T08:12:39.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15507, + "fields": { + "EF_ID": 522868, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from drainage ditches in drained organic soils (organic soils managed for forestry, and drained wetlands not subject to other land-use modification)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "217", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "41", + "Upper_Bound": "393", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value has been developed as the mean of published measurements of ditch methane emissions from drained forest lands and wetlands that have been drained but not subject to other land-use modifications. Separate measurement sites included in published studies have been treated as separate data points. (Compiled by Chris Evans); Referenced papers are: Cooper, M. and, Evans, C. (2013). CH4 emissions from ditches in a drained upland blanket bog, North Wales, UK, in: Emissions of greenhouse gases associated with peatland drainage waters: Report to Defra under project SP1205: Greenhouse Gas Emissions Associated with Non Gaseous Losses of Carbon from Peatlands – Fate of Particulate and Dissolved Carbon. Report to the Department of Environment, Food and Rural Affairs, UK; Glagolev, M.V., Chistotin, M.V., Shnyrev, N.A. and, Sirin, A.A. (2008). The emission of carbon dioxide and methane from drained peatlands changed by economic use and from natural mires during the summer-fall period (on example of a region of Tomsk oblast). Agrokhimija 5: 46–58; Minkkinen, K. and& Laine, J. (2006). Vegetation heterogeneity and ditches create spatial variability in methane fluxes from peatlands drained for forestry. Plant and Soil 285: 289–304; Roulet, N.T. and Moore, T.R. (1995). The effect of forestry drainage practices on the emission of methane from northern peatlands. Canadian Journal of Forest Research 25: 491-–499; Sirin, A.A., Suvurov, G.G., Chistotin, M.V. and Glagolev, M.V. (2012). Values of methane emission from drainage ditches. Environmental Dynamics and Climate Change 3: 1-10; von Arnold, K., Weslien, P., Nilsson, M., Svensson, B. H. and Klemedtsson, L. (2005b). Fluxes of CO2, CH4 and N2O from drained coniferous forests on organic soils., Forest Ecology. Manage.ement, 210:, 239–254. Laine, J., J. Silvola, K. Tolonen, J. Alm, H. Nykanen, H. Vasander, T. Sallantaus, I. Savolainen, J. Sinisalo, and P. J. Martikainen. (1996). Effect of waterlevel drawdown on global climatic warming - northern peatlands. Ambio 25:179-184.; Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine.( 2002). Carbon balance and radiative forcing of Finnish peatlands 1900-2100 the impact of forestry drainage. Global Change Biology 8:785-799.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.438Z", + "last_change_date": "2022-03-14T08:12:39.438Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15508, + "fields": { + "EF_ID": 522869, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from drainage ditches in drained organic soils (organic soils managed for grassland subject to shallow drainage)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "527", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "285", + "Upper_Bound": "769", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value has been developed as the mean of published measurements of ditch methane emissions from drained grasslands subject to shallow drainage (e.g. conservation-managed wet meadows). All data come from the Netherlands and United Kingdom. (Compiled by Chris Evans); Referenced papers are: Best, E.P.H. and Jacobs, F.H.H. (1997). The influence of raised water table levels on carbon dioxide and methane production in ditch dissected peat Grasslands in the Netherlands. Ecological. Engineering. 8: 129–144; Hendriks, D.M.D., Van Huissteden, J., Dolman, A.J. and Van der Molen, M.K. (2007). The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4: 411–424; McNamara, N. (2013). CH4 emissions from ditches in a drained lowland peat Grassland, Somerset, UK, in: Emissions of greenhouse gases associated with peatland drainage waters: Report to Defra under project SP1205: Greenhouse Gas Emissions Associated with Non Gaseous Losses of Carbon from Peatlands – Fate of Particulate and Dissolved Carbon. Report to the Department of Environment, Food and Rural Affairs, UK; van den Pol-van Dasselaar, A., van Beusichem, M.L. and Oenema, O. (1999a). Methane emissions from wet Grasslands on peat soil in a nature preserve. Biogeochemistry 44: 205–220; Vermaat, J.E., Hellmann, F., Dias, A.T.C., Hoorens, B., van Logtestijn, R.S.P. and Aerts, R. (2011). Greenhouse gas fluxes from Dutch peatland water bodies: importance of the surrounding landscape. Wetlands 31: 493–498.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.538Z", + "last_change_date": "2022-03-14T08:12:39.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15509, + "fields": { + "EF_ID": 522870, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from drainage ditches in drained organic soils (organic soils managed for grassland subject to deep drainage, and cropland)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1165", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "335", + "Upper_Bound": "1995", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value has been developed as the mean of published measurements of ditch methane emissions from drained grasslands subject to deep drainage (e.g. high-intensity annual grassland). In the absence of published data from drainage ditches from areas of cropland, emissions from cropland are assumed to be equivalent to those from deep-drained grassland. (Compiled by Chris Evans); Referenced papers are: Best, E.P.H. and Jacobs, F.H.H. (1997). The influence of raised water table levels on carbon dioxide and methane production in ditch dissected peat Grasslands in the Netherlands. Ecological. Engineering. 8: 129–144; Chistotin, M.V., Sirin, A.A. and Dulov, L.E. (2006). Seasonal dynamics of carbon dioxide and methane emission from a peatland in Moscow Region drained for peat extraction and agricultural use. Agrokhimija 6: 54–62; Schrier-Uijl, A.P., Kroon, P.S., Leffelaar, P.A., van Huissteden, J.C., Berendse, F. and Veenendaal, E.M. (2010b). Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity. Plant and Soil 329: 509–520; Sirin, A.A., Suvurov, G.G., Chistotin, M.V. and Glagolev, M.V. (2012). Values of methane emission from drainage ditches. Environmental Dynamics and Climate Change 3: 1-10; Teh, Y.A., Silver, W.L., Sonnentag, O., Detto, M., Kelly, M. and Baldocchi, D.D. (2011). Large greenhouse gas emissions from a temperate peatland pasture. Ecosystems 14: 311–325; Vermaat, J.E., Hellmann, F., Dias, A.T.C., Hoorens, B., van Logtestijn, R.S.P. and Aerts, R. (2011). Greenhouse gas fluxes from Dutch peatland water bodies: importance of the surrounding landscape. Wetlands 31: 493–498.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.639Z", + "last_change_date": "2022-03-14T08:12:39.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15510, + "fields": { + "EF_ID": 522871, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from drainage ditches in drained organic soils (organic soils drained for peat extraction)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "Boreal and Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "542", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "102", + "Upper_Bound": "981", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value has been developed as the mean of published measurements of ditch methane emissions from organic soils drained for peat extraction. Data sources include both active extraction sites and inactive (but not re-wetted) extracttion sites. (Compiled by Chris Evans); Referenced papers are: Chistotin, M.V., Sirin, A.A. and Dulov, L.E. (2006). Seasonal dynamics of carbon dioxide and methane emission from a peatland in Moscow Region drained for peat extraction and agricultural use. Agrokhimija 6: 54–62; Hyvönen, N.P., Huttunen, J.T., Shurpali, N.J., Lind, S.E., Marushchak, M.E., Heitto, L. and Martikainen, P.J. (2013). The role of drainage ditches in greenhouse gas emissions and surface leaching losses from a cutaway peatland cultivated with a perennial bioenergy crop. Boreal Environment Research 18: 109–126; Nykänen, H., Silvola, J., Alm, J. and Martikainen, P.J. (1996). Fluxes of greenhouse gases CH4, CO2 and N2O on some peat mining areas in Finland, in: Laiho, R., Laine, J. and Vasander, H. (eds) Northern peatlands in global climatic change, Proceedings of the International Workshop, Hyytiälä, Finland, 1/96: 141–147. Academy of Finland, Helsinki; Sirin, A.A., Suvurov, G.G., Chistotin, M.V. and Glagolev, M.V. (2012). Values of methane emission from drainage ditches. Environmental Dynamics and Climate Change 3: 1-10; Sundh, I., Nilsson, M., Mikkelä, C., Granberg, G. and Svensson, B.H. (2000). Fluxes of methane and carbon dioxide on peat-mining areas in Sweden. Ambio 29: 499–503; Waddington, J.M. and Day, S.M. (2007). Methane emissions from a peatland following restoration. Journal of Geophysical Research 112: G3, doi: 10.1029/2007JG000400.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.740Z", + "last_change_date": "2022-03-14T08:12:39.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15511, + "fields": { + "EF_ID": 522872, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from drainage ditches in drained tropical organic soils (all land-use categories)", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic Soil", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2259", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 2.6, IPCC 2013 Wetland Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "599", + "Upper_Bound": "3919", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value has been calculated as the mean of two published measurements from sites in Southeast Asia (one pulpwood plantation and one drained and abandoned site), and thus has a high uncertainty. Upper and lower confidence intervals represent the range of reported values rather than 95% confidence intervals. (Compiled by Chris Evans); Referenced papers are: Jauhiainen, J. and Silvennoinen, H. (2012). Diffusion GHG fluxes at tropical peatland drainage canal water surfaces. Suo 63: 93–105.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.850Z", + "last_change_date": "2022-03-14T08:12:39.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15512, + "fields": { + "EF_ID": 522873, + "IPCC_Category": "3.C.10 - CH4 from Rewetting of Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CH4 from boreal rewetted organic soils (Nutrient status is poor).", + "Technology_Practices": "", + "Parameter_Conditions": "Nutrient status is poor", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "kg CH4--C /ha/yr", + "Equation": "Equation 3.8 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 2 of 2: CH4-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.3)", + "English_Abstract": "", + "Lower_Bound": "0.5", + "Upper_Bound": "246", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.3, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:39.936Z", + "last_change_date": "2022-03-14T08:12:39.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15513, + "fields": { + "EF_ID": 522874, + "IPCC_Category": "3.C.10 - CH4 from Rewetting of Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CH4 rom boreal rewetted organic soils (Nutrient status is rich).", + "Technology_Practices": "", + "Parameter_Conditions": "Nutrient status is rich", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "137", + "Unit": "kg CH4--C /ha/yr", + "Equation": "Equation 3.8 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 2 of 2: CH4-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.3)", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "493", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.3, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.034Z", + "last_change_date": "2022-03-14T08:12:40.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15514, + "fields": { + "EF_ID": 522875, + "IPCC_Category": "3.C.10 - CH4 from Rewetting of Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CH4 from temperate rewetted organic soils (Nutrient status is poor)", + "Technology_Practices": "", + "Parameter_Conditions": "Nutrient status is poor", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92", + "Unit": "kg CH4--C /ha/yr", + "Equation": "Equation 3.8 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 2 of 2: CH4-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.3)", + "English_Abstract": "", + "Lower_Bound": "3", + "Upper_Bound": "445", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.3, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.112Z", + "last_change_date": "2022-03-14T08:12:40.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15515, + "fields": { + "EF_ID": 522876, + "IPCC_Category": "3.C.10 - CH4 from Rewetting of Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CH4 from temperate rewetted organic soils (Nutrient status is rich)", + "Technology_Practices": "", + "Parameter_Conditions": "Nutrient status is rich", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "216", + "Unit": "kg CH4--C /ha/yr", + "Equation": "Equation 3.8 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 2 of 2: CH4-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.3)", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "856", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.3, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.178Z", + "last_change_date": "2022-03-14T08:12:40.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15516, + "fields": { + "EF_ID": 522877, + "IPCC_Category": "3.C.10 - CH4 from Rewetting of Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CH4 from tropical rewetted organic soils.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "kg CH4--C /ha/yr", + "Equation": "Equation 3.8 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 2 of 2: CH4-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.3)", + "English_Abstract": "", + "Lower_Bound": "7", + "Upper_Bound": "134", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.3, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.270Z", + "last_change_date": "2022-03-14T08:12:40.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15517, + "fields": { + "EF_ID": 522878, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CO2 from boreal rewetted organic soils (Nutrient status is poor).", + "Technology_Practices": "", + "Parameter_Conditions": "Nutrient status is poor", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-0.34", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 3.4 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 1 of 2: CO2-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.1)", + "English_Abstract": "", + "Lower_Bound": "-0.59", + "Upper_Bound": "-0.09", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.1, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.361Z", + "last_change_date": "2022-03-14T08:12:40.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15518, + "fields": { + "EF_ID": 522879, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CO2 from boreal rewetted organic soils (Nutrient status is rich).", + "Technology_Practices": "", + "Parameter_Conditions": "Nutrient status is rich", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-0.55", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 3.4 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 1 of 2: CO2-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.1)", + "English_Abstract": "", + "Lower_Bound": "-0.77", + "Upper_Bound": "-0.34", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.1, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.420Z", + "last_change_date": "2022-03-14T08:12:40.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15519, + "fields": { + "EF_ID": 522880, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CO2 from temperate rewetted organic soils (Nutrient status is poor)", + "Technology_Practices": "", + "Parameter_Conditions": "Nutrient status is poor", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-0.23", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 3.4 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 1 of 2: CO2-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.1)", + "English_Abstract": "", + "Lower_Bound": "-0.64", + "Upper_Bound": "0.18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.1, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.478Z", + "last_change_date": "2022-03-14T08:12:40.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15520, + "fields": { + "EF_ID": 522881, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CO2 from temperate rewetted organic soils (Nutrient status is rich)", + "Technology_Practices": "", + "Parameter_Conditions": "Nutrient status is rich", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 3.4 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 1 of 2: CO2-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.1)", + "English_Abstract": "", + "Lower_Bound": "-0.71", + "Upper_Bound": "1.71", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.1, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.545Z", + "last_change_date": "2022-03-14T08:12:40.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15521, + "fields": { + "EF_ID": 522882, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for CO2 from tropical rewetted organic soils.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 3.4 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 1 of 2: CO2-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.1)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.1, Chapter 3. For tropical rewetted organic soils only where decayed organic material is not oxidised due to saturated conditions. Please see Annex 3A.1 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.646Z", + "last_change_date": "2022-03-14T08:12:40.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15522, + "fields": { + "EF_ID": 522883, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for Dissolved Organic Carbon from rewetted organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 3.5 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 1 of 2: CO2-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.2)", + "English_Abstract": "", + "Lower_Bound": "0.05", + "Upper_Bound": "0.11", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.2, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.720Z", + "last_change_date": "2022-03-14T08:12:40.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15523, + "fields": { + "EF_ID": 522884, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for Dissolved Organic Carbon from rewetted organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 3.5 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 1 of 2: CO2-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.2)", + "English_Abstract": "", + "Lower_Bound": "0.14", + "Upper_Bound": "0.36", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.2, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.787Z", + "last_change_date": "2022-03-14T08:12:40.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15524, + "fields": { + "EF_ID": 522885, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default emission factor for Dissolved Organic Carbon from rewetted organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "tonnes CO2-C/ha/yr", + "Equation": "Equation 3.5 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Chapter 3-Rewetted Organic Soils, Sheet 1 of 2: CO2-C in Annex 7A.1, Chapter 7 of 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.2)", + "English_Abstract": "", + "Lower_Bound": "0.4", + "Upper_Bound": "0.64", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.2, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.881Z", + "last_change_date": "2022-03-14T08:12:40.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15525, + "fields": { + "EF_ID": 522886, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default net flux of Dissolved Organic Carbon from natural (undrained) and rewetted organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.6 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.2)", + "English_Abstract": "", + "Lower_Bound": "0.06", + "Upper_Bound": "0.11", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.2, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:40.953Z", + "last_change_date": "2022-03-14T08:12:40.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15526, + "fields": { + "EF_ID": 522887, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default net flux of Dissolved Organic Carbon from natural (undrained) and rewetted organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.6 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.2)", + "English_Abstract": "", + "Lower_Bound": "0.17", + "Upper_Bound": "0.36", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.2, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.020Z", + "last_change_date": "2022-03-14T08:12:41.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15527, + "fields": { + "EF_ID": 522888, + "IPCC_Category": "3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default net flux of Dissolved Organic Carbon from natural (undrained) and rewetted organic soils", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.6 in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland. (Chapter 3, Annex 3A.2)", + "English_Abstract": "", + "Lower_Bound": "0.49", + "Upper_Bound": "0.64", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 3.2, Chapter 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.087Z", + "last_change_date": "2022-03-14T08:12:41.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15528, + "fields": { + "EF_ID": 522889, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from managed lands with Inland Wetland Mineral Soils where water table level has been raised, for example as in rewetting or in wetland creation, or from unmanaged natural wetlands stratitifed by period of inundation", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Inland Wetland Mineral Soil", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Continuous inundation over an annual time period", + "Value": "572", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 5.1 on Page 5.17 of Chapter 5 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Sheet 1 of 1 of category Annual CH4 emissions from restored and created wetlands on managed lands with IWMS, p 7.49, Chapter 7, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "447", + "Upper_Bound": "697", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5A.2.3, Chapter 5. This value has been developed as the mean from a review of published studies that measured CH4 emission from natural and created wetlands. These are not IPCC default EF values. Nahlik, A. M. & Mitsch, W. J. (2010) Methane Emissions From Created Riverine Wetlands. Wetlands 30(4): 783-793.; Altor, A. E. & Mitsch, W. J. (2008) Methane and carbon dioxide dynamics in wetland mesocosms: Effects of hydrology and soils. Ecological Applications 18(5): 1307-1320.; Kim, J., Verma, S. B. & Billesbach, D. P. (1999) Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology 5(4): 433-440.; Ding, W. X. & Cai, Z. C. (2007) Methane emission from natural wetlands in China: Summary of years 1995-2004 studies. Pedosphere 17(4): 475-486.; Song, C. C., Yan, B. X., Wang, Y. S., Wang, Y. Y., Lou, Y. J. & Zhao, Z. C. (2003) Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chinese Science Bulletin 48(24): 2749-2753.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.200Z", + "last_change_date": "2022-03-14T08:12:41.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15529, + "fields": { + "EF_ID": 522890, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from managed lands with Inland Wetland Mineral Soils where water table level has been raised, for example as in rewetting or in wetland creation, or from unmanaged natural wetlands stratitifed by period of inundation", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Inland Wetland Mineral Soil", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "Intermittent inundation over an annual time period", + "Value": "126", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 5.1 on Page 5.17 of Chapter 5 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Sheet 1 of 1 of category Annual CH4 emissions from restored and created wetlands on managed lands with IWMS, p 7.49, Chapter 7, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "51", + "Upper_Bound": "201", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5A.2.3, Chapter 5. This value has been developed as the mean from a review of published studies that measured CH4 emission from natural and created wetlands. These are not IPCC default EF values. Song, C. C., Yan, B. X., Wang, Y. S., Wang, Y. Y., Lou, Y. J. & Zhao, Z. C. (2003) Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chinese Science Bulletin 48(24): 2749-2753.; Pulliam, W. M. (1993) Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs 63(1): 29-53.; Huang, Y., Sun, W., Zhang, W., Yu, Y., Su, Y. & Song, C. (2010) Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology 16(2): 680-695.; Song, C., Xu, X., Tian, H. & Wang, Y. (2009) Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology 15(3): 692-705.; Bartlett, K. B. & Harriss, R. C. (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26(1-4): 261-320.; Badiou, P., McDougal, R., Pennock, D. & Clark, B. (2011) Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management 19(3): 237-256.; Pennock, D., Yates, T., Bedard-Haughn, A., Phipps, K., Farrell, R. & McDougal, R. (2010) Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian Prairie Pothole region. Geoderma 155(3-4): 308-319.; Gleason, R. A., Tangen, B. A., Browne, B. A. & Euliss, N. H., Jr. (2009) Greenhouse gas flux from cropland and restored wetlands in the Prairie Pothole Region. Soil Biology & Biochemistry 41(12): 2501-2507.; Morse, J. L., Ardon, M. & Bernhardt, E. S. (2012) Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecological Applications 22(1): 264-280.; Herbst, M., Friborg, T., Ringgaard, R. & Soegaard, H. (2011) Interpreting the variations in atmospheric methane fluxes observed above a restored wetland. Agricultural and Forest Meteorology 151(7): 841-853.;Yang, L., Lu, F., Wang, X. K., Duan, X. N., Song, W. Z., Sun, B. F., Chen, S., Zhang, Q. Q., Hou, P. Q., Zheng, F. X., Zhang, Y., Zhou, X. P., Zhou, Y. J. & Ouyang, Z. Y. (2012) Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir. Journal of Geophysical Research-Atmospheres 117, D10109, doi:10.1029/2011JD017362.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.278Z", + "last_change_date": "2022-03-14T08:12:41.278Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15530, + "fields": { + "EF_ID": 522891, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from managed lands with Inland Wetland Mineral Soils where water table level has been raised, for example as in rewetting or in wetland creation", + "Technology_Practices": "Raising of water table or wetland creation", + "Parameter_Conditions": "Soil type: Inland Wetland Mineral Soil", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 5.1 on Page 5.17 of Chapter 5 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Sheet 1 of 1 of category Annual CH4 emissions from restored and created wetlands on managed lands with IWMS, p 7.49, Chapter 7, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "152", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5.4, Chapter 5. This value is published in Bridgham and others (2006) as the mean CH4 emission from a review of numerous published studies, which are listed within the Bridgham and others (2006). Bridgham, S., Megonigal, J., Keller, J., Bliss, N., and Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands 26(4): 889-916.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.384Z", + "last_change_date": "2022-03-14T08:12:41.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15531, + "fields": { + "EF_ID": 522892, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from managed lands with Inland Wetland Mineral Soils where water table level has been raised, for example as in rewetting or in wetland creation", + "Technology_Practices": "Raising of water table or wetland creation", + "Parameter_Conditions": "Soil type: Inland Wetland Mineral Soil", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "235", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 5.1 on Page 5.17 of Chapter 5 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Sheet 1 of 1 of category Annual CH4 emissions from restored and created wetlands on managed lands with IWMS, p 7.49, Chapter 7, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "127", + "Upper_Bound": "343", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5.4, Chapter 5. This value has been developed as the mean from a review of published studies that measured CH4 emission from natural and created wetlands. Badiou, P., McDougal, R., Pennock, D. & Clark, B. (2011) Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management 19(3): 237-256.; Pennock, D., Yates, T., Bedard-Haughn, A., Phipps, K., Farrell, R. & McDougal, R. (2010) Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian Prairie Pothole region. Geoderma 155(3-4): 308-319.; Gleason, R. A., Tangen, B. A., Browne, B. A. & Euliss, N. H., Jr. (2009) Greenhouse gas flux from cropland and restored wetlands in the Prairie Pothole Region. Soil Biology & Biochemistry 41(12): 2501-2507.; Morse, J. L., Ardon, M. & Bernhardt, E. S. (2012) Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecological Applications 22(1): 264-280.; Herbst, M., Friborg, T., Ringgaard, R. & Soegaard, H. (2011) Interpreting the variations in atmospheric methane fluxes observed above a restored wetland. Agricultural and Forest Meteorology 151(7): 841-853.;Yang, L., Lu, F., Wang, X. K., Duan, X. N., Song, W. Z., Sun, B. F., Chen, S., Zhang, Q. Q., Hou, P. Q., Zheng, F. X., Zhang, Y., Zhou, X. P., Zhou, Y. J. & Ouyang, Z. Y. (2012) Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir. Journal of Geophysical Research-Atmospheres 117, D10109, doi:10.1029/2011JD017362.; Nahlik, A. M. & Mitsch, W. J. (2010) Methane Emissions From Created Riverine Wetlands. Wetlands 30(4): 783-793.; Altor, A. E. & Mitsch, W. J. (2008) Methane and carbon dioxide dynamics in wetland mesocosms: Effects of hydrology and soils. Ecological Applications 18(5): 1307-1320.; Kim, J., Verma, S. B. & Billesbach, D. P. (1999) Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology 5(4): 433-440.; Ding, W. X. & Cai, Z. C. (2007) Methane emission from natural wetlands in China: Summary of years 1995-2004 studies. Pedosphere 17(4): 475-486.; Song, C. C., Yan, B. X., Wang, Y. S., Wang, Y. Y., Lou, Y. J. & Zhao, Z. C. (2003) Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chinese Science Bulletin 48(24): 2749-2753.; Pulliam, W. M. (1993) Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs 63(1): 29-53.; Huang, Y., Sun, W., Zhang, W., Yu, Y., Su, Y. & Song, C. (2010) Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology 16(2): 680-695.; Song, C., Xu, X., Tian, H. & Wang, Y. (2009) Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology 15(3): 692-705.; Bartlett, K. B. & Harriss, R. C. (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26(1-4): 261-320.; Bridgham, S., Megonigal, J., Keller, J., Bliss, N. & Trettin, C. (2006) The carbon balance of North American wetlands. Wetlands 26(4): 889-916.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.502Z", + "last_change_date": "2022-03-14T08:12:41.502Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15532, + "fields": { + "EF_ID": 522893, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from managed lands with Inland Wetland Mineral Soils where water table level has been raised, for example as in rewetting or in wetland creation", + "Technology_Practices": "Raising of water table or wetland creation", + "Parameter_Conditions": "Soil type: Inland Wetland Mineral Soil", + "Regional_Conditions": "Tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "900", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 5.1 on Page 5.17 of Chapter 5 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Sheet 1 of 1 of category Annual CH4 emissions from restored and created wetlands on managed lands with IWMS, p 7.49, Chapter 7, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "444", + "Upper_Bound": "1356", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5.4, Chapter 5. This value has been developed as the mean from a review of published studies that measured CH4 emission from natural and created wetlands. Nahlik, A. and Mitsch, W.J. (2011) Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Global Change Biology 17: 1321-1334.; Bartlett, K. B. & Harriss, R. C. (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26(1-4): 261-320.; Belger, L., Forsberg, B. R. & Melack, J. M. (2011) Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil. Biogeochemistry 105(1-3): 171-183.; Marani, L. & Alvala, P. C. (2007) Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment 41(8): 1627-1633.; Melack, J. M. & Forsberg, B. (2001) Biogeochemistry of Amazon floodplain lakes and associated wetlands. In: The Biogeochemistry of the Amazon Basin and its Role in a Changing World, eds. M. E. McClain, R. L. Victoria & J. E. Richey, pp. 235-276. Oxford University Press.; Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T. & Novo, E. (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology 10(5): 530-544.; Rosenqvist, A., Forsberg, B. R., Pimentel, T., Rauste, Y. A. & Richey, J. E. (2002) The use of spaceborne radar data to model inundation patterns and trace gas emissions in the central Amazon floodplain. International Journal of Remote Sensing 23(7): 1303-1328.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.611Z", + "last_change_date": "2022-03-14T08:12:41.611Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15533, + "fields": { + "EF_ID": 522894, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default relative stock change factor for land-use (FLU) for long term cultivation (over 20 years) on cropland with inland wetland mineral soils", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under long term cultivation", + "Regional_Conditions": "Boreal and Temperate (Dry and Moist)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "0.71", + "Unit": "No dimension", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.42", + "Upper_Bound": "1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5.3, Chapter 5. This value is based on measurement. The value and confidence limits provided are the result of linear mixed-effects models analysis of data from the following published studies: Badiou, P., McDougal, R., Pennock, D. & Clark, B. (2011) Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management 19(3): 237-256.; Bedard-Haughn, A., Jongbloed, F., Akkennan, J., Uijl, A., de Jong, E., Yates, T. & Pennock, D. (2006) The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes. Geoderma 135: 296-306.; Besasie, N. J. & Buckley, M. E. (2012) Carbon Sequestration Potential at Central Wisconsin Wetland Reserve Program Sites. Soil Science Society of America Journal 76(5): 1904-1910.; David, M. B., McLsaac, G. F., Darmody, R. G. & Omonode, R. A. (2009) Long-Term Changes in Mollisol Organic Carbon and Nitrogen. Journal of Environmental Quality 38(1): 200-211.; Euliss, N. H., Gleason, R. A., Olness, A., McDougal, R. L., Murkin, H. R., Robarts, R. D., Bourbonniere, R. A. & Warner, B. G. (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361(1-3): 179-188.; Huang, Y., Sun, W., Zhang, W., Yu, Y., Su, Y. & Song, C. (2010) Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology 16(2): 680-695.; Hunter, R. G., Faulkner, S. P. & Gibson, K. A. (2008) The importance of hydrology in restoration of bottomland hardwood wetland functions. Wetlands 28(3): 605-615.; Jacinthe, P. A., Lal, R. & Kimble, J. M. (2001) Organic carbon storage and dynamics in croplands and terrestrial deposits as influenced by subsurface tile drainage. Soil Science 166(5): 322-335.; Lu, J. W., Wang, H. J., Wang, W. D. & Yin, C. Q. (2007) Vegetation and soil properties in restored wetlands near Lake Taihu, China. Hydrobiologia 581: 151-159.; Meyer, C. K., Baer, S. G. & Whiles, M. R. (2008) Ecosystem recovery across a chronosequence of restored wetlands in the platte river valley. Ecosystems 11(2): 193-208.; Morse, J. L., Ardon, M. & Bernhardt, E. S. (2012) Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecological Applications 22(1): 264-280.; Norton, J. B., Jungst, L. J., Norton, U., Olsen, H. R., Tate, K. W. & Horwath, W. R. (2011) Soil Carbon and Nitrogen Storage in Upper Montane Riparian Meadows. Ecosystems 14(8): 1217-1231.; van Wesemael, B., Paustian, K., Meersmans, J., Goidts, E., Barancikova, G. & Easter, M. (2010) Agricultural management explains historic changes in regional soil carbon stocks. Proceedings of the National Academy of Sciences of the United States of America 107(33): 14926-14930.; Wang, Y., Liu, J. S., Wang, J. D. & Sun, C. Y. (2012) Effects of Wetland Reclamation on Soil Nutrient Losses and Reserves in Sanjiang Plain, Northeast China. Journal of Integrative Agriculture 11(3): 512-520.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.736Z", + "last_change_date": "2022-03-14T08:12:41.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15534, + "fields": { + "EF_ID": 522895, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default relative stock change factor for land-use (FLU) for rewetting of cropland under long term cultivation (over 20 years) with inland wetland mineral soils, to be applied in years 1-20 after rewetting.", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under long term cultivation that have been rewetted", + "Regional_Conditions": "Boreal, temperate, and tropical (Dry and Moist)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "0.8", + "Unit": "No dimension", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.72", + "Upper_Bound": "0.88", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5.3, Chapter 5. This value is based on measurement. The value and confidence limits provided are the result of linear mixed-effects models analysis of data from the following published studies: Badiou, P., McDougal, R., Pennock, D. & Clark, B. (2011) Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management 19(3): 237-256.; Ballantine, K. & Schneider, R. (2009) Fifty-five years of soil development in restored freshwater depressional wetlands. Ecological Applications 19(6): 1467-1480.; Besasie, N. J. & Buckley, M. E. (2012) Carbon Sequestration Potential at Central Wisconsin Wetland Reserve Program Sites. Soil Science Society of America Journal 76(5): 1904-1910.; Euliss, N. H., Gleason, R. A., Olness, A., McDougal, R. L., Murkin, H. R., Robarts, R. D., Bourbonniere, R. A. & Warner, B. G. (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361(1-3): 179-188.; Gleason, R. A., Tangen, B. A., Browne, B. A. & Euliss, N. H., Jr. (2009) Greenhouse gas flux from cropland and restored wetlands in the Prairie Pothole Region. Soil Biology & Biochemistry 41(12): 2501-2507.; Hunter, R. G., Faulkner, S. P. & Gibson, K. A. (2008) The importance of hydrology in restoration of bottomland hardwood wetland functions. Wetlands 28(3): 605-615.; Lu, J. W., Wang, H. J., Wang, W. D. & Yin, C. Q. (2007) Vegetation and soil properties in restored wetlands near Lake Taihu, China. Hydrobiologia 581: 151-159.; Meyer, C. K., Baer, S. G. & Whiles, M. R. (2008) Ecosystem recovery across a chronosequence of restored wetlands in the platte river valley. Ecosystems 11(2): 193-208.; Wang, Y., Liu, J. S., Wang, J. D. & Sun, C. Y. (2012) Effects of Wetland Reclamation on Soil Nutrient Losses and Reserves in Sanjiang Plain, Northeast China. Journal of Integrative Agriculture 11(3): 512-520.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.845Z", + "last_change_date": "2022-03-14T08:12:41.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15535, + "fields": { + "EF_ID": 522896, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default relative stock change factor for land-use (FLU) for rewetting of cropland under long term cultivation (over 20 years) with inland wetland mineral soils, to be applied in years 21-40 after rewetting.", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under long term cultivation that have been rewetted", + "Regional_Conditions": "Boreal, temperate, and tropical (Dry and Moist)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "1", + "Unit": "No dimension", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "N/A", + "Upper_Bound": "N/A", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5.3, Chapter 5. This value is based on measurement. The value and confidence limits provided are the result of linear mixed-effects models analysis of data from the following published studies: Badiou, P., McDougal, R., Pennock, D. & Clark, B. (2011) Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management 19(3): 237-256.; Ballantine, K. & Schneider, R. (2009) Fifty-five years of soil development in restored freshwater depressional wetlands. Ecological Applications 19(6): 1467-1480.; Besasie, N. J. & Buckley, M. E. (2012) Carbon Sequestration Potential at Central Wisconsin Wetland Reserve Program Sites. Soil Science Society of America Journal 76(5): 1904-1910.; Euliss, N. H., Gleason, R. A., Olness, A., McDougal, R. L., Murkin, H. R., Robarts, R. D., Bourbonniere, R. A. & Warner, B. G. (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361(1-3): 179-188.; Gleason, R. A., Tangen, B. A., Browne, B. A. & Euliss, N. H., Jr. (2009) Greenhouse gas flux from cropland and restored wetlands in the Prairie Pothole Region. Soil Biology & Biochemistry 41(12): 2501-2507.; Hunter, R. G., Faulkner, S. P. & Gibson, K. A. (2008) The importance of hydrology in restoration of bottomland hardwood wetland functions. Wetlands 28(3): 605-615.; Lu, J. W., Wang, H. J., Wang, W. D. & Yin, C. Q. (2007) Vegetation and soil properties in restored wetlands near Lake Taihu, China. Hydrobiologia 581: 151-159.; Meyer, C. K., Baer, S. G. & Whiles, M. R. (2008) Ecosystem recovery across a chronosequence of restored wetlands in the platte river valley. Ecosystems 11(2): 193-208.; Wang, Y., Liu, J. S., Wang, J. D. & Sun, C. Y. (2012) Effects of Wetland Reclamation on Soil Nutrient Losses and Reserves in Sanjiang Plain, Northeast China. Journal of Integrative Agriculture 11(3): 512-520.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:41.946Z", + "last_change_date": "2022-03-14T08:12:41.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15536, + "fields": { + "EF_ID": 522897, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Boreal", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "116", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "9", + "Upper_Bound": "215", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: 6", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.046Z", + "last_change_date": "2022-03-14T08:12:42.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15537, + "fields": { + "EF_ID": 522898, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Cold Temperate (dry)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "87", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "NA", + "Upper_Bound": "NA", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: NA", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.147Z", + "last_change_date": "2022-03-14T08:12:42.147Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15538, + "fields": { + "EF_ID": 522899, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Cold Temperate (moist)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "128", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "111", + "Upper_Bound": "145", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: 42", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.225Z", + "last_change_date": "2022-03-14T08:12:42.225Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15539, + "fields": { + "EF_ID": 522900, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Warm Temperate (dry)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "74", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "61", + "Upper_Bound": "87", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: 49", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.315Z", + "last_change_date": "2022-03-14T08:12:42.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15540, + "fields": { + "EF_ID": 522901, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Warm Temperate (moist)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "135", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "96", + "Upper_Bound": "174", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: 28", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.400Z", + "last_change_date": "2022-03-14T08:12:42.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15541, + "fields": { + "EF_ID": 522902, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Tropical (dry)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "22", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "18", + "Upper_Bound": "26", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: 32", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.482Z", + "last_change_date": "2022-03-14T08:12:42.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15542, + "fields": { + "EF_ID": 522903, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Tropical (moist)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "68", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "56", + "Upper_Bound": "80", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: 55", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.567Z", + "last_change_date": "2022-03-14T08:12:42.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15543, + "fields": { + "EF_ID": 522904, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Tropical (wet)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "49", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "40", + "Upper_Bound": "58", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: 33", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.659Z", + "last_change_date": "2022-03-14T08:12:42.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15544, + "fields": { + "EF_ID": 522905, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Default reference soil carbon stocks under native vegetation", + "Technology_Practices": "", + "Parameter_Conditions": "Wetland mineral soils under native vegetation", + "Regional_Conditions": "Tropical (montane)", + "Control_Technologies": "", + "Other_Properties": "0-30 cm depth", + "Value": "82", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25, Chapter 2, Volume 4 of the 2006 IPCC Guidelines (?Cmineral=(SOC0-SOC(0-T))/D)", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "36", + "Upper_Bound": "128", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "number of sample locations: 12", + "Data_Provider_Comments": "The value is provided in Table 5.2, Chapter 5. This value is based on measurement using combustion methods or corrected Walkley-Black method. The value and confidence limits provided are the result of analysis of data present in the International Soil Reference and Information Centre (ISRIC) World Inventory of Soil Emission Potentials (WISE) data base by Batjes (2011). Batjes NH. 2011. Soil organic carbon stocks under native vegetation - Revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture Ecosystems & Environment 142(3-4):365-373.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.733Z", + "last_change_date": "2022-03-14T08:12:42.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15545, + "fields": { + "EF_ID": 522906, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from managed lands with Inland Wetland Mineral Soils where water table level has been raised, for example as in rewetting or in wetland creation", + "Technology_Practices": "Raising of water table or wetland creation", + "Parameter_Conditions": "Soil type: Inland Wetland Mineral Soil", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "153", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 5.1 on Page 5.17 of Chapter 5 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Sheet 1 of 1 of category Annual CH4 emissions from restored and created wetlands on managed lands with IWMS, p 7.49, Chapter 7, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "5", + "Upper_Bound": "301", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5A.2.2, Chapter 5. This value has been developed as the mean from a review of published studies that measured CH4 emission from natural and created wetlands. These are NOT IPCC default EF values. Badiou, P., McDougal, R., Pennock, D. & Clark, B. (2011) Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetlands Ecology and Management 19(3): 237-256.; Pennock, D., Yates, T., Bedard-Haughn, A., Phipps, K., Farrell, R. & McDougal, R. (2010) Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian Prairie Pothole region. Geoderma 155(3-4): 308-319.; Gleason, R. A., Tangen, B. A., Browne, B. A. & Euliss, N. H., Jr. (2009) Greenhouse gas flux from cropland and restored wetlands in the Prairie Pothole Region. Soil Biology & Biochemistry 41(12): 2501-2507.; Morse, J. L., Ardon, M. & Bernhardt, E. S. (2012) Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. Ecological Applications 22(1): 264-280.; Herbst, M., Friborg, T., Ringgaard, R. & Soegaard, H. (2011) Interpreting the variations in atmospheric methane fluxes observed above a restored wetland. Agricultural and Forest Meteorology 151(7): 841-853.;Yang, L., Lu, F., Wang, X. K., Duan, X. N., Song, W. Z., Sun, B. F., Chen, S., Zhang, Q. Q., Hou, P. Q., Zheng, F. X., Zhang, Y., Zhou, X. P., Zhou, Y. J. & Ouyang, Z. Y. (2012) Surface methane emissions from different land use types during various water levels in three major drawdown areas of the Three Gorges Reservoir. Journal of Geophysical Research-Atmospheres 117, D10109, doi:10.1029/2011JD017362.; Nahlik, A. M. & Mitsch, W. J. (2010) Methane Emissions From Created Riverine Wetlands. Wetlands 30(4): 783-793.; Altor, A. E. & Mitsch, W. J. (2008) Methane and carbon dioxide dynamics in wetland mesocosms: Effects of hydrology and soils. Ecological Applications 18(5): 1307-1320.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.827Z", + "last_change_date": "2022-03-14T08:12:42.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15546, + "fields": { + "EF_ID": 522907, + "IPCC_Category": "3.B.4 - Wetlands", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission Factor for CH4 from natural unmanaged wetlands with Inland Wetland Mineral Soils", + "Technology_Practices": "Unmanaged wetlands", + "Parameter_Conditions": "Soil type: Inland Wetland Mineral Soil", + "Regional_Conditions": "Temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "kg CH4/ha/yr", + "Equation": "Equation 5.1 on Page 5.17 of Chapter 5 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "Sheet 1 of 1 of category Annual CH4 emissions from restored and created wetlands on managed lands with IWMS, p 7.49, Chapter 7, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "37", + "Upper_Bound": "235", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 5A.2.2, Chapter 5. This value has been developed as the mean from a review of published studies that measured CH4 emission from natural and created wetlands. These are NOT IPCC default EF values. Song, C. C., Yan, B. X., Wang, Y. S., Wang, Y. Y., Lou, Y. J. & Zhao, Z. C. (2003) Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chinese Science Bulletin 48(24): 2749-2753.; Pulliam, W. M. (1993) Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs 63(1): 29-53.; Huang, Y., Sun, W., Zhang, W., Yu, Y., Su, Y. & Song, C. (2010) Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Global Change Biology 16(2): 680-695.; Song, C., Xu, X., Tian, H. & Wang, Y. (2009) Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology 15(3): 692-705.; Bartlett, K. B. & Harriss, R. C. (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26(1-4): 261-320.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:42.936Z", + "last_change_date": "2022-03-14T08:12:42.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15547, + "fields": { + "EF_ID": 522908, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Aboveground biomass growth in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.1", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.7, Chapter 2, Volume 4, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "17.1", + "Upper_Bound": "19.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.4, Chapter 4. Referenced papers are: Ajonina, G. M. (2008) Inventory and modelling mangrove forest stand dynamics following different levels of wood exploitation pressures in the Douala-Edea Atlantic Coast of Cameroon, Central Africa, Freiburg im Breisgau, Germany, p. 232.; Kairo, J. G., Lang`at, J. K. S., Dahdouh-Guebas, F., Bosire, J. & Karachi, M. (2008) Structural development and productivity of replanted mangrove plantations in Kenya. Forest Ecology and Management 255(7): 2670-2677.; Alongi, D. M. (2010) The Energetics of Mangrove Forests. Dordrecht, Netherlands: Springer Science+Business Media B.V.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.054Z", + "last_change_date": "2022-03-14T08:12:43.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15548, + "fields": { + "EF_ID": 522909, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Aboveground biomass growth in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "tropical", + "Control_Technologies": "", + "Other_Properties": "tropical dry", + "Value": "3.3", + "Unit": "tonnes dm/ha/year", + "Equation": "Equations 2.7, Chapter 2, Volume 4, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "3.1", + "Upper_Bound": "3.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.4, Chapter 4. Referenced papers are: Ajonina, G. M. (2008) Inventory and modelling mangrove forest stand dynamics following different levels of wood exploitation pressures in the Douala-Edea Atlantic Coast of Cameroon, Central Africa, Freiburg im Breisgau, Germany, p. 232.; Kairo, J. G., Lang`at, J. K. S., Dahdouh-Guebas, F., Bosire, J. & Karachi, M. (2008) Structural development and productivity of replanted mangrove plantations in Kenya. Forest Ecology and Management 255(7): 2670-2677.; Alongi, D. M. (2010) The Energetics of Mangrove Forests. Dordrecht, Netherlands: Springer Science+Business Media B.V.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.142Z", + "last_change_date": "2022-03-14T08:12:43.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15549, + "fields": { + "EF_ID": 522910, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Aboveground biomass growth in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "tropical", + "Control_Technologies": "", + "Other_Properties": "tropical wet", + "Value": "9.9", + "Unit": "No dimension", + "Equation": "Equations 2.7, Chapter 2, Volume 4, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "9.4", + "Upper_Bound": "10.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.4, Chapter 4. Referenced papers are: Ajonina, G. M. (2008) Inventory and modelling mangrove forest stand dynamics following different levels of wood exploitation pressures in the Douala-Edea Atlantic Coast of Cameroon, Central Africa, Freiburg im Breisgau, Germany, p. 232.; Kairo, J. G., Lang`at, J. K. S., Dahdouh-Guebas, F., Bosire, J. & Karachi, M. (2008) Structural development and productivity of replanted mangrove plantations in Kenya. Forest Ecology and Management 255(7): 2670-2677.; Alongi, D. M. (2010) The Energetics of Mangrove Forests. Dordrecht, Netherlands: Springer Science+Business Media B.V.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.264Z", + "last_change_date": "2022-03-14T08:12:43.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15550, + "fields": { + "EF_ID": 522911, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Aboveground biomass in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "t dm/ha", + "Equation": "Equations 2.8, Chapter 2, Volume 4, 2006 IPCC Guidelines; Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "66", + "Upper_Bound": "84", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.3, Chapter 4. Referenced papers are: Lugo, A.E. & Snedaker, S.C. (1974) The ecology of mangroves. Annual Review of Ecology and Systematics 5: 39-64.; Woodroffe, C. D. & Moss, T. J. (1984) Litter fall beneath Rhizophora stylosa Griff., Vaitupu, Tuvalu, South Pacific. Aquatic Botany 18(3): 249-255.; Mackey, A. P. (1993) Biomass of the mangrove Avicennia marina (Forsk.) Vierh. Near Brisbane, South-eastern Queensland. Australian Journal of Marine and Freshwater Research 44(5): 721-725.; Tam, N., Wong, Y., Lan, C. & Chen, G. (1995) Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295(1-3): 193-201.; Tam, N., Wong, Y., Lan, C. & Chen, G. (1995) Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295(1-3): 193-201.; Ross, M. S., Ruiz, P. L., Telesnicki, G. J. & Meeder, J. F. (2001) Estimating aboveground biomass and production in mangrove communities of Biscayne National Park, Florida (USA). Wetlands Ecology and Management 9(1): 27-37.; Coronado-Molina, C., Day, J., Reyes, E. & Perez, B. (2004) Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida. Wetlands Ecology and Management 12(3): 157-164.; Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. & Shugart, H. H. (2008) Landscape-scale extent, height, biomass, and carbon estimation of Mozambique`s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. Journal of Geophysical Research-Biogeosciences 113(G2).; Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. & Shugart, H. H. (2008) Landscape-scale extent, height, biomass, and carbon estimation of Mozambique`s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. Journal of Geophysical Research-Biogeosciences 113(G2).; Abohassan, R. A. A., Okia, C. A., Agea, J. G., Kimondo, J. M. & McDonald, M. M. (2012) Perennial biomass production in arid mangrove systems on the Red Sea coast of Saudi Arabia. Environmental Research Journal 6(1): 22-31.; Simard, M., Zhang, K., Rivera-Monroy, V. H., Ross, M. S., Ruiz, P. L., Castañeda-Moya, E., Twilley, R. R. & Rodriguez, E. (2006) Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogrammetric Engineering and Remote Sensing 72(3): 299-311.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.337Z", + "last_change_date": "2022-03-14T08:12:43.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15551, + "fields": { + "EF_ID": 522912, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Aboveground biomass in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "tropical", + "Control_Technologies": "", + "Other_Properties": "tropical dry", + "Value": "92", + "Unit": "t dm/ha", + "Equation": "Equations 2.8, Chapter 2, Volume 4, 2006 IPCC Guidelines; Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "88", + "Upper_Bound": "97", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.3, Chapter 4. Referenced papers are: Golley, F. B., Odum, H. T. & Wilson, R. F. (1962) The structure and metabolism of a Puerto Rican red mangrove forest ecosystem. Athens, GA, USA: University of Georgia Press.; Briggs, S. V. (1977) Estimates of biomass in a temperate mangrove community. Australian Journal of Ecology 2(3): 369-373.; Suzuki, E. & Tagawa, H. (1983) Biomass of a mangrove forest and a sedge marsh on Ishigaki Island, south Japan. Japanese Journal of Ecology 33: 231-234.; Steinke, T., Ward, C. & Rajh, A. (1995) Forest structure and biomass of mangroves in the Mgeni estuary, South Africa. Hydrobiologia 295(1-3): 159-166.; Alongi, D. M., Clough, B. F., Dixon, P. & Tirendi, F. (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees-Structure and Function 17(1): 51-60.; Medeiros, T. & Sampaio, E. (2008) Allometry of aboveground biomasses in mangrove species in Itamaracá, Pernambuco, Brazil. Wetlands Ecology and Management 16(4): 323-330.; Khan, M. N. I., Suwa, R. & Hagihara, A. (2009) Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management 17(6): 585-599.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.432Z", + "last_change_date": "2022-03-14T08:12:43.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15552, + "fields": { + "EF_ID": 522913, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Aboveground biomass in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "tropical", + "Control_Technologies": "", + "Other_Properties": "tropical wet", + "Value": "192", + "Unit": "t dm/ha", + "Equation": "Equations 2.8, Chapter 2, Volume 4, 2006 IPCC Guidelines; Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "187", + "Upper_Bound": "204", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.3, Chapter 4. Referenced papers are: Golley, F. B., McGuiniss, K., Clements, R. G., Child, G. I. & Duever, M. J. (1975) Mineral cycling in a tropical moist ecosystem. Athens, GA, USA: University of Georgia Press.; Christensen, B. (1978) Biomass and primary production of Rhizophora apiculata Bl. in a mangrove in southern Thailand. Aquatic Botany 4(1): 43-52.; Ong, E. (1982) Mangroves and aquaculture in Malaysia. Ambio 11(5): 252-257.; Putz, F. E. & Chan, H. (1986) Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. Forest Ecology and Management 17(2): 211-230.; Tamai, S., Tabuchi, R., Ogino, K. & Nakasuga, T. (1986) Standing biomass of mangrove forests in southern Thailand. Journal of the Japanese Forestry Society 68(9): 384-388.; Komiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S. & Miyagi, T. (2000) Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) CB Rob.) forest. Forest Ecology and Management 139(1-3): 127-134.; Komiyama, A., Moriya, H., Prawiroatmodjo, S., Toma, T. & Ogino, K. (1988) Primary productivity of mangrove forest. Ehime University, Ehime, Japan.; Komiyama, A., Ogino, K., Aksornkoae, S. & Sabhasri, S. (1987) Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology 3: 97-108.; Komiyama, A., Ong, J. E. & Poungparn, S. (2008) Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany 89(2): 128-137.; Amarasinghe, M. D. & Balasubramaniam, S. (1992) Net primary productivity of two mangrove forest stands on the Northwestern coast of Sri-Lanka. Hydrobiologia 247(1-3): 37-47.; Lin, P., Lu, C., Wang, G. & Chen, H. (1990) Biomass and productivity of Bruguiera sexangula mangrove forest in Hainan Island, China. Journal of Xiamen University (Natural Science) 29: 209-213.; Mall, L. P., Singh, V. P. & Garge, A. (1999) Study of biomass, litter fall, litter decomposition and soil respiration in monogeneric mangrove and mixed mangrove forests of Andaman Islands. Tropical Ecology 32: 144-152.; Kusmana, C., Sabiham, S., Abe, K. & Watanabe, H. (1992) An estimation of above ground tree biomass of a mangrove forest in East Sumatra, Indonesia. Tropics 1(4): 243-257.; Slim, F., Gwada, P., Kodjo, M. & Hemminga, M. (1996) Biomass and litterfall of Ceriops tagal and Rhizophora mucronata in the mangrove forest of Gazi Bay, Kenya. Marine and Freshwater Research 47(8): 999-1007.; Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L. & Cadamuro, L. (1998) Structure, aboveground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115(1-2): 39-53.; Norhayati, A. & Latiff, A. (2001) Biomass and species composition of a mangrove forest in Pulau Langkawi, Malaysia. Malaysian Applied Biology 30(1/2): 75-80.; Sherman, R. E., Fahey, T. J. & Martinez, P. (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6(4): 384-398.; Juliana, W. A. & Nizam, M. S. (2004) Forest structure and aboveground biomass of two mangrove forest communities in Matang. Ipoh, Perak, Malaysia.; Kirue, B., Kairo, J. & Karachi, M. (2007) Allometric Equations for Estimating Above Ground Biomass of Rhizophora mucronata Lamk.(Rhizophoraceae) Mangroves at Gazi Bay, Kenya. Western Indian Ocean Journal of Marine Science 5(1): 27-34.; Kairo, J. G., Lang`at, J. K. S., Dahdouh-Guebas, F., Bosire, J. & Karachi, M. (2008) Structural development and productivity of replanted mangrove plantations in Kenya. Forest Ecology and Management 255(7): 2670-2677.; Fatoyinbo, T. E., Simard, M., Washington-Allen, R. A. & Shugart, H. H. (2008) Landscape-scale extent, height, biomass, and carbon estimation of Mozambique`s mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data. Journal of Geophysical Research-Biogeosciences 113(G2).; Camacho, L. D., Gevaña, D. T., Carandang, A. P., Camacho, S. C., Combalicer, E. A., Rebugio, L. L. & Youn, Y.-C. (2011) Tree biomass and carbon stock of a community-managed mangrove forest in Bohol, Philippines. Forest Science and Technology 7(4): 161-167.; Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A. & Donato, D. C. (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31(2): 343-352.; Thant, Y. M. & Kanzaki, M. (2011) Biomass and carbon sequestration in community mangrove plantations and a natural regeneration stand in the Ayeyarwady Delta, Myanmar. In: AGU Fall Meeting Abstracts: American Geophysical Union.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.516Z", + "last_change_date": "2022-03-14T08:12:43.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15553, + "fields": { + "EF_ID": 522914, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Carbon fraction of aboveground mangrove biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "leaves and wood", + "Value": "45.1", + "Unit": "% (by weight)", + "Equation": "Equations 2.8, Chapter 2, Volume 4, 2006 IPCC Guidelines; Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "42.9", + "Upper_Bound": "47.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.2, Chapter 4.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.601Z", + "last_change_date": "2022-03-14T08:12:43.601Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15554, + "fields": { + "EF_ID": 522915, + "IPCC_Category": "3.C.11 - CH4 Emissions from Rewetting of Mangroves and Tidal Marshes", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission factor for CH4 (Efrewet) for Tier 1 estimation of rewetted land previously vegetated by tidal marshes and mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "tidal freshwater and brackish marsh and mangrove (salinity <18 psu)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "193.7", + "Unit": "kg/ha/yr", + "Equation": "Equation 4.9, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "99.8", + "Upper_Bound": "358", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.14, Chapter 4. Referenced papers are: Keller, J. K., Sutton-Grier, A. E., Bullock, A. L. & Megonigal, J. P. (2013) Anaerobic metabolism in tidal freshwater wetlands: I. Plant removal effects on iron reduction and methanogenesis. Estuaries and Coasts 36: 457-470.; Ma, A., Lu, J. & Wang, T. (2012) Effects of elevation and vegetation on methane emissions from a freshwater estuarine wetland. Journal of Coastal Research 6: 1319-1329.; Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31(5): 831-842.; Sotomayor, D., Corredor, J. E. & Morrell, J. M. (1994) Methane flux from mangrove sediments along the southwestern coast of Puerto Rico. Estuaries 17: 140-147.; Tong, C., Wang, W.-Q., Zeng, C.-S. & Marrs, R. (2010) Methane (CH4) emission from a tidal marsh in the Min River estuary, southeast China. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 45: 506-516.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.667Z", + "last_change_date": "2022-03-14T08:12:43.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15555, + "fields": { + "EF_ID": 522916, + "IPCC_Category": "3.C.11 - CH4 Emissions from Rewetting of Mangroves and Tidal Marshes", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission factor for CH4 (Efrewet) for Tier 1 estimation of rewetted land previously vegetated by tidal marshes and mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "tidal saline water marsh and mangrove (salinity >18 psu)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "kg/ha/yr", + "Equation": "Equation 4.9, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.14, Chapter 4.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.752Z", + "last_change_date": "2022-03-14T08:12:43.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15556, + "fields": { + "EF_ID": 522917, + "IPCC_Category": "3.C.12 - N2O Emissions from Aquaculture", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "EF for N2O emission from aquaculture use in mangroves, tidal marshes and seagrass meadows", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00169", + "Unit": "kg/animal/yr", + "Equation": "Equation 4.10, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "0.0038", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.15, Chapter 4. Referenced papers are: Hu, Z., Lee, JW, Chandran, K, Kim, S, and Khanal, K. 2012. Nitrous oxide (N2O) emission from aquaculture: a review. Environmental Science and Technology 46:6470-6480.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.825Z", + "last_change_date": "2022-03-14T08:12:43.825Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15557, + "fields": { + "EF_ID": 522918, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Tier 1 default values for dead wood carbon stocks", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "tropical/subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.7", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.17, Chapter 2, Volume 4, 2006 IPCC Guidelines; Equation 4.5, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "6.5", + "Upper_Bound": "14.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.7, Chapter 4. Referenced papers are: Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A. & Donato, D. C. (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31(2): 343-352.; Donato, D. C., Kauffman, J. B., Mackenzie, R. A., Ainsworth, A. & Pfleeger, A. Z. (2012) Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of Environmental Management 97: 89-96.; Allen, J. A., Ewel, K. C., Keeland, B. D., Tara, T. & Smith, T. J. (2000) Downed wood in Micronesian mangrove forests. Wetlands 20(1): 169-176.; Steinke, T., Ward, C. & Rajh, A. (1995) Forest structure and biomass of mangroves in the Mgeni estuary, South Africa. Hydrobiologia 295(1-3): 159-166.; Robertson, A. I. & Daniel, P. A. (1989) Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forests. Limnology and Oceanography 34(3): 640-646.; Tam, N., Wong, Y., Lan, C. & Chen, G. (1995) Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295(1-3): 193-201.; Krauss, K. W., Doyle, T. W., Twilley, R. R., Smith, T. J., Whelan, K. R. T. & Sullivan, J. K. (2005) Woody debris in the mangrove forests of South Florida. Biotropica 37(1): 9-15.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.903Z", + "last_change_date": "2022-03-14T08:12:43.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15558, + "fields": { + "EF_ID": 522919, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Tier 1 default values for litter carbon stocks", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "tropical/subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.17, Chapter 2, Volume 4, 2006 IPCC Guidelines; Equation 4.5, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0", + "Upper_Bound": "1.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.7, Chapter 4. Referenced papers are: Utrera-López, M. E. & Moreno-Casasola, P. (2008) Mangrove litter dynamics in la mancha lagoon, Veracruz, México. Wetlands Ecology and Management 16(1): 11-22.; Liao, B., Zheng, D. & Zheng, S. (1990) Studies on the biomass of Sonneratia caseolaris stand. Forest Research 3(1): 47-54.; Chen, G. C., Ye, Y. & Lu, C. Y. (2008) Seasonal variability of leaf litter removal by crabs in a Kandelia candel mangrove forest in JiulongJiang Estuary, China. Estuarine Coastal and Shelf Science 79(4): 701-706.; Richards, T. M., Krebs, J. M. & McIvor, C. C. (2011) Microhabitat associations of a semi-terrestrial fish, Kryptolebias marmoratus(Poey 1880) in a mosquito-ditched mangrove forest, west-central Florida. Journal of Experimental Marine Biology and Ecology 401(1): 48-56.; Ramos e Silva, C. A., Oliveira, S. R., Rêgo, R. D. & Mozeto, A. A. (2007) Dynamics of phosphorus and nitrogen through litter fall and decomposition in a tropical mangrove forest. Marine environmental research 64(4): 524-534.; Twilley, R. W., Lugo, A. E. & Patterson-Zucca, C. (1986) Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67: 670-683.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:43.996Z", + "last_change_date": "2022-03-14T08:12:43.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15559, + "fields": { + "EF_ID": 522920, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Annual emission factor associated with drainage on aggregated organic and mineral soils", + "Technology_Practices": "", + "Parameter_Conditions": "Soil type: Organic and mineral in Mangrove forest and Tidal marsh", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.9", + "Unit": "tonnes C/ha/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "5.2", + "Upper_Bound": "11.8", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.13, Chapter 4. Referenced papers are: Camporese, M., Putti, M., Salandin, P., Teatini, P. 2008. Spatial variability of CO2 efflux in a drained cropped peatland south of Venice, Italy. Journal of Geophysical Research 113, doi:10.1029/2008JG000786; Deverel, S. J. and Leighton, D. A. 2010. Historic, recent and future subsidence, Sacramento-San Joaquin Delta, California, USA. San Francisco Estuary and Watershed Science 8: 1-23; Hatala, J. A., Detto M., Sonnentag, O., Deverel, S. J., Verfaille, J., Baldocchi, D. D. 2012. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agriculture, Ecosystems and Environment 150: 1-18; Howe, A. J., Rodriguez, J. F., Saco, P. M. 2009. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuarine, Coastal and Shelf Science 84: 75-83; Rojstaczer, S., and S. J. Deverel (1993), Time dependence in atmospheric carbon inputs from drainage of organic soils, Geophys. Res. Lett., 20(13), 1383– 1386.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.101Z", + "last_change_date": "2022-03-14T08:12:44.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15560, + "fields": { + "EF_ID": 522921, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "No dimension", + "Equation": "Equations 2.7 & 2.8, Chapter 2, Volume 4, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.91", + "Upper_Bound": "1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.5, Chapter 4. Referenced papers are: Briggs, S. V. (1977) Estimates of biomass in a temperate mangrove community. Australian Journal of Ecology 2(3): 369-373.; Lin, P. (1989) Biomass and element cycle of Kandelia forest in China. Xiamen: Xiamen Univ. Press.; Tam, N., Wong, Y., Lan, C. & Chen, G. (1995) Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295(1-3): 193-201.; Saintilan, N. (1997) Above-and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, New South Wales. Marine and Freshwater Research 48(2): 147-152.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.197Z", + "last_change_date": "2022-03-14T08:12:44.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15561, + "fields": { + "EF_ID": 522922, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "tropical", + "Control_Technologies": "", + "Other_Properties": "tropical dry", + "Value": "0.29", + "Unit": "No dimension", + "Equation": "Equations 2.7 & 2.8, Chapter 2, Volume 4, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.28", + "Upper_Bound": "0.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.5, Chapter 4. Referenced papers are: Golley, F. B., Odum, H. T. & Wilson, R. F. (1962) The structure and metabolism of a Puerto Rican red mangrove forest ecosystem. Athens, GA, USA: University of Georgia Press.; Alongi, D. M., Clough, B. F., Dixon, P. & Tirendi, F. (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees-Structure and Function 17(1): 51-60.; Hoque, A., Sharma, S., Suwa, R., Mori, S. & Hagihara, A. (2012) Seasonal variation in the size-dependent respiration of mangroves Kandelia obovata. Marine Ecology Progress Series 404: 31-37.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.276Z", + "last_change_date": "2022-03-14T08:12:44.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15562, + "fields": { + "EF_ID": 522923, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) in mangroves", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "tropical", + "Control_Technologies": "", + "Other_Properties": "tropical wet", + "Value": "0.49", + "Unit": "No dimension", + "Equation": "Equations 2.7 & 2.8, Chapter 2, Volume 4, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.47", + "Upper_Bound": "0.51", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.5, Chapter 4. Referenced papers are: Golley, F. B., McGuiniss, K., Clements, R. G., Child, G. I. & Duever, M. J. (1975) Mineral cycling in a tropical moist ecosystem. Athens, GA, USA: University of Georgia Press.; Tamai, S., Tabuchi, R., Ogino, K. & Nakasuga, T. (1986) Standing biomass of mangrove forests in southern Thailand. Journal of the Japanese Forestry Society 68(9): 384-388.; Komiyama, A., Moriya, H., Prawiroatmodjo, S., Toma, T. & Ogino, K. (1988) Primary productivity of mangrove forest. Ehime University, Ehime, Japan.; Komiyama, A., Ogino, K., Aksornkoae, S. & Sabhasri, S. (1987) Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology 3: 97-108.; Gong, W. K. & Ong, J. E. (1990) Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuarine Coastal and Shelf Science 31(5): 519-530.; Lin, P., Lu, C., Wang, G. & Chen, H. (1990) Biomass and productivity of Bruguiera sexangula mangrove forest in Hainan Island, China. Journal of Xiamen University (Natural Science) 29: 209-213.;", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.373Z", + "last_change_date": "2022-03-14T08:12:44.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15563, + "fields": { + "EF_ID": 522924, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) for seagrass", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: seagrass meadow", + "Regional_Conditions": "subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "No dimension", + "Equation": "Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "2.3", + "Upper_Bound": "2.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.10, Chapter 4. Referenced papers are: Aioi 1980, Aioi et al. 1981, Asmus et al. 2000, Bandeira 2002, Boon 1986, Brun et al 2009, Collier et al. 2009, de Boer 2000, Devereux et al. 2011, Dixon & Leverone 1995, Dos Santos et al. 2012, Dunton 1996, Fourqurean et al. 2012, Hackney 2003, Herbert and Fourqurean 2009, Herbert & Fourqurean 2008, Holmer & Kendrick 2012, Jensen & Bell 2001, Kim et al. 2012, Kirkman & Reid 1979, Kowalski et al. 2009, Larkum et al. 1984, Lee et al. 2005, Lee et al. 2005b, Lipkin 1979, Longstaff et al. 1999, Masini et al. 2001, McGlathery et al. 2012, mcMahan 1968, Meling-Lopez & Ibarra-Obando 1999, Mukai et al. 1979, Paling & McComb 2000, Park et al. 2011, Powell 1989, Preen 1995, Schwarz et al. 2006, Stevensen 1988, Townsend & Fonseca 1998, Udy & Dennison 1997, van Houte-Howes et al. 2004, van Lent et al. 1991, van Tussenbroek 1998, Walker 1985, West & Larkum 1979, Yarbro & Carlson 2008. in: IPCC 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.451Z", + "last_change_date": "2022-03-14T08:12:44.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15564, + "fields": { + "EF_ID": 522925, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) for seagrass", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: seagrass meadow", + "Regional_Conditions": "temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "No dimension", + "Equation": "Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "1.1", + "Upper_Bound": "1.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.10, Chapter 4. Referenced papers are: Agostini et al. 2003, Cebrian et al. 2000, Fourqurean et al. 2012, Hebert et al. 2007, Holmer & Kendrick 2012, Larned 2003, Lebreton et al. 2009, Lillebo et al. 2006, Marba & Duarte 2001, McRoy 1974, Olesen & Sand-Jensen 1994, Rismondo et al. 1997, Sand-Jensen & Borum 1983, Terrados et al. 2006. in: IPCC 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.557Z", + "last_change_date": "2022-03-14T08:12:44.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15565, + "fields": { + "EF_ID": 522926, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) for seagrass", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: seagrass", + "Regional_Conditions": "tropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7", + "Unit": "No dimension", + "Equation": "Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "1.5", + "Upper_Bound": "1.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.10, Chapter 4. Referenced papers are: Aioi & Pollard 1993, Brouns 1985, Brouns 1987, Coles et al. 1993, Daby 2003, Devereux et al. 2011, Fourqurean et al. 2012, Halun et al. 2002, Holmer et al. 2001, Ismail 1993, Lee 1997, Lindeboom & Sandee 1989, McKenzie 1994, Mellors et al. 2002, Moriarty et al. 1990, Nienhuis et al. 1989, Ogden & Ogden 1982, Paynter et al 2001, Poovachiranon & Chansang 1994, Povidisa et al. 2009, Rasheed 1999, Udy et al. 1999, van Lent et al. 1991, van Tussenbroek 1998, Vermaat et al. 1993, Vermaat et al. 1995, Williams 1987. in: IPCC 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.634Z", + "last_change_date": "2022-03-14T08:12:44.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15566, + "fields": { + "EF_ID": 522927, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) for tidal marshes", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: tidal marsh", + "Regional_Conditions": "mediterranean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.63", + "Unit": "No dimension", + "Equation": "Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "3.56", + "Upper_Bound": "3.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.9, Chapter 4. Referenced papers are: Scarton et al . 2002; Neves et al. 2007; Boyer et al. 2000 in: IPCC 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.725Z", + "last_change_date": "2022-03-14T08:12:44.725Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15567, + "fields": { + "EF_ID": 522928, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) for tidal marshes", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: tidal marsh", + "Regional_Conditions": "subtropical", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.65", + "Unit": "No dimension", + "Equation": "Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "3.56", + "Upper_Bound": "3.74", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.9, Chapter 4. Referenced papers are: Lichacz et al. 1984; da Cunha Lana et al. 1991 in: IPCC 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.801Z", + "last_change_date": "2022-03-14T08:12:44.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15568, + "fields": { + "EF_ID": 522929, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) for tidal marshes", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: tidal marsh", + "Regional_Conditions": "temperate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.11", + "Unit": "No dimension", + "Equation": "Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "2.07", + "Upper_Bound": "2.15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.9, Chapter 4. Referenced papers are: Kistritz et al 1983; Hussey and Long 1982; Smith et al. 1979; Dunn 1981; Connor and Chmura 2000; Gross et al. 1991; Whigham et al.1978; Elsey-Quirk et al. 2011; Adams et al. 2012 in: IPCC 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.870Z", + "last_change_date": "2022-03-14T08:12:44.870Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15569, + "fields": { + "EF_ID": 522930, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Ratio of belowground to aboveground biomass (R) for tidal marshes", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: tidal marsh", + "Regional_Conditions": "temperate freshwater tidal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.15", + "Unit": "No dimension", + "Equation": "Equation 4.4, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "1.12", + "Upper_Bound": "1.18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.9, Chapter 4. Referenced papers are: Birch and Cooley1982; Whigham et al.1978 in: IPCC 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:44.976Z", + "last_change_date": "2022-03-14T08:12:44.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15570, + "fields": { + "EF_ID": 522931, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Annual emission factor associated with rewetting (EFRE) of mangrove on aggregated organic and mineral soils at initiation of vegetation reestablishment", + "Technology_Practices": "", + "Parameter_Conditions": "mangrove of aggregated organic and mineral soils", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-1.62", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 4.7, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-2", + "Upper_Bound": "-1.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.12, Chapter 4. Referenced papers are: Breithaupt, J. L., Smoak, J. M., Smith, T. J., Sanders, C. J. & Hoare, A. (2012) Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochemical Cycles 26.; Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17(4).; Fujimoto, K., Imaya, A., Tabuchi, R., Kuramoto, S., Utsugi, H. & Murofushi, T. (1999) Below-ground carbon storage of Micronesian mangrove forests. Ecological Research 14(4): 409-413.; Ren, H., Chen, H., Li, Z. a. & Han, W. (2010) Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant and soil 327(1-2): 279-291.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.059Z", + "last_change_date": "2022-03-14T08:12:45.059Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15571, + "fields": { + "EF_ID": 522932, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Annual emission factor associated with rewetting (EFRE) of seagrass on mineral soils at initiation of vegetation reestablishment", + "Technology_Practices": "", + "Parameter_Conditions": "seagrass on mineral soils", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-0.43", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 4.7, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-0.7", + "Upper_Bound": "-0.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.12, Chapter 4. Referenced papers are: Mateo & Romero 1997, Serrano et al. 2012 in: IPCC 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). IPCC, Switzerland.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.128Z", + "last_change_date": "2022-03-14T08:12:45.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15572, + "fields": { + "EF_ID": 522933, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b.iii - Land converted to other wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Annual emission factor associated with rewetting (EFRE) of tidal marsh on aggregated organic and mineral soils at initiation of vegetation reestablishment", + "Technology_Practices": "", + "Parameter_Conditions": "tidal marsh of aggregated organic and mineral soils", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-0.91", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 4.7, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-1.1", + "Upper_Bound": "-0.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.12, Chapter 4. Referenced papers are: Anisfeld, S. C., Tobin, M. & Benoit, G. (1999) Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound. Estuaries 22(2A): 231-244.; Cahoon, D. R., Lynch, J. C. & Knaus, R. M. (1996) Improved cryogenic coring device for sampling wetland soils. Journal of Sedimentary Research 66(5): 1025-1027.; Callaway, J. C., R.D. DeLaune, and W.H. Patrick. (1997) Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research 13: 181-191.; Callaway, J. C., Borgnis, E. L., Turner, R. E. & Milan, C. S. (2012) Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts 35(5): 1163-1181.; Callaway, J. C., DeLaune, R. D. & Patrick, W. H. (1996) Chernobyl Cs-137 used to determine sediment accretion rates at selected northern European coastal wetlands. Limnology and Oceanography 41(3): 444-450.; Chmura, G. L. & Hung, G. A. (2004) Controls on salt marsh accretion: A test in salt marshes of Eastern Canada. Estuaries 27(1): 70-81.; Craft, C. (2007) Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52(3): 1220-1230.; Hatton, R. S., Delaune, R. D. & Patrick, W. H. (1983) Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28(3): 494-502.; Kearney, M. S. & Stevenson, J. C. (1991) Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7(2): 403-415.; Markewich, H. W., Wysocki, D. A., Pavich, M. J., Rutledge, E. M., Millard, H. T., Rich, F. J., Maat, P. B., Rubin, M. & McGeehin, J. P. (1998) Paleopedology plus TL, Be-10, and C-14 dating as tools in stratigraphic and paleoclimatic investigations, Mississippi River Valley, USA. Quaternary International 51-2: 143-167.; Oenema, O. & DeLaune, R. D. (1988) Accretion rates in salt marshes in the Eastern Scheldt, south-west Netherlands. Estuarine, Coastal and Shelf Science 26(4): 379-394.; Orson, R., Warren, R. & Niering, W. (1998) Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuarine, Coastal and Shelf Science 47(4): 419-429.; Patrick Jr, W. H. & DeLaune, R. (1990) Subsidence, accretion, and sea level rise in south San Francisco Bay marshes. Limnology and Oceanography 35(6): 1389-1395.; Roman, C., Peck, J., Allen, J., King, J. & Appleby, P. (1997) Accretion of a New England (USA) salt marsh in response to inlet migration, storms, and sea-level rise. Estuarine, Coastal and Shelf Science 45(6): 717-727.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.236Z", + "last_change_date": "2022-03-14T08:12:45.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15573, + "fields": { + "EF_ID": 522934, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b - Land Converted to Wetlands, 3.B.4.b.ii - Land converted to flooded land, 3.B.4.b.iii - Land converted to other wetlands, 3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Soil carbon stock for mangrove for extraction activities - Aggregated Mineral and organic Soil", + "Technology_Practices": "", + "Parameter_Conditions": "Aggregated mineral and organic soil, mangroves", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "386", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "351", + "Upper_Bound": "424", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.11, Chapter 4. Referenced papers are: Adame, M. F., Reef, R., Herrera-Silveira, J. A., and Lovelock, C. E. (2012). Sensitivity of dissolved organic carbon exchange and sediment bacteria to water quality in mangrove forests. Hydrobiologia, 691:239–253; Breithaupt, J. L., Smoak, J. M., Smith III, T. J., Sanders, C. J., & Hoare, A. 2012. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochemical Cycles, 26(3), GB3011; Chmura G..L., Anisfeld S., Cahoon D. and Lynch J. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1-12; Donato D, JB Kauffman, D Murdiyarso, S Kumianto, M Stidham, M Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5): 293-297; Kauffman, J. B. Heider, C., Cole, T. G. (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 31: 343-352; Khan, M. N. I., Suwa, R., & Hagihara, A. 2009. Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management, 17(6), 585-599; Perry, C. L. & Mendelssohn, I. A. (2009). Ecosystem Effects of Expanding Populations of Avicennia Germinans in a Louisiana Salt Marsh. Wetlands, 29: 396–406; Matsui, N. (1998). Estimated stocks of organic carbon in mangrove roots and sediments in Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2: 199–204; Ren H., Chen H., Li Z.A., Han W.D. 2009. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant and Soil 327:279-291; Ray, R., Ganguly, D., Chowdhury, C. (2011). Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environment, 45:5016-5024; Zhang, J.P., Shen, C-D., Ren, H., Wang, J., Han, W-D. 2012. Estimating change in sedimentary organic carbon content during mangrove restoration in southern China using carbon isotopic measurements. Pedosphere 22:58-66.; Osborne, T. Z., Bruland, G. L., Newman, S., Reddy, K. R. & Grunwald, S. (2011) Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park. Environmental monitoring and assessment 183(1-4): 395-408.; Vegas-Vilarrúbia, T., Baritto, F., López, P., Meleán, G., Ponce, M. E., Mora, L. & Gómez, O. (2010) Tropical Histosols of the lower Orinoco Delta, features and preliminary quantification of their carbon storage. Geoderma 155(3): 280-288.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.346Z", + "last_change_date": "2022-03-14T08:12:45.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15574, + "fields": { + "EF_ID": 522935, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b.ii - Land converted to flooded land, 3.B.4.b.iii - Land converted to other wetlands, 3.B.6.b.iv - Wetlands converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Soil carbon stock for tidal marsh for extraction activities - aggregated organic and mineral soils", + "Technology_Practices": "", + "Parameter_Conditions": "aggregated organic and mineral soils, tidal marsh", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "255", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "254", + "Upper_Bound": "297", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.11, Chapter 4. Referenced papers are: Anisfeld, S. C., Tobin, M. & Benoit, G. (1999) Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound. Estuaries 22(2A): 231-244.; Callaway, J. C., Borgnis, E. L., Turner, R. E. & Milan, C. S. (2012) Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts 35(5): 1163-1181.; Callaway, J. C., DeLaune, R. D. & Patrick, W. H. (1996) Chernobyl Cs-137 used to determine sediment accretion rates at selected northern European coastal wetlands. Limnology and Oceanography 41(3): 444-450.; Chmura, G. L. & Hung, G. A. (2004) Controls on salt marsh accretion: A test in salt marshes of Eastern Canada. Estuaries 27(1): 70-81.; Craft, C. B., Broome, S. W. & Seneca, E. D. (1988) Nitrogen, phosphorus and organic carbon pools in natural and transplanted marsh soils. Estuaries 11(4): 272-280.; Craft, C. (2007) Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52(3): 1220-1230.; Hussein, A. H., Rabenhorst, M. C. & Tucker, M. L. (2004) Modeling of carbon sequestration in coastal marsh soils. Soil Science Society of America Journal 68(5): 1786-1795.; Kearney, M. S. & Stevenson, J. C. (1991) Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7(2): 403-415.; Orson, R., Warren, R. & Niering, W. (1998) Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuarine, Coastal and Shelf Science 47(4): 419-429.; Markewich, H. W., Wysocki, D. A., Pavich, M. J., Rutledge, E. M., Millard, H. T., Rich, F. J., Maat, P. B., Rubin, M. & McGeehin, J. P. (1998) Paleopedology plus TL, Be-10, and C-14 dating as tools in stratigraphic and paleoclimatic investigations, Mississippi River Valley, USA. Quaternary International 51-2: 143-167.; McCaffrey, R. J. & Thomson, J. (1980) A Record of the Accumulation of Sediment and Trace Metals in A Connecticut Salt Marsh. In: Advances in Geophysics, ed. S. Barry, pp. 165-236. Elsevier.; Cahoon, D. R., Lynch, J. C. & Knaus, R. M. (1996) Improved cryogenic coring device for sampling wetland soils. Journal of Sedimentary Research 66(5): 1025-1027.; Callaway, J. C., Borgnis, E. L., Turner, R. E. & Milan, C. S. (2012) Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts 35(5): 1163-1181.; Connor, R. F., Chmura, G. L. & Beecher, C. B. (2001) Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes. Global Biogeochemical Cycles 15(4): 943-954.; Hatton, R. S., Delaune, R. D. & Patrick, W. H. (1983) Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28(3): 494-502.; Livesley, S., Andrusiak, S. & Idczak, D. (2010) Soil greenhouse gas exchange and carbon stocks in natural and managed ecosystems of the Mornington Peninsula. In: Final Report to the Mornington Peninsula Shire Council, Melbourne, Australia.; Loomis, M. J. & Craft, C. B. (2010) Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Science Society of America Journal 74(3): 1028-1036.; Oenema, O. & DeLaune, R. D. (1988) Accretion rates in salt marshes in the Eastern Scheldt, south-west Netherlands. Estuarine, Coastal and Shelf Science 26(4): 379-394.; Patrick Jr, W. H. & DeLaune, R. (1990) Subsidence, accretion, and sea level rise in south San Francisco Bay marshes. Limnology and Oceanography 35(6): 1389-1395.; Roman, C., Peck, J., Allen, J., King, J. & Appleby, P. (1997) Accretion of a New England (USA) salt marsh in response to inlet migration, storms, and sea-level rise. Estuarine, Coastal and Shelf Science 45(6): 717-727.; Yu, O. & Chmura, G. (2009) Soil carbon may be maintained under grazing in a St Lawrence Estuary tidal marsh. Environmental Conservation 36(04): 312-320.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.455Z", + "last_change_date": "2022-03-14T08:12:45.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15575, + "fields": { + "EF_ID": 522936, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b - Land Converted to Wetlands, 3.B.4.b.ii - Land converted to flooded land, 3.B.4.b.iii - Land converted to other wetlands, 3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Soil carbon stock for mangrove for extraction activities - Mineral Soil", + "Technology_Practices": "", + "Parameter_Conditions": "Mineral soil, mangroves", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "286", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "247", + "Upper_Bound": "330", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.11, Chapter 4. Referenced papers are: Adame, M. F., Reef, R., Herrera-Silveira, J. A., and Lovelock, C. E. (2012). Sensitivity of dissolved organic carbon exchange and sediment bacteria to water quality in mangrove forests. Hydrobiologia, 691:239–253; Breithaupt, J. L., Smoak, J. M., Smith III, T. J., Sanders, C. J., & Hoare, A. 2012. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochemical Cycles, 26(3), GB3011; Chmura G..L., Anisfeld S., Cahoon D. and Lynch J. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1-12; Donato D, JB Kauffman, D Murdiyarso, S Kumianto, M Stidham, M Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5): 293-297; Kauffman, J. B. Heider, C., Cole, T. G. (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 31: 343-352; Khan, M. N. I., Suwa, R., & Hagihara, A. 2009. Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management, 17(6), 585-599; Perry, C. L. & Mendelssohn, I. A. (2009). Ecosystem Effects of Expanding Populations of Avicennia Germinans in a Louisiana Salt Marsh. Wetlands, 29: 396–406; Matsui, N. (1998). Estimated stocks of organic carbon in mangrove roots and sediments in Hinchinbrook Channel, Australia. Mangroves and Salt Marshes 2: 199–204; Ren H., Chen H., Li Z.A., Han W.D. 2009. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant and Soil 327:279-291; Ray, R., Ganguly, D., Chowdhury, C. (2011). Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environment, 45:5016-5024; Zhang, J.P., Shen, C-D., Ren, H., Wang, J., Han, W-D. 2012. Estimating change in sedimentary organic carbon content during mangrove restoration in southern China using carbon isotopic measurements. Pedosphere 22:58-66.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.564Z", + "last_change_date": "2022-03-14T08:12:45.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15576, + "fields": { + "EF_ID": 522937, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b.ii - Land converted to flooded land, 3.B.4.b.iii - Land converted to other wetlands, 3.B.6.b.iv - Wetlands converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Soil Carbon stock for seagrass meadows for extraction activities", + "Technology_Practices": "", + "Parameter_Conditions": "Mineral soil in Seagrass meadows", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "108", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "84", + "Upper_Bound": "139", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.11, Chapter 4. Referenced papers are: Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marba`, N., Holmer, M., Mateo, M. A., & Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5(7), 505-509.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.651Z", + "last_change_date": "2022-03-14T08:12:45.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15577, + "fields": { + "EF_ID": 522938, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b.ii - Land converted to flooded land, 3.B.4.b.iii - Land converted to other wetlands, 3.B.6.b.iv - Wetlands converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Soil carbon stock for tidal marsh for extraction activities - mineral soil", + "Technology_Practices": "", + "Parameter_Conditions": "mineral soil, tidal marsh", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "226", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "202", + "Upper_Bound": "252", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.11, Chapter 4. Referenced papers are: Cahoon, D. R., Lynch, J. C. & Knaus, R. M. (1996) Improved cryogenic coring device for sampling wetland soils. Journal of Sedimentary Research 66(5): 1025-1027.; Callaway, J. C., Borgnis, E. L., Turner, R. E. & Milan, C. S. (2012) Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts 35(5): 1163-1181.; Chmura, G. L. & Hung, G. A. (2004) Controls on salt marsh accretion: A test in salt marshes of Eastern Canada. Estuaries 27(1): 70-81.; Connor, R. F., Chmura, G. L. & Beecher, C. B. (2001) Carbon accumulation in Bay of Fundy salt marshes: Implications for restoration of reclaimed marshes. Global Biogeochemical Cycles 15(4): 943-954.; Craft, C. B., Broome, S. W. & Seneca, E. D. (1988) Nitrogen, phosphorus and organic carbon pools in natural and transplanted marsh soils. Estuaries 11(4): 272-280.; Craft, C. (2007) Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52(3): 1220-1230.; Hatton, R. S., Delaune, R. D. & Patrick, W. H. (1983) Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana. Limnology and Oceanography 28(3): 494-502.; Kearney, M. S. & Stevenson, J. C. (1991) Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7(2): 403-415.; Livesley, S., Andrusiak, S. & Idczak, D. (2010) Soil greenhouse gas exchange and carbon stocks in natural and managed ecosystems of the Mornington Peninsula. In: Final Report to the Mornington Peninsula Shire Council, Melbourne, Australia.; Loomis, M. J. & Craft, C. B. (2010) Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Science Society of America Journal 74(3): 1028-1036.; Oenema, O. & DeLaune, R. D. (1988) Accretion rates in salt marshes in the Eastern Scheldt, south-west Netherlands. Estuarine, Coastal and Shelf Science 26(4): 379-394.; Patrick Jr, W. H. & DeLaune, R. (1990) Subsidence, accretion, and sea level rise in south San Francisco Bay marshes. Limnology and Oceanography 35(6): 1389-1395.; Roman, C., Peck, J., Allen, J., King, J. & Appleby, P. (1997) Accretion of a New England (USA) salt marsh in response to inlet migration, storms, and sea-level rise. Estuarine, Coastal and Shelf Science 45(6): 717-727.; Yu, O. & Chmura, G. (2009) Soil carbon may be maintained under grazing in a St Lawrence Estuary tidal marsh. Environmental Conservation 36(04): 312-320.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.739Z", + "last_change_date": "2022-03-14T08:12:45.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15578, + "fields": { + "EF_ID": 522939, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b - Land Converted to Wetlands, 3.B.4.b.ii - Land converted to flooded land, 3.B.4.b.iii - Land converted to other wetlands, 3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Soil carbon stock for mangrove for extraction activities - organic soil", + "Technology_Practices": "", + "Parameter_Conditions": "organic soil, mangroves", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "471", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "436", + "Upper_Bound": "510", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.11, Chapter 4. Referenced papers are: Adame, M. F., Reef, R., Herrera-Silveira, J. A., and Lovelock, C. E. (2012). Sensitivity of dissolved organic carbon exchange and sediment bacteria to water quality in mangrove forests. Hydrobiologia, 691:239–253; Breithaupt, J. L., Smoak, J. M., Smith III, T. J., Sanders, C. J., & Hoare, A. 2012. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochemical Cycles, 26(3), GB3011; Chmura G..L., Anisfeld S., Cahoon D. and Lynch J. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1-12; Donato D, JB Kauffman, D Murdiyarso, S Kumianto, M Stidham, M Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4(5): 293-297; Kauffman, J. B. Heider, C., Cole, T. G. (2011) Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 31: 343-352; Osborne, T. Z., Bruland, G. L., Newman, S., Reddy, K. R. & Grunwald, S. (2011) Spatial distributions and eco-partitioning of soil biogeochemical properties in the Everglades National Park. Environmental monitoring and assessment 183(1-4): 395-408.; Vegas-Vilarrúbia, T., Baritto, F., López, P., Meleán, G., Ponce, M. E., Mora, L. & Gómez, O. (2010) Tropical Histosols of the lower Orinoco Delta, features and preliminary quantification of their carbon storage. Geoderma 155(3): 280-288.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.899Z", + "last_change_date": "2022-03-14T08:12:45.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15579, + "fields": { + "EF_ID": 522940, + "IPCC_Category": "3.B.4.a - Wetlands Remaining Wetlands, 3.B.4.b.ii - Land converted to flooded land, 3.B.4.b.iii - Land converted to other wetlands, 3.B.6.b.iv - Wetlands converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Soil carbon stock for tidal marsh for extraction activities - organic soil", + "Technology_Practices": "", + "Parameter_Conditions": "organic soil, tidal marsh", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "340", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "315", + "Upper_Bound": "366", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.11, Chapter 4. Referenced papers are: Anisfeld, S. C., Tobin, M. & Benoit, G. (1999) Sedimentation rates in flow-restricted and restored salt marshes in Long Island Sound. Estuaries 22(2A): 231-244.; Callaway, J. C., Borgnis, E. L., Turner, R. E. & Milan, C. S. (2012) Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts 35(5): 1163-1181. Callaway, J. C., DeLaune, R. D. & Patrick, W. H. (1996) Chernobyl Cs-137 used to determine sediment accretion rates at selected northern European coastal wetlands. Limnology and Oceanography 41(3): 444-450.; Chmura, G. L. & Hung, G. A. (2004) Controls on salt marsh accretion: A test in salt marshes of Eastern Canada. Estuaries 27(1): 70-81.; Craft, C. B., Broome, S. W. & Seneca, E. D. (1988) Nitrogen, phosphorus and organic carbon pools in natural and transplanted marsh soils. Estuaries 11(4): 272-280.; Craft, C. (2007) Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes. Limnology and Oceanography 52(3): 1220-1230.; Hussein, A. H., Rabenhorst, M. C. & Tucker, M. L. (2004) Modeling of carbon sequestration in coastal marsh soils. Soil Science Society of America Journal 68(5): 1786-1795.; Kearney, M. S. & Stevenson, J. C. (1991) Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7(2): 403-415.; Orson, R., Warren, R. & Niering, W. (1998) Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuarine, Coastal and Shelf Science 47(4): 419-429.; Markewich, H. W., Wysocki, D. A., Pavich, M. J., Rutledge, E. M., Millard, H. T., Rich, F. J., Maat, P. B., Rubin, M. & McGeehin, J. P. (1998) Paleopedology plus TL, Be-10, and C-14 dating as tools in stratigraphic and paleoclimatic investigations, Mississippi River Valley, USA. Quaternary International 51-2: 143-167.; McCaffrey, R. J. & Thomson, J. (1980) A Record of the Accumulation of Sediment and Trace Metals in A Connecticut Salt Marsh. In: Advances in Geophysics, ed. S. Barry, pp. 165-236. Elsevier.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:45.992Z", + "last_change_date": "2022-03-14T08:12:45.992Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15580, + "fields": { + "EF_ID": 522941, + "IPCC_Category": "3.B.1 - Forest land, 3.B.4 - Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Average density (D) of mangrove wood", + "Technology_Practices": "", + "Parameter_Conditions": "Ecosystem: mangrove", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7 & 2.8, Chapter 2, Volume 4, 2006 IPCC Guidelines; Equation 4.1, Chapter 4, 2013 IPCC Wetlands Supplement", + "IPCC_Worksheet": "", + "Data_Source": "IPCC Methodology Report", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "0.64", + "Upper_Bound": "0.74", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 4.6, Chapter 4. Referenced papers are: Global Wood Density Database http://datadryad.org/resource/doi:10.5061/dryad.234/1?show=full; Donato, D. C., Kauffman, J. B., Mackenzie, R. A., Ainsworth, A. & Pfleeger, A. Z. (2012) Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of Environmental Management 97: 89-96; Komiyama, A., Poungparn, S. & Kato, S. (2005) Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology 21: 471-477; Saenger, P. (2002) Mangrove ecology, silviculture and conservation. Dordecht, Netherlands: Springer.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:12:46.083Z", + "last_change_date": "2022-03-14T08:12:46.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15581, + "fields": { + "EF_ID": 523272, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above Ground Biomass (AGB): Riparian forest and woodland", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin (Dassari basin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94.58", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "83.31524", + "Upper_Bound": "105.84476", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1186/s13021-016-0058-5.", + "creation_date": "2022-03-14T08:12:46.176Z", + "last_change_date": "2022-03-14T08:12:46.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15582, + "fields": { + "EF_ID": 523273, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above Ground Biomass (AGB): Savanna Woodland", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin (Dassari basin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.29", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "40.13948", + "Upper_Bound": "50.44052", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1186/s13021-016-0058-5.", + "creation_date": "2022-03-14T08:12:46.285Z", + "last_change_date": "2022-03-14T08:12:46.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15583, + "fields": { + "EF_ID": 523274, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above Ground Biomass (AGB): Shrub Savanna", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin (Dassari basin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.05", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "12.60352", + "Upper_Bound": "15.49648", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1186/s13021-016-0058-5.", + "creation_date": "2022-03-14T08:12:46.393Z", + "last_change_date": "2022-03-14T08:12:46.393Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15584, + "fields": { + "EF_ID": 523275, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above Ground Biomass (AGB): Savanna grassland", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin (Dassari basin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.62", + "Unit": "Mg/ha", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "2.88488", + "Upper_Bound": "4.35512", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1186/s13021-016-0058-5.", + "creation_date": "2022-03-14T08:12:46.503Z", + "last_change_date": "2022-03-14T08:12:46.503Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15585, + "fields": { + "EF_ID": 523276, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Acacia seyal", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin (Dassari basin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.751", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.7192", + "Upper_Bound": "0.7828", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:46.620Z", + "last_change_date": "2022-03-14T08:12:46.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15586, + "fields": { + "EF_ID": 523277, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Combretum glutinosum", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin (Dassari basin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.877", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.848387", + "Upper_Bound": "0.905613", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:46.729Z", + "last_change_date": "2022-03-14T08:12:46.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15587, + "fields": { + "EF_ID": 523278, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Pterocarpus erinaceus", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin (Dassari basin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.826", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.7948", + "Upper_Bound": "0.8572", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:46.839Z", + "last_change_date": "2022-03-14T08:12:46.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15588, + "fields": { + "EF_ID": 523279, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Anogeisus leiocarpus", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Benin (Dassari basin)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.889", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.86356", + "Upper_Bound": "0.91444", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:46.957Z", + "last_change_date": "2022-03-14T08:12:46.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15589, + "fields": { + "EF_ID": 523280, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Mitragyna inermis", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.631", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.614192", + "Upper_Bound": "0.647808", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:47.073Z", + "last_change_date": "2022-03-14T08:12:47.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15590, + "fields": { + "EF_ID": 523281, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Lannea microcrapa", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.546", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.523186", + "Upper_Bound": "0.568814", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:47.191Z", + "last_change_date": "2022-03-14T08:12:47.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15591, + "fields": { + "EF_ID": 523282, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Lannea acida", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.573", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.506931", + "Upper_Bound": "0.639069", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:47.308Z", + "last_change_date": "2022-03-14T08:12:47.308Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15592, + "fields": { + "EF_ID": 523283, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Ficus sp.", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.528", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.5072", + "Upper_Bound": "0.5488", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:47.500Z", + "last_change_date": "2022-03-14T08:12:47.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15593, + "fields": { + "EF_ID": 523284, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Crosopteryx febrifuga", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.704", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.670384", + "Upper_Bound": "0.737616", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:47.609Z", + "last_change_date": "2022-03-14T08:12:47.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15594, + "fields": { + "EF_ID": 523285, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Entada africana", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.631", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.60969", + "Upper_Bound": "0.65231", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:47.718Z", + "last_change_date": "2022-03-14T08:12:47.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15595, + "fields": { + "EF_ID": 523286, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Parkia biglobosa", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.617586", + "Upper_Bound": "0.642414", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:47.827Z", + "last_change_date": "2022-03-14T08:12:47.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15596, + "fields": { + "EF_ID": 523287, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Vitelaria paradoxa", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.838", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.804896", + "Upper_Bound": "0.871104", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:47.936Z", + "last_change_date": "2022-03-14T08:12:47.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15597, + "fields": { + "EF_ID": 523288, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Azadirachta indica", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.763", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.72484", + "Upper_Bound": "0.80116", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:48.037Z", + "last_change_date": "2022-03-14T08:12:48.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15598, + "fields": { + "EF_ID": 523289, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density: Anacardium occidentale", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.569", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "A. Chabi, S.Lautenbach, V. O. A. Orekan and N. Kyei‑Baffo (2016), Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin, Carbon Balance and Management (2016) 11:16, DOI 10.1186/s13021-016-0058-5.", + "English_Abstract": "Background: The estimation of forest biomass changes due to land-use change is of significant importance for estimates of the global carbon budget. The accuracy of biomass density maps depends on the availability of reliable allometric models used in combination with data derived from satellites images and forest inventory data. To reduce the uncertainty in estimates of carbon emissions resulting from deforestation and forest degradation, better information on allometric equations and the spatial distribution of aboveground biomass stocks in each land use/land cover (LULC) class is needed for the different ecological zones. Such information has been sparse for the West African Sudan Savannah zone. This paper provides new data and results for this important zone. The analysis combines satellite images and locally derived allometric models based on non-destructive measurements to estimate aboveground biomass stocks at the watershed level in the Sudan Savannah zone in Benin. Results: We compared three types of empirically fitted allometric models of varying model complexity with respect to the number of input parameters that are easy to measure at the ground: model type I based only on the diameter at breast height (DBH), type II which used DBH and tree height and model type III which used DBH, tree height and wood density as predictors. While for most LULC classes model III outperformed the other models even the simple model I showed a good performance. The estimated mean dry biomass density values and attached standard error for the different LULC class were 3.28 ± 0.31 (for cropland and fallow), 3.62 ± 0.36 (for Savanna grassland), 4.86 ± 1.03 (for Settlements), 14.05 ± 0.72 (for Shrub savanna), 45.29 ± 2.51 (for Savanna Woodland), 46.06 ± 14.40 (for Agroforestry), 94.58 ± 4.98 (for riparian forest and woodland), 162 ± 64.88 (for Tectona grandis plantations), 179.62 ± 57.61 (for Azadirachta indica plantations), 25.17 ± 7.46 (for Gmelina arborea plantations), to 204.92 ± 57.69 (for Eucalyptus grandis plantations) Mg ha−1. The higher uncertainty of agroforestry system and plantations is due to the variance in age which affects biomass stocks. Conclusion: The results from this study help to close the existing knowledge gap with respect to biomass allometric models at the watershed level and the estimation of aboveground biomass stocks in each LULC in the Sudan Savannah in West Africa. The use of model type I, which relies only on the easy to measure DBH, seems justified since it performed almost as good as the more complex model types II and III. The work provided useful data on wood density of the main species of the Sudan Savannah zone, the related local derived biomass expansion factor and the biomass density in each LULC class that would be an indispensable information tool for carbon accounting programme related to the implementation of the Kyoto Protocol and REDD+ (reducing emissions from deforestation and forest degradation, and forests conservation, sustainable management of forests, and enhancement of forest carbon stocks) initiatives.", + "Lower_Bound": "0.55664", + "Upper_Bound": "0.58136", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:12:48.137Z", + "last_change_date": "2022-03-14T08:12:48.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15599, + "fields": { + "EF_ID": 523290, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground living biomass carbon stock", + "Technology_Practices": "Sundarbans mangrove forest", + "Parameter_Conditions": "Vegetation type: Sundri (Heritiera fomes). Area: 21.0 %. Forest area: 6,017 km2 (Bangladesh part) of which 4,120 km2 are covered by the forests. Soil: silty clay loam with alternate layers of clay, silt and sand. Trees in the Sundarbans include 22 families representing 30 genera.", + "Regional_Conditions": "Bangladesh (21˚ 30` N and 22˚ 30` N and 89˚ 00` E and 89˚ 55 `E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "152.57", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Rahman, M. M., et al. (2015). Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management 23(2): 269-283.", + "English_Abstract": "The Sundarbans (21˚30` - 22˚ 30` N and 89˚ 00` - 89˚ -55` E) is the largest mangrove forest in the world. Forests are very important for sequestering atmospheric carbon and mangroves are amongst the most efficient in carbon sequestration. This study presents the estimation of ecosystem carbon (above- and belowground) stock in the Sundarbans using a large scale data sets collected from systematic grid samples throughout the forest. The variation of carbon stock in different vegetation types and in different salinity zones in Sundarbans was investigated. The relationships between carbon stock and different vegetation functional attributes (basal area, mean tree height, crown coverage etc.) were also investigated. The amount of carbon stored varied significantly among vegetation types, salinity zones and vegetation functional attributes (P < 0.05). Sundri (Heritiera fomes) dominated forest types store more ecosystem carbon (360.1 +/- A 22.71 Mg C ha(-1)) than other vegetation types. The fresh water zone shows the highest ecosystem carbon stock (336.09 +/- A 14.74 Mg C ha(-1)) followed by moderate and strong salinity zones. Salinity was found to enhance belowground carbon stock as revealed by the lowest proportion of belowground carbon stock (57.2 %) with respect to ecosystem carbon in fresh water zone and by the highest (71.9 %) in strong salinity zone. The results also reveal that no matter whether the mangroves are tall or dwarf, a significant amount of carbon is stored into the sediment. The vegetation attributes (basal area and mean tree height) of the dominant mangrove species in each vegetation type were identified as the key indicator of ecosystem carbon stock. We recommended some generalized regression equations to predict ecosystem carbon stock from basal area or mean tree height.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Aboveground biomass of live trees, poles, saplings and dead ones (decay status 1: having stem, branch and twigs) was estimated by the following general equation for mangrove tree species (Chave et al. 2005)", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s11273-014-9379-x", + "creation_date": "2022-03-14T08:12:48.246Z", + "last_change_date": "2022-03-14T08:12:48.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15600, + "fields": { + "EF_ID": 523291, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Aboveground living biomass carbon stock", + "Technology_Practices": "Sundarbans mangrove forest", + "Parameter_Conditions": "Sundarbans. Vegetation type: Goran-Gewa (Ceriops decandra-Excoecaria agallocha). Area: 13.7 %. Forest area: 6,017 km2 (Bangladesh part) of which 4,120 km2 are covered by the forests. Soil: silty clay loam with alternate layers of clay, silt and sand. Trees in the Sundarbans include 22 families representing 30 genera.", + "Regional_Conditions": "Bangladesh (21˚ 30` N and 22˚ 30` N and 89˚ 00` E and 89˚ 55 `E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.24", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Rahman, M. M., et al. (2015). Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management 23(2): 269-283.", + "English_Abstract": "The Sundarbans (21˚30` - 22˚ 30` N and 89˚ 00` - 89˚ -55` E) is the largest mangrove forest in the world. Forests are very important for sequestering atmospheric carbon and mangroves are amongst the most efficient in carbon sequestration. This study presents the estimation of ecosystem carbon (above- and belowground) stock in the Sundarbans using a large scale data sets collected from systematic grid samples throughout the forest. The variation of carbon stock in different vegetation types and in different salinity zones in Sundarbans was investigated. The relationships between carbon stock and different vegetation functional attributes (basal area, mean tree height, crown coverage etc.) were also investigated. The amount of carbon stored varied significantly among vegetation types, salinity zones and vegetation functional attributes (P < 0.05). Sundri (Heritiera fomes) dominated forest types store more ecosystem carbon (360.1 +/- A 22.71 Mg C ha(-1)) than other vegetation types. The fresh water zone shows the highest ecosystem carbon stock (336.09 +/- A 14.74 Mg C ha(-1)) followed by moderate and strong salinity zones. Salinity was found to enhance belowground carbon stock as revealed by the lowest proportion of belowground carbon stock (57.2 %) with respect to ecosystem carbon in fresh water zone and by the highest (71.9 %) in strong salinity zone. The results also reveal that no matter whether the mangroves are tall or dwarf, a significant amount of carbon is stored into the sediment. The vegetation attributes (basal area and mean tree height) of the dominant mangrove species in each vegetation type were identified as the key indicator of ecosystem carbon stock. We recommended some generalized regression equations to predict ecosystem carbon stock from basal area or mean tree height.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Aboveground biomass of live trees, poles, saplings and dead ones (decay status 1: having stem, branch and twigs) was estimated by the following general equation for mangrove tree species (Chave et al. 2005)", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s11273-014-9379-x", + "creation_date": "2022-03-14T08:12:48.357Z", + "last_change_date": "2022-03-14T08:12:48.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15601, + "fields": { + "EF_ID": 523292, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Belowground living biomass carbon stock", + "Technology_Practices": "Sundarbans mangrove forest", + "Parameter_Conditions": "Sundarbans. Vegetation type: Sundri (Heritiera fomes). Area: 21.0 %. Forest area: 6,017 km2 (Bangladesh part) of which 4,120 km2 are covered by the forests. Soil: silty clay loam with alternate layers of clay, silt and sand. Trees in the Sundarbans include 22 families representing 30 genera.", + "Regional_Conditions": "Bangladesh (21˚ 30` N and 22˚ 30` N and 89˚ 00` E and 89˚ 55 `E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "196.54", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Rahman, M. M., et al. (2015). Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management 23(2): 269-283.", + "English_Abstract": "The Sundarbans (21˚30` - 22˚ 30` N and 89˚ 00` - 89˚ -55` E) is the largest mangrove forest in the world. Forests are very important for sequestering atmospheric carbon and mangroves are amongst the most efficient in carbon sequestration. This study presents the estimation of ecosystem carbon (above- and belowground) stock in the Sundarbans using a large scale data sets collected from systematic grid samples throughout the forest. The variation of carbon stock in different vegetation types and in different salinity zones in Sundarbans was investigated. The relationships between carbon stock and different vegetation functional attributes (basal area, mean tree height, crown coverage etc.) were also investigated. The amount of carbon stored varied significantly among vegetation types, salinity zones and vegetation functional attributes (P < 0.05). Sundri (Heritiera fomes) dominated forest types store more ecosystem carbon (360.1 +/- A 22.71 Mg C ha(-1)) than other vegetation types. The fresh water zone shows the highest ecosystem carbon stock (336.09 +/- A 14.74 Mg C ha(-1)) followed by moderate and strong salinity zones. Salinity was found to enhance belowground carbon stock as revealed by the lowest proportion of belowground carbon stock (57.2 %) with respect to ecosystem carbon in fresh water zone and by the highest (71.9 %) in strong salinity zone. The results also reveal that no matter whether the mangroves are tall or dwarf, a significant amount of carbon is stored into the sediment. The vegetation attributes (basal area and mean tree height) of the dominant mangrove species in each vegetation type were identified as the key indicator of ecosystem carbon stock. We recommended some generalized regression equations to predict ecosystem carbon stock from basal area or mean tree height.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Belowground biomass of trees was computed by using the general mangrove equation of Komiyama et al. (2005), while for palms, it was conservatively took 15 % of aboveground biomass (because general mangrove equation for belowground biomass does not apply to palms)", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s11273-014-9379-x", + "creation_date": "2022-03-14T08:12:48.482Z", + "last_change_date": "2022-03-14T08:12:48.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15602, + "fields": { + "EF_ID": 523293, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Belowground living biomass carbon stock", + "Technology_Practices": "Sundarbans mangrove forest", + "Parameter_Conditions": "Sundarbans. Vegetation type: Goran (Ceriops decandra). Area: 1.6 %. Forest area: 6,017 km2 (Bangladesh part) of which 4,120 km2 are covered by the forests. Soil: silty clay loam with alternate layers of clay, silt and sand. Trees in the Sundarbans include 22 families representing 30 genera.", + "Regional_Conditions": "Bangladesh (21˚ 30` N and 22˚ 30` N and 89˚ 00` E and 89˚ 55 `E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90.83", + "Unit": "tonnes C/ha", + "Equation": "Eq. 3.2.9 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Rahman, M. M., et al. (2015). Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management 23(2): 269-283.", + "English_Abstract": "The Sundarbans (21˚30` - 22˚ 30` N and 89˚ 00` - 89˚ -55` E) is the largest mangrove forest in the world. Forests are very important for sequestering atmospheric carbon and mangroves are amongst the most efficient in carbon sequestration. This study presents the estimation of ecosystem carbon (above- and belowground) stock in the Sundarbans using a large scale data sets collected from systematic grid samples throughout the forest. The variation of carbon stock in different vegetation types and in different salinity zones in Sundarbans was investigated. The relationships between carbon stock and different vegetation functional attributes (basal area, mean tree height, crown coverage etc.) were also investigated. The amount of carbon stored varied significantly among vegetation types, salinity zones and vegetation functional attributes (P < 0.05). Sundri (Heritiera fomes) dominated forest types store more ecosystem carbon (360.1 +/- A 22.71 Mg C ha(-1)) than other vegetation types. The fresh water zone shows the highest ecosystem carbon stock (336.09 +/- A 14.74 Mg C ha(-1)) followed by moderate and strong salinity zones. Salinity was found to enhance belowground carbon stock as revealed by the lowest proportion of belowground carbon stock (57.2 %) with respect to ecosystem carbon in fresh water zone and by the highest (71.9 %) in strong salinity zone. The results also reveal that no matter whether the mangroves are tall or dwarf, a significant amount of carbon is stored into the sediment. The vegetation attributes (basal area and mean tree height) of the dominant mangrove species in each vegetation type were identified as the key indicator of ecosystem carbon stock. We recommended some generalized regression equations to predict ecosystem carbon stock from basal area or mean tree height.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Belowground biomass of trees was computed by using the general mangrove equation of Komiyama et al. (2005), while for palms, it was conservatively took 15 % of aboveground biomass (because general mangrove equation for belowground biomass does not apply to palms)", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s11273-014-9379-x", + "creation_date": "2022-03-14T08:12:48.599Z", + "last_change_date": "2022-03-14T08:12:48.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15603, + "fields": { + "EF_ID": 523294, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEF for expansion of stem volume to aboveground biomass", + "Technology_Practices": "Agroforestry", + "Parameter_Conditions": "Tea (Camellia sinensis) plantation. Mean diameter: 10.90 cm, Mean height: 0.95m, mean crown area: 0.54 m2", + "Regional_Conditions": "India (Cachar District, latitude 24˚22`and 25˚8`N; longitude 92˚24`and 93 ˚15`E). The climate is sub-tropical, warm and humid climate with average rainfall of 2390 mm, most of which is received during the southwest monsoon season (MayeSeptember). The mean maximum temperature ranges from 25.4 ˚C (January) to 33.5 ˚C (August). The mean minimum temperature ranges from 11.2 ˚C (January) to 25.3 ˚C (August). Soil: silty clay and loamy soil while coarse sandy loamy is found in hillock land. In fact the soil of the region is mixture of alluvial, sandy loam, muddy loam superimposed upon stones, gravels and conglomerates.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.23", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.3; 3.2.5; 3.2.7; 3.2.8; GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kalita, R. M., et al. (2015). Allometric equations for estimating above- and belowground biomass in Tea (Camellia sinensis (L.) O. Kuntze) agroforestry system of Barak Valley, Assam, northeast India. Biomass & Bioenergy 83: 42-49.", + "English_Abstract": "India. Cachar District (latitude 24˚22`and 25˚8`N; longitude 92˚24`and 93 ˚15`E). The climate is sub-tropical, warm and humid climate with average rainfall of 2390 mm, most of which is received during the southwest monsoon season (MayeSeptember). The mean maximum temperature ranges from 25.4 ˚C (January) to 33.5 ˚C (August). The mean minimum temperature ranges from 11.2 ˚C (January) to 25.3 ˚C (August). Soil: silty clay and loamy soil while coarse sandy loamy is found in hillock land. In fact the soil of the region is mixture of alluvial, sandy loam, muddy loam superimposed upon stones, gravels and conglomerates.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The biomass expansion factor (BEF) was calculated as a ratio between the total aboveground biomass and the biomass of the stem.", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/S0961953415300878", + "creation_date": "2022-03-14T08:12:48.718Z", + "last_change_date": "2022-03-14T08:12:48.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15604, + "fields": { + "EF_ID": 523295, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Agroforestry", + "Parameter_Conditions": "Tea (Camellia sinensis) plantation. Mean diameter: 10.90 cm, Mean height: 0.95m, mean crown area: 0.54 m2", + "Regional_Conditions": "India (Cachar District, latitude 24˚22`and 25˚8`N; longitude 92˚24`and 93 ˚15`E). The climate is sub-tropical, warm and humid climate with average rainfall of 2390 mm, most of which is received during the southwest monsoon season (MayeSeptember). The mean maximum temperature ranges from 25.4 ˚C (January) to 33.5 ˚C (August). The mean minimum temperature ranges from 11.2 ˚C (January) to 25.3 ˚C (August). Soil: silty clay and loamy soil while coarse sandy loamy is found in hillock land. In fact the soil of the region is mixture of alluvial, sandy loam, muddy loam superimposed upon stones, gravels and conglomerates.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kalita, R. M., et al. (2015). Allometric equations for estimating above- and belowground biomass in Tea (Camellia sinensis (L.) O. Kuntze) agroforestry system of Barak Valley, Assam, northeast India. Biomass & Bioenergy 83: 42-49.", + "English_Abstract": "India. Cachar District (latitude 24˚22`and 25˚8`N; longitude 92˚24`and 93 ˚15`E). The climate is sub-tropical, warm and humid climate with average rainfall of 2390 mm, most of which is received during the southwest monsoon season (MayeSeptember). The mean maximum temperature ranges from 25.4 ˚C (January) to 33.5 ˚C (August). The mean minimum temperature ranges from 11.2 ˚C (January) to 25.3 ˚C (August). Soil: silty clay and loamy soil while coarse sandy loamy is found in hillock land. In fact the soil of the region is mixture of alluvial, sandy loam, muddy loam superimposed upon stones, gravels and conglomerates.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/S0961953415300878", + "creation_date": "2022-03-14T08:12:48.834Z", + "last_change_date": "2022-03-14T08:12:48.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15605, + "fields": { + "EF_ID": 523296, + "IPCC_Category": "3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density", + "Technology_Practices": "Agroforestry", + "Parameter_Conditions": "Tea (Camellia sinensis) plantation. Mean diameter: 10.90 cm, Mean height: 0.95m, mean crown area: 0.54 m2", + "Regional_Conditions": "India (Cachar District, latitude 24˚22`and 25˚8`N; longitude 92˚24`and 93 ˚15`E). The climate is sub-tropical, warm and humid climate with average rainfall of 2390 mm, most of which is received during the southwest monsoon season (MayeSeptember). The mean maximum temperature ranges from 25.4 ˚C (January) to 33.5 ˚C (August). The mean minimum temperature ranges from 11.2 ˚C (January) to 25.3 ˚C (August). Soil: silty clay and loamy soil while coarse sandy loamy is found in hillock land. In fact the soil of the region is mixture of alluvial, sandy loam, muddy loam superimposed upon stones, gravels and conglomerates.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kalita, R. M., et al. (2015). Allometric equations for estimating above- and belowground biomass in Tea (Camellia sinensis (L.) O. Kuntze) agroforestry system of Barak Valley, Assam, northeast India. Biomass & Bioenergy 83: 42-49.", + "English_Abstract": "India. Cachar District (latitude 24˚22`and 25˚8`N; longitude 92˚24`and 93 ˚15`E). The climate is sub-tropical, warm and humid climate with average rainfall of 2390 mm, most of which is received during the southwest monsoon season (MayeSeptember). The mean maximum temperature ranges from 25.4 ˚C (January) to 33.5 ˚C (August). The mean minimum temperature ranges from 11.2 ˚C (January) to 25.3 ˚C (August). Soil: silty clay and loamy soil while coarse sandy loamy is found in hillock land. In fact the soil of the region is mixture of alluvial, sandy loam, muddy loam superimposed upon stones, gravels and conglomerates.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/S0961953415300878", + "creation_date": "2022-03-14T08:12:48.920Z", + "last_change_date": "2022-03-14T08:12:48.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15606, + "fields": { + "EF_ID": 523297, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 2 years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Puttalam, 8°N, 80°E). 2 m above sea level; rainfall 1100 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.133", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.027Z", + "last_change_date": "2022-03-14T08:12:49.027Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15607, + "fields": { + "EF_ID": 523298, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 4, years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Puttalam, 8°N, 80°E). 2 m above sea level; rainfall 1100 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.112", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.112Z", + "last_change_date": "2022-03-14T08:12:49.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15608, + "fields": { + "EF_ID": 523299, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 6, years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Puttalam, 8°N, 80°E). 2 m above sea level; rainfall 1100 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.108", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.219Z", + "last_change_date": "2022-03-14T08:12:49.219Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15609, + "fields": { + "EF_ID": 523300, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 8, years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Puttalam, 8°N, 80°E). 2 m above sea level; rainfall 1100 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.104", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.303Z", + "last_change_date": "2022-03-14T08:12:49.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15610, + "fields": { + "EF_ID": 523301, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 10, years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Puttalam, 8°N, 80°E). 2 m above sea level; rainfall 1100 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.103", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.403Z", + "last_change_date": "2022-03-14T08:12:49.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15611, + "fields": { + "EF_ID": 523302, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 12 years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Puttalam, 8°N, 80°E). 2 m above sea level; rainfall 1100 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.086", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.487Z", + "last_change_date": "2022-03-14T08:12:49.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15612, + "fields": { + "EF_ID": 523303, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 14 years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Puttalam, 8°N, 80°E). 2 m above sea level; rainfall 1100 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.078", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.588Z", + "last_change_date": "2022-03-14T08:12:49.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15613, + "fields": { + "EF_ID": 523304, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 2 years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Moneragala, 6°N,81 ˚E). 170 m above sea level; rainfall 1588 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.145", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.670Z", + "last_change_date": "2022-03-14T08:12:49.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15614, + "fields": { + "EF_ID": 523305, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 4, years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Moneragala, 6°N,81 ˚E). 170 m above sea level; rainfall 1588 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.141", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.773Z", + "last_change_date": "2022-03-14T08:12:49.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15615, + "fields": { + "EF_ID": 523306, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 6, years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Moneragala, 6°N,81 ˚E). 170 m above sea level; rainfall 1588 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.084", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.853Z", + "last_change_date": "2022-03-14T08:12:49.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15616, + "fields": { + "EF_ID": 523307, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 8, years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Moneragala, 6°N,81 ˚E). 170 m above sea level; rainfall 1588 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.065", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:49.958Z", + "last_change_date": "2022-03-14T08:12:49.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15617, + "fields": { + "EF_ID": 523308, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 10, years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Moneragala, 6°N,81 ˚E). 170 m above sea level; rainfall 1588 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.065", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:50.045Z", + "last_change_date": "2022-03-14T08:12:50.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15618, + "fields": { + "EF_ID": 523309, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 12 years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Moneragala, 6°N,81 ˚E). 170 m above sea level; rainfall 1588 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.064", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:50.150Z", + "last_change_date": "2022-03-14T08:12:50.150Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15619, + "fields": { + "EF_ID": 523310, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Root-to-Shoot ratio", + "Technology_Practices": "Plantations", + "Parameter_Conditions": "Plantations of Eucalyptus camaldulensis. Stands of unthinned E. camaldulensis aged 14 years planted at 2.5 m X 2.5 m", + "Regional_Conditions": "Sri Lanka (Moneragala, 6°N,81 ˚E). 170 m above sea level; rainfall 1588 mm). mean annual temperature ranges from 27.2 31.0°C. The soils are well-drained sandy loams with pH ranging from 5.0 to 7.0. .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.058", + "Unit": "dimensionless", + "Equation": "Eq. 3.2.5 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ranasinghe, D. and G. J. Mayhead (1991). DRY-MATTER CONTENT AND ITS DISTRIBUTION IN AN AGE SERIES OF EUCALYPTUS-CAMALDULENSIS (DEHN) PLANTATIONS IN SRI-LANKA. Forest Ecology and Management 41(1-2): 137-142.", + "English_Abstract": "Dry matter production was determined for Eucalyptus camaldulensis aged 2-14 years in Puttalam and Moneragala in Sri Lanka. Total dry biomass ranged up to 163 t ha-1 at 14 years at which point the root system accounted for 5% of the total. The root:shoot ratio declined steadily from a maximum at age 2 ˚f 0.145. Mean annual production per hectare peaked between 10 and 12 years on both sites. Mean annual leaf efficiency index was at a maximum of 4.05 at 4 years (top height 9.2 m). Total above-ground dry weight could be accurately predicted from mean breast height diameter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://www.sciencedirect.com/science/article/pii/037811279190124E", + "creation_date": "2022-03-14T08:12:50.245Z", + "last_change_date": "2022-03-14T08:12:50.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15620, + "fields": { + "EF_ID": 523311, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Trewia nudilfora", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:50.385Z", + "last_change_date": "2022-03-14T08:12:50.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15621, + "fields": { + "EF_ID": 523312, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Holigarna caustica", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:50.478Z", + "last_change_date": "2022-03-14T08:12:50.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15622, + "fields": { + "EF_ID": 523313, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Lannea coromandelica", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E).", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:50.602Z", + "last_change_date": "2022-03-14T08:12:50.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15623, + "fields": { + "EF_ID": 523314, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Lannea grandis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:50.720Z", + "last_change_date": "2022-03-14T08:12:50.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15624, + "fields": { + "EF_ID": 523315, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Mangifera indica", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:50.829Z", + "last_change_date": "2022-03-14T08:12:50.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15625, + "fields": { + "EF_ID": 523316, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Mangifera sylvatica", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:51.146Z", + "last_change_date": "2022-03-14T08:12:51.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15626, + "fields": { + "EF_ID": 523317, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Swietenia floribunda", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.53", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:51.255Z", + "last_change_date": "2022-03-14T08:12:51.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15627, + "fields": { + "EF_ID": 523318, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Pajanpelia longifolia", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:51.364Z", + "last_change_date": "2022-03-14T08:12:51.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15628, + "fields": { + "EF_ID": 523319, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Sterospermum personatum", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.62", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:51.473Z", + "last_change_date": "2022-03-14T08:12:51.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15629, + "fields": { + "EF_ID": 523320, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Bombax insigne", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:51.582Z", + "last_change_date": "2022-03-14T08:12:51.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15630, + "fields": { + "EF_ID": 523321, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Protium serratum", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:51.691Z", + "last_change_date": "2022-03-14T08:12:51.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15631, + "fields": { + "EF_ID": 523322, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Tamarindus indica", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:51.801Z", + "last_change_date": "2022-03-14T08:12:51.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15632, + "fields": { + "EF_ID": 523323, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Cassia siamea", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:51.910Z", + "last_change_date": "2022-03-14T08:12:51.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15633, + "fields": { + "EF_ID": 523324, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Crataeva adansonii", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.036Z", + "last_change_date": "2022-03-14T08:12:52.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15634, + "fields": { + "EF_ID": 523325, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Garcinia cowa", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.153Z", + "last_change_date": "2022-03-14T08:12:52.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15635, + "fields": { + "EF_ID": 523326, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Mesua ferrea", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.262Z", + "last_change_date": "2022-03-14T08:12:52.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15636, + "fields": { + "EF_ID": 523327, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Terminalia belerica", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.387Z", + "last_change_date": "2022-03-14T08:12:52.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15637, + "fields": { + "EF_ID": 523328, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Terminalia chebula", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.505Z", + "last_change_date": "2022-03-14T08:12:52.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15638, + "fields": { + "EF_ID": 523329, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Anogeissus acuminata", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.79", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.622Z", + "last_change_date": "2022-03-14T08:12:52.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15639, + "fields": { + "EF_ID": 523330, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Dillenia india", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.739Z", + "last_change_date": "2022-03-14T08:12:52.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15640, + "fields": { + "EF_ID": 523331, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Dillenia pentagyna", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.831Z", + "last_change_date": "2022-03-14T08:12:52.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15641, + "fields": { + "EF_ID": 523332, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Dipterocarpus alatus", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:52.940Z", + "last_change_date": "2022-03-14T08:12:52.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15642, + "fields": { + "EF_ID": 523333, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Dipterocarpus pilosus", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:53.050Z", + "last_change_date": "2022-03-14T08:12:53.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15643, + "fields": { + "EF_ID": 523334, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Dipterocarpus scaber", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.66", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:53.158Z", + "last_change_date": "2022-03-14T08:12:53.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15644, + "fields": { + "EF_ID": 523335, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Dipterocarpus turbinatus", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:53.277Z", + "last_change_date": "2022-03-14T08:12:53.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15645, + "fields": { + "EF_ID": 523336, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Hopea odorata", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:53.394Z", + "last_change_date": "2022-03-14T08:12:53.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15646, + "fields": { + "EF_ID": 523337, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Shorea robusta", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:53.512Z", + "last_change_date": "2022-03-14T08:12:53.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15647, + "fields": { + "EF_ID": 523338, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Dioepyros paregrina", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:53.637Z", + "last_change_date": "2022-03-14T08:12:53.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15648, + "fields": { + "EF_ID": 523339, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Hevea brasiliensis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:53.755Z", + "last_change_date": "2022-03-14T08:12:53.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15649, + "fields": { + "EF_ID": 523340, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Acacia nilotica", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:53.880Z", + "last_change_date": "2022-03-14T08:12:53.880Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15650, + "fields": { + "EF_ID": 523341, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Albizia saman", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.005Z", + "last_change_date": "2022-03-14T08:12:54.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15651, + "fields": { + "EF_ID": 523342, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Dalbergia sissoo", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.140Z", + "last_change_date": "2022-03-14T08:12:54.140Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15652, + "fields": { + "EF_ID": 523343, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Erythrina orientalis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.258Z", + "last_change_date": "2022-03-14T08:12:54.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15653, + "fields": { + "EF_ID": 523344, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Erythrina ovalifolia", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.375Z", + "last_change_date": "2022-03-14T08:12:54.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15654, + "fields": { + "EF_ID": 523345, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Pongamia pinnata", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.492Z", + "last_change_date": "2022-03-14T08:12:54.492Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15655, + "fields": { + "EF_ID": 523346, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Lopopetalum finbriatum", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.609Z", + "last_change_date": "2022-03-14T08:12:54.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15656, + "fields": { + "EF_ID": 523347, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Quercus sp", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.727Z", + "last_change_date": "2022-03-14T08:12:54.727Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15657, + "fields": { + "EF_ID": 523348, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Homalium bhamoense", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.845Z", + "last_change_date": "2022-03-14T08:12:54.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15658, + "fields": { + "EF_ID": 523349, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Calophyllum polyanthum", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:54.954Z", + "last_change_date": "2022-03-14T08:12:54.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15659, + "fields": { + "EF_ID": 523350, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Canarium resiniferum", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:55.063Z", + "last_change_date": "2022-03-14T08:12:55.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15660, + "fields": { + "EF_ID": 523351, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Engelhardtia spicata", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:55.180Z", + "last_change_date": "2022-03-14T08:12:55.180Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15661, + "fields": { + "EF_ID": 523352, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Cinnamomum cecidodaphne", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:55.305Z", + "last_change_date": "2022-03-14T08:12:55.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15662, + "fields": { + "EF_ID": 523353, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Duabanga grandiflora", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:55.432Z", + "last_change_date": "2022-03-14T08:12:55.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15663, + "fields": { + "EF_ID": 523354, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Lagerstroemia speciosa", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:55.557Z", + "last_change_date": "2022-03-14T08:12:55.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15664, + "fields": { + "EF_ID": 523355, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Sonneratia apetala", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:55.682Z", + "last_change_date": "2022-03-14T08:12:55.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15665, + "fields": { + "EF_ID": 523356, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Michelia champaca", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:55.800Z", + "last_change_date": "2022-03-14T08:12:55.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15666, + "fields": { + "EF_ID": 523357, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Alphanamixis polystachya", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:55.917Z", + "last_change_date": "2022-03-14T08:12:55.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15667, + "fields": { + "EF_ID": 523358, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Azadirachta indica", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.69", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.060Z", + "last_change_date": "2022-03-14T08:12:56.060Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15668, + "fields": { + "EF_ID": 523359, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Cedrela toona", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.168Z", + "last_change_date": "2022-03-14T08:12:56.168Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15669, + "fields": { + "EF_ID": 523360, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Chukrasia tabularis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.311Z", + "last_change_date": "2022-03-14T08:12:56.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15670, + "fields": { + "EF_ID": 523361, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Melia azadarach", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.413Z", + "last_change_date": "2022-03-14T08:12:56.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15671, + "fields": { + "EF_ID": 523362, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Xylacarpus mollocensis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.513Z", + "last_change_date": "2022-03-14T08:12:56.513Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15672, + "fields": { + "EF_ID": 523363, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Amoora rohituka", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.622Z", + "last_change_date": "2022-03-14T08:12:56.622Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15673, + "fields": { + "EF_ID": 523364, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Acacia auriculiformis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.723Z", + "last_change_date": "2022-03-14T08:12:56.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15674, + "fields": { + "EF_ID": 523365, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Acacia mangium", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.832Z", + "last_change_date": "2022-03-14T08:12:56.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15675, + "fields": { + "EF_ID": 523366, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Albizia chinensis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:56.949Z", + "last_change_date": "2022-03-14T08:12:56.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15676, + "fields": { + "EF_ID": 523367, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Albizia procera", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.066Z", + "last_change_date": "2022-03-14T08:12:57.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15677, + "fields": { + "EF_ID": 523368, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Artocarpus chaplasha", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.44", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.183Z", + "last_change_date": "2022-03-14T08:12:57.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15678, + "fields": { + "EF_ID": 523369, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Artocarpus heterophyllus", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.292Z", + "last_change_date": "2022-03-14T08:12:57.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15679, + "fields": { + "EF_ID": 523370, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Artocarpus lakoocha", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.410Z", + "last_change_date": "2022-03-14T08:12:57.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15680, + "fields": { + "EF_ID": 523371, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Ficus sp.", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.519Z", + "last_change_date": "2022-03-14T08:12:57.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15681, + "fields": { + "EF_ID": 523372, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Myristica linifolia", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.636Z", + "last_change_date": "2022-03-14T08:12:57.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15682, + "fields": { + "EF_ID": 523373, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Syzigium sp.", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.762Z", + "last_change_date": "2022-03-14T08:12:57.762Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15683, + "fields": { + "EF_ID": 523374, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Syzygium grande", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.68", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.872Z", + "last_change_date": "2022-03-14T08:12:57.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15684, + "fields": { + "EF_ID": 523375, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Podocarpus nerrifolia", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:57.972Z", + "last_change_date": "2022-03-14T08:12:57.972Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15685, + "fields": { + "EF_ID": 523376, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Xanthophyllum flavescens", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:58.073Z", + "last_change_date": "2022-03-14T08:12:58.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15686, + "fields": { + "EF_ID": 523377, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Bruguiera conjugata", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.71", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:58.174Z", + "last_change_date": "2022-03-14T08:12:58.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15687, + "fields": { + "EF_ID": 523378, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Anthocephalus chinensis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:58.299Z", + "last_change_date": "2022-03-14T08:12:58.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15688, + "fields": { + "EF_ID": 523379, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Hymenodictyon excelsum", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:58.417Z", + "last_change_date": "2022-03-14T08:12:58.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15689, + "fields": { + "EF_ID": 523380, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Mitragyna rotundifolia", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:58.534Z", + "last_change_date": "2022-03-14T08:12:58.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15690, + "fields": { + "EF_ID": 523381, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Palaquium polyanthum", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:58.651Z", + "last_change_date": "2022-03-14T08:12:58.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15691, + "fields": { + "EF_ID": 523382, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Duabanga sonneratioides", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:58.760Z", + "last_change_date": "2022-03-14T08:12:58.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15692, + "fields": { + "EF_ID": 523383, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Pterospermum acerifolium", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:58.878Z", + "last_change_date": "2022-03-14T08:12:58.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15693, + "fields": { + "EF_ID": 523384, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Pterygota allata", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.57", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:59.003Z", + "last_change_date": "2022-03-14T08:12:59.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15694, + "fields": { + "EF_ID": 523385, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Sterculia villosa", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.29", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:59.120Z", + "last_change_date": "2022-03-14T08:12:59.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15695, + "fields": { + "EF_ID": 523386, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Tetrameles nudiflora", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:59.246Z", + "last_change_date": "2022-03-14T08:12:59.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15696, + "fields": { + "EF_ID": 523387, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Schima wallichi", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:59.348Z", + "last_change_date": "2022-03-14T08:12:59.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15697, + "fields": { + "EF_ID": 523388, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Gmelina arborea", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:59.449Z", + "last_change_date": "2022-03-14T08:12:59.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15698, + "fields": { + "EF_ID": 523389, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Tectona grandis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:59.549Z", + "last_change_date": "2022-03-14T08:12:59.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15699, + "fields": { + "EF_ID": 523390, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wood density", + "Technology_Practices": "Forest", + "Parameter_Conditions": "Climate: monsoonal with one dry and one wet season. Mean temperature: 16 ˚C in the north-west and north-eastern parts of the country to 20–21 ˚C in the coastal areas. The mean annual rainfall in Bangladesh varies 600 mm the west-central part to over 3,000 mm in the northeast and southeast part of the country. Vitex peduncularis", + "Regional_Conditions": "Bangladesh (20˚34` to 26 ˚ 38` N, 88˚01` to 92˚41`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "g/cm3", + "Equation": "Eq. 3.2.3., 3.2.5., 3.2.7., 3.2.8 GPG-LULUCF", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chowdhury, M. Q., S. K. Sarker, J. C. Deb and S. S. Sonet (2013). Timber species grouping in Bangladesh: linking wood properties. Wood Science and Technology 47(4): 797-813.", + "English_Abstract": "Timber species grouping (TSG) is essential for meaningful and costoptimal use of wood. Bangladesh forests are exceedingly diverse and comprise many woody species which are potentially suitable for versatile uses including structural materials. Traditionally, widely known tree species are used for structural timber because technological properties of most of the species are poorly known. In this study, a hierarchical agglomerative cluster analysis based on three selected wood properties [i.e., wood density, modulus of elasticity (MOE) and modulus of rupture (MOR)] of seventy-nine timber species was done. The clustering process led to the formation of four distinct species groups [i.e., very low (TSG1), low (TSG2), medium (TSG3) and high (TSG4)]. However, the species grouping patterns also varied from trait to trait. This might be due to moderate relationship between density and MOE (r2 = 0.46) or MOR (r2 = 0.52). Species of the TSG1 group are mainly characterized by extremely low trait values, while the TSG4 group consists of species having exceedingly high trait values. The TSG2 and TSG3 groups are characterized by low and medium trait values. Hence, it is suggested to select suitable species from these groups, particularly the lesser known high-quality species in afforestation and reforestation programs to meet future timber demand in Bangladesh.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Anatoli Poultouchidou", + "Link": "http://link.springer.com/article/10.1007/s00226-013-0532-0", + "creation_date": "2022-03-14T08:12:59.650Z", + "last_change_date": "2022-03-14T08:12:59.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15700, + "fields": { + "EF_ID": 523544, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF), species:Abies-Picea , Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.79504", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:12:59.767Z", + "last_change_date": "2022-03-14T08:12:59.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15701, + "fields": { + "EF_ID": 523545, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cunninghamia lanceolata Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.46792", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:12:59.876Z", + "last_change_date": "2022-03-14T08:12:59.876Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15702, + "fields": { + "EF_ID": 523546, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cupressus-Fokienia Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "Unknown", + "Upper_Bound": "0.38147", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:12:59.955Z", + "last_change_date": "2022-03-14T08:12:59.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15703, + "fields": { + "EF_ID": 523547, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Larix Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.5176", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.052Z", + "last_change_date": "2022-03-14T08:13:00.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15704, + "fields": { + "EF_ID": 523548, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus koraiensis Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.03412", + "Upper_Bound": "0.60588", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.138Z", + "last_change_date": "2022-03-14T08:13:00.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15705, + "fields": { + "EF_ID": 523549, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus massoniana Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.56728", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.245Z", + "last_change_date": "2022-03-14T08:13:00.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15706, + "fields": { + "EF_ID": 523550, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus tabulaeformis Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.73696", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.330Z", + "last_change_date": "2022-03-14T08:13:00.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15707, + "fields": { + "EF_ID": 523551, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Acacia Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.5872", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.429Z", + "last_change_date": "2022-03-14T08:13:00.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15708, + "fields": { + "EF_ID": 523552, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Betula-Populus Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.04208", + "Upper_Bound": "0.55792", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.514Z", + "last_change_date": "2022-03-14T08:13:00.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15709, + "fields": { + "EF_ID": 523553, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Castanopsis Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.31", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.63672", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.638Z", + "last_change_date": "2022-03-14T08:13:00.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15710, + "fields": { + "EF_ID": 523554, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Casuarina Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.34048", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.721Z", + "last_change_date": "2022-03-14T08:13:00.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15711, + "fields": { + "EF_ID": 523555, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Eucalyptus Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.339", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.814Z", + "last_change_date": "2022-03-14T08:13:00.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15712, + "fields": { + "EF_ID": 523556, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pheobe Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.35305", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:00.905Z", + "last_change_date": "2022-03-14T08:13:00.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15713, + "fields": { + "EF_ID": 523557, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Quercus (deciduous) Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.0758", + "Upper_Bound": "0.4842", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.000Z", + "last_change_date": "2022-03-14T08:13:01.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15714, + "fields": { + "EF_ID": 523558, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Robinia pseudoacacia Component:Branch", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.02325", + "Upper_Bound": "0.63675", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.097Z", + "last_change_date": "2022-03-14T08:13:01.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15715, + "fields": { + "EF_ID": 523559, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Abies-Picea Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.95714", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.209Z", + "last_change_date": "2022-03-14T08:13:01.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15716, + "fields": { + "EF_ID": 523560, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cunninghamia lanceolata Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.28", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.83552", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.305Z", + "last_change_date": "2022-03-14T08:13:01.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15717, + "fields": { + "EF_ID": 523561, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cupressus-Fokienia Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.71462", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.393Z", + "last_change_date": "2022-03-14T08:13:01.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15718, + "fields": { + "EF_ID": 523562, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Larix Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.1792", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.480Z", + "last_change_date": "2022-03-14T08:13:01.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15719, + "fields": { + "EF_ID": 523563, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus koraiensis Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.23", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.49546", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.586Z", + "last_change_date": "2022-03-14T08:13:01.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15720, + "fields": { + "EF_ID": 523564, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus massoniana Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.39776", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.672Z", + "last_change_date": "2022-03-14T08:13:01.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15721, + "fields": { + "EF_ID": 523565, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus tabulaeformis Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.68664", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.820Z", + "last_change_date": "2022-03-14T08:13:01.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15722, + "fields": { + "EF_ID": 523566, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Acacia Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.42585", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:01.905Z", + "last_change_date": "2022-03-14T08:13:01.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15723, + "fields": { + "EF_ID": 523567, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Betula-Populus Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.28856", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.013Z", + "last_change_date": "2022-03-14T08:13:02.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15724, + "fields": { + "EF_ID": 523568, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Castanopsis Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.21252", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.097Z", + "last_change_date": "2022-03-14T08:13:02.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15725, + "fields": { + "EF_ID": 523569, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Casuarina Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.42703", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.197Z", + "last_change_date": "2022-03-14T08:13:02.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15726, + "fields": { + "EF_ID": 523570, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Eucalyptus Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.1994", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.280Z", + "last_change_date": "2022-03-14T08:13:02.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15727, + "fields": { + "EF_ID": 523571, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pheobe Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.00565", + "Upper_Bound": "0.13435", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.398Z", + "last_change_date": "2022-03-14T08:13:02.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15728, + "fields": { + "EF_ID": 523572, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Quercus (deciduous) Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.1621", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.480Z", + "last_change_date": "2022-03-14T08:13:02.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15729, + "fields": { + "EF_ID": 523573, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Robinia pseudoacacia Component:Leaf", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.22315", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.575Z", + "last_change_date": "2022-03-14T08:13:02.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15730, + "fields": { + "EF_ID": 523574, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Abies-Picea Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "1.03386", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.664Z", + "last_change_date": "2022-03-14T08:13:02.664Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15731, + "fields": { + "EF_ID": 523575, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cunninghamia lanceolata Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.01288", + "Upper_Bound": "0.72712", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.785Z", + "last_change_date": "2022-03-14T08:13:02.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15732, + "fields": { + "EF_ID": 523576, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cupressus-Fokienia Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.34", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.1358", + "Upper_Bound": "0.5442", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.881Z", + "last_change_date": "2022-03-14T08:13:02.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15733, + "fields": { + "EF_ID": 523577, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Larix Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.10769", + "Upper_Bound": "0.55231", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:02.970Z", + "last_change_date": "2022-03-14T08:13:02.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15734, + "fields": { + "EF_ID": 523578, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus koraiensis Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.1558", + "Upper_Bound": "0.5642", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.047Z", + "last_change_date": "2022-03-14T08:13:03.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15735, + "fields": { + "EF_ID": 523579, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus massoniana Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.07054", + "Upper_Bound": "0.42946", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.137Z", + "last_change_date": "2022-03-14T08:13:03.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15736, + "fields": { + "EF_ID": 523580, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus tabulaeformis Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.1709", + "Upper_Bound": "0.5291", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.222Z", + "last_change_date": "2022-03-14T08:13:03.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15737, + "fields": { + "EF_ID": 523581, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Acacia Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.69332", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.321Z", + "last_change_date": "2022-03-14T08:13:03.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15738, + "fields": { + "EF_ID": 523582, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Betula-Populus Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.7642", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.405Z", + "last_change_date": "2022-03-14T08:13:03.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15739, + "fields": { + "EF_ID": 523583, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Castanopsis Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.1204", + "Upper_Bound": "0.6196", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.489Z", + "last_change_date": "2022-03-14T08:13:03.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15740, + "fields": { + "EF_ID": 523584, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Casuarina Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.45969", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.572Z", + "last_change_date": "2022-03-14T08:13:03.573Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15741, + "fields": { + "EF_ID": 523585, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Eucalyptus Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.09928", + "Upper_Bound": "0.42072", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.665Z", + "last_change_date": "2022-03-14T08:13:03.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15742, + "fields": { + "EF_ID": 523586, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pheobe Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.36", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.12405", + "Upper_Bound": "0.59595", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.747Z", + "last_change_date": "2022-03-14T08:13:03.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15743, + "fields": { + "EF_ID": 523587, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Quercus (deciduous) Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.12376", + "Upper_Bound": "0.65624", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.841Z", + "last_change_date": "2022-03-14T08:13:03.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15744, + "fields": { + "EF_ID": 523588, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Robinia pseudoacacia Component:Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0", + "Upper_Bound": "0.86892", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:03.939Z", + "last_change_date": "2022-03-14T08:13:03.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15745, + "fields": { + "EF_ID": 523589, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Abies-Picea Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.58", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.48866", + "Upper_Bound": "2.67134", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.051Z", + "last_change_date": "2022-03-14T08:13:04.051Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15746, + "fields": { + "EF_ID": 523590, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cunninghamia lanceolata Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.49", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.71624", + "Upper_Bound": "2.26376", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.139Z", + "last_change_date": "2022-03-14T08:13:04.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15747, + "fields": { + "EF_ID": 523591, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cupressus-Fokienia Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.51", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.98454", + "Upper_Bound": "2.03546", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.227Z", + "last_change_date": "2022-03-14T08:13:04.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15748, + "fields": { + "EF_ID": 523592, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Larix Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.29", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.93288", + "Upper_Bound": "1.64712", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.314Z", + "last_change_date": "2022-03-14T08:13:04.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15749, + "fields": { + "EF_ID": 523593, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus koraiensis Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.56", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.00866", + "Upper_Bound": "2.11134", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.403Z", + "last_change_date": "2022-03-14T08:13:04.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15750, + "fields": { + "EF_ID": 523594, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus massoniana Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.35", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.7548", + "Upper_Bound": "1.9452", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.481Z", + "last_change_date": "2022-03-14T08:13:04.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15751, + "fields": { + "EF_ID": 523595, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus tabulaeformis Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.64", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.86624", + "Upper_Bound": "2.41376", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.588Z", + "last_change_date": "2022-03-14T08:13:04.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15752, + "fields": { + "EF_ID": 523596, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Acacia Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.42", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.90875", + "Upper_Bound": "1.93125", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.672Z", + "last_change_date": "2022-03-14T08:13:04.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15753, + "fields": { + "EF_ID": 523597, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Betula-Populus Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.42", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.06288", + "Upper_Bound": "1.77712", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.780Z", + "last_change_date": "2022-03-14T08:13:04.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15754, + "fields": { + "EF_ID": 523598, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Castanopsis Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.41", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.0016", + "Upper_Bound": "1.8184", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.856Z", + "last_change_date": "2022-03-14T08:13:04.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15755, + "fields": { + "EF_ID": 523599, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Casuarina Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.34", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.9138", + "Upper_Bound": "1.7662", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:04.948Z", + "last_change_date": "2022-03-14T08:13:04.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15756, + "fields": { + "EF_ID": 523600, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Eucalyptus Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.22", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.9215", + "Upper_Bound": "1.5185", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.022Z", + "last_change_date": "2022-03-14T08:13:05.022Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15757, + "fields": { + "EF_ID": 523601, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pheobe Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.23", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.99405", + "Upper_Bound": "1.46595", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.124Z", + "last_change_date": "2022-03-14T08:13:05.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15758, + "fields": { + "EF_ID": 523602, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Quercus (deciduous) Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.34", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.09496", + "Upper_Bound": "1.58504", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.198Z", + "last_change_date": "2022-03-14T08:13:05.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15759, + "fields": { + "EF_ID": 523603, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Robinia pseudoacacia Component:Aboveground", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.42", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.07235", + "Upper_Bound": "1.76765", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.291Z", + "last_change_date": "2022-03-14T08:13:05.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15760, + "fields": { + "EF_ID": 523604, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Abies-Picea Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.93", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.35766", + "Upper_Bound": "3.50234", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.373Z", + "last_change_date": "2022-03-14T08:13:05.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15761, + "fields": { + "EF_ID": 523605, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cunninghamia lanceolata Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.83", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.87768", + "Upper_Bound": "2.78232", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.459Z", + "last_change_date": "2022-03-14T08:13:05.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15762, + "fields": { + "EF_ID": 523606, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Cupressus-Fokienia Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.1874", + "Upper_Bound": "2.4126", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.531Z", + "last_change_date": "2022-03-14T08:13:05.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15763, + "fields": { + "EF_ID": 523607, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Larix Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.64", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.09433", + "Upper_Bound": "2.18567", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.620Z", + "last_change_date": "2022-03-14T08:13:05.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15764, + "fields": { + "EF_ID": 523608, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus koraiensis Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.92", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.16446", + "Upper_Bound": "2.67554", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.706Z", + "last_change_date": "2022-03-14T08:13:05.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15765, + "fields": { + "EF_ID": 523609, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus massoniana Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.65", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.8524", + "Upper_Bound": "2.4476", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.804Z", + "last_change_date": "2022-03-14T08:13:05.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15766, + "fields": { + "EF_ID": 523610, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pinus tabulaeformis Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.95", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.0943", + "Upper_Bound": "2.8057", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:05.890Z", + "last_change_date": "2022-03-14T08:13:05.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15767, + "fields": { + "EF_ID": 523611, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Acacia Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.75", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.9204", + "Upper_Bound": "2.5796", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:06.013Z", + "last_change_date": "2022-03-14T08:13:06.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15768, + "fields": { + "EF_ID": 523612, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Betula-Populus Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.73", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.14391", + "Upper_Bound": "2.31609", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:06.098Z", + "last_change_date": "2022-03-14T08:13:06.098Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15769, + "fields": { + "EF_ID": 523613, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Castanopsis Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.81", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.186", + "Upper_Bound": "2.434", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:06.198Z", + "last_change_date": "2022-03-14T08:13:06.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15770, + "fields": { + "EF_ID": 523614, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Casuarina Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.58", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "0.88272", + "Upper_Bound": "2.27728", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:06.306Z", + "last_change_date": "2022-03-14T08:13:06.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15771, + "fields": { + "EF_ID": 523615, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Eucalyptus Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.0982", + "Upper_Bound": "1.9018", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:06.390Z", + "last_change_date": "2022-03-14T08:13:06.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15772, + "fields": { + "EF_ID": 523616, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Pheobe Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.19245", + "Upper_Bound": "2.00755", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:06.465Z", + "last_change_date": "2022-03-14T08:13:06.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15773, + "fields": { + "EF_ID": 523617, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Quercus (deciduous) Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.73", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.27944", + "Upper_Bound": "2.18056", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:06.566Z", + "last_change_date": "2022-03-14T08:13:06.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15774, + "fields": { + "EF_ID": 523618, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Expansion Factor (BEF) species:Robinia pseudoacacia Component:Whole plant", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.78", + "Unit": "tonnes biomass/tonne stem biomass", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yunjian Luo, Xiaoke Wang, Xiaoquan Zhang, Yin Ren and Hendrik Poorter (2013), Variation in biomass expansion factors for China`s forests in relation to forest type, climate, and stand development, Annals of Forest Science (2013) 70:589–599,DOI 10.1007/s13595-013-0296-6", + "English_Abstract": "Context: Biomass expansion factors (BEFs, defined as the ratios of tree component biomass (branch, leaf, aboveground section, root, and whole) to stem biomass) are important parameters for quantifying forest biomass and carbon stock. However, little information is available about possible causes of the variability in BEFs at large scales. Aims: We examined whether and how BEFs vary with forest types, climate (mean annual temperature, MAT; mean annual precipitation, MAP), and stand development (stand age and size) at the national scale for China. Method: Using our compiled biomass dataset, we calculated values for BEFs and explored their relationships to forest types, climate, and stand development. Results: BEFs varied greatly across forest types and functional groups. They were significantly related to climate and stand development (especially tree height). However, the relationships between BEFs and MAT and MAP were generally different in deciduous forests and evergreen forests, and BEF–climate relationships were weaker in deciduous forests than in evergreen forests and pine forests. Conclusion: To reduce uncertainties induced by BEFs in estimates of forest biomass and carbon stock, values for BEFs should be applied for a specified forest, and BEF functions with influencing factors (e.g., tree height and climate) should be developed as predictor variables for the specified forest.", + "Lower_Bound": "1.0499", + "Upper_Bound": "2.5101", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "DOI 10.1007/s13595-013-0296-6.", + "creation_date": "2022-03-14T08:13:06.645Z", + "last_change_date": "2022-03-14T08:13:06.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15775, + "fields": { + "EF_ID": 523619, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEFC: Root", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2569", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "T. Magalhães and T. Seifert (2015), Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood:measurement uncertaintyCarbon Balance and Management (2015) 10:9DOI 10.1186/s13021-015-0019-4.", + "English_Abstract": "Background: National and regional aboveground biomass (AGB) estimates are generally computed based onstanding stem volume estimates from forest inventories and default biomass expansion factors (BEFs). AGB estimates are converted to estimates of belowground biomass (BGB) using default root-to-shoot ratios (R/S). Thus, BEFs and R/S are not estimated in ordinary forest inventories, which results in uncertainty in estimates of AGB and BGB. Here, we measured BEF and R/S values (including uncertainty) for different components of Lebombo ironwood (Androstachys johnsonii Prain) trees and assessed their dependence on tree size. Results: The BEF values of tree components were unrelated or weakly related to tree size, and R/S was independent of tree size. BEF values varied from 0.02 for foliage to 1.31 Mg m−3 for whole tree; measurement uncertainty (SE) varied from 2.9% for stem BEF to 10.6% for whole-tree BEF. The belowground, aboveground, and whole-tree BEF-based biomass densities were 30 ± 2.3 (SE = 3.89%), 121 ± 7.84 (SE = 3.23%), and 151 ± 9.87 Mg ha−1(SE = 3.27%), respectively. R/S was 0.24 with an uncertainty of 3.4%.Conclusions: Based on the finding of independence or weak dependence of BEF on tree size, we concluded that, forA. johnsonii, constant component BEF values can be accurately used within the interval of harvested tree sizes", + "Lower_Bound": "0.2369", + "Upper_Bound": "0.2769", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:13:06.760Z", + "last_change_date": "2022-03-14T08:13:06.760Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15776, + "fields": { + "EF_ID": 523620, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEFC: Stem", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7334", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "T. Magalhães and T. Seifert (2015), Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood:measurement uncertaintyCarbon Balance and Management (2015) 10:9DOI 10.1186/s13021-015-0019-4.", + "English_Abstract": "Background: National and regional aboveground biomass (AGB) estimates are generally computed based onstanding stem volume estimates from forest inventories and default biomass expansion factors (BEFs). AGB estimates are converted to estimates of belowground biomass (BGB) using default root-to-shoot ratios (R/S). Thus, BEFs and R/S are not estimated in ordinary forest inventories, which results in uncertainty in estimates of AGB and BGB. Here, we measured BEF and R/S values (including uncertainty) for different components of Lebombo ironwood (Androstachys johnsonii Prain) trees and assessed their dependence on tree size. Results: The BEF values of tree components were unrelated or weakly related to tree size, and R/S was independent of tree size. BEF values varied from 0.02 for foliage to 1.31 Mg m−3 for whole tree; measurement uncertainty (SE) varied from 2.9% for stem BEF to 10.6% for whole-tree BEF. The belowground, aboveground, and whole-tree BEF-based biomass densities were 30 ± 2.3 (SE = 3.89%), 121 ± 7.84 (SE = 3.23%), and 151 ± 9.87 Mg ha−1(SE = 3.27%), respectively. R/S was 0.24 with an uncertainty of 3.4%.Conclusions: Based on the finding of independence or weak dependence of BEF on tree size, we concluded that, forA. johnsonii, constant component BEF values can be accurately used within the interval of harvested tree sizes", + "Lower_Bound": "0.6914", + "Upper_Bound": "0.7754", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:13:06.837Z", + "last_change_date": "2022-03-14T08:13:06.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15777, + "fields": { + "EF_ID": 523621, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEFC: Crown", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.317", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "T. Magalhães and T. Seifert (2015), Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood:measurement uncertaintyCarbon Balance and Management (2015) 10:9DOI 10.1186/s13021-015-0019-4.", + "English_Abstract": "Background: National and regional aboveground biomass (AGB) estimates are generally computed based onstanding stem volume estimates from forest inventories and default biomass expansion factors (BEFs). AGB estimates are converted to estimates of belowground biomass (BGB) using default root-to-shoot ratios (R/S). Thus, BEFs and R/S are not estimated in ordinary forest inventories, which results in uncertainty in estimates of AGB and BGB. Here, we measured BEF and R/S values (including uncertainty) for different components of Lebombo ironwood (Androstachys johnsonii Prain) trees and assessed their dependence on tree size. Results: The BEF values of tree components were unrelated or weakly related to tree size, and R/S was independent of tree size. BEF values varied from 0.02 for foliage to 1.31 Mg m−3 for whole tree; measurement uncertainty (SE) varied from 2.9% for stem BEF to 10.6% for whole-tree BEF. The belowground, aboveground, and whole-tree BEF-based biomass densities were 30 ± 2.3 (SE = 3.89%), 121 ± 7.84 (SE = 3.23%), and 151 ± 9.87 Mg ha−1(SE = 3.27%), respectively. R/S was 0.24 with an uncertainty of 3.4%.Conclusions: Based on the finding of independence or weak dependence of BEF on tree size, we concluded that, forA. johnsonii, constant component BEF values can be accurately used within the interval of harvested tree sizes", + "Lower_Bound": "0.279", + "Upper_Bound": "0.355", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:13:06.943Z", + "last_change_date": "2022-03-14T08:13:06.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15778, + "fields": { + "EF_ID": 523622, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BEFC: Total", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3072", + "Unit": "tonnes biomass/m^3 of wood volume", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "T. Magalhães and T. Seifert (2015), Tree component biomass expansion factors and root-to-shoot ratio of Lebombo ironwood:measurement uncertaintyCarbon Balance and Management (2015) 10:9DOI 10.1186/s13021-015-0019-4.", + "English_Abstract": "Background: National and regional aboveground biomass (AGB) estimates are generally computed based onstanding stem volume estimates from forest inventories and default biomass expansion factors (BEFs). AGB estimates are converted to estimates of belowground biomass (BGB) using default root-to-shoot ratios (R/S). Thus, BEFs and R/S are not estimated in ordinary forest inventories, which results in uncertainty in estimates of AGB and BGB. Here, we measured BEF and R/S values (including uncertainty) for different components of Lebombo ironwood (Androstachys johnsonii Prain) trees and assessed their dependence on tree size. Results: The BEF values of tree components were unrelated or weakly related to tree size, and R/S was independent of tree size. BEF values varied from 0.02 for foliage to 1.31 Mg m−3 for whole tree; measurement uncertainty (SE) varied from 2.9% for stem BEF to 10.6% for whole-tree BEF. The belowground, aboveground, and whole-tree BEF-based biomass densities were 30 ± 2.3 (SE = 3.89%), 121 ± 7.84 (SE = 3.23%), and 151 ± 9.87 Mg ha−1(SE = 3.27%), respectively. R/S was 0.24 with an uncertainty of 3.4%.Conclusions: Based on the finding of independence or weak dependence of BEF on tree size, we concluded that, forA. johnsonii, constant component BEF values can be accurately used within the interval of harvested tree sizes", + "Lower_Bound": "1.2216", + "Upper_Bound": "1.3928", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "", + "creation_date": "2022-03-14T08:13:07.020Z", + "last_change_date": "2022-03-14T08:13:07.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15779, + "fields": { + "EF_ID": 523726, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above Ground Biomass (AGB): Brazilian Atlantic forest: Lowland moist forest, Ubatuba, Brazil - 100m asl", + "Technology_Practices": "", + "Parameter_Conditions": "The aboveground biomass (AGB in Mg.ha-1) was calculated for each living individual with DBH > 10 cm found in the monitoring plots including palm trees (95% CI). The allometric equations of Chave et al., (2005) were used for trees including three variables (DAP, Ht and wood specif gravity).", + "Regional_Conditions": "Brazil (sierra do Mar State Park). Largest protected Atlantic Forest remnants in Brazil. Complex topography and the proximity to the ocean control the distribution of rainfall on the coast of São Paulo state (Silva-Dias et al., 1995). The region receives ca. 2500 mm of rainfall annually, and monthly average temperature range from 19.1 to 25.5 ◦C (Sentelhas et al., 1999). The climate is humid subtropical with hot summers (Cfa type in Köppen), typically with one month per year with <50 mm rainfall, and up to three months per year (June–August) with <100 mm rainfall (Sentelhas et al., 1999). Frequent cloud cover and drizzle brought by ocean winds reaches the submontane and montane sites (Silva-Dias et al., 1995); at higher altitudes, air and soil temperatures are lower, with a high incidence of low level clouds and fog formation that reduce annual irradiance (Sousa Neto, 2008).", + "Control_Technologies": "For Lowland was established 4 (four) 1-ha plots (100 m × 100 m) totalizing 4 ha", + "Other_Properties": "The Atlantic Forest is considered one of the world’s most endangered tropical forests and there is little information available about its carbon stock levels. Forest type: Lowland: 50 - 100m asl", + "Value": "200.9", + "Unit": "tonnes dry matter/ha", + "Equation": "Eqaution 2.8, page 2.12 in the IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alves, L. F. (2010). Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management. Vol 260(5): 679-691. doi:10.1016/j.foreco.2010.05.023. http://dx.doi.org/10.1016/j.foreco.2010.05.023.", + "English_Abstract": "Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0–1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems ≥4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006–2007. Live AGB ranged from 166.3 Mg ha−1 (bootstrapped 95% CI: 144.4,187.0) to 283.2 Mg ha−1 (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64–75%) with limited crown illumination but the largest proportion of the live AGB (68–85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle.", + "Lower_Bound": "185.5", + "Upper_Bound": "216.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The predominant vegetation type is tropical moist evergreen forest (Holdridge, 1947) or lowland to lower montane rainforest, following Oliveira-Filho and Fontes (2000), with a tall canopy stratified into lower, canopy and emergent layers, and abundant epiphytes, ferns, bromeliads, and lianas (Morellato and Haddad, 2000). For lowland (50 - 100 m) Each forest type has been previously distinguished by their underlying forest diversity and composition (Sanchez et al., 1999; Sanchez, 2001; Joly et al., unpublished data). Myrtaceae, Rubiaceae, Fabaceae, and Lauraceae are the richest families (Joly et al., unpublished data). Common canopy tree species with dbh > 30 cminclude: Hieronyma achorneoides, Virola bicuhyba, Eriotheca pentaphylla, Sloanea guianensis, Cryptocaria mandiocanna, Ecclinusa ramiflora, Licania hoehnei, and Chrysophyllum viride. Lianas are particularly abundant in gaps at lowland forest sites (Alves et al., unpublished data). Equations utilized in this study: Trees: AGB=exp(–2.977+ln(p*DBH^2*H)) Palms: exp(((57.236+0.9285ln(DBH^2))×105.001)/10^3 where AGB is the above-ground biomass (in kg), DBH is the trunk diameter (in m) and p is the basic wood density (in g/cm^3)", + "Other_Comments": "", + "Data_Provider": "Thiago Metzker (IBAM - Instituto Bem Ambiental)", + "Link": "http://www.sciencedirect.com/science/article/pii/S0378112710002926", + "creation_date": "2022-03-14T08:13:07.121Z", + "last_change_date": "2022-03-14T08:13:07.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15780, + "fields": { + "EF_ID": 523727, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above Ground Biomass (AGB): Brazilian Atlantic forest: Submontane moist forest, Ubatuba, Brazil - 400m asl", + "Technology_Practices": "", + "Parameter_Conditions": "The aboveground biomass (AGB in Mg.ha-1) was calculated for each living individual with DBH > 10 cm found in the monitoring plots including palm trees (95% CI). The allometric equations of Chave et al., (2005) were used for trees including three variables (DAP, Ht and wood specif gravity).", + "Regional_Conditions": "Brazil (sierra do Mar State Park). Largest protected Atlantic Forest remnants in Brazil. Complex topography and the proximity to the ocean control the distribution of rainfall on the coast of São Paulo state (Silva-Dias et al., 1995). The region receives ca. 2500 mm of rainfall annually, and monthly average temperature range from 19.1 to 25.5 ◦C (Sentelhas et al., 1999). The climate is humid subtropical with hot summers (Cfa type in Köppen), typically with one month per year with <50 mm rainfall, and up to three months per year (June–August) with <100 mm rainfall (Sentelhas et al., 1999). Frequent cloud cover and drizzle brought by ocean winds reaches the submontane and montane sites (Silva-Dias et al., 1995); at higher altitudes, air and soil temperatures are lower, with a high incidence of low level clouds and fog formation that reduce annual irradiance (Sousa Neto, 2008).", + "Control_Technologies": "For Submontane was established 4 (four) 1-ha plots (100 m × 100 m) totalizing 4 ha", + "Other_Properties": "The Atlantic Forest is considered one of the world’s most endangered tropical forests and there is little information available about its carbon stock levels. Forest type: Submontane: 100 - 500m asl", + "Value": "243.6", + "Unit": "tonnes dry matter/ha", + "Equation": "Eqaution 2.8, page 2.12 in the IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alves, L. F. (2010). Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management. Vol 260(5): 679-691. doi:10.1016/j.foreco.2010.05.023. http://dx.doi.org/10.1016/j.foreco.2010.05.023.", + "English_Abstract": "Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0–1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems ≥4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006–2007. Live AGB ranged from 166.3 Mg ha−1 (bootstrapped 95% CI: 144.4,187.0) to 283.2 Mg ha−1 (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64–75%) with limited crown illumination but the largest proportion of the live AGB (68–85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle.", + "Lower_Bound": "226.1", + "Upper_Bound": "257.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The predominant vegetation type is tropical moist evergreen forest (Holdridge, 1947) or lowland to lower montane rainforest, following Oliveira-Filho and Fontes (2000), with a tall canopy stratified into lower, canopy and emergent layers, and abundant epiphytes, ferns, bromeliads, and lianas (Morellato and Haddad, 2000). For Submontane: 100 - 500m asl Each forest type has been previously distinguished by their underlying forest diversity and composition (Sanchez et al., 1999; Sanchez, 2001; Joly et al., unpublished data). Myrtaceae, Rubiaceae, Fabaceae, and Lauraceae are the richest families (Joly et al., unpublished data). Common canopy tree species with dbh > 30 cminclude: Hieronyma achorneoides, Virola bicuhyba, Eriotheca pentaphylla, Sloanea guianensis, Cryptocaria mandiocanna, Ecclinusa ramiflora, Licania hoehnei, and Chrysophyllum viride. Lianas are particularly abundant in gaps at lowland forest sites (Alves et al., unpublished data). Equations utilized in this study: Trees: AGB=exp(–2.977+ln(p*DBH^2*H)) Palms: exp(((57.236+0.9285ln(DBH^2))×105.001)/10^3 where AGB is the above-ground biomass (in kg), DBH is the trunk diameter (in m) and p is the basic wood density (in g/cm^3)", + "Other_Comments": "", + "Data_Provider": "Thiago Metzker (IBAM - Instituto Bem Ambiental)", + "Link": "http://www.sciencedirect.com/science/article/pii/S0378112710002926", + "creation_date": "2022-03-14T08:13:07.229Z", + "last_change_date": "2022-03-14T08:13:07.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15781, + "fields": { + "EF_ID": 523728, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above Ground Biomass (AGB): Brazilian Atlantic forest: Montane moist forest, Ubatuba, Brazil - 1000m asl", + "Technology_Practices": "", + "Parameter_Conditions": "The aboveground biomass (AGB in Mg.ha-1) was calculated for each living individual with DBH > 10 cm found in the monitoring plots including palm trees (95% CI). The allometric equations of Chave et al., (2005) were used for trees including three variables (DAP, Ht and wood specif gravity).", + "Regional_Conditions": "Brazil (sierra do Mar State Park). Largest protected Atlantic Forest remnants in Brazil. Complex topography and the proximity to the ocean control the distribution of rainfall on the coast of São Paulo state (Silva-Dias et al., 1995). The region receives ca. 2500 mm of rainfall annually, and monthly average temperature range from 19.1 to 25.5 ◦C (Sentelhas et al., 1999). The climate is humid subtropical with hot summers (Cfa type in Köppen), typically with one month per year with <50 mm rainfall, and up to three months per year (June–August) with <100 mm rainfall (Sentelhas et al., 1999). Frequent cloud cover and drizzle brought by ocean winds reaches the submontane and montane sites (Silva-Dias et al., 1995); at higher altitudes, air and soil temperatures are lower, with a high incidence of low level clouds and fog formation that reduce annual irradiance (Sousa Neto, 2008).", + "Control_Technologies": "For Montane was established 4 (four) 1-ha plots (100 m × 100 m) totalizing 4 ha", + "Other_Properties": "The Atlantic Forest is considered one of the world’s most endangered tropical forests and there is little information available about its carbon stock levels. Forest type: Montane: 500 - 1000m asl", + "Value": "271.7", + "Unit": "tonnes dry matter/ha", + "Equation": "Eqaution 2.8, page 2.12 in the IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alves, L. F. (2010). Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management. Vol 260(5): 679-691. doi:10.1016/j.foreco.2010.05.023. http://dx.doi.org/10.1016/j.foreco.2010.05.023.", + "English_Abstract": "Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0–1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems ≥4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006–2007. Live AGB ranged from 166.3 Mg ha−1 (bootstrapped 95% CI: 144.4,187.0) to 283.2 Mg ha−1 (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64–75%) with limited crown illumination but the largest proportion of the live AGB (68–85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle.", + "Lower_Bound": "243.0", + "Upper_Bound": "311.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The predominant vegetation type is tropical moist evergreen forest (Holdridge, 1947) or lowland to lower montane rainforest, following Oliveira-Filho and Fontes (2000), with a tall canopy stratified into lower, canopy and emergent layers, and abundant epiphytes, ferns, bromeliads, and lianas (Morellato and Haddad, 2000). For Montane forest: 500 - 1000m asl Each forest type has been previously distinguished by their underlying forest diversity and composition (Sanchez et al., 1999; Sanchez, 2001; Joly et al., unpublished data). Myrtaceae, Rubiaceae, Fabaceae, and Lauraceae are the richest families (Joly et al., unpublished data). Common canopy tree species with dbh > 30 cminclude: Hieronyma achorneoides, Virola bicuhyba, Eriotheca pentaphylla, Sloanea guianensis, Cryptocaria mandiocanna, Ecclinusa ramiflora, Licania hoehnei, and Chrysophyllum viride. Lianas are particularly abundant in gaps at lowland forest sites (Alves et al., unpublished data). Equations utilized in this study: Trees: AGB=exp(–2.977+ln(p*DBH^2*H)) Palms: exp(((57.236+0.9285ln(DBH^2))×105.001)/10^3 where AGB is the above-ground biomass (in kg), DBH is the trunk diameter (in m) and p is the basic wood density (in g/cm^3)", + "Other_Comments": "", + "Data_Provider": "Thiago Metzker (IBAM - Instituto Bem Ambiental)", + "Link": "http://www.sciencedirect.com/science/article/pii/S0378112710002926", + "creation_date": "2022-03-14T08:13:07.322Z", + "last_change_date": "2022-03-14T08:13:07.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15782, + "fields": { + "EF_ID": 523729, + "IPCC_Category": "3.B.1 - Forest land, 3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Stem biomass stock of undisturbed forest derived from ground truth observations. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "Application of species-specific and generic stem biomass models to estimate forest carbon stock following vegetation types. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "166.19", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Sinsin B. (2018). Application of site-specific biomass models to quantify spatial distribution of stocks and historical emissions from deforestation in a tropical forest ecosystem. Journal of Forestry Research, 29: 205-213.", + "English_Abstract": "Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types: undisturbed forest, degraded forest, and fallow. Carbon stock of the undisturbed forest was 2.7 times higher than that in the degraded forest and 3.4 times higher than that in fallow. The structure of the forest suggests that the individual species were generally concentrated in lower diameter classes. Carbon stock was positively correlated to basal area and negatively related to tree density, suggesting that trees in higher diameter classes contributed significantly to the total carbon stock. The study demonstrated that large trees constitute an important component to include in the sampling approach to achieve accurate carbon quantification in forestry. Historical emissions from deforestation that converted more than 30% of the Lama forest into cropland between the years 1946 and 1987 amounted to 260,563.17 tons of carbon per year (t CO2/year) for the biomass pool only. The study explained the application of biomass models and ground truth data to estimate reference carbon stock of forests.", + "Lower_Bound": "146.75", + "Upper_Bound": "185.63", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The stem biomass models could be applied for deciduous and semideciduous forest within west africa region.", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://link.springer.com/article/10.1007%2Fs11676-017-0411-x", + "creation_date": "2022-03-14T08:13:07.422Z", + "last_change_date": "2022-03-14T08:13:07.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15783, + "fields": { + "EF_ID": 523730, + "IPCC_Category": "3.B.1 - Forest land, 3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Stem Biomass stock of degraded forest derived from ground truth observations. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "Application of species-specific and generic stem biomass models to estimate forest carbon stock following vegetation types. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62.59", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Sinsin B. (2018). Application of site-specific biomass models to quantify spatial distribution of stocks and historical emissions from deforestation in a tropical forest ecosystem. Journal of Forestry Research, 29: 205-213.", + "English_Abstract": "Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types: undisturbed forest, degraded forest, and fallow. Carbon stock of the undisturbed forest was 2.7 times higher than that in the degraded forest and 3.4 times higher than that in fallow. The structure of the forest suggests that the individual species were generally concentrated in lower diameter classes. Carbon stock was positively correlated to basal area and negatively related to tree density, suggesting that trees in higher diameter classes contributed significantly to the total carbon stock. The study demonstrated that large trees constitute an important component to include in the sampling approach to achieve accurate carbon quantification in forestry. Historical emissions from deforestation that converted more than 30% of the Lama forest into cropland between the years 1946 and 1987 amounted to 260,563.17 tons of carbon per year (t CO2/year) for the biomass pool only. The study explained the application of biomass models and ground truth data to estimate reference carbon stock of forests.", + "Lower_Bound": "50.03", + "Upper_Bound": "75.15", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The stem biomass models could be applied for deciduous and semideciduous forest within west africa region.", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://link.springer.com/article/10.1007%2Fs11676-017-0411-x", + "creation_date": "2022-03-14T08:13:07.531Z", + "last_change_date": "2022-03-14T08:13:07.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15784, + "fields": { + "EF_ID": 523731, + "IPCC_Category": "3.B.1 - Forest land, 3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Stem biomass stock of fallow derived from ground truth observations. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "Application of species-specific and generic stem biomass models to estimate forest carbon stock following vegetation types. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49.71", + "Unit": "tonnes dry matter/ha", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Sinsin B. (2018). Application of site-specific biomass models to quantify spatial distribution of stocks and historical emissions from deforestation in a tropical forest ecosystem. Journal of Forestry Research, 29: 205-213.", + "English_Abstract": "Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types: undisturbed forest, degraded forest, and fallow. Carbon stock of the undisturbed forest was 2.7 times higher than that in the degraded forest and 3.4 times higher than that in fallow. The structure of the forest suggests that the individual species were generally concentrated in lower diameter classes. Carbon stock was positively correlated to basal area and negatively related to tree density, suggesting that trees in higher diameter classes contributed significantly to the total carbon stock. The study demonstrated that large trees constitute an important component to include in the sampling approach to achieve accurate carbon quantification in forestry. Historical emissions from deforestation that converted more than 30% of the Lama forest into cropland between the years 1946 and 1987 amounted to 260,563.17 tons of carbon per year (t CO2/year) for the biomass pool only. The study explained the application of biomass models and ground truth data to estimate reference carbon stock of forests.", + "Lower_Bound": "37.62", + "Upper_Bound": "61.80", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The stem biomass models could be applied for deciduous and semideciduous forest within west africa region.", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://link.springer.com/article/10.1007%2Fs11676-017-0411-x", + "creation_date": "2022-03-14T08:13:07.640Z", + "last_change_date": "2022-03-14T08:13:07.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15785, + "fields": { + "EF_ID": 523732, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density of the Abies sibirica (Siberian fir)", + "Technology_Practices": "", + "Parameter_Conditions": "Basic wood density was calculated as ratio of dry mass to fresh volume of the sample.", + "Regional_Conditions": "Asia; Mongolian boreal forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3264", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 2.10, page 2.16, IPCC 2006 Guideline", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dorjsuren Ch et al., (2017) Technical report on Estimation of Aboveground Biomass and Carbon stock in Mongolian Boreal Forest (Mongolia`s Forest Reference Level submission to the UNFCCC, 22 June 2018).", + "English_Abstract": "", + "Lower_Bound": "0.301312", + "Upper_Bound": "0.351488", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE mean-0.0128, St Dev-0.0559, Coef Var -17.14, N-19", + "Other_Comments": "", + "Data_Provider": "Sanaa Enkhtaivan", + "Link": "https://redd.unfccc.int/files/2018_frel_submission_mongolia.pdf", + "creation_date": "2022-03-14T08:13:07.757Z", + "last_change_date": "2022-03-14T08:13:07.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15786, + "fields": { + "EF_ID": 523733, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density of the Betula platyphylla (Asian white birch)", + "Technology_Practices": "", + "Parameter_Conditions": "Basic wood density was calculated as ratio of dry mass to fresh volume of the sample.", + "Regional_Conditions": "Asia; Mongolian boreal forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4324", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 2.10, page 2.16, IPCC 2006 Guideline", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dorjsuren Ch et al., (2017) Technical report on Estimation of Aboveground Biomass and Carbon stock in Mongolian Boreal Forest (Mongolia`s Forest Reference Level submission to the UNFCCC, 22 June 2018).", + "English_Abstract": "", + "Lower_Bound": "0.40986", + "Upper_Bound": "0.45494", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE mean-0.0115, St Dev-0.0576, Coef Var -13.33, N-25", + "Other_Comments": "", + "Data_Provider": "Sanaa Enkhtaivan", + "Link": "https://redd.unfccc.int/files/2018_frel_submission_mongolia.pdf", + "creation_date": "2022-03-14T08:13:07.845Z", + "last_change_date": "2022-03-14T08:13:07.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15787, + "fields": { + "EF_ID": 523734, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density of the Larix sibirica (Siberian Larch)", + "Technology_Practices": "", + "Parameter_Conditions": "Basic wood density was calculated as ratio of dry mass to fresh volume of the sample.", + "Regional_Conditions": "Asia; Mongolian boreal forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4163", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 2.10, page 2.16, IPCC 2006 Guideline", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dorjsuren Ch et al., (2017) Technical report on Estimation of Aboveground Biomass and Carbon stock in Mongolian Boreal Forest (Mongolia`s Forest Reference Level submission to the UNFCCC, 22 June 2018).", + "English_Abstract": "", + "Lower_Bound": "0.400816", + "Upper_Bound": "0.431784", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE mean-0.0079, St Dev-0.0625, Coef Var -15.02, N-63", + "Other_Comments": "", + "Data_Provider": "Sanaa Enkhtaivan", + "Link": "https://redd.unfccc.int/files/2018_frel_submission_mongolia.pdf", + "creation_date": "2022-03-14T08:13:07.950Z", + "last_change_date": "2022-03-14T08:13:07.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15788, + "fields": { + "EF_ID": 523735, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density of the Picea obovata (Siberian Spruce)", + "Technology_Practices": "", + "Parameter_Conditions": "Basic wood density was calculated as ratio of dry mass to fresh volume of the sample.", + "Regional_Conditions": "Asia; Mongolian boreal forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3608", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 2.10, page 2.16, IPCC 2006 Guideline", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dorjsuren Ch et al., (2017) Technical report on Estimation of Aboveground Biomass and Carbon stock in Mongolian Boreal Forest (Mongolia`s Forest Reference Level submission to the UNFCCC, 22 June 2018).", + "English_Abstract": "", + "Lower_Bound": "0.329832", + "Upper_Bound": "0.391768", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE mean-0.0158, St Dev-0.0613, Coef Var -17.00, N-15", + "Other_Comments": "", + "Data_Provider": "Sanaa Enkhtaivan", + "Link": "https://redd.unfccc.int/files/2018_frel_submission_mongolia.pdf", + "creation_date": "2022-03-14T08:13:08.048Z", + "last_change_date": "2022-03-14T08:13:08.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15789, + "fields": { + "EF_ID": 523736, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density of the Pinus sibirica (Siberian Pine)", + "Technology_Practices": "", + "Parameter_Conditions": "Basic wood density was calculated as ratio of dry mass to fresh volume of the sample.", + "Regional_Conditions": "Asia; Mongolian boreal forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3511", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 2.10, page 2.16, IPCC 2006 Guideline", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dorjsuren Ch et al., (2017) Technical report on Estimation of Aboveground Biomass and Carbon stock in Mongolian Boreal Forest (Mongolia`s Forest Reference Level submission to the UNFCCC, 22 June 2018).", + "English_Abstract": "", + "Lower_Bound": "0.330128", + "Upper_Bound": "0.372072", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE mean-0.0107, St Dev-0.0694, Coef Var -19.76, N-42", + "Other_Comments": "", + "Data_Provider": "Sanaa Enkhtaivan", + "Link": "https://redd.unfccc.int/files/2018_frel_submission_mongolia.pdf", + "creation_date": "2022-03-14T08:13:08.123Z", + "last_change_date": "2022-03-14T08:13:08.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15790, + "fields": { + "EF_ID": 523737, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density of the Pinus sylvestris (Scotch Pine)", + "Technology_Practices": "", + "Parameter_Conditions": "Basic wood density was calculated as ratio of dry mass to fresh volume of the sample.", + "Regional_Conditions": "Asia; Mongolian boreal forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4311", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 2.10, page 2.16, IPCC 2006 Guideline", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dorjsuren Ch et al., (2017) Technical report on Estimation of Aboveground Biomass and Carbon stock in Mongolian Boreal Forest (Mongolia`s Forest Reference Level submission to the UNFCCC, 22 June 2018).", + "English_Abstract": "", + "Lower_Bound": "0.36642", + "Upper_Bound": "0.49578", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE mean-0.0330, St Dev-0.1953, Coef Var -45.30, N-35", + "Other_Comments": "", + "Data_Provider": "Sanaa Enkhtaivan", + "Link": "https://redd.unfccc.int/files/2018_frel_submission_mongolia.pdf", + "creation_date": "2022-03-14T08:13:08.198Z", + "last_change_date": "2022-03-14T08:13:08.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15791, + "fields": { + "EF_ID": 523738, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density of the Populus suaveolens (Mongolian/Siberian polar)", + "Technology_Practices": "", + "Parameter_Conditions": "Basic wood density was calculated as ratio of dry mass to fresh volume of the sample.", + "Regional_Conditions": "Asia; Mongolian boreal forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3583", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 2.10, page 2.16, IPCC 2006 Guideline", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dorjsuren Ch et al., (2017) Technical report on Estimation of Aboveground Biomass and Carbon stock in Mongolian Boreal Forest (Mongolia`s Forest Reference Level submission to the UNFCCC, 22 June 2018).", + "English_Abstract": "", + "Lower_Bound": "0.310672", + "Upper_Bound": "0.405928", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE mean-0.0243, St Dev-0.1475, Coef Var -41.18, N-37", + "Other_Comments": "", + "Data_Provider": "Sanaa Enkhtaivan", + "Link": "https://redd.unfccc.int/files/2018_frel_submission_mongolia.pdf", + "creation_date": "2022-03-14T08:13:08.273Z", + "last_change_date": "2022-03-14T08:13:08.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15792, + "fields": { + "EF_ID": 523739, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Basic wood density of the Populus tremula (Aspen)", + "Technology_Practices": "", + "Parameter_Conditions": "Basic wood density was calculated as ratio of dry mass to fresh volume of the sample.", + "Regional_Conditions": "Asia; Mongolian boreal forest", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4272", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equation 2.10, page 2.16, IPCC 2006 Guideline", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dorjsuren Ch et al., (2017) Technical report on Estimation of Aboveground Biomass and Carbon stock in Mongolian Boreal Forest (Mongolia`s Forest Reference Level submission to the UNFCCC, 22 June 2018).", + "English_Abstract": "", + "Lower_Bound": "0.367616", + "Upper_Bound": "0.486784", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE mean-0.0304, St Dev-0.1425, Coef Var -33.36, N-22", + "Other_Comments": "", + "Data_Provider": "Sanaa Enkhtaivan", + "Link": "https://redd.unfccc.int/files/2018_frel_submission_mongolia.pdf", + "creation_date": "2022-03-14T08:13:08.377Z", + "last_change_date": "2022-03-14T08:13:08.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15793, + "fields": { + "EF_ID": 523740, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic carbon stocks under native vegetation at 0-30 cm soil depth (SOCref). Native vegetation is dry forest", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina; Chaco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53,5", + "Unit": "Mg/ha", + "Equation": "Equation 2.25, page 2.30 in the IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VILLARINO, S.H.; STUDDERT, G.A.; BALDASSINI, P.; CENDOYA, M.G.; CIUFFOLI, L.; MASTRÁNGELO, M; PIÑEIRO G. 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of The Total Environment 575:1056-1065.", + "English_Abstract": "Land use change affects soil organic carbon (SOC) and generates CO 2 emissions. Moreover, SOC depletion entails degradation of soil functions that support ecosystem services. Large areas covered by dry forests have been cleared in the Semiarid Chaco Region of Argentina for cropping expansion. However, deforestation impacts on the SOC stock and its distribution in the soil profile have been scarcely reported. We assessed these impacts based on the analysis of field data along a time-since-deforestation-for-cropping chronosequence, and remote sensing indices. Soil organic C was determined up to 100 cm depth and physically fractionated into mineral associated organic carbon (MAOC) and particulate organic C (POC). Models describing vertical distribution of SOC were fitted. Total SOC, POC and MAOC stocks decreased markedly with increasing cropping age. Particulate organic C was the most sensitive fraction to cultivation. After 10 yr of cropping SOC loss was around 30%, with greater POC loss (near 60%) and smaller MAOC loss (near 15%), at 0–30 cm depth. Similar relative SOC losses were observed in deeper soil layers (30–60 and 60–100 cm). Deforestation and subsequent cropping also modified SOC vertical distribution. Soil organic C loss was negatively associated with the proportion of maize in the rotation and total crop biomass inputs, but positively associated with the proportion of soybean in the rotation. Without effective land use polices, deforestation and agricultural expansion can lead to rapid soil degradation and reductions in the provision of important ecosystem services.", + "Lower_Bound": "22,1", + "Upper_Bound": "84,9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://www.sciencedirect.com/science/article/pii/S0048969716321052", + "creation_date": "2022-03-14T08:13:08.454Z", + "last_change_date": "2022-03-14T08:13:08.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15794, + "fields": { + "EF_ID": 523741, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic carbon stocks under native vegetation at 30-100 cm soil depth (SOCref). Native vegetation is dry forest", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina; Chaco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60,5", + "Unit": "Mg/ha", + "Equation": "Equation 2.25, page 2.30 in the IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VILLARINO, S.H.; STUDDERT, G.A.; BALDASSINI, P.; CENDOYA, M.G.; CIUFFOLI, L.; MASTRÁNGELO, M; PIÑEIRO G. 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of The Total Environment 575:1056-1065.", + "English_Abstract": "Land use change affects soil organic carbon (SOC) and generates CO 2 emissions. Moreover, SOC depletion entails degradation of soil functions that support ecosystem services. Large areas covered by dry forests have been cleared in the Semiarid Chaco Region of Argentina for cropping expansion. However, deforestation impacts on the SOC stock and its distribution in the soil profile have been scarcely reported. We assessed these impacts based on the analysis of field data along a time-since-deforestation-for-cropping chronosequence, and remote sensing indices. Soil organic C was determined up to 100 cm depth and physically fractionated into mineral associated organic carbon (MAOC) and particulate organic C (POC). Models describing vertical distribution of SOC were fitted. Total SOC, POC and MAOC stocks decreased markedly with increasing cropping age. Particulate organic C was the most sensitive fraction to cultivation. After 10 yr of cropping SOC loss was around 30%, with greater POC loss (near 60%) and smaller MAOC loss (near 15%), at 0–30 cm depth. Similar relative SOC losses were observed in deeper soil layers (30–60 and 60–100 cm). Deforestation and subsequent cropping also modified SOC vertical distribution. Soil organic C loss was negatively associated with the proportion of maize in the rotation and total crop biomass inputs, but positively associated with the proportion of soybean in the rotation. Without effective land use polices, deforestation and agricultural expansion can lead to rapid soil degradation and reductions in the provision of important ecosystem services.", + "Lower_Bound": "17,2", + "Upper_Bound": "103,82", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://www.sciencedirect.com/science/article/pii/S0048969716321052", + "creation_date": "2022-03-14T08:13:08.532Z", + "last_change_date": "2022-03-14T08:13:08.532Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15795, + "fields": { + "EF_ID": 523742, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Stock change factor for soil organi carbon, for the forest to cropland land use change at 0-30 cm soil depth", + "Technology_Practices": "Croplands sites had cropping ages between 12 and 40 years. The mean cropping age is 23 years. Croplands had been managed under no-till during the last 15 years (and previously with plowing), and species planted were soybean, maize (Zea mays L.), and wheat (Triticum aestivum L.)", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina; Chaco", + "Control_Technologies": "", + "Other_Properties": "The comparison of soil C stocks were carried out on an equivalent mass basis", + "Value": "0,65", + "Unit": "dimensionless", + "Equation": "Equation 2.25, page 2.30 in the IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VILLARINO, S.H.; STUDDERT, G.A.; BALDASSINI, P.; CENDOYA, M.G.; CIUFFOLI, L.; MASTRÁNGELO, M; PIÑEIRO G. 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of The Total Environment 575:1056-1065.", + "English_Abstract": "Land use change affects soil organic carbon (SOC) and generates CO 2 emissions. Moreover, SOC depletion entails degradation of soil functions that support ecosystem services. Large areas covered by dry forests have been cleared in the Semiarid Chaco Region of Argentina for cropping expansion. However, deforestation impacts on the SOC stock and its distribution in the soil profile have been scarcely reported. We assessed these impacts based on the analysis of field data along a time-since-deforestation-for-cropping chronosequence, and remote sensing indices. Soil organic C was determined up to 100 cm depth and physically fractionated into mineral associated organic carbon (MAOC) and particulate organic C (POC). Models describing vertical distribution of SOC were fitted. Total SOC, POC and MAOC stocks decreased markedly with increasing cropping age. Particulate organic C was the most sensitive fraction to cultivation. After 10 yr of cropping SOC loss was around 30%, with greater POC loss (near 60%) and smaller MAOC loss (near 15%), at 0–30 cm depth. Similar relative SOC losses were observed in deeper soil layers (30–60 and 60–100 cm). Deforestation and subsequent cropping also modified SOC vertical distribution. Soil organic C loss was negatively associated with the proportion of maize in the rotation and total crop biomass inputs, but positively associated with the proportion of soybean in the rotation. Without effective land use polices, deforestation and agricultural expansion can lead to rapid soil degradation and reductions in the provision of important ecosystem services.", + "Lower_Bound": "0,34", + "Upper_Bound": "0,96", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The deforestation method in the study area consists in land clearing with heavy bulldozers dragging chains, burning the remaining vegetation and then plowing down the residues. It is likely that the large C losses observed be related to this deforestation method.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://www.sciencedirect.com/science/article/pii/S0048969716321052", + "creation_date": "2022-03-14T08:13:08.629Z", + "last_change_date": "2022-03-14T08:13:08.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15796, + "fields": { + "EF_ID": 523743, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Stock change factor for soil organi carbon, for the forest to cropland land use change at 30-100 cm soil depth", + "Technology_Practices": "Croplands sites had cropping ages between 14 and 32 years. The mean cropping age is 20 years. Croplands had been managed under no-till during the last 15 years (and previously with plowing), and species planted were soybean, maize (Zea mays L.), and wheat (Triticum aestivum L.)", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina; Chaco", + "Control_Technologies": "", + "Other_Properties": "The comparison of soil C stocks were carried out on an equivalent mass basis", + "Value": "0,52", + "Unit": "dimensionless", + "Equation": "Equation 2.25, page 2.30 in the IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VILLARINO, S.H.; STUDDERT, G.A.; BALDASSINI, P.; CENDOYA, M.G.; CIUFFOLI, L.; MASTRÁNGELO, M; PIÑEIRO G. 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Science of The Total Environment 575:1056-1065.", + "English_Abstract": "Land use change affects soil organic carbon (SOC) and generates CO 2 emissions. Moreover, SOC depletion entails degradation of soil functions that support ecosystem services. Large areas covered by dry forests have been cleared in the Semiarid Chaco Region of Argentina for cropping expansion. However, deforestation impacts on the SOC stock and its distribution in the soil profile have been scarcely reported. We assessed these impacts based on the analysis of field data along a time-since-deforestation-for-cropping chronosequence, and remote sensing indices. Soil organic C was determined up to 100 cm depth and physically fractionated into mineral associated organic carbon (MAOC) and particulate organic C (POC). Models describing vertical distribution of SOC were fitted. Total SOC, POC and MAOC stocks decreased markedly with increasing cropping age. Particulate organic C was the most sensitive fraction to cultivation. After 10 yr of cropping SOC loss was around 30%, with greater POC loss (near 60%) and smaller MAOC loss (near 15%), at 0–30 cm depth. Similar relative SOC losses were observed in deeper soil layers (30–60 and 60–100 cm). Deforestation and subsequent cropping also modified SOC vertical distribution. Soil organic C loss was negatively associated with the proportion of maize in the rotation and total crop biomass inputs, but positively associated with the proportion of soybean in the rotation. Without effective land use polices, deforestation and agricultural expansion can lead to rapid soil degradation and reductions in the provision of important ecosystem services.", + "Lower_Bound": "0,13", + "Upper_Bound": "0,91", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The deforestation method in the study area consists in land clearing with heavy bulldozers dragging chains, burning the remaining vegetation and then plowing down the residues. It is likely that the large C losses observed be related to this deforestation method.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://www.sciencedirect.com/science/article/pii/S0048969716321052", + "creation_date": "2022-03-14T08:13:08.739Z", + "last_change_date": "2022-03-14T08:13:08.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15797, + "fields": { + "EF_ID": 523744, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Soil organic carbon stocks under native vegetation at 0-30 cm soil depth (SOCref). Native vegetation is dry forest", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Argentina; Chaco", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39,7", + "Unit": "Mg/ha", + "Equation": "Equation 2.25, page 2.30 in the IPCC 2006, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: Agriculture, Forestry and Other Land Use", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VILLARINO, S.H.; STUDDERT, G.A.; LATERRA, P. 2018. Greenhouse gas inventories: Deriving soil organic carbon change factors and assessing soil depth relevance in Argentinean Semiarid Chaco. CATENA 169, 164–174.", + "English_Abstract": "Soil organic carbon (SOC) is the main terrestrial carbon (C) reservoir. Land use change has depleted SOC stocks and released large amounts of C dioxide (CO2). Thus, the development of reliable tools for SOC stock monitoring at large scale is fundamental to face climate change. Argentinean Semiarid Chaco (ASC) is a deforestation hotspot, but CO2 emissions from soil has been barely assessed. Deforested area was converted into cropland or grassland. We used empirical data to model SOC stocks under native forest (SOCref) and the RothC model to estimate SOC stock change factors under cropland (Fc) and grasslands (Fg) in the ASC. These SOCref`s and stock change factors were applied in a Tier 2 (T2) C inventory, following the Intergovernmental Panel on Climate Change (IPCC) proposal. We used SOC vertical distribution models to estimate SOC stock at 0–100 cm soil depth from estimated SOC stocks at 0–30 cm, the default soil depth of IPCC C inventory method. The T2 was run for 1976 through 2012 and under three hypothetical land use change scenarios for 2012 through 2032. The scenarios were: i) land use change ceases, ii) land use change rate is the half of 1996–2012 land use change rate, and iii) land use change rate remains as in 1996–2012. Estimated average SOCref stock at 0–30 cm soil depth was 40 Mg C ha−1 and varied between 35 and 51 Mg C ha−1 . Cropland was the main fate of deforested area and the land use with lower SOC stocks. Stock change factors and SOC stocks estimated with T2 were within the range of the empirical data reported in the ASC. However, research about SOC dynamics and land use change is incipient in the ASC and more empirical information is needed to validate T2 estimations. Deforestation in the ASC leads to high CO2 emissions from soil and the only scenario in which those emissions would be reduced is with deforestation cessation. Soil depth considered in greenhouse gas inventories is 0–30 cm, and this strongly underestimates CO2 emissions. We demonstrated that this limitation could be overcome by using SOC vertical distribution models to estimate deep SOC stock (up to 1 m) from estimated surface SOC stock. Hence, these models could be used to improve CO2 estimations from SOC inventories.", + "Lower_Bound": "23,3", + "Upper_Bound": "47,2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The SOCref contents were measured in 21 sites. Each site had its mean annual precipitation and its soil texture. A model was adjusted to predict the SOCref from the mean annual precipitation and sand content of soil. This model was used to predict the SOCref content in the entire Semi-arid Chaco region of Argentina.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://www.sciencedirect.com/science/article/pii/S0341816218302145", + "creation_date": "2022-03-14T08:13:08.848Z", + "last_change_date": "2022-03-14T08:13:08.848Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15798, + "fields": { + "EF_ID": 523745, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 0-10 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.15", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.954", + "Upper_Bound": "1.346", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:08.949Z", + "last_change_date": "2022-03-14T08:13:08.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15799, + "fields": { + "EF_ID": 523746, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.30", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "1.084", + "Upper_Bound": "1.516", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.065Z", + "last_change_date": "2022-03-14T08:13:09.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15800, + "fields": { + "EF_ID": 523747, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.42", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "1.185", + "Upper_Bound": "1.655", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.175Z", + "last_change_date": "2022-03-14T08:13:09.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15801, + "fields": { + "EF_ID": 523748, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 0-10 cm depth i in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.15", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "1.013", + "Upper_Bound": "1.287", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.275Z", + "last_change_date": "2022-03-14T08:13:09.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15802, + "fields": { + "EF_ID": 523749, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.31", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "1.094", + "Upper_Bound": "1.526", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.376Z", + "last_change_date": "2022-03-14T08:13:09.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15803, + "fields": { + "EF_ID": 523750, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.41", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "1.214", + "Upper_Bound": "1.606", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.476Z", + "last_change_date": "2022-03-14T08:13:09.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15804, + "fields": { + "EF_ID": 523751, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 0-10 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.15", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.974", + "Upper_Bound": "1.326", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.585Z", + "last_change_date": "2022-03-14T08:13:09.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15805, + "fields": { + "EF_ID": 523752, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.33", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "1.212", + "Upper_Bound": "1.448", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.686Z", + "last_change_date": "2022-03-14T08:13:09.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15806, + "fields": { + "EF_ID": 523753, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of bulk density derived from direct measurement of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.42", + "Unit": "g/cm3", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "1.302", + "Upper_Bound": "1.538", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.795Z", + "last_change_date": "2022-03-14T08:13:09.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15807, + "fields": { + "EF_ID": 523754, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 0-10 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.151", + "Upper_Bound": "0.269", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.895Z", + "last_change_date": "2022-03-14T08:13:09.895Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15808, + "fields": { + "EF_ID": 523755, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.121", + "Upper_Bound": "0.199", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:09.996Z", + "last_change_date": "2022-03-14T08:13:09.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15809, + "fields": { + "EF_ID": 523756, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.101", + "Upper_Bound": "0.179", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.114Z", + "last_change_date": "2022-03-14T08:13:10.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15810, + "fields": { + "EF_ID": 523757, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 0-10 cm depth in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.20", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.161", + "Upper_Bound": "0.239", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.215Z", + "last_change_date": "2022-03-14T08:13:10.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15811, + "fields": { + "EF_ID": 523758, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.16 ± 0.02 (value ± standard error)", + "Upper_Bound": "0.16 ± 0.02 (value ± standard error)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.307Z", + "last_change_date": "2022-03-14T08:13:10.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15812, + "fields": { + "EF_ID": 523759, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.101", + "Upper_Bound": "0.179", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.417Z", + "last_change_date": "2022-03-14T08:13:10.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15813, + "fields": { + "EF_ID": 523760, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 0-10 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.170", + "Upper_Bound": "0.210", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.525Z", + "last_change_date": "2022-03-14T08:13:10.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15814, + "fields": { + "EF_ID": 523761, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.101", + "Upper_Bound": "0.179", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.634Z", + "last_change_date": "2022-03-14T08:13:10.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15815, + "fields": { + "EF_ID": 523762, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of organic matter content derived from combustion of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.12", + "Unit": "g/g", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "0.081", + "Upper_Bound": "0.159", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.743Z", + "last_change_date": "2022-03-14T08:13:10.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15816, + "fields": { + "EF_ID": 523763, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 0-10 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.61", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "10.788", + "Upper_Bound": "16.432", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.844Z", + "last_change_date": "2022-03-14T08:13:10.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15817, + "fields": { + "EF_ID": 523764, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.32", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "10.086", + "Upper_Bound": "14.554", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:10.945Z", + "last_change_date": "2022-03-14T08:13:10.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15818, + "fields": { + "EF_ID": 523765, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.66", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "9.092", + "Upper_Bound": "14.228", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.045Z", + "last_change_date": "2022-03-14T08:13:11.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15819, + "fields": { + "EF_ID": 523766, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 0-10 cm depth in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.27", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "11.369", + "Upper_Bound": "15.171", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.154Z", + "last_change_date": "2022-03-14T08:13:11.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15820, + "fields": { + "EF_ID": 523767, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.82", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "9.468", + "Upper_Bound": "14.172", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.263Z", + "last_change_date": "2022-03-14T08:13:11.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15821, + "fields": { + "EF_ID": 523768, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.74", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "7.918", + "Upper_Bound": "13.562", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.372Z", + "last_change_date": "2022-03-14T08:13:11.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15822, + "fields": { + "EF_ID": 523769, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 0-10 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.68", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "10.446", + "Upper_Bound": "14.914", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.482Z", + "last_change_date": "2022-03-14T08:13:11.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15823, + "fields": { + "EF_ID": 523770, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 10-20 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.41", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "8.999", + "Upper_Bound": "13.820", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.591Z", + "last_change_date": "2022-03-14T08:13:11.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15824, + "fields": { + "EF_ID": 523771, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected from 20-30 cm depth in vertisol (named also as black cotton soil) and across fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.27", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.25 on page 2.37 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "7.879", + "Upper_Bound": "12.661", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.692Z", + "last_change_date": "2022-03-14T08:13:11.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15825, + "fields": { + "EF_ID": 523772, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected up to 30 cm depth in vertisol (named also as black cotton soil) in undisturbed forest. The undisturbed forest refers to the part of the study area that has remained intact without any disturbance till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.59", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "36.022", + "Upper_Bound": "39.158", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.792Z", + "last_change_date": "2022-03-14T08:13:11.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15826, + "fields": { + "EF_ID": 523773, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected up to 30 cm depth in vertisol (named also as black cotton soil) in degraded forest. The degraded forest refer to areas that were subject to less human perturbations (home establishment) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35.83", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "33.910", + "Upper_Bound": "37.751", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:11.910Z", + "last_change_date": "2022-03-14T08:13:11.910Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15827, + "fields": { + "EF_ID": 523774, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Mean value of soil organic carbon derived from combustion of soil samples collected up to 30 cm depth in vertisol (named also as black cotton soil) in fallow. The fallow refer to areas that were subject to severe human disturbances (cropping systems mainly, cutting down of trees) between 1943 and 1987 (disturbance period in Lama forest). After 1987, trees did not remained on this area of the forest. Since the interruption of agricultural activities between 1986 and 1987, protection measures have taken place in areas previously disturbed. This part of the forest are not subject to any disturbances till now.", + "Technology_Practices": "", + "Parameter_Conditions": "The parameter was derived from soil sampling conducted in a tropical semideciduous forest in West africa. The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a vertisol (also named black cotton soil)", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.36", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3.3 on page 4.106 of the IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Sinsin B. (2017). Spatial and temporal variation of black cotton soil organic carbon in Guinean forest zone in West Africa. Tropical Ecology 58(4): 823-832.", + "English_Abstract": "The overall objective of the research was to generate soil organic carbon (SOC) reference data for the benefit of the REDD+ initiatives. In this study, SOC was derived from direct measurements of organic matter (OM) content in soil. Six hundred and seventy five soil samples were collected to 30 cm depth in black cotton soil and across three vegetation types including undisturbed forest, degraded forest and fallow in a Guinean forest zone in West Africa. The samples were analysed for bulk densities and for soil OM using loss-on-ignition method. Between 12% and 21% OM per soil mass was found at all layers, 0–10, 10–20 and 20–30 cm, suggesting that black cotton soil was organic soil. OM and C contents and SOC were higher in the upper soil layer and decreased with depth. The highest values of these soil factors were detected in undisturbed forest. The low variation of these soil factors within each vegetation type and their fairly homogeneous spatial distribution across vegetation types confirmed that soils in degraded forest and fallow reached equilibrium, considering undisturbed forest as reference. The lowest bulk density (BD) was found in the top 10 cm layer of the soil depth. There were no significant differences between the mean values of BD observed at the same horizon across vegetation types.", + "Lower_Bound": "32.714", + "Upper_Bound": "36.006", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data could be used in West Africa region especially for vertisol", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "http://www.tropecol.com/pdf/open/PDF_58_4/13%20Cedric.pdf", + "creation_date": "2022-03-14T08:13:12.036Z", + "last_change_date": "2022-03-14T08:13:12.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15828, + "fields": { + "EF_ID": 523775, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Cynometra megalophylla derived from ground truth data collection and laboratory analysis. 19 trees were sampled with dbh range between 2.9 and 36 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.82", + "Upper_Bound": "1.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:12.153Z", + "last_change_date": "2022-03-14T08:13:12.153Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15829, + "fields": { + "EF_ID": 523776, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Diospyros abyssinica derived from ground truth data collection and laboratory analysis. 18 trees were sampled with dbh range between 1.8 and 32.7 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.29", + "Upper_Bound": "1.43", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:12.270Z", + "last_change_date": "2022-03-14T08:13:12.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15830, + "fields": { + "EF_ID": 523777, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Zanthoxylum zanthoxyloides derived from ground truth data collection and laboratory analysis. 19 trees were sampled with dbh range between 4.2 and 31.6 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.57", + "Upper_Bound": "1.11", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:12.379Z", + "last_change_date": "2022-03-14T08:13:12.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15831, + "fields": { + "EF_ID": 523778, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Drypetes floribunda derived from ground truth data collection and laboratory analysis. 28 trees were sampled with dbh range between 2.4 and 31.5 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.53", + "Upper_Bound": "1.01", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:12.488Z", + "last_change_date": "2022-03-14T08:13:12.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15832, + "fields": { + "EF_ID": 523779, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Mimusops andongensis derived from ground truth data collection and laboratory analysis. 26 trees were sampled with dbh range between 3.9 and 46.4 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.55", + "Upper_Bound": "0.99", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:12.597Z", + "last_change_date": "2022-03-14T08:13:12.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15833, + "fields": { + "EF_ID": 523780, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Lecaniodiscus cupanioides derived from ground truth data collection and laboratory analysis. 22 trees were sampled with dbh range between 3.3 and 29.3 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.77", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.50", + "Upper_Bound": "1.04", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:12.706Z", + "last_change_date": "2022-03-14T08:13:12.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15834, + "fields": { + "EF_ID": 523781, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Cassipourea congoensis derived from ground truth data collection and laboratory analysis. 28 trees were sampled with dbh range between 2.8 and 22.4 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.65", + "Upper_Bound": "0.85", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:12.823Z", + "last_change_date": "2022-03-14T08:13:12.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15835, + "fields": { + "EF_ID": 523782, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Lonchocarpus sericeus derived from ground truth data collection and laboratory analysis. 23 trees were sampled with dbh range between 3.2 and 38.5 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.75", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.53", + "Upper_Bound": "0.97", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:12.924Z", + "last_change_date": "2022-03-14T08:13:12.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15836, + "fields": { + "EF_ID": 523783, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Celtis brownii (synonym Celtis prantlii) derived from ground truth data collection and laboratory analysis. 27 trees were sampled with dbh range between 3.3 and 29.3 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.73", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.55", + "Upper_Bound": "0.91", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.026Z", + "last_change_date": "2022-03-14T08:13:13.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15837, + "fields": { + "EF_ID": 523784, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Albizia zygia derived from ground truth data collection and laboratory analysis. 28 trees were sampled with dbh range between 2.5 and 65.5 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.49", + "Upper_Bound": "0.81", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.126Z", + "last_change_date": "2022-03-14T08:13:13.126Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15838, + "fields": { + "EF_ID": 523785, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Holoptelea grandis derived from ground truth data collection and laboratory analysis. 34 trees were sampled with dbh range between 3.2 and 32.9 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.63", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.45", + "Upper_Bound": "0.81", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.227Z", + "last_change_date": "2022-03-14T08:13:13.227Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15839, + "fields": { + "EF_ID": 523786, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Malacantha alnifolia derived from ground truth data collection and laboratory analysis. 27 trees were sampled with dbh range between 2.9 and 31.9 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.61", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.49", + "Upper_Bound": "0.73", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.336Z", + "last_change_date": "2022-03-14T08:13:13.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15840, + "fields": { + "EF_ID": 523787, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Khaya senegalensis derived from ground truth data collection and laboratory analysis. 27 trees were sampled with dbh range between 3.7 and 40.2 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.45", + "Upper_Bound": "0.73", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.453Z", + "last_change_date": "2022-03-14T08:13:13.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15841, + "fields": { + "EF_ID": 523788, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Terminalia superba derived from ground truth data collection and laboratory analysis. 37 trees were sampled with dbh range between 8.2 and 44.4 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.44", + "Upper_Bound": "0.68", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.570Z", + "last_change_date": "2022-03-14T08:13:13.570Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15842, + "fields": { + "EF_ID": 523789, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Holarrhena floribunda derived from ground truth data collection and laboratory analysis. 32 trees were sampled with dbh range between 2.9 and 41.3 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.46", + "Upper_Bound": "0.62", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.687Z", + "last_change_date": "2022-03-14T08:13:13.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15843, + "fields": { + "EF_ID": 523790, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Triplochiton scleroxylon derived from ground truth data collection and laboratory analysis. 48 trees were sampled with dbh range between 2.4 and 25.44 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.34", + "Upper_Bound": "0.58", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.805Z", + "last_change_date": "2022-03-14T08:13:13.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15844, + "fields": { + "EF_ID": 523791, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Ficus sur derived from ground truth data collection and laboratory analysis. 27 trees were sampled with dbh range between 4.4 and 67.7 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.45", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Goussanou C.A., Guendehou S., Assogbadjo A.E., Kaire M., Sinsin B., Cuni-Sanchez A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica vol. 50 no. 2 article id 1474. 22 p", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.35", + "Upper_Bound": "0.55", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:13.913Z", + "last_change_date": "2022-03-14T08:13:13.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15845, + "fields": { + "EF_ID": 523792, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific mean wood density of Sterculia tragacantha derived from ground truth data collection and laboratory analysis. 31 trees were sampled with dbh range between 2.9 and 34.6 cm.", + "Technology_Practices": "", + "Parameter_Conditions": "Wood density was calculated as ratio of dry mass to fresh volume of the sample. Wood samples were extracted from trees in a west african tropical semideciduous forest . The site falls within a tropical moist zone according to the IPCC regional climate classification scheme. The soil is a black cotton soil", + "Regional_Conditions": "Africa; Benin (6°55` - 7°00`N, 2°04` - 2°12`E)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "g/cm3", + "Equation": "Equations 2.8 and 2.10 respectively on page 2.15 and 2.18 of the 2006 IPCC Good Practice Guidance for Land Use, Land-Use Change and Forestry", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "", + "English_Abstract": "The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass as functions of diameter at breast height (Dbh) and stem height, logarithmic models had better predictive capabilities. The model validation showed that in absence of data on height, models using Dbh only as variable was an alternative. The comparison of basic wood densities to data published in literature enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good predictive ability for biomass. Given tree species richness of tropical forests, the study demonstrated the hypothesis that species-specific models are preferred to generic models, and concluded that further research should be oriented towards development of specific models to cover the full range of dominant tree species of African forests.", + "Lower_Bound": "0.16", + "Upper_Bound": "0.48", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This is a species-specific data and could be applied to the same species existing in other forest of West Africa region", + "Other_Comments": "", + "Data_Provider": "Goussanou Cédric", + "Link": "https://silvafennica.fi/article/1474", + "creation_date": "2022-03-14T08:13:14.031Z", + "last_change_date": "2022-03-14T08:13:14.031Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15846, + "fields": { + "EF_ID": 523793, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic carbon stock up to 100 cm along croplands in Chilimo dry mountane forest", + "Technology_Practices": "", + "Parameter_Conditions": "Chilimo dry mountane forsest is a disturbed forest under government charge with a partipatory management system. The forest was under moist tropical forest area.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Chilimo dryafromontane forest located on 9 º 38’ N, 38 º 49’ with altitude range of 2400-3050min western Shewa zone ,Central Highlands of Ethiopia, mean annual temprature of 14.5ºC and with maximum annula rainfall of 1200mm.", + "Value": "98.1", + "Unit": "t C ha-1", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mehari A. Tesfaye, Felipe Bravo, Ricardo Ruiz - Peinado, Valentín Pando, Andrés Bravo-Oviedo. 2016. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261:70-79. 0016-7061", + "English_Abstract": "African tropical forests are thought to play an important role in global carbon sequestration. However, the increasing rate of deforestation and the impact of changes in land use require a critical and updated look at what is happening. This work emphasizes the role of bulk density as a main driver in carbon (C) and nitrogen (N) stock in four land-use categories: natural forest, tree plantations, crop land and degraded soil. The study was conducted in the Central Highlands of Ethiopia, where deforestation and human pressure on native forests are exacerbated and erosion has caused extensive soil loss. The methodological approach consisted of evaluating the confounding effect of bulk density and then estimating C and N stocks based on a fixed-mass method rather than the usual fixed-depth method, in order to compare differences across land use categories. Wehypothesized that elevation gradient would play a determining role in C and N concentrations and stocks in native forest, whereas tree species would be the main factor in plantations. C and N concentrations and bulk densities in mineral soil were analyzed as repeated measures in an irregular vertical space ranging from 0–10 cm, 10–30 cm, 30–50 cm and 50–100 cm, using a linear mixed model approach. Single observations from the forest floor were analyzed by a general linear model. Results indicated that soil depth is a more important factor than elevation gradient in native forests, though C and N concentrations and stocks diminished near human settlements. Native forest stored on average 84.4%, 26.4% and 33.7% more carbon and 82.4%, 51.8% and 27.1% more nitrogen than bare soil, crop land and plantations, respectively. Conversion of crop and degraded land to plantations ameliorated soil degradation conditions, but species selection didnot affect carbon and nitrogen stocks.", + "Lower_Bound": "66.56", + "Upper_Bound": "129.64", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This information can be used in similar forest types in eastern africa region", + "Other_Comments": "", + "Data_Provider": "Mehari Alebachew", + "Link": "https://www.sciencedirect.com/science/article/pii/S001670611530094", + "creation_date": "2022-03-14T08:13:14.132Z", + "last_change_date": "2022-03-14T08:13:14.132Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15847, + "fields": { + "EF_ID": 523794, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic carbon stock up to 100 cm along degraded lands in Chilimo dry mountane forest", + "Technology_Practices": "", + "Parameter_Conditions": "Chilimo dry mountane forsest is a disturbed forest under government charge with a partipatory management system. The forest was under moist tropical forest area.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Chilimo dryafromontane forest located on 9 º 38’ N, 38 º 49’ with altitude range of 2400-3050min western Shewa zone ,Central Highlands of Ethiopia, mean annual temprature of 14.5ºC and with maximum annula rainfall of 1200mm.", + "Value": "35.1", + "Unit": "t C ha-1", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mehari A. Tesfaye, Felipe Bravo, Ricardo Ruiz - Peinado, Valentín Pando, Andrés Bravo-Oviedo. 2016. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261:70-79. 0016-7061", + "English_Abstract": "African tropical forests are thought to play an important role in global carbon sequestration. However, the increasing rate of deforestation and the impact of changes in land use require a critical and updated look at what is happening. This work emphasizes the role of bulk density as a main driver in carbon (C) and nitrogen (N) stock in four land-use categories: natural forest, tree plantations, crop land and degraded soil. The study was conducted in the Central Highlands of Ethiopia, where deforestation and human pressure on native forests are exacerbated and erosion has caused extensive soil loss. The methodological approach consisted of evaluating the confounding effect of bulk density and then estimating C and N stocks based on a fixed-mass method rather than the usual fixed-depth method, in order to compare differences across land use categories. Wehypothesized that elevation gradient would play a determining role in C and N concentrations and stocks in native forest, whereas tree species would be the main factor in plantations. C and N concentrations and bulk densities in mineral soil were analyzed as repeated measures in an irregular vertical space ranging from 0–10 cm, 10–30 cm, 30–50 cm and 50–100 cm, using a linear mixed model approach. Single observations from the forest floor were analyzed by a general linear model. Results indicated that soil depth is a more important factor than elevation gradient in native forests, though C and N concentrations and stocks diminished near human settlements. Native forest stored on average 84.4%, 26.4% and 33.7% more carbon and 82.4%, 51.8% and 27.1% more nitrogen than bare soil, crop land and plantations, respectively. Conversion of crop and degraded land to plantations ameliorated soil degradation conditions, but species selection didnot affect carbon and nitrogen stocks.", + "Lower_Bound": "15.72", + "Upper_Bound": "54.48", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This information can be used in similar forest types in eastern africa region", + "Other_Comments": "", + "Data_Provider": "Mehari Alebachew", + "Link": "https://www.sciencedirect.com/science/article/pii/S001670611530094", + "creation_date": "2022-03-14T08:13:14.241Z", + "last_change_date": "2022-03-14T08:13:14.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15848, + "fields": { + "EF_ID": 523795, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic carbon stock up to 100 cm along natural forest in Chilimo dry mountane forest", + "Technology_Practices": "", + "Parameter_Conditions": "Chilimo dry mountane forsest is a disturbed forest under government charge with a partipatory management system. The forest was under moist tropical forest area.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Chilimo dryafromontane forest located on 9 º 38’ N, 38 º 49’ with altitude range of 2400-3050min western Shewa zone ,Central Highlands of Ethiopia, mean annual temprature of 14.5ºC and with maximum annula rainfall of 1200mm.", + "Value": "225.05", + "Unit": "t C ha-1", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mehari A. Tesfaye, Felipe Bravo, Ricardo Ruiz - Peinado, Valentín Pando, Andrés Bravo-Oviedo. 2016. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261:70-79. 0016-7061", + "English_Abstract": "African tropical forests are thought to play an important role in global carbon sequestration. However, the increasing rate of deforestation and the impact of changes in land use require a critical and updated look at what is happening. This work emphasizes the role of bulk density as a main driver in carbon (C) and nitrogen (N) stock in four land-use categories: natural forest, tree plantations, crop land and degraded soil. The study was conducted in the Central Highlands of Ethiopia, where deforestation and human pressure on native forests are exacerbated and erosion has caused extensive soil loss. The methodological approach consisted of evaluating the confounding effect of bulk density and then estimating C and N stocks based on a fixed-mass method rather than the usual fixed-depth method, in order to compare differences across land use categories. Wehypothesized that elevation gradient would play a determining role in C and N concentrations and stocks in native forest, whereas tree species would be the main factor in plantations. C and N concentrations and bulk densities in mineral soil were analyzed as repeated measures in an irregular vertical space ranging from 0–10 cm, 10–30 cm, 30–50 cm and 50–100 cm, using a linear mixed model approach. Single observations from the forest floor were analyzed by a general linear model. Results indicated that soil depth is a more important factor than elevation gradient in native forests, though C and N concentrations and stocks diminished near human settlements. Native forest stored on average 84.4%, 26.4% and 33.7% more carbon and 82.4%, 51.8% and 27.1% more nitrogen than bare soil, crop land and plantations, respectively. Conversion of crop and degraded land to plantations ameliorated soil degradation conditions, but species selection didnot affect carbon and nitrogen stocks.", + "Lower_Bound": "180.54", + "Upper_Bound": "269.52", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This information can be used in similar forest types in eastern africa region", + "Other_Comments": "", + "Data_Provider": "Mehari Alebachew", + "Link": "https://www.sciencedirect.com/science/article/pii/S001670611530094", + "creation_date": "2022-03-14T08:13:14.341Z", + "last_change_date": "2022-03-14T08:13:14.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15849, + "fields": { + "EF_ID": 523796, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic carbon stock up to 100 cm along Plantation forests in Chilimo dry mountane forest", + "Technology_Practices": "", + "Parameter_Conditions": "Chilimo dry mountane forsest is a disturbed forest under government charge with a partipatory management system. The forest was under moist tropical forest area.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Chilimo dryafromontane forest located on 9 º 38’ N, 38 º 49’ with altitude range of 2400-3050min western Shewa zone ,Central Highlands of Ethiopia, mean annual temprature of 14.5ºC and with maximum annula rainfall of 1200mm.", + "Value": "149.21", + "Unit": "t C ha-1", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mehari A. Tesfaye, Felipe Bravo, Ricardo Ruiz - Peinado, Valentín Pando, Andrés Bravo-Oviedo. 2016. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 261:70-79. 0016-7061", + "English_Abstract": "African tropical forests are thought to play an important role in global carbon sequestration. However, the increasing rate of deforestation and the impact of changes in land use require a critical and updated look at what is happening. This work emphasizes the role of bulk density as a main driver in carbon (C) and nitrogen (N) stock in four land-use categories: natural forest, tree plantations, crop land and degraded soil. The study was conducted in the Central Highlands of Ethiopia, where deforestation and human pressure on native forests are exacerbated and erosion has caused extensive soil loss. The methodological approach consisted of evaluating the confounding effect of bulk density and then estimating C and N stocks based on a fixed-mass method rather than the usual fixed-depth method, in order to compare differences across land use categories. Wehypothesized that elevation gradient would play a determining role in C and N concentrations and stocks in native forest, whereas tree species would be the main factor in plantations. C and N concentrations and bulk densities in mineral soil were analyzed as repeated measures in an irregular vertical space ranging from 0–10 cm, 10–30 cm, 30–50 cm and 50–100 cm, using a linear mixed model approach. Single observations from the forest floor were analyzed by a general linear model. Results indicated that soil depth is a more important factor than elevation gradient in native forests, though C and N concentrations and stocks diminished near human settlements. Native forest stored on average 84.4%, 26.4% and 33.7% more carbon and 82.4%, 51.8% and 27.1% more nitrogen than bare soil, crop land and plantations, respectively. Conversion of crop and degraded land to plantations ameliorated soil degradation conditions, but species selection didnot affect carbon and nitrogen stocks.", + "Lower_Bound": "117.65", + "Upper_Bound": "180.77", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This information can be used in similar forest types in eastern africa region", + "Other_Comments": "", + "Data_Provider": "Mehari Alebachew", + "Link": "https://www.sciencedirect.com/science/article/pii/S001670611530094", + "creation_date": "2022-03-14T08:13:14.452Z", + "last_change_date": "2022-03-14T08:13:14.452Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15850, + "fields": { + "EF_ID": 524162, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Management factor for soil C stock change associated with different grassland management conditions.", + "Technology_Practices": "Grassland in the Brazilian Amazon.", + "Parameter_Conditions": "Degraded grassland in Oxisols. The predominant soil orders in the region are Oxisols (Latossolos), which cover ~40% of the study area.", + "Regional_Conditions": "South America, Brazil (BRA), Rondônia and Mato Grosso states. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondônia and Mato Grosso are representing 13.2% of the Brazilian territory (or about 23% of the Brazilian Amazon region). Annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Annual mean temperature is 25.2 °C.", + "Value": "0.91", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Ogle, S.M., Cerri, C.E.P., Cerri, C.C. 2009. Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma, 149: 84-91.", + "English_Abstract": "Grassland management affects soil organic carbon (SOC) content and a variety of management options have been proposed to sequester carbon. However, studies conducted in Brazilian pastures have shown divergent responses for the SOC depending on management practices. Our objective was to evaluate the effects of management on SOC stocks in grasslands of the Brazilian states of Rondônia and Mato Grosso, and to derive region-specific factors for soil C stock change associated with different management conditions. Compared to SOC stocks in native vegetation, degraded grassland management decreased SOC by a factor of 0.91 ± 0.14, nominal grassland management reduced SOC stock for Oxisols by a relatively small factor of 0.99 ± 0.08, whereas, SOC storage increased by a factor of 1.24 ± 0.07 with nominal management for other soil types. Improved grassland management on Oxisols increased SOC storage by 1.19 ± 0.07, relative to native stocks, but therewere insufficient data to evaluate the impact of improved grasslandmanagement for other soil types. Using these results,we also evaluated the potential for grasslandmanagement to sequester or emit C to the atmosphere, and found that degraded grassland management decreased stocks by about 0.27–0.28 Mg C ha⁻¹ yr⁻¹; nominal management on Oxisols decreased C at a rate of 0.03 Mg C ha⁻¹ yr⁻¹, while nominal management on others soil types and improved management on Oxisols increased stocks by 0.72 Mg C ha⁻¹ yr⁻¹ and 0.61 Mg C ha⁻¹ yr⁻¹, respectively. Therefore, when well managed or improved, grasslands in Rondônia and Mato Grosso states have the potential to sequester C.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SD ±0.14", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1016/j.geoderma.2008.11.023", + "creation_date": "2022-03-14T08:13:14.552Z", + "last_change_date": "2022-03-14T08:13:14.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15851, + "fields": { + "EF_ID": 524163, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Management factor for soil C stock change associated with different grassland management conditions.", + "Technology_Practices": "Grassland in the Brazilian Amazon.", + "Parameter_Conditions": "Nominal grassland in Oxisols. The predominant soil orders in the region are Oxisols (Latossolos), which cover ~40% of the study area.", + "Regional_Conditions": "South America, Brazil (BRA), Rondônia and Mato Grosso states. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondônia and Mato Grosso are representing 13.2% of the Brazilian territory (or about 23% of the Brazilian Amazon region). Annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Annual mean temperature is 25.2 °C.", + "Value": "0.99", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Ogle, S.M., Cerri, C.E.P., Cerri, C.C. 2009. Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma, 149: 84-91.", + "English_Abstract": "Grassland management affects soil organic carbon (SOC) content and a variety of management options have been proposed to sequester carbon. However, studies conducted in Brazilian pastures have shown divergent responses for the SOC depending on management practices. Our objective was to evaluate the effects of management on SOC stocks in grasslands of the Brazilian states of Rondônia and Mato Grosso, and to derive region-specific factors for soil C stock change associated with different management conditions. Compared to SOC stocks in native vegetation, degraded grassland management decreased SOC by a factor of 0.91 ± 0.14, nominal grassland management reduced SOC stock for Oxisols by a relatively small factor of 0.99 ± 0.08, whereas, SOC storage increased by a factor of 1.24 ± 0.07 with nominal management for other soil types. Improved grassland management on Oxisols increased SOC storage by 1.19 ± 0.07, relative to native stocks, but therewere insufficient data to evaluate the impact of improved grasslandmanagement for other soil types. Using these results,we also evaluated the potential for grasslandmanagement to sequester or emit C to the atmosphere, and found that degraded grassland management decreased stocks by about 0.27–0.28 Mg C ha⁻¹ yr⁻¹; nominal management on Oxisols decreased C at a rate of 0.03 Mg C ha⁻¹ yr⁻¹, while nominal management on others soil types and improved management on Oxisols increased stocks by 0.72 Mg C ha⁻¹ yr⁻¹ and 0.61 Mg C ha⁻¹ yr⁻¹, respectively. Therefore, when well managed or improved, grasslands in Rondônia and Mato Grosso states have the potential to sequester C.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SD ±0.08", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1016/j.geoderma.2008.11.023", + "creation_date": "2022-03-14T08:13:14.652Z", + "last_change_date": "2022-03-14T08:13:14.652Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15852, + "fields": { + "EF_ID": 524164, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Management factor for soil C stock change associated with different grassland management conditions.", + "Technology_Practices": "Grassland in the Brazilian Amazon.", + "Parameter_Conditions": "Degraded grassland in Oxisols. The predominant soil orders in the region are Oxisols (Latossolos), which cover ~40% of the study area.", + "Regional_Conditions": "South America, Brazil (BRA), Rondônia and Mato Grosso states. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondônia and Mato Grosso are representing 13.2% of the Brazilian territory (or about 23% of the Brazilian Amazon region). Annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Annual mean temperature is 25.2 °C.", + "Value": "1.24", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Ogle, S.M., Cerri, C.E.P., Cerri, C.C. 2009. Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma, 149: 84-91.", + "English_Abstract": "Grassland management affects soil organic carbon (SOC) content and a variety of management options have been proposed to sequester carbon. However, studies conducted in Brazilian pastures have shown divergent responses for the SOC depending on management practices. Our objective was to evaluate the effects of management on SOC stocks in grasslands of the Brazilian states of Rondônia and Mato Grosso, and to derive region-specific factors for soil C stock change associated with different management conditions. Compared to SOC stocks in native vegetation, degraded grassland management decreased SOC by a factor of 0.91 ± 0.14, nominal grassland management reduced SOC stock for Oxisols by a relatively small factor of 0.99 ± 0.08, whereas, SOC storage increased by a factor of 1.24 ± 0.07 with nominal management for other soil types. Improved grassland management on Oxisols increased SOC storage by 1.19 ± 0.07, relative to native stocks, but therewere insufficient data to evaluate the impact of improved grasslandmanagement for other soil types. Using these results,we also evaluated the potential for grasslandmanagement to sequester or emit C to the atmosphere, and found that degraded grassland management decreased stocks by about 0.27–0.28 Mg C ha⁻¹ yr⁻¹; nominal management on Oxisols decreased C at a rate of 0.03 Mg C ha⁻¹ yr⁻¹, while nominal management on others soil types and improved management on Oxisols increased stocks by 0.72 Mg C ha⁻¹ yr⁻¹ and 0.61 Mg C ha⁻¹ yr⁻¹, respectively. Therefore, when well managed or improved, grasslands in Rondônia and Mato Grosso states have the potential to sequester C.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SD ±0.07", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1016/j.geoderma.2008.11.023", + "creation_date": "2022-03-14T08:13:14.754Z", + "last_change_date": "2022-03-14T08:13:14.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15853, + "fields": { + "EF_ID": 524165, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Management factor for soil C stock change associated with different grassland management conditions.", + "Technology_Practices": "Grassland in the Brazilian Amazon.", + "Parameter_Conditions": "Improved grassland in Oxisols. The predominant soil orders in the region are Oxisols (Latossolos), which cover ~40% of the study area.", + "Regional_Conditions": "South America, Brazil (BRA), Rondônia and Mato Grosso states. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondônia and Mato Grosso are representing 13.2% of the Brazilian territory (or about 23% of the Brazilian Amazon region). Annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Annual mean temperature is 25.2 °C.", + "Value": "1.19", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Ogle, S.M., Cerri, C.E.P., Cerri, C.C. 2009. Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma, 149: 84-91.", + "English_Abstract": "Grassland management affects soil organic carbon (SOC) content and a variety of management options have been proposed to sequester carbon. However, studies conducted in Brazilian pastures have shown divergent responses for the SOC depending on management practices. Our objective was to evaluate the effects of management on SOC stocks in grasslands of the Brazilian states of Rondônia and Mato Grosso, and to derive region-specific factors for soil C stock change associated with different management conditions. Compared to SOC stocks in native vegetation, degraded grassland management decreased SOC by a factor of 0.91 ± 0.14, nominal grassland management reduced SOC stock for Oxisols by a relatively small factor of 0.99 ± 0.08, whereas, SOC storage increased by a factor of 1.24 ± 0.07 with nominal management for other soil types. Improved grassland management on Oxisols increased SOC storage by 1.19 ± 0.07, relative to native stocks, but therewere insufficient data to evaluate the impact of improved grasslandmanagement for other soil types. Using these results,we also evaluated the potential for grasslandmanagement to sequester or emit C to the atmosphere, and found that degraded grassland management decreased stocks by about 0.27–0.28 Mg C ha⁻¹ yr⁻¹; nominal management on Oxisols decreased C at a rate of 0.03 Mg C ha⁻¹ yr⁻¹, while nominal management on others soil types and improved management on Oxisols increased stocks by 0.72 Mg C ha⁻¹ yr⁻¹ and 0.61 Mg C ha⁻¹ yr⁻¹, respectively. Therefore, when well managed or improved, grasslands in Rondônia and Mato Grosso states have the potential to sequester C.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SD ±0.07", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1016/j.geoderma.2008.11.023", + "creation_date": "2022-03-14T08:13:14.854Z", + "last_change_date": "2022-03-14T08:13:14.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15854, + "fields": { + "EF_ID": 524166, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C management factor for full tillage (FT)", + "Technology_Practices": "Land use change and agricultural management practices under full-tillage", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area). Almost all rotations were soybean-based with a second crop or vegetated fallow. Millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) were the dominant second crops.", + "Regional_Conditions": "South America, Brazil (BRA), Rondonia and Mato Grosso states. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2C.", + "Value": "0.94", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Ogle, S.M., Cerri, C.C., Cerri, C.E.P. 2010. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil & Tillage Research, 106: 177-184.", + "English_Abstract": "The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC storage by 1.08 ± 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 ± 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 ± 0.04, but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor value of 0.98 ± 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1016/j.still.2009.12.005", + "creation_date": "2022-03-14T08:13:14.954Z", + "last_change_date": "2022-03-14T08:13:14.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15855, + "fields": { + "EF_ID": 524167, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C management factor for perennial crop areas (coffee and cacao).", + "Technology_Practices": "Land use change and agricultural management practices under perennial crops (coffee and cacao)", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area). Almost all rotations were soybean-based with a second crop or vegetated fallow. Millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) were the dominant second crops.", + "Regional_Conditions": "South America, Brazil (BRA), Rondonia and Mato Grosso states. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2C.", + "Value": "0.98", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Ogle, S.M., Cerri, C.C., Cerri, C.E.P. 2010. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil & Tillage Research, 106: 177-184.", + "English_Abstract": "The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC storage by 1.08 ± 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 ± 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 ± 0.04, but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor value of 0.98 ± 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1016/j.still.2009.12.005", + "creation_date": "2022-03-14T08:13:15.055Z", + "last_change_date": "2022-03-14T08:13:15.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15856, + "fields": { + "EF_ID": 524168, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C management factor for no tillage (NT) in the Cerrado and Forest", + "Technology_Practices": "Land use change and agricultural management practices under no-tillage", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area). Almost all rotations were soybean-based with a second crop or vegetated fallow. Millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) were the dominant second crops.", + "Regional_Conditions": "South America, Brazil (BRA), Rondonia and Mato Grosso states. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2C.", + "Value": "1.01", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Ogle, S.M., Cerri, C.C., Cerri, C.E.P. 2010. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil & Tillage Research, 106: 177-184.", + "English_Abstract": "The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC storage by 1.08 ± 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 ± 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 ± 0.04, but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor value of 0.98 ± 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1016/j.still.2009.12.005", + "creation_date": "2022-03-14T08:13:15.156Z", + "last_change_date": "2022-03-14T08:13:15.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15857, + "fields": { + "EF_ID": 524169, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil C management factor for no tillage (NT) in the Cerrado", + "Technology_Practices": "Land use change and agricultural management practices under no-tillage", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area). Almost all rotations were soybean-based with a second crop or vegetated fallow. Millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) were the dominant second crops.", + "Regional_Conditions": "South America, Brazil (BRA), Rondonia and Mato Grosso states. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2C.", + "Value": "1.08", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Ogle, S.M., Cerri, C.C., Cerri, C.E.P. 2010. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil & Tillage Research, 106: 177-184.", + "English_Abstract": "The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC storage by 1.08 ± 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 ± 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 ± 0.04, but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor value of 0.98 ± 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "doi:10.1016/j.still.2009.12.005", + "creation_date": "2022-03-14T08:13:15.273Z", + "last_change_date": "2022-03-14T08:13:15.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15858, + "fields": { + "EF_ID": 524170, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Land management factor for soil C stocks in the Cerrado and Amazon biomes", + "Technology_Practices": "Conversion of native vegetation (Forest) to no-tillage", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area)", + "Regional_Conditions": "South America, Brazil (BRA), states of Rondonia and Mato Grosso. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2°C.", + "Value": "0.91", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Carvalho, J.L.N., Cerri, C.E.P., Lal, R., Bernoux, M., Galdos, M.V., Cerri, C.C. 2013. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil & Tillage Research, 133: 75-84.", + "English_Abstract": "The Brazilian Amazon and Cerrado are among the principal agricultural frontiers of the world, and have attracted global attention because of their potential to be a source or sink of atmospheric CO₂. However, accurately quantifying alterations in soil organic carbon (SOC) due to land-use changes remains to be a major challenge. Using a meta-analysis, our objective was to evaluate tillage effects on SOC stocks in Brazil’s Amazon and Cerrado biomes. Two approaches: (1) the classical SOC annual change rate which provides only an arithmetic average of SOC changes, and (2) the rate of annual change adjusted from management factors derived according to the Intergovernmental Panel on Climate Change (IPCC) SOC methodology, which allows a temporal dataset adjustment, were used. Regardless of approach, conservation technologies such as no-tillage (NT) and integrated crop-livestock (ICL) systems were identified as viable options for SOC sequestration, increasing it between 9 and 16%. One exception was adoption of NT in the Amazon forest, where SOC decreased by 9% over 20 years. Comparing results of the two approaches showed substantial differences between them. For conversions from NT to ICL or from native vegetation to full tillage (FT), the IPCC-based approach produced SOC stock estimates that were 65 and 47% lower, respectively, than with the classical approach. The IPCC approach also identified modeling covariate effects and was influenced less by outliers, thus reducing the risk of under or overestimating soil management effects on SOC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contrasting approaches to calculate IPCC management factors using data from extensive literature review", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.still.2013.06.002", + "creation_date": "2022-03-14T08:13:15.390Z", + "last_change_date": "2022-03-14T08:13:15.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15859, + "fields": { + "EF_ID": 524171, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Land management factor for soil C stocks in the Cerrado and Amazon biomes", + "Technology_Practices": "Conversion of native vegetation to full tillage (low clayey soils)", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area)", + "Regional_Conditions": "South America, Brazil (BRA), states of Rondonia and Mato Grosso. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2°C.", + "Value": "0.92", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Carvalho, J.L.N., Cerri, C.E.P., Lal, R., Bernoux, M., Galdos, M.V., Cerri, C.C. 2013. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil & Tillage Research, 133: 75-84.", + "English_Abstract": "The Brazilian Amazon and Cerrado are among the principal agricultural frontiers of the world, and have attracted global attention because of their potential to be a source or sink of atmospheric CO₂. However, accurately quantifying alterations in soil organic carbon (SOC) due to land-use changes remains to be a major challenge. Using a meta-analysis, our objective was to evaluate tillage effects on SOC stocks in Brazil’s Amazon and Cerrado biomes. Two approaches: (1) the classical SOC annual change rate which provides only an arithmetic average of SOC changes, and (2) the rate of annual change adjusted from management factors derived according to the Intergovernmental Panel on Climate Change (IPCC) SOC methodology, which allows a temporal dataset adjustment, were used. Regardless of approach, conservation technologies such as no-tillage (NT) and integrated crop-livestock (ICL) systems were identified as viable options for SOC sequestration, increasing it between 9 and 16%. One exception was adoption of NT in the Amazon forest, where SOC decreased by 9% over 20 years. Comparing results of the two approaches showed substantial differences between them. For conversions from NT to ICL or from native vegetation to full tillage (FT), the IPCC-based approach produced SOC stock estimates that were 65 and 47% lower, respectively, than with the classical approach. The IPCC approach also identified modeling covariate effects and was influenced less by outliers, thus reducing the risk of under or overestimating soil management effects on SOC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contrasting approaches to calculate IPCC management factors using data from extensive literature review", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.still.2013.06.002", + "creation_date": "2022-03-14T08:13:15.507Z", + "last_change_date": "2022-03-14T08:13:15.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15860, + "fields": { + "EF_ID": 524172, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Land management factor for soil C stocks in the Cerrado and Amazon biomes", + "Technology_Practices": "Conversion of native vegetation to full tillage (very clayey soils, 30 years of full tillage)", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area)", + "Regional_Conditions": "South America, Brazil (BRA), states of Rondonia and Mato Grosso. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2°C.", + "Value": "0.98", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Carvalho, J.L.N., Cerri, C.E.P., Lal, R., Bernoux, M., Galdos, M.V., Cerri, C.C. 2013. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil & Tillage Research, 133: 75-84.", + "English_Abstract": "The Brazilian Amazon and Cerrado are among the principal agricultural frontiers of the world, and have attracted global attention because of their potential to be a source or sink of atmospheric CO₂. However, accurately quantifying alterations in soil organic carbon (SOC) due to land-use changes remains to be a major challenge. Using a meta-analysis, our objective was to evaluate tillage effects on SOC stocks in Brazil’s Amazon and Cerrado biomes. Two approaches: (1) the classical SOC annual change rate which provides only an arithmetic average of SOC changes, and (2) the rate of annual change adjusted from management factors derived according to the Intergovernmental Panel on Climate Change (IPCC) SOC methodology, which allows a temporal dataset adjustment, were used. Regardless of approach, conservation technologies such as no-tillage (NT) and integrated crop-livestock (ICL) systems were identified as viable options for SOC sequestration, increasing it between 9 and 16%. One exception was adoption of NT in the Amazon forest, where SOC decreased by 9% over 20 years. Comparing results of the two approaches showed substantial differences between them. For conversions from NT to ICL or from native vegetation to full tillage (FT), the IPCC-based approach produced SOC stock estimates that were 65 and 47% lower, respectively, than with the classical approach. The IPCC approach also identified modeling covariate effects and was influenced less by outliers, thus reducing the risk of under or overestimating soil management effects on SOC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contrasting approaches to calculate IPCC management factors using data from extensive literature review", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.still.2013.06.002", + "creation_date": "2022-03-14T08:13:15.617Z", + "last_change_date": "2022-03-14T08:13:15.617Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15861, + "fields": { + "EF_ID": 524173, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Land management factor for soil C stocks in the Cerrado and Amazon biomes", + "Technology_Practices": "Conversion of native vegetation (Cerrado) to no-tillage", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area)", + "Regional_Conditions": "South America, Brazil (BRA), states of Rondonia and Mato Grosso. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2°C.", + "Value": "1.04", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Carvalho, J.L.N., Cerri, C.E.P., Lal, R., Bernoux, M., Galdos, M.V., Cerri, C.C. 2013. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil & Tillage Research, 133: 75-84.", + "English_Abstract": "The Brazilian Amazon and Cerrado are among the principal agricultural frontiers of the world, and have attracted global attention because of their potential to be a source or sink of atmospheric CO₂. However, accurately quantifying alterations in soil organic carbon (SOC) due to land-use changes remains to be a major challenge. Using a meta-analysis, our objective was to evaluate tillage effects on SOC stocks in Brazil’s Amazon and Cerrado biomes. Two approaches: (1) the classical SOC annual change rate which provides only an arithmetic average of SOC changes, and (2) the rate of annual change adjusted from management factors derived according to the Intergovernmental Panel on Climate Change (IPCC) SOC methodology, which allows a temporal dataset adjustment, were used. Regardless of approach, conservation technologies such as no-tillage (NT) and integrated crop-livestock (ICL) systems were identified as viable options for SOC sequestration, increasing it between 9 and 16%. One exception was adoption of NT in the Amazon forest, where SOC decreased by 9% over 20 years. Comparing results of the two approaches showed substantial differences between them. For conversions from NT to ICL or from native vegetation to full tillage (FT), the IPCC-based approach produced SOC stock estimates that were 65 and 47% lower, respectively, than with the classical approach. The IPCC approach also identified modeling covariate effects and was influenced less by outliers, thus reducing the risk of under or overestimating soil management effects on SOC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contrasting approaches to calculate IPCC management factors using data from extensive literature review", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.still.2013.06.002", + "creation_date": "2022-03-14T08:13:15.726Z", + "last_change_date": "2022-03-14T08:13:15.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15862, + "fields": { + "EF_ID": 524174, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Land management factor for soil C stocks in the Cerrado and Amazon biomes", + "Technology_Practices": "Conversion of no-tillage to integrated crop-livestock", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area)", + "Regional_Conditions": "South America, Brazil (BRA), states of Rondonia and Mato Grosso. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2°C.", + "Value": "1.09", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Carvalho, J.L.N., Cerri, C.E.P., Lal, R., Bernoux, M., Galdos, M.V., Cerri, C.C. 2013. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil & Tillage Research, 133: 75-84.", + "English_Abstract": "The Brazilian Amazon and Cerrado are among the principal agricultural frontiers of the world, and have attracted global attention because of their potential to be a source or sink of atmospheric CO₂. However, accurately quantifying alterations in soil organic carbon (SOC) due to land-use changes remains to be a major challenge. Using a meta-analysis, our objective was to evaluate tillage effects on SOC stocks in Brazil’s Amazon and Cerrado biomes. Two approaches: (1) the classical SOC annual change rate which provides only an arithmetic average of SOC changes, and (2) the rate of annual change adjusted from management factors derived according to the Intergovernmental Panel on Climate Change (IPCC) SOC methodology, which allows a temporal dataset adjustment, were used. Regardless of approach, conservation technologies such as no-tillage (NT) and integrated crop-livestock (ICL) systems were identified as viable options for SOC sequestration, increasing it between 9 and 16%. One exception was adoption of NT in the Amazon forest, where SOC decreased by 9% over 20 years. Comparing results of the two approaches showed substantial differences between them. For conversions from NT to ICL or from native vegetation to full tillage (FT), the IPCC-based approach produced SOC stock estimates that were 65 and 47% lower, respectively, than with the classical approach. The IPCC approach also identified modeling covariate effects and was influenced less by outliers, thus reducing the risk of under or overestimating soil management effects on SOC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contrasting approaches to calculate IPCC management factors using data from extensive literature review", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.still.2013.06.002", + "creation_date": "2022-03-14T08:13:15.834Z", + "last_change_date": "2022-03-14T08:13:15.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15863, + "fields": { + "EF_ID": 524175, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Land management factor for soil C stocks in the Cerrado and Amazon biomes", + "Technology_Practices": "Conversion of pasture to no-tillage", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area)", + "Regional_Conditions": "South America, Brazil (BRA), states of Rondonia and Mato Grosso. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2°C.", + "Value": "1.09", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Carvalho, J.L.N., Cerri, C.E.P., Lal, R., Bernoux, M., Galdos, M.V., Cerri, C.C. 2013. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil & Tillage Research, 133: 75-84.", + "English_Abstract": "The Brazilian Amazon and Cerrado are among the principal agricultural frontiers of the world, and have attracted global attention because of their potential to be a source or sink of atmospheric CO₂. However, accurately quantifying alterations in soil organic carbon (SOC) due to land-use changes remains to be a major challenge. Using a meta-analysis, our objective was to evaluate tillage effects on SOC stocks in Brazil’s Amazon and Cerrado biomes. Two approaches: (1) the classical SOC annual change rate which provides only an arithmetic average of SOC changes, and (2) the rate of annual change adjusted from management factors derived according to the Intergovernmental Panel on Climate Change (IPCC) SOC methodology, which allows a temporal dataset adjustment, were used. Regardless of approach, conservation technologies such as no-tillage (NT) and integrated crop-livestock (ICL) systems were identified as viable options for SOC sequestration, increasing it between 9 and 16%. One exception was adoption of NT in the Amazon forest, where SOC decreased by 9% over 20 years. Comparing results of the two approaches showed substantial differences between them. For conversions from NT to ICL or from native vegetation to full tillage (FT), the IPCC-based approach produced SOC stock estimates that were 65 and 47% lower, respectively, than with the classical approach. The IPCC approach also identified modeling covariate effects and was influenced less by outliers, thus reducing the risk of under or overestimating soil management effects on SOC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Contrasting approaches to calculate IPCC management factors using data from extensive literature review", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.still.2013.06.002", + "creation_date": "2022-03-14T08:13:15.945Z", + "last_change_date": "2022-03-14T08:13:15.945Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15864, + "fields": { + "EF_ID": 524176, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Land management factor for soil C stocks in the Cerrado and Amazon biomes", + "Technology_Practices": "Conversion of native vegetation to full tillage (very clayey soils, 20 years of full tillage)", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area)", + "Regional_Conditions": "South America, Brazil (BRA), states of Rondonia and Mato Grosso. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2°C.", + "Value": "1.10", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Carvalho, J.L.N., Cerri, C.E.P., Lal, R., Bernoux, M., Galdos, M.V., Cerri, C.C. 2013. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil & Tillage Research, 133: 75-84.", + "English_Abstract": "The Brazilian Amazon and Cerrado are among the principal agricultural frontiers of the world, and have attracted global attention because of their potential to be a source or sink of atmospheric CO₂. However, accurately quantifying alterations in soil organic carbon (SOC) due to land-use changes remains to be a major challenge. Using a meta-analysis, our objective was to evaluate tillage effects on SOC stocks in Brazil’s Amazon and Cerrado biomes. Two approaches: (1) the classical SOC annual change rate which provides only an arithmetic average of SOC changes, and (2) the rate of annual change adjusted from management factors derived according to the Intergovernmental Panel on Climate Change (IPCC) SOC methodology, which allows a temporal dataset adjustment, were used. Regardless of approach, conservation technologies such as no-tillage (NT) and integrated crop-livestock (ICL) systems were identified as viable options for SOC sequestration, increasing it between 9 and 16%. One exception was adoption of NT in the Amazon forest, where SOC decreased by 9% over 20 years. Comparing results of the two approaches showed substantial differences between them. For conversions from NT to ICL or from native vegetation to full tillage (FT), the IPCC-based approach produced SOC stock estimates that were 65 and 47% lower, respectively, than with the classical approach. The IPCC approach also identified modeling covariate effects and was influenced less by outliers, thus reducing the risk of under or overestimating soil management effects on SOC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Study is based on an extensive literature review related to the influence of tillage on SOC stocks. The criteria include data on SOC stocks (or data sufficient to compute the stocks), depth of sampling, time since the management change, and land use history.", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.still.2013.06.002", + "creation_date": "2022-03-14T08:13:16.054Z", + "last_change_date": "2022-03-14T08:13:16.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15865, + "fields": { + "EF_ID": 524177, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Land management factor for soil C stocks in the Cerrado and Amazon biomes", + "Technology_Practices": "Conversion of full tillage to no-tillage", + "Parameter_Conditions": "The predominant soil orders in the region are Oxisols (Latossolos, 40% of the study area)", + "Regional_Conditions": "South America, Brazil (BRA), states of Rondonia and Mato Grosso. The climate is humid tropical.", + "Control_Technologies": "", + "Other_Properties": "Rondonia and Mato Grosso represent 13% of the Brazilian territory. Mean annual rainfall varies from 1200 mm in the south of Mato Grosso to 2700 mm in the north of both states. Mean annual temperature is 25.2°C.", + "Value": "1.16", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maia, S.M.F., Carvalho, J.L.N., Cerri, C.E.P., Lal, R., Bernoux, M., Galdos, M.V., Cerri, C.C. 2013. Contrasting Approaches for Estimating Soil Carbon Changes in Amazon and Cerrado Biomes. Soil & Tillage Research, 133: 75-84.", + "English_Abstract": "The Brazilian Amazon and Cerrado are among the principal agricultural frontiers of the world, and have attracted global attention because of their potential to be a source or sink of atmospheric CO₂. However, accurately quantifying alterations in soil organic carbon (SOC) due to land-use changes remains to be a major challenge. Using a meta-analysis, our objective was to evaluate tillage effects on SOC stocks in Brazil’s Amazon and Cerrado biomes. Two approaches: (1) the classical SOC annual change rate which provides only an arithmetic average of SOC changes, and (2) the rate of annual change adjusted from management factors derived according to the Intergovernmental Panel on Climate Change (IPCC) SOC methodology, which allows a temporal dataset adjustment, were used. Regardless of approach, conservation technologies such as no-tillage (NT) and integrated crop-livestock (ICL) systems were identified as viable options for SOC sequestration, increasing it between 9 and 16%. One exception was adoption of NT in the Amazon forest, where SOC decreased by 9% over 20 years. Comparing results of the two approaches showed substantial differences between them. For conversions from NT to ICL or from native vegetation to full tillage (FT), the IPCC-based approach produced SOC stock estimates that were 65 and 47% lower, respectively, than with the classical approach. The IPCC approach also identified modeling covariate effects and was influenced less by outliers, thus reducing the risk of under or overestimating soil management effects on SOC.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Study is based on an extensive literature review related to the influence of tillage on SOC stocks. The criteria include data on SOC stocks (or data sufficient to compute the stocks), depth of sampling, time since the management change, and land use history.", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.still.2013.06.002", + "creation_date": "2022-03-14T08:13:16.154Z", + "last_change_date": "2022-03-14T08:13:16.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15866, + "fields": { + "EF_ID": 524178, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Pasture to sugarcane conversion for the 0-30 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:16.255Z", + "last_change_date": "2022-03-14T08:13:16.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15867, + "fields": { + "EF_ID": 524179, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Annual cropland to sugarcane conversion for the 0-30 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.16", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:16.364Z", + "last_change_date": "2022-03-14T08:13:16.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15868, + "fields": { + "EF_ID": 524180, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Native vegetation (Cerrado) to sugarcane conversion for the 0-30 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:16.445Z", + "last_change_date": "2022-03-14T08:13:16.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15869, + "fields": { + "EF_ID": 524181, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Pasture to sugarcane conversion for the 0-50 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:16.648Z", + "last_change_date": "2022-03-14T08:13:16.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15870, + "fields": { + "EF_ID": 524182, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Annual cropland to sugarcane conversion for the 0-50 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:16.737Z", + "last_change_date": "2022-03-14T08:13:16.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15871, + "fields": { + "EF_ID": 524183, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Native vegetation (Cerrado) to sugarcane conversion for the 0-50 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:16.833Z", + "last_change_date": "2022-03-14T08:13:16.833Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15872, + "fields": { + "EF_ID": 524184, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Pasture to sugarcane conversion for the 0-100 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:16.928Z", + "last_change_date": "2022-03-14T08:13:16.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15873, + "fields": { + "EF_ID": 524185, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Annual cropland to sugarcane conversion for the 0-100 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:17.026Z", + "last_change_date": "2022-03-14T08:13:17.026Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15874, + "fields": { + "EF_ID": 524186, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Change in SOC stocks due to LUC", + "Technology_Practices": "Native vegetation (Cerrado) to sugarcane conversion for the 0-100 cm layer", + "Parameter_Conditions": "The LUC factors were derived for five-year time blocks, to coincide with sugar-cane regeneration cycles, for up to 20 years (IPCC timeframe to approximate equilibrium of soil C stocks). Main soil type is Oxisols.", + "Regional_Conditions": "South America, South-Central region of Brazil (BRA)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mello, F., Cerri, C.E.P., Davies, C., Holbrook, N.M., Paustian, K., Maia, S.M.F., Galdos, M.V., Bernoux, M., Cerri, C.C. 2014. Payback time for soil carbon and sugarcane ethanol. Nature Climate Change, 4: 605-609.", + "English_Abstract": "The effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO₂ savings attributed to bioenergy crops. There have been few direct field measurements that quantify thee ects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world’s largest producer. We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sampled 135 field sites to 1m depth, representing three major LUC scenarios. Our results demonstrate that soil C stocks decrease following LUC from native vegetation and pastures, and increase where cropland is converted to sugar cane. The payback time for the soil C debt was eight years for native vegetation and two to three years for pastures. With an increasing need for biofuels and the potential for Brazil to help meet global demand, our results will be invaluable for guiding expansion policies of sugar-cane production towards greater sustainability.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "DOI: 10.1038/NCLIMATE2239", + "creation_date": "2022-03-14T08:13:17.112Z", + "last_change_date": "2022-03-14T08:13:17.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15875, + "fields": { + "EF_ID": 524187, + "IPCC_Category": "3.B - Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Land use change factors for soil carbon stock changes", + "Technology_Practices": "Soil carbon stock changes due to conversion of native vegetation (Cerrado and Atlantic forest biomes) to pasture and then to sugarcane. Pasture composed of tropical grasses of the genus Brachiaria and Cynodon spp. Sugarcane cultivation (first site under conventional tillage procedures and chemical fertilization; Second site under conventional tillage procedures and chemical fertilization + vinasse application; Third site under conventional tillage procedures and chemical fertilization + vinasse and filtercake application.", + "Parameter_Conditions": "Clayey Acrudox soils, loamy Hapludalf soils and clayey Hapludox soils", + "Regional_Conditions": "South America, Brazil (BRA), Goiás and São Paulo states. The climate classification of three sites is as follows: Awa type (Köppen) mesothermal tropical; Aw type humid tropical; Cwa type tropical.", + "Control_Technologies": "", + "Other_Properties": "Difference in soil carbon stocks in order to assess CO₂ sources/sinks", + "Value": "0.7-1.0", + "Unit": "dimensionless", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Oliveira, D.M.S., Paustian, K., Davies, C., Cherubin, M.R., Franco, A.L.C., Cerri, C.C., Cerri, C.E.P. 2016. Soil carbon changes in areas undergoing expansion of sugarcane into pastures in Brazil. Agriculture, Ecosystems & Environment, 228: 38-48.", + "English_Abstract": "In Brazil, sugarcane expansion for ethanol production has been predominantly on areas previously used as pasture. Losses of C and N induced by land use change raise controversies about the environmental suitability of biofuel production. Therefore, we conducted a field study within the largest sugarcaneproducing region of Brazil to evaluate the effects of the primary land use change (LUC) sequence in sugarcane expansion areas (i.e., native vegetation to pasture to sugarcane), on C and N dynamics in the top 1 m soil layer. The LUC sequences caused substantial but varying changes in soil C and N stocks in areas undergoing expansion of sugarcane in south-central Brazil. The increase of C stocks in areas converted from pasture to sugarcane cultivation was 1.97 Mg ha⁻¹ yr⁻¹, in contrast to conversion of native vegetation to pasture, which decreased soil C stocks by 1.01 Mg ha⁻¹ yr⁻¹ for 0–1.0 m soil layer. The use of ¹³C measurements to partition soil C sources showed that the greater C stocks in sugarcane areas compared to pasture was due to retention of the native-C stocks and increased accrual of modern-C comparing to pasture. Finally, the inclusion of deeper soil layers, at least down to 1.0 m depth, is essential to assess the impacts of LUC on C balances in agricultural areas.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values were extracted from Figure 2 (Oliveira et al. 2016)", + "Other_Comments": "", + "Data_Provider": "Carlos Eduardo Pellegrino Cerri", + "Link": "http://dx.doi.org/10.1016/j.agee.2016.05.005", + "creation_date": "2022-03-14T08:13:17.210Z", + "last_change_date": "2022-03-14T08:13:17.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15876, + "fields": { + "EF_ID": 524335, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Central America; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.54", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.485", + "Upper_Bound": "0.595", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:17.319Z", + "last_change_date": "2022-03-14T08:13:17.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15877, + "fields": { + "EF_ID": 524336, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, All Amazon; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.629", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.617", + "Upper_Bound": "0.641", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper. The data are from RAINFOR", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:17.437Z", + "last_change_date": "2022-03-14T08:13:17.437Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15878, + "fields": { + "EF_ID": 524337, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, Central Amazon; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.703", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.690", + "Upper_Bound": "0.716", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper. This paper; updating Baker et al. (2004), Mitchard et al. (2014)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:17.538Z", + "last_change_date": "2022-03-14T08:13:17.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15879, + "fields": { + "EF_ID": 524338, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, Brazilian Shield; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.591", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.593", + "Upper_Bound": "0.619", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper. This paper; updating Baker et al. (2004), Mitchard et al. (2014)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:17.638Z", + "last_change_date": "2022-03-14T08:13:17.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15880, + "fields": { + "EF_ID": 524339, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, Guyana Shield; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.688", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.673", + "Upper_Bound": "0.703", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper. This paper; updating Baker et al. (2004), Mitchard et al. (2014)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:17.740Z", + "last_change_date": "2022-03-14T08:13:17.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15881, + "fields": { + "EF_ID": 524340, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, Western Amazon; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.566", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.553", + "Upper_Bound": "0.578", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper. This paper; updating Baker et al. (2004), Mitchard et al. (2014)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:17.840Z", + "last_change_date": "2022-03-14T08:13:17.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15882, + "fields": { + "EF_ID": 524341, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, Peru, Tambopata; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.554", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.534", + "Upper_Bound": "0.574", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:17.940Z", + "last_change_date": "2022-03-14T08:13:17.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15883, + "fields": { + "EF_ID": 524342, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest (holocene)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, Peru, Tambopata; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.521", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.500", + "Upper_Bound": "0.546", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:18.041Z", + "last_change_date": "2022-03-14T08:13:18.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15884, + "fields": { + "EF_ID": 524343, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest (pleistocene)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, Peru, Tambopata; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.591", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.575", + "Upper_Bound": "0.607", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:18.142Z", + "last_change_date": "2022-03-14T08:13:18.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15885, + "fields": { + "EF_ID": 524344, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land, 3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood density (D)", + "Technology_Practices": "Lowland forest (swamp)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: old-growth; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America: Amazonia, Peru, Tambopata; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.467", + "Unit": "tonnes dm/m3 fresh volume", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Phillips ,O.L., Sullivan, M.J.P., Baker T.R., Mendoza, A.M., Vargas, P.N., and Vásquez, R. (2019). Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple Scales. Surveys in Geophysics.", + "English_Abstract": "The mass of carbon contained in trees is governed by the volume and density of their wood. This represents a challenge to most remote sensing technologies, which typically detect surface structure and parameters related to wood volume but not to its density. Since wood density is largely determined by taxonomic identity this challenge is greatest in tropical forests where there are tens of thousands of tree species. Here, using pan-tropical literature and new analyses in Amazonia with plots with reliable identifications we assess the impact that species-related variation in wood density has on biomass estimates of mature tropical forests. We find impacts of species on forest biomass due to wood density at all scales from the individual tree up to the whole biome: variation in tree species composition regulates how much carbon forests can store. Even local differences in composition can cause variation in forest biomass and carbon density of 20% between subtly different local forest types, while additional large-scale floristic variation leads to variation in mean wood density of 10–30% across Amazonia and the tropics. Further, because species composition varies at all scales and even vertically within a stand, our analysis shows that bias and uncertainty always result if individual identity is ignored. Since sufficient inventory-based evidence based on botanical identification now exists to show that species composition matters biome-wide for biomass, we here assemble and provide mean basalarea-weighted wood density values for different forests across the lowand tropical biome. These range widely, from 0.467 to 0.728 g cm-3 with a pan-tropical mean of 0.619 g cm−3. Our analysis shows that mapping tropical ecosystem carbon always benefits from locally validated measurement of tree-by-tree botanical identity combined with tree-by-tree measurement of dimensions. Therefore whenever possible, efforts to map and monitor tropical forest carbon using remote sensing techniques should be combined with tree-level measurement of species identity by botanists working in inventory plots.", + "Lower_Bound": "0.42", + "Upper_Bound": "0.514", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The 95% CI is calculated from the SD provided in the table 2 of the paper. But ONLY n=2", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://doi.org/10.1007/s10712-019-09540-0", + "creation_date": "2022-03-14T08:13:18.242Z", + "last_change_date": "2022-03-14T08:13:18.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15886, + "fields": { + "EF_ID": 524345, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Above-ground biomass", + "Technology_Practices": "", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Trans Mara, Kenya; Climate: Tropical Montane; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "259.74", + "Unit": "t dm/ha", + "Equation": "Equations 2.9 and 2.10 on Page 2.15 in Chapter 2, Volume 4 of the 2006 IPCC IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kinyanjui, M.J., Latva-Käyrä, P., Bhuwneshwar, P.S., Kariuki, P., Gichu, A. and Wamichwe, K. (2014). An Inventory of the Above Ground Biomass in the Mau Forest Ecosystem, Kenya. Open Journal of Ecology, 4: 619-627.", + "English_Abstract": "Biomass assessment of the Mau Forest Ecosystem (MFE) was done as part of Kenya’s greenhouse gas inventory. Trans Mara and Mount Londiani forest blocks representing extremes of vegetation types in the MFE were selected for ground data. Based on canopy closure, four forest strata were identified as very dense, moderately dense, open and bamboo. In each stratum, 5 clusters each with 4 plots measuring 30 m × 30 m were located. Big trees (D1.3 ≥ 10 cm) were measured per species for diameter at breast height (D1.3) in the whole plot while height was measured for every 5th tree. Poles (10 cm > D1.3 ≤ 5) were measured for D1.3 in a 10 × 10 m concentric sub plot. Saplings (5cm > D1.3; ht ≥ 1.5 m) and seedlings (ht < 1.5 m) were enumerated per species within 5 × 5 m and 2 × 2 m concentric sub plots, respectively. Data were recorded in a Personal Digital Assistant (PDA) and quality checked with Open Foris Collect software. Allometric equations that have been used for similar vegetation in Kenya were used to relate D1.3 and height with biomass. The tree data were uploaded to ArboWebForest (AWF) cloud-service and using the AWF-SIMO calculation tool, average values of diameter, height, and biomass were calculated for each plot. The data were generalised to cover all areas for each block using the Sparse Bayesian linear regression process on the vegetation characteristics with 10 m resolution ALOS-AVNIR-2 images of the MFE. ANOVA was used to compare biomass generated from several allometric equations. Results show that the average biomass of the MFE was 236 Mg·ha−1. Degradation that converts dense forests into open and moderately dense forests contributed to a biomass loss of 228 Mg·ha−1 and 194 Mg·ha−1 respectively. Four allometric equations gave no significant difference (P < 0.05) in biomass for the 80 plots implying that costly processes of developing new equations may not improve accuracy. The study offers a learning lesson in Kenya’s forest inventory processes and the biomass values may show the estimates of stocking in similar forests of Kenya.", + "Lower_Bound": "231.22", + "Upper_Bound": "288.26", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://www.scirp.org/journal/paperinformation.aspx?paperid=48006", + "creation_date": "2022-03-14T08:13:18.359Z", + "last_change_date": "2022-03-14T08:13:18.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15887, + "fields": { + "EF_ID": 524346, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land, 3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Black walnut; Biomass attributes/age: 35 (tree density per ha), 6 years old; Soil type/nutrient content: Luvisol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0122", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha?1 yr?1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha?1 yr?1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "0.0099", + "Upper_Bound": "0.0145", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:18.552Z", + "last_change_date": "2022-03-14T08:13:18.552Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15888, + "fields": { + "EF_ID": 524347, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land, 3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Black walnut; Biomass attributes/age: 34 (tree density per ha), 6 years old; Soil type/nutrient content: Luvisol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0028", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha?1 yr?1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha?1 yr?1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "0.00215", + "Upper_Bound": "0.00345", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:18.669Z", + "last_change_date": "2022-03-14T08:13:18.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15889, + "fields": { + "EF_ID": 524348, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Black walnut; Biomass attributes/age: 102 (tree density per ha), 41 years old; Soil type/nutrient content: Luvisol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.484", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha?1 yr?1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha?1 yr?1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "0.411", + "Upper_Bound": "0.557", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:18.787Z", + "last_change_date": "2022-03-14T08:13:18.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15890, + "fields": { + "EF_ID": 524349, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land, 3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Hybrid walnut; Biomass attributes/age: 100 (tree density per ha), 18 years old; Soil type/nutrient content: Fluvisol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.48", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha?1 yr?1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha?1 yr?1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "1.314", + "Upper_Bound": "1.646", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:18.905Z", + "last_change_date": "2022-03-14T08:13:18.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15891, + "fields": { + "EF_ID": 524350, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Wild cherry; Biomass attributes/age: 200 (tree density per ha), 26 years old; Soil type/nutrient content: Andosol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.41", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha?1 yr?1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha?1 yr?1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "1.37", + "Upper_Bound": "1.45", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:19.005Z", + "last_change_date": "2022-03-14T08:13:19.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15892, + "fields": { + "EF_ID": 524351, + "IPCC_Category": "3.B.1.b - Land Converted to Forest land, 3.B.2.b - Land Converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Hybrid walnut; Biomass attributes/age: 110 (tree density per ha), 18 years old; Soil type/nutrient content: Fluvisol.", + "Regional_Conditions": "Spatial boundaries: France, Mediterranean; Climate: ; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha?1 yr?1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha?1 yr?1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "0.506", + "Upper_Bound": "0.694", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:19.106Z", + "last_change_date": "2022-03-14T08:13:19.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15893, + "fields": { + "EF_ID": 524352, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 200 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:19.207Z", + "last_change_date": "2022-03-14T08:13:19.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15894, + "fields": { + "EF_ID": 524353, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 260 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:19.307Z", + "last_change_date": "2022-03-14T08:13:19.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15895, + "fields": { + "EF_ID": 524354, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 200 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:19.408Z", + "last_change_date": "2022-03-14T08:13:19.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15896, + "fields": { + "EF_ID": 524355, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 260 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:19.508Z", + "last_change_date": "2022-03-14T08:13:19.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15897, + "fields": { + "EF_ID": 524356, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1397 (73) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.09", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:19.609Z", + "last_change_date": "2022-03-14T08:13:19.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15898, + "fields": { + "EF_ID": 524357, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1220 (444) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.07", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.93", + "Upper_Bound": "1.21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:19.718Z", + "last_change_date": "2022-03-14T08:13:19.718Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15899, + "fields": { + "EF_ID": 524358, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 250 (0) (tree density /ha (+/- SD)) Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.01", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:19.827Z", + "last_change_date": "2022-03-14T08:13:19.827Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15900, + "fields": { + "EF_ID": 524359, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1264 (385) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.07", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.96", + "Upper_Bound": "0.18", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:19.936Z", + "last_change_date": "2022-03-14T08:13:19.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15901, + "fields": { + "EF_ID": 524360, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland, 3.B.3.b.i - Forest Land converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Parkland", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Montane; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.69", + "Upper_Bound": "0.79", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.045Z", + "last_change_date": "2022-03-14T08:13:20.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15902, + "fields": { + "EF_ID": 524361, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland, 3.B.3.b.i - Forest Land converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 250 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.01", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.154Z", + "last_change_date": "2022-03-14T08:13:20.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15903, + "fields": { + "EF_ID": 524362, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1477 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.99", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.258Z", + "last_change_date": "2022-03-14T08:13:20.258Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15904, + "fields": { + "EF_ID": 524363, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.76", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.56", + "Upper_Bound": "0.96", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.367Z", + "last_change_date": "2022-03-14T08:13:20.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15905, + "fields": { + "EF_ID": 524364, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Central America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.00", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.484Z", + "last_change_date": "2022-03-14T08:13:20.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15906, + "fields": { + "EF_ID": 524365, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10102 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Central America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.85", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.594Z", + "last_change_date": "2022-03-14T08:13:20.594Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15907, + "fields": { + "EF_ID": 524366, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Multistrata", + "Parameter_Conditions": "Spatial boundaries: South America; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 577 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.710Z", + "last_change_date": "2022-03-14T08:13:20.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15908, + "fields": { + "EF_ID": 524367, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.819Z", + "last_change_date": "2022-03-14T08:13:20.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15909, + "fields": { + "EF_ID": 524368, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 577 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.94", + "Upper_Bound": "1.02", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:20.929Z", + "last_change_date": "2022-03-14T08:13:20.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15910, + "fields": { + "EF_ID": 524369, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5790 (6099) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.84", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.71", + "Upper_Bound": "0.97", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:21.037Z", + "last_change_date": "2022-03-14T08:13:21.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15911, + "fields": { + "EF_ID": 524370, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:21.139Z", + "last_change_date": "2022-03-14T08:13:21.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15912, + "fields": { + "EF_ID": 524371, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 200 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.67", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:21.239Z", + "last_change_date": "2022-03-14T08:13:21.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15913, + "fields": { + "EF_ID": 524372, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 577 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.94", + "Upper_Bound": "1.02", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:21.340Z", + "last_change_date": "2022-03-14T08:13:21.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15914, + "fields": { + "EF_ID": 524373, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland, 3.B.3.b.i - Forest Land converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Parkland", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.67", + "Upper_Bound": "0.81", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:21.457Z", + "last_change_date": "2022-03-14T08:13:21.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15915, + "fields": { + "EF_ID": 524374, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2169 (2809) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.00", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:21.575Z", + "last_change_date": "2022-03-14T08:13:21.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15916, + "fields": { + "EF_ID": 524375, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.95", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:21.818Z", + "last_change_date": "2022-03-14T08:13:21.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15917, + "fields": { + "EF_ID": 524376, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Forest to Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 253 (6) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.98", + "Unit": "dimensionless", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.92", + "Upper_Bound": "1.04", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:21.934Z", + "last_change_date": "2022-03-14T08:13:21.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15918, + "fields": { + "EF_ID": 524377, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 833 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.97", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.044Z", + "last_change_date": "2022-03-14T08:13:22.044Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15919, + "fields": { + "EF_ID": 524378, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 225 (126) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Europe; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.17", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.14", + "Upper_Bound": "3.20", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.152Z", + "last_change_date": "2022-03-14T08:13:22.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15920, + "fields": { + "EF_ID": 524379, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Hedgerow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 816 (853) (tree density /km (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: North America; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.45", + "Upper_Bound": "1.29", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.261Z", + "last_change_date": "2022-03-14T08:13:22.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15921, + "fields": { + "EF_ID": 524380, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 111 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: North America; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.42", + "Upper_Bound": "0.76", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.378Z", + "last_change_date": "2022-03-14T08:13:22.378Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15922, + "fields": { + "EF_ID": 524381, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 571 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: North America; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.97", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.488Z", + "last_change_date": "2022-03-14T08:13:22.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15923, + "fields": { + "EF_ID": 524382, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 400 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.18", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.614Z", + "last_change_date": "2022-03-14T08:13:22.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15924, + "fields": { + "EF_ID": 524383, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Hedgerow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 400 (0) (tree density /km (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.45", + "Upper_Bound": "1.29", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.730Z", + "last_change_date": "2022-03-14T08:13:22.730Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15925, + "fields": { + "EF_ID": 524384, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 271 (318) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.12", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.42", + "Upper_Bound": "1.82", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.823Z", + "last_change_date": "2022-03-14T08:13:22.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15926, + "fields": { + "EF_ID": 524385, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 312 (175) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.81", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.01", + "Upper_Bound": "2.61", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:22.916Z", + "last_change_date": "2022-03-14T08:13:22.917Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15927, + "fields": { + "EF_ID": 524386, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 76 (38) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Europe; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "-0.01", + "Upper_Bound": "1.05", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.016Z", + "last_change_date": "2022-03-14T08:13:23.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15928, + "fields": { + "EF_ID": 524387, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1667 (962) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Europe; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.11", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.29", + "Upper_Bound": "5.93", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.125Z", + "last_change_date": "2022-03-14T08:13:23.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15929, + "fields": { + "EF_ID": 524388, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Hedgerow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 816 (853) (tree density /km (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.87", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.45", + "Upper_Bound": "1.29", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.242Z", + "last_change_date": "2022-03-14T08:13:23.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15930, + "fields": { + "EF_ID": 524389, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 202 (269) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.41", + "Upper_Bound": "1.41", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.360Z", + "last_change_date": "2022-03-14T08:13:23.360Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15931, + "fields": { + "EF_ID": 524390, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 854 (903) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.33", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.13", + "Upper_Bound": "3.53", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.478Z", + "last_change_date": "2022-03-14T08:13:23.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15932, + "fields": { + "EF_ID": 524391, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1000 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.88", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.35", + "Upper_Bound": "2.41", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.586Z", + "last_change_date": "2022-03-14T08:13:23.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15933, + "fields": { + "EF_ID": 524392, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.61", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "4.45", + "Upper_Bound": "6.77", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.695Z", + "last_change_date": "2022-03-14T08:13:23.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15934, + "fields": { + "EF_ID": 524393, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Hedgerow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1667 (471) (tree density /km (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.803Z", + "last_change_date": "2022-03-14T08:13:23.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15935, + "fields": { + "EF_ID": 524394, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2771 (1413) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.63", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.20", + "Upper_Bound": "2.06", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:23.913Z", + "last_change_date": "2022-03-14T08:13:23.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15936, + "fields": { + "EF_ID": 524395, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Parkland", + "Parameter_Conditions": "Spatial boundaries: Africa; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 152 (102) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.25", + "Upper_Bound": "0.93", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.047Z", + "last_change_date": "2022-03-14T08:13:24.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15937, + "fields": { + "EF_ID": 524396, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10430 (2746) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.79", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.11", + "Upper_Bound": "3.47", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.156Z", + "last_change_date": "2022-03-14T08:13:24.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15938, + "fields": { + "EF_ID": 524397, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1250 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.61", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.31", + "Upper_Bound": "8.91", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.256Z", + "last_change_date": "2022-03-14T08:13:24.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15939, + "fields": { + "EF_ID": 524398, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 540 (98) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.24", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "4.02", + "Upper_Bound": "8.46", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.358Z", + "last_change_date": "2022-03-14T08:13:24.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15940, + "fields": { + "EF_ID": 524399, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1609 (938) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.07", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.05", + "Upper_Bound": "5.09", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.459Z", + "last_change_date": "2022-03-14T08:13:24.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15941, + "fields": { + "EF_ID": 524400, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5041 (5052) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.27", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.83", + "Upper_Bound": "2.71", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.559Z", + "last_change_date": "2022-03-14T08:13:24.559Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15942, + "fields": { + "EF_ID": 524401, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1250 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.61", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "4.38", + "Upper_Bound": "6.84", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.660Z", + "last_change_date": "2022-03-14T08:13:24.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15943, + "fields": { + "EF_ID": 524402, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Hedgerow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1667 (471) (tree density /km (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.48", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.786Z", + "last_change_date": "2022-03-14T08:13:24.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15944, + "fields": { + "EF_ID": 524403, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2771 (1413) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.63", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.20", + "Upper_Bound": "2.06", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:24.903Z", + "last_change_date": "2022-03-14T08:13:24.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15945, + "fields": { + "EF_ID": 524404, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Parkland", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 152 (102) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.25", + "Upper_Bound": "0.93", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.020Z", + "last_change_date": "2022-03-14T08:13:25.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15946, + "fields": { + "EF_ID": 524405, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 540 (98) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.24", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "4.02", + "Upper_Bound": "8.46", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.129Z", + "last_change_date": "2022-03-14T08:13:25.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15947, + "fields": { + "EF_ID": 524406, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1609 (938) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.07", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.05", + "Upper_Bound": "5.09", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.238Z", + "last_change_date": "2022-03-14T08:13:25.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15948, + "fields": { + "EF_ID": 524407, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 7233 (1805) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.75", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.15", + "Upper_Bound": "3.35", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.347Z", + "last_change_date": "2022-03-14T08:13:25.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15949, + "fields": { + "EF_ID": 524408, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1902 (1253) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.98", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.14", + "Upper_Bound": "3.82", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.456Z", + "last_change_date": "2022-03-14T08:13:25.456Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15950, + "fields": { + "EF_ID": 524409, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.82", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.20", + "Upper_Bound": "2.44", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.556Z", + "last_change_date": "2022-03-14T08:13:25.556Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15951, + "fields": { + "EF_ID": 524410, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.09", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "3.10", + "Upper_Bound": "7.08", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.657Z", + "last_change_date": "2022-03-14T08:13:25.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15952, + "fields": { + "EF_ID": 524411, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.30", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.758Z", + "last_change_date": "2022-03-14T08:13:25.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15953, + "fields": { + "EF_ID": 524412, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 628 (247) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.03", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.14", + "Upper_Bound": "3.92", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.859Z", + "last_change_date": "2022-03-14T08:13:25.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15954, + "fields": { + "EF_ID": 524413, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1481 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.07", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:25.968Z", + "last_change_date": "2022-03-14T08:13:25.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15955, + "fields": { + "EF_ID": 524414, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1065 (152) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.50", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.84", + "Upper_Bound": "2.16", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:26.085Z", + "last_change_date": "2022-03-14T08:13:26.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15956, + "fields": { + "EF_ID": 524415, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 25000 (0) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Central America; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.28", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.76", + "Upper_Bound": "2.80", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:26.194Z", + "last_change_date": "2022-03-14T08:13:26.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15957, + "fields": { + "EF_ID": 524416, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 4131 (779) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.06", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.05", + "Upper_Bound": "5.07", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:26.295Z", + "last_change_date": "2022-03-14T08:13:26.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15958, + "fields": { + "EF_ID": 524417, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 13733 (8781) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.59", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.16", + "Upper_Bound": "3.02", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:26.412Z", + "last_change_date": "2022-03-14T08:13:26.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15959, + "fields": { + "EF_ID": 524418, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.30", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:26.529Z", + "last_change_date": "2022-03-14T08:13:26.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15960, + "fields": { + "EF_ID": 524419, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 802 (634) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.02", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.24", + "Upper_Bound": "3.80", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:26.647Z", + "last_change_date": "2022-03-14T08:13:26.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15961, + "fields": { + "EF_ID": 524420, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 3071 (1552) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.43", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.46", + "Upper_Bound": "3.40", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:26.789Z", + "last_change_date": "2022-03-14T08:13:26.789Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15962, + "fields": { + "EF_ID": 524421, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1065 (152) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.63", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.52", + "Upper_Bound": "3.74", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:26.898Z", + "last_change_date": "2022-03-14T08:13:26.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15963, + "fields": { + "EF_ID": 524422, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 7521 (4182) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Montane; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.12", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.65", + "Upper_Bound": "3.59", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.007Z", + "last_change_date": "2022-03-14T08:13:27.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15964, + "fields": { + "EF_ID": 524423, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.21", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.90", + "Upper_Bound": "9.52", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.116Z", + "last_change_date": "2022-03-14T08:13:27.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15965, + "fields": { + "EF_ID": 524424, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.89", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.224Z", + "last_change_date": "2022-03-14T08:13:27.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15966, + "fields": { + "EF_ID": 524425, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1477 (tree density /ha); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Africa; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.16", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.333Z", + "last_change_date": "2022-03-14T08:13:27.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15967, + "fields": { + "EF_ID": 524426, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.00", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.444Z", + "last_change_date": "2022-03-14T08:13:27.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15968, + "fields": { + "EF_ID": 524427, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.83", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.43", + "Upper_Bound": "7.23", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.552Z", + "last_change_date": "2022-03-14T08:13:27.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15969, + "fields": { + "EF_ID": 524428, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1608 (188) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.79", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.678Z", + "last_change_date": "2022-03-14T08:13:27.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15970, + "fields": { + "EF_ID": 524429, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Asia; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.787Z", + "last_change_date": "2022-03-14T08:13:27.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15971, + "fields": { + "EF_ID": 524430, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1203 (1000) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Central America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.88", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.92", + "Upper_Bound": "2.84", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:27.896Z", + "last_change_date": "2022-03-14T08:13:27.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15972, + "fields": { + "EF_ID": 524431, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Hedgerow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1110 (tree density /km); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Central America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.005Z", + "last_change_date": "2022-03-14T08:13:28.005Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15973, + "fields": { + "EF_ID": 524432, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Central America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.25", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.114Z", + "last_change_date": "2022-03-14T08:13:28.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15974, + "fields": { + "EF_ID": 524433, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5967 (1724) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Central America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.28", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.21", + "Upper_Bound": "3.35", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.231Z", + "last_change_date": "2022-03-14T08:13:28.231Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15975, + "fields": { + "EF_ID": 524434, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.76", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "3.11", + "Upper_Bound": "6.41", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.348Z", + "last_change_date": "2022-03-14T08:13:28.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15976, + "fields": { + "EF_ID": 524435, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 475 (159) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.60", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.51", + "Upper_Bound": "3.69", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.466Z", + "last_change_date": "2022-03-14T08:13:28.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15977, + "fields": { + "EF_ID": 524436, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South America; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.96", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.583Z", + "last_change_date": "2022-03-14T08:13:28.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15978, + "fields": { + "EF_ID": 524437, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1203 (1000) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.88", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.92", + "Upper_Bound": "2.84", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.692Z", + "last_change_date": "2022-03-14T08:13:28.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15979, + "fields": { + "EF_ID": 524438, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.59", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.53", + "Upper_Bound": "6.65", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.817Z", + "last_change_date": "2022-03-14T08:13:28.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15980, + "fields": { + "EF_ID": 524439, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Hedgerow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1110 (tree density /km); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:28.926Z", + "last_change_date": "2022-03-14T08:13:28.927Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15981, + "fields": { + "EF_ID": 524440, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 475 (159) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.67", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.43", + "Upper_Bound": "4.91", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.037Z", + "last_change_date": "2022-03-14T08:13:29.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15982, + "fields": { + "EF_ID": 524441, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 4766 (2513) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.36", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.67", + "Upper_Bound": "3.05", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.154Z", + "last_change_date": "2022-03-14T08:13:29.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15983, + "fields": { + "EF_ID": 524442, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.262Z", + "last_change_date": "2022-03-14T08:13:29.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15984, + "fields": { + "EF_ID": 524443, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Alley cropping", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 8568 (8403) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.37", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.07", + "Upper_Bound": "2.67", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.380Z", + "last_change_date": "2022-03-14T08:13:29.380Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15985, + "fields": { + "EF_ID": 524444, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Fallow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 6074 (4529) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.42", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "3.74", + "Upper_Bound": "5.10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.497Z", + "last_change_date": "2022-03-14T08:13:29.497Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15986, + "fields": { + "EF_ID": 524445, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Hedgerow", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1481 (463) (tree density /km (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.32", + "Upper_Bound": "0.62", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.606Z", + "last_change_date": "2022-03-14T08:13:29.606Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15987, + "fields": { + "EF_ID": 524446, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.5 - Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Multistrata", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 929 (901) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.25", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.55", + "Upper_Bound": "3.95", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.723Z", + "last_change_date": "2022-03-14T08:13:29.724Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15988, + "fields": { + "EF_ID": 524447, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Parkland", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 152 (102) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.59", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.25", + "Upper_Bound": "0.93", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.832Z", + "last_change_date": "2022-03-14T08:13:29.832Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15989, + "fields": { + "EF_ID": 524448, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Shaded perennial", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 4236 (2347) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.40", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.83", + "Upper_Bound": "2.97", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:29.941Z", + "last_change_date": "2022-03-14T08:13:29.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15990, + "fields": { + "EF_ID": 524449, + "IPCC_Category": "3.B.1 - Forest land, 3.B.2 - Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 880 (290) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.61", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "2.41", + "Upper_Bound": "4.81", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:30.067Z", + "last_change_date": "2022-03-14T08:13:30.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15991, + "fields": { + "EF_ID": 524450, + "IPCC_Category": "3.B.1 - Forest land, 3.B.3 - Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Above-ground biomass net growth (ABG)", + "Technology_Practices": "Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1609 (938) (tree density /ha (+/- SD)); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: ; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.91", + "Unit": "tonnes C/ha/yr", + "Equation": "Equations 2.9, 2.10 on Page 2.15 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.09", + "Upper_Bound": "4.73", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:30.184Z", + "last_change_date": "2022-03-14T08:13:30.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15992, + "fields": { + "EF_ID": 524451, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Soil carbon stock (SOC)", + "Technology_Practices": "Gerba Dima forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South-western Ethiopia; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: ;", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "163", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet for 3B1b, sheet 1 of 2 of the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dibaba, A., Soromessa, T. and Workineh B. (2019). Carbon stock of the various carbon pools in Gerba‑Dima moist Afromontane forest, South‑western Ethiopia. Carbon Balance and Management", + "English_Abstract": "Unlike in the developed countries, Ethiopia does not have carbon inventories and databank to monitor and enhance carbon sequestration potential of different forests. Only small efforts have been made so far to assess the biomass and soil carbon sequestration at micro-level. This study was carried out to obtain sufficient information about the carbon stock potential of Gerba-Dima forest in south-western Ethiopia. A total of 90 sample plots were laid by employing stratified random sampling. Nested plots were used to collect data of the four carbon pools. For trees with a diameter range of 5 cm < diameter < 20 cm, the carbon stock was assessed from a plot size of 49 m2 (7 m * 7 m). For trees with a diameter range of 20 cm < diameter < 50 cm, the carbon stock was assessed from a plot size of 625 m2 (25 m * 25 m). For trees > 50 cm diameter, an additional larger sample of 35 * 35 m2 was used. Litter, herb and soil data were collected from 1 m2 subplot established at the center of each nested plot. To compute the above ground biomass carbon stock of trees and shrubs with DBH > 5 cm, their DBH and height were measured. The biomass carbon assessment of woody species having DBH < 5 cm, litter and herb were conducted by measuring their fresh weight in the field and dry weight in the laboratory. Results: The mean total carbon stock density of Gerba-Dima forest was found to be 508.9 tons carbon ha−1, out of which 243.8, 45.97, 0.03 and 219.1 tons carbon ha−1 were stored in the above ground biomass, below ground biomass, litter biomass and soil organic carbon, respectively. Conclusions: The existence of high carbon stock in the study forest shows the potential of the area for climate change mitigation. Thus, all stakeholders at the local and national level should work together to implement effective conservation measures and get benefit from the biocarbon fund.", + "Lower_Bound": "159", + "Upper_Bound": "166", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-019-0116-x", + "creation_date": "2022-03-14T08:13:30.293Z", + "last_change_date": "2022-03-14T08:13:30.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15993, + "fields": { + "EF_ID": 524939, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Virgin peat swamp forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "181.9", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±25.6 (n=14)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:30.418Z", + "last_change_date": "2022-03-14T08:13:30.418Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15994, + "fields": { + "EF_ID": 524940, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Logged forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85.1", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±23.5 (n=17)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:30.544Z", + "last_change_date": "2022-03-14T08:13:30.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15995, + "fields": { + "EF_ID": 524941, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Fire-damaged forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.4", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±17.4 (n=19)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:30.662Z", + "last_change_date": "2022-03-14T08:13:30.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15996, + "fields": { + "EF_ID": 524942, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland, 3.B.1.b.i - Cropland converted to Forest Land, 3.B.3.b.ii - Cropland converted to Grassland, 3.B.6.b.ii - Cropland converted to Other Land, 3.B.5.b.ii - Cropland converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass and Dead Organic Matter Carbon Stock", + "Technology_Practices": "Mixed croplands and shrublands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.4", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±2.4 (n=44)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:30.772Z", + "last_change_date": "2022-03-14T08:13:30.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15997, + "fields": { + "EF_ID": 524943, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland, 3.B.1.b.i - Cropland converted to Forest Land, 3.B.3.b.ii - Cropland converted to Grassland, 3.B.6.b.ii - Cropland converted to Other Land, 3.B.5.b.ii - Cropland converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground and Belowground Biomass and Dead Organic Matter Carbon Stock", + "Technology_Practices": "Rice field", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.8", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±0.3 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:30.898Z", + "last_change_date": "2022-03-14T08:13:30.898Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15998, + "fields": { + "EF_ID": 524944, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland, 3.B.1.b.i - Cropland converted to Forest Land, 3.B.3.b.ii - Cropland converted to Grassland, 3.B.6.b.ii - Cropland converted to Other Land, 3.B.5.b.ii - Cropland converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Oil palm plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Oil palm; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Rotation time: 25 years", + "Value": "24.2", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±8.1 (n=51)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.006Z", + "last_change_date": "2022-03-14T08:13:31.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 15999, + "fields": { + "EF_ID": 524945, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Acacia plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Acacia; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Rotation time: 6 years", + "Value": "20.9", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±2.1 (n=40)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.115Z", + "last_change_date": "2022-03-14T08:13:31.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16000, + "fields": { + "EF_ID": 524946, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Dead Organic Matter Carbon Stock", + "Technology_Practices": "Virgin peat swamp forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.0", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.18 and 2.19 on Page 2.23 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±3.4 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.224Z", + "last_change_date": "2022-03-14T08:13:31.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16001, + "fields": { + "EF_ID": 524947, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Dead Organic Matter Carbon Stock", + "Technology_Practices": "Logged forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.18 and 2.19 on Page 2.23 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±2.2 (n=9)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.333Z", + "last_change_date": "2022-03-14T08:13:31.333Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16002, + "fields": { + "EF_ID": 524948, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Dead Organic Matter Carbon Stock", + "Technology_Practices": "Fire-damaged forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.18 and 2.19 on Page 2.23 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±1.5 (n=11)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.442Z", + "last_change_date": "2022-03-14T08:13:31.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16003, + "fields": { + "EF_ID": 524949, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Dead Organic Matter Carbon Stock", + "Technology_Practices": "Acacia plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Acacia; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Rotation time: 6 years", + "Value": "3.8", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.18 and 2.19 on Page 2.23 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±0.7 (n=12)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.551Z", + "last_change_date": "2022-03-14T08:13:31.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16004, + "fields": { + "EF_ID": 524950, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Virgin peat swamp forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.8", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±12 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.668Z", + "last_change_date": "2022-03-14T08:13:31.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16005, + "fields": { + "EF_ID": 524951, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Logged forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.6", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±6.3 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.777Z", + "last_change_date": "2022-03-14T08:13:31.777Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16006, + "fields": { + "EF_ID": 524952, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Fire-damaged forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.7", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±4.3 (n=10)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:31.894Z", + "last_change_date": "2022-03-14T08:13:31.894Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16007, + "fields": { + "EF_ID": 524953, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland, 3.B.1.b.i - Cropland converted to Forest Land, 3.B.3.b.ii - Cropland converted to Grassland, 3.B.6.b.ii - Cropland converted to Other Land, 3.B.5.b.ii - Cropland converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Mixed croplands and shrublands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.3", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±1.3 (n=11)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.011Z", + "last_change_date": "2022-03-14T08:13:32.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16008, + "fields": { + "EF_ID": 524954, + "IPCC_Category": "3.B.2.a - Cropland Remaining Cropland, 3.B.1.b.i - Cropland converted to Forest Land, 3.B.3.b.ii - Cropland converted to Grassland, 3.B.6.b.ii - Cropland converted to Other Land, 3.B.5.b.ii - Cropland converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Oil palm plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Oil palm; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Rotation time: 25 years", + "Value": "6.2", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±3.5 (n=51)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.137Z", + "last_change_date": "2022-03-14T08:13:32.137Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16009, + "fields": { + "EF_ID": 524955, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.1.a - Forest land Remaining Forest land, 3.B.3.b.i - Forest Land converted to Grassland, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Acacia plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Acacia; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Rotation time: 6 years", + "Value": "", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.7, 2.8 on Page 2.12 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±0.1 (n=14)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.246Z", + "last_change_date": "2022-03-14T08:13:32.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16010, + "fields": { + "EF_ID": 524956, + "IPCC_Category": "3.C.1.b - Burning in Cropland, 3.C.1.a - Burning in Forest Land", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Organic Soil Fuel Consumption", + "Technology_Practices": "Virgin peat swamp forest, logged forest, mixed croplands and shrublands (fruit agroforestry systems), rice fields, oil palm, acacia plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: peat.", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "284.7", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.8 on Page 2.37 in Chapter 2 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents the amount of fuel consumption: i.e. fuel actually burnt (MB*Cf). The Value in Common Unit is the Value devided by the Cfractionwt_peat 0.34 [tonnes C/(tonne air-dry peat)] of the Table 7.5, Chapter 7, Volume 4 of the 2006 IPCC Guidelines. `Standard error ±68.1 (n=4)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.356Z", + "last_change_date": "2022-03-14T08:13:32.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16011, + "fields": { + "EF_ID": 524957, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biomass Affected by Fire/Fuel Biomass Consumption", + "Technology_Practices": "Virgin peat swamp forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: peat.", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "151.6", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.14 and 2.27 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents the amount of biomass affected by fire (Bw*CF)/fuel consumption: i.e. fuel actually burnt (MB*Cf). The Value in Common Unit is the Value devided by the carbon fraction 0.47 [tonnes C/(tonne d.m.)] of the Table 4.3, Chapter 4, Volume 4 of the 2006 IPCC Guidelines. Standard error ±36.0 (n=30).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.457Z", + "last_change_date": "2022-03-14T08:13:32.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16012, + "fields": { + "EF_ID": 524958, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biomass Affected by Fire/Fuel Biomass Consumption", + "Technology_Practices": "Logged forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.6", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.14 and 2.27 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents the amount of biomass affected by fire (Bw*CF)/fuel consumption: i.e. fuel actually burnt (MB*Cf). The Value in Common Unit is the Value devided by the carbon fraction 0.47 [tonnes C/(tonne d.m.)] of the Table 4.3, Chapter 4, Volume 4 of the 2006 IPCC Guidelines. Standard error ±35.5.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.557Z", + "last_change_date": "2022-03-14T08:13:32.557Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16013, + "fields": { + "EF_ID": 524959, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biomass Affected by Fire/Fuel Biomass Consumption", + "Technology_Practices": "Mixed croplands and shrublands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.7", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.14 and 2.27 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents the amount of biomass affected by fire (Bw*CF)/fuel consumption: i.e. fuel actually burnt (MB*Cf). The Value in Common Unit is the Value devided by the carbon fraction 0.47 [tonnes C/(tonne d.m.)] of the Table 4.3, Chapter 4, Volume 4 of the 2006 IPCC Guidelines. Standard error ±2.8 (n=55).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.657Z", + "last_change_date": "2022-03-14T08:13:32.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16014, + "fields": { + "EF_ID": 524960, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biomass Affected by Fire/Fuel Biomass Consumption", + "Technology_Practices": "Rice field", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.8", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.14 and 2.27 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents the amount of biomass affected by fire (Bw*CF)/fuel consumption: i.e. fuel actually burnt (MB*Cf). The Value in Common Unit is the Value devided by the carbon fraction 0.47 [tonnes C/(tonne d.m.)] of the Table 4.3, Chapter 4, Volume 4 of the 2006 IPCC Guidelines. Standard error ±0.3 (n=6).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.766Z", + "last_change_date": "2022-03-14T08:13:32.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16015, + "fields": { + "EF_ID": 524961, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biomass Affected by Fire/Fuel Biomass Consumption", + "Technology_Practices": "Oil palm plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Oil palm; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.6", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.14 and 2.27 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents the amount of biomass affected by fire (Bw*CF)/fuel consumption: i.e. fuel actually burnt (MB*Cf). The Value in Common Unit is the Value devided by the carbon fraction 0.47 [tonnes C/(tonne d.m.)] of the Table 4.3, Chapter 4, Volume 4 of the 2006 IPCC Guidelines. Standard error ±8.8.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.884Z", + "last_change_date": "2022-03-14T08:13:32.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16016, + "fields": { + "EF_ID": 524962, + "IPCC_Category": "3.C.1.a - Burning in Forest Land", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biomass Affected by Fire/Fuel Biomass Consumption", + "Technology_Practices": "Acacia plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Acacia; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.0", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.14 and 2.27 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents the amount of biomass affected by fire (Bw*CF)/fuel consumption: i.e. fuel actually burnt (MB*Cf). The Value in Common Unit is the Value devided by the carbon fraction 0.47 [tonnes C/(tonne d.m.)] of the Table 4.3, Chapter 4, Volume 4 of the 2006 IPCC Guidelines. Standard error ±2.1 (n=66).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:32.984Z", + "last_change_date": "2022-03-14T08:13:32.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16017, + "fields": { + "EF_ID": 524963, + "IPCC_Category": "3.C.1.b - Burning in Cropland", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biomass Affected by Fire/Fuel Biomass Consumption", + "Technology_Practices": "Virgin peat swamp forest converted to oil palm plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "157.7", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.14 and 2.27 in Chapter 2, Volume 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value represents the amount of biomass affected by fire (Bw*CF)/fuel consumption: i.e. fuel actually burnt (MB*Cf). The Value in Common Unit is the Value devided by the carbon fraction 0.47 [tonnes C/(tonne d.m.)] of the Table 4.3, Chapter 4, Volume 4 of the 2006 IPCC Guidelines. Standard error ±26.8.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:33.093Z", + "last_change_date": "2022-03-14T08:13:33.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16018, + "fields": { + "EF_ID": 524964, + "IPCC_Category": "3.C.10 - CH4 from Rewetting of Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor from rewetted organic soils", + "Technology_Practices": "Virgin peat swamp forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Rewetted", + "Other_Properties": "", + "Value": "0.028", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 3.8 in Chapter 3 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±0.010 (n=8).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:33.194Z", + "last_change_date": "2022-03-14T08:13:33.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16019, + "fields": { + "EF_ID": 524965, + "IPCC_Category": "3.C.8 - CH4 from Drained Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for drained organic soils", + "Technology_Practices": "Fire-damaged forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.002", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.6 in Chapter 2 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±0.000 (n=2).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:33.294Z", + "last_change_date": "2022-03-14T08:13:33.294Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16020, + "fields": { + "EF_ID": 524966, + "IPCC_Category": "3.C.8 - CH4 from Drained Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for drained organic soils", + "Technology_Practices": "Mixed croplands and shrublands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.6 in Chapter 2 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±0.010 (n=9).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:33.412Z", + "last_change_date": "2022-03-14T08:13:33.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16021, + "fields": { + "EF_ID": 524967, + "IPCC_Category": "3.C.10 - CH4 from Rewetting of Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor from rewetted organic soils", + "Technology_Practices": "Rice field", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.155", + "Unit": "tonnes C/ha", + "Equation": "Equation 3.8 in Chapter 3 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±0.082 (n=4).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:33.529Z", + "last_change_date": "2022-03-14T08:13:33.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16022, + "fields": { + "EF_ID": 524968, + "IPCC_Category": "3.C.8 - CH4 from Drained Organic Soils", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for drained organic soils", + "Technology_Practices": "Oil palm plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Oil palm; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Southeast Asia; Climate: Tropical; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-0.0002", + "Unit": "tonnes C/ha", + "Equation": "Equation 2.6 in Chapter 2 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hergoualc’h, K., and L. V. Verchot (2011), Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review, Global Biogeochem. Cycles, 25, GB2001", + "English_Abstract": "The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire‐damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha−1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha−1 in rice fields to 436.2 ± 77.0 Mg C ha−1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input‐output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha−1 yr−1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha−1 or 17.1 ± 3.6 Mg C ha−1 yr−1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard error ±0.000 (n=1).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1029/2009GB003718", + "creation_date": "2022-03-14T08:13:33.646Z", + "last_change_date": "2022-03-14T08:13:33.647Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16023, + "fields": { + "EF_ID": 524986, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 3 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Misamis Oriental; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.0267", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sharma, S., Nadaoka, K., Nakaoka, M., Uy, W. H., MacKenzie, R. A., Friess, D. A., & Fortes, M. D. (2017). Growth performance and structure of a mangrove afforestation project on a former seagrass bed, Mindanao Island, Philippines. Hydrobiologia, 803(1), 359-371. doi:10.1007/s10750-017-3252-x", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 14.8755467771776 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:33.772Z", + "last_change_date": "2022-03-14T08:13:33.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16024, + "fields": { + "EF_ID": 524987, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 3 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.382663762069969", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.11283586360212 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:33.882Z", + "last_change_date": "2022-03-14T08:13:33.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16025, + "fields": { + "EF_ID": 524988, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 3 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.79967448269779", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.26374791184385 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:33.982Z", + "last_change_date": "2022-03-14T08:13:33.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16026, + "fields": { + "EF_ID": 524989, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.3", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 30.5470129472588 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.108Z", + "last_change_date": "2022-03-14T08:13:34.108Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16027, + "fields": { + "EF_ID": 524990, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 5.3 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.217Z", + "last_change_date": "2022-03-14T08:13:34.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16028, + "fields": { + "EF_ID": 524991, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Sonneratia apetala; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.768", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.976876655468847 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.326Z", + "last_change_date": "2022-03-14T08:13:34.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16029, + "fields": { + "EF_ID": 524992, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Kandelia obovata; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.423", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.814063879557372 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.427Z", + "last_change_date": "2022-03-14T08:13:34.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16030, + "fields": { + "EF_ID": 524993, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.938", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.734 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.527Z", + "last_change_date": "2022-03-14T08:13:34.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16031, + "fields": { + "EF_ID": 524994, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: R. mucronata; Biomass attributes/age: 6 years;", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3125", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.707106781186548 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.628Z", + "last_change_date": "2022-03-14T08:13:34.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16032, + "fields": { + "EF_ID": 524995, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: S. alba Biomass attributes/age: 9 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52.065", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 3.00520382004283 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.728Z", + "last_change_date": "2022-03-14T08:13:34.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16033, + "fields": { + "EF_ID": 524996, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 7 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.71987760898308", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.32941687532566 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.829Z", + "last_change_date": "2022-03-14T08:13:34.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16034, + "fields": { + "EF_ID": 524997, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 8 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.834", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 6.674 (n=7)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:34.955Z", + "last_change_date": "2022-03-14T08:13:34.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16035, + "fields": { + "EF_ID": 524998, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 8 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.639", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 6.059 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.064Z", + "last_change_date": "2022-03-14T08:13:35.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16036, + "fields": { + "EF_ID": 524999, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 9 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Misamis Oriental; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.98445", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sharma, S., Nadaoka, K., Nakaoka, M., Uy, W. H., MacKenzie, R. A., Friess, D. A., & Fortes, M. D. (2017). Growth performance and structure of a mangrove afforestation project on a former seagrass bed, Mindanao Island, Philippines. Hydrobiologia, 803(1), 359-371. doi:10.1007/s10750-017-3252-x", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 8.62128559989749 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.164Z", + "last_change_date": "2022-03-14T08:13:35.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16037, + "fields": { + "EF_ID": 525000, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.4793643713263", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: NA (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.265Z", + "last_change_date": "2022-03-14T08:13:35.265Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16038, + "fields": { + "EF_ID": 525001, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.074", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 26.038 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.367Z", + "last_change_date": "2022-03-14T08:13:35.367Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16039, + "fields": { + "EF_ID": 525002, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18.482", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.973 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.476Z", + "last_change_date": "2022-03-14T08:13:35.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16040, + "fields": { + "EF_ID": 525003, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.23519174114913", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.21713358533645 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.584Z", + "last_change_date": "2022-03-14T08:13:35.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16041, + "fields": { + "EF_ID": 525004, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.06935539431571", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: NA (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.702Z", + "last_change_date": "2022-03-14T08:13:35.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16042, + "fields": { + "EF_ID": 525005, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 11 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "54.379", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 13.865 (n=9)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.819Z", + "last_change_date": "2022-03-14T08:13:35.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16043, + "fields": { + "EF_ID": 525006, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 11 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.85", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.839 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:35.936Z", + "last_change_date": "2022-03-14T08:13:35.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16044, + "fields": { + "EF_ID": 525007, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 12 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Kalibo; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.769", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.844 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.045Z", + "last_change_date": "2022-03-14T08:13:36.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16045, + "fields": { + "EF_ID": 525008, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: R. mucronata; Biomass attributes/age: 12 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.2775", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.82842712474619 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.154Z", + "last_change_date": "2022-03-14T08:13:36.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16046, + "fields": { + "EF_ID": 525009, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: S. alba; Biomass attributes/age: 12 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73.6125", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 3.53553390593274 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.263Z", + "last_change_date": "2022-03-14T08:13:36.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16047, + "fields": { + "EF_ID": 525010, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: A. marina; Biomass attributes/age: 12 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.6075", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 3.00520382004283 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.372Z", + "last_change_date": "2022-03-14T08:13:36.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16048, + "fields": { + "EF_ID": 525011, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 14 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80.746", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 22.325 (n=7)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.481Z", + "last_change_date": "2022-03-14T08:13:36.481Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16049, + "fields": { + "EF_ID": 525012, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99.84", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 5.43058007951269 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.581Z", + "last_change_date": "2022-03-14T08:13:36.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16050, + "fields": { + "EF_ID": 525013, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Lamongan, Muara Bengawan Solo Sedayu (MBS); Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28.2047", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arif, A. M., Guntur Guntur, A. B. R., Novianti, P., & Andik, I. (2017). Mangrove ecosystem C-stocks of Lamongan, Indonesia and its correlation with forest age. Research Journal of Chemistry and Environment Vol, 21, 8.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 11.9178951967199 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.682Z", + "last_change_date": "2022-03-14T08:13:36.682Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16051, + "fields": { + "EF_ID": 525014, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Bohol; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140.4", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Camacho LD, Gevaña DT, Carandang AP, et al. (2011) Tree biomass and carbon stock of a community-managed mangrove forest in Bohol, Philippines. Forest Science and Technology 7: 161-167.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 31.4 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.783Z", + "last_change_date": "2022-03-14T08:13:36.783Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16052, + "fields": { + "EF_ID": 525015, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75.576", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 21.385 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.884Z", + "last_change_date": "2022-03-14T08:13:36.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16053, + "fields": { + "EF_ID": 525016, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.221384789243245", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: NA (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:36.993Z", + "last_change_date": "2022-03-14T08:13:36.993Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16054, + "fields": { + "EF_ID": 525017, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 16 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "96.585", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 30.973 (n=12)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:37.110Z", + "last_change_date": "2022-03-14T08:13:37.110Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16055, + "fields": { + "EF_ID": 525018, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 17 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94.235", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.726 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:37.211Z", + "last_change_date": "2022-03-14T08:13:37.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16056, + "fields": { + "EF_ID": 525019, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 17 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Kalibo; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53.16", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 5.359 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:37.328Z", + "last_change_date": "2022-03-14T08:13:37.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16057, + "fields": { + "EF_ID": 525020, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 18 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "105.938", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 55.601 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:37.429Z", + "last_change_date": "2022-03-14T08:13:37.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16058, + "fields": { + "EF_ID": 525021, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 18 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55.468", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.705 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:37.529Z", + "last_change_date": "2022-03-14T08:13:37.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16059, + "fields": { + "EF_ID": 525022, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 18 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Nam Dinh; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.675", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Hien, H. T., Marchand, C., Aimé, J., & Cuc, N. T. K. (2018). Seasonal variability of CO2 emissions from sediments in planted mangroves (Northern Viet Nam). Estuarine, Coastal and Shelf Science, 213, 28-39. doi:10.1016/j.ecss.2018.08.006", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.35 (n=90)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:37.639Z", + "last_change_date": "2022-03-14T08:13:37.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16060, + "fields": { + "EF_ID": 525023, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 19 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "125.913", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 49.491 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:37.764Z", + "last_change_date": "2022-03-14T08:13:37.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16061, + "fields": { + "EF_ID": 525024, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Bohol; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Camacho LD, Gevaña DT, Carandang AP, et al. (2011) Tree biomass and carbon stock of a community-managed mangrove forest in Bohol, Philippines. Forest Science and Technology 7: 161-167.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 36.4 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:37.889Z", + "last_change_date": "2022-03-14T08:13:37.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16062, + "fields": { + "EF_ID": 525025, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Kandelia obovata; Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.126", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.976876655468847 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.007Z", + "last_change_date": "2022-03-14T08:13:38.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16063, + "fields": { + "EF_ID": 525026, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "138.885", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 21.573 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.116Z", + "last_change_date": "2022-03-14T08:13:38.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16064, + "fields": { + "EF_ID": 525027, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 20 years (regeneration); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Mahanadi; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62.77", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sahu, S. C., Kumar, M., & Ravindranath, N. H. (2016). Carbon stocks in natural and planted mangrove forests of Mahanadi Mangrove Wetland, East Coast of India. Current Science (00113891), 110(12).", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 22.6 (n=4)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.224Z", + "last_change_date": "2022-03-14T08:13:38.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16065, + "fields": { + "EF_ID": 525028, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 21 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Misamis Oriental; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "52.4796125", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sharma, S., Nadaoka, K., Nakaoka, M., Uy, W. H., MacKenzie, R. A., Friess, D. A., & Fortes, M. D. (2017). Growth performance and structure of a mangrove afforestation project on a former seagrass bed, Mindanao Island, Philippines. Hydrobiologia, 803(1), 359-371. doi:10.1007/s10750-017-3252-x", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 20.2463531800835 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.325Z", + "last_change_date": "2022-03-14T08:13:38.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16066, + "fields": { + "EF_ID": 525029, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 22 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132.54", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 23.829 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.427Z", + "last_change_date": "2022-03-14T08:13:38.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16067, + "fields": { + "EF_ID": 525030, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 23 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "164.641", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 63.873 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.527Z", + "last_change_date": "2022-03-14T08:13:38.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16068, + "fields": { + "EF_ID": 525031, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 24 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100.392", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 31.584 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.637Z", + "last_change_date": "2022-03-14T08:13:38.637Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16069, + "fields": { + "EF_ID": 525032, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 30 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "151.1775", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 23.4980146324467 (n=4)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.745Z", + "last_change_date": "2022-03-14T08:13:38.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16070, + "fields": { + "EF_ID": 525033, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 40 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philipines, Bohol; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "250.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Camacho LD, Gevaña DT, Carandang AP, et al. (2011) Tree biomass and carbon stock of a community-managed mangrove forest in Bohol, Philippines. Forest Science and Technology 7: 161-167.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 32.5 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.846Z", + "last_change_date": "2022-03-14T08:13:38.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16071, + "fields": { + "EF_ID": 525034, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 50 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philipines, Bohol; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62.152", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.756 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:38.947Z", + "last_change_date": "2022-03-14T08:13:38.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16072, + "fields": { + "EF_ID": 525035, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Reference forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "224", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 45.4894493261898 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.039Z", + "last_change_date": "2022-03-14T08:13:39.039Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16073, + "fields": { + "EF_ID": 525036, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Kandelia obovata; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.844", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.3025022072918 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.156Z", + "last_change_date": "2022-03-14T08:13:39.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16074, + "fields": { + "EF_ID": 525037, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 3 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Misamis Oriental; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.64716", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sharma, S., Nadaoka, K., Nakaoka, M., Uy, W. H., MacKenzie, R. A., Friess, D. A., & Fortes, M. D. (2017). Growth performance and structure of a mangrove afforestation project on a former seagrass bed, Mindanao Island, Philippines. Hydrobiologia, 803(1), 359-371. doi:10.1007/s10750-017-3252-x", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 4.93741552604194 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.265Z", + "last_change_date": "2022-03-14T08:13:39.265Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16075, + "fields": { + "EF_ID": 525038, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 3 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.287004996498016", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.0846290133740323 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.374Z", + "last_change_date": "2022-03-14T08:13:39.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16076, + "fields": { + "EF_ID": 525039, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 3 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.0998083559199", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.947834629156234 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.491Z", + "last_change_date": "2022-03-14T08:13:39.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16077, + "fields": { + "EF_ID": 525040, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.72", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 12.2188051789035 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.600Z", + "last_change_date": "2022-03-14T08:13:39.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16078, + "fields": { + "EF_ID": 525041, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.19", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.4 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.701Z", + "last_change_date": "2022-03-14T08:13:39.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16079, + "fields": { + "EF_ID": 525042, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Sonneratia apetala; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.354", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.810599777942234 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.809Z", + "last_change_date": "2022-03-14T08:13:39.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16080, + "fields": { + "EF_ID": 525043, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Kandelia obovata; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.117", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.0675499814951862 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:39.920Z", + "last_change_date": "2022-03-14T08:13:39.920Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16081, + "fields": { + "EF_ID": 525044, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.575", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.093 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.029Z", + "last_change_date": "2022-03-14T08:13:40.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16082, + "fields": { + "EF_ID": 525045, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: R. mucronata; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.925", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.282842712474619 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.137Z", + "last_change_date": "2022-03-14T08:13:40.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16083, + "fields": { + "EF_ID": 525046, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: S. alba; Biomass attributes/age: 9 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.826", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.20208152801713 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.263Z", + "last_change_date": "2022-03-14T08:13:40.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16084, + "fields": { + "EF_ID": 525047, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 7 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.78997795444248", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.997087583060657 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.347Z", + "last_change_date": "2022-03-14T08:13:40.347Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16085, + "fields": { + "EF_ID": 525048, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 8 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.9336", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.6696 (n=7)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.431Z", + "last_change_date": "2022-03-14T08:13:40.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16086, + "fields": { + "EF_ID": 525049, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 8 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.455", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.424 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.515Z", + "last_change_date": "2022-03-14T08:13:40.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16087, + "fields": { + "EF_ID": 525050, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 9 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Misamis Oriental; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.61186", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sharma, S., Nadaoka, K., Nakaoka, M., Uy, W. H., MacKenzie, R. A., Friess, D. A., & Fortes, M. D. (2017). Growth performance and structure of a mangrove afforestation project on a former seagrass bed, Mindanao Island, Philippines. Hydrobiologia, 803(1), 359-371. doi:10.1007/s10750-017-3252-x", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.86153309273194 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.599Z", + "last_change_date": "2022-03-14T08:13:40.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16088, + "fields": { + "EF_ID": 525051, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.3600572665767", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: NA (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.700Z", + "last_change_date": "2022-03-14T08:13:40.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16089, + "fields": { + "EF_ID": 525052, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.2296", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 10.4152 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.817Z", + "last_change_date": "2022-03-14T08:13:40.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16090, + "fields": { + "EF_ID": 525053, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.393", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.189 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:40.934Z", + "last_change_date": "2022-03-14T08:13:40.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16091, + "fields": { + "EF_ID": 525054, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.92649196570699", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.66289176025706 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.052Z", + "last_change_date": "2022-03-14T08:13:41.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16092, + "fields": { + "EF_ID": 525055, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.30207409615043", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: NA (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.169Z", + "last_change_date": "2022-03-14T08:13:41.169Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16093, + "fields": { + "EF_ID": 525056, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 11 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.7516", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 5.546 (n=9)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.277Z", + "last_change_date": "2022-03-14T08:13:41.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16094, + "fields": { + "EF_ID": 525057, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 11 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.94", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.136 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.379Z", + "last_change_date": "2022-03-14T08:13:41.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16095, + "fields": { + "EF_ID": 525058, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 12 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Kalibo; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.908", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.738 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.488Z", + "last_change_date": "2022-03-14T08:13:41.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16096, + "fields": { + "EF_ID": 525059, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: R. mucronata; Biomass attributes/age: 12 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.711", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.13137084989848 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.589Z", + "last_change_date": "2022-03-14T08:13:41.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16097, + "fields": { + "EF_ID": 525060, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: S. alba; Biomass attributes/age: 12 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.445", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.4142135623731 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.689Z", + "last_change_date": "2022-03-14T08:13:41.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16098, + "fields": { + "EF_ID": 525061, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Replanted mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: A. marina; Biomass attributes/age: 12 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Kenya, Gazi Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.043", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.20208152801713 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.790Z", + "last_change_date": "2022-03-14T08:13:41.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16099, + "fields": { + "EF_ID": 525062, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 14 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.2984", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 8.93 (n=7)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.890Z", + "last_change_date": "2022-03-14T08:13:41.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16100, + "fields": { + "EF_ID": 525063, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.936", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.17223203180508 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:41.991Z", + "last_change_date": "2022-03-14T08:13:41.991Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16101, + "fields": { + "EF_ID": 525064, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Lamongan, Muara Bengawan Solo Sedayu (MBS); Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.6196", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arif, A. M., Guntur Guntur, A. B. R., Novianti, P., & Andik, I. (2017). Mangrove ecosystem C-stocks of Lamongan, Indonesia and its correlation with forest age. Research Journal of Chemistry and Environment Vol, 21, 8.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 13.077676417468 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.092Z", + "last_change_date": "2022-03-14T08:13:42.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16102, + "fields": { + "EF_ID": 525065, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Bohol; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68.1", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Camacho LD, Gevaña DT, Carandang AP, et al. (2011) Tree biomass and carbon stock of a community-managed mangrove forest in Bohol, Philippines. Forest Science and Technology 7: 161-167.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 5 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.192Z", + "last_change_date": "2022-03-14T08:13:42.192Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16103, + "fields": { + "EF_ID": 525066, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.2304", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 8.554 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.309Z", + "last_change_date": "2022-03-14T08:13:42.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16104, + "fields": { + "EF_ID": 525067, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.166042742897232", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: NA (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.427Z", + "last_change_date": "2022-03-14T08:13:42.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16105, + "fields": { + "EF_ID": 525068, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 16 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.634", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 12.3892 (n=12)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.544Z", + "last_change_date": "2022-03-14T08:13:42.544Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16106, + "fields": { + "EF_ID": 525069, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 17 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.694", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.0904 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.661Z", + "last_change_date": "2022-03-14T08:13:42.661Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16107, + "fields": { + "EF_ID": 525070, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 17 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Kalibo; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.264", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 2.143 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.770Z", + "last_change_date": "2022-03-14T08:13:42.770Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16108, + "fields": { + "EF_ID": 525071, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 18 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.3752", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 22.2404 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.872Z", + "last_change_date": "2022-03-14T08:13:42.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16109, + "fields": { + "EF_ID": 525072, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 18 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Lingayen Gulf; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.187", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.082 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:42.973Z", + "last_change_date": "2022-03-14T08:13:42.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16110, + "fields": { + "EF_ID": 525073, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 18 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Nam Dinh; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.67", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Hien, H. T., Marchand, C., Aimé, J., & Cuc, N. T. K. (2018). Seasonal variability of CO2 emissions from sediments in planted mangroves (Northern Viet Nam). Estuarine, Coastal and Shelf Science, 213, 28-39. doi:10.1016/j.ecss.2018.08.006", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.14 (n=90)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.073Z", + "last_change_date": "2022-03-14T08:13:43.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16111, + "fields": { + "EF_ID": 525074, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 19 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.3652", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 19.7964 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.174Z", + "last_change_date": "2022-03-14T08:13:43.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16112, + "fields": { + "EF_ID": 525075, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Bohol; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Camacho LD, Gevaña DT, Carandang AP, et al. (2011) Tree biomass and carbon stock of a community-managed mangrove forest in Bohol, Philippines. Forest Science and Technology 7: 161-167.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 19.2 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.283Z", + "last_change_date": "2022-03-14T08:13:43.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16113, + "fields": { + "EF_ID": 525076, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Kandelia obovata; Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.262", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.810599777942234 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.383Z", + "last_change_date": "2022-03-14T08:13:43.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16114, + "fields": { + "EF_ID": 525077, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55.554", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 8.6292 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.484Z", + "last_change_date": "2022-03-14T08:13:43.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16115, + "fields": { + "EF_ID": 525078, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 20 years (regeneration); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Mahanadi; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.86", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sahu, S. C., Kumar, M., & Ravindranath, N. H. (2016). Carbon stocks in natural and planted mangrove forests of Mahanadi Mangrove Wetland, East Coast of India. Current Science (00113891), 110(12).", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 9.8 (n=4)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.584Z", + "last_change_date": "2022-03-14T08:13:43.584Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16116, + "fields": { + "EF_ID": 525079, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 21 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Misamis Oriental; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.418765", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sharma, S., Nadaoka, K., Nakaoka, M., Uy, W. H., MacKenzie, R. A., Friess, D. A., & Fortes, M. D. (2017). Growth performance and structure of a mangrove afforestation project on a former seagrass bed, Mindanao Island, Philippines. Hydrobiologia, 803(1), 359-371. doi:10.1007/s10750-017-3252-x", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 6.72006616190007 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.694Z", + "last_change_date": "2022-03-14T08:13:43.694Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16117, + "fields": { + "EF_ID": 525080, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 22 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53.016", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 9.5316 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.802Z", + "last_change_date": "2022-03-14T08:13:43.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16118, + "fields": { + "EF_ID": 525081, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 23 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65.8564", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 25.5492 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:43.903Z", + "last_change_date": "2022-03-14T08:13:43.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16119, + "fields": { + "EF_ID": 525082, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 24 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Mekong Delta; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.1568", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Phan, S. M., Nguyen, H. T. T., Nguyen, T. K., & Lovelock, C. (2019). Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 432, 376-386. doi:10.1016/j.foreco.2018.09.028", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 12.6336 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.045Z", + "last_change_date": "2022-03-14T08:13:44.045Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16120, + "fields": { + "EF_ID": 525083, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 30 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60.471", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 23.4980146324467 (n=4)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.188Z", + "last_change_date": "2022-03-14T08:13:44.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16121, + "fields": { + "EF_ID": 525084, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 40 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philipines, Bohol; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Camacho LD, Gevaña DT, Carandang AP, et al. (2011) Tree biomass and carbon stock of a community-managed mangrove forest in Bohol, Philippines. Forest Science and Technology 7: 161-167.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 18.7 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.296Z", + "last_change_date": "2022-03-14T08:13:44.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16122, + "fields": { + "EF_ID": 525085, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 50 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philipines, Bohol; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.861", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Salmo, S. G., Lovelock, C., & Duke, N. C. (2013). Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1), 1-18.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.702 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.407Z", + "last_change_date": "2022-03-14T08:13:44.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16123, + "fields": { + "EF_ID": 525086, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Reference forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "89.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 18.195779730476 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.507Z", + "last_change_date": "2022-03-14T08:13:44.507Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16124, + "fields": { + "EF_ID": 525087, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Kandelia obovata; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.276", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1.08079970392298 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.608Z", + "last_change_date": "2022-03-14T08:13:44.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16125, + "fields": { + "EF_ID": 525088, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 3 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 75.6", + "Value": "64.2136723328079", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 33.196104785628 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.709Z", + "last_change_date": "2022-03-14T08:13:44.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16126, + "fields": { + "EF_ID": 525089, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "460.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 36.252448193191 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.818Z", + "last_change_date": "2022-03-14T08:13:44.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16127, + "fields": { + "EF_ID": 525090, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "86.79", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 35.1 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:44.926Z", + "last_change_date": "2022-03-14T08:13:44.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16128, + "fields": { + "EF_ID": 525091, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Sonneratia apetala; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "49.49", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 6.52307654638515 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.035Z", + "last_change_date": "2022-03-14T08:13:45.035Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16129, + "fields": { + "EF_ID": 525092, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Kandelia obovata; Biomass attributes/age: 6 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "43.994", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 6.01610527500974 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.152Z", + "last_change_date": "2022-03-14T08:13:45.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16130, + "fields": { + "EF_ID": 525093, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 7 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 82.4", + "Value": "175.801638013524", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 109.418639174749 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.270Z", + "last_change_date": "2022-03-14T08:13:45.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16131, + "fields": { + "EF_ID": 525094, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 5 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 28.6", + "Value": "56.7743573754631", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 15.453719115095 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.387Z", + "last_change_date": "2022-03-14T08:13:45.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16132, + "fields": { + "EF_ID": 525095, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Jubail Is.; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "154.595569108987", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 7.34507538265356 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.496Z", + "last_change_date": "2022-03-14T08:13:45.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16133, + "fields": { + "EF_ID": 525096, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 10 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 29.8", + "Value": "50.9268612514251", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 8.96771320841639 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.605Z", + "last_change_date": "2022-03-14T08:13:45.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16134, + "fields": { + "EF_ID": 525097, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "483.2", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 54.1337233155082 (n=2)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.722Z", + "last_change_date": "2022-03-14T08:13:45.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16135, + "fields": { + "EF_ID": 525098, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Lamongan, Muara Bengawan Solo Sedayu (MBS); Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 30", + "Value": "97.03", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arif, A. M., Guntur Guntur, A. B. R., Novianti, P., & Andik, I. (2017). Mangrove ecosystem C-stocks of Lamongan, Indonesia and its correlation with forest age. Research Journal of Chemistry and Environment Vol, 21, 8.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 20.7153276585238 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.823Z", + "last_change_date": "2022-03-14T08:13:45.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16136, + "fields": { + "EF_ID": 525099, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 15 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: United Arab Emirates, Arabian Gulf, Abu al Abyad; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 80.6", + "Value": "111.36164811673", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P. (2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological Applications, 27(3), 859-874.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 36.1964779499556 (n=5)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:45.941Z", + "last_change_date": "2022-03-14T08:13:45.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16137, + "fields": { + "EF_ID": 525100, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 18 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Vietnam, Nam Dinh; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "159.45", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Hien, H. T., Marchand, C., Aimé, J., & Cuc, N. T. K. (2018). Seasonal variability of CO2 emissions from sediments in planted mangroves (Northern Viet Nam). Estuarine, Coastal and Shelf Science, 213, 28-39. doi:10.1016/j.ecss.2018.08.006", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 3.96 (n=90)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.067Z", + "last_change_date": "2022-03-14T08:13:46.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16138, + "fields": { + "EF_ID": 525101, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Sonneratia apetala; Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "48.335", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 7.76824787194642 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.184Z", + "last_change_date": "2022-03-14T08:13:46.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16139, + "fields": { + "EF_ID": 525102, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 20 years (regeneration); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Mahanadi; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 30", + "Value": "60.9", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Sahu, S. C., Kumar, M., & Ravindranath, N. H. (2016). Carbon stocks in natural and planted mangrove forests of Mahanadi Mangrove Wetland, East Coast of India. Current Science (00113891), 110(12).", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 13.9 (n=4)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.293Z", + "last_change_date": "2022-03-14T08:13:46.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16140, + "fields": { + "EF_ID": 525103, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 30 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "497.5", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 52.6640294698383 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.402Z", + "last_change_date": "2022-03-14T08:13:46.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16141, + "fields": { + "EF_ID": 525104, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: Kandelia obovata; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Shenzhen Bay; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "152.5325", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Lunstrum A and Chen L. (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223-232.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 30.0789675293219 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.511Z", + "last_change_date": "2022-03-14T08:13:46.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16142, + "fields": { + "EF_ID": 525105, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Reference forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "545", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 277.772136831612 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.620Z", + "last_change_date": "2022-03-14T08:13:46.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16143, + "fields": { + "EF_ID": 525106, + "IPCC_Category": "3.B.1.b.iii - Wetlands converted to Forest Land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 13 years (regeneration); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: China, Zhanjiang Mangrove National Nature Reserve; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "170.43", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: JinPing Z, ChengDe S, Hai R, et al. (2012) Estimating change in sedimentary organic carbon content during mangrove restoration in southern China using carbon isotopic measurements. Pedosphere 22: 58-66.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 117.918436217582 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.728Z", + "last_change_date": "2022-03-14T08:13:46.728Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16144, + "fields": { + "EF_ID": 525107, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Clear cut", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 1 years (regeneration); Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "385.2", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 177.832955326059 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.838Z", + "last_change_date": "2022-03-14T08:13:46.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16145, + "fields": { + "EF_ID": 525108, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Mangrove (forest) naturally regenerated", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Lamongan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.3514", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arif, A. M., Guntur Guntur, A. B. R., Novianti, P., & Andik, I. (2017). Mangrove ecosystem C-stocks of Lamongan, Indonesia and its correlation with forest age. Research Journal of Chemistry and Environment Vol, 21, 8.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 21.2959110892209 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:46.946Z", + "last_change_date": "2022-03-14T08:13:46.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16146, + "fields": { + "EF_ID": 525109, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Mangrove (forest) naturally regenerated", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Lamongan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.5202", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arif, A. M., Guntur Guntur, A. B. R., Novianti, P., & Andik, I. (2017). Mangrove ecosystem C-stocks of Lamongan, Indonesia and its correlation with forest age. Research Journal of Chemistry and Environment Vol, 21, 8.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 8.32891271835646 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.055Z", + "last_change_date": "2022-03-14T08:13:47.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16147, + "fields": { + "EF_ID": 525110, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Mangrove (forest) naturally regenerated", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 20 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Lamongan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 30", + "Value": "123.71", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arif, A. M., Guntur Guntur, A. B. R., Novianti, P., & Andik, I. (2017). Mangrove ecosystem C-stocks of Lamongan, Indonesia and its correlation with forest age. Research Journal of Chemistry and Environment Vol, 21, 8.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 5.19615242270663 (n=3)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.164Z", + "last_change_date": "2022-03-14T08:13:47.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16148, + "fields": { + "EF_ID": 525111, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandond fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tanakeke; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0.721110255092798 (n=52)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.306Z", + "last_change_date": "2022-03-14T08:13:47.306Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16149, + "fields": { + "EF_ID": 525112, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandond fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tanakeke; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 0 (n=52)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.424Z", + "last_change_date": "2022-03-14T08:13:47.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16150, + "fields": { + "EF_ID": 525113, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Ermita; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.1", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde:2 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.509Z", + "last_change_date": "2022-03-14T08:13:47.509Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16151, + "fields": { + "EF_ID": 525114, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Ermita; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.28", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.618Z", + "last_change_date": "2022-03-14T08:13:47.618Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16152, + "fields": { + "EF_ID": 525115, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "391.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 183.164372900409 (n=6.75)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.735Z", + "last_change_date": "2022-03-14T08:13:47.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16153, + "fields": { + "EF_ID": 525116, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Bakhawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.04", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde:2 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.844Z", + "last_change_date": "2022-03-14T08:13:47.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16154, + "fields": { + "EF_ID": 525117, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Bakhawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.65", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 1 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:47.953Z", + "last_change_date": "2022-03-14T08:13:47.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16155, + "fields": { + "EF_ID": 525118, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "343.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 194.1 (n=9)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.062Z", + "last_change_date": "2022-03-14T08:13:48.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16156, + "fields": { + "EF_ID": 525119, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.2", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 11.700427342623 (n=10)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.171Z", + "last_change_date": "2022-03-14T08:13:48.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16157, + "fields": { + "EF_ID": 525120, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.7", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 4.74341649025257 (n=10)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.280Z", + "last_change_date": "2022-03-14T08:13:48.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16158, + "fields": { + "EF_ID": 525121, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "477.3", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 286.634065491176 (n=8.75)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.389Z", + "last_change_date": "2022-03-14T08:13:48.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16159, + "fields": { + "EF_ID": 525122, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 9.48683298050514 (n=10)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.498Z", + "last_change_date": "2022-03-14T08:13:48.498Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16160, + "fields": { + "EF_ID": 525123, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 4.11096095821889 (n=10)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.599Z", + "last_change_date": "2022-03-14T08:13:48.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16161, + "fields": { + "EF_ID": 525124, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Bakhavan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 50", + "Value": "28.9", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 10 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.699Z", + "last_change_date": "2022-03-14T08:13:48.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16162, + "fields": { + "EF_ID": 525125, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 20.1246117974981 (n=20)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.799Z", + "last_change_date": "2022-03-14T08:13:48.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16163, + "fields": { + "EF_ID": 525126, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove (over abandonned fish ponds)", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 11.1803398874989 (n=20)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:48.900Z", + "last_change_date": "2022-03-14T08:13:48.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16164, + "fields": { + "EF_ID": 525127, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Rehabilitated mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island, Bakhavan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 50", + "Value": "31.1", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 6 (n=8)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.002Z", + "last_change_date": "2022-03-14T08:13:49.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16165, + "fields": { + "EF_ID": 525128, + "IPCC_Category": "3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From preserved natural mangrove to deforested mangroves", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: New Zealand, Moanaauanu estuary; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal (deforestation)", + "Other_Properties": "Soil depth: 50 Time since landuse: 7 years", + "Value": "-41.82", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Perez, A., W. Machado, D. Gutierrez, D. Stokes, L. Sanders, J. M. Smoak, I. Santos and C. J. Sanders (2017). Changes in organic carbon accumulation driven by mangrove expansion and deforestation in a New Zealand estuary. Estuarine Coastal and Shelf Science 192: 108-116.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (22.67 tonne C/ha) and SOBEFORE (69.49 tonne C/ha). Stde of these values are 8.20243866176395 and 1.1879393923934 respectively. n=2.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.119Z", + "last_change_date": "2022-03-14T08:13:49.119Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16166, + "fields": { + "EF_ID": 525129, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From reserved planted forest to cleared mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 70 years", + "Value": "-224", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (224 tonne C/ha). Stde=45.4894493261898. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.253Z", + "last_change_date": "2022-03-14T08:13:49.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16167, + "fields": { + "EF_ID": 525130, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From reserved planted forest to cleared mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 70 years", + "Value": "-89.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (89.6 tonne C/ha). Stde=18.195779730476. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.370Z", + "last_change_date": "2022-03-14T08:13:49.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16168, + "fields": { + "EF_ID": 525131, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.6.b.i - Forest Land converted to Other Land, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From reserved planted forest to cleared mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 70 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 70 years", + "Value": "-159.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (385.2 tonne C/ha) and SOBEFORE (545 tonne C/ha). Stde of these values are 177.832955326059 and 277.772136831612 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.504Z", + "last_change_date": "2022-03-14T08:13:49.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16169, + "fields": { + "EF_ID": 525132, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to logged mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Timor Leste, North Coast; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 2 years", + "Value": "-48.363", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Alongi, D. M., & de Carvalho, N. A. (2008). The effect of small-scale logging on stand characteristics and soil biogeochemistry in mangrove forests of Timor Leste. Forest ecology and management, 255(3), 1359-1366.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (55.742 tonne C/ha) and CSBEFORE (104.105 tonne C/ha). Stde of these values are 17.4209670225278 and 17.7465925743507 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.613Z", + "last_change_date": "2022-03-14T08:13:49.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16170, + "fields": { + "EF_ID": 525133, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to logged mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Timor Leste, North Coast; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 2 years", + "Value": "-71.393", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Alongi, D. M., & de Carvalho, N. A. (2008). The effect of small-scale logging on stand characteristics and soil biogeochemistry in mangrove forests of Timor Leste. Forest ecology and management, 255(3), 1359-1366.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (20.163 tonne C/ha) and CSBEFORE (91.556 tonne C/ha). Stde of these values are 15.3044009356786 and 45.3433580913456 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.722Z", + "last_change_date": "2022-03-14T08:13:49.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16171, + "fields": { + "EF_ID": 525134, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to logged mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Timor Leste, North Coast; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 2 years", + "Value": "-15.228", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Alongi, D. M., & de Carvalho, N. A. (2008). The effect of small-scale logging on stand characteristics and soil biogeochemistry in mangrove forests of Timor Leste. Forest ecology and management, 255(3), 1359-1366.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (8.789 tonne C/ha) and CSBEFORE (24.017 tonne C/ha). Stde of these values are 3.5004746820967 and 17.5837797984392 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.831Z", + "last_change_date": "2022-03-14T08:13:49.831Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16172, + "fields": { + "EF_ID": 525135, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed dense mangrove to disturbed mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "", + "Value": "-24.44", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (48.77 tonne C/ha) and CSBEFORE (73.21 tonne C/ha). Stde of these values are 34.9 (n=17) and 29.6 respectively (n=12).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:49.940Z", + "last_change_date": "2022-03-14T08:13:49.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16173, + "fields": { + "EF_ID": 525136, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to cleared mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: New Zealand; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 2.9 years", + "Value": "-20.445", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bulmer RH, Lundquist CJ and Schwendenmann L. (2015) Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences 12: 6169-6180.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (20.445 tonne C/ha). Stde of these values are 0 (n=23) and 15.2514818952127 respectively (n=13).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.049Z", + "last_change_date": "2022-03-14T08:13:50.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16174, + "fields": { + "EF_ID": 525137, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to cleared mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Palawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 10 years", + "Value": "-30.803038977148", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. doi:10.1016/j.isprsjprs.2017.10.016", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (30.803038977148 tonne C/ha). Stde of these values are 0 (n=6) and 24.4150991562521 respectively (n=51).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.149Z", + "last_change_date": "2022-03-14T08:13:50.149Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16175, + "fields": { + "EF_ID": 525138, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-93", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (93 tonne C/ha). Stde of these values are 0 and 85.7321409974112 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.250Z", + "last_change_date": "2022-03-14T08:13:50.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16176, + "fields": { + "EF_ID": 525139, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-103", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (32 tonne C/ha) and CSBEFORE (135 tonne C/ha). Stde of these values are 22.0454076850486 and 80.8331615118449 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.359Z", + "last_change_date": "2022-03-14T08:13:50.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16177, + "fields": { + "EF_ID": 525140, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-115", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (20 tonne C/ha) and CSBEFORE (135 tonne C/ha). Stde of these values are 36.7423461417477 and 80.8331615118449 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.468Z", + "last_change_date": "2022-03-14T08:13:50.468Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16178, + "fields": { + "EF_ID": 525141, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-117", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (5 tonne C/ha) and CSBEFORE (122 tonne C/ha). Stde of these values are 22.0454076850486 and 61.2372435695794 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.586Z", + "last_change_date": "2022-03-14T08:13:50.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16179, + "fields": { + "EF_ID": 525142, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-78", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (33 tonne C/ha) and CSBEFORE (111 tonne C/ha). Stde of these values are 4.89897948556636 and 88.1816307401944 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.695Z", + "last_change_date": "2022-03-14T08:13:50.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16180, + "fields": { + "EF_ID": 525143, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-108", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (3 tonne C/ha) and CSBEFORE (111 tonne C/ha). Stde of these values are 4.89897948556636 and 88.1816307401944 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.804Z", + "last_change_date": "2022-03-14T08:13:50.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16181, + "fields": { + "EF_ID": 525144, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-162", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (1 tonne C/ha) and CSBEFORE (163 tonne C/ha). Stde of these values are 0 and 159.216833280907 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:50.930Z", + "last_change_date": "2022-03-14T08:13:50.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16182, + "fields": { + "EF_ID": 525145, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-81", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (3 tonne C/ha) and CSBEFORE (84 tonne C/ha). Stde of these values are 2.44948974278318 and 22.0454076850486 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.055Z", + "last_change_date": "2022-03-14T08:13:51.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16183, + "fields": { + "EF_ID": 525146, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-110", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (3 tonne C/ha) and CSBEFORE (113 tonne C/ha). Stde of these values are 2.44948974278318 and 93.0806102257608 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.181Z", + "last_change_date": "2022-03-14T08:13:51.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16184, + "fields": { + "EF_ID": 525147, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-131", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (15 tonne C/ha) and CSBEFORE (146 tonne C/ha). Stde of these values are 9.79795897113271 and 129.822956367508 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.298Z", + "last_change_date": "2022-03-14T08:13:51.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16185, + "fields": { + "EF_ID": 525148, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed dense mangrove to abandoned aquac pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 20 years", + "Value": "-73.21", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (73.21 tonne C/ha). Stde of these values are 0 and 29.6 respectively. n=12.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.415Z", + "last_change_date": "2022-03-14T08:13:51.415Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16186, + "fields": { + "EF_ID": 525149, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed reference mangrove to abandoned pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tanakeke; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 22 years", + "Value": "-45.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (45.6 tonne C/ha). Stde of these values are 0 (n=12.3333333333333) and 41.1267552816898 respectively (n=3).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.549Z", + "last_change_date": "2022-03-14T08:13:51.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16187, + "fields": { + "EF_ID": 525150, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed reference mangrove to abandoned pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 22 years", + "Value": "-125.45", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (125.45 tonne C/ha). Stde of these values are 0 (n=5) and 80.2566196646732 respectively (n=2).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.650Z", + "last_change_date": "2022-03-14T08:13:51.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16188, + "fields": { + "EF_ID": 525151, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Palawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 25 years", + "Value": "-30.5806815832577", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. doi:10.1016/j.isprsjprs.2017.10.016", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0.222357393890241 tonne C/ha) and CSBEFORE (30.803038977148 tonne C/ha). Stde of these values are 0.0524101403555858 (n=18) and 24.4150991562521 respectively (n=51).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.751Z", + "last_change_date": "2022-03-14T08:13:51.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16189, + "fields": { + "EF_ID": 525152, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned fish pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 5 years", + "Value": "-31.9669230769231", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (1.92307692307692 tonne C/ha) and CSBEFORE (33.89 tonne C/ha). Stde of these values are 0.96153846153846 and 4 respectively. n=8.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.851Z", + "last_change_date": "2022-03-14T08:13:51.851Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16190, + "fields": { + "EF_ID": 525153, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned fish pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 8 years", + "Value": "-14.6592307692308", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (19.2307692307692 tonne C/ha) and CSBEFORE (33.89 tonne C/ha). Stde of these values are 17.3076923076923 and 4 respectively. n=8.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:51.951Z", + "last_change_date": "2022-03-14T08:13:51.951Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16191, + "fields": { + "EF_ID": 525154, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned aquac pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Dominican Republic, Montecristi; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 29 years", + "Value": "-48.9911111111111", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518-527", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (48.9911111111111 tonne C/ha). Stde of these values are 0 (n=6) and 52.9179554698697 respectively (n=9).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:52.052Z", + "last_change_date": "2022-03-14T08:13:52.053Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16192, + "fields": { + "EF_ID": 525155, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: tall>10m; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Costa Rica, Estero Damas; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 7.5 years", + "Value": "-11.1333333333333", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Arifanti, V. B., Trejo, H. H., del Carmen Jesús García, M., Norfolk, J., Cifuentes, M., ... & Murdiyarso, D. (2017). The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 15(4).", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (28.2666666666667 tonne C/ha) and CSBEFORE (33.89 tonne C/ha). Stde of these values are 0 (n=2) and 39.4 respectively (n=5).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:52.187Z", + "last_change_date": "2022-03-14T08:13:52.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16193, + "fields": { + "EF_ID": 525156, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: tall 3-10m; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Honduras, Gulfo de Fonseca; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 7.5 years", + "Value": "-61", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Arifanti, V. B., Trejo, H. H., del Carmen Jesús García, M., Norfolk, J., Cifuentes, M., ... & Murdiyarso, D. (2017). The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 15(4).", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (61 tonne C/ha). Stde of these values are 0 and 71.7956126793274 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:52.304Z", + "last_change_date": "2022-03-14T08:13:52.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16194, + "fields": { + "EF_ID": 525157, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to active shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Brazil, Caatinga; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 11 years", + "Value": "-64.7722201004286", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Bernardino, A. F., Ferreira, T. O., Bolton, N. W., Gomes, L. E. D., & Nobrega, G. N. (2018). Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution, 8(11), 5530-5540. doi:10.1002/ece3.4079", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (64.7722201004286 tonne C/ha). Stde of these values are 0 and 5.5198706781426 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:52.564Z", + "last_change_date": "2022-03-14T08:13:52.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16195, + "fields": { + "EF_ID": 525158, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Brazil, Caatinga; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 11 years", + "Value": "-32.8535910374837", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Bernardino, A. F., Ferreira, T. O., Bolton, N. W., Gomes, L. E. D., & Nobrega, G. N. (2018). Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution, 8(11), 5530-5540. doi:10.1002/ece3.4079", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (3.165200347382 tonne C/ha) and CSBEFORE (36.0187913848657 tonne C/ha). Stde of these values are 6.38968962579383 and 2.23715738663654 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:52.672Z", + "last_change_date": "2022-03-14T08:13:52.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16196, + "fields": { + "EF_ID": 525159, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.2.b.iii - Wetlands converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to coconut plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines , Palawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Time since landuse: 20 years", + "Value": "-25.9905896665235", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. doi:10.1016/j.isprsjprs.2017.10.016", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (4.81244931062448 tonne C/ha) and CSBEFORE (30.803038977148 tonne C/ha). Stde of these values are 4.2304352117454 (n=6) and 24.4150991562521 (n=51) respectively.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:52.790Z", + "last_change_date": "2022-03-14T08:13:52.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16197, + "fields": { + "EF_ID": 525160, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned salt pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines , Palawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Time since landuse: 25 years", + "Value": "-30.803038977148", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. doi:10.1016/j.isprsjprs.2017.10.016", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (30.803038977148 tonne C/ha). Stde of these values are 0 (n=9) and 24.4150991562521 respectively (n=51).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:52.899Z", + "last_change_date": "2022-03-14T08:13:52.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16198, + "fields": { + "EF_ID": 525161, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico , Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 30 years", + "Value": "-48", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (7 tonne C/ha) and CSBEFORE (55 tonne C/ha). Stde of these values are 2.44948974278318 and 24.4948974278318 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.016Z", + "last_change_date": "2022-03-14T08:13:53.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16199, + "fields": { + "EF_ID": 525162, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico , Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 30 years", + "Value": "-114", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (8 tonne C/ha) and CSBEFORE (122 tonne C/ha). Stde of these values are 4.89897948556636 and 34.2928563989645 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.124Z", + "last_change_date": "2022-03-14T08:13:53.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16200, + "fields": { + "EF_ID": 525163, + "IPCC_Category": "3.B.3.b.i - Forest Land converted to Grassland, 3.B.3.b.iii - Wetlands converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Aboveground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico , Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 7 years", + "Value": "-52", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (4 tonne C/ha) and CSBEFORE (56 tonne C/ha). Stde of these values are 2.44948974278318 and 17.1464281994822 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.242Z", + "last_change_date": "2022-03-14T08:13:53.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16201, + "fields": { + "EF_ID": 525164, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to logged mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Timor Leste, North Coast; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 2 years", + "Value": "-19.3452", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Alongi, D. M., & de Carvalho, N. A. (2008). The effect of small-scale logging on stand characteristics and soil biogeochemistry in mangrove forests of Timor Leste. Forest ecology and management, 255(3), 1359-1366.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (22.2968 tonne C/ha) and CSBEFORE (41.642 tonne C/ha). Stde of these values are 7.09863702974029 and 6.96838680901111 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.351Z", + "last_change_date": "2022-03-14T08:13:53.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16202, + "fields": { + "EF_ID": 525165, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to logged mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Timor Leste, North Coast; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 2 years", + "Value": "-28.5572", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Alongi, D. M., & de Carvalho, N. A. (2008). The effect of small-scale logging on stand characteristics and soil biogeochemistry in mangrove forests of Timor Leste. Forest ecology and management, 255(3), 1359-1366.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (8.0652 tonne C/ha) and CSBEFORE (36.6224 tonne C/ha). Stde of these values are 6.12176037427144 and 18.1373432365383 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.460Z", + "last_change_date": "2022-03-14T08:13:53.460Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16203, + "fields": { + "EF_ID": 525166, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to logged mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 2 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Timor Leste, North Coast; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 2 years", + "Value": "-6.0912", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Alongi, D. M., & de Carvalho, N. A. (2008). The effect of small-scale logging on stand characteristics and soil biogeochemistry in mangrove forests of Timor Leste. Forest ecology and management, 255(3), 1359-1366.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (3.5156 tonne C/ha) and CSBEFORE (9.6068 tonne C/ha). Stde of these values are 1.40018987283868 and 7.0335119193757 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.585Z", + "last_change_date": "2022-03-14T08:13:53.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16204, + "fields": { + "EF_ID": 525167, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed dense mangrove to disturbed mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "", + "Value": "-9.46", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (16.49 tonne C/ha) and CSBEFORE (25.95 tonne C/ha). Stde of these values are 11.1 (n=17) and 8.6 respectively (n=12).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.711Z", + "last_change_date": "2022-03-14T08:13:53.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16205, + "fields": { + "EF_ID": 525168, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to cleared mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: New Zealand; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 2.9 years", + "Value": "-8.178", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bulmer RH, Lundquist CJ and Schwendenmann L. (2015) Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences 12: 6169-6180.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (8.178 tonne C/ha). Stde of these values are 0 (n=23) and 6.10059275808507 respectively (n=13).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.820Z", + "last_change_date": "2022-03-14T08:13:53.820Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16206, + "fields": { + "EF_ID": 525169, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to cleared mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Palawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Time since landuse: 10 years", + "Value": "-12.3212155908592", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. doi:10.1016/j.isprsjprs.2017.10.016", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (12.3212155908592 tonne C/ha). Stde of these values are 0 (n=6) and 9.76603966250086 respectively (n=51).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:53.929Z", + "last_change_date": "2022-03-14T08:13:53.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16207, + "fields": { + "EF_ID": 525170, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-14", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (14 tonne C/ha). Stde of these values are 0 and 17.1464281994822 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:54.056Z", + "last_change_date": "2022-03-14T08:13:54.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16208, + "fields": { + "EF_ID": 525171, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-18", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (10 tonne C/ha) and CSBEFORE (28 tonne C/ha). Stde of these values are 2.44948974278318 and 34.2928563989645 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:54.173Z", + "last_change_date": "2022-03-14T08:13:54.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16209, + "fields": { + "EF_ID": 525172, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-27", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (1 tonne C/ha) and CSBEFORE (28 tonne C/ha). Stde of these values are 2.44948974278318 and 34.2928563989645 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:54.290Z", + "last_change_date": "2022-03-14T08:13:54.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16210, + "fields": { + "EF_ID": 525173, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-30", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (1 tonne C/ha) and CSBEFORE (31 tonne C/ha). Stde of these values are 1.22474487139159 and 17.1464281994822 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:54.407Z", + "last_change_date": "2022-03-14T08:13:54.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16211, + "fields": { + "EF_ID": 525174, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-22", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (4 tonne C/ha) and CSBEFORE (26 tonne C/ha). Stde of these values are 7.34846922834953 and 22.0454076850486 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:54.517Z", + "last_change_date": "2022-03-14T08:13:54.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16212, + "fields": { + "EF_ID": 525175, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-25", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (1 tonne C/ha) and CSBEFORE (26 tonne C/ha). Stde of these values are 2.44948974278318 and 22.0454076850486 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:54.626Z", + "last_change_date": "2022-03-14T08:13:54.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16213, + "fields": { + "EF_ID": 525176, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-51.9", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0.1 tonne C/ha) and CSBEFORE (52 tonne C/ha). Stde of these values are 0 and 51.4392845984467 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:54.768Z", + "last_change_date": "2022-03-14T08:13:54.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16214, + "fields": { + "EF_ID": 525177, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-29", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (29 tonne C/ha). Stde of these values are 0 and 17.1464281994822 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:54.885Z", + "last_change_date": "2022-03-14T08:13:54.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16215, + "fields": { + "EF_ID": 525178, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-15", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (15 tonne C/ha). Stde of these values are 0 and 9.79795897113271 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.019Z", + "last_change_date": "2022-03-14T08:13:55.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16216, + "fields": { + "EF_ID": 525179, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: Species: Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Mahakam; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 21 years", + "Value": "-29", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon dynamics and land use carbon footprints in mangrove-converted aquaculture: The case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29. doi:10.1016/j.foreco.2018.08.047", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (29 tonne C/ha). Stde of these values are 0 and 22.0454076850486 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.128Z", + "last_change_date": "2022-03-14T08:13:55.128Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16217, + "fields": { + "EF_ID": 525180, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed dense mangrove to abandoned aquac pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 20 years", + "Value": "-25.95", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (25.95 tonne C/ha). Stde of these values are 0 and 8.6 respectively. n=12.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.236Z", + "last_change_date": "2022-03-14T08:13:55.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16218, + "fields": { + "EF_ID": 525181, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed reference mangrove to abandoned pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tanakeke; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 22 years", + "Value": "-13.6", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (13.6 tonne C/ha). Stde of these values are 0 (n=12.3333333333333) and 15.2285915304075 respectively (n=3).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.345Z", + "last_change_date": "2022-03-14T08:13:55.345Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16219, + "fields": { + "EF_ID": 525182, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed reference mangrove to abandoned pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Indonesia, Tiwoho; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 22 years", + "Value": "-41.8", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Cameron, C., Hutley, L. B., Friess, D. A., & Brown, B. (2019). Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecological Applications, 29(1), e01810.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (41.8 tonne C/ha). Stde of these values are 0 (n=5) and 41.0121933088198 respectively (n=2).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.446Z", + "last_change_date": "2022-03-14T08:13:55.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16220, + "fields": { + "EF_ID": 525183, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Palawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 25 years", + "Value": "-12.2322726333031", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. doi:10.1016/j.isprsjprs.2017.10.016", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0.0889429575560963 tonne C/ha) and CSBEFORE (12.3212155908592 tonne C/ha). Stde of these values are 0.0209640561422343 (n=18) and 9.76603966250086 respectively (n=51).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.549Z", + "last_change_date": "2022-03-14T08:13:55.549Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16221, + "fields": { + "EF_ID": 525184, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned fish pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 5 years", + "Value": "-14.0707692307692", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0.769230769230768 tonne C/ha) and CSBEFORE (14.84 tonne C/ha). Stde of these values are 0.384615384615384 and 2 respectively. n=8.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.665Z", + "last_change_date": "2022-03-14T08:13:55.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16222, + "fields": { + "EF_ID": 525185, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned fish pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 8 years", + "Value": "-7.14769230769232", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (7.69230769230768 tonne C/ha) and CSBEFORE (14.84 tonne C/ha). Stde of these values are 6.92307692307691 and 2 respectively. n=8.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.757Z", + "last_change_date": "2022-03-14T08:13:55.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16223, + "fields": { + "EF_ID": 525186, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned aquac pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Dominican Republic, Montecristi; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 29 years", + "Value": "-19.2822222222222", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518-527", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (19.2822222222222 tonne C/ha). Stde of these values are 0 (n=6) and 13.589309012766 respectively (n=9).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.850Z", + "last_change_date": "2022-03-14T08:13:55.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16224, + "fields": { + "EF_ID": 525187, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: tall>10m; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Costa Rica, Estero Damas; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 7.5 years", + "Value": "-4.45333333333333", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Arifanti, V. B., Trejo, H. H., del Carmen Jesús García, M., Norfolk, J., Cifuentes, M., ... & Murdiyarso, D. (2017). The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 15(4).", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (11.3066666666667 tonne C/ha) and CSBEFORE (15.76 tonne C/ha). Stde of these values are 0 (n=2) and 31.0032256386332 respectively (n=5).", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:55.942Z", + "last_change_date": "2022-03-14T08:13:55.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16225, + "fields": { + "EF_ID": 525188, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: tall 3-10m; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Honduras, Gulfo de Fonseca; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 7.5 years", + "Value": "-24.4", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Arifanti, V. B., Trejo, H. H., del Carmen Jesús García, M., Norfolk, J., Cifuentes, M., ... & Murdiyarso, D. (2017). The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 15(4).", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (24.4 tonne C/ha). Stde of these values are 0 and 28.718245071731 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.034Z", + "last_change_date": "2022-03-14T08:13:56.034Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16226, + "fields": { + "EF_ID": 525189, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to active shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Brazil, Caatinga; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 11 years", + "Value": "-11.3435915907683", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Bernardino, A. F., Ferreira, T. O., Bolton, N. W., Gomes, L. E. D., & Nobrega, G. N. (2018). Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution, 8(11), 5530-5540. doi:10.1002/ece3.4079", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (11.3435915907683 tonne C/ha). Stde of these values are 0 and 1.29543215141618 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.135Z", + "last_change_date": "2022-03-14T08:13:56.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16227, + "fields": { + "EF_ID": 525190, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned shrimp ponds", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Brazil, Caatinga; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 11 years", + "Value": "-10.0017464621118", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., Bernardino, A. F., Ferreira, T. O., Bolton, N. W., Gomes, L. E. D., & Nobrega, G. N. (2018). Shrimp ponds lead to massive loss of soil carbon and greenhouse gas emissions in northeastern Brazilian mangroves. Ecology and Evolution, 8(11), 5530-5540. doi:10.1002/ece3.4079", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (8.84929758908909 tonne C/ha) and CSBEFORE (18.8510440512009 tonne C/ha). Stde of these values are 18.5289127049547 and 1.13416371376103 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.235Z", + "last_change_date": "2022-03-14T08:13:56.235Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16228, + "fields": { + "EF_ID": 525191, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.2.b.iii - Wetlands converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to coconut plantation", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines , Palawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Time since landuse: 20 years", + "Value": "-12.3212155908592", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. doi:10.1016/j.isprsjprs.2017.10.016", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (12.3212155908592 tonne C/ha). Stde of these values are 1.69217408469816 (n=6) and 9.76603966250086 (n=51) respectively.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.327Z", + "last_change_date": "2022-03-14T08:13:56.327Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16229, + "fields": { + "EF_ID": 525192, + "IPCC_Category": "3.B.5.a - Settlements Remaining Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned salt pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines , Palawan; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Time since landuse: 25 years", + "Value": "-12.3212155908592", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 70-85. doi:10.1016/j.isprsjprs.2017.10.016", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (0 tonne C/ha) and CSBEFORE (12.3212155908592 tonne C/ha). Stde of these values are 1.69217408469816 (n=6) and 9.76603966250086 (n=51) respectively.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.420Z", + "last_change_date": "2022-03-14T08:13:56.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16230, + "fields": { + "EF_ID": 525193, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico , Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 30 years", + "Value": "-29", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (4 tonne C/ha) and CSBEFORE (33 tonne C/ha). Stde of these values are 2.44948974278318 and 14.6969384566991 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.512Z", + "last_change_date": "2022-03-14T08:13:56.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16231, + "fields": { + "EF_ID": 525194, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico , Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 30 years", + "Value": "-69", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (5 tonne C/ha) and CSBEFORE (74 tonne C/ha). Stde of these values are 2.44948974278318 and 17.1464281994822 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.637Z", + "last_change_date": "2022-03-14T08:13:56.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16232, + "fields": { + "EF_ID": 525195, + "IPCC_Category": "3.B.3.b.i - Forest Land converted to Grassland, 3.B.3.b.iii - Wetlands converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Belowground Biomass Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico , Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 7 years", + "Value": "-32", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.4 on Page 2.20 in Chapter 4 of the 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between CSAFTER (2 tonne C/ha) and CSBEFORE (34 tonne C/ha). Stde of these values are 0 and 9.79795897113271 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.747Z", + "last_change_date": "2022-03-14T08:13:56.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16233, + "fields": { + "EF_ID": 525196, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.2.b.iii - Wetlands converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned rice field", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Guinea-Bissau, Cacheu; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Rice field", + "Other_Properties": "Time since landuse: 17.5 years. Soil depth: 80", + "Value": "-95.48", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Andreetta, A., Huertas, A. D., Lotti, M., & Cerise, S. (2016). Land use changes affecting soil organic carbon storage along a mangrove swamp rice chronosequence in the Cacheu and Oio regions (northern Guinea-Bissau). Agriculture, Ecosystems & Environment, 216, 314-321.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (36.85 tonne C/ha) and SOBEFORE (132.33 tonne C/ha). Stde of these values are 3.61998618781895 and 15.6057777761956 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.856Z", + "last_change_date": "2022-03-14T08:13:56.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16234, + "fields": { + "EF_ID": 525197, + "IPCC_Category": "3.B.2.b.i - Forest Land converted to Cropland, 3.B.2.b.iii - Wetlands converted to Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned rice field", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Guinea-Bissau, Oio; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Rice field", + "Other_Properties": "Time since landuse: 17.5 years. Soil depth: 80", + "Value": "-37", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Andreetta, A., Huertas, A. D., Lotti, M., & Cerise, S. (2016). Land use changes affecting soil organic carbon storage along a mangrove swamp rice chronosequence in the Cacheu and Oio regions (northern Guinea-Bissau). Agriculture, Ecosystems & Environment, 216, 314-321.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (31.61 tonne C/ha) and SOBEFORE (68.61 tonne C/ha). Stde of these values are 5.99289579418831 and 18.1172514471705 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:56.956Z", + "last_change_date": "2022-03-14T08:13:56.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16235, + "fields": { + "EF_ID": 525198, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed dense mangrove to disturbed mangrove stands", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Tree removal", + "Other_Properties": "Soil depth: 100", + "Value": "8.5", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (111.04 tonne C/ha) and SOBEFORE (102.54 tonne C/ha). Stde of these values are 33.4 (n=17) and 42.7 (n=12) respectively.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.049Z", + "last_change_date": "2022-03-14T08:13:57.049Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16236, + "fields": { + "EF_ID": 525199, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed dense mangrove to abandonned aquac pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: India, Bhitankanika; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 20 years. Soil depth: 100", + "Value": "-46", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Bhomia, R. K., MacKenzie, R. A., Murdiyarso, D., Sasmito, S. D., & Purbopuspito, J. (2016). Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management. Ecological Applications, 26(5), 1396-1408.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (56.54 tonne C/ha) and SOBEFORE (102.54 tonne C/ha). Stde of these values are 29.8 and 42.7 respectively. n=12.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.142Z", + "last_change_date": "2022-03-14T08:13:57.142Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16237, + "fields": { + "EF_ID": 525200, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned fish pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 5 years. Soil depth: 50", + "Value": "-7.3988439306359", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (52.6011560693641 tonne C/ha) and SOBEFORE (60 tonne C/ha). Stde of these values are 18.7861271676301 and 15 respectively. n=8.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.242Z", + "last_change_date": "2022-03-14T08:13:57.242Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16238, + "fields": { + "EF_ID": 525201, + "IPCC_Category": "3.B.5.b.i - Forest Land converted to Settlements, 3.B.5.b.iv - Wetlands converted to Settlements", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to abandoned fish pond", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Philippines, Panay Island; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Aquaculture", + "Other_Properties": "Time since landuse: 8 years. Soil depth: 50", + "Value": "33.9306358381503", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Duncan, C., Primavera, J. H., Pettorelli, N., Thompson, J. R., Loma, R. J. A. & Koldewey, H. J. (2016) Rehabilitating mangrove ecosystem services: a case study on the relative benefits of abandoned pond reversion from Panay Island, Philippines. Marine Pollution Bulletin, 109, 772-782.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (93.9306358381503 tonne C/ha) and SOBEFORE (60 tonne C/ha). Stde of these values are 22.5433526011557 and 15 respectively. n=8.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.343Z", + "last_change_date": "2022-03-14T08:13:57.343Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16239, + "fields": { + "EF_ID": 525202, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico, Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 30 years. Soil depth: 100", + "Value": "-218.38", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (210.48 tonne C/ha) and SOBEFORE (428.86 tonne C/ha). Stde of these values are 51.9947054996949 and 38.5922842029336 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.485Z", + "last_change_date": "2022-03-14T08:13:57.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16240, + "fields": { + "EF_ID": 525203, + "IPCC_Category": "3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico, Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 30 years. Soil depth: 100", + "Value": "-218.75", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (136.81 tonne C/ha) and SOBEFORE (355.56 tonne C/ha). Stde of these values are 40.506577243702 and 148.053583543256 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.586Z", + "last_change_date": "2022-03-14T08:13:57.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16241, + "fields": { + "EF_ID": 525204, + "IPCC_Category": "3.B.3.b.i - Forest Land converted to Grassland, 3.B.3.b.iii - Wetlands converted to Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed natural mangrove to pasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Mexico, Pantanos de Centla; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Time since landuse: 7 years. Soil depth: 100", + "Value": "-111.44", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Kauffman, J. B., H. Hernandez Trejo, M. del Carmen Jesus Garcia, C. Heider and W. M. Contreras (2016). Carbon stocks of mangroves and losses arising from their conversion to cattle pastures in the Pantanos de Centla, Mexico. Wetlands Ecology and Management 24(2): 203-216.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (270.92 tonne C/ha) and SOBEFORE (382.36 tonne C/ha). Stde of these values are 80.8247326008568 and 57.372205814314 respectively. n=6.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.686Z", + "last_change_date": "2022-03-14T08:13:57.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16242, + "fields": { + "EF_ID": 525205, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.4.a - Wetlands Remaining Wetlands", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock Change", + "Technology_Practices": "From undisturbed to disturbed mangrove from logging", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Cameroon, Bamusso; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "Pasture", + "Other_Properties": "Soil depth: 100", + "Value": "-374.54", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.3 on Page 4.18 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Nsombo, E. N., Bengono, F. A. O., Etame, J., Ndongo, D., Ajonina, G., & Bilong, P. (2016). Effects of vegetation`s degradation on carbon stock, morphological, physical and chemical characteristics of soils within the mangrove forest of the Rio del Rey Estuary: Case study–Bamusso (South-West Cameroon). African Journal of Environmental Science and Technology, 10(3), 58-66.", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is the difference between SOAFTER (2102.06 tonne C/ha) and SOBEFORE (2476.6 tonne C/ha). Stde of these values are 405 and 409 respectively. n=3.", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.795Z", + "last_change_date": "2022-03-14T08:13:57.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16243, + "fields": { + "EF_ID": 525206, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.5.b.iv - Wetlands converted to Settlements, 3.B.5.b.i - Forest Land converted to Settlements, 3.B.4.b - Land Converted to Wetlands, 3.B.6.b.iv - Wetlands converted to Other Land, 3.B.4.a - Wetlands Remaining Wetlands, 3.B.6.b.i - Forest Land converted to Other Land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Soil Carbon Stock", + "Technology_Practices": "Planted mangrove", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: 40 years; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: Malaysia, Matang; Climate: ; Ecological zone: ; Temperature: ; Moisture: .", + "Control_Technologies": "", + "Other_Properties": "Soil depth: 100", + "Value": "454.3", + "Unit": "tonnes C/ha", + "Equation": "Equation 4.6 on Page 4.24 in Chapter 4 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "In: Sasmito et al. (2019). The effect of land-use and land-cover changes (LULCC) on mangrove blue carbon: a systematic review. Global Change Biology 25(12), 4291-4302.  From: Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean and Coastal Management, 161, 117-126. doi:10.1016/j.ocecoaman.2018.04.019", + "English_Abstract": "Mangroves shift from carbon sinks to sources when affected by anthropogenic land‐use and land‐cover change (LULCC). Yet, the magnitude and temporal scale of these impacts are largely unknown. We undertook a systematic review to examine the influence of LULCC on mangrove carbon stocks and soil greenhouse gas (GHG) effluxes. A search of 478 data points from the peer‐reviewed literature revealed a substantial reduction of biomass (82% ± 35%) and soil (54% ± 13%) carbon stocks due to LULCC. The relative loss depended on LULCC type, time since LULCC and geographical and climatic conditions of sites. We also observed that the loss of soil carbon stocks was linked to the decreased soil carbon content and increased soil bulk density over the first 100 cm depth. We found no significant effect of LULCC on soil GHG effluxes. Regeneration efforts (i.e. restoration, rehabilitation and afforestation) led to biomass recovery after ~40 years. However, we found no clear patterns of mangrove soil carbon stock re‐establishment following biomass recovery. Our findings suggest that regeneration may help restore carbon stocks back to pre‐disturbed levels over decadal to century time scales only, with a faster rate for biomass recovery than for soil carbon stocks. Therefore, improved mangrove ecosystem management by preventing further LULCC and promoting rehabilitation is fundamental for effective climate change mitigation policy.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Stde: 52.1741315212817 (n=6)", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "doi:10.1111/gcb.14774", + "creation_date": "2022-03-14T08:13:57.896Z", + "last_change_date": "2022-03-14T08:13:57.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16244, + "fields": { + "EF_ID": 525207, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic content (SOC) accumulation rate", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 110 (tree density /ha)/ 18 years old; Soil type/nutrient content: Fluvisol.", + "Regional_Conditions": "Spatial boundaries: France, Mediterranean; Climate: ; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-30cm, SOC(0-T): 35.8 (1.9) tonnes C/ha (+/- SD), SOC0: 40.3 (5.0) tonnes C/ha (+/- SD)", + "Value": "0.248", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2015). Geoderma 259-260: 288-299", + "English_Abstract": "Agroforestry systems, i.e., agroecosystems combining trees with farming practices, are of particular interest as they combine the potential to increase biomass and soil carbon (C) storagewhilemaintaining an agricultural production. However, most present knowledge on the impact of agroforestry systems on soil organic carbon (SOC) storage comes from tropical systems. This study was conducted in southern France, in an 18-year-old agroforestry plot, where hybrid walnuts (Juglans regia × nigra L.) are intercropped with durum wheat (Triticum turgidum L. subsp. durum), and in an adjacent agricultural control plot,where durumwheat is the sole crop.We quantified SOC stocks to 2.0mdepth and their spatial variability in relation to the distance to the trees and to the tree rows. The distribution of additional SOC storage in different soil particle-size fractions was also characterized. SOC accumulation rates between the agroforestry and the agricultural plotswere 248±31 kg C ha−1 yr−1 for an equivalent soilmass (ESM) of 4000 Mg ha−1 (to 26–29 cm depth) and 350 ± 41 kg C ha−1 yr−1 for an ESM of 15,700 Mg ha−1 (to 93–98 cm depth). SOC stocks were higher in the tree rows where herbaceous vegetation grew and where the soil was not tilled, but no effect of the distance to the trees (0 to 10 m) on SOC stocks was observed. Most of the additional SOC storage was found in coarse organic fractions (50–200 and 200–2000 μm),which may be rather labile fractions. All together our study demonstrated the potential of alley cropping agroforestry systems underMediterranean conditions to store SOC, and questioned the stability of this storage.", + "Lower_Bound": "0.187", + "Upper_Bound": "0.309", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.geoderma.2015.06.015", + "creation_date": "2022-03-14T08:13:57.988Z", + "last_change_date": "2022-03-14T08:13:57.988Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16245, + "fields": { + "EF_ID": 525208, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic content (SOC) accumulation rate", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 34 (tree density /ha)/ 6 years old; Soil type/nutrient content: Luvisol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-30cm, SOC(0-T): 45.0 (3.8) tonnes C/ha (+/- SD), SOC0: 46.7 (6.0) tonnes C/ha (+/- SD)", + "Value": "0.29", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "-0.18", + "Upper_Bound": "0.71", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:58.089Z", + "last_change_date": "2022-03-14T08:13:58.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16246, + "fields": { + "EF_ID": 525209, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic content (SOC) accumulation rate", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 35 (tree density /ha)/ 6 years old; Soil type/nutrient content: Luvisol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-30cm, SOC(0-T): 40.1 (4.2) tonnes C/ha (+/- SD), SOC0: 40.7 (4.9) tonnes C/ha (+/- SD)", + "Value": "0.09", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "-0.557", + "Upper_Bound": "0.737", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:58.197Z", + "last_change_date": "2022-03-14T08:13:58.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16247, + "fields": { + "EF_ID": 525210, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic content (SOC) accumulation rate", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 102 (tree density /ha)/ 41 years old; Soil type/nutrient content: Luvisol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-20cm, SOC(0-T): 42.1 (2.8) tonnes C/ha (+/- SD), SOC0: 60.9 (4.4) tonnes C/ha (+/- SD)", + "Value": "0.46", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "0.401", + "Upper_Bound": "0.519", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:58.315Z", + "last_change_date": "2022-03-14T08:13:58.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16248, + "fields": { + "EF_ID": 525211, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic content (SOC) accumulation rate", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 100 (tree density /ha)/ 18 years old; Soil type/nutrient content: Fluvisol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-30cm, SOC(0-T): 40.8 (6.3) tonnes C/ha (+/- SD), SOC0: 42.8 (4.4) tonnes C/ha (+/- SD)", + "Value": "0.11", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "-0.125", + "Upper_Bound": "0.345", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:58.424Z", + "last_change_date": "2022-03-14T08:13:58.424Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16249, + "fields": { + "EF_ID": 525212, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Soil organic content (SOC) accumulation rate", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 200 (tree density /ha)/ 26 years old; Soil type/nutrient content: Andosol.", + "Regional_Conditions": "Spatial boundaries: France; Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-30cm, SOC(0-T): 114.3 (7.3) tonnes C/ha (+/- SD), SOC0: 110.2 (31.7) tonnes C/ha (+/- SD)", + "Value": "-0.16", + "Unit": "tonnes C/ha/yr", + "Equation": "Equation 2.25 on Page 2.30 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cardinael, R., et al (2017). Agriculture, Ecosystems & Environment 236: 243-255", + "English_Abstract": "Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09–0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004–1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30–50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.", + "Lower_Bound": "-0.65", + "Upper_Bound": "0.33", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://doi.org/10.1016/j.agee.2016.12.011", + "creation_date": "2022-03-14T08:13:58.534Z", + "last_change_date": "2022-03-14T08:13:58.534Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16250, + "fields": { + "EF_ID": 525213, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Aboveground biomass carbon stock", + "Technology_Practices": "Gerba-Dima forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South-western Ethiopia; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "243.8", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.9 and 2.10 on Page 2.15 in Chapter 2, Volume 4 of the 2006 IPCC IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dibaba, A, T Soromessa and B Workineh (2019), Carbon stock of the various carbon pools in Gerba‑Dima moist Afromontane forest, South‑western Ethiopia, Carbon Balance Manage (2019) 14:1, doi:10.1186/s13021-019-0116-x", + "English_Abstract": "Background: Unlike in the developed countries, Ethiopia does not have carbon inventories and databank to monitor and enhance carbon sequestration potential of different forests. Only small efforts have been made so far to assess the biomass and soil carbon sequestration at micro-level. This study was carried out to obtain sufficient information about the carbon stock potential of Gerba-Dima forest in south-western Ethiopia. A total of 90 sample plots were laid by employing stratified random sampling. Nested plots were used to collect data of the four carbon pools. For trees with a diameter range of 5 cm < diameter < 20 cm, the carbon stock was assessed from a plot size of 49 m2 (7 m * 7 m). For trees with a diameter range of 20 cm < diameter < 50 cm, the carbon stock was assessed from a plot size of 625 m2 (25 m * 25 m). For trees > 50 cm diameter, an additional larger sample of 35 * 35 m2 was used. Litter, herb and soil data were collected from 1 m2 subplot established at the center of each nested plot. To compute the above ground biomass carbon stock of trees and shrubs with DBH > 5 cm, their DBH and height were measured. The biomass carbon assessment of woody species having DBH < 5 cm, litter and herb were conducted by measuring their fresh weight in the field and dry weight in the laboratory. Results: The mean total carbon stock density of Gerba-Dima forest was found to be 508.9 tons carbon ha−1, out of which 243.8, 45.97, 0.03 and 219.1 tons carbon ha−1 were stored in the above ground biomass, below ground biomass, litter biomass and soil organic carbon, respectively. Conclusions: The existence of high carbon stock in the study forest shows the potential of the area for climate change mitigation. Thus, all stakeholders at the local and national level should work together to implement effective conservation measures and get benefit from the biocarbon fund.", + "Lower_Bound": "226", + "Upper_Bound": "261", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-019-0116-x", + "creation_date": "2022-03-14T08:13:58.634Z", + "last_change_date": "2022-03-14T08:13:58.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16251, + "fields": { + "EF_ID": 525214, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Belowground biomass carbon stock", + "Technology_Practices": "Gerba-Dima forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South-western Ethiopia; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.97", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.9 and 2.10 on Page 2.15 in Chapter 2, Volume 4 of the 2006 IPCC IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dibaba, A, T Soromessa and B Workineh (2019), Carbon stock of the various carbon pools in Gerba‑Dima moist Afromontane forest, South‑western Ethiopia, Carbon Balance Manage (2019) 14:1, doi:10.1186/s13021-019-0116-x", + "English_Abstract": "Background: Unlike in the developed countries, Ethiopia does not have carbon inventories and databank to monitor and enhance carbon sequestration potential of different forests. Only small efforts have been made so far to assess the biomass and soil carbon sequestration at micro-level. This study was carried out to obtain sufficient information about the carbon stock potential of Gerba-Dima forest in south-western Ethiopia. A total of 90 sample plots were laid by employing stratified random sampling. Nested plots were used to collect data of the four carbon pools. For trees with a diameter range of 5 cm < diameter < 20 cm, the carbon stock was assessed from a plot size of 49 m2 (7 m * 7 m). For trees with a diameter range of 20 cm < diameter < 50 cm, the carbon stock was assessed from a plot size of 625 m2 (25 m * 25 m). For trees > 50 cm diameter, an additional larger sample of 35 * 35 m2 was used. Litter, herb and soil data were collected from 1 m2 subplot established at the center of each nested plot. To compute the above ground biomass carbon stock of trees and shrubs with DBH > 5 cm, their DBH and height were measured. The biomass carbon assessment of woody species having DBH < 5 cm, litter and herb were conducted by measuring their fresh weight in the field and dry weight in the laboratory. Results: The mean total carbon stock density of Gerba-Dima forest was found to be 508.9 tons carbon ha−1, out of which 243.8, 45.97, 0.03 and 219.1 tons carbon ha−1 were stored in the above ground biomass, below ground biomass, litter biomass and soil organic carbon, respectively. Conclusions: The existence of high carbon stock in the study forest shows the potential of the area for climate change mitigation. Thus, all stakeholders at the local and national level should work together to implement effective conservation measures and get benefit from the biocarbon fund.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-019-0116-x", + "creation_date": "2022-03-14T08:13:58.735Z", + "last_change_date": "2022-03-14T08:13:58.735Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16252, + "fields": { + "EF_ID": 525215, + "IPCC_Category": "3.B.1 - Forest land", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Litter carbon stock", + "Technology_Practices": "Gerba-Dima forest", + "Parameter_Conditions": "Vegetation/crop type/subtype: ; Species: ; Biomass attributes/age: ; Soil type/nutrient content: .", + "Regional_Conditions": "Spatial boundaries: South-western Ethiopia; Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: .", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.026", + "Unit": "tonnes C/ha", + "Equation": "Equations 2.18, 2.19 on Page 2.23 in Chapter 2, Volume 4 and all associated equations of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and all associated IPCC equations", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Dibaba, A, T Soromessa and B Workineh (2019), Carbon stock of the various carbon pools in Gerba‑Dima moist Afromontane forest, South‑western Ethiopia, Carbon Balance Manage (2019) 14:1, doi:10.1186/s13021-019-0116-x", + "English_Abstract": "Background: Unlike in the developed countries, Ethiopia does not have carbon inventories and databank to monitor and enhance carbon sequestration potential of different forests. Only small efforts have been made so far to assess the biomass and soil carbon sequestration at micro-level. This study was carried out to obtain sufficient information about the carbon stock potential of Gerba-Dima forest in south-western Ethiopia. A total of 90 sample plots were laid by employing stratified random sampling. Nested plots were used to collect data of the four carbon pools. For trees with a diameter range of 5 cm < diameter < 20 cm, the carbon stock was assessed from a plot size of 49 m2 (7 m * 7 m). For trees with a diameter range of 20 cm < diameter < 50 cm, the carbon stock was assessed from a plot size of 625 m2 (25 m * 25 m). For trees > 50 cm diameter, an additional larger sample of 35 * 35 m2 was used. Litter, herb and soil data were collected from 1 m2 subplot established at the center of each nested plot. To compute the above ground biomass carbon stock of trees and shrubs with DBH > 5 cm, their DBH and height were measured. The biomass carbon assessment of woody species having DBH < 5 cm, litter and herb were conducted by measuring their fresh weight in the field and dry weight in the laboratory. Results: The mean total carbon stock density of Gerba-Dima forest was found to be 508.9 tons carbon ha−1, out of which 243.8, 45.97, 0.03 and 219.1 tons carbon ha−1 were stored in the above ground biomass, below ground biomass, litter biomass and soil organic carbon, respectively. Conclusions: The existence of high carbon stock in the study forest shows the potential of the area for climate change mitigation. Thus, all stakeholders at the local and national level should work together to implement effective conservation measures and get benefit from the biocarbon fund.", + "Lower_Bound": "0.021", + "Upper_Bound": "0.031", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TSU", + "Link": "https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-019-0116-x", + "creation_date": "2022-03-14T08:13:58.836Z", + "last_change_date": "2022-03-14T08:13:58.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16253, + "fields": { + "EF_ID": 525222, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon Stock Change in Mineral Soils", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 287 (238) (tree density /ha (+/- SD))/ 13 (8) years old (+/- SD)", + "Regional_Conditions": "Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-30 (7) cm (+/- SD), SOC(0-T): 76 (38) tonnes C/ha (+/- SD), SOC0: 79 (36) tonnes C/ha (+/- SD)", + "Value": "0.230769230769231", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124053", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.99", + "Upper_Bound": "1.17", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:58.936Z", + "last_change_date": "2022-03-14T08:13:58.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16254, + "fields": { + "EF_ID": 525223, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Spatial boundaries: Asia; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 333 (121) (tree density /ha (+/- SD))/ 17 (11) years old (+/- SD)", + "Regional_Conditions": "Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-56 (26) cm (+/- SD), SOC(0-T): 37 (12) tonnes C/ha (+/- SD), SOC0: 50 (11) tonnes C/ha (+/- SD)", + "Value": "0.764705882352941", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124054", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.24", + "Upper_Bound": "1.56", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.037Z", + "last_change_date": "2022-03-14T08:13:59.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16255, + "fields": { + "EF_ID": 525224, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Spatial boundaries: Europe; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 88 (50) (tree density /ha (+/- SD))/ 18 (13) years old (+/- SD)", + "Regional_Conditions": "Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-48 (50) cm (+/- SD), SOC(0-T): 70 (72) tonnes C/ha (+/- SD), SOC0: 76 (73) tonnes C/ha (+/- SD)", + "Value": "0.333333333333333", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124055", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.99", + "Upper_Bound": "1.25", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.138Z", + "last_change_date": "2022-03-14T08:13:59.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16256, + "fields": { + "EF_ID": 525225, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland, 3.B.3.b.ii - Cropland converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Hedgerow", + "Parameter_Conditions": "Spatial boundaries: North America; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 1111 (tree density/km)/ 31 (10) years old (+/- SD)", + "Regional_Conditions": "Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-32 (14) cm (+/- SD), SOC(0-T): 63 (24) tonnes C/ha (+/- SD), SOC0: 74 (33) tonnes C/ha (+/- SD)", + "Value": "0.354838709677419", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124056", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.00", + "Upper_Bound": "1.32", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.238Z", + "last_change_date": "2022-03-14T08:13:59.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16257, + "fields": { + "EF_ID": 525226, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 220 (156) (tree density /ha (+/- SD))/ 17 (11) years old (+/- SD)", + "Regional_Conditions": "Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-52 (37) cm (+/- SD), SOC(0-T): 52 (50) tonnes C/ha (+/- SD), SOC0: 62 (50) tonnes C/ha (+/- SD)", + "Value": "0.588235294117647", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124057", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.14", + "Upper_Bound": "1.40", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.339Z", + "last_change_date": "2022-03-14T08:13:59.339Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16258, + "fields": { + "EF_ID": 525227, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.3.b.ii - Cropland converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 303 (379) (tree density /ha (+/- SD))/ 35 (39) years old (+/- SD)", + "Regional_Conditions": "Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-62 (33) cm (+/- SD), SOC(0-T): 87 (55) tonnes C/ha (+/- SD), SOC0: 83 (48) tonnes C/ha (+/- SD)", + "Value": "-0.114285714285714", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124058", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.86", + "Upper_Bound": "1.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.440Z", + "last_change_date": "2022-03-14T08:13:59.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16259, + "fields": { + "EF_ID": 525228, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 260 (208) (tree density /ha (+/- SD))/ 15 (10) years old (+/- SD)", + "Regional_Conditions": "Climate: Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-39 (26) cm (+/- SD), SOC(0-T): 66 (44) tonnes C/ha (+/- SD), SOC0: 72 (42) tonnes C/ha (+/- SD)", + "Value": "0.4", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124059", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.08", + "Upper_Bound": "1.24", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.540Z", + "last_change_date": "2022-03-14T08:13:59.540Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16260, + "fields": { + "EF_ID": 525229, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 288 (182) (tree density /ha (+/- SD))/ 27 (20) years old (+/- SD)", + "Regional_Conditions": "Climate: Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-47 (22) cm (+/- SD), SOC(0-T): 92 (45) tonnes C/ha (+/- SD), SOC0: 95 (46) tonnes C/ha (+/- SD)", + "Value": "0.111111111111111", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124060", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.97", + "Upper_Bound": "1.13", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.649Z", + "last_change_date": "2022-03-14T08:13:59.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16261, + "fields": { + "EF_ID": 525230, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Spatial boundaries: Africa; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 726 (436) (tree density /ha (+/- SD))/ 4 (4) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-33 (9) cm (+/- SD), SOC(0-T): 29 (14) tonnes C/ha (+/- SD), SOC0: 30 (16) tonnes C/ha (+/- SD)", + "Value": "0.25", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124061", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.97", + "Upper_Bound": "1.16", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.758Z", + "last_change_date": "2022-03-14T08:13:59.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16262, + "fields": { + "EF_ID": 525231, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Parkland", + "Parameter_Conditions": "Spatial boundaries: Africa; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 198 (78) (tree density /ha (+/- SD))/ 16 (6) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-50 (0) cm (+/- SD), SOC(0-T): 9 (0.45) tonnes C/ha (+/- SD), SOC0: 10 (1.5) tonnes C/ha (+/- SD)", + "Value": "0.0625", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124062", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.99", + "Upper_Bound": "1.31", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.859Z", + "last_change_date": "2022-03-14T08:13:59.859Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16263, + "fields": { + "EF_ID": 525232, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Spatial boundaries: Asia; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 278 (0) (tree density /ha (+/- SD))/ 11 (0) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-40 (0) cm (+/- SD), SOC(0-T): 12 (2) tonnes C/ha (+/- SD), SOC0: 17 (2) tonnes C/ha (+/- SD)", + "Value": "0.454545454545455", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124063", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.26", + "Upper_Bound": "1.62", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:13:59.960Z", + "last_change_date": "2022-03-14T08:13:59.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16264, + "fields": { + "EF_ID": 525233, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Parkland", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 198 (78) (tree density /ha (+/- SD))/ 16 (6) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-50 (0) cm (+/- SD), SOC(0-T): 9 (0.45) tonnes C/ha (+/- SD), SOC0: 10 (1.5) tonnes C/ha (+/- SD)", + "Value": "0.0625", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124064", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.99", + "Upper_Bound": "1.31", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.061Z", + "last_change_date": "2022-03-14T08:14:00.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16265, + "fields": { + "EF_ID": 525234, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 278 (0) (tree density /ha (+/- SD))/ 11 (0) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Dry; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-40 (0) cm (+/- SD), SOC(0-T): 12 (2) tonnes C/ha (+/- SD), SOC0: 17 (2) tonnes C/ha (+/- SD)", + "Value": "0.454545454545455", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124065", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.26", + "Upper_Bound": "1.62", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.161Z", + "last_change_date": "2022-03-14T08:14:00.161Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16266, + "fields": { + "EF_ID": 525235, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Alley cropping", + "Parameter_Conditions": "Spatial boundaries: Asia; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 40000 (0) (tree density /ha (+/- SD))/ 5 (0) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-40 (0) cm (+/- SD), SOC(0-T): 20 (1) tonnes C/ha (+/- SD), SOC0: 30 (4) tonnes C/ha (+/- SD)", + "Value": "2", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124066", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.30", + "Upper_Bound": "1.64", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.275Z", + "last_change_date": "2022-03-14T08:14:00.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16267, + "fields": { + "EF_ID": 525236, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Spatial boundaries: North America; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): / 19 (15) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-30 (0) cm (+/- SD), SOC(0-T): 8 (3) tonnes C/ha (+/- SD), SOC0: 10 (4) tonnes C/ha (+/- SD)", + "Value": "0.105263157894737", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124067", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.84", + "Upper_Bound": "1.82", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.371Z", + "last_change_date": "2022-03-14T08:14:00.371Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16268, + "fields": { + "EF_ID": 525237, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 714 (356) (tree density /ha (+/- SD))/ 6 (1) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Moist; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-35 (23) cm (+/- SD), SOC(0-T): 68 (60) tonnes C/ha (+/- SD), SOC0: 79 (73) tonnes C/ha (+/- SD)", + "Value": "1.83333333333333", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124068", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.05", + "Upper_Bound": "1.23", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.454Z", + "last_change_date": "2022-03-14T08:14:00.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16269, + "fields": { + "EF_ID": 525238, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.2.b.ii - Grassland converted to Cropland, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Parkland", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 198 (78) (tree density /ha (+/- SD))/ 16 (6) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-50 (0) cm (+/- SD), SOC(0-T): 9 (0) tonnes C/ha (+/- SD), SOC0: 10 (1.5) tonnes C/ha (+/- SD)", + "Value": "0.0625", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124069", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.99", + "Upper_Bound": "1.31", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.547Z", + "last_change_date": "2022-03-14T08:14:00.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16270, + "fields": { + "EF_ID": 525239, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 4185 (6053) (tree density /ha (+/- SD))/ 14 (9) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-32 (8) cm (+/- SD), SOC(0-T): 23 (23) tonnes C/ha (+/- SD), SOC0: 29 (26) tonnes C/ha (+/- SD)", + "Value": "0.428571428571429", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124070", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.14", + "Upper_Bound": "1.54", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.639Z", + "last_change_date": "2022-03-14T08:14:00.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16271, + "fields": { + "EF_ID": 525240, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Plantation to Shaded Perennial", + "Parameter_Conditions": "Spatial boundaries: Central America; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 1019 (541) (tree density /ha (+/- SD))/ 10 (1) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-33 (6) cm (+/- SD), SOC(0-T): 92 (18) tonnes C/ha (+/- SD), SOC0: 98 (17) tonnes C/ha (+/- SD)", + "Value": "0.6", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124071", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.00", + "Upper_Bound": "1.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.732Z", + "last_change_date": "2022-03-14T08:14:00.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16272, + "fields": { + "EF_ID": 525241, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Plantation to Shaded Perennial", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 1019 (641) (tree density /ha (+/- SD))/ 10 (1) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical Wet; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-33 (6) cm (+/- SD), SOC(0-T): 92 (18) tonnes C/ha (+/- SD), SOC0: 98 (17) tonnes C/ha (+/- SD)", + "Value": "0.6", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124072", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.00", + "Upper_Bound": "1.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.815Z", + "last_change_date": "2022-03-14T08:14:00.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16273, + "fields": { + "EF_ID": 525242, + "IPCC_Category": "3.B.1.a - Forest land Remaining Forest land, 3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland, 3.B.2.b.i - Forest Land converted to Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Plantation to Shaded Perennial", + "Parameter_Conditions": "Spatial boundaries: ; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 1019 (541) (tree density /ha (+/- SD))/ 10 (1) years old (+/- SD)", + "Regional_Conditions": "Climate: Tropical; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-33 (6) cm (+/- SD), SOC(0-T): 92 (18) tonnes C/ha (+/- SD), SOC0: 98 (17) tonnes C/ha (+/- SD)", + "Value": "0.6", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124073", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.00", + "Upper_Bound": "1.14", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.899Z", + "last_change_date": "2022-03-14T08:14:00.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16274, + "fields": { + "EF_ID": 525243, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland, 3.B.3.b.ii - Cropland converted to Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Hedgerow", + "Parameter_Conditions": "Spatial boundaries: North America; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 546 (373) (tree density /km (+/- SD))/ 25 (6) years old (+/- SD)", + "Regional_Conditions": "Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-30 (0) cm (+/- SD), SOC(0-T): 72 (19) tonnes C/ha (+/- SD), SOC0: 89 (24) tonnes C/ha (+/- SD)", + "Value": "0.68", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124074", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "1.16", + "Upper_Bound": "1.32", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:00.984Z", + "last_change_date": "2022-03-14T08:14:00.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16275, + "fields": { + "EF_ID": 525244, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Spatial boundaries: Europe; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 260 (134) (tree density /ha (+/- SD))/ 25 (1) years old (+/- SD)", + "Regional_Conditions": "Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-40 (14) cm (+/- SD), SOC(0-T): 78 (22) tonnes C/ha (+/- SD), SOC0: 83 (16) tonnes C/ha (+/- SD)", + "Value": "0.2", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124075", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.95", + "Upper_Bound": "1.21", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:01.084Z", + "last_change_date": "2022-03-14T08:14:01.084Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16276, + "fields": { + "EF_ID": 525245, + "IPCC_Category": "3.B.1.b.i - Cropland converted to Forest Land, 3.B.2.a - Cropland Remaining Cropland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Cropland to Silvoarable", + "Parameter_Conditions": "Spatial boundaries: North America; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 231 (149) (tree density /ha (+/- SD))/ 15 (8) years old (+/- SD)", + "Regional_Conditions": "Climate: Cool Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-31 (8) cm (+/- SD), SOC(0-T): 84 (34) tonnes C/ha (+/- SD), SOC0: 88 (31) tonnes C/ha (+/- SD)", + "Value": "0.266666666666667", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124076", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.97", + "Upper_Bound": "1.19", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:01.193Z", + "last_change_date": "2022-03-14T08:14:01.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16277, + "fields": { + "EF_ID": 525246, + "IPCC_Category": "3.B.1.b.ii - Grassland converted to Forest Land, 3.B.3.a - Grassland Remaining Grassland", + "Gases": "CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Response ratio (FLU) indicates a relative change in SOC stocks in the newland use compared to the previous one.", + "Technology_Practices": "Grassland to Silvopasture", + "Parameter_Conditions": "Spatial boundaries: Europe; Vegetation/crop type/subtype: ; Species: ; Biomass attributes/Time (T): 35 (tree density /ha)/ 47 (47) years old (+/- SD)", + "Regional_Conditions": "Climate: Warm Temperate; Ecological zone: ; Temperature regime: ; Moisture regime: ; Soil type/nutrient content: .", + "Control_Technologies": "", + "Other_Properties": "soil depth: 0-70 (42) cm (+/- SD), SOC(0-T): 80 (76) tonnes C/ha (+/- SD), SOC0: 77 (66) tonnes C/ha (+/- SD)", + "Value": "-6.38297872340425E-02", + "Unit": "tonne C/year", + "Equation": "Equation 2.3 on Page 2.7 of the report on 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Dataset from Cardinael, R., et al (2018). Environmental Research Letters. 13, 124077", + "English_Abstract": "Agroforestry systems comprise trees and crops, or trees and pastures within the same field. Globally, they cover approximately 1 billion hectares of land and contribute to the livelihoods of over 900 million people. Agroforestry systems have the capacity to sequester large quantities of carbon (C) in both soil and biomass. However, these systems have not yet been fully considered in the approach to C accounting developed by the Intergovernmental Panel on Climate Change, largely due to the high diversity of agroforestry systems and scarcity of relevant data. Our literature review identified a total of 122 scientific, peer-reviewed articles associated with biomass C storage (50) and with soil organic carbon (SOC) (72), containing a total of 542 observations (324 and 218, respectively). Based on a synthesis of the reported observations, we are presenting a set of Tier 1 coefficients for biomass C storage for each of the eight main agroforestry systems identified, including alley cropping, fallows, hedgerows, multistrata, parklands, shaded perennial-crop, silvoarable and silvopastoral systems, disaggregated by climate and region. Using the same agroforestry classification, we are presenting a set of stock change factors (FLU) and SOC accumulation/loss rates for three main land use changes (LUCs): cropland to agroforestry; forest to agroforestry; and grassland to agroforestry. Globally, the mean SOC stock change factors (±confidence intervals) were estimated to be 1.25 ± 0.04, 0.89 ± 0.07, and 1.19 ± 0.10, for the three main LUCs, respectively. However, these average coefficients hide huge disparities across and within different climates, regions, and types of agroforestry systems, highlighting the necessity to adopt the more disaggregated coefficients provided herein. We encourage national governments to synthesize data from local field experiments to generate country-specific factors for more robust estimation of biomass and SOC storage.", + "Lower_Bound": "0.81", + "Upper_Bound": "1.25", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value was obtained using ancillary data from the paper and applying equation 2.25, Volume 4 of the 2006 IPCC Guidelines", + "Other_Comments": "", + "Data_Provider": "Remi Cardinael", + "Link": "https://iopscience.iop.org/article/10.1088/1748-9326/aaeb5f", + "creation_date": "2022-03-14T08:14:01.303Z", + "last_change_date": "2022-03-14T08:14:01.303Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16278, + "fields": { + "EF_ID": 614476, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:01.412Z", + "last_change_date": "2022-03-14T08:14:01.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16279, + "fields": { + "EF_ID": 614477, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "South-Central Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:01.500Z", + "last_change_date": "2022-03-14T08:14:01.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16280, + "fields": { + "EF_ID": 614478, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "South-East Asia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:01.596Z", + "last_change_date": "2022-03-14T08:14:01.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16281, + "fields": { + "EF_ID": 614479, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "Data not available for regions of Africa", + "Value": "0.29", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:01.675Z", + "last_change_date": "2022-03-14T08:14:01.675Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16282, + "fields": { + "EF_ID": 614480, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.38", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:01.741Z", + "last_change_date": "2022-03-14T08:14:01.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16283, + "fields": { + "EF_ID": 614481, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Northern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.64", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:01.808Z", + "last_change_date": "2022-03-14T08:14:01.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16284, + "fields": { + "EF_ID": 614482, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Southern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:01.906Z", + "last_change_date": "2022-03-14T08:14:01.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16285, + "fields": { + "EF_ID": 614483, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:01.983Z", + "last_change_date": "2022-03-14T08:14:01.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16286, + "fields": { + "EF_ID": 614484, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Caribbean", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.49", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.050Z", + "last_change_date": "2022-03-14T08:14:02.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16287, + "fields": { + "EF_ID": 614485, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Central America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.117Z", + "last_change_date": "2022-03-14T08:14:02.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16288, + "fields": { + "EF_ID": 614486, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.208Z", + "last_change_date": "2022-03-14T08:14:02.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16289, + "fields": { + "EF_ID": 614487, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.65", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.283Z", + "last_change_date": "2022-03-14T08:14:02.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16290, + "fields": { + "EF_ID": 614488, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Oceania", + "Control_Technologies": "", + "Other_Properties": "Based on data from Australia and New Zealand only", + "Value": "0.69", + "Unit": "tonnes/cap/yr", + "Equation": "", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of total Municipal Solid Waste, the followings are suggested. Country-specific: 30% is a typical value for countries which collect waste generation data on regular basis. +/-10% for countries with high quality data (e.g., weighing at all SWDS and other treatment facilities). For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.350Z", + "last_change_date": "2022-03-14T08:14:02.350Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16291, + "fields": { + "EF_ID": 614489, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.55, incinerated = 0.26, composted = 0.01, and other MSW management unspecified = 0.18", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.417Z", + "last_change_date": "2022-03-14T08:14:02.417Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16292, + "fields": { + "EF_ID": 614490, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Central Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.74, composted = 0.05, and other MSW management unspecified = 0.21", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.501Z", + "last_change_date": "2022-03-14T08:14:02.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16293, + "fields": { + "EF_ID": 614491, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-East Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.59, incinerated = 0.09, composted = 0.05, and other MSW management unspecified = 0.27", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.575Z", + "last_change_date": "2022-03-14T08:14:02.575Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16294, + "fields": { + "EF_ID": 614492, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.69, and other MSW management unspecified = 0.31", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.642Z", + "last_change_date": "2022-03-14T08:14:02.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16295, + "fields": { + "EF_ID": 614493, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.90, incinerated = 0.04, composted = 0.01, and other MSW management unspecified = 0.02", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.729Z", + "last_change_date": "2022-03-14T08:14:02.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16296, + "fields": { + "EF_ID": 614494, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.47, incinerated =0.24, composted = 0.08, and other MSW management unspecified = 0.20", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.817Z", + "last_change_date": "2022-03-14T08:14:02.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16297, + "fields": { + "EF_ID": 614495, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.85, incinerated =0.05, composted = 0.05, and other MSW management unspecified = 0.05", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.892Z", + "last_change_date": "2022-03-14T08:14:02.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16298, + "fields": { + "EF_ID": 614496, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.47, incinerated =0.22, composted = 0.15, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:02.988Z", + "last_change_date": "2022-03-14T08:14:02.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16299, + "fields": { + "EF_ID": 614497, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Caribbean", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.83, incinerated =0.02, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.075Z", + "last_change_date": "2022-03-14T08:14:03.075Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16300, + "fields": { + "EF_ID": 614498, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Central America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.50, and other MSW management unspecified = 0.50", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.154Z", + "last_change_date": "2022-03-14T08:14:03.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16301, + "fields": { + "EF_ID": 614499, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.54, incinerate =0.01, composted = 0.003, and other MSW management unspecified = 0.46", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.248Z", + "last_change_date": "2022-03-14T08:14:03.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16302, + "fields": { + "EF_ID": 614500, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.58, incinerate =0.06, composted = 0.06, and other MSW management unspecified = 0.29", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.325Z", + "last_change_date": "2022-03-14T08:14:03.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16303, + "fields": { + "EF_ID": 614501, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.85, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for Oceania are based only on data from Australia and New Zealand. For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.395Z", + "last_change_date": "2022-03-14T08:14:03.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16304, + "fields": { + "EF_ID": 614502, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 26.2, paper and cardboard = 18.8, wood = 3.5, textiles = 3.5, rubber and leather = 1.0, plastics = 14.3, metal = 2.7, glass (and pottery and china) = 3.1, other = 7.4", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.482Z", + "last_change_date": "2022-03-14T08:14:03.482Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16305, + "fields": { + "EF_ID": 614503, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Central Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 40.3, paper and cardboard = 11.3 wood = 7.9, textiles = 2.5, rubber and leather = 0.8, plastics = 6.4, metal = 3.8, glass (and pottery and china) = 3.5, other = 21.9", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.562Z", + "last_change_date": "2022-03-14T08:14:03.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16306, + "fields": { + "EF_ID": 614504, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.5, paper and cardboard = 12.9, wood = 9.9, textiles = 2.7, rubber and leather = 0.9, plastics = 7.2, metal = 3.3, glass (and pottery and china) = 4.0, other = 16.3", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.650Z", + "last_change_date": "2022-03-14T08:14:03.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16307, + "fields": { + "EF_ID": 614505, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Asia & Middle East", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 41.1, paper and cardboard = 18.0, wood = 9.8, textiles = 2.9, rubber and leather = 0.6, plastics = 6.3, metal = 1.3, glass (and pottery and china) = 2.2, other = 5.4", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.751Z", + "last_change_date": "2022-03-14T08:14:03.752Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16308, + "fields": { + "EF_ID": 614506, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 53.9, paper and cardboard = 7.7, wood = 7.0, textiles = 1.7, rubber and leather = 1.1, plastics = 5.5, metal = 1.8, glass (and pottery and china) = 2.3, other = 11.6", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.860Z", + "last_change_date": "2022-03-14T08:14:03.860Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16309, + "fields": { + "EF_ID": 614507, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Middle Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.4, paper and cardboard = 16.8, wood = 6.5, textiles = 2.5, rubber and leather = --, plastics = 4.5, metal = 3.5, glass (and pottery and china) = 2.0, other = 1.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:03.977Z", + "last_change_date": "2022-03-14T08:14:03.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16310, + "fields": { + "EF_ID": 614508, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 51.1, paper and cardboard = 16.5, wood = 2, textiles = 2.5, rubber and leather = --, plastics = 4.5, metal = 3.5, glass (and pottery and china) = 2, other = 1.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.111Z", + "last_change_date": "2022-03-14T08:14:04.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16311, + "fields": { + "EF_ID": 614509, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 23, paper and cardboard = 25, wood = 15, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.197Z", + "last_change_date": "2022-03-14T08:14:04.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16312, + "fields": { + "EF_ID": 614510, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 40.4, paper and cardboard = 9.8, wood = 4.4, textiles = 1.0, rubber and leather = --, plastics = 3.0, metal = 1.0, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.280Z", + "last_change_date": "2022-03-14T08:14:04.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16313, + "fields": { + "EF_ID": 614511, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 30.1, paper and cardboard = 21.8, wood = 7.5, textiles = 4.7, rubber and leather = 1.4, plastics = 6.2, metal = 3.6, glass (and pottery and china) = 10.0, other = 14.6", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.372Z", + "last_change_date": "2022-03-14T08:14:04.373Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16314, + "fields": { + "EF_ID": 614512, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 23.8, paper and cardboard = 30.6, wood = 10.0, textiles = 2.0, rubber and leather = --, plastics = 13.0, metal = 7.0, glass (and pottery and china) = 8.0, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.473Z", + "last_change_date": "2022-03-14T08:14:04.473Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16315, + "fields": { + "EF_ID": 614513, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 36.9, paper and cardboard = 17.0, wood = 10.6, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.582Z", + "last_change_date": "2022-03-14T08:14:04.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16316, + "fields": { + "EF_ID": 614514, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 24.2, paper and cardboard = 27.5, wood = 11.0, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.691Z", + "last_change_date": "2022-03-14T08:14:04.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16317, + "fields": { + "EF_ID": 614515, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania: Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 36.0, paper and cardboard = 30.0, wood = 24.0, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.800Z", + "last_change_date": "2022-03-14T08:14:04.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16318, + "fields": { + "EF_ID": 614516, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania: except for Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 67.5, paper and cardboard = 6.0, wood = 2.5, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:04.909Z", + "last_change_date": "2022-03-14T08:14:04.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16319, + "fields": { + "EF_ID": 614517, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Caribbean", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 46.9, paper and cardboard = 17.0, wood = 2.4, textiles = 5.1, rubber and leather = 1.9, plastics = 9.9, metal = 5.0, glass (and pottery and china) = 5.7, other = 3.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.009Z", + "last_change_date": "2022-03-14T08:14:05.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16320, + "fields": { + "EF_ID": 614518, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Central America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.8, paper and cardboard = 13.7, wood = 13.5, textiles = 2.6, rubber and leather = 1.8, plastics = 6.7, metal = 2.6, glass (and pottery and china) = 3.7, other = 12.3", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.118Z", + "last_change_date": "2022-03-14T08:14:05.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16321, + "fields": { + "EF_ID": 614519, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 44.9, paper and cardboard = 17.1, wood = 4.7, textiles = 2.6, rubber and leather = 0.7, plastics = 10.8, metal = 2.9, glass (and pottery and china) = 3.3, other = 13.0", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.235Z", + "last_change_date": "2022-03-14T08:14:05.236Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16322, + "fields": { + "EF_ID": 614520, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 33.9, paper and cardboard = 23.2, wood = 6.2, textiles = 3.9, rubber and leather = 1.4, plastics = 8.5, metal = 4.6, glass (and pottery and china) = 6.5, other = 9.8", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.345Z", + "last_change_date": "2022-03-14T08:14:05.345Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16323, + "fields": { + "EF_ID": 614521, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3, 4C1: Equation 5.4, in Chapter 5 in Vol.5, of 2006 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines,", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Pipatti, R., Hänninen, K., Vesterinen, R., Wihersaari, M. and Savolainen, I. (1996). Impact of waste management alternative on greenhouse gas emissions, Espoo, VTT Julkaisuja - Publikationer. 85 p. (In Finnish) Yamada, M., Ishigaki, T., Tachio, K. and Inue, Y. (2003). Carbon flow and landfill methane emissions in Japanese waste stream. Sardinia 2003, Nineth International Waste Management and Landfill Symposium, Cagliari, Italy.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.462Z", + "last_change_date": "2022-03-14T08:14:05.462Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16324, + "fields": { + "EF_ID": 614522, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3, 4C1: Equation 5.4, in Chapter 5 in Vol.5, of 2006 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines,", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Pipatti, R., Hänninen, K., Vesterinen, R., Wihersaari, M. and Savolainen, I. (1996). Impact of waste management alternative on greenhouse gas emissions, Espoo, VTT Julkaisuja - Publikationer. 85 p. (In Finnish) Yamada, M., Ishigaki, T., Tachio, K. and Inue, Y. (2003). Carbon flow and landfill methane emissions in Japanese waste stream. Sardinia 2003, Nineth International Waste Management and Landfill Symposium, Cagliari, Italy.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.551Z", + "last_change_date": "2022-03-14T08:14:05.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16325, + "fields": { + "EF_ID": 614523, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Industry type: Wood and wood products", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3, 4C1: Equation 5.4, in Chapter 5 in Vol.5, of 2006 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines,", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Pipatti, R., Hänninen, K., Vesterinen, R., Wihersaari, M. and Savolainen, I. (1996). Impact of waste management alternative on greenhouse gas emissions, Espoo, VTT Julkaisuja - Publikationer. 85 p. (In Finnish) Yamada, M., Ishigaki, T., Tachio, K. and Inue, Y. (2003). Carbon flow and landfill methane emissions in Japanese waste stream. Sardinia 2003, Nineth International Waste Management and Landfill Symposium, Cagliari, Italy.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.655Z", + "last_change_date": "2022-03-14T08:14:05.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16326, + "fields": { + "EF_ID": 614524, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3, 4C1: Equation 5.4, in Chapter 5 in Vol.5, of 2006 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines,", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Pipatti, R., Hänninen, K., Vesterinen, R., Wihersaari, M. and Savolainen, I. (1996). Impact of waste management alternative on greenhouse gas emissions, Espoo, VTT Julkaisuja - Publikationer. 85 p. (In Finnish) Yamada, M., Ishigaki, T., Tachio, K. and Inue, Y. (2003). Carbon flow and landfill methane emissions in Japanese waste stream. Sardinia 2003, Nineth International Waste Management and Landfill Symposium, Cagliari, Italy.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.734Z", + "last_change_date": "2022-03-14T08:14:05.734Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16327, + "fields": { + "EF_ID": 614525, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3, 4C1: Equation 5.4, in Chapter 5 in Vol.5, of 2006 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines,", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Tsuchii, A., Suzuki, T. and Takeda, K. (1985). ‘Microbial degradation of natural rubber vulacnizates`, Applied and Environmental Microbiology, Oct. 1985, p. 965-970. Pipatti, R., Hänninen, K., Vesterinen, R., Wihersaari, M. and Savolainen, I. (1996). Impact of waste management alternative on greenhouse gas emissions, Espoo, VTT Julkaisuja - Publikationer. 85 p. (In Finnish) Yamada, M., Ishigaki, T., Tachio, K. and Inue, Y. (2003). Carbon flow and landfill methane emissions in Japanese waste stream. Sardinia 2003, Nineth International Waste Management and Landfill Symposium, Cagliari, Italy.", + "Data_Provider_Comments": "Natural rubbers would likely not degrade under anaerobic condition at SWDS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.812Z", + "last_change_date": "2022-03-14T08:14:05.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16328, + "fields": { + "EF_ID": 614526, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3, 4C1: Equation 5.4, in Chapter 5 in Vol.5, of 2006 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines,", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Pipatti, R., Hänninen, K., Vesterinen, R., Wihersaari, M. and Savolainen, I. (1996). Impact of waste management alternative on greenhouse gas emissions, Espoo, VTT Julkaisuja - Publikationer. 85 p. (In Finnish) Yamada, M., Ishigaki, T., Tachio, K. and Inue, Y. (2003). Carbon flow and landfill methane emissions in Japanese waste stream. Sardinia 2003, Nineth International Waste Management and Landfill Symposium, Cagliari, Italy.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.887Z", + "last_change_date": "2022-03-14T08:14:05.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16329, + "fields": { + "EF_ID": 614527, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3, 4C1: Equation 5.4, in Chapter 5 in Vol.5, of 2006 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines,", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Pipatti, R., Hänninen, K., Vesterinen, R., Wihersaari, M. and Savolainen, I. (1996). Impact of waste management alternative on greenhouse gas emissions, Espoo, VTT Julkaisuja - Publikationer. 85 p. (In Finnish) Yamada, M., Ishigaki, T., Tachio, K. and Inue, Y. (2003). Carbon flow and landfill methane emissions in Japanese waste stream. Sardinia 2003, Nineth International Waste Management and Landfill Symposium, Cagliari, Italy.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:05.983Z", + "last_change_date": "2022-03-14T08:14:05.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16330, + "fields": { + "EF_ID": 614528, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) in clinical waste", + "Technology_Practices": "Clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Clinical waste", + "Value": "15", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3, 4C1: Equation 5.4, in Chapter 5 in Vol.5, of 2006 Guidelines.", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines,", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.076Z", + "last_change_date": "2022-03-14T08:14:06.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16331, + "fields": { + "EF_ID": 614529, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.145Z", + "last_change_date": "2022-03-14T08:14:06.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16332, + "fields": { + "EF_ID": 614530, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. 40 percent of textile are assumed to be synthetic (default). Expert judgement by the authors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.212Z", + "last_change_date": "2022-03-14T08:14:06.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16333, + "fields": { + "EF_ID": 614531, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.300Z", + "last_change_date": "2022-03-14T08:14:06.301Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16334, + "fields": { + "EF_ID": 614532, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "85", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "This value is for wood products at the end of life. Typical dry matter content of wood at the time of harvest (that is for garden and park waste) is 40 percent. Expert judgement by the authors.", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. This value is for wood products at the end of life. Typical dry matter content of wood at the time of harvest (that is for garden and park waste) is 40 percent. Expert judgement by the authors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.376Z", + "last_change_date": "2022-03-14T08:14:06.376Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16335, + "fields": { + "EF_ID": 614533, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.477Z", + "last_change_date": "2022-03-14T08:14:06.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16336, + "fields": { + "EF_ID": 614534, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.551Z", + "last_change_date": "2022-03-14T08:14:06.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16337, + "fields": { + "EF_ID": 614535, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "84", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.644Z", + "last_change_date": "2022-03-14T08:14:06.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16338, + "fields": { + "EF_ID": 614536, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Plastics", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.726Z", + "last_change_date": "2022-03-14T08:14:06.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16339, + "fields": { + "EF_ID": 614537, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Metal", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.795Z", + "last_change_date": "2022-03-14T08:14:06.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16340, + "fields": { + "EF_ID": 614538, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Glass", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.879Z", + "last_change_date": "2022-03-14T08:14:06.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16341, + "fields": { + "EF_ID": 614539, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Other, inert waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:06.968Z", + "last_change_date": "2022-03-14T08:14:06.968Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16342, + "fields": { + "EF_ID": 614540, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.037Z", + "last_change_date": "2022-03-14T08:14:07.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16343, + "fields": { + "EF_ID": 614541, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.130Z", + "last_change_date": "2022-03-14T08:14:07.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16344, + "fields": { + "EF_ID": 614542, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Wood and wood products", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.218Z", + "last_change_date": "2022-03-14T08:14:07.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16345, + "fields": { + "EF_ID": 614543, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.295Z", + "last_change_date": "2022-03-14T08:14:07.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16346, + "fields": { + "EF_ID": 614544, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Petroleum products, Solvents, Plastics", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.399Z", + "last_change_date": "2022-03-14T08:14:07.399Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16347, + "fields": { + "EF_ID": 614545, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.477Z", + "last_change_date": "2022-03-14T08:14:07.477Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16348, + "fields": { + "EF_ID": 614546, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.562Z", + "last_change_date": "2022-03-14T08:14:07.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16349, + "fields": { + "EF_ID": 614547, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.659Z", + "last_change_date": "2022-03-14T08:14:07.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16350, + "fields": { + "EF_ID": 614548, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in clinical waste", + "Technology_Practices": "clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.6, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of hazardous and clinical waste generated in the country. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.736Z", + "last_change_date": "2022-03-14T08:14:07.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16351, + "fields": { + "EF_ID": 614549, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in hazardous waste", + "Technology_Practices": "hazardous waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "", + "Unit": "%", + "Equation": "Category code: 4C:", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.6, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 10 - 90. The higher fossil carbon value is for waste with lower water content. When no data on the water content are available, the mean value of the range should be used. The values should be applied only for total amounts of hazardous and clinical waste generated in the country. Major part of hazardous waste would be generated as sludge or liquid-like nature, as well as ash, cinder and slug which are dry nature. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.812Z", + "last_change_date": "2022-03-14T08:14:07.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16352, + "fields": { + "EF_ID": 614563, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.55, incinerated = 0.26, composted = 0.01, and other MSW management unspecified = 0.18", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.911Z", + "last_change_date": "2022-03-14T08:14:07.911Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16353, + "fields": { + "EF_ID": 614564, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Central Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.74, composted = 0.05, and other MSW management unspecified = 0.21", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:07.994Z", + "last_change_date": "2022-03-14T08:14:07.994Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16354, + "fields": { + "EF_ID": 614565, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-East Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.59, incinerated = 0.09, composted = 0.05, and other MSW management unspecified = 0.27", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.070Z", + "last_change_date": "2022-03-14T08:14:08.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16355, + "fields": { + "EF_ID": 614566, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.69, and other MSW management unspecified = 0.31", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.187Z", + "last_change_date": "2022-03-14T08:14:08.187Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16356, + "fields": { + "EF_ID": 614567, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.90, incinerated = 0.04, composted = 0.01, and other MSW management unspecified = 0.02", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.261Z", + "last_change_date": "2022-03-14T08:14:08.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16357, + "fields": { + "EF_ID": 614568, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.47, incinerated =0.24, composted = 0.08, and other MSW management unspecified = 0.20", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.337Z", + "last_change_date": "2022-03-14T08:14:08.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16358, + "fields": { + "EF_ID": 614569, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.85, incinerated =0.05, composted = 0.05, and other MSW management unspecified = 0.05", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.430Z", + "last_change_date": "2022-03-14T08:14:08.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16359, + "fields": { + "EF_ID": 614570, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.47, incinerated =0.22, composted = 0.15, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.519Z", + "last_change_date": "2022-03-14T08:14:08.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16360, + "fields": { + "EF_ID": 614571, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Caribbean", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.83, incinerated =0.02, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.595Z", + "last_change_date": "2022-03-14T08:14:08.595Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16361, + "fields": { + "EF_ID": 614572, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Central America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.50, and other MSW management unspecified = 0.50", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.690Z", + "last_change_date": "2022-03-14T08:14:08.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16362, + "fields": { + "EF_ID": 614573, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.54, incinerate =0.01, composted = 0.003, and other MSW management unspecified = 0.46", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.777Z", + "last_change_date": "2022-03-14T08:14:08.778Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16363, + "fields": { + "EF_ID": 614574, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.58, incinerate =0.06, composted = 0.06, and other MSW management unspecified = 0.29", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.853Z", + "last_change_date": "2022-03-14T08:14:08.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16364, + "fields": { + "EF_ID": 614575, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.85, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "Category code: 4A: Equation 3.2 in page 3.9, 4B:Equation 4.1 in page 4.5, 4C: Equation 5.4 in page 5.12 in Vol. 5 of 2006 Guidelines, Equation 5.3 in Chapter 5 of GPG2000, Equation 1 in page 6.3 in Vol.3 of 1996 Guidelines.", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for Oceania are based only on data from Australia and New Zealand. For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:08.959Z", + "last_change_date": "2022-03-14T08:14:08.959Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16365, + "fields": { + "EF_ID": 614576, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 26.2, paper and cardboard = 18.8, wood = 3.5, textiles = 3.5, rubber and leather = 1.0, plastics = 14.3, metal = 2.7, glass (and pottery and china) = 3.1, other = 7.4", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.036Z", + "last_change_date": "2022-03-14T08:14:09.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16366, + "fields": { + "EF_ID": 614577, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Central Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 40.3, paper and cardboard = 11.3 wood = 7.9, textiles = 2.5, rubber and leather = 0.8, plastics = 6.4, metal = 3.8, glass (and pottery and china) = 3.5, other = 21.9", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.143Z", + "last_change_date": "2022-03-14T08:14:09.143Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16367, + "fields": { + "EF_ID": 614578, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.5, paper and cardboard = 12.9, wood = 9.9, textiles = 2.7, rubber and leather = 0.9, plastics = 7.2, metal = 3.3, glass (and pottery and china) = 4.0, other = 16.3", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.252Z", + "last_change_date": "2022-03-14T08:14:09.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16368, + "fields": { + "EF_ID": 614579, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Asia & Middle East", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 41.1, paper and cardboard = 18.0, wood = 9.8, textiles = 2.9, rubber and leather = 0.6, plastics = 6.3, metal = 1.3, glass (and pottery and china) = 2.2, other = 5.4", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.361Z", + "last_change_date": "2022-03-14T08:14:09.361Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16369, + "fields": { + "EF_ID": 614580, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 53.9, paper and cardboard = 7.7, wood = 7.0, textiles = 1.7, rubber and leather = 1.1, plastics = 5.5, metal = 1.8, glass (and pottery and china) = 2.3, other = 11.6", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.470Z", + "last_change_date": "2022-03-14T08:14:09.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16370, + "fields": { + "EF_ID": 614581, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Middle Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.4, paper and cardboard = 16.8, wood = 6.5, textiles = 2.5, rubber and leather = --, plastics = 4.5, metal = 3.5, glass (and pottery and china) = 2.0, other = 1.5", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.579Z", + "last_change_date": "2022-03-14T08:14:09.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16371, + "fields": { + "EF_ID": 614582, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 51.1, paper and cardboard = 16.5, wood = 2, textiles = 2.5, rubber and leather = --, plastics = 4.5, metal = 3.5, glass (and pottery and china) = 2, other = 1.5", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.688Z", + "last_change_date": "2022-03-14T08:14:09.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16372, + "fields": { + "EF_ID": 614583, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 23, paper and cardboard = 25, wood = 15, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.788Z", + "last_change_date": "2022-03-14T08:14:09.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16373, + "fields": { + "EF_ID": 614584, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 40.4, paper and cardboard = 9.8, wood = 4.4, textiles = 1.0, rubber and leather = --, plastics = 3.0, metal = 1.0, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:09.889Z", + "last_change_date": "2022-03-14T08:14:09.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16374, + "fields": { + "EF_ID": 614585, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 30.1, paper and cardboard = 21.8, wood = 7.5, textiles = 4.7, rubber and leather = 1.4, plastics = 6.2, metal = 3.6, glass (and pottery and china) = 10.0, other = 14.6", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.006Z", + "last_change_date": "2022-03-14T08:14:10.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16375, + "fields": { + "EF_ID": 614586, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 23.8, paper and cardboard = 30.6, wood = 10.0, textiles = 2.0, rubber and leather = --, plastics = 13.0, metal = 7.0, glass (and pottery and china) = 8.0, other = --", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.123Z", + "last_change_date": "2022-03-14T08:14:10.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16376, + "fields": { + "EF_ID": 614587, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 36.9, paper and cardboard = 17.0, wood = 10.6, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.241Z", + "last_change_date": "2022-03-14T08:14:10.241Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16377, + "fields": { + "EF_ID": 614588, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 24.2, paper and cardboard = 27.5, wood = 11.0, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.349Z", + "last_change_date": "2022-03-14T08:14:10.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16378, + "fields": { + "EF_ID": 614589, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania: Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 36.0, paper and cardboard = 30.0, wood = 24.0, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.459Z", + "last_change_date": "2022-03-14T08:14:10.459Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16379, + "fields": { + "EF_ID": 614590, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania: except for Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 67.5, paper and cardboard = 6.0, wood = 2.5, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.569Z", + "last_change_date": "2022-03-14T08:14:10.569Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16380, + "fields": { + "EF_ID": 614591, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Caribbean", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 46.9, paper and cardboard = 17.0, wood = 2.4, textiles = 5.1, rubber and leather = 1.9, plastics = 9.9, metal = 5.0, glass (and pottery and china) = 5.7, other = 3.5", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.678Z", + "last_change_date": "2022-03-14T08:14:10.678Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16381, + "fields": { + "EF_ID": 614592, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Central America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.8, paper and cardboard = 13.7, wood = 13.5, textiles = 2.6, rubber and leather = 1.8, plastics = 6.7, metal = 2.6, glass (and pottery and china) = 3.7, other = 12.3", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.786Z", + "last_change_date": "2022-03-14T08:14:10.786Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16382, + "fields": { + "EF_ID": 614593, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 44.9, paper and cardboard = 17.1, wood = 4.7, textiles = 2.6, rubber and leather = 0.7, plastics = 10.8, metal = 2.9, glass (and pottery and china) = 3.3, other = 13.0", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.895Z", + "last_change_date": "2022-03-14T08:14:10.895Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16383, + "fields": { + "EF_ID": 614594, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 33.9, paper and cardboard = 23.2, wood = 6.2, textiles = 3.9, rubber and leather = 1.4, plastics = 8.5, metal = 4.6, glass (and pottery and china) = 6.5, other = 9.8", + "Unit": "%", + "Equation": "Equation 5.2, 5.8-5.10 in Chapter 5 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4C1and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:10.996Z", + "last_change_date": "2022-03-14T08:14:10.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16384, + "fields": { + "EF_ID": 614595, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.097Z", + "last_change_date": "2022-03-14T08:14:11.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16385, + "fields": { + "EF_ID": 614596, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "40 percent of textile are assumed to be synthetic (default). Expert judgement by the authors. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.179Z", + "last_change_date": "2022-03-14T08:14:11.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16386, + "fields": { + "EF_ID": 614597, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.272Z", + "last_change_date": "2022-03-14T08:14:11.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16387, + "fields": { + "EF_ID": 614598, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "85", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. This value is for wood products at the end of life. Typical dry matter content of wood at the time of harvest (that is for garden and park waste) is 40 percent. Expert judgement by the authors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.354Z", + "last_change_date": "2022-03-14T08:14:11.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16388, + "fields": { + "EF_ID": 614599, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.429Z", + "last_change_date": "2022-03-14T08:14:11.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16389, + "fields": { + "EF_ID": 614600, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.524Z", + "last_change_date": "2022-03-14T08:14:11.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16390, + "fields": { + "EF_ID": 614601, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "84", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.620Z", + "last_change_date": "2022-03-14T08:14:11.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16391, + "fields": { + "EF_ID": 614602, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Plastics", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.695Z", + "last_change_date": "2022-03-14T08:14:11.695Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16392, + "fields": { + "EF_ID": 614603, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Metal", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.792Z", + "last_change_date": "2022-03-14T08:14:11.792Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16393, + "fields": { + "EF_ID": 614604, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Glass", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.887Z", + "last_change_date": "2022-03-14T08:14:11.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16394, + "fields": { + "EF_ID": 614605, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Other, inert waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:11.962Z", + "last_change_date": "2022-03-14T08:14:11.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16395, + "fields": { + "EF_ID": 614606, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 42 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.061Z", + "last_change_date": "2022-03-14T08:14:12.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16396, + "fields": { + "EF_ID": 614607, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 25 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.145Z", + "last_change_date": "2022-03-14T08:14:12.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16397, + "fields": { + "EF_ID": 614608, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 20 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.237Z", + "last_change_date": "2022-03-14T08:14:12.237Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16398, + "fields": { + "EF_ID": 614609, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 46 - 54.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.329Z", + "last_change_date": "2022-03-14T08:14:12.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16399, + "fields": { + "EF_ID": 614610, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 45 - 55.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.404Z", + "last_change_date": "2022-03-14T08:14:12.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16400, + "fields": { + "EF_ID": 614611, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 54 - 90.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.496Z", + "last_change_date": "2022-03-14T08:14:12.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16401, + "fields": { + "EF_ID": 614612, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.579Z", + "last_change_date": "2022-03-14T08:14:12.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16402, + "fields": { + "EF_ID": 614613, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Plastics", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 67 - 85.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.654Z", + "last_change_date": "2022-03-14T08:14:12.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16403, + "fields": { + "EF_ID": 614614, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Other, inert waste", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 5.2 and 5.9 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0 - 5.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.729Z", + "last_change_date": "2022-03-14T08:14:12.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16404, + "fields": { + "EF_ID": 614615, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction of each MSW component in % of total carbon", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 5.2 and 5.10 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0 - 5.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.804Z", + "last_change_date": "2022-03-14T08:14:12.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16405, + "fields": { + "EF_ID": 614616, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction of each MSW component in % of total carbon", + "Technology_Practices": "Textile", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 5.2 and 5.10 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.887Z", + "last_change_date": "2022-03-14T08:14:12.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16406, + "fields": { + "EF_ID": 614617, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction of each MSW component in % of total carbon", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 5.2 and 5.10 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:12.962Z", + "last_change_date": "2022-03-14T08:14:12.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16407, + "fields": { + "EF_ID": 614618, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction of each MSW component in % of total carbon", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 5.2 and 5.10 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.057Z", + "last_change_date": "2022-03-14T08:14:13.057Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16408, + "fields": { + "EF_ID": 614619, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction of each MSW component in % of total carbon", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 5.2 and 5.10 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.145Z", + "last_change_date": "2022-03-14T08:14:13.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16409, + "fields": { + "EF_ID": 614620, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction of each MSW component in % of total carbon", + "Technology_Practices": "Plastics", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.10 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 95 - 100.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.220Z", + "last_change_date": "2022-03-14T08:14:13.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16410, + "fields": { + "EF_ID": 614621, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction of each MSW component in % of total carbon", + "Technology_Practices": "Other, inert waste", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.10 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 50 - 100.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.295Z", + "last_change_date": "2022-03-14T08:14:13.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16411, + "fields": { + "EF_ID": 614622, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 36 - 45.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.362Z", + "last_change_date": "2022-03-14T08:14:13.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16412, + "fields": { + "EF_ID": 614623, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 20 - 40.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.429Z", + "last_change_date": "2022-03-14T08:14:13.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16413, + "fields": { + "EF_ID": 614624, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 8 - 20.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.495Z", + "last_change_date": "2022-03-14T08:14:13.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16414, + "fields": { + "EF_ID": 614625, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 39 - 46.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.585Z", + "last_change_date": "2022-03-14T08:14:13.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16415, + "fields": { + "EF_ID": 614626, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 18 - 22.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.679Z", + "last_change_date": "2022-03-14T08:14:13.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16416, + "fields": { + "EF_ID": 614627, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 18 - 32.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.754Z", + "last_change_date": "2022-03-14T08:14:13.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16417, + "fields": { + "EF_ID": 614628, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.829Z", + "last_change_date": "2022-03-14T08:14:13.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16418, + "fields": { + "EF_ID": 614629, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 40 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.912Z", + "last_change_date": "2022-03-14T08:14:13.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16419, + "fields": { + "EF_ID": 614630, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 25 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:13.979Z", + "last_change_date": "2022-03-14T08:14:13.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16420, + "fields": { + "EF_ID": 614631, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 20 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.095Z", + "last_change_date": "2022-03-14T08:14:14.095Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16421, + "fields": { + "EF_ID": 614632, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 46 - 54.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.198Z", + "last_change_date": "2022-03-14T08:14:14.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16422, + "fields": { + "EF_ID": 614633, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 45 - 55.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.279Z", + "last_change_date": "2022-03-14T08:14:14.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16423, + "fields": { + "EF_ID": 614634, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 44 - 80.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.354Z", + "last_change_date": "2022-03-14T08:14:14.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16424, + "fields": { + "EF_ID": 614635, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of wet waste", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 3", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural rubbers would likely not degrade under anaerobic condition at SWDS.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.420Z", + "last_change_date": "2022-03-14T08:14:14.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16425, + "fields": { + "EF_ID": 614636, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of dry waste", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 4", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 36 - 45.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.487Z", + "last_change_date": "2022-03-14T08:14:14.487Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16426, + "fields": { + "EF_ID": 614637, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of dry waste", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 5", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 20 - 40.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.554Z", + "last_change_date": "2022-03-14T08:14:14.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16427, + "fields": { + "EF_ID": 614638, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of dry waste", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 6", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 8 - 20.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.620Z", + "last_change_date": "2022-03-14T08:14:14.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16428, + "fields": { + "EF_ID": 614639, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of dry waste", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 7", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 39 - 46.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.717Z", + "last_change_date": "2022-03-14T08:14:14.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16429, + "fields": { + "EF_ID": 614640, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of dry waste", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 8", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 18 - 22.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.812Z", + "last_change_date": "2022-03-14T08:14:14.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16430, + "fields": { + "EF_ID": 614641, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of dry waste", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 9", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 18 - 32.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.887Z", + "last_change_date": "2022-03-14T08:14:14.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16431, + "fields": { + "EF_ID": 614642, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW component in % of dry waste", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.2 in Chapter 10", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p.2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:14.962Z", + "last_change_date": "2022-03-14T08:14:14.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16432, + "fields": { + "EF_ID": 614643, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.037Z", + "last_change_date": "2022-03-14T08:14:15.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16433, + "fields": { + "EF_ID": 614644, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2001", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.112Z", + "last_change_date": "2022-03-14T08:14:15.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16434, + "fields": { + "EF_ID": 614645, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Petroleum products, Solvents, Plastics", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2002", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.211Z", + "last_change_date": "2022-03-14T08:14:15.211Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16435, + "fields": { + "EF_ID": 614646, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2003", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.304Z", + "last_change_date": "2022-03-14T08:14:15.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16436, + "fields": { + "EF_ID": 614647, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2004", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.379Z", + "last_change_date": "2022-03-14T08:14:15.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16437, + "fields": { + "EF_ID": 614648, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2005", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. These values can be used also as defaults for total waste from manufacturing industries, when data on waste production by industry type are not available. Waste from mining and quarrying should be excluded from the calculations as the amounts can be large and the DOC and fossil carbon contents are likely to be negligible.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.470Z", + "last_change_date": "2022-03-14T08:14:15.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16438, + "fields": { + "EF_ID": 614649, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5, Vol.5 of 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.545Z", + "last_change_date": "2022-03-14T08:14:15.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16439, + "fields": { + "EF_ID": 614650, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5, Vol.5 of 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.639Z", + "last_change_date": "2022-03-14T08:14:15.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16440, + "fields": { + "EF_ID": 614651, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Wood and wood products", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5, Vol.5 of 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.720Z", + "last_change_date": "2022-03-14T08:14:15.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16441, + "fields": { + "EF_ID": 614652, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5, Vol.5 of 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.804Z", + "last_change_date": "2022-03-14T08:14:15.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16442, + "fields": { + "EF_ID": 614653, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Petroleum products, Solvents, Plastics", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5, Vol.5 of 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.887Z", + "last_change_date": "2022-03-14T08:14:15.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16443, + "fields": { + "EF_ID": 614654, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5, Vol.5 of 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:15.970Z", + "last_change_date": "2022-03-14T08:14:15.970Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16444, + "fields": { + "EF_ID": 614655, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5, Vol.5 of 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.074Z", + "last_change_date": "2022-03-14T08:14:16.074Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16445, + "fields": { + "EF_ID": 614656, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Equation 5.1 in Chapter 5, Vol.5 of 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. These values can be used also as defaults for total waste from manufacturing industries, when data on waste production by industry type are not available. Waste from mining and quarrying should be excluded from the calculations as the amounts can be large and the DOC and fossil carbon contents are likely to be negligible.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.154Z", + "last_change_date": "2022-03-14T08:14:16.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16446, + "fields": { + "EF_ID": 614657, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.237Z", + "last_change_date": "2022-03-14T08:14:16.237Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16447, + "fields": { + "EF_ID": 614658, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.320Z", + "last_change_date": "2022-03-14T08:14:16.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16448, + "fields": { + "EF_ID": 614659, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Wood and wood products", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.451Z", + "last_change_date": "2022-03-14T08:14:16.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16449, + "fields": { + "EF_ID": 614660, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.537Z", + "last_change_date": "2022-03-14T08:14:16.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16450, + "fields": { + "EF_ID": 614661, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Petroleum products, Solvents, Plastics", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.612Z", + "last_change_date": "2022-03-14T08:14:16.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16451, + "fields": { + "EF_ID": 614662, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.719Z", + "last_change_date": "2022-03-14T08:14:16.719Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16452, + "fields": { + "EF_ID": 614663, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.812Z", + "last_change_date": "2022-03-14T08:14:16.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16453, + "fields": { + "EF_ID": 614664, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.887Z", + "last_change_date": "2022-03-14T08:14:16.887Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16454, + "fields": { + "EF_ID": 614665, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in hazardous waste", + "Technology_Practices": "hazardous waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "", + "Unit": "%", + "Equation": "Equation 5.1 in page 5.9 in page 5.19 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.6, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 5 - 50. The higher fossil carbon value is for waste with lower water content. When no data on the water content are available, the mean value of the range should be used. The values should be applied only for total amounts of hazardous and clinical waste generated in the country. Major part of hazardous waste would be generated as sludge or liquid-like nature, as well as ash, cinder and slug which are dry nature.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:16.987Z", + "last_change_date": "2022-03-14T08:14:16.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16455, + "fields": { + "EF_ID": 614666, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in hazardous waste", + "Technology_Practices": "hazardous waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.6, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 10 - 90. The higher fossil carbon value is for waste with lower water content. When no data on the water content are available, the mean value of the range should be used. The values should be applied only for total amounts of hazardous and clinical waste generated in the country. Major part of hazardous waste would be generated as sludge or liquid-like nature, as well as ash, cinder and slug which are dry nature.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.070Z", + "last_change_date": "2022-03-14T08:14:17.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16456, + "fields": { + "EF_ID": 614667, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in clinical waste", + "Technology_Practices": "clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "%", + "Equation": "Equation 5.1 in page 5.9 in page 5.19 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.6, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of hazardous and clinical waste generated in the country.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.145Z", + "last_change_date": "2022-03-14T08:14:17.145Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16457, + "fields": { + "EF_ID": 614668, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in clinical waste", + "Technology_Practices": "clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.1 in page 5.9 in page 5.19 of Vol.5, 2006 Guidelines. Equation 5.11 in Chapter 5 of GPG2001", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.6, p.2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of hazardous and clinical waste generated in the country.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.220Z", + "last_change_date": "2022-03-14T08:14:17.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16458, + "fields": { + "EF_ID": 614669, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in clinical waste", + "Technology_Practices": "clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.6, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of hazardous and clinical waste generated in the country.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.314Z", + "last_change_date": "2022-03-14T08:14:17.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16459, + "fields": { + "EF_ID": 614683, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.55, incinerated = 0.26, composted = 0.01, and other MSW management unspecified = 0.18", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.395Z", + "last_change_date": "2022-03-14T08:14:17.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16460, + "fields": { + "EF_ID": 614684, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Central Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.74, composted = 0.05, and other MSW management unspecified = 0.21", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.470Z", + "last_change_date": "2022-03-14T08:14:17.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16461, + "fields": { + "EF_ID": 614685, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-East Asia", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.59, incinerated = 0.09, composted = 0.05, and other MSW management unspecified = 0.27", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.545Z", + "last_change_date": "2022-03-14T08:14:17.545Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16462, + "fields": { + "EF_ID": 614687, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.90, incinerated = 0.04, composted = 0.01, and other MSW management unspecified = 0.02", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.641Z", + "last_change_date": "2022-03-14T08:14:17.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16463, + "fields": { + "EF_ID": 614688, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.47, incinerated =0.24, composted = 0.08, and other MSW management unspecified = 0.20", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.720Z", + "last_change_date": "2022-03-14T08:14:17.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16464, + "fields": { + "EF_ID": 614689, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.85, incinerated =0.05, composted = 0.05, and other MSW management unspecified = 0.05", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.795Z", + "last_change_date": "2022-03-14T08:14:17.795Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16465, + "fields": { + "EF_ID": 614690, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.47, incinerated =0.22, composted = 0.15, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:17.892Z", + "last_change_date": "2022-03-14T08:14:17.892Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16466, + "fields": { + "EF_ID": 614691, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Caribbean", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.83, incinerated =0.02, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.004Z", + "last_change_date": "2022-03-14T08:14:18.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16467, + "fields": { + "EF_ID": 614692, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Central America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.50, and other MSW management unspecified = 0.50", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.079Z", + "last_change_date": "2022-03-14T08:14:18.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16468, + "fields": { + "EF_ID": 614693, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.54, incinerate =0.01, composted = 0.003, and other MSW management unspecified = 0.46", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.177Z", + "last_change_date": "2022-03-14T08:14:18.177Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16469, + "fields": { + "EF_ID": 614694, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.58, incinerate =0.06, composted = 0.06, and other MSW management unspecified = 0.29", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.262Z", + "last_change_date": "2022-03-14T08:14:18.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16470, + "fields": { + "EF_ID": 614696, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 26.2, paper and cardboard = 18.8, wood = 3.5, textiles = 3.5, rubber and leather = 1.0, plastics = 14.3, metal = 2.7, glass (and pottery and china) = 3.1, other = 7.4", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.345Z", + "last_change_date": "2022-03-14T08:14:18.345Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16471, + "fields": { + "EF_ID": 614697, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Central Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 40.3, paper and cardboard = 11.3 wood = 7.9, textiles = 2.5, rubber and leather = 0.8, plastics = 6.4, metal = 3.8, glass (and pottery and china) = 3.5, other = 21.9", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.453Z", + "last_change_date": "2022-03-14T08:14:18.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16472, + "fields": { + "EF_ID": 614698, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South-Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.5, paper and cardboard = 12.9, wood = 9.9, textiles = 2.7, rubber and leather = 0.9, plastics = 7.2, metal = 3.3, glass (and pottery and china) = 4.0, other = 16.3", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.571Z", + "last_change_date": "2022-03-14T08:14:18.571Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16473, + "fields": { + "EF_ID": 614699, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Asia & Middle East", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 41.1, paper and cardboard = 18.0, wood = 9.8, textiles = 2.9, rubber and leather = 0.6, plastics = 6.3, metal = 1.3, glass (and pottery and china) = 2.2, other = 5.4", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.671Z", + "last_change_date": "2022-03-14T08:14:18.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16474, + "fields": { + "EF_ID": 614700, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 53.9, paper and cardboard = 7.7, wood = 7.0, textiles = 1.7, rubber and leather = 1.1, plastics = 5.5, metal = 1.8, glass (and pottery and china) = 2.3, other = 11.6", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.780Z", + "last_change_date": "2022-03-14T08:14:18.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16475, + "fields": { + "EF_ID": 614701, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Middle Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.4, paper and cardboard = 16.8, wood = 6.5, textiles = 2.5, rubber and leather = --, plastics = 4.5, metal = 3.5, glass (and pottery and china) = 2.0, other = 1.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.881Z", + "last_change_date": "2022-03-14T08:14:18.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16476, + "fields": { + "EF_ID": 614702, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 51.1, paper and cardboard = 16.5, wood = 2, textiles = 2.5, rubber and leather = --, plastics = 4.5, metal = 3.5, glass (and pottery and china) = 2, other = 1.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:18.982Z", + "last_change_date": "2022-03-14T08:14:18.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16477, + "fields": { + "EF_ID": 614703, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 23, paper and cardboard = 25, wood = 15, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.083Z", + "last_change_date": "2022-03-14T08:14:19.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16478, + "fields": { + "EF_ID": 614704, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 40.4, paper and cardboard = 9.8, wood = 4.4, textiles = 1.0, rubber and leather = --, plastics = 3.0, metal = 1.0, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.184Z", + "last_change_date": "2022-03-14T08:14:19.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16479, + "fields": { + "EF_ID": 614705, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 30.1, paper and cardboard = 21.8, wood = 7.5, textiles = 4.7, rubber and leather = 1.4, plastics = 6.2, metal = 3.6, glass (and pottery and china) = 10.0, other = 14.6", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.284Z", + "last_change_date": "2022-03-14T08:14:19.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16480, + "fields": { + "EF_ID": 614706, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Northern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 23.8, paper and cardboard = 30.6, wood = 10.0, textiles = 2.0, rubber and leather = --, plastics = 13.0, metal = 7.0, glass (and pottery and china) = 8.0, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.385Z", + "last_change_date": "2022-03-14T08:14:19.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16481, + "fields": { + "EF_ID": 614707, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Southern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 36.9, paper and cardboard = 17.0, wood = 10.6, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.486Z", + "last_change_date": "2022-03-14T08:14:19.486Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16482, + "fields": { + "EF_ID": 614708, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 24.2, paper and cardboard = 27.5, wood = 11.0, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.586Z", + "last_change_date": "2022-03-14T08:14:19.586Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16483, + "fields": { + "EF_ID": 614709, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania: Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 36.0, paper and cardboard = 30.0, wood = 24.0, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.686Z", + "last_change_date": "2022-03-14T08:14:19.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16484, + "fields": { + "EF_ID": 614710, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania: except for Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 67.5, paper and cardboard = 6.0, wood = 2.5, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.804Z", + "last_change_date": "2022-03-14T08:14:19.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16485, + "fields": { + "EF_ID": 614711, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Caribbean", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 46.9, paper and cardboard = 17.0, wood = 2.4, textiles = 5.1, rubber and leather = 1.9, plastics = 9.9, metal = 5.0, glass (and pottery and china) = 5.7, other = 3.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:19.921Z", + "last_change_date": "2022-03-14T08:14:19.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16486, + "fields": { + "EF_ID": 614712, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Central America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.8, paper and cardboard = 13.7, wood = 13.5, textiles = 2.6, rubber and leather = 1.8, plastics = 6.7, metal = 2.6, glass (and pottery and china) = 3.7, other = 12.3", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.030Z", + "last_change_date": "2022-03-14T08:14:20.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16487, + "fields": { + "EF_ID": 614713, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 44.9, paper and cardboard = 17.1, wood = 4.7, textiles = 2.6, rubber and leather = 0.7, plastics = 10.8, metal = 2.9, glass (and pottery and china) = 3.3, other = 13.0", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.139Z", + "last_change_date": "2022-03-14T08:14:20.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16488, + "fields": { + "EF_ID": 614714, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 33.9, paper and cardboard = 23.2, wood = 6.2, textiles = 3.9, rubber and leather = 1.4, plastics = 8.5, metal = 4.6, glass (and pottery and china) = 6.5, other = 9.8", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.239Z", + "last_change_date": "2022-03-14T08:14:20.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16489, + "fields": { + "EF_ID": 614715, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.340Z", + "last_change_date": "2022-03-14T08:14:20.340Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16490, + "fields": { + "EF_ID": 614716, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2001", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. 40 percent of textile are assumed to be synthetic (default). Expert judgement by the authors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.421Z", + "last_change_date": "2022-03-14T08:14:20.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16491, + "fields": { + "EF_ID": 614717, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2002", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.525Z", + "last_change_date": "2022-03-14T08:14:20.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16492, + "fields": { + "EF_ID": 614718, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "85", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2003", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. This value is for wood products at the end of life. Typical dry matter content of wood at the time of harvest (that is for garden and park waste) is 40 percent. Expert judgement by the authors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.613Z", + "last_change_date": "2022-03-14T08:14:20.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16493, + "fields": { + "EF_ID": 614719, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2004", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.710Z", + "last_change_date": "2022-03-14T08:14:20.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16494, + "fields": { + "EF_ID": 614720, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2005", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.788Z", + "last_change_date": "2022-03-14T08:14:20.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16495, + "fields": { + "EF_ID": 614721, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "84", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2006", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.871Z", + "last_change_date": "2022-03-14T08:14:20.871Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16496, + "fields": { + "EF_ID": 614722, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Plastics", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2007", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:20.978Z", + "last_change_date": "2022-03-14T08:14:20.978Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16497, + "fields": { + "EF_ID": 614723, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Metal", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2008", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.055Z", + "last_change_date": "2022-03-14T08:14:21.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16498, + "fields": { + "EF_ID": 614724, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Glass", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2009", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines. Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.138Z", + "last_change_date": "2022-03-14T08:14:21.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16499, + "fields": { + "EF_ID": 614725, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Other, inert waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8 in Chapter 5 of Vol. 5 2006 Guidelines. Equation 5. 12 and 5.13 in Chapter 5 of GPG2010", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.4, p. 2.14 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.246Z", + "last_change_date": "2022-03-14T08:14:21.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16500, + "fields": { + "EF_ID": 614726, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.338Z", + "last_change_date": "2022-03-14T08:14:21.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16501, + "fields": { + "EF_ID": 614727, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.413Z", + "last_change_date": "2022-03-14T08:14:21.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16502, + "fields": { + "EF_ID": 614728, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Wood and wood products", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.514Z", + "last_change_date": "2022-03-14T08:14:21.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16503, + "fields": { + "EF_ID": 614729, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.604Z", + "last_change_date": "2022-03-14T08:14:21.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16504, + "fields": { + "EF_ID": 614730, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Petroleum products, Solvents, Plastics", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.680Z", + "last_change_date": "2022-03-14T08:14:21.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16505, + "fields": { + "EF_ID": 614731, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.773Z", + "last_change_date": "2022-03-14T08:14:21.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16506, + "fields": { + "EF_ID": 614732, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.854Z", + "last_change_date": "2022-03-14T08:14:21.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16507, + "fields": { + "EF_ID": 614733, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Category code: 4C", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:21.922Z", + "last_change_date": "2022-03-14T08:14:21.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16508, + "fields": { + "EF_ID": 614734, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in clinical waste", + "Technology_Practices": "clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Equation 5.5 and 5.6 in Chapter 5 of Vol. 5, 2006 Guidelines, Equation 5.12 and 5.13 in Chapter 5 of GPG2000.", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of hazardous and clinical waste generated in the country. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.016Z", + "last_change_date": "2022-03-14T08:14:22.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16509, + "fields": { + "EF_ID": 614735, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in hazardous waste", + "Technology_Practices": "hazardous waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "", + "Unit": "%", + "Equation": "Equation 3.7 in page 3.13, Equation 5.1 and 5.2 in page 5.7, Equation 5.9 in page 5.19, of Vol. 5, 2006 Guidelines,", + "IPCC_Worksheet": "4C1 and 4C2 in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by authors of Good Practice Guidance and Uncertainties Management (IPCC 2000)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 10 - 90. The higher fossil carbon value is for waste with lower water content. When no data on the water content are available, the mean value of the range should be used. The values should be applied only for total amounts of hazardous and clinical waste generated in the country. Major part of hazardous waste would be generated as sludge or liquid-like nature, as well as ash, cinder and slug which are dry nature. An important distinction needs to be made between dry weight and wet weight of waste, because the water content of waste can be substantial. Therefore, the dry matter content of the waste or waste fraction is an important parameter to be determined. The weight of waste incinerated should be converted from wet weight to dry weight, if the related emission factors refer to dry weight. See also Section 5.3.3 in Chapter 5 of Vol.5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.095Z", + "last_change_date": "2022-03-14T08:14:22.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16510, + "fields": { + "EF_ID": 614736, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content in clinical waste", + "Technology_Practices": "Clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.7 in p.3.13", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.6, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of hazardous and clinical waste generated in the country.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:22.163Z", + "last_change_date": "2022-03-14T08:14:22.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16511, + "fields": { + "EF_ID": 614737, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of dry waste", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 40 - 50. The range refers to the minimum and maximum data reported by Dehoust et al., 2002; Gangdonggu, 1997; Guendehou, 2004; JESC, 2001; Jager and Blok, 1993; Würdinger et al., 1997; and Zeschmar-Lahl, 2002. References can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.260Z", + "last_change_date": "2022-03-14T08:14:22.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16512, + "fields": { + "EF_ID": 614738, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of dry waste", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 25 - 50. The range refers to the minimum and maximum data reported by Dehoust et al., 2002; Gangdonggu, 1997; Guendehou, 2004; JESC, 2001; Jager and Blok, 1993; Würdinger et al., 1997; and Zeschmar-Lahl, 2002. References can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.338Z", + "last_change_date": "2022-03-14T08:14:22.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16513, + "fields": { + "EF_ID": 614739, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of dry waste", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 20 - 50. The range refers to the minimum and maximum data reported by Dehoust et al., 2002; Gangdonggu, 1997; Guendehou, 2004; JESC, 2001; Jager and Blok, 1993; Würdinger et al., 1997; and Zeschmar-Lahl, 2002. References can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.413Z", + "last_change_date": "2022-03-14T08:14:22.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16514, + "fields": { + "EF_ID": 614740, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of dry waste", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 46 - 54. The range refers to the minimum and maximum data reported by Dehoust et al., 2002; Gangdonggu, 1997; Guendehou, 2004; JESC, 2001; Jager and Blok, 1993; Würdinger et al., 1997; and Zeschmar-Lahl, 2002. References can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.480Z", + "last_change_date": "2022-03-14T08:14:22.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16515, + "fields": { + "EF_ID": 614741, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of dry waste", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 45 - 55. The range refers to the minimum and maximum data reported by Dehoust et al., 2002; Gangdonggu, 1997; Guendehou, 2004; JESC, 2001; Jager and Blok, 1993; Würdinger et al., 1997; and Zeschmar-Lahl, 2002.References can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.546Z", + "last_change_date": "2022-03-14T08:14:22.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16516, + "fields": { + "EF_ID": 614742, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of dry waste", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 44 - 80. The range refers to the minimum and maximum data reported by Dehoust et al., 2002; Gangdonggu, 1997; Guendehou, 2004; JESC, 2001; Jager and Blok, 1993; Würdinger et al., 1997; and Zeschmar-Lahl, 2002. References can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.654Z", + "last_change_date": "2022-03-14T08:14:22.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16517, + "fields": { + "EF_ID": 614743, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of dry waste", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on dry waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural rubbers would likely not degrade under anaerobic condition at SWDS (Tsuchii et al., 1985; Rose and Steinbüchel, 2005). References can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.729Z", + "last_change_date": "2022-03-14T08:14:22.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16518, + "fields": { + "EF_ID": 614744, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of wet waste", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 36 - 45.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.805Z", + "last_change_date": "2022-03-14T08:14:22.805Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16519, + "fields": { + "EF_ID": 614745, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of wet waste", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 20 - 40.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.888Z", + "last_change_date": "2022-03-14T08:14:22.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16520, + "fields": { + "EF_ID": 614746, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of wet waste", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 8 - 20.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:22.971Z", + "last_change_date": "2022-03-14T08:14:22.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16521, + "fields": { + "EF_ID": 614747, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of wet waste", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 39 - 46.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:23.183Z", + "last_change_date": "2022-03-14T08:14:23.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16522, + "fields": { + "EF_ID": 614748, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of wet waste", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 18 - 22.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:23.271Z", + "last_change_date": "2022-03-14T08:14:23.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16523, + "fields": { + "EF_ID": 614749, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of wet waste", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 18 - 32.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:23.365Z", + "last_change_date": "2022-03-14T08:14:23.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16524, + "fields": { + "EF_ID": 614750, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) content of each MSW components in % of wet waste", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "IPCC Waste model, Equation 3.7, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Natural rubbers would likely not degrade under anaerobic condition at SWDS (Tsuchii et al., 1985; Rose and Steinbüchel, 2005). References can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:23.454Z", + "last_change_date": "2022-03-14T08:14:23.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16525, + "fields": { + "EF_ID": 614751, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.7 in p.3.14", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:23.520Z", + "last_change_date": "2022-03-14T08:14:23.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16526, + "fields": { + "EF_ID": 614752, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.7 in p.3.15", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:23.587Z", + "last_change_date": "2022-03-14T08:14:23.587Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16527, + "fields": { + "EF_ID": 614753, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) in industrial waste, by industry type", + "Technology_Practices": "Industry type: Wood and wood products", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.7 in p.3.16", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:23.654Z", + "last_change_date": "2022-03-14T08:14:23.654Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16528, + "fields": { + "EF_ID": 614754, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.7 in p.3.17", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:23.721Z", + "last_change_date": "2022-03-14T08:14:23.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16529, + "fields": { + "EF_ID": 614755, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.7 in p.3.18", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Natural rubbers would likely not degrade under anaerobic condition at SWDS (Tsuchii, et al., 1985; Rose and Steinbüchel, 2005. The full reference is given in Chapter 2, Volume 5 of 2006 IPCC Guidelines).", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:23.787Z", + "last_change_date": "2022-03-14T08:14:23.787Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16530, + "fields": { + "EF_ID": 614756, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.7 in p.3.19", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:23.885Z", + "last_change_date": "2022-03-14T08:14:23.885Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16531, + "fields": { + "EF_ID": 614757, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Degradable organic carbon (DOC) in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Category 4A:IPCC Waste model, Equation 3.7 in p.3.20", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. These values can be used also as defaults for total waste from manufacturing industries, when data on waste production by industry type are not available. Waste from mining and quarrying should be excluded from the calculations as the amounts can be large and the DOC and fossil carbon contents are likely to be negligible.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:23.962Z", + "last_change_date": "2022-03-14T08:14:23.962Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16532, + "fields": { + "EF_ID": 614758, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.2and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.037Z", + "last_change_date": "2022-03-14T08:14:24.037Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16533, + "fields": { + "EF_ID": 614759, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "40 percent of textile are assumed to be synthetic (default). Expert judgement by the authors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.120Z", + "last_change_date": "2022-03-14T08:14:24.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16534, + "fields": { + "EF_ID": 614760, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.197Z", + "last_change_date": "2022-03-14T08:14:24.197Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16535, + "fields": { + "EF_ID": 614761, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "85", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This value is for wood products at the end of life. Typical dry matter content of wood at the time of harvest (that is for garden and park waste) is 40 percent. Expert judgement by the authors.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.296Z", + "last_change_date": "2022-03-14T08:14:24.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16536, + "fields": { + "EF_ID": 614762, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.379Z", + "last_change_date": "2022-03-14T08:14:24.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16537, + "fields": { + "EF_ID": 614763, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.445Z", + "last_change_date": "2022-03-14T08:14:24.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16538, + "fields": { + "EF_ID": 614764, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "84", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.521Z", + "last_change_date": "2022-03-14T08:14:24.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16539, + "fields": { + "EF_ID": 614765, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Plastics", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.597Z", + "last_change_date": "2022-03-14T08:14:24.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16540, + "fields": { + "EF_ID": 614766, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Metal", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.689Z", + "last_change_date": "2022-03-14T08:14:24.689Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16541, + "fields": { + "EF_ID": 614767, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Glass", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Metal and glass contain some carbon of fossil origin. Combustion of significant amounts of glass or metal is not common.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.788Z", + "last_change_date": "2022-03-14T08:14:24.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16542, + "fields": { + "EF_ID": 614768, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Dry matter content of each MSW component in % of wet weight", + "Technology_Practices": "Other, inert waste", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "The moisture content given here applies to the specific waste types before they enter the collection and treatment. In samples taken from collected waste or from e.g., SWDS the moisture content of each waste type will vary by moisture of co-existing waste and weather during handling.", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.2 and 5.8, Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:24.872Z", + "last_change_date": "2022-03-14T08:14:24.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16543, + "fields": { + "EF_ID": 614769, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in clinical waste", + "Technology_Practices": "", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of hazardous and clinical waste generated in the country.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:24.955Z", + "last_change_date": "2022-03-14T08:14:24.955Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16544, + "fields": { + "EF_ID": 614770, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in hazardous waste", + "Technology_Practices": "", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 5 - 50. The higher fossil carbon value is for waste with lower water content. When no data on the water content are available, the mean value of the range should be used. The values should be applied only for total amounts of hazardous and clinical waste generated in the country. Major part of hazardous waste would be generated as sludge or liquid-like nature, as well as ash, cinder and slug which are dry nature.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:25.038Z", + "last_change_date": "2022-03-14T08:14:25.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16545, + "fields": { + "EF_ID": 614771, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:25.141Z", + "last_change_date": "2022-03-14T08:14:25.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16546, + "fields": { + "EF_ID": 614772, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:25.238Z", + "last_change_date": "2022-03-14T08:14:25.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16547, + "fields": { + "EF_ID": 614773, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Petroleum products, Solvents, Plastics", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:25.322Z", + "last_change_date": "2022-03-14T08:14:25.322Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16548, + "fields": { + "EF_ID": 614774, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:25.397Z", + "last_change_date": "2022-03-14T08:14:25.397Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16549, + "fields": { + "EF_ID": 614775, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:25.480Z", + "last_change_date": "2022-03-14T08:14:25.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16550, + "fields": { + "EF_ID": 614776, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. These values can be used also as defaults for total waste from manufacturing industries, when data on waste production by industry type are not available. Waste from mining and quarrying should be excluded from the calculations as the amounts can be large and the DOC and fossil carbon contents are likely to be negligible.", + "Other_Comments": "", + "Data_Provider": "IPCC (001)", + "Link": "", + "creation_date": "2022-03-14T08:14:25.563Z", + "last_change_date": "2022-03-14T08:14:25.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16551, + "fields": { + "EF_ID": 614777, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:25.670Z", + "last_change_date": "2022-03-14T08:14:25.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16552, + "fields": { + "EF_ID": 614778, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:25.755Z", + "last_change_date": "2022-03-14T08:14:25.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16553, + "fields": { + "EF_ID": 614779, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Wood and wood products", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:25.846Z", + "last_change_date": "2022-03-14T08:14:25.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16554, + "fields": { + "EF_ID": 614780, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:25.922Z", + "last_change_date": "2022-03-14T08:14:25.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16555, + "fields": { + "EF_ID": 614781, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Petroleum products, Solvents, Plastics", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:25.996Z", + "last_change_date": "2022-03-14T08:14:25.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16556, + "fields": { + "EF_ID": 614782, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.072Z", + "last_change_date": "2022-03-14T08:14:26.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16557, + "fields": { + "EF_ID": 614783, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.164Z", + "last_change_date": "2022-03-14T08:14:26.164Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16558, + "fields": { + "EF_ID": 614784, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. These values can be used also as defaults for total waste from manufacturing industries, when data on waste production by industry type are not available. Waste from mining and quarrying should be excluded from the calculations as the amounts can be large and the DOC and fossil carbon contents are likely to be negligible.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.255Z", + "last_change_date": "2022-03-14T08:14:26.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16559, + "fields": { + "EF_ID": 614785, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.330Z", + "last_change_date": "2022-03-14T08:14:26.330Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16560, + "fields": { + "EF_ID": 614786, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Textile", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.405Z", + "last_change_date": "2022-03-14T08:14:26.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16561, + "fields": { + "EF_ID": 614787, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Wood and wood products", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.480Z", + "last_change_date": "2022-03-14T08:14:26.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16562, + "fields": { + "EF_ID": 614788, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Pulp and paper (other then sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.583Z", + "last_change_date": "2022-03-14T08:14:26.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16563, + "fields": { + "EF_ID": 614789, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Petroleum products, Solvents, Plastics", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.680Z", + "last_change_date": "2022-03-14T08:14:26.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16564, + "fields": { + "EF_ID": 614790, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Rubber", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.755Z", + "last_change_date": "2022-03-14T08:14:26.755Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16565, + "fields": { + "EF_ID": 614791, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Construction and demolition", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.905Z", + "last_change_date": "2022-03-14T08:14:26.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16566, + "fields": { + "EF_ID": 614792, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Other", + "Parameter_Conditions": "excluding food, beverages and tobacco, textile, wood and wood products, pulp and paper, petroleum products, solvents, plastics, rubber, construction and demolition. in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "4A:IPCC Waste model in 2006 Guidelines", + "Data_Source": "Table 2.5, p. 2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:26.980Z", + "last_change_date": "2022-03-14T08:14:26.980Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16567, + "fields": { + "EF_ID": 614793, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0 - 5.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.046Z", + "last_change_date": "2022-03-14T08:14:27.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16568, + "fields": { + "EF_ID": 614794, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon", + "Technology_Practices": "Textile", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.135Z", + "last_change_date": "2022-03-14T08:14:27.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16569, + "fields": { + "EF_ID": 614795, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.222Z", + "last_change_date": "2022-03-14T08:14:27.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16570, + "fields": { + "EF_ID": 614796, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.297Z", + "last_change_date": "2022-03-14T08:14:27.297Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16571, + "fields": { + "EF_ID": 614797, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.372Z", + "last_change_date": "2022-03-14T08:14:27.372Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16572, + "fields": { + "EF_ID": 614798, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon", + "Technology_Practices": "Plastics", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 95 - 100.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.447Z", + "last_change_date": "2022-03-14T08:14:27.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16573, + "fields": { + "EF_ID": 614799, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon", + "Technology_Practices": "Other, inert waste", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 50 - 100.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.521Z", + "last_change_date": "2022-03-14T08:14:27.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16574, + "fields": { + "EF_ID": 614800, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 26.2, paper and cardboard = 18.8, wood = 3.5, textiles = 3.5, rubber and leather = 1.0, plastics = 14.3, metal = 2.7, glass (and pottery and china) = 3.1, other = 7.4", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.597Z", + "last_change_date": "2022-03-14T08:14:27.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16575, + "fields": { + "EF_ID": 614801, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "South-Central Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 40.3, paper and cardboard = 11.3 wood = 7.9, textiles = 2.5, rubber and leather = 0.8, plastics = 6.4, metal = 3.8, glass (and pottery and china) = 3.5, other = 21.9", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.705Z", + "last_change_date": "2022-03-14T08:14:27.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16576, + "fields": { + "EF_ID": 614802, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "South-Eastern Asia", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.5, paper and cardboard = 12.9, wood = 9.9, textiles = 2.7, rubber and leather = 0.9, plastics = 7.2, metal = 3.3, glass (and pottery and china) = 4.0, other = 16.3", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.823Z", + "last_change_date": "2022-03-14T08:14:27.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16577, + "fields": { + "EF_ID": 614803, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Western Asia & Middle East", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 41.1, paper and cardboard = 18.0, wood = 9.8, textiles = 2.9, rubber and leather = 0.6, plastics = 6.3, metal = 1.3, glass (and pottery and china) = 2.2, other = 5.4", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:27.940Z", + "last_change_date": "2022-03-14T08:14:27.940Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16578, + "fields": { + "EF_ID": 614804, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Eastern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 53.9, paper and cardboard = 7.7, wood = 7.0, textiles = 1.7, rubber and leather = 1.1, plastics = 5.5, metal = 1.8, glass (and pottery and china) = 2.3, other = 11.6", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:28.040Z", + "last_change_date": "2022-03-14T08:14:28.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16579, + "fields": { + "EF_ID": 614805, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Middle Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.4, paper and cardboard = 16.8, wood = 6.5, textiles = 2.5, rubber and leather = --, plastics = 4.5, metal = 3.5, glass (and pottery and china) = 2.0, other = 1.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:28.208Z", + "last_change_date": "2022-03-14T08:14:28.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16580, + "fields": { + "EF_ID": 614806, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Northern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 51.1, paper and cardboard = 16.5, wood = 2, textiles = 2.5, rubber and leather = --, plastics = 4.5, metal = 3.5, glass (and pottery and china) = 2, other = 1.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:28.325Z", + "last_change_date": "2022-03-14T08:14:28.325Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16581, + "fields": { + "EF_ID": 614807, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Southern Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 23, paper and cardboard = 25, wood = 15, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:28.442Z", + "last_change_date": "2022-03-14T08:14:28.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16582, + "fields": { + "EF_ID": 614808, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Western Africa", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 40.4, paper and cardboard = 9.8, wood = 4.4, textiles = 1.0, rubber and leather = --, plastics = 3.0, metal = 1.0, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:28.551Z", + "last_change_date": "2022-03-14T08:14:28.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16583, + "fields": { + "EF_ID": 614809, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 30.1, paper and cardboard = 21.8, wood = 7.5, textiles = 4.7, rubber and leather = 1.4, plastics = 6.2, metal = 3.6, glass (and pottery and china) = 10.0, other = 14.6", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:28.660Z", + "last_change_date": "2022-03-14T08:14:28.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16584, + "fields": { + "EF_ID": 614810, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Northern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 23.8, paper and cardboard = 30.6, wood = 10.0, textiles = 2.0, rubber and leather = --, plastics = 13.0, metal = 7.0, glass (and pottery and china) = 8.0, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:28.769Z", + "last_change_date": "2022-03-14T08:14:28.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16585, + "fields": { + "EF_ID": 614811, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Southern Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 36.9, paper and cardboard = 17.0, wood = 10.6, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:28.895Z", + "last_change_date": "2022-03-14T08:14:28.895Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16586, + "fields": { + "EF_ID": 614812, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Western Europe", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 24.2, paper and cardboard = 27.5, wood = 11.0, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.003Z", + "last_change_date": "2022-03-14T08:14:29.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16587, + "fields": { + "EF_ID": 614813, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Oceania: Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 36.0, paper and cardboard = 30.0, wood = 24.0, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.112Z", + "last_change_date": "2022-03-14T08:14:29.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16588, + "fields": { + "EF_ID": 614814, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Oceania: except for Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 67.5, paper and cardboard = 6.0, wood = 2.5, textiles = --, rubber and leather = --, plastics = --, metal = --, glass (and pottery and china) = --, other = --", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.222Z", + "last_change_date": "2022-03-14T08:14:29.222Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16589, + "fields": { + "EF_ID": 614815, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Caribbean", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 46.9, paper and cardboard = 17.0, wood = 2.24, textiles = 5.1, rubber and leather = 1.9, plastics = 9.9, metal = 5.0, glass (and pottery and china) = 5.7, other = 3.5", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.331Z", + "last_change_date": "2022-03-14T08:14:29.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16590, + "fields": { + "EF_ID": 614816, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "Central America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 43.8, paper and cardboard = 13.7, wood = 13.5, textiles = 2.6, rubber and leather = 1.8, plastics = 6.7, metal = 2.6, glass (and pottery and china) = 3.7, other = 12.3", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.440Z", + "last_change_date": "2022-03-14T08:14:29.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16591, + "fields": { + "EF_ID": 614817, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "South America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 44.9, paper and cardboard = 17.1, wood = 4.7, textiles = 2.6, rubber and leather = 0.7, plastics = 10.8, metal = 2.9, glass (and pottery and china) = 3.3, other = 13.0", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.541Z", + "last_change_date": "2022-03-14T08:14:29.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16592, + "fields": { + "EF_ID": 614818, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW composition data by percent", + "Technology_Practices": "", + "Parameter_Conditions": "based on weight of wet waste", + "Regional_Conditions": "North America", + "Control_Technologies": "", + "Other_Properties": "Here, MSW composition includes; food waste, paper and cardboard, wood, textiles, rubber and leather, plastics, metal, glass (and pottery and china), and other (e.g., ash, dirt, dust, soil, electronic waste). Data are based on weight of wet waste of MSW without industrial waste at generation around year 2000.", + "Value": "food waste = 33.9, paper and cardboard = 23.2, wood = 6.2, textiles = 3.9, rubber and leather = 1.4, plastics = 8.5, metal = 4.6, glass (and pottery and china) = 6.5, other = 9.8", + "Unit": "%", + "Equation": "Category code:4A: Equation 3.7 in p.3.13; 4C: Equation 5.8-5.10 in p.5.17-19 of Vol.5 of 2006 Guidelines, Equation 5.4 in Chapter 5 of GPG2000, Equation 2 in page 6.9 in Vol.3 of 1996 Guidelines", + "IPCC_Worksheet": "4A:IPCC Waste model, 6-1A in 1996 Guidelines", + "Data_Source": "Table 2.3 p. 2.12 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2. The region-specific values are calculated from national, partly incomplete composition data. The percentages given may therefore not add up to 100%. Some regions may not have data for some waste types - blanks in the table represent missing data. Reference can be found in Chapter 2, Volume 5 of 2006 Guidelines.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In 2006 Guidelines, default data on waste composition in MSW are provided for the following waste types: (1) food waste, (2) garden (yard) and park waste, (3) paper and cardboard, (4) wood, (5) textiles, (6) nappies (disposable diapers), (7) rubber and leather, (8) plastics, (9) metal, (10) glass (and pottery and china), (11) other (e.g., ash, dirt, dust, soil, electronic waste). Here, default data for garden and park waste and nappies are not given. In the Tier 1 default method these waste fractions can be assumed to be zero, i.e., they can be assumed to be encompassed by the other waste types. Waste compositions, as well as the classifications used to collect data on waste composition in MSW vary widely in different regions and countries. For uncertainties, followings are suggested; +/-10% for countries with high quality data (e.g., regular sampling at representative SWDS). +/-30% for countries with country-specific data based on studies including periodic sampling. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.642Z", + "last_change_date": "2022-03-14T08:14:29.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16593, + "fields": { + "EF_ID": 614822, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.69, and other MSW management unspecified = 0.31", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.743Z", + "last_change_date": "2022-03-14T08:14:29.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16594, + "fields": { + "EF_ID": 614831, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW disposed to SWDS, incinerated, composted, and other MSW management unspecified. Data are assumed to be applicable for the year 2000.", + "Parameter_Conditions": "based on weignt of wet waste", + "Regional_Conditions": "Oceania", + "Control_Technologies": "", + "Other_Properties": "Other MSW management unspecified includes data on recycling for some countries", + "Value": "Fraction of MSW disposed to SWDS = 0.85, and other MSW management unspecified = 0.15", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "4A:IPCC Waste model, 4B, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.1, p.2.5 in 2006 IPCC Guidelines", + "Technical_Reference": "Expert judgement by lead authors of Chapter 2.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for Oceania are based only on data from Australia and New Zealand. For uncertainties of the fraction of MSW sent to SWDS, , the followings are suggested; +/-10% for countries with high quality data (e.g., weighing at all SWDS). +/-30% for countries collecting data on disposal at SWDS. For countries with poor quality data: more than a factor of two.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.822Z", + "last_change_date": "2022-03-14T08:14:29.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16595, + "fields": { + "EF_ID": 614845, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in clinical waste", + "Technology_Practices": "clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.1 in page 5.7 of Vol.5, 2006 Guidelines", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.6, p.2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of clinical waste generated in the country.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.918Z", + "last_change_date": "2022-03-14T08:14:29.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16596, + "fields": { + "EF_ID": 614846, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.6, p.2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:29.997Z", + "last_change_date": "2022-03-14T08:14:29.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16597, + "fields": { + "EF_ID": 614847, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Paper/cardboard", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 42 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.064Z", + "last_change_date": "2022-03-14T08:14:30.064Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16598, + "fields": { + "EF_ID": 614848, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Textile", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 25 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.139Z", + "last_change_date": "2022-03-14T08:14:30.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16599, + "fields": { + "EF_ID": 614849, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Food waste", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 20 - 50.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.206Z", + "last_change_date": "2022-03-14T08:14:30.206Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16600, + "fields": { + "EF_ID": 614850, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Wood", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 46 - 54.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.281Z", + "last_change_date": "2022-03-14T08:14:30.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16601, + "fields": { + "EF_ID": 614851, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Garden and Park waste", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 45 - 55.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.379Z", + "last_change_date": "2022-03-14T08:14:30.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16602, + "fields": { + "EF_ID": 614852, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Nappies", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 54 - 90.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.464Z", + "last_change_date": "2022-03-14T08:14:30.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16603, + "fields": { + "EF_ID": 614853, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Rubber and Leather", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.531Z", + "last_change_date": "2022-03-14T08:14:30.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16604, + "fields": { + "EF_ID": 614854, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Plastics", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 67 - 85.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.597Z", + "last_change_date": "2022-03-14T08:14:30.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16605, + "fields": { + "EF_ID": 614855, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content of each MSW components in % of dry weight", + "Technology_Practices": "Other, inert waste", + "Parameter_Conditions": "based on dry weight", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "Equation 5.1, 5.2, 5.10 in Vol.5 of 2006 Guidelines; Equation 5.11 in Chapter 5 of GPG2000", + "IPCC_Worksheet": "4C1 and 4C2 in the 2006 Guidelines; 6C in 1996 Guidelines", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "-0.2", + "Upper_Bound": "0.2", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0 - 3.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.672Z", + "last_change_date": "2022-03-14T08:14:30.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16606, + "fields": { + "EF_ID": 614856, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in clinical waste", + "Technology_Practices": "clinical waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.6, p.2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values should be applied only for total amounts of clinical waste generated in the country.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.747Z", + "last_change_date": "2022-03-14T08:14:30.747Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16607, + "fields": { + "EF_ID": 614857, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in hazardous waste", + "Technology_Practices": "hazardous waste", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.6, p.2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 10 - 90. The higher fossil carbon value is for waste with lower water content. When no data on the water content are available, the mean value of the range should be used. The values should be applied only for total amounts of hazardous and clinical waste generated in the country. Major part of hazardous waste would be generated as sludge or liquid-like nature, as well as ash, cinder and slug which are dry nature.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.822Z", + "last_change_date": "2022-03-14T08:14:30.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16608, + "fields": { + "EF_ID": 614858, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Water content in industrial waste, by industry type", + "Technology_Practices": "Industry type: Food, beverages and tobacco (other than sludge)", + "Parameter_Conditions": "in wet waste produced", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "%", + "Equation": "Category code: 4A, 4B, 4C", + "IPCC_Worksheet": "Category 4A:IPCC Waste model, 4C1 and 4C2 in 2006 Guidelines, 6-1A in 1996 Guidelines,", + "Data_Source": "Table 2.5, p.2.16 in 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 2", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The default values apply only for process waste from the industries, office and other similar waste are assumed to be included in MSW. Note that water contents of industrial wastes vary enormously, even within a single industry.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:30.933Z", + "last_change_date": "2022-03-14T08:14:30.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16609, + "fields": { + "EF_ID": 614859, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "untreated system", + "Parameter_Conditions": "Sea, river, lake discharge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-50%", + "Upper_Bound": ".+50%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF value can rang between 0 - 0.2. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Rivers with high organic loadings can turn anaerobic", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.014Z", + "last_change_date": "2022-03-14T08:14:31.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16610, + "fields": { + "EF_ID": 614860, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "untreated system", + "Parameter_Conditions": "Stagnant sewer", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-50%", + "Upper_Bound": ".+50%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF value can rang between 0.4 - 0.8. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Open and warm", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.089Z", + "last_change_date": "2022-03-14T08:14:31.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16611, + "fields": { + "EF_ID": 614861, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "untreated system", + "Parameter_Conditions": "Flowing sewer (open or closed)", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-50%", + "Upper_Bound": ".+50%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Fast moving, clean (Insiginifican amount of methane from pump stations, etc)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.172Z", + "last_change_date": "2022-03-14T08:14:31.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16612, + "fields": { + "EF_ID": 614862, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Centralized, aerobic treatment plant.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-10%", + "Upper_Bound": ".+10%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF value can rang between 0 - 0.1. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Must be well managed. Some methane can be emitted from settling basins and other pockets.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.276Z", + "last_change_date": "2022-03-14T08:14:31.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16613, + "fields": { + "EF_ID": 614863, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Centralized, aerobic treatment plant.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF value can rang between 0.2 - 0.4. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Not well managed. Overloaded.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.356Z", + "last_change_date": "2022-03-14T08:14:31.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16614, + "fields": { + "EF_ID": 614864, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Anaerobic digester for sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-10%", + "Upper_Bound": ".+10%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF value can rang between 0.8 - 1.0. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "methane recovery is not considered here.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.448Z", + "last_change_date": "2022-03-14T08:14:31.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16615, + "fields": { + "EF_ID": 614865, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Anaerobic reactor", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-10%", + "Upper_Bound": ".+10%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF value can rang between 0.8 - 1.0. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "methane recovery is not considered here.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.523Z", + "last_change_date": "2022-03-14T08:14:31.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16616, + "fields": { + "EF_ID": 614866, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Anaerobic shallow lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF value can rang between 0 - 0.3. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "depth less than 2 meters", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.619Z", + "last_change_date": "2022-03-14T08:14:31.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16617, + "fields": { + "EF_ID": 614867, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Anaerobic deep lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF value can rang between 0.8 - 1.0. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "depthe more than 2 meters", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.698Z", + "last_change_date": "2022-03-14T08:14:31.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16618, + "fields": { + "EF_ID": 614868, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Septic system", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Half of BOD settels in anaerobic tank", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.764Z", + "last_change_date": "2022-03-14T08:14:31.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16619, + "fields": { + "EF_ID": 614869, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Latrine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-50%", + "Upper_Bound": ".+50%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "THe MCF value can rang between 0.05 - 0.15. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Dry climate, grounwater table lower than latrine, small family (3-5persons)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.839Z", + "last_change_date": "2022-03-14T08:14:31.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16620, + "fields": { + "EF_ID": 614870, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Latrine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-50%", + "Upper_Bound": ".+50%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "THe MCF value can rang between 0.4 - 0.6. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Dry climate, groundwater table lower than latrine, communal (many users)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:31.937Z", + "last_change_date": "2022-03-14T08:14:31.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16621, + "fields": { + "EF_ID": 614871, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Latrine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-50%", + "Upper_Bound": ".+50%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "THe MCF value can rang between 0.7 - 1.0. The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Wet climate/flush water use, groundwater table higher than latrine.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.014Z", + "last_change_date": "2022-03-14T08:14:32.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16622, + "fields": { + "EF_ID": 614872, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 correction factor (MCF) for domestic wastewater", + "Technology_Practices": "treated system", + "Parameter_Conditions": "Latrine", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table6.3, p.6.13 in 2006 Guidelines", + "Technical_Reference": "Table6.3, p.6.13 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-50%", + "Upper_Bound": ".+50%", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The MCF is technology dependent. Thus the uncertainty range is also technology dependent. The uncertainty range should be determined by expert judgement, bearing in mind that MCF is a fraction and must be between 0 and 1. Suggested ranges are provided below. Untreated systems and latrines, ± 50% Lagoons, poorly managed treatment plants± 30% Centralized well managed plant, digester, reactor, ± 10%", + "Data_Provider_Comments": "Regular sediment removal for fertilizer.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.089Z", + "last_change_date": "2022-03-14T08:14:32.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16623, + "fields": { + "EF_ID": 614873, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 35 - 45. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.156Z", + "last_change_date": "2022-03-14T08:14:32.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16624, + "fields": { + "EF_ID": 614874, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 27 - 41. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.256Z", + "last_change_date": "2022-03-14T08:14:32.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16625, + "fields": { + "EF_ID": 614875, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Asia, Middle East, Latin America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 35 - 45. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.348Z", + "last_change_date": "2022-03-14T08:14:32.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16626, + "fields": { + "EF_ID": 614876, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 27 - 41. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.414Z", + "last_change_date": "2022-03-14T08:14:32.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16627, + "fields": { + "EF_ID": 614877, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Wast Bank and Gaza Strip (Palestine)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 32 - 68. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.489Z", + "last_change_date": "2022-03-14T08:14:32.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16628, + "fields": { + "EF_ID": 614878, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 40 - 45. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.564Z", + "last_change_date": "2022-03-14T08:14:32.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16629, + "fields": { + "EF_ID": 614879, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Feachem et al. (1983)", + "Other_Data_Quality": "Range can be 45 - 55. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.660Z", + "last_change_date": "2022-03-14T08:14:32.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16630, + "fields": { + "EF_ID": 614880, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Canada, Europe, Russia, Oceania", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 50 - 70. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.748Z", + "last_change_date": "2022-03-14T08:14:32.748Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16631, + "fields": { + "EF_ID": 614881, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 55 - 68. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.814Z", + "last_change_date": "2022-03-14T08:14:32.814Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16632, + "fields": { + "EF_ID": 614882, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 55 - 68. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.881Z", + "last_change_date": "2022-03-14T08:14:32.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16633, + "fields": { + "EF_ID": 614883, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 55 - 60. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:32.956Z", + "last_change_date": "2022-03-14T08:14:32.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16634, + "fields": { + "EF_ID": 614884, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Masotti (1996)", + "Other_Data_Quality": "Range can be 49 - 60. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.061Z", + "last_change_date": "2022-03-14T08:14:33.061Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16635, + "fields": { + "EF_ID": 614885, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 68 - 82. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.148Z", + "last_change_date": "2022-03-14T08:14:33.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16636, + "fields": { + "EF_ID": 614886, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Turkey", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn and Liles (1999)", + "Other_Data_Quality": "Range can be 27 - 50. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.240Z", + "last_change_date": "2022-03-14T08:14:33.240Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16637, + "fields": { + "EF_ID": 614887, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "BOD5", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "85", + "Unit": "g/person/day", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.4, p.6.14 in 2006 Guidelines", + "Technical_Reference": "Table 6.4, p.6.14 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Metcalf and Eddy (2003)", + "Other_Data_Quality": "Range can be 50 - 120. The Biochemical Oxygen Demand (BOD) concentration indicates only the amount of carbon that is aerobically biodegradable. The standard measurement for BOD is a 5-day test, denoted as BOD5.", + "Data_Provider_Comments": "A BOD value from a nearby comparable country can be used as default when country-specific data are not available.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.323Z", + "last_change_date": "2022-03-14T08:14:33.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16638, + "fields": { + "EF_ID": 614888, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.52, urban-high=0.10, urban-low=0.38", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.398Z", + "last_change_date": "2022-03-14T08:14:33.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16639, + "fields": { + "EF_ID": 614889, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.57, urban-high=0.09, urban-low=0.34", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.504Z", + "last_change_date": "2022-03-14T08:14:33.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16640, + "fields": { + "EF_ID": 614890, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.62, urban-high=0.08, urban-low=0.30", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.590Z", + "last_change_date": "2022-03-14T08:14:33.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16641, + "fields": { + "EF_ID": 614891, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.39, urban-high=0.12, urban-low=0.49", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.665Z", + "last_change_date": "2022-03-14T08:14:33.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16642, + "fields": { + "EF_ID": 614892, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.59, urban-high=0.12, urban-low=0.29", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.740Z", + "last_change_date": "2022-03-14T08:14:33.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16643, + "fields": { + "EF_ID": 614893, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.71, urban-high=0.06, urban-low=0.23", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.806Z", + "last_change_date": "2022-03-14T08:14:33.806Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16644, + "fields": { + "EF_ID": 614894, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.54, urban-high=0.12, urban-low=0.34", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.907Z", + "last_change_date": "2022-03-14T08:14:33.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16645, + "fields": { + "EF_ID": 614895, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.65, urban-high=0.07, urban-low=0.28", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:33.989Z", + "last_change_date": "2022-03-14T08:14:33.989Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16646, + "fields": { + "EF_ID": 614896, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.72, urban-high=0.06, urban-low=0.22", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.089Z", + "last_change_date": "2022-03-14T08:14:34.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16647, + "fields": { + "EF_ID": 614897, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.20, urban-high=0.80, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.148Z", + "last_change_date": "2022-03-14T08:14:34.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16648, + "fields": { + "EF_ID": 614898, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.27, urban-high=0.73, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.223Z", + "last_change_date": "2022-03-14T08:14:34.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16649, + "fields": { + "EF_ID": 614899, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.06, urban-high=0.94, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.310Z", + "last_change_date": "2022-03-14T08:14:34.310Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16650, + "fields": { + "EF_ID": 614900, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.10, urban-high=0.90, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.406Z", + "last_change_date": "2022-03-14T08:14:34.406Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16651, + "fields": { + "EF_ID": 614901, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.24, urban-high=0.76, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.479Z", + "last_change_date": "2022-03-14T08:14:34.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16652, + "fields": { + "EF_ID": 614902, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.32, urban-high=0.68, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.546Z", + "last_change_date": "2022-03-14T08:14:34.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16653, + "fields": { + "EF_ID": 614903, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.22, urban-high=0.78, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.612Z", + "last_change_date": "2022-03-14T08:14:34.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16654, + "fields": { + "EF_ID": 614904, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.20, urban-high=0.80, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.704Z", + "last_change_date": "2022-03-14T08:14:34.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16655, + "fields": { + "EF_ID": 614905, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.16, urban-high=0.25, urban-low=0.59", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.790Z", + "last_change_date": "2022-03-14T08:14:34.790Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16656, + "fields": { + "EF_ID": 614906, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.25, urban-high=0.29, urban-low=0.56", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.862Z", + "last_change_date": "2022-03-14T08:14:34.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16657, + "fields": { + "EF_ID": 614907, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Urbanization", + "Technology_Practices": "Fraction of population", + "Parameter_Conditions": "rural, urban-high, urban-low", + "Regional_Conditions": "Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "rural=0.08, urban-high=0.92, urban-low=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.15", + "Upper_Bound": "0.15", + "Data_Quality": "", + "Data_Quality_Reference": "United Nations (2002). World Urbanization Prospects, The 2001 Revision Data Tables and Highlights. Population Division, Department of Economic and Social Affairs, United Nations Secretariat. ESA/P/WP.173. March 2002.", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:34.929Z", + "last_change_date": "2022-03-14T08:14:34.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16658, + "fields": { + "EF_ID": 614908, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.02, latrine=0.28, other=0.04, sewer=0.10, none=0.56", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.004Z", + "last_change_date": "2022-03-14T08:14:35.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16659, + "fields": { + "EF_ID": 614909, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.02, latrine=0.28, other=0.04, sewer=0.10, none=0.56", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.106Z", + "last_change_date": "2022-03-14T08:14:35.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16660, + "fields": { + "EF_ID": 614910, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.02, latrine=0.28, other=0.04, sewer=0.10, none=0.56", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.190Z", + "last_change_date": "2022-03-14T08:14:35.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16661, + "fields": { + "EF_ID": 614911, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.10, latrine=0.28, other=0.04, sewer=0.10, none=0.48", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.254Z", + "last_change_date": "2022-03-14T08:14:35.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16662, + "fields": { + "EF_ID": 614912, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.47, other=0.50, sewer=0.00, none=0.03", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.321Z", + "last_change_date": "2022-03-14T08:14:35.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16663, + "fields": { + "EF_ID": 614913, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.47, other=0.10, sewer=0.10, none=0.33", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.416Z", + "last_change_date": "2022-03-14T08:14:35.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16664, + "fields": { + "EF_ID": 614914, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.47, other=0.00, sewer=0.10, none=0.43", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.490Z", + "last_change_date": "2022-03-14T08:14:35.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16665, + "fields": { + "EF_ID": 614915, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.47, other=0.00, sewer=0.10, none=0.43", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.562Z", + "last_change_date": "2022-03-14T08:14:35.562Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16666, + "fields": { + "EF_ID": 614916, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.47, other=0.00, sewer=0.10, none=0.43", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.646Z", + "last_change_date": "2022-03-14T08:14:35.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16667, + "fields": { + "EF_ID": 614917, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.20, latrine=0.00, other=0.50, sewer=0.30, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.720Z", + "last_change_date": "2022-03-14T08:14:35.720Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16668, + "fields": { + "EF_ID": 614918, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.30, latrine=0.10, other=0.00, sewer=0.60, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.819Z", + "last_change_date": "2022-03-14T08:14:35.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16669, + "fields": { + "EF_ID": 614919, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.20, latrine=0.00, other=0.00, sewer=0.80, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999), Destatis, 2001", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.915Z", + "last_change_date": "2022-03-14T08:14:35.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16670, + "fields": { + "EF_ID": 614920, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.11, latrine=0.00, other=0.00, sewer=0.89, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:35.981Z", + "last_change_date": "2022-03-14T08:14:35.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16671, + "fields": { + "EF_ID": 614921, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.37, latrine=0.00, other=0.00, sewer=0.63, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.048Z", + "last_change_date": "2022-03-14T08:14:36.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16672, + "fields": { + "EF_ID": 614922, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.42, latrine=0.00, other=0.00, sewer=0.58, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.115Z", + "last_change_date": "2022-03-14T08:14:36.115Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16673, + "fields": { + "EF_ID": 614923, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.90, latrine=0.02, other=0.00, sewer=0.08, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.212Z", + "last_change_date": "2022-03-14T08:14:36.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16674, + "fields": { + "EF_ID": 614924, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.90, latrine=0.02, other=0.00, sewer=0.08, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.290Z", + "last_change_date": "2022-03-14T08:14:36.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16675, + "fields": { + "EF_ID": 614925, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.45, other=0.00, sewer=0.10, none=0.45", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.357Z", + "last_change_date": "2022-03-14T08:14:36.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16676, + "fields": { + "EF_ID": 614926, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.45, other=0.00, sewer=0.10, none=0.45", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.423Z", + "last_change_date": "2022-03-14T08:14:36.423Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16677, + "fields": { + "EF_ID": 614927, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Rural population", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.90, latrine=0.02, other=0.00, sewer=0.08, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.490Z", + "last_change_date": "2022-03-14T08:14:36.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16678, + "fields": { + "EF_ID": 614928, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.32, latrine=0.31, other=0.00, sewer=0.37, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.589Z", + "last_change_date": "2022-03-14T08:14:36.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16679, + "fields": { + "EF_ID": 614929, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.15, latrine=0.05, other=0.10, sewer=0.70, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.665Z", + "last_change_date": "2022-03-14T08:14:36.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16680, + "fields": { + "EF_ID": 614930, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.32, latrine=0.31, other=0.00, sewer=0.37, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.731Z", + "last_change_date": "2022-03-14T08:14:36.731Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16681, + "fields": { + "EF_ID": 614931, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.15, latrine=0.15, other=0.00, sewer=0.70, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.798Z", + "last_change_date": "2022-03-14T08:14:36.798Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16682, + "fields": { + "EF_ID": 614932, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.18, latrine=0.08, other=0.07, sewer=0.67, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.899Z", + "last_change_date": "2022-03-14T08:14:36.899Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16683, + "fields": { + "EF_ID": 614933, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.18, latrine=0.08, other=0.07, sewer=0.67, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:36.973Z", + "last_change_date": "2022-03-14T08:14:36.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16684, + "fields": { + "EF_ID": 614934, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.18, latrine=0.08, other=0.00, sewer=0.74, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.040Z", + "last_change_date": "2022-03-14T08:14:37.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16685, + "fields": { + "EF_ID": 614935, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.18, latrine=0.08, other=0.00, sewer=0.74, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.106Z", + "last_change_date": "2022-03-14T08:14:37.106Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16686, + "fields": { + "EF_ID": 614936, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.18, latrine=0.08, other=0.00, sewer=0.74, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.198Z", + "last_change_date": "2022-03-14T08:14:37.198Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16687, + "fields": { + "EF_ID": 614937, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.00, other=0.10, sewer=0.90, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.293Z", + "last_change_date": "2022-03-14T08:14:37.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16688, + "fields": { + "EF_ID": 614938, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Russia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=010, latrine=0.10, other=0.00, sewer=0.90, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.365Z", + "last_change_date": "2022-03-14T08:14:37.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16689, + "fields": { + "EF_ID": 614939, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=005, latrine=0.10, other=0.00, sewer=0.95, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999), Destatis, 2001", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.439Z", + "last_change_date": "2022-03-14T08:14:37.439Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16690, + "fields": { + "EF_ID": 614940, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.00, other=0.00, sewer=1.00, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.515Z", + "last_change_date": "2022-03-14T08:14:37.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16691, + "fields": { + "EF_ID": 614941, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "France", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.00, other=0.00, sewer=1.00, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.590Z", + "last_change_date": "2022-03-14T08:14:37.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16692, + "fields": { + "EF_ID": 614942, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.04, latrine=0.00, other=0.00, sewer=0.96, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.696Z", + "last_change_date": "2022-03-14T08:14:37.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16693, + "fields": { + "EF_ID": 614943, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.05, latrine=0.00, other=0.00, sewer=0.95, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.773Z", + "last_change_date": "2022-03-14T08:14:37.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16694, + "fields": { + "EF_ID": 614944, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.05, latrine=0.00, other=0.00, sewer=0.95, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.840Z", + "last_change_date": "2022-03-14T08:14:37.840Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16695, + "fields": { + "EF_ID": 614945, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.20, other=0.00, sewer=0.80, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.907Z", + "last_change_date": "2022-03-14T08:14:37.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16696, + "fields": { + "EF_ID": 614946, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.20, other=0.00, sewer=0.80, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:37.973Z", + "last_change_date": "2022-03-14T08:14:37.973Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16697, + "fields": { + "EF_ID": 614947, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban high income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.05, latrine=0.00, other=0.00, sewer=0.95, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.073Z", + "last_change_date": "2022-03-14T08:14:38.073Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16698, + "fields": { + "EF_ID": 614948, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.17, latrine=0.24, other=0.05, sewer=0.34, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.148Z", + "last_change_date": "2022-03-14T08:14:38.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16699, + "fields": { + "EF_ID": 614949, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Egypt", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.17, latrine=0.24, other=0.05, sewer=0.34, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.215Z", + "last_change_date": "2022-03-14T08:14:38.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16700, + "fields": { + "EF_ID": 614950, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Kenya", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.17, latrine=0.24, other=0.05, sewer=0.34, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "Sewers may be open or closed, which will govern the choice of MCF. Verify that total Ti,j = 100%", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.281Z", + "last_change_date": "2022-03-14T08:14:38.282Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16701, + "fields": { + "EF_ID": 614951, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.17, latrine=0.24, other=0.05, sewer=0.34, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.374Z", + "last_change_date": "2022-03-14T08:14:38.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16702, + "fields": { + "EF_ID": 614952, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.14, latrine=0.10, other=0.03, sewer=0.68, none=0.05", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.448Z", + "last_change_date": "2022-03-14T08:14:38.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16703, + "fields": { + "EF_ID": 614953, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.14, latrine=0.10, other=0.03, sewer=0.53, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.515Z", + "last_change_date": "2022-03-14T08:14:38.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16704, + "fields": { + "EF_ID": 614954, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Indonesia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.14, latrine=0.10, other=0.03, sewer=0.53, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.582Z", + "last_change_date": "2022-03-14T08:14:38.582Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16705, + "fields": { + "EF_ID": 614955, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Pakistan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.14, latrine=0.10, other=0.03, sewer=0.53, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.648Z", + "last_change_date": "2022-03-14T08:14:38.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16706, + "fields": { + "EF_ID": 614956, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Bangladesh", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.14, latrine=0.10, other=0.03, sewer=0.53, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.743Z", + "last_change_date": "2022-03-14T08:14:38.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16707, + "fields": { + "EF_ID": 614957, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.10, latrine=0, other=0, sewer=0.90, none=0", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.815Z", + "last_change_date": "2022-03-14T08:14:38.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16708, + "fields": { + "EF_ID": 614958, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Brazil", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.40, other=0.00, sewer=0.40, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.882Z", + "last_change_date": "2022-03-14T08:14:38.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16709, + "fields": { + "EF_ID": 614959, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Mexico", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.00, latrine=0.40, other=0.00, sewer=0.40, none=0.20", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:38.948Z", + "last_change_date": "2022-03-14T08:14:38.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16710, + "fields": { + "EF_ID": 614960, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degree of utilization of treatment or discharge pathway or method", + "Technology_Practices": "Urban low income", + "Parameter_Conditions": "septic tank, latrine, other, sewer, none", + "Regional_Conditions": "Australia and New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "septic tank=0.05, latrine=0.00, other=0.00, sewer=0.95, none=0.00", + "Unit": "fraction", + "Equation": "Equation 6.1 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "Table 6.5, p.6.15 in 2006 Guidelines", + "Technical_Reference": "Table 6.5, p.6.15 in 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "-0.5", + "Upper_Bound": "0.5", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgement (Doorn and Liles, 1999)", + "Other_Data_Quality": "Uncertainty can be as low as ± 3% for countries that have good records and only one or two systems. Or can be ± 50% for an individual method/pathway. Sewers may be open or closed, which will govern the choice of MCF", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.015Z", + "last_change_date": "2022-03-14T08:14:39.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16711, + "fields": { + "EF_ID": 614961, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Maximum CH4 producing capacity, Bo", + "Technology_Practices": "", + "Parameter_Conditions": "BOD based", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "Kg CH4/Kg BOD", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "P6.12 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.12 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgment by lead authors of 2006 Guidelines and Doorn et al. (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For domestic wastewater, a COD-based value of Bo can be converted into a BOD-based value by multiplying with a factor of 2.4.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.121Z", + "last_change_date": "2022-03-14T08:14:39.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16712, + "fields": { + "EF_ID": 614962, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Maximum CH4 producing capacity, Bo", + "Technology_Practices": "", + "Parameter_Conditions": "COD based", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "Kg CH4/Kg COD", + "Equation": "Equation 6.2 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "P6.12 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.12 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgment by lead authors of 2006 Guidelines and Doorn et al. (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Good practice is to use country and industry sector specific data that may be available from government authorities, industrial organisations, or industrial experts. However, most inventory compilers will find detailed industry sector-specific data unavailable or incomplete.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.215Z", + "last_change_date": "2022-03-14T08:14:39.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16713, + "fields": { + "EF_ID": 614963, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Correction factor for additional industrial BOD discharged into sewers", + "Technology_Practices": "collected", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.25", + "Unit": "", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "P6.14 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.14 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgment by lead authors of 2006 Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The correction factor for additional industrial BOD dscharge into sewers expresses the BOD from industries and establishments (e.g., restaurants, butchers or grocery stores) that is co-discharged with domestic wastewater. In some countries, information from industrial discharge permits may be available to improve this factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.298Z", + "last_change_date": "2022-03-14T08:14:39.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16714, + "fields": { + "EF_ID": 614964, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Correction factor for additional industrial BOD discharged into sewers", + "Technology_Practices": "uncollected", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "", + "Equation": "Equation 6.3 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "P6.14 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.14 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "0%", + "Upper_Bound": "0%", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgment by lead authors of 2006 Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The correction factor for additional industrial BOD dscharge into sewers expresses the BOD from industries and establishments (e.g., restaurants, butchers or grocery stores) that is co-discharged with domestic wastewater. In some countries, information from industrial discharge permits may be available to improve this factor.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.373Z", + "last_change_date": "2022-03-14T08:14:39.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16715, + "fields": { + "EF_ID": 614965, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Maximum CH4 producing capacity, Bo", + "Technology_Practices": "", + "Parameter_Conditions": "COD based", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.25", + "Unit": "Kg CH4/Kg COD", + "Equation": "Equation 6.5 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.21 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.21 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": ".-30%", + "Upper_Bound": ".+30%", + "Data_Quality": "", + "Data_Quality_Reference": "Expert judgment by lead authors of 2006 Guidelines and Doorn et al. (1997)", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Good practice is to use country and industry sector specific data that may be available from government authorities, industrial organisations, or industrial experts. However, most inventory compilers will find detailed industry sector-specific data unavailable or incomplete.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.440Z", + "last_change_date": "2022-03-14T08:14:39.440Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16716, + "fields": { + "EF_ID": 614966, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane correction factor (MCF) for industrial wastewater", + "Technology_Practices": "untreated", + "Parameter_Conditions": "Sea, river, and lake discharge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.5 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.21 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.21 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5 of 2006 IPCC Guidelines", + "Other_Data_Quality": "The MCF value can rang between 0 and 0.2. Rivers with high organics loadings may turn anaerobic, however this is not considered here. The uncertainty range should be determined by expert judgement, bearing in mind that this is a fraction and uncertainties cannot take it outside the range of 0 to 1.", + "Data_Provider_Comments": "The MCF indicates the extent to which the CH4 producing potential (Bo) is realised in each type of treatment method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.548Z", + "last_change_date": "2022-03-14T08:14:39.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16717, + "fields": { + "EF_ID": 614967, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane correction factor (MCF) for industrial wastewater", + "Technology_Practices": "Treated", + "Parameter_Conditions": "Aerobic treatment plant - well managed.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "fraction", + "Equation": "Equation 6.5 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.21 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.21 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5 of 2006 IPCC Guidelines", + "Other_Data_Quality": "The MCF value can range between 0 and 0.1 Must be well managed. Some CH4 can be emitted from settling basins and other pockets. The uncertainty range should be determined by expert judgement, bearing in mind that this is a fraction and uncertainties cannot take it outside the range of 0 to 1.", + "Data_Provider_Comments": "The MCF indicates the extent to which the CH4 producing potential (Bo) is realised in each type of treatment method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.623Z", + "last_change_date": "2022-03-14T08:14:39.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16718, + "fields": { + "EF_ID": 614968, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane correction factor (MCF) for industrial wastewater", + "Technology_Practices": "Treated", + "Parameter_Conditions": "Aerobic treatment plant - not well managed, Overloaded", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3", + "Unit": "fraction", + "Equation": "Equation 6.5 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.21 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.21 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5 of 2006 IPCC Guidelines", + "Other_Data_Quality": "The MCF value can range between 0.2 and 0.4. The uncertainty range should be determined by expert judgement, bearing in mind that this is a fraction and uncertainties cannot take it outside the range of 0 to 1.", + "Data_Provider_Comments": "The MCF indicates the extent to which the CH4 producing potential (Bo) is realised in each type of treatment method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.690Z", + "last_change_date": "2022-03-14T08:14:39.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16719, + "fields": { + "EF_ID": 614969, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane correction factor (MCF) for industrial wastewater", + "Technology_Practices": "Treated", + "Parameter_Conditions": "Anaerobic digester for sludge", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 6.5 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.21 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.21 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5 of 2006 IPCC Guidelines", + "Other_Data_Quality": "The MCF value can range between 0.8 and 1.0. CH4 recovery not considered here. The uncertainty range should be determined by expert judgement, bearing in mind that this is a fraction and uncertainties cannot take it outside the range of 0 to 1.", + "Data_Provider_Comments": "The MCF indicates the extent to which the CH4 producing potential (Bo) is realised in each type of treatment method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.757Z", + "last_change_date": "2022-03-14T08:14:39.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16720, + "fields": { + "EF_ID": 614970, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane correction factor (MCF) for industrial wastewater", + "Technology_Practices": "Treated", + "Parameter_Conditions": "Anaerobic reactor", + "Regional_Conditions": "", + "Control_Technologies": "e.g., UASB, Fixed Film Reactor", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 6.5 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.21 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.21 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5 of 2006 IPCC Guidelines", + "Other_Data_Quality": "The MCF value can range between 0.8 and 1.0. CH4 recovery not considered here. The uncertainty range should be determined by expert judgement, bearing in mind that this is a fraction and uncertainties cannot take it outside the range of 0 to 1.", + "Data_Provider_Comments": "The MCF indicates the extent to which the CH4 producing potential (Bo) is realised in each type of treatment method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.850Z", + "last_change_date": "2022-03-14T08:14:39.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16721, + "fields": { + "EF_ID": 614971, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane correction factor (MCF) for industrial wastewater", + "Technology_Practices": "Treated", + "Parameter_Conditions": "Anaerobic shallow lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 6.5 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.21 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.21 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5 of 2006 IPCC Guidelines", + "Other_Data_Quality": "Depth less than 2 metres. The MCF value can range between 0 and 0.3. The uncertainty range should be determined by expert judgement, bearing in mind that this is a fraction and uncertainties cannot take it outside the range of 0 to 1.", + "Data_Provider_Comments": "The MCF indicates the extent to which the CH4 producing potential (Bo) is realised in each type of treatment method. Use expert judgement.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.924Z", + "last_change_date": "2022-03-14T08:14:39.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16722, + "fields": { + "EF_ID": 614972, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Methane correction factor (MCF) for industrial wastewater", + "Technology_Practices": "Treated", + "Parameter_Conditions": "Anaerobic deep lagoon", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "fraction", + "Equation": "Equation 6.5 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.21 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.21 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5 of 2006 IPCC Guidelines", + "Other_Data_Quality": "Depth more than 2 metres. The MCF value can range between 0.8 and 1.0. The uncertainty range should be determined by expert judgement, bearing in mind that this is a fraction and uncertainties cannot take it outside the range of 0 to 1.", + "Data_Provider_Comments": "The MCF indicates the extent to which the CH4 producing potential (Bo) is realised in each type of treatment method.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:39.990Z", + "last_change_date": "2022-03-14T08:14:39.990Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16723, + "fields": { + "EF_ID": 614973, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Alcohol Refining", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 16 - 32. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.062Z", + "last_change_date": "2022-03-14T08:14:40.062Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16724, + "fields": { + "EF_ID": 614974, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Beer & Malt", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.3", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 5.0 - 9.0. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.151Z", + "last_change_date": "2022-03-14T08:14:40.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16725, + "fields": { + "EF_ID": 614975, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Dairy products", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 3 - 10. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.248Z", + "last_change_date": "2022-03-14T08:14:40.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16726, + "fields": { + "EF_ID": 614976, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Fish processing", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8 - 18", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 8 - 18. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.312Z", + "last_change_date": "2022-03-14T08:14:40.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16727, + "fields": { + "EF_ID": 614977, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Meat & Poultry", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 8 - 18. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.394Z", + "last_change_date": "2022-03-14T08:14:40.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16728, + "fields": { + "EF_ID": 614978, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Organic Chemicals", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0 - 400. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.474Z", + "last_change_date": "2022-03-14T08:14:40.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16729, + "fields": { + "EF_ID": 614979, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Petroleum Refineries", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0.3 - 1.2. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.546Z", + "last_change_date": "2022-03-14T08:14:40.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16730, + "fields": { + "EF_ID": 614980, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Plastics & Resins", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0.3 - 1.2. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.639Z", + "last_change_date": "2022-03-14T08:14:40.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16731, + "fields": { + "EF_ID": 614981, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Pulp & Paper (combined)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "162", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 85 - 240. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.715Z", + "last_change_date": "2022-03-14T08:14:40.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16732, + "fields": { + "EF_ID": 614982, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Soap and Detergents", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0 - 5.0", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 1.0 - 5.0. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.779Z", + "last_change_date": "2022-03-14T08:14:40.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16733, + "fields": { + "EF_ID": 614983, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Starch Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 4 - 18. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.882Z", + "last_change_date": "2022-03-14T08:14:40.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16734, + "fields": { + "EF_ID": 614984, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Suger Refining", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4-8", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 4 - 18. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:40.957Z", + "last_change_date": "2022-03-14T08:14:40.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16735, + "fields": { + "EF_ID": 614985, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Vegetable Oils", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.1", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 1.0 - 5.0. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.020Z", + "last_change_date": "2022-03-14T08:14:41.020Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16736, + "fields": { + "EF_ID": 614986, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Vegetables, Fruits & Juices", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 7 - 35. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.117Z", + "last_change_date": "2022-03-14T08:14:41.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16737, + "fields": { + "EF_ID": 614987, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation", + "Technology_Practices": "Wine & Vinegar", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "m3/tonne", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2 of 2006 Guidelines", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 11- 46. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The wastewater generated from each industry bassed on industrial output. The data are examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.190Z", + "last_change_date": "2022-03-14T08:14:41.190Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16738, + "fields": { + "EF_ID": 614988, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Alcohol Refining", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 5 - 22. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.262Z", + "last_change_date": "2022-03-14T08:14:41.262Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16739, + "fields": { + "EF_ID": 614989, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Beer & Malt", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 2 - 7. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.384Z", + "last_change_date": "2022-03-14T08:14:41.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16740, + "fields": { + "EF_ID": 614990, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Coffee", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 5 - 22. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.457Z", + "last_change_date": "2022-03-14T08:14:41.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16741, + "fields": { + "EF_ID": 614991, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Dairy products", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 1.5 - 5.2. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.520Z", + "last_change_date": "2022-03-14T08:14:41.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16742, + "fields": { + "EF_ID": 614992, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Fish processing", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.619Z", + "last_change_date": "2022-03-14T08:14:41.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16743, + "fields": { + "EF_ID": 614993, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Meat & Poultry", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.1", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 2 - 7. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.690Z", + "last_change_date": "2022-03-14T08:14:41.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16744, + "fields": { + "EF_ID": 614994, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Organic Chemicals", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0.8 - 5. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.757Z", + "last_change_date": "2022-03-14T08:14:41.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16745, + "fields": { + "EF_ID": 614995, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Petroleum Refineries", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0.4 - 1.6. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.853Z", + "last_change_date": "2022-03-14T08:14:41.853Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16746, + "fields": { + "EF_ID": 614996, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Plastics & Resins", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.7", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0.8 - 5. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.932Z", + "last_change_date": "2022-03-14T08:14:41.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16747, + "fields": { + "EF_ID": 614997, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Pulp & Paper (combined)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 1 - 15. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:41.999Z", + "last_change_date": "2022-03-14T08:14:41.999Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16748, + "fields": { + "EF_ID": 614998, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Soap and Detergents", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 - 1.2", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0.5 - 1.2. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.097Z", + "last_change_date": "2022-03-14T08:14:42.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16749, + "fields": { + "EF_ID": 614999, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Starch Production", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 1.5 - 42. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.182Z", + "last_change_date": "2022-03-14T08:14:42.182Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16750, + "fields": { + "EF_ID": 615000, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Suger Refining", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 1 - 6. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.257Z", + "last_change_date": "2022-03-14T08:14:42.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16751, + "fields": { + "EF_ID": 615001, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Vegetable Oils", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 - 1.2", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0.5 - 1.2. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.349Z", + "last_change_date": "2022-03-14T08:14:42.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16752, + "fields": { + "EF_ID": 615002, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Vegetables, Fruits & Juices", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 2 - 10. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.407Z", + "last_change_date": "2022-03-14T08:14:42.407Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16753, + "fields": { + "EF_ID": 615003, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "Wine & Vinegar", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 6.6 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.22 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.22 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "Other_Data_Quality": "The range can be 0.7 - 3.0. It can be very uncertain as the same sector might use different waste handling procedures at different plants and in different countries. The product of the parameters (W•COD) is expected to have less uncertainty. An uncertainty value can be attributed directly to kg COD/tonne of product. –50 %, +100% is suggested (i.e., a factor of 2).", + "Data_Provider_Comments": "The figures of COD of industrial wastewater are given in the 2006 Guidelines as examples that could be used as default values. These should be used with caution, because they are industry-, process- and country-specific.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.474Z", + "last_change_date": "2022-03-14T08:14:42.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16754, + "fields": { + "EF_ID": 615004, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "EF for N2O emissions from domestic wastewater", + "Technology_Practices": "domestic wastewater nitrogen effluent", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "Kg N2O-N/kg -N", + "Equation": "Equation 6.7 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "P6.25 and Table 6.11 in P 6.27 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.25 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5. See also Volume 4 of AFOLU Sector, Table 11.3 of Section 11.2.2 in Chapter 11, and the reference given in the footnote of Table 11.3.", + "Other_Data_Quality": "This emission factor is based on limited field data and on specific assumptions regarding the occurrence of nitrification and denitrification in rivers and in estuaries. The first assumption is that all nitrogen is discharged with the effluent. The second assumption is that N2O production in rivers and estuaries is directly related to nitrification and denitrification and, thus, to the nitrogen that is discharged into the river.", + "Data_Provider_Comments": "(See Volume 4, Table 11.3 of Section 11.2.2 in Chapter 11, N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application.)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.567Z", + "last_change_date": "2022-03-14T08:14:42.567Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16755, + "fields": { + "EF_ID": 615005, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "EF for N2O emissions", + "Technology_Practices": "advanced centralised wastewater treatment plants", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.2", + "Unit": "g N2O/person/year", + "Equation": "Equation 6.9 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D", + "Data_Source": "P6.26 and Table 6.11 in P 6.27 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.26-7 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "Czepiel, P., Crill, P. and Harriss, R. (1995). ‘Nitrous oxide emissions from domestic wastewater treatment` Environmental Science and Technology, vol. 29, no. 9, pp. 2352-2356.", + "Other_Data_Quality": "The range can be 2 - 8.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.640Z", + "last_change_date": "2022-03-14T08:14:42.640Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16756, + "fields": { + "EF_ID": 615006, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Factor to adjust for non-consumed protein discharged to wastewater pathways.", + "Technology_Practices": "Using garbage disposals", + "Parameter_Conditions": "", + "Regional_Conditions": "Developed countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "", + "Equation": "Equation 6.8 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "P6.25 and Table 6.11 in P 6.27 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.25 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The range can be 1.0 - 1.5. Food (waste) that is not consumed may be washed down the drain (e.g., as result of the use of garbage disposals in some developed countries) and also, bath and laundry water can be expected to contribute to nitrogen loadings. Wastewater from industrial or commercial sources that is discharged into the sewer may contain protein (e.g., from grocery stores and butchers). The default for this fraction is 1.25.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.715Z", + "last_change_date": "2022-03-14T08:14:42.715Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16757, + "fields": { + "EF_ID": 615007, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Factor to adjust for non-consumed protein discharged to wastewater pathways.", + "Technology_Practices": "Not using garbage disposals", + "Parameter_Conditions": "", + "Regional_Conditions": "Developing countries", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.1", + "Unit": "", + "Equation": "Equation 6.8 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D1", + "Data_Source": "P6.25 and Table 6.11 in P 6.27 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.25 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The range can be 1.0 - 1.5. Food (waste) that is not consumed may be washed down the drain (e.g., as result of the use of garbage disposals in some developed countries) and also, bath and laundry water can be expected to contribute to nitrogen loadings. Wastewater from industrial or commercial sources that is discharged into the sewer may contain protein (e.g., from grocery stores and butchers). The default for this fraction is 1.25.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.791Z", + "last_change_date": "2022-03-14T08:14:42.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16758, + "fields": { + "EF_ID": 615008, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Factor to adjust for industrial and commercial co-discharged protein into the sewer system", + "Technology_Practices": "Discharged to sewer", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.25", + "Unit": "", + "Equation": "Equation 6.8 and 6.9 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D2", + "Data_Source": "P6.25 and Table 6.11 in P 6.27 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.25 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "Wastewater from industrial or commercial sources that is discharged into the sewer may contain protein (e.g., from grocery stores and butchers).", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.893Z", + "last_change_date": "2022-03-14T08:14:42.893Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16759, + "fields": { + "EF_ID": 615009, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Factor of nitrogen in protein", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16", + "Unit": "kg N/kg protein", + "Equation": "Equation 6.8 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D", + "Data_Source": "P6.25 and Table 6.11 in P 6.27 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.25 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5", + "Other_Data_Quality": "The range can be 0.15 - 0.17.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:42.965Z", + "last_change_date": "2022-03-14T08:14:42.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16760, + "fields": { + "EF_ID": 615010, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Factor to allow for co-discharge of industrial nitrogen into sewers", + "Technology_Practices": "industrial and commercial co-discharged protein", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.25", + "Unit": "fraction", + "Equation": "Equation 6.9 of Chapter 6, Volume 5 of 2006 IPCC Guidelines", + "IPCC_Worksheet": "4D", + "Data_Source": "P6.26-7 in Vol. 5 of 2006 Guidelines", + "Technical_Reference": "P6.26-7 in Vol. 5 of 2006 Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "expert judgement by lead authors of Chapter 6 Volume 5 Metcalf & Eddy, Inc. (2003) Wastewater Engineering: Treatment, Disposal, Reuse. McGraw-Hill: New York, ISBN 0-07-041878-0.", + "Other_Data_Quality": "The range can be 1.0 - 1.5. For countries with significant fish processing plants, this factor may be higher. Expert judgment is recommended.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.041Z", + "last_change_date": "2022-03-14T08:14:43.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16761, + "fields": { + "EF_ID": 615011, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "dry weight basis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g CH4/kg waste treated", + "Equation": "Equation 4.1 in Chapter 4 of Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4B", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication). Beck-Friis, B.G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis). Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser. IFEU Institut - Öko-Institut e.V. 77 p. Hellebrand, H.J. (1998). ‘Emissions of nitrous oxide and other trace gases during composting of grass and green waste`, J. agric, Engng Res., 69:365-375. Hogg, D., Favoino, E., Nielsen, N.,Thompson, J., Wood, K., Penschke, A., Economides, D. and Papageorgiou, S., (2002). Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission, Eunomia Research & Consulting, Bristol, UK. Vesterinen, R. (1996): Impact of waste management alternatives on greenhouse gas emissions: Greenhouse gas emissions from composting. Jyväskylä: VTT Energy. Research report ENE38/T0018/96. (In Finnish). 30p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.08 -20. Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%. The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.116Z", + "last_change_date": "2022-03-14T08:14:43.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16762, + "fields": { + "EF_ID": 615012, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor", + "Technology_Practices": "Anaerobic digestion at biogas facilities", + "Parameter_Conditions": "dry weight basis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "g CH4/kg waste treated", + "Equation": "Equation 4.1 in Chapter 4 of Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4B", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication). Beck-Friis, B.G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis). Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser. IFEU Institut - Öko-Institut e.V. 77 p. Hellebrand, H.J. (1998). ‘Emissions of nitrous oxide and other trace gases during composting of grass and green waste`, J. agric, Engng Res., 69:365-375. Hogg, D., Favoino, E., Nielsen, N.,Thompson, J., Wood, K., Penschke, A., Economides, D. and Papageorgiou, S., (2002). Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission, Eunomia Research & Consulting, Bristol, UK. Vesterinen, R. (1996): Impact of waste management alternatives on greenhouse gas emissions: Greenhouse gas emissions from composting. Jyväskylä: VTT Energy. Research report ENE38/T0018/96. (In Finnish). 30p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0 -20. Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%. The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.212Z", + "last_change_date": "2022-03-14T08:14:43.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16763, + "fields": { + "EF_ID": 615013, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "wet weight basis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "g CH4/kg waste treated", + "Equation": "Equation 4.1 in Chapter 4 of Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4B", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication). Beck-Friis, B.G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis). Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser. IFEU Institut - Öko-Institut e.V. 77 p. Hellebrand, H.J. (1998). ‘Emissions of nitrous oxide and other trace gases during composting of grass and green waste`, J. agric, Engng Res., 69:365-375. Hogg, D., Favoino, E., Nielsen, N.,Thompson, J., Wood, K., Penschke, A., Economides, D. and Papageorgiou, S., (2002). Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission, Eunomia Research & Consulting, Bristol, UK. Vesterinen, R. (1996): Impact of waste management alternatives on greenhouse gas emissions: Greenhouse gas emissions from composting. Jyväskylä: VTT Energy. Research report ENE38/T0018/96. (In Finnish). 30p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.03 -8. Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%. The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.299Z", + "last_change_date": "2022-03-14T08:14:43.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16764, + "fields": { + "EF_ID": 615014, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor", + "Technology_Practices": "Anaerobic digestion at biogas facilities", + "Parameter_Conditions": "wet weight basis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "g CH4/kg waste treated", + "Equation": "Equation 4.1 in Chapter 4 of Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4B", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication). Beck-Friis, B.G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis). Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser. IFEU Institut - Öko-Institut e.V. 77 p. Hellebrand, H.J. (1998). ‘Emissions of nitrous oxide and other trace gases during composting of grass and green waste`, J. agric, Engng Res., 69:365-375. Hogg, D., Favoino, E., Nielsen, N.,Thompson, J., Wood, K., Penschke, A., Economides, D. and Papageorgiou, S., (2002). Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission, Eunomia Research & Consulting, Bristol, UK. Vesterinen, R. (1996): Impact of waste management alternatives on greenhouse gas emissions: Greenhouse gas emissions from composting. Jyväskylä: VTT Energy. Research report ENE38/T0018/96. (In Finnish). 30p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0 -8. Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%. The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste. , The value is a revised value in accordance with 9th Corrigenda for the 2006 IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.396Z", + "last_change_date": "2022-03-14T08:14:43.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16765, + "fields": { + "EF_ID": 615015, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "dry weight basis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "g N2O/kg waste treated", + "Equation": "Equation 4.2 in Chapter 4 of Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4B", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication). Beck-Friis, B.G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis). Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser. IFEU Institut - Öko-Institut e.V. 77 p. Hellebrand, H.J. (1998). ‘Emissions of nitrous oxide and other trace gases during composting of grass and green waste`, J. agric, Engng Res., 69:365-375. Hogg, D., Favoino, E., Nielsen, N.,Thompson, J., Wood, K., Penschke, A., Economides, D. and Papageorgiou, S., (2002). Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission, Eunomia Research & Consulting, Bristol, UK. Vesterinen, R. (1996): Impact of waste management alternatives on greenhouse gas emissions: Greenhouse gas emissions from composting. Jyväskylä: VTT Energy. Research report ENE38/T0018/96. (In Finnish). 30p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.2 -1.6. Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%. The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.474Z", + "last_change_date": "2022-03-14T08:14:43.474Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16766, + "fields": { + "EF_ID": 615016, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor", + "Technology_Practices": "Anaerobic digestion at biogas facilities", + "Parameter_Conditions": "dry weight basis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "", + "Unit": "g N2O/kg waste treated", + "Equation": "Equation 4.2 in Chapter 4 of Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4B", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication). Beck-Friis, B.G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis). Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser. IFEU Institut - Öko-Institut e.V. 77 p. Hellebrand, H.J. (1998). ‘Emissions of nitrous oxide and other trace gases during composting of grass and green waste`, J. agric, Engng Res., 69:365-375. Hogg, D., Favoino, E., Nielsen, N.,Thompson, J., Wood, K., Penschke, A., Economides, D. and Papageorgiou, S., (2002). Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission, Eunomia Research & Consulting, Bristol, UK. Vesterinen, R. (1996): Impact of waste management alternatives on greenhouse gas emissions: Greenhouse gas emissions from composting. Jyväskylä: VTT Energy. Research report ENE38/T0018/96. (In Finnish). 30p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assumed to be negligible. Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%. The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.564Z", + "last_change_date": "2022-03-14T08:14:43.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16767, + "fields": { + "EF_ID": 615017, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "wet weight basis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "g N2O/kg waste treated", + "Equation": "Equation 4.2 in Chapter 4 of Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4B", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication). Beck-Friis, B.G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis). Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser. IFEU Institut - Öko-Institut e.V. 77 p. Hellebrand, H.J. (1998). ‘Emissions of nitrous oxide and other trace gases during composting of grass and green waste`, J. agric, Engng Res., 69:365-375. Hogg, D., Favoino, E., Nielsen, N.,Thompson, J., Wood, K., Penschke, A., Economides, D. and Papageorgiou, S., (2002). Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission, Eunomia Research & Consulting, Bristol, UK. Vesterinen, R. (1996): Impact of waste management alternatives on greenhouse gas emissions: Greenhouse gas emissions from composting. Jyväskylä: VTT Energy. Research report ENE38/T0018/96. (In Finnish). 30p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.06 -0.6. Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%. The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste. , The value is a revised value in accordance with 9th Corrigenda for the 2006 IPCC Guidelines.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.649Z", + "last_change_date": "2022-03-14T08:14:43.649Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16768, + "fields": { + "EF_ID": 615018, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Emission factor", + "Technology_Practices": "Anaerobic digestion at biogas facilities", + "Parameter_Conditions": "wet weight basis", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "", + "Unit": "g N2O/kg waste treated", + "Equation": "Equation 4.2 in Chapter 4 of Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "Category 4B", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Arnold, M. (2005). Espoo: VTT Processes: Unpublished material from measurements from biowaste composts. (Personal communication). Beck-Friis, B.G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste. Uppsala: Swedish University of Agricultural Sciences. 331 p. (Doctoral Thesis). Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F. and Gromke, U. (2003). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung und internationale Richtlinien: Teilbericht Abfall/Abwasser. IFEU Institut - Öko-Institut e.V. 77 p. Hellebrand, H.J. (1998). ‘Emissions of nitrous oxide and other trace gases during composting of grass and green waste`, J. agric, Engng Res., 69:365-375. Hogg, D., Favoino, E., Nielsen, N.,Thompson, J., Wood, K., Penschke, A., Economides, D. and Papageorgiou, S., (2002). Economic analysis of options for managing biodegradable municipal waste, Final Report to the European Commission, Eunomia Research & Consulting, Bristol, UK. Vesterinen, R. (1996): Impact of waste management alternatives on greenhouse gas emissions: Greenhouse gas emissions from composting. Jyväskylä: VTT Energy. Research report ENE38/T0018/96. (In Finnish). 30p.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgement by lead authors of Chapter 4", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Assumed to be negligible. Assumptions on the waste treated: 25-50% DOC in dry matter, 2% N in dry matter, moisture content 60%. The emission factors for dry waste are estimated from those for wet waste assuming a moisture content of 60% in wet waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.740Z", + "last_change_date": "2022-03-14T08:14:43.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16769, + "fields": { + "EF_ID": 615019, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of the waste amount burnt relative to the total amount of waste treated", + "Technology_Practices": "Open burning of waste", + "Parameter_Conditions": "Combustion in open air, open dumps, where smoke and other emissions are released directly into the air. Also incineration devices that do not control the combustion air to maintain an adequate temperature and do not provide sufficient residence time for complete combustion", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "fraction", + "Equation": "Equation 5.7 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C2", + "Data_Source": "2006 IPCC Guidelines", + "Technical_Reference": "Box 5.1 p 5.17 of Chapter 5, Volume 5 of the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Default value suggested for burning of open dumps based on expert judgment considering the fact that 0.4 is suggested as default value for MCF of unmanaged shallow SWDS", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.815Z", + "last_change_date": "2022-03-14T08:14:43.816Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16770, + "fields": { + "EF_ID": 615020, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Oxidation factor as % of carbon input", + "Technology_Practices": "Incineration", + "Parameter_Conditions": "for MSW, Industrial waste, clinical waste, sewage sludge, fossil liquid waste. Combustion in controlled incineration facilities, high combustion temperatures, long residence time, efficient waste agitation, air for more complete combustion.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.1 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1", + "Data_Source": "Table 5.2 p 5.18 of Chapter 5 in Volume 5, the 2006 IPCC Guidelines", + "Technical_Reference": "Lead Authors of Chapter 5 in Volume 5, the 2006 IPCC Guidelines", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for incineration of MSW, Industrial waste, clinical waste, sewage sludge, fossil liquid waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:43.933Z", + "last_change_date": "2022-03-14T08:14:43.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16771, + "fields": { + "EF_ID": 615021, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Oxidation factor as % of carbon input", + "Technology_Practices": "Open burning of waste", + "Parameter_Conditions": "for MSW Combustion in open air, open dumps, where smoke and other emissions are released directly into the air. Also incineration devices that do not control the combustion air to maintain an adequate temperature and do not provide sufficient residence time for complete combustion", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "58", + "Unit": "%", + "Equation": "Equation 5.2 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 49 - 67. When waste is open burned, refuse weight is reduced by approximately 49 to 67 percent (US-EPA, 1997 p.79). A default value of 58% is suggested as default. Uncertainties associated with CO2 emission factors for open burning depend on uncertainties related to fraction of dry matter in waste open-burned, fraction of carbon in the dry matter, fraction of fossil carbon in the total carbon, combustion efficiency, and fraction of carbon oxidised and emitted as CO2. A default value of +/- 40 percent is proposed for countries relying on default data on the composition in their calculations.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.016Z", + "last_change_date": "2022-03-14T08:14:44.016Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16772, + "fields": { + "EF_ID": 615022, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in % of dry weight", + "Technology_Practices": "Incineration and open burning of waste", + "Parameter_Conditions": "for Industrial Waste Incineration in controlled facilities; open burning in open air, open dumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "% (by weight)", + "Equation": "Equation 5.1 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for industrial waste", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.099Z", + "last_change_date": "2022-03-14T08:14:44.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16773, + "fields": { + "EF_ID": 615023, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in % of dry weight", + "Technology_Practices": "Incineration and open burning of waste", + "Parameter_Conditions": "for Clinical Waste Incineration in controlled facilities; open burning in open air, open dumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "% (by weight)", + "Equation": "Equation 5.1 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for clinical waste", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.166Z", + "last_change_date": "2022-03-14T08:14:44.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16774, + "fields": { + "EF_ID": 615024, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in % of dry weight", + "Technology_Practices": "Incineration and open burning of waste", + "Parameter_Conditions": "for Sewage sludge Incineration in controlled facilities; open burning in open air, open dumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-50", + "Unit": "% (by weight)", + "Equation": "Equation 5.1 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for sewage sludge", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.252Z", + "last_change_date": "2022-03-14T08:14:44.252Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16775, + "fields": { + "EF_ID": 615025, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Total carbon content in % of wet weight", + "Technology_Practices": "Incineration and open burning of waste", + "Parameter_Conditions": "Fossil liquid waste Incineration in controlled facilities; open burning in open air, open dumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "% (by weight)", + "Equation": "Equation 5.3 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for fossil liquid waste", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.337Z", + "last_change_date": "2022-03-14T08:14:44.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16776, + "fields": { + "EF_ID": 615026, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon content", + "Technology_Practices": "Incineration and open burning of waste", + "Parameter_Conditions": "Industrial Waste Incineration in controlled facilities; open burning in open air, open dumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "90", + "Unit": "%", + "Equation": "Equation 5.1 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for industrial waste", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.416Z", + "last_change_date": "2022-03-14T08:14:44.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16777, + "fields": { + "EF_ID": 615027, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon content", + "Technology_Practices": "Incineration and open burning of waste", + "Parameter_Conditions": "for Clinical Waste Incineration in controlled facilities; open burning in open air, open dumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Equation 5.1 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for clinical waste", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.491Z", + "last_change_date": "2022-03-14T08:14:44.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16778, + "fields": { + "EF_ID": 615028, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fossil carbon fraction in % of total carbon content", + "Technology_Practices": "Incineration and open burning of waste", + "Parameter_Conditions": "for fossil liquid waste Incineration in controlled facilities; open burning in open air, open dumps", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "%", + "Equation": "Equation 5.3 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 and 4C2", + "Data_Source": "Table 5.2 p 5.18, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines `IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Table 5.6 on Page 5.29)", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment by authors of IPCC Good Practice Guidance and Uncertainty Management for National Greenhouse Gas Inventories", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Expert judgment of the Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for fossil liquid waste The total carbon content of fossil liquid waste is provided in percent of wet weight and not in percent of dry weight.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.566Z", + "last_change_date": "2022-03-14T08:14:44.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16779, + "fields": { + "EF_ID": 615029, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor for waste oil", + "Technology_Practices": "Incineration of waste oil", + "Parameter_Conditions": "It will be specified whether it is continuous, semi-continuous or batch type incineration", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "g CH4/t wet weight", + "Equation": "This figure can be used to estimate emissions using Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines. Note that the unit of this emission factor (g CH4/ tonne wet weight) is different from other emission factors for CH4 under this category given in Table 5.3 in page 5.20 of Volume 5 (kg/Gg waste incinerated on a wet weight basis).", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for incineration of waste oil", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.662Z", + "last_change_date": "2022-03-14T08:14:44.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16780, + "fields": { + "EF_ID": 615030, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor for sludge", + "Technology_Practices": "Incineration of sludge", + "Parameter_Conditions": "It will be specified whether it is continuous, semi-continuous or batch type incineration", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.7", + "Unit": "g CH4/t wet weight", + "Equation": "This figure can be used to estimate emissions using Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines. Note that the unit of this emission factor (g CH4/ tonne wet weight) is different from other emission factors for CH4 under this category given in Table 5.3 in page 5.20 of Volume 5 (kg/Gg waste incinerated on a wet weight basis).", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Applicable for incineration of sludge", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.737Z", + "last_change_date": "2022-03-14T08:14:44.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16781, + "fields": { + "EF_ID": 615031, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Continuous incineration - stoker", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "kg/Gg waste wet weight", + "Equation": "Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.3 p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2004). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES). October 2004.", + "English_Abstract": "", + "Lower_Bound": "-1", + "Upper_Bound": "1", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For municipal solid waste incineration Continuous incineration includes incinerators without daily start-up and shutdown. Batch type and semi-continuous incineration mean that the incinerator is usually started-up and shutdown at least once a day.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.799Z", + "last_change_date": "2022-03-14T08:14:44.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16782, + "fields": { + "EF_ID": 615032, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Continuous incineration - fluidised bed", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "~0", + "Unit": "kg/Gg waste wet weight", + "Equation": "Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.3 p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2004). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES). October 2004.", + "English_Abstract": "", + "Lower_Bound": "-1", + "Upper_Bound": "1", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For municipal solid waste incineration. In the study cited for this factor, the measured CH4 concentration in the exhaust air was lower than the concentration in ambient air. Continuous incineration includes incinerators without daily start-up and shutdown. Batch type and semi-continuous incineration mean that the incinerator is usually started-up and shutdown at least once a day.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.905Z", + "last_change_date": "2022-03-14T08:14:44.905Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16783, + "fields": { + "EF_ID": 615033, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Semi-continuous incineration - stoker", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "kg/Gg waste wet weight", + "Equation": "Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.3 p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2004). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES). October 2004.", + "English_Abstract": "", + "Lower_Bound": "-1", + "Upper_Bound": "1", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Continuous incineration includes incinerators without daily start-up and shutdown. Batch type and semi-continuous incineration mean that the incinerator is usually started-up and shutdown at least once a day.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:44.996Z", + "last_change_date": "2022-03-14T08:14:44.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16784, + "fields": { + "EF_ID": 615034, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Semi-continuous incineration - fluidised bed", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "188", + "Unit": "kg/Gg waste wet weight", + "Equation": "Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.3 p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2004). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES). October 2004.", + "English_Abstract": "", + "Lower_Bound": "-1", + "Upper_Bound": "1", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Continuous incineration includes incinerators without daily start-up and shutdown. Batch type and semi-continuous incineration mean that the incinerator is usually started-up and shutdown at least once a day.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.066Z", + "last_change_date": "2022-03-14T08:14:45.066Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16785, + "fields": { + "EF_ID": 615035, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Batch type incineration - stoker", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "kg/Gg waste wet weight", + "Equation": "Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.3 p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2004). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES). October 2004.", + "English_Abstract": "", + "Lower_Bound": "-1", + "Upper_Bound": "1", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Continuous incineration includes incinerators without daily start-up and shutdown. Batch type and semi-continuous incineration mean that the incinerator is usually started-up and shutdown at least once a day.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.133Z", + "last_change_date": "2022-03-14T08:14:45.133Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16786, + "fields": { + "EF_ID": 615036, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Batch type incineration - fluidised bed", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "237", + "Unit": "kg/Gg waste wet weight", + "Equation": "Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.3 p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2004). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES). October 2004.", + "English_Abstract": "", + "Lower_Bound": "-1", + "Upper_Bound": "1", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Continuous incineration includes incinerators without daily start-up and shutdown. Batch type and semi-continuous incineration mean that the incinerator is usually started-up and shutdown at least once a day.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.223Z", + "last_change_date": "2022-03-14T08:14:45.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16787, + "fields": { + "EF_ID": 615037, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "CH4 emission factor", + "Technology_Practices": "Open burning of MSW", + "Parameter_Conditions": "Open burning of waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6500", + "Unit": "g/ton MSW wet weight", + "Equation": "Equation 5.4 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C2 Open Burning of Waste", + "Data_Source": "p.5.20, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "USEPA (2001). US-EPA Emission Inventory Improvement Program. Volume III Chapter 16 Open Burning. United States Environmental Protection Agency (USEPA). http://www.epa.gov/ttn/chief/eiip/techreport/volume03/iii16_apr2001.pdf", + "English_Abstract": "", + "Lower_Bound": ".-100%", + "Upper_Bound": ".+100%", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This factor should be applied as a default, unless another CH4 emission factor seems more appropriate. CH4 emissions from incineration and open burning of waste are a result of incomplete combustion. Important factors affecting the emissions are temperature, residence time, and air ratio (i.e., air volume in relation to the waste amount). The CH4 emissions are particularly relevant for open burning, where a large fraction of carbon in the waste is not oxidised. The conditions can vary much, as waste is a very heterogeneous and a low quality fuel with variations in its calorific value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.304Z", + "last_change_date": "2022-03-14T08:14:45.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16788, + "fields": { + "EF_ID": 615038, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Continuous incineration - stoker", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "47", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.374Z", + "last_change_date": "2022-03-14T08:14:45.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16789, + "fields": { + "EF_ID": 615039, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Continuous incineration - fluidised bed", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.476Z", + "last_change_date": "2022-03-14T08:14:45.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16790, + "fields": { + "EF_ID": 615040, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Semi-continuous incineration - stoker", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.554Z", + "last_change_date": "2022-03-14T08:14:45.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16791, + "fields": { + "EF_ID": 615041, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Semi-continuous incineration - fluidised bed", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.615Z", + "last_change_date": "2022-03-14T08:14:45.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16792, + "fields": { + "EF_ID": 615042, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Batch type incineration - stoker", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.702Z", + "last_change_date": "2022-03-14T08:14:45.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16793, + "fields": { + "EF_ID": 615043, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Batch type incineration - fluidised bed", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "221", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.779Z", + "last_change_date": "2022-03-14T08:14:45.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16794, + "fields": { + "EF_ID": 615044, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "Johnke, B. (2003). Emissionsberichterstattung / Inventarerstellung für das Jahr 2002 [Emission reporting / preparation of the inventory for the year 2002]. Umweltbundesamt, Berlin 2003 [In German].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.849Z", + "last_change_date": "2022-03-14T08:14:45.849Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16795, + "fields": { + "EF_ID": 615045, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "Spakman, J., van Loon, M.M.J., van der Auweraert, R.J.K., Gielen, D.J., Olivier, J.G.J. and Zonneveld, E.A. (2004). Method for calculating greenhouse gas emissions. Emission Registration Series/Environmental Monitor No. 37b, MinVROM. The Hague 2003.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:45.953Z", + "last_change_date": "2022-03-14T08:14:45.953Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16796, + "fields": { + "EF_ID": 615046, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.4 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "Anderl, M., Halper, D., Kurzweil, A., Poupa S., Wappel, D., Weiss, P. and Wieser M. (2004). Austria`s National Inventory Report 2004: Submission under the United Nations Framework Convention on Climate Change.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.029Z", + "last_change_date": "2022-03-14T08:14:46.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16797, + "fields": { + "EF_ID": 615047, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "Waste paper, waste wood", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.099Z", + "last_change_date": "2022-03-14T08:14:46.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16798, + "fields": { + "EF_ID": 615048, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "Waste oil", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.8", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.166Z", + "last_change_date": "2022-03-14T08:14:46.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16799, + "fields": { + "EF_ID": 615049, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "waste plastics", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "170", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.263Z", + "last_change_date": "2022-03-14T08:14:46.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16800, + "fields": { + "EF_ID": 615050, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "sludge (except sewage sludge)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "450", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.346Z", + "last_change_date": "2022-03-14T08:14:46.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16801, + "fields": { + "EF_ID": 615051, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "dehydrated sewage sludge", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "900", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.416Z", + "last_change_date": "2022-03-14T08:14:46.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16802, + "fields": { + "EF_ID": 615052, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "high molecular weight flocculant", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "fluidised bed incinerator at normal temperature", + "Value": "1508", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.523Z", + "last_change_date": "2022-03-14T08:14:46.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16803, + "fields": { + "EF_ID": 615053, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "high molecular weight flocculant", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "fluidised bed incinerator at high temperature", + "Value": "645", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.612Z", + "last_change_date": "2022-03-14T08:14:46.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16804, + "fields": { + "EF_ID": 615054, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "high molecular weight flocculant", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "multiple hearth", + "Value": "882", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.682Z", + "last_change_date": "2022-03-14T08:14:46.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16805, + "fields": { + "EF_ID": 615055, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "other flocculant", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "882", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.774Z", + "last_change_date": "2022-03-14T08:14:46.774Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16806, + "fields": { + "EF_ID": 615056, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "lime sludge", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "294", + "Unit": "g N2O/t MSW incinerated on a wet weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GIO (2005). National Greenhouse Gas Inventory Report of JAPAN. Ministry of the Environment/ Japan Greenhouse Gas Inventory Office of Japan (GIO) / Center for Global Environmental Research (CGER) / National Institute for Environmental Studies (NIES).", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.862Z", + "last_change_date": "2022-03-14T08:14:46.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16807, + "fields": { + "EF_ID": 615057, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "sewage sludge", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "990", + "Unit": "g N2O/t MSW incinerated on a dry weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "Johnke, B. (2003). Emissionsberichterstattung / Inventarerstellung für das Jahr 2002 [Emission reporting / preparation of the inventory for the year 2002]. Umweltbundesamt, Berlin 2003 [In German].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:46.929Z", + "last_change_date": "2022-03-14T08:14:46.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16808, + "fields": { + "EF_ID": 615058, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of industrial waste", + "Parameter_Conditions": "industrial waste", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "420", + "Unit": "g N2O/t MSW incinerated on a dry weight basis", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.5 p.5.21, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "Johnke, B. (2003). Emissionsberichterstattung / Inventarerstellung für das Jahr 2002 [Emission reporting / preparation of the inventory for the year 2002]. Umweltbundesamt, Berlin 2003 [In German].", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Nitrous oxide emissions from waste incineration are determined by a function of the type of technology and combustion conditions, the technology applied for NOx reduction as well as the contents of the waste stream. As a result, emission factors can vary from site to site.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.018Z", + "last_change_date": "2022-03-14T08:14:47.018Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16809, + "fields": { + "EF_ID": 615059, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "continuous and semi-continuous incinerators", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "wet weight", + "Value": "50", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.6 p.5.22, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": ".-100%", + "Upper_Bound": ".+100%", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.096Z", + "last_change_date": "2022-03-14T08:14:47.096Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16810, + "fields": { + "EF_ID": 615060, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "batch-type incinerators", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "wet weight", + "Value": "60", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.6 p.5.22, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": ".-100%", + "Upper_Bound": ".+100%", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.162Z", + "last_change_date": "2022-03-14T08:14:47.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16811, + "fields": { + "EF_ID": 615061, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O emission factor", + "Technology_Practices": "Open burning of MSW", + "Parameter_Conditions": "open burning", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "dry weight", + "Value": "150", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C2 Open Burning of Waste", + "Data_Source": "Table 5.6 p.5.22, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": ".-100%", + "Upper_Bound": ".+100%", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.229Z", + "last_change_date": "2022-03-14T08:14:47.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16812, + "fields": { + "EF_ID": 615062, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of Industrial Waste", + "Parameter_Conditions": "all types of incinerators", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "wet weight", + "Value": "100", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.6 p.5.22, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": ".-100%", + "Upper_Bound": ".+100%", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.296Z", + "last_change_date": "2022-03-14T08:14:47.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16813, + "fields": { + "EF_ID": 615063, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of sludge - excep for sewage sludge", + "Parameter_Conditions": "all types of incinerators", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "wet weight", + "Value": "450", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.6 p.5.22, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": ".-100%", + "Upper_Bound": ".+100%", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.387Z", + "last_change_date": "2022-03-14T08:14:47.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16814, + "fields": { + "EF_ID": 615064, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of sewage sludge", + "Parameter_Conditions": "incinerators", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "dry weight", + "Value": "990", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.6 p.5.22, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": ".-100%", + "Upper_Bound": ".+100%", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.462Z", + "last_change_date": "2022-03-14T08:14:47.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16815, + "fields": { + "EF_ID": 615065, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "N2O emission factor", + "Technology_Practices": "Incineration of sewage sludge", + "Parameter_Conditions": "incinerators", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "wet weight", + "Value": "900", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5 of Chapter 5, Volume 5 of 2006 Guidelines", + "IPCC_Worksheet": "4C1 Waste Incineration", + "Data_Source": "Table 5.6 p.5.22, Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Technical_Reference": "GPG2000, Lead Authors of the 2006 IPCC Guidelines, expert judgment", + "English_Abstract": "", + "Lower_Bound": ".-100%", + "Upper_Bound": ".+100%", + "Data_Quality": "Lead Authors of the Chapter 5 in Volume 5 of the 2006 IPCC Guidelines", + "Data_Quality_Reference": "2006 IPCC Guidelines", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.537Z", + "last_change_date": "2022-03-14T08:14:47.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16816, + "fields": { + "EF_ID": 615066, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "MCF (methane correction factor) by SWDS classification", + "Technology_Practices": "Managed- semi-anaerobic", + "Parameter_Conditions": "must have controlled placement of waste will include all of the following: permeable cover material, leachate draining system, regulating pondage, gas ventilation system", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 3.2 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, MCF tab", + "Data_Source": "Table 3.1, p.3.14 of 2006 IPCC Guidelines", + "Technical_Reference": "IPCC (2000), Matsufuji, Y., Kobayashi, H., Tanaka, A., Ando, S., Kawabata, T. and Hanashima, M. (1996). ‘Generation of greenhouse gas effect gases by different landfill types and methane gas control`, Proceedings of 7th ISWA International Congress and Exhibition, 1996:10, No. 1, p. 253-254.", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.604Z", + "last_change_date": "2022-03-14T08:14:47.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16817, + "fields": { + "EF_ID": 615067, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Fraction of Degradable organic carbon which decomposes - DOCf", + "Technology_Practices": "", + "Parameter_Conditions": "under the assumption that the SWDS environment is anaerobic and the DOC values include lignin", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "fraction", + "Equation": "Equation 3.2 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "p. 3.13 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk, H. and Boom, T. (1995). ‘Landfill gas formation, recovery and emissions`, TNO-report R95-203, TNO. Appeldoorn, The Netherlands. Bogner, J. and Matthews, E. (2003). ‘Global methane emissions from landfills: New methodology and annual estimates 1980 – 1996`, Global Biogeochemical Cycles, Vol. 17, No. 2.", + "English_Abstract": "", + "Lower_Bound": ".-20%", + "Upper_Bound": ".+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "with the assumption that SWDS environment is anaerobic and DOC values contain lignin. DOCf value is dependent on many factors like temperature, moisture, pH, composition of waste, etc. National values for DOCf or values from similar countries can be used for DOCf, but they should be based on well-documented research. The reported degradabilities especially for wood, vary over a wide range and is yet quite inconclusive. They may also vary with tree species. Separate DOCf values for specific waste types imply the assumption that degradation of different types of waste is independent of each other.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.670Z", + "last_change_date": "2022-03-14T08:14:47.670Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16818, + "fields": { + "EF_ID": 615068, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "Paper/textiles", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "Slowly degrading waste", + "Value": "0.04", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), IPCC (2000), Brown et al. (1999)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.03 - 0.05. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.764Z", + "last_change_date": "2022-03-14T08:14:47.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16819, + "fields": { + "EF_ID": 615069, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "wood/straw waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "Slowly degrading waste", + "Value": "0.02", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), IPCC (2000), Environment Canada (2003), Levelton (1991)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.01 - 0.03. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value. In this range are reported half-lives values (up to 231 years) that were not included in the table since are derived from extremely low k values used in sites with mean daily temperature <0C (Levelton, 1991)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.837Z", + "last_change_date": "2022-03-14T08:14:47.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16820, + "fields": { + "EF_ID": 615070, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "Other (non-food) organic putrescible/garden and park waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.04 - 0.06. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.904Z", + "last_change_date": "2022-03-14T08:14:47.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16821, + "fields": { + "EF_ID": 615071, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "Food waste/ sewage sludge", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.05 - 0.08. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:47.987Z", + "last_change_date": "2022-03-14T08:14:47.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16822, + "fields": { + "EF_ID": 615072, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "Bulk waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.05", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.04 - 0.06. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.082Z", + "last_change_date": "2022-03-14T08:14:48.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16823, + "fields": { + "EF_ID": 615073, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "paper/textiles", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), and Brown et al. (1999)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.05 - 0.07. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.171Z", + "last_change_date": "2022-03-14T08:14:48.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16824, + "fields": { + "EF_ID": 615074, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "wood/straw waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.02 - 0.04. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.246Z", + "last_change_date": "2022-03-14T08:14:48.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16825, + "fields": { + "EF_ID": 615075, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "other (non-food organic putrescible/garden and park waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "RIVM (2004)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.06 - 0.1. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.320Z", + "last_change_date": "2022-03-14T08:14:48.320Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16826, + "fields": { + "EF_ID": 615076, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "food waste/ sewage sludge", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.185", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), IPCC (2000), Attenborough et al (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.1 - 0.2. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.396Z", + "last_change_date": "2022-03-14T08:14:48.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16827, + "fields": { + "EF_ID": 615077, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "bulk", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "RIVM (2004)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.08 - 0.1. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.501Z", + "last_change_date": "2022-03-14T08:14:48.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16828, + "fields": { + "EF_ID": 615078, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "paper/textiles", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.045", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.04 - 0.06. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.588Z", + "last_change_date": "2022-03-14T08:14:48.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16829, + "fields": { + "EF_ID": 615079, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "wood/straw waste", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.025", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.02 - 0.04. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.663Z", + "last_change_date": "2022-03-14T08:14:48.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16830, + "fields": { + "EF_ID": 615080, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "other (non-food organic putrescible/garden and park waste", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.065", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.05 - 0.08. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.771Z", + "last_change_date": "2022-03-14T08:14:48.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16831, + "fields": { + "EF_ID": 615081, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "food waste/ sewage sludge", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.085", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.07 - 0.1. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.838Z", + "last_change_date": "2022-03-14T08:14:48.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16832, + "fields": { + "EF_ID": 615082, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "bulk", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.065", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.05 - 0.08. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:48.929Z", + "last_change_date": "2022-03-14T08:14:48.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16833, + "fields": { + "EF_ID": 615083, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "paper/textiles", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.06 - 0.085. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.004Z", + "last_change_date": "2022-03-14T08:14:49.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16834, + "fields": { + "EF_ID": 615084, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "wood/straw waste", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.035", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.03 - 0.05. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.071Z", + "last_change_date": "2022-03-14T08:14:49.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16835, + "fields": { + "EF_ID": 615085, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "other (non-food organic putrescible/garden and park waste", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.15 - 0.2. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.141Z", + "last_change_date": "2022-03-14T08:14:49.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16836, + "fields": { + "EF_ID": 615086, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "food waste/ sewage sludge", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "Jensen and Pipatti (2003)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.17 - 0.7. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.208Z", + "last_change_date": "2022-03-14T08:14:49.208Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16837, + "fields": { + "EF_ID": 615087, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "k (methane generation rate)", + "Technology_Practices": "", + "Parameter_Conditions": "bulk", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "table 3.3, p. 3.17 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 0.15 - 0.2. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value. Comment on .15 lower value: Considering t1/2 = 4-7 yr as characteristic values for most developing countries in a tropical climate. High moisture conditions and highly degradable waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.298Z", + "last_change_date": "2022-03-14T08:14:49.298Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16838, + "fields": { + "EF_ID": 615088, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "Paper/textiles", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), IPCC (2000), Brown et al. (1999)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 14 - 23. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.379Z", + "last_change_date": "2022-03-14T08:14:49.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16839, + "fields": { + "EF_ID": 615089, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "wood/straw waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), IPCC (2000), Environment Canada (2003), (Levelton 1991)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 23 - 69 The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value. In this range are reported half-lives values (up to 231 years) that were not included in the table since are derived from extremely low k values used in sites with mean daily temperature <0C (Levelton, 1991)", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.449Z", + "last_change_date": "2022-03-14T08:14:49.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16840, + "fields": { + "EF_ID": 615090, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "Other (non-food) organic putrescible/garden and park waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 12 - 17. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.516Z", + "last_change_date": "2022-03-14T08:14:49.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16841, + "fields": { + "EF_ID": 615091, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "Food waste/ sewage sludge", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 9 - 14. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.583Z", + "last_change_date": "2022-03-14T08:14:49.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16842, + "fields": { + "EF_ID": 615092, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "Bulk waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Dry (MAP/PET less than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 12 - 17. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.683Z", + "last_change_date": "2022-03-14T08:14:49.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16843, + "fields": { + "EF_ID": 615093, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "paper/textiles", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), and Brown et al. (1999)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 10 - 14. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.771Z", + "last_change_date": "2022-03-14T08:14:49.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16844, + "fields": { + "EF_ID": 615094, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "wood/straw waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 17 - 35. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.841Z", + "last_change_date": "2022-03-14T08:14:49.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16845, + "fields": { + "EF_ID": 615095, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "other (non-food organic putrescible/garden and park waste", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "RIVM (2004)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 6 - 9. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.908Z", + "last_change_date": "2022-03-14T08:14:49.908Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16846, + "fields": { + "EF_ID": 615096, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "food waste/ sewage sludge", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), IPCC (2000), Attenborough et al (2002)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 3 - 6. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:49.975Z", + "last_change_date": "2022-03-14T08:14:49.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16847, + "fields": { + "EF_ID": 615097, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "bulk", + "Regional_Conditions": "Boreal and Temperate (MAT = 20C), Wet (MAP/PET greater than 1)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "RIVM (2004)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 6 - 9. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.041Z", + "last_change_date": "2022-03-14T08:14:50.041Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16848, + "fields": { + "EF_ID": 615098, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "paper/textiles", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 12 - 17. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.135Z", + "last_change_date": "2022-03-14T08:14:50.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16849, + "fields": { + "EF_ID": 615099, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "wood/straw waste", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 17 - 35. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.221Z", + "last_change_date": "2022-03-14T08:14:50.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16850, + "fields": { + "EF_ID": 615100, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "other (non-food organic putrescible/garden and park waste", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 9 - 14. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.300Z", + "last_change_date": "2022-03-14T08:14:50.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16851, + "fields": { + "EF_ID": 615101, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "food waste/ sewage sludge", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 6 - 10. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.375Z", + "last_change_date": "2022-03-14T08:14:50.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16852, + "fields": { + "EF_ID": 615102, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "bulk", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Dry (MAP less than 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 9 - 14. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.441Z", + "last_change_date": "2022-03-14T08:14:50.441Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16853, + "fields": { + "EF_ID": 615103, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "paper/textiles", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 8 - 12 The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.508Z", + "last_change_date": "2022-03-14T08:14:50.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16854, + "fields": { + "EF_ID": 615104, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "wood/straw waste", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 14 - 23. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.597Z", + "last_change_date": "2022-03-14T08:14:50.597Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16855, + "fields": { + "EF_ID": 615105, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "other (non-food organic putrescible/garden and park waste", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 3 - 5. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.671Z", + "last_change_date": "2022-03-14T08:14:50.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16856, + "fields": { + "EF_ID": 615106, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "food waste/ sewage sludge", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "Jensen and Pipatti (2003)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 1 - 4. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.741Z", + "last_change_date": "2022-03-14T08:14:50.741Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16857, + "fields": { + "EF_ID": 615107, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Half-Life (t1/2)", + "Technology_Practices": "", + "Parameter_Conditions": "bulk", + "Regional_Conditions": "Tropical (Mat greater than 20C) and Wet (MAP greater than, or equal to, 1000 mm)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "years", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "table 3.4, p. 3.18 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range can be 3 - 5. The range refers to the minimum and maximum data reported in literature or estimated by the authors of the chapter. It is included, basically, to describe the uncertainty associated with the default value. Comment on .15 lower value: Considering t1/2 = 4-7 yr as characteristic values for most developing countries in a tropical climate. High moisture conditions and highly degradable waste.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.804Z", + "last_change_date": "2022-03-14T08:14:50.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16858, + "fields": { + "EF_ID": 615108, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Recovery efficiency for SWDS with landfill gas recovery", + "Technology_Practices": "landfill gas recovery system", + "Parameter_Conditions": "Estimation on the basis of the number of SWDS with landfill gas recovery", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "p 3.19 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk and Boom (1995), Scharff et al (2003), Spokas et al (2006), Diot et al (2001)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Consider ercovery efficiency when CH4 recovery is estimated on the basis of the number of SWDS with landfill gas recovery, before subtract the recovered amount in Equation 3.1 in Chapter 3 of Volume 5, 2006 IPCC Guidelines. 20% is suggested due to the many uncertainties in using this methodology. There have been some measurements of efficiencies at gas recovery projects, and reported efficiencies have been between 10 and 85 percent Oonk and Boom (1995) measured efficiencies at closed, unlined SWDS to be in between 10 and 80 percent, the average over 11 SWDS being 37 percent. More recently Scharff et al. (2003) measured efficiencies at four SWDS to be 9 percent, 50 percent, 55 percent and 33 percent. Spokas et al. (2006) and Diot et al. (2001) recently measured efficiencies above 90 percent. (References can be found in 2006 IPCC Guidelines, Chapter 3 of Volume 5. In general, high recovery efficiencies can be related to closed SWDS, with reduced gas fluxes, well-designed and operated recovery and thicker and less permeable covers. Low efficiencies can be related to SWDS with large parts still being in exploitation and with e.g., temporary sandy covers. The uncertainty range will depend on how the amounts of CH4 recovered and flared or utilised are estimated: +/- 10% if metering is in place. +/- 50% if metering is not in place.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.875Z", + "last_change_date": "2022-03-14T08:14:50.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16859, + "fields": { + "EF_ID": 615109, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "Recovery of landfill gas at SWDS with recovery systems", + "Technology_Practices": "landfill gas recovery system", + "Parameter_Conditions": "When the amount of CH4 recovered is based on the total capacity of utilisation equipment or flares sold.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "35", + "Unit": "% of installed capacity", + "Equation": "", + "IPCC_Worksheet": "IPCC 2006 Waste model", + "Data_Source": "p 3.19 of 2006 IPCC Guidelines", + "Technical_Reference": "Oonk (1993), Scheehle (2006)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "When CH4 recovery is estimated on the basis of the total capacity of utilisation equipement or flares sold, 35 % of the installed capacities can be considered as the total recovery, before subtract the recovered amount in Equation 3.1 in Chapter 3 of Volume 5, 2006 IPCC Guidelines. A conservative estimate of amount of CH4 generated could be based on an inventory of the minimum capacities of the operational utilisation equipment and flares. Another conservative approach is to estimate total recovery as 35 percent of the installed capacities. Based on Dutch and US studies (Oonk, 1993; Scheehle, 2006), recovered amounts varied from 35 to 70 percent of capacity rates. The reasons for the range included (i) running hours from 95 percent down to 80 percent, due to maintenance or technical problems; (ii) overestimated gas production and as result oversized equipment; (iii) back-up flares being largely inactive. The higher rates took these considerations already into account when estimating capacity. The uncertainty range will depend on how the amounts of CH4 recovered and flared or utilised are estimated: +/- 10% if metering is in place. +/- 50% if metering is not in place.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:50.966Z", + "last_change_date": "2022-03-14T08:14:50.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16860, + "fields": { + "EF_ID": 615110, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2006 IPCC default", + "Description": "period between deposition of waste and full production of CH4", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "months", + "Equation": "Equation 3.4 and 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters Tab", + "Data_Source": "p 3.19 of 2006 IPCC Guidelines", + "Technical_Reference": "", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Time estimates for the delay time are uncertain, and will probably vary with waste composition and climatic conditions. Estimates of up to one year have been given in the literature (Gregory et al., 2003; Bergman, 1995; Kämpfer and Weissenfels, 2001; Barlaz, 2004). The IPCC provides a default value of six months for the time delay (IPCC, 1997). This is equivalent to a reaction start time of 1st of January in the year after deposition, when the average residence time of waste in the SWDS has been six months. However, the uncertainty of this assumption is at least 2 months. It is good practice to choose a delay time of between zero and six months. Values outside this range should be supported by evidence.", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "", + "creation_date": "2022-03-14T08:14:51.037Z", + "last_change_date": "2022-03-14T08:14:51.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16861, + "fields": { + "EF_ID": 618414, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW) ", + "Technology_Practices": "", + "Parameter_Conditions": "bulk waste", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.203", + "Unit": "fraction -- Gg C/ Gg bulk waste", + "Equation": "2006 Guidelines: Equation 3.2 in Chapter 3 in Vol. 5, GPG2000: Equation 5.2 and 5.3 in Chapter 5, 1996 Guidelines: Equation 1 in Vol.2.", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab, 1996 Guidelines:6-1 in Vol.2", + "Data_Source": "Other", + "Technical_Reference": "RTI (2006). Documentation of Landfill Methane Emissions Inventory Estimates (1990-2005). Prepared for Melissa Weitz, US Environmental Protection Agency (EPA). November.", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "25%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.116Z", + "last_change_date": "2022-03-14T08:14:51.116Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16862, + "fields": { + "EF_ID": 620721, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "methane generation rate constant (k) ", + "Technology_Practices": "", + "Parameter_Conditions": "Dry climate (<508 mm precipitation /year). The value is applied to dry precipitation region U.S. landfills regardless of temperature.", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "1/year ", + "Equation": "2006Guidlines:Equation 3.4 and 3.5 Chapter 3 in Vol.5, GPG2000:Equation 5.1 in Chapter 5, and 1996 Guidelines:Equation 3 and 4 in Vol.3", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "Other", + "Technical_Reference": "U.S. EPA (2007). INVENTORY OF U.S. GREENHOUSEGAS EMISSIONS AND SINKS: 1990-2005 (April 2007) USEPA #430-R-07-002.Annex 3.12: Methodology for Estimating CH4 Emissions from Landfills, page A-259.http://www.epa.gov/climatechange/emissions/downloads06/07Annex3.pdf.; RTI (2006). Documentation of Landfill Methane Emissions Inventory Estimates (1990-2005). Prepared for Melissa Weitz, US Environmental Protection Agency (EPA). November.; EPA (1998). Compilation of Air Pollution Emission Factors, Publication AP-42, Section 2.4Municipal Solid Waste Landfills. November.; Solid Waste Association of North America (1998). “Comparison of Models for PredictingLandfill Methane Recovery,” Publication No. GR-LG 0075, March.; Carter, J. (2005). “Summary of Inventory Update Task for LMOP (Landfill Methane Outreach Program) and Climate AnalysisBranch,” Memorandum to Elizabeth Scheehle and Rachel Goldstein, EPA. May 31.", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "50%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.200Z", + "last_change_date": "2022-03-14T08:14:51.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16863, + "fields": { + "EF_ID": 620722, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "methane generation rate constant (k) ", + "Technology_Practices": "", + "Parameter_Conditions": "Wet climate (>1016 mm precipitation/year). The value is applied to wet precipitation region U.S. landfills regardless of temperature.", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.057", + "Unit": "1/year ", + "Equation": "2006Guidlines:Equation 3.4 and 3.5 Chapter 3 in Vol.5, GPG2000:Equation 5.1 in Chapter 5, and 1996 Guidelines:Equation 3 and 4 in Vol.3", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "Other", + "Technical_Reference": "U.S. EPA (2007) INVENTORY OF U.S. GREENHOUSEGAS EMISSIONS AND SINKS: 1990-2005 (April 2007) USEPA #430-R-07-002.Annex 3.12: Methodology for Estimating CH4 Emissions from Landfills, page A-259.http://www.epa.gov/climatechange/emissions/downloads06/07Annex3.pdf.; RTI (2006) Documentation of Landfill Methane Emissions Inventory Estimates (1990-2005). Prepared for Melissa Weitz, US Environmental Protection Agency (EPA). November.; EPA (1998) Compilation of Air Pollution Emission Factors, Publication AP-42, Section 2.4Municipal Solid Waste Landfills. November.; Solid Waste Association of North America (1998) “Comparison of Models for PredictingLandfill Methane Recovery,” Publication No. GR-LG 0075, March.; Carter, J. (2005) “Summary of Inventory Update Task for LMOP (Landfill Methane Outreach Program) and Climate AnalysisBranch,” Memorandum to Elizabeth Scheehle and Rachel Goldstein, EPA. May 31.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "30%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.266Z", + "last_change_date": "2022-03-14T08:14:51.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16864, + "fields": { + "EF_ID": 620723, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "methane generation rate constant (k) ", + "Technology_Practices": "", + "Parameter_Conditions": "Moderate climate (508 to 1016 mm precipitation/year). The value is applied to moderate precipitation region U.S. landfills regardless of temperature.", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.038", + "Unit": "1/year ", + "Equation": "2006Guidlines:Equation 3.4 and 3.5 Chapter 3 in Vol.5, GPG2000:Equation 5.1 in Chapter 5, and 1996 Guidelines:Equation 3 and 4 in Vol.3", + "IPCC_Worksheet": "IPCC 2006 Waste model, Parameters tab", + "Data_Source": "Other", + "Technical_Reference": "U.S. EPA (2007). INVENTORY OF U.S. GREENHOUSEGAS EMISSIONS AND SINKS: 1990-2005 (April 2007) USEPA #430-R-07-002.Annex 3.12: Methodology for Estimating CH4 Emissions from Landfills, page A-259.http://www.epa.gov/climatechange/emissions/downloads06/07Annex3.pdf.; RTI (2006). Documentation of Landfill Methane Emissions Inventory Estimates (1990-2005). Prepared for Melissa Weitz, US Environmental Protection Agency (EPA). November.; EPA (1998) Compilation of Air Pollution Emission Factors, Publication AP-42, Section 2.4Municipal Solid Waste Landfills. November.; Solid Waste Association of North America (1998) “Comparison of Models for PredictingLandfill Methane Recovery,” Publication No. GR-LG 0075, March.; Carter, J. (2005) “Summary of Inventory Update Task for LMOP (Landfill Methane Outreach Program) and Climate AnalysisBranch,” Memorandum to Elizabeth Scheehle and Rachel Goldstein, EPA. May 31.", + "English_Abstract": "", + "Lower_Bound": "-30%", + "Upper_Bound": "30%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.351Z", + "last_change_date": "2022-03-14T08:14:51.351Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16865, + "fields": { + "EF_ID": 620724, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Biogas generation rate at anaerobic digesters, in cubic feet per person per day. To be used with the number of people whose wastewater is treated by the digester. ", + "Technology_Practices": "Anaerobic digesters", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02832", + "Unit": "m3/cap/day", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol. 5; 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3,", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "Metcalf and Eddy, Inc. (1991) Wastewater Engineering: Treatment, Disposal and Reuse, 3rd ed., McGraw Hill Publishing.", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "10%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane content (typically 65%) must be applied to value to estimate methane emissions", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.425Z", + "last_change_date": "2022-03-14T08:14:51.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16866, + "fields": { + "EF_ID": 620725, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wastewater generation from Poultry processing. Volume of wastewater generated per Mg of product.", + "Technology_Practices": "Poultry processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.5", + "Unit": "m3/Mg", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol. 5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3.", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (2002) Development Document for the Proposed Effluent Limitations Guidelines and Standards for the Meat and Poultry Products Industry Point Source Category (40 CFR 432). Office of Water. EPA-821-B-01-007, Washington DC, January 2002. http://www.epa.gov/guide/mpp/proposed/technicaldev.pdf", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "50%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with COD/wastewater generated in ID: 620732", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.491Z", + "last_change_date": "2022-03-14T08:14:51.491Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16867, + "fields": { + "EF_ID": 620726, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wastewater generation from potato processing. Volume of wastewater generated per metric ton of product.", + "Technology_Practices": "potato processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.27", + "Unit": "m3/Mg", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol. 5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1974) Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Apple, Citrus, and Potato Processing Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. Office of Water. EPA-440/1-74-027-a, Washington DC, March.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with COD/wastewater generated in ID: 620733", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.577Z", + "last_change_date": "2022-03-14T08:14:51.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16868, + "fields": { + "EF_ID": 620727, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation from other vegetables processing. Volume of wastewater generated per metric ton of product.", + "Technology_Practices": "Other vegetable processing", + "Parameter_Conditions": "This factor was calculated as the weighted average of values for asparagus, broccoli, cauliflower, lima beans, snap beans, beets, cabbage (sauerkraut), sweet corn, cucumbers (pickles), green peas, spinach, and tomatoes processed in the U.S. Tomatoes were 63%, corn was 19%, and the other vegetables contributed less than 5% each.", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.86", + "Unit": "m3/Mg", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1975) Development Document for Interim Final and Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Fruits, Vegetables, and Specialties Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. United States Environmental Protection Agency, Office of Water. EPA-440/1-75-046, Washington DC, October 1975.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Type of parameter (measured, modeled, compiled or other) is unknown.)", + "Data_Provider_Comments": "To be used with COD/wastewater generated in ID:620734", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.692Z", + "last_change_date": "2022-03-14T08:14:51.692Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16869, + "fields": { + "EF_ID": 620728, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wastewater generation from apple processing. Volume of wastewater generated per metric ton of product.", + "Technology_Practices": "Apple processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.66", + "Unit": "m3/Mg", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1974) Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Apple, Citrus, and Potato Processing Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. Office of Water. Office of Water. EPA-440/1-74-027-a, Washington DC, March.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with COD/wastewater generated in waste ID:620735", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.758Z", + "last_change_date": "2022-03-14T08:14:51.758Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16870, + "fields": { + "EF_ID": 620729, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wastewater generation from citrus processing. Volume of wastewater generated per metric ton of product.", + "Technology_Practices": "Citrus processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.11", + "Unit": "m3/Mg", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1974) Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Apple, Citrus, and Potato Processing Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. Office of Water. EPA-440/1-74-027-a, Washington DC, March.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with COD/wastewater generated in ID:620736", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.854Z", + "last_change_date": "2022-03-14T08:14:51.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16871, + "fields": { + "EF_ID": 620730, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater generation from non-citrus processing. Volume of wastewater generated per metric ton of product.", + "Technology_Practices": "Non-citrus processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.42", + "Unit": "m3/Mg", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1975) Development Document for Interim Final and Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Fruits, Vegetables, and Specialties Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. United States Environmental Protection Agency, Office of Water. EPA-440/1-75-046, Washington DC, October 1975.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Type of parameter (measured, modeled, compiled or other) is unknown.)", + "Data_Provider_Comments": "To be used with COD/wastewater generated in ID:620737", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:51.941Z", + "last_change_date": "2022-03-14T08:14:51.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16872, + "fields": { + "EF_ID": 620731, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wastewater generation from grape processing. Volume of wastewater generated per metric ton of product.", + "Technology_Practices": "Grapes processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.783", + "Unit": "m3/Mg", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3,", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "Environmental Science and Engineering, Inc. (ESE) (1975) Draft Development Document for Effluent Limitations Guidelines and new Source Performance Standards for the Miscellaneous Foods and Beverages Point Source Category. Prepared by Environmental Science and Engineering, Inc. for U.S. EPA. February 1975.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with COD/wastewater generated in ID:620738", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.017Z", + "last_change_date": "2022-03-14T08:14:52.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16873, + "fields": { + "EF_ID": 620732, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "Poultry processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.508", + "Unit": "g/l", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3.", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (2002) Development Document for the Proposed Effluent Limitations Guidelines and Standards for the Meat and Poultry Products Industry Point Source Category (40 CFR 432). Office of Water. EPA-821-B-01-007, Washington DC, January 2002. http://www.epa.gov/guide/mpp/proposed/technicaldev.pdf", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "25%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with wastewater generation ID:620725", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.083Z", + "last_change_date": "2022-03-14T08:14:52.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16874, + "fields": { + "EF_ID": 620733, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biochemical Oxygen Demand (BOD) ", + "Technology_Practices": "potato processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.765", + "Unit": "g/l", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1974) Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Apple, Citrus, and Potato Processing Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. Office of Water. EPA-440/1-74-027-a, Washington DC, March.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with wastewater generation ID:620726", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.173Z", + "last_change_date": "2022-03-14T08:14:52.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16875, + "fields": { + "EF_ID": 620734, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biochemical Oxygen Demand (BOD) ", + "Technology_Practices": "Other vegetable processing", + "Parameter_Conditions": "This factor was calculated as the weighted average of values for asparagus, broccoli, cauliflower, lima beans, snap beans, beets, cabbage (sauerkraut), sweet corn, cucumbers (pickles), green peas, spinach, and tomatoes processed in the U.S. Tomatoes were 63%, corn was 19%, and the other vegetables contributed less than 5% each.", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.813", + "Unit": "g/l", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1975) Development Document for Interim Final and Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Fruits, Vegetables, and Specialties Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. United States Environmental Protection Agency, Office of Water. EPA-440/1-75-046, Washington DC, October 1975.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with wastewater generation ID:620727", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.250Z", + "last_change_date": "2022-03-14T08:14:52.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16876, + "fields": { + "EF_ID": 620735, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "Apple processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.371", + "Unit": "g/l", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4, 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1974) Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Apple, Citrus, and Potato Processing Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. Office of Water. EPA-440/1-74-027-a, Washington DC, March.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with wastewater generation ID:620728", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.317Z", + "last_change_date": "2022-03-14T08:14:52.317Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16877, + "fields": { + "EF_ID": 620736, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "Citrus processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.317", + "Unit": "g/l", + "Equation": "2006 Guidelines:Equation 6.6 I Chapter 6 of Vol. 5.; 1996 Guidelines:Equation 8 in Vol.3,", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1974) Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Apple, Citrus, and Potato Processing Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. Office of Water. EPA-440/1-74-027-a, Washington DC, March.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with wastewater generation ID: 620729", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.383Z", + "last_change_date": "2022-03-14T08:14:52.383Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16878, + "fields": { + "EF_ID": 620737, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "Non-citrus processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.204", + "Unit": "g/l", + "Equation": "2006 Guidelines: Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (1975) Development Document for Interim Final and Proposed Effluent Limitations Guidelines and New Source Performance Standards for the Fruits, Vegetables, and Specialties Segment of the Canned and Preserved Fruits and Vegetables Point Source Category. United States Environmental Protection Agency, Office of Water. EPA-440/1-75-046, Washington DC, October 1975.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with wastewater generation ID:620730", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.475Z", + "last_change_date": "2022-03-14T08:14:52.475Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16879, + "fields": { + "EF_ID": 620738, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biochemical Oxygen Demand (BOD) ", + "Technology_Practices": "Grapes processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.8305", + "Unit": "g/l", + "Equation": "2006 Guidelines: Equation 6.6 in Chapter 6 of Vol. 5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "Environmental Science and Engineering (ESE) (1975) Draft Development Document for Effluent Limitations Guidelines and new Source Performance Standards for the Miscellaneous Foods and Beverages Point Source Category. Prepared by Environmental Science and Engineering, Inc. for U.S. EPA. February 1975.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with wastewater generation ID:620731", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.558Z", + "last_change_date": "2022-03-14T08:14:52.558Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16880, + "fields": { + "EF_ID": 620739, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wastewater generation from red meat processing. Volume of wastewater generated per metric ton of product.", + "Technology_Practices": "Red meat processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "m3/Mg", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol. 5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (2002) Development Document for the Proposed Effluent Limitations Guidelines and Standards for the Meat and Poultry Products Industry Point Source Category (40 CFR 432). Office of Water. EPA-821-B-01-007, Washington DC, January 2002. http://www.epa.g", + "English_Abstract": "", + "Lower_Bound": "-50%", + "Upper_Bound": "50%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with COD/wastewater generated in ID:620740", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.629Z", + "last_change_date": "2022-03-14T08:14:52.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16881, + "fields": { + "EF_ID": 620740, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD)", + "Technology_Practices": "Red meat processing", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.822", + "Unit": "g/l", + "Equation": "2006 Guidelines:Equation 6.6 in Chapter 6 of Vol.5, 1996 Guidelines:Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "1996 Guidelines: 6-3, 1 of 4; 2006 Guidelines: 4D2, 1 of 3", + "Data_Source": "Other", + "Technical_Reference": "EPA (2002) Development Document for the Proposed Effluent Limitations Guidelines and Standards for the Meat and Poultry Products Industry Point Source Category (40 CFR 432). Office of Water. EPA-821-B-01-007, Washington DC, January 2002. http://www.epa.gov/guide/mpp/proposed/technicaldev.pdf", + "English_Abstract": "", + "Lower_Bound": "-25%", + "Upper_Bound": "25%", + "Data_Quality": "Unknown", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "To be used with wastewater generation ID:620739", + "Other_Comments": "", + "Data_Provider": "United States Environmental Protection Agency", + "Link": "", + "creation_date": "2022-03-14T08:14:52.704Z", + "last_change_date": "2022-03-14T08:14:52.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16882, + "fields": { + "EF_ID": 621060, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate constant (k)", + "Technology_Practices": "", + "Parameter_Conditions": "Bulk and new MSW", + "Regional_Conditions": "Brazil; Wet tropical climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.21", + "Unit": "1/year", + "Equation": "Equation 3.4 and Equation 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines; Equation 5.1 in Chapter 5, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (2000)", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Machado, S.L., Carvalho, M.F., Gourc, J-P., Vilar, O.M., Nascimento, J.C.F., Methane generation in tropical landfills: Simplified methods and field results, Waste Management, 2009, 29, 153-161", + "English_Abstract": "This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed; and simplified procedures to estimate the methane generation potential, Lo, and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values Lo and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:52.785Z", + "last_change_date": "2022-03-14T08:14:52.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16883, + "fields": { + "EF_ID": 621061, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation potential (Lo)", + "Technology_Practices": "", + "Parameter_Conditions": "Bulk and new MSW", + "Regional_Conditions": "Brazil; Wet tropical climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65.9", + "Unit": "m^3 CH4/Mg", + "Equation": "Equation 3.3 in Chapter 3 of Volume 5, 2006 IPCC Guidelines; Equation 5.1 and Equation 5.3 in Chapter 5, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (2000);", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Machado, S.L., Carvalho, M.F., Gourc, J-P., Vilar, O.M., Nascimento, J.C.F., Methane generation in tropical landfills: Simplified methods and field results, Waste Management, 2009, 29, 153-161", + "English_Abstract": "This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed; and simplified procedures to estimate the methane generation potential, Lo, and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values Lo and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:52.858Z", + "last_change_date": "2022-03-14T08:14:52.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16884, + "fields": { + "EF_ID": 621062, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Dry matter content (dm)", + "Technology_Practices": "", + "Parameter_Conditions": "New MSW", + "Regional_Conditions": "Brazil; Wet tropical climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Paper/cardboard 45; Textiles 47; Paste 47; Wood 64; Rubber and leather 82; Plastics 59; Metal 85; Glass 99", + "Unit": "% of wet weight", + "Equation": "Equation 5.1, 5.2 and 5.8 in Chapter 5 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheets 4C1, 4C2 of the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Machado, S.L., Carvalho, M.F., Gourc, J-P., Vilar, O.M., Nascimento, J.C.F., Methane generation in tropical landfills: Simplified methods and field results, Waste Management, 2009, 29, 153-161", + "English_Abstract": "This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed; and simplified procedures to estimate the methane generation potential, Lo, and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values Lo and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:52.929Z", + "last_change_date": "2022-03-14T08:14:52.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16885, + "fields": { + "EF_ID": 621063, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Decomposable degradable organic carbon (DDOCm)", + "Technology_Practices": "", + "Parameter_Conditions": "New MSW", + "Regional_Conditions": "Brazil; Wet tropical climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.114", + "Unit": "mass fraction, dry basis", + "Equation": "Equation 3.2 and Equation 3.3 in Chapter 3 of Volume 5, 2006 IPCC Guidelines;", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Machado, S.L., Carvalho, M.F., Gourc, J-P., Vilar, O.M., Nascimento, J.C.F., Methane generation in tropical landfills: Simplified methods and field results, Waste Management, 2009, 29, 153-161", + "English_Abstract": "This paper deals with the use of simplified methods to predict methane generation in tropical landfills. Methane recovery data obtained on site as part of a research program being carried out at the Metropolitan Landfill, Salvador, Brazil, is analyzed and used to obtain field methane generation over time. Laboratory data from MSW samples of different ages are presented and discussed; and simplified procedures to estimate the methane generation potential, Lo, and the constant related to the biodegradation rate, k are applied. The first order decay method is used to fit field and laboratory results. It is demonstrated that despite the assumptions and the simplicity of the adopted laboratory procedures, the values Lo and k obtained are very close to those measured in the field, thus making this kind of analysis very attractive for first approach purposes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.019Z", + "last_change_date": "2022-03-14T08:14:53.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16886, + "fields": { + "EF_ID": 621064, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Oxidation factor (OX)", + "Technology_Practices": "", + "Parameter_Conditions": "Closed boreal landfill with methane oxidative top soil cover. The upper part of the top soil cover (thickness 50 cm) was made from sludge compost and peat. The lower 50 cm part of the soil cover was composed of mineral soil.", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25-46", + "Unit": "%", + "Equation": "Equation 3.1 in Chapter 3 of Volume 5, 2006 IPCC Guidelines; Equation 5.2 and Equation 5.3 in Chapter 5, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (2000);", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Einola, J., Sormunen, K., Lensu, A., Leiskallio, A., Ettala, M., Rintala, J. Methane oxidation at a surface-sealed boreal landfill, Waste Management, 2009, 29, 2105-2120", + "English_Abstract": "Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m^3/ha/h. Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m^3/ha/h) and methane emissions (6-135 m^3/ha/h) compared to the other points (less than 20 m^3/ha/h and less than 10 m^3/ha/h, respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.117Z", + "last_change_date": "2022-03-14T08:14:53.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16887, + "fields": { + "EF_ID": 621065, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Concentration of methane in gas well", + "Technology_Practices": "", + "Parameter_Conditions": "Closed boreal landfill. Approximately 200,000 tonnes of MSW was deposited in the landfill over the period 1987-2001. The maximum thickness of the waste layer is 10 m (average waste height 7m).", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44-63", + "Unit": "%", + "Equation": "Equation 5.1 page 5.6 IPCC GPG 2000 Equation 3.3 page 3.9, Equation 3.6 page 3.10 Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Einola, J., Sormunen, K., Lensu, A., Leiskallio, A., Ettala, M., Rintala, J. Methane oxidation at a surface-sealed boreal landfill, Waste Management, 2009, 29, 2105-2120", + "English_Abstract": "Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m^3/ha/h. Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m^3/ha/h) and methane emissions (6-135 m^3/ha/h) compared to the other points (less than 20 m^3/ha/h and less than 10 m^3/ha/h, respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.212Z", + "last_change_date": "2022-03-14T08:14:53.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16888, + "fields": { + "EF_ID": 621066, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of degradable organic C which decomposes (DOCf)", + "Technology_Practices": "", + "Parameter_Conditions": "The landfill site had ceased to receive waste 46 years prior to sampling. The landfill site was excavated in December 2002.", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Wood products: [A] 0.3 (if lignin is not considered to be degradable) and [B] 0.18 (if lignin is considered to be degradable).", + "Unit": "fraction", + "Equation": "Equation 3.2 in Chapter 3 of Volume 5, 2006 IPCC Guidelines; Page 5.8 in Chapter 5, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (2000);", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F.A., Gardner, W.D., and Cowie, A.L. The decomposition of wood products in landfills in Sydney, Australia Waste Management, 2008, 28, 2344-2354", + "English_Abstract": "Three landfill sites that had been closed for 19, 29 and 46 years and had been operated under different management systems were excavated in Sydney. The mean moisture content of the wood samples ranged from 41.6% to 66.8%. The wood products recovered were identified to species, and their carbon, cellulose, hemicellulose and lignin concentration were determined and compared to those of matched samples of the same species. No significant loss of dry mass was measured in wood products buried for 19 and 29 years, but where refuse had been buried for 46 years, the measured loss of carbon (as a percentage of dry biomass) was 8.7% for hardwoods and 9.1% for softwoods, equating to 18% and 17% of their original carbon content, respectively. The results indicate that published decomposition factors based on laboratory research significantly overestimate the decomposition of wood products in landfill.", + "Lower_Bound": "0.19 (for [A] ); 0.11 (for [B])", + "Upper_Bound": "0.41 (for [A]); 0.25 (for [B])", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainty information is provided by the corresponding author.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.313Z", + "last_change_date": "2022-03-14T08:14:53.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16889, + "fields": { + "EF_ID": 621067, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for CH4 from composting", + "Technology_Practices": "", + "Parameter_Conditions": "Backyard composting and open windrow composting", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Windrow composting: biowaste 243-293; greenwaste 49-604; sewage sludge 37-45. Backyard composting: biowaste 788.", + "Unit": "g/Mg fresh matter", + "Equation": "Equation 4.1 in Chapter 4 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worsheet 4B in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Amlinger, F., Peyr, S., and Cuhls, C. Greenhouse gas emissions from composting and mechanical biological treatment, Waste Management Research, 2008, 26, 47-60", + "English_Abstract": "In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N 2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01—0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.413Z", + "last_change_date": "2022-03-14T08:14:53.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16890, + "fields": { + "EF_ID": 621068, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O from composting", + "Technology_Practices": "", + "Parameter_Conditions": "Backyard composting and open windrow composting", + "Regional_Conditions": "Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Windrow composting: biowaste 27-116; greenwaste 25-178; sewage sludge 165-266. Backyard composting: biowaste 192.", + "Unit": "g/Mg fresh matter", + "Equation": "Equation 4.2 in Chapter 4 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worsheet 4B in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Amlinger, F., Peyr, S., and Cuhls, C. Greenhouse gas emissions from composting and mechanical biological treatment, Waste Management Research, 2008, 26, 47-60", + "English_Abstract": "In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important methodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N 2O) and ammoniac (NH3) emissions. If ammoniac is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01—0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.515Z", + "last_change_date": "2022-03-14T08:14:53.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16891, + "fields": { + "EF_ID": 621182, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half-live (t_1/2) of waste component decomposition. This is related to the first-order rate constant, k, as follows: t_1/2 = ln(2)/k", + "Technology_Practices": "", + "Parameter_Conditions": "Country: Austria", + "Regional_Conditions": "Region: Central Europe. Climate: Ranges from Highland to Humid Sub-tropical in the south.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "The following half-lives are used for these waste components in landfilled waste: wood (25), paper and textiles (15), sludges including sewage sludge (7), bio-waste (10), residual waste (7).", + "Unit": "years", + "Equation": "The Austria NIR is based on Tier 2 methodology for calculating methane emissions from waste disposed to land. See Equations 3.4 and 3.5. (2006 IPCC Guidelines for National Greenhouse Gas Inventories - Volume 5 - Waste).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Austria`s National Inventory Report 2007. Submission under the United Nations Framework Convention on Climate Change prepared by M Anderl et al, Umweltbundesamt, Vienna, ISBN 3-85457-881-4. Gilberg al (2005) Waste management in Europe and the landfill directive, background paper from the ETC/RWM to the ETC/ACC workshop, Inventories & projections of greenhouse gas emissions from waste, European Environment Agency. Unidentified national waste experts.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Residual waste corresponds with waste from households and similar sources after segreation and deposited directly in landfills. This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.632Z", + "last_change_date": "2022-03-14T08:14:53.632Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16892, + "fields": { + "EF_ID": 621183, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degradable Organic Carbon (DOC) of waste components. (This is understood to be on a moist mass basis.)", + "Technology_Practices": "", + "Parameter_Conditions": "Country: Austria", + "Regional_Conditions": "Region: Central Europe. Climate: Ranges from Highland to Humid Sub-tropical in the south.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "The following values are reported in the NIR: Residual waste (0.6), wood (0.45), paper (0.3), sludges (0.11), bulky and other wastes (0.16), bio-waste (0.16), textiles (0.5), construction waste (0.09) and fats (0.2).", + "Unit": "Dimensionless fraction", + "Equation": "The Austria NIR is based on Tier 2 methodology for calculating methane emissions from waste disposed to land. See Equation 3.2. (2006 IPCC Guidelines for National Greenhouse Gas Inventories - Volume 5 - Waste).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Austria`s National Inventory Report 2007. Submission under the United Nations Framework Convention on Climate Change prepared by M Anderl et al, Umweltbundesamt, Vienna, ISBN 3-85457-881-4. Baumeler et al (1998) Reduktion von Treibhausgasen bei Optimerung der Abfallwirtschaft (CH4). Schriftenreih der Energieforschungsgemeinschaft im Verand der E-Erke Oesterreichs, Wein, 1998. Hackl, A & Mauschitz, G. (1999). Beltraege zum Klimaschutz durch nachhaltige Restmuellbehandlung. Studie im Auftrag des Bundesministeriums fuer Umwelt, Jugend und Familie, Weitra. Rolland, CH & Scheibengraf, M. (2003). Biologisch abbaubarer Kohlenstoff im Restmuell. Umweltbundesamt BE 236, Wien 2003.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.742Z", + "last_change_date": "2022-03-14T08:14:53.742Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16893, + "fields": { + "EF_ID": 621184, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "First-order rate constant (k) for waste decay, related to half-life (t_1/2) as follows: k = ln(2)/t_1/2; (The following rate constants and half-lives are used for the following waste categories.)", + "Technology_Practices": "", + "Parameter_Conditions": "Country: Italy", + "Regional_Conditions": "Region: Southern Europe; Climate: subtropical - dry summer.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "For [rapidly biodegradable] (k = 0.69, t_1/2 = 1), For [moderately biodegradable] (k = 0.14, t_1/2 = 5), For [slowly biodegradable] (k = 0.05, t_1/2 = 15).", + "Unit": "Unit - k: /year; t_1/2: year", + "Equation": "The Italian NIR is based on Tier 2 methodology for calculating methane emissions from waste disposed to land. See Equations 3.4 and 3.5. (2006 IPCC Guidelines for National Greenhouse Gas Inventories - Volume 5 - Waste).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Italian Greenhouse Gas Inventory 1990-2005 - National Inventory Report 2007. APAT. National Conference 2007. Andreottola, G & Cossu, R (1988) Modello matematica di produzione del biogas in uno scarico controllato. RS - Rifiuti Solidi vol II, no 6, pp473-483.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:53.934Z", + "last_change_date": "2022-03-14T08:14:53.934Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16894, + "fields": { + "EF_ID": 621185, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of Degradable Organic Carbon that can degrade (DOC_F)", + "Technology_Practices": "", + "Parameter_Conditions": "Country: Netherlands", + "Regional_Conditions": "Region: North-western Europe; Climate: Humid oceanic.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "dimensionless: fraction of DOC that degrades.", + "Equation": "The Netherlands NIR is based on Tier 2 methodology for calculating methane emissions from waste disposed to land. See Equations 3.2 (2006 IPCC Guidelines for National Greenhouse Gas Inventories - Volume 5 - Waste).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Supplemantary report to the Netherlands NIR (National Inventory Report) submitted in 2007; Oonk H., Weenk A., Coops O., Luning L., (1994) Validation of landfill gas formation models, TNO report 94-315, Apeldoorn, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Dutch inventory uses a value of 0.58 for this parameter. (IPCC default is 0.5 - 0.6). This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.042Z", + "last_change_date": "2022-03-14T08:14:54.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16895, + "fields": { + "EF_ID": 621186, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "First-order rate constant (k) for waste decay, related to half-life (t_1/2) as follows: k = ln(2)/t_1/2; (The following rate constants and half-lives are used for the following waste categories.)", + "Technology_Practices": "", + "Parameter_Conditions": "Country: Netherlands", + "Regional_Conditions": "Region: North-western Europe; Climate: Humid oceanic.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "k = 0.094 (t_1/2 = 7.5) from 1945 through 1989; Reducing from 1990 to k = 0.0693 in 1995; thereafter constant at k = 0.0693 (t_1/2 = 10).", + "Unit": "Unit - k: /year; t_1/2: year", + "Equation": "The Netherlands NIR is based on Tier 2 methodology for calculating methane emissions from waste disposed to land. See Equations 3.4 and 3.5. (2006 IPCC Guidelines for National Greenhouse Gas Inventories - Volume 5 - Waste).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Supplemantary report to the Netherlands NIR (National Inventory Report) submitted in 2007; Oonk H., Weenk A., Coops O., Luning L., (1994) Validation of landfill gas formation models, TNO report 94-315, Apeldoorn, Netherlands.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Dutch inventory adopts the value shown in this table. This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.117Z", + "last_change_date": "2022-03-14T08:14:54.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16896, + "fields": { + "EF_ID": 621187, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degradable Organic Carbon content of waste (DOC)", + "Technology_Practices": "", + "Parameter_Conditions": "Country: Netherlands", + "Regional_Conditions": "Region: North-western Europe; Climate: Humid oceanic.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132 from 1945 through 1989; Reducing from 1990 linear to 125 in 1995; 120 in 1996 and 1997", + "Unit": "kg DOC / tonne of waste landfilled", + "Equation": "The Netherlands NIR is based on Tier 2 methodology for calculating methane emissions from waste disposed to land. See Equations 3.2. (2006 IPCC Guidelines for National Greenhouse Gas Inventories - Volume 5 - Waste).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Supplemantary report to the Netherlands NIR (National Inventory Report) submitted in 2007; De Jager, D; . Blok, K, (1993) Onderzoek naar het gehalte aan organische stof in de verschillende afvalcomponenten (Research into volatile solids content in the various waste components), Utrecht, 1993 Spakman J.; et al (1997) Methode voor de berekening van broeikasgasemissies (Method of calculating greenhouse gas emissions), VROM, Emissions registration 37. Published in: Klein Goldewijk, K; Olivier, J. G.J.; Peters, J.A.H.W; Coenen, P.W.H.G; Vreeuls, H.H.J.(2004) Greenhouse gas emissions in the Netherlands 1990-2002. National Inventory Report 2004. RIVM report 773201008/2004.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "After 1997 the values were determined annually by SenterNovem. This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.196Z", + "last_change_date": "2022-03-14T08:14:54.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16897, + "fields": { + "EF_ID": 621188, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Half-live (t_1/2) of waste component decomposition. This is related to the first-order rate constant, k, as follows: t_1/2 = ln(2)/k", + "Technology_Practices": "", + "Parameter_Conditions": "Country: Norway", + "Regional_Conditions": "Region: Northern Europe - Scandinavia: Climate ranges from humid oceanic and humid continental in the south to sub-arctic and tundra in the central and northen parts.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "The Norwegian inventory uses the following half-lives for waste components: Food waste (3.7), Paper (11.6), Wood (23.1), Textiles (11.6).", + "Unit": "years", + "Equation": "The Norwegian NIR is based on a modified Tier 2 methodology for calculating methane emissions from waste disposed to land. See Equations 3.4 and 3.5. (2006 IPCC Guidelines for National Greenhouse Gas Inventories - Volume 5 - Waste).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Revised National Inventory Report 2007 - Norway. Greenhouse Gas Eissions 1990 - 2005 Reported According to the UNFCCC Reporting Guidelines. SFT (2005) Methane emissions from solid waste disposal sites. TA-2079. ISBN 82-7655-246-3.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.285Z", + "last_change_date": "2022-03-14T08:14:54.285Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16898, + "fields": { + "EF_ID": 621189, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degradable Organic Carbon content of waste (DOC)", + "Technology_Practices": "", + "Parameter_Conditions": "Country: Norway", + "Regional_Conditions": "Region: Northern Europe - Scandinavia: Climate ranges from humid oceanic and humid continental in the south to sub-arctic and tundra in the central and northen parts.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "The following values are used: Food waste (0.15), Paper (0.40), Wood (0.40), Textiles (0.40).", + "Unit": "kg DOC / tonne of waste landfilled", + "Equation": "The Norwegian NIR is based on Tier 2 methodology for calculating methane emissions from waste disposed to land. See Equations 3.2. (2006 IPCC Guidelines for National Greenhouse Gas Inventories - Volume 5 - Waste).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Revised National Inventory Report 2007 - Norway. Greenhouse Gas Eissions 1990 - 2005 Reported According to the UNFCCC Reporting Guidelines. SFT (2005) Methane emissions from solid waste disposal sites. TA-2079. ISBN 82-7655-246-3.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.359Z", + "last_change_date": "2022-03-14T08:14:54.359Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16899, + "fields": { + "EF_ID": 621190, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate constant (first order rate constant) of components in Municipal Solid Waste (MSW) and Commercial & Industrial (C&I) Waste", + "Technology_Practices": "", + "Parameter_Conditions": "Country: UK", + "Regional_Conditions": "Region: North-western Europe; Climate: Humid oceanic.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Varies according to whether the waste component is considered to degrade rapidly (0.116), moderately (0.076) or slowly (0,046) , or is inert (0.00) in the landfill.", + "Unit": "1/year", + "Equation": "The UK method is based on Equations 4 and 5 in the Revised 1996 IPCC guidelines (IPCC, 1997) (pp 6.10-6.11), which are compatible with Equations 5.1 and 5.2 in the Good Practice Guidance (IPCC, 2000). A slightly modified version of Equation 5.1 is used, which takes into account the fact that the model uses a finite time interval (one year).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "UK Greenhouse Gas Inventory 1990:2005 - Annual Report for Submission to the United Nations Framework Convention on Climate Change by SL Baggott et al, AEA Technology plc for the Department for Environment, Food and Rural Affairs (Defra), April 2007. ISBN 0-9554823-1-3 Main report and Annexes Table A 3.8.1. Golder associates (2005) UK Landfill Methane Emissions: Evaluation and appraisal of waste policies and projections to 2050. Report version A.2. November 2005. Report to the Defra by S Arnold et al. Report no 05529424.500. LQM (2003) Methane emissions from landfill sites in the UK. Final Report January 2003 to Defra by R G Gregory et al, LQM Report 443/1. Defra contract no EPG/1/1/145.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table A3.8.1 and 2 in the Annexes to the National Inventory Report shows how components in the MSW and Commercial & Industrial waste streams have been proportioned between rapidly, moderately and slowly degrading, and inert fractions. This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.453Z", + "last_change_date": "2022-03-14T08:14:54.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16900, + "fields": { + "EF_ID": 621191, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Municipal Solid Waste (MSW) ", + "Technology_Practices": "", + "Parameter_Conditions": "Country: UK", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Based on the cellulose and hemicellulose content of the waste component: Paper & card 31.24; Textiles 17.78; Miscellaneous combustibles (non-inert fines from 1995) 22.22; Putrescible 17.20; Composted putrescibles 0.62; Non-inert fines 22.22.", + "Unit": "% DOC by dry weight", + "Equation": "The UK method is based on Equations 4 and 5 in the Revised 1996 IPCC guidelines (IPCC, 1997) (pp 6.10-6.11), which are compatible with Equations 5.1 and 5.2 in the Good Practice Guidance (IPCC, 2000). A slightly modified version of Equation 5.1 is used, which takes into account the fact that the model uses a finite time interval (one year).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "UK Greenhouse Gas Inventory 1990:2005 - Annual Report for Submission to the United Nations Framework Convention on Climate Change by SL Baggott et al, AEA Technology plc for the Department forEnvironment, Food and Rural Affairs (Defra), April 2007. ISBN 0-9554823-1-3 Main report and Annexes Table A 3.8.1. Barlaz et al (1997) Biodegradative analysis of municipal waste in laboratory scale landfills. Prepared for US Environmental Protection Agency Office of Research and Development, Washington DC 20460. Report EPA-600/R-97-071. USEPA, Washington DC. LQM (2003) Methane emissions from landfill sites in the UK. Final Report January 2003 to Defra by R G Gregory et al, LQM Report 443/1. Defra contract no EPG/1/1/145.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table A3.8.1 in the Annexes to the National Inventory Report shows the DOC value assigned to rapidly, moderately, slowly degrading and inert fractions of each component of MSW. This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.542Z", + "last_change_date": "2022-03-14T08:14:54.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16901, + "fields": { + "EF_ID": 621192, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of Degradable Organic Carbon (DOC) of Commercial & Industrial Waste", + "Technology_Practices": "", + "Parameter_Conditions": "Country: UK", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Based on the cellulose and hemicellulose content of the waste component: Commercial 37.33; Paper and card 42.58; General industrial waste 37.33; Food solids", + "Unit": "% DOC by dry weight", + "Equation": "The UK method is based on Equations 4 and 5 in the Revised 1996 IPCC guidelines (IPCC, 1997) (pp 6.10-6.11), which are compatible with Equations 5.1 and 5.2 in the Good Practice Guidance (IPCC, 2000). A slightly modified version of Equation 5.1 is used, which takes into account the fact that the model uses a finite time interval (one year).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "UK Greenhouse Gas Inventory 1990:2005 - Annual Report for Submission to the United Nations Framework Convention on Climate Change by SL Baggott et al, AEA Technology plc for the Department for Environment, Food and Rural Affairs (Defra), April 2007. ISBN 0-9554823-1-3 Main report and Annexes Table A 3.8.1. Barlaz et al (1997) Biodegradative analysis of municipal waste in laboratory scale landfills. Prepared for US Environmental Protection Agency Office of Research and Development, Washington DC 20460. Report EPA-600/R-97-071. USEPA, Washington DC. LQM (2003) Methane emissions from landfill sites in the UK. Final Report January 2003 to Defra by R G Gregory et al, LQM Report 443/1. Defra contract no EPG/1/1/145.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table A3.8.2 in the Annexes to the National Inventory Report shows the DOC value assigned to rapidly, moderately, slowly degrading and inert fractions of each component of C&I waste. This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.638Z", + "last_change_date": "2022-03-14T08:14:54.638Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16902, + "fields": { + "EF_ID": 621193, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of Degradable Organic Carbon Dissimilated (DOC_F) of municipal solid waste (MSW) and commercial and industrial (C&I) waste,", + "Technology_Practices": "", + "Parameter_Conditions": "Country: UK", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50-64% on a dry weigh basis, depending on waste component.", + "Unit": "% DOC_F by dry weight", + "Equation": "The UK method is based on Equations 4 and 5 in the Revised 1996 IPCC guidelines (IPCC, 1997) (pp 6.10-6.11), which are compatible with Equations 5.1 and 5.2 in the Good Practice Guidance (IPCC, 2000). A slightly modified version of Equation 5.1 is used, which takes into account the fact that the model uses a finite time interval (one year).", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "UK Greenhouse Gas Inventory 1990:2005 - Annual Report for Submission to the United Nations Framework Convention on Climate Change by SL Baggott et al, AEA Technology plc for the Department for Environment, Food and Rural Affairs (Defra), April 2007. ISBN 0-9554823-1-3 Main report and Annexes Table A 3.8.1. Barlaz et al (1997) Biodegratative analysis of municipal waste in laboratory scale landfills. Prepared for US Environmental Protection Agency Office of Research and Development, Washington DC 20460. Report EPA-600/R-97-071. USEPA, Washington DC.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Table A3.8.1 and 2 in the Annexes to the National Inventory Report shows the DOCF of components in the MSW and Commercial & Industrial waste streams. This data was proposed by Mr. Keith Brown (AEA Energy & Environment), and considered and accepted by the EFDB Editorial Board at its 6th meeting in Buenos Aires in November 2008.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.725Z", + "last_change_date": "2022-03-14T08:14:54.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16903, + "fields": { + "EF_ID": 621528, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for CH4 emissions from windrow composting of garden waste", + "Technology_Practices": "Outdoor full-scale windrow composting facility", + "Parameter_Conditions": "On all measuring days the weather was clear skies (no rain) and average temperatures were 8 to 11 digrees centigrade (in October 2007) and 4 to 8 digrees centigrade (April 2008). The wind speed was 2 to 5 m/s in both campaigns coming from the NW (340 degrees) to WSW (252 degrees), which means that all measurements were performed east (downwind) of the composting plant. The barometric pressure was between 1000 and 1012 mbar during all measurements.", + "Regional_Conditions": "Denmark, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "kg CH4-C / t wet waste", + "Equation": "Equation 4.1, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.B of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Andersen, J. K., Boldrin, A., Samuelsson, J., Christensen, T. H., and Scheutz, C. Quantification of greenhouse gas emissions from windrow composting of garden waste, J Environ Qual. 2010, 39 (2), 713-724", + "English_Abstract": "Microbial degradation of organic wastes entails the production of various gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). Some of these gases are classified as greenhouse gases (GHGs), thus contributing to climate change. A study was performed to evaluate three methods for quantifying GHG emissions from central composting of garden waste. Two small-scale methods were used at a windrow composting facility: a static flux chamber method and a funnel method. Mass balance calculations based on measurements of the C content in the in and out-going material showed that 91 to 94% of the C could not be accounted for using the small-scale methods, thereby indicating that these methods significantly underestimate GHG emissions. A dynamic plume method (total emission method) employing Fourier Transform Infra Red (FTIR) absorption spectroscopy was found to give a more accurate estimate of the GHG emissions, with CO2 emissions measured to be 127 +/- 15% of the degraded C. Additionally, with this method, 2.7 +/- 0.6% and 0.34 +/- 0.16% of the degraded C was determined to be emitted as CH4 and CO. In this study, the dynamic plume method was a more effective tool for accounting for C losses and, therefore, we believe that the method is suitable for measuring GHG emissions from composting facilities. The total emissions were found to be 2.4 +/- 0.5 kg CH4–C Mg–1 wet waste (ww) and 0.06 +/- 0.03 kg N2O-N Mg–1 ww from a facility treating 15,540 Mg of garden waste yr–1, or 111 +/- 30 kg CO2–equivalents Mg–1 ww.", + "Lower_Bound": "1.9 kg CH4-C / t wet waste", + "Upper_Bound": "2.9 kg CH4-C / t wet waste", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values given in the paper are in kg CH4-C / t wet waste which is converted to kg CH4 / t wet waste by multiplying by 16/12.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.821Z", + "last_change_date": "2022-03-14T08:14:54.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16904, + "fields": { + "EF_ID": 621529, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O emissions from windrow composting of garden waste", + "Technology_Practices": "Outdoor full-scale windrow composting facility", + "Parameter_Conditions": "On all measuring days the weather was clear skies (no rain) and average temperatures were 8 to 11 digrees centigrade (in October 2007) and 4 to 8 digrees centigrade (April 2008). The wind speed was 2 to 5 m/s in both campaigns coming from the NW (340 degrees) to WSW (252 degrees), which means that all measurements were performed east (downwind) of the composting plant. The barometric pressure was between 1000 and 1012 mbar during all measurements.", + "Regional_Conditions": "Denmark, Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "kg N2O-N / t wet waste", + "Equation": "Equation 4.2, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.B of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Andersen, J. K., Boldrin, A., Samuelsson, J., Christensen, T. H., and Scheutz, C. Quantification of greenhouse gas emissions from windrow composting of garden waste, J Environ Qual. 2010, 39 (2), 713-724", + "English_Abstract": "Microbial degradation of organic wastes entails the production of various gases such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and carbon monoxide (CO). Some of these gases are classified as greenhouse gases (GHGs), thus contributing to climate change. A study was performed to evaluate three methods for quantifying GHG emissions from central composting of garden waste. Two small-scale methods were used at a windrow composting facility: a static flux chamber method and a funnel method. Mass balance calculations based on measurements of the C content in the in and out-going material showed that 91 to 94% of the C could not be accounted for using the small-scale methods, thereby indicating that these methods significantly underestimate GHG emissions. A dynamic plume method (total emission method) employing Fourier Transform Infra Red (FTIR) absorption spectroscopy was found to give a more accurate estimate of the GHG emissions, with CO2 emissions measured to be 127 +/- 15% of the degraded C. Additionally, with this method, 2.7 +/- 0.6% and 0.34 +/- 0.16% of the degraded C was determined to be emitted as CH4 and CO. In this study, the dynamic plume method was a more effective tool for accounting for C losses and, therefore, we believe that the method is suitable for measuring GHG emissions from composting facilities. The total emissions were found to be 2.4 +/- 0.5 kg CH4–C Mg–1 wet waste (ww) and 0.06 +/- 0.03 kg N2O-N Mg–1 ww from a facility treating 15,540 Mg of garden waste yr–1, or 111 +/- 30 kg CO2–equivalents Mg–1 ww.", + "Lower_Bound": "0.03 kg N2O-N / t wet waste", + "Upper_Bound": "0.09 kg N2O-N / t wet waste", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The values given in the paper are in kg N2O-N / t wet waste which is converted to kg N2O / t wet waste by multiplying by 44/28.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:54.939Z", + "last_change_date": "2022-03-14T08:14:54.939Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16905, + "fields": { + "EF_ID": 621530, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrious oxide generation factor for biological nutrient removal wastewater treatment plants", + "Technology_Practices": "Inlet works, anaerobic contact tank, 2 x extended aeration oxidation ditches (in parallel) with diffused aeration, secondary sedimentation; mechanical sludge thickening and dewatering", + "Parameter_Conditions": "Influent flowrate (Q): 38 ML/day; Influent COD and TKN: 850 and 75-103 mg/L; Approx. SRT: 13 days; Effluent TN: 2.1-3.3 mg/L; Recycle Ratio (i.e. x Q): 55.", + "Regional_Conditions": "Brisbane, Queensland, Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006 - 0.013", + "Unit": "kg N2O-N/kg N denitrified", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Foley, J., de Haas, D., Yuan, Z., and Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants, Water Research, 2010, 44, 831-844.", + "English_Abstract": "International guidance for estimating emissions of the greenhouse gas, nitrous oxide (N2O), from biological nutrient removal (BNR) wastewater systems is presently inadequate. This study has adopted a rigorous mass balance approach to provide comprehensive N2O emission and formation results from seven full-scale BNR wastewater treatment plants (WWTP). N2O formation was shown to be always positive, yet highly variable across the seven plants. The calculated range of N2O generation was 0.006–0.253 kgN2O–N per kgN denitrified (average: 0.035+/-0.027). This paper investigated the possible mechanisms of N2O formation, rather than the locality of emissions. Higher N2O generation was shown to generally correspond with higher nitrite concentrations, but with many competing and parallel nitrogen transformation reactions occurring, it was very difficult to clearly identify the predominant mechanism of N2O production. The WWTPs designed and operated for low effluent TN (i.e. lower than 10 mgN L 1) had lower and less variable N2O generation factors than plants that only achieved partial denitrification.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.040Z", + "last_change_date": "2022-03-14T08:14:55.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16906, + "fields": { + "EF_ID": 621531, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrious oxide generation factor for biological nutrient removal wastewater treatment plants", + "Technology_Practices": "Inlet works, 2 x extended aeration, Johannesburg bioreactors (in parallel), with submerged aspirating OKI , aerators, secondary sedimentation, sludge thickening, aerobic digestion, mechanical and solar dewatering", + "Parameter_Conditions": "Influent flowrate (Q): 10 ML/day; Influent COD and TKN: 1200 and 85-114 mg/L; Approx. SRT: 20 days; Effluent TN: 4.6-5.4 mg/L; Recycle Ratio (i.e. x Q): 48.", + "Regional_Conditions": "Toowonomba, Queensland, Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.011 - 0.021", + "Unit": "kg N2O-N/kg N denitrified", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Foley, J., de Haas, D., Yuan, Z., and Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants, Water Research, 2010, 44, 831-844.", + "English_Abstract": "International guidance for estimating emissions of the greenhouse gas, nitrous oxide (N2O), from biological nutrient removal (BNR) wastewater systems is presently inadequate. This study has adopted a rigorous mass balance approach to provide comprehensive N2O emission and formation results from seven full-scale BNR wastewater treatment plants (WWTP). N2O formation was shown to be always positive, yet highly variable across the seven plants. The calculated range of N2O generation was 0.006–0.253 kgN2O–N per kgN denitrified (average: 0.035+/-0.027). This paper investigated the possible mechanisms of N2O formation, rather than the locality of emissions. Higher N2O generation was shown to generally correspond with higher nitrite concentrations, but with many competing and parallel nitrogen transformation reactions occurring, it was very difficult to clearly identify the predominant mechanism of N2O production. The WWTPs designed and operated for low effluent TN (i.e. lower than 10 mgN L 1) had lower and less variable N2O generation factors than plants that only achieved partial denitrification.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.141Z", + "last_change_date": "2022-03-14T08:14:55.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16907, + "fields": { + "EF_ID": 621532, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrious oxide generation factor for biological nutrient removal wastewater treatment plants", + "Technology_Practices": "Inlet works, primary sedimentation, sequencing batch reactor (4 compartments) with diffused aeration and bio-selector zone, sludge thickening, anaerobic digestion and mechanical dewatering.", + "Parameter_Conditions": "Influent flowrate (Q): 137 ML/day; Influent COD and TKN: 550 and 47-58 mg/L; Approx. SRT: 16 days; Effluent TN: 12.1-18.0 mg/L; Recycle Ratio (i.e. x Q): N/A.", + "Regional_Conditions": "Perth, Western Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.010 - 0.071", + "Unit": "kg N2O-N/kg N denitrified", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Foley, J., de Haas, D., Yuan, Z., and Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants, Water Research, 2010, 44, 831-844.", + "English_Abstract": "International guidance for estimating emissions of the greenhouse gas, nitrous oxide (N2O), from biological nutrient removal (BNR) wastewater systems is presently inadequate. This study has adopted a rigorous mass balance approach to provide comprehensive N2O emission and formation results from seven full-scale BNR wastewater treatment plants (WWTP). N2O formation was shown to be always positive, yet highly variable across the seven plants. The calculated range of N2O generation was 0.006–0.253 kgN2O–N per kgN denitrified (average: 0.035+/-0.027). This paper investigated the possible mechanisms of N2O formation, rather than the locality of emissions. Higher N2O generation was shown to generally correspond with higher nitrite concentrations, but with many competing and parallel nitrogen transformation reactions occurring, it was very difficult to clearly identify the predominant mechanism of N2O production. The WWTPs designed and operated for low effluent TN (i.e. lower than 10 mgN L 1) had lower and less variable N2O generation factors than plants that only achieved partial denitrification.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.217Z", + "last_change_date": "2022-03-14T08:14:55.217Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16908, + "fields": { + "EF_ID": 621533, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrious oxide generation factor for biological nutrient removal wastewater treatment plants", + "Technology_Practices": "Inlet works, primary sedimentation, 11x covered Modified Ludzack Ettinger (MLE) bioreactors (in paralell) with diffused aeration, secondary sedimentation, sludge thickening, mechanical dewatering and lime stabilization.", + "Parameter_Conditions": "Influent flowrate (Q): 63 ML/day; Influent COD and TKN: 730 and 50 mg/L; Approx. SRT: 13 days; Effluent TN: 11.0 mg/L; Recycle Ratio (i.e. x Q): 3.9.", + "Regional_Conditions": "Perth, Western Australia.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.027", + "Unit": "kg N2O-N/kg N denitrified", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Foley, J., de Haas, D., Yuan, Z., and Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants, Water Research, 2010, 44, 831-844.", + "English_Abstract": "International guidance for estimating emissions of the greenhouse gas, nitrous oxide (N2O), from biological nutrient removal (BNR) wastewater systems is presently inadequate. This study has adopted a rigorous mass balance approach to provide comprehensive N2O emission and formation results from seven full-scale BNR wastewater treatment plants (WWTP). N2O formation was shown to be always positive, yet highly variable across the seven plants. The calculated range of N2O generation was 0.006–0.253 kgN2O–N per kgN denitrified (average: 0.035+/-0.027). This paper investigated the possible mechanisms of N2O formation, rather than the locality of emissions. Higher N2O generation was shown to generally correspond with higher nitrite concentrations, but with many competing and parallel nitrogen transformation reactions occurring, it was very difficult to clearly identify the predominant mechanism of N2O production. The WWTPs designed and operated for low effluent TN (i.e. lower than 10 mgN L 1) had lower and less variable N2O generation factors than plants that only achieved partial denitrification.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.309Z", + "last_change_date": "2022-03-14T08:14:55.309Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16909, + "fields": { + "EF_ID": 621534, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrious oxide generation factor for biological nutrient removal wastewater treatment plants", + "Technology_Practices": "Inlet works, primary sedimentation, 2 x Integrated Fixed Film Activated Sludge biorectors + 1 x MLE bioreactor (in paralell) with diffused aeration, secondary sedimentaiton, sludge thickening and anaerobic digestion.", + "Parameter_Conditions": "Influent flowrate (Q): 49 ML/day; Influent COD and TKN: 700 and 69-103 mg/L; Approx. SRT: 8 days; Effluent TN: 8.0-11.8 mg/L; Recycle Ratio (i.e. x Q): 8.", + "Regional_Conditions": "Adelaide, South Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007 - 0.096", + "Unit": "kg N2O-N/kg N denitrified", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Foley, J., de Haas, D., Yuan, Z., and Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants, Water Research, 2010, 44, 831-844.", + "English_Abstract": "International guidance for estimating emissions of the greenhouse gas, nitrous oxide (N2O), from biological nutrient removal (BNR) wastewater systems is presently inadequate. This study has adopted a rigorous mass balance approach to provide comprehensive N2O emission and formation results from seven full-scale BNR wastewater treatment plants (WWTP). N2O formation was shown to be always positive, yet highly variable across the seven plants. The calculated range of N2O generation was 0.006–0.253 kgN2O–N per kgN denitrified (average: 0.035+/-0.027). This paper investigated the possible mechanisms of N2O formation, rather than the locality of emissions. Higher N2O generation was shown to generally correspond with higher nitrite concentrations, but with many competing and parallel nitrogen transformation reactions occurring, it was very difficult to clearly identify the predominant mechanism of N2O production. The WWTPs designed and operated for low effluent TN (i.e. lower than 10 mgN L 1) had lower and less variable N2O generation factors than plants that only achieved partial denitrification.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.384Z", + "last_change_date": "2022-03-14T08:14:55.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16910, + "fields": { + "EF_ID": 621535, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrious oxide generation factor for biological nutrient removal wastewater treatment plants", + "Technology_Practices": "Anaerobic lagoon, 1 x MLE bioreactor with diffused aeration, secondary sedimentation, maturation lagoons and sludge wasting to an aerated facultative lagoon.", + "Parameter_Conditions": "Influent flowrate (Q): 200 ML/day; Influent COD and TKN: 500 and 66-85mg/L; Approx. SRT: 15 days; Effluent TN: 12.4-15.5 mg/L; Recycle Ratio (i.e. x Q): 1.8.", + "Regional_Conditions": "Melbourne, Victoria, Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.006 - 0.253", + "Unit": "kg N2O-N/kg N denitrified", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Foley, J., de Haas, D., Yuan, Z., and Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants, Water Research, 2010, 44, 831-844.", + "English_Abstract": "International guidance for estimating emissions of the greenhouse gas, nitrous oxide (N2O), from biological nutrient removal (BNR) wastewater systems is presently inadequate. This study has adopted a rigorous mass balance approach to provide comprehensive N2O emission and formation results from seven full-scale BNR wastewater treatment plants (WWTP). N2O formation was shown to be always positive, yet highly variable across the seven plants. The calculated range of N2O generation was 0.006–0.253 kgN2O–N per kgN denitrified (average: 0.035+/-0.027). This paper investigated the possible mechanisms of N2O formation, rather than the locality of emissions. Higher N2O generation was shown to generally correspond with higher nitrite concentrations, but with many competing and parallel nitrogen transformation reactions occurring, it was very difficult to clearly identify the predominant mechanism of N2O production. The WWTPs designed and operated for low effluent TN (i.e. lower than 10 mgN L 1) had lower and less variable N2O generation factors than plants that only achieved partial denitrification.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.476Z", + "last_change_date": "2022-03-14T08:14:55.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16911, + "fields": { + "EF_ID": 621536, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrious oxide generation factor for biological nutrient removal wastewater treatment plants", + "Technology_Practices": "Inlet works, 2 x parallel trains: 1) Primary sedimentation, 4-stage Bardenpho bioreactor with diffused aeration, secondary sedimentation; 2) Pre-fermenter, four-stage bioreactor with diffused aeration and supplemental COD dosing by primary sludge from train 1, secondary sedimentation, tertiary filtration, sludge thickenning, aerobic digestion, sludge lagoon and mechanical dewatering", + "Parameter_Conditions": "Influent flowrate (Q): 25 ML/day; Influent COD and TKN: 850 and 55-85mg/L; Approx. SRT: 14 days; Effluent TN: 2.9-3.1 mg/L; Recycle Ratio (i.e. x Q): 5.9", + "Regional_Conditions": "Sidney, New South Wales, Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.010 - 0.018", + "Unit": "kg N2O-N/kg N denitrified", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Foley, J., de Haas, D., Yuan, Z., and Lant, P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants, Water Research, 2010, 44, 831-844.", + "English_Abstract": "International guidance for estimating emissions of the greenhouse gas, nitrous oxide (N2O), from biological nutrient removal (BNR) wastewater systems is presently inadequate. This study has adopted a rigorous mass balance approach to provide comprehensive N2O emission and formation results from seven full-scale BNR wastewater treatment plants (WWTP). N2O formation was shown to be always positive, yet highly variable across the seven plants. The calculated range of N2O generation was 0.006–0.253 kgN2O–N per kgN denitrified (average: 0.035+/-0.027). This paper investigated the possible mechanisms of N2O formation, rather than the locality of emissions. Higher N2O generation was shown to generally correspond with higher nitrite concentrations, but with many competing and parallel nitrogen transformation reactions occurring, it was very difficult to clearly identify the predominant mechanism of N2O production. The WWTPs designed and operated for low effluent TN (i.e. lower than 10 mgN L 1) had lower and less variable N2O generation factors than plants that only achieved partial denitrification.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.551Z", + "last_change_date": "2022-03-14T08:14:55.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16912, + "fields": { + "EF_ID": 621537, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Efficiency of gas collection system", + "Technology_Practices": "Managed disposal of waste in landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "Pisa, Italy", + "Control_Technologies": "", + "Other_Properties": "The landfill was fitted with gas collection wells.", + "Value": "32-56", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Raco, B., Battaglini, R. and Lelli, M. Gas emission into the atmosphere from controlled landfills: An example from Legoli landfill (Tuscany, Italy). Environ. Sci. Pollut Res. 2010, 17, 1197-1206", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.644Z", + "last_change_date": "2022-03-14T08:14:55.644Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16913, + "fields": { + "EF_ID": 621538, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emissions from municipal solid waste landfills", + "Technology_Practices": "Landfilling", + "Parameter_Conditions": "", + "Regional_Conditions": "Shanghai, (Site A and B) and Hangzhou (Site C), Eastern China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133 - 725 (Site A); -36.3 - 2,483 (Site B); -102 - 523 (Site C)", + "Unit": "microgramme N2O–N/m2/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zhang, H., He, P. and Shao, L. N2O emissions at municipal solid waste landfills sites: Effects of CH4 emissions and cover soil, Atmospheric Environment, 2009, 43, 2623-2631", + "English_Abstract": "Municipal solid waste landfills are the significant anthropogenic sources of N2O due to the cooxidation of ammonia by methane-oxidizing bacteria in cover soils. Such bacteria could be developed through CH4 fumigation, as evidenced by both laboratory incubation and field measurement. During a 10-day incubation with leachate addition, the average N2O fluxes in the soil samples, collected from the three selected landfill covers, were multiplied by 1.75 (p < 0.01), 3.56 (p < 0.01), and 2.12 (p < 0.01) from the soil samples preincubated with 5% CH4 for three months when compared with the control, respectively. Among the three selected landfill sites, N2O fluxes in two landfill sites were significantly correlated with the variations of the CH4 emissions without landfill gas recovery (p < 0.001). N2O fluxes were also elevated by the increase of the CH4 emissions with landfill gas recovery in another landfill site (p > 0.05). The annual average N2O flux was 176 566 mg N2O–N/m2/h (p < 0.01) from sandy soil–covered landfill site, which was 72% (p < 0.05) and 173% (p < 0.01) lower than the other two clay soil covered landfill sites, respectively. The magnitude order of N2O emissions in three landfill sites was also coincident by the results of laboratory incubation, suggesting the sandy soil cover could mitigate landfill N2O emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were significantly correlated with CH4 emissions from Site A and B. Site A: N2O flux = 0.48.CH4 + 116 (r=0.58, p<0.001, n=119) Site B: N2O flux = 0.38.CH4 + 35.9 (r=0.64, p<0.001, n=117) Site C: no significant correlation", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.726Z", + "last_change_date": "2022-03-14T08:14:55.726Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16914, + "fields": { + "EF_ID": 621539, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for CH4 from home composting of organic household waste", + "Technology_Practices": "Home composting of organic household waste. Aerobic composting.", + "Parameter_Conditions": "The composting containers had a volume of about 220 litres. The aerobic bins had ventilation slots to allow air to enter; the vermicomposting bins were of similar design but had a reservoir underneath to receive leachate. The anaerobic bins were only opened to receive waste and remove compost, and represent an anaerobic digester when the lid is closed. Twenty two volunteer households involved in this study and the households composted on average 4-5kg of waste. The wastes consisted of food waste (50-70%) and greenwaste (30-50%). Most of the volunteers added the waste daily and retrieved the compost monthly. Waste in the aerobic bins was turned weekly. Water was sprinkled on the waste to maintain about 50-60% moisture for the aerobic and anaerobic bins and 60-70% for the vermicomposting bins.", + "Regional_Conditions": "Brisbane, Australia.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.17", + "Unit": "mg/m2/h", + "Equation": "Equation 4.1, Volime 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.B of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chan, Y. C., Sinha, R. K. And Wang, W. Emissions of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 2010, 29(5), 540-548.", + "English_Abstract": "This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH4 (2.2 mg/m2/h) than the anaerobic digestion bins (9.5 mg/m2/h) and the vermicomposting bins (4.8 mg/m2/h). The vermicomposting bins had lower N2O emission rates (1.2 mg/m2/h) than the others (1.5–1.6 mg/m2/h). Total GHG emissions including both N2O and CH4 were 463, 504 and 694 mg CO2-e/m2/h for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N2O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.845Z", + "last_change_date": "2022-03-14T08:14:55.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16915, + "fields": { + "EF_ID": 621540, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for CH4 from home composting of organic household waste", + "Technology_Practices": "Home composting of organic household waste. Anaerobic composting.", + "Parameter_Conditions": "The composting containers had a volume of about 220 litres. The aerobic bins had ventilation slots to allow air to enter; the vermicomposting bins were of similar design but had a reservoir underneath to receive leachate. The anaerobic bins were only opened to receive waste and remove compost, and represent an anaerobic digester when the lid is closed. Twenty two volunteer households involved in this study and the households composted on average 4-5kg of waste. The wastes consisted of food waste (50-70%) and greenwaste (30-50%). Most of the volunteers added the waste daily and retrieved the compost monthly. Waste in the aerobic bins was turned weekly. Water was sprinkled on the waste to maintain about 50-60% moisture for the aerobic and anaerobic bins and 60-70% for the vermicomposting bins.", + "Regional_Conditions": "Brisbane, Australia.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.54", + "Unit": "mg/m2/h", + "Equation": "Equation 4.1, Volime 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.B of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chan, Y. C., Sinha, R. K., and Wang, W. Emissions of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 2010, 29(5), 540-548.", + "English_Abstract": "This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH4 (2.2 mg/m2/h) than the anaerobic digestion bins (9.5 mg/m2/h) and the vermicomposting bins (4.8 mg/m2/h). The vermicomposting bins had lower N2O emission rates (1.2 mg/m2/h) than the others (1.5–1.6 mg/m2/h). Total GHG emissions including both N2O and CH4 were 463, 504 and 694 mg CO2-e/m2/h for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N2O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:55.946Z", + "last_change_date": "2022-03-14T08:14:55.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16916, + "fields": { + "EF_ID": 621541, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for CH4 from home composting of organic household waste", + "Technology_Practices": "Home composting of organic household waste. Vermicomposting.", + "Parameter_Conditions": "The composting containers had a volume of about 220 litres. The aerobic bins had ventilation slots to allow air to enter; the vermicomposting bins were of similar design but had a reservoir underneath to receive leachate. The anaerobic bins were only opened to receive waste and remove compost, and represent an anaerobic digester when the lid is closed. Twenty two volunteer households involved in this study and the households composted on average 4-5kg of waste. The wastes consisted of food waste (50-70%) and greenwaste (30-50%). Most of the volunteers added the waste daily and retrieved the compost monthly. Waste in the aerobic bins was turned weekly. Water was sprinkled on the waste to maintain about 50-60% moisture for the aerobic and anaerobic bins and 60-70% for the vermicomposting bins.", + "Regional_Conditions": "Brisbane, Australia.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.76", + "Unit": "mg/m2/h", + "Equation": "Equation 4.1, Volime 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.B of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chan, Y. C., Sinha, R. K., and Wang, W. Emissions of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 2010, 29(5), 540-548.", + "English_Abstract": "This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH4 (2.2 mg/m2/h) than the anaerobic digestion bins (9.5 mg/m2/h) and the vermicomposting bins (4.8 mg/m2/h). The vermicomposting bins had lower N2O emission rates (1.2 mg/m2/h) than the others (1.5–1.6 mg/m2/h). Total GHG emissions including both N2O and CH4 were 463, 504 and 694 mg CO2-e/m2/h for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N2O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.055Z", + "last_change_date": "2022-03-14T08:14:56.055Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16917, + "fields": { + "EF_ID": 621542, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O from home composting of organic household waste", + "Technology_Practices": "Home composting of organic household waste. Aerobic composting.", + "Parameter_Conditions": "The composting containers had a volume of about 220 litres. The aerobic bins had ventilation slots to allow air to enter; the vermicomposting bins were of similar design but had a reservoir underneath to receive leachate. The anaerobic bins were only opened to receive waste and remove compost, and represent an anaerobic digester when the lid is closed. Twenty two volunteer households involved in this study and the households composted on average 4-5kg of waste. The wastes consisted of food waste (50-70%) and greenwaste (30-50%). Most of the volunteers added the waste daily and retrieved the compost monthly. Waste in the aerobic bins was turned weekly. Water was sprinkled on the waste to maintain about 50-60% moisture for the aerobic and anaerobic bins and 60-70% for the vermicomposting bins.", + "Regional_Conditions": "Brisbane, Australia.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.48", + "Unit": "mg/m2/h", + "Equation": "Equation 4.2, Volime 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.B of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chan, Y. C., Sinha, R. K., and Wang, W. Emissions of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 2010, 29(5), 540-548.", + "English_Abstract": "This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH4 (2.2 mg/m2/h) than the anaerobic digestion bins (9.5 mg/m2/h) and the vermicomposting bins (4.8 mg/m2/h). The vermicomposting bins had lower N2O emission rates (1.2 mg/m2/h) than the others (1.5–1.6 mg/m2/h). Total GHG emissions including both N2O and CH4 were 463, 504 and 694 mg CO2-e/m2/h for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N2O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.163Z", + "last_change_date": "2022-03-14T08:14:56.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16918, + "fields": { + "EF_ID": 621543, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O from home composting of organic household waste", + "Technology_Practices": "Home composting of organic household waste. Anaerobic composting.", + "Parameter_Conditions": "The composting containers had a volume of about 220 litres. The aerobic bins had ventilation slots to allow air to enter; the vermicomposting bins were of similar design but had a reservoir underneath to receive leachate. The anaerobic bins were only opened to receive waste and remove compost, and represent an anaerobic digester when the lid is closed. Twenty two volunteer households involved in this study and the households composted on average 4-5kg of waste. The wastes consisted of food waste (50-70%) and greenwaste (30-50%). Most of the volunteers added the waste daily and retrieved the compost monthly. Waste in the aerobic bins was turned weekly. Water was sprinkled on the waste to maintain about 50-60% moisture for the aerobic and anaerobic bins and 60-70% for the vermicomposting bins.", + "Regional_Conditions": "Brisbane, Australia.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.59", + "Unit": "mg/m2/h", + "Equation": "Equation 4.2, Volime 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.B of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chan, Y. C., Sinha, R. K., and Wang, W. Emissions of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 2010, 29(5), 540-548.", + "English_Abstract": "This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH4 (2.2 mg/m2/h) than the anaerobic digestion bins (9.5 mg/m2/h) and the vermicomposting bins (4.8 mg/m2/h). The vermicomposting bins had lower N2O emission rates (1.2 mg/m2/h) than the others (1.5–1.6 mg/m2/h). Total GHG emissions including both N2O and CH4 were 463, 504 and 694 mg CO2-e/m2/h for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N2O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.272Z", + "last_change_date": "2022-03-14T08:14:56.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16919, + "fields": { + "EF_ID": 621544, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O from home composting of organic household waste", + "Technology_Practices": "Home composting of organic household waste. Vermicomposting.", + "Parameter_Conditions": "The composting containers had a volume of about 220 litres. The aerobic bins had ventilation slots to allow air to enter; the vermicomposting bins were of similar design but had a reservoir underneath to receive leachate. The anaerobic bins were only opened to receive waste and remove compost, and represent an anaerobic digester when the lid is closed. Twenty two volunteer households involved in this study and the households composted on average 4-5kg of waste. The wastes consisted of food waste (50-70%) and greenwaste (30-50%). Most of the volunteers added the waste daily and retrieved the compost monthly. Waste in the aerobic bins was turned weekly. Water was sprinkled on the waste to maintain about 50-60% moisture for the aerobic and anaerobic bins and 60-70% for the vermicomposting bins.", + "Regional_Conditions": "Brisbane, Australia.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.17", + "Unit": "mg/m2/h", + "Equation": "Equation 4.2, Volime 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.B of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chan, Y. C., Sinha, R. K., and Wang, W. Emissions of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia). Waste Management and Research, 2010, 29(5), 540-548.", + "English_Abstract": "This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH4 (2.2 mg/m2/h) than the anaerobic digestion bins (9.5 mg/m2/h) and the vermicomposting bins (4.8 mg/m2/h). The vermicomposting bins had lower N2O emission rates (1.2 mg/m2/h) than the others (1.5–1.6 mg/m2/h). Total GHG emissions including both N2O and CH4 were 463, 504 and 694 mg CO2-e/m2/h for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N2O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.381Z", + "last_change_date": "2022-03-14T08:14:56.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16920, + "fields": { + "EF_ID": 621545, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of CH4 oxidized in landfill cover soil", + "Technology_Practices": "Managed Waste Disposal Sites", + "Parameter_Conditions": "Landfill cover soil: clayey and sandy", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22 - 0.55", + "Unit": "fraction", + "Equation": "Equations 5.2-5.3 of the IPCC Good Practice Guidance; Equation 3.1, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chanton, J.P., and Powelson, D.K. Methane oxidation in landfill cover soil, is a 10% default reasonable? J. Environ. Qual. 2009, 38, 654-663.", + "English_Abstract": "We reviewed literature results from 42 determinations of the fraction of methane oxidized and 30 determinations of methane oxidation rate in a variety of soil types and landfi ll covers. Both column measurements and in situ fi eld measurements were included. The means for the fraction of methane oxidized on transit across the soil covers ranged from 22 to 55% from clayey to sandy material. Mean values for oxidation rate ranged from 3.7 to 6.4 mol/m2/d (52–102 g/m2/d) for the different soil types. The overall mean fraction oxidized across all studies was 36% with a standard error of 6%. The overall mean oxidation rate across all studies was 4.5 mol/m2/d +/- 1.0 (72 +/- 16 g/m2/d). For the subset of 15 studies conducted over an annual cycle the fraction of methane oxidized ranged from 11 to 89% with a mean value of 35 +/- 6%, nearly identical to the overall mean. Nine of these studies were conducted in north Florida at 30 degrees N latitude and had a fraction oxidized of 27 +/- 4%. Five studies were conducted in northern Europe (~50–55 degrees N) and exhibited an average of 54 +/- 14%. One study, conducted in New Hampshire, had a value of 10%. The results indicate that the fraction of methane oxidized in landfi ll greater than the default value of 10%. Of the 42 determinations of methane oxidation reported, only four report values of 10% or less.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.490Z", + "last_change_date": "2022-03-14T08:14:56.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16921, + "fields": { + "EF_ID": 621546, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor of N2O from MSW stoker incinerator", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Stoker type incinerator with SCR catalyst. The plant has a capacity of 200 ton/day. The operational temperature of the plant furnace ranges from 850 degrees centigrade to 910 degrees centigrade, and the feedstock is 8.3 ton/h.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "Stoker type incinerator with selective catalytic reduction (SCR) catalyst", + "Other_Properties": "", + "Value": "71", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5, Chapter 5, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.C.1 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Park, S., Choi, J-H., and Park, J. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case, Waste Management, 2011, 31, 1765-1771", + "English_Abstract": "The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N2O emission factors from MSW incineration plants, and calculate the N2O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N2O concentrations from the MSW incinerators were measured using gas chromatography–electron capture detection (GC–ECD) equipment. The average of the N2O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N2O/ton-waste, spectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N2O emissions from MSW incineration comprised 19% of the total N2O emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.599Z", + "last_change_date": "2022-03-14T08:14:56.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16922, + "fields": { + "EF_ID": 621547, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor of N2O from MSW stoker incinerator", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Stoker type incinerator with SNCR catalyst. The plant can incinerate 500 tons/day using two incinerators. The operational temperature of the furnace ranges from 850 degrees centigrade to 1010 degrees centigrade, and the feedstock is 10.4 ton/h.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "Stoker type incinerator with selective non-catalytic reduction (SNCR) catalyst", + "Other_Properties": "", + "Value": "75", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5, Chapter 5, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4.C.1 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sangwon Park, Jun-Ho Choi, and Jinwon Park. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case, Waste Management, 2011, 31, 1765-1771", + "English_Abstract": "The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N2O emission factors from MSW incineration plants, and calculate the N2O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N2O concentrations from the MSW incinerators were measured using gas chromatography–electron capture detection (GC–ECD) equipment. The average of the N2O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N2O/ton-waste, spectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N2O emissions from MSW incineration comprised 19% of the total N2O emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.676Z", + "last_change_date": "2022-03-14T08:14:56.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16923, + "fields": { + "EF_ID": 621548, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor of N2O from MSW incinerator of a combination of stoker and rotary kiln", + "Technology_Practices": "Incineration of MSW", + "Parameter_Conditions": "Kiln and stoker type incinerator with SCR catalyst. The plant, a kiln and stoker plant, can incinerate 750 ton/day with three incinerators. The operational temperature of the plant furnace is between 850 degrees centigrade and 1000 degrees centigrade, and the feedstock is 10.4 ton/h.", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "Kiln and stoker type incinerator with selective catalytic reduction (SCR) catalyst", + "Other_Properties": "", + "Value": "153", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5, Chapter 5, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "Worksheet 4.C.1 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sangwon Park, Jun-Ho Choi, and Jinwon Park. The estimation of N2O emissions from municipal solid waste incineration facilities: The Korea case, Waste Management, 2011, 31, 1765-1771", + "English_Abstract": "The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N2O emission factors from MSW incineration plants, and calculate the N2O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N2O concentrations from the MSW incinerators were measured using gas chromatography–electron capture detection (GC–ECD) equipment. The average of the N2O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N2O/ton-waste, spectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N2O emissions from MSW incineration comprised 19% of the total N2O emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.776Z", + "last_change_date": "2022-03-14T08:14:56.776Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16924, + "fields": { + "EF_ID": 621549, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Average annual methane generation rate from paper/card fraction of the biodegradable waste", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "Site-specific parameters were taken from the predefined Bucks landfill, which represents typical UK landfill sites and contains very detailed site-specific annual waste disposal data for a reasonably long operational time, from 1978 to 1985. It accepted 2,000,000 t of domestic waste over the 8 years, and covered an area of 70,000m2 (200m north to south, 350m east to west). Simulations were conducted over a period of 100 years.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132.2-616.6", + "Unit": "m3/ha/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Paper/card has the highest methane generation rate. Most fractions in paper/card showed slow increase and declines more gradually after reaching the production peak compared to putrescibes.Therefore if a shorter period were assessed, the level of importance in terms of total methane generation would change. Most notably, as the time period decreased, the importance of the putrescible fraction increased, and became the primary waste stream when the time period was less than about 14 years. The range of methane production rates vary from less than 100 to more than 600m3 ha-1, indicating the methane generation rate of different materials varies significantly, therefore removing certain fractions of the waste stream, especially those that result in greater methane generation rates, would seem a more appropriate strategy, than diverting a proportion of each fraction. Measurement Technique/Standard: The first part of the simulation assumed that the whole landfill received only one type of waste and the iteration was repeated for each individual waste type. For the second part of this stage, a landfill with a typical incoming waste composition, as defined by the Environment Agency, for 1980-2010 was modelled, followed by a landfill accepting the same waste stream with the paper/ card fraction set to 0 (the percentage was evenly distributed over other waste types). The model was run again with paper/card returned to its normal percentage and putrescibles set to 0, and so on for all the different biodegradable components of the waste stream. The difference in total methane projected to be generated over 100 years between the landfill accepting all wastes, and landfills accepting waste with one type excluded was then calcuated. This modeling method was then repeated with future waste compositions for 2010, 2015 and 2020, as predicted by the Environment Agency.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.877Z", + "last_change_date": "2022-03-14T08:14:56.877Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16925, + "fields": { + "EF_ID": 621550, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Average annual methane generation rate from textiles fraction of the biodegradable waste", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "Site-specific parameters were taken from the predefined Bucks landfill, which represents typical UK landfill sites and contains very detailed site-specific annual waste disposal data for a reasonably long operational time, from 1978 to 1985. It accepted 2,000,000 t of domestic waste over the 8 years, and covered an area of 70,000m2 (200m north to south, 350m east to west). Simulations were conducted over a period of 100 years.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140.6", + "Unit": "m3/ha/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range of methane production rates vary from less than 100 to more than 600m3 ha-1, indicating the methane generation rate of different materials varies significantly, therefore removing certain fractions of the waste stream, especially those that result in greater methane generation rates, would seem a more appropriate strategy, than diverting a proportion of each fraction. Measurement Technique/Standard: The first part of the simulation assumed that the whole landfill received only one type of waste and the iteration was repeated for each individual waste type. For the second part of this stage, a landfill with a typical incoming waste composition, as defined by the Environment Agency, for 1980-2010 was modelled, followed by a landfill accepting the same waste stream with the paper/ card fraction set to 0 (the percentage was evenly distributed over other waste types). The model was run again with paper/card returned to its normal percentage and putrescibles set to 0, and so on for all the different biodegradable components of the waste stream. The difference in total methane projected to be generated over 100 years between the landfill accepting all wastes, and landfills accepting waste with one type excluded was then calcuated. This modeling method was then repeated with future waste compositions for 2010, 2015 and 2020, as predicted by the Environment Agency.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:56.977Z", + "last_change_date": "2022-03-14T08:14:56.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16926, + "fields": { + "EF_ID": 621551, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Average annual methane generation rate from miscellaneous fraction of the biodegradable waste", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "Site-specific parameters were taken from the predefined Bucks landfill, which represents typical UK landfill sites and contains very detailed site-specific annual waste disposal data for a reasonably long operational time, from 1978 to 1985. It accepted 2,000,000 t of domestic waste over the 8 years, and covered an area of 70,000m2 (200m north to south, 350m east to west). Simulations were conducted over a period of 100 years.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "187.8-187.9", + "Unit": "m3/ha/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Miscellaneous fraction has the second highest methane generation rate after paper. The range of methane production rates vary from less than 100 to more than 600m3 ha-1, indicating the methane generation rate of different materials varies significantly, therefore removing certain fractions of the waste stream, especially those that result in greater methane generation rates, would seem a more appropriate strategy, than diverting a proportion of each fraction. Measurement Technique/Standard: The first part of the simulation assumed that the whole landfill received only one type of waste and the iteration was repeated for each individual waste type. For the second part of this stage, a landfill with a typical incoming waste composition, as defined by the Environment Agency, for 1980-2010 was modelled, followed by a landfill accepting the same waste stream with the paper/ card fraction set to 0 (the percentage was evenly distributed over other waste types). The model was run again with paper/card returned to its normal percentage and putrescibles set to 0, and so on for all the different biodegradable components of the waste stream. The difference in total methane projected to be generated over 100 years between the landfill accepting all wastes, and landfills accepting waste with one type excluded was then calcuated. This modeling method was then repeated with future waste compositions for 2010, 2015 and 2020, as predicted by the Environment Agency.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.078Z", + "last_change_date": "2022-03-14T08:14:57.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16927, + "fields": { + "EF_ID": 621552, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Average annual methane generation rate from putrescibles fraction of the biodegradable waste", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "Site-specific parameters were taken from the predefined Bucks landfill, which represents typical UK landfill sites and contains very detailed site-specific annual waste disposal data for a reasonably long operational time, from 1978 to 1985. It accepted 2,000,000 t of domestic waste over the 8 years, and covered an area of 70,000m2 (200m north to south, 350m east to west). Simulations were conducted over a period of 100 years.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "78.5-155.8", + "Unit": "m3/ha/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Putrescibles fraction has the third highest methane generation rate after paper and Miscellaneous. A sharp increase in gas production over a short period of time was seen, followed by a dramatic decrease after it reached the peak.The range of methane production rates vary from less than 100 to more than 600m3 ha-1, indicating the methane generation rate of different materials varies significantly, therefore removing certain fractions of the waste stream, especially those that result in greater methane generation rates, would seem a more appropriate strategy, than diverting a proportion of each fraction. Measurement Technique/Standard: The first part of the simulation assumed that the whole landfill received only one type of waste and the iteration was repeated for each individual waste type. For the second part of this stage, a landfill with a typical incoming waste composition, as defined by the Environment Agency, for 1980-2010 was modelled, followed by a landfill accepting the same waste stream with the paper/ card fraction set to 0 (the percentage was evenly distributed over other waste types). The model was run again with paper/card returned to its normal percentage and putrescibles set to 0, and so on for all the different biodegradable components of the waste stream. The difference in total methane projected to be generated over 100 years between the landfill accepting all wastes, and landfills accepting waste with one type excluded was then calcuated. This modeling method was then repeated with future waste compositions for 2010, 2015 and 2020, as predicted by the Environment Agency.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.178Z", + "last_change_date": "2022-03-14T08:14:57.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16928, + "fields": { + "EF_ID": 621553, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Average annual methane generation rate from Fines fraction of the biodegradable waste", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "Site-specific parameters were taken from the predefined Bucks landfill, which represents typical UK landfill sites and contains very detailed site-specific annual waste disposal data for a reasonably long operational time, from 1978 to 1985. It accepted 2,000,000 t of domestic waste over the 8 years, and covered an area of 70,000m2 (200m north to south, 350m east to west). Simulations were conducted over a period of 100 years.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "140.3", + "Unit": "m3/ha/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The range of methane production rates vary from less than 100 to more than 600m3 ha-1, indicating the methane generation rate of different materials varies significantly, therefore removing certain fractions of the waste stream, especially those that result in greater methane generation rates, would seem a more appropriate strategy, than diverting a proportion of each fraction. Measurement Technique/Standard: The first part of the simulation assumed that the whole landfill received only one type of waste and the iteration was repeated for each individual waste type. For the second part of this stage, a landfill with a typical incoming waste composition, as defined by the Environment Agency, for 1980-2010 was modelled, followed by a landfill accepting the same waste stream with the paper/ card fraction set to 0 (the percentage was evenly distributed over other waste types). The model was run again with paper/card returned to its normal percentage and putrescibles set to 0, and so on for all the different biodegradable components of the waste stream. The difference in total methane projected to be generated over 100 years between the landfill accepting all wastes, and landfills accepting waste with one type excluded was then calcuated. This modeling method was then repeated with future waste compositions for 2010, 2015 and 2020, as predicted by the Environment Agency.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.287Z", + "last_change_date": "2022-03-14T08:14:57.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16929, + "fields": { + "EF_ID": 621554, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Paper/card fraction in UK biodegradable waste stream going to landfill from 1980-2010", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "This parameter is defined by Environment Agency for UK waste stream going to landfill from 1980-2010.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "Measured by Environment Agency (UK)", + "Value": "33.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.388Z", + "last_change_date": "2022-03-14T08:14:57.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16930, + "fields": { + "EF_ID": 621555, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Textile fraction in UK biodegradable waste stream going to landfill from 1980-2010", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "This parameter is defined by Environment Agency for UK waste stream going to landfill from 1980-2010.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "Measured by Environment Agency (UK)", + "Value": "2.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.480Z", + "last_change_date": "2022-03-14T08:14:57.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16931, + "fields": { + "EF_ID": 621556, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Miscellaneous fraction in UK biodegradable waste stream going to landfill from 1980-2010", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "This parameter is defined by Environment Agency for UK waste stream going to landfill from 1980-2010.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "Measured by Environment Agency (UK)", + "Value": "8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.572Z", + "last_change_date": "2022-03-14T08:14:57.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16932, + "fields": { + "EF_ID": 621557, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Putrescibe fraction in UK biodegradable waste stream going to landfill from 1980-2010", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "This parameter is defined by Environment Agency for UK waste stream going to landfill from 1980-2010.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "Measured by Environment Agency (UK)", + "Value": "20.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.681Z", + "last_change_date": "2022-03-14T08:14:57.681Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16933, + "fields": { + "EF_ID": 621558, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fines fraction in UK biodegradable waste stream going to landfill from 1980-2010", + "Technology_Practices": "Biodegradable fractions make up the majority of municipal solid waste (MSW), particularly food, gardening and paper/card wastes. Initiating a separate collection of organic wastes for recycling to land as a soil conditioner goes some way to achieving this diversion, but the residual waste stream still contains a significant proportion of biodegradable waste which must be treated prior to landfilling. Mechanical biological treatment (MBT) is becoming one of the major methods for treating the residual MSW. There is a variety of MBT processes which treat the waste to different extents in different ways. It is becoming one of the major technologies for treating residual MSW, as it is cheaper, more flexible and more widely accepted by the general public than thermal treatments. In order to achieve complete diversion, the outputs of the biological processing would be applied to land as a soil conditioner. Unfortunately the outputs of these are often unsuitable for application to land due to insufficient degradation or contamination, and so are ending up in landfills. The environmental impacts of a landfill accepting large quantities of partially degraded wastes are largely unknown, giving rise to this research.", + "Parameter_Conditions": "This parameter is defined by Environment Agency for UK waste stream going to landfill from 1980-2010.", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "Measured by Environment Agency (UK)", + "Value": "7.1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Donovan, S.M., Pan, J., Bateson, T., Gronow, J.R., and Voulvoulis, N. Gas emissions from biodegradable waste in United Kingdom landfills, Waste Management & Research, 2011, 29(1), 69-76", + "English_Abstract": "The aim of this research was to predict the effect that the biodegradable municipal waste (BMW) diversion targets in the European Union landfill directive (99/31/EC) would have on landfill gas emissions. This is important for continued mitigation of these emissions. Work was undertaken in three stages using the GasSim model (v1.03) developed by the Environment Agency (England and Wales). The first stage considered the contribution to gas emissions made by each biodegradable component of the waste stream. The second stage considered how gas emissions from a landfill accepting biodegradable wastes with reduced biodegradable content would be affected. The third stage looked at the contribution to gas emissions from real samples of biologically pretreated BMW. For the first two stages, data on the waste components were available in the model. For the third stage samples were obtained from four different biological treatment facilities and the required parameters determined experimentally. The results of stage 1 indicated that in the first 15 years of the landfill the putrescible fraction makes the most significant contribution, after which paper/card becomes the most significant. The second stage found that biodegradability must be reduced by at least 60% to achieve a reduction in overall methane generation. The third stage found that emissions from samples of biologically pretreated BMW would result in a significant reduction in gas emissions over untreated waste, particularly in the early stage of the landfill lifetime; however, low level emissions would continue to occur for the long term.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.791Z", + "last_change_date": "2022-03-14T08:14:57.791Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16934, + "fields": { + "EF_ID": 621559, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Household solid waste generation rate", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "The daily household total ranged from 484 to 714 kg with an average of 592 kg (SD=7 kg) with higher contributions from the HiDA (Hight Density). For the entire survey period, a total of 5920 kg or 5.9 tonnes of solid waste were collected, involving a population of 1104.", + "Value": "0.54", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Seasonal or temporal variations make it imperative that the waste stream survey be carried out in widely contrasting seasons, i.e. in the case of Makurdi Urban Area, the dry as well as the wet (rainy) seasons. Thus, it is recommended that this survey be repeated during the dry season, to give a more complete picture of the solid waste situation in the Makurdi urban area, especially in the pilot area. In addition, no biomedical wastes were accounted for in this survey. However, this is also needed, considering that other studies have shown that this waste source could contribute significantly to the waste stream, not to mention its special nature.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:57.925Z", + "last_change_date": "2022-03-14T08:14:57.925Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16935, + "fields": { + "EF_ID": 621560, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Non-household (commercial, institutional & small-medium scale industries) solid waste generation rate", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "For the 10-day survey period, non-household solid waste contributed only about 17.6% of the total waste collected.", + "Value": "0.17", + "Unit": "kg/m2/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Seasonal or temporal variations make it imperative that the waste stream survey be carried out in widely contrasting seasons, i.e. in the case of Makurdi Urban Area, the dry as well as the wet (rainy) seasons. Thus, it is recommended that this survey be repeated during the dry season, to give a more complete picture of the solid waste situation in the Makurdi urban area, especially in the pilot area. In addition, no biomedical wastes were accounted for in this survey. However, this is also needed, considering that other studies have shown that this waste source could contribute significantly to the waste stream, not to mention its special nature.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.033Z", + "last_change_date": "2022-03-14T08:14:58.033Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16936, + "fields": { + "EF_ID": 621561, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of putrescibles in household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Putrescibles includes food remnants, fresh and decaying leaves, vegetation, etc.", + "Value": "36.4-57.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.151Z", + "last_change_date": "2022-03-14T08:14:58.151Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16937, + "fields": { + "EF_ID": 621562, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of putrescibles in non-household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Putrescibles includes food remnants, fresh and decaying leaves, vegetation, etc.", + "Value": "23.4-44.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.261Z", + "last_change_date": "2022-03-14T08:14:58.261Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16938, + "fields": { + "EF_ID": 621563, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of plastics in household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.10-8.04", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.369Z", + "last_change_date": "2022-03-14T08:14:58.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16939, + "fields": { + "EF_ID": 621564, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of plastics in non-household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.90-10.2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.478Z", + "last_change_date": "2022-03-14T08:14:58.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16940, + "fields": { + "EF_ID": 621565, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of paper in household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.59-4.30", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.579Z", + "last_change_date": "2022-03-14T08:14:58.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16941, + "fields": { + "EF_ID": 621566, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of paper in non-household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.10-10.9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.671Z", + "last_change_date": "2022-03-14T08:14:58.672Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16942, + "fields": { + "EF_ID": 621567, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of metals in household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Metals - mostly cans and bottle caps; few ferrous metal and aluminum items.", + "Value": "1.75-2.50", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.772Z", + "last_change_date": "2022-03-14T08:14:58.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16943, + "fields": { + "EF_ID": 621568, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of metals in non-household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Metals - mostly cans and bottle caps; few ferrous metal and aluminum items.", + "Value": "0.70-3.40", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:58.872Z", + "last_change_date": "2022-03-14T08:14:58.872Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16944, + "fields": { + "EF_ID": 621569, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of glass in household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.86-2.30", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:59.006Z", + "last_change_date": "2022-03-14T08:14:59.007Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16945, + "fields": { + "EF_ID": 621570, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of glass in non-household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10- 6.90", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:59.099Z", + "last_change_date": "2022-03-14T08:14:59.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16946, + "fields": { + "EF_ID": 621571, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of textiles in household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.40-3.67", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:59.199Z", + "last_change_date": "2022-03-14T08:14:59.199Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16947, + "fields": { + "EF_ID": 621572, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of textiles in non-household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30-6.10", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:59.300Z", + "last_change_date": "2022-03-14T08:14:59.300Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16948, + "fields": { + "EF_ID": 621573, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fines in household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Fines Include ash, dust and sand", + "Value": "21.0-41.0", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This high content of the fines fraction of solid waste is obviously related to the physical environment in these areas. Most of the roads in these areas are not paved and most premises have open grounds that are swept daily, bringing in much of the sand/dust. Similarly, and considering the season of the survey (rainy season), these fine materials come into houses by way of footwear, from where they enter the household waste stream.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:59.400Z", + "last_change_date": "2022-03-14T08:14:59.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16949, + "fields": { + "EF_ID": 621574, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fines in non-household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Fines Include ash, dust and sand", + "Value": "31.7-48.7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "This high content of the fines fraction of solid waste is obviously related to the physical environment in these areas. Most of the roads in these areas are not paved and most premises have open grounds that are swept daily, bringing in much of the sand/dust. Similarly, and considering the season of the survey (rainy season), these fine materials come into houses by way of footwear, from where they enter the household waste stream.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:59.518Z", + "last_change_date": "2022-03-14T08:14:59.518Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16950, + "fields": { + "EF_ID": 621575, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of miscellenous in household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Miscellenous includes wood, stones and pebbles, discarded shoes and other footwear, wood shavings (from carpenters shop); styrofoam, snail shells, discarded dry cells, etc.", + "Value": "1.70- 5.73", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:59.636Z", + "last_change_date": "2022-03-14T08:14:59.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16951, + "fields": { + "EF_ID": 621576, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of miscellenous in non-household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The field survey included daily waste quantities and their composition from a range of selected properties/premises over a period of 11 days: 100 households (HH), 2 schools (1 primary and 1 secondary), 3 government offices, 1 market (Wadata) (MART), 5 small/medium scale industries (SMI) and 10 commercial street shops (COMM). This survey envisaged a scope covering 100 households. However, only 95 were actually surveyed. Waste bins of two capacities, 50 and 100 L calibrated), were supplied to all survey points. Persons at each survey point were instructed to use the waste bins normally, i.e. they were to store the daily solid waste generated in their premises without attempts to do anything unusual, for example, like inviting their neighbors to use the bin or sourcing for waste to dispose of. The waste bins were retrieved after 24 h according to the work plan, with a replacement bin for the next collection. Retrieved (waste-laden) bins were taken to the Benue State University Chemistry Laboratory for weighing, sorting and other treatment/analysis. This was done for 11 days (instead of the planned 10) to take care of Saturday (institutional) and Sunday (some commercial and SMI). One skip bucket at the Wadata market, property of the State Urban Development Board (UDB - the public waste collection agency), was also sampled daily for analysis. Other information/data required and obtained at the survey points were: for households - family size (no. of people living in the quarters likely to use the bin or contribute to waste generation); for businesses/institutions/SMIs -estimated floor area (m2).", + "Regional_Conditions": "Nigeria", + "Control_Technologies": "", + "Other_Properties": "Miscelleneous includes wood, stones and pebbles, discarded shoes and other footwear, wood shavings (from carpenters shop); styrofoam, snail shells, discarded dry cells, etc.", + "Value": "3.10-28.9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sha`Ato, R., Aboho, S.Y., Oketunde, F.O., Eneji, I.S., Unazi, G., Agwa, S. Survey of solid waste generation and composition in a rapidly growing urban area in Central Nigeria, Waste Management, 2007, 27: 352-358", + "English_Abstract": "The objective of this study was to carry out a field survey of the solid waste generation profile in parts of Makurdi, a rapidly growing urban city in north central Nigeria. The areas surveyed covered low, medium and high-density residential quarters, representing high/ medium/low income groups in the area. Results of the survey show that the bulk (82%) of the solid waste generated in the area originates from households, rather than from commercial, institutional or industrial premises. Of the waste from households, a substantial proportion consists of various putrescible materials (36-57%), with ash, dust and sand (combined) forming another significant proportion (21-41%). From the non-household sources, putrescible matter is also significant (23-45%), as is the combined ash/dust/sand fraction (32-36%). The quantity of plastics/cellophane materials from household and non-household sources was, however, comparable (6-10%). There was more paper from commercial and institutional premises (9-12%) than from household or small/medium scale industrial premises (2-4%). Glass (0.1-6.9%), metals (mostly cans and bottle corks, 0.7-3.4%) and textiles (0.3-6%) form only a minor proportion of the waste across generators. Waste generation rates were for households, 0.54 kg/cap/day; for commercial, 0.018 kg/m2/day; institutional, 0.015 kg/m2/day while for small and medium scale industries, the rate was 0.47 kg/m2/day. As there is no previous study of this kind in the Makurdi urban area, what is reported here may be taken as baseline for the entire area. The implications of the findings for solid waste management planning are discussed.", + "Lower_Bound": "Unkonwn", + "Upper_Bound": "Unkonwn", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:14:59.745Z", + "last_change_date": "2022-03-14T08:14:59.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16952, + "fields": { + "EF_ID": 621583, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of degradable organic carbon (DOC) in municipal solid waste (MSW)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1923", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "Worksheet 6-1, Sheet 1 (Revised 1996 IPCC Guidelines)", + "Data_Source": "Other", + "Technical_Reference": "National Plan for Waste Management 2006-2012, p.21", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "", + "creation_date": "2022-03-14T08:14:59.854Z", + "last_change_date": "2022-03-14T08:14:59.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16953, + "fields": { + "EF_ID": 621584, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Per capita protein consumption", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Macedonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.55", + "Unit": "kg/person/yr", + "Equation": "", + "IPCC_Worksheet": "Worksheet 6-4, Sheet 1 (Revised 1996 IPCC Guidelines)", + "Data_Source": "Other", + "Technical_Reference": "FAOSTAT: http://faostat.fao.org (Protein uptake per person)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "None", + "Data_Provider_Comments": "Average from FAO stat data for Macedonia on protein uptake", + "Other_Comments": "", + "Data_Provider": "Ministry of Environment and Physical Planning of Republic of Macedonia", + "Link": "", + "creation_date": "2022-03-14T08:14:59.954Z", + "last_change_date": "2022-03-14T08:14:59.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16954, + "fields": { + "EF_ID": 621585, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of DOC actually dissimilated (DOCF)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.58", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p130; Oonk, H., Weenk, A., Coops, O., Luning, L., 1994: Validation of landfill gas formation models, TNO Institute of Environmental and Energy Technology, December 1994, reference number 94-315.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%201994%20(EN)%20%20Validation%20of%20landfill%20gas%20form%20models.pdf", + "creation_date": "2022-03-14T08:15:00.038Z", + "last_change_date": "2022-03-14T08:15:00.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16955, + "fields": { + "EF_ID": 621586, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Oxidation factor (OX)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Coops, O.; Luning, L.; Oonk, H.; Boom, J.: Emissies van stortplaatsen (Emissions from landfill sites). VROM Hoofdinspectie Milieuhygiene, Publicatie Emissieregistratie 28, Den Haag, 1995", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://library.wur.nl/WebQuery/clc/922260", + "creation_date": "2022-03-14T08:15:00.112Z", + "last_change_date": "2022-03-14T08:15:00.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16956, + "fields": { + "EF_ID": 621587, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degradable speed constant k", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0693", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Oonk H., Weenk A., Coops O., Luning L., Validation of landfill gas formation models, TNO report 94-315, Apeldoorn, 1994", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%201994%20(EN)%20%20Validation%20of%20landfill%20gas%20form%20models.pdf", + "creation_date": "2022-03-14T08:15:00.196Z", + "last_change_date": "2022-03-14T08:15:00.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16957, + "fields": { + "EF_ID": 621588, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degradable speed constant k", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.094", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Oonk H., Weenk A., Coops O., Luning L., Validation of landfill gas formation models, TNO report 94-315, Apeldoorn, 1994", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%201994%20(EN)%20%20Validation%20of%20landfill%20gas%20form%20models.pdf", + "creation_date": "2022-03-14T08:15:00.279Z", + "last_change_date": "2022-03-14T08:15:00.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16958, + "fields": { + "EF_ID": 621589, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "DOC(X) = concentration of biodegradable carbon in waste that was dumped from 1945 through 1989", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "132", + "Unit": "kg C/ton dumped waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Based on De Jager, D; . Blok, K, Onderzoek naar het gehalte aan organische stof in de verschillende afvalcomponenten (Research into volatile solids content in the various waste components), Utrecht, 1993, determined by Spakman J.; Van Loon, M.M.J; Van der Auweraert, R.J.K; Gielen, D.J.; Olivier, J.G.J.; Zonneveld, E.A. Methode voor de berekening van broeikasgasemissies (Method of calculating greenhouse gas emissions), VROM, Emissions registration 37 and published in Klein Goldewijk, K; Olivier, J. G.J.; Peters, J.A.H.W; Coenen, P.W.H.G; Vreeuls, H.H.J., Greenhouse gas emissions in the Netherlands 1990-2002. National Inventory Report 2004. RIVM report 773201008/2004.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:00.354Z", + "last_change_date": "2022-03-14T08:15:00.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16959, + "fields": { + "EF_ID": 621590, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "DOC(X) = concentration of biodegradable carbon in waste that was dumped in 1995", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "125", + "Unit": "kg C/ton dumped waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Based on De Jager, D; . Blok, K, Onderzoek naar het gehalte aan organische stof in de verschillende afvalcomponenten (Research into volatile solids content in the various waste components), Utrecht, 1993, determined by [Spakman J.; Van Loon, M.M.J; Van der Auweraert, R.J.K; Gielen, D.J.; Olivier, J.G.J.; Zonneveld, E.A. Methode voor de berekening van broeikasgasemissies (Method of calculating greenhouse gas emissions), VROM, Emissions registration 37 and published in [Klein Goldewijk, K; Olivier, J. G.J.; Peters, J.A.H.W; Coenen, P.W.H.G; Vreeuls, H.H.J., Greenhouse gas emissions in the Netherlands 1990-2002. National Inventory Report 2004. RIVM report 773201008/2004.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:00.429Z", + "last_change_date": "2022-03-14T08:15:00.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16960, + "fields": { + "EF_ID": 621591, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "DOC(X) = concentration of biodegradable carbon in waste that was dumped in 1996", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "120", + "Unit": "kg C/ton dumped waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Based on De Jager, D; . Blok, K, Onderzoek naar het gehalte aan organische stof in de verschillende afvalcomponenten (Research into volatile solids content in the various waste components), Utrecht, 1993, determined by [Spakman J.; Van Loon, M.M.J; Van der Auweraert, R.J.K; Gielen, D.J.; Olivier, J.G.J.; Zonneveld, E.A. Methode voor de berekening van broeikasgasemissies (Method of calculating greenhouse gas emissions), VROM, Emissions registration 37 and published in [Klein Goldewijk, K; Olivier, J. G.J.; Peters, J.A.H.W; Coenen, P.W.H.G; Vreeuls, H.H.J., Greenhouse gas emissions in the Netherlands 1990-2002. National Inventory Report 2004. RIVM report 773201008/2004.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:00.524Z", + "last_change_date": "2022-03-14T08:15:00.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16961, + "fields": { + "EF_ID": 621592, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of CH4 in landfill gas (from 1945-2001)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Landfill gas survey, working group for waste registration WAR", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:00.604Z", + "last_change_date": "2022-03-14T08:15:00.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16962, + "fields": { + "EF_ID": 621593, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "% Inhabitants with septic tanks", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p132,Table 8.4; Rioned, 2009: Urban Drainage Statistics 2009-2010. Available at www.riool.net. RWS-Waterdienst, 2011: Factsheet Effluenten Rwzi?fs, regenwaterriolen, niet aangesloten riolen, overstorten en IBA?fs, versie juni 2011.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.riool.net/riool/binary/retrieveFile?itemid=1089", + "creation_date": "2022-03-14T08:15:00.679Z", + "last_change_date": "2022-03-14T08:15:00.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16963, + "fields": { + "EF_ID": 621594, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "the CH4 emission factor from industrial waste water treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.176", + "Unit": "t/t-DOC", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p133; Doorn, M.R.J. et al., 1997: Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA. Oonk et al., 2004: Methaan- en lachgasemissies uit afvalwater, TNO, Apeldoorn, TNO report R2004/486.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:00.754Z", + "last_change_date": "2022-03-14T08:15:00.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16964, + "fields": { + "EF_ID": 621595, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4-producing potential (B0)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.22", + "Unit": "t/t-DOC", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p133; Doorn, M.R.J. et al., 1997: Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA. Oonk et al., 2004: Methaan- en lachgasemissies uit afvalwater, TNO, Apeldoorn, TNO report R2004/486.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:00.829Z", + "last_change_date": "2022-03-14T08:15:00.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16965, + "fields": { + "EF_ID": 621596, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane recovery (MR)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p133; Oonk et al., 2004: Methaan- en lachgasemissies uit afvalwater, TNO, Apeldoorn, TNO report R2004/486.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%202004%20(NLX)%20CH4%20en%20N2O%20afvalwater%20TNO%20486.pdf", + "creation_date": "2022-03-14T08:15:00.926Z", + "last_change_date": "2022-03-14T08:15:00.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16966, + "fields": { + "EF_ID": 621597, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Combined emission factor for domestic and commercial waste water treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0085", + "Unit": "tons CH4 per ton DOCinfluent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p133; Oonk et al., 2004: Methaan- en lachgasemissies uit afvalwater, TNO, Apeldoorn, TNO report R2004/486.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%202004%20(NLX)%20CH4%20en%20N2O%20afvalwater%20TNO%20486.pdf", + "creation_date": "2022-03-14T08:15:01.004Z", + "last_change_date": "2022-03-14T08:15:01.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16967, + "fields": { + "EF_ID": 621598, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "MCFstp = Methane Correction Factor of Sewage Treatment Plants", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p133; Doorn, M.R.J. et al., 1997: Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091, Prepared for United States Environmental Protection Agency, Research Triangle Park, NC, USA.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:01.088Z", + "last_change_date": "2022-03-14T08:15:01.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16968, + "fields": { + "EF_ID": 621599, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 recovery (MR) from anaerobic sludge treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "94", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p133; Hobson, J. and R. Palfrey (1996). Control Measures to Limit Methane Emissions from Sewage and Sludge Treatment and Disposal. WRc report DoE 4118, October 1996. Available via the UK DEFRA (DETR).", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.worldcat.org/title/control-measures-to-limit-methane-emissions-from-sewage-and-sludge-treatment-and-disposal-report-to-the-department-of-the-environment/oclc/314701720", + "creation_date": "2022-03-14T08:15:01.171Z", + "last_change_date": "2022-03-14T08:15:01.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16969, + "fields": { + "EF_ID": 621600, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factors for calculating methane emissions", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.007", + "Unit": "g/g", + "Equation": "EFwater line = Bo,WWTP * DOC * MCFWWTP = 0.007 (g/g)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Oonk J., 2004: Methaan- en lachgasemissies uit afvalwater (Methane and laughing gas emissions from waste water), TNO report R2004/486, November 2004, TNO, Delft, the Netherlands.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%202004%20(NLX)%20CH4%20en%20N2O%20afvalwater%20TNO%20486.pdf", + "creation_date": "2022-03-14T08:15:01.254Z", + "last_change_date": "2022-03-14T08:15:01.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16970, + "fields": { + "EF_ID": 621601, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factors for calculating methane emissions", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0567", + "Unit": "g/g", + "Equation": "EFsludge = Bo,sludge * sludge * MCFsludge= 0.0567 (g/g)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Oonk J., 2004: Methaan- en lachgasemissies uit afvalwater (Methane and laughing gas emissions from waste water), TNO report R2004/486, November 2004, TNO, Delft, the Netherlands.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%202004%20(NLX)%20CH4%20en%20N2O%20afvalwater%20TNO%20486.pdf", + "creation_date": "2022-03-14T08:15:01.337Z", + "last_change_date": "2022-03-14T08:15:01.337Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16971, + "fields": { + "EF_ID": 621602, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for calculating laughing gas emissions from communal WWTPs", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N2O-N / kg removed N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Oonk J., 2004: Methaan- en lachgasemissies uit afvalwater (Methane and laughing gas emissions from waste water), TNO report R2004/486, November 2004, TNO, Delft, the Netherlands.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%202004%20(NLX)%20CH4%20en%20N2O%20afvalwater%20TNO%20486.pdf", + "creation_date": "2022-03-14T08:15:01.446Z", + "last_change_date": "2022-03-14T08:15:01.446Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16972, + "fields": { + "EF_ID": 621603, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for calculating methane emissions from septic tanks", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.125", + "Unit": "g/g", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Oonk J., 2004: Methaan- en lachgasemissies uit afvalwater (Methane and laughing gas emissions from waste water), TNO report R2004/486, November 2004, TNO, Delft, the Netherlands.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%202004%20(NLX)%20CH4%20en%20N2O%20afvalwater%20TNO%20486.pdf", + "creation_date": "2022-03-14T08:15:01.537Z", + "last_change_date": "2022-03-14T08:15:01.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16973, + "fields": { + "EF_ID": 621604, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for calculating laughing gas emissions from septic tanks", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "kg N2O-N / kg N in the wastewater", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Oonk J., 2004: Methaan- en lachgasemissies uit afvalwater (Methane and laughing gas emissions from waste water), TNO report R2004/486, November 2004, TNO, Delft, the Netherlands.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%202004%20(NLX)%20CH4%20en%20N2O%20afvalwater%20TNO%20486.pdf", + "creation_date": "2022-03-14T08:15:01.612Z", + "last_change_date": "2022-03-14T08:15:01.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16974, + "fields": { + "EF_ID": 621605, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for calculating methane emissions from industrial anaerobic waste water treatment plants", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.176", + "Unit": "g/g", + "Equation": "EFind = Bo,ind * ind * MCFind = 0.176 (g/g)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Oonk J., 2004: Methaan- en lachgasemissies uit afvalwater (Methane and laughing gasemissions from waste water), TNO report R2004/486, November 2004, TNO, Delft, the Netherlands.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.broeikasgassen.nl/docs/Oonk%202004%20(NLX)%20CH4%20en%20N2O%20afvalwater%20TNO%20486.pdf", + "creation_date": "2022-03-14T08:15:01.696Z", + "last_change_date": "2022-03-14T08:15:01.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16975, + "fields": { + "EF_ID": 621606, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of DOC that is converted anaerobically", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p133; Doorn, M.R.J. and D. Liles, 1999: Global Methane, Quantification of Methane Emissions and Discussion of Nitrous Oxide, and Ammonia Emissions from Septic Tanks, Latrines, and Stagnant Open Sewers in the World. EPA-600/R-99-089, Prepared for U.S. EPA, Research Triangle Park, NC, USA.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:01.779Z", + "last_change_date": "2022-03-14T08:15:01.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16976, + "fields": { + "EF_ID": 621607, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF of N2O from incineration with Selective Catalytic Reduction", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "g/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Greenhouse Gas Emissions in the Netherlands 1990-2010, National Inventory Report 2012, p135, Table 8.5; Spoelstra, H., 1993: N2O-emissions from combustion processes used in the generation of electricity. KEMA, Arnhem/RIVM, NOP report no. 410100049, Bilthoven.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:01.863Z", + "last_change_date": "2022-03-14T08:15:01.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16977, + "fields": { + "EF_ID": 621608, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "EF from plants that are fitted with SNCR", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "g/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "TNO, 1995: Nitrous oxide from stationary combustion and industry - emissions and options for control (confidential). TNO-MEP, Apeldoorn. Report no. R95-376/112320- 26048 (Table 4.1) TNO, 2011, Jansen, B.I. en Droge, R., Emissiemodel Houtkachels. TNO-060-UT-2011-00314, februari 2011. TNO Utrecht.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:01.965Z", + "last_change_date": "2022-03-14T08:15:01.965Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16978, + "fields": { + "EF_ID": 621615, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Composition of the burn samples by percent mass (Plastic fraction)", + "Technology_Practices": "Small-scale emissions testing on this simulated deployed military waste was conducted at the U.S. Environmental Protection Agency (EPA) Open Burning Testing Facility (OBTF), Research Triangle Park, NC.", + "Parameter_Conditions": "Plastic fraction: PET #1, HDPE #2, PP #5, PVC #3, PS #6, PU (foams) #7, ABS (electronics)", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Woodall, B.D., Yamamoto, D.P., Gullett, B.K. and Touati, A. Emissions from Small-Scale Burns of Simulated Deployed U.S. Military Waste, Environmental Science & Technology, 2012, 46: 10997-11003", + "English_Abstract": "U.S. military forces have historically relied on open burning as an expedient method of volume reduction and treatment of solid waste during the conflicts in Afghanistan and Iraq. This study is the first effort to characterize a broad range of pollutants and their emission factors during the burning of military waste and the effects that recycling efforts, namely removing plastics, might have on emissions. Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. Three tests contained polyethylene terephthalate (PET #1 or PET) plastic water bottles and four did not. Emission factors for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM10, PM2.5), polychlorinated and polybrominated dioxins/furans (PCDD/F and PBDD/F), and criteria pollutants were determined and are contained within. The average PCDD/F emission factors were 270 ng-toxic equivalency (TEQ) per kg carbon burned (ng-TEQ/ kg Cb), ranging from 35 to 780 ng-TEQ/kg Cb. Limited testing suggests that targeted removal of plastic water bottles has no apparent effect on reducing pollutants and may even promote increased emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Burn sample descriptions, individual emissions data for every sampled pollutant, and additional PXDD/F graphs comparing PET #1 plastics vs no plastic are provided as Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org. Simulated waste samples for burning were constructed using a representative military waste composition, based on expert knowledge from Department of Defense (DOD) personnel. Notable observed differences in military waste streams from that of civilian waste include large quantities of packaging, construction materials, food waste, canvas material, Meal Ready to Eat (MRE) waste, and plastic water bottles (PET #1). Each component consisted of at least five pieces to help ensure even distribution throughout the sample. Each component consisted of at least five pieces to help ensure even distribution throughout the sample. A total of seven tests were performed and each test used a burn sample weighing approximately 10 kg.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.046Z", + "last_change_date": "2022-03-14T08:15:02.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16979, + "fields": { + "EF_ID": 621616, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Composition of the burn samples by percent mass (Wood fraction)", + "Technology_Practices": "Small-scale emissions testing on this simulated deployed military waste was conducted at the U.S. Environmental Protection Agency (EPA) Open Burning Testing Facility (OBTF), Research Triangle Park, NC.", + "Parameter_Conditions": "Wood fraction: treated (pallets), untreated", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Woodall, B.D., Yamamoto, D.P., Gullett, B.K. and Touati, A. Emissions from Small-Scale Burns of Simulated Deployed U.S. Military Waste, Environmental Science & Technology, 2012, 46: 10997-11003", + "English_Abstract": "U.S. military forces have historically relied on open burning as an expedient method of volume reduction and treatment of solid waste during the conflicts in Afghanistan and Iraq. This study is the first effort to characterize a broad range of pollutants and their emission factors during the burning of military waste and the effects that recycling efforts, namely removing plastics, might have on emissions. Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. Three tests contained polyethylene terephthalate (PET #1 or PET) plastic water bottles and four did not. Emission factors for polycyclic aromatic ydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM10, PM2.5), polychlorinated and polybrominated dioxins/furans (PCDD/F and PBDD/F), and criteria pollutants were determined and are contained within. The average PCDD/F emission factors were 270 ng-toxic equivalency (TEQ) per kg carbon burned (ng-TEQ/ kg Cb), ranging from 35 to 780 ng-TEQ/kg Cb. Limited testing suggests that targeted removal of plastic water bottles has no apparent effect on reducing pollutants and may even promote increased emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Burn sample descriptions, individual emissions data for every sampled pollutant, and additional PXDD/F graphs comparing PET #1 plastics vs no plastic are provided as Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org. Simulated waste samples for burning were constructed using a representative military waste composition, based on expert knowledge from Department of Defense (DOD) personnel. Notable observed differences in military waste streams from that of civilian waste include large quantities of packaging, construction materials, food waste, canvas material, Meal Ready to Eat (MRE) waste, and plastic water bottles (PET #1). Each component consisted of at least five pieces to help ensure even distribution throughout the sample. Each component consisted of at least five pieces to help ensure even distribution throughout the sample. A total of seven tests were performed and each test used a burn sample weighing approximately 10 kg.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.166Z", + "last_change_date": "2022-03-14T08:15:02.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16980, + "fields": { + "EF_ID": 621617, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Composition of the burn samples by percent mass (Metals fraction)", + "Technology_Practices": "Small-scale emissions testing on this simulated deployed military waste was conducted at the U.S. Environmental Protection Agency (EPA) Open Burning Testing Facility (OBTF), Research Triangle Park, NC.", + "Parameter_Conditions": "Metal fraction: aluminum/tin, iron/steel, copper wire (w/insulation), magnesium, MRE heaters, paint can", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Woodall, B.D., Yamamoto, D.P., Gullett, B.K. and Touati, A. Emissions from Small-Scale Burns of Simulated Deployed U.S. Military Waste, Environmental Science & Technology, 2012, 46: 10997-11003", + "English_Abstract": "U.S. military forces have historically relied on open burning as an expedient method of volume reduction and treatment of solid waste during the conflicts in Afghanistan and Iraq. This study is the first effort to characterize a broad range of pollutants and their emission factors during the burning of military waste and the effects that recycling efforts, namely removing plastics, might have on emissions. Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. Three tests contained polyethylene terephthalate (PET #1 or PET) plastic water bottles and four did not. Emission factors for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM10, PM2.5), polychlorinated and polybrominated dioxins/furans (PCDD/F and PBDD/F), and criteria pollutants were determined and are contained within. The average PCDD/F emission factors were 270 ng-toxic equivalency (TEQ) per kg carbon burned (ng-TEQ/ kg Cb), ranging from 35 to 780 ng-TEQ/kg Cb. Limited testing suggests that targeted removal of plastic water bottles has no apparent effect on reducing pollutants and may even promote increased emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Burn sample descriptions, individual emissions data for every sampled pollutant, and additional PXDD/F graphs comparing PET #1 plastics vs no plastic are provided as Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org. Simulated waste samples for burning were constructed using a representative military waste composition, based on expert knowledge from Department of Defense (DOD) personnel. Notable observed differences in military waste streams from that of civilian waste include large quantities of packaging, construction materials, food waste, canvas material, Meal Ready to Eat (MRE) waste, and plastic water bottles (PET #1). Each component consisted of at least five pieces to help ensure even distribution throughout the sample. Each component consisted of at least five pieces to help ensure even distribution throughout the sample. A total of seven tests were performed and each test used a burn sample weighing approximately 10 kg.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.283Z", + "last_change_date": "2022-03-14T08:15:02.283Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16981, + "fields": { + "EF_ID": 621618, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Composition of the burn samples by percent mass (Miscelleneous fraction)", + "Technology_Practices": "Small-scale emissions testing on this simulated deployed military waste was conducted at the U.S. Environmental Protection Agency (EPA) Open Burning Testing Facility (OBTF), Research Triangle Park, NC.", + "Parameter_Conditions": "Miscelleneous fraction: fabrics (synthetic), fabrics (natural), canvas (military), neoprene, nylon, cardboard, paper, rubber, food, wet food, oils and grease, unopened MREs, opened MRE inner packaging, soap, batteries, cigarette waste", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Woodall, B.D., Yamamoto, D.P., Gullett, B.K. and Touati, A. Emissions from Small-Scale Burns of Simulated Deployed U.S. Military Waste, Environmental Science & Technology, 2012, 46: 10997-11003", + "English_Abstract": "U.S. military forces have historically relied on open burning as an expedient method of volume reduction and treatment of solid waste during the conflicts in Afghanistan and Iraq. This study is the first effort to characterize a broad range of pollutants and their emission factors during the burning of military waste and the effects that recycling efforts, namely removing plastics, might have on emissions. Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. Three tests contained polyethylene terephthalate (PET #1 or PET) plastic water bottles and four did not. Emission factors for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM10, PM2.5), polychlorinated and polybrominated dioxins/furans (PCDD/F and PBDD/F), and criteria pollutants were determined and are contained within. The average PCDD/F emission factors were 270 ng-toxic equivalency (TEQ) per kg carbon burned (ng-TEQ/ kg Cb), ranging from 35 to 780 ng-TEQ/kg Cb. Limited testing suggests that targeted removal of plastic water bottles has no apparent effect on reducing pollutants and may even promote increased emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Burn sample descriptions, individual emissions data for every sampled pollutant, and additional PXDD/F graphs comparing PET #1 plastics vs no plastic are provided as Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org. Simulated waste samples for burning were constructed using a representative military waste composition, based on expert knowledge from Department of Defense (DOD) personnel. Notable observed differences in military waste streams from that of civilian waste include large quantities of packaging, construction materials, food waste, canvas material, Meal Ready to Eat (MRE) waste, and plastic water bottles (PET #1). Each component consisted of at least five pieces to help ensure even distribution throughout the sample. Each component consisted of at least five pieces to help ensure even distribution throughout the sample. A total of seven tests were performed and each test used a burn sample weighing approximately 10 kg.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.384Z", + "last_change_date": "2022-03-14T08:15:02.384Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16982, + "fields": { + "EF_ID": 621619, + "IPCC_Category": "4.C.2 - Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Composition of the burn samples by percent mass (Dunnage fraction)", + "Technology_Practices": "Small-scale emissions testing on this simulated deployed military waste was conducted at the U.S. Environmental Protection Agency (EPA) Open Burning Testing Facility (OBTF), Research Triangle Park, NC.", + "Parameter_Conditions": "Dunnage fraction: glass, building materials,", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Woodall, B.D., Yamamoto, D.P., Gullett, B.K. and Touati, A. Emissions from Small-Scale Burns of Simulated Deployed U.S. Military Waste, Environmental Science & Technology, 2012, 46: 10997-11003", + "English_Abstract": "U.S. military forces have historically relied on open burning as an expedient method of volume reduction and treatment of solid waste during the conflicts in Afghanistan and Iraq. This study is the first effort to characterize a broad range of pollutants and their emission factors during the burning of military waste and the effects that recycling efforts, namely removing plastics, might have on emissions. Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. Three tests contained polyethylene terephthalate (PET #1 or PET) plastic water bottles and four did not. Emission factors for polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), particulate matter (PM10, PM2.5), polychlorinated and polybrominated dioxins/furans (PCDD/F and PBDD/F), and criteria pollutants were determined and are contained within. The average PCDD/F emission factors were 270 ng-toxic equivalency (TEQ) per kg carbon burned (ng-TEQ/ kg Cb), ranging from 35 to 780 ng-TEQ/kg Cb. Limited testing suggests that targeted removal of plastic water bottles has no apparent effect on reducing pollutants and may even promote increased emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Burn sample descriptions, individual emissions data for every sampled pollutant, and additional PXDD/F graphs comparing PET #1 plastics vs no plastic are provided as Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org. Simulated waste samples for burning were constructed using a representative military waste composition, based on expert knowledge from Department of Defense (DOD) personnel. Notable observed differences in military waste streams from that of civilian waste include large quantities of packaging, construction materials, food waste, canvas material, Meal Ready to Eat (MRE) waste, and plastic water bottles (PET #1). Each component consisted of at least five pieces to help ensure even distribution throughout the sample. Each component consisted of at least five pieces to help ensure even distribution throughout the sample. A total of seven tests were performed and each test used a burn sample weighing approximately 10 kg.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.484Z", + "last_change_date": "2022-03-14T08:15:02.485Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16983, + "fields": { + "EF_ID": 621620, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Daily production of healthcare waste (DWP)", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.9", + "Unit": "kg/bed day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.593Z", + "last_change_date": "2022-03-14T08:15:02.593Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16984, + "fields": { + "EF_ID": 621621, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of (Group 1&2) of daily healthcare waste production", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.702Z", + "last_change_date": "2022-03-14T08:15:02.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16985, + "fields": { + "EF_ID": 621622, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of (Group 3) of daily healthcare waste production", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "49", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.811Z", + "last_change_date": "2022-03-14T08:15:02.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16986, + "fields": { + "EF_ID": 621623, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of (Group 4) of daily healthcare waste production", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:02.929Z", + "last_change_date": "2022-03-14T08:15:02.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16987, + "fields": { + "EF_ID": 621624, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average plastics content in Group 3 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.047Z", + "last_change_date": "2022-03-14T08:15:03.047Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16988, + "fields": { + "EF_ID": 621625, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average plastics content in Group 4 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.156Z", + "last_change_date": "2022-03-14T08:15:03.156Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16989, + "fields": { + "EF_ID": 621626, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average glass content in Group 3 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.257Z", + "last_change_date": "2022-03-14T08:15:03.257Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16990, + "fields": { + "EF_ID": 621627, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average glass content in Group 4 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.357Z", + "last_change_date": "2022-03-14T08:15:03.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16991, + "fields": { + "EF_ID": 621628, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average paper content in Group 3 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.458Z", + "last_change_date": "2022-03-14T08:15:03.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16992, + "fields": { + "EF_ID": 621629, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average paper content in Group 4 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.583Z", + "last_change_date": "2022-03-14T08:15:03.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16993, + "fields": { + "EF_ID": 621630, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average metals content in Group 3 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.709Z", + "last_change_date": "2022-03-14T08:15:03.709Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16994, + "fields": { + "EF_ID": 621631, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average metals content in Group 4 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.826Z", + "last_change_date": "2022-03-14T08:15:03.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16995, + "fields": { + "EF_ID": 621632, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average swabs & absorbents content in Group 3 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:03.935Z", + "last_change_date": "2022-03-14T08:15:03.935Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16996, + "fields": { + "EF_ID": 621633, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average swabs & absorbents content in Group 4 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:04.069Z", + "last_change_date": "2022-03-14T08:15:04.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16997, + "fields": { + "EF_ID": 621634, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average fluids content in Group 4 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:04.203Z", + "last_change_date": "2022-03-14T08:15:04.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16998, + "fields": { + "EF_ID": 621635, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average anatomical remains content in Group 4 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:04.312Z", + "last_change_date": "2022-03-14T08:15:04.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 16999, + "fields": { + "EF_ID": 621636, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average others content in Group 3 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:04.421Z", + "last_change_date": "2022-03-14T08:15:04.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17000, + "fields": { + "EF_ID": 621637, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average others content in Group 4 of healthcare waste", + "Technology_Practices": "The Portuguese Legislation uses the following four types: (i) Group I – wastes similar to municipal wastes; (ii) Group II – non-hazardous healthcare wastes that do not require specific treatment and can be considered similar to municipal wastes; (iii) Group III – healthcare wastes with biological risk which must be pre-treated before they are discharged as municipal wastes; (iv) Group IV – specific healthcare wastes with compulsory incineration. Incineration is the process that is most widely used for the treatment of healthcare wastes. The composition of medical waste, by type of waste and by segregation method, was analyzed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alvim-Ferraz, M.C.M. and Afonso, S.A.V. Incineration of healthcare wastes: management of atmospheric emissions through waste segregation, Waste Management, 2005, 25: 638–648.", + "English_Abstract": "The amount of atmospheric pollutants emitted through the incineration of healthcare wastes can be estimated using emission factors. Emission factors have been published without including sufficient information about the types of wastes incinerated. This paper reports the first emission factors estimated for the incineration of wastes segregated into different types according to the Portuguese legislation. One controlled-air incinerator without air pollution control devices was used in the research. The main objectives of the study were: (i) to estimate the emission factors for particulate matter, dioxins, heavy metals and gaseous pollutants, according to the type of waste incinerated; (ii) to evaluate the quality of atmospheric emissions; and (iii) to define a methodology for the management of atmospheric emissions, evaluating the influence of type of waste incinerated and of the segregation method used on the emitted amounts. It was concluded that: (i) when emission factors are not associated with the type of incinerated mixture, the utility of the emission factors is highly doubtful; (ii) without appropriate equipment to control atmospheric pollution, incineration emissions exceed legal limits, neglecting the protection of human health (the legal limit for pollutant concentrations could only be met for NOx, all other concentrations were higher than the maximum allowed: dioxins, 93-710 times; Hg, 1.3-226 times; CO, 11-24 times; SO2, 2-5 times; and HCl, 9-200 times); (iii) rigorous segregation methodologies must be used to minimize atmospheric emissions, and incinerate only those wastes that should be incinerated according to the law. A rigorous segregation program can result in a reduction of the amount of waste that should be incinerated by 80%. A reduction in the quantity of waste incinerated results in a reduction on the amounts of pollutants emitted: particulate matter, 98%; dioxins, 99.5%; As, Cd, Cr, Mn and Ni, respectively, 90%, 92%, 84%, 77% and 92%; Hg and Pb, practically eliminated; SO2 and NOx, 93%; and CO and HCl, more than 99%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The experiment was performed from September until November 1999, in a 300 bed hospital after an education program to motivate hospital workers towards a much more rigorous methodology of segregation (RIGSeg). The averages of the daily waste production of each waste type (DWPI + II, DWPIII and DWPIV) normalized to the number of beds, and the respective percentages. Periodicity of measurement: 3 months. Date of measurement: September to November 1999", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:04.521Z", + "last_change_date": "2022-03-14T08:15:04.522Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17001, + "fields": { + "EF_ID": 621638, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of carbon in the medical waste (% dry basis)", + "Technology_Practices": "", + "Parameter_Conditions": "The major components of medical waste are plastic, rubber, cotton and paper products, representing around 34%, 27%, 25% and 12%, respectively. Other minor components include food (1.4%), metals (0.3%) and glass (0.3%) and the average moisture content for medical waste is 34.13%.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "51.45", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xie, R., Li, W.J., Li, J., Wu, B.L., Yi, J.Q. Emissions investigation for a novel medical waste incinerator, Journal of Hazardous Materials, 2009, 166: 365–371", + "English_Abstract": "Medical waste constitutes one of the waste streams that should be dealt with special priority due to its potential negative impact on public health and on the environment. Incineration is a process that is widely used for the treatment of medical waste. However, self-supporting combustion of medical waste cannot avoid releasing many hazardous pollutants into our environment. The most favored solutions are firing additional fuels of high calorific value and direct purification by air pollution control devices (APCD). This process entails not only large first time investment but also an increase in the operation cost. A novel incinerator is proposed for better utilization of energy of the incineration process. Its originality is essentially due to combining a feeder, a rotary grate, a cylindrical gasifier and a “coaxial” secondary combustion chamber into a unique unit. The structure of the incinerator as well as the principle of the incineration process is presented in this paper. A full-scale trial of the novel incinerator with APCD was carried out from March to May 2008 to investigate how the distinct configuration influenced the incineration process. Data on PM, CO, NOX, O2 were recorded by a continuous emission monitoring system during the study period. Heavy metals and PCCD/Fs were also sampled and measured. Measuring results were compared with the China and U.S. EPA guidelines. The concentrations of contaminants were below their respective limits in emission control standards. Results from testing the novel medical waste incinerator confirmed that this technology has a good suitability for neutralization of medical wastes and purification of flue gases.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:04.623Z", + "last_change_date": "2022-03-14T08:15:04.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17002, + "fields": { + "EF_ID": 621639, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Low heat value of medical waste (dry basis)", + "Technology_Practices": "", + "Parameter_Conditions": "The major components of medical waste are plastic, rubber, cotton and paper products, representing around 34%, 27%, 25% and 12%, respectively. Other minor components include food (1.4%), metals (0.3%) and glass (0.3%) and the average moisture content for medical waste is 34.13%.", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2500", + "Unit": "kcal/kg", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xie, R., Li, W.J., Li, J., Wu, B.L., Yi, J.Q. Emissions investigation for a novel medical waste incinerator, Journal of Hazardous Materials, 2009, 166: 365–371", + "English_Abstract": "Medical waste constitutes one of the waste streams that should be dealt with special priority due to its potential negative impact on public health and on the environment. Incineration is a process that is widely used for the treatment of medical waste. However, self-supporting combustion of medical waste cannot avoid releasing many hazardous pollutants into our environment. The most favored solutions are firing additional fuels of high calorific value and direct purification by air pollution control devices (APCD). This process entails not only large first time investment but also an increase in the operation cost. A novel incinerator is proposed for better utilization of energy of the incineration process. Its originality is essentially due to combining a feeder, a rotary grate, a cylindrical gasifier and a “coaxial” secondary combustion chamber into a unique unit. The structure of the incinerator as well as the principle of the incineration process is presented in this paper. A full-scale trial of the novel incinerator with APCD was carried out from March to May 2008 to investigate how the distinct configuration influenced the incineration process. Data on PM, CO, NOX, O2 were recorded by a continuous emission monitoring system during the study period. Heavy metals and PCCD/Fs were also sampled and measured. Measuring results were compared with the China and U.S. EPA guidelines. The concentrations of contaminants were below their respective limits in emission control standards. Results from testing the novel medical waste incinerator confirmed that this technology has a good suitability for neutralization of medical wastes and purification of flue gases.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "", + "creation_date": "2022-03-14T08:15:04.732Z", + "last_change_date": "2022-03-14T08:15:04.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17003, + "fields": { + "EF_ID": 621640, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane flux from composting of lignocellulosic residues with different N-rich by-products", + "Technology_Practices": "Different N sources are added to the same lignocellulosic mixture thus influencing the degradation rate, microbiological activity and therefore gas losses during composting. Two lignocellulosic residues: wheat straw (WST) and cotton cardings (CTC) were used for the preparation of three composting mixtures. Four N-rich by-products with different N availability: meat bone meal (MBM), hydrolysed leather (HYL), blood meal (BLM) and horn and hoof meal (HHM) were selected among commercially available animal by-products. Major CO2 fluxes were detected during the initial 20 d of composting corresponding with maximum temperatures. Methane emissions were not detected throughout the composting period. The maximum amount of CH4 that could have been emitted was calculated considering the detection limit of the gas-chromatograph, the accumulation time, the volume of the chamber and the mass of the pile.", + "Parameter_Conditions": "Three composting piles were prepared with an identical mixture of WST and CTC (2:1 on a fresh weight basis) adding different N-rich animal by-products in each pile. The relative proportions were adjusted to give an initial C/N of about 30. Pile 1: 62% WST + 32% CTC + 6% MBM (dry weight basis). Pile 2: 62% WST + 32% CTC + 6% HYL (dry weight basis). Pile 3: 62% WST + 32% CTC + 6% mixture of BLM and HHM (1:1) (dry weight basis). Water was added to adjust moisture to 65%. The mixtures (around 100 kg moist weight each) were placed in 300 dm3 polyethylene composting bins (95 cm long, 60 cm width, 53 cm height) provided with a perforated bottom to allow passive aeration. Moreover, four turnings were made during the composting period (at 14, 23, 37, and 59 d). At each turning event, the composting mixture was taken out of the composting bin and thoroughly mixed to homogenize the mass, reactivate the process and avoid compaction. Temperature was monitored daily by inserting a thermocouple into five different points of the pile. The composting bins were placed in the open, under a shelter built for protection from the wind and the rain. No leaching losses were produced during the entire process. Samples (1 kg, fresh weight) were collected at seven different stages (0–92 d) during the composting process by mixing 20 subsamples (approx 50 g each) obtained from different locations in the piles. An aliquot of the composite sample was immediately extracted for the measurement of ammonium, while the remainder was air dried and ground to 0.5 mm.", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "less than 3.5", + "Unit": "mg CH4–C/h*t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Sinicco, T., Mondini, C. Biochemical changes and GHG emissions during composting of lignocellulosic residues with different N-rich by-products, Chemosphere, 2012, 88: 196–203", + "English_Abstract": "Nitrogen availability plays a critical role in the biodegradation of organic matter during composting. Although the optimal initial C/N is known to be around 25–30, the chemical form in which N is present influences microbial activity and therefore degradation rate and gaseous losses. This study was conducted to evaluate the influence of N availability on the composting of a mixture of lignocellulosic materials. Three composting piles were made of a mixture of wheat straw and cotton waste, each pile containing different N-rich animal by-products. The evolution of the main physico-chemical parameters was monitored (temperature, pH, electrical conductivity, C/N, NH4, NO3 , water soluble C and N) as well as the enzymatic activity related to the cycle of the main nutrients (b-glucosidase, protease, alkaline phosphatase and luorescein diacetate hydrolysis). Additionally, fluxes of CO2, CH4 and N2O emitted from the composting piles were measured by the closed-chamber technique. Cumulative CO2 emissions were fitted to five different kinetic models with biological significance to C mineralization data. The application of the different N-rich residues had a significant effect on the C and N dynamics during composting. However, most enzymatic activities followed similar patterns in the three piles. The major CO2 fluxes were recorded during the thermophilic phase, showing a direct relationship with temperature peaks. No CH4 fluxes were detected for any of the composting piles during the whole trial, whereas low N2O emissions were found at the early beginning and during the maturation stage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A static chamber technique was used to measure fluxes from the surface of the compost piles. The chamber used for this investigation was specifically designed to hermetically close the composting bins and concentrate the gas emitted from the whole pile in a short time interval. It had a pyramidal shape (volume 35 dm3) with an outlet in the vertex for direct gas sampling. When the gas concentration was below the detection limit, the maximum amount of gas that could have been emitted was calculated considering: the detection limit for that gas, the cumulation time (20 min) and the volume of the chamber. This would represent the maximum amount of gas produced per time. When a gas was detected but in a concentration below the quantification limit, the maximum concentration was calculated in the same way considering the quantification limit. Methane emissions were not detected throughout the composting period. The maximum amount of CH4 that could have been emitted was calculated considering the detection limit of the gas-chromatograph (4 ppmv), the accumulation time, the volume of the chamber and the mass of the pile. Periodicity of measurement: Four enclosure headspace samples were collected from the chamber at 5 min intervals in 50-mL plastic polypropylene syringes (Millipore) and injected into a micro-GC (CP-2003P Varian, Palo Alto CA, USA) for quantifying CO2, CH4 and N2O. The micro-GC detection limits for CO2, N2O and CH4 were 2, 1 and 4 ppmv and the quantification limits were 5, 2 and 11 ppmv. The sampling volume was lower than 0.2% of the volume in the chamber. A total of 168 gas measurements were performed per pile during the 92 d of composting. Gas samples were taken twice a day (at 9:00 am and 6:00 pm) during the first 2 wk, decreasing subsequently to daily, biweekly and weekly measurements (at 9:00 am). Date of measurement: 2008", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:04.841Z", + "last_change_date": "2022-03-14T08:15:04.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17004, + "fields": { + "EF_ID": 621641, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Percentage of CH4-C (% of total initial C)", + "Technology_Practices": "Different N sources are added to the same lignocellulosic mixture thus influencing the degradation rate, microbiological activity and therefore gas losses during composting. Two lignocellulosic residues: wheat straw (WST) and cotton cardings (CTC) were used for the preparation of three composting mixtures. Four N-rich by-products with different N availability: meat bone meal (MBM), hydrolysed leather (HYL), blood meal (BLM) and horn and hoof meal (HHM) were selected among commercially available animal by-products. Major CO2 fluxes were detected during the initial 20 d of composting corresponding with maximum temperatures. Methane emissions were not detected throughout the composting period. The maximum amount of CH4 that could have been emitted was calculated considering the detection limit of the gas-chromatograph, the accumulation time, the volume of the chamber and the mass of the pile.", + "Parameter_Conditions": "Three composting piles were prepared with an identical mixture of WST and CTC (2:1 on a fresh weight basis) adding different N-rich animal by-products in each pile. The relative proportions were adjusted to give an initial C/N of about 30. Pile 1: 62% WST + 32% CTC + 6% MBM (dry weight basis). Pile 2: 62% WST + 32% CTC + 6% HYL (dry weight basis). Pile 3: 62% WST + 32% CTC + 6% mixture of BLM and HHM (1:1) (dry weight basis). Water was added to adjust moisture to 65%. The mixtures (around 100 kg moist weight each) were placed in 300 dm3 polyethylene composting bins (95 cm long, 60 cm width, 53 cm height) provided with a perforated bottom to allow passive aeration. Moreover, four turnings were made during the composting period (at 14, 23, 37, and 59 d). At each turning event, the composting mixture was taken out of the composting bin and thoroughly mixed to homogenize the mass, reactivate the process and avoid compaction. Temperature was monitored daily by inserting a thermocouple into five different points of the pile. The composting bins were placed in the open, under a shelter built for protection from the wind and the rain. No leaching losses were produced during the entire process. Samples (1 kg, fresh weight) were collected at seven different stages (0–92 d) during the composting process by mixing 20 subsamples (approx 50 g each) obtained from different locations in the piles. An aliquot of the composite sample was immediately extracted for the measurement of ammonium, while the remainder was air dried and ground to 0.5 mm.", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "less than 0.01", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Sinicco, T., Mondini, C. Biochemical changes and GHG emissions during composting of lignocellulosic residues with different N-rich by-products, Chemosphere, 2012, 88: 196–203", + "English_Abstract": "Nitrogen availability plays a critical role in the biodegradation of organic matter during composting. Although the optimal initial C/N is known to be around 25–30, the chemical form in which N is present influences microbial activity and therefore degradation rate and gaseous losses. This study was conducted to evaluate the influence of N availability on the composting of a mixture of lignocellulosic materials. Three composting piles were made of a mixture of wheat straw and cotton waste, each pile containing different N-rich animal by-products. The evolution of the main physico-chemical parameters was monitored (temperature, pH, electrical conductivity, C/N, NH4, NO3 , water soluble C and N) as well as the enzymatic activity related to the cycle of the main nutrients (b-glucosidase, protease, alkaline phosphatase and luorescein diacetate hydrolysis). Additionally, fluxes of CO2, CH4 and N2O emitted from the composting piles were measured by the closed-chamber technique. Cumulative CO2 emissions were fitted to five different kinetic models with biological significance to C mineralization data. The application of the different N-rich residues had a significant effect on the C and N dynamics during composting. However, most enzymatic activities followed similar patterns in the three piles. The major CO2 fluxes were recorded during the thermophilic phase, showing a direct relationship with temperature peaks. No CH4 fluxes were detected for any of the composting piles during the whole trial, whereas low N2O emissions were found at the early beginning and during the maturation stage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A static chamber technique was used to measure fluxes from the surface of the compost piles. The chamber used for this investigation was specifically designed to hermetically close the composting bins and concentrate the gas emitted from the whole pile in a short time interval. It had a pyramidal shape (volume 35 dm3) with an outlet in the vertex for direct gas sampling. When the gas concentration was below the detection limit, the maximum amount of gas that could have been emitted was calculated considering: the detection limit for that gas, the cumulation time (20 min) and the volume of the chamber. This would represent the maximum amount of gas produced per time. When a gas was detected but in a concentration below the quantification limit, the maximum concentration was calculated in the same way considering the quantification limit. Methane emissions were not detected throughout the composting period. The maximum amount of CH4 that could have been emitted was calculated considering the detection limit of the gas-chromatograph (4 ppmv), the accumulation time, the volume of the chamber and the mass of the pile. Periodicity of measurement: Four enclosure headspace samples were collected from the chamber at 5 min intervals in 50-mL plastic polypropylene syringes (Millipore) and injected into a micro-GC (CP-2003P Varian, Palo Alto CA, USA) for quantifying CO2, CH4 and N2O. The micro-GC detection limits for CO2, N2O and CH4 were 2, 1 and 4 ppmv and the quantification limits were 5, 2 and 11 ppmv. The sampling volume was lower than 0.2% of the volume in the chamber. A total of 168 gas measurements were performed per pile during the 92 d of composting. Gas samples were taken twice a day (at 9:00 am and 6:00 pm) during the first 2 wk, decreasing subsequently to daily, biweekly and weekly measurements (at 9:00 am). Date of measurement: 2008", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:04.942Z", + "last_change_date": "2022-03-14T08:15:04.942Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17005, + "fields": { + "EF_ID": 621642, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Percentage of N2O-N (% of total initial N)", + "Technology_Practices": "Different N sources are added to the same lignocellulosic mixture thus influencing the degradation rate, microbiological activity and therefore gas losses during composting. Two lignocellulosic residues: wheat straw (WST) and cotton cardings (CTC) were used for the preparation of three composting mixtures. Four N-rich by-products with different N availability: meat bone meal (MBM), hydrolysed leather (HYL), blood meal (BLM) and horn and hoof meal (HHM) were selected among commercially available animal by-products.", + "Parameter_Conditions": "Three composting piles were prepared with an identical mixture of WST and CTC (2:1 on a fresh weight basis) adding different N-rich animal by-products in each pile. The relative proportions were adjusted to give an initial C/N of about 30. Pile 1: 62% WST + 32% CTC + 6% MBM (dry weight basis). Pile 2: 62% WST + 32% CTC + 6% HYL (dry weight basis). Pile 3: 62% WST + 32% CTC + 6% mixture of BLM and HHM (1:1) (dry weight basis). Water was added to adjust moisture to 65%. The mixtures (around 100 kg moist weight each) were placed in 300 dm3 polyethylene composting bins (95 cm long, 60 cm width, 53 cm height) provided with a perforated bottom to allow passive aeration. Moreover, four turnings were made during the composting period (at 14, 23, 37, and 59 d). At each turning event, the composting mixture was taken out of the composting bin and thoroughly mixed to homogenize the mass, reactivate the process and avoid compaction. Temperature was monitored daily by inserting a thermocouple into five different points of the pile. The composting bins were placed in the open, under a shelter built for protection from the wind and the rain. No leaching losses were produced during the entire process. Samples (1 kg, fresh weight) were collected at seven different stages (0–92 d) during the composting process by mixing 20 subsamples (approx 50 g each) obtained from different locations in the piles. An aliquot of the composite sample was immediately extracted for the measurement of ammonium, while the remainder was air dried and ground to 0.5 mm.", + "Regional_Conditions": "Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Cayuela, M.L., Sánchez-Monedero, M.A., Roig, A., Sinicco, T., Mondini, C. Biochemical changes and GHG emissions during composting of lignocellulosic residues with different N-rich by-products, Chemosphere, 2012, 88: 196–203", + "English_Abstract": "Nitrogen availability plays a critical role in the biodegradation of organic matter during composting. Although the optimal initial C/N is known to be around 25–30, the chemical form in which N is present influences microbial activity and therefore degradation rate and gaseous losses. This study was conducted to evaluate the influence of N availability on the composting of a mixture of lignocellulosic materials. Three composting piles were made of a mixture of wheat straw and cotton waste, each pile containing different N-rich animal by-products. The evolution of the main physico-chemical parameters was monitored (temperature, pH, electrical conductivity, C/N, NH4, NO3 , water soluble C and N) as well as the enzymatic activity related to the cycle of the main nutrients (b-glucosidase, protease, alkaline phosphatase and luorescein diacetate hydrolysis). Additionally, fluxes of CO2, CH4 and N2O emitted from the composting piles were measured by the closed-chamber technique. Cumulative CO2 emissions were fitted to five different kinetic models with biological significance to C mineralization data. The application of the different N-rich residues had a significant effect on the C and N dynamics during composting. However, most enzymatic activities followed similar patterns in the three piles. The major CO2 fluxes were recorded during the thermophilic phase, showing a direct relationship with temperature peaks. No CH4 fluxes were detected for any of the composting piles during the whole trial, whereas low N2O emissions were found at the early beginning and during the maturation stage.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A static chamber technique was used to measure fluxes from the surface of the compost piles. The chamber used for this investigation was specifically designed to hermetically close the composting bins and concentrate the gas emitted from the whole pile in a short time interval. It had a pyramidal shape (volume 35 dm3) with an outlet in the vertex for direct gas sampling. When the gas concentration was below the detection limit, the maximum amount of gas that could have been emitted was calculated considering: the detection limit for that gas, the cumulation time (20 min) and the volume of the chamber. This would represent the maximum amount of gas produced per time. When a gas was detected but in a concentration below the quantification limit, the maximum concentration was calculated in the same way considering the quantification limit. Methane emissions were not detected throughout the composting period. The maximum amount of CH4 that could have been emitted was calculated considering the detection limit of the gas-chromatograph (4 ppmv), the accumulation time, the volume of the chamber and the mass of the pile. Periodicity of measurement: Four enclosure headspace samples were collected from the chamber at 5 min intervals in 50-mL plastic polypropylene syringes (Millipore) and injected into a micro-GC (CP-2003P Varian, Palo Alto CA, USA) for quantifying CO2, CH4 and N2O. The micro-GC detection limits for CO2, N2O and CH4 were 2, 1 and 4 ppmv and the quantification limits were 5, 2 and 11 ppmv. The sampling volume was lower than 0.2% of the volume in the chamber. A total of 168 gas measurements were performed per pile during the 92 d of composting. Gas samples were taken twice a day (at 9:00 am and 6:00 pm) during the first 2 wk, decreasing subsequently to daily, biweekly and weekly measurements (at 9:00 am). Date of measurement: 2008", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.042Z", + "last_change_date": "2022-03-14T08:15:05.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17006, + "fields": { + "EF_ID": 621643, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Paper & textiles fraction in wet waste from survey of 35 canadian landfills", + "Technology_Practices": "", + "Parameter_Conditions": "A national survey captured the 52 Canadian landfills recovering methane, obtaining necessary model inputs, and methane recovery rates for landfills in 2005. All 52 landfills had recovery data; however, due to insufficient waste data and outliers, only 35 landfills were considered to calibrate the landfill gas models. The 35 landfills operated in five provinces, namely, Alberta, British Columbia, Ontario, Nova Scotia, and Quebec.", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.0 - 59.0", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thompson, S., Sawyer, J., Bonam, R., Valdivia, J.E.. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills, Waste Management, 2009, 29: 2085–2091", + "English_Abstract": "The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOCf) were applied in all models. Most models performed better when the DOCf was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOCf and 171%, 115%, and 81% at 0.77 DOCf. The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOCf and 0.77 DOCf the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 ± 45% and 2.3 yielding 57 ± 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.144Z", + "last_change_date": "2022-03-14T08:15:05.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17007, + "fields": { + "EF_ID": 621644, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Garden & park waste fraction in wet waste from survey of 35 canadian landfills", + "Technology_Practices": "", + "Parameter_Conditions": "A national survey captured the 52 Canadian landfills recovering methane, obtaining necessary model inputs, and methane recovery rates for landfills in 2005. All 52 landfills had recovery data; however, due to insufficient waste data and outliers, only 35 landfills were considered to calibrate the landfill gas models. The 35 landfills operated in five provinces, namely, Alberta, British Columbia, Ontario, Nova Scotia, and Quebec.", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.0 - 17.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thompson, S., Sawyer, J., Bonam, R., Valdivia, J.E.. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills, Waste Management, 2009, 29: 2085–2091", + "English_Abstract": "The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOCf) were applied in all models. Most models performed better when the DOCf was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOCf and 171%, 115%, and 81% at 0.77 DOCf. The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOCf and 0.77 DOCf the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 ± 45% and 2.3 yielding 57 ± 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.260Z", + "last_change_date": "2022-03-14T08:15:05.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17008, + "fields": { + "EF_ID": 621645, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Food waste fraction in wet waste from survey of 35 canadian landfills", + "Technology_Practices": "", + "Parameter_Conditions": "A national survey captured the 52 Canadian landfills recovering methane, obtaining necessary model inputs, and methane recovery rates for landfills in 2005. All 52 landfills had recovery data; however, due to insufficient waste data and outliers, only 35 landfills were considered to calibrate the landfill gas models. The 35 landfills operated in five provinces, namely, Alberta, British Columbia, Ontario, Nova Scotia, and Quebec.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7 - 25.3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thompson, S., Sawyer, J., Bonam, R., Valdivia, J.E.. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills, Waste Management, 2009, 29: 2085–2091", + "English_Abstract": "The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOCf) were applied in all models. Most models performed better when the DOCf was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOCf and 171%, 115%, and 81% at 0.77 DOCf. The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOCf and 0.77 DOCf the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 ± 45% and 2.3 yielding 57 ± 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.377Z", + "last_change_date": "2022-03-14T08:15:05.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17009, + "fields": { + "EF_ID": 621646, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wood & straw fraction in wet waste from survey of 35 canadian landfills", + "Technology_Practices": "", + "Parameter_Conditions": "A national survey captured the 52 Canadian landfills recovering methane, obtaining necessary model inputs, and methane recovery rates for landfills in 2005. All 52 landfills had recovery data; however, due to insufficient waste data and outliers, only 35 landfills were considered to calibrate the landfill gas models. The 35 landfills operated in five provinces, namely, Alberta, British Columbia, Ontario, Nova Scotia, and Quebec.", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3 - 6.0", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thompson, S., Sawyer, J., Bonam, R., Valdivia, J.E.. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills, Waste Management, 2009, 29: 2085–2091", + "English_Abstract": "The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOCf) were applied in all models. Most models performed better when the DOCf was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOCf and 171%, 115%, and 81% at 0.77 DOCf. The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOCf and 0.77 DOCf the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 ± 45% and 2.3 yielding 57 ± 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.494Z", + "last_change_date": "2022-03-14T08:15:05.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17010, + "fields": { + "EF_ID": 621647, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Decay rate, k", + "Technology_Practices": "", + "Parameter_Conditions": "A national survey captured the 52 Canadian landfills recovering methane, obtaining necessary model inputs, and methane recovery rates for landfills in 2005. All 52 landfills had recovery data; however, due to insufficient waste data and outliers, only 35 landfills were considered to calibrate the landfill gas models. The 35 landfills operated in five provinces, namely, Alberta, British Columbia, Ontario, Nova Scotia, and Quebec. Estimated methane generation for 35 landfills for six models. The German EPER, Belgium, TNO, Scholl Canyon, LandGEM, and a modified Scholl Canyon model (dividing the waste by numbers between one and ten) were all run in Excel 2002. The site-specific yearly waste quantity from the opening of the landfill to year 2005 were applied to all models except the EPER model, which only considered the 2005 waste amount.", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.023 - 0.056", + "Unit": "/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thompson, S., Sawyer, J., Bonam, R., Valdivia, J.E.. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills, Waste Management, 2009, 29: 2085–2091", + "English_Abstract": "The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOCf) were applied in all models. Most models performed better when the DOCf was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOCf and 171%, 115%, and 81% at 0.77 DOCf. The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOCf and 0.77 DOCf the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 ± 45% and 2.3 yielding 57 ± 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The decay rate (k) is the biodegradation half-life in 1/years for organic material in a landfill. The IPCC (2006) recognizes the high uncertainty and error associated with k. The decay rates range from one to 50 years and even longer in landfills located in dry, cold climates. Decay rates have been determined by a number of methods: laboratory simulations, samples excavated from landfills, and test cells designed to simulate real world conditions. Although many different environment conditions act upon decay, typically only precipitation is considered to have an effect on k. Moisture is essential for bacterial growth, metabolism, and nutrient transport. The US EPA (2004) offers a binary choice for default decay rates of either 0.02 year-1 below 25 inches (635 mm) of precipitation or 0.04 year-1 above 25 inches. Thompson et al. (2006) and Environment Canada (2006a,b) define a linear relationship between decay and annual precipitation to scale k with location-specific moisture levels based on the US EPA (2004) defaults. A linear relationship between moisture and decay rate has been observed in other field and laboratory studies. Methane generation is estimated for 35 landfills for six models. The German EPER, Belgium, TNO, Scholl Canyon, LandGEM, and a modified Scholl Canyon model (dividing the waste by numbers between one and ten) were all run in Excel 2002. The site-specific yearly waste quantity from the opening of the landfill to year 2005 were applied to all models except the EPER model, which only considered the 2005 waste amount. Decay rates are determined based on precipitation rates by the following equation k = 3.2 * 10-5 (x) + 0.01 where: k = decay rate (1/year); and x = annual average precipitation from 1971 to 2006", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.620Z", + "last_change_date": "2022-03-14T08:15:05.620Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17011, + "fields": { + "EF_ID": 621648, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of residential waste sent for landfilling", + "Technology_Practices": "In the City of Ottawa, waste collection is performed on a weekly basis. Recyclable materials are also collected weekly. The “blue box” is the container designated for glass, metals and plastics, and is collected bi-weekly. The “black box” is the assigned for collecting paper wastes, and is collected bi-weekly on the alternating weeks. This program commenced in 1999, and generated savings of around $1 million/year while improving residential recycling participation rates. There are two materials recovery facilities (MRFs) in Ottawa, one for the paper stream, one for the plastic, glass and metal stream. These facilities are responsible for marketing the recycled materials to material reprocessors. Leaf and yard wastes are collected bi-weekly in the spring and summer, weekly in autumn, once in January (collection of Christmas trees). Presently, these materials are collected and then sent by transfer trucks for composting.", + "Parameter_Conditions": "", + "Regional_Conditions": "Ottawa, Ontario, Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mohareb, A.K., Warith, M.A., Diaz, R. Modeling greenhouse gas emissions for municipal solid waste management strategies in Ottawa, Ontario, Canada, Resources, Conservation and Recycling, 2008, 52:1241–1251", + "English_Abstract": "Human-induced climate change, through the emission of greenhouse gases, may result in a significant negative impact on Earth. Canada is one of the largest per capita emitters of greenhouse gas, generating 720 megatonnes (Mt) carbon dioxide equivalents (CO2e), or per capita emissions of 23.2 t CO2e. The solid waste sector in Canada was directly responsible for 25Mt CO2e in 2001, of which 23Mt CO2e were produced by landfill gas (LFG). A modelling exercise was undertaken to determine greenhouse gas (GHG) emissions from the waste sector using the waste disposal, recycling, and composting data from Ottawa, Ontario, Canada for the year 2003, as well as the results of an audit of residential units performed in the same year. This evaluation determined that, among the options examined, waste incineration, further source separation of recyclables, and anaerobic digestion of an organic wastes have the greatest benefits for reducing GHG emissions in the City of Ottawa’s waste sector. Challenges surrounding the installation of incineration facilities in Canada suggest that improved diversion of recyclable materials and anaerobic digestion of organic materials are the optimal options for the City of Ottawa to pursue.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It should be noted that the waste diversion rate in the audit was 47.2%, higher than the city’s average diversion rate of 33%. This is because this audit was performed on single-family households; among residential units in the City of Ottawa, diversion rates are much greater in single-family households.An audit of apartment waste showed that paper made up twice as much of the material sent for landfill compared to single-familywaste (28–14%). The capture rate in apartments is 33% for paper, and 31% for containers. For comparison, among the single-family households audited, the capture rates were 75% for paper and 61% for blue box materials (85% for glass, 65% for metals and 33% for plastics)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.729Z", + "last_change_date": "2022-03-14T08:15:05.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17012, + "fields": { + "EF_ID": 621649, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of waste sent for recycling", + "Technology_Practices": "In the City of Ottawa, waste collection is performed on a weekly basis. Recyclable materials are also collected weekly. The “blue box” is the container designated for glass, metals and plastics, and is collected bi-weekly. The “black box” is the assigned for collecting paper wastes, and is collected bi-weekly on the alternating weeks. This program commenced in 1999, and generated savings of around $1 million/year while improving residential recycling participation rates. There are two materials recovery facilities (MRFs) in Ottawa, one for the paper stream, one for the plastic, glass and metal stream. These facilities are responsible for marketing the recycled materials to material reprocessors. Leaf and yard wastes are collected bi-weekly in the spring and summer, weekly in autumn, once in January (collection of Christmas trees). Presently, these materials are collected and then sent by transfer trucks for composting.", + "Parameter_Conditions": "Paper is typically marketed locally to the Cascades group; this paper is reused within an 80km radius of Ottawa. Glass was initially marketed to manufacturers in Montréal, 160 km east of Ottawa. Starting in 2003, however, recycled glass began to be used locally in a pilot project that diverts crushed glass to be used in aggregates. Steel is usually marketed to companies in Hamilton, ON (550km from Ottawa), including Poscor and Waxman and Sons. Aluminum is marketed to Camco Recycling Inc. in Dillonville, Ohio (a distance of 970 km from Ottawa) and Montréal, Alcan in Hamilton, as well as a remanufacturer in New Hampshire. Plastics are sold to a variety of markets.", + "Regional_Conditions": "Ottawa, Ontario, Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mohareb, A.K., Warith, M.A., Diaz, R. Modeling greenhouse gas emissions for municipal solid waste management strategies in Ottawa, Ontario, Canada, Resources, Conservation and Recycling, 2008, 52:1241–1251", + "English_Abstract": "Human-induced climate change, through the emission of greenhouse gases, may result in a significant negative impact on Earth. Canada is one of the largest per capita emitters of greenhouse gas, generating 720 megatonnes (Mt) carbon dioxide equivalents (CO2e), or per capita emissions of 23.2 t CO2e. The solid waste sector in Canada was directly responsible for 25Mt CO2e in 2001, of which 23Mt CO2e were produced by landfill gas (LFG). A modelling exercise was undertaken to determine greenhouse gas (GHG) emissions from the waste sector using the waste disposal, recycling, and composting data from Ottawa, Ontario, Canada for the year 2003, as well as the results of an audit of residential units performed in the same year. This evaluation determined that, among the options examined, waste incineration, further source separation of recyclables, and anaerobic digestion of an organic wastes have the greatest benefits for reducing GHG emissions in the City of Ottawa’s waste sector. Challenges surrounding the installation of incineration facilities in Canada suggest that improved diversion of recyclable materials and anaerobic digestion of organic materials are the optimal options for the City of Ottawa to pursue.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It should be noted that the waste diversion rate in the audit was 47.2%, higher than the city’s average diversion rate of 33%. This is because this audit was performed on single-family households; among residential units in the City of Ottawa, diversion rates are much greater in single-family households.An audit of apartment waste showed that paper made up twice as much of the material sent for landfill compared to single-familywaste (28–14%). The capture rate in apartments is 33% for paper, and 31% for containers. For comparison, among the single-family households audited, the capture rates were 75% for paper and 61% for blue box materials (85% for glass, 65% for metals and 33% for plastics)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.847Z", + "last_change_date": "2022-03-14T08:15:05.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17013, + "fields": { + "EF_ID": 621650, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of waste sent for composting", + "Technology_Practices": "In the City of Ottawa, waste collection is performed on a weekly basis. Recyclable materials are also collected weekly. The “blue box” is the container designated for glass, metals and plastics, and is collected bi-weekly. The “black box” is the assigned for collecting paper wastes, and is collected bi-weekly on the alternating weeks. This program commenced in 1999, and generated savings of around $1 million/year while improving residential recycling participation rates. There are two materials recovery facilities (MRFs) in Ottawa, one for the paper stream, one for the plastic, glass and metal stream. These facilities are responsible for marketing the recycled materials to material reprocessors. Leaf and yard wastes are collected bi-weekly in the spring and summer, weekly in autumn, once in January (collection of Christmas trees). Presently, these materials are collected and then sent by transfer trucks for composting.", + "Parameter_Conditions": "The City of Ottawa estimates that of the material sent for composting, 60% becomes compost product, while the other 40% is lost as moisture and CO2. There were 74,000 backyard composters in the City of Ottawa in 2003, and the city estimates that these composters divert an average of 100 kg/(unit year). If this is achieved, the composters reduce the amount of organic waste sent for disposal by 7400 t.", + "Regional_Conditions": "Ottawa, Ontario, Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mohareb, A.K., Warith, M.A., Diaz, R. Modeling greenhouse gas emissions for municipal solid waste management strategies in Ottawa, Ontario, Canada, Resources, Conservation and Recycling, 2008, 52:1241–1251", + "English_Abstract": "Human-induced climate change, through the emission of greenhouse gases, may result in a significant negative impact on Earth. Canada is one of the largest per capita emitters of greenhouse gas, generating 720 megatonnes (Mt) carbon dioxide equivalents (CO2e), or per capita emissions of 23.2 t CO2e. The solid waste sector in Canada was directly responsible for 25Mt CO2e in 2001, of which 23Mt CO2e were produced by landfill gas (LFG). A modelling exercise was undertaken to determine greenhouse gas (GHG) emissions from the waste sector using the waste disposal, recycling, and composting data from Ottawa, Ontario, Canada for the year 2003, as well as the results of an audit of residential units performed in the same year. This evaluation determined that, among the options examined, waste incineration, further source separation of recyclables, and anaerobic digestion of an organic wastes have the greatest benefits for reducing GHG emissions in the City of Ottawa’s waste sector. Challenges surrounding the installation of incineration facilities in Canada suggest that improved diversion of recyclable materials and anaerobic digestion of organic materials are the optimal options for the City of Ottawa to pursue.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It should be noted that the waste diversion rate in the audit was 47.2%, higher than the city’s average diversion rate of 33%. This is because this audit was performed on single-family households; among residential units in the City of Ottawa, diversion rates are much greater in single-family households.An audit of apartment waste showed that paper made up twice as much of the material sent for landfill compared to single-familywaste (28–14%). The capture rate in apartments is 33% for paper, and 31% for containers. For comparison, among the single-family households audited, the capture rates were 75% for paper and 61% for blue box materials (85% for glass, 65% for metals and 33% for plastics)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:05.947Z", + "last_change_date": "2022-03-14T08:15:05.947Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17014, + "fields": { + "EF_ID": 621651, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of ferrous metals in different Commercial & Industrial (C&I) waste types for 5 selected industries (catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.048Z", + "last_change_date": "2022-03-14T08:15:06.048Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17015, + "fields": { + "EF_ID": 621652, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of non ferrous metals in different C&I waste types for 5 selected industries (catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.158Z", + "last_change_date": "2022-03-14T08:15:06.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17016, + "fields": { + "EF_ID": 621653, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of paper & cardboard in different C&I waste types for 5 selected industries (catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.3", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.275Z", + "last_change_date": "2022-03-14T08:15:06.275Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17017, + "fields": { + "EF_ID": 621654, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of stones & glass in different C&I waste types for 5 selected industries (catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.8", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.375Z", + "last_change_date": "2022-03-14T08:15:06.375Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17018, + "fields": { + "EF_ID": 621655, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of hard plastics in different C&I waste types for 5 selected industries (catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.476Z", + "last_change_date": "2022-03-14T08:15:06.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17019, + "fields": { + "EF_ID": 621656, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of films in different C&I waste types for selected industries taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.1", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.577Z", + "last_change_date": "2022-03-14T08:15:06.577Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17020, + "fields": { + "EF_ID": 621657, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of other plastics in different C&I waste types for selected industries taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.686Z", + "last_change_date": "2022-03-14T08:15:06.686Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17021, + "fields": { + "EF_ID": 621658, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of composites in different C&I waste types for selected industries taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.803Z", + "last_change_date": "2022-03-14T08:15:06.803Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17022, + "fields": { + "EF_ID": 621659, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of wood in different C&I waste types for 5 selected industries (catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:06.920Z", + "last_change_date": "2022-03-14T08:15:06.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17023, + "fields": { + "EF_ID": 621660, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of textiles in different C&I waste types for 5 selected industries (catering, healthcare, food, craft & institutional)taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.038Z", + "last_change_date": "2022-03-14T08:15:07.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17024, + "fields": { + "EF_ID": 621661, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of organic in different C&I waste types for 5 selected industries (catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.3", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.155Z", + "last_change_date": "2022-03-14T08:15:07.155Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17025, + "fields": { + "EF_ID": 621662, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of miscelleneous in different C&I waste types for 5 selected industries(catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.264Z", + "last_change_date": "2022-03-14T08:15:07.264Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17026, + "fields": { + "EF_ID": 621663, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average fraction of fines in different C&I waste types for 5 selected industries (catering, healthcare, food, craft & institutional) taken from three C&I waste treatment sites in Germany.", + "Technology_Practices": "In order to analyse waste composition by industry, waste sorting studies were conducted on sites in Hamburg, Rhineland-Palatine and Bavaria. According to the available data on the collection route, the waste production points were classified according to industrial sectors. The following five industrial sectors were defined: -Catering (restaurants, hotels, cinemas, etc.). -Healthcare (nursing homes, hospitals, charitable institutions etc.). -Food (bakeries, butchers etc.). -Craft (construction, various trades). -Institutional (government agencies, universities, banks, insurance setc.).", + "Parameter_Conditions": "In order to make the data representative, the study includes waste from different business sizes within the respective industrial sector.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Helftewes, M., Flamme, S., and Nelles, M. Greenhouse gas emissions of different waste treatment options for sector-specific commercial and industrial waste in Germany, Waste Management & Research, 2012, 30 (4): 421– 431", + "English_Abstract": "This article investigates greenhouse gas (GHG) emissions from commercial and industrial (C&I) waste treatment considering five sector-specific waste compositions and four different treatment scenarios in Germany. Results show that the highest share of CO2- equivalent emissions can be avoided in each of the analysed industrial sectors if solid recovered fuel (SRF) is produced for coincineration in cement kilns. Across all industries, emissions of approximately 680 kg CO2-eq. Mg-1 C&I waste can be avoided on average under this scenario. The combustion of C&I waste in waste incineration plants without any previous mechanical treatment generates the lowest potential to avoid GHG emissions with a value of approximately 50 kg CO2-eq. Mg-1 C&I waste on average in all industries. If recyclables are sorted, this can save emissions of approximately 280 kg CO2-eq. Mg-1 C&I waste while the treatment in SRF power plants amounts to savings of approximately 210 kg CO2-eq. Mg-1 C&I waste. A comparison of the treatment scenarios of the waste from these five sectors shows that waste treatment of the craft sector leads to the lowest CO2-equivalent reduction rates of all scenarios. In contrast, the treatment of waste from catering sector leads to the highest CO2-equivalent reduction rates except for direct incineration in waste incineration plants. The sensitivity analysis of the different scenarios for this paper shows that the efficiency and the substitution factor of energy have a relevant influence on the result. Changes in the substitution factor of 10% can result in changes in emissions of approximately 55 to 75 kg CO2-eq. Mg-1 in waste incineration plants and approximately 90 kg CO2- eq. Mg-1 in the case of cement kilns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "In comparison with the figures of C&I waste compositions from IAA and INTECUS GmbH (2010), the average result of this study differs mainly when it comes to the fractions paper and cardboard (+6.2 mass-% WM), plastics (+5.3 mass-% WM of all plastics) and wood (-4.0 mass-% WM). The quantity of wood is generally very low in all industrial sectors. This can be explained by the fact that the bins which had been used for collection had a size of 1100 L. Large wood items do not fit in this bin size.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.364Z", + "last_change_date": "2022-03-14T08:15:07.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17027, + "fields": { + "EF_ID": 621664, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO2 equivalent emission factor for composting process of biowaste or green waste materials", + "Technology_Practices": "Backyard composting (BYC) & Windrow composting (WR) experiments were carried out & samples were taken. Since input materials were taken every week from source separated organic household waste from a nearby settlement, the raw material was not analysed. Rather, it was important in this experiment to simulate a composting system that is very close to a full-scale typical composting system. BW, biowaste includes kitchen waste; GW, green waste includes garden and park waste.", + "Parameter_Conditions": "Backyard composting (BYC-1 and BYC-2): Two series of backyard composting measurements were conducted over 12 (BYC-1) and 52 (BYC-2) weeks, respectively. Simple wooden composters (100 cm × 100 cm × 80 cm) were used. The gaseous emissions (CH4 and N2O) were measured throughout the composting and maturation period using an open static or dynamic (BYC-2) emission chamber that contained all of the composters tested in a given series. Separated organic household waste (biowaste) taken from a suburban multi-storey borough was added weekly in amounts of 6–50 kg per composter. Each biowaste addition was covered with a thin layer (3–6 kg) of chopped woody yard waste and a synthetic textile fleece. Windrow composting (WR): Composting trials with three different feedstocks were tested in open windrows and the results compared. Each feedstock was tested in duplicate, and the windrows were operated without forced aeration but with regular mechanical turning. The feedstocks tested were: (1) biowaste compost, (2) green waste, and (3) sewage sludge. In each case, homogenized feedstock was configured in windrows with a triangular cross-section (approximately 2.2 m × 8.2 m × 1.1–12 m) in the static open emission chamber. The windrows were turned by hand once or twice weekly. Emission data are reported in units of mass flow rate, e.g kg h–1. The results should be reported after they have been normalized for temperature and pressure conditions, i.e. 0 °C and 1013 hPa, dry basis. The emission factor from a given source can be calculated as the mass ratio of gas emitted to initial fresh matter mass (kg Mg–1), although sometimes the feedstock is reported in units of dry mass.", + "Regional_Conditions": "Austria & Germany", + "Control_Technologies": "", + "Other_Properties": "CO2 emissions are not included in the national total in the IPCC Guidelines since these are assumed to be of biogenic origin, because any net changes in carbon stock of biogenic origin is covered in the AFOLU Sector.", + "Value": "20-65", + "Unit": "kg/ton FM", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Amlinger, F., Peyr, S., Cuhls, C. Green house gas emissions from composting and mechanical biological treatment, Waste Management & Research, 2008, 26: 47–60", + "English_Abstract": "In order to carry out life-cycle assessments as a basis for far-reaching decisions about environmentally sustainable waste treatment, it is important that the input data be reliable and sound. A comparison of the potential greenhouse gas (GHG) emissions associated with each solid waste treatment option is essential. This paper addresses GHG emissions from controlled composting processes. Some important ethodological prerequisites for proper measurement and data interpretation are described, and a common scale and dimension of emission data are proposed so that data from different studies can be compared. A range of emission factors associated with home composting, open windrow composting, encapsulated composting systems with waste air treatment and mechanical biological waste treatment (MBT) are presented from our own investigations as well as from the literature. The composition of source materials along with process management issues such as aeration, mechanical agitation, moisture control and temperature regime are the most important factors controlling methane (CH4), nitrous oxide (N2O) and ammonia (NH3) emissions. If ammonia is not stripped during the initial rotting phase or eliminated by acid scrubber systems, biofiltration of waste air provides only limited GHG mitigation, since additional N2O may be synthesized during the oxidation of NH3, and only a small amount of CH4 degradation occurs in the biofilter. It is estimated that composting contributes very little to national GHG inventories generating only 0.01–0.06% of global emissions. This analysis does not include emissions from preceding or post-treatment activities (such as collection, transport, energy consumption during processing and land spreading), so that for a full emissions account, emissions from these activities would need to be added to an analysis.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data show that despite varying process conditions and the lack of complete information in some cases, it is possible to identify reliable ranges of emission factors. The authors consider the results from this experiment to be highly representative, since they represent a full year of regular measurements that covered typical continental seasonal variations.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.465Z", + "last_change_date": "2022-03-14T08:15:07.465Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17028, + "fields": { + "EF_ID": 621665, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Specific biogas production Lo for mechanically biologically treated waste", + "Technology_Practices": "Assessing the effect of mechanical biological treatment (MBT) of municipal solid waste on biogas generation in full-scale landfill plants.", + "Parameter_Conditions": "The data used in this research were acquired in ‘Il Fossetto’ landfill. This landfill is located in the province of Pistoia (Italy) in a flat area and has a total authorized volume of about 1,000,000 m3; at the moment, it is being used to dispose mainly of municipal solid waste (MSW) after MBT and limited quantities of non-hazardous bottom ash and slag. The landfill is formed by four sub-landfills: landfill 1 (opened and closed in 1988); landfill 2 (working from 1988 to 1992 and in the year 2007 after the approval by the Province of Pistoia of the definitive landfill profile); landfill 3 (operating from 1989 to 1992 and after being incorporated in landfill 4 that has been built on it) and landfill 4 (composed of six cells in operation from 1993). In the ‘Il Fossetto’ landfill MBT has been adopted since June 2003; it consists of a preliminary shredding of mixed municipal waste, followed by sorting in a rotary drum screen able to separate a fine fraction (average diameter below 40mm) from a coarse fraction, the latter representing about 70% of incoming waste. The major part of the most biodegradable incoming waste is concentrated, by mechanical treatment, in a finer fraction, thus the coarse fraction is directly deposited in the landfill, whereas the finer fraction is, instead, subject to an aerobic biological treatment (maximum value of static respirometric index after stabilization below 450 mgO2 (kg VS)-1 h-1) and afterwards used, mixed with incinerator bottom ashes, for landfill daily cover.", + "Regional_Conditions": "Italy", + "Control_Technologies": "Mechanical and biological treatement (MBT)", + "Other_Properties": "Leachate produced and intercepted by the drainage system is extracted and, since September 2006, treated on site in an internal membrane plant. The leachate treatment plant includes the treatment of mixing and pre-aeration, sieving, pre-filtration by cartridge filters, membrane ultrafiltration, chemical conditioning to reach a pH of about 5 by adding sulfuric acid, membrane reverse osmosis (two modules), chlorination and activated carbon filtration. The treated leachate is discharged into a small channel nearby and the concentrated leachate produced (30% of the total incoming leachate) is recirculated in landfill 4. The biogas generated in landfill 4 is collected by vertical wells and used for electricity generation; a torch is also present for safety purposes. The diffuse emission of biogas from the landfill body is periodically monitored according to the analysis of the results of the monitoring, in the year 2009, the biogas extraction efficiency was assessed to be about 60%.", + "Value": "20", + "Unit": "m3 biogas / tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Calabro, P.S., Orsi, S., Gentili, E., and Carlo, M. Modelling of biogas extraction at an Italian landfill accepting mechanically and biologically treated municipal solid waste, Waste Management & Research, 2012, 29: 1277–1285", + "English_Abstract": "This paper presents the results of the modelling of the biogas extraction in a full-scale Italian landfill by the USEPA LandGEM model and the Andreottola–Cossu approach. The landfill chosen for this research (‘Il Fossetto’ plant, Monsummano Terme, Italy) had accepted mixed municipal raw waste for about 15 years. In the year 2003 a mechanical biological treatment (MBT) was implemented and starting from the end of the year 2006, the recirculation in the landfill of the concentrated leachate coming from the internal membrane leachate treatment plant was put into practice. The USEPA LandGEM model and the Andreottola–Cossu approach were chosen since they require only input data routinely acquired during landfill management (waste amount and composition) and allow a simplified calibration, therefore they are potentially useful for practical purposes such as landfill gas management. The results given by the models are compared with measured data and analysed in order to verify the impact of MBT on biogas production; moreover, the possible effects of the recirculation of the concentrated leachate are discussed. The results clearly show how both models can adequately fit measured data even after MBT implementation. Model performance was significantly reduced for the period after the beginning of recirculation of concentrated leachate when the probable inhibition of methane production, due to the competition between methanogens and sulfate-reducing bacteria, significantly influenced the biogas production and composition.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The modelling of the biogas production from MBT waste was carried out taking into consideration the fact that the first-order constant for MBT was the same as raw waste; in fact, on one hand, MBT accelerated the hydrolysis, whereas on the other hand, it reduced carbon content. These two different effects should induce opposing consequences in the rate of substrate gasification; therefore, the assumption of a constant value for the first-order, for both the scenarios mentioned, should be acceptable for the purposes of this study. For this reason, the only parameter that was changed to simulate MBT waste biogas production was the specific biogas production.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.565Z", + "last_change_date": "2022-03-14T08:15:07.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17029, + "fields": { + "EF_ID": 621666, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "CO2 Emission Factor for waste incineration", + "Technology_Practices": "", + "Parameter_Conditions": "Eight scenarios corresponding to different collection systems were modeled. Source separation of Paper and Glass was included in all scenarios, because this was considered to be an integrated part of all modern collection systems. Food Waste and/or packaging waste in terms of Plastic and Metal could be collected in addition to Paper and Glass. Source separation of Food Waste, Plastic and Metal is far from common in Denmark, but well functioning collection schemes are found in some municipalities. Each collection system was modeled with both low and high sorting efficiencies. Note that emission factors will depend strongly on local conditions and users must ensure that they are suitable for their own circumstances before using.", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "The calculated emission factors represent only the CO2 emitted from the incinerator combusting the residual household waste (after seperated waste is removed), and not the overall CO2 emissions from the entire waste management system related to each source separation scenario.", + "Value": "27- 40", + "Unit": "kg CO2/GJ", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Anna W. Larsen, Thomas Astrup. CO2 emission factors for waste incineration: Influence from source separation of recyclable materials, Waste Management, 2011, 31:1597–1605", + "English_Abstract": "CO2-loads from combustible waste are important inputs for national CO2 inventories and life-cycle assessments (LCA). CO2 emissions from waste incinerators are often expressed by emission factors in kg fossil CO2 emitted per GJ energy content of the waste. Various studies have shown considerable variations between emission factors for different incinerators, but the background for these variations has not been thoroughly examined. One important reason may be variations in collection of recyclable materials as source separation alters the composition of the residual waste incinerated. The objective of this study was to quantify the importance of source separation for determination of emission factors for incineration of residual household waste. This was done by mimicking various source separation scenarios and based on waste composition data calculating resulting emission factors for residual waste routed to incineration. Emission factors ranged from 27 to 40 kg CO2/GJ. The results appeared most sensitive towards variations in waste composition and water content. Recycling rates and lower heating values could not be used as simple indicators of the resulting emission factors for residual household waste; however the fossil carbon ratio of the waste after source separation was found to be appropriately correlated with the emission factor. Based on the results, it is recommended to carefully evaluate the source separation and collection systems behind reported literature values when comparing different studies and when using the values for environmental assessment purposes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The objective of this study was to quantify the influence of source separation of household waste on the resulting CO2 emission factor for the incinerator treating the waste remaining after source separation (i.e. the residual household waste). The calculated waste fraction distributions after source separation showed that the shares of Paper and Glass in all scenarios were decreased due to their high sorting efficiencies. Introducing source separation of Food Waste did as expected increase the emission factor, whereas source separation of Plastic decreased the value. The emission factors varied from 27 to 40 kg CO2/GJ depending on the collection system. Three important parameters potentially affecting calculation of the emission factors were tested for sensitivity analysis (the waste fraction distribution, the water content and the fossil carbon ratio). None of the characteristics of the modeled collection systems such as recycling rates and lower heating values could be used for simple prediction of the resulting emission factor, especially because source separation of paper, food waste and plastic had counteracting effects on the emission factor. Only the fossil carbon ratio was found to have an appropriate correlation with the CO2 emission factor. The waste composition data were obtained from sorting surveys. The composition of the residual household waste was calculated for a range of source separation scenarios to mimic a variability in collection systems and thereby provide data for the household waste potentially received at the incinerator in such systems.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.667Z", + "last_change_date": "2022-03-14T08:15:07.667Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17030, + "fields": { + "EF_ID": 621667, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "GHG emission factor for MSW Incineration", + "Technology_Practices": "Mass burning with a grate furnace is the major incineration technology employed in China.", + "Parameter_Conditions": "The GHG emissions of MSWI were produced in 7 stages: waste collection and transportation of waste (WCT); fossil CO2 emitted from waste combustion (FCE); N2O and CO emissions during the waste combustion (NCE); provision of electricity used in the MSWI plant (except for leachate treatment) (EP); provision and consumption of auxiliary fuel and materials (AFM); disposal of pollutants (leachate, APC residues and bottom ashes) (PD); avoided emissions as a result of substitution of generated electricity (ES). MSW characteristics from six cities located in different geographic regions of China were adopted. After collection and 20 km of transportation to the incineration plant, MSW is stored in the waste bunker for 3–5 days to leach the water and elevate the heating values. It is suggested that the LHV of MSW should be higher than 4960 MJ t-1 for self-sustained combustion in grate firing incinerators. Otherwise, auxiliary fuel such as diesel should be added to the furnace to enhance the heating value. During waste incineration, the oxidation efficiency of organic matter is assumed to be 95–99%, indicating that most of the organic carbon is converted to CO2. A small part of carbon is transformed to CO. CH4 emission is not considered in this study due to a lack of data. Owing to the existence of nitrogen in the air and waste input, N2O will be formed during incineration. The formation of this compound is not directly linked to the waste input but rather correlated with the incineration technology.", + "Regional_Conditions": "China", + "Control_Technologies": "In China, semi-dry technology is often used for air pollution control during MSWI. In this method, hydrated lime slurry (Ca(OH)2) is injected into the reaction tower to remove acid gases (HCl, HF, SO2, etc.) and activated carbon is injected to absorb dioxins and heavy metals. The fly ashes emitted from the furnace, reaction products, and excess lime and activated carbon are then collected by bag filter. The residues collected from the reaction tower and bag filter are mixed and referred to as APC residues.", + "Other_Properties": "The APC residues generated from air pollution control systems are disposed of in a secure landfill after stabilization. The bottom ashes could be used as construction materials or disposed of in a MSW sanitary landfill.", + "Value": "25 - 207", + "Unit": "kg CO2-eq t-1 rw", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Na Yang, Hua Zhang, Miao Chen, Li-Ming Shao, Pin-Jing He. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery, Waste Management, 2012, 32, 2552–2560.", + "English_Abstract": "Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25–207 kg CO2-eq t-1rw. Within all process stages, the emission of fossil CO2 from the combustion of MSW was the main contributor (111–254 kg CO2- eq t-1 rw), while the substitution of electricity reduced the GHG emissions by 150–247 kg CO2-eq t-1 rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Within all emission stages, FCE was the predominant contributor to the GHG emissions, while ES reduced GHG emissions. Since most of the operational data pertaining to MSWI were similar during GHG accounting, the differences among six Chinese cities were reflected as diverse MSW characteristics, resulting in variations in GHG emissions of up to 200 kg CO2 t-1 rw. The water content of the MSW could be taken as one of the critical MSW characteristics influencing the GHG emissions by affecting the LHV and subsequently the consumption of AFM, as well as the consumption of electricity and materials during leachate treatment. Many cities in China are currently making great efforts to promote the separate collection and treatment of food waste. Accordingly, it likely that the ratio of food waste in incinerated MSW will decrease greatly in the future, which may lead to decreased water content of incinerated MSW. If the food waste content in MSW is reduced by half, the water content of the incinerated MSW will decrease by 9–44% and the LHV of the MSW will be enhanced by 20–80%. Subsequently, the reduction of GHG emissions in response to substitution of the generated electricity would exceed the amount of fossil CO2 emissions. From the perspective of GHG mitigation, increasing the efficiency of electricity and heat recovery could be very effective to optimization of the energy conversion strategies of MSWI plants in China. The recovered excess heat could be used for district heating in north China and for industrial steam in south China.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.768Z", + "last_change_date": "2022-03-14T08:15:07.768Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17031, + "fields": { + "EF_ID": 621668, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission of fossil CO2 from the combustion of MSW", + "Technology_Practices": "Mass burning with a grate furnace is the major incineration technology employed in China.", + "Parameter_Conditions": "The FCE from the MSWI was determined directly based on the fossil carbon content in the MSW, which was subsequently correlated with the waste compositions. Plastics were the predominant contributor accounting for 90–98%. Considering the situation in the European countries, the combined fossil CO2 emissions from plastics, papers, textiles and food wastes was 257 kg CO2-eq t-1 rw, which is similar to that of the relatively developed cities in China (i.e. 239–254 kg CO2-eq t-1 rw in Tianjin and Shanghai). The difference between the total FCEs in European countries and Chinese cities could be attributed to the additional emissions from the fraction of others in European MSW, corresponding to 26% of the total FCE.", + "Regional_Conditions": "China", + "Control_Technologies": "In China, semi-dry technology is often used for air pollution control during MSWI. In this method, hydrated lime slurry (Ca(OH)2) is injected into the reaction tower to remove acid gases (HCl, HF, SO2, etc.) and activated carbon is injected to absorb dioxins and heavy metals. The fly ashes emitted from the furnace, reaction products, and excess lime and activated carbon are then collected by bag filter. The residues collected from the reaction tower and bag filter are mixed and referred to as APC residues.", + "Other_Properties": "The APC residues generated from air pollution control systems are disposed of in a secure landfill after stabilization. The bottom ashes could be used as construction materials or disposed of in a MSW sanitary landfill.", + "Value": "111-254", + "Unit": "kg CO2-eq t-1 rw", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Na Yang, Hua Zhang, Miao Chen, Li-Ming Shao, Pin-Jing He. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery, Waste Management, 2012, 32, 2552–2560.", + "English_Abstract": "Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25–207 kg CO2-eq t-1rw. Within all process stages, the emission of fossil CO2 from the combustion of MSW was the main contributor (111–254 kg CO2- eq t-1 rw), while the substitution of electricity reduced the GHG emissions by 150–247 kg CO2-eq t-1 rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Within all emission stages, FCE was the predominant contributor to the GHG emissions, while ES reduced GHG emissions. Since most of the operational data pertaining to MSWI were similar during GHG accounting, the differences among six Chinese cities were reflected as diverse MSW characteristics, resulting in variations in GHG emissions of up to 200 kg CO2 t-1 rw. The water content of the MSW could be taken as one of the critical MSW characteristics influencing the GHG emissions by affecting the LHV and subsequently the consumption of AFM, as well as the consumption of electricity and materials during leachate treatment. Many cities in China are currently making great efforts to promote the separate collection and treatment of food waste. Accordingly, it likely that the ratio of food waste in incinerated MSW will decrease greatly in the future, which may lead to decreased water content of incinerated MSW. If the food waste content in MSW is reduced by half, the water content of the incinerated MSW will decrease by 9–44% and the LHV of the MSW will be enhanced by 20–80%. Subsequently, the reduction of GHG emissions in response to substitution of the generated electricity would exceed the amount of fossil CO2 emissions. From the perspective of GHG mitigation, increasing the efficiency of electricity and heat recovery could be very effective to optimization of the energy conversion strategies of MSWI plants in China. The recovered excess heat could be used for district heating in north China and for industrial steam in south China.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.868Z", + "last_change_date": "2022-03-14T08:15:07.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17032, + "fields": { + "EF_ID": 621669, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Overall direct GHG emissions from dumps taking into account carbon storage", + "Technology_Practices": "Dumps are scattered throughout rural and semi-urban areas across South Africa and are generally shallow (i.e. less than 5 m in depth).", + "Parameter_Conditions": "A weighted average was calculated for the municipal waste composition representative for South Africa taking into account the published information for different municipalities. On average about 156.6 kg of DOC are contained per tonne of wet waste in South Africa. Fraction of DOC dissimilated as LFG was assumed to be 50%. Fraction of DOC dissimilated as leachate was assumed to be 4% for dumps and 2% for other landfills. Fraction of DOC stored in the landfill was assumed to be 46% for dumps and 48% for other landfills.", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "This study includes carbon stored and accounts for carbon lost in leachate, but does not include trace NMVOC, halogens and N2O direct emissions from the degradation of waste due to lack of data.", + "Value": "884.27", + "Unit": "kg CO2 equiv. / ton wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Elena Friedrich, Cristina Trois, GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities, Waste Management, 2013, 33, 1013–1026", + "English_Abstract": "Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from 145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Dumps have important negative impacts on the surrounding areas (e.g. surface and groundwater pollution, air pollution, odours, etc.) and they present health risks to the communities nearby. Therefore, municipalities are extending access of households to waste collection services and the use of controlled landfills for disposal. The emission factor developed in this study for dumps enables some estimation of GHG emissions. However, it should be seen as a starting point and the factor should be refined and improved once more data is collected.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:07.969Z", + "last_change_date": "2022-03-14T08:15:07.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17033, + "fields": { + "EF_ID": 621670, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Overall direct GHG emissions from landfills without gas collection taking into account carbon storage", + "Technology_Practices": "Two different approaches are used: The first one neglects that over a 100 year period there is considerable carbon storage in landfill sites and the second approach takes this storage into account.", + "Parameter_Conditions": "A conservative MOF of 0.1 (or 10% oxidation rate) was used.", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1016.33", + "Unit": "kg CO2 equiv. / ton wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Elena Friedrich, Cristina Trois, GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities, Waste Management, 2013, 33, 1013–1026", + "English_Abstract": "Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from 145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "These landfill sites need LFG collection system with flaring or electricity generation in order to reduce their GHG emissions. However, the construction of such systems involves financial investments and technical capacity that are not available in the majority of South African municipalities. Methane oxidation in landfill covers for landfills without gas collection systems needs investigation as it has the potential to significantly reduce GHG emissions from these sites without needing high investments.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.070Z", + "last_change_date": "2022-03-14T08:15:08.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17034, + "fields": { + "EF_ID": 621671, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Overall direct GHG emissions from landfills with gas collection and flaring taking into account carbon storage", + "Technology_Practices": "", + "Parameter_Conditions": "An instantaneous collection efficiency of 75% was assumed. Efficiency of flaring was assumed to be 95%.", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "101.2", + "Unit": "kg CO2 equiv. / ton wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Elena Friedrich, Cristina Trois, GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities, Waste Management, 2013, 33, 1013–1026", + "English_Abstract": "Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from 145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.170Z", + "last_change_date": "2022-03-14T08:15:08.170Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17035, + "fields": { + "EF_ID": 621672, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Overall direct GHG emissions from landfills with gas collection and electricity generation taking into account carbon storage", + "Technology_Practices": "", + "Parameter_Conditions": "By 2012, there were only three landfill sites in the country which collect LFG and use it for electricity production as part of a CDM project. For the collected gas, the gas energy recovery efficiency was considered. This efficiency is assumed as 30% in this study, based on reported values of 25–35% by Manfredi et al. (2009) and 30% by Smith et al. (2001). For the calculations it was assumed that the energy content (EC) of CH4 is 37 MJ m 3 (assumptions also made by Manfredi et al., 2009), which is equal to 14.42 kW h kg-1 CH4. Most of the electricity (around 90%) is generated in South Africa from coal. Therefore, local electricity provision (EP) carries a relatively high GHG burden (1.03 kg CO2 e kW h-1) as compared to the literature (Eskom, 2011).", + "Regional_Conditions": "South Africa", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "-144.52", + "Unit": "kg CO2 equiv. / ton wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Elena Friedrich, Cristina Trois, GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities, Waste Management, 2013, 33, 1013–1026", + "English_Abstract": "Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm3 (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from 145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All LFG collection and utilisation systems are dependent on the carbon credits sold and/or on subsidies for renewable energy accessible through the South African Department of Energy.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.270Z", + "last_change_date": "2022-03-14T08:15:08.270Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17036, + "fields": { + "EF_ID": 621673, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factors for fossil CO2 from waste-to-energy plant 1 (WTE 1)", + "Technology_Practices": "The balance method (BM) combines standard data on the chemical composition of biogenic and fossil organic matter with routinely measured operating data of an incineration plant. The concept for the balance method is based on five mass balances and one energy balance. The result of each balance describes a certain waste characteristic (e.g., carbon content, calorific value, ash content). The balances represent a set of equations that is mathematically over-determined (more equations than unknowns).", + "Parameter_Conditions": "WTE 1 receives 66,000 ton waste/year. Waste is composed of more than 90% Household Waste (HHW) and less than 10% Commercial waste (CW).", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "508 ± 17", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "M. Obermoser, J. Fellner, H. Rechberger. Determination of reliable CO2 emission factors for waste-to-energy plants, Waste Management & Research, 2009, 27, 907–913.", + "English_Abstract": "At Vienna University of Technology, the so-called balance method (BM) was developed to determine fossil and biogenic CO2 emissions from waste-to-energy (WTE) plants. Meanwhile, the BM has been routinely applied to several WTE plants for some years, providing a large set of data. The average site-specific emission factors for fossil CO2 were found to be in the range of 260–780 kg CO2 t–1 waste, and 30–67 kg CO2 GJ–1 energy of the waste incinerated. These values are significantly different from the values that are found in the literature. Our results show that there is no such typical emission factor for WTE which could be applied to national CO2 measurements or accurate emission trading. This study reveals that instead of generic emission factors the BM can be used as a standard for WTE plants, since its application requires either no or only a few additional installations.", + "Lower_Bound": "See Comments from Data Providers", + "Upper_Bound": "See Comments from Data Providers", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The results indicate that these factors are characterized by a large variance. Based on our data, it is not possible to select a reliable emission factor for a plant or a certain region. It is thus questionable if a generic emission factor should be applied to assess the greenhouse gas-relevant CO2 emissions of a WTE plant or a region. Unacceptable errors of up to ± 50% are possible, which could result in unwarranted large payments of subsidies and distortion in national greenhouse gas inventories.The authors suggest that the balance method should be comprehensively applied, which would lead to a CO2 monitoring of the WTE sector that took into consideration the specific conditions of each region. The emission factors of several WTE plants in Europe have been computed with the BM. It is evident that there are large variabilities among the values obtained for the plants, as well as for the yearly values of a single plant. This is clear from the standard deviation derived from annual data. Some factors that cause the differences in such emission factors have been mentioned above. Another relevant factor seems to be the fraction of commercial waste in the input of incineration plants. A feed containing commercial waste is usually not as constant as feed based on household waste alone, because commercial waste ranges from mixed plastics to biomass-dominated batches such as paper and wood. This might explain why the emission factors of plants that treat substantial amounts of commercial wastes show the largest variability. Standard deviation derived from annual data is given with the value.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.379Z", + "last_change_date": "2022-03-14T08:15:08.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17037, + "fields": { + "EF_ID": 621674, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factors for fossil CO2 from waste to energy plant 2 (WTE 2)", + "Technology_Practices": "The balance method (BM) combines standard data on the chemical composition of biogenic and fossil organic matter with routinely measured operating data of an incineration plant; The concept for the balance method is based on five mass balances and one energy balance. The result of each balance describes a certain waste characteristic (e.g., carbon content, calorific value, ash content). The balances represent a set of equations that is mathematically over-determined (more equations than unknowns).", + "Parameter_Conditions": "WTE 2 receives 83,000 ton waste/year. Waste is composed of approximately 60% Household Waste (HHW) and 40% Commercial waste (CW).", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "316 ± 21", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "M. Obermoser, J. Fellner, H. Rechberger. Determination of reliable CO2 emission factors for waste-to-energy plants, Waste Management & Research, 2009, 27, 907–913.", + "English_Abstract": "At Vienna University of Technology, the so-called balance method (BM) was developed to determine fossil and biogenic CO2 emissions from waste-to-energy (WTE) plants. Meanwhile, the BM has been routinely applied to several WTE plants for some years, providing a large set of data. The average site-specific emission factors for fossil CO2 were found to be in the range of 260– 780 kg CO2 t–1 waste, and 30–67 kg CO2 GJ–1 energy of the waste incinerated. These values are significantly different from the values that are found in the literature. Our results show that there is no such typical emission factor for WTE which could be applied to national CO2 measurements or accurate emission trading. This study reveals that instead of generic emission factors the BM can be used as a standard for WTE plants, since its application requires either no or only a few additional installations.", + "Lower_Bound": "See Comments from Data Providers", + "Upper_Bound": "See Comments from Data Providers", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The results indicate that these factors are characterized by a large variance. Based on our data, it is not possible to select a reliable emission factor for a plant or a certain region. It is thus questionable if a generic emission factor should be applied to assess the greenhouse gas-relevant CO2 emissions of a WTE plant or a region. Unacceptable errors of up to ± 50% are possible, which could result in unwarranted large payments of subsidies and distortion in national greenhouse gas inventories.The authors suggest that the balance method should be comprehensively applied, which would lead to a CO2 monitoring of the WTE sector that took into consideration the specific conditions of each region. The emission factors of several WTE plants in Europe have been computed with the BM. It is evident that there are large variabilities among the values obtained for the plants, as well as for the yearly values of a single plant. This is clear from the standard deviation derived from annual data. Some factors that cause the differences in such emission factors have been mentioned above. Another relevant factor seems to be the fraction of commercial waste in the input of incineration plants. A feed containing commercial waste is usually not as constant as feed based on household waste alone, because commercial waste ranges from mixed plastics to biomass-dominated batches such as paper and wood. This might explain why the emission factors of plants that treat substantial amounts of commercial wastes show the largest variability. Standard deviation derived from annual data is given with the value", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.480Z", + "last_change_date": "2022-03-14T08:15:08.480Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17038, + "fields": { + "EF_ID": 621675, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Emission factors for fossil CO2 from waste-to-energy plant 3 (WTE 3)", + "Technology_Practices": "The balance method (BM) combines standard data on the chemical composition of biogenic and fossil organic matter with routinely measured operating data of an incineration plant; The concept for the balance method is based on five mass balances and one energy balance. The result of each balance describes a certain waste characteristic (e.g., carbon content, calorific value, ash content). The balances represent a set of equations that is mathematically over-determined (more equations than unknowns).", + "Parameter_Conditions": "WTE3 receives 185,000 ton waste/ year. Waste is composed of approximately 60% Household Waste (HHW) and 40% Commercial waste (CW).", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "511 ± 22", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "M. Obermoser, J. Fellner, H. Rechberger. Determination of reliable CO2 emission factors for waste-to-energy plants, Waste Management & Research, 2009, 27, 907–913.", + "English_Abstract": "At Vienna University of Technology, the so-called balance method (BM) was developed to determine fossil and biogenic CO2 emissions from waste-to-energy (WTE) plants. Meanwhile, the BM has been routinely applied to several WTE plants for some years, providing a large set of data. The average site-specific emission factors for fossil CO2 were found to be in the range of 260– 780 kg CO2 t–1 waste, and 30–67 kg CO2 GJ–1 energy of the waste incinerated. These values are significantly different from the values that are found in the literature. Our results show that there is no such typical emission factor for WTE which could be applied to national CO2 measurements or accurate emission trading. This study reveals that instead of generic emission factors the BM can be used as a standard for WTE plants, since its application requires either no or only a few additional installations.", + "Lower_Bound": "See Comments from Data Providers", + "Upper_Bound": "See Comments from Data Providers", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The results indicate that these factors are characterized by a large variance. Based on our data, it is not possible to select a reliable emission factor for a plant or a certain region It is thus questionable if a generic emission factor should be applied to assess the greenhouse gas-relevant CO2 emissions of a WTE plant or a region. Unacceptable errors of up to ± 50% are possible, which could result in unwarranted large payments of subsidies and distortion in national greenhouse gas inventories.The authors suggest that the balance method should be comprehensively applied, which would lead to a CO2 monitoring of the WTE sector that took into consideration the specific conditions of each region. The emission factors of several WTE plants in Europe have been computed with the BM. It is evident that there are large variabilities among the values obtained for the plants, as well as for the yearly values of a single plant. This is clear from the standard deviation derived from annual data. Some factors that cause the differences in such emission factors have been mentioned above. Another relevant factor seems to be the fraction of commercial waste in the input of incineration plants. A feed containing commercial waste is usually not as constant as feed based on household waste alone, because commercial waste ranges from mixed plastics to biomass-dominated batches such as paper and wood. This might explain why the emission factors of plants that treat substantial amounts of commercial wastes show the largest variability. Standard deviation derived from annual data is given with the value", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.581Z", + "last_change_date": "2022-03-14T08:15:08.581Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17039, + "fields": { + "EF_ID": 621676, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct CH4 emissions from open composting technology", + "Technology_Practices": "In open technologies, composting is performed in outdoor facilities and the gaseous emissions are in general neither collected nor treated. Direct emissions (operation), directly linked to activities at the composting site and the degradation of the waste. The main GHGs that contribute to global warming are CH4 and N2O. The release of these gases depends on the technology, the waste input and above all the management of the process. Degradation of C and N can be estimated at composting facilities by means of mass balances. Most of this carbon is emitted as biogenic CO2; relatively small percentages are emitted as CH4. Methane (CH4) is formed in anaerobic pockets of the compost material.", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands and Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8 - 169", + "Unit": "kg CO2-eq./tonne wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alessio Boldrin, Jacob K. Andersen, Jacob Møller, Thomas H. Christensen, Enzo Favoino. Composting and compost utilization: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 2009, 27, pp. 800–812", + "English_Abstract": "Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (–900 kg CO2-equivalents tonne–1 wet waste (ww)) and a net load (300 kg CO2-equivalents tonne–1 ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "GHG emissions due to degradation of organic matter during the composting process (direct) seem to depend both on the management and on the type of technology. Proper blending of input feedstock, and optimized adoption of forced aeration may minimize the production of GHGs, whilst treatment for removal of CH4 and N2O could result in large improvements in the system compared to open systems where gaseous emissions are not treated.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.698Z", + "last_change_date": "2022-03-14T08:15:08.698Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17040, + "fields": { + "EF_ID": 621677, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct N2O emissions from open composting technology", + "Technology_Practices": "In open technologies, composting is performed in outdoor facilities and the gaseous emissions are in general neither collected nor treated. Direct emissions (operation), directly linked to activities at the composting site and the degradation of the waste. The main GHGs that contribute to global warming are CH4 and N2O. The release of these gases depends on the technology, the waste input and above all the management of the process. Degradation of C and N can be estimated at composting facilities by means of mass balances. Most of this carbon is emitted as biogenic CO2; relatively small percentages are emitted as CH4. Methane (CH4) is formed in anaerobic pockets of the compost material.", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands and Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.2 - 73", + "Unit": "kg CO2-eq./tonne wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alessio Boldrin, Jacob K. Andersen, Jacob Møller, Thomas H. Christensen, Enzo Favoino. Composting and compost utilization: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 2009, 27, pp. 800–812", + "English_Abstract": "Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (–900 kg CO2-equivalents tonne–1 wet waste (ww)) and a net load (300 kg CO2-equivalents tonne–1 ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "GHG emissions due to degradation of organic matter during the composting process (direct) seem to depend both on the management and on the type of technology. Proper blending of input feedstock, and optimized adoption of forced aeration may minimize the production of GHGs, whilst treatment for removal of CH4 and N2O could result in large improvements in the system compared to open systems where gaseous emissions are not treated.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.823Z", + "last_change_date": "2022-03-14T08:15:08.823Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17041, + "fields": { + "EF_ID": 621678, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct CH4 emissions from enclosed composting technology", + "Technology_Practices": "In enclosed systems, the composting process takes place in an enclosed building and the exhaust gases are in several cases treated in biofilters. Reactor technologies (also called in-vessel systems) are a variant of enclosed technologies. Due to a smaller head space above the compost, the volume of exhaust gases that needs to be treated in a reactor is smaller. There is better control of the exhaust gases in comparison with enclosed technologies and a biofilter is almost always installed. In most of the enclosed and reactor technologies, the retention time is limited which means that curing of the material in open windrows or piles is often necessary. Direct emissions (operation), directly linked to activities at the composting site and the degradation of the waste. The main GHGs that contribute to global warming are CH4 and N2O. The release of these gases depends on the technology, the waste input and above all the management of the process. Degradation of C and N can be estimated at composting facilities by means of mass balances. Most of this carbon is emitted as biogenic CO2; relatively small percentages are emitted as CH4. Methane (CH4) is formed in anaerobic pockets of the compost material.", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands and Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5 - 46", + "Unit": "kg CO2-eq./tonne wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alessio Boldrin, Jacob K. Andersen, Jacob Møller, Thomas H. Christensen, Enzo Favoino. Composting and compost utilization: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 2009, 27, pp. 800–812", + "English_Abstract": "Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (–900 kg CO2-equivalents tonne–1 wet waste (ww)) and a net load (300 kg CO2-equivalents tonne–1 ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "GHG emissions due to degradation of organic matter during the composting process (direct) seem to depend both on the management and on the type of technology. Proper blending of input feedstock, and optimized adoption of forced aeration may minimize the production of GHGs, whilst treatment for removal of CH4 and N2O could result in large improvements in the system compared to open systems where gaseous emissions are not treated.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:08.949Z", + "last_change_date": "2022-03-14T08:15:08.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17042, + "fields": { + "EF_ID": 621679, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct N2O emissions from enclosed composting technology", + "Technology_Practices": "In enclosed systems, the composting process takes place in an enclosed building and the exhaust gases are in several cases treated in biofilters. Reactor technologies (also called in-vessel systems) are a variant of enclosed technologies and they are assessed together with the enclosed technologies in this paper. Due to a smaller head space above the compost, the volume of exhaust gases that needs to be treated in a reactor is smaller. There is better control of the exhaust gases in comparison with enclosed technologies and a biofilter is almost always installed. In most of the enclosed and reactor technologies, the retention time is limited which means that curing of the material in open windrows or piles is often necessary. Direct emissions (operation), directly linked to activities at the composting site and the degradation of the waste. The main GHGs that contribute to global warming are CH4 and N2O. The release of these gases depends on the technology, the waste input and above all the management of the process. Degradation of C and N can be estimated at composting facilities by means of mass balances. Nitrous oxide (N2O) is primarily formed in anaerobic pockets where an oxygen gradient occurs as a by-product of both nitrification and denitrification. Nitrous oxide is mainly produced in the later stage of the composting process, when the readily available C has been consumed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands and Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.3 - 35", + "Unit": "kg CO2-eq./tonne wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alessio Boldrin, Jacob K. Andersen, Jacob Møller, Thomas H. Christensen, Enzo Favoino. Composting and compost utilization: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 2009, 27, pp. 800–812", + "English_Abstract": "Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (–900 kg CO2-equivalents tonne–1 wet waste (ww)) and a net load (300 kg CO2-equivalents tonne–1 ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "GHG emissions due to degradation of organic matter during the composting process (direct) seem to depend both on the management and on the type of technology. Proper blending of input feedstock, and optimized adoption of forced aeration may minimize the production of GHGs, whilst treatment for removal of CH4 and N2O could result in large improvements in the system compared to open systems where gaseous emissions are not treated.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:09.067Z", + "last_change_date": "2022-03-14T08:15:09.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17043, + "fields": { + "EF_ID": 621680, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct CH4 emissions from home composting", + "Technology_Practices": "In home composting the handling of waste is undertaken at a private level. Because the composting is performed with minimal equipment and very different levels of control, an average home composting process can hardly be defined. One main advantage of home composting is that no external energy is required for transport or processing. Direct emissions (operation), directly linked to activities at the composting site and the degradation of the waste. The main GHGs that contribute to global warming are CH4 and N2O. The release of these gases depends on the technology, the waste input and above all the management of the process. Degradation of C and N can be estimated at composting facilities by means of mass balances. Most of this carbon is emitted as biogenic CO2; relatively small percentages are emitted as CH4. Methane (CH4) is formed in anaerobic pockets of the compost material.", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands and Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20 - 55", + "Unit": "kg CO2-eq./tonne wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alessio Boldrin, Jacob K. Andersen, Jacob Møller, Thomas H. Christensen, Enzo Favoino. Composting and compost utilization: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 2009, 27, pp. 800–812", + "English_Abstract": "Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (–900 kg CO2-equivalents tonne–1 wet waste (ww)) and a net load (300 kg CO2-equivalents tonne–1 ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "GHG emissions due to degradation of organic matter during the composting process (direct) seem to depend both on the management and on the type of technology. Proper blending of input feedstock, and optimized adoption of forced aeration may minimize the production of GHGs, whilst treatment for removal of CH4 and N2O could result in large improvements in the system compared to open systems where gaseous emissions are not treated. Only a few studies regarding direct gaseous emissions from home composting are available. If such figures were confirmed, home composting would perform better than large facilities, both because of no energy requirements and avoided collection and transportation (the latter is not quantified here). Assumptions made on the use of home composting and what it substitutes for could introduce additional uncertainty. A more thorough survey is recommended.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:09.176Z", + "last_change_date": "2022-03-14T08:15:09.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17044, + "fields": { + "EF_ID": 621681, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct N2O emissions from home composting", + "Technology_Practices": "In home composting the handling of waste is undertaken at a private level. Because the composting is performed with minimal equipment and very different levels of control, an average home composting process can hardly be defined. One main advantage of home composting is that no external energy is required for transport or processing. Direct emissions (operation), directly linked to activities at the composting site and the degradation of the waste. The main GHGs that contribute to global warming are CH4 and N2O. The release of these gases depends on the technology, the waste input and above all the management of the process. Degradation of C and N can be estimated at composting facilities by means of mass balances. Nitrous oxide (N2O) is primarily formed in anaerobic pockets where an oxygen gradient occurs as a by-product of both nitrification and denitrification. Nitrous oxide is mainly produced in the later stage of the composting process, when the readily available C has been consumed.", + "Parameter_Conditions": "", + "Regional_Conditions": "Netherlands and Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57 - 165", + "Unit": "kg CO2-eq./tonne wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Alessio Boldrin, Jacob K. Andersen, Jacob Møller, Thomas H. Christensen, Enzo Favoino. Composting and compost utilization: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 2009, 27, pp. 800–812", + "English_Abstract": "Greenhouse gas (GHG) emissions related to composting of organic waste and the use of compost were assessed from a waste management perspective. The GHG accounting for composting includes use of electricity and fuels, emissions of methane and nitrous oxide from the composting process, and savings obtained by the use of the compost. The GHG account depends on waste type and composition (kitchen organics, garden waste), technology type (open systems, closed systems, home composting), the efficiency of off-gas cleaning at enclosed composting systems, and the use of the compost. The latter is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting therefore varies between significant savings (–900 kg CO2-equivalents tonne–1 wet waste (ww)) and a net load (300 kg CO2-equivalents tonne–1 ww). The major savings are obtained by use of compost as a substitute for peat in the production of growth media. However, it may be difficult for a specific composting plant to document how the compost is used and what it actually substitutes for. Two cases representing various technologies were assessed showing how GHG accounting can be done when specific information and data are available.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "GHG emissions due to degradation of organic matter during the composting process (direct) seem to depend both on the management and on the type of technology. Proper blending of input feedstock, and optimized adoption of forced aeration may minimize the production of GHGs, whilst treatment for removal of CH4 and N2O could result in large improvements in the system compared to open systems where gaseous emissions are not treated. Only a few studies regarding direct gaseous emissions from home composting are available. If such figures were confirmed, home composting would perform better than large facilities, both because of no energy requirements and avoided collection and transportation (the latter is not quantified here). Assumptions made on the use of home composting and what it substitutes for could introduce additional uncertainty. A more thorough survey is recommended.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:09.277Z", + "last_change_date": "2022-03-14T08:15:09.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17045, + "fields": { + "EF_ID": 621682, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct global warming factors (GWF) for material recovery from plastic waste by substitution of virgin plastic and wood.", + "Technology_Practices": "The global warming factor (GWF), expresses the potential contribution to global warming as CO2-eq. tonne–1 plastic waste wet weight (ww). GWFs are positive in the case of contributions to global warming and negative in the case of savings.", + "Parameter_Conditions": "Material recycling for substitution of virgin/primary plastic requires the different plastic types to be collected separatelyto obtain a secondary plastic product of a suitable quality. Contaminants and additives may complicate the recycling process if not hinder it totally, making the plastic waste moresuitable for energy utilization than material recycling. Most recycling processes involve losses, either material losses or loss of material quality. Material loss is due to impurities in the waste stream (e.g. other waste materials than the plastic of interest: paper, glass, metals, etc.). The magnitude of this loss depends on the purity of the collected plastic and is represented by the materials separated out from the collected waste plastic in the MRF. If the plastic waste is more contaminated or inhomogeneous 10% is recommended here as a default value. The tensile and breaking strength are for some secondary plastics not as high as for primary plastic, which may lead to a need for extra secondary plastic in the final products to obtain a quality identical with products of primary plastic. If the recovered plastic is used as an admixture in the production of primary plastic there may be no loss at all. The calculation is based on recycling of packaging aste (HD-PE boxes). The processes included in the MRF are: grinding of collected plastic waste (to granu+B10late), friction wash of granulate, drying and wastewater treatment. Frees (2002) assumed melting of the plastic to be unnecessary in this case, as both the purity and material thickness of the waste fraction were relatively high. In order to obtain the overall GWF for recycling of the above HD-PE packaging waste, the GHG emissions related to treatment of HD-PE plastic waste at the MRF should be subtracted from the GHG emissions related to virgin HD-PE plastic production. Two general alternatives were calculated to illustrate the consequences of a low (0%) and high (20%) loss of material quality. In both alternatives a material loss of 3% was assumed.", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "The quality of the recycled plastic may not allow substitution of virgin plastic, instead substitution of wood or concrete may be relevant. The recycled plastic can be turned into a wood-like product, also referred to as recycled plastic lumber (RPL). In this paper, the treated plastic waste (i.e. granulate) was assumed to replace virgin wood with a substitution ratio of 1 : 1 based on weight. The treatment at the MRF was considered similar to that applied in the calculations for substitution of virgin plastic. Note that GHG emissions from biomass combustion were not included in the calculations of GHG emissions as they were here considered neutral. Considering a 1 : 1 substitution ratio and no loss of quality, a material loss in the MRF of 3%.", + "Value": "0-60", + "Unit": "kg CO2-eq./tonne ww", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thomas Astrup, Thilde Fruergaard, Thomas H. Christensen, Recycling of plastic: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 2009, 27, pp. 763–772", + "English_Abstract": "Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO2-eq. tonne–1 of plastic waste depending on treatment at the MRF and CO2 emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60–1600 kg CO2-eq. tonne–1 of plastic waste depending on substitution ratios and CO2 emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Global warming contributions should always include the downstream fate of the plastic waste. Direct GHG emissions related to processing of the plastic waste (less than 60 kg CO2-eq. tonne–1 plastic) were either of the same magnitude or six to nine times lower than the associated upstream contributions (depending on the electricity production technologies considered). For the overall GWF for recycling of plastic waste, the downstream substitutions were critical. Both with respect to decisions regarding utilization of the plastic waste but also with respect to the assumptions and system boundaries applied in the GHG account. Material recycling focusing on the substitution of virgin plastic production is the preferred option. If the quality of the collected plastic waste is insufficient for substitution of virgin plastic, a better option may probably be to limit the handling/treatment as much as possible and utilize the plastic waste as fuel in industrial processes such as cement production.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:09.386Z", + "last_change_date": "2022-03-14T08:15:09.386Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17046, + "fields": { + "EF_ID": 621683, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct global warming factors (GWF) for material recovery from plastic waste by substitution of hard coal and fuel oil.", + "Technology_Practices": "The global warming factor (GWF), expresses the potential contribution to global warming as CO2-eq. tonne–1 plastic waste wet weight (ww). GWFs are positive in the case of contributions to global warming and negative in the case of savings.", + "Parameter_Conditions": "The processing of plastic waste for energy utilization requires a range of unit operations to produce a high-quality energy product with a high-energy content, low chlorine content to avoid corrosion, and low contents of foreign objects in order to enhance the quality of the by-products (ashes etc.) from the combustion process. The PVC content of plastic waste should be kept low as chlorine constitutes about 40 to 60% of the weight of PVC. As the PVC content can vary considerably depending on the type of plastic waste, collection system, etc. this loss was not included in the calculations in this paper and all plastic was assumed to enter the cement kiln (i.e. no material loss was assumed).", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0-27", + "Unit": "kg CO2-eq./tonne ww", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thomas Astrup, Thilde Fruergaard, Thomas H. Christensen, Recycling of plastic: accounting of greenhouse gases and global warming contributions, Waste Management & Research, 2009, 27, pp. 763–772", + "English_Abstract": "Major greenhouse gas (GHG) emissions related to plastic waste recycling were evaluated with respect to three management alternatives: recycling of clean, single-type plastic, recycling of mixed/contaminated plastic, and use of plastic waste as fuel in industrial processes. Source-separated plastic waste was received at a material recovery facility (MRF) and processed for granulation and subsequent downstream use. In the three alternatives, plastic was assumed to be substituting virgin plastic in new products, wood in low-strength products (outdoor furniture, fences, etc.), and coal or fuel oil in the case of energy utilization. GHG accounting was organized in terms of indirect upstream emissions (e.g. provision of energy, fuels, and materials), direct emissions at the MRF (e.g. fuel combustion), and indirect downstream emissions (e.g. avoided emissions from production of virgin plastic, wood, or coal/oil). Combined, upstream and direct emissions were estimated to be roughly between 5 and 600 kg CO2-eq. tonne–1 of plastic waste depending on treatment at the MRF and CO2 emissions from electricity production. Potential downstream savings arising from substitution of virgin plastic, wood, and energy fuels were estimated to be around 60–1600 kg CO2-eq. tonne–1 of plastic waste depending on substitution ratios and CO2 emissions from electricity production. Based on the reviewed data, it was concluded that substitution of virgin plastic should be preferred. If this is not viable due to a mixture of different plastic types and/or contamination, the plastic should be used for energy utilization. Recycling of plastic waste for substitution of other materials such as wood provided no savings with respect to global warming.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Global warming contributions should always include the downstream fate of the plastic waste. Direct GHG emissions related to processing of the plastic waste (less than 60 kg CO2-eq. tonne–1 plastic) were either of the same magnitude or six to nine times lower than the associated upstream contributions (depending on the electricity production technologies considered). For the overall GWF for recycling of plastic waste, the downstream substitutions were critical. Both with respect to decisions regarding utilization of the plastic waste but also with respect to the assumptions and system boundaries applied in the GHG account. Material recycling focusing on the substitution of virgin plastic production is the preferred option. If the quality of the collected plastic waste is insufficient for substitution of virgin plastic, a better option may probably be to limit the handling/treatment as much as possible and utilize the plastic waste as fuel in industrial processes such as cement production.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:09.495Z", + "last_change_date": "2022-03-14T08:15:09.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17047, + "fields": { + "EF_ID": 621684, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission rate", + "Technology_Practices": "", + "Parameter_Conditions": "The cover soil was prepared in three experimental plots of 3x3 m laid on the top of existing waste pile (5 m depth from original ground elevation). Clay, sandy loam (silt:sand of 1: 2 on weight basis) and sandy loam with vegetation (Sporobolus virginicus) was filled into the first, second and third experimental plots respectively. In each plot, the cover soil of 30 cm depth was laid on top of a 5 cm layer of gravel (average size of 2-3 cm) and cement block layer (20 cm depth) provided to facilitate gas to flow into the cover soil layer. The same amount of groundwater and leachate (20 litres in every 2 days) was irrigated onto each half of cover soil to provide sufficient moisture content for bacterial activities (12-15%) especially during dry period. The leachate was taken from the leachate-receiving ponds in waste disposal area. Leachate was diluted with groundwater (2.5 parts in 100 parts v/v) to obtain EC concentration of 1 dS/m before being applied onto the cover soils.", + "Regional_Conditions": "Thailand (Tropical region). Cover soil: clay", + "Control_Technologies": "", + "Other_Properties": "The experiment was performed at the waste disposal site of Nonthanburi province. The site has received more than 800 tons of wastes daily and has been in operation for about 10 years.", + "Value": "1.31", + "Unit": "g/m2/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chiemchaisri, C., Chiemchaisri, W., and Sawat, A. Mitigation of Methane Emission from Solid Waste Disposal Site in the Tropics by Vegetated Cover Soil. Asian Journal of Water Environment and Pollution, 2005, 3(2), 29-33.", + "English_Abstract": "Development of mitigation technique for methane emission from solid waste disposal site using biological activity in cover soil was investigated. Methane emission rate through clay, sandy loam and vegetated sandy loam (Sporobolus virginicus) cover soil laid on existing waste pile in a dumpsite of Thailand were studied by using closed-flux chamber method. Over 275 days of monitoring, average methane emission rates measured through clay, sandy loam and vegetated sandy loam were 1.31, 1.79 and 0.95 g/m2/d, respectively. Though methane emission rates were fluctuated significantly with time, higher emission rates were detected during the dry period than the high intensity rainfall period. Significant reduction of methane emission was observed in cover soil employing vegetated sandy loam where methane oxidation reaction could be promoted. The application of leachate onto the vegetated cover soil could also enhance plant growth and methane oxidation. The results of this study suggest that methane emission from solid waste disposal sites could be mitigated through application of appropriate topsoil as a bio-filter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Significant reduction of methane emission (about 75%) was observed in cover soil employing vegetated sandy loam where methane oxidation reaction could be promoted. In the case of clay and sandy loam cover soil, the reduction efficiencies was 33% and 19% respectively. The application of leachate onto the vegetated cover soil could also enhance plant growth and slightly improved methane oxidation. Based on the results of this study, methane emission from a solid waste disposal site could be significantly reduced by the application of appropriate topsoil cover layer with high methane oxidation activity. Date of measurement: The first 150 days (November 2002- March 2003) represented dry period with average rainfall of 0.772 mm/day followed by rainy season (April-July 2003) where average daily rainfall increased to 3.577 mm.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "", + "creation_date": "2022-03-14T08:15:09.604Z", + "last_change_date": "2022-03-14T08:15:09.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17048, + "fields": { + "EF_ID": 621685, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission rate", + "Technology_Practices": "", + "Parameter_Conditions": "The cover soil was prepared in three experimental plots of 3x3 m laid on the top of existing waste pile (5 m depth from original ground elevation). Clay, sandy loam (silt:sand of 1: 2 on weight basis) and sandy loam with vegetation (Sporobolus virginicus) was filled into the first, second and third experimental plots respectively. In each plot, the cover soil of 30 cm depth was laid on top of a 5 cm layer of gravel (average size of 2-3 cm) and cement block layer (20 cm depth) provided to facilitate gas to flow into the cover soil layer. The same amount of groundwater and leachate (20 litres in every 2 days) was irrigated onto each half of cover soil to provide sufficient moisture content for bacterial activities (12-15%) especially during dry period. The leachate was taken from the leachate-receiving ponds in waste disposal area. Leachate was diluted with groundwater (2.5 parts in 100 parts v/v) to obtain EC concentration of 1 dS/m before being applied onto the cover soils.", + "Regional_Conditions": "Thailand (Tropical Region). Cover soil: sandy loam", + "Control_Technologies": "", + "Other_Properties": "The experiment was performed at the waste disposal site of Nonthanburi province. The site has received more than 800 tons of wastes daily and has been in operation for about 10 years.", + "Value": "1.79", + "Unit": "g/m2/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chiemchaisri, C., Chiemchaisri, W., and Sawat, A. Mitigation of Methane Emission from Solid Waste Disposal Site in the Tropics by Vegetated Cover Soil. Asian Journal of Water Environment and Pollution, 2005, 3(2), 29-33.", + "English_Abstract": "Development of mitigation technique for methane emission from solid waste disposal site using biological activity in cover soil was investigated. Methane emission rate through clay, sandy loam and vegetated sandy loam (Sporobolus virginicus) cover soil laid on existing waste pile in a dumpsite of Thailand were studied by using closed-flux chamber method. Over 275 days of monitoring, average methane emission rates measured through clay, sandy loam and vegetated sandy loam were 1.31, 1.79 and 0.95 g/m2/d, respectively. Though methane emission rates were fluctuated significantly with time, higher emission rates were detected during the dry period than the high intensity rainfall period. Significant reduction of methane emission was observed in cover soil employing vegetated sandy loam where methane oxidation reaction could be promoted. The application of leachate onto the vegetated cover soil could also enhance plant growth and methane oxidation. The results of this study suggest that methane emission from solid waste disposal sites could be mitigated through application of appropriate topsoil as a bio-filter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Significant reduction of methane emission (about 75%) was observed in cover soil employing vegetated sandy loam where methane oxidation reaction could be promoted. In the case of clay and sandy loam cover soil, the reduction efficiencies was 33% and 19% respectively. The application of leachate onto the vegetated cover soil could also enhance plant growth and slightly improved methane oxidation. Based on the results of this study, methane emission from a solid waste disposal site could be significantly reduced by the application of appropriate topsoil cover layer with high methane oxidation activity. Date of measurement: The gas emission rate (methane and carbon dioxide) through different soil materials, i.e. clay, sandy loam and vegetated sandy loam (with Sporobolus virginicus) was determined for 275 days.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "", + "creation_date": "2022-03-14T08:15:09.721Z", + "last_change_date": "2022-03-14T08:15:09.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17049, + "fields": { + "EF_ID": 621686, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission rate", + "Technology_Practices": "", + "Parameter_Conditions": "The cover soil was prepared in three experimental plots of 3x3 m laid on the top of existing waste pile (5 m depth from original ground elevation). Clay, sandy loam (silt:sand of 1: 2 on weight basis) and sandy loam with vegetation (Sporobolus virginicus) was filled into the first, second and third experimental plots respectively. In each plot, the cover soil of 30 cm depth was laid on top of a 5 cm layer of gravel (average size of 2-3 cm) and cement block layer (20 cm depth) provided to facilitate gas to flow into the cover soil layer. The same amount of groundwater and leachate (20 litres in every 2 days) was irrigated onto each half of cover soil to provide sufficient moisture content for bacterial activities (12-15%) especially during dry period. The leachate was taken from the leachate-receiving ponds in waste disposal area. Leachate was diluted with groundwater (2.5 parts in 100 parts v/v) to obtain EC concentration of 1 dS/m before being applied onto the cover soils.", + "Regional_Conditions": "Thailand (Tropical Region). Cover soil: sandy loam with vegetation cover", + "Control_Technologies": "", + "Other_Properties": "The experiment was performed at the waste disposal site of Nonthanburi province. The site has received more than 800 tons of wastes daily and has been in operation for about 10 years.", + "Value": "0.95", + "Unit": "g/m2/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Chiemchaisri, C., Chiemchaisri, W., and Sawat, A. Mitigation of Methane Emission from Solid Waste Disposal Site in the Tropics by Vegetated Cover Soil. Asian Journal of Water Environment and Pollution, 2005, 3(2), 29-33.", + "English_Abstract": "Development of mitigation technique for methane emission from solid waste disposal site using biological activity in cover soil was investigated. Methane emission rate through clay, sandy loam and vegetated sandy loam (Sporobolus virginicus) cover soil laid on existing waste pile in a dumpsite of Thailand were studied by using closed-flux chamber method. Over 275 days of monitoring, average methane emission rates measured through clay, sandy loam and vegetated sandy loam were 1.31, 1.79 and 0.95 g/m2/d, respectively. Though methane emission rates were fluctuated significantly with time, higher emission rates were detected during the dry period than the high intensity rainfall period. Significant reduction of methane emission was observed in cover soil employing vegetated sandy loam where methane oxidation reaction could be promoted. The application of leachate onto the vegetated cover soil could also enhance plant growth and methane oxidation. The results of this study suggest that methane emission from solid waste disposal sites could be mitigated through application of appropriate topsoil as a bio-filter.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Significant reduction of methane emission (about 75%) was observed in cover soil employing vegetated sandy loam where methane oxidation reaction could be promoted. In the case of clay and sandy loam cover soil, the reduction efficiencies was 33% and 19% respectively. The application of leachate onto the vegetated cover soil could also enhance plant growth and slightly improved methane oxidation. Based on the results of this study, methane emission from a solid waste disposal site could be significantly reduced by the application of appropriate topsoil cover layer with high methane oxidation activity. Date of measurement: The first 150 days (November 2002- March 2003) represented dry period with average rainfall of 0.772 mm/day followed by rainy season (April-July 2003) where average daily rainfall increased to 3.577 mm.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "", + "creation_date": "2022-03-14T08:15:09.847Z", + "last_change_date": "2022-03-14T08:15:09.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17050, + "fields": { + "EF_ID": 621687, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane oxidation factor (OX)", + "Technology_Practices": "", + "Parameter_Conditions": "Methane emission measurements were performed at four managed deep (MD) landfills (wasteheight = 5 m), one managed shallow (MS) landfill (waste height < 5 m), three unmanaged deep (UD) landfills (deep dumpsites) (waste height = 5 m), and one unmanaged shallow(US) landfill (shallow dumpsite) (waste height < 5 m), located in central Thailand. Landfill sites comprise those at Pattaya (MD1), Mabtapud (MD2), Laemchabang (MD3), Hua-Hin (MD4), and Cha-Am (MS1). Deep dumpsites (waste height = 5 m) include those at Samut Prakan (UD1), Nakhon Pathom (UD2), and Nonthaburi (UD3) and a shallow dumpsite (waste height < 5 m) located at Rayong (US1).", + "Regional_Conditions": "Thailand (Tropical region)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 5.2, page 5.6, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 3.1, page 3.8, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S.H., and Nopharatana, A. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand. Environ Monit Assess, 2010, 164, 249–261", + "English_Abstract": "Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement techniques: Methane emission rates from the landfill surface in this study were measured using the chamber technique, which consists of trapping the gas as it leaves the soil surface, by allowing the gas to build up in a closed enclosure (closed or static chamber technique). The chambers used in this study were constructed with 0.40-m polyvinyl chloride (PVC) pipe (covering an area of 0.126 m2), 0.25 m in height, and with a PVC cap at the top of the chamber. To protect against air intrusion, the chambers were sealed to the ground by placing wet soil around the outside. Methane samples were collected in 10-mL vacuum tubes from a chamber after 1, 2, 3, and 4min using 60-mL plastic syringes fitted with plastic valves. The samples were analyzed using a gas chromatograph equipped with a flame ionization detector. The methane flux was determined from concentration data (C in ppmv) plotted vs elapsed time (t in minutes). Date of measurement: The methane emission measurements were conducted from September to October 2005 for rainy season data, from December 2005 to February 2006 for winter season data, and from April to May 2006 for summer season data.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "http://www.springerlink.com/content/024173547r0ru75n/", + "creation_date": "2022-03-14T08:15:09.964Z", + "last_change_date": "2022-03-14T08:15:09.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17051, + "fields": { + "EF_ID": 621688, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane oxidation factor (OX)", + "Technology_Practices": "", + "Parameter_Conditions": "Methane emission measurements were performed at four managed deep (MD) landfills (wasteheight = 5 m), one managed shallow (MS) landfill (waste height < 5 m), three unmanaged deep (UD) landfills (deep dumpsites) (waste height = 5 m), and one unmanaged shallow(US) landfill (shallow dumpsite) (waste height < 5 m), located in central Thailand. Landfill sites comprise those at Pattaya (MD1), Mabtapud (MD2), Laemchabang (MD3), Hua-Hin (MD4), and Cha-Am (MS1). Deep dumpsites (waste height = 5 m) include those at Samut Prakan (UD1), Nakhon Pathom (UD2), and Nonthaburi (UD3) and a shallow dumpsite (waste height < 5 m) located at Rayong (US1).", + "Regional_Conditions": "Thailand (Tropical region)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.7", + "Unit": "fraction", + "Equation": "Equation 5.2, page 5.6, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 3.1, page 3.8, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories.", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S.H., and Nopharatana, A. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand. Environ Monit Assess, 2010, 164, 249–261", + "English_Abstract": "Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement techniques: Methane emission rates from the landfill surface in this study were measured using the chamber technique, which consists of trapping the gas as it leaves the soil surface, by allowing the gas to build up in a closed enclosure (closed or static chamber technique). The chambers used in this study were constructed with 0.40-m polyvinyl chloride (PVC) pipe (covering an area of 0.126 m2), 0.25 m in height, and with a PVC cap at the top of the chamber. To protect against air intrusion, the chambers were sealed to the ground by placing wet soil around the outside. Methane samples were collected in 10-mL vacuum tubes from a chamber after 1, 2, 3, and 4min using 60-mL plastic syringes fitted with plastic valves. The samples were analyzed using a gas chromatograph equipped with a flame ionization detector. The methane flux was determined from concentration data (C in ppmv) plotted vs elapsed time (t in minutes). Date of measurement: The methane emission measurements were conducted from September to October 2005 for rainy season data, from December 2005 to February 2006 for winter season data, and from April to May 2006 for summer season data.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "http://www.springerlink.com/content/024173547r0ru75n/", + "creation_date": "2022-03-14T08:15:10.065Z", + "last_change_date": "2022-03-14T08:15:10.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17052, + "fields": { + "EF_ID": 621689, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane generation rate constant", + "Technology_Practices": "", + "Parameter_Conditions": "Measurements were performed at four sanitary landfills including Pattaya, Ban-Bung, Hua-Hin and Laemchabang landfills, in Thailand.", + "Regional_Conditions": "Central region of Thailand (approximately 150 km from Bangkok), tropical climate zone/ MAT> 20oC", + "Control_Technologies": "", + "Other_Properties": "The characteristics of waste in these study sites, investigated by Pollution Control Department (PCD) of Thailand, showed that food waste is the main component at about 60%, followed by plastic (20%), paper (8%), glass (3%), textiles (1%) and other (8%). In this study, the same waste characteristics were assumed for all study sites.", + "Value": "0.33", + "Unit": "1/year", + "Equation": "Equation 5.1, page 5.6, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 3.4 and 3.5, page 3.9, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao K., Yamada M., Endo K., Ishigaki T., Naruoka T., Towprayoon S., Chiemchaisri C. and Suttasil N. Methane generation rate constant in tropical landfill. Journal of Sustainable Energy & Environment, 2010, 1, 181-184.", + "English_Abstract": "This paper presents a practical methodology for quantifying the methane generation rate constant from four tropical sanitary landfills in Thailand. We used combination of static chamber and laser methane detection methods as well as geo-statistics to assess the total methane emission at each study site. After fitting of the estimated rate of methane emission per weight of waste deposited at the disposal sites with different age to the first order decay equation, it was found that the first order reaction rates were 0.33 yr-1. This high reaction rate as compared to previous studies in developed countries is probably due to the high moisture content of the waste in which food waste was the main component (>60%) combined with a tropical climate which has high precipitation and temperatures. These factors could stimulate anaerobic degradation and produce more biogas in a shorter time after the wastes has been disposed. In order to improve the estimation of methane emission from solid waste disposal sites in a tropical climate, this first order reaction rates can be considered as a country or region specific default value.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement techniques: Methane emission rates from the landfill surface in this study were determined using the Laser Methane Detection (LMD) chamber method. The chamber used in this method was constructed with f0.40 m - PVC pipe, 1.00 m in height with a PVC lid at the top of chamber for LMD placing. To protect the air intrusion, the chamber was sealed to the ground by compacting soil around the outside. Methane concentration in the chamber was measured by LMD - Anritsu SA3C15A (Anritsu Corporation). The concentration of methane was measured by a laser beam that reflects from the reflector in the chamber at 1 second intervals. The methane flux was determined from concentration data (C in ppmv) plotted against elapsed time (t in minutes). Periodicity of measurements: The methane emission measurements were conducted twice between December 2007 to January 2008 and from January to March 2009. Date of measurement: The methane emission measurements were conducted twice between December 2007 to January 2008 and from January to March 2009. Comments: (1) Poor Landfill practice in Hua-hin in daily covering of waste resulting in degradation under aerobic or se-mi aerobic condition that retarded or reduced of methane generation in 2009. (2) The k value obtained is compatible with environmental conditions on site (high temperature and water content), which tend to accelerate the process of organic matter depletion. The high content of rapidly degradable organic carbon in waste streams at these landfills combined with high leachate levels in the waste body as studied in Thai landfill. (3) When comparing between methane fluxes and waste placement history, it was found that high methane flux occurred in areas that wastes had been deposited for 3-6 months at all study sites. This may imply a delay time or lag time to perform methanogenesis process in landfill. So it can be suggested that the appropriate delay time for gas production at tropical landfill was about 3-6 months.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "http://www.jseejournal.com/JSEE%202010/JSEE%202010%20vol.1(4)/10.Methane%20generation%20rate%20p.181-184.pdf", + "creation_date": "2022-03-14T08:15:10.165Z", + "last_change_date": "2022-03-14T08:15:10.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17053, + "fields": { + "EF_ID": 621690, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane collection efficiency of landfill gas collectors (methane recovery from landfill sites)", + "Technology_Practices": "", + "Parameter_Conditions": "The Rachathewa sanitary landfill site is located 30 km east of the Bangkok area and receives about 3,500 tons/day of municipal solid waste. The site operated from 2000 to 2003 and occupies 40 hectares including a landfill and ancillary facilities necessary to support its operation. The experimental cell is located at the one part of disposal area. The disposal area has been filled in three zones and the waste has primarily been placed using loaders, bulldozers, and a landfill compactor. At the present time (2006), there are approximately 1,902,380 metric tons of solid wastes in place.", + "Regional_Conditions": "Thailand (Tropical region)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.2, page 5.7, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 3.1, page 3.8, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories.,", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang-Yao, K., Towprayoon, S., Chiemchairsri, C., Gheewala, S.H., and Nopharatana, A. Methane Collection Efficiency of Horizontal Landfill Gas Collectors. International Journal of Applied Environmental Sciences 2007, 1(1), 49-55", + "English_Abstract": "Pumping test and closed flux chamber technique were used to evaluate the performance of horizontal landfill gas collection system at the Rachathewa sanitary landfill, Samutprakan, Thailand. Two investigated areas consisting of three horizontal extraction wells each with a total length of 150 meters with a well spacing of 15 m were used. The closed flux chambers were used to measure the surface landfill methane emissions before and during pumping tests. Pumping tests were done for a period of two weeks. The gas adjustment was tuned to maintain landfill gas (LFG) quality of greater than 50 % CH4 and less than 2 % O2. Portable landfill gas analyzer and pre-calibrated orifice plates were used to control composition and collection rates of landfill gas from the collection system, respectively. The average spatial methane emission rate without extraction process was 82 g/m2/d and with extraction process was 8.5 g/m2/d. The results showed that the spatial distribution of methane emissions without extraction process is very high and is reduced when the extraction process is applied. The efficiency of horizontal landfill gas extraction system was markedly above 80%. The collection efficiency from this study can be used for evaluation of landfill gas to energy projects. Furthermore, from the methane emissions data, it is recommended that in order to distribute suction force into the middle area to improve the collection efficiency, the position of wellhead should be offset about 10 to 15 meters from the end of collector. Thus, the collection of LFG by forced extraction would be an effective option in order to utilize LFG as well as reduce the global warming and local air pollution problems.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "http://www.ripublication.com/Volume/ijaesv2n1.htm", + "creation_date": "2022-03-14T08:15:10.266Z", + "last_change_date": "2022-03-14T08:15:10.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17054, + "fields": { + "EF_ID": 621691, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane correction factor for managed deep SWDS (>5m)", + "Technology_Practices": "", + "Parameter_Conditions": "Methane emission measurements were performed at four managed deep (MD) landfills (wasteheight = 5 m), one managed shallow (MS) landfill (waste height < 5 m), three unmanaged deep (UD) landfills (deep dumpsites) (waste height = 5 m), and one unmanaged shallow(US) landfill (shallow dumpsite) (waste height < 5 m), located in central Thailand. Landfill sites comprise those at Pattaya (MD1), Mabtapud (MD2), Laemchabang (MD3), Hua-Hin (MD4), and Cha-Am (MS1). Deep dumpsites (waste height = 5 m) include those at Samut Prakan (UD1), Nakhon Pathom (UD2), and Nonthaburi (UD3) and a shallow dumpsite (waste height < 5 m) located at Rayong (US1).", + "Regional_Conditions": "Thailand (Tropical region)", + "Control_Technologies": "", + "Other_Properties": "The characteristics of waste in these study sites that had been investigated by PCD of Thailand showed that food waste was the main component at all disposal sites, ranging between 60% and 80%, followed by plastic, paper, glass, textile, and wood (PCD 2004). Weather data from the Thai Meteorological Department showed that the average atmospheric temperatures during emission measurement in the rainy, winter, and summer seasons were 28.5, 26.5, and 29.2oC, respectively. However, the monthly precipitation rate had significant differences that were 258.4, 30.5, and 134.6 mm month-1 in the rainy, winter, and summer seasons, respectively.", + "Value": "0.65", + "Unit": "fraction", + "Equation": "Equation 5.1, page 5.6, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 3.2, page 3.9, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories.,", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S.H., and Nopharatana, A. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand. Environ Monit Assess, 2010, 164, 249–261", + "English_Abstract": "Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement techniques/standard: Methane emission rates from the landfill surface in this study were measured using the chamber technique, which consists of trapping the gas as it leaves the soil surface, by allowing the gas to build up in a closed enclosure (closed or static chamber technique). The chambers used in this study were constructed with 0.40-m polyvinyl chloride (PVC) pipe (covering an area of 0.126 m2), 0.25 m in height, and with a PVC cap at the top of the chamber. To protect against air intrusion, the chambers were sealed to the ground by placing wet soil around the outside. Methane samples were collected in 10-mL vacuum tubes from a chamber after 1, 2, 3, and 4min using 60-mL plastic syringes fitted with plastic valves. The samples were analyzed using a gas chromatograph equipped with a flame ionization detector. The methane flux was determined from concentration data (C in ppmv) plotted vs elapsed time (t in minutes). Periodicity of measurement: The methane emission measurements were conducted from September to October 2005 for rainy season data, from December 2005 to February 2006 for winter season data, and from April to May 2006 for summer season data.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "http://www.springerlink.com/content/024173547r0ru75n/fulltext.pdf", + "creation_date": "2022-03-14T08:15:10.364Z", + "last_change_date": "2022-03-14T08:15:10.364Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17055, + "fields": { + "EF_ID": 621692, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane correction factor for managed shallow SWDS (< 5m)", + "Technology_Practices": "", + "Parameter_Conditions": "Methane emission measurements were performed at four managed deep (MD) landfills (wasteheight = 5 m), one managed shallow (MS) landfill (waste height < 5 m), three unmanaged deep (UD) landfills (deep dumpsites) (waste height = 5 m), and one unmanaged shallow(US) landfill (shallow dumpsite) (waste height < 5 m), located in central Thailand. Landfill sites comprise those at Pattaya (MD1), Mabtapud (MD2), Laemchabang (MD3), Hua-Hin (MD4), and Cha-Am (MS1). Deep dumpsites (waste height = 5 m) include those at Samut Prakan (UD1), Nakhon Pathom (UD2), and Nonthaburi (UD3) and a shallow dumpsite (waste height < 5 m) located at Rayong (US1).", + "Regional_Conditions": "Thailand (Tropical region)", + "Control_Technologies": "", + "Other_Properties": "The characteristics of waste in these study sites that had been investigated by PCD of Thailand showed that food waste was the main component at all disposal sites, ranging between 60% and 80%, followed by plastic, paper, glass, textile, and wood (PCD 2004). Weather data from the Thai Meteorological Department showed that the average atmospheric temperatures during emission measurement in the rainy, winter, and summer seasons were 28.5, 26.5, and 29.2oC, respectively. However, the monthly precipitation rate had significant differences that were 258.4, 30.5, and 134.6 mm month-1 in the rainy, winter, and summer seasons, respectively.", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 5.1, page 5.6, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 3.2, page 3.9, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories.,", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S.H., and Nopharatana, A. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand. Environ Monit Assess, 2010, 164, 249–261", + "English_Abstract": "Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement techniques/standard: Methane emission rates from the landfill surface in this study were measured using the chamber technique, which consists of trapping the gas as it leaves the soil surface, by allowing the gas to build up in a closed enclosure (closed or static chamber technique). The chambers used in this study were constructed with 0.40-m polyvinyl chloride (PVC) pipe (covering an area of 0.126 m2), 0.25 m in height, and with a PVC cap at the top of the chamber. To protect against air intrusion, the chambers were sealed to the ground by placing wet soil around the outside. Methane samples were collected in 10-mL vacuum tubes from a chamber after 1, 2, 3, and 4min using 60-mL plastic syringes fitted with plastic valves. The samples were analyzed using a gas chromatograph equipped with a flame ionization detector. The methane flux was determined from concentration data (C in ppmv) plotted vs elapsed time (t in minutes). Periodicity of measurement: The methane emission measurements were conducted from September to October 2005 for rainy season data, from December 2005 to February 2006 for winter season data, and from April to May 2006 for summer season data.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "http://www.springerlink.com/content/024173547r0ru75n/fulltext.pdf", + "creation_date": "2022-03-14T08:15:10.458Z", + "last_change_date": "2022-03-14T08:15:10.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17056, + "fields": { + "EF_ID": 621693, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane correction factor for umnamaged SWDS (>5 m)", + "Technology_Practices": "", + "Parameter_Conditions": "Methane emission measurements were performed at four managed deep (MD) landfills (wasteheight = 5 m), one managed shallow (MS) landfill (waste height < 5 m), three unmanaged deep (UD) landfills (deep dumpsites) (waste height = 5 m), and one unmanaged shallow(US) landfill (shallow dumpsite) (waste height < 5 m), located in central Thailand. Landfill sites comprise those at Pattaya (MD1), Mabtapud (MD2), Laemchabang (MD3), Hua-Hin (MD4), and Cha-Am (MS1). Deep dumpsites (waste height = 5 m) include those at Samut Prakan (UD1), Nakhon Pathom (UD2), and Nonthaburi (UD3) and a shallow dumpsite (waste height < 5 m) located at Rayong (US1).", + "Regional_Conditions": "Thailand (Tropical region)", + "Control_Technologies": "", + "Other_Properties": "The characteristics of waste in these study sites that had been investigated by PCD of Thailand showed that food waste was the main component at all disposal sites, ranging between 60% and 80%, followed by plastic, paper, glass, textile, and wood (PCD 2004). Weather data from the Thai Meteorological Department showed that the average atmospheric temperatures during emission measurement in the rainy, winter, and summer seasons were 28.5, 26.5, and 29.2oC, respectively. However, the monthly precipitation rate had significant differences that were 258.4, 30.5, and 134.6 mm month-1 in the rainy, winter, and summer seasons, respectively.", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 5.1, page 5.6, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 3.2, page 3.9, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories.,", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S.H., and Nopharatana, A. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand. Environ Monit Assess, 2010, 164, 249–261", + "English_Abstract": "Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement techniques/standard: Methane emission rates from the landfill surface in this study were measured using the chamber technique, which consists of trapping the gas as it leaves the soil surface, by allowing the gas to build up in a closed enclosure (closed or static chamber technique). The chambers used in this study were constructed with 0.40-m polyvinyl chloride (PVC) pipe (covering an area of 0.126 m2), 0.25 m in height, and with a PVC cap at the top of the chamber. To protect against air intrusion, the chambers were sealed to the ground by placing wet soil around the outside. Methane samples were collected in 10-mL vacuum tubes from a chamber after 1, 2, 3, and 4min using 60-mL plastic syringes fitted with plastic valves. The samples were analyzed using a gas chromatograph equipped with a flame ionization detector. The methane flux was determined from concentration data (C in ppmv) plotted vs elapsed time (t in minutes). Periodicity of measurement: The methane emission measurements were conducted from September to October 2005 for rainy season data, from December 2005 to February 2006 for winter season data, and from April to May 2006 for summer season data.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "http://www.springerlink.com/content/024173547r0ru75n/fulltext.pdf", + "creation_date": "2022-03-14T08:15:10.576Z", + "last_change_date": "2022-03-14T08:15:10.576Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17057, + "fields": { + "EF_ID": 621694, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane correction factor for unmanaged shallow SWDS (<5m)", + "Technology_Practices": "", + "Parameter_Conditions": "Methane emission measurements were performed at four managed deep (MD) landfills (wasteheight = 5 m), one managed shallow (MS) landfill (waste height < 5 m), three unmanaged deep (UD) landfills (deep dumpsites) (waste height = 5 m), and one unmanaged shallow(US) landfill (shallow dumpsite) (waste height < 5 m), located in central Thailand. Landfill sites comprise those at Pattaya (MD1), Mabtapud (MD2), Laemchabang (MD3), Hua-Hin (MD4), and Cha-Am (MS1). Deep dumpsites (waste height = 5 m) include those at Samut Prakan (UD1), Nakhon Pathom (UD2), and Nonthaburi (UD3) and a shallow dumpsite (waste height < 5 m) located at Rayong (US1).", + "Regional_Conditions": "Thailand (Tropical region)", + "Control_Technologies": "", + "Other_Properties": "The characteristics of waste in these study sites that had been investigated by PCD of Thailand showed that food waste was the main component at all disposal sites, ranging between 60% and 80%, followed by plastic, paper, glass, textile, and wood (PCD 2004). Weather data from the Thai Meteorological Department showed that the average atmospheric temperatures during emission measurement in the rainy, winter, and summer seasons were 28.5, 26.5, and 29.2oC, respectively. However, the monthly precipitation rate had significant differences that were 258.4, 30.5, and 134.6 mm month-1 in the rainy, winter, and summer seasons, respectively.", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 5.1, page 5.6, IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Equation 3.2, page 3.9, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories.,", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S.H., and Nopharatana, A. Application of the IPCC Waste Model to solid waste disposal sites in tropical countries: case study of Thailand. Environ Monit Assess, 2010, 164, 249–261", + "English_Abstract": "Measurements of landfill methane emission were performed at nine solid waste disposal sites in Thailand, including five managed sanitary landfills (four deep and one shallow landfills) and four unmanaged landfills (three deep and one shallow dumpsites). It was found that methane emissions during the rainy season were about five to six times higher than those during the winter and summer seasons in the case of managed landfills and two to five times higher in the case of unmanaged landfills. Methane emission estimate using the Intergovernmental Panel on Climate Change (IPCC) Waste Model was compared with the actual field measurement from the studied disposal sites with methane correction factors and methane oxidation factors that were obtained by error function analysis with default values of half-life parameters. The methane emissions from the first-order decay model from the IPCC Waste Model yielded fair results compared to field measurements. The best fitting values of methane correction factor were 0.65, 0.20, 0.15, and 0.1 for deep landfills, shallow landfills, deep dumpsites, and shallow dumpsites, respectively. Using these key parameters in the case of Thailand, it was estimated that 89.22 Gg of methane were released from solid waste disposal sites into the atmosphere in 2006.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "-", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measurement techniques/standard: Methane emission rates from the landfill surface in this study were measured using the chamber technique, which consists of trapping the gas as it leaves the soil surface, by allowing the gas to build up in a closed enclosure (closed or static chamber technique). The chambers used in this study were constructed with 0.40-m polyvinyl chloride (PVC) pipe (covering an area of 0.126 m2), 0.25 m in height, and with a PVC cap at the top of the chamber. To protect against air intrusion, the chambers were sealed to the ground by placing wet soil around the outside. Methane samples were collected in 10-mL vacuum tubes from a chamber after 1, 2, 3, and 4min using 60-mL plastic syringes fitted with plastic valves. The samples were analyzed using a gas chromatograph equipped with a flame ionization detector. The methane flux was determined from concentration data (C in ppmv) plotted vs elapsed time (t in minutes). Periodicity of measurement: The methane emission measurements were conducted from September to October 2005 for rainy season data, from December 2005 to February 2006 for winter season data, and from April to May 2006 for summer season data.", + "Other_Comments": "", + "Data_Provider": "Chart Chiemchaisri", + "Link": "http://www.springerlink.com/content/024173547r0ru75n/fulltext.pdf", + "creation_date": "2022-03-14T08:15:10.702Z", + "last_change_date": "2022-03-14T08:15:10.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17058, + "fields": { + "EF_ID": 621695, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "Livestock manure incineration by rotary kiln furnace", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.9-6.0", + "Unit": "% g N2O-N/g-N", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4C1 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Oshita, K., Sun, X., Taniguchi, M., Takaoka, M., Matsukawa, K., and Fujiwara, T. Emission of greenhouse gases from controlled incineration of cattle manure, Environmental Technology, 2012, iFirst, 1-6", + "English_Abstract": "Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions(N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and decreasing air ration on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800°C at low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800~850°C and air ratio of 1.4) were determined to be 1.9~6.0% g-N2O-N/g-N and 0.0046~0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published value between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masato Yamada", + "Link": "", + "creation_date": "2022-03-14T08:15:10.812Z", + "last_change_date": "2022-03-14T08:15:10.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17059, + "fields": { + "EF_ID": 621696, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "Livestock manure incineration by rotary kiln furnace", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0046-0.26", + "Unit": "% g CH4/g-burning object", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4C1 of 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Oshita, K., Sun, X., Taniguchi, M., Takaoka, M., Matsukawa, K., and Fujiwara, T. Emission of greenhouse gases from controlled incineration of cattle manure, Environmental Technology, 2012, iFirst, 1-6", + "English_Abstract": "Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions(N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and decreasing air ration on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800°C at low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800~850°C and air ratio of 1.4) were determined to be 1.9~6.0% g-N2O-N/g-N and 0.0046~0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published value between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Masato Yamada", + "Link": "", + "creation_date": "2022-03-14T08:15:10.889Z", + "last_change_date": "2022-03-14T08:15:10.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17060, + "fields": { + "EF_ID": 621697, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "The WWTP under study is located at Kralingseveer,near Rotterdam,the Netherlands,and has a capacity of 360000 population equivalents (PE). The plant is equipped with a centralized anaerobic sludge digestion facility that processes sludge from different WWTPs.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "g N2O /PE /yr-1", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Daelman, M.R.J., Van Dongen, L..G.J.M., Van Voorthuizen, E.M., Kleerebezem, R., Van Loosdrecht, M.C.M., and Volcke, E.I.P. Quantification of greenhouse gas emissions from municipal wastewater treatment plants: a case study, Comm. Appl. Biol. Sci, Ghent University, 2011, 76/1, 155-158", + "English_Abstract": "Wastewater treatment plants (WWTPs) are known as emission sources of the greenhouse gases carbon dioxide (CO2),nitrous oxide (N2O) and methane (CH4) (Kampschreur et al., 2009). The increased presence of these gases in the atmosphere causes a rise in the equilibrium temperature of the earth,thus invoking climate change (IPCC,2007). CO2 emissions contribute to climate change only insofar as they originate from the combustion of fossil fuels to generate the energy required for the operation of the WWTP (e.g. aeration and pumping). N2O is expected to be emitted during biological nitrogen removal frorn wastewater,through nitrification and subsequent denitrification. ln this process,N2O is formed,but the exact source and amount of the N2O emissions are yet relatively unknown (Foley et al.,2010). Since N2O has a green house gas potential of approximately 300 times that of CO2,even low N2O emissions must be avoided (IPCC,2007). CH4,which has a global warming potential of 25 CO2-equivalents (IPCC, 2007),is expected to be formed in those parts of the WWTP where anaerobic conditions prevail, such as anaerobic digesters and sludge storage tanks. CH4 is also present in the influent fed to the WWTP (Guisasola et al., 2008) and in the sludge water returned to the rnain plant. In the aerated activated sludge tank and in the entrance works,significant CH4 emission is possible due to stripping of CH4 that was present in the influent or sludge liquor (Gray et al.,2002). CH4 formed during sludge digestion is used for electricity generation; however incomplete combustion,leaks,off-gas,storage and handling of the sludge may be sources of CH4 emissions. This contribution presents the results of a monitoring campaign at at a full scale WWTP. Both N2O and CH4 emissions are quantified and subsequently compared to emission factors that are commonly used to estimate greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:10.987Z", + "last_change_date": "2022-03-14T08:15:10.987Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17061, + "fields": { + "EF_ID": 621698, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "The WWTP under study is located at Kralingseveer,near Rotterdam,the Netherlands,and has a capacity of 360000 population equivalents (PE). The plant is equipped with a centralized anaerobic sludge digestion facility that processes sludge from different WWTPs.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.39", + "Unit": "g N2O-N /g TKNinfluent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Daelman, M.R.J., Van Dongen, L..G.J.M., Van Voorthuizen, E.M., Kleerebezem, R., Van Loosdrecht, M.C.M., and Volcke, E.I.P. Quantification of greenhouse gas emissions from municipal wastewater treatment plants: a case study, Comm. Appl. Biol. Sci, Ghent University, 2011, 76/1, 155-158", + "English_Abstract": "Wastewater treatment plants (WWTPs) are known as emission sources of the greenhouse gases carbon dioxide (CO2),nitrous oxide (N2O) and methane (CH4) (Kampschreur et al., 2009). The increased presence of these gases in the atmosphere causes a rise in the equilibrium temperature of the earth,thus invoking climate change (IPCC,2007). CO2 emissions contribute to climate change only insofar as they originate from the combustion of fossil fuels to generate the energy required for the operation of the WWTP (e.g. aeration and pumping). N2O is expected to be emitted during biological nitrogen removal frorn wastewater,through nitrification and subsequent denitrification. ln this process,N2O is formed,but the exact source and amount of the N2O emissions are yet relatively unknown (Foley et al.,2010). Since N2O has a green house gas potential of approximately 300 times that of CO2,even low N2O emissions must be avoided (IPCC,2007). CH4,which has a global warming potential of 25 CO2-equivalents (IPCC, 2007),is expected to be formed in those parts of the WWTP where anaerobic conditions prevail, such as anaerobic digesters and sludge storage tanks. CH4 is also present in the influent fed to the WWTP (Guisasola et al., 2008) and in the sludge water returned to the rnain plant. In the aerated activated sludge tank and in the entrance works,significant CH4 emission is possible due to stripping of CH4 that was present in the influent or sludge liquor (Gray et al.,2002). CH4 formed during sludge digestion is used for electricity generation; however incomplete combustion,leaks,off-gas,storage and handling of the sludge may be sources of CH4 emissions. This contribution presents the results of a monitoring campaign at at a full scale WWTP. Both N2O and CH4 emissions are quantified and subsequently compared to emission factors that are commonly used to estimate greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.096Z", + "last_change_date": "2022-03-14T08:15:11.097Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17062, + "fields": { + "EF_ID": 621699, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "The WWTP under study is located at Kralingseveer,near Rotterdam,the Netherlands,and has a capacity of 360000 population equivalents (PE). The plant is equipped with a centralized anaerobic sludge digestion facility that processes sludge from different WWTPs.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.008-0.012", + "Unit": "kg CH4 /kg CODinfluent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Daelman, M.R.J., Van Dongen, L..G.J.M., Van Voorthuizen, E.M., Kleerebezem, R., Van Loosdrecht, M.C.M., and Volcke, E.I.P. Quantification of greenhouse gas emissions from municipal wastewater treatment plants: a case study, Comm. Appl. Biol. Sci, Ghent University, 2011, 76/1, 155-158", + "English_Abstract": "Wastewater treatment plants (WWTPs) are known as emission sources of the greenhouse gases carbon dioxide (CO2),nitrous oxide (N2O) and methane (CH4) (Kampschreur et al., 2009). The increased presence of these gases in the atmosphere causes a rise in the equilibrium temperature of the earth,thus invoking climate change (IPCC,2007). CO2 emissions contribute to climate change only insofar as they originate from the combustion of fossil fuels to generate the energy required for the operation of the WWTP (e.g. aeration and pumping). N2O is expected to be emitted during biological nitrogen removal frorn wastewater,through nitrification and subsequent denitrification. ln this process,N2O is formed,but the exact source and amount of the N2O emissions are yet relatively unknown (Foley et al.,2010). Since N2O has a green house gas potential of approximately 300 times that of CO2,even low N2O emissions must be avoided (IPCC,2007). CH4,which has a global warming potential of 25 CO2-equivalents (IPCC, 2007),is expected to be formed in those parts of the WWTP where anaerobic conditions prevail, such as anaerobic digesters and sludge storage tanks. CH4 is also present in the influent fed to the WWTP (Guisasola et al., 2008) and in the sludge water returned to the rnain plant. In the aerated activated sludge tank and in the entrance works,significant CH4 emission is possible due to stripping of CH4 that was present in the influent or sludge liquor (Gray et al.,2002). CH4 formed during sludge digestion is used for electricity generation; however incomplete combustion,leaks,off-gas,storage and handling of the sludge may be sources of CH4 emissions. This contribution presents the results of a monitoring campaign at at a full scale WWTP. Both N2O and CH4 emissions are quantified and subsequently compared to emission factors that are commonly used to estimate greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.205Z", + "last_change_date": "2022-03-14T08:15:11.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17063, + "fields": { + "EF_ID": 621700, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "The WWTP under study is located at Kralingseveer,near Rotterdam,the Netherlands,and has a capacity of 360000 population equivalents (PE). The plant is equipped with a centralized anaerobic sludge digestion facility that processes sludge from different WWTPs.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "255", + "Unit": "kg CH4 /d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Daelman, M.R.J., Van Dongen, L..G.J.M., Van Voorthuizen, E.M., Kleerebezem, R., Van Loosdrecht, M.C.M., and Volcke, E.I.P. Quantification of greenhouse gas emissions from municipal wastewater treatment plants: a case study, Comm. Appl. Biol. Sci, Ghent University, 2011, 76/1, 155-158", + "English_Abstract": "Wastewater treatment plants (WWTPs) are known as emission sources of the greenhouse gases carbon dioxide (CO2),nitrous oxide (N2O) and methane (CH4) (Kampschreur et al., 2009). The increased presence of these gases in the atmosphere causes a rise in the equilibrium temperature of the earth,thus invoking climate change (IPCC,2007). CO2 emissions contribute to climate change only insofar as they originate from the combustion of fossil fuels to generate the energy required for the operation of the WWTP (e.g. aeration and pumping). N2O is expected to be emitted during biological nitrogen removal frorn wastewater,through nitrification and subsequent denitrification. ln this process,N2O is formed,but the exact source and amount of the N2O emissions are yet relatively unknown (Foley et al.,2010). Since N2O has a green house gas potential of approximately 300 times that of CO2,even low N2O emissions must be avoided (IPCC,2007). CH4,which has a global warming potential of 25 CO2-equivalents (IPCC, 2007),is expected to be formed in those parts of the WWTP where anaerobic conditions prevail, such as anaerobic digesters and sludge storage tanks. CH4 is also present in the influent fed to the WWTP (Guisasola et al., 2008) and in the sludge water returned to the rnain plant. In the aerated activated sludge tank and in the entrance works,significant CH4 emission is possible due to stripping of CH4 that was present in the influent or sludge liquor (Gray et al.,2002). CH4 formed during sludge digestion is used for electricity generation; however incomplete combustion,leaks,off-gas,storage and handling of the sludge may be sources of CH4 emissions. This contribution presents the results of a monitoring campaign at at a full scale WWTP. Both N2O and CH4 emissions are quantified and subsequently compared to emission factors that are commonly used to estimate greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.314Z", + "last_change_date": "2022-03-14T08:15:11.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17064, + "fields": { + "EF_ID": 621701, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Field scale decay rate estimated for traditional landfill scenario for waste component: grass", + "Technology_Practices": "Solid Waste Disposal", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.298", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "De la Cruz, F. B., and Barlaz, M.A. Estimation of Waste Component-Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Fata, Environmental Science and Technology, 2010, 44(2), 4722-4728", + "English_Abstract": "The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, klab, for the major biodegradable MSW components were used to derive field-scale decay rates (kfield) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04yr-1, kfield was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029yr-1, for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard wastes and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.431Z", + "last_change_date": "2022-03-14T08:15:11.431Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17065, + "fields": { + "EF_ID": 621702, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Field scale decay rate estimated for traditional landfill scenario for waste component: leaves", + "Technology_Practices": "Solid Waste Disposal", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.171", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "De la Cruz, F. B., and Barlaz, M.A. Estimation of Waste Component-Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Fata, Environmental Science and Technology, 2010, 44(2), 4722-4728", + "English_Abstract": "The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, klab, for the major biodegradable MSW components were used to derive field-scale decay rates (kfield) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04yr-1, kfield was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029yr-1, for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard wastes and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.541Z", + "last_change_date": "2022-03-14T08:15:11.541Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17066, + "fields": { + "EF_ID": 621703, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Field scale decay rate estimated for traditional landfill scenario for waste component: branches", + "Technology_Practices": "Solid Waste Disposal", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.015", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "De la Cruz, F. B., and Barlaz, M.A. Estimation of Waste Component-Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Fata, Environmental Science and Technology, 2010, 44(2), 4722-4728", + "English_Abstract": "The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, klab, for the major biodegradable MSW components were used to derive field-scale decay rates (kfield) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04yr-1, kfield was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029yr-1, for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard wastes and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.623Z", + "last_change_date": "2022-03-14T08:15:11.623Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17067, + "fields": { + "EF_ID": 621704, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Field scale decay rate estimated for traditional landfill scenario for waste component: food waste", + "Technology_Practices": "Solid Waste Disposal", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.144", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "De la Cruz, F. B., and Barlaz, M.A. Estimation of Waste Component-Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Fata, Environmental Science and Technology, 2010, 44(2), 4722-4728", + "English_Abstract": "The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, klab, for the major biodegradable MSW components were used to derive field-scale decay rates (kfield) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04yr-1, kfield was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029yr-1, for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard wastes and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.733Z", + "last_change_date": "2022-03-14T08:15:11.733Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17068, + "fields": { + "EF_ID": 621705, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Field scale decay rate estimated for traditional landfill scenario for waste component: newsprint", + "Technology_Practices": "Solid Waste Disposal", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.033", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "De la Cruz, F. B., and Barlaz, M.A. Estimation of Waste Component-Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Fata, Environmental Science and Technology, 2010, 44(2), 4722-4728", + "English_Abstract": "The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, klab, for the major biodegradable MSW components were used to derive field-scale decay rates (kfield) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04yr-1, kfield was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029yr-1, for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard wastes and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.815Z", + "last_change_date": "2022-03-14T08:15:11.815Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17069, + "fields": { + "EF_ID": 621706, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Field scale decay rate estimated for traditional landfill scenario for waste component: old corrugated containers/kraft bags", + "Technology_Practices": "Solid Waste Disposal", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "De la Cruz, F. B., and Barlaz, M.A. Estimation of Waste Component-Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Fata, Environmental Science and Technology, 2010, 44(2), 4722-4728", + "English_Abstract": "The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, klab, for the major biodegradable MSW components were used to derive field-scale decay rates (kfield) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04yr-1, kfield was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029yr-1, for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard wastes and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.909Z", + "last_change_date": "2022-03-14T08:15:11.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17070, + "fields": { + "EF_ID": 621707, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Field scale decay rate estimated for traditional landfill scenario for waste component: coated paper", + "Technology_Practices": "Solid Waste Disposal", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.122", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "De la Cruz, F. B., and Barlaz, M.A. Estimation of Waste Component-Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Fata, Environmental Science and Technology, 2010, 44(2), 4722-4728", + "English_Abstract": "The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, klab, for the major biodegradable MSW components were used to derive field-scale decay rates (kfield) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04yr-1, kfield was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029yr-1, for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard wastes and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:11.981Z", + "last_change_date": "2022-03-14T08:15:11.981Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17071, + "fields": { + "EF_ID": 621708, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Field scale decay rate estimated for traditional landfill scenario for waste component: office paper", + "Technology_Practices": "Solid Waste Disposal", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.029", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "De la Cruz, F. B., and Barlaz, M.A. Estimation of Waste Component-Specific Landfill Decay Rates Using Laboratory-Scale Decomposition Fata, Environmental Science and Technology, 2010, 44(2), 4722-4728", + "English_Abstract": "The current methane generation model used by the U.S. EPA (Landfill Gas Emissions Model) treats municipal solid waste (MSW) as a homogeneous waste with one decay rate. However, component-specific decay rates are required to evaluate the effects of changes in waste composition on methane generation. Laboratory-scale rate constants, klab, for the major biodegradable MSW components were used to derive field-scale decay rates (kfield) for each waste component using the assumption that the average of the field-scale decay rates for each waste component, weighted by its composition, is equal to the bulk MSW decay rate. For an assumed bulk MSW decay rate of 0.04yr-1, kfield was estimated to be 0.298, 0.171, 0.015, 0.144, 0.033, 0.02, 0.122, and 0.029yr-1, for grass, leaves, branches, food waste, newsprint, corrugated containers, coated paper, and office paper, respectively. The effect of landfill waste diversion programs on methane production was explored to illustrate the use of component-specific decay rates. One hundred percent diversion of yard wastes and food waste reduced the year 20 methane production rate by 45%. When a landfill gas collection schedule was introduced, collectable methane was most influenced by food waste diversion at years 10 and 20 and paper diversion at year 40.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.076Z", + "last_change_date": "2022-03-14T08:15:12.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17072, + "fields": { + "EF_ID": 621709, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emisison rate", + "Technology_Practices": "Septic tank", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "g CH4 /capita /day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Diaz-Valbuena, L. R., Leverenz, H. L., Cappa, C. D., Tchobanoglous, G., Horwath, W. R., and Darby, J. L. Methane, carbon dioxide, and nitrous oxide emissions from septic tank systems, Environ Sci Technol, 2011, 45(7): 2741-2747.", + "English_Abstract": "Emissions of CH4, CO2, and N2O from conventional septic tank systems are known to occur, but there is a dearth of information as to the extent. Mass emission rates of CH4, CO2, and N2O, as measured with a modified flux chamber approach in eight septic tank systems, were determined to be 11, 33.3, and 0.005 g capita-1 day-1, respectively, in this research. Existing greenhouse gas (GHG) emission models based on BOD (biochemical oxygen demand) loading have estimated methane emissions to be as high as 27.1 g CH4 capita-1 day-1, more than twise the value measured in our study, and concluded that septic tanks are potentially significant sources of GHGs due to the large number of systems currently in use. Based on the measured CH4 emission value, a revised CH4 conversion factor of 0.22 (compared to 0.5) for use in the emisisons models is suggested. Emission rates of CH4, CO2, and N2O were also determined from measurements of gas concentrations and flow rates in the septic vent system and were found to be 10.7, 335, and 0.2 g capita-1 day-1, respectively. The excellent agreement in the CH4 emission rates between the flux chamber and the vent values indicates the dominant CH4 source is the septic tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.148Z", + "last_change_date": "2022-03-14T08:15:12.148Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17073, + "fields": { + "EF_ID": 621710, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission rate", + "Technology_Practices": "Septic tank", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "g N2O /capita /day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Diaz-Valbuena, L. R., Leverenz, H. L., Cappa, C. D., Tchobanoglous, G., Horwath, W. R., and Darby, J. L. Methane, carbon dioxide, and nitrous oxide emissions from septic tank systems, Environ Sci Technol, 2011, 45(7): 2741-2747.", + "English_Abstract": "Emissions of CH4, CO2, and N2O from conventional septic tank systems are known to occur, but there is a dearth of information as to the extent. Mass emission rates of CH4, CO2, and N2O, as measured with a modified flux chamber approach in eight septic tank systems, were determined to be 11, 33.3, and 0.005 g capita-1 day-1, respectively, in this research. Existing greenhouse gas (GHG) emission models based on BOD (biochemical oxygen demand) loading have estimated methane emissions to be as high as 27.1 g CH4 capita-1 day-1, more than twise the value measured in our study, and concluded that septic tanks are potentially significant sources of GHGs due to the large number of systems currently in use. Based on the measured CH4 emission value, a revised CH4 conversion factor of 0.22 (compared to 0.5) for use in the emisisons models is suggested. Emission rates of CH4, CO2, and N2O were also determined from measurements of gas concentrations and flow rates in the septic vent system and were found to be 10.7, 335, and 0.2 g capita-1 day-1, respectively. The excellent agreement in the CH4 emission rates between the flux chamber and the vent values indicates the dominant CH4 source is the septic tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.244Z", + "last_change_date": "2022-03-14T08:15:12.244Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17074, + "fields": { + "EF_ID": 621711, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Household solid waste generation rate", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "285.28", + "Unit": "g/capita/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.323Z", + "last_change_date": "2022-03-14T08:15:12.323Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17075, + "fields": { + "EF_ID": 621712, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Food waste fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "84.18-85.10", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.430Z", + "last_change_date": "2022-03-14T08:15:12.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17076, + "fields": { + "EF_ID": 621713, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Plastic fraction in household solid Waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "6.37-7.20", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.547Z", + "last_change_date": "2022-03-14T08:15:12.547Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17077, + "fields": { + "EF_ID": 621714, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Paper fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "4.73-4.75", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.656Z", + "last_change_date": "2022-03-14T08:15:12.656Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17078, + "fields": { + "EF_ID": 621715, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Grass and wood fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "0.36-1.91", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.764Z", + "last_change_date": "2022-03-14T08:15:12.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17079, + "fields": { + "EF_ID": 621716, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Glass fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "0.72-1.03", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.882Z", + "last_change_date": "2022-03-14T08:15:12.882Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17080, + "fields": { + "EF_ID": 621717, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Metals fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "0.53-0.76", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:12.982Z", + "last_change_date": "2022-03-14T08:15:12.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17081, + "fields": { + "EF_ID": 621718, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Textile fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "0.2-0.29", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:13.091Z", + "last_change_date": "2022-03-14T08:15:13.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17082, + "fields": { + "EF_ID": 621719, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Rubber and leather fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "0.11-0.13", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:13.184Z", + "last_change_date": "2022-03-14T08:15:13.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17083, + "fields": { + "EF_ID": 621720, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Ceramic fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "0.10-0.12", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:13.276Z", + "last_change_date": "2022-03-14T08:15:13.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17084, + "fields": { + "EF_ID": 621721, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Miscellaneous fraction in household solid waste", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "0.52-0.86", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:13.368Z", + "last_change_date": "2022-03-14T08:15:13.368Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17085, + "fields": { + "EF_ID": 621722, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Correlation between waste generation rate and household size", + "Technology_Practices": "", + "Parameter_Conditions": "Dry and rainy seasons", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "NA", + "Other_Properties": "Surveys were done in Mekong Delta Region. Urban population in the regions is 52%. The climate of the region is tropical monsoonal.", + "Value": "Y = 399.85 -30*Xhh; where Y is waste generation rate in g/capita and Xhh is the number of residents in the household", + "Unit": "g/capita", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Thanh, N. P., Matsui, Y., and Fujiwara, T. Household solid waste generation and characteristic in a Mekong Delta city, Vietnam. Journal of Environmental Management, 2010, 91: 2307-2321", + "English_Abstract": "This study was undertaken to evaluate the quantity and composition of household solid waste to identify opportunities for waste recycling in Can Tho city, the capital city of the Mekong Delta region in southern Vietnam. Two-stage survey of 100 households was conducted for dry season and rainy season in 2009. Household solid waste was collected from each household and classified into 10 physical categories and 83 subcategories. The average household solid waste generation rate was 285.28 g per capita per day. The compostable and recyclable shares respectively accounted for 80.02% and 11.73%. The authors also analyzed the relations between some socioeconomic factors and household solid waste generation rates by physical categories and subcategories. The household solid waste generation rate per capita per day was positively correlated with the population density and urbanization level, although it was negatively correlated with the household size. The authors also developed mathematical models of correlations between the waste generation rates of main physical categories and relevant factors, such as household size and household income. The models were proposed by linear models with three variables to predict household solid waste generation of total waste, food waste, and plastic waste. It was shown that these correlations were weak and a relationship among variables existed. Comparisons of waste generation by physical compositions associated with different factors, such as seasonal and daily variation were conducted. Results presented that the significant average differences were found by the different seasons and by the different days in a week; although these correlations were weak. The greenhouse gas baseline emission was also calculated as 292.25 g (CO2 eq.) per capita per day from biodegradable components.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Household solid waste generation rate measured in Vietnam. It is based on a survey of 100 houselholds in the dry and rainy seasons. Samples were taken from 5 districts with different urbanization level according to population density. Two surveys were undertaken: the first for one month during February-March (dry season) while the other for 2 weeks during October (rainy season). 100 households were surveyed in the 2 stages.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:13.461Z", + "last_change_date": "2022-03-14T08:15:13.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17086, + "fields": { + "EF_ID": 621723, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "Measurements were done for a large scale WWTP of capacity 300,000 m3/d during spring and summer of 2010.", + "Regional_Conditions": "China", + "Control_Technologies": "Wastewater treatment plants applying Biological Nutrient Removal (BNR) technoligies where anaerobic/anoxic/oxic processes are utilized.", + "Other_Properties": "", + "Value": "1.55 x 10^(-4)", + "Unit": "g CH4/litre", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang, J., Zhang, J., Xie, H., Qi, P., Ren, Y., Hu, Z. Methane emissions from a full-scale A/A/O wastewater treatment plant, Bioresource Technology 2011, 102: 479-5485.", + "English_Abstract": "Methane (CH4) emissions from a full-scale anaerobic/anoxic/oxic (A/A/O) wastewater treatment plant (WWTP) (Jinan, China) were investigated during spring and summer of 2010. Results showed that the major emission sources of CH4 performed the following descending order: anaerobic tanks, oxic tanks, aerated grit chambers and sludge concentration tanks. The total annual fluxes of CH4 emissions from the Jinan WWTP were 1.69 * 104 kg yr-1, with the emission factors of per capita emissions of 11.3 g CH4 person-1 yr-1 and flow-based emissions of 1.55 * 10-4 g CH4 (L of wastewater)-1. The estimated source strength of methane for all WWTPs in China was 6.2 Gg yr-1 (1 Gg = 109 g). The most significant factors influencing methane emissions were dissolved oxygen concentration in aerated grit chamber and oxic tank and water temperature in high density settler tanks.", + "Lower_Bound": "1.29*10^(-4)", + "Upper_Bound": "2.03*10^(-4)", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:13.553Z", + "last_change_date": "2022-03-14T08:15:13.553Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17087, + "fields": { + "EF_ID": 621724, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "", + "Parameter_Conditions": "Measurements were done for a large scale WWTP of capacity 300,000 m3/d during spring and summer of 2010.", + "Regional_Conditions": "", + "Control_Technologies": "Wastewater treatment plants applying Biological Nutrient Removal (BNR) technoligies where anaerobic/anoxic/oxic processes are utilized.", + "Other_Properties": "", + "Value": "11.3", + "Unit": "g CH4/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang, J., Zhang, J., Xie, H., Qi, P., Ren, Y., Hu, Z. Methane emissions from a full-scale A/A/O wastewater treatment plant, Bioresource Technology 2011, 102: 479-5485.", + "English_Abstract": "Methane (CH4) emissions from a full-scale anaerobic/anoxic/oxic (A/A/O) wastewater treatment plant (WWTP) (Jinan, China) were investigated during spring and summer of 2010. Results showed that the major emission sources of CH4 performed the following descending order: anaerobic tanks, oxic tanks, aerated grit chambers and sludge concentration tanks. The total annual fluxes of CH4 emissions from the Jinan WWTP were 1.69 * 104 kg yr-1, with the emission factors of per capita emissions of 11.3 g CH4 person-1 yr-1 and flow-based emissions of 1.55 * 10-4 g CH4 (L of wastewater)-1. The estimated source strength of methane for all WWTPs in China was 6.2 Gg yr-1 (1 Gg = 109 g). The most significant factors influencing methane emissions were dissolved oxygen concentration in aerated grit chamber and oxic tank and water temperature in high density settler tanks.", + "Lower_Bound": "9.39", + "Upper_Bound": "14.79", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:13.662Z", + "last_change_date": "2022-03-14T08:15:13.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17088, + "fields": { + "EF_ID": 621725, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Municipal Solid Waste (MSW) Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "Urban settlements; Centralized waste collection", + "Value": "1.02", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "Worksheet 6-1A, Sheet 1 of 1", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Национальный доклад о кадастре антропогенных выбросов из источников и абсорбции поглотителями парниковых газов не регулируемых Монреальским протоколом за 1990-2010гг., Часть 1, Москва, 2012, стр.332", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data Sources: MSWV - Социальное положение и уровень жизни населения России. 2011: Стат.сб./Росстат – М., 2011 – 527с. ISBN 978-5-89476-326-2, cтр. 482; P - Демографический ежегодник России. 2010: Стат.сб./Росстат. – М., 2010 – 525с. ISBN 978-5-89476-295-1, стр. 25; D - Мирный А.Н., Санитарная очистка и уборка населенных мест. Справочник, Академия коммунального хозяйства им. К.Д. Памфилова, Москва, 2005, стр.79, 86", + "Other_Comments": "", + "Data_Provider": "Irina Govor", + "Link": "", + "creation_date": "2022-03-14T08:15:13.757Z", + "last_change_date": "2022-03-14T08:15:13.757Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17089, + "fields": { + "EF_ID": 621726, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of MSW", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45-55", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Мирный А.Н., Санитарная очистка и уборка населенных мест. Справочник, Академия коммунального хозяйства им. К.Д. Памфилова, Москва, 2005, стр.86", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Irina Govor", + "Link": "", + "creation_date": "2022-03-14T08:15:13.847Z", + "last_change_date": "2022-03-14T08:15:13.847Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17090, + "fields": { + "EF_ID": 621727, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW composition", + "Technology_Practices": "", + "Parameter_Conditions": "Wet waste", + "Regional_Conditions": "Russian Federation, Climate zone: Middle", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Food waste = 27-37; paper and cardboard = 37-41; wood = 1-2; textiles = 3-5; rubber and leather = 0.5-1; bones = 1-2; stone and plaster = 0.5-1; plastics = 5-6; metal = 4-6; glass = 2-3; other = 1-2; residues (less than 15 mm) = 5-7;", + "Unit": "% (by weight)", + "Equation": "Equation 5.4, page 5.9 of Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (GPG 2000)", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Мирный А.Н., Санитарная очистка и уборка населенных мест. Справочник, Академия коммунального хозяйства им. К.Д. Памфилова, Москва, 2005, стр.86", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Irina Govor", + "Link": "", + "creation_date": "2022-03-14T08:15:13.932Z", + "last_change_date": "2022-03-14T08:15:13.932Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17091, + "fields": { + "EF_ID": 621728, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Share of total area equipped with sewerage system", + "Technology_Practices": "", + "Parameter_Conditions": "Urban and rural settlements", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Rural housing: 34; Urban housing: 86", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Социальное положение и уровень жизни населения России. 2011: Стат.сб./Росстат – М., 2011 – 527с. ISBN 978-5-89476-326-2, стр. 314", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Irina Govor", + "Link": "", + "creation_date": "2022-03-14T08:15:14.004Z", + "last_change_date": "2022-03-14T08:15:14.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17092, + "fields": { + "EF_ID": 621729, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Proportion of urban and rural population", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Russian Federation", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Urban: 73.0 (in 2005) to 73.1 (in 2010) Rural: 27.0 (in 2005) to 29.9 (in 2010)", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Демографический ежегодник России. 2010: Стат.сб./Росстат. – М., 2010 – 525с. ISBN 978-5-89476-295-1, стр. 25", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Irina Govor", + "Link": "", + "creation_date": "2022-03-14T08:15:14.099Z", + "last_change_date": "2022-03-14T08:15:14.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17093, + "fields": { + "EF_ID": 621730, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Incineration of MSW", + "Technology_Practices": "stoker incinerator of continuous type", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "No specific abatement technology for N2O removal, but some incinerators adopt SNCR(Selective Non-catalytic Reduction and SCR(Selective Catalytic Reduction)", + "Other_Properties": "", + "Value": "47.8", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5, Chapter 5, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.C.1 of 2006 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "N2O emission factors for incineration of municipal solid waste (MSW), non-hazardous solid wastes from industrial sectors and sewage sludge", + "English_Abstract": "In South Korea total GHG emissions of waste management sector are 15,073 GgCO2_eq of the Landfill (49.9%), Incineration (39.1%), Wastewater (8.0%) and Biological treatment of solid waste (3.5%) based on a 2008 report. This study is designed to estimate the N2O country-specific emission factors from Municipal solid waste incinerator, General waste incinerator of industrial sources and Sewage sludge incinerator. In this study six of MSW incinerators were examined, and the five of them were stoker-continuous types and the one of them was fluidised bed-continuous type. Five incinerators were examined in General waste incinerator of industrial sources, and one of them was stoker-batch type and the four of them were stoker-continuous types. In Sewage sludge three incinerators were examined, and all of them were fluidised bed-continuous types. The N2O concentrations from the incinerators were measured continuously for 1-7 months using the ULTRAMAT 6 (non-dispersive infrared equipment) of SIEMENS. The N2O emission factors were 47.8 g N2O/t for the stoker-continuous type, 220.1 g N2O/t for thr fluidised bed-continuous type in MSW incinerator and 56.8 g N2O/t for the stoker-batch type, 133.1 g N2O/t for the stoker-continuous type in General waste incinerator of industrial sources. And the factor of Sewage sludge incinerator was 595 g N2O/t for fluidised bed-continuous type.", + "Lower_Bound": "45.2 g N2O/tonne wet waste", + "Upper_Bound": "50.43 g N2O/tonne wet waste", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Sungmin Kim", + "Link": "", + "creation_date": "2022-03-14T08:15:14.165Z", + "last_change_date": "2022-03-14T08:15:14.165Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17094, + "fields": { + "EF_ID": 621731, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Incineration of MSW", + "Technology_Practices": "fluidized bed incinerator of continuous type", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "No specific abatement technology for N2O removal, but some incinerators adopt SNCR(Selective Non-catalytic Reduction and SCR(Selective Catalytic Reduction)", + "Other_Properties": "", + "Value": "220.1", + "Unit": "g N2O /tonne waste", + "Equation": "Equation 5.5, Chapter 5, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.C.1 of 2006 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "N2O emission factors for incineration of municipal solid waste (MSW), non-hazardous solid wastes from industrial sectors and sewage sludge", + "English_Abstract": "In South Korea total GHG emissions of waste management sector are 15,073 GgCO2_eq of the Landfill (49.9%), Incineration (39.1%), Wastewater (8.0%) and Biological treatment of solid waste (3.5%) based on a 2008 report. This study is designed to estimate the N2O country-specific emission factors from Municipal solid waste incinerator, General waste incinerator of industrial sources and Sewage sludge incinerator. In this study six of MSW incinerators were examined, and the five of them were stoker-continuous types and the one of them was fluidised bed-continuous type. Five incinerators were examined in General waste incinerator of industrial sources, and one of them was stoker-batch type and the four of them were stoker-continuous types. In Sewage sludge three incinerators were examined, and all of them were fluidised bed-continuous types. The N2O concentrations from the incinerators were measured continuously for 1-7 months using the ULTRAMAT 6 (non-dispersive infrared equipment) of SIEMENS. The N2O emission factors were 47.8 g N2O/t for the stoker-continuous type, 220.1 g N2O/t for thr fluidised bed-continuous type in MSW incinerator and 56.8 g N2O/t for the stoker-batch type, 133.1 g N2O/t for the stoker-continuous type in General waste incinerator of industrial sources. And the factor of Sewage sludge incinerator was 595 g N2O/t for fluidised bed-continuous type.", + "Lower_Bound": "202.7 g N2O/tonne wet waste", + "Upper_Bound": "237.6 g N2O/tonne wet waste", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Sungmin Kim", + "Link": "", + "creation_date": "2022-03-14T08:15:14.266Z", + "last_change_date": "2022-03-14T08:15:14.266Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17095, + "fields": { + "EF_ID": 621732, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Incineration of waste from industrial sources", + "Technology_Practices": "stoker incinerator of batch type", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "No specific abatement technology for N2O removal, but some incinerators adopt SNCR(Selective Non-catalytic Reduction and SCR(Selective Catalytic Reduction)", + "Other_Properties": "", + "Value": "56.8", + "Unit": "g N2O /tonne wet waste", + "Equation": "Equation 5.5, Chapter 5, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.C.1 of 2006 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "N2O emission factors for incineration of municipal solid waste (MSW), non-hazardous solid wastes from industrial sectors and sewage sludge", + "English_Abstract": "In South Korea total GHG emissions of waste management sector are 15,073 GgCO2_eq of the Landfill (49.9%), Incineration (39.1%), Wastewater (8.0%) and Biological treatment of solid waste (3.5%) based on a 2008 report. This study is designed to estimate the N2O country-specific emission factors from Municipal solid waste incinerator, General waste incinerator of industrial sources and Sewage sludge incinerator. In this study six of MSW incinerators were examined, and the five of them were stoker-continuous types and the one of them was fluidised bed-continuous type. Five incinerators were examined in General waste incinerator of industrial sources, and one of them was stoker-batch type and the four of them were stoker-continuous types. In Sewage sludge three incinerators were examined, and all of them were fluidised bed-continuous types. The N2O concentrations from the incinerators were measured continuously for 1-7 months using the ULTRAMAT 6 (non-dispersive infrared equipment) of SIEMENS. The N2O emission factors were 47.8 g N2O/t for the stoker-continuous type, 220.1 g N2O/t for thr fluidised bed-continuous type in MSW incinerator and 56.8 g N2O/t for the stoker-batch type, 133.1 g N2O/t for the stoker-continuous type in General waste incinerator of industrial sources. And the factor of Sewage sludge incinerator was 595 g N2O/t for fluidised bed-continuous type.", + "Lower_Bound": "49.9 g N2O/tonne wet waste", + "Upper_Bound": "63.7 g N2O/tonne wet waste", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Sungmin Kim", + "Link": "", + "creation_date": "2022-03-14T08:15:14.358Z", + "last_change_date": "2022-03-14T08:15:14.358Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17096, + "fields": { + "EF_ID": 621733, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Incineration of waste from industrial sources", + "Technology_Practices": "stoker incinerator of continuous type", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "No specific abatement technology for N2O removal, but some incinerators adopt SNCR(Selective Non-catalytic Reduction and SCR(Selective Catalytic Reduction)", + "Other_Properties": "", + "Value": "133.1", + "Unit": "g N2O /tonne wet waste", + "Equation": "Equation 5.5, Chapter 5, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.C.1 of 2006 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "N2O emission factors for incineration of municipal solid waste (MSW), non-hazardous solid wastes from industrial sectors and sewage sludge", + "English_Abstract": "In South Korea total GHG emissions of waste management sector are 15,073 GgCO2_eq of the Landfill (49.9%), Incineration (39.1%), Wastewater (8.0%) and Biological treatment of solid waste (3.5%) based on a 2008 report. This study is designed to estimate the N2O country-specific emission factors from Municipal solid waste incinerator, General waste incinerator of industrial sources and Sewage sludge incinerator. In this study six of MSW incinerators were examined, and the five of them were stoker-continuous types and the one of them was fluidised bed-continuous type. Five incinerators were examined in General waste incinerator of industrial sources, and one of them was stoker-batch type and the four of them were stoker-continuous types. In Sewage sludge three incinerators were examined, and all of them were fluidised bed-continuous types. The N2O concentrations from the incinerators were measured continuously for 1-7 months using the ULTRAMAT 6 (non-dispersive infrared equipment) of SIEMENS. The N2O emission factors were 47.8 g N2O/t for the stoker-continuous type, 220.1 g N2O/t for thr fluidised bed-continuous type in MSW incinerator and 56.8 g N2O/t for the stoker-batch type, 133.1 g N2O/t for the stoker-continuous type in General waste incinerator of industrial sources. And the factor of Sewage sludge incinerator was 595 g N2O/t for fluidised bed-continuous type.", + "Lower_Bound": "127.2 g N2O/tonne wet waste", + "Upper_Bound": "139.0 g N2O/tonne wet waste", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Sungmin Kim", + "Link": "", + "creation_date": "2022-03-14T08:15:14.476Z", + "last_change_date": "2022-03-14T08:15:14.476Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17097, + "fields": { + "EF_ID": 621734, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Incineration of sewage sludge", + "Technology_Practices": "fluidized bed incinerator of continuous type", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "No specific abatement technology for N2O removal, but some incinerators adopt SNCR(Selective Non-catalytic Reduction and SCR(Selective Catalytic Reduction)", + "Other_Properties": "", + "Value": "595", + "Unit": "g N2O /tonne wet waste", + "Equation": "Equation 5.5, Chapter 5, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worksheet 4.C.1 of 2006 IPCC Guidelines", + "Data_Source": "Other", + "Technical_Reference": "N2O emission factors for incineration of municipal solid waste (MSW), non-hazardous solid wastes from industrial sectors and sewage sludge", + "English_Abstract": "In South Korea total GHG emissions of waste management sector are 15,073 GgCO2_eq of the Landfill (49.9%), Incineration (39.1%), Wastewater (8.0%) and Biological treatment of solid waste (3.5%) based on a 2008 report. This study is designed to estimate the N2O country-specific emission factors from Municipal solid waste incinerator, General waste incinerator of industrial sources and Sewage sludge incinerator. In this study six of MSW incinerators were examined, and the five of them were stoker-continuous types and the one of them was fluidised bed-continuous type. Five incinerators were examined in General waste incinerator of industrial sources, and one of them was stoker-batch type and the four of them were stoker-continuous types. In Sewage sludge three incinerators were examined, and all of them were fluidised bed-continuous types. The N2O concentrations from the incinerators were measured continuously for 1-7 months using the ULTRAMAT 6 (non-dispersive infrared equipment) of SIEMENS. The N2O emission factors were 47.8 g N2O/t for the stoker-continuous type, 220.1 g N2O/t for thr fluidised bed-continuous type in MSW incinerator and 56.8 g N2O/t for the stoker-batch type, 133.1 g N2O/t for the stoker-continuous type in General waste incinerator of industrial sources. And the factor of Sewage sludge incinerator was 595 g N2O/t for fluidised bed-continuous type.", + "Lower_Bound": "563 g N2O/tonne wet waste", + "Upper_Bound": "627 g N2O/tonne wet waste", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Sungmin Kim", + "Link": "", + "creation_date": "2022-03-14T08:15:14.568Z", + "last_change_date": "2022-03-14T08:15:14.568Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17098, + "fields": { + "EF_ID": 621735, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Municipal Solid Waste Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban MSW Generation Rate", + "Value": "0.556", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "The Study on Solid Waste Management for Metro Manila in the Republic of the Philippines, Report by Pacific Consultants International Kokusai Kogyo Co., Ltd., for the Japan International Cooperation Agency (JICA) and the Metro Manila Development Authority (MMDA), 1998", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Sampling was performed to estimate the MSW generation rate per souce (i.e. households, commercial establishments, street sweepings, river cleanings, markets), and used the rates to estimate the total MSW generated in a day. NOTE 1: Since it is not expressed in per capita, the provider divided total waste generation rate by the total urban population in 1997 (9.62M, interpolated from UNDESA data). NOTE 2: Although the report was finished in 1998, the sampling was done in 1997. NOTE 3: The same report was the data source of this publication - Shimura, S., Yokota, I., and Y. Nitta (2001), Research for MSW Flow Analysis in Developing Nations, Journal of Material Cycles and Waste Management, 3:48-59 (in this journal the MSW generation rate was 0.19 tonnes/cap/year or approximately 0.521kg/cap/day, MSW generation rate of 1 sampled city: Quezon City)", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:14.660Z", + "last_change_date": "2022-03-14T08:15:14.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17099, + "fields": { + "EF_ID": 621736, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of Municipal Waste Disposed to Solid Waste Disposal Sites", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban", + "Value": "0.63", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "The Study on Solid Waste Management for Metro Manila in the Republic of the Philippines, Report by Pacific Consultants International Kokusai Kogyo Co., Ltd., for the Japan International Cooperation Agency (JICA) and the Metro Manila Development Authority (MMDA), 1998", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "NOTE 1: The waste survey revealed that 65% of the waste generated is collected, and the rest is dumped in creeks and waterways, buried, composted, burned, and recycled. From the proportion that is collected, 1% is recovered at the transfer station and another 1% is recovered from scavenging at solid waste disposal sites. Thus, only 63% of the generated waste is brought to final disposal. NOTE 2: Also used in Shimura et al. (2001), but pegs collection efficiency at 62%", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:14.732Z", + "last_change_date": "2022-03-14T08:15:14.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17100, + "fields": { + "EF_ID": 621737, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW Composition (percent)", + "Technology_Practices": "", + "Parameter_Conditions": "based on wet weight", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban, composition at generation source not at SWDS", + "Value": "Kitchen = 45.34 Paper = 16.82 Textile = 3.88 Plastic = 15.61 Wood and grass = 6.71 Leather and Rubber = 0.74 Metal = 5.22 Glass = 3.36 Ceramic and stone = 1.12 Other = 1.20", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "The Study on Solid Waste Management for Metro Manila in the Republic of the Philippines, Report by Pacific Consultants International Kokusai Kogyo Co., Ltd., for the Japan International Cooperation Agency (JICA) and the Metro Manila Development Authority (MMDA), 1998", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "NOTE 1: MSW includes waste generated form households, commercial establishments, markets, river sweepings, and street sweeping. NOTE 2: Percentages were calculated from the data tables presented in the study. NOTE 3: Derived percentages are consistent with the values obtained by Shimura et al. (2001), except for the proportion of plastic (6.71%) and wood and grass (15.62) which they have switched due to typographical error", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:14.828Z", + "last_change_date": "2022-03-14T08:15:14.828Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17101, + "fields": { + "EF_ID": 621738, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW generation and management practices", + "Technology_Practices": "MSW brought to SWDS, recycled, composted, incinerated, dumped in the streets & waterways", + "Parameter_Conditions": "based on wet weight", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban, Unspecified MSW management here pertains to self-disposal and illegal dumping: includes open burning, composting, waste dumping in the streets and waterways", + "Value": "Recycled = 0.06 Brought to SWDS = 0.63 Unspecified = 0.31", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "The Study on Solid Waste Management for Metro Manila in the Republic of the Philippines, Report by Pacific Consultants International Kokusai Kogyo Co., Ltd., for the Japan International Cooperation Agency (JICA) and the Metro Manila Development Authority (MMDA), 1998", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "NOTE1: In 1997, 100% of the collected wastes were sent to disposal sites of unmanaged deep type which corresponds to a default MCF of 0.8. In 2003 (see ADB,2003) study, the 89.84% of the waste were sent to unmanaged deep SWDS, and 10.16% to unmanaged shallow SWDS. This corresponds to a weighted MCF of 0.78 NOTE2: SWDS classification in the Philippines is different from the IPCC classification. So the characteristics of the Philippine SWDS were used to obtain IPCC equivalents.", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:14.907Z", + "last_change_date": "2022-03-14T08:15:14.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17102, + "fields": { + "EF_ID": 621739, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "MSW Composition (percent)", + "Technology_Practices": "", + "Parameter_Conditions": "based on wet weight", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban, composition at collection vehicles", + "Value": "Paper = 13.4 Glass = 3.3 Metals = 4.5 Plastic = 22.8 Kitchen waste = 36.0 Other organic = 16.2 Other inorganic = 3.3 Hazardous =0.5", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Metro Manila Solid Waste Management Project, Report by AEA Technology in association with GlobalWorks, Cal Recovery Systems Inc., and ENR Consultants for the Asian Development Bank (ADB) and the Department of Environment and Natural Resources (DENR), 2003", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "NOTE 1: Values are different form that presented in the paper because the ones in the paper are simple averages. So data was recalculated to obtain weighted averages for each component. NOTE 2: For reference, the waste composition in the paper using simple averages are the following: Paper = 12.5, Glass = 3.1, Metals = 5.0, Plastic = 24.7, kitchen = 32.7, other organic = 17.4, other inorganic = 17.4, hazardous = 0.6", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:14.974Z", + "last_change_date": "2022-03-14T08:15:14.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17103, + "fields": { + "EF_ID": 621740, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Municipal Solid Waste Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban", + "Value": "0.571", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Metro Manila Solid Waste Management Project, Report by AEA Technology in association with GlobalWorks, Cal Recovery Systems Inc., and ENR Consultants for the Asian Development Bank (ADB) and the Department of Environment and Natural Resources (DENR), 2003", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "NOTE 1: Waste generation rate is derived from the data in the study by dividing total waste generation by population. NOTE 2: The paper applies the generation rate from the 1997 study which is slightly lower than the one cited above", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:15.070Z", + "last_change_date": "2022-03-14T08:15:15.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17104, + "fields": { + "EF_ID": 621741, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Municipal Solid Waste Generation Rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban", + "Value": "0.409", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Baldisimo, J.M., and B.N. Lohani. Scaveging of Municipal Solid Waste in Bangkok, Jakarta, and Manila, Environmental Sanitation Reviews, 1988, 26, 1-109", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for Metro Manila, Philippines is obtained from: ---, (1982), MMSWMS – Metro Manila Solid Waste Management Study:Master Plan, Draft-Final Report", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:15.157Z", + "last_change_date": "2022-03-14T08:15:15.157Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17105, + "fields": { + "EF_ID": 621742, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of Municipal Waste Disposed to Solid Waste Disposal Sites", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban, fraction does not include recycling/waste recovery at SWDS", + "Value": "0.7", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Baldisimo, J.M., and B.N. Lohani. Scaveging of Municipal Solid Waste in Bangkok, Jakarta, and Manila, Environmental Sanitation Reviews, 1988, 26, 1-109", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for Metro Manila, Philippines is obtained from: ---, (1982), MMSWMS – Metro Manila Solid Waste Management Study:Master Plan, Draft-Final Report", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:15.224Z", + "last_change_date": "2022-03-14T08:15:15.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17106, + "fields": { + "EF_ID": 621743, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "MSW Compostion (percent)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban", + "Value": "Vegetable/putrescible = 43.0 Paper = 17.0 Metals = 1.5 Glass = 5.3 Textiles = 3.7 Plastics = 4.5 Rubber = 1.0 Miscellaneous combustibles = 1.0 Miscellaneous non-comustibles =17.2 Others = 5.8", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Baldisimo, J.M., and B.N. Lohani. Scaveging of Municipal Solid Waste in Bangkok, Jakarta, and Manila, Environmental Sanitation Reviews, 1988, 26, 1-109", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data for Metro Manila, Philippines is obtained from: ---, (1982), MMSWMS – Metro Manila Solid Waste Management Study:Master Plan, Draft-Final Report", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "", + "creation_date": "2022-03-14T08:15:15.291Z", + "last_change_date": "2022-03-14T08:15:15.291Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17107, + "fields": { + "EF_ID": 621744, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biological Oxygen Demand", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban", + "Value": "53", + "Unit": "g BOD/person/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "World Bank (2003). Philippine Environment Monitor: Water Quality", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2004/05/24/000012009_20040524135608/Rendered/PDF/282970PH0Environment0monitor.pdf", + "creation_date": "2022-03-14T08:15:15.357Z", + "last_change_date": "2022-03-14T08:15:15.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17108, + "fields": { + "EF_ID": 621745, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of Wastewater Treated by Handling Systems", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Philippines", + "Control_Technologies": "", + "Other_Properties": "Urban", + "Value": "7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "World Bank (2003). Philippine Environment Monitor: Water Quality", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The fractions were mainly assumptions based on the presented data.", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2004/05/24/000012009_20040524135608/Rendered/PDF/282970PH0Environment0monitor.pdf", + "creation_date": "2022-03-14T08:15:15.449Z", + "last_change_date": "2022-03-14T08:15:15.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17109, + "fields": { + "EF_ID": 621746, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Per Capita Protein Consumption", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.51", + "Unit": "kg protein/person.year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "FNRI (2003) 6th National Nutrition Survey - Philippine Facts and Figures 2003. Food and Nutrition Research Institute, Department of Science and Tehcnology - Research and Development Institute.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "http://www.fnri.dost.gov.ph/index.php?option=content&task=view&id=1130", + "creation_date": "2022-03-14T08:15:15.524Z", + "last_change_date": "2022-03-14T08:15:15.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17110, + "fields": { + "EF_ID": 621747, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Per Capita Protein Consumption", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1978 = 19.35 1982 = 18.47 1987 = 18.14 1993 = 18.21", + "Unit": "kg protein/person.year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "FNRI (2003) 6th National Nutrition Survey - Philippine Facts and Figures 2003. Food and Nutrition Research Institute, Department of Science and Tehcnology - Research and Development Institute.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Measured and Compiled (see table 8)", + "Other_Comments": "", + "Data_Provider": "Jairus Carmela Cajoles Josol", + "Link": "http://www.fnri.dost.gov.ph/files/fnri%20files/nns/factsandfigures2003/dietary.pdf", + "creation_date": "2022-03-14T08:15:15.591Z", + "last_change_date": "2022-03-14T08:15:15.591Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17111, + "fields": { + "EF_ID": 621748, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor for wastewater treatment using trickling filter carbon oxidation", + "Technology_Practices": "Wastewater treatment - partially nitrifying biofilm carbon oxidation trickling filter", + "Parameter_Conditions": "", + "Regional_Conditions": "North America, United States, southern California, Los Angeles", + "Control_Technologies": "", + "Other_Properties": "effluent is sent off site for reverse osmosis recycling", + "Value": "0.38", + "Unit": "% of N removed", + "Equation": "Eqution 6.7, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Townsend-Small, A., Pataki, D.E., Tseng, L.Y., Tsai, C.Y., and Rosso, D. Nitrous oxide emissions from wastewater treatment and water reclamation plants in southern California. Journal of Environmental Quality, 2011, 40, 1542-1550 doi:10.2134/jeq2011.0059.", + "English_Abstract": "Nitrous oxide (N2O) is a long-lived and potent greenhouse gas produced during microbial nitrification and denitrification. In developed countries, centralized water reclamation plants often use these processes for N removal before effluent is used for irrigation or discharged to surface water, thus making this treatment a potentially large source of N2O in urban areas. In the arid but densely populated southwestern United States, water reclamation for irrigation is an important alternative to long- distance water importation. We measured N2O concentrations and fluxes from several wastewater treatment processes in urban southern California. We found that N removal during water reclamation may lead to in situ N2O emission rates that are three or more times greater than traditional treatment processes (C oxidation only). In the water reclamation plants tested, N2O production was a greater percentage of total N removed (1.2%) than traditional treatment processes (C oxidation only) (0.4%). We also measured stable isotope ratios (s15N and s18O) of emitted N2O and found distinct s15N signatures of N2O from denitrification (0.0 ± 4.0‰) and nitrification reactors (-24.5 ± 2.2‰), respectively. These isotope data confirm that both nitrification and denitrification contribute to N2O emissions within the same treatment plant. Our estimates indicate that N2O emissions from biological N removal for water reclamation may be several orders of magnitude greater than N2O emissions from agricultural activities in highly urbanized southern California. Our results suggest that wastewater treatment that includes biological nitrogen removal can significantly increase urban N2O emissions.", + "Lower_Bound": "0.1", + "Upper_Bound": "0.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is calculated using the total N2O-N emitted (measured by researchers) divided by the total N removed (supplied by WWTP engineers). N2O emissions from this plant represent N2O emissions from nitrification (confirmed by stable isotope analysis of N2O)", + "Other_Comments": "", + "Data_Provider": "Amy Townsend-Small", + "Link": "https://www.crops.org/publications/jeq/tocs/40/5", + "creation_date": "2022-03-14T08:15:15.657Z", + "last_change_date": "2022-03-14T08:15:15.657Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17112, + "fields": { + "EF_ID": 621749, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor for wastewater treatment using nitrification-denitrification", + "Technology_Practices": "Wastewater treatment - Modified Ludzack-Ettinger process with full nitrification-denitrification with methanol addition", + "Parameter_Conditions": "", + "Regional_Conditions": "North America, United States, southern California, Los Angeles", + "Control_Technologies": "", + "Other_Properties": "effluent is used for reclaimed water irrigation", + "Value": "1.2", + "Unit": "% of N removed", + "Equation": "Eqution 6.7, Volume 5, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "not applicable", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Townsend-Small, A., Pataki, D.E., Tseng, L.Y., Tsai, C.Y., and Rosso, D. Nitrous oxide emissions from wastewater treatment and water reclamation plants in southern California. Journal of Environmental Quality, 2011, 40, 1542-1550 doi:10.2134/jeq2011.0059.", + "English_Abstract": "Nitrous oxide (N2O) is a long-lived and potent greenhouse gas produced during microbial nitrification and denitrification. In developed countries, centralized water reclamation plants often use these processes for N removal before effluent is used for irrigation or discharged to surface water, thus making this treatment a potentially large source of N2O in urban areas. In the arid but densely populated southwestern United States, water reclamation for irrigation is an important alternative to long- distance water importation. We measured N2O concentrations and fluxes from several wastewater treatment processes in urban southern California. We found that N removal during water reclamation may lead to in situ N2O emission rates that are three or more times greater than traditional treatment processes (C oxidation only). In the water reclamation plants tested, N2O production was a greater percentage of total N removed (1.2%) than traditional treatment processes (C oxidation only) (0.4%). We also measured stable isotope ratios (s15N and s18O) of emitted N2O and found distinct s15N signatures of N2O from denitrification (0.0 ± 4.0‰) and nitrification reactors (-24.5 ± 2.2‰), respectively. These isotope data confirm that both nitrification and denitrification contribute to N2O emissions within the same treatment plant. Our estimates indicate that N2O emissions from biological N removal for water reclamation may be several orders of magnitude greater than N2O emissions from agricultural activities in highly urbanized southern California. Our results suggest that wastewater treatment that includes biological nitrogen removal can significantly increase urban N2O emissions.", + "Lower_Bound": "0.44", + "Upper_Bound": "0.44", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factor is calculated using the total N2O-N emitted (measured by researchers) divided by the total N removed (supplied by WWTP engineers). N2O emissions were measured from both nitrification and denitrification reactors and added together to estimate total N2O emissions from the plant. N2O produced in the denitrification reactor was approximately 4 times higher than in the nitrification reactor, although the nitrification reactor did emit N2O", + "Other_Comments": "", + "Data_Provider": "Amy Townsend-Small", + "Link": "https://www.crops.org/publications/jeq/tocs/40/5", + "creation_date": "2022-03-14T08:15:15.743Z", + "last_change_date": "2022-03-14T08:15:15.743Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17113, + "fields": { + "EF_ID": 621750, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "per capita waste generation", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.55", + "Unit": "kg/capita/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Communications", + "Technical_Reference": "India Second National Communication to the United Nations Framework Convention on Climate Change, 76p; NEERI (National Environmental Engineering and Research Institute), 2005. Assessment of Status of Municipal Solid Waste Management in Metro Cities, State Capitals, Class - I Cities and Class - II Towns. NEERI, Nagpur", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:15.843Z", + "last_change_date": "2022-03-14T08:15:15.843Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17114, + "fields": { + "EF_ID": 621862, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate (k)", + "Technology_Practices": "Landfill gas exploitation for power generation.", + "Parameter_Conditions": "The total annual rainfall in the region where these communities are located is between 100 and 200 mm, with an average temperature of 16.61C and rainfall mainly in December and January.", + "Regional_Conditions": "Baja California, Mexico.", + "Control_Technologies": "Landfill gas exploitation for power generation.", + "Other_Properties": "", + "Value": "0.0429", + "Unit": "1/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Quetzalli Aguilar-Virgen , Paul Taboada-Gonzalez, Sara Ojeda-Benítez. Analysis of the feasibility of the recovery of landfill gas: a case study of Mexico. Journal of Cleaner Production 2014, 79, 53-60", + "English_Abstract": "Electricity is a vital component in the development of societies and industrial progress. The growing demand and environmental degradation from current sources forces us to search for alternative methods of generating it. The use of biogas generated in landfills enables the recovery of the remaining energy in waste and reduces the environmental problems caused by burning coal, oil, and natural gas. Certainty in the generation projections is required for an energy source to be considered useful. The usefulness of biogas power generation depends on accurately estimating the amount of possible biogas generation. Considering this uncertainty, the objectives of this research were to (a) determine the methane generation rate (k) and methane generation potential (L0), and (b) estimate the biogas generation in the final disposal sites (FDS) of two urban communities and two rural communities in Baja California, Mexico. To determine the constants used in biogas models, the following experiments were performed: (a) waste characterisation studies, (b) observations of the characteristics and performance of the FDS, (c) interviews with the managers of the FDS, and (d) IPCC model parameters. Predictions of biogas utility were made using the modified constants in the Mexico LFG Model Version 2.0 proposed by SCS Engineers. The results show that k averaged 0.0429 yr 1 and L0 was 68.69 m3/ton. In the period of 2013e2030, there will be a power generation potential of 760492.8 MW/h (USD $142.21 million). The potential reduction in CO2e emissions would be approximately 5.2 MtCO2e during the same period (USD $57.16 million).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "It should be noted that by-products in the inert degradation categories (metals, construction and demolition, glass and ceramics, plastics and other inorganic) were not considered in the determination of k.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652614004855", + "creation_date": "2022-03-14T08:15:15.924Z", + "last_change_date": "2022-03-14T08:15:15.924Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17115, + "fields": { + "EF_ID": 621863, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation potential (L0)", + "Technology_Practices": "Landfill gas exploitation for power generation.", + "Parameter_Conditions": "The total annual rainfall in the region where these communities are located is between 100 and 200 mm, with an average temperature of 16.61C and rainfall mainly in December and January.", + "Regional_Conditions": "Baja California, Mexico.", + "Control_Technologies": "Landfill gas exploitation for power generation.", + "Other_Properties": "", + "Value": "68.69", + "Unit": "m^3/ton", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Quetzalli Aguilar-Virgen , Paul Taboada-Gonzalez, Sara Ojeda-Benítez. Analysis of the feasibility of the recovery of landfill gas: a case study of Mexico. Journal of Cleaner Production 2014, 79, 53-60", + "English_Abstract": "Electricity is a vital component in the development of societies and industrial progress. The growing demand and environmental degradation from current sources forces us to search for alternative methods of generating it. The use of biogas generated in landfills enables the recovery of the remaining energy in waste and reduces the environmental problems caused by burning coal, oil, and natural gas. Certainty in the generation projections is required for an energy source to be considered useful. The usefulness of biogas power generation depends on accurately estimating the amount of possible biogas generation. Considering this uncertainty, the objectives of this research were to (a) determine the methane generation rate (k) and methane generation potential (L0), and (b) estimate the biogas generation in the final disposal sites (FDS) of two urban communities and two rural communities in Baja California, Mexico. To determine the constants used in biogas models, the following experiments were performed: (a) waste characterisation studies, (b) observations of the characteristics and performance of the FDS, (c) interviews with the managers of the FDS, and (d) IPCC model parameters. Predictions of biogas utility were made using the modified constants in the Mexico LFG Model Version 2.0 proposed by SCS Engineers. The results show that k averaged 0.0429 yr 1 and L0 was 68.69 m3/ton. In the period of 2013e2030, there will be a power generation potential of 760492.8 MW/h (USD $142.21 million). The potential reduction in CO2e emissions would be approximately 5.2 MtCO2e during the same period (USD $57.16 million).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The generation potential L0 was determined using Eq. (2), giving an average value of L0 for the FDS studied of 68.6917 m^3/ton residue.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652614004855", + "creation_date": "2022-03-14T08:15:16.019Z", + "last_change_date": "2022-03-14T08:15:16.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17116, + "fields": { + "EF_ID": 621864, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste generation rate", + "Technology_Practices": "", + "Parameter_Conditions": "Daily municipal solid waste generation rate", + "Regional_Conditions": "Kuwait", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.01", + "Unit": "kg/person", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Rawa Al-Jarallah and Esra Aleisa. A baseline study characterizing the municipal solid waste in the State of Kuwait. Waste Management 2014, 34, 952–960.", + "English_Abstract": "This paper provides a new reference line for municipal solid waste characterization in Kuwait. The baseline data were collected in accordance with the Standard Test Method for the Determination of the Composition of Unprocessed Municipal Solid Waste (ASTM). The results indicated that the average daily municipal waste generation level is 1.01 kg/person. Detailed waste stream surveys were conducted for more than 600 samples of municipal solid waste (MSW). The waste categories included paper, corrugated fibers, PET bottles, film, organic matter, wood, metal, glass, and others. The results indicated that organic waste dominated the characterization (44.4%), followed by film (11.2%) and then corrugated fibers (8.6%). Analysis of variance (ANOVA) was used to investigate the influence of season and governorate on waste composition. A significant seasonal variation was observed in almost all waste categories. In addition, significant differences in proportions between the current level and 1995 baseline were observed in most waste categories at the 95% confidence level.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14000671", + "creation_date": "2022-03-14T08:15:16.119Z", + "last_change_date": "2022-03-14T08:15:16.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17117, + "fields": { + "EF_ID": 621865, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition", + "Technology_Practices": "", + "Parameter_Conditions": "Organic waste content of municipal solid waste", + "Regional_Conditions": "Kuwait", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.4", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Rawa Al-Jarallah and Esra Aleisa. A baseline study characterizing the municipal solid waste in the State of Kuwait. Waste Management 2014, 34, 952–960.", + "English_Abstract": "This paper provides a new reference line for municipal solid waste characterization in Kuwait. The baseline data were collected in accordance with the Standard Test Method for the Determination of the Composition of Unprocessed Municipal Solid Waste (ASTM). The results indicated that the average daily municipal waste generation level is 1.01 kg/person. Detailed waste stream surveys were conducted for more than 600 samples of municipal solid waste (MSW). The waste categories included paper, corrugated fibers, PET bottles, film, organic matter, wood, metal, glass, and others. The results indicated that organic waste dominated the characterization (44.4%), followed by film (11.2%) and then corrugated fibers (8.6%). Analysis of variance (ANOVA) was used to investigate the influence of season and governorate on waste composition. A significant seasonal variation was observed in almost all waste categories. In addition, significant differences in proportions between the current level and 1995 baseline were observed in most waste categories at the 95% confidence level.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14000671", + "creation_date": "2022-03-14T08:15:16.220Z", + "last_change_date": "2022-03-14T08:15:16.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17118, + "fields": { + "EF_ID": 621866, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Maximum methane oxidation rate", + "Technology_Practices": "", + "Parameter_Conditions": "Biological methane oxidation capacity in stabilised waste layer", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.1", + "Unit": "g/m^3 /day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wilai Chiemchaisri, Chart Chiemchaisri and Jindaruch Boonchaiyuttasak. Utilization of stabilized wastes for reducing methane emission from municipal solid waste disposal. Bioresource Technology, 2013, 14, 199–204.", + "English_Abstract": "Stabilized solid wastes were utilized to mitigate methane emission from the landfill. Loose texture of plastic wastes encouraged air diffusion from the soil surface whereas fine organic fraction has good water holding capacity and nutrients to stimulate methane oxidation reaction. Biological methane oxidation capacity in stabilized waste layer was found to be up to 34.1 g/m^3 d. Microbial activity test revealed methanotrophic activities of plastic and degraded organic wastes were in the same order. The mixture of plastic and fine degraded organic waste matrix provided sufficient porosity for oxygen transfer and supported the growth of methanotrophs throughout 0.8 m depth of waste layer. Fluorescent in situ hybridization (FISH) analysis confirmed the presence of methanotrophs and their population was found varied along waste depth.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852413004033", + "creation_date": "2022-03-14T08:15:16.299Z", + "last_change_date": "2022-03-14T08:15:16.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17119, + "fields": { + "EF_ID": 621867, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission", + "Technology_Practices": "", + "Parameter_Conditions": "Direct measurement of methane emissions from a landfill using flux accumulation chambers. Number of measured points: 82.", + "Regional_Conditions": "Palermo, Italy", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.41", + "Unit": "mg CH4/m^2/s", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gaetano Di Bella, Daniele Di Trapani and Gaspare Viviani. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models. Waste Management 2011, 3, 1820–1826.", + "English_Abstract": "Methane (CH4) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH4 is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH4 emissions from landfill sites and the quantification of CH4 emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH4 diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH4 diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH4 contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH4 mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average: 0.41; Minimum: 0.001; Maximum:8.05; St. Dev.: 1.14", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X11001279", + "creation_date": "2022-03-14T08:15:16.396Z", + "last_change_date": "2022-03-14T08:15:16.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17120, + "fields": { + "EF_ID": 621868, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane flux", + "Technology_Practices": "", + "Parameter_Conditions": "Palermo landfill is located 10 km from the city center and it is about 450 m above sea level. It covers an overall area of about 500,000 m^2", + "Regional_Conditions": "Palermo, Italy", + "Control_Technologies": "With and without temporary HDPE cover", + "Other_Properties": "", + "Value": "0.001-12.94", + "Unit": "mg CH4/m^2/s", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Daniele Di Trapani, Gaetano Di Bella and Gaspare Viviani. Uncontrolled methane emissions from a MSW landfill surface: Influence of landfill features and side slopes. Waste Management 2013, 33, 2108–2115.", + "English_Abstract": "Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected toreceive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as features: in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a significant increase of the recovery efficiency.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13000627", + "creation_date": "2022-03-14T08:15:16.466Z", + "last_change_date": "2022-03-14T08:15:16.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17121, + "fields": { + "EF_ID": 621869, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Surface methane emissions", + "Technology_Practices": "Type of cover: Soil with sparse vegetation; Time since closure: 4years", + "Parameter_Conditions": "", + "Regional_Conditions": "Beirut, Lebanon", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "litres CH4/m^2/hour", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mutasem El-Fadel, Layale Abi-Esber and Samer Salhab. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism. Waste Management 2012, 32, 2106–2114.", + "English_Abstract": "This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH4 flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 ± 0.014, 0.224 ± 0.012 and 0.237 ± 0.008 l CH4/m^2 hr, respectively, compared to an arithmetic mean of 0.24 l/m^2 hr. The flux values are within the reported range for closed landfills (0.06–0.89 l/m^2 hr), and lower than the reported range for active landfills (0.42–2.46 l/m^2 hr). Simulation results matched field measurements for low methane generation potential (L0) values in the range of 19.8–102.6 m^3/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X11005976", + "creation_date": "2022-03-14T08:15:16.572Z", + "last_change_date": "2022-03-14T08:15:16.572Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17122, + "fields": { + "EF_ID": 621870, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Reduction of gas production potential", + "Technology_Practices": "MBT. Mechanically sorted organic residues aerobically treated for 8 weeks", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "G. De Gioannis, A. Muntoni, G. Cappai and S. Milia. Lanfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management 2009, 29, 1026-1034.", + "English_Abstract": "Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanicaly treated RMSW was sampled at a full-scale plant and aerobically satbilised for 8 to 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the the gas generation rate constants (k, y-1), the potential gas generation capacity (Lo, Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of landfill gas generation potential by, respectively, 67% and 83% (8 wek treatment), 82% and 91% (15 week treatment) compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01 +/- 1.25 kg C/tMBTW and 4.54 +/- 0.87 kgC/tMBTW, respectively, that is 81% and 93% less than the amount gasified from raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803 y-1) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production of rate, gas production from MBTW landfills is well-suited to a passive management strategy.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X08002869", + "creation_date": "2022-03-14T08:15:16.690Z", + "last_change_date": "2022-03-14T08:15:16.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17123, + "fields": { + "EF_ID": 621871, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Reduction of gas production potential", + "Technology_Practices": "MBT. Mechanically sorted organic residues aerobically treated for 15 weeks", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "G. De Gioannis, A. Muntoni, G. Cappai and S. Milia. Lanfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management 2009, 29, 1026-1034.", + "English_Abstract": "Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanicaly treated RMSW was sampled at a full-scale plant and aerobically satbilised for 8 to 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the the gas generation rate constants (k, y-1), the potential gas generation capacity (Lo, Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of landfill gas generation potential by, respectively, 67% and 83% (8 wek treatment), 82% and 91% (15 week treatment) compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01 +/- 1.25 kg C/tMBTW and 4.54 +/- 0.87 kgC/tMBTW, respectively, that is 81% and 93% less than the amount gasified from raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803 y-1) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production of rate, gas production from MBTW landfills is well-suited to a passive management strategy.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X08002869", + "creation_date": "2022-03-14T08:15:16.787Z", + "last_change_date": "2022-03-14T08:15:16.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17124, + "fields": { + "EF_ID": 621872, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Reduction of non-methanogenic phase", + "Technology_Practices": "MBT. Mechanically sorted organic residues aerobically treated for 8 weeks", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "G. De Gioannis, A. Muntoni, G. Cappai and S. Milia. Lanfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management 2009, 29, 1026-1034.", + "English_Abstract": "Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanicaly treated RMSW was sampled at a full-scale plant and aerobically satbilised for 8 to 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the the gas generation rate constants (k, y-1), the potential gas generation capacity (Lo, Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of landfill gas generation potential by, respectively, 67% and 83% (8 wek treatment), 82% and 91% (15 week treatment) compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01 +/- 1.25 kg C/tMBTW and 4.54 +/- 0.87 kgC/tMBTW, respectively, that is 81% and 93% less than the amount gasified from raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803 y-1) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production of rate, gas production from MBTW landfills is well-suited to a passive management strategy.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X08002869", + "creation_date": "2022-03-14T08:15:16.875Z", + "last_change_date": "2022-03-14T08:15:16.875Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17125, + "fields": { + "EF_ID": 621873, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Reduction of non-methanogenic phase", + "Technology_Practices": "MBT. Mechanically sorted organic residues aerobically treated for 15 weeks", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "82", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "G. De Gioannis, A. Muntoni, G. Cappai and S. Milia. Lanfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management 2009, 29, 1026-1034.", + "English_Abstract": "Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanicaly treated RMSW was sampled at a full-scale plant and aerobically satbilised for 8 to 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the the gas generation rate constants (k, y-1), the potential gas generation capacity (Lo, Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of landfill gas generation potential by, respectively, 67% and 83% (8 wek treatment), 82% and 91% (15 week treatment) compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01 +/- 1.25 kg C/tMBTW and 4.54 +/- 0.87 kgC/tMBTW, respectively, that is 81% and 93% less than the amount gasified from raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803 y-1) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production of rate, gas production from MBTW landfills is well-suited to a passive management strategy.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X08002869", + "creation_date": "2022-03-14T08:15:16.949Z", + "last_change_date": "2022-03-14T08:15:16.949Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17126, + "fields": { + "EF_ID": 621874, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Gas generation rate constant", + "Technology_Practices": "MBTW (Aerobically treated waste)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0347-0.0803", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "G. De Gioannis, A. Muntoni, G. Cappai and S. Milia. Lanfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management 2009, 29, 1026-1034.", + "English_Abstract": "Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanicaly treated RMSW was sampled at a full-scale plant and aerobically satbilised for 8 to 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the the gas generation rate constants (k, y-1), the potential gas generation capacity (Lo, Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of landfill gas generation potential by, respectively, 67% and 83% (8 wek treatment), 82% and 91% (15 week treatment) compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01 +/- 1.25 kg C/tMBTW and 4.54 +/- 0.87 kgC/tMBTW, respectively, that is 81% and 93% less than the amount gasified from raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803 y-1) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production of rate, gas production from MBTW landfills is well-suited to a passive management strategy.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X08002869", + "creation_date": "2022-03-14T08:15:17.042Z", + "last_change_date": "2022-03-14T08:15:17.042Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17127, + "fields": { + "EF_ID": 621875, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission from biogas plant", + "Technology_Practices": "Measurements were conducted in December 2013 at a biogas plant in Rhineland-Palatinate, Germany. It consists of two main digesters each with a capacity of 2100 m^3. Connected to them are a secondary digester (2700 m^3), an open and a closed digestate storage tank (each 3600 m^3). The plant ferments energy crops and liquid manure to produce biogas, which consists of 52% methane. The produced biogas is partly used in a combined heat and power unit (CHP) on-site and partly carried to a remote CHP.", + "Parameter_Conditions": "Percent of methane formed that was emitted under undisturbed operational mode.", + "Regional_Conditions": "Rhineland-Palatinate, Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "% of methane formed", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Angela Groth, Claudia Maurer, Martin Reiser and Martin Kranert. Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry. Bioresour Technol. 2015, 178, 359–361 doi: 10.1016/j.biortech.2014.09.112", + "English_Abstract": "The aim of the work was to establish a method for emission control of biogas plants especially the observation of fugitive methane emissions. The used method is in a developmental stage but the topic is crucial to environmental and economic issues. A remote sensing measurement method was adopted to determine methane emission rates of a biogas plant in Rhineland-Palatinate, Germany. An inverse dispersion model was used to deduce emission rates. This technique required one concentration measurement with an open path tunable diode laser absorption spectrometer (TDLAS) downwind and upwind the source and basic wind information, like wind speed and direction. Different operating conditions of the biogas plant occurring on the measuring day (December 2013) could be represented roughly in the results. During undisturbed operational modes the methane emission rate averaged 2.8 g/s, which corresponds to 4% of the methane gas production rate of the biogas plant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414013716", + "creation_date": "2022-03-14T08:15:17.129Z", + "last_change_date": "2022-03-14T08:15:17.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17128, + "fields": { + "EF_ID": 621876, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission rate", + "Technology_Practices": "MBT of MSW followed by landfilling of the processed waste.", + "Parameter_Conditions": "Measurement of methane and nitrous oxide emissions at an operational landfill in Germany receiving waste treated by mechanical biological treatment (MBT)", + "Regional_Conditions": "Northwestern Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "g CO2 eq /m^2/hour", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Peter Harborth, Roland Fuß, Kai Münnich, Heinz Flessa and Klaus Fricke. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N2O hotspots at the working face. Waste Management 2013, 33, 2099-2107.", + "English_Abstract": "Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20–200 g CO2 eq. m-2 h-1 magnitude (up to 428 mg N m-2 h-1) were observed within 20 m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO2 eq. m-2 h-1. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13000585", + "creation_date": "2022-03-14T08:15:17.218Z", + "last_change_date": "2022-03-14T08:15:17.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17129, + "fields": { + "EF_ID": 621877, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emission rate", + "Technology_Practices": "MBT of MSW followed by landfilling of the processed waste.", + "Parameter_Conditions": "Measurement of methane and nitrous oxide emissions at an operational landfill in Germany receiving waste treated by mechanical biological treatment (MBT)", + "Regional_Conditions": "Northwestern Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20-200", + "Unit": "g CO2 eq /m^2/hour", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Peter Harborth, Roland Fuß, Kai Münnich, Heinz Flessa and Klaus Fricke. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N2O hotspots at the working face. Waste Management 2013, 33, 2099-2107.", + "English_Abstract": "Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20–200 g CO2 eq. m-2 h-1 magnitude (up to 428 mg N m-2 h-1) were observed within 20 m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30–40 m from the working face, where they reached about 10 g CO2 eq. m-2 h-1. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13000585", + "creation_date": "2022-03-14T08:15:17.319Z", + "last_change_date": "2022-03-14T08:15:17.319Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17130, + "fields": { + "EF_ID": 621878, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission from open windrow composting plant", + "Technology_Practices": "An inverse dispersion technique in conjunction with Open-Path Tunable-Diode-Laser-Spectroscopy (OPTDLS) and meteorological measurements was applied to characterise methane (CH4) emissions from an Austrian open-windrow composting plant treating source-separated biowaste.", + "Parameter_Conditions": "Plant-specific methane emission rate under normal operating conditions with 18,000m^3 of rotting compost (range).", + "Regional_Conditions": "Austria", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.7-14.3", + "Unit": "g CH4/m3d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Marlies Hrad, Erwin Binner, Martin Piringer and Marion Huber-Humer. Quantification of methane emissions from full-scale open windrow composting of biowaste using an inverse dispersion technique. Waste Management, 2014, 34(12), 2445-2453. doi: 10.1016/j.wasman.2014.08.013.", + "English_Abstract": "An inverse dispersion technique in conjunction with Open-Path Tunable-Diode-Laser-Spectroscopy (OPTDLS) and meteorological measurements was applied to characterise methane (CH4) emissions from an Austrian open-windrow composting plant treating source-separated biowaste. Within the measurement campaigns from July to September 2012 different operating conditions (e.g. before, during and after turning and/or sieving events) were considered to reflect the plant-specific process efficiency. In addition, the tracer technique using acetylene (C2H2) was applied during the measurement campaigns as a comparison to the dispersion model. Plant-specific methane emissions varied between 1.7 and 14.3 g CH4/m^3*d (1.3-10.7 kg CH4/h) under real-life management assuming a rotting volume of 18,000 m3. In addition, emission measurements indicated that the turning frequency of the open windrows appears to be a crucial factor controlling CH4 emissions when composting biowaste. The lowest CH4 emission was measured at a passive state of the windrows without any turning event (standstill and sieving of matured compost). Not surprisingly, higher CH4 emissions occurred during turning events, which can be mainly attributed to the instant release of trapped CH4. Besides the operation mode, the meteorological conditions (e.g. wind speed, atmospheric stability) may be further factors that likely affect the release of CH4 emissions at an open windrow system. However, the maximum daily CH4 emissions of 1 m^3 rotting material of the composting plant are only 0.7-6.5% of the potential daily methane emissions released from 1 m^3 of mechanically–biologically treated (MBT) waste being landfilled according to the required limit values given in the Austrian landfill ordinance.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 emission rates from full-scale open windrow composting plants: 112–940 CH4 flux (g/Mg WM). Substrate, duration of compost, feedstock volume: 18,000 m^3 (biowaste), 100,000 Mg FM input/year, 6–10 weeks, daily turning.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14003687", + "creation_date": "2022-03-14T08:15:17.420Z", + "last_change_date": "2022-03-14T08:15:17.420Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17131, + "fields": { + "EF_ID": 621889, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emitted from the incineration of municipal solid waste", + "Technology_Practices": "3 facilities in Switzerland were studied; all are continuously operated underfeed stoker-type incinerators", + "Parameter_Conditions": "Fuel: Solid recovered fuels without addition of sewage sludge", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "Selective catalytic reduction (SCR) for NOx removal", + "Other_Properties": "The facilities burn between 92,000 and 233,000 tonnes of waste per year", + "Value": "4.3", + "Unit": "g N2O /tonne waste", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4C1: Sheet I of I, Estimation of N2O emissions from Incineration of Waste", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harris, E., Zeyer, K., Kegel, R., Müller, B., Emmenegger, L., and Mohn, J. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland, Waste Management, 2015, 35:135-140, doi: 10.1016/j.wasman.2014.10.016", + "English_Abstract": "Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3+/-4.0 g N2O/tonne waste (wet) (hereafter abbreviated as t-1) (0.4+/-0.4 g N2O/GJ), ten times lower than from plants with selective non-catalytic reduction (51.5+/-10.6 g N2O/ t; 4.5+/-0.9 g N2O/GJ). These emission factors, which are much lower than the value of 120 g N2O/t (10.4 g N2O/GJ) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of 14N15NO relative to 15N14NO –was found to be 17.6+/-0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5+/-5.6 g CH4/t (0.2+/-0.5 g CH4/GJ), which is expected due to high incinerator temperatures and efficient combustion.", + "Lower_Bound": "0.3", + "Upper_Bound": "8.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eliza Harris", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14005005", + "creation_date": "2022-03-14T08:15:17.521Z", + "last_change_date": "2022-03-14T08:15:17.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17132, + "fields": { + "EF_ID": 621890, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emitted from the incineration of municipal solid waste", + "Technology_Practices": "2 facilities in Switzerland were studied; both are continuously operated underfeed stoker-type incinerators", + "Parameter_Conditions": "Fuel: Solid recovered fuels without addition of sewage sludge", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "Selective non-catalytic reduction (SNCR) for NOx removal", + "Other_Properties": "The facilities burn between 92,000 and 233,000 tonnes of waste per year", + "Value": "51.5", + "Unit": "g N2O /tonne waste", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4C1: Sheet I of I, Estimation of N2O emissions from Incineration of Waste", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harris, E., Zeyer, K., Kegel, R., Müller, B., Emmenegger, L., and Mohn, J. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland, Waste Management, 2015, 35:135-140, doi: 10.1016/j.wasman.2014.10.016", + "English_Abstract": "Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3+/-4.0 g N2O/tonne waste (wet) (hereafter abbreviated as t-1) (0.4+/-0.4 g N2O/GJ), ten times lower than from plants with selective non-catalytic reduction (51.5+/-10.6 g N2O/ t; 4.5+/-0.9 g N2O/GJ). These emission factors, which are much lower than the value of 120 g N2O/t (10.4 g N2O/GJ) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of 14N15NO relative to 15N14NO –was found to be 17.6+/-0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5+/-5.6 g CH4/t (0.2+/-0.5 g CH4/GJ), which is expected due to high incinerator temperatures and efficient combustion.", + "Lower_Bound": "40.9", + "Upper_Bound": "62.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eliza Harris", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14005005", + "creation_date": "2022-03-14T08:15:17.629Z", + "last_change_date": "2022-03-14T08:15:17.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17133, + "fields": { + "EF_ID": 621893, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "3 facilities in Switzerland were studied; all are continuously operated underfeed stoker-type incinerators", + "Parameter_Conditions": "Fuel: Solid recovered fuels without addition of sewage sludge", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "Selective catalytic reduction (SCR) for NOx removal", + "Other_Properties": "The facilities burn between 92,000 and 233,000 tonnes of waste per year", + "Value": "2.1", + "Unit": "g CH4/tonne waste", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4C1: Sheet I of I Estimation of CH4 emissions from Incineration of Waste", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harris, E., Zeyer, K., Kegel, R., Müller, B., Emmenegger, L., and Mohn, J. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland, Waste Management, 2015, 35:135-140, doi: 10.1016/j.wasman.2014.10.016", + "English_Abstract": "Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3+/-4.0 g N2O/tonne waste (wet) (hereafter abbreviated as t-1) (0.4+/-0.4 g N2O/GJ), ten times lower than from plants with selective non-catalytic reduction (51.5+/-10.6 g N2O/ t; 4.5+/-0.9 g N2O/GJ). These emission factors, which are much lower than the value of 120 g N2O/t (10.4 g N2O/GJ) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of 14N15NO relative to 15N14NO –was found to be 17.6+/-0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5+/-5.6 g CH4/t (0.2+/-0.5 g CH4/GJ), which is expected due to high incinerator temperatures and efficient combustion.", + "Lower_Bound": "0", + "Upper_Bound": "5.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eliza Harris", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14005005", + "creation_date": "2022-03-14T08:15:17.722Z", + "last_change_date": "2022-03-14T08:15:17.722Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17134, + "fields": { + "EF_ID": 621894, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "2 facilities in Switzerland were studied; both are continuously operated underfeed stoker-type incinerators", + "Parameter_Conditions": "Fuel: Solid recovered fuels without addition of sewage sludge", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "Selective non-catalytic reduction (SNCR) for NOx removal", + "Other_Properties": "The facilities burn between 92,000 and 233,000 tonnes of waste per year", + "Value": "2.5", + "Unit": "g CH4/tonne waste", + "Equation": "", + "IPCC_Worksheet": "Worksheet 4C1: Sheet I of I Estimation of CH4 emissions from Incineration of Waste", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harris, E., Zeyer, K., Kegel, R., Müller, B., Emmenegger, L., and Mohn, J. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland, Waste Management, 2015, 35:135-140, doi: 10.1016/j.wasman.2014.10.016", + "English_Abstract": "Solid waste incineration accounts for a growing proportion of waste disposal in both developed and developing countries, therefore it is important to constrain emissions of greenhouse gases from these facilities. At five Swiss waste incineration facilities with grate firing, emission factors for N2O and CH4 were determined based on measurements of representative flue gas samples, which were collected in Tedlar bags over a one year period (September 2010–August 2011) and analysed with FTIR spectroscopy. All five plants burn a mixture of household and industrial waste, and two of the plants employ NOx removal through selective non-catalytic reduction (SNCR) while three plants use selective catalytic reduction (SCR) for NOx removal. N2O emissions from incineration plants with NOx removal through selective catalytic reduction were 4.3+/-4.0 g N2O/tonne waste (wet) (hereafter abbreviated as t-1) (0.4+/-0.4 g N2O/GJ), ten times lower than from plants with selective non-catalytic reduction (51.5+/-10.6 g N2O/ t; 4.5+/-0.9 g N2O/GJ). These emission factors, which are much lower than the value of 120 g N2O/t (10.4 g N2O/GJ) used in the 2013 Swiss national greenhouse gas emission inventory, have been implemented in the most recent Swiss emission inventory. In addition, the isotopic composition of N2O emitted from the two plants with SNCR, which had considerable N2O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N2O - the enrichment of 14N15NO relative to 15N14NO –was found to be 17.6+/-0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N2O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5+/-5.6 g CH4/t (0.2+/-0.5 g CH4/GJ), which is expected due to high incinerator temperatures and efficient combustion.", + "Lower_Bound": "0", + "Upper_Bound": "8.1", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Eliza Harris", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14005005", + "creation_date": "2022-03-14T08:15:17.822Z", + "last_change_date": "2022-03-14T08:15:17.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17135, + "fields": { + "EF_ID": 622317, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Coverage of waste collection", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:17.923Z", + "last_change_date": "2022-03-14T08:15:17.923Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17136, + "fields": { + "EF_ID": 622318, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste generation rate", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.015Z", + "last_change_date": "2022-03-14T08:15:18.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17137, + "fields": { + "EF_ID": 622319, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (food waste)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.087Z", + "last_change_date": "2022-03-14T08:15:18.087Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17138, + "fields": { + "EF_ID": 622320, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (garden and park waste)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.4 for garden and park waste", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.184Z", + "last_change_date": "2022-03-14T08:15:18.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17139, + "fields": { + "EF_ID": 622321, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (paper, cardboard)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.0 for paper, cardboard", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.318Z", + "last_change_date": "2022-03-14T08:15:18.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17140, + "fields": { + "EF_ID": 622322, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (wood waste)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.4 for wood waste", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.427Z", + "last_change_date": "2022-03-14T08:15:18.427Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17141, + "fields": { + "EF_ID": 622323, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (textiles)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.6 for textiles", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.527Z", + "last_change_date": "2022-03-14T08:15:18.527Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17142, + "fields": { + "EF_ID": 622324, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (nappies (disposable diapers))", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.3 for nappies (disposable diapers)", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.628Z", + "last_change_date": "2022-03-14T08:15:18.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17143, + "fields": { + "EF_ID": 622325, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (rubber, leather)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4 for rubber, leather", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.729Z", + "last_change_date": "2022-03-14T08:15:18.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17144, + "fields": { + "EF_ID": 622326, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (plastics)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.0 for plastics", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.829Z", + "last_change_date": "2022-03-14T08:15:18.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17145, + "fields": { + "EF_ID": 622327, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (metals (alluminium and ferrous metals))", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3 for metals (alluminium and ferrous metals)", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:18.929Z", + "last_change_date": "2022-03-14T08:15:18.930Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17146, + "fields": { + "EF_ID": 622328, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (mineral waste)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5 for mineral waste", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:19.030Z", + "last_change_date": "2022-03-14T08:15:19.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17147, + "fields": { + "EF_ID": 622329, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (other)", + "Technology_Practices": "Practice of waste collection in Bosnia and Herzegovina is based on the weekly collection in rural areas and 2 per week in urban areas. At the moment, there are only 4 sanitary waste landfills in function, and most of the waste is disposed at unsanitary municipal landfills or uncontrolled dumps.", + "Parameter_Conditions": "", + "Regional_Conditions": "Federation of Bosnia and Herzegovina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16.4 for others", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maja C. Daul, Comparison of WM Strategies and its Influence on GHG Emissions in Federation of Bosnia and Herzegovina, J Geol Geosci 2014, 3, 3, ISSN: 2329-6755 JGG", + "English_Abstract": "Developing countries and emerging economies could not only considerably reduce their GHG emissions at comparably low costs but also significantly contribute to improve public health conditions and environmental protection if they were to put in place sustainable waste management systems. Solid waste management (SWM) strategies offer huge potentials to contribute to climate change mitigation. In this work, SWM-GHG calculator was used to compare different potential strategies for waste management. In total 3 scenarios are assumed and evaluated. The result showed Scenario 2 is estimated to be 100.000 t CO2-eq/yr for recycling, while GHG emission reduction in Scenario 3, is up to 600.000 t CO2-eq/yr for total SWM (recycling and improved waste disposal).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data from Cantons and Federation is collected and analysed. At the moment not all landfills have exact waste measurement units, but waste collection companies assess the amount through the truck loads. Based on their data and number of contracts, number of people covered by the services of collection is assesed. Date of Measurement: 2013 Waste composition: 31.6 for food waste 5.4 for garden and park waste 12.0 for paper, cardboard 5.4 for wood waste 4.6 for textiles 4.3 for nippies (disposable diapers) 1.4 for rubber, leather 10.0 for plastics 1.3 for metals (alluminium and ferrous metals) 0.5 for mineral waste 16.4 for others", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:19.139Z", + "last_change_date": "2022-03-14T08:15:19.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17148, + "fields": { + "EF_ID": 622330, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 generation factor (k)", + "Technology_Practices": "", + "Parameter_Conditions": "Tbe study was performed using data from a MSW landfill Ammassuo which is the largest Scandinavian landfill lfacility,and accepts wastefrom the largest metropolitan area of Finland (approximately one million inhabitants). The landfill operated for 20 years (1987-2007) and is now closed. It contains approximately 9 million tons of MSW over an area of 54 ha. The annual amount of deposited waste at the site ranged from 300,000 to 600,000 Mg/year,with the practice of source segregation increasing since the 1990s for bio·waste,metals, glass,paper and cardboard. The mean annual precipitation is approximately 650 mm in the studied landfill area.", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kai Sormunen, Tuomas Laurila and Jukka Rintala. Determination of wwaste decay rate for a large Finnish landfill by clibrating methane generation models on the basis of methane recovery and emissions, Waste Manag Res. 2013, 31(10), 979-85.", + "English_Abstract": "The aim of this study was to determine the methane (CH(4)) generation factor (k) and CH(4) generation potential (L) for bulk waste in order to calibrate a CH(4) generation model (USEPA Landgem 3.02) and provide information on the remaining CH(4) generation potential in a large (54 ha) municipal solid waste landfill located in a boreal climate. The CH(4) generation model was calibrated by actual CH(4) recovery and emission measurement data. Moreover, waste characterisation information from a previous study was considered.The appropriate k for bulk waste was 0.18 in the studied landfill, which indicated a higher rate of degradation than proposed by the Intergovernmental Panel on Climate Change as a default k value of 0.09 for wet conditions in boreal and temperate climes, whereas the calibrated L of 100 m(3)/t was lower than estimated on the basis of a previous waste characterisation study. The results demonstrate the importance of model calibration, as inappropriate model parameters may result in a large discrepancy (approximately 100 % or 119 million m(3) having an energy equivalent of nearly 1.2 TWh) in cumulative CH(4) generation estimates within a 18-year timescale (2012–30) at the studied landfill.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://wmr.sagepub.com/content/31/10/979.abstract", + "creation_date": "2022-03-14T08:15:19.248Z", + "last_change_date": "2022-03-14T08:15:19.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17149, + "fields": { + "EF_ID": 622331, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste generation rate", + "Technology_Practices": "MSW comprises waste from all sectors (households, small businesses, services, commerce and industry).", + "Parameter_Conditions": "MSW generation per tourist", + "Regional_Conditions": "Menorca, Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.31", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Josep Mateu-Sbert, Ignacio Ricci-Cabello, Ester Villalonga-Olives, Elena Cabeza-Irigoyen, The impact of tourism on municipal solid waste generation: The case of Menorca Island (Spain), Waste Management, 2013, 33(12), 2589–2593", + "English_Abstract": "Tourism can sustain high levels of employment and income, but the sector is a source of environmental and health impacts. One of the most important is the generation of municipal solid waste (MSW). However, there is a lack of studies which quantify how much the tourist population engages in total MSW and separately collected recyclables. The aim of this paper is to estimate the impact of the tourist population on MSW, both total and separately collected, for the period 1998–2010, for the Mediterranean island of Menorca (Spain). We use dynamic regressions models, including data for monthly stocks of tourists. The results show that, on average, a 1% increase in the tourist population in Menorca causes an overall MSW increase of 0.282% and one more tourist in Menorca generates 1.31 kg/day (while one more resident generates 1.48 kg/day). This result could be useful to better estimate the seasonal population of different regions, since intrannual fluctuation of MSW is used as a proxy measure of actual population (the sum of residents and tourists). Moreover, an increase of 1% in the tourist population causes an increase of 0.232% in separately collected recyclables and an additional tourist generates 0.160 kg/day. One resident selectively collects on average 47.3% more than one tourist. These results can help in the planning of waste infrastructure and waste collection services in tourist areas.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of Measurement: 1998-2010", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13003802", + "creation_date": "2022-03-14T08:15:19.357Z", + "last_change_date": "2022-03-14T08:15:19.357Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17150, + "fields": { + "EF_ID": 622332, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste generation rate", + "Technology_Practices": "MSW comprises waste from all sectors (households, small businesses, services, commerce and industry).", + "Parameter_Conditions": "MSW generation per resident", + "Regional_Conditions": "Menorca, Spain", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.48", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Josep Mateu-Sbert, Ignacio Ricci-Cabello, Ester Villalonga-Olives, Elena Cabeza-Irigoyen, The impact of tourism on municipal solid waste generation: The case of Menorca Island (Spain), Waste Management, 2013, 33(12), 2589–2593", + "English_Abstract": "Tourism can sustain high levels of employment and income, but the sector is a source of environmental and health impacts. One of the most important is the generation of municipal solid waste (MSW). However, there is a lack of studies which quantify how much the tourist population engages in total MSW and separately collected recyclables. The aim of this paper is to estimate the impact of the tourist population on MSW, both total and separately collected, for the period 1998–2010, for the Mediterranean island of Menorca (Spain). We use dynamic regressions models, including data for monthly stocks of tourists. The results show that, on average, a 1% increase in the tourist population in Menorca causes an overall MSW increase of 0.282% and one more tourist in Menorca generates 1.31 kg/day (while one more resident generates 1.48 kg/day). This result could be useful to better estimate the seasonal population of different regions, since intrannual fluctuation of MSW is used as a proxy measure of actual population (the sum of residents and tourists). Moreover, an increase of 1% in the tourist population causes an increase of 0.232% in separately collected recyclables and an additional tourist generates 0.160 kg/day. One resident selectively collects on average 47.3% more than one tourist. These results can help in the planning of waste infrastructure and waste collection services in tourist areas.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of Measurement: 1998-2010", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13003802", + "creation_date": "2022-03-14T08:15:19.500Z", + "last_change_date": "2022-03-14T08:15:19.500Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17151, + "fields": { + "EF_ID": 622333, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emissions from landfill", + "Technology_Practices": "", + "Parameter_Conditions": "Klintholm landfill is an active landfill located in Svendborg Municipality at the east coast of the island of Fuen, Denmark. The landfill was established in 1978.", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3-446", + "Unit": "g CH4 / m2/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Charlotte Scheutz, Rasmus Broe Pedersen, Per Haugsted Petersen, Jogen Henrik Bjerre Jogensen, Inmaculada Maria Buendia Ucendo, Jacob G. Moster, Jerker Samuelsson, Peter Kjeldsen. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system, Waste Management, 2014, 34(7), 1179–1190", + "English_Abstract": "Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14001226", + "creation_date": "2022-03-14T08:15:19.583Z", + "last_change_date": "2022-03-14T08:15:19.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17152, + "fields": { + "EF_ID": 622334, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Correction factors to predict CH4 emission from open dumping sites using LandGEM model", + "Technology_Practices": "", + "Parameter_Conditions": "Two operating sites (Deonar and Mulund) in Mumbai were selected for the study. The correction factor was developed by analyzing the findings of LandGEM predicted values with laboratory scale biochemical methane potential (BMP) assay. This correction factor could be used along with the predicted values of LandGEM.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "food waste", + "Value": "0.94", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Avick Sil, Sunil Kumar, Jonathan W.C. Wong. Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills, Bioresource Technology, 2014, 168, 97–99", + "English_Abstract": "Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S096085241400340X", + "creation_date": "2022-03-14T08:15:19.668Z", + "last_change_date": "2022-03-14T08:15:19.668Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17153, + "fields": { + "EF_ID": 622335, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Correction factors to predict CH4 emission from open dumping sites using LandGEM model", + "Technology_Practices": "", + "Parameter_Conditions": "Two operating sites (Deonar and Mulund) in Mumbai were selected for the study. The correction factor was developed by analyzing the findings of LandGEM predicted values with laboratory scale biochemical methane potential (BMP) assay. This correction factor could be used along with the predicted values of LandGEM.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "mixed un-segregated MSW", + "Value": "0.13", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Avick Sil, Sunil Kumar, Jonathan W.C. Wong. Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills, Bioresource Technology, 2014, 168, 97–99", + "English_Abstract": "Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S096085241400340X", + "creation_date": "2022-03-14T08:15:19.746Z", + "last_change_date": "2022-03-14T08:15:19.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17154, + "fields": { + "EF_ID": 622336, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Correction factors to predict CH4 emission from open dumping sites using LandGEM model", + "Technology_Practices": "", + "Parameter_Conditions": "Two operating sites (Deonar and Mulund) in Mumbai were selected for the study. The correction factor was developed by analyzing the findings of LandGEM predicted values with laboratory scale biochemical methane potential (BMP) assay. This correction factor could be used along with the predicted values of LandGEM.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "vegetable wastes", + "Value": "0.74", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Avick Sil, Sunil Kumar, Jonathan W.C. Wong. Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills, Bioresource Technology, 2014, 168, 97–99", + "English_Abstract": "Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S096085241400340X", + "creation_date": "2022-03-14T08:15:19.836Z", + "last_change_date": "2022-03-14T08:15:19.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17155, + "fields": { + "EF_ID": 622337, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emissions", + "Technology_Practices": "The study was carried out along the Xin`an Tang river in Changshu County of the Taihu region. The site has a mean annual temperature of 15.6 C, and a mean annual precipitation of 1043 mm. The river drains a 39 km2 suburban agricultural area and flows in a south–north direction for 14.3 km, before it drains into the Changjiang river.", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56.1", + "Unit": "µg N2O-N/m2/hr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yongqiu Xia, Yuefei Li, Xiaobo Li, Miao Guo, Dongli She, Xiaoyuan Yan. Diurnal pattern in nitrous oxide emissions from a sewage-enriched river, Chemosphere, 2013, 92(4), 421–428", + "English_Abstract": "Estimates of N2O emission based on limit measurements could be highly inaccurate because of considerable diurnal variations in N2O flux due to rapid transformation of nutrients and diel change of dissolved oxygen (DO). In the present study, the N2O fluxes, dissolved N2O concentrations, and the controlling variables were measured hourly for 3 d and night cycles at five sites on a typically sewage-enriched river in the Taihu region. There were no significant diurnal patterns in N2O emissions and dissolved N2O saturation, with respective mean value of 56.1 µg N2O–N/ m2/h (range = 41.1µg N2O–N/m2/ h to 87.7 µg N2O–N/m2/h) and 813% (range = 597–1372%), though distinct diurnal patterns were observed in DO concentration and river chemistry. However, the mean N2O emissions and the mean dissolved N2O saturation during the day (61.7 µg N/m2/h for N2O fluxes and 0.52 µg N/ L for dissolved N2O saturation) were significantly higher than those during the night (50.1µg N/m2/h for N2O fluxes and 0.44 µg N/L for dissolved N2O saturation). Factors controlling the N2O flux were pH, DO, NH4+; SO42- , air temperature, and water temperature. Sampling at 19:00 h could well represent the daily average N2O flux at the studied river.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0045653513001197", + "creation_date": "2022-03-14T08:15:19.912Z", + "last_change_date": "2022-03-14T08:15:19.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17156, + "fields": { + "EF_ID": 622338, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane generation potential of paper", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 degrees centigrade, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "214.4", + "Unit": "mL/g-wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:20.012Z", + "last_change_date": "2022-03-14T08:15:20.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17157, + "fields": { + "EF_ID": 622339, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane generation potentialf of food waste", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 degrees centigrade, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "126.7", + "Unit": "mL-CH4/g-wet", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:20.113Z", + "last_change_date": "2022-03-14T08:15:20.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17158, + "fields": { + "EF_ID": 622340, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Ratio of paper for household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 degrees centigrade, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.166 - 0.284", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:20.205Z", + "last_change_date": "2022-03-14T08:15:20.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17159, + "fields": { + "EF_ID": 622341, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Ratio of paper for business waste", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 degrees centigrade, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.308-0.483", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:20.314Z", + "last_change_date": "2022-03-14T08:15:20.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17160, + "fields": { + "EF_ID": 622342, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Ghazipur landfill", + "Parameter_Conditions": "L0 = 54.4 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.4", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:20.414Z", + "last_change_date": "2022-03-14T08:15:20.414Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17161, + "fields": { + "EF_ID": 622343, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Ghazipur landfill", + "Parameter_Conditions": "L0 = 70.2 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.3", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:20.524Z", + "last_change_date": "2022-03-14T08:15:20.524Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17162, + "fields": { + "EF_ID": 622344, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Ghazipur landfill", + "Parameter_Conditions": "L0 = 64.3 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.3", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:20.612Z", + "last_change_date": "2022-03-14T08:15:20.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17163, + "fields": { + "EF_ID": 622345, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emissions from landfills", + "Technology_Practices": "", + "Parameter_Conditions": "Fifteen Danish landfills were chosen to represent all 134 registered sites in Denmark. The landfills were geographically distributed throughout the country.", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.74-13.2", + "Unit": "g/m2/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jacob Monster, Jerker Samuelsson, Peter Kjeldsen, Charlotte Scheutz. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method, Waste Management, 2014, 35, 177–186", + "English_Abstract": "Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg/h, corresponding to 0.7-13.2 g/m2/d, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons/y. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons/y, which is significantly lower than the 33,300 tons/y estimated for the national greenhouse gas inventory for 2011.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N2O was used as the tracer gas. The precision for the FTIR instrument was 11.4 ppb for CH4 and 1.1 ppb for N2O.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14004280", + "creation_date": "2022-03-14T08:15:20.808Z", + "last_change_date": "2022-03-14T08:15:20.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17164, + "fields": { + "EF_ID": 622346, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average methane emission per year", + "Technology_Practices": "", + "Parameter_Conditions": "Fifteen Danish landfills were chosen to represent all 134 registered sites in Denmark. The landfills were geographically distributed throughout the country.", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "154", + "Unit": "ton/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jacob Monster, Jerker Samuelsson, Peter Kjeldsen, Charlotte Scheutz. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method, Waste Management, 2014, 35, 177–186", + "English_Abstract": "Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg/h, corresponding to 0.7-13.2 g/m2/d, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons/y. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons/y, which is significantly lower than the 33,300 tons/y estimated for the national greenhouse gas inventory for 2011.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "N2O was used as the tracer gas. The precision for the FTIR instrument was 11.4 ppb for CH4 and 1.1 ppb for N2O.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14004280", + "creation_date": "2022-03-14T08:15:20.909Z", + "last_change_date": "2022-03-14T08:15:20.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17165, + "fields": { + "EF_ID": 622347, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane emission factor from shredder waste", + "Technology_Practices": "Three of the landfills included in this study receive significant amounts of shredder waste, namely AV Miljø, Odense and Glatved.", + "Parameter_Conditions": "Fifteen Danish landfills were chosen to represent all 134 registered sites in Denmark. The landfills were geographically distributed throughout the country.", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02-0.031", + "Unit": "g CH4/h/ton", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jacob Monster, Jerker Samuelsson, Peter Kjeldsen, Charlotte Scheutz. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method, Waste Management, 2014, 35, 177–186", + "English_Abstract": "Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg/h, corresponding to 0.7-13.2 g/m2/d, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41-81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons/y. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons/y, which is significantly lower than the 33,300 tons/y estimated for the national greenhouse gas inventory for 2011.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total landfill methane emissions were quantified using a mobile tracer dispersion method that combines a controlled release of tracer gas from the landfill with concentration measurements downwind of the landfill, by using a mobile high-resolution analytical instrument", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X14004280", + "creation_date": "2022-03-14T08:15:21.009Z", + "last_change_date": "2022-03-14T08:15:21.009Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17166, + "fields": { + "EF_ID": 622348, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emissions", + "Technology_Practices": "Facility employing anaerobic sludge digestion", + "Parameter_Conditions": "Methane flux from storage tank of digested sludge during winter", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.2", + "Unit": "micromol/m2/s", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities, Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of Measurement: On-site sampling and measurements were carried out during two winter and two summer periods: November 2011–March 2012 (winter), August– September 2012 (summer), July–September 2013 (summer), and December 2013–January 2014 (winter)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:21.118Z", + "last_change_date": "2022-03-14T08:15:21.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17167, + "fields": { + "EF_ID": 622349, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility employing anaerobic sludge digestion", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "119", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities, Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Calculation based on the annual sewage treatment volumes (38,005,000) and digested sludge production (185,220 t/year). 119 +/- 15 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:21.220Z", + "last_change_date": "2022-03-14T08:15:21.220Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17168, + "fields": { + "EF_ID": 622350, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility employing anaerobic sludge digestion", + "Parameter_Conditions": "CH4 from water separated from sludge (during winter season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.4", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities, Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculations were based on the annual volume of water (159,919m3/year) separated from the sludge in facility with anaerobic sludge digestion. 11.4 +/- 6.44 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:21.296Z", + "last_change_date": "2022-03-14T08:15:21.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17169, + "fields": { + "EF_ID": 622351, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission from landfill", + "Technology_Practices": "", + "Parameter_Conditions": "Old section of Fakse landfill. Waste amount: 0.60x106 tonnes.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.6", + "Unit": "kg CH4/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:21.387Z", + "last_change_date": "2022-03-14T08:15:21.387Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17170, + "fields": { + "EF_ID": 622352, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions from landfill", + "Technology_Practices": "", + "Parameter_Conditions": "New section of Fakse landfill", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.3", + "Unit": "kg CH4/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:21.462Z", + "last_change_date": "2022-03-14T08:15:21.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17171, + "fields": { + "EF_ID": 622353, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions from compost area of landfill", + "Technology_Practices": "", + "Parameter_Conditions": "New section of Fakse landfill", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "kg CH4/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:21.564Z", + "last_change_date": "2022-03-14T08:15:21.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17172, + "fields": { + "EF_ID": 622354, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO2 emissions from compost area", + "Technology_Practices": "", + "Parameter_Conditions": "New section of Fakse landfill", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "332", + "Unit": "kg CO2/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:21.642Z", + "last_change_date": "2022-03-14T08:15:21.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17173, + "fields": { + "EF_ID": 622355, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Global N2O emissions from human waste", + "Technology_Practices": "", + "Parameter_Conditions": "Wastewater effluent to surface waters", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.029", + "Unit": "Tg N2O-N/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maryna Strokal and Carolien Kroeze. Nitrous oxide (N2O) emissions from human waste in 1970–2050, Current Opinion in Environmental Sustainability 2014, 9–10: 108–121", + "English_Abstract": "Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment and from sewage discharges) and uncollected waste. We review existing literature on emissions and emission factors, and present region-specific estimates of N2O emissions and their past and future trends. We show that human waste may became an important source of N2O emissions in the coming years as a result of increasing urbanization. About two-thirds of the global emissions are from uncollected waste, and about half from South Asia. We argue that more research is needed to improve emission factors.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1877343514000633", + "creation_date": "2022-03-14T08:15:21.739Z", + "last_change_date": "2022-03-14T08:15:21.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17174, + "fields": { + "EF_ID": 622356, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Global N2O emissions from human waste", + "Technology_Practices": "", + "Parameter_Conditions": "Sum of collected and uncollected human waste", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "Tg N2O-N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maryna Strokal and Carolien Kroeze. Nitrous oxide (N2O) emissions from human waste in 1970–2050, Current Opinion in Environmental Sustainability 2014, 9–10: 108–121", + "English_Abstract": "Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment and from sewage discharges) and uncollected waste. We review existing literature on emissions and emission factors, and present region-specific estimates of N2O emissions and their past and future trends. We show that human waste may became an important source of N2O emissions in the coming years as a result of increasing urbanization. About two-thirds of the global emissions are from uncollected waste, and about half from South Asia. We argue that more research is needed to improve emission factors.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1877343514000633", + "creation_date": "2022-03-14T08:15:21.826Z", + "last_change_date": "2022-03-14T08:15:21.826Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17175, + "fields": { + "EF_ID": 622357, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Global N2O emissions from human waste", + "Technology_Practices": "", + "Parameter_Conditions": "Uncollected human waste. Soils, surface waters and ground water", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "Tg N2O-N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maryna Strokal and Carolien Kroeze. Nitrous oxide (N2O) emissions from human waste in 1970–2050, Current Opinion in Environmental Sustainability 2014, 9–10: 108–121", + "English_Abstract": "Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment and from sewage discharges) and uncollected waste. We review existing literature on emissions and emission factors, and present region-specific estimates of N2O emissions and their past and future trends. We show that human waste may became an important source of N2O emissions in the coming years as a result of increasing urbanization. About two-thirds of the global emissions are from uncollected waste, and about half from South Asia. We argue that more research is needed to improve emission factors.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1877343514000633", + "creation_date": "2022-03-14T08:15:21.915Z", + "last_change_date": "2022-03-14T08:15:21.915Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17176, + "fields": { + "EF_ID": 622358, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4-C emissions (% of C removed)", + "Technology_Practices": "Wastewater was a mixture of liquid manure and milkhouse wash water obtained from the secondary lagoon.", + "Parameter_Conditions": "Six treatment wetlands were constructed in mid-June 2005 at the Nova Scotia Agricultural College in Truro, Nova Scotia, Canada", + "Regional_Conditions": "Canada", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2-27", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VanderZaag, A.C., Gordon, R.J., Burton, D.L., Jamieson, R.C., Stratton, G.W. Greenhouse Gas Emissions from Surface Flow and Subsurface Flow Constructed Wetlands Treating Dairy Wastewater, J. Environ. Qual. 2010, 39, 460–471", + "English_Abstract": "Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an eff ective treatment option. During treatment, however, some C and N are converted to CH4 and N2O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH4, N2O, and CO2 emissions from surface fl ow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m2 each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fl uxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were signifi cantly (p < 0.01) diff erent between SF and SSF wetlands and changed signifi cantly with time. Overall, SF wetlands had signifi cantly (p < 0.01) higher emissions of CH4 and N2O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N2O to CH4 emissions (CO2-equivalent) was nearly 1:1 in both wetland types. Emissions of CH4-C as a percentage of C removal varied seasonally from 0.2 to 27% and were 2 to 3 x higher in SF than SSF wetlands. The ratio of N2O-N emitted to N removed was between 0.1 and 1.6%, and the diff erence between wetland types was inconsistent. Thus, N2O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH4 whileremoving more C from the wastewater than SF wetlands.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://dl.sciencesocieties.org/publications/jeq/abstracts/39/2/460", + "creation_date": "2022-03-14T08:15:22.004Z", + "last_change_date": "2022-03-14T08:15:22.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17177, + "fields": { + "EF_ID": 622359, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O-N emissions in wetlands (% of TKN)", + "Technology_Practices": "Wastewater was a mixture of liquid manure and milkhouse wash water obtained from the secondary lagoon.", + "Parameter_Conditions": "Six treatment wetlands were constructed in mid-June 2005 at the Nova Scotia Agricultural College in Truro, Nova Scotia, Canada", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1-1.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VanderZaag, A.C., Gordon, R.J., Burton, D.L., Jamieson, R.C., Stratton, G.W. Greenhouse Gas Emissions from Surface Flow and Subsurface Flow Constructed Wetlands Treating Dairy Wastewater, J. Environ. Qual. 2010, 39, 460–471", + "English_Abstract": "Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an eff ective treatment option. During treatment, however, some C and N are converted to CH4 and N2O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH4, N2O, and CO2 emissions from surface fl ow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m2 each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fl uxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were signifi cantly (p < 0.01) diff erent between SF and SSF wetlands and changed signifi cantly with time. Overall, SF wetlands had signifi cantly (p < 0.01) higher emissions of CH4 and N2O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N2O to CH4 emissions (CO2-equivalent) was nearly 1:1 in both wetland types. Emissions of CH4-C as a percentage of C removal varied seasonally from 0.2 to 27% and were 2 to 3 x higher in SF than SSF wetlands. The ratio of N2O-N emitted to N removed was between 0.1 and 1.6%, and the diff erence between wetland types was inconsistent. Thus, N2O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH4 whileremoving more C from the wastewater than SF wetlands.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://dl.sciencesocieties.org/publications/jeq/abstracts/39/2/460", + "creation_date": "2022-03-14T08:15:22.091Z", + "last_change_date": "2022-03-14T08:15:22.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17178, + "fields": { + "EF_ID": 622360, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Cumulative CH4 emission from SF wetlands (399d)", + "Technology_Practices": "Wastewater was a mixture of liquid manure and milkhouse wash water obtained from the secondary lagoon.", + "Parameter_Conditions": "Six treatment wetlands were constructed in mid-June 2005 at the Nova Scotia Agricultural College in Truro, Nova Scotia, Canada", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "kg CO2eq/m2", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VanderZaag, A.C., Gordon, R.J., Burton, D.L., Jamieson, R.C., Stratton, G.W. Greenhouse Gas Emissions from Surface Flow and Subsurface Flow Constructed Wetlands Treating Dairy Wastewater, J. Environ. Qual. 2010, 39, 460–471", + "English_Abstract": "Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an eff ective treatment option. During treatment, however, some C and N are converted to CH4 and N2O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH4, N2O, and CO2 emissions from surface fl ow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m2 each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fl uxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were signifi cantly (p < 0.01) diff erent between SF and SSF wetlands and changed signifi cantly with time. Overall, SF wetlands had signifi cantly (p < 0.01) higher emissions of CH4 and N2O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N2O to CH4 emissions (CO2-equivalent) was nearly 1:1 in both wetland types. Emissions of CH4-C as a percentage of C removal varied seasonally from 0.2 to 27% and were 2 to 3 x higher in SF than SSF wetlands. The ratio of N2O-N emitted to N removed was between 0.1 and 1.6%, and the diff erence between wetland types was inconsistent. Thus, N2O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH4 whileremoving more C from the wastewater than SF wetlands.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://dl.sciencesocieties.org/publications/jeq/abstracts/39/2/460", + "creation_date": "2022-03-14T08:15:22.200Z", + "last_change_date": "2022-03-14T08:15:22.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17179, + "fields": { + "EF_ID": 622361, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Cumulative N2O emission from SF wetlands (399d)", + "Technology_Practices": "Wastewater was a mixture of liquid manure and milkhouse wash water obtained from the secondary lagoon.", + "Parameter_Conditions": "Six treatment wetlands were constructed in mid-June 2005 at the Nova Scotia Agricultural College in Truro, Nova Scotia, Canada", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7", + "Unit": "kg CO2eq/m2", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VanderZaag, A.C., Gordon, R.J., Burton, D.L., Jamieson, R.C., Stratton, G.W. Greenhouse Gas Emissions from Surface Flow and Subsurface Flow Constructed Wetlands Treating Dairy Wastewater, J. Environ. Qual. 2010, 39, 460–471", + "English_Abstract": "Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an eff ective treatment option. During treatment, however, some C and N are converted to CH4 and N2O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH4, N2O, and CO2 emissions from surface fl ow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m2 each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fl uxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were signifi cantly (p < 0.01) diff erent between SF and SSF wetlands and changed signifi cantly with time. Overall, SF wetlands had signifi cantly (p < 0.01) higher emissions of CH4 and N2O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N2O to CH4 emissions (CO2-equivalent) was nearly 1:1 in both wetland types. Emissions of CH4-C as a percentage of C removal varied seasonally from 0.2 to 27% and were 2 to 3 x higher in SF than SSF wetlands. The ratio of N2O-N emitted to N removed was between 0.1 and 1.6%, and the diff erence between wetland types was inconsistent. Thus, N2O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH4 whileremoving more C from the wastewater than SF wetlands.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://dl.sciencesocieties.org/publications/jeq/abstracts/39/2/460", + "creation_date": "2022-03-14T08:15:22.401Z", + "last_change_date": "2022-03-14T08:15:22.401Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17180, + "fields": { + "EF_ID": 622362, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Cumulative CH4 emission from SSF wetlands (399d)", + "Technology_Practices": "Wastewater was a mixture of liquid manure and milkhouse wash water obtained from the secondary lagoon.", + "Parameter_Conditions": "Six treatment wetlands were constructed in mid-June 2005 at the Nova Scotia Agricultural College in Truro, Nova Scotia, Canada", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "kg CO2eq/m2", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VanderZaag, A.C., Gordon, R.J., Burton, D.L., Jamieson, R.C., Stratton, G.W. Greenhouse Gas Emissions from Surface Flow and Subsurface Flow Constructed Wetlands Treating Dairy Wastewater, J. Environ. Qual. 2010, 39, 460–471", + "English_Abstract": "Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an eff ective treatment option. During treatment, however, some C and N are converted to CH4 and N2O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH4, N2O, and CO2 emissions from surface fl ow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m2 each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fl uxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were signifi cantly (p < 0.01) diff erent between SF and SSF wetlands and changed signifi cantly with time. Overall, SF wetlands had signifi cantly (p < 0.01) higher emissions of CH4 and N2O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N2O to CH4 emissions (CO2-equivalent) was nearly 1:1 in both wetland types. Emissions of CH4-C as a percentage of C removal varied seasonally from 0.2 to 27% and were 2 to 3 x higher in SF than SSF wetlands. The ratio of N2O-N emitted to N removed was between 0.1 and 1.6%, and the diff erence between wetland types was inconsistent. Thus, N2O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH4 whileremoving more C from the wastewater than SF wetlands.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://dl.sciencesocieties.org/publications/jeq/abstracts/39/2/460", + "creation_date": "2022-03-14T08:15:22.501Z", + "last_change_date": "2022-03-14T08:15:22.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17181, + "fields": { + "EF_ID": 622363, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total N2O emission from SSF cumulative during one year Cumulative N2O emission from SSF wetlands (399d)", + "Technology_Practices": "Wastewater was a mixture of liquid manure and milkhouse wash water obtained from the secondary lagoon.", + "Parameter_Conditions": "Six treatment wetlands were constructed in mid-June 2005 at the Nova Scotia Agricultural College in Truro, Nova Scotia, Canada", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.6", + "Unit": "kg CO2eq/m2", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "VanderZaag, A.C., Gordon, R.J., Burton, D.L., Jamieson, R.C., Stratton, G.W. Greenhouse Gas Emissions from Surface Flow and Subsurface Flow Constructed Wetlands Treating Dairy Wastewater, J. Environ. Qual. 2010, 39, 460–471", + "English_Abstract": "Agricultural wastewater treatment is important for protecting water quality in rural ecosystems, and constructed wetlands are an eff ective treatment option. During treatment, however, some C and N are converted to CH4 and N2O, respectively, which are potent greenhouse gases (GHGs). The objective of this study was to assess CH4, N2O, and CO2 emissions from surface fl ow (SF) and subsurface flow (SSF) constructed wetlands. Six constructed wetlands (three SF and three SSF; 6.6 m2 each) were loaded with dairy wastewater in Truro, Nova Scotia, Canada. From August 2005 through September 2006, GHG fl uxes were measured continuously using transparent steady-state chambers that encompassed the entire wetlands. Flux densities of all gases were signifi cantly (p < 0.01) diff erent between SF and SSF wetlands and changed signifi cantly with time. Overall, SF wetlands had signifi cantly (p < 0.01) higher emissions of CH4 and N2O than SSF wetlands and therefore had 180% higher total GHG emissions. The ratio of N2O to CH4 emissions (CO2-equivalent) was nearly 1:1 in both wetland types. Emissions of CH4-C as a percentage of C removal varied seasonally from 0.2 to 27% and were 2 to 3 x higher in SF than SSF wetlands. The ratio of N2O-N emitted to N removed was between 0.1 and 1.6%, and the diff erence between wetland types was inconsistent. Thus, N2O emissions had a similar contribution to N removal in both wetland types, but SSF wetlands emitted less CH4 whileremoving more C from the wastewater than SF wetlands.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://dl.sciencesocieties.org/publications/jeq/abstracts/39/2/460", + "creation_date": "2022-03-14T08:15:22.602Z", + "last_change_date": "2022-03-14T08:15:22.602Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17182, + "fields": { + "EF_ID": 622364, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission per person per year", + "Technology_Practices": "The plant treats the domestic wastewater of 360,000 population equivalents (PE). The excess sludge of the plant is treated in an anaerobic digester, operating at 34 degrees centigrade. The resulting biogas is used in a combined heat and power installation that fulfills about 60% of the energy requirements of the plant.", + "Parameter_Conditions": "Kralingseveer WWTP in municipality of Capelle aan den IJssel, near Rotterdam.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "306", + "Unit": "gCH4/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Matthijs R.J. Daelman, Ellen M. van Voorthuizen, Udo G.J.M. van Dongen, Eveline I.P. Volcke, Mark C.M. van Loosdrecht. Methane emission during municipal wastewater treatment, Water Research, 2012, 46, 3657-3670", + "English_Abstract": "Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a fullscale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO2 emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0043135412002795", + "creation_date": "2022-03-14T08:15:22.704Z", + "last_change_date": "2022-03-14T08:15:22.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17183, + "fields": { + "EF_ID": 622365, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Daily average methane emission from the WWTP", + "Technology_Practices": "The plant treats the domestic wastewater of 360,000 population equivalents (PE). The excess sludge of the plant is treated in an anaerobic digester, operating at 34 degrees centigrade. The resulting biogas is used in a combined heat and power installation that fulfills about 60% of the energy requirements of the plant.", + "Parameter_Conditions": "Kralingseveer WWTP in municipality of Capelle aan den IJssel, near Rotterdam.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "302", + "Unit": "kg CH4/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Matthijs R.J. Daelman, Ellen M. van Voorthuizen, Udo G.J.M. van Dongen, Eveline I.P. Volcke, Mark C.M. van Loosdrecht. Methane emission during municipal wastewater treatment, Water Research, 2012, 46, 3657-3670", + "English_Abstract": "Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a fullscale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO2 emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0043135412002795", + "creation_date": "2022-03-14T08:15:22.821Z", + "last_change_date": "2022-03-14T08:15:22.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17184, + "fields": { + "EF_ID": 622366, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Amount of methane that is emitted from the anaerobic sludge treatment", + "Technology_Practices": "The plant treats the domestic wastewater of 360,000 population equivalents (PE). The excess sludge of the plant is treated in an anaerobic digester, operating at 34 degrees centigrade. The resulting biogas is used in a combined heat and power installation that fulfills about 60% of the energy requirements of the plant.", + "Parameter_Conditions": "Kralingseveer WWTP in municipality of Capelle aan den IJssel, near Rotterdam.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.7", + "Unit": "tonne CO2eq/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Matthijs R.J. Daelman, Ellen M. van Voorthuizen, Udo G.J.M. van Dongen, Eveline I.P. Volcke, Mark C.M. van Loosdrecht. Methane emission during municipal wastewater treatment, Water Research, 2012, 46, 3657-3670", + "English_Abstract": "Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a fullscale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO2 emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "GWP: 25 CO2-equivalents Date of measurement: 14 October 2010 - 28 September 2011", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0043135412002795", + "creation_date": "2022-03-14T08:15:22.922Z", + "last_change_date": "2022-03-14T08:15:22.922Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17185, + "fields": { + "EF_ID": 622367, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific methane production rate of the buffer tank", + "Technology_Practices": "The plant treats the domestic wastewater of 360,000 population equivalents (PE). The excess sludge of the plant is treated in an anaerobic digester, operating at 34 degrees centigrade. The resulting biogas is used in a combined heat and power installation that fulfills about 60% of the energy requirements of the plant.", + "Parameter_Conditions": "Kralingseveer WWTP in municipality of Capelle aan den IJssel, near Rotterdam.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.5", + "Unit": "g CH4/kg TSS/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Matthijs R.J. Daelman, Ellen M. van Voorthuizen, Udo G.J.M. van Dongen, Eveline I.P. Volcke, Mark C.M. van Loosdrecht. Methane emission during municipal wastewater treatment, Water Research, 2012, 46, 3657-3670", + "English_Abstract": "Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a fullscale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO2 emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0043135412002795", + "creation_date": "2022-03-14T08:15:23.014Z", + "last_change_date": "2022-03-14T08:15:23.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17186, + "fields": { + "EF_ID": 622368, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Specific methane production rate of storage tank for the dewatered sludge", + "Technology_Practices": "The plant treats the domestic wastewater of 360,000 population equivalents (PE). The excess sludge of the plant is treated in an anaerobic digester, operating at 34 degrees centigrade. The resulting biogas is used in a combined heat and power installation that fulfills about 60% of the energy requirements of the plant.", + "Parameter_Conditions": "Kralingseveer WWTP in municipality of Capelle aan den IJssel, near Rotterdam.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1", + "Unit": "g CH4/kg TSS/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Matthijs R.J. Daelman, Ellen M. van Voorthuizen, Udo G.J.M. van Dongen, Eveline I.P. Volcke, Mark C.M. van Loosdrecht. Methane emission during municipal wastewater treatment, Water Research, 2012, 46, 3657-3670", + "English_Abstract": "Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a fullscale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO2 emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0043135412002795", + "creation_date": "2022-03-14T08:15:23.122Z", + "last_change_date": "2022-03-14T08:15:23.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17187, + "fields": { + "EF_ID": 622369, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane formation potential from mechanically & biologically treated (MBT) waste", + "Technology_Practices": "Mechanical biological treatment and landfilling of MBT residues is practiced on large scale in Germany only since 2005. The MBT residues are in many cases not placed in a separate landfill but in a section which is in connection with the existing landfill or on top of raw waste. Due to the mechanical- biological treatment, the remaining gas production potential is in general reduced by 80–90%, as the mass of the MBT residues is only 25–40% referred to the total input of MSW. MBT residues still have a total gas production potential of about 30–40 m3/t TS, which is in the same range as can be expected from municipal solid waste landfills, approximately 10–20 years after the completion of the filling process.", + "Parameter_Conditions": "With adequately treated MSW (RI4 = 5 mgO2/g TS, GB21= 20 Nl/kg TS) where (RI4) is respiration activity measured over 4 days and (GB21) is the gas production within 21 days, a total gas formation potential in the range between 30 and 40 m3/t TS can still be expected. The gas prediction is carried out via a 1st order approach of the IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006). Input parameter for the IPCC model: - Gas production potential 40 m3/t TS. - Half-lives (H) of the MBT residues -readily available/degradable organic subst.: approx. 60% with H = 3 +/- 2 years. -medium available/degrad. organic subst.: approx. 20% with H = 10 +/- 5 years. -poorly available/degradable organic subst.: approx. 20% with H = 25 +/- 10 years. - Methane concentration 60 vol.%. - Methane correction factor (aerobic degradation in the top layer): 10%. - Methane oxidation capacities according to the suggested methane oxidation factors OX given in Table 4.", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18-24", + "Unit": "m3 CH4/ton total dry solids", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Heyer, K.-U., Hupe, K., and Stegmann, R. Methane emissions from MBT landfills, Waste Management, 2013, 33, 1853–1860.", + "English_Abstract": "Within the scope of an investigation for the German Federal Environment Agency (Umweltbundesamt), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m3 CH4/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH4/(m2 h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the ethane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO2 eq./a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to enerate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The amount of gas that is produced in a MBT landfill with time is very much dependent on the moisture content and the temperatures in the landfill. With increasing landfill height/depth the heat transfer is reduced and the average temperature in the landfill body is increasing. This situation may result in more favourable conditions for the anaerobic degradation processes.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:23.224Z", + "last_change_date": "2022-03-14T08:15:23.224Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17188, + "fields": { + "EF_ID": 622370, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for CH4 from home composting of organic household waste", + "Technology_Practices": "Home composting of organic household waste", + "Parameter_Conditions": "The six home composting units (Humus/Genplast, 8230 Åbyhøj, Denmark) were used in the study. They are cone-shaped, made of recycled PE and PP and weigh 22 kg. The total volume is 0.32 m3 and the dimensions are 95 cm in height and 48 cm and 105 cm in diameter (top and bottom, respectively). The bottom has plenty of holes from where the surrounding air can enter the composting unit. The composting units were fed with organic household waste (OHW) and low amounts of garden waste. In this context, OHW was primarily food waste but also consisted of small amounts of dead flowers, flower clippings, and soil from plants in the household. The units were fed approximately twice a week.", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4-4.2", + "Unit": "kg CH4 Mg-1 wet", + "Equation": "Equation 4.1 in Chapter 4 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worsheet 4B in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Andersen, J.K., Boldrin, A., Christensen, T.H., and Scheutz, C. Greenhouse gas emissions from home composting of organic household waste, Waste Management, 2010, 30, 2475-2482", + "English_Abstract": "The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6–3.5 kg week -1 and the temperature inside the composting units was in all cases only a few degrees (2–10 degrees centigrade) higher than the ambient temperature. The emissions of methane (CH4) and nitrous oxide (N2O) were quantified as 0.4–4.2 kg CH4 Mg -1 input wet waste (ww) and 0.30–0.55 kg N2O Mg -1 ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH4 and N2O emissions) of 100– 239 kg CO2 eq. Mg -1 ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH4 during mixing which was estimated to 8–12% of the total CH4 emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg -1 ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO2-eq. Mg -1 ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:23.316Z", + "last_change_date": "2022-03-14T08:15:23.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17189, + "fields": { + "EF_ID": 622371, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O from home composting of organic household waste", + "Technology_Practices": "Home composting of organic household waste", + "Parameter_Conditions": "The six home composting units (Humus/Genplast, 8230 Åbyhøj, Denmark) were used in the study. They are cone-shaped, made of recycled PE and PP and weigh 22 kg. The total volume is 0.32 m3 and the dimensions are 95 cm in height and 48 cm and 105 cm in diameter (top and bottom, respectively). The bottom has plenty of holes from where the surrounding air can enter the composting unit. The composting units were fed with organic household waste (OHW) and low amounts of garden waste. In this context, OHW was primarily food waste but also consisted of small amounts of dead flowers, flower clippings, and soil from plants in the household. The units were fed approximately twice a week.", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.30-0.55", + "Unit": "kgN2O Mg-1 wet", + "Equation": "Equation 4.2 in Chapter 4 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "Worsheet 4B in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Andersen, J.K., Boldrin, A., Christensen, T.H., and Scheutz, C. Greenhouse gas emissions from home composting of organic household waste, Waste Management, 2010, 30, 2475-2482", + "English_Abstract": "The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6–3.5 kg week -1 and the temperature inside the composting units was in all cases only a few degrees (2–10 degrees centigrade) higher than the ambient temperature. The emissions of methane (CH4) and nitrous oxide (N2O) were quantified as 0.4–4.2 kg CH4 Mg -1 input wet waste (ww) and 0.30–0.55 kg N2O Mg -1 ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH4 and N2O emissions) of 100– 239 kg CO2 eq. Mg -1 ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH4 during mixing which was estimated to 8–12% of the total CH4 emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg -1 ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO2-eq. Mg -1 ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:23.408Z", + "last_change_date": "2022-03-14T08:15:23.408Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17190, + "fields": { + "EF_ID": 622372, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O emissions from Nitrifying Sequencing Batch Reactor (The experimental conditions applied in this study are close to those encountered in plug-flow activated sludge treatment plants, and the NO and N2O emissions measured here could be used as an indication for the emissions by ammonia-oxidizing bacteria (AOB) in these systems).", + "Technology_Practices": "Nitrifying Sequencing Batch Reactor (SBR).", + "Parameter_Conditions": "The study was conducted in two open laboratory-scale reactors containing a nitrifying culture with a working volume of 2 L at 20 degrees centigrade, hydraulic retention time of 0.5 days, 0.8 L/min of aeration during fill and reaction phase and 220 rpm of stirring. The SBR systems were operated identically in cycles of 6h: 10 min fill phase, 307 min reaction phase, 3 min excess sludge removal, 20min settling, and 20 min effluent discharge. The nitrogen load of the reactors was 0.6 kg-N/m3/day. The operational conditions (solids retention time (SRT), N-concentration, temperature) were chosen to mimic as much as possible the cultivation conditions of a nitrifying population in a plug-flow activated sludge sewage treatment plant.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.8", + "Unit": "% of ammonium oxidized", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kampschreur, M. J., Tan, N. C. G., Kleerebezem, R., Picioreanu, C., Jetten, M. S. M., and Loosdrecht, M. C. M. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture, Environmental Science & Technology, 2008, 42(2), 429-435.", + "English_Abstract": "Nitric oxide (NO) and nitrous oxide (N2O) emissions from nitrifying ecosystems are a serious threat to the environment. The factors influencing the emission and the responsible microorganisms and pathways were studied using a laboratoryscale nitrifying reactor system. The nitrifying culture was established at growth rates relevant to wastewater treatment plants (WWTPs). During stable ammonia oxidation, 0.03% of ammonium was emitted as NO and 2.8% was emitted as N2O. Although mixed cultures were used, clear responses in emission of ammonia oxidizing bacteria (AOB) could be detected and it was concluded that the denitrification pathway of AOB was the main source of the emissions. Emissions of nitrogen oxides in the system were strongly influenced by oxygen, nitrite, and ammonium concentrations. Steady state emission levels greatly underestimate the total emission, because changes in oxygen, nitrite, and ammonium concentrations induced a dramatic rise in NO and N2O emission. The data presented can be used as an indication for NO and N2O emission by AOB in plug-flow activated sludge systems, which is highly relevant because of the atmospheric impact and potential health risk of these compounds", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:23.517Z", + "last_change_date": "2022-03-14T08:15:23.517Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17191, + "fields": { + "EF_ID": 622373, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O emissions from full-scale reject water treatment facility in municipal wastewater treatment plant", + "Technology_Practices": "The two-reactor nitritation–anammox process. The anammox reactor is fed with the effluent of the nitritation reactor.", + "Parameter_Conditions": "Temparetures of nitritaion (1,500 m3) and anamox (70 m3) reactors are 32-33 degrees centigrade and 35-36 degrees centigrade, respectively.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.3", + "Unit": "% of the nitrogen load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kampschreur, M. J., Van Der Star, W. R. L., Wielders, H. A., Mulder, J. W., Jetten, M. S. M. and Van Loosdrecht, M. C. M. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment, Water Research, 2008, 42(3), 812-826.", + "English_Abstract": "Emission of NO and N2O from a full-scale two-reactor nitritation–anammox process was determined during a measurement campaign at the Dokhaven–Sluisjesdijk municipal WWTP (Rotterdam, NL). The NO and N2O levels in the off-gas responded to the aeration cycles and the aeration rate of the nitritation reactor, and to the nitrite and dissolved oxygen concentration. Due to the strong fluctuations in the NO and N2O levels in both the nitritation and the anammox reactor, only time-dependent measurements could yield a reliable estimate of the overall NO and N2O emissions. The NO emission from the nitritation reactor was 0.2% of the nitrogen load and the N2O emission was 1.7%. The NO emission from the anammox reactor was determined to be 0.003% of the nitrogen load and the N2O emission was 0.6%. Emission of NO2 could not be detected from the nitritation–anammox system. Denitrification by ammonia-oxidizing bacteria was considered to be the most probable cause of NO and N2O emission from the nitritation reactor. Since anammox bacteria have not been shown to produce N2O under physiological conditions, it is also suspected that ammonia-oxidizing bacteria contribute most to N2O production in the anammox reactor. The source of NO production in the anammox reactor can be either anammox bacteria or denitrification by heterotrophs or ammonia-oxidizing bacteria. Based on the results and previous work, it seems that a low dissolved oxygen or a high nitrite concentration are the most likely cause of elevated NO and N2O emission by ammonia-oxidizing bacteria. The emission was compared with measurements at other reject water technologies and with the main line of the Dokhaven–Sluisjesdijk WWTP. The N2O emission levels in the reject water treatment seem to be in the same range as for the main stream of activated sludge processes. Preliminary measurements of the N2O emission from a one-reactor nitritation–anammox system indicate that the emission is lower than in two-reactor systems.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:23.634Z", + "last_change_date": "2022-03-14T08:15:23.634Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17192, + "fields": { + "EF_ID": 622374, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor for composting", + "Technology_Practices": "Composting of kitchen waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "kg CH4/Mg kitchen waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of Germany, 2009; Research project carried out under commission to the Federal Environment Agency (IFEU 2003a: Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F., Gromke, U., ifeu-Institut Heidelberg: Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung an internationale Richtlinien. Teil Abfall/Abwasser, Februar 2003)", + "English_Abstract": "Average concentrations of carbon and nitrogen in kitchen waste and plant waste were assumed. In addition, estimates were made of the average decomposition rates during composting, as well as of distribution of carbon and nitrogen throughout the relevant emitted decomposition products.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:23.751Z", + "last_change_date": "2022-03-14T08:15:23.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17193, + "fields": { + "EF_ID": 622375, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor for composting", + "Technology_Practices": "Composting of kitchen waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "g N2O/Mg kitchen waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of Germany, 2009; Research project carried out under commission to the Federal Environment Agency (IFEU 2003a: Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F., Gromke, U., ifeu-Institut Heidelberg: Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung an internationale Richtlinien. Teil Abfall/Abwasser, Februar 2003)", + "English_Abstract": "Average concentrations of carbon and nitrogen in kitchen waste and plant waste were assumed. In addition, estimates were made of the average decomposition rates during composting, as well as of distribution of carbon and nitrogen throughout the relevant emitted decomposition products.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:23.838Z", + "last_change_date": "2022-03-14T08:15:23.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17194, + "fields": { + "EF_ID": 622376, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor for composting", + "Technology_Practices": "Composting of plant waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.36", + "Unit": "kg CH4/Mg plant waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of Germany, 2009; Research project carried out under commission to the Federal Environment Agency (IFEU 2003a: Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F., Gromke, U., ifeu-Institut Heidelberg: Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung an internationale Richtlinien. Teil Abfall/Abwasser, Februar 2003)", + "English_Abstract": "Average concentrations of carbon and nitrogen in kitchen waste and plant waste were assumed. In addition, estimates were made of the average decomposition rates during composting, as well as of distribution of carbon and nitrogen throughout the relevant emitted decomposition products.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:23.936Z", + "last_change_date": "2022-03-14T08:15:23.936Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17195, + "fields": { + "EF_ID": 622377, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor for composting", + "Technology_Practices": "Composting of plant waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Germany", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60.3", + "Unit": "g N2O/Mg plant waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of Germany, 2009; Research project carried out under commission to the Federal Environment Agency (IFEU 2003a: Detzel, A., Vogt, R., Fehrenbach, H., Knappe, F., Gromke, U., ifeu-Institut Heidelberg: Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung an internationale Richtlinien. Teil Abfall/Abwasser, Februar 2003)", + "English_Abstract": "Average concentrations of carbon and nitrogen in kitchen waste and plant waste were assumed. In addition, estimates were made of the average decomposition rates during composting, as well as of distribution of carbon and nitrogen throughout the relevant emitted decomposition products.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.012Z", + "last_change_date": "2022-03-14T08:15:24.012Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17196, + "fields": { + "EF_ID": 622378, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for treatment of wastewater at sewage treatment plants. The emission factor is estimated by the following equasion: CH4 emission factor = Average of emission factor for water treatment processes + Average of emission factor for sludge treatment processes Each emission factor is derived by measured data.", + "Technology_Practices": "Sewage treatment plants", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0008764", + "Unit": "kg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010", + "English_Abstract": "The emission factor is the sum of the arithmetic averages for each treatment process, having taken the actual volume of CH4 released from sludge treatment and water treatment processes measured at sewage treatment plants from research studies conducted in Japan.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.101Z", + "last_change_date": "2022-03-14T08:15:24.101Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17197, + "fields": { + "EF_ID": 622379, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for treatment of wastewater at sewage treatment plants. The emission factor is estimated by the following equasion: N2O emission factor = Average of emission factor for water treatment processes + Average of emission factor for sludge treatment processes Each emission factor is derived by measured data.", + "Technology_Practices": "Sewage treatment plants", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0001609", + "Unit": "kgN2O/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010", + "English_Abstract": "The emission factor is the sum of the arithmetic averages for each treatment process, having taken the actual volume of N2O released from sludge treatment and water treatment processes measured at sewage treatment plants from research studies conducted in Japan.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.176Z", + "last_change_date": "2022-03-14T08:15:24.176Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17198, + "fields": { + "EF_ID": 622380, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for treatment of vault toilet human waste and septic tank sludge collected at human waste treatment plants.", + "Technology_Practices": "Anaerobic treatment", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.543", + "Unit": "kgCH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Actual methane emissions given in the Japan Environmental Sanitation Center Report of Analytical Survey of Methane Emissions FY1989 Commissioned by the Environmental Agency multiplied by the rate of recovery of 1-methane (90%)", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.272Z", + "last_change_date": "2022-03-14T08:15:24.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17199, + "fields": { + "EF_ID": 622381, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor for treatment of vault toilet human waste and septic tank sludge collected at human waste treatment plants.", + "Technology_Practices": "Standard de-nitrification treatment", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0059", + "Unit": "kgCH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Tanaka, Inoue, Matsuzawa, Osako, and Watanabe B-2(1) Research into Volumes Released from Waste Treatment Plants FY1994 Global Environment Research Fund Outcome Report", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.346Z", + "last_change_date": "2022-03-14T08:15:24.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17200, + "fields": { + "EF_ID": 622382, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor for treatment of vault toilet human waste and septic tank sludge collected at human waste treatment plants.", + "Technology_Practices": "High load de-nitrification treatment", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kgCH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Tanaka, Inoue, Matsuzawa, Osako, and Watanabe B-2(1) Research into Volumes Released from Waste Treatment Plants FY1994 Global Environment Research Fund Outcome Report", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.410Z", + "last_change_date": "2022-03-14T08:15:24.410Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17201, + "fields": { + "EF_ID": 622383, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for treatment of vault toilet human waste and septic tank sludge collected at human waste treatment plants.", + "Technology_Practices": "High load de-nitrification treatment", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0029", + "Unit": "kgN2O-N/kg-N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Use median value of actual measurements at 13 plants given in Omura, Kawakubo, and Yamada. Study of Emission Factors for N2O from High-load Human Waste Management. Journal of Waste Management, 57 (260).", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.542Z", + "last_change_date": "2022-03-14T08:15:24.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17202, + "fields": { + "EF_ID": 622384, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for treatment of vault toilet human waste and septic tank sludge collected at human waste treatment plants.", + "Technology_Practices": "Membrane separation", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0024", + "Unit": "kgN2O-N/kg-N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Use median value of actual measurements at 13 plants given in Omura, Kawakubo, and Yamada. Study of Emission Factors for N2O from High-load Human Waste Management. Journal of Waste Management, 57 (260).", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.676Z", + "last_change_date": "2022-03-14T08:15:24.677Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17203, + "fields": { + "EF_ID": 622385, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for treatment of vault toilet human waste and septic tank sludge collected at human waste treatment plants.", + "Technology_Practices": "Other (including anaerobic treatment, aerobic treatment, standard de-nitrification treatment)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000045", + "Unit": "kgN2O-N/kg-N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Tanaka, Inoue, Matsuzawa, Osako, and Watanabe B-2(1) Research into Volumes Released from Waste Treatment Plants FY1994 Global Environment Research Fund Outcome Report", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.766Z", + "last_change_date": "2022-03-14T08:15:24.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17204, + "fields": { + "EF_ID": 622386, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CO2 emission factor for incineration of plastics in MSW. Emission factor is estimated by following equation: CO2 emission factor (dry basis) = 1000 [kg]*´ Carbon content * Rate of combustion * 44/12", + "Technology_Practices": "Waste incineration", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2726", + "Unit": "kgCO2/t dry", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Carbon content taken from (Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010, Ministry of Environment)", + "English_Abstract": "Carbon content of plastics in MSW are estimated based on actual measurement values provided by a study by the Ministry of Environment (This value was calculated for each year by taking an average of actual measured values provided by the local governments of four cities (Akita, Kawasaki, Osaka, and Kobe))", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.854Z", + "last_change_date": "2022-03-14T08:15:24.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17205, + "fields": { + "EF_ID": 622387, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for incineration of synthetic fibers in MSW. Emission factor is estimated by following equation: CO2 emission factor (dry basis) = 1000 [kg]*´ Carbon content * Rate of combustion * 44/12", + "Technology_Practices": "Waste incineration", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2286.9", + "Unit": "kgCO2/t dry", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "", + "English_Abstract": "Carbon content of synthetic textile wastes in MSW set by taking a weighted average of carbon contents determined by the molecular formula of polymer for each type of synthetic textile based on the volume of synthetic textile consumption.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.929Z", + "last_change_date": "2022-03-14T08:15:24.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17206, + "fields": { + "EF_ID": 622388, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for MSW incineration.", + "Technology_Practices": "Continuous Incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "gCH4/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Measurement surveys (Environmental Agency Results of Review of Calculation of Emissions of Greenhouse Gas Part 2 (2000)) Iwasaki, Tatsuichi, Ueno Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators (1992) Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection Japan Society of Atmospheric Environment Method of Estimating Greenhouse Gas Emissions – Survey Report (1996) Waste Management and Recycling Department , Ministry of the Environment, Japan`s Waste Disposal(CD-ROM) Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources (1991-1997)", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:24.996Z", + "last_change_date": "2022-03-14T08:15:24.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17207, + "fields": { + "EF_ID": 622389, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for MSW incineration.", + "Technology_Practices": "Semi-Continuous Incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.9", + "Unit": "gCH4/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Measurement surveys (Environmental Agency Results of Review of Calculation of Emissions of Greenhouse Gas Part 2 (2000)) Iwasaki, Tatsuichi, Ueno Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators (1992) Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection Japan Society of Atmospheric Environment Method of Estimating Greenhouse Gas Emissions – Survey Report (1996) Waste Management and Recycling Department , Ministry of the Environment, Japan`s Waste Disposal(CD-ROM) Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources (1991-1997)", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.084Z", + "last_change_date": "2022-03-14T08:15:25.085Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17208, + "fields": { + "EF_ID": 622390, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for MSW incineration.", + "Technology_Practices": "Batch type Incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.3", + "Unit": "gCH4/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Measurement surveys (Environmental Agency Results of Review of Calculation of Emissions of Greenhouse Gas Part 2 (2000)) Iwasaki, Tatsuichi, Ueno Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators (1992) Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection Japan Society of Atmospheric Environment Method of Estimating Greenhouse Gas Emissions – Survey Report (1996) Waste Management and Recycling Department , Ministry of the Environment, Japan`s Waste Disposal(CD-ROM) Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources (1991-1997)", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.171Z", + "last_change_date": "2022-03-14T08:15:25.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17209, + "fields": { + "EF_ID": 622391, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for gasification melting furnace.", + "Technology_Practices": "Gasification melting furnace", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "gCH4/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Minstry of Environment, Report of the research on the state of wide-range movement and cyclical use of wastes, 2008.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.238Z", + "last_change_date": "2022-03-14T08:15:25.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17210, + "fields": { + "EF_ID": 622392, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for MSW. N2O Emission factors were calculated for individual incineration facility based on the N2O concentration in flue gas actually measured at each facility.", + "Technology_Practices": "Continuous Incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.9", + "Unit": "gN2O/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Measurement surveys (Environmental Agency Results of Review of Calculation of Emissions ofGreenhouse Gas Part 2 (2000)) Iwasaki, Tatsuichi, Ueno Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators (1992) Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection Japan Society of Atmospheric Environment Method of Estimating Greenhouse Gas Emissions – Survey Report (1996) Waste Management and Recycling Department, Ministry of the Environment Japan`s Waste Disposal(CD-ROM) Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources (1991-1997)", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.304Z", + "last_change_date": "2022-03-14T08:15:25.304Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17211, + "fields": { + "EF_ID": 622393, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for MSW incineration. N2O Emission factors were calculated for individual incineration facility based on the N2O concentration in flue gas actually measured at each facility.", + "Technology_Practices": "Semi-Continuous Incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73.1", + "Unit": "gN2O/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Measurement surveys (Environmental Agency Results of Review of Calculation of Emissions ofGreenhouse Gas Part 2 (2000)) Iwasaki, Tatsuichi, Ueno Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators (1992) Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection Japan Society of Atmospheric Environment Method of Estimating Greenhouse Gas Emissions – Survey Report (1996) Waste Management and Recycling Department, Ministry of the Environment Japan`s Waste Disposal(CD-ROM) Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources (1991-1997)", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.394Z", + "last_change_date": "2022-03-14T08:15:25.394Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17212, + "fields": { + "EF_ID": 622394, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for MSW incineration. N2O Emission factors were calculated for individual incineration facility based on the N2O concentration in flue gas actually measured at each facility.", + "Technology_Practices": "Batch type Incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76", + "Unit": "gN2O/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Measurement surveys (Environmental Agency Results of Review of Calculation of Emissions ofGreenhouse Gas Part 2 (2000)) Iwasaki, Tatsuichi, Ueno Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators (1992) Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection Japan Society of Atmospheric Environment Method of Estimating Greenhouse Gas Emissions – Survey Report (1996) Waste Management and Recycling Department, Ministry of the Environment Japan`s Waste Disposal(CD-ROM) Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources (1991-1997)", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.471Z", + "last_change_date": "2022-03-14T08:15:25.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17213, + "fields": { + "EF_ID": 622395, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for gasification melting furnace.", + "Technology_Practices": "Gasification melting furnace", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.5", + "Unit": "gN2O/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010, Ministry of Environment", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.537Z", + "last_change_date": "2022-03-14T08:15:25.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17214, + "fields": { + "EF_ID": 622396, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for waste paper, waste wood (ISW) incineration", + "Technology_Practices": "Incineratiors with countermeasures against dioxin", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "224.5", + "Unit": "gCH4/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010, Ministry of Environment", + "English_Abstract": "The values indicated in a study conducted by the Ministry of Environment was used considering the countermeasures against dioxin for incinerators. These emission factors were developed based on actual measured survey.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.629Z", + "last_change_date": "2022-03-14T08:15:25.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17215, + "fields": { + "EF_ID": 622397, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for waste oil (ISW) incineration", + "Technology_Practices": "Incineratiors with countermeasures against dioxin", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4", + "Unit": "gCH4/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010, Ministry of Environment", + "English_Abstract": "The values indicated in a study conducted by the Ministry of Environment was used considering the countermeasures against dioxin for incinerators. These emission factors were developed based on actual measured survey.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.704Z", + "last_change_date": "2022-03-14T08:15:25.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17216, + "fields": { + "EF_ID": 622398, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for waste plastics (ISW) incineration", + "Technology_Practices": "Incineratiors with countermeasures against dioxin", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "gCH4/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010, Ministry of Environment", + "English_Abstract": "The values indicated in a study conducted by the Ministry of Environment was used considering the countermeasures against dioxin for incinerators. These emission factors were developed based on actual measured survey.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.771Z", + "last_change_date": "2022-03-14T08:15:25.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17217, + "fields": { + "EF_ID": 622399, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor for sludge (ISW) incineration", + "Technology_Practices": "Incineratiors with countermeasures against dioxin", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "gCH4/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010, Ministry of Environment", + "English_Abstract": "The values indicated in a study conducted by the Ministry of Environment was used considering the countermeasures against dioxin for incinerators. These emission factors were developed based on actual measured survey.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.846Z", + "last_change_date": "2022-03-14T08:15:25.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17218, + "fields": { + "EF_ID": 622400, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O emissions from sewage sludge incineration", + "Technology_Practices": "High-molecular-weight flocculant", + "Parameter_Conditions": "Fluidized Bed Incinerator", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "Normal temperature combustion(around 800 degrees centigrade)", + "Value": "1508", + "Unit": "g N2O/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Matsubara and Mizuochi, Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants Environmental and Sanitary Engineering Research, 8(3) (1994) Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1994) Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1996) Nakamura, et al. Emission of Nitrous Oxide from Incineration of Sewage Sludge Proceedings of the 20th Japan Urban Cleaning Research Conference pp. 391–393 (1998)", + "English_Abstract": "Emission factor for N2O emissions from sewage sludge incineration were determined by taking a weighted average of actually measured emission factors of N2O at each incineration facility based on the volume of sewage sludge incinerated at the facilities.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.913Z", + "last_change_date": "2022-03-14T08:15:25.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17219, + "fields": { + "EF_ID": 622401, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O emissions from sewage sludge incineration", + "Technology_Practices": "High-molecular-weight flocculant", + "Parameter_Conditions": "Fluidized Bed Incinerator", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "High temperature combustion(around 850 degrees centigrade)", + "Value": "645", + "Unit": "g N2O/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Matsubara and Mizuochi, Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants Environmental and Sanitary Engineering Research, 8(3) (1994) Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1994) Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1996) Nakamura, et al. Emission of Nitrous Oxide from Incineration of Sewage Sludge Proceedings of the 20th Japan Urban Cleaning Research Conference pp. 391–393 (1998)", + "English_Abstract": "Emission factor for N2O emissions from sewage sludge incineration were determined by taking a weighted average of actually measured emission factors of N2O at each incineration facility based on the volume of sewage sludge incinerated at the facilities.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:25.999Z", + "last_change_date": "2022-03-14T08:15:26.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17220, + "fields": { + "EF_ID": 622402, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O emissions from sewage sludge incineration", + "Technology_Practices": "High-molecular-weight flocculant", + "Parameter_Conditions": "Multiple Hearth Incinerator", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "882", + "Unit": "g N2O/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Matsubara and Mizuochi, Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants Environmental and Sanitary Engineering Research, 8(3) (1994) Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1994) Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1996) Nakamura, et al. Emission of Nitrous Oxide from Incineration of Sewage Sludge Proceedings of the 20th Japan Urban Cleaning Research Conference pp. 391–393 (1998)", + "English_Abstract": "Emission factor for N2O emissions from sewage sludge incineration were determined by taking a weighted average of actually measured emission factors of N2O at each incineration facility based on the volume of sewage sludge incinerated at the facilities.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:26.071Z", + "last_change_date": "2022-03-14T08:15:26.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17221, + "fields": { + "EF_ID": 622403, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for N2O emissions from sewage sludge incineration", + "Technology_Practices": "Lime Sludge flocculant", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "294", + "Unit": "g N2O/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010; Matsubara and Mizuochi, Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants Environmental and Sanitary Engineering Research, 8(3) (1994) Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1994) Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces (1996) Nakamura, et al. Emission of Nitrous Oxide from Incineration of Sewage Sludge Proceedings of the 20th Japan Urban Cleaning Research Conference pp. 391–393 (1998)", + "English_Abstract": "Emission factor for N2O emissions from sewage sludge incineration were determined by taking a weighted average of actually measured emission factors of N2O at each incineration facility based on the volume of sewage sludge incinerated at the facilities.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:26.175Z", + "last_change_date": "2022-03-14T08:15:26.175Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17222, + "fields": { + "EF_ID": 622404, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for synthetic alcohol discharged into wastewater treatment facilities and into the environment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2838", + "Unit": "kgCO2/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010", + "English_Abstract": "Emission factor was determined for each type of material by calculating the amount of CO2, expressed in kg that was emitted from the decomposition of 1 t of a surfactant using the average carbon content in the molecules.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:26.246Z", + "last_change_date": "2022-03-14T08:15:26.246Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17223, + "fields": { + "EF_ID": 622405, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for alkyl benzene discharged into wastewater treatment facilities and into the environment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3220", + "Unit": "kgCO2/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010", + "English_Abstract": "Emission factor was determined for each type of material by calculating the amount of CO2, expressed in kg that was emitted from the decomposition of 1 t of a surfactant using the average carbon content in the molecules.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:26.321Z", + "last_change_date": "2022-03-14T08:15:26.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17224, + "fields": { + "EF_ID": 622406, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for alkyl phenol into wastewater treatment facilities and into the environment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3000", + "Unit": "kgCO2/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010", + "English_Abstract": "Emission factor was determined for each type of material by calculating the amount of CO2, expressed in kg that was emitted from the decomposition of 1 t of a surfactant using the average carbon content in the molecules.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:26.404Z", + "last_change_date": "2022-03-14T08:15:26.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17225, + "fields": { + "EF_ID": 622407, + "IPCC_Category": "4.E - Other (please specify)", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for ethylene oxide discharged into wastewater treatment facilities and into the environment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2000", + "Unit": "kgCO2/t", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "National Greenhouse Gas Inventory Report of JAPAN, 2010", + "English_Abstract": "Emission factor was determined for each type of material by calculating the amount of CO2, expressed in kg that was emitted from the decomposition of 1 t of a surfactant using the average carbon content in the molecules.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:26.501Z", + "last_change_date": "2022-03-14T08:15:26.501Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17226, + "fields": { + "EF_ID": 622408, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate (k)", + "Technology_Practices": "", + "Parameter_Conditions": "Nam Son and Tay Mo landlill sites. Waste disposed of these landfills contained municipal solid waste (MSW) road cleaning residue, and industrial waste collected by URENCO; the largest component was MSW.", + "Regional_Conditions": "Hanoi, Vietnam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.51", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., Chung, C.V., Sang, N.N., Ike, M., Otsuka, K., Yamada, M., Inoue, Y. Estimation and field measurement of methane emission from waste landfills in Hanoi, Vietnam, Journal of Material Cycles and Waste Management, 2008, 10:2, 165-172", + "English_Abstract": "A methodology for estimating the metbane emissions from waste landfil1s in Hanoi. Vietnam. as part of a case study on Asian cities, was derived based on a survey of documents and statistics related to waste management,interviews with persons in charge,and field investigations at landfill sites. The waste management systern in Hanoi was analyzed to evaluate the rnethane emissions from waste landfill sites. The quantity of waste deposited into the landfill was evaluated from an investigation of the waste stream. The composition of municipal waste was surveyed in several districts in the Hanoi city area and the quantities of degradable organic waste that had been deposited into landfill for the past 15 years were estimated. Field surveys on methane emissions from landfills of different ages (0.5, 2 and 8 years) were conducted and their methane emissions were estimated to be 120, 22.5 and 4.38 ml/min/m2,respectively. The first-order reaction rate of methane generation was obtained as 0.51/year. Methane emissions from waste landfills were calculated by a first-order decay model using this emission factor and the amount of landfilled degradable waste. The estimates of methane emissions using the model accorded well with the estimates of the field survey. These results revealed that methane emissions from waste landfills estimated by regional-specific and precise information on the waste stream are essential for accurately determining the behavior of methane emissions from waste landfills in the past, present and future.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Surface methane flux was estimated by the static chamber method at points selected by preliminary scanning or random determination. The k value was estimated using the rnethane emission from landfills of different ages where wastes from Hanoi had been disposed of. A field survey of methane emissions was conducted on January 25-27,2005.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://link.springer.com/article/10.1007%2Fs10163-008-0202-8", + "creation_date": "2022-03-14T08:15:26.579Z", + "last_change_date": "2022-03-14T08:15:26.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17227, + "fields": { + "EF_ID": 622409, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion", + "Technology_Practices": "", + "Parameter_Conditions": "Nam Son and Tay Mo landlill sites. Waste disposed of these landfills contained municipal solid waste (MSW) road cleaning residue, and industrial waste collected by URENCO; the largest component was MSW.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Garbage, grass, leaves: 47.8 Paper: 5.6 Leather, rubber: 0.1 Plastics: 8.6 Textiles: 2.6 Wood: 0.7 Glass: 0.5 Bone, shell: 0.4 Metals: 0.1 Ceramics: 1.1 Bricks, others: 32.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., Chung, C.V., Sang, N.N., Ike, M., Otsuka, K., Yamada, M., Inoue, Y. Estimation and field measurement of methane emission from waste landfills in Hanoi, Vietnam, Journal of Material Cycles and Waste Management, 2008, 10:2, 165-172", + "English_Abstract": "A methodology for estimating the metbane emissions from waste landfil1s in Hanoi. Vietnam. as part of a case study on Asian cities, was derived based on a survey of documents and statistics related to waste management,interviews with persons in charge,and field investigations at landfill sites. The waste management systern in Hanoi was analyzed to evaluate the rnethane emissions from waste landfill sites. The quantity of waste deposited into the landfill was evaluated from an investigation of the waste stream. The composition of municipal waste was surveyed in several districts in the Hanoi city area and the quantities of degradable organic waste that had been deposited into landfill for the past 15 years were estimated. Field surveys on methane emissions from landfills of different ages (0.5, 2 and 8 years) were conducted and their methane emissions were estimated to be 120, 22.5 and 4.38 ml/min/m2,respectively. The first-order reaction rate of methane generation was obtained as 0.51/year. Methane emissions from waste landfills were calculated by a first-order decay model using this emission factor and the amount of landfilled degradable waste. The estimates of methane emissions using the model accorded well with the estimates of the field survey. These results revealed that methane emissions from waste landfills estimated by regional-specific and precise information on the waste stream are essential for accurately determining the behavior of methane emissions from waste landfills in the past, present and future.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://link.springer.com/article/10.1007%2Fs10163-008-0202-8", + "creation_date": "2022-03-14T08:15:26.646Z", + "last_change_date": "2022-03-14T08:15:26.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17228, + "fields": { + "EF_ID": 622410, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 and CO2 in landfill gas", + "Technology_Practices": "Five semi-aerobically designed landfill sites were selected in this study.", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15-73", + "Unit": "% dry vol.", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeong, S., Nam, A., Yi, S.M., Kim, J.M. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines, Waste Management, 2015, 36, 197-203", + "English_Abstract": "According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semiaerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.020", + "creation_date": "2022-03-14T08:15:26.736Z", + "last_change_date": "2022-03-14T08:15:26.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17229, + "fields": { + "EF_ID": 622411, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Landfill gas CH4 and CO2 ratio", + "Technology_Practices": "Five semi-aerobically designed landfill sites were selected in this study.", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeong, S., Nam, A., Yi, S.M., Kim, J.M. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines, Waste Management, 2015, 36, 197-203", + "English_Abstract": "According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semiaerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.020", + "creation_date": "2022-03-14T08:15:26.845Z", + "last_change_date": "2022-03-14T08:15:26.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17230, + "fields": { + "EF_ID": 622412, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "MSW composition", + "Technology_Practices": "Typical MSW in South Korea", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Paper: 15-30, Plastic: 10-30, Uncombustible waste: 20-40", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeong, S., Nam, A., Yi, S.M., Kim, J.M. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines, Waste Management, 2015, 36, 197-203", + "English_Abstract": "According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semiaerobic landfill were closed in all five sites. The CH4/CO2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3-1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0-2.0) for anaerobic landfill sites. The low CH4+CO2% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.020", + "creation_date": "2022-03-14T08:15:26.971Z", + "last_change_date": "2022-03-14T08:15:26.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17231, + "fields": { + "EF_ID": 622413, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate constant (k)", + "Technology_Practices": "Combustible waste. Major fractions of the combustible waste samples were paper and wood.", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024-0.025", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "By using large-scale and long-term anaerobic degradation experiments, the CH4 generation from 14 waste samples was measured during a period of 405 days. Based on FOD equations, k values were determined.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.071Z", + "last_change_date": "2022-03-14T08:15:27.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17232, + "fields": { + "EF_ID": 622414, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate constant (k)", + "Technology_Practices": "Shredder waste consisting mainly of metals, plastic, rubber, wood and foam", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.016-0.017", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "By using large-scale and long-term anaerobic degradation experiments, the CH4 generation from 14 waste samples was measured during a period of 405 days. Based on FOD equations, k values were determined.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.172Z", + "last_change_date": "2022-03-14T08:15:27.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17233, + "fields": { + "EF_ID": 622415, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate constant (k)", + "Technology_Practices": "Sludge (dewatered excess activated sludge from sewage treatment plant in Avedøre Wastewater Services, Denmark)", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.16-0.19", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "By using large-scale and long-term anaerobic degradation experiments, the CH4 generation from 14 waste samples was measured during a period of 405 days. Based on FOD equations, k values were determined.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.272Z", + "last_change_date": "2022-03-14T08:15:27.272Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17234, + "fields": { + "EF_ID": 622416, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate constant (k)", + "Technology_Practices": "Mixed bulky waste (unrecyclable and incombustible)", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.013-0.014", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "By using large-scale and long-term anaerobic degradation experiments, the CH4 generation from 14 waste samples was measured during a period of 405 days. Based on FOD equations, k values were determined.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.374Z", + "last_change_date": "2022-03-14T08:15:27.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17235, + "fields": { + "EF_ID": 622417, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate constant (k)", + "Technology_Practices": "Street cleansing waste (residues from street cleansing)", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.078", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "By using large-scale and long-term anaerobic degradation experiments, the CH4 generation from 14 waste samples was measured during a period of 405 days. Based on FOD equations, k values were determined.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.483Z", + "last_change_date": "2022-03-14T08:15:27.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17236, + "fields": { + "EF_ID": 622418, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Degradable Organic Carbon (DOC)", + "Technology_Practices": "Combustible waste. Major fractions of the combustible waste samples were paper and wood.", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8–9", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.592Z", + "last_change_date": "2022-03-14T08:15:27.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17237, + "fields": { + "EF_ID": 622419, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Degradable Organic Carbon (DOC)", + "Technology_Practices": "Shredder waste consisting mainly of metals, plastic, rubber, wood and foam", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4-07", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.701Z", + "last_change_date": "2022-03-14T08:15:27.701Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17238, + "fields": { + "EF_ID": 622420, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Degradable Organic Carbon (DOC)", + "Technology_Practices": "Sludge (dewatered excess activated sludge from sewage treatment plant in Avedøre Wastewater Services, Denmark)", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.8-5.1", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.802Z", + "last_change_date": "2022-03-14T08:15:27.802Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17239, + "fields": { + "EF_ID": 622421, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Degradable Organic Carbon (DOC)", + "Technology_Practices": "Mixed bulky waste (unrecyclable and incombustible)", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4-0.5", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:27.903Z", + "last_change_date": "2022-03-14T08:15:27.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17240, + "fields": { + "EF_ID": 622422, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Degradable Organic Carbon (DOC)", + "Technology_Practices": "Street cleansing waste (residues from street cleansing)", + "Parameter_Conditions": "", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.0-1.1", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mou, Z., Scheutz, C., Kjeldsen, P. Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills, Waste Management, 2015, 35, 170-176", + "English_Abstract": "The methane (CH4) generation rate constant (k value, 1/yr) is an essential parameter when using firstorder decay (FOD) landfill gas (LFG) generation models to estimate CH4 generation from landfills. Four categories of waste (street cleansing, mixed bulky, shredder, and sludge waste) with a low-organic content, as well as temporarily stored combustible waste, were sampled from four Danish landfills. Anaerobic degradation experiments were set up in duplicate for all waste samples and incubated for 405 days, while the cumulative CH4 generation was continuously monitored. Applying FOD equations to the experimental results, half-life time values (t½, yr) and k values of various waste categories were determined. In general, similar waste categories obtained from different Danish landfills showed similar results. Sludge waste had the highest k values, which were in the range 0.156–0.189 1/yr. The combustible and street cleansing waste showed k values of 0.023–0.027 1/yr and 0.073–0.083 1/yr, respectively. The lowest k values were obtained for mixed bulky and shredder wastes ranging from 0.013 to 0.017 1/yr. Most low-organic waste samples showed lower k values in comparison to the default numeric values in current FOD models (e.g., IPCC, LandGEM, and Afvalzorg). Compared with the k values reported in the literature, this research determined low-organic waste for the first time via reliable large-scale and long-term experiments. The degradation parameters provided in this study are valuable when using FOD LFG generation models to estimate CH4 generation from modern landfills that receive only low-organic waste.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2014.10.003", + "creation_date": "2022-03-14T08:15:28.003Z", + "last_change_date": "2022-03-14T08:15:28.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17241, + "fields": { + "EF_ID": 622423, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane yield (L0)", + "Technology_Practices": "Estimated site specific methane yeald", + "Parameter_Conditions": "The site has an approximate area of 316 ha and comprises seven landfill units. This study was conducted on two areas in unit 7, a conventional cell operated without supplemental liquid addition, and a bioreactor cell operated to enhance decomposition.", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48.4", + "Unit": "m3 CH4/Mg wet waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tolaymat, T.M., Green, R.B., Hater, G.R., Barlaz, M.A., Black, P., Bronson, D., and Powel, J. Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors, J Air Waste Manag Assoc. 2010, 60 (1), 91-97", + "English_Abstract": "Prediction of the rate of gas production from bioreactor landfills is important for the optimization of energy recovery and for estimating greenhouse gas emissions. To improve the predictability of gas production, landfill gas (LFG) composition and flow rates were monitored for 4 yr from one conventional and two bioreactor landfill cells at the Outer Loop Landfill in Louisville, KY. The ultimate methane yield (L0) was estimated from the biochemical methane (CH4) potential of freshly buried refuse and the decay rate constant (k) was estimated from measured CH4 collection. The site-specific L0 was estimated to be 48.4m3 CH4/wet Mg. The estimated decay rate in the conventional cell (0.06/yr) was comparable to the AP-42 default value of 0.04/yr, whereas estimates for the two bioreactor cells were substantially higher (0.11/yr). The data document the ability of the bioreactor operation to enhance landfill CH4 generation, although the estimated decay rate is sensitive to the selected L0. The more rapid decomposition in the bioreactor cells reduces the length of time over which gas will be produced and emphasizes the importance of having a LFG collection system operational once the waste receives added moisture.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A site-specific L0 for use in the calculation of a decay rate was estimated by the measurement of the biochemical methane potential (BMP) of 24 relatively fresh waste samples collected during four sampling events in 2001, 2002 and 2004. A mean BMP of 48.4+/-3 (SE).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/abs/10.3155/1047-3289.60.1.91", + "creation_date": "2022-03-14T08:15:28.103Z", + "last_change_date": "2022-03-14T08:15:28.103Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17242, + "fields": { + "EF_ID": 622424, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Decay rate constant (k)", + "Technology_Practices": "Conventional cell", + "Parameter_Conditions": "The site has an approximate area of 316 ha and comprises seven landfill units. This study was conducted on two areas in unit 7, a conventional cell operated without supplemental liquid addition, and a bioreactor cell operated to enhance decomposition.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tolaymat, T.M., Green, R.B., Hater, G.R., Barlaz, M.A., Black, P., Bronson, D., and Powel, J. Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors, J Air Waste Manag Assoc. 2010, 60 (1), 91-97", + "English_Abstract": "Prediction of the rate of gas production from bioreactor landfills is important for the optimization of energy recovery and for estimating greenhouse gas emissions. To improve the predictability of gas production, landfill gas (LFG) composition and flow rates were monitored for 4 yr from one conventional and two bioreactor landfill cells at the Outer Loop Landfill in Louisville, KY. The ultimate methane yield (L0) was estimated from the biochemical methane (CH4) potential of freshly buried refuse and the decay rate constant (k) was estimated from measured CH4 collection. The site-specific L0 was estimated to be 48.4m3 CH4/wet Mg. The estimated decay rate in the conventional cell (0.06/yr) was comparable to the AP-42 default value of 0.04/yr, whereas estimates for the two bioreactor cells were substantially higher (0.11/yr). The data document the ability of the bioreactor operation to enhance landfill CH4 generation, although the estimated decay rate is sensitive to the selected L0. The more rapid decomposition in the bioreactor cells reduces the length of time over which gas will be produced and emphasizes the importance of having a LFG collection system operational once the waste receives added moisture.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A site-specific L0 for use in the calculation of a decay rate was estimated by the measurement of the biochemical methane potential (BMP) of 24 relatively fresh waste samples collected during four sampling events in 2001, 2002 and 2004.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/abs/10.3155/1047-3289.60.1.91", + "creation_date": "2022-03-14T08:15:28.204Z", + "last_change_date": "2022-03-14T08:15:28.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17243, + "fields": { + "EF_ID": 622425, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Decay rate constant (k)", + "Technology_Practices": "Two bioreactor cells. The bioreactor landfill unit was operated as a sequential aerobic-anaerobic system.", + "Parameter_Conditions": "The site has an approximate area of 316 ha and comprises seven landfill units. This study was conducted on two areas in unit 7, a conventional cell operated without supplemental liquid addition, and a bioreactor cell operated to enhance decomposition.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tolaymat, T.M., Green, R.B., Hater, G.R., Barlaz, M.A., Black, P., Bronson, D., and Powel, J. Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors, J Air Waste Manag Assoc. 2010, 60 (1), 91-97", + "English_Abstract": "Prediction of the rate of gas production from bioreactor landfills is important for the optimization of energy recovery and for estimating greenhouse gas emissions. To improve the predictability of gas production, landfill gas (LFG) composition and flow rates were monitored for 4 yr from one conventional and two bioreactor landfill cells at the Outer Loop Landfill in Louisville, KY. The ultimate methane yield (L0) was estimated from the biochemical methane (CH4) potential of freshly buried refuse and the decay rate constant (k) was estimated from measured CH4 collection. The site-specific L0 was estimated to be 48.4m3 CH4/wet Mg. The estimated decay rate in the conventional cell (0.06/yr) was comparable to the AP-42 default value of 0.04/yr, whereas estimates for the two bioreactor cells were substantially higher (0.11/yr). The data document the ability of the bioreactor operation to enhance landfill CH4 generation, although the estimated decay rate is sensitive to the selected L0. The more rapid decomposition in the bioreactor cells reduces the length of time over which gas will be produced and emphasizes the importance of having a LFG collection system operational once the waste receives added moisture.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "A site-specific L0 for use in the calculation of a decay rate was estimated by the measurement of the biochemical methane potential (BMP) of 24 relatively fresh waste samples collected during four sampling events in 2001, 2002 and 2004.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/abs/10.3155/1047-3289.60.1.91", + "creation_date": "2022-03-14T08:15:28.296Z", + "last_change_date": "2022-03-14T08:15:28.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17244, + "fields": { + "EF_ID": 622426, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Landfill Gas (LFG) composition", + "Technology_Practices": "Controll cell", + "Parameter_Conditions": "The site has an approximate area of 316 ha and comprises seven landfill units. This study was conducted on two areas in unit 7, a conventional cell operated without supplemental liquid addition, and a bioreactor cell operated to enhance decomposition.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "CH4: 58%; CO2: 41%; O2: 0.4%, and balance gas: 1%", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tolaymat, T.M., Green, R.B., Hater, G.R., Barlaz, M.A., Black, P., Bronson, D., and Powel, J. Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors, J Air Waste Manag Assoc. 2010, 60 (1), 91-97", + "English_Abstract": "Prediction of the rate of gas production from bioreactor landfills is important for the optimization of energy recovery and for estimating greenhouse gas emissions. To improve the predictability of gas production, landfill gas (LFG) composition and flow rates were monitored for 4 yr from one conventional and two bioreactor landfill cells at the Outer Loop Landfill in Louisville, KY. The ultimate methane yield (L0) was estimated from the biochemical methane (CH4) potential of freshly buried refuse and the decay rate constant (k) was estimated from measured CH4 collection. The site-specific L0 was estimated to be 48.4m3 CH4/wet Mg. The estimated decay rate in the conventional cell (0.06/yr) was comparable to the AP-42 default value of 0.04/yr, whereas estimates for the two bioreactor cells were substantially higher (0.11/yr). The data document the ability of the bioreactor operation to enhance landfill CH4 generation, although the estimated decay rate is sensitive to the selected L0. The more rapid decomposition in the bioreactor cells reduces the length of time over which gas will be produced and emphasizes the importance of having a LFG collection system operational once the waste receives added moisture.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Primary LFG constituents (CH4, CO2, oxygen [O2], balance gas) and gas flow were measured weekly at four LFG extraction wells located systematically across the control unit and at the header LFG extraction pipes for bioreactor cells A and B. LFG composition and flow were measured in triplicate using a Land-tech GEM 2000 LFG analyzer and the average was reported.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/abs/10.3155/1047-3289.60.1.91", + "creation_date": "2022-03-14T08:15:28.405Z", + "last_change_date": "2022-03-14T08:15:28.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17245, + "fields": { + "EF_ID": 622427, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Landfill Gas (LFG) composition", + "Technology_Practices": "Two bioreactor cells. The bioreactor landfill unit was operated as a sequential aerobic-anaerobic system.", + "Parameter_Conditions": "The site has an approximate area of 316 ha and comprises seven landfill units. This study was conducted on two areas in unit 7, a conventional cell operated without supplemental liquid addition, and a bioreactor cell operated to enhance decomposition.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "CH4: 51%; CO2: 37%; O2: 3%, and balance gas: 9%", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tolaymat, T.M., Green, R.B., Hater, G.R., Barlaz, M.A., Black, P., Bronson, D., and Powel, J. Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors, J Air Waste Manag Assoc. 2010, 60 (1), 91-97", + "English_Abstract": "Prediction of the rate of gas production from bioreactor landfills is important for the optimization of energy recovery and for estimating greenhouse gas emissions. To improve the predictability of gas production, landfill gas (LFG) composition and flow rates were monitored for 4 yr from one conventional and two bioreactor landfill cells at the Outer Loop Landfill in Louisville, KY. The ultimate methane yield (L0) was estimated from the biochemical methane (CH4) potential of freshly buried refuse and the decay rate constant (k) was estimated from measured CH4 collection. The site-specific L0 was estimated to be 48.4m3 CH4/wet Mg. The estimated decay rate in the conventional cell (0.06/yr) was comparable to the AP-42 default value of 0.04/yr, whereas estimates for the two bioreactor cells were substantially higher (0.11/yr). The data document the ability of the bioreactor operation to enhance landfill CH4 generation, although the estimated decay rate is sensitive to the selected L0. The more rapid decomposition in the bioreactor cells reduces the length of time over which gas will be produced and emphasizes the importance of having a LFG collection system operational once the waste receives added moisture.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Primary LFG constituents (CH4, CO2, oxygen [O2], balance gas) and gas flow were measured weekly at four LFG extraction wells located systematically across the control unit and at the header LFG extraction pipes for bioreactor cells A and B. LFG composition and flow were measured in triplicate using a Land-tech GEM 2000 LFG analyzer and the average was reported.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/abs/10.3155/1047-3289.60.1.91", + "creation_date": "2022-03-14T08:15:28.506Z", + "last_change_date": "2022-03-14T08:15:28.506Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17246, + "fields": { + "EF_ID": 622428, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane generation rate constant", + "Technology_Practices": "The site conditions at all study sites were managed landfills. All waste that was deposited in these study sites was only municipal solid waste (MSW).", + "Parameter_Conditions": "Measurements were performed at four sanitary landfills including Pattaya, Ban-Bung, Hua-Hin and Laemchabang landfills. Most of these study sites are located in the central region, within 150 km of Bangkok.", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.33", + "Unit": "1/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao, K., Yamada, M., Endo, K., Ishigaki, T., Naruoka, T., Towprayoon, S., Chiemchaisri, C., and Sutthasil, N. Seasonal variation of landfill methane emissions from seven solid waste disposal sites in central Thailand, Journal of Sustainable Energy & Environment 2010, 1, 181-184", + "English_Abstract": "This paper presents a practical methodology for quantifying the methane generation rate constant from four tropical sanitary landfills in Thailand. We used combination of static chamber and laser methane detection methods as well as geo-statistics to assess the total methane emission at each study site. After fitting of the estimated rate of methane emission per weight of waste deposited at the disposal sites with different age to the first order decay equation, it was found that the first order reaction rates were 0.33 yr-1. This high reaction rate as compared to previous studies in developed countries is probably due to the high moisture content of the waste in which food waste was the main component (>60%) combined with a tropical climate which has high precipitation and temperatures. These factors could stimulate anaerobic degradation and produce more biogas in a shorter time after the wastes has been disposed. In order to improve the estimation of methane emission from solid waste disposal sites in a tropical climate, this first order reaction rates can be considered as a country or region specific default value.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane emission rates from the landfill surface in this study were determined using the Laser Methane Detection (LMD) chamber method. In this study, the k value was estimated using the methane emissions from landfills. Methane fluxes were measured at 200 and 124 points in 2008 and 2009, respectively. A mean BMP of 48.4 +/- 3 (1standard error) m3 CH4/Mg of wet waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.jseejournal.com/JSEE%202010/JSEE%202010%20vol.1(4)/10.Methane%20generation%20rate%20p.181-184.pdf", + "creation_date": "2022-03-14T08:15:28.615Z", + "last_change_date": "2022-03-14T08:15:28.615Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17247, + "fields": { + "EF_ID": 622429, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Waste composition (MSW)", + "Technology_Practices": "The site conditions at all study sites were managed landfills. All waste that was deposited in these study sites was only municipal solid waste (MSW).", + "Parameter_Conditions": "Measurements were performed at four sanitary landfills including Pattaya, Ban-Bung, Hua-Hin and Laemchabang landfills. Most of these study sites are located in the central region, within 150 km of Bangkok.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "food waste: 60%, plastic: 20%, paper: 8%, glass: 3%, textiles: 1% and other: 8%", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wangyao, K., Yamada, M., Endo, K., Ishigaki, T., Naruoka, T., Towprayoon, S., Chiemchaisri, C., and Sutthasil, N. Seasonal variation of landfill methane emissions from seven solid waste disposal sites in central Thailand, Journal of Sustainable Energy & Environment 2010, 1, 181-184", + "English_Abstract": "This paper presents a practical methodology for quantifying the methane generation rate constant from four tropical sanitary landfills in Thailand. We used combination of static chamber and laser methane detection methods as well as geo-statistics to assess the total methane emission at each study site. After fitting of the estimated rate of methane emission per weight of waste deposited at the disposal sites with different age to the first order decay equation, it was found that the first order reaction rates were 0.33 yr-1. This high reaction rate as compared to previous studies in developed countries is probably due to the high moisture content of the waste in which food waste was the main component (>60%) combined with a tropical climate which has high precipitation and temperatures. These factors could stimulate anaerobic degradation and produce more biogas in a shorter time after the wastes has been disposed. In order to improve the estimation of methane emission from solid waste disposal sites in a tropical climate, this first order reaction rates can be considered as a country or region specific default value.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.jseejournal.com/JSEE%202010/JSEE%202010%20vol.1(4)/10.Methane%20generation%20rate%20p.181-184.pdf", + "creation_date": "2022-03-14T08:15:28.732Z", + "last_change_date": "2022-03-14T08:15:28.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17248, + "fields": { + "EF_ID": 622430, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon loss from wood in landfills", + "Technology_Practices": "Meadowbank lanfill was one of the largest landfills in Sydney, receiving primarily household waste and operating between the early 1950`s until 1968.", + "Parameter_Conditions": "MSW landfill located in temperate environment. Mean annual maximum temperature: 23.3; Mean annual minimum temperature: 12.2; Mean annual rainfall (mm): 960.9", + "Regional_Conditions": "Sydney, Australia", + "Control_Technologies": "Pinus radiata recovered from Sydney landfill", + "Other_Properties": "", + "Value": "7.9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Cowie, A., Barlaz, M. The decay of wood in landfills in contrasting climates in Australia, Waste Management, 2015, 41, 101-110", + "English_Abstract": "Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16–44 years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt current accepted default factors for the decay of wood in landfills greatly overestimate methane emissions.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2015.03.032", + "creation_date": "2022-03-14T08:15:28.834Z", + "last_change_date": "2022-03-14T08:15:28.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17249, + "fields": { + "EF_ID": 622431, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon loss from wood in landfills", + "Technology_Practices": "Two landfills were excavated in Cairns, situated in far north Queensland, approximately 1700 km north of Brisbane.", + "Parameter_Conditions": "MSW landfill located in tropical environment. Mean annual maximum temperature: 29.0; Mean annual minimum temperature: 20.8; Mean annual rainfall (mm): 2011", + "Regional_Conditions": "Cairns, Australia", + "Control_Technologies": "Pinus radiata recovered Cairns landfills", + "Other_Properties": "", + "Value": "4.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Cowie, A., Barlaz, M. The decay of wood in landfills in contrasting climates in Australia, Waste Management, 2015, 41, 101-110", + "English_Abstract": "Wood products in landfill are commonly assumed to decay within several decades, returning the carbon contained therein to the atmosphere, with about half the carbon released as methane. However, the rate and extent of decay is not well known, as very few studies have examined the decay of wood products in landfills. This study reports on the findings from landfill excavations conducted in the Australian cities of Sydney and Cairns located in temperate and tropical environments, respectively. The objective of this study was to determine whether burial of the wood in warmer, more tropical conditions in Cairns would result in greater levels of decay than occurs in the temperate environment of Sydney. Wood samples recovered after 16–44 years in landfill were examined through physical, chemical and microscopic analyses, and compared with control samples to determine the carbon loss. There was typically little or no decay in the wood samples analysed from the landfill in Sydney. Although there was significant decay in rainforest wood species excavated from Cairns, decay levels for wood types that were common to both Cairns and Sydney landfills were similar. The current Intergovernmental Panel on Climate Change (IPCC, 2006) default decay factor for organic materials in landfills is 50%. In contrast, the carbon loss determined for Pinus radiata recovered from Sydney and Cairns landfills was 7.9% and 4.4%, respectively, and 0% for Agathis sp. This suggests that climate did not influence decay, and that the more extensive levels of decay observed for some wood samples from Cairns indicates that those wood types were more susceptible to biodegradation. Microscopic analyses revealed that most decay patterns observed in samples analysed from Sydney were consistent with aerobic fungal decay. Only a minor portion of the microbial decay was due to erosion bacteria active in anaerobic/near anaerobic environments. The findings of this study strongly suggest that models that adopt current accepted default factors for the decay of wood in landfills greatly overestimate methane emissions.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.wasman.2015.03.032", + "creation_date": "2022-03-14T08:15:28.960Z", + "last_change_date": "2022-03-14T08:15:28.960Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17250, + "fields": { + "EF_ID": 622432, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Ratio of kitchen waste for household waste", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 C, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.385-0.474", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:29.068Z", + "last_change_date": "2022-03-14T08:15:29.068Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17251, + "fields": { + "EF_ID": 622433, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Ratio of kitchen waste for business waste", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 C, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.192-0.352", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:29.178Z", + "last_change_date": "2022-03-14T08:15:29.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17252, + "fields": { + "EF_ID": 622434, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average moisture content for paper waste", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 C, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65.7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:29.286Z", + "last_change_date": "2022-03-14T08:15:29.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17253, + "fields": { + "EF_ID": 622435, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average moisture content for kitchen waste and other types of waste", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 C, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:29.395Z", + "last_change_date": "2022-03-14T08:15:29.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17254, + "fields": { + "EF_ID": 622436, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Volatile solid content for paper", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 C, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.4-36.9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:29.504Z", + "last_change_date": "2022-03-14T08:15:29.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17255, + "fields": { + "EF_ID": 622437, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Volatile solid content for kitchen waste and other types of waste", + "Technology_Practices": "", + "Parameter_Conditions": "The average temperature is 6.6 C, and the average annual precipitation is 1058 mm. All of the wastes except recyclables, such as steel, aluminum cans, and PET bottles, are directly landfilled.", + "Regional_Conditions": "Hokkaido, Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17.9-27.3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuei Ishii, Toru Furuichi. Estimation of methane emission rate changes using age-defined waste in a landfill site, Waste Management, 2013, 33, 1861–1869", + "English_Abstract": "Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample`s methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.050 1/y and 0.062 1/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35 104 m3-CH4, which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34x105 t-CO2/y).", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X13002201", + "creation_date": "2022-03-14T08:15:29.646Z", + "last_change_date": "2022-03-14T08:15:29.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17256, + "fields": { + "EF_ID": 622438, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Bhalswa landfill", + "Parameter_Conditions": "L0 = 54.4 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.1", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:29.756Z", + "last_change_date": "2022-03-14T08:15:29.756Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17257, + "fields": { + "EF_ID": 622439, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Bhalswa landfill", + "Parameter_Conditions": "L0 = 70.2 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.5", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:29.856Z", + "last_change_date": "2022-03-14T08:15:29.856Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17258, + "fields": { + "EF_ID": 622440, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Bhalswa landfill", + "Parameter_Conditions": "L0 = 64.3 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.6", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:29.946Z", + "last_change_date": "2022-03-14T08:15:29.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17259, + "fields": { + "EF_ID": 622441, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Okhla landfill", + "Parameter_Conditions": "L0 = 54.4 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.7", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:30.040Z", + "last_change_date": "2022-03-14T08:15:30.040Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17260, + "fields": { + "EF_ID": 622442, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Okhla landfill", + "Parameter_Conditions": "L0 = 70.2 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:30.138Z", + "last_change_date": "2022-03-14T08:15:30.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17261, + "fields": { + "EF_ID": 622443, + "IPCC_Category": "4.A.2 - Unmanaged Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane emission from landfill", + "Technology_Practices": "Okhla landfill", + "Parameter_Conditions": "L0 = 64.3 m3/Mg", + "Regional_Conditions": "Delhi, India", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.7", + "Unit": "Gg/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ashutosh Kumar, M.P. Sharma. Estimation of GHG emission and energy recovery potential from MSW landfill sites, Sustainable Energy Technologies and Assessments, 2014, 5, 50–61", + "English_Abstract": "Significant environmental and social problems are associated with rapidly increasing quantity of municipal solid waste (MSW) in recent times. Of various MSW management techniques, landfilling is found as the cheapest to manage about 80% of the MSW all over the world. The present paper is concerned with the estimation of GHG emission potential using software LandGEM, version 3.02, from three landfill sites of Delhi namely: Ghazipur (GL), Bhalswa (BL) and Okhla landfills (OL) sites. The results obtained by different researchers using different methodologies viz. [8]. Default, Modified Triangular, First Order Decay (FOD) and In-situ Closed Chamber (ICM) Method are compared with the results of this study and found to be better match with FOD while nearly matching with ICM. The dynamic cost analysis has revealed that GL, BL and OL sites have an economically feasible potential of 3, 2 and 1.5MW of electricity without subsidy and CDM. The work concludes that LandGEM, version 3.02, is relatively better model for estimation of GHG emission potential of landfills and its use is recommended to assess the energy recovery potential from landfills having capacity more than 2.5 MMT wastes.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "US EPA LANDGEM model (version 3.02)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S2213138813000817", + "creation_date": "2022-03-14T08:15:30.233Z", + "last_change_date": "2022-03-14T08:15:30.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17262, + "fields": { + "EF_ID": 622444, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emissions from compost area of landfill", + "Technology_Practices": "", + "Parameter_Conditions": "New section of Fakse landfill", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "kg N2O/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:30.329Z", + "last_change_date": "2022-03-14T08:15:30.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17263, + "fields": { + "EF_ID": 622445, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions from sludge pit of landfill", + "Technology_Practices": "", + "Parameter_Conditions": "New section of Fakse landfill", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.4", + "Unit": "kg CH4/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:30.435Z", + "last_change_date": "2022-03-14T08:15:30.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17264, + "fields": { + "EF_ID": 622446, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emissions from sludge pit landfill", + "Technology_Practices": "", + "Parameter_Conditions": "New section of Fakse landfill", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.03", + "Unit": "kg N2O/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:30.521Z", + "last_change_date": "2022-03-14T08:15:30.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17265, + "fields": { + "EF_ID": 622447, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions from pump station of landfill", + "Technology_Practices": "", + "Parameter_Conditions": "Old section of Fakse landfill", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.8", + "Unit": "kg CH4/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:30.619Z", + "last_change_date": "2022-03-14T08:15:30.619Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17266, + "fields": { + "EF_ID": 622448, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions from leachate collection well of landfill", + "Technology_Practices": "", + "Parameter_Conditions": "New section of Fakse landfill", + "Regional_Conditions": "Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.3", + "Unit": "kg CH4/h", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Scheutz, C., Samuelsson, J., Fredenslund, A.M., Kjeldsen, P. Quantification of multiple methane emission sources at landfills using a double tracer technique, Waste Management, 2011, 31, 1009–1017", + "English_Abstract": "A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 +/- 7.4 kg CH4/h, whereas the source at the new section was quantified to be 10.3 +/- 5.3 kg CH4/h. The CH4 emission from the compost area was 0.5 +/- 0.25 kg CH4/h, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 +/- 166 kg CO2/h and 0.06 +/- 0.03 kg N2O/h, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 +/- 0.63 kg/h CH4, and 0.03 +/- 0.01 kg/h N2O.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0956053X1100047X", + "creation_date": "2022-03-14T08:15:30.704Z", + "last_change_date": "2022-03-14T08:15:30.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17267, + "fields": { + "EF_ID": 622449, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Global N2O emissions from human waste", + "Technology_Practices": "", + "Parameter_Conditions": "Collected human waste. Wastewater treatment plants", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "Tg N2O-N/yr", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Maryna Strokal and Carolien Kroeze. Nitrous oxide (N2O) emissions from human waste in 1970–2050, Current Opinion in Environmental Sustainability 2014, 9–10: 108–121", + "English_Abstract": "Nitrous oxide (N2O) is an important contributor to climate change. Human waste is an important source of N2O emissions in several world regions, and its share in global emissions may increase in the future. In this paper we, therefore, address N2O emission from human waste: collected (from treatment and from sewage discharges) and uncollected waste. We review existing literature on emissions and emission factors, and present region-specific estimates of N2O emissions and their past and future trends. We show that human waste may became an important source of N2O emissions in the coming years as a result of increasing urbanization. About two-thirds of the global emissions are from uncollected waste, and about half from South Asia. We argue that more research is needed to improve emission factors.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Estimates of N2O emissions from collected waste include emissions from WWTPs and from surface waters as a result of N effluents from WWTPs discharged to surface waters.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1877343514000633", + "creation_date": "2022-03-14T08:15:30.804Z", + "last_change_date": "2022-03-14T08:15:30.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17268, + "fields": { + "EF_ID": 622450, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emissions from wastewater treatment plant (WWTP) effluent", + "Technology_Practices": "Markland Pool of the Ohio River is ranked by annual discharge as the third largest river in North America. Several sources of N2O to the river including WWTP effluent are quantified.", + "Parameter_Conditions": "", + "Regional_Conditions": "United States of America", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5", + "Unit": "% of N2O emissions from the pool", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Beaulieu, J. J., Shuster, W. D., Rebholz, J. A. Nitrous oxide emissions from a large, impounded river: the Ohio River, Environ Sci Technol. 2010, 44 (19), 7527-7533", + "English_Abstract": "Models suggest that microbial activity in streams and rivers is a globally significant source of anthropogenic nitrous oxide (N2O), a potent greenhouse gas, and the leading cause of stratospheric ozone destruction. However, model estimates of N2O emissions are poorly constrained due to a lack of direct measurements of microbial N2O production and consequent emissions, particularly from large rivers. We report the first N2O budget for a large, nitrogen enriched river, based on direct measurements of N2O emissions from the water surface and N2O production in the sediments and water column. Maximum N2O emissions occurred downstream from Cincinnati, Ohio, a major urban center on the river, due to direct inputs of N2O from wastewater treatment plant effluent and higher rates of in situ production. Microbial activity in the water column and sediments was a source of N2O, and water column production rates were nearly double those of the sediments. Emissions exhibited strong seasonality with the highest rates observed during the summer and lowest during the winter. Our results indicate N2O dynamics in large temperate rivers may be characterized by strong seasonal cycles and production in the pelagic zone.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Sediment N2O production,pelagic N2O production,an direct input from WWTP efflucnt account for 11, 26 and 5% of the summertime N2O emlssions (50 kg N2O-N/day).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://pubs.acs.org/doi/abs/10.1021/es1016735", + "creation_date": "2022-03-14T08:15:30.888Z", + "last_change_date": "2022-03-14T08:15:30.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17269, + "fields": { + "EF_ID": 622451, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total methane emissions (yearly average)", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.15", + "Unit": "g CH4/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.088Z", + "last_change_date": "2022-03-14T08:15:31.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17270, + "fields": { + "EF_ID": 622452, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emissions from water and sludge treatment (yearly average)", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.15", + "Unit": "g CH4/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.179Z", + "last_change_date": "2022-03-14T08:15:31.179Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17271, + "fields": { + "EF_ID": 622453, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emissions from incineration of sludge (yearly average)", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "The sludge treatment process consists of a gravity sludge thickener, a sludge decanter, and incineration by a fluidized bed furnace at 840? to decrease N2O production.", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.43", + "Unit": "g CH4/wet-t-sludge", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.273Z", + "last_change_date": "2022-03-14T08:15:31.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17272, + "fields": { + "EF_ID": 622454, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "TOC-CH4 conversion rate", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.354Z", + "last_change_date": "2022-03-14T08:15:31.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17273, + "fields": { + "EF_ID": 622455, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total nitrous oxide emissions (yearly average)", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.393", + "Unit": "g N2O/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.448Z", + "last_change_date": "2022-03-14T08:15:31.449Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17274, + "fields": { + "EF_ID": 622456, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emissions from water and sludge treatment (yearly average)", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00112", + "Unit": "g N2O/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.546Z", + "last_change_date": "2022-03-14T08:15:31.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17275, + "fields": { + "EF_ID": 622457, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous oxide emissions from incineration of sludge (yearly average)", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "The sludge treatment process consists of a gravity sludge thickener, a sludge decanter, and incineration by a fluidized bed furnace at 840? to decrease N2O production.", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "634", + "Unit": "g N2O/wet-t-sludge", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.642Z", + "last_change_date": "2022-03-14T08:15:31.642Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17276, + "fields": { + "EF_ID": 622458, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "TOC concentration in influent", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.7", + "Unit": "mg/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.738Z", + "last_change_date": "2022-03-14T08:15:31.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17277, + "fields": { + "EF_ID": 622459, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "TOC concentration in effluent", + "Technology_Practices": "Sewage treatment plant (named M-STP) in Sendai city in Japan. The plant treats 327178 m3 of municipal wastewater per day.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.9", + "Unit": "mg/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Suzuki, S., Sano, I., Li, Y.Y., Nishimura, O. The seasonal variation of emission of greenhouse gases from a full-scale sewage treatment plant, Chemosphere, 2015, 140, 167-173", + "English_Abstract": "The seasonal variety of greenhouse gas (GHGs) emissions and the main emission source in a sewage treatment plant were investigated. The emission coefficient to treated wastewater was 291gCO2/m3. The main source of GHGs was CO2 from the consumption of electricity, nitrous oxide from the sludge incineration process, and methane from the water treatment process. They accounted for 43.4%, 41.7% and 8.3% of the total amount of GHGs emissions, respectively. The amount of methane was plotted as a function of water temperature ranging between 13.3 and 27.3C. An aeration tank was the main source of methane emission from all the units. Almost all the methane was emitted from the aeration tank, which accounted for 86.4% of the total gaseous methane emission. However, 18.4% of the methane was produced in sewage lines, 15.4% in the primary sedimentation tank, and 60.0% in the aeration tank.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.chemosphere.2014.09.042", + "creation_date": "2022-03-14T08:15:31.834Z", + "last_change_date": "2022-03-14T08:15:31.834Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17278, + "fields": { + "EF_ID": 622460, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Average Disposable Nappy Composition", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Fluff pulp: 34.1 SAP: 32.4 PP: 16.6 LDPE: 6.0 Adhesives: 3.8 PET/polyester: 2.2 Other: 4.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "An updated lifecycle assessment study for disposable and reusable nappies, Science Report – SC010018/SR2; ISBN: 978-1-84432-927-4; Environment Agency of UK, October 2008.", + "English_Abstract": "", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "mailto:enquiries@environment-agency.gov.uk", + "creation_date": "2022-03-14T08:15:31.929Z", + "last_change_date": "2022-03-14T08:15:31.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17279, + "fields": { + "EF_ID": 622461, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O-N emission factor", + "Technology_Practices": "The Olburgen treatment plant treats the wastewater from a local potato processing plant and the sludge digestion reject water originating from the municipal wastewater treatment plants (WWTP).", + "Parameter_Conditions": "One-stage granular sludge reactor performing partial nitritation-anammox (PNA) during normal reactor operation. The granular sludge reactor has a liquid volume of 600 m3 and a headspace volume (gas phase) of 100 m3. It is operated in continuous mode at a temperature of 37 degrees centigrade.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2", + "Unit": "N2O-N% of the total incoming nitrogen load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Castro-Barros, C.M., Daelman, M.R.J., Mampaey, K.E., van Loosdrecht, M.C.M., Volcke, E.I.P. Effect of aeration regime on N2O emission from partial nitritation-anammox in a full-scale granular sludge reactor, Water Research, 2015, 68, 793-803", + "English_Abstract": "N2O emission from wastewater treatment plants is high of concern due to the strong environmental impact of this greenhouse gas. Good understanding of the factors affecting the emission and formation of this gas is crucial to minimize its impact. This study addressed the investigation of the N2O emission dynamics in a full-scale one-stage granular sludge reactor performing partial nitritation-anammox (PNA) operated at a N-loading of 1.75 kg NH4-N m 3 d 1. A monitoring campaign was conducted, gathering on-line data of the N2O concentration in the off-gas of the reactor as well as of the ammonium and nitrite concentrations in the liquid phase. The N2O formation rate and the liquid N2O concentration profile were calculated from the gas phase measurements. The mean (gaseous) N2O-N emission obtained was 2.0% of the total incoming nitrogen during normal reactor operation. During normal operation of the reactor under variable aeration rate, intense aeration resulted in higher N2O emission and formation than during low aeration periods (mean N2O formation rate of 0.050 kg N m 3 d 1 for high aeration and 0.029 kgN m 3 d 1 for low aeration). Accumulation of N2O in the liquid phase was detected during low aeration periods and was accompanied by a relatively lower ammonium conversion rate, while N2O stripping was observed once the aeration was increased. During a dedicated experiment, gas recirculation without fresh air addition into the reactor led to the consumption of N2O, while accumulation of N2O was not detected. The transition from a prolonged period without fresh air addition and with little recirculation to enhanced aeration with fresh air addition resulted in the highest N2O formation (0.064 kg N m 3 d 1). The results indicate that adequate aeration control may be used to minimize N2O emissions from PNA reactors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The mean N2O-N emission factor was derived from measurements based on 74 h of normal operation within the monitored period (2.0 +/- 1.0%).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.watres.2014.10.056", + "creation_date": "2022-03-14T08:15:32.013Z", + "last_change_date": "2022-03-14T08:15:32.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17280, + "fields": { + "EF_ID": 622462, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Ammonium removal", + "Technology_Practices": "The Olburgen treatment plant treats the wastewater from a local potato processing plant and the sludge digestion reject water originating from the municipal WWTP.", + "Parameter_Conditions": "PNA granular sludge reactor", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "92.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Castro-Barros, C.M., Daelman, M.R.J., Mampaey, K.E., van Loosdrecht, M.C.M., Volcke, E.I.P. Effect of aeration regime on N2O emission from partial nitritation-anammox in a full-scale granular sludge reactor, Water Research, 2015, 68, 793-803", + "English_Abstract": "N2O emission from wastewater treatment plants is high of concern due to the strong environmental impact of this greenhouse gas. Good understanding of the factors affecting the emission and formation of this gas is crucial to minimize its impact. This study addressed the investigation of the N2O emission dynamics in a full-scale one-stage granular sludge reactor performing partial nitritation-anammox (PNA) operated at a N-loading of 1.75 kg NH4-N m 3 d 1. A monitoring campaign was conducted, gathering on-line data of the N2O concentration in the off-gas of the reactor as well as of the ammonium and nitrite concentrations in the liquid phase. The N2O formation rate and the liquid N2O concentration profile were calculated from the gas phase measurements. The mean (gaseous) N2O-N emission obtained was 2.0% of the total incoming nitrogen during normal reactor operation. During normal operation of the reactor under variable aeration rate, intense aeration resulted in higher N2O emission and formation than during low aeration periods (mean N2O formation rate of 0.050 kg N m 3 d 1 for high aeration and 0.029 kgN m 3 d 1 for low aeration). Accumulation of N2O in the liquid phase was detected during low aeration periods and was accompanied by a relatively lower ammonium conversion rate, while N2O stripping was observed once the aeration was increased. During a dedicated experiment, gas recirculation without fresh air addition into the reactor led to the consumption of N2O, while accumulation of N2O was not detected. The transition from a prolonged period without fresh air addition and with little recirculation to enhanced aeration with fresh air addition resulted in the highest N2O formation (0.064 kg N m 3 d 1). The results indicate that adequate aeration control may be used to minimize N2O emissions from PNA reactors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The nitrogen removal efficiencies for the single PNA unit were calculated through mass balances over the period monitored (92.4 +/- 3.2%) The ammonium and nitrite concentrations in the effluent of the reactor were measured on-line using an ADI 2019 Process Colorimeters and recorded in the SCADA system every 3-4 min. The incoming ammonium concentration was determined off-line, from a grab sample, at 340 g N /m3. The liquid flow rate into the reactor was also recorded continuously in the SCADA system. The outgoing gas flow rate was assumed the same as the incoming gas flow rate, neglecting the consumption and production of gasses in the reactor. The incoming gas flow was measured at the entrance of the reactor with a Testo 435-1 hot wire anemometer at different aeration settings. The gas flow rate was obtained from the gas flow velocity and the inner diameter of the pipe (28 cm). A monitoring campaign was conducted at the PNA granular sludge reactor during one week in summer (22-29 August 2011). The N2O concentration in the headspace of the reactor was measured with an Emerson MLT4 Rosemount infrared analyser, obtaining online data every minute.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.watres.2014.10.056", + "creation_date": "2022-03-14T08:15:32.120Z", + "last_change_date": "2022-03-14T08:15:32.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17281, + "fields": { + "EF_ID": 622463, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Total nitrogen (TN) removal", + "Technology_Practices": "The Olburgen treatment plant treats the wastewater from a local potato processing plant and the sludge digestion reject water originating from the municipal WWTP.", + "Parameter_Conditions": "PNA granular sludge reactor", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Castro-Barros, C.M., Daelman, M.R.J., Mampaey, K.E., van Loosdrecht, M.C.M., Volcke, E.I.P. Effect of aeration regime on N2O emission from partial nitritation-anammox in a full-scale granular sludge reactor, Water Research, 2015, 68, 793-803", + "English_Abstract": "N2O emission from wastewater treatment plants is high of concern due to the strong environmental impact of this greenhouse gas. Good understanding of the factors affecting the emission and formation of this gas is crucial to minimize its impact. This study addressed the investigation of the N2O emission dynamics in a full-scale one-stage granular sludge reactor performing partial nitritation-anammox (PNA) operated at a N-loading of 1.75 kg NH4-N m 3 d 1. A monitoring campaign was conducted, gathering on-line data of the N2O concentration in the off-gas of the reactor as well as of the ammonium and nitrite concentrations in the liquid phase. The N2O formation rate and the liquid N2O concentration profile were calculated from the gas phase measurements. The mean (gaseous) N2O-N emission obtained was 2.0% of the total incoming nitrogen during normal reactor operation. During normal operation of the reactor under variable aeration rate, intense aeration resulted in higher N2O emission and formation than during low aeration periods (mean N2O formation rate of 0.050 kg N m 3 d 1 for high aeration and 0.029 kgN m 3 d 1 for low aeration). Accumulation of N2O in the liquid phase was detected during low aeration periods and was accompanied by a relatively lower ammonium conversion rate, while N2O stripping was observed once the aeration was increased. During a dedicated experiment, gas recirculation without fresh air addition into the reactor led to the consumption of N2O, while accumulation of N2O was not detected. The transition from a prolonged period without fresh air addition and with little recirculation to enhanced aeration with fresh air addition resulted in the highest N2O formation (0.064 kg N m 3 d 1). The results indicate that adequate aeration control may be used to minimize N2O emissions from PNA reactors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The nitrogen removal efficiencies for the single PNA unit were calculated through mass balances over the period monitored (74.4 +/- 7.1%) The ammonium and nitrite concentrations in the effluent of the reactor were measured on-line using an ADI 2019 Process Colorimeters and recorded in the SCADA system every 3-4 min. The incoming ammonium concentration was determined off-line, from a grab sample, at 340 g N /m3. The liquid flow rate into the reactor was also recorded continuously in the SCADA system. The outgoing gas flow rate was assumed the same as the incoming gas flow rate, neglecting the consumption and production of gasses in the reactor. The incoming gas flow was measured at the entrance of the reactor with a Testo 435-1 hot wire anemometer at different aeration settings. The gas flow rate was obtained from the gas flow velocity and the inner diameter of the pipe (28 cm). A monitoring campaign was conducted at the PNA granular sludge reactor during one week in summer (22-29 August 2011). The N2O concentration in the headspace of the reactor was measured with an Emerson MLT4 Rosemount infrared analyser, obtaining online data every minute.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.watres.2014.10.056", + "creation_date": "2022-03-14T08:15:32.229Z", + "last_change_date": "2022-03-14T08:15:32.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17282, + "fields": { + "EF_ID": 622464, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "COD removal efficiency", + "Technology_Practices": "The Olburgen treatment plant treats the wastewater from a local potato processing plant and the sludge digestion reject water originating from the municipal WWTP.", + "Parameter_Conditions": "Including the PHOSPAQ P-recovery unit and PNA together.", + "Regional_Conditions": "Netherlands", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Castro-Barros, C.M., Daelman, M.R.J., Mampaey, K.E., van Loosdrecht, M.C.M., Volcke, E.I.P. Effect of aeration regime on N2O emission from partial nitritation-anammox in a full-scale granular sludge reactor, Water Research, 2015, 68, 793-803", + "English_Abstract": "N2O emission from wastewater treatment plants is high of concern due to the strong environmental impact of this greenhouse gas. Good understanding of the factors affecting the emission and formation of this gas is crucial to minimize its impact. This study addressed the investigation of the N2O emission dynamics in a full-scale one-stage granular sludge reactor performing partial nitritation-anammox (PNA) operated at a N-loading of 1.75 kg NH4-N m 3 d 1. A monitoring campaign was conducted, gathering on-line data of the N2O concentration in the off-gas of the reactor as well as of the ammonium and nitrite concentrations in the liquid phase. The N2O formation rate and the liquid N2O concentration profile were calculated from the gas phase measurements. The mean (gaseous) N2O-N emission obtained was 2.0% of the total incoming nitrogen during normal reactor operation. During normal operation of the reactor under variable aeration rate, intense aeration resulted in higher N2O emission and formation than during low aeration periods (mean N2O formation rate of 0.050 kg N m 3 d 1 for high aeration and 0.029 kgN m 3 d 1 for low aeration). Accumulation of N2O in the liquid phase was detected during low aeration periods and was accompanied by a relatively lower ammonium conversion rate, while N2O stripping was observed once the aeration was increased. During a dedicated experiment, gas recirculation without fresh air addition into the reactor led to the consumption of N2O, while accumulation of N2O was not detected. The transition from a prolonged period without fresh air addition and with little recirculation to enhanced aeration with fresh air addition resulted in the highest N2O formation (0.064 kg N m 3 d 1). The results indicate that adequate aeration control may be used to minimize N2O emissions from PNA reactors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.watres.2014.10.056", + "creation_date": "2022-03-14T08:15:32.346Z", + "last_change_date": "2022-03-14T08:15:32.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17283, + "fields": { + "EF_ID": 622465, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor for full escale wastewater treatment plant (WWTP)", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Primary clarifier", + "Other_Properties": "", + "Value": "0.000386", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. Emission factor was calculated from the total N2O emission from the WWTP divided by nitrogen load to the WWTP.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:32.455Z", + "last_change_date": "2022-03-14T08:15:32.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17284, + "fields": { + "EF_ID": 622466, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor for full escale wastewater treatment plant (WWTP)", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Pre-anoxic", + "Other_Properties": "", + "Value": "0.003087", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. Emission factor was calculated from the total N2O emission from the WWTP divided by nitrogen load to the WWTP", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:32.563Z", + "last_change_date": "2022-03-14T08:15:32.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17285, + "fields": { + "EF_ID": 622467, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor for full escale wastewater treatment plant (WWTP)", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Anaerobic", + "Other_Properties": "", + "Value": "0.004955", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. Emission factor was calculated from the total N2O emission from the WWTP divided by nitrogen load to the WWTP.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:32.665Z", + "last_change_date": "2022-03-14T08:15:32.665Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17286, + "fields": { + "EF_ID": 622468, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor for full escale wastewater treatment plant (WWTP)", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Anoxic", + "Other_Properties": "", + "Value": "0.03314", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. Emission factor was calculated from the total N2O emission from the WWTP divided by nitrogen load to the WWTP.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:32.773Z", + "last_change_date": "2022-03-14T08:15:32.773Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17287, + "fields": { + "EF_ID": 622469, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor for full escale wastewater treatment plant (WWTP)", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Aerobic", + "Other_Properties": "", + "Value": "0.7802", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. Emission factor was calculated from the total N2O emission from the WWTP divided by nitrogen load to the WWTP.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:32.874Z", + "last_change_date": "2022-03-14T08:15:32.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17288, + "fields": { + "EF_ID": 622470, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor for full escale wastewater treatment plant (WWTP)", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Secondary clarifier", + "Other_Properties": "", + "Value": "0.002161", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. Emission factor was calculated from the total N2O emission from the WWTP divided by nitrogen load to the WWTP.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:32.975Z", + "last_change_date": "2022-03-14T08:15:32.975Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17289, + "fields": { + "EF_ID": 622471, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission from the full-scale wastewater treatment plant", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Primary clarifier", + "Other_Properties": "", + "Value": "3", + "Unit": "N2O-N g N/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. The quantification of N2O emission from each unit of the full-scale plant was calculated by the products of N2O emissions from the laboratory batch reactor (0.5 L) at the designated hydraulic retention time (HRT) and the total wastewater (wastewater + sludge) flow rate (m3/d) of the full-scale unit.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:33.092Z", + "last_change_date": "2022-03-14T08:15:33.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17290, + "fields": { + "EF_ID": 622472, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission from the full-scale wastewater treatment plant", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Pre-anoxic", + "Other_Properties": "", + "Value": "20", + "Unit": "N2O-N g N/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. The quantification of N2O emission from each unit of the full-scale plant was calculated by the products of N2O emissions from the laboratory batch reactor (0.5 L) at the designated hydraulic retention time (HRT) and the total wastewater (wastewater + sludge) flow rate (m3/d) of the full-scale unit.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:33.209Z", + "last_change_date": "2022-03-14T08:15:33.209Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17291, + "fields": { + "EF_ID": 622473, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission from the full-scale wastewater treatment plant", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Anaerobic", + "Other_Properties": "", + "Value": "32", + "Unit": "N2O-N g N/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. The quantification of N2O emission from each unit of the full-scale plant was calculated by the products of N2O emissions from the laboratory batch reactor (0.5 L) at the designated hydraulic retention time (HRT) and the total wastewater (wastewater + sludge) flow rate (m3/d) of the full-scale unit.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:33.326Z", + "last_change_date": "2022-03-14T08:15:33.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17292, + "fields": { + "EF_ID": 622474, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission from the full-scale wastewater treatment plant", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Anoxic", + "Other_Properties": "", + "Value": "215", + "Unit": "N2O-N g N/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. The quantification of N2O emission from each unit of the full-scale plant was calculated by the products of N2O emissions from the laboratory batch reactor (0.5 L) at the designated hydraulic retention time (HRT) and the total wastewater (wastewater + sludge) flow rate (m3/d) of the full-scale unit.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:33.444Z", + "last_change_date": "2022-03-14T08:15:33.444Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17293, + "fields": { + "EF_ID": 622475, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission from the full-scale wastewater treatment plant", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Aerobic", + "Other_Properties": "", + "Value": "5054", + "Unit": "N2O-N g N/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. The quantification of N2O emission from each unit of the full-scale plant was calculated by the products of N2O emissions from the laboratory batch reactor (0.5 L) at the designated hydraulic retention time (HRT) and the total wastewater (wastewater + sludge) flow rate (m3/d) of the full-scale unit.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:33.554Z", + "last_change_date": "2022-03-14T08:15:33.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17294, + "fields": { + "EF_ID": 622476, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission from the full-scale wastewater treatment plant", + "Technology_Practices": "Full-scale municipal WWTP (Chuncheon city, Korea, design capacity: 50,000 m3/d) removes nitrogen and phosphorus by modified 4-stage biological nutrient removal process. The WWTP consists of the following units: Pre-anoxic basin (1164 m3) after primary clarifier (7776 m3), anaerobic basin (2327 m3), anoxic basin (6274 m3), and aerobic basin (8658 m3) followed by secondary clarifier (12,960 m3). The average daily wastewater flow rate is 38,103 m3", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea, Asia", + "Control_Technologies": "Secondary clarifier", + "Other_Properties": "", + "Value": "14", + "Unit": "N2O-N g N/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lim, Y., and Kim, D.J. Quantification method of N2O emission from full-scale biological nutrient removal wastewater treatment plant by laboratory batch reactor analysis, Bioresource Technology, 2014, 165, 111-115", + "English_Abstract": "This study proposes a simplified method for the quantification of N2O emission from a biological nutrient removal wastewater treatment plant (WWTP). The method incorporates a laboratory-scale batch reactor which had almost the same operational (wastewater and sludge flow rates) condition of a unit operation/process of the WWTP. Cumulative N2O emissions from the batch reactor at the corresponding hydraulic retention times of the full-scale units (primary and secondary clarifiers, pre-anoxic, anaerobic, anoxic and aerobic basins) were used for the quantification of N2O emission. The analysis showed that the aerobic basin emitted 95% of the total emission and the emission factor (yield) reached 0.8% based on the influent nitrogen load. The method successfully estimated N2O emission from the WWTP and it has shown advantages in measurement time and cost over the direct field measurement (floating chamber) method.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The detailed experimental set-up of the gas-tight laboratory batch reactor can be found elsewhere (Kim and Kim, 2011). The cylindrical batch reactor (working volume: 0.5 L) was used for the measurement of N2O emission from each unit of the WWTP. The wastewater and the sludge (mixed liquor) were sampled from the WWTP and the batch reactor was maintained at 25 +/- 1degrees centigrade. Volumes of wastewater and sludge samples in the batch reactor were proportional to the flow rates of the wastewater and the sludge of the full-scale unit. The quantification of N2O emission from each unit of the full-scale plant was calculated by the products of N2O emissions from the laboratory batch reactor (0.5 L) at the designated hydraulic retention time (HRT) and the total wastewater (wastewater + sludge) flow rate (m3/d) of the full-scale unit.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2014.03.021", + "creation_date": "2022-03-14T08:15:33.663Z", + "last_change_date": "2022-03-14T08:15:33.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17295, + "fields": { + "EF_ID": 622477, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emissions", + "Technology_Practices": "Online measurements over several days were carried out at four different municipal WWTPs in Finland.", + "Parameter_Conditions": "Winter period", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.04-1.80", + "Unit": "N2O-N% of influent nitrogen load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mikola, A., Heinonen, M., Kosonen, H., Leppanen, M., Rantanen, P. and Vahala, R. N2O emissions from secondary clarifiers and their contribution to the total emissions of the WWTP. Water Science and Technology, 2014, 70(4), 720-728", + "English_Abstract": "Recent studies have indicated that the emissions of nitrous oxide, N2O, constitute a major part of the carbon footprint of wastewater treatment plants (WWTPs). Denitrification occurring in the secondary clarifier basins has been observed by many researchers, but until now N2O emissions from secondary clarifiers have not been widely reported. The objective of this study was to measure the N2O emissions from secondary clarifiers and weigh the portion they could represent of the overall emissions at WWTPs. Online measurements over several days were carried out at four different municipal WWTPs in Finland in cold weather conditions (March) and in warm weather conditions (June-July). An attempt was made to define the conditions in which N2O emissions from secondary clarifiers may occur. It was evidenced that large amounts of N2O can be emitted from the secondary clarifiers, and that the emissions have long-term variation. It was assumed that part of the N2O released in secondary clarification was originally formed in the activated sludge basin. The emissions from secondary clarification thus seem to be dependent on conditions of the nitrification and denitrification accomplished in the denitrification-nitrification process and on the amount of sludge stored in the secondary clarifiers.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.iwaponline.com/wst/07004/wst070040720.htm", + "creation_date": "2022-03-14T08:15:33.763Z", + "last_change_date": "2022-03-14T08:15:33.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17296, + "fields": { + "EF_ID": 622478, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emissions", + "Technology_Practices": "Online measurements over several days were carried out at four different municipal WWTPs in Finland.", + "Parameter_Conditions": "Summer period", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02-2.57", + "Unit": "N2O-N% of influent nitrogen load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mikola, A., Heinonen, M., Kosonen, H., Leppanen, M., Rantanen, P. and Vahala, R. N2O emissions from secondary clarifiers and their contribution to the total emissions of the WWTP. Water Science and Technology, 2014, 70(4), 720-728", + "English_Abstract": "Recent studies have indicated that the emissions of nitrous oxide, N2O, constitute a major part of the carbon footprint of wastewater treatment plants (WWTPs). Denitrification occurring in the secondary clarifier basins has been observed by many researchers, but until now N2O emissions from secondary clarifiers have not been widely reported. The objective of this study was to measure the N2O emissions from secondary clarifiers and weigh the portion they could represent of the overall emissions at WWTPs. Online measurements over several days were carried out at four different municipal WWTPs in Finland in cold weather conditions (March) and in warm weather conditions (June-July). An attempt was made to define the conditions in which N2O emissions from secondary clarifiers may occur. It was evidenced that large amounts of N2O can be emitted from the secondary clarifiers, and that the emissions have long-term variation. It was assumed that part of the N2O released in secondary clarification was originally formed in the activated sludge basin. The emissions from secondary clarification thus seem to be dependent on conditions of the nitrification and denitrification accomplished in the denitrification-nitrification process and on the amount of sludge stored in the secondary clarifiers.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.iwaponline.com/wst/07004/wst070040720.htm", + "creation_date": "2022-03-14T08:15:33.864Z", + "last_change_date": "2022-03-14T08:15:33.864Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17297, + "fields": { + "EF_ID": 622479, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emissions", + "Technology_Practices": "Online measurements over several days were carried out at four different municipal WWTPs in Finland.", + "Parameter_Conditions": "Winter period", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.02-0.90", + "Unit": "g N2O-N/m3 of influent flow", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mikola, A., Heinonen, M., Kosonen, H., Leppanen, M., Rantanen, P. and Vahala, R. N2O emissions from secondary clarifiers and their contribution to the total emissions of the WWTP. Water Science and Technology, 2014, 70(4), 720-728", + "English_Abstract": "Recent studies have indicated that the emissions of nitrous oxide, N2O, constitute a major part of the carbon footprint of wastewater treatment plants (WWTPs). Denitrification occurring in the secondary clarifier basins has been observed by many researchers, but until now N2O emissions from secondary clarifiers have not been widely reported. The objective of this study was to measure the N2O emissions from secondary clarifiers and weigh the portion they could represent of the overall emissions at WWTPs. Online measurements over several days were carried out at four different municipal WWTPs in Finland in cold weather conditions (March) and in warm weather conditions (June-July). An attempt was made to define the conditions in which N2O emissions from secondary clarifiers may occur. It was evidenced that large amounts of N2O can be emitted from the secondary clarifiers, and that the emissions have long-term variation. It was assumed that part of the N2O released in secondary clarification was originally formed in the activated sludge basin. The emissions from secondary clarification thus seem to be dependent on conditions of the nitrification and denitrification accomplished in the denitrification-nitrification process and on the amount of sludge stored in the secondary clarifiers.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.iwaponline.com/wst/07004/wst070040720.htm", + "creation_date": "2022-03-14T08:15:33.946Z", + "last_change_date": "2022-03-14T08:15:33.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17298, + "fields": { + "EF_ID": 622480, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emissions", + "Technology_Practices": "Online measurements over several days were carried out at four different municipal WWTPs in Finland.", + "Parameter_Conditions": "Summer period", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.19-2.70", + "Unit": "g N2O-N/m3 of influent flow", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mikola, A., Heinonen, M., Kosonen, H., Leppanen, M., Rantanen, P. and Vahala, R. N2O emissions from secondary clarifiers and their contribution to the total emissions of the WWTP. Water Science and Technology, 2014, 70(4), 720-728", + "English_Abstract": "Recent studies have indicated that the emissions of nitrous oxide, N2O, constitute a major part of the carbon footprint of wastewater treatment plants (WWTPs). Denitrification occurring in the secondary clarifier basins has been observed by many researchers, but until now N2O emissions from secondary clarifiers have not been widely reported. The objective of this study was to measure the N2O emissions from secondary clarifiers and weigh the portion they could represent of the overall emissions at WWTPs. Online measurements over several days were carried out at four different municipal WWTPs in Finland in cold weather conditions (March) and in warm weather conditions (June-July). An attempt was made to define the conditions in which N2O emissions from secondary clarifiers may occur. It was evidenced that large amounts of N2O can be emitted from the secondary clarifiers, and that the emissions have long-term variation. It was assumed that part of the N2O released in secondary clarification was originally formed in the activated sludge basin. The emissions from secondary clarification thus seem to be dependent on conditions of the nitrification and denitrification accomplished in the denitrification-nitrification process and on the amount of sludge stored in the secondary clarifiers.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.iwaponline.com/wst/07004/wst070040720.htm", + "creation_date": "2022-03-14T08:15:34.065Z", + "last_change_date": "2022-03-14T08:15:34.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17299, + "fields": { + "EF_ID": 622481, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emissions from secondary clarifiers of WWTP", + "Technology_Practices": "Online measurements over several days were carried out at four different municipal WWTPs in Finland.", + "Parameter_Conditions": "Winter period", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5–31", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mikola, A., Heinonen, M., Kosonen, H., Leppanen, M., Rantanen, P. and Vahala, R. N2O emissions from secondary clarifiers and their contribution to the total emissions of the WWTP. Water Science and Technology, 2014, 70(4), 720-728", + "English_Abstract": "Recent studies have indicated that the emissions of nitrous oxide, N2O, constitute a major part of the carbon footprint of wastewater treatment plants (WWTPs). Denitrification occurring in the secondary clarifier basins has been observed by many researchers, but until now N2O emissions from secondary clarifiers have not been widely reported. The objective of this study was to measure the N2O emissions from secondary clarifiers and weigh the portion they could represent of the overall emissions at WWTPs. Online measurements over several days were carried out at four different municipal WWTPs in Finland in cold weather conditions (March) and in warm weather conditions (June-July). An attempt was made to define the conditions in which N2O emissions from secondary clarifiers may occur. It was evidenced that large amounts of N2O can be emitted from the secondary clarifiers, and that the emissions have long-term variation. It was assumed that part of the N2O released in secondary clarification was originally formed in the activated sludge basin. The emissions from secondary clarification thus seem to be dependent on conditions of the nitrification and denitrification accomplished in the denitrification-nitrification process and on the amount of sludge stored in the secondary clarifiers.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.iwaponline.com/wst/07004/wst070040720.htm", + "creation_date": "2022-03-14T08:15:34.146Z", + "last_change_date": "2022-03-14T08:15:34.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17300, + "fields": { + "EF_ID": 622482, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emissions from secondary clarifiers of WWTP", + "Technology_Practices": "Online measurements over several days were carried out at four different municipal WWTPs in Finland.", + "Parameter_Conditions": "Summer period", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11-33", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mikola, A., Heinonen, M., Kosonen, H., Leppanen, M., Rantanen, P. and Vahala, R. N2O emissions from secondary clarifiers and their contribution to the total emissions of the WWTP. Water Science and Technology, 2014, 70(4), 720-728", + "English_Abstract": "Recent studies have indicated that the emissions of nitrous oxide, N2O, constitute a major part of the carbon footprint of wastewater treatment plants (WWTPs). Denitrification occurring in the secondary clarifier basins has been observed by many researchers, but until now N2O emissions from secondary clarifiers have not been widely reported. The objective of this study was to measure the N2O emissions from secondary clarifiers and weigh the portion they could represent of the overall emissions at WWTPs. Online measurements over several days were carried out at four different municipal WWTPs in Finland in cold weather conditions (March) and in warm weather conditions (June-July). An attempt was made to define the conditions in which N2O emissions from secondary clarifiers may occur. It was evidenced that large amounts of N2O can be emitted from the secondary clarifiers, and that the emissions have long-term variation. It was assumed that part of the N2O released in secondary clarification was originally formed in the activated sludge basin. The emissions from secondary clarification thus seem to be dependent on conditions of the nitrification and denitrification accomplished in the denitrification-nitrification process and on the amount of sludge stored in the secondary clarifiers.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.iwaponline.com/wst/07004/wst070040720.htm", + "creation_date": "2022-03-14T08:15:34.250Z", + "last_change_date": "2022-03-14T08:15:34.250Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17301, + "fields": { + "EF_ID": 622483, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O Emission factor for the treatment of high strength nitrogen wastewater", + "Technology_Practices": "The pilot plant consisted in a 150 L granular airlift reactor with a height to diameter ratio of 8.4. It was located in a municipal WWTP in Catalonia, Spain, and it was performing full partial nitrification of reject wastewater produced in situ during the dewatering process of the anaerobic digester sludge from the WWTP.", + "Parameter_Conditions": "DO concentration (mg O2/L): 4.5-7.5", + "Regional_Conditions": "Spain, Europe", + "Control_Technologies": "", + "Other_Properties": "Full or Partial Nitrification. Pilot-scale granular airlift (Granular sludge)", + "Value": "2.2", + "Unit": "%N-N2O/N-oxidized", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pijuan, M., Tora, J., Rodriguez-Caballero, A., Cesar, E., Carrera, J., Perez, J. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater, Water Research, 2014, 49, 23–33", + "English_Abstract": "Nitrous oxide (N2O) and methane emissions were monitored in a continuous granular airlift nitritation reactor from ammonium-rich wastewater (reject wastewater). N2O emissions were found to be dependent on dissolved oxygen (DO) concentration in the range of 1-4.5 mg O2/L, increasing within this range when reducing the DO values. At higher DO concentrations, N2O emissions remained constant at 2.2% of the N oxidized to nitrite, suggesting two different mechanisms behind N2O production, one dependent and one independent of DO concentration. Changes on ammonium, nitrite, free ammonia and free nitrous acid concentrations did not have an effect on N2O emissions within the concentration range tested. When operating the reactor in a sequencing batch mode under high DO concentration (>5 mg O2/L), N2O emissions increased one order of magnitude reaching values of 19.3+/-7.5% of the N oxidized. Moreover, CH4 emissions detected were due to the stripping of the soluble CH4 that remained dissolved in the reject wastewater after anaerobic digestion. Finally, an economical and carbon footprint assessment of a theoretical scaled up of the pilot plant was conducted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.watres.2013.11.009", + "creation_date": "2022-03-14T08:15:34.329Z", + "last_change_date": "2022-03-14T08:15:34.329Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17302, + "fields": { + "EF_ID": 622484, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O Emission factor for the treatment of high strength nitrogen wastewater", + "Technology_Practices": "The pilot plant consisted in a 150 L granular airlift reactor with a height to diameter ratio of 8.4. It was located in a municipal WWTP in Catalonia, Spain, and it was performing full partial nitrification of reject wastewater produced in situ during the dewatering process of the anaerobic digester sludge from the WWTP.", + "Parameter_Conditions": "DO concentration (mg O2/L): 1.1-4.5", + "Regional_Conditions": "Spain, Europe", + "Control_Technologies": "", + "Other_Properties": "Full or Partial nitritation. Pilot-scale granular airlift (Granular sludge)", + "Value": "6.1-2.2", + "Unit": "%N-N2O/N-oxidized", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Pijuan, M., Tora, J., Rodriguez-Caballero, A., Cesar, E., Carrera, J., Perez, J. Effect of process parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating reject wastewater, Water Research, 2014, 49, 23–33", + "English_Abstract": "Nitrous oxide (N2O) and methane emissions were monitored in a continuous granular airlift nitritation reactor from ammonium-rich wastewater (reject wastewater). N2O emissions were found to be dependent on dissolved oxygen (DO) concentration in the range of 1-4.5 mg O2/L, increasing within this range when reducing the DO values. At higher DO concentrations, N2O emissions remained constant at 2.2% of the N oxidized to nitrite, suggesting two different mechanisms behind N2O production, one dependent and one independent of DO concentration. Changes on ammonium, nitrite, free ammonia and free nitrous acid concentrations did not have an effect on N2O emissions within the concentration range tested. When operating the reactor in a sequencing batch mode under high DO concentration (>5 mg O2/L), N2O emissions increased one order of magnitude reaching values of 19.3+/-7.5% of the N oxidized. Moreover, CH4 emissions detected were due to the stripping of the soluble CH4 that remained dissolved in the reject wastewater after anaerobic digestion. Finally, an economical and carbon footprint assessment of a theoretical scaled up of the pilot plant was conducted.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.watres.2013.11.009", + "creation_date": "2022-03-14T08:15:34.425Z", + "last_change_date": "2022-03-14T08:15:34.425Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17303, + "fields": { + "EF_ID": 622485, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emissions", + "Technology_Practices": "Facility employing anaerobic sludge digestion", + "Parameter_Conditions": "Methane flux from storage tank of digested sludge during summer", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46.2", + "Unit": "micromol/m2/s", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities, Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Date of Measurement: November 2011–March 2012 (winter), August– September 2012 (summer), July–September 2013 (summer), and December 2013–January 2014 (winter).", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:34.526Z", + "last_change_date": "2022-03-14T08:15:34.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17304, + "fields": { + "EF_ID": 622486, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility employing anaerobic sludge digestion", + "Parameter_Conditions": "CH4 from water separated from sludge (during summer season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculations were based on the annual volume of water (159,919m3/year) separated from the sludge in facility with anaerobic sludge digestion; 0.47 +/- 0.21 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:34.604Z", + "last_change_date": "2022-03-14T08:15:34.605Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17305, + "fields": { + "EF_ID": 622487, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility without anaerobic sludge digestion", + "Parameter_Conditions": "CH4 from water separated from sludge i(during winter season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.4", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculations were based on the annual volume of water (102,904m3/year) separated from the sludge in facility without anaerobic sludge digestion; 19.4 +/- 1.81 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:34.702Z", + "last_change_date": "2022-03-14T08:15:34.702Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17306, + "fields": { + "EF_ID": 622488, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility without anaerobic sludge digestion", + "Parameter_Conditions": "CH4 from water separated from sludge in facility (during summer season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.86", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculations were based on the annual volume of water (102,904m3/year) separated from the sludge in facility without anaerobic sludge digestion; 2.86 +/- 0.12 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:34.796Z", + "last_change_date": "2022-03-14T08:15:34.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17307, + "fields": { + "EF_ID": 622489, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Facility with anaerobic sludge digestion", + "Parameter_Conditions": "N2O from water separated from sludge (during winter season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0117", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculations were based on the annual volume of water (159,919m3/year) separated from the sludge in facility with anaerobic sludge digestion; 0.0117 +/- 0.005 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:34.903Z", + "last_change_date": "2022-03-14T08:15:34.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17308, + "fields": { + "EF_ID": 622490, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Facility with anaerobic sludge digestion", + "Parameter_Conditions": "N2O from water separated from sludge in facility (during summer season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0151", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculations were based on the annual volume of water (159,919m3/year) separated from the sludge in facility with anaerobic sludge digestion; 0.0151 +/- 0.005 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:34.996Z", + "last_change_date": "2022-03-14T08:15:34.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17309, + "fields": { + "EF_ID": 622491, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Facility without anaerobic sludge digestion", + "Parameter_Conditions": "N2O from water separated from sludge in facility (during winter season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.14", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculations were based on the annual volume of water (102,904m3/year) separated from the sludge in facility without anaerobic sludge digestion; 1.14 +/- 0.086 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.088Z", + "last_change_date": "2022-03-14T08:15:35.088Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17310, + "fields": { + "EF_ID": 622492, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Facility without anaerobic sludge digestion", + "Parameter_Conditions": "N2O from water separated from sludge in facility (during summer season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The calculations were based on the annual volume of water (102,904m3/year) separated from the sludge in facility without anaerobic sludge digestion; 0.350 +/- 0.150 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.188Z", + "last_change_date": "2022-03-14T08:15:35.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17311, + "fields": { + "EF_ID": 622493, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility with anaerobic sludge digestion", + "Parameter_Conditions": "CH4 from dewatering process (during winter season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "667", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on off-gas flow rate (60.5 m3/min) 667 +/- 89.9 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.281Z", + "last_change_date": "2022-03-14T08:15:35.281Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17312, + "fields": { + "EF_ID": 622494, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility with anaerobic sludge digestion", + "Parameter_Conditions": "CH4 from dewatering process (during summer season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99.7", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on off-gas flow rate (60.5 m3/min) 99.7 +/- 17.2 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.363Z", + "last_change_date": "2022-03-14T08:15:35.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17313, + "fields": { + "EF_ID": 622495, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility without anaerobic sludge digestion", + "Parameter_Conditions": "CH4 from dewatering process (during winter season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "127", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on off-gas flow rate (61.3 m3/min) 127 +/- 24.7 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.457Z", + "last_change_date": "2022-03-14T08:15:35.457Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17314, + "fields": { + "EF_ID": 622496, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Facility without anaerobic sludge digestion", + "Parameter_Conditions": "CH4 from dewatering process (during summer season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "219", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Based on off-gas flow rate (61.3 m3/min) 219 +/- 23.2 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.538Z", + "last_change_date": "2022-03-14T08:15:35.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17315, + "fields": { + "EF_ID": 622497, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Facility with anaerobic sludge digestion", + "Parameter_Conditions": "N2O from dewatering process (during summer season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "14.1", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "14.1 +/- 5.23 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.641Z", + "last_change_date": "2022-03-14T08:15:35.641Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17316, + "fields": { + "EF_ID": 622498, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Facility without anaerobic sludge digestion", + "Parameter_Conditions": "N2O from dewatering process i (during winter season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33.3", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "33.3 +/- 7.41 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.721Z", + "last_change_date": "2022-03-14T08:15:35.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17317, + "fields": { + "EF_ID": 622499, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Facility without anaerobic sludge digestion", + "Parameter_Conditions": "N2O from dewatering process (during summer season)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23.1", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "SE: +/-4.25 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.817Z", + "last_change_date": "2022-03-14T08:15:35.817Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17318, + "fields": { + "EF_ID": 622500, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CH4 emission factor", + "Technology_Practices": "Sewage treatment facility with anaerobic sludge digestion", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "509", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "509 +/- 72 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:35.904Z", + "last_change_date": "2022-03-14T08:15:35.904Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17319, + "fields": { + "EF_ID": 622501, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Sewage treatment facility with anaerobic sludge digestion", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.1", + "Unit": "mg/m3 influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kazuyuki Oshita, Takuya Okumura, Masaki Takaoka, Takashi Fujimori, Lise Appels, Raf Dewil. Methane and nitrous oxide emissions following anaerobic digestion of sludge in Japanese sewage treatment facilities. Bioresource Technology, 2014, 171, 175–181", + "English_Abstract": "Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases with global warming potentials (expressed in terms of CO2-equivalents) of 28 and 265, respectively. When emitted to the atmosphere, they significantly contribute to climate change. It was previously suggested that in wastewater treatment facilities that apply anaerobic sludge digestion, CH4 continues to be emitted from digested sludge after leaving the anaerobic digester. This paper studies the CH4 and N2O emissions from anaerobically digested sludge in the subsequent sludge treatment steps. Two full-scale treatment plants were monitored over a 1-year period. Average emissions of CH4 and N2O were 509 +/- 72 mg/m3-influent (wastewater) and 7.1 +/- 2.6 mg/m3-influent, respectively. These values accounted for 22.4 +/- 3.8% of the indirect reduction in CO2-emissions when electricity was generated using biogas. They are considered to be significant.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "7.1 +/- 2.6 (arithmetic mean +/-standard error);", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0960852414011973", + "creation_date": "2022-03-14T08:15:36.002Z", + "last_change_date": "2022-03-14T08:15:36.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17320, + "fields": { + "EF_ID": 622502, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (National structure standards-compatible type)", + "Parameter_Conditions": "Summer season (26.2 and 25.9 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3568", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 845-7995", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.079Z", + "last_change_date": "2022-03-14T08:15:36.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17321, + "fields": { + "EF_ID": 622503, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (National structure standards-compatible type)", + "Parameter_Conditions": "Winter season (-2.8 and 11.1 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1385", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 137-4471", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.178Z", + "last_change_date": "2022-03-14T08:15:36.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17322, + "fields": { + "EF_ID": 622504, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (BOD removal type)", + "Parameter_Conditions": "Summer season (30.3 and 24.3 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2400", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 1057-3779", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.271Z", + "last_change_date": "2022-03-14T08:15:36.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17323, + "fields": { + "EF_ID": 622505, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (BOD removal type)", + "Parameter_Conditions": "Winter season (-2.2 and 8.5 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1568", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 102-4123", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.379Z", + "last_change_date": "2022-03-14T08:15:36.379Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17324, + "fields": { + "EF_ID": 622506, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (BOD and Nitrogen removal type)", + "Parameter_Conditions": "Summer season (29.3 and 26.1 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1739", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 62-8047", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.471Z", + "last_change_date": "2022-03-14T08:15:36.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17325, + "fields": { + "EF_ID": 622507, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (BOD and Nitrogen removal type)", + "Parameter_Conditions": "Winter season (0.8 and 11.1 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "349", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 14-948", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.564Z", + "last_change_date": "2022-03-14T08:15:36.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17326, + "fields": { + "EF_ID": 622508, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale black water treatment facilities with aeration; Johkasou treating night soil only", + "Parameter_Conditions": "Summer season (30.2 and 23.7 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "810", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 191-2368", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.646Z", + "last_change_date": "2022-03-14T08:15:36.646Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17327, + "fields": { + "EF_ID": 622509, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale black water treatment facilities with aeration; Johkasou treating night soil only", + "Parameter_Conditions": "Winter season (0.4 and 6.3 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "110", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 1-483", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.740Z", + "last_change_date": "2022-03-14T08:15:36.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17328, + "fields": { + "EF_ID": 622510, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale storage tank for human waste; vault toilet", + "Parameter_Conditions": "Summer season (29.4 and 22.9 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "117.4", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 1.5-477.2", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.822Z", + "last_change_date": "2022-03-14T08:15:36.822Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17329, + "fields": { + "EF_ID": 622511, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "small scale storage tank for human waste; vault toilet", + "Parameter_Conditions": "Winter season (-1.3 and 3.7 degree celsius at air and wastewater, respectively)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.2", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "range of data: 0-31.5", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.916Z", + "last_change_date": "2022-03-14T08:15:36.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17330, + "fields": { + "EF_ID": 622512, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (National structure standards-compatible type)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Summer season", + "Value": "102.4", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 10.7-165.3", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:36.997Z", + "last_change_date": "2022-03-14T08:15:36.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17331, + "fields": { + "EF_ID": 622513, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (National structure standards-compatible type)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Winter season", + "Value": "41.1", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 0.1-73.1", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.092Z", + "last_change_date": "2022-03-14T08:15:37.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17332, + "fields": { + "EF_ID": 622514, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (BOD removal type)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Summer season", + "Value": "53.3", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 3.3-219.4", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.172Z", + "last_change_date": "2022-03-14T08:15:37.172Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17333, + "fields": { + "EF_ID": 622515, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (BOD removal type)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Winter season", + "Value": "55.7", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 18.7-98.6", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.277Z", + "last_change_date": "2022-03-14T08:15:37.277Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17334, + "fields": { + "EF_ID": 622516, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (BOD and Nitrogen removal type)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Summer season", + "Value": "71.7", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 6.1-357.8", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.355Z", + "last_change_date": "2022-03-14T08:15:37.355Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17335, + "fields": { + "EF_ID": 622517, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale domestic wastewater treatment facilities with aeration; Johkasou (BOD and Nitrogen removal type)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Winter season", + "Value": "174.8", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 21.2-934.8", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.461Z", + "last_change_date": "2022-03-14T08:15:37.461Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17336, + "fields": { + "EF_ID": 622518, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale black water treatment facilities with aeration; Johkasou treating night soil only", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Summer season", + "Value": "55.5", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 9.3-182.2", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.538Z", + "last_change_date": "2022-03-14T08:15:37.538Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17337, + "fields": { + "EF_ID": 622519, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale black water treatment facilities with aeration; Johkasou treating night soil only", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Winter season", + "Value": "22.8", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 0.3-121.7", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.628Z", + "last_change_date": "2022-03-14T08:15:37.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17338, + "fields": { + "EF_ID": 622520, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale storage tank for human waste; vault toilet", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Summer season; average water temperature was 23 degree celsius", + "Value": "0.0329", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 0-0.341", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.714Z", + "last_change_date": "2022-03-14T08:15:37.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17339, + "fields": { + "EF_ID": 622521, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "small scale storage tank for human waste; vault toilet", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "Winter season; average water temperature was 3.7 degree celsius", + "Value": "0.01", + "Unit": "g/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Yoshitaka Ebie, Hiroshi Yamazaki, Shigeaki Inamura, Yusuke Jimbo, Takuro Kobayashi, Hiroyuki Ueda (2014) Development of Emissions Factor for the Decentralized Domestic Wastewater Treatment for the National Greenhouse Gas Inventory, Journal of Water and Environment Technology, 12(1), 33-41.", + "English_Abstract": "Methane and N2O emissions were measured simultaneously in three types of decentralized wastewater treatment facilities to develop new emission factors (EFs) in Japan. Considering the ratio of the actual load to designed load and elapsed time from last desludging, 24 sites for Johkasou treating domestic wastewater, 6 sites for Johkasou treating night soil only, and 30 sites for vault toilet were selected. Gas samples were collected in the morning, afternoon, and evening for every Johkasou site. The investigation was conducted in summer and winter to estimate the annual average EFs. The EFs of CH4 and N2O of both Johkasou were higher than that used in the national greenhouse gas inventory in 2012, whereas the CH4 and N2O EFs of vault toilet were lower. Especially, N2O EF was only 1% of the national inventory in 2012, and almost zero. According to the results of these three types of decentralized wastewater treatment facilities, the emissions of CO2eq in FY2010 were 1.77 times higher than the national inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data: 0-0.2", + "Other_Comments": "", + "Data_Provider": "Yoshitaka Ebie", + "Link": "https://www.jstage.jst.go.jp/article/jwet/12/1/12_33/_article", + "creation_date": "2022-03-14T08:15:37.821Z", + "last_change_date": "2022-03-14T08:15:37.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17340, + "fields": { + "EF_ID": 622522, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane capture rates", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "52", + "Unit": "%", + "Equation": "Equation 3.1, page 3.8, Chapter 3, Volume 5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:37.906Z", + "last_change_date": "2022-03-14T08:15:37.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17341, + "fields": { + "EF_ID": 622523, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of CH4 by volume in generated landfill gas (F)", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "57", + "Unit": "%", + "Equation": "Equation 3.3, page 3.9, Chapter 3, Volume 5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:38.015Z", + "last_change_date": "2022-03-14T08:15:38.015Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17342, + "fields": { + "EF_ID": 622524, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Gross efficiency of modern landfill gas engines", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "Equation 3.1, page 3.8, Chapter 3, Volume 5 of the 2006 IPCC Guidelines. Used to calculate the value of recovered methane (RT) from electricty generated.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:38.124Z", + "last_change_date": "2022-03-14T08:15:38.124Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17343, + "fields": { + "EF_ID": 622525, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Net electrical efficiency of modern landfill gas engines", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "36", + "Unit": "%", + "Equation": "Equation 3.1, page 3.8, Chapter 3, Volume 5 of the 2006 IPCC Guidelines. Used to calculate the value of recovered methane (RT) from electricty generated.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:38.234Z", + "last_change_date": "2022-03-14T08:15:38.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17344, + "fields": { + "EF_ID": 622526, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission of uncombusted methane from modern landfill gas engines", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "1.5", + "Unit": "%", + "Equation": "Equation 3.1, page 3.8, Chapter 3, Volume 5 of the 2006 IPCC Guidelines. Used to calculate the value of recovered methane (RT) from electricty generated.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:38.334Z", + "last_change_date": "2022-03-14T08:15:38.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17345, + "fields": { + "EF_ID": 622527, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Percent by mass of methane flared compared with amount used in gas engines.", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "9.09", + "Unit": "%", + "Equation": "Equation 3.1, page 3.8, Chapter 3, Volume 5 of the 2006 IPCC Guidelines. Used to calculate the value of recovered methane (RT) from electricty generated.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:38.434Z", + "last_change_date": "2022-03-14T08:15:38.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17346, + "fields": { + "EF_ID": 622528, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Percent of methane oxidised compared with amount formed.", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "10", + "Unit": "%", + "Equation": "Equation 3.1, page 3.8, Chapter 3, Volume 5 of the 2006 IPCC Guidelines. Parameter OXT (oxidation factor).", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:38.535Z", + "last_change_date": "2022-03-14T08:15:38.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17347, + "fields": { + "EF_ID": 622529, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Percent of Decomposable Degradable Organic Carbon (DDOC) content of organic wastes landfilled.", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "0.1 to 29.2", + "Unit": "%", + "Equation": "Equation 3.2, page 3.9, Chapter 3, Volume 5 of the 2006 IPCC Guidelines. DDOCm is the product of DOC and DOCf used in this equation.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:38.635Z", + "last_change_date": "2022-03-14T08:15:38.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17348, + "fields": { + "EF_ID": 622530, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane generation rate (k) in the landfilled waste under various moisture regimes in the landfill", + "Technology_Practices": "Large, modern landfills", + "Parameter_Conditions": "Rapidly Decomposing Organics (RDO), Moderately Decomposing Organics (MDO) and Slowly Decomposing Organics (SDO)", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "Comprehensive landfill gas collecton and control systems.", + "Other_Properties": "", + "Value": "0.013 to 0.694", + "Unit": "year-1", + "Equation": "Equations 3.4 and 3.5, page 3.9, Chapter 3, Volume 5 of the 2006 IPCC Guidelines.", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Review of Landfill Methane Emission Modelling by Gregory, R., Stalleicken, J., Lane, R., Arnold, S and Hall, D. Report number 13514290381.506/A.1. Prepared by Golder Associates for the United Kingdom Department for the Environment, Food and Rural Affairs (DEFRA). November 2014. DEFRA Project number WR1908.", + "English_Abstract": "The Department for Environment, Food and Rural Affairs (Defra) considers that waste management accounts for 3% of the United Kingdom`s (UK`s) greenhouse gas emissions, with the majority being emitted from landfills. Current practice is to model these emissions rather than measure them directly. The estimates for methane emissions from landfills come from computer models. For national emissions MELMod is used and for site specific and Pollution Inventory (PI) reporting estimates the model is usually GasSim. Whilst there has been a substantial investment programme in methane capture technology over the last two decades, the precise rate of methane capture remains uncertain. Defra and the Environment Agency (EA) along with the Department of Energy and Climate Change (DECC) have been working together to address this uncertainty. The aim of this project is to provide Defra with an up-to-date, robust figure for the methane capture rate from landfill that can be used to inform policy decisions. Also, the project aims at achieving accurate and defensible reporting of emission from the waste sector in the European greenhouse gas inventory. Golder Associates (Golder) has approached this task by developing a methodology for assessing the methane capture rate for the UK portfolio of large modern landfills with comprehensive gas collection specified as category Type 3 landfill in MELMod. This category of landfills contains all the UK organic waste emplaced since 1979, when the MELMod Type 4 landfills were considered to have ceased filling. Golder quantified the various elements of methane generation and emission for the year of 2011, the latest year for which MELMod reported methane emission estimates. As part of the process, Golder consulted with UK and international landfill gas experts, reviewed research undertaken under the umbrella of the Defra/DECC/EA Methane Capture Project, data made available by the EA as well as peer-reviewed literature. A bibliography detailing relevant articles is appended to the report. This assessment entailed a review of methane generation factors to be used in MELMod to establish the 2011 methane generation from Type 3 landfills including Degradable Decomposable Organic Carbon Content (DDOC) for different waste fractions, waste degradation rates and methane content in landfill gas. Subsequently, the different terms of the managed methane capture were quantified including methane utilised in landfill gas engines, methane flared and methane slippage from engines. Finally, the uncontrolled methane emissions were assessed and estimates were derived for the quantities of methane fugitive emissions from landfill and methane oxidised in the cover soils. The summary of our findings are given below: ? MELMod and GasSim should continue to use current values of the parameter describing available degradable organic content under anaerobic conditions (DDOC). ? The half-lives of waste degradation for a large portfolio of Type 3 UK landfill sites are most realistically represented currently by GasSim “wet” waste degradation rates. This should be kept under review as landfill management practices evolve in the future. Further consideration is also required as to the relative allocation of waste fractions and DDOC to rapid, medium and slowly degrading organic materials (RDO, MDO and SDO) with the various models to better understand their comparability. ? The ratio of methane to carbon dioxide measured in UK landfill gas is calculated to be 57:43% rather than the 50:50% landfill gas production ratio which is the International Panel for Climate Change (IPCC, 2006) default value. Further review of existing research is recommended to investigate these differences. ? Review of the current mix of engine types across the UK portfolio has resulted in an average gross engine efficiency estimate of 40%. It has been assumed that parasitic and other losses are encompassed in a 4% loss factor leading to a net electrical efficiency assumption of 36%. The MELMod model needs to recognise these improvements in electrical efficiency for the UK`s modern landfill portfolio. ? The total methane combusted in 2011 in the UK has been calculated as 1,325,427 tonnes. This is comprised of the following components: ? The quantum of methane utilised in landfill gas engines is calculated be 1,012,501 tonnes for 2011. ? The quantum of methane that is flared from operational sites with landfill gas utilisation is estimated to be 1/11th of the methane utilised in gas engines. The total estimate for 2011 is 92,242 tonnes. ? The quantum of methane that is flared from sites with only flaring as gas control is actually very difficult to quantify. In the absence of representative data for the UK, Golder has suggested a methodology to determine this value, which we estimate is 220,685 tonnes. Additional research is required to refine this value. ? The quantum of methane which passes through landfill gas engines unburnt is calculated to be 1.5% of the gas supplied to gas engines in any one year. For 2011, this is calculated to be 14,836 tonnes of methane. ? The fugitive emissions estimate for 2011 is 1,286,251 tonnes. This is based on a limited and potentially unrepresentative data set. It is recommended that the results of further measurements are made at UK landfill sites, such as during the GAUGE project (2014) which is yet to report, and that these are analysed as they become available to refine this estimate. ? Calculations made on differential absorption lidar (DIAL) emissions measurement datasets suggest an overall methane oxidation value similar to the IPCC default value of 10%. Again, until further field measurements are available for analysis it is recommended that the IPCC default value for methane oxidation of 10% is retained. Golder used these findings to calculate the 2011 methane capture rate for the Type 3 landfill portfolio. This whole life collection efficiency is calculated to be 52% using a methodology based on MELMod methane generation predictions. A second, model independent methodology was employed to validate these findings. This slightly more conservative approach arrived at an estimated methane capture rate of 48%. Applying the latter methodology to a subset of 43 large, operational, modern UK landfills resulted in an estimated instantaneous capture rate of 68% which is close to the median of the range of UK expert`s assumptions for current operational sites of 55-85%. The report includes a detailed sensitivity analysis exploring the impacts of different assumptions for DDOC, waste degradation rates, landfill gas methane content, engine electrical efficiency and amount of flaring on sites that are only using flaring as gas control. The report concludes with recommendations on the calculation of separate collection efficiencies for different modern landfill types that will help to inform current regulatory policy, potential considerations for future updates to MELMod, as well as proposed future research to decrease uncertainty in those elements observed above that are currently quantified based on small data sets or unreliable estimates. Future research may include studies into: the allocation of DDOC to RDO, MDO and SDO between the various models; review of publications to explain the difference in methane content between the measured UK field data and the IPCC (2006) default production value; an historical check on electrical efficiencies; improved quantification of landfill gas flaring; analysis of flaring data with respect to flare types and methane slippage; and analysis of on-going methane emissions monitoring field programmes such as GAUGE to better inform fugitive emissions estimates.", + "Lower_Bound": "unknown", + "Upper_Bound": "unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Peer-reviewed government-funded consultancy report. URL: https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwieiovJ4qjQAhXoCMAKHYs1CIkQFggmMAE&url=http%3A%2F%2Frandd.defra.gov.uk%2FDocument.aspx%3FDocument%3D12439_WR1908ReviewofMethaneEmissionsModelling.pdf&usg=AFQjCNF2BPmEEWFrktVnPRMBabR3Q3nGvQ&sig2=zR6W-HPuN7_Sa3gs1yMTyw&bvm=bv.138493631,d.d24", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "", + "creation_date": "2022-03-14T08:15:38.736Z", + "last_change_date": "2022-03-14T08:15:38.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17349, + "fields": { + "EF_ID": 622531, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission rates", + "Technology_Practices": "Modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14 +/- 0.0854", + "Unit": "kg s-1", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Measuring landfill methane emissions using unmanned aerial systems: field trial and operational guidance Evidence Report SC140015. Published by: Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, United Kingdom. Authors: Allen, G., Pitt, J., Hollingsworth, P., Mead, I., Kabbebe, K., Roberts, G and Percival, C. November 2015.", + "English_Abstract": "This report builds on a previous Environment Agency feasibility study of methane sensing from an unmanned aerial system (UAS), which presented guidance on sensor and platform technology, together with regulatory requirements. Here the aim is to develop and validate a robust method to quantify whole site methane emissions from landfills using measurements from a UAS. The report describes the development of operational airborne UAS platforms equipped for greenhouse gas sampling with a focus on methane concentration determination along a designated flight path around landfill sites. The project was conducted in 3 parts: • development, integration and test ing of quasi-static (rotary) and moving (fixed wing) platforms • planning and execution of a field trial of both systems at a landfill site • assessment of the data and methane flux methodology with guidance for future operational practice The platforms were integrated, tested and operated successfully for 10 days of field work, with many important lessons learned for future operational guidance. This report details those activities and provides guidance on flight design and operational practice in varying environmental conditions. It also presents a method for methane flux calculation and uncertainty, and discusses the utility and limitations of the method in practice. In addition, methane flux was also measured at the same site using a tracer gas dispersion method, on one occasion on 21st November 2014. Comparison of this results shows excellent agreement (within 5%) of the mean flux from UAS measurement, falling well within the uncertainties calculated for either method. However, the authors state that caution is needed in making any conclusion on a validated accuracy for either method based on this one snapshot comparison, especially given that the measurements were not recorded simultaneously. Despite this, this result does lend some additional confidence in both methods within their stated uncertainties. Further simultaneous measurement and blind analysis would be required to build fully validated and quantified assessment of either (or both) method(s", + "Lower_Bound": "See report for details.", + "Upper_Bound": "See report for details.", + "Data_Quality": "See report for details.", + "Data_Quality_Reference": "See report for details.", + "Other_Data_Quality": "See report for details.", + "Data_Provider_Comments": "The paper describes methods for the direct measurement of methane flux, as an alternative to FOD modelling. Mean methane flux from UAS flight 27 November 2014, +/- 1 standard deviation total uncertainty. Peer reviewed report.", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/480568/Measuring_landfill_methane_emissions_report.pdf", + "creation_date": "2022-03-14T08:15:38.837Z", + "last_change_date": "2022-03-14T08:15:38.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17350, + "fields": { + "EF_ID": 622532, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission rates", + "Technology_Practices": "Modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0504 +/- 0.0272", + "Unit": "kg s-1", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Measuring landfill methane emissions using unmanned aerial systems: field trial and operational guidance Evidence Report SC140015. Published by: Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, United Kingdom. Authors: Allen, G., Pitt, J., Hollingsworth, P., Mead, I., Kabbebe, K., Roberts, G and Percival, C. November 2015.", + "English_Abstract": "This report builds on a previous Environment Agency feasibility study of methane sensing from an unmanned aerial system (UAS), which presented guidance on sensor and platform technology, together with regulatory requirements. Here the aim is to develop and validate a robust method to quantify whole site methane emissions from landfills using measurements from a UAS. The report describes the development of operational airborne UAS platforms equipped for greenhouse gas sampling with a focus on methane concentration determination along a designated flight path around landfill sites. The project was conducted in 3 parts: • development, integration and test ing of quasi-static (rotary) and moving (fixed wing) platforms • planning and execution of a field trial of both systems at a landfill site • assessment of the data and methane flux methodology with guidance for future operational practice The platforms were integrated, tested and operated successfully for 10 days of field work, with many important lessons learned for future operational guidance. This report details those activities and provides guidance on flight design and operational practice in varying environmental conditions. It also presents a method for methane flux calculation and uncertainty, and discusses the utility and limitations of the method in practice. In addition, methane flux was also measured at the same site using a tracer gas dispersion method, on one occasion on 21st November 2014. Comparison of this results shows excellent agreement (within 5%) of the mean flux from UAS measurement, falling well within the uncertainties calculated for either method. However, the authors state that caution is needed in making any conclusion on a validated accuracy for either method based on this one snapshot comparison, especially given that the measurements were not recorded simultaneously. Despite this, this result does lend some additional confidence in both methods within their stated uncertainties. Further simultaneous measurement and blind analysis would be required to build fully validated and quantified assessment of either (or both) method(s", + "Lower_Bound": "See report for details.", + "Upper_Bound": "See report for details.", + "Data_Quality": "See report for details.", + "Data_Quality_Reference": "See report for details.", + "Other_Data_Quality": "See report for details.", + "Data_Provider_Comments": "The paper describes methods for the direct measurement of methane flux, as an alternative to FOD modelling. Mean methane flux from UAS flight 5th March 2015, +/- 1 standard deviation total uncertainty. Peer reviewed report.", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/480568/Measuring_landfill_methane_emissions_report.pdf", + "creation_date": "2022-03-14T08:15:38.937Z", + "last_change_date": "2022-03-14T08:15:38.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17351, + "fields": { + "EF_ID": 622533, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission rates", + "Technology_Practices": "Modern landfills", + "Parameter_Conditions": "", + "Regional_Conditions": "United Kingdom of Great Britain and Northern Ireland. Temperate maritime climate with rainfall rates decreasing from west to east of the country.", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.148 +/- 0.0260", + "Unit": "kg s-1", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Measuring landfill methane emissions using unmanned aerial systems: field trial and operational guidance Evidence Report SC140015. Published by: Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, United Kingdom. Authors: Allen, G., Pitt, J., Hollingsworth, P., Mead, I., Kabbebe, K., Roberts, G and Percival, C. November 2015.", + "English_Abstract": "This report builds on a previous Environment Agency feasibility study of methane sensing from an unmanned aerial system (UAS), which presented guidance on sensor and platform technology, together with regulatory requirements. Here the aim is to develop and validate a robust method to quantify whole site methane emissions from landfills using measurements from a UAS. The report describes the development of operational airborne UAS platforms equipped for greenhouse gas sampling with a focus on methane concentration determination along a designated flight path around landfill sites. The project was conducted in 3 parts: • development, integration and test ing of quasi-static (rotary) and moving (fixed wing) platforms • planning and execution of a field trial of both systems at a landfill site • assessment of the data and methane flux methodology with guidance for future operational practice The platforms were integrated, tested and operated successfully for 10 days of field work, with many important lessons learned for future operational guidance. This report details those activities and provides guidance on flight design and operational practice in varying environmental conditions. It also presents a method for methane flux calculation and uncertainty, and discusses the utility and limitations of the method in practice. In addition, methane flux was also measured at the same site using a tracer gas dispersion method, on one occasion on 21st November 2014. Comparison of this results shows excellent agreement (within 5%) of the mean flux from UAS measurement, falling well within the uncertainties calculated for either method. However, the authors state that caution is needed in making any conclusion on a validated accuracy for either method based on this one snapshot comparison, especially given that the measurements were not recorded simultaneously. Despite this, this result does lend some additional confidence in both methods within their stated uncertainties. Further simultaneous measurement and blind analysis would be required to build fully validated and quantified assessment of either (or both) method(s", + "Lower_Bound": "See report for details.", + "Upper_Bound": "See report for details.", + "Data_Quality": "See report for details.", + "Data_Quality_Reference": "See report for details.", + "Other_Data_Quality": "See report for details.", + "Data_Provider_Comments": "The paper describes methods for the direct measurement of methane flux, as an alternative to FOD modelling. Mean methane flux from from tracer dispersion method on 21st November 2014, +/- 1 standard deviation total uncertainty. Peer reviewed report.", + "Other_Comments": "", + "Data_Provider": "Dr Keith A Brown", + "Link": "https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/480568/Measuring_landfill_methane_emissions_report.pdf", + "creation_date": "2022-03-14T08:15:39.038Z", + "last_change_date": "2022-03-14T08:15:39.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17352, + "fields": { + "EF_ID": 622534, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Waste composition", + "Technology_Practices": "", + "Parameter_Conditions": "7 regions of China", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "Due to the collection and classification of waste of China, paper waste includes paper and disposable nappies, wood waste includes wood, straw and garden wastes. Seven regions: Northwest (Xinjiang, Gansu, Qinghai, Ningxia, Shaanxi), North China (Shanxi, Inner Mongolia, Hebei, Beijing, Tianjin), Northeast (Heilongjiang, Jilin, Liaoning), Central China (Henan, Hubei, Hunan), East China (Shandong, Jiangsu, Anhui, Shanghai, Zhejiang, Fujian, Jiangxi), Southwest (Chongqing, Sichuan, Guizhou, Yunnan, Tibet), South China (Guangdong, Guangxi, Hainan).", + "Value": "food waste (39.26-59,90), paper (5.00-7.67), textile (1.54-4.45), wood (1.55-3.64)", + "Unit": "% of waste (wet)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Values given above (cell Value) note highest and lowest value for certain waste type in all regions. In detail: Northwest: food waste (39.26), paper (5.00), textile (2.38), wood (3.92) North China: food waste (53.25), paper (7.67), textile (3.26), wood (3.21) Northeast: food waste (59.90), paper (7.30), textile (1.54), wood (2.30) Central China: food waste (35.57), paper (4.58), textile (1.07), wood (1.73) East China: food waste (54.07), paper (7.27), textile (4.45), wood (1.55) Southwest: food waste (45.54), paper (7.14), textile (3.14), wood (3.64) South China: food waste (44.05), paper (5.80), textile (2.00), wood (3.17) Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.139Z", + "last_change_date": "2022-03-14T08:15:39.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17353, + "fields": { + "EF_ID": 622535, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of DOC (dry basis): food waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Food waste: 52", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.248Z", + "last_change_date": "2022-03-14T08:15:39.248Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17354, + "fields": { + "EF_ID": 622536, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of DOC (dry basis): paper", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Paper: 35", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.348Z", + "last_change_date": "2022-03-14T08:15:39.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17355, + "fields": { + "EF_ID": 622537, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of DOC (dry basis): textile", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Textile:41", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.448Z", + "last_change_date": "2022-03-14T08:15:39.448Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17356, + "fields": { + "EF_ID": 622538, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of DOC (dry basis): wood", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Wood:49", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.550Z", + "last_change_date": "2022-03-14T08:15:39.550Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17357, + "fields": { + "EF_ID": 622539, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of DOC (wet basis): food waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Food waste: 11", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.676Z", + "last_change_date": "2022-03-14T08:15:39.676Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17358, + "fields": { + "EF_ID": 622540, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of DOC (wet basis): paper", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Paper: 24", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.785Z", + "last_change_date": "2022-03-14T08:15:39.785Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17359, + "fields": { + "EF_ID": 622541, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of DOC (wet basis): textile", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Textile: 27", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.885Z", + "last_change_date": "2022-03-14T08:15:39.886Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17360, + "fields": { + "EF_ID": 622542, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of DOC (wet basis): wood", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Wood: 33", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:39.986Z", + "last_change_date": "2022-03-14T08:15:39.986Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17361, + "fields": { + "EF_ID": 622543, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane correction factor", + "Technology_Practices": "The landfills are classified into 3 classification due to its capacity, namely I (>5 million m3), II (2-5 million m3) and III (<2 million m3).", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "I: 1 II: 0.92 III: 0.61", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:40.086Z", + "last_change_date": "2022-03-14T08:15:40.086Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17362, + "fields": { + "EF_ID": 622544, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane oxidation factor", + "Technology_Practices": "The landfills are classified into 3 classification due to its capacity, namely I (>5 million m3), II (2-5 million m3) and III (<2 million m3).", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "I: 0 II: 0.08 (Northwest), 0.10 (North China, Northeast, Central China, East China), 0.15 (Southwest, South China) III: 0.15 (Northwest), 0.20 (North China, Northeast, Central China, East China), 0.30 (Southwest, South China)", + "Unit": "", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:40.195Z", + "last_change_date": "2022-03-14T08:15:40.195Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17363, + "fields": { + "EF_ID": 622545, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane recovery rate (%)", + "Technology_Practices": "The landfills are classified into 3 classification due to its capacity, namely I (>5 million m3), II (2-5 million m3) and III (<2 million m3).", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "I: 40 II: 24 III: 5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "CAI Bo-Feng, LIU Jian-Guo, GAO Qing-Xian, et al. Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources [J]. Advances in Climate Change, 2014, 5 (2): 81-91.", + "English_Abstract": "The Methane (CH4) emissions from Municipal Solid Waste (MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD (First-Order Decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition, degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 million t in 2007. Compared with the CH4 emissions of 2.20 million t in 2005 reported in the Second National Communication on Climate Change of The People`s Republic of China, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed of in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t. Jiangsu province rankes the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general, the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Reference journal contains usefull Methane emission factors data for different years, regions and landfill types. Due to the large amount of data those are not included into database, but are usefull for the reader.", + "Other_Comments": "", + "Data_Provider": "Bofeng Cai, Jianguo Liu, Qingxian Gao", + "Link": "http://www.sciencedirect.com/science/article/pii/S1674927814500147", + "creation_date": "2022-03-14T08:15:40.321Z", + "last_change_date": "2022-03-14T08:15:40.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17364, + "fields": { + "EF_ID": 622546, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Paper and cardboard", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Paper and cardboard: 10.0-31.87", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:40.430Z", + "last_change_date": "2022-03-14T08:15:40.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17365, + "fields": { + "EF_ID": 622547, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Food waste", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Food waste: 15.0-42.19", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:40.539Z", + "last_change_date": "2022-03-14T08:15:40.539Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17366, + "fields": { + "EF_ID": 622548, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Metal", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Metal: 2.05-8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:40.648Z", + "last_change_date": "2022-03-14T08:15:40.648Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17367, + "fields": { + "EF_ID": 622549, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Textiles", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Textiles: 1.65-10", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:40.765Z", + "last_change_date": "2022-03-14T08:15:40.765Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17368, + "fields": { + "EF_ID": 622550, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Glass", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Glass: 5.0-13", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:40.874Z", + "last_change_date": "2022-03-14T08:15:40.874Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17369, + "fields": { + "EF_ID": 622551, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Plastics", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Plastics: 2.0-10", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:40.983Z", + "last_change_date": "2022-03-14T08:15:40.983Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17370, + "fields": { + "EF_ID": 622552, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Bones", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Bones: 0.5-6.0", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.093Z", + "last_change_date": "2022-03-14T08:15:41.093Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17371, + "fields": { + "EF_ID": 622553, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Wood", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Wood: 1.0-6.0", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.210Z", + "last_change_date": "2022-03-14T08:15:41.210Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17372, + "fields": { + "EF_ID": 622554, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Small fractions` residues", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Small fractions` residues: 2.19-10.0", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.328Z", + "last_change_date": "2022-03-14T08:15:41.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17373, + "fields": { + "EF_ID": 622555, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Other", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Other: 1-35.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.445Z", + "last_change_date": "2022-03-14T08:15:41.445Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17374, + "fields": { + "EF_ID": 622556, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Rubber and leather", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Rubber and leather: 1.0-4.0", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.554Z", + "last_change_date": "2022-03-14T08:15:41.554Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17375, + "fields": { + "EF_ID": 622557, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW compostion (%): Stones", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Stones: 0.2-4.61", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "For 2010 data: Guidelines to determine the morphological composition of municipal solid waste in cities with different degrees of housing improvement, Ministry of Housing and Communal Services of the Republic of Belarus, 2011", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW Composition: Paper and cardboard: 10.0-31.87 Food waste: 15.0-42.19 Metal: 2.05-8 Textiles: 1.65-10 Glass: 5.0-13 Plastics: 2.0-10 Bones: 0.5-6.0 Wood: 1.0-6.0 Small fractions` residues: 2.19-10.0 Other: 1-35.8 Rubber and leather: 1.0-4.0 Stones: 0.2-4.61. Data are provided for the years: 1999, 2004, 2007, 2008, 2010; Value field contains lowest an highest values from these years. Details of waste compostion per year is given for 1999, 2004, 2007, 2008, 2010. Paper and cardboard: 10-20; 28; 28; 25-30; 31.87; Food waste: 15-25; 27; 27; 30-38; 42.19; Metal: 4-8; 7; -; 2.2-3.8; 2.05; Textiles: 6-10; 7; 7; 4.0-7.0; 1.65; Glass: 6-12; 13; -; 5.0-8.0; 5.64; Plastics: 10-12; 10; -; 2.0-5.0; 6.26; Bones: 4-6; 1; -; 0.5-2.0; -; Wood: 4-6; 1; 1; 1.5-3.0; 2.32; Small fractions` residues: 6-10; 3; -; 7.0-13.0; 2.19; Other: 6-10; 1; 35.8; 1.0-2.0; -; Rubber and leather: -; 1; 1; 2.0-4.0; 1.1; Stones: -; 1; 0.2; 1.0-3.0; 4.61 .", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.663Z", + "last_change_date": "2022-03-14T08:15:41.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17376, + "fields": { + "EF_ID": 622558, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW generation rate (Residential buildings with conveniences)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.52-0.77", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Decree of the Ministry of Housing and Communal Services and Ministry ? natural resources and environmental protection of the Republic of Belarus, 27.06.2013 ?18/27 On approval of rules for determining the standards of municipal waste generation”", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW from different residential buildings. MSW generation rate: Residential buildings with conveniences: 0.52-0.77 Residential buildings without conveniences that are in the republican and municipal property: 1.23 Residential buildings without conveniences owned by citizens and legal entities of non-state forms of property ownership: 1.23-1.92", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.772Z", + "last_change_date": "2022-03-14T08:15:41.772Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17377, + "fields": { + "EF_ID": 622559, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW generation rate (Residential buildings without conveniences that are in the republican and municipal property)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.23", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Decree of the Ministry of Housing and Communal Services and Ministry ? natural resources and environmental protection of the Republic of Belarus, 27.06.2013 ?18/27 On approval of rules for determining the standards of municipal waste generation”", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW from different residential buildings. MSW generation rate: Residential buildings with conveniences: 0.52-0.77 Residential buildings without conveniences that are in the republican and municipal property: 1.23 Residential buildings without conveniences owned by citizens and legal entities of non-state forms of property ownership: 1.23-1.92", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.881Z", + "last_change_date": "2022-03-14T08:15:41.881Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17378, + "fields": { + "EF_ID": 622560, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW generation rate (Residential buildings without conveniences owned by citizens and legal entities of non-state forms of property ownership)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.23-1.92", + "Unit": "kg/cap/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Decree of the Ministry of Housing and Communal Services and Ministry ? natural resources and environmental protection of the Republic of Belarus, 27.06.2013 ?18/27 On approval of rules for determining the standards of municipal waste generation”", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste, and about 4 million tons of municipal waste. According to the belarussian legislation the morphological composition of municipal solid waste should be conducted at least one time in five years. Responsible body for conducting such surveys and performing the results is Ministry of Housing and Communal Services of the Republic of Belarus", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "MSW from different residential buildings. MSW generation rate: Residential buildings with conveniences: 0.52-0.77 Residential buildings without conveniences that are in the republican and municipal property: 1.23 Residential buildings without conveniences owned by citizens and legal entities of non-state forms of property ownership: 1.23-1.92", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:41.957Z", + "last_change_date": "2022-03-14T08:15:41.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17379, + "fields": { + "EF_ID": 622561, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Industrial waste generation", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "18123-49865", + "Unit": "thoudand tonnes per year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Industry of the Republic of Belarus, Statistic Yearbook, National Statistical Committee of the Republic of Belarus", + "English_Abstract": "In Belarus today the situation with the waste is very serious. Despite the improvement of legislation, development of the state, departmental and regional programs for waste management and other documents, there are generated annually 40-50 million tons of industrial waste. Responsible body for conducting surveys and performing the activity data are National Statistical Committee of the Republic of Belarus and Central Research Institute for Complex Use of Water Resources", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data provided for the period 1995-2015; Value cell represents lowest and highest values; 1995: 19360 1996: 18123 1997: 22336 1998: 22591 1999: 22953 2000: 23260 2001: 24549 2002: 26027 2003: 27962 2004: 31300 2005: 34782 2006: 33455 2007: 37955 2008: 39768 2009: 27277 2010: 43775 2011: 44307 2012: 40847 2013: 40305 2014: 52529 2015: 49865", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:42.056Z", + "last_change_date": "2022-03-14T08:15:42.056Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17380, + "fields": { + "EF_ID": 622562, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Protein consumption", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Belarus/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "66.85-88.4", + "Unit": "g/cap/day", + "Equation": "Equation 6.8, page 6.25 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Social Conditions and Living Standarts of the Population in the Republic of Belarus, Statistic Yearbook, National Statistical Committee of the Republic of Belarus", + "English_Abstract": "Responsible body for conducting surveys and performing the activity data are National Statistical Committee of the Republic of Belarus and Central Research Institute for Complex Use of Water Resources", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data provided for the period 1991-2015; Value cell represents lowest and highest values; 1990: 77.53 1991: 75.34 1992: 73.15 1993: 70.96 1994: 69.04 1995: 66.85 1996: 70.68 1997: 73.97 1998: 78.08 1999: 81.64 2000: 81.92 2001: 83.56 2002: 84.11 2003: 80.40 2004: 82.19 2005: 84 2006: 84.5 2007: 84.4 2008: 81.9 2009: 77.8 2010: 78.3 2011: 80.6 2012: 82.5 2013: 84.5 2014: 88.1 2015: 88.4", + "Other_Comments": "", + "Data_Provider": "Kristina Gonchar", + "Link": "", + "creation_date": "2022-03-14T08:15:42.141Z", + "last_change_date": "2022-03-14T08:15:42.141Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17381, + "fields": { + "EF_ID": 622563, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Extended Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in all units of WWTP", + "Parameter_Conditions": "The WWTP serves 2,500 people with influent flow rate (Q) = 950 m3 day-1, Hydraulic Retention Time (HRT) = 0.5 days, Solids Retention Time (SRT) = 25 days. Average of Influent BOD and TN are 200 and 40 g m-3, respectively. The average air flow was 1.1 x 104 m3 day-1.", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves unit of Research and Education", + "Value": "0.14", + "Unit": "% of N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Brotto, A.C., de Mello, W.Z., Kligerman, D.C., Piccoli, A.S. (2010) Nitrous oxide emissions from activated sludge wastewater treatment plant with prolonged aeration process. Quimica Nova 33, 618-623 (In Portuguese).", + "English_Abstract": "Nitrous oxide emissions from an activated sludge plant which serves a research institute in Rio de Janeiro city were estimated from six unit processes (grit tank, sand trap, aeration tank, secondary settling tank, sludge recirculation line and aerobic digester sludge tank) and also from the plant effluent. Total estimated annual flux was 3.2 x 104 g N2O yr-1 of which about 90% was from the aeration tank. Emission factors estimated from population served, wastewater flow and nitrogen load (conversion ratio) were 13 g N2 O person-1 yr-1, 9.0 x 10-5 g N2O L wastewater-1 and 0.14%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422010000300025", + "creation_date": "2022-03-14T08:15:42.207Z", + "last_change_date": "2022-03-14T08:15:42.207Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17382, + "fields": { + "EF_ID": 622564, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Extended Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in all units of WWTP", + "Parameter_Conditions": "The WWTP serves 2,500 people with influent flow rate (Q) = 950 m3 day-1, Hydraulic Retention Time (HRT) = 0.5 days, Solids Retention Time (SRT) = 25 days. Average of Influent BOD and TN are 200 and 40 g m-3, respectively. The average air flow was 1.1 x 104 m3 day-1.", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves unit of Research and Education", + "Value": "13", + "Unit": "g N2O per person per year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Brotto, A.C., de Mello, W.Z., Kligerman, D.C., Piccoli, A.S. (2010) Nitrous oxide emissions from activated sludge wastewater treatment plant with prolonged aeration process. Quimica Nova 33, 618-623 (In Portuguese).", + "English_Abstract": "Nitrous oxide emissions from an activated sludge plant which serves a research institute in Rio de Janeiro city were estimated from six unit processes (grit tank, sand trap, aeration tank, secondary settling tank, sludge recirculation line and aerobic digester sludge tank) and also from the plant effluent. Total estimated annual flux was 3.2 x 104 g N2O yr-1 of which about 90% was from the aeration tank. Emission factors estimated from population served, wastewater flow and nitrogen load (conversion ratio) were 13 g N2 O person-1 yr-1, 9.0 x 10-5 g N2O L wastewater-1 and 0.14%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422010000300025", + "creation_date": "2022-03-14T08:15:42.299Z", + "last_change_date": "2022-03-14T08:15:42.299Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17383, + "fields": { + "EF_ID": 622565, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Extended Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in all units of WWTP", + "Parameter_Conditions": "The WWTP serves 2,500 people with influent flow rate (Q) = 950 m3 day-1, Hydraulic Retention Time (HRT) = 0.5 days, Solids Retention Time (SRT) = 25 days. Average of Influent BOD and TN are 200 and 40 g m-3, respectively. The average air flow was 1.1 x 104 m3 day-1.", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves unit of Research and Education", + "Value": "9 x 10-5", + "Unit": "g N2O per Liter of wastewater", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Brotto, A.C., de Mello, W.Z., Kligerman, D.C., Piccoli, A.S. (2010) Nitrous oxide emissions from activated sludge wastewater treatment plant with prolonged aeration process. Quimica Nova 33, 618-623 (In Portuguese).", + "English_Abstract": "Nitrous oxide emissions from an activated sludge plant which serves a research institute in Rio de Janeiro city were estimated from six unit processes (grit tank, sand trap, aeration tank, secondary settling tank, sludge recirculation line and aerobic digester sludge tank) and also from the plant effluent. Total estimated annual flux was 3.2 x 104 g N2O yr-1 of which about 90% was from the aeration tank. Emission factors estimated from population served, wastewater flow and nitrogen load (conversion ratio) were 13 g N2 O person-1 yr-1, 9.0 x 10-5 g N2O L wastewater-1 and 0.14%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422010000300025", + "creation_date": "2022-03-14T08:15:42.374Z", + "last_change_date": "2022-03-14T08:15:42.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17384, + "fields": { + "EF_ID": 622566, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Intemitent Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 2,000 people with influent flow rate (Q) = 600 m3 day-1, Hydraulic Retention Time (HRT) = 0.2 days, Solids Retention Time (SRT) = 13 days. Average of Influent COD and TN are 217 and 28 g m3, respectively. During the aeration period the average air flow was 1.5 x 104 m3 day-1", + "Regional_Conditions": "The highland of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves a small municipality", + "Value": "0.10", + "Unit": "% of N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "de Mello, W.Z., Ribeiro, R.P., Brotto, A.C., Kligerman, D.C., Piccoli, A.S., Oliveira, J.L.M. (2013) Nitrous oxide emission from an intermittent aeration activated sludge system of an urban wastewater treatment plant. Quimica Nova 36, 16-20.", + "English_Abstract": "This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP).N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422013000100004", + "creation_date": "2022-03-14T08:15:42.467Z", + "last_change_date": "2022-03-14T08:15:42.467Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17385, + "fields": { + "EF_ID": 622567, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Intemitent Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 2,000 people with influent flow rate (Q) = 600 m3 day-1, Hydraulic Retention Time (HRT) = 0.2 days, Solids Retention Time (SRT) = 13 days. Average of Influent COD and TN are 217 and 28 g m3, respectively. During the aeration period the average air flow was 1.5 x 104 m3 day-1", + "Regional_Conditions": "The highland of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves a small municipality", + "Value": "8.8", + "Unit": "g of N2O per person per year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "de Mello, W.Z., Ribeiro, R.P., Brotto, A.C., Kligerman, D.C., Piccoli, A.S., Oliveira, J.L.M. (2013) Nitrous oxide emission from an intermittent aeration activated sludge system of an urban wastewater treatment plant. Quimica Nova 36, 16-20.", + "English_Abstract": "This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP).N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422013000100004", + "creation_date": "2022-03-14T08:15:42.548Z", + "last_change_date": "2022-03-14T08:15:42.548Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17386, + "fields": { + "EF_ID": 622568, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Intemitent Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 2,000 people with influent flow rate (Q) = 600 m3 day-1, Hydraulic Retention Time (HRT) = 0.2 days, Solids Retention Time (SRT) = 13 days. Average of Influent COD and TN are 217 and 28 g m3, respectively. During the aeration period the average air flow was 1.5 x 104 m3 day-1", + "Regional_Conditions": "The highland of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves a small municipality", + "Value": "8.0 x 10-5", + "Unit": "g N2O per liter of wastewater", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "de Mello, W.Z., Ribeiro, R.P., Brotto, A.C., Kligerman, D.C., Piccoli, A.S., Oliveira, J.L.M. (2013) Nitrous oxide emission from an intermittent aeration activated sludge system of an urban wastewater treatment plant. Quimica Nova 36, 16-20.", + "English_Abstract": "This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP).N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422013000100004", + "creation_date": "2022-03-14T08:15:42.645Z", + "last_change_date": "2022-03-14T08:15:42.645Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17387, + "fields": { + "EF_ID": 622569, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Conventional Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 470,000 people with influent flow rate (Q) = 1.5 x 105 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = from 10-12 days. Average of Influent COD and TN are 634 and 43 g m3, respectively. The average air flow was 1.2 x 105 m3 day-1", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter and nitrogen removals", + "Other_Properties": "The WWTP serves Metropolitan Area", + "Value": "0.02", + "Unit": "% of N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ribeiro, R.P., de Mello, W.Z., Kligerman, D.C., Oliveira, J.L.M., Alvim, R.B., Andrade, A.S., Brotto, A.C., de Almeida, P.A. (2013) Emissões de óxido nitroso do tanque de aeração de uma estação de tratamento de esgotos com sistema de lodos ativados convencional. Química Nova 36, 998-1003", + "English_Abstract": "Nitrous oxide (N2O) emissions were measured monthly from January to June 2010 in the aeration tank of a wastewater treatment plant (WWTP) in Southeast Brazil. Emissions were lower in summer than winter and were positively related with influent ammonium (NH4+) concentration. The average N2O emission was 1.11 kg N day-1corresponding to 0.02% of the influent total nitrogen load. The average emission factor calculated for the population served was 2.5 lower than that proposed by the Intergovernmental Panel on Climate Change (IPCC) for inventories of N2O emissions from WWTPs with controlled nitrification and denitrification processes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422013000700013", + "creation_date": "2022-03-14T08:15:42.732Z", + "last_change_date": "2022-03-14T08:15:42.732Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17388, + "fields": { + "EF_ID": 622570, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Conventional Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 470,000 people with influent flow rate (Q) = 1.5 x 105 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = from 10-12 days. Average of Influent COD and TN are 634 and 43 g m3, respectively. The average air flow was 1.2 x 105 m3 day-1", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter and nitrogen removals", + "Other_Properties": "The WWTP serves Metropolitan Area", + "Value": "1.3", + "Unit": "g N20 per person per year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ribeiro, R.P., de Mello, W.Z., Kligerman, D.C., Oliveira, J.L.M., Alvim, R.B., Andrade, A.S., Brotto, A.C., de Almeida, P.A. (2013) Emissões de óxido nitroso do tanque de aeração de uma estação de tratamento de esgotos com sistema de lodos ativados convencional. Química Nova 36, 998-1003", + "English_Abstract": "Nitrous oxide (N2O) emissions were measured monthly from January to June 2010 in the aeration tank of a wastewater treatment plant (WWTP) in Southeast Brazil. Emissions were lower in summer than winter and were positively related with influent ammonium (NH4+) concentration. The average N2O emission was 1.11 kg N day-1corresponding to 0.02% of the influent total nitrogen load. The average emission factor calculated for the population served was 2.5 lower than that proposed by the Intergovernmental Panel on Climate Change (IPCC) for inventories of N2O emissions from WWTPs with controlled nitrification and denitrification processes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422013000700013", + "creation_date": "2022-03-14T08:15:42.828Z", + "last_change_date": "2022-03-14T08:15:42.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17389, + "fields": { + "EF_ID": 622571, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Conventional Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 470,000 people with influent flow rate (Q) = 1.5 x 105 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = from 10-12 days. Average of Influent COD and TN are 634 and 43 g m3, respectively. The average air flow was 1.2 x 105 m3 day-1", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter and nitrogen removals", + "Other_Properties": "The WWTP serves Metropolitan Area", + "Value": "1.2 x 10-5", + "Unit": "g N2O per Liter of wastewater", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ribeiro, R.P., de Mello, W.Z., Kligerman, D.C., Oliveira, J.L.M., Alvim, R.B., Andrade, A.S., Brotto, A.C., de Almeida, P.A. (2013) Emissões de óxido nitroso do tanque de aeração de uma estação de tratamento de esgotos com sistema de lodos ativados convencional. Química Nova 36, 998-1003", + "English_Abstract": "Nitrous oxide (N2O) emissions were measured monthly from January to June 2010 in the aeration tank of a wastewater treatment plant (WWTP) in Southeast Brazil. Emissions were lower in summer than winter and were positively related with influent ammonium (NH4+) concentration. The average N2O emission was 1.11 kg N day-1corresponding to 0.02% of the influent total nitrogen load. The average emission factor calculated for the population served was 2.5 lower than that proposed by the Intergovernmental Panel on Climate Change (IPCC) for inventories of N2O emissions from WWTPs with controlled nitrification and denitrification processes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://dx.doi.org/10.1590/S0100-40422013000700013", + "creation_date": "2022-03-14T08:15:42.907Z", + "last_change_date": "2022-03-14T08:15:42.907Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17390, + "fields": { + "EF_ID": 622572, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Conventional Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 470,000 people with influent flow rate (Q) = 1.5 x 105 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = from 10-12 days. Average of Influent COD and TN are 600 and 38g m-3, respectively. The average air flow was 2.4 x 105 m3 day-1", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter and nitrogen removals", + "Other_Properties": "", + "Value": "0.2", + "Unit": "% of N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Renato P. Ribeiro, Renata B. Alvim, Samara A. Andrade, Débora C. Kligerman, Paulo A. de Almeida, Jaime L. M. Oliveira, William Z. de Mello. Controlling Factors of Nitrous Oxide Emissions from a Conventional Activated Sludge Wastewater Treatment Plant. ENGEVISTA, V. 17, n. 3, p. 375-384. 2015", + "English_Abstract": "Nitrous oxide emissions were determined in three campaigns in the aeration tank of a full scale conventional activated sludge wastewater treatment plant. During these experiments, the carbonaceous organic matter (BOD and COD) removal was high and rather constant (97-98% and 93-96%). The results indicate that the concentration of total nitrogen in the influent wastewater, especially NH4+, and the aeration flow rate are key controlling factor of N2O emissions from the aeration tank. Nitrification was the major source of N2O, suggested by the behavior of DO concentrations, NO3-/NH4+ ratio and pH values along the six interlinked zones of the aeration tank. Excessive air flow intensified N2O transfer from the liquor to the atmosphere by air stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "the emission in terms of % of N load has as range: 0.04–0.30%", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "www.uff.br/engevista/seer/index.php/engevista/article/download/698/336", + "creation_date": "2022-03-14T08:15:43.004Z", + "last_change_date": "2022-03-14T08:15:43.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17391, + "fields": { + "EF_ID": 622573, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Conventional Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 470,000 people with influent flow rate (Q) = 1.5 x 105 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = from 10-12 days. Average of Influent COD and TN are 600 and 38g m-3, respectively. The average air flow was 2.4 x 105 m3 day-1", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter and nitrogen removals", + "Other_Properties": "", + "Value": "12.1", + "Unit": "g N2O per person per year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Renato P. Ribeiro, Renata B. Alvim, Samara A. Andrade, Débora C. Kligerman, Paulo A. de Almeida, Jaime L. M. Oliveira, William Z. de Mello. Controlling Factors of Nitrous Oxide Emissions from a Conventional Activated Sludge Wastewater Treatment Plant. ENGEVISTA, V. 17, n. 3, p. 375-384. 2015", + "English_Abstract": "Nitrous oxide emissions were determined in three campaigns in the aeration tank of a full scale conventional activated sludge wastewater treatment plant. During these experiments, the carbonaceous organic matter (BOD and COD) removal was high and rather constant (97-98% and 93-96%). The results indicate that the concentration of total nitrogen in the influent wastewater, especially NH4+, and the aeration flow rate are key controlling factor of N2O emissions from the aeration tank. Nitrification was the major source of N2O, suggested by the behavior of DO concentrations, NO3-/NH4+ ratio and pH values along the six interlinked zones of the aeration tank. Excessive air flow intensified N2O transfer from the liquor to the atmosphere by air stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "the emission in terms of g N2O per person per year has as range: 3.0-19.6", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "www.uff.br/engevista/seer/index.php/engevista/article/download/698/336", + "creation_date": "2022-03-14T08:15:43.082Z", + "last_change_date": "2022-03-14T08:15:43.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17392, + "fields": { + "EF_ID": 622574, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Conventional Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 470,000 people with influent flow rate (Q) = 1.5 x 105 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = from 10-12 days. Average of Influent COD and TN are 600 and 38g m-3, respectively. The average air flow was 2.4 x 105 m3 day-1", + "Regional_Conditions": "Metropolitan region of Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter and nitrogen removals", + "Other_Properties": "", + "Value": "1.0 x 10-4", + "Unit": "g N2O per liter wastewater", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Renato P. Ribeiro, Renata B. Alvim, Samara A. Andrade, Débora C. Kligerman, Paulo A. de Almeida, Jaime L. M. Oliveira, William Z. de Mello. Controlling Factors of Nitrous Oxide Emissions from a Conventional Activated Sludge Wastewater Treatment Plant. ENGEVISTA, V. 17, n. 3, p. 375-384. 2015", + "English_Abstract": "Nitrous oxide emissions were determined in three campaigns in the aeration tank of a full scale conventional activated sludge wastewater treatment plant. During these experiments, the carbonaceous organic matter (BOD and COD) removal was high and rather constant (97-98% and 93-96%). The results indicate that the concentration of total nitrogen in the influent wastewater, especially NH4+, and the aeration flow rate are key controlling factor of N2O emissions from the aeration tank. Nitrification was the major source of N2O, suggested by the behavior of DO concentrations, NO3-/NH4+ ratio and pH values along the six interlinked zones of the aeration tank. Excessive air flow intensified N2O transfer from the liquor to the atmosphere by air stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "the emission in terms of g N2O per Liter of wastewater has as range: 3.0 x 10-5 -1.9 x 10-4", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "www.uff.br/engevista/seer/index.php/engevista/article/download/698/336", + "creation_date": "2022-03-14T08:15:43.181Z", + "last_change_date": "2022-03-14T08:15:43.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17393, + "fields": { + "EF_ID": 622575, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Modified Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 50,000 people with influent flow rate (Q) = 1.5 x 104 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = 3 days. Average of Influent COD and TN are 460 and 46 g m3, respectively. The average air flow was 1.3 x 105 m3 day-1.", + "Regional_Conditions": "Niterói, Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves a medium-sized municipality", + "Value": "0.12", + "Unit": "% N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Brotto, A.C., Kligerman, D.C., Andrade, S.A., Ribeiro, R.P., Oliveira, J.L.M., Chandran, K., de Mello, W.Z. Factors controlling nitrous oxide emissions from a full-scale activated sludge system in the tropics. Environ Sci Pollut Res (2015) 22: 11840. doi:10.1007/s11356-015-4467-x", + "English_Abstract": "Despite interest in characterizing nitrous oxide (N2O) emissions from wastewater treatment plants (WWTPs) in several parts of the globe, there are few studies in tropical zones. This study focus on the contribution of the scientific knowledge of anthropogenic nitrogen greenhouse gas emissions to climate change in tropical countries, investigating factors controlling N2O emissions in a non-biological nitrogen removal municipal WWTP. In terms of operational parameters, dissolved oxygen (DO) concentrations displayed a biphasic impact on N2O production and emission, with the highest emission at DO of 2.0 mg-O2/L . The low solids retention time of 3 days also played a significant role, leading to nitrite accumulation, which is an important trigger for N2O production during nitrification. Furthermore, other factor especially important for tropical countries, namely, temperature, also had a positive correlation with N2O production. Emission factors estimated for this study were 0.12 (0.02–0.31)% of the influent total nitrogen load and 8.1 (3–17) g N2O/person/year , 2.5 times higher than currently proposed emission factors. Therefore, the highly variability and dependence on operational parameters reinforce the use of a single emission factor is inadequate, especially for developing countries with limited or variable extent of biological wastewater treatment and in regions of the world with widely varying climate patterns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "the emission in terms of % N load has range 0.02–0.31", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://link.springer.com/article/10.1007/s11356-015-4467-x", + "creation_date": "2022-03-14T08:15:43.289Z", + "last_change_date": "2022-03-14T08:15:43.290Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17394, + "fields": { + "EF_ID": 622576, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Modified Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 50,000 people with influent flow rate (Q) = 1.5 x 104 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = 3 days. Average of Influent COD and TN are 460 and 46 g m3, respectively. The average air flow was 1.3 x 105 m3 day-1.", + "Regional_Conditions": "Niterói, Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves a medium-sized municipality", + "Value": "8.1", + "Unit": "g N2O per person per year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Brotto, A.C., Kligerman, D.C., Andrade, S.A., Ribeiro, R.P., Oliveira, J.L.M., Chandran, K., de Mello, W.Z. Factors controlling nitrous oxide emissions from a full-scale activated sludge system in the tropics. Environ Sci Pollut Res (2015) 22: 11840. doi:10.1007/s11356-015-4467-x", + "English_Abstract": "Despite interest in characterizing nitrous oxide (N2O) emissions from wastewater treatment plants (WWTPs) in several parts of the globe, there are few studies in tropical zones. This study focus on the contribution of the scientific knowledge of anthropogenic nitrogen greenhouse gas emissions to climate change in tropical countries, investigating factors controlling N2O emissions in a non-biological nitrogen removal municipal WWTP. In terms of operational parameters, dissolved oxygen (DO) concentrations displayed a biphasic impact on N2O production and emission, with the highest emission at DO of 2.0 mg-O2/L . The low solids retention time of 3 days also played a significant role, leading to nitrite accumulation, which is an important trigger for N2O production during nitrification. Furthermore, other factor especially important for tropical countries, namely, temperature, also had a positive correlation with N2O production. Emission factors estimated for this study were 0.12 (0.02–0.31)% of the influent total nitrogen load and 8.1 (3–17) g N2O/person/year , 2.5 times higher than currently proposed emission factors. Therefore, the highly variability and dependence on operational parameters reinforce the use of a single emission factor is inadequate, especially for developing countries with limited or variable extent of biological wastewater treatment and in regions of the world with widely varying climate patterns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "the emission in terms of g N2O per person per year has range: 3-17", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://link.springer.com/article/10.1007/s11356-015-4467-x", + "creation_date": "2022-03-14T08:15:43.398Z", + "last_change_date": "2022-03-14T08:15:43.398Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17395, + "fields": { + "EF_ID": 622577, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor Measured in Modified Aeration Activated Sludge Wastewater Treatment Process", + "Technology_Practices": "Activated sludge without biological nitrogen removal. It was measured (nitrous oxide) in aeration tank", + "Parameter_Conditions": "The WWTP serves 50,000 people with influent flow rate (Q) = 1.5 x 104 m3 day-1, Hydraulic Retention Time (HRT) = 0.4 days, Solids Retention Time (SRT) = 3 days. Average of Influent COD and TN are 460 and 46 g m3, respectively. The average air flow was 1.3 x 105 m3 day-1.", + "Regional_Conditions": "Niterói, Rio de Janeiro, Brazil. Tropical Climate Zone.", + "Control_Technologies": "Measured the efficiency of organic matter removal", + "Other_Properties": "The WWTP serves a medium-sized municipality", + "Value": "8.0 x 10-5", + "Unit": "g N2O per liter of wastewater", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Brotto, A.C., Kligerman, D.C., Andrade, S.A., Ribeiro, R.P., Oliveira, J.L.M., Chandran, K., de Mello, W.Z. Factors controlling nitrous oxide emissions from a full-scale activated sludge system in the tropics. Environ Sci Pollut Res (2015) 22: 11840. doi:10.1007/s11356-015-4467-x", + "English_Abstract": "Despite interest in characterizing nitrous oxide (N2O) emissions from wastewater treatment plants (WWTPs) in several parts of the globe, there are few studies in tropical zones. This study focus on the contribution of the scientific knowledge of anthropogenic nitrogen greenhouse gas emissions to climate change in tropical countries, investigating factors controlling N2O emissions in a non-biological nitrogen removal municipal WWTP. In terms of operational parameters, dissolved oxygen (DO) concentrations displayed a biphasic impact on N2O production and emission, with the highest emission at DO of 2.0 mg-O2/L . The low solids retention time of 3 days also played a significant role, leading to nitrite accumulation, which is an important trigger for N2O production during nitrification. Furthermore, other factor especially important for tropical countries, namely, temperature, also had a positive correlation with N2O production. Emission factors estimated for this study were 0.12 (0.02–0.31)% of the influent total nitrogen load and 8.1 (3–17) g N2O/person/year , 2.5 times higher than currently proposed emission factors. Therefore, the highly variability and dependence on operational parameters reinforce the use of a single emission factor is inadequate, especially for developing countries with limited or variable extent of biological wastewater treatment and in regions of the world with widely varying climate patterns.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Debora Cynamon Kligerman", + "Link": "http://link.springer.com/article/10.1007/s11356-015-4467-x", + "creation_date": "2022-03-14T08:15:43.516Z", + "last_change_date": "2022-03-14T08:15:43.516Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17396, + "fields": { + "EF_ID": 622578, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane generation constant (k)", + "Technology_Practices": "Methane generation constant (k)", + "Parameter_Conditions": "Landfill site", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "LFG capture and flaring/ LFG capture and used as fuel for power generation", + "Other_Properties": "", + "Value": "0.017 - 0.021", + "Unit": "1/year", + "Equation": "2006 IPCC Guidelines, Vol. 5, Chapter 3, Equation 3.1-3.3", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Determination of methane generation constant using direct measurement from Korean landfills, KECO (2015), Final Report", + "English_Abstract": "CH4 emissions from three municipal solid waste (MSW) landfills in Korea (Daejeon Metropolitan City Landfill, Chuncheon City Landfill, Goesan Province Landfill) were directly measured using static flux chamber for diffusion flux of CH4 from the landfill surfaces and using continuous emission measurement system (non-dispersive infrared detector) for CH4 from the extraction wells of landfill gas (LFG). Degradable organic carbons (DOCs) by waste compositions were measured for four seasons and yearly DOC values were determined from the weighted average DOC value of each waste component and its yearly landfilled fraction. The fractions of CH4 in the LFG were also measured using Gas Chromatograph (GC) when the measurements of CH4 were practiced. Daily landfilled amounts were monitored by weighing system. We used the default values for the other parameters (DOCf and MCF). The methane generation constants (k) for the three landfills were estimated using trial-and-error method to allow the best fit of theoretical CH4 emissions to the measured ones. Methane generation rates of the landfills in Daejeon city, Chuncheon city, and Goesan Provice, respectively, showed 0.017+/-0.0027 yr-1, 0.0028+/-0.0020 yr-1, and 0.021+/-0.014 yr-1 within the confidence interval of 95%. The k values of the three landfills in Korea are much lower than the default k value (0.05 yr-1) reported by the IPCC guidelines. The main reason for the lower k values is attributed to the recent ban of organic wastes such as food wastes from landfilling. Especially, the k value for the landfill in Chuncheon city showed much lower than those of the other landfills. Since the Chuncheon landfill has only landfilled inorganic wastes since 2011, the CH4 emissions has been greatly reduced recently. The CH4 generation rates as well as the methane generation constants are mainly determined by the characteristics of landfilled waste components.", + "Lower_Bound": "See Comments from Data Provider", + "Upper_Bound": "See Comments from Data Provider", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane generation constant (k) depending on the types of landfills was determined using direct measurement of CH4 emission from landfill. So, this information would be valuable for improving the quality and reliability of the methane generation constant. Lower Confidence Limit: (Dajeon Landfill) 0.0143 yr-1, (Chuncheon Landfill) 0.008yr-1, (Geosan Landfill) 0.007yr-1; Upper Confidence Limit: (Dajeon Landfill) 0.0197 yr-1, (Chuncheon Landfill) 0.048yr-1, (Geosan Landfill) 0.035yr-1; Relative standard deviations for Dajeon, Chuncheon and Geosan landfills were 7.9%, 35.7%, and 33.3%, respectively. Date calculated: 1. Daecheon city: 2016-01-27, 2016-02-02 2. Chuncheon city: 2016-02-02 3. Goesan province: 2016-01-25, 27 and 2016-02-02 External Quality Control Performed: 1. External bodies (National Greenhouse Inventory and Research Center) were involved in verifying the results and register the country-specific values in national data system; 2. Measurement; instruments were caliburated before measuring the flow rates of LFG and methane concentrations by following the procedures suggested by manufacturers; 3. Data processing and handling; general and waste-specific QC procedures provided by the 2006 IPCC Guidelines were applied. Date of Measurement: 1. Daecheon city: 2016-06-29 to 2016-07-02 (1st measurement); 2016-08-10 to 2016-08-13 (2nd measurement); 2016-09-14 to 2016-09-17 (3rd measurement); 2016-11-30 to 2016-12-01 (4th measurement). 2. Chuncheon city: 2016-06-22 to 2016-06-25 (1st measurement); 2016-07-28 to 2016-08-05 (2nd measurement), 2016-09-07 to 2016-09-10 (3rd measurement); 2016-11-02 to 2016-11-06 (4th measurement). 3. Goesan province: 2016-07-07 to 2016-07-17 (1st measurement); 2016-08-17 to 2016-08-19 (2nd measurement); 2016-09-22 to 2016-09-23 (3rd measurement); 2016-11-16 to 2016-11-18 (4th measurement).", + "Other_Comments": "", + "Data_Provider": "Hallym unveristiy", + "Link": "", + "creation_date": "2022-03-14T08:15:43.616Z", + "last_change_date": "2022-03-14T08:15:43.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17397, + "fields": { + "EF_ID": 622579, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater Produced/Wastewater Generation (W)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Dairy Products", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2-6", + "Unit": "m3/tonnes of product", + "Equation": "2006 IPCC Guidelines: Equation 6.6 in Chapter 6 of Vol.5; Revised 1996 IPCC Guidelines: Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "2006 IPCC Guidelines: 4D2, 1 of 3; Revised 1996 IPCC Guidelines: 6-3, 1 of 4", + "Data_Source": "National Communications", + "Technical_Reference": "National Institute of Industrial Technology (2010). Characterization and treatment of the liquid effluents of the dairy industry", + "English_Abstract": "The parameter was included in this document of the Department of Liquid and Solid Effluents of the National Institute of Industrial Technology that characterizes the liquid effluents of the dairy industry. This is considered as an endorsement of the data by a national authority in this field and because of this it was used in the national inventories. However, as it is based on external sources, there is no information about how the parameter was estimated.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Centre of Environmental Technologies and Energy (CTAE), Faculty of Engineering, Universidad Nacional del Centro de la Provincia de Buenos Aires.", + "Link": "https://www.inti.gob.ar/lacteos/pdf/caracterizacion.pdf", + "creation_date": "2022-03-14T08:15:43.717Z", + "last_change_date": "2022-03-14T08:15:43.717Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17398, + "fields": { + "EF_ID": 622580, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Dairy Products", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "kg BOD/m3 wastewater", + "Equation": "2006 IPCC Guidelines: Equation 6.6 in Chapter 6 of Vol.5; Revised 1996 IPCC Guidelines: Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "2006 IPCC Guidelines: 4D2, 1 of 3; Revised 1996 IPCC Guidelines: 6-3, 1 of 4", + "Data_Source": "National Communications", + "Technical_Reference": "National Institute of Industrial Technology (2010). Characterization and treatment of the liquid effluents of the dairy industry", + "English_Abstract": "The parameter was included in this document of the Department of Liquid and Solid Effluents of the National Institute of Industrial Technology that characterizes the liquid effluents of the dairy industry. This is considered as an endorsement of the data by a national authority in this field and because of this it was used in the national inventories. However, as it is based on external sources, there is no information about how the parameter was estimated.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Centre of Environmental Technologies and Energy (CTAE), Faculty of Engineering, Universidad Nacional del Centro de la Provincia de Buenos Aires.", + "Link": "https://www.inti.gob.ar/lacteos/pdf/caracterizacion.pdf", + "creation_date": "2022-03-14T08:15:43.818Z", + "last_change_date": "2022-03-14T08:15:43.818Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17399, + "fields": { + "EF_ID": 622581, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater Produced/Wastewater Generation (W)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Meat", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "m3/animal", + "Equation": "2006 IPCC Guidelines: Equation 6.6 in Chapter 6 of Vol.5; Revised 1996 Guidelines: Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "2006 IPCC Guidelines: 4D2, 1 of 3; Revised 1996 IPCC Guidelines: 6-3, 1 of 4", + "Data_Source": "National Communications", + "Technical_Reference": "Ministry of Production (2009) Report on the environmental, social and economic aspects of the slaughterhouse industry, María Silvina Lobo Poblet", + "English_Abstract": "The parameter was included in this document of the Environmental Unit of the Ministry of Production that characterizes the environmental aspects of the slaughterhourse industry. This is considered as an endorsement of the data by a national authority of this field and because of this it was used in the national inventories. However, there is no information about how the parameter was estimated.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Centre of Environmental Technologies and Energy (CTAE), Faculty of Engineering, Universidad Nacional del Centro de la Provincia de Buenos Aires.", + "Link": "", + "creation_date": "2022-03-14T08:15:43.890Z", + "last_change_date": "2022-03-14T08:15:43.890Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17400, + "fields": { + "EF_ID": 622582, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Wastewater Produced/Wastewater Generation (W)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Poultry", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.018", + "Unit": "m3/animal", + "Equation": "2006 IPCC Guidelines: Equation 6.6 in Chapter 6 of Vol.5; Revised 1996 IPCC Guidelines: Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "2006 IPCC Guidelines: 4D2, 1 of 3; Revised 1996 IPCC Guidelines: 6-3, 1 of 4", + "Data_Source": "National Communications", + "Technical_Reference": "“Las Camelias Biogas Energy Project from Wastewater Treatment” Clean Development Mechanism – Project Design Document (2012)", + "English_Abstract": "In the framework of the CDM registration of a biogas project of a poultry wastewater treatment plant, monthly Q (flow rate) measures were conducted during three years in order to estimate its capacity of CH4 generation. Instantaneous and totalized flow were measured at the outlet of the Dissolved Air Flotation system previous to the anaerobic lagoon with electromagnetic flowmeter Burkert Type 8045, pipeline diameter DN 06-400, measurement interval 0.2-10 m/s, sensor through electrode, higher fluid temperature 80 degrees centigrade, precision level < /-2%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The data is a combination of three years average of effluent production (m3/hour) - monthly measured during three years from 2008 to 2010- and plant production capacity (animal/hour).", + "Other_Comments": "", + "Data_Provider": "Centre of Environmental Technologies and Energy (CTAE), Faculty of Engineering, Universidad Nacional del Centro de la Provincia de Buenos Aires.", + "Link": "http://cdm.unfccc.int/Projects/DB/TUEV-RHEIN1356933254.08/view", + "creation_date": "2022-03-14T08:15:43.963Z", + "last_change_date": "2022-03-14T08:15:43.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17401, + "fields": { + "EF_ID": 622583, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Poultry", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.9-3.7", + "Unit": "kg COD/m3 wastewater", + "Equation": "2006 IPCC Guidelines: Equation 6.6 in Chapter 6 of Vol.5; Revised 1996 IPCC Guidelines: Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "2006 IPCC Guidelines: 4D2, 1 of 3; Revised 1996 IPCC Guidelines: 6-3, 1 of 4", + "Data_Source": "National Communications", + "Technical_Reference": "“Las Camelias Biogas Energy Project from Wastewater Treatment” Clean Development Mechanism – Project Design Document (2012)", + "English_Abstract": "In the framework of the CDM registration of a biogas project of a poultry wastewater treatment plant, monthly COD (Chemical Oxygen Demand) measures were conducted during three years in order to estimate its capacity of CH4 generation. Determinations of the monthly sampling were carried out in an external official lab using the Standard Close Reflux Method SM 5220 D.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Centre of Environmental Technologies and Energy (CTAE), Faculty of Engineering, Universidad Nacional del Centro de la Provincia de Buenos Aires.", + "Link": "http://cdm.unfccc.int/Projects/DB/TUEV-RHEIN1356933254.08/view", + "creation_date": "2022-03-14T08:15:44.070Z", + "last_change_date": "2022-03-14T08:15:44.070Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17402, + "fields": { + "EF_ID": 622584, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Wastewater Produced/Wastewater Generation", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fish", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10.4-11.3", + "Unit": "m3/tonnes of product", + "Equation": "2006 IPCC Guidelines: Equation 6.6 in Chapter 6 of Vol.5; Revised 1996 IPCC Guidelines: Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "2006 IPCC Guidelines: 4D2, 1 of 3; Revised 1996 IPCC Guidelines: 6-3, 1 of 4", + "Data_Source": "National Communications", + "Technical_Reference": "González J.F., Civit E.M. and Lupin H.M. “Composition of fish filleting wastewater”. Centre of Research of Fishing Technologies. National Instititute of Industrial Technologies. Published in Water SA. Vol. 9, No. 2, 49-56. 1983v", + "English_Abstract": "The first step in pollution control is the characterization of the ffluent. This paper intends to be a contribution to the knowledge of fishery effluents and to give the information necessary for wastewater treatment. Analyses for temperature, pH, settleatble matter, total residue, grease and oil, phosphate, total Kjeldahl nitrogen, ammonia, nitrate, nitrite, BOD and COD were performed. Data were statistically analysed. It was concluded that the operational policy had a decisive influence on the composition of the wastewater. Moreover, seasonal variation, which could be correlated to raw material seasonal changes, was detected for grease and oil.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Centre of Environmental Technologies and Energy (CTAE), Faculty of Engineering, Universidad Nacional del Centro de la Provincia de Buenos Aires.", + "Link": "", + "creation_date": "2022-03-14T08:15:44.158Z", + "last_change_date": "2022-03-14T08:15:44.158Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17403, + "fields": { + "EF_ID": 622585, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fish", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9986", + "Unit": "kg COD/m3 wastewater", + "Equation": "2006 IPCC Guidelines: Equation 6.6 in Chapter 6 of Vol.5; Revised 1996 IPCC Guidelines: Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "2006 IPCC Guidelines: 4D2, 1 of 3; Revised 1996 IPCC Guidelines: 6-3, 1 of 4", + "Data_Source": "National Communications", + "Technical_Reference": "González J.F., Civit E.M. and Lupin H.M. “Composition of fish filleting wastewater”. Centre of Research of Fishing Technologies. National Instititute of Industrial Technologies. Published in Water SA. Vol. 9, No. 2, 49-56. 1983v", + "English_Abstract": "This paper intends to be a contribution to the knowledge of fishery effluents and to give the information necessary for wastewater treatment. Analyses for temperature, pH, settleatble matter, total residue, grease and oil, phosphate, total Kjeldahl nitrogen, ammonia, nitrate, nitrite, BOD and COD were performed. Data were statistically analysed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Coefficient of variation: 27.52%", + "Other_Comments": "", + "Data_Provider": "Centre of Environmental Technologies and Energy (CTAE), Faculty of Engineering, Universidad Nacional del Centro de la Provincia de Buenos Aires.", + "Link": "", + "creation_date": "2022-03-14T08:15:44.255Z", + "last_change_date": "2022-03-14T08:15:44.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17404, + "fields": { + "EF_ID": 622586, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biochemical Oxygen Demand (BOD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Food - Fish", + "Regional_Conditions": "Argentina", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.528", + "Unit": "kg BOD/m3 wastewater", + "Equation": "2006 IPCC Guidelines: Equation 6.6 in Chapter 6 of Vol.5; Revised 1996 IPCC Guidelines: Equation 8 in Chapter 6 of Vol.3", + "IPCC_Worksheet": "2006 IPCC Guidelines: 4D2, 1 of 3; Revised 1996 IPCC Guidelines: 6-3, 1 of 4", + "Data_Source": "National Communications", + "Technical_Reference": "González J.F., Civit E.M. and Lupin H.M. “Composition of fish filleting wastewater”. Centre of Research of Fishing Technologies. National Instititute of Industrial Technologies. Published in Water SA. Vol. 9, No. 2, 49-56. 1983v", + "English_Abstract": "This paper intends to be a contribution to the knowledge of fishery effluents and to give the information necessary for wastewater treatment. Analyses for temperature, pH, settleatble matter, total residue, grease and oil, phosphate, total Kjeldahl nitrogen, ammonia, nitrate, nitrite, BOD and COD were performed. Data were statistically analysed.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Coefficient of variation: 44.72%", + "Other_Comments": "", + "Data_Provider": "Centre of Environmental Technologies and Energy (CTAE), Faculty of Engineering, Universidad Nacional del Centro de la Provincia de Buenos Aires.", + "Link": "", + "creation_date": "2022-03-14T08:15:44.349Z", + "last_change_date": "2022-03-14T08:15:44.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17405, + "fields": { + "EF_ID": 622587, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane generation constant (k)", + "Technology_Practices": "Methane generation constant (k)", + "Parameter_Conditions": "Landfill site", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "LFG capture and flaring/ LFG capture and used as fuel for power generation", + "Other_Properties": "", + "Value": "Metropolitan city landfill: 0.073 (0.045-0.127) City landfill: 0.04 (0.04-0.13) Province landfill: 0.09 (0.08-0.15) Overall: 0.053", + "Unit": "1/year", + "Equation": "2006 IPCC Guidelines, Vol. 5, Chapter 3, Equations 3.1-3.3", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "National Inventory Report - Korea (2015)", + "English_Abstract": "CH4 emissions from twenty municipal solid waste (MSW) landfills in Korea (Metropolitan city landfill: 3 locations, City landfill: 5 locations, Province landfill: 12 locations/ total 20 locations) were directly measured using static flux chamber for diffusion flux of CH4 from the landfill surfaces and using continuous emission measurement system for CH4 from the extraction wells of landfill gas (LFG). Degradable organic carbons (DOCs) by waste compositions were measured for four seasons and yearly DOC values were determined from the average DOC value of each waste component and its yearly landfilled fraction. We used the default values for the other parameters (DOCf and MCF). CH4 emissions is calculated with FOD methodology. The methane generation rate constants (k) for the twenty landfills were estimated using trial-and-error method to allow the best fit of theoretical CH4 emissions to the measured ones. We used method of least squares error to make K values of the twenty landfill one. Methane generation rates of the landfills in (Metropolitan city, city, and Province, respectively, showed 0.073 (0.045~0.127)yr-1, 0.04 (0.04~0.13)yr-1, and 0.09 (0.08~0.15)yr-1 within the confidence interval of 90%. The combined methane generation rates of the three city is 0.053yr-1. The k values of the landfills in Korea are similar to the default k value (0.05 yr-1) reported by the IPCC Guidelines. The k value for the other landfills showed much lower than Province landfill. The main reason for the lower k values is due to the recent restriction of city landfill of organic wastes such as food wastes. On the other hand, Province landfill are allowed. The CH4 generation rates as well as the methane generation constants are mainly determined by the characteristics of landfilled waste components.", + "Lower_Bound": "See Comments from Data Provider", + "Upper_Bound": "See Comments from Data Provider", + "Data_Quality": "Nitrogen gas (0 PPM) is injected into the NDIR sensor and it is calibrated using methane gas (4600 ppm).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Methane generation constant (k) was determined using direct measurement of CH4 emission from landfill. So, this information would be valuable for improving the quality and reliability of the methane generation constant. Lower Confidence Limit: Metropolitan city landfill: 0.04 yr-1, City landfill: 0.01 yr-1, Province: 0.01 yr-1, Overall: 0.01 yr-1. Upper Confidence Limit: Metropolitan city landfill: 0.19 yr-1, City landfill: 0.33 yr-1, Province: 0.24 yr-1, Overall: 0.33 yr-1. Date calculated: 1. Metropolitan city landfill: 2014-05-08 2. City landfill: 2014-05-08 3. Province landfill: 2014-05-08 External Quality Control Performed: 1. External bodies (National Greenhouse Inventory and Research Center) were involved in verifying the results and register the country-specific values in national data system; 2. Measurement: instruments were caliburated before measuring the flow rates of LFG and methane concentrations by following the procedures suggested by manufacturers; 3. Data processing and handling; general and waste-specific QC procedures provided by the 2006 IPCC Guidelines were applied. Date of Measurement: Metropolitan city landfill A landfill: 2008, 2009, 2010 (Total 6 measurements) B landfil: 2009, 2010 (Total 4 measurements) C landfil: 2010 (Total 1 measurements) City landfill A landfill: 2007, 2008, 2009, 2010, 2011 (Total 9 measurements) B landfill: 2008, 2009, 2010, 2011 (Total 7 measurements) C landfill: 2009, 2010, 2011 (Total 5 measurements) D landfill: 2010, 2011 (Total 3 measurements) E landfill: 2011 (Total 1 measurements) Province landfill A landfill: 2009, 2010, 2011 (Total 5 measurements) B landfill: 2010, 201 1(Total 3 measurements) D landfill: 2012 (Total 2 measurements) E landfill: 2012 (Total 2 measurements) F landfill: 2012 (Total 4 measurements) G landfill: 2012 (Total 2 measurements) H landfill: 2012 (Total 2 measurements) I landfill: 2012 (Total 2 measurements) J landfill: 2012 (Total 2 measurements) K landfill: 2012 (Total 1 measurements) L landfill: 2012 (Total 3 measurements) M landfill: 2010, 2011 (Total 3 measurements)", + "Other_Comments": "", + "Data_Provider": "Korea Environment Cooperation (KECO)", + "Link": "", + "creation_date": "2022-03-14T08:15:44.421Z", + "last_change_date": "2022-03-14T08:15:44.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17406, + "fields": { + "EF_ID": 622588, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "MSW composition (%)", + "Technology_Practices": "", + "Parameter_Conditions": "Range of MSW composition (%) in Bangkok metropolitan area during 2000-2013", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Food waste 30.6-48.4 Paper/cardboard 7.7-15.2 Plastics 19.4-27.9 Glass 1.7-5.1 Metals 0.9-2.2 Rubber and Leather 0.1-2.1 Textiles 2.8-8.1 Garden waste 5.1-8.5 Others 1.2-14.8", + "Unit": "% (by weight)", + "Equation": "Equation 5.4 on Page 5.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Bangkok Metropolitan Administration. This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Food waste: 46.9, 46.9, 34.2, 30.6, 34.7, 44.3, 45.0, 42.1, 41.9, 44.3, 48.4, 44.7, 42.7, 43.3 Paper/cardboard: 8.7, 8.6, 13.6, 13.4, 10.4, 9.7, 11.8, 11.7, 11.0, 11.9, 7.7, 12.1, 15.2, 11.6 Plastics: 19.5, 19.4, 20.8, 23.2, 25.1, 27.9, 26.5, 26.5, 25.1, 23.9, 26.4, 25.4, 26.6, 26.7 Glass: 2.6, 2.3, 5.1, 2.6, 3.0, 3.2, 1.7, 2.7, 2.6, 2.7, 2.6, 2.8, 2.7, 3.1 Metals: 1.5, 1.6, 2.2, 1.3, 0.9, 2.1, 1.6, 1.8, 2.0, 1.7, 1.7, 1.5, 1.2, 1.2 Rubber and Leather: 0.1, 0.8, 2.1, 0.6, 0.2, 0.8, 1.0, 1.0, 1.9, 2.0, 1.4, 1.5, 0.8, 1.5 Textiles: 6.4, 4.0, 4.5, 8.1, 4.8, 4.6, 5.2, 5.3, 5.3, 5.5, 4.0, 4.2, 2.8, 3.9 Garden waste: 6.7, 7.5, 6.6, 8.5, 6.2, 5.1, 6.1, 7.6, 8.1, 5.7, 6.5, 5.3, 6.0, 6.4 Others: 7.6, 8.9, 10.9, 11.7, 14.8, 2.4, 1.2, 1.4, 2.2, 2.4, 1.4, 2.6, 2.0, 2.4", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:44.523Z", + "last_change_date": "2022-03-14T08:15:44.523Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17407, + "fields": { + "EF_ID": 622589, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "", + "Parameter_Conditions": "Range of DOC in MSW of Bangkok metropolitan area during 2000-2013", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.123-0.146", + "Unit": "Gg/Gg", + "Equation": "Equation 5.4 on Page 5.9 of the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is calculated based on the MSW composition according to the IPCC guidelines. The MSW composition is included in database of the Bangkok Metropolitan Administration. This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 DOC: 0.142, 0.134, 0.135, 0.146, 0.123, 0.132, 0.146, 0.144, 0.142, 0.146, 0.130, 0.141, 0.146, 0.138", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:44.599Z", + "last_change_date": "2022-03-14T08:15:44.599Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17408, + "fields": { + "EF_ID": 622590, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Meat Packing", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "1.796-2.490", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 2.490, 1.796, 1.921, 2.054, 1.902", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:44.671Z", + "last_change_date": "2022-03-14T08:15:44.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17409, + "fields": { + "EF_ID": 622591, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Dairy products", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "2.410-4.251", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 2.410, 3.630, 4.102, 4.251, 2.690", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:44.766Z", + "last_change_date": "2022-03-14T08:15:44.766Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17410, + "fields": { + "EF_ID": 622592, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Frozen food", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "2.644-3.101", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 2.948, 3.101, 2.644, 2.881, 2.877", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:44.841Z", + "last_change_date": "2022-03-14T08:15:44.841Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17411, + "fields": { + "EF_ID": 622593, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Canneries (Fruit/Juice)", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "3.997-6.144", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 6.144, 5.966, 5.638, 4.549, 3.997", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:44.921Z", + "last_change_date": "2022-03-14T08:15:44.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17412, + "fields": { + "EF_ID": 622594, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Starch", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "8.074-10.065", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 10.065, 8.763, 8.108, 8.074, 9.377", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.017Z", + "last_change_date": "2022-03-14T08:15:45.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17413, + "fields": { + "EF_ID": 622595, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Flour products", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "2.407-3.606", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 2.407, 3.606, 2.985, 2.723, 3.054", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.099Z", + "last_change_date": "2022-03-14T08:15:45.099Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17414, + "fields": { + "EF_ID": 622596, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Sugar", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "2.318-4.097", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 2.318, 4.097, 3.662, 3.597, 3.643", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.171Z", + "last_change_date": "2022-03-14T08:15:45.171Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17415, + "fields": { + "EF_ID": 622597, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Ice cream", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "3.075-5.400", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 3.075, 3.075, 3.294, 5.400, 3.196", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.260Z", + "last_change_date": "2022-03-14T08:15:45.260Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17416, + "fields": { + "EF_ID": 622598, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Seasoning", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "0.981-1.981", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 1.441, 0.981, 1.310, 1.946, 1.981", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.338Z", + "last_change_date": "2022-03-14T08:15:45.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17417, + "fields": { + "EF_ID": 622599, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Animal Feed", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "1.231-8.498", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2010, 2011, 2012, 2013 COD: 1.231, 1.242, 8.498, 6.598", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.404Z", + "last_change_date": "2022-03-14T08:15:45.404Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17418, + "fields": { + "EF_ID": 622600, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Wine", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "1.498-3.346", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 1.498, 1.498, 2.491, 3.346, 1.899", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.512Z", + "last_change_date": "2022-03-14T08:15:45.512Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17419, + "fields": { + "EF_ID": 622601, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Beer", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "2.684-3.511", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2012, 2013 COD: 2.684, 2.879, 3.511, 3.294", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.599Z", + "last_change_date": "2022-03-14T08:15:45.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17420, + "fields": { + "EF_ID": 622602, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Soft drink", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "1.580-2.474", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 2.474, 2.230, 1.580, 1.707, 1.691", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.671Z", + "last_change_date": "2022-03-14T08:15:45.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17421, + "fields": { + "EF_ID": 622603, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Textile", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "0.917-4.097", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 1.132, 4.097, 0.937, 0.917, 0.921", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.780Z", + "last_change_date": "2022-03-14T08:15:45.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17422, + "fields": { + "EF_ID": 622604, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Tannery", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "4.040-10.368", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 14.040, 6.217, 10.368, 5.405, 6.407", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.866Z", + "last_change_date": "2022-03-14T08:15:45.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17423, + "fields": { + "EF_ID": 622605, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Paper and pulp", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "1.728-2.677", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 2.098, 1.728, 2.124, 2.677, 2.327", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:45.933Z", + "last_change_date": "2022-03-14T08:15:45.933Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17424, + "fields": { + "EF_ID": 622606, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Chemical products", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "3.652-6.244", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 6.105, 4.753, 3.941, 3.652, 6.244", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:46.023Z", + "last_change_date": "2022-03-14T08:15:46.023Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17425, + "fields": { + "EF_ID": 622607, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Petrochemical products", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "1.308-4.126", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 2.420, 3.512, 3.890, 4.126, 1.308", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:46.104Z", + "last_change_date": "2022-03-14T08:15:46.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17426, + "fields": { + "EF_ID": 622608, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Petroleum refining", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "0.598-0.903", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 0.688, 0.903, 0.787, 0.598, 0.832", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:46.166Z", + "last_change_date": "2022-03-14T08:15:46.166Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17427, + "fields": { + "EF_ID": 622609, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Chemical Oxygen Demand (COD)", + "Technology_Practices": "", + "Parameter_Conditions": "Industry type: Rubber", + "Regional_Conditions": "Thailand", + "Control_Technologies": "", + "Other_Properties": "Range of COD in industrial wastewater during 2009-2013", + "Value": "3.101-4.257", + "Unit": "kg COD/m3 wastewater", + "Equation": "Equation 8 on Page 6.19 of the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual and Equation 6.6 on Page 6.22 of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "ONEP (2016) Final report on Third national communication and biennial update report (TNC-BUR) project, Office of Natural resources and Environment Policy and Planning.", + "English_Abstract": "The parameter is included in database of the Department of Industrial Works. The industries are mandated to report the characteristics of wastewater regularly.This is considered as an endorsement of the data by a national authority in this field and it is used in the national GHG inventories.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Year: 2009, 2010, 2011, 2012, 2013 COD: 3.684, 3.626, 3.101, 4.257, 3.427", + "Other_Comments": "", + "Data_Provider": "Chalor Jarusutthirak", + "Link": "", + "creation_date": "2022-03-14T08:15:46.267Z", + "last_change_date": "2022-03-14T08:15:46.267Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17428, + "fields": { + "EF_ID": 622610, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion (Food waste)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "MSW compostion: 1986, 1993, 1996, 1999, 2001, 2003, 2005, 2012, 2016", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Food: 35.0-56.5", + "Unit": "% of waste (dry matter)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Results of field studies indicate that solid waste composition has changed during last period of time. The collection of recyclable waste was previously a common practice in the Republic of Moldova. Due to establishing of the private paper collection system the fraction of paper has decreased considerably. Vice versa is the situation with plastic packaging which fraction has increased with 10% by weight and even more times by volume. It was confirmed that the food waste still represents almost 55-46% of the current waste stream which is potential for GHG emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Municipal waste composition surveys was done for 2005, 2012, 2016 years. Existing previous data about the waste composition in the Republic of Moldova were collected from different sources as Municipal Enterprise “Autosalubritatea”, National reports on environment and brochure “Little ABC of waste”", + "Data_Provider_Comments": "Average MSW compostion: Food: 35.0-56.5 Paper: 4.8-26.5 Garden: 0.0-15.9 Textiles: 0.6-5.5 Wood: 1.4-6.0 Plastics: 1.8-12.1 Leather: 0.35- 3.0 Other inert: 15.5-39.7 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01 The Municipal solid waste (MSW) composition surveys, and humidity analyzes were performed in several municipalities by Central Ecological Laboratory of the State Ecological Inspectorate of the Republic of Moldova during 2005-2016 period. Waste composition surveys provide the mass percentage of each major waste category in the overall waste stream.The output method for determining the composition of the solid waste stream typically involves sampling, sorting the waste into different categories and weighing of each category. The results of the surveys are combined to provide a national average composition of household and commercial waste. 1986 1993 1996 1999 2001 2003 2005 2012 2016 Food: 37.5 35.0 45.6 53.5 44.9 56.5 5.1 46.06 29.7 Paper: 26.5 25.0 15.0 4.8 5.8 6.2 7.0 5.28 10.1 Garden: 0.0 0.0 0.0 0.0 0.0 0.0 1.7 10.77 15.9 Textiles: 5.5 5.0 2.9 0.6 1.9 1.3 5.5 2.94 1.9 Wood: 5.5 6.0 4.1 2.5 1.4 2.4 1.8 3.71 1.4 Plastics: 1.80 5.0 6.20 8.10 6.30 4.60 12.10 4.66 11.30 Leather: 2.0 3.0 2.0 1.0 0.6 0.7 1.1 0.35 0.4 Others 21.2 24.0 26.2 31.0 39.7 29.6 15.5 28.53 30.50", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:46.346Z", + "last_change_date": "2022-03-14T08:15:46.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17429, + "fields": { + "EF_ID": 622611, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion (Paper waste)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "MSW compostion:1986, 1993, 1996, 1999, 2001, 2003, 2005, 2012, 2016", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Paper: 4.8-26.5", + "Unit": "% of waste (dry matter)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Results of field studies indicate that solid waste composition has changed during last period of time. The collection of recyclable waste was previously a common practice in the Republic of Moldova. Due to establishing of the private paper collection system the fraction of paper has decreased considerably. Vice versa is the situation with plastic packaging which fraction has increased with 10% by weight and even more times by volume. It was confirmed that the food waste still represents almost 55-46% of the current waste stream which is potential for GHG emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Municipal waste composition surveys was done for 2005, 2012, 2016 years. Existing previous data about the waste composition in the Republic of Moldova were collected from different sources as Municipal Enterprise “Autosalubritatea”, National reports on environment and brochure “Little ABC of waste”", + "Data_Provider_Comments": "Average MSW compostion: Food: 35.0-56.5 Paper: 4.8-26.5 Garden: 0.0-15.9 Textiles: 0.6-5.5 Wood: 1.4-6.0 Plastics: 1.8-12.1 Leather: 0.35- 3.0 Other inert: 15.5-39.7 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01 The Municipal solid waste (MSW) composition surveys, and humidity analyzes were performed in several municipalities by Central Ecological Laboratory of the State Ecological Inspectorate of the Republic of Moldova during 2005-2016 period. Waste composition surveys provide the mass percentage of each major waste category in the overall waste stream.The output method for determining the composition of the solid waste stream typically involves sampling, sorting the waste into different categories and weighing of each category. The results of the surveys are combined to provide a national average composition of household and commercial waste. 1986 1993 1996 1999 2001 2003 2005 2012 2016 Food: 37.5 35.0 45.6 53.5 44.9 56.5 5.1 46.06 29.7 Paper: 26.5 25.0 15.0 4.8 5.8 6.2 7.0 5.28 10.1 Garden: 0.0 0.0 0.0 0.0 0.0 0.0 1.7 10.77 15.9 Textiles: 5.5 5.0 2.9 0.6 1.9 1.3 5.5 2.94 1.9 Wood: 5.5 6.0 4.1 2.5 1.4 2.4 1.8 3.71 1.4 Plastics: 1.80 5.0 6.20 8.10 6.30 4.60 12.10 4.66 11.30 Leather: 2.0 3.0 2.0 1.0 0.6 0.7 1.1 0.35 0.4 Others 21.2 24.0 26.2 31.0 39.7 29.6 15.5 28.53 30.50", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:46.434Z", + "last_change_date": "2022-03-14T08:15:46.435Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17430, + "fields": { + "EF_ID": 622612, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion (Garden waste)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "MSW compostion:1986, 1993, 1996, 1999, 2001, 2003, 2005, 2012, 2016", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Garden: 0.0-15.9", + "Unit": "% of waste (dry matter)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Results of field studies indicate that solid waste composition has changed during last period of time. The collection of recyclable waste was previously a common practice in the Republic of Moldova. Due to establishing of the private paper collection system the fraction of paper has decreased considerably. Vice versa is the situation with plastic packaging which fraction has increased with 10% by weight and even more times by volume. It was confirmed that the food waste still represents almost 55-46% of the current waste stream which is potential for GHG emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Municipal waste composition surveys was done for 2005, 2012, 2016 years. Existing previous data about the waste composition in the Republic of Moldova were collected from different sources as Municipal Enterprise “Autosalubritatea”, National reports on environment and brochure “Little ABC of waste”", + "Data_Provider_Comments": "Average MSW compostion: Food: 35.0-56.5 Paper: 4.8-26.5 Garden: 0.0-15.9 Textiles: 0.6-5.5 Wood: 1.4-6.0 Plastics: 1.8-12.1 Leather: 0.35- 3.0 Other inert: 15.5-39.7 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01 The Municipal solid waste (MSW) composition surveys, and humidity analyzes were performed in several municipalities by Central Ecological Laboratory of the State Ecological Inspectorate of the Republic of Moldova during 2005-2016 period. Waste composition surveys provide the mass percentage of each major waste category in the overall waste stream.The output method for determining the composition of the solid waste stream typically involves sampling, sorting the waste into different categories and weighing of each category. The results of the surveys are combined to provide a national average composition of household and commercial waste. 1986 1993 1996 1999 2001 2003 2005 2012 2016 Food: 37.5 35.0 45.6 53.5 44.9 56.5 5.1 46.06 29.7 Paper: 26.5 25.0 15.0 4.8 5.8 6.2 7.0 5.28 10.1 Garden: 0.0 0.0 0.0 0.0 0.0 0.0 1.7 10.77 15.9 Textiles: 5.5 5.0 2.9 0.6 1.9 1.3 5.5 2.94 1.9 Wood: 5.5 6.0 4.1 2.5 1.4 2.4 1.8 3.71 1.4 Plastics: 1.80 5.0 6.20 8.10 6.30 4.60 12.10 4.66 11.30 Leather: 2.0 3.0 2.0 1.0 0.6 0.7 1.1 0.35 0.4 Others 21.2 24.0 26.2 31.0 39.7 29.6 15.5 28.53 30.50", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:46.535Z", + "last_change_date": "2022-03-14T08:15:46.535Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17431, + "fields": { + "EF_ID": 622613, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion (Textile)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "MSW compostion:1986, 1993, 1996, 1999, 2001, 2003, 2005, 2012, 2016", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Textiles: 0.6-5.5", + "Unit": "% of waste (dry matter)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Results of field studies indicate that solid waste composition has changed during last period of time. The collection of recyclable waste was previously a common practice in the Republic of Moldova. Due to establishing of the private paper collection system the fraction of paper has decreased considerably. Vice versa is the situation with plastic packaging which fraction has increased with 10% by weight and even more times by volume. It was confirmed that the food waste still represents almost 55-46% of the current waste stream which is potential for GHG emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Municipal waste composition surveys was done for 2005, 2012, 2016 years. Existing previous data about the waste composition in the Republic of Moldova were collected from different sources as Municipal Enterprise “Autosalubritatea”, National reports on environment and brochure “Little ABC of waste”", + "Data_Provider_Comments": "Average MSW compostion: Food: 35.0-56.5 Paper: 4.8-26.5 Garden: 0.0-15.9 Textiles: 0.6-5.5 Wood: 1.4-6.0 Plastics: 1.8-12.1 Leather: 0.35- 3.0 Other inert: 15.5-39.7 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01 The Municipal solid waste (MSW) composition surveys, and humidity analyzes were performed in several municipalities by Central Ecological Laboratory of the State Ecological Inspectorate of the Republic of Moldova during 2005-2016 period. Waste composition surveys provide the mass percentage of each major waste category in the overall waste stream.The output method for determining the composition of the solid waste stream typically involves sampling, sorting the waste into different categories and weighing of each category. The results of the surveys are combined to provide a national average composition of household and commercial waste. 1986 1993 1996 1999 2001 2003 2005 2012 2016 Food: 37.5 35.0 45.6 53.5 44.9 56.5 5.1 46.06 29.7 Paper: 26.5 25.0 15.0 4.8 5.8 6.2 7.0 5.28 10.1 Garden: 0.0 0.0 0.0 0.0 0.0 0.0 1.7 10.77 15.9 Textiles: 5.5 5.0 2.9 0.6 1.9 1.3 5.5 2.94 1.9 Wood: 5.5 6.0 4.1 2.5 1.4 2.4 1.8 3.71 1.4 Plastics: 1.80 5.0 6.20 8.10 6.30 4.60 12.10 4.66 11.30 Leather: 2.0 3.0 2.0 1.0 0.6 0.7 1.1 0.35 0.4 Others 21.2 24.0 26.2 31.0 39.7 29.6 15.5 28.53 30.50", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:46.635Z", + "last_change_date": "2022-03-14T08:15:46.636Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17432, + "fields": { + "EF_ID": 622614, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion (Wood waste)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "MSW compostion:1986, 1993, 1996, 1999, 2001, 2003, 2005, 2012, 2016", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Wood: 1.4-6.0", + "Unit": "% of waste (dry matter)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Results of field studies indicate that solid waste composition has changed during last period of time. The collection of recyclable waste was previously a common practice in the Republic of Moldova. Due to establishing of the private paper collection system the fraction of paper has decreased considerably. Vice versa is the situation with plastic packaging which fraction has increased with 10% by weight and even more times by volume. It was confirmed that the food waste still represents almost 55-46% of the current waste stream which is potential for GHG emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Municipal waste composition surveys was done for 2005, 2012, 2016 years. Existing previous data about the waste composition in the Republic of Moldova were collected from different sources as Municipal Enterprise “Autosalubritatea”, National reports on environment and brochure “Little ABC of waste”", + "Data_Provider_Comments": "Average MSW compostion: Food: 35.0-56.5 Paper: 4.8-26.5 Garden: 0.0-15.9 Textiles: 0.6-5.5 Wood: 1.4-6.0 Plastics: 1.8-12.1 Leather: 0.35- 3.0 Other inert: 15.5-39.7 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01 The Municipal solid waste (MSW) composition surveys, and humidity analyzes were performed in several municipalities by Central Ecological Laboratory of the State Ecological Inspectorate of the Republic of Moldova during 2005-2016 period. Waste composition surveys provide the mass percentage of each major waste category in the overall waste stream.The output method for determining the composition of the solid waste stream typically involves sampling, sorting the waste into different categories and weighing of each category. The results of the surveys are combined to provide a national average composition of household and commercial waste. 1986 1993 1996 1999 2001 2003 2005 2012 2016 Food: 37.5 35.0 45.6 53.5 44.9 56.5 5.1 46.06 29.7 Paper: 26.5 25.0 15.0 4.8 5.8 6.2 7.0 5.28 10.1 Garden: 0.0 0.0 0.0 0.0 0.0 0.0 1.7 10.77 15.9 Textiles: 5.5 5.0 2.9 0.6 1.9 1.3 5.5 2.94 1.9 Wood: 5.5 6.0 4.1 2.5 1.4 2.4 1.8 3.71 1.4 Plastics: 1.80 5.0 6.20 8.10 6.30 4.60 12.10 4.66 11.30 Leather: 2.0 3.0 2.0 1.0 0.6 0.7 1.1 0.35 0.4 Others 21.2 24.0 26.2 31.0 39.7 29.6 15.5 28.53 30.50", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:46.737Z", + "last_change_date": "2022-03-14T08:15:46.737Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17433, + "fields": { + "EF_ID": 622615, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion (Plastic waste)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "MSW compostion:1986, 1993, 1996, 1999, 2001, 2003, 2005, 2012, 2016", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Plastics: 1.8-12.1", + "Unit": "% of waste (dry matter)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Results of field studies indicate that solid waste composition has changed during last period of time. The collection of recyclable waste was previously a common practice in the Republic of Moldova. Due to establishing of the private paper collection system the fraction of paper has decreased considerably. Vice versa is the situation with plastic packaging which fraction has increased with 10% by weight and even more times by volume. It was confirmed that the food waste still represents almost 55-46% of the current waste stream which is potential for GHG emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Municipal waste composition surveys was done for 2005, 2012, 2016 years. Existing previous data about the waste composition in the Republic of Moldova were collected from different sources as Municipal Enterprise “Autosalubritatea”, National reports on environment and brochure “Little ABC of waste”", + "Data_Provider_Comments": "Average MSW compostion: Food: 35.0-56.5 Paper: 4.8-26.5 Garden: 0.0-15.9 Textiles: 0.6-5.5 Wood: 1.4-6.0 Plastics: 1.8-12.1 Leather: 0.35- 3.0 Other inert: 15.5-39.7 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01 The Municipal solid waste (MSW) composition surveys, and humidity analyzes were performed in several municipalities by Central Ecological Laboratory of the State Ecological Inspectorate of the Republic of Moldova during 2005-2016 period. Waste composition surveys provide the mass percentage of each major waste category in the overall waste stream.The output method for determining the composition of the solid waste stream typically involves sampling, sorting the waste into different categories and weighing of each category. The results of the surveys are combined to provide a national average composition of household and commercial waste. 1986 1993 1996 1999 2001 2003 2005 2012 2016 Food: 37.5 35.0 45.6 53.5 44.9 56.5 5.1 46.06 29.7 Paper: 26.5 25.0 15.0 4.8 5.8 6.2 7.0 5.28 10.1 Garden: 0.0 0.0 0.0 0.0 0.0 0.0 1.7 10.77 15.9 Textiles: 5.5 5.0 2.9 0.6 1.9 1.3 5.5 2.94 1.9 Wood: 5.5 6.0 4.1 2.5 1.4 2.4 1.8 3.71 1.4 Plastics: 1.80 5.0 6.20 8.10 6.30 4.60 12.10 4.66 11.30 Leather: 2.0 3.0 2.0 1.0 0.6 0.7 1.1 0.35 0.4 Others 21.2 24.0 26.2 31.0 39.7 29.6 15.5 28.53 30.50", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:46.845Z", + "last_change_date": "2022-03-14T08:15:46.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17434, + "fields": { + "EF_ID": 622616, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion (Leather)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "MSW compostion:1986, 1993, 1996, 1999, 2001, 2003, 2005, 2012, 2016", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Leather: 0.35- 3.0", + "Unit": "% of waste (dry matter)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Results of field studies indicate that solid waste composition has changed during last period of time. The collection of recyclable waste was previously a common practice in the Republic of Moldova. Due to establishing of the private paper collection system the fraction of paper has decreased considerably. Vice versa is the situation with plastic packaging which fraction has increased with 10% by weight and even more times by volume. It was confirmed that the food waste still represents almost 55-46% of the current waste stream which is potential for GHG emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Municipal waste composition surveys was done for 2005, 2012, 2016 years. Existing previous data about the waste composition in the Republic of Moldova were collected from different sources as Municipal Enterprise “Autosalubritatea”, National reports on environment and brochure “Little ABC of waste”", + "Data_Provider_Comments": "Average MSW compostion: Food: 35.0-56.5 Paper: 4.8-26.5 Garden: 0.0-15.9 Textiles: 0.6-5.5 Wood: 1.4-6.0 Plastics: 1.8-12.1 Leather: 0.35- 3.0 Other inert: 15.5-39.7 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01 The Municipal solid waste (MSW) composition surveys, and humidity analyzes were performed in several municipalities by Central Ecological Laboratory of the State Ecological Inspectorate of the Republic of Moldova during 2005-2016 period. Waste composition surveys provide the mass percentage of each major waste category in the overall waste stream.The output method for determining the composition of the solid waste stream typically involves sampling, sorting the waste into different categories and weighing of each category. The results of the surveys are combined to provide a national average composition of household and commercial waste. 1986 1993 1996 1999 2001 2003 2005 2012 2016 Food: 37.5 35.0 45.6 53.5 44.9 56.5 5.1 46.06 29.7 Paper: 26.5 25.0 15.0 4.8 5.8 6.2 7.0 5.28 10.1 Garden: 0.0 0.0 0.0 0.0 0.0 0.0 1.7 10.77 15.9 Textiles: 5.5 5.0 2.9 0.6 1.9 1.3 5.5 2.94 1.9 Wood: 5.5 6.0 4.1 2.5 1.4 2.4 1.8 3.71 1.4 Plastics: 1.80 5.0 6.20 8.10 6.30 4.60 12.10 4.66 11.30 Leather: 2.0 3.0 2.0 1.0 0.6 0.7 1.1 0.35 0.4 Others 21.2 24.0 26.2 31.0 39.7 29.6 15.5 28.53 30.50", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:46.954Z", + "last_change_date": "2022-03-14T08:15:46.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17435, + "fields": { + "EF_ID": 622617, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Average MSW compostion (Other Inert)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "MSW compostion:1986, 1993, 1996, 1999, 2001, 2003, 2005, 2012, 2016", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Other inert: 15.5-39.7", + "Unit": "% of waste (dry matter)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Results of field studies indicate that solid waste composition has changed during last period of time. The collection of recyclable waste was previously a common practice in the Republic of Moldova. Due to establishing of the private paper collection system the fraction of paper has decreased considerably. Vice versa is the situation with plastic packaging which fraction has increased with 10% by weight and even more times by volume. It was confirmed that the food waste still represents almost 55-46% of the current waste stream which is potential for GHG emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Municipal waste composition surveys was done for 2005, 2012, 2016 years. Existing previous data about the waste composition in the Republic of Moldova were collected from different sources as Municipal Enterprise “Autosalubritatea”, National reports on environment and brochure “Little ABC of waste”", + "Data_Provider_Comments": "Average MSW compostion: Food: 35.0-56.5 Paper: 4.8-26.5 Garden: 0.0-15.9 Textiles: 0.6-5.5 Wood: 1.4-6.0 Plastics: 1.8-12.1 Leather: 0.35- 3.0 Other inert: 15.5-39.7 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01 The Municipal solid waste (MSW) composition surveys, and humidity analyzes were performed in several municipalities by Central Ecological Laboratory of the State Ecological Inspectorate of the Republic of Moldova during 2005-2016 period. Waste composition surveys provide the mass percentage of each major waste category in the overall waste stream.The output method for determining the composition of the solid waste stream typically involves sampling, sorting the waste into different categories and weighing of each category. The results of the surveys are combined to provide a national average composition of household and commercial waste. 1986 1993 1996 1999 2001 2003 2005 2012 2016 Food: 37.5 35.0 45.6 53.5 44.9 56.5 5.1 46.06 29.7 Paper: 26.5 25.0 15.0 4.8 5.8 6.2 7.0 5.28 10.1 Garden: 0.0 0.0 0.0 0.0 0.0 0.0 1.7 10.77 15.9 Textiles: 5.5 5.0 2.9 0.6 1.9 1.3 5.5 2.94 1.9 Wood: 5.5 6.0 4.1 2.5 1.4 2.4 1.8 3.71 1.4 Plastics: 1.80 5.0 6.20 8.10 6.30 4.60 12.10 4.66 11.30 Leather: 2.0 3.0 2.0 1.0 0.6 0.7 1.1 0.35 0.4 Others 21.2 24.0 26.2 31.0 39.7 29.6 15.5 28.53 30.50", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:47.089Z", + "last_change_date": "2022-03-14T08:15:47.089Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17436, + "fields": { + "EF_ID": 622618, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.100-0.216", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Based on the waste composition the Degradable Organic Carbon (DOC) content was established equal to 0.100-0.216 DOC values for 1986-2016 period are estimated based on the results of municipal solid waste composition surveys using the MSW Learning Tool developed by the University of Florida (1996) based on the results of laboratory experiments conducted by Dr. Morton Barlaz (1987, 1997) and Chandler`s investigations, Van Soest (1980).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "DOC values estimated for the time series: 1986 1993 1996 1999 2001 2003 2005 2012 2016 0.216 0.199 0.155 0.104 0.100 0.116 0.146 0.141 0.145 Date calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:47.181Z", + "last_change_date": "2022-03-14T08:15:47.181Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17437, + "fields": { + "EF_ID": 622619, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "The fraction of DOC which decomposes (DOCf )", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.418-0.630", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "Based on the fraction of DOC which decomposes (DOCf) content was established equal to 0.418-0.613. DOCf values for 1986-2016 period are estimated based on the results of municipal solid waste composition surveys using the MSW Learning Tool developed by the University of Florida (1996).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "DOCf values estimated for the time series: 1986 1993 1996 1999 2001 2003 2005 2012 2016 0.518 0.525 0.562 0.630 0.613 0.612 0.585 0.493 0.418 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:47.273Z", + "last_change_date": "2022-03-14T08:15:47.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17438, + "fields": { + "EF_ID": 622620, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "The fraction of CH4, by volume, in generated landfill gas (fraction)", + "Technology_Practices": "Managed/Unmanaged Waste Disposal Sites", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Moldova/Eastern Europe", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "53.1-55.8", + "Unit": "fraction", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tugui, T., Duca, Gh., Taranu, M., Copacinschi, Gh., Dragutan, I. Development of National Emisssion Factors for Solid Waste Disposal on Land Greenhouse Gas Source Category of the National Inventory in the Republic of Moldova, Chemistry Journal of Moldova, Chisinau, nr.1, 2006, p. 61-67.", + "English_Abstract": "The solid waste composition data have been used to estimate the fraction of CH4 in landfill gas, the content varied from 53.1 to 55.7 over period 1986-2016, following MSW Learning Tool developed by the University of Florida (1996). These results have been confirmed by measuremets.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "For the landfill gas study three landfills have been selected, the first is a landfill from a small district town, Straseni (20 000 inhabitants), which is similar to other landfills form 32 districts; the second is a bigger one, from Balti town (130 000 inhabitants) and the third one is from Chisinau (about 800 000 inhabitants), the capital of the country. These landfills have been used as a reference points, as the landfills are operating for about 20 years and there are more than 8 - 20 m layer of disposed waste. Drilled wells have the diameter of 89 mm and a depth of 10 meters. The measurement of biogas were collected by aspirator “AM-5” and the analysis of CH4 and CO2 were performed by use the chromatograph “GAZHROM-3101”. The results show the variability of landfill gas composition between 53- 66% from one site to another, that could be explained first of all by landfill characteristic: Balti and Chisinau landfills are managed and last one Straseni is unmanaged, as well the quantities and quality of MSW disposed at landfill, in case of Straseni landfill there is many times less deposed waste then at Balti and Chisinau landfills, where the share of biodedradable waste disposed is higher. The fraction of CH4 in biogaz for the time series: 1986 1993 1996 1999 2001 2003 2005 2012 2016 53.1 54.0 54.6 55.7 55.3 54.7 55.8 54.6 55.43 Date Calculated: 2004.09.01-2005.08.01; 2012.02.01-2012.11.01; 2015.10.01-2016.09.01", + "Other_Comments": "", + "Data_Provider": "Dr. Tatiana TUGUI", + "Link": "", + "creation_date": "2022-03-14T08:15:47.363Z", + "last_change_date": "2022-03-14T08:15:47.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17439, + "fields": { + "EF_ID": 622623, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factors for landfill leachate treatment", + "Technology_Practices": "Chamber method", + "Parameter_Conditions": "N2O emission factors of removed N in landfill leachates", + "Regional_Conditions": "Fujing province, China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.9-11.9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xiaojun Wang, Mingsheng Jia, Chengliang Zhang, Shaohua Chen, Zucong Cai, Leachate treatment in landfills is a significant N2O source, Science of the Total Environment, 2017, 596-597, 18-25", + "English_Abstract": "The importance of methane (CH4) emissions from landfills has been extensively documented, while the nitrous oxide (N2O) emissions from landfills are considered negligible. In this study, three landfills were selected to measure CH4 and N2O emissions using the static chamber method. Dongbu (DB) and Dongfu (DF) landfills, both located in Xiamen city, Fujian Province, were classified as sanitary. The former started to receive solid waste from Xiamen city in 2009, and the latter was closed in 2009. Nanjing (NJ) landfill, located in Nanjing county, Fujian Province, was classified as managed. Results showed that for the landfill reservoirs, CH4 emissions were significant, while N2O emissions occurred mainly in operating areas (on average, 16.3 and 19.0 mgN2O/m2/h for DB and NJ landfills, respectively) and made a negligible contribution to the total greenhouse gas emissions in term of CO2 equivalent. However, significant N2O emissions were observed in the leachate treatment systems of sanitary landfills and contributed 72.8% and 45.6% of total emissions in term of CO2 equivalent in DB and DF landfills, respectively. The N2O emission factor (EF) of the leachate treatment systems was in the range of 8.9–11.9% of the removed nitrogen. The total N2O emissions from the leachate treatment systems of landfills in Xiamen city were estimated to be as high as 8.55 gN2O-N/capita/yr. These results indicated that N2O emissions from leachate treatment systems of sanitary landfills were not negligible and should be included in national and/or local inventories of greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Zucong Cai", + "Link": "http://www.sciencedirect.com/science/article/pii/S0048969717308586", + "creation_date": "2022-03-14T08:15:47.458Z", + "last_change_date": "2022-03-14T08:15:47.458Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17440, + "fields": { + "EF_ID": 622830, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Methane correction factor (MCF) for surface flow (SF) constructed wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 6.2", + "IPCC_Worksheet": "4D1: 2 of 3 Estimation of CH4 Emission Factor for Domestic Wastewater Treated in Constructed Wetlands 4D2: 2 of 3 Estimation of CH4 Emission Factor for Industrial Wastewater Treated in Constructed Wetlands", + "Data_Source": "IPCC Methodlogy Report (2013 Wetlnads Supplement)", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-0.79", + "Upper_Bound": "+79%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 6.4", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:15:47.583Z", + "last_change_date": "2022-03-14T08:15:47.583Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17441, + "fields": { + "EF_ID": 622831, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Methane correction factor (MCF) for horizontal subsurface flow (HSSF) constructed wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.1", + "Unit": "fraction", + "Equation": "Equation 6.2", + "IPCC_Worksheet": "4D1: 2 of 3 Estimation of CH4 Emission Factor for Domestic Wastewater Treated in Constructed Wetlands 4D2: 2 of 3 Estimation of CH4 Emission Factor for Industrial Wastewater Treated in Constructed Wetlands", + "Data_Source": "IPCC Methodlogy Report (2013 Wetlnads Supplement)", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-0.31", + "Upper_Bound": "+31%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 6.4", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:15:47.662Z", + "last_change_date": "2022-03-14T08:15:47.662Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17442, + "fields": { + "EF_ID": 622832, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Methane correction factor (MCF) for vertical subsurface flow (VSSF) constructed wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.01", + "Unit": "fraction", + "Equation": "Equation 6.2", + "IPCC_Worksheet": "4D1: 2 of 3 Estimation of CH4 Emission Factor for Domestic Wastewater Treated in Constructed Wetlands 4D2: 2 of 3 Estimation of CH4 Emission Factor for Industrial Wastewater Treated in Constructed Wetlands", + "Data_Source": "IPCC Methodlogy Report (2013 Wetlnads Supplement)", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-0.56", + "Upper_Bound": "+56%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 6.4", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:15:47.729Z", + "last_change_date": "2022-03-14T08:15:47.729Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17443, + "fields": { + "EF_ID": 622833, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission factor for surface flow (SF) constructed wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0013", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 6.5", + "IPCC_Worksheet": "4D1: 2 of 2 Estimation of N2O Emissions from Domestic Wastewater Treated in Constructed Wetlands 4D2: 2 of 2 Estimation of N2O Emissions from Industrial Wastewater Treated in Constructed Wetlands", + "Data_Source": "IPCC Methodlogy Report (2013 Wetlnads Supplement)", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-0.9", + "Upper_Bound": "+90%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 6.7", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:15:47.818Z", + "last_change_date": "2022-03-14T08:15:47.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17444, + "fields": { + "EF_ID": 622834, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission factor for horizontal subsurface flow (HSSF) constructed wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0079", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 6.5", + "IPCC_Worksheet": "4D1: 2 of 2 Estimation of N2O Emissions from Domestic Wastewater Treated in Constructed Wetlands 4D2: 2 of 2 Estimation of N2O Emissions from Industrial Wastewater Treated in Constructed Wetlands", + "Data_Source": "IPCC Methodlogy Report (2013 Wetlnads Supplement)", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-0.79", + "Upper_Bound": "+79%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 6.7", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:15:47.896Z", + "last_change_date": "2022-03-14T08:15:47.896Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17445, + "fields": { + "EF_ID": 622835, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "2013 WS default", + "Description": "Emission factor for vertical subsurface flow (VSSF) constructed wetlands", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00023", + "Unit": "kg N2O-N/kg N input", + "Equation": "Equation 6.5", + "IPCC_Worksheet": "4D1: 2 of 2 Estimation of N2O Emissions from Domestic Wastewater Treated in Constructed Wetlands 4D2: 2 of 2 Estimation of N2O Emissions from Industrial Wastewater Treated in Constructed Wetlands", + "Data_Source": "IPCC Methodlogy Report (2013 Wetlnads Supplement)", + "Technical_Reference": "IPCC 2014, 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds). Published: IPCC, Switzerland.", + "English_Abstract": "", + "Lower_Bound": "-0.7", + "Upper_Bound": "+70%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The value is provided in Table 6.7", + "Other_Comments": "", + "Data_Provider": "IPCC", + "Link": "http://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html", + "creation_date": "2022-03-14T08:15:47.963Z", + "last_change_date": "2022-03-14T08:15:47.963Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17446, + "fields": { + "EF_ID": 623105, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of municipal wastewater treatment", + "Technology_Practices": "Activated sludge process", + "Parameter_Conditions": "Total emissions from first settling basin, aeration tank, secondary settling basin and sludge thickener", + "Regional_Conditions": "Seuol, South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.734", + "Unit": "g CH4/Kg BOD", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang, K.L., C.H. Bang et al. (2016). Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresour Technol 214: 881-884.", + "English_Abstract": "The nitrous oxide (N2O) and methane (CH4) emissions were measured from a municipal wastewater treatment plant (WWTP) using a flux chamber to determine the emission factors. The WWTP treats sewage using both the activated-sludge treatment and anaerobic/anoxic/aerobic (A2O) methods. Measurements were performed in the first settling, aeration, and secondary settling basins, as well as in the sludge thickener, sludge digestion tank, and A2O basins. The total emission factors of N2O and CH4 from the activated-sludge treatment were 1.256 g N2O/kg total nitrogen (TN) and 3.734 g CH4/kg biochemical oxygen demand (BOD5), respectively. Those of the advanced treatment (A2O) were 1.605 g N2O/kg TN and 4.022 g CH4/kg BOD5, respectively. These values are applicable as basic data to estimate greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard Deviation (SD) = 1.21 g CH4/Kg BOD", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2016.05.047", + "creation_date": "2022-03-14T08:15:48.029Z", + "last_change_date": "2022-03-14T08:15:48.030Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17447, + "fields": { + "EF_ID": 623106, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of municipal wastewater treatment", + "Technology_Practices": "Activated sludge process", + "Parameter_Conditions": "Total emissions from first settling basin, aeration tank, secondary settling basin and sludge thickener", + "Regional_Conditions": "Seuol, South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.256", + "Unit": "g N2O/kg TN", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang, K.L., C.H. Bang et al. (2016). Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresour Technol 214: 881-884.", + "English_Abstract": "The nitrous oxide (N2O) and methane (CH4) emissions were measured from a municipal wastewater treatment plant (WWTP) using a flux chamber to determine the emission factors. The WWTP treats sewage using both the activated-sludge treatment and anaerobic/anoxic/aerobic (A2O) methods. Measurements were performed in the first settling, aeration, and secondary settling basins, as well as in the sludge thickener, sludge digestion tank, and A2O basins. The total emission factors of N2O and CH4 from the activated-sludge treatment were 1.256 g N2O/kg total nitrogen (TN) and 3.734 g CH4/kg biochemical oxygen demand (BOD5), respectively. Those of the advanced treatment (A2O) were 1.605 g N2O/kg TN and 4.022 g CH4/kg BOD5, respectively. These values are applicable as basic data to estimate greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard Deviation (SD) = 0.50 g N2O/Kg TN", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2016.05.047", + "creation_date": "2022-03-14T08:15:48.120Z", + "last_change_date": "2022-03-14T08:15:48.120Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17448, + "fields": { + "EF_ID": 623107, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of municipal wastewater treatment", + "Technology_Practices": "Advanced treatment (A2O) process", + "Parameter_Conditions": "Total emissions from anaerobic/anoxic/aerobic reactors (not include sludge digestion tank)", + "Regional_Conditions": "Seuol, South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.022", + "Unit": "g CH4/Kg BOD", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang, K.L., C.H. Bang et al. (2016). Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresour Technol 214: 881-884.", + "English_Abstract": "The nitrous oxide (N2O) and methane (CH4) emissions were measured from a municipal wastewater treatment plant (WWTP) using a flux chamber to determine the emission factors. The WWTP treats sewage using both the activated-sludge treatment and anaerobic/anoxic/aerobic (A2O) methods. Measurements were performed in the first settling, aeration, and secondary settling basins, as well as in the sludge thickener, sludge digestion tank, and A2O basins. The total emission factors of N2O and CH4 from the activated-sludge treatment were 1.256 g N2O/kg total nitrogen (TN) and 3.734 g CH4/kg biochemical oxygen demand (BOD5), respectively. Those of the advanced treatment (A2O) were 1.605 g N2O/kg TN and 4.022 g CH4/kg BOD5, respectively. These values are applicable as basic data to estimate greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard Deviation (SD) = 0.124 g CH4/Kg BOD", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2016.05.047", + "creation_date": "2022-03-14T08:15:48.196Z", + "last_change_date": "2022-03-14T08:15:48.196Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17449, + "fields": { + "EF_ID": 623108, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of municipal wastewater treatment", + "Technology_Practices": "Advanced treatment (A2O) process", + "Parameter_Conditions": "Total emissions from anaerobic/anoxic/aerobic reactors (not include sludge digestion tank)", + "Regional_Conditions": "Seuol, South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.605", + "Unit": "g N2O/kg TN", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang, K.L., C.H. Bang et al. (2016). Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant. Bioresour Technol 214: 881-884.", + "English_Abstract": "The nitrous oxide (N2O) and methane (CH4) emissions were measured from a municipal wastewater treatment plant (WWTP) using a flux chamber to determine the emission factors. The WWTP treats sewage using both the activated-sludge treatment and anaerobic/anoxic/aerobic (A2O) methods. Measurements were performed in the first settling, aeration, and secondary settling basins, as well as in the sludge thickener, sludge digestion tank, and A2O basins. The total emission factors of N2O and CH4 from the activated-sludge treatment were 1.256 g N2O/kg total nitrogen (TN) and 3.734 g CH4/kg biochemical oxygen demand (BOD5), respectively. Those of the advanced treatment (A2O) were 1.605 g N2O/kg TN and 4.022 g CH4/kg BOD5, respectively. These values are applicable as basic data to estimate greenhouse gas emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard Deviation (SD) = 0.15 g N2O/Kg TN", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.biortech.2016.05.047", + "creation_date": "2022-03-14T08:15:48.287Z", + "last_change_date": "2022-03-14T08:15:48.287Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17450, + "fields": { + "EF_ID": 623109, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "Offshore landfill (waste tipping between 1990-2002)", + "Parameter_Conditions": "Landfilled waste: MSW ash, C& D waste , inert residue", + "Regional_Conditions": "Temperate/Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000025-0.0045", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean N2O flux was 0.0045, 0.0014, 0.000025 and 0.00021 ml/m2/min in 2009, 2010, 2011 and 2012 respectively.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:48.363Z", + "last_change_date": "2022-03-14T08:15:48.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17451, + "fields": { + "EF_ID": 623110, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "Offshore landfill (waste tipping between 1973-2004)", + "Parameter_Conditions": "Landfilled waste: MSW, sludge, C&D waste", + "Regional_Conditions": "Temperate/Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000048-0.0068", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean N2O flux was 0.0068, 0.0023 and 0.000048 ml/m2/min in 2009, 2010 and 2011 respectively", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:48.447Z", + "last_change_date": "2022-03-14T08:15:48.447Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17452, + "fields": { + "EF_ID": 623111, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "Offshore landfill (waste tipping between 1973-2004)", + "Parameter_Conditions": "Landfilled waste: Sludge, textile, wood, C&D waste", + "Regional_Conditions": "Temperate/Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000015-0.0046", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean N2O flux was 0.0046 and 0.000015 ml/m2/min in 2009 and 2010 respectively", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:48.521Z", + "last_change_date": "2022-03-14T08:15:48.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17453, + "fields": { + "EF_ID": 623112, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "Offshore landfill (waste tipping between 1982-2000)", + "Parameter_Conditions": "Landfilled waste: Sludge, ash, slag", + "Regional_Conditions": "Temperate/Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000055-0.000076", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean N2O flux was 0.000076 and 0.000055 ml/m2/min in 2009 and 2010 respectively", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:48.615Z", + "last_change_date": "2022-03-14T08:15:48.616Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17454, + "fields": { + "EF_ID": 623113, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "MSW landfill (waste tipping between 2001-2007)", + "Parameter_Conditions": "Landfilled waste: Domestic waste", + "Regional_Conditions": "Tropical/Malaysia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.068", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:48.705Z", + "last_change_date": "2022-03-14T08:15:48.705Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17455, + "fields": { + "EF_ID": 623114, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "Offshore landfill (waste tipping between 1992-2002)", + "Parameter_Conditions": "Landfilled waste: MSW ash, C&D waste, inert residue", + "Regional_Conditions": "Temperate/Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0013", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:48.800Z", + "last_change_date": "2022-03-14T08:15:48.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17456, + "fields": { + "EF_ID": 623115, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "MSW landfill (waste tipping between 1969-2003)", + "Parameter_Conditions": "Landfillled waste: MSW, MSW ash", + "Regional_Conditions": "Tropical/Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:48.888Z", + "last_change_date": "2022-03-14T08:15:48.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17457, + "fields": { + "EF_ID": 623116, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "MSW landfill (waste tipping 2006-)", + "Parameter_Conditions": "Landfilled waste: MSW, MSW ash", + "Regional_Conditions": "Tropical/Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.027", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:48.976Z", + "last_change_date": "2022-03-14T08:15:48.976Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17458, + "fields": { + "EF_ID": 623117, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "MSW landfill (waste tipping 1995-2011)", + "Parameter_Conditions": "Landfilled waste: Domestic waste", + "Regional_Conditions": "Tropical/Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.070", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:49.063Z", + "last_change_date": "2022-03-14T08:15:49.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17459, + "fields": { + "EF_ID": 623118, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission from landfills", + "Technology_Practices": "MSW landfill (waste tipping 2007-)", + "Parameter_Conditions": "Landfilled waste: Domestic waste", + "Regional_Conditions": "Tropical/Sri Lanka", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.022", + "Unit": "ml/m2/min", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ishigaki, T., M. Nakagawa et al. (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75: 750.", + "English_Abstract": "An official statement suggested that generation of nitrous oxide from waste landfills could be a possible source of greenhouse gas emission. We investigated the emission of nitrous oxide in waste landfills and detected the flux of nitrous oxide in 6.7 % of flux measurements, much less than the methane flux (31 %). Landfills located in the tropical climate zone tended to exhibit a higher emission of nitrous oxide, indicating that the high precipitation or low pH under anaerobic conditions promoted the conversion of nitrogen compounds to nitrous oxide in the waste layer. Since the offshore landfills also contain high levels of water in the waste layer, the saturated condition strongly promoted the generation of nitrous oxide. The relationship between the emissions of methane and nitrous oxide in each of landfills indicated that nitrous oxide is generated through anaerobic microbial reactions in the waste layer. Passive aeration by semi aerobic management or by poorly managed surfaces promotes the generation of nitrous oxide through heterotrophic anaerobic denitrification, rather than through aerobic nitrification. The correlation between the observed emission rates of methane and nitrous oxide suggested that the impact of nitrous oxide on the greenhouse effect at the sites investigated was 20 % that of methane when the flux of nitrous oxide was measurable.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://link.springer.com/article/10.1007/s12665-016-5543-3", + "creation_date": "2022-03-14T08:15:49.160Z", + "last_change_date": "2022-03-14T08:15:49.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17460, + "fields": { + "EF_ID": 623119, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor from biological aerated filter", + "Technology_Practices": "Biological aerated filter", + "Parameter_Conditions": "Secondary nitrification of A2O process effluent", + "Regional_Conditions": "Shanghai, China/Subtropical monsoon climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.017-1.261", + "Unit": "% of N-influent", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang, Y., H. Fang et al. (2016). Characterization of nitrous oxide and nitric oxide emissions from a full-scale biological aerated filter for secondary nitrification. Chem Eng J 299: 304-313.", + "English_Abstract": "Both nitrous oxide (N2O) and nitric oxide (NO) (as a N2O precursor during denitrification) have negative effects on the environment. N2O is also a potent greenhouse gas. N2O and NO emissions in full-scale wastewater treatment plants (WWTPs) are mostly from mainstream activated sludge processes, but there are fewer emission studies from biofilm systems. In this study, online monitoring of NO and N2O emissions from a full-scale biological aerated filter (BAF) for secondary nitrification was performed for the first time over 12 months. Impacts of influent quality (influent NH4 + -N, NO3 -N, NO2 -N) and environmental factors (pH, dissolved oxygen (DO), and water temperature) on N2O and NO emissions were also evaluated. The results show that N2O and NO emissions from the BAF occurred even though DO was high at 6.94–8.86 mg/L; they greatly fluctuated with the season that much greater in spring than other seasons (summer, autumn and winter). N2O and NO emission factors were 0.017–1.261% and 0.00017–0.0041% of influent total nitrogen load, respectively, with an average ammonia removal rate of 60%. The N2O emission factor for the secondary nitrification BAF was comparable to that of mainstream activated sludge systems in WWTPs, and much lower than that of biofilm reactors in lab-scale. Nevertheless, the low influent ammonia loading of 0.004–0.05 kg NH4 + -N/m3 d contributed to the reduced N2O emissions for the secondary nitrification BAF, compared with that from mainstream wastewater treatment processes. Nitrite seems to be the most important cause of NO and N2O production, and nitrifier denitrification pathway was postulated to be the main contributor to N2O and NO production in the studied BAF.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://dx.doi.org/10.1016/j.cej.2016.04.050", + "creation_date": "2022-03-14T08:15:49.238Z", + "last_change_date": "2022-03-14T08:15:49.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17461, + "fields": { + "EF_ID": 623120, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: paper", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "paper, printed paper, coated paper", + "Value": "3.9", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011). Waste was classified according to the IPCC standard.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:49.328Z", + "last_change_date": "2022-03-14T08:15:49.328Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17462, + "fields": { + "EF_ID": 623121, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: textiles", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "textiles, synthetic textiles", + "Value": "30.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011). Waste was classified according to the IPCC standard.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:49.428Z", + "last_change_date": "2022-03-14T08:15:49.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17463, + "fields": { + "EF_ID": 623122, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: wood", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "manufactured timber", + "Value": "0.5", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011). Waste was classified according to the IPCC standard.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:49.529Z", + "last_change_date": "2022-03-14T08:15:49.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17464, + "fields": { + "EF_ID": 623123, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: garden and park waste", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "leaves, branches, straw, ets.", + "Value": "1.7", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011). Waste was classified according to the IPCC standard.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:49.630Z", + "last_change_date": "2022-03-14T08:15:49.630Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17465, + "fields": { + "EF_ID": 623124, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: nappies", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "disposable diapers", + "Value": "93.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011). Waste was classified according to the IPCC standard.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:49.739Z", + "last_change_date": "2022-03-14T08:15:49.739Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17466, + "fields": { + "EF_ID": 623125, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: Rubber and leather", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "natural rubber, synthetic rubber, natural leather, synthetic leather", + "Value": "52.2", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011). Waste was classified according to the IPCC standard.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:49.839Z", + "last_change_date": "2022-03-14T08:15:49.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17467, + "fields": { + "EF_ID": 623126, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: plastics", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "vinyl, plastic, styrofoam", + "Value": "99.9", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011). Waste was classified according to the IPCC standard.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:49.948Z", + "last_change_date": "2022-03-14T08:15:49.948Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17468, + "fields": { + "EF_ID": 623127, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: others", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "ash, dirt, dust, soil, ets.", + "Value": "10.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011). Waste was classified according to the IPCC standard.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.050Z", + "last_change_date": "2022-03-14T08:15:50.050Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17469, + "fields": { + "EF_ID": 623128, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: paper", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "toilet paper, box, etc.", + "Value": "0", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.184Z", + "last_change_date": "2022-03-14T08:15:50.184Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17470, + "fields": { + "EF_ID": 623129, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: printed paper", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "newspaper, paper bag, book, A4 paper, receipt, paper packing, scratch paper, etc.", + "Value": "3.7", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.276Z", + "last_change_date": "2022-03-14T08:15:50.276Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17471, + "fields": { + "EF_ID": 623130, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: coated paper", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "brochure, paper cup, milk carton, name card, cigarette case, etc.", + "Value": "16.2", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.377Z", + "last_change_date": "2022-03-14T08:15:50.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17472, + "fields": { + "EF_ID": 623131, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: textiles", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "towel, cotton, underwear, gloves, socks, cotton wool, etc.", + "Value": "0.7", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.494Z", + "last_change_date": "2022-03-14T08:15:50.494Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17473, + "fields": { + "EF_ID": 623132, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: synthetic textiles", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "wet wipes, kitchen towel, clothes, dishcloth, banner, ribbon, sponge, etc.", + "Value": "69.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.603Z", + "last_change_date": "2022-03-14T08:15:50.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17474, + "fields": { + "EF_ID": 623133, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: plastic", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "plastic (Polypropylene, other, Polystyrene, Polyethylene terephalate), toothpaste, straw, card, onion net, plastic spoon, button, etc.", + "Value": "100", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.704Z", + "last_change_date": "2022-03-14T08:15:50.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17475, + "fields": { + "EF_ID": 623134, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: vinyl", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "vinyl, plastic bag, food packing, noodle bag, snack bag, sanitary gloves, juice bag, zipper bag, wet wipes case, plastic string, plastic wrap, latex glove, etc.", + "Value": "99.2", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.804Z", + "last_change_date": "2022-03-14T08:15:50.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17476, + "fields": { + "EF_ID": 623135, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: styrofoam", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "Styrofoam, etc.", + "Value": "98.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:50.913Z", + "last_change_date": "2022-03-14T08:15:50.914Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17477, + "fields": { + "EF_ID": 623136, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: manufactored timber", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "wooden chopsticks, toothpick, etc.", + "Value": "0.5", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:51.014Z", + "last_change_date": "2022-03-14T08:15:51.014Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17478, + "fields": { + "EF_ID": 623137, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: natural rubber", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "natural rubber gloves, etc.", + "Value": "2.7", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:51.114Z", + "last_change_date": "2022-03-14T08:15:51.114Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17479, + "fields": { + "EF_ID": 623138, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: synthetic rubber", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "synthetic rubber gloves, etc.", + "Value": "96.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:51.215Z", + "last_change_date": "2022-03-14T08:15:51.215Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17480, + "fields": { + "EF_ID": 623139, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: natural leather", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "natural leather clothes, etc.", + "Value": "39.2", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:51.315Z", + "last_change_date": "2022-03-14T08:15:51.315Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17481, + "fields": { + "EF_ID": 623140, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fossil carbon fraction: synthetic leather", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "synthetic leather clothes, etc.", + "Value": "70.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Lee, J., S. Kang, et al. (2015). Development of municipal solid waste classification in Korea based on fossil carbon fraction. J Air Waste Manag Assoc 65(10): 1256-1260.", + "English_Abstract": "Environmental problems and climate change arising from waste incineration are taken quite seriously in the world. In Korea, the waste disposal methods are largely classified into landfill, incineration, recycling, etc. and the amount of incinerated waste has risen by 24.5% from 2002. In the analysis of CO₂emissions estimations of waste incinerators fossil carbon content are main factor by the IPCC. FCF differs depending on the characteristics of waste in each country, and a wide range of default values are proposed by the IPCC. This study conducted research on the existing classifications of the IPCC and Korean waste classification systems based on FCF for accurate greenhouse gas emissions estimation of waste incineration. The characteristics possible for sorting were classified according to FCF and form. The characteristics sorted according to fossil carbon fraction were paper, textiles, rubber, and leather. Paper was classified into pure paper and processed paper; textiles were classified into cotton and synthetic fibers; and rubber and leather were classified into artificial and natural. The analysis of FCF was implemented by collecting representative samples from each classification group, by applying the 14C method, and using AMS equipment. And the analysis values were compared with the default values proposed by the IPCC. In this study of garden and park waste and plastics, the differences were within the range of the IPCC default values or the differences were negligible. However, coated paper, synthetic textiles, natural rubber, synthetic rubber, artificial leather, and other wastes showed differences of over 10% in FCF content. IPCC is comprised of largely 9 types of qualitative classifications, in emissions estimation a great difference can occur from the combined characteristics according with the existing IPCC classification system by using the minutely classified waste characteristics as in this study.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wase sampling process was implemented in accordance with ES 061330 of Waste Management Process Test Standarts (Korea Ministry of Environment, 2011)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.tandfonline.com/doi/full/10.1080/10962247.2015.1079563", + "creation_date": "2022-03-14T08:15:51.416Z", + "last_change_date": "2022-03-14T08:15:51.416Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17482, + "fields": { + "EF_ID": 623141, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for wastewater treatment plant", + "Technology_Practices": "full-scale activated sludge anaerobic/anoxic/oxic process", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.29", + "Unit": "% of N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang, Y., Lin, X., Zhou, D., Ye, L., Han, H., & Song, C. Nitric oxide and nitrous oxide emissions from a full-scale activated sludge anaerobic/anoxic/oxic process. Chemical Engineering Journal, 2016, 289, 330-340", + "English_Abstract": "Both nitric oxide (NO) and nitrous oxide (N2O) have strong negative effects on the environment. Although N2O emissions in wastewater water treatment plants (WWTPs) have been widely studied, the concurrence of NO and N2O emissions has not been well characterized, and their emission status from WWTPs in China is still not clear. In this study, online NO and N2O analyzers were used to investigate spatial and temporal variations of NO and N2O emissions in a full-scale activated sludge anaerobic/anoxic/oxic (A2/O) process over one year. The amoA gene of ammonia oxidation bacteria and the nosZ gene of denitrifiers were analyzed to identify possible NO and N2O production pathways. The emission factors of NO and N2O in the studied A2/O process were 0.01 ± 0.006% (0.002–0.021%) and 1.29 ± 1.07% (0.095–3.44%) of the nitrogen load, respectively. Both NO and N2O were mainly emitted from the oxic zone, with emitting levels increasing greatly from the initial oxic zone to the zone end. The N2O emission pattern closely resembled that of NO emissions, but the emission amounts were 2–3 magnitudes higher than that of NO. Nitrite accumulation directly triggered NO and N2O production. This study provides novel insights into emission characteristics and the production pathways of both NO and N2O from a full-scale A2/O process, which is of great significance toward development of effective mitigation strategies for NO and N2O emissions from WWTPs.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "data based on diurnal monitoring once per month over one year", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://www.sciencedirect.com/science/article/pii/S1385894715017465", + "creation_date": "2022-03-14T08:15:51.526Z", + "last_change_date": "2022-03-14T08:15:51.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17483, + "fields": { + "EF_ID": 623142, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for wastewater treatment plant", + "Technology_Practices": "full-scale activated sludge anaerobic/anoxic/oxic process", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.095-3.44", + "Unit": "% of N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Wang, Y., Lin, X., Zhou, D., Ye, L., Han, H., & Song, C. Nitric oxide and nitrous oxide emissions from a full-scale activated sludge anaerobic/anoxic/oxic process. Chemical Engineering Journal, 2016, 289, 330-341", + "English_Abstract": "Both nitric oxide (NO) and nitrous oxide (N2O) have strong negative effects on the environment. Although N2O emissions in wastewater water treatment plants (WWTPs) have been widely studied, the concurrence of NO and N2O emissions has not been well characterized, and their emission status from WWTPs in China is still not clear. In this study, online NO and N2O analyzers were used to investigate spatial and temporal variations of NO and N2O emissions in a full-scale activated sludge anaerobic/anoxic/oxic (A2/O) process over one year. The amoA gene of ammonia oxidation bacteria and the nosZ gene of denitrifiers were analyzed to identify possible NO and N2O production pathways. The emission factors of NO and N2O in the studied A2/O process were 0.01 ± 0.006% (0.002–0.021%) and 1.29 ± 1.07% (0.095–3.44%) of the nitrogen load, respectively. Both NO and N2O were mainly emitted from the oxic zone, with emitting levels increasing greatly from the initial oxic zone to the zone end. The N2O emission pattern closely resembled that of NO emissions, but the emission amounts were 2–3 magnitudes higher than that of NO. Nitrite accumulation directly triggered NO and N2O production. This study provides novel insights into emission characteristics and the production pathways of both NO and N2O from a full-scale A2/O process, which is of great significance toward development of effective mitigation strategies for NO and N2O emissions from WWTPs.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "data based on diurnal monitoring once per month over one year", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "", + "Link": "https://www.sciencedirect.com/science/article/pii/S1385894715017465", + "creation_date": "2022-03-14T08:15:51.627Z", + "last_change_date": "2022-03-14T08:15:51.627Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17484, + "fields": { + "EF_ID": 623143, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Yard waste, mixed with wood chip or chopped branch", + "Parameter_Conditions": "Summer", + "Regional_Conditions": "California ,USA", + "Control_Technologies": "Windrow", + "Other_Properties": "", + "Value": "0.022", + "Unit": "kg C/ ton dry waste/day", + "Equation": "Equation 4.1, Chapter 4, Volume 5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xia Zhu-Barker, Shannon K. Bailey, Kyaw Tha Paw U, Martin Burger, William R. Horwath (2017) Greenhouse gas emissions from green waste composting windrow, Waste Management 59, 70-79.", + "English_Abstract": "The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH4 emission of 254±76 g C day 1 dry weight (DW) Mg 1 and lowest average N2O emission of 152±21 mg N day 1 DW Mg 1compared to the other seasonal piles. The highest N2O emissions (342±41 mg N day-1 DW Mg-1) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O2) concentration and moisture content were the most consistent factors predicting N2O and CH4 emissions from all seasonal compost piles. Compared to N2O, CH4 was a higher contributor to the overall global warming potential (GWP) expressed as CO2 equivalents (CO2 eq.). Therefore, CH4 mitigation practices, such as increasing O2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000 Mg of CO2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.022±0.007", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:51.736Z", + "last_change_date": "2022-03-14T08:15:51.736Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17485, + "fields": { + "EF_ID": 623144, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Yard waste, mixed with wood chip or chopped branch", + "Parameter_Conditions": "Summer", + "Regional_Conditions": "California ,USA", + "Control_Technologies": "Windrow", + "Other_Properties": "", + "Value": "0.511", + "Unit": "g N/ ton dry waste/day", + "Equation": "Equation 4.2, Chapter 4, Volume 5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xia Zhu-Barker, Shannon K. Bailey, Kyaw Tha Paw U, Martin Burger, William R. Horwath (2017) Greenhouse gas emissions from green waste composting windrow, Waste Management 59, 70-79.", + "English_Abstract": "The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH4 emission of 254±76 g C day 1 dry weight (DW) Mg 1 and lowest average N2O emission of 152±21 mg N day 1 DW Mg 1compared to the other seasonal piles. The highest N2O emissions (342±41 mg N day-1 DW Mg-1) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O2) concentration and moisture content were the most consistent factors predicting N2O and CH4 emissions from all seasonal compost piles. Compared to N2O, CH4 was a higher contributor to the overall global warming potential (GWP) expressed as CO2 equivalents (CO2 eq.). Therefore, CH4 mitigation practices, such as increasing O2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000 Mg of CO2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.511±0.142", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:51.853Z", + "last_change_date": "2022-03-14T08:15:51.854Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17486, + "fields": { + "EF_ID": 623145, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Yard waste, mixed with wood chip or chopped branch", + "Parameter_Conditions": "Winter", + "Regional_Conditions": "California ,USA", + "Control_Technologies": "Windrow", + "Other_Properties": "", + "Value": "0.254", + "Unit": "kg C/ ton dry waste/day", + "Equation": "Equation 4.1, Chapter 4, Volume 5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xia Zhu-Barker, Shannon K. Bailey, Kyaw Tha Paw U, Martin Burger, William R. Horwath (2017) Greenhouse gas emissions from green waste composting windrow, Waste Management 59, 70-79.", + "English_Abstract": "The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH4 emission of 254±76 g C day 1 dry weight (DW) Mg 1 and lowest average N2O emission of 152±21 mg N day 1 DW Mg 1compared to the other seasonal piles. The highest N2O emissions (342±41 mg N day-1 DW Mg-1) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O2) concentration and moisture content were the most consistent factors predicting N2O and CH4 emissions from all seasonal compost piles. Compared to N2O, CH4 was a higher contributor to the overall global warming potential (GWP) expressed as CO2 equivalents (CO2 eq.). Therefore, CH4 mitigation practices, such as increasing O2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000 Mg of CO2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.254±0.076", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:51.943Z", + "last_change_date": "2022-03-14T08:15:51.943Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17487, + "fields": { + "EF_ID": 623146, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Yard waste, mixed with wood chip or chopped branch", + "Parameter_Conditions": "Winter", + "Regional_Conditions": "California ,USA", + "Control_Technologies": "Windrow", + "Other_Properties": "", + "Value": "0.152", + "Unit": "g N/ ton dry waste/day", + "Equation": "Equation 4.2, Chapter 4, Volume 5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xia Zhu-Barker, Shannon K. Bailey, Kyaw Tha Paw U, Martin Burger, William R. Horwath (2017) Greenhouse gas emissions from green waste composting windrow, Waste Management 59, 70-79.", + "English_Abstract": "The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH4 emission of 254±76 g C day 1 dry weight (DW) Mg 1 and lowest average N2O emission of 152±21 mg N day 1 DW Mg 1compared to the other seasonal piles. The highest N2O emissions (342±41 mg N day-1 DW Mg-1) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O2) concentration and moisture content were the most consistent factors predicting N2O and CH4 emissions from all seasonal compost piles. Compared to N2O, CH4 was a higher contributor to the overall global warming potential (GWP) expressed as CO2 equivalents (CO2 eq.). Therefore, CH4 mitigation practices, such as increasing O2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000 Mg of CO2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.152±0.021", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:52.038Z", + "last_change_date": "2022-03-14T08:15:52.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17488, + "fields": { + "EF_ID": 623147, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Yard waste, mixed with wood chip or chopped branch", + "Parameter_Conditions": "Spring", + "Regional_Conditions": "California ,USA", + "Control_Technologies": "Windrow", + "Other_Properties": "", + "Value": "0.039", + "Unit": "kg C/ ton dry waste/day", + "Equation": "Equation 4.1, Chapter 4, Volume 5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xia Zhu-Barker, Shannon K. Bailey, Kyaw Tha Paw U, Martin Burger, William R. Horwath (2017) Greenhouse gas emissions from green waste composting windrow, Waste Management 59, 70-79.", + "English_Abstract": "The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH4 emission of 254±76 g C day 1 dry weight (DW) Mg 1 and lowest average N2O emission of 152±21 mg N day 1 DW Mg 1compared to the other seasonal piles. The highest N2O emissions (342±41 mg N day-1 DW Mg-1) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O2) concentration and moisture content were the most consistent factors predicting N2O and CH4 emissions from all seasonal compost piles. Compared to N2O, CH4 was a higher contributor to the overall global warming potential (GWP) expressed as CO2 equivalents (CO2 eq.). Therefore, CH4 mitigation practices, such as increasing O2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000 Mg of CO2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.039±0.007", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:52.118Z", + "last_change_date": "2022-03-14T08:15:52.118Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17489, + "fields": { + "EF_ID": 623148, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Yard waste, mixed with wood chip or chopped branch", + "Parameter_Conditions": "Spring", + "Regional_Conditions": "California ,USA", + "Control_Technologies": "Windrow", + "Other_Properties": "", + "Value": "0.342", + "Unit": "g N/ ton dry waste/day", + "Equation": "Equation 4.2, Chapter 4, Volume 5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Xia Zhu-Barker, Shannon K. Bailey, Kyaw Tha Paw U, Martin Burger, William R. Horwath (2017) Greenhouse gas emissions from green waste composting windrow, Waste Management 59, 70-79.", + "English_Abstract": "The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH4 emission of 254±76 g C day 1 dry weight (DW) Mg 1 and lowest average N2O emission of 152±21 mg N day 1 DW Mg 1compared to the other seasonal piles. The highest N2O emissions (342±41 mg N day-1 DW Mg-1) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O2) concentration and moisture content were the most consistent factors predicting N2O and CH4 emissions from all seasonal compost piles. Compared to N2O, CH4 was a higher contributor to the overall global warming potential (GWP) expressed as CO2 equivalents (CO2 eq.). Therefore, CH4 mitigation practices, such as increasing O2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000 Mg of CO2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.342±0.041", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:15:52.205Z", + "last_change_date": "2022-03-14T08:15:52.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17490, + "fields": { + "EF_ID": 623149, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor from waste incineration", + "Technology_Practices": "Moving grate (Plant F as per Hwang et al. 2017)", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "range of values", + "Value": "167.86", + "Unit": "g N2O /tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371748", + "creation_date": "2022-03-14T08:15:52.284Z", + "last_change_date": "2022-03-14T08:15:52.284Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17491, + "fields": { + "EF_ID": 623150, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor from waste incineration", + "Technology_Practices": "Rotary kiln (Plant G as per Hwang et al. 2017)", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "range of values", + "Value": "84.35", + "Unit": "gCH4/tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371748", + "creation_date": "2022-03-14T08:15:52.381Z", + "last_change_date": "2022-03-14T08:15:52.381Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17492, + "fields": { + "EF_ID": 623151, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor from waste incineration", + "Technology_Practices": "Rotary kiln (Plant G as per Hwang et al. 2017)", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "192.64", + "Unit": "g N2O /tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371748", + "creation_date": "2022-03-14T08:15:52.490Z", + "last_change_date": "2022-03-14T08:15:52.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17493, + "fields": { + "EF_ID": 623152, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor for MSW incineration", + "Technology_Practices": "Fluidized (Plant C as per Hwang et al. 2017)", + "Parameter_Conditions": "Methane emission measured by type of plant", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22.56", + "Unit": "gCH4/tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371748", + "creation_date": "2022-03-14T08:15:52.590Z", + "last_change_date": "2022-03-14T08:15:52.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17494, + "fields": { + "EF_ID": 623153, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor for MSW incineration", + "Technology_Practices": "Fluidized (Plant C as per Hwang et al. 2017)", + "Parameter_Conditions": "Nitrous Oxide measured by type of plant", + "Regional_Conditions": "Korea", + "Control_Technologies": "De NOx systems", + "Other_Properties": "", + "Value": "259.76", + "Unit": "g N2O /tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "not applied", + "Data_Quality_Reference": "not applied", + "Other_Data_Quality": "not applied", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371748", + "creation_date": "2022-03-14T08:15:52.699Z", + "last_change_date": "2022-03-14T08:15:52.699Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17495, + "fields": { + "EF_ID": 623154, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor for MSW incineration", + "Technology_Practices": "Kiln & Stoker (Plant D,F, H and I as per Hwang et al. 2017)", + "Parameter_Conditions": "Methane emission measured by type of plant", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34.44-87.19", + "Unit": "gCH4/tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371748", + "creation_date": "2022-03-14T08:15:52.808Z", + "last_change_date": "2022-03-14T08:15:52.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17496, + "fields": { + "EF_ID": 623155, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor for MSW incineration", + "Technology_Practices": "Kilns & Stoker (Plant D,F, H and I as per Hwang et al. 2017)", + "Parameter_Conditions": "Nitrous Oxide measured by type of plant", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "61.11-1528.29", + "Unit": "g N2O /tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371748", + "creation_date": "2022-03-14T08:15:52.909Z", + "last_change_date": "2022-03-14T08:15:52.909Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17497, + "fields": { + "EF_ID": 623156, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor for MSW incineration", + "Technology_Practices": "Stoker (Plant E,G,H and I as per Hwang et al. 2017)", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.84-98.34", + "Unit": "gCH4/tonne", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371747", + "creation_date": "2022-03-14T08:15:53.011Z", + "last_change_date": "2022-03-14T08:15:53.011Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17498, + "fields": { + "EF_ID": 623157, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor for MSW incineration", + "Technology_Practices": "Stoker (Plant E,G,H and I as per Hwang et al. 2017)", + "Parameter_Conditions": "", + "Regional_Conditions": "Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "55.86 - 1488.67", + "Unit": "g N2O /tonne waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Hwang KL, Choi SM, Kim MK, Heo JB, Zoh KD (2017) Emission of greenhouse gases from waste incineration in Korea. J Environ Manage 196: 710-718.", + "English_Abstract": "Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 ton(-1) and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/28371748", + "creation_date": "2022-03-14T08:15:53.111Z", + "last_change_date": "2022-03-14T08:15:53.111Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17499, + "fields": { + "EF_ID": 623158, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (biowaste fraction)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Biowaste", + "Value": "42.8-48.4", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:53.204Z", + "last_change_date": "2022-03-14T08:15:53.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17500, + "fields": { + "EF_ID": 623159, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (paper fraction)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Paper", + "Value": "6.8-7.2", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:53.312Z", + "last_change_date": "2022-03-14T08:15:53.312Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17501, + "fields": { + "EF_ID": 623160, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (paper and cardboard fraction)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Paperboard and cardboard", + "Value": "7.4-8.2", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:53.421Z", + "last_change_date": "2022-03-14T08:15:53.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17502, + "fields": { + "EF_ID": 623161, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (wood fraction)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Wood", + "Value": "0.7-1.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:53.531Z", + "last_change_date": "2022-03-14T08:15:53.531Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17503, + "fields": { + "EF_ID": 623162, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (plastic fraction)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Plastic", + "Value": "15.8-17.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:53.639Z", + "last_change_date": "2022-03-14T08:15:53.639Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17504, + "fields": { + "EF_ID": 623163, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (glass fraction)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Glass", + "Value": "1.5-1.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:53.740Z", + "last_change_date": "2022-03-14T08:15:53.740Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17505, + "fields": { + "EF_ID": 623164, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (metal fraction)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Metal", + "Value": "1.6-2.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:53.857Z", + "last_change_date": "2022-03-14T08:15:53.857Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17506, + "fields": { + "EF_ID": 623165, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (Textiles, shoes and bags)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Textiles, shoes and bags", + "Value": "5.1-6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:53.966Z", + "last_change_date": "2022-03-14T08:15:53.966Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17507, + "fields": { + "EF_ID": 623166, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (WEEE and batteries)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "WEEE and batteries", + "Value": "0.4-0.5", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:54.125Z", + "last_change_date": "2022-03-14T08:15:54.125Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17508, + "fields": { + "EF_ID": 623167, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (hazardous chemicals)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Hazardous chemicals", + "Value": "0.1-0.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:54.226Z", + "last_change_date": "2022-03-14T08:15:54.226Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17509, + "fields": { + "EF_ID": 623168, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (miscellaneous waste)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Finland", + "Control_Technologies": "", + "Other_Properties": "Miscellaneous waste", + "Value": "11.3-13.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Liikanen M, Sahimaa O, Hupponen M, Havukainen J, Sorvari J, Horttanainen M (2016) Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manag 52: 25-33.", + "English_Abstract": "More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "Shapiro--Wilk test performed to verify the normal distribution of the waste composition data. Mann-Whitney U test on 95% confidence interval used to identify differences in the distributions of waste categories", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/27021698", + "creation_date": "2022-03-14T08:15:54.326Z", + "last_change_date": "2022-03-14T08:15:54.326Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17510, + "fields": { + "EF_ID": 623169, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (organic waste)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Organic (Fermentable) waste", + "Value": "72", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:54.428Z", + "last_change_date": "2022-03-14T08:15:54.428Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17511, + "fields": { + "EF_ID": 623170, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (paper and cardboard)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Paper and cardboard", + "Value": "11.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:54.529Z", + "last_change_date": "2022-03-14T08:15:54.530Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17512, + "fields": { + "EF_ID": 623171, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (Cloth, rubber, PVC, leather)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Cloth, rubber, PVC, leather", + "Value": "1.01", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:54.629Z", + "last_change_date": "2022-03-14T08:15:54.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17513, + "fields": { + "EF_ID": 623172, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (glass)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Glass", + "Value": "1.43", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:54.738Z", + "last_change_date": "2022-03-14T08:15:54.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17514, + "fields": { + "EF_ID": 623173, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (polythene/plastics)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Polythene/plastics", + "Value": "6.23", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:54.839Z", + "last_change_date": "2022-03-14T08:15:54.839Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17515, + "fields": { + "EF_ID": 623174, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (metals)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Metals", + "Value": "0.23", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:54.956Z", + "last_change_date": "2022-03-14T08:15:54.956Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17516, + "fields": { + "EF_ID": 623175, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (other)", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Other (Dust and sweepings)", + "Value": "6.53", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:55.065Z", + "last_change_date": "2022-03-14T08:15:55.065Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17517, + "fields": { + "EF_ID": 623176, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste generation rate", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Organic (Fermentable) waste", + "Value": "74.09", + "Unit": "g/capita/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean value reported as follows: 74.09 +/- 34.94", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:55.174Z", + "last_change_date": "2022-03-14T08:15:55.174Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17518, + "fields": { + "EF_ID": 623177, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste generation rate", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "paper", + "Value": "19.18", + "Unit": "g/capita/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean value reported as follows: 19.18 +/- 22.22", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:55.433Z", + "last_change_date": "2022-03-14T08:15:55.433Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17519, + "fields": { + "EF_ID": 623178, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste generation rate", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Metal", + "Value": "10.66", + "Unit": "g/capita/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean value reported as follows: 10.66 +/- 11.87", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:55.525Z", + "last_change_date": "2022-03-14T08:15:55.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17520, + "fields": { + "EF_ID": 623179, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste generation rate", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Glass", + "Value": "6.8", + "Unit": "g/capita/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean value reported as follows: 6.8 +/- 5.01", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:55.609Z", + "last_change_date": "2022-03-14T08:15:55.609Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17521, + "fields": { + "EF_ID": 623180, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste generation rate", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Bangalore, India", + "Control_Technologies": "", + "Other_Properties": "Others", + "Value": "4.53", + "Unit": "g/capita/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ramachandra TV, Bharath HA, Kulkarni G, Han SS (2018) Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews 82: 1122-1136.", + "English_Abstract": "Municipal solid waste in developing countries mainly consists of degradable materials (>70%), which plays a significant role in GHG (Greenhouse gas) emissions in urban localities. The increasing municipal solid waste generation along with the high fraction of organic waste and its unscientific disposal is leading to emission of GHG (methane, CO2, etc.) in the atmosphere. Proportion of municipal solid wastes collected by the agencies disposed at identified sites is about 60%, while the balance is disposed-off at unauthorized disposal sites leading to the environmental consequences including greenhouse gas emissions. Mitigation strategy necessitates understanding of composition of waste for its treatment and management in an environmentally sound way. The study revealed that the per capita waste generated is about 91.01± 45.5 g/day with the per capita organic waste generation of 74±35 g/person/day. The household per capita waste generation was positively related with income and education levels, while negatively related with family (household) size. The organic fractions constitute 82% with the strong recovery potential and conversion to energy or compost range. The total organic waste generated is about 231.01 Gg/year and due to mismanagement consequent emissions are about 604.80 Gg/year. Integrated solid waste management strategy is suggested to manage the organic fractions through technology and policy interventions, which helps in mitigating GHG emissions with potential economic benefits", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Mean value reported as follows: 4.53 +/- 1.74", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S1364032117313369?via%3Dihub", + "creation_date": "2022-03-14T08:15:55.710Z", + "last_change_date": "2022-03-14T08:15:55.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17522, + "fields": { + "EF_ID": 623181, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fossil carbon in the total carbon", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "annual average", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.90", + "Unit": "%", + "Equation": "equation 5.1 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:55.819Z", + "last_change_date": "2022-03-14T08:15:55.819Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17523, + "fields": { + "EF_ID": 623182, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (total biowaste)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "79", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (16.8%), autumn(18.9%), winter (21.0%) and spring (28.1%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:55.929Z", + "last_change_date": "2022-03-14T08:15:55.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17524, + "fields": { + "EF_ID": 623183, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (kitchen waste/food waste)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (16.8%), autumn(12.0%), winter (21.0%) and spring (27.3%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.038Z", + "last_change_date": "2022-03-14T08:15:56.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17525, + "fields": { + "EF_ID": 623184, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (garden waste)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of autumn(32.0%), and spring (37.7%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.139Z", + "last_change_date": "2022-03-14T08:15:56.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17526, + "fields": { + "EF_ID": 623185, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (total paper and cardboard)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "22", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (68.2%), autumn(79.5%), winter (88.9%) and spring (74.8%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.256Z", + "last_change_date": "2022-03-14T08:15:56.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17527, + "fields": { + "EF_ID": 623186, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (paper/cardboard)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (68.0%), autumn(79.8%), winter (90.0%) and spring (76.3%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.365Z", + "last_change_date": "2022-03-14T08:15:56.365Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17528, + "fields": { + "EF_ID": 623187, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (carton drink package)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "28", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (72.8%), autumn(75.0%), winter (80.2%) and spring (60.6%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.466Z", + "last_change_date": "2022-03-14T08:15:56.466Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17529, + "fields": { + "EF_ID": 623188, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (wood)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (52.9%), autumn(78.3%), winter (64.0%) and spring (82.4%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.566Z", + "last_change_date": "2022-03-14T08:15:56.566Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17530, + "fields": { + "EF_ID": 623189, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (tissues)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (59.2%), autumn(57.7%), winter (68.8%) and spring (61.1%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.683Z", + "last_change_date": "2022-03-14T08:15:56.683Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17531, + "fields": { + "EF_ID": 623190, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (fabric)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (74.2%), autumn(77.6%), winter (86.0%) and spring (64.4%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.801Z", + "last_change_date": "2022-03-14T08:15:56.801Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17532, + "fields": { + "EF_ID": 623191, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (leather/rubber)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (76.2%), autumn(73.3%), winter (86.8%) and spring (89.0%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:56.918Z", + "last_change_date": "2022-03-14T08:15:56.918Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17533, + "fields": { + "EF_ID": 623192, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (fines)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "46", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (53.3%), autumn(48.8%), winter (48.3%) and spring (64.5%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.036Z", + "last_change_date": "2022-03-14T08:15:57.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17534, + "fields": { + "EF_ID": 623193, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (soft plastic)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (62.3%), autumn(72.1%), winter (80.6%) and spring (78.4%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.144Z", + "last_change_date": "2022-03-14T08:15:57.144Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17535, + "fields": { + "EF_ID": 623194, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content of waste fraction (rigid plastic)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "data is average of summer (89.5%), autumn(91.1%), winter (96.3%) and spring (89.4%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.253Z", + "last_change_date": "2022-03-14T08:15:57.253Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17536, + "fields": { + "EF_ID": 623195, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (kitchen/food waste)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.69", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.370Z", + "last_change_date": "2022-03-14T08:15:57.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17537, + "fields": { + "EF_ID": 623196, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (garden waste)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "19.61", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.489Z", + "last_change_date": "2022-03-14T08:15:57.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17538, + "fields": { + "EF_ID": 623197, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (paper/cardboard)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "41.01", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.598Z", + "last_change_date": "2022-03-14T08:15:57.598Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17539, + "fields": { + "EF_ID": 623198, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (carton drink package)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50.44", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.706Z", + "last_change_date": "2022-03-14T08:15:57.706Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17540, + "fields": { + "EF_ID": 623199, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (wood)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48.35", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.808Z", + "last_change_date": "2022-03-14T08:15:57.808Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17541, + "fields": { + "EF_ID": 623200, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (tissue)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "44.14", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:57.916Z", + "last_change_date": "2022-03-14T08:15:57.916Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17542, + "fields": { + "EF_ID": 623201, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (fabric)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48.93", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.017Z", + "last_change_date": "2022-03-14T08:15:58.017Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17543, + "fields": { + "EF_ID": 623202, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (leather/rubber)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.43", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.117Z", + "last_change_date": "2022-03-14T08:15:58.117Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17544, + "fields": { + "EF_ID": 623203, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (fines)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33.99", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.218Z", + "last_change_date": "2022-03-14T08:15:58.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17545, + "fields": { + "EF_ID": 623204, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (soft plastic)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75.77", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.318Z", + "last_change_date": "2022-03-14T08:15:58.318Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17546, + "fields": { + "EF_ID": 623205, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Total carbon content in % of dry weight (rigid plastic)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "74.57", + "Unit": "%", + "Equation": "equation 5.2 on page 5.7 in vol.5 of the 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.419Z", + "last_change_date": "2022-03-14T08:15:58.419Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17547, + "fields": { + "EF_ID": 623206, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of kitchen/food waste in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "24.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.519Z", + "last_change_date": "2022-03-14T08:15:58.519Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17548, + "fields": { + "EF_ID": 623207, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of garden waste in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.4", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.628Z", + "last_change_date": "2022-03-14T08:15:58.628Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17549, + "fields": { + "EF_ID": 623208, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of paper/cardboard in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.738Z", + "last_change_date": "2022-03-14T08:15:58.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17550, + "fields": { + "EF_ID": 623209, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of carton drink package in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.838Z", + "last_change_date": "2022-03-14T08:15:58.838Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17551, + "fields": { + "EF_ID": 623210, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of wood in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:58.963Z", + "last_change_date": "2022-03-14T08:15:58.964Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17552, + "fields": { + "EF_ID": 623211, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of tissue in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.7", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.082Z", + "last_change_date": "2022-03-14T08:15:59.082Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17553, + "fields": { + "EF_ID": 623212, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fabric in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.200Z", + "last_change_date": "2022-03-14T08:15:59.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17554, + "fields": { + "EF_ID": 623213, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of leather/rubber in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.316Z", + "last_change_date": "2022-03-14T08:15:59.316Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17555, + "fields": { + "EF_ID": 623214, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of glass in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.434Z", + "last_change_date": "2022-03-14T08:15:59.434Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17556, + "fields": { + "EF_ID": 623215, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of stone/mineral in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.551Z", + "last_change_date": "2022-03-14T08:15:59.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17557, + "fields": { + "EF_ID": 623216, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fines in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.7", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.660Z", + "last_change_date": "2022-03-14T08:15:59.660Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17558, + "fields": { + "EF_ID": 623217, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of soft plastic in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.769Z", + "last_change_date": "2022-03-14T08:15:59.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17559, + "fields": { + "EF_ID": 623218, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of rigid plastic in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.0", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.878Z", + "last_change_date": "2022-03-14T08:15:59.878Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17560, + "fields": { + "EF_ID": 623219, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of iron in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:15:59.995Z", + "last_change_date": "2022-03-14T08:15:59.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17561, + "fields": { + "EF_ID": 623220, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of non-ferrous metal in mixed municipal waste (% of wet weight)", + "Technology_Practices": "mixed municipal waste that is sent to incineraton with EU waste code 20 03 01", + "Parameter_Conditions": "", + "Regional_Conditions": "Iru, Estonia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Harri Mooraa, Inge Roosb, Ulo Kaskc, Livia Kaskc, Kerlin Ounapuua (2017) Determination of biomass content in combusted municipal waste and associated CO2 emissions in Estonia, Energy Procedia 128, 222–229", + "English_Abstract": "Incineration of mixed municipal waste is gaining increasing importance in many European countries. This is also the case in several European Union member states such as Estonia, where waste-to-energy technology provides a relatively fast option to meet the demanding EU waste management targets regarding municipal waste recovery and landfilling. Furthermore, the biomass fraction of municipal solid waste, when used as a fuel for energy production, is recognised as a renewable energy source and is therefore eligible for government subsidy under Estonian legislation. Also CO2 emissions are accounted for according to their source, either as biogenic (resulting from the biomass fraction of the waste), and thus climate neutral, or as fossil, and thus liable for CO2 charges. Therefore, it is crucial that operators of waste incineration plants are able to determine the ratio of biogenic and fossil carbon in combustible waste. This paper summarises the results of the research conducted in the first waste incineration plant in Estonia and the Baltic States to determine the material composition (incl. biomass content) and the proportion of fossil CO2 emission from combusted mixed municipal solid waste. The results of a one year long manual waste sorting study and laboratory analysis show that the share of the biomass fraction is approximately 52 % in the combusted municipal solid waste (on a dry weight basis) and that fossil carbon accounts for about 40 % of the total carbon (on a wet weight bases). The associated annual average fossil CO2 emissions are about 429 kg per ton of combusted municipal waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610217339036", + "creation_date": "2022-03-14T08:16:00.104Z", + "last_change_date": "2022-03-14T08:16:00.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17562, + "fields": { + "EF_ID": 623221, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (biowaste fraction)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Biowaste", + "Value": "24.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.204Z", + "last_change_date": "2022-03-14T08:16:00.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17563, + "fields": { + "EF_ID": 623222, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (paper fraction)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Paper", + "Value": "20.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.305Z", + "last_change_date": "2022-03-14T08:16:00.305Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17564, + "fields": { + "EF_ID": 623223, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (plastic fraction)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Plastics", + "Value": "15.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste. This fraction was divided into soft plastics, expanded plastic foam, hard plastics packaging, and other plastics.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.421Z", + "last_change_date": "2022-03-14T08:16:00.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17565, + "fields": { + "EF_ID": 623224, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (glass fraction)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Glass", + "Value": "1.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.515Z", + "last_change_date": "2022-03-14T08:16:00.515Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17566, + "fields": { + "EF_ID": 623225, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (metal fraction)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Metal", + "Value": "3.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.600Z", + "last_change_date": "2022-03-14T08:16:00.600Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17567, + "fields": { + "EF_ID": 623226, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (other organic fraction)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Other organic", + "Value": "3.0", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.679Z", + "last_change_date": "2022-03-14T08:16:00.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17568, + "fields": { + "EF_ID": 623227, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (hazardous waste)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Hazardous waste", + "Value": "0.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.784Z", + "last_change_date": "2022-03-14T08:16:00.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17569, + "fields": { + "EF_ID": 623228, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (electrical and electronic waste)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Electrical and electronic waste", + "Value": "0.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.879Z", + "last_change_date": "2022-03-14T08:16:00.879Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17570, + "fields": { + "EF_ID": 623229, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Solid waste composition (other fraction)", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "Other", + "Value": "29.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Total waste for Goteborg contains 40-45% MSW and 55-60% commercial waste. This fraction was divided into woods, textiles, absorbent hygiene products, and miscellaneous.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:00.977Z", + "last_change_date": "2022-03-14T08:16:00.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17571, + "fields": { + "EF_ID": 623230, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (biowaste fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Biowaste", + "Value": "14.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.094Z", + "last_change_date": "2022-03-14T08:16:01.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17572, + "fields": { + "EF_ID": 623231, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (paper fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Paper", + "Value": "37.6", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.203Z", + "last_change_date": "2022-03-14T08:16:01.203Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17573, + "fields": { + "EF_ID": 623232, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (plastic fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Plastics", + "Value": "25.7", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW.this fraction was divided into soft plastics, expanded plastic foam, hard plastics packaging, and other plastics.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.288Z", + "last_change_date": "2022-03-14T08:16:01.288Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17574, + "fields": { + "EF_ID": 623233, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (glass fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Glass", + "Value": "3.4", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.395Z", + "last_change_date": "2022-03-14T08:16:01.395Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17575, + "fields": { + "EF_ID": 623234, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (metal fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Metal", + "Value": "3.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.504Z", + "last_change_date": "2022-03-14T08:16:01.504Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17576, + "fields": { + "EF_ID": 623235, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (Other inorganic fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Other inorganic", + "Value": "0.4", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.588Z", + "last_change_date": "2022-03-14T08:16:01.588Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17577, + "fields": { + "EF_ID": 623236, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (hazardous waste fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Hazardous waste", + "Value": "0.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.697Z", + "last_change_date": "2022-03-14T08:16:01.697Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17578, + "fields": { + "EF_ID": 623237, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (electrical and electronic waste)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Electrical and electronic waste", + "Value": "0.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.779Z", + "last_change_date": "2022-03-14T08:16:01.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17579, + "fields": { + "EF_ID": 623238, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (other fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "Other", + "Value": "15.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Stockholm is 100% MSW. This fraction was divided into woods, textiles, absorbent hygiene products, and miscellaneous.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.873Z", + "last_change_date": "2022-03-14T08:16:01.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17580, + "fields": { + "EF_ID": 623239, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (biowaste fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Biowaste", + "Value": "31.4", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW. In Linköping this fraction was divided into food waste and garden waste", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:01.974Z", + "last_change_date": "2022-03-14T08:16:01.974Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17581, + "fields": { + "EF_ID": 623240, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (paper fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Paper", + "Value": "23.2", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.092Z", + "last_change_date": "2022-03-14T08:16:02.092Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17582, + "fields": { + "EF_ID": 623241, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (plastic fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Plastics", + "Value": "13.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW. this fraction was divided into soft plastics, expanded plastic foam, hard plastics packaging, and other plastics.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.193Z", + "last_change_date": "2022-03-14T08:16:02.193Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17583, + "fields": { + "EF_ID": 623242, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (glass fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Glass", + "Value": "1.4", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.293Z", + "last_change_date": "2022-03-14T08:16:02.293Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17584, + "fields": { + "EF_ID": 623243, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (metal fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Metal", + "Value": "2.8", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.411Z", + "last_change_date": "2022-03-14T08:16:02.411Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17585, + "fields": { + "EF_ID": 623244, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (Other inorganic fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Other inorganic", + "Value": "2.7", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.505Z", + "last_change_date": "2022-03-14T08:16:02.505Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17586, + "fields": { + "EF_ID": 623245, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (hazardous waste fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Hazardous waste", + "Value": "0.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.603Z", + "last_change_date": "2022-03-14T08:16:02.603Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17587, + "fields": { + "EF_ID": 623246, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (electrical and electronic waste)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Electrical and electronic waste", + "Value": "0.3", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.688Z", + "last_change_date": "2022-03-14T08:16:02.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17588, + "fields": { + "EF_ID": 623247, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal solid waste composition (other waste fraction)", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Waste composition", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "Other", + "Value": "24.5", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Waste for combustion in Linköping is 100% MSW. This fraction was divided into woods, textiles, absorbent hygiene products, and miscellaneous.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.796Z", + "last_change_date": "2022-03-14T08:16:02.796Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17589, + "fields": { + "EF_ID": 623248, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Share of fossil carbon of total carbon", + "Technology_Practices": "Incineration of solid waste", + "Parameter_Conditions": "Fossil carbon fraction of total carbon in Incenirated MSW", + "Regional_Conditions": "Goteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.897Z", + "last_change_date": "2022-03-14T08:16:02.897Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17590, + "fields": { + "EF_ID": 623249, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Share of fossil carbon of total carbon", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Fossil carbon fraction of total carbon in Incenirated MSW", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "48", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:02.997Z", + "last_change_date": "2022-03-14T08:16:02.997Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17591, + "fields": { + "EF_ID": 623250, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.C.1 - Waste Incineration", + "Gases": "METHANE, CARBON DIOXIDE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Share of fossil carbon of total carbon", + "Technology_Practices": "Incineration of municipal solid waste", + "Parameter_Conditions": "Fossil carbon fraction of total carbon in Incenirated MSW", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.080Z", + "last_change_date": "2022-03-14T08:16:03.080Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17592, + "fields": { + "EF_ID": 623251, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content in combustible solid waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Göteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27.7-42.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.173Z", + "last_change_date": "2022-03-14T08:16:03.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17593, + "fields": { + "EF_ID": 623252, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content in combustible solid waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Malmö, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "21.5-41", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples. Waste that includes commercial waste and wood for 66% exhibited lowest(59%), and waste that includes commercial waste and wood for 36% exhibited highest (78.9%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.254Z", + "last_change_date": "2022-03-14T08:16:03.254Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17594, + "fields": { + "EF_ID": 623253, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content in combustible municipal solid waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Umeå, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "33-42.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.349Z", + "last_change_date": "2022-03-14T08:16:03.349Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17595, + "fields": { + "EF_ID": 623254, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content in combustible municipal solid waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.3-47.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.430Z", + "last_change_date": "2022-03-14T08:16:03.430Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17596, + "fields": { + "EF_ID": 623255, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content in combustible municipal solid waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.8-46.7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.525Z", + "last_change_date": "2022-03-14T08:16:03.525Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17597, + "fields": { + "EF_ID": 623256, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content in combustible solid waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Norrköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32.1-41.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.612Z", + "last_change_date": "2022-03-14T08:16:03.612Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17598, + "fields": { + "EF_ID": 623257, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Moisture content in combustible solid waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Borås, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.3-37", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.720Z", + "last_change_date": "2022-03-14T08:16:03.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17599, + "fields": { + "EF_ID": 623258, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content in % of dry weight of combustible waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Göteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.1-48.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.813Z", + "last_change_date": "2022-03-14T08:16:03.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17600, + "fields": { + "EF_ID": 623259, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content in % of dry weight of combutible waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Malmö, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "39.3-50.7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.913Z", + "last_change_date": "2022-03-14T08:16:03.913Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17601, + "fields": { + "EF_ID": 623260, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content in % of dry weight of combustible waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Umeå, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.7-53.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:03.996Z", + "last_change_date": "2022-03-14T08:16:03.996Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17602, + "fields": { + "EF_ID": 623261, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content in % of dry weight of combustible waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.1-47.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.131Z", + "last_change_date": "2022-03-14T08:16:04.131Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17603, + "fields": { + "EF_ID": 623262, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content in % of dry weight of combustible waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42.5-48.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.212Z", + "last_change_date": "2022-03-14T08:16:04.212Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17604, + "fields": { + "EF_ID": 623263, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content in % of dry weight of combustible waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Norrköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45-49.7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.307Z", + "last_change_date": "2022-03-14T08:16:04.307Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17605, + "fields": { + "EF_ID": 623264, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content in % of dry weight of combutible waste", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Borås, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.5-49.3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.388Z", + "last_change_date": "2022-03-14T08:16:04.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17606, + "fields": { + "EF_ID": 623265, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fossil carbon in total carbon", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Göteborg, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29-38", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.484Z", + "last_change_date": "2022-03-14T08:16:04.484Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17607, + "fields": { + "EF_ID": 623266, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fossil carbon in total carbon", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Malmö, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10-53", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples. Waste that includes wood for 32% exhibited lowest(10%), and waste that does not include wood exhibited highest (53%)", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.563Z", + "last_change_date": "2022-03-14T08:16:04.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17608, + "fields": { + "EF_ID": 623267, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fossil carbon in total carbon", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Umeå, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37-50", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.659Z", + "last_change_date": "2022-03-14T08:16:04.659Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17609, + "fields": { + "EF_ID": 623268, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fossil carbon in total carbon", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Stockholm, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "27-36", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.738Z", + "last_change_date": "2022-03-14T08:16:04.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17610, + "fields": { + "EF_ID": 623269, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fossil carbon in total carbon", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Linköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "23-36", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.844Z", + "last_change_date": "2022-03-14T08:16:04.844Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17611, + "fields": { + "EF_ID": 623270, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fossil carbon in total carbon", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Norrköping, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "26-48", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:04.921Z", + "last_change_date": "2022-03-14T08:16:04.921Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17612, + "fields": { + "EF_ID": 623271, + "IPCC_Category": "4.C.1 - Waste Incineration", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of fossil carbon in total carbon", + "Technology_Practices": "combustible waste for waste to energy plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Borås, Sweden", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30-46", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Avfall Sverige (2012), Determination of the fossil carbon content in combustable municipal solid waste in Sweden. Avfall Sverige Utveckling U2012:05. ISSN 1103-4092.", + "English_Abstract": "This project aimed to determine the fossil carbon content in municipal solid waste used as a fuel in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign comprised 42 solid waste samples, 21 flue gas samples, three sorting analyses and two investigations of fossil carbon content by using the balance method. The fossil carbon content in the solid waste samples and in the flue gas samples was determined by using an accredited laboratory for C14 analysis. From the C14 analyses it was concluded that about a third of the carbon in solid waste is of fossil origin. The two other methods, based on assumptions and calculations, gave similar results in the plants where they were used. Furthermore, the chemical characterisation of all the solid waste samples showed a relatively homogeneous composition in terms of the elements present. A systematic error for the solid sampling method was discovered during the project, making the total measurement uncertainty 14 % fossil carbon, compared to 3 % fossil carbon for the flue gas samples. It was also noted that the accuracy of determining the fossil content by sorting analysis is greatly affected by knowledge of, and correct data for, different waste fractions, and particularly for the plastic fraction’s moisture content.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Range of data shows the results of six samples.", + "Other_Comments": "", + "Data_Provider": "TFI TSU", + "Link": "http://www.avfallsverige.se/fileadmin/uploads/Rapporter/Utveckling/Rapporter_2012/U2012-05.pdf", + "creation_date": "2022-03-14T08:16:05.028Z", + "last_change_date": "2022-03-14T08:16:05.028Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17613, + "fields": { + "EF_ID": 623656, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Fraction of Sewage Sludge", + "Technology_Practices": "Incinerator, fluidized bed incineration", + "Parameter_Conditions": "Sewage sludge", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76.92", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kang, S., Kim, S., Lee, J., Jeon, Y., Kim, KH., and Jeon, EC. A Study on Applying Biomass Fraction for Greenhouse Gases Emission Estimation of a Sewage Sludge Incinerator in Korea: A Case Study, Sustainability 2017, 9, 557", + "English_Abstract": "According to the IPCC (Intergovernmental Panel on Climate Change) guidelines, when calculating CO2 emissions, CO2 emissions from biomass should be excluded from the total amount of CO2 emissions and should be separately reported due to their “carbon neutrality”. Sewage sludge is one of the representative biomass fuels. It is mixed with fossil fuels to achieve greenhouse gas reduction or is used by itself as a fuel to replace fossil fuels. According to the results of this study,biomass fractions of both the sewage sludge and these wage sludge incineration exhaust gases did not amount to 100%. At present, in many countries (South Korea, Japan, and Germany), when calculating greenhouse gas emissions from sewage sludge incinerators, all CO2 emissions from sewage sludge are judged to be biomass and only the greenhouse gas emissions that correspond to non-CO2 gases are calculated as greenhouse gas emissions. However, since, according our results, the content of sewage sludge is not 100% biomass, if CO2 emissions are excluded according to the existing greenhouse gas emission calculation method, the amount of emissions may be underestimated. Therefore, to accurately calculate greenhouse gas emissions from a sewage sludge incinerator, CO2 emissions should be calculated in consideration of the fossil carbon fractions of sewage sludge.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kang et al. 2017.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.3390/su9040557", + "creation_date": "2022-03-14T08:16:05.105Z", + "last_change_date": "2022-03-14T08:16:05.105Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17614, + "fields": { + "EF_ID": 623657, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Fraction of Sewage Sludge Flue Gas", + "Technology_Practices": "Incinerator, fluidized bed incineration", + "Parameter_Conditions": "Flue gas", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76.56", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kang, S., Kim, S., Lee, J., Jeon, Y., Kim, KH., and Jeon, EC. A Study on Applying Biomass Fraction for Greenhouse Gases Emission Estimation of a Sewage Sludge Incinerator in Korea: A Case Study, Sustainability 2017, 9, 557", + "English_Abstract": "According to the IPCC (Intergovernmental Panel on Climate Change) guidelines, when calculating CO2 emissions, CO2 emissions from biomass should be excluded from the total amount of CO2 emissions and should be separately reported due to their “carbon neutrality”. Sewage sludge is one of the representative biomass fuels. It is mixed with fossil fuels to achieve greenhouse gas reduction or is used by itself as a fuel to replace fossil fuels. According to the results of this study,biomass fractions of both the sewage sludge and these wage sludge incineration exhaust gases did not amount to 100%. At present, in many countries (South Korea, Japan, and Germany), when calculating greenhouse gas emissions from sewage sludge incinerators, all CO2 emissions from sewage sludge are judged to be biomass and only the greenhouse gas emissions that correspond to non-CO2 gases are calculated as greenhouse gas emissions. However, since, according our results, the content of sewage sludge is not 100% biomass, if CO2 emissions are excluded according to the existing greenhouse gas emission calculation method, the amount of emissions may be underestimated. Therefore, to accurately calculate greenhouse gas emissions from a sewage sludge incinerator, CO2 emissions should be calculated in consideration of the fossil carbon fractions of sewage sludge.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kang et al. 2017.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.3390/su9040557", + "creation_date": "2022-03-14T08:16:05.205Z", + "last_change_date": "2022-03-14T08:16:05.205Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17615, + "fields": { + "EF_ID": 623658, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Fraction of Municipal Solid Waste (MSW) Incineration Gas", + "Technology_Practices": "", + "Parameter_Conditions": "Flue gas", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "56-58", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kang, S., Kim, S., Lee, D., Lee, J., Kim, KH., and Jeon, EC. The Study on Biomass Fraction Estimation for Waste Incinerated in Korea: A Case Study, Sustainability 2017, 9, 511", + "English_Abstract": "In this study, to determine the biomass fraction to apply to the estimation of greenhouse gas (GHG) emissions from the waste incineration sector, municipal solid waste, industrial waste, and sewage sludge incineration facilities were selected and analyzed, and the biomass fractions found in these facilities were compared. The biomass fractions of Municipal solid waste, industrial waste, and sewage sludge in incineration facilities were shown to be 57%, 41%, and 78%, on average, respectively. In the case of municipal solid waste and industrial waste incineration facilities, the values were similar to those of previous studies. However, the biomass fraction of wastes and sewage sludge except for municipal solid waste was found to be significantly different from the IPCC default. Accordingly, we believe that the biomass fractions used to estimate the GHG emissions of different incineration facilities should reflect the characteristics of each waste type. At present, the basic value given by the IPCC for biomass fraction is used in Korea to estimate the GHG emissions of each waste incineration facility. Some studies have found a difference between the value obtained using the basic value given by the IPCC and the value obtained using values that reflect the characteristics of Korea. In common with previous studies, in this study the biomass fraction of waste incineration facilities and sewage sludge incineration facilities except for municipal solid wastes showed a large difference, which is also expected to affect the estimation of GHG emissions. If further studies collect additional data on the biomass fraction of each waste type, this study along with the additional data collected will assist in the development of a state level greenhouse gas emission factor and contribute to the improvement of the reliability of the national GHG inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kang et al. 2017.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.3390/su9040511", + "creation_date": "2022-03-14T08:16:05.296Z", + "last_change_date": "2022-03-14T08:16:05.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17616, + "fields": { + "EF_ID": 623659, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Fraction of Industrial Waste Incineration Gas", + "Technology_Practices": "", + "Parameter_Conditions": "Flue gas", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40-57", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kang, S., Kim, S., Lee, D., Lee, J., Kim, KH., and Jeon, EC. The Study on Biomass Fraction Estimation for Waste Incinerated in Korea: A Case Study, Sustainability 2017, 9, 511", + "English_Abstract": "In this study, to determine the biomass fraction to apply to the estimation of greenhouse gas (GHG) emissions from the waste incineration sector, municipal solid waste, industrial waste, and sewage sludge incineration facilities were selected and analyzed, and the biomass fractions found in these facilities were compared. The biomass fractions of Municipal solid waste, industrial waste, and sewage sludge in incineration facilities were shown to be 57%, 41%, and 78%, on average, respectively. In the case of municipal solid waste and industrial waste incineration facilities, the values were similar to those of previous studies. However, the biomass fraction of wastes and sewage sludge except for municipal solid waste was found to be significantly different from the IPCC default. Accordingly, we believe that the biomass fractions used to estimate the GHG emissions of different incineration facilities should reflect the characteristics of each waste type. At present, the basic value given by the IPCC for biomass fraction is used in Korea to estimate the GHG emissions of each waste incineration facility. Some studies have found a difference between the value obtained using the basic value given by the IPCC and the value obtained using values that reflect the characteristics of Korea. In common with previous studies, in this study the biomass fraction of waste incineration facilities and sewage sludge incineration facilities except for municipal solid wastes showed a large difference, which is also expected to affect the estimation of GHG emissions. If further studies collect additional data on the biomass fraction of each waste type, this study along with the additional data collected will assist in the development of a state level greenhouse gas emission factor and contribute to the improvement of the reliability of the national GHG inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kang et al. 2017.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.3390/su9040511", + "creation_date": "2022-03-14T08:16:05.389Z", + "last_change_date": "2022-03-14T08:16:05.390Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17617, + "fields": { + "EF_ID": 623660, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Biomass Fraction of Sewage Sludge Incineration Gas", + "Technology_Practices": "", + "Parameter_Conditions": "Flue gas", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76-81", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kang, S., Kim, S., Lee, D., Lee, J., Kim, KH., and Jeon, EC. The Study on Biomass Fraction Estimation for Waste Incinerated in Korea: A Case Study, Sustainability 2017, 9, 511", + "English_Abstract": "In this study, to determine the biomass fraction to apply to the estimation of greenhouse gas (GHG) emissions from the waste incineration sector, municipal solid waste, industrial waste, and sewage sludge incineration facilities were selected and analyzed, and the biomass fractions found in these facilities were compared. The biomass fractions of Municipal solid waste, industrial waste, and sewage sludge in incineration facilities were shown to be 57%, 41%, and 78%, on average, respectively. In the case of municipal solid waste and industrial waste incineration facilities, the values were similar to those of previous studies. However, the biomass fraction of wastes and sewage sludge except for municipal solid waste was found to be significantly different from the IPCC default. Accordingly, we believe that the biomass fractions used to estimate the GHG emissions of different incineration facilities should reflect the characteristics of each waste type. At present, the basic value given by the IPCC for biomass fraction is used in Korea to estimate the GHG emissions of each waste incineration facility. Some studies have found a difference between the value obtained using the basic value given by the IPCC and the value obtained using values that reflect the characteristics of Korea. In common with previous studies, in this study the biomass fraction of waste incineration facilities and sewage sludge incineration facilities except for municipal solid wastes showed a large difference, which is also expected to affect the estimation of GHG emissions. If further studies collect additional data on the biomass fraction of each waste type, this study along with the additional data collected will assist in the development of a state level greenhouse gas emission factor and contribute to the improvement of the reliability of the national GHG inventory.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kang et al. 2017.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.3390/su9040511", + "creation_date": "2022-03-14T08:16:05.490Z", + "last_change_date": "2022-03-14T08:16:05.490Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17618, + "fields": { + "EF_ID": 623661, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "12C content in Paper (Fossil Carbon Fraction)", + "Technology_Practices": "Incinerator, stoker method", + "Parameter_Conditions": "MSW", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim, S., Kang, S., Lee, J., Lee, S., Kim, KH., and Jeon, EC. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities, Journal of the Air & Waste Management Association, 2016, 66(10), 978–987", + "English_Abstract": "In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C contentwere calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kim et al. 2016.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1080/10962247.2016.1192070", + "creation_date": "2022-03-14T08:16:05.608Z", + "last_change_date": "2022-03-14T08:16:05.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17619, + "fields": { + "EF_ID": 623662, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "12C content in Wood/straw (Fossil Carbon Fraction)", + "Technology_Practices": "Incinerator, stoker method", + "Parameter_Conditions": "MSW", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim, S., Kang, S., Lee, J., Lee, S., Kim, KH., and Jeon, EC. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities, Journal of the Air & Waste Management Association, 2016, 66(10), 978–987", + "English_Abstract": "In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C contentwere calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kim et al. 2016.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1080/10962247.2016.1192070", + "creation_date": "2022-03-14T08:16:05.700Z", + "last_change_date": "2022-03-14T08:16:05.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17620, + "fields": { + "EF_ID": 623663, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "12C content in Plastics/Vinyl (Fossil Carbon Fraction)", + "Technology_Practices": "Incinerator, stoker method", + "Parameter_Conditions": "MSW", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim, S., Kang, S., Lee, J., Lee, S., Kim, KH., and Jeon, EC. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities, Journal of the Air & Waste Management Association, 2016, 66(10), 978–987", + "English_Abstract": "In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C contentwere calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kim et al. 2016.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1080/10962247.2016.1192070", + "creation_date": "2022-03-14T08:16:05.784Z", + "last_change_date": "2022-03-14T08:16:05.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17621, + "fields": { + "EF_ID": 623664, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "12C content in Textiles/Leather (Fossil Carbon Fraction)", + "Technology_Practices": "Incinerator, stoker method", + "Parameter_Conditions": "MSW", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "25.1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim, S., Kang, S., Lee, J., Lee, S., Kim, KH., and Jeon, EC. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities, Journal of the Air & Waste Management Association, 2016, 66(10), 978–987", + "English_Abstract": "In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C contentwere calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kim et al. 2016.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1080/10962247.2016.1192070", + "creation_date": "2022-03-14T08:16:05.868Z", + "last_change_date": "2022-03-14T08:16:05.868Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17622, + "fields": { + "EF_ID": 623665, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "12C content in incineration gases of the urban solid waste incineration facilities (Fossil Carbon Fraction)", + "Technology_Practices": "Incinerator, stoker method", + "Parameter_Conditions": "MSW", + "Regional_Conditions": "South Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38-46.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Kim, S., Kang, S., Lee, J., Lee, S., Kim, KH., and Jeon, EC. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities, Journal of the Air & Waste Management Association, 2016, 66(10), 978–987", + "English_Abstract": "In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and 12C content were analyzed; and in particular, CO2 concentration in incineration gases and 12C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. Implications: This study intends to compare greenhouse gas emissions calculated using 12C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using 12C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and 12C contentwere calculated by directly collecting incineration gases of the target urban solid waste incineration facilities, and greenhouse gas emissions of the target urban solid waste incineration facilities through this survey were compared with greenhouse gas emissions, which used the previously calculated assay value of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "All data provided in Kim et al. 2016.", + "Other_Comments": "", + "Data_Provider": "", + "Link": "http://dx.doi.org/10.1080/10962247.2016.1192070", + "creation_date": "2022-03-14T08:16:05.977Z", + "last_change_date": "2022-03-14T08:16:05.977Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17623, + "fields": { + "EF_ID": 623666, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane correction factor (MCF)", + "Technology_Practices": "Centralized aerobic wastewater treatment facility (well-managed) without anaerobic sludge digesters", + "Parameter_Conditions": "Well-managed municipal centralized wastewater treatment systems", + "Regional_Conditions": "Intertropical regions", + "Control_Technologies": "", + "Other_Properties": "Some CH4 can be emitted from settling basins and other pockets, dissolved CH4 in the influent entering the WWTP is considered.", + "Value": "0.06", + "Unit": "fraction", + "Equation": "Equation 6.2, page 6.12, Vol. 5, Chapter 6, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Noyola, A., Paredes, M.G., Güereca, L.P., Molina, L.T., Zavala, M. (2018). Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review. Science or the Total Environment, 639, 84–91", + "English_Abstract": "Wastewater treatment (WWT) may be an important source of methane (CH4). Sources of CH4 emissions from WWT facilities can be found in the water and in the sludge process lines. Recent published results show that well managed treatment facilities may emit CH4, due to dissolved CH4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH4 emissions in two facilities in Mexico and on relevant literature data.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The MCF has been calculated based on data compiled from literature and one field measurement, default B0=0.6 from 2016 IPCC Guidelines for National Greenhouse Gas Inventories was used.", + "Other_Comments": "", + "Data_Provider": "Adalberto Noyola", + "Link": "", + "creation_date": "2022-03-14T08:16:06.069Z", + "last_change_date": "2022-03-14T08:16:06.069Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17624, + "fields": { + "EF_ID": 623667, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane correction factor (MCF)", + "Technology_Practices": "Centralized aerobic wastewater facility (well-managed) with anaerobic step for biological nutrient removal", + "Parameter_Conditions": "Well-managed municipal centralized wastewater treatment systems with biological nutrient removal and without anaerobic sludge digesters", + "Regional_Conditions": "Intertropical regions", + "Control_Technologies": "", + "Other_Properties": "Some CH4 can be emitted from settling basins and other pockets, and also from tanks for biological nutrient removal. Dissolved CH4 in the influent entering the WWTP is considered.", + "Value": "0.08", + "Unit": "fraction", + "Equation": "Equation 6.2, page 6.12, Vol. 5, Chapter 6, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Noyola, A., Paredes, M.G., Güereca, L.P., Molina, L.T., Zavala, M. (2018). Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review. Science or the Total Environment, 639, 84–91", + "English_Abstract": "Wastewater treatment (WWT) may be an important source of methane (CH4). Sources of CH4 emissions from WWT facilities can be found in the water and in the sludge process lines. Recent published results show that well managed treatment facilities may emit CH4, due to dissolved CH4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH4 emissions in two facilities in Mexico and on relevant literature data.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The MCF has been calculated based on data compiled from literature and one field measurement, default B0=0.6 from 2016 IPCC Guidelines for National Greenhouse Gas Inventories was used.", + "Other_Comments": "", + "Data_Provider": "Adalberto Noyola", + "Link": "", + "creation_date": "2022-03-14T08:16:06.162Z", + "last_change_date": "2022-03-14T08:16:06.162Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17625, + "fields": { + "EF_ID": 623668, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane correction factor (MCF)", + "Technology_Practices": "Centralized aerobic wastewater treatment facility (well-managed) with anaerobic sludge digesters", + "Parameter_Conditions": "Well-managed municipal centralized wastewater treatment systems with anaerobic sludge digesters", + "Regional_Conditions": "Intertropical regions", + "Control_Technologies": "", + "Other_Properties": "Some CH4 can be emitted from settling basins and other pockets. Fugitive emissions from digesters are considered. Dissolved CH4 in the influent entering the WWTP is considered.", + "Value": "0.32", + "Unit": "fraction", + "Equation": "Equation 6.2, page 6.12, Vol. 5, Chapter 6, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Noyola, A., Paredes, M.G., Güereca, L.P., Molina, L.T., Zavala, M. (2018). Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review. Science or the Total Environment, 639, 84–91", + "English_Abstract": "Wastewater treatment (WWT) may be an important source of methane (CH4). Sources of CH4 emissions from WWT facilities can be found in the water and in the sludge process lines. Recent published results show that well managed treatment facilities may emit CH4, due to dissolved CH4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH4 emissions in two facilities in Mexico and on relevant literature data.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The MCF has been calculated based on data compiled from logbook of facility and field measurement, default B0=0.6 from 2016 IPCC Guidelines for National Greenhouse Gas Inventories was used.", + "Other_Comments": "", + "Data_Provider": "Adalberto Noyola", + "Link": "", + "creation_date": "2022-03-14T08:16:06.255Z", + "last_change_date": "2022-03-14T08:16:06.255Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17626, + "fields": { + "EF_ID": 623669, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor (EF)", + "Technology_Practices": "Wastewater treatment facility - anaerobic deep lagoons (stabilization ponds) with good operational practices", + "Parameter_Conditions": "Municipal wastewater treatment facility consist of anaerobic and facultative ponds. Anaerobic ponds (AP) are commonly 2.5 to 5 m deep, and are the smallest and the deepest units of the pond system with a hydraulic retention time between 3 and 6 days. Facultative ponds (FP) are the second step of a SP system, they can be used also as primary pond, follow by a maturation pond (two ponds in series). The hydraulic retention time of these units should be within a range of 5–30 days, with depth between 1 and 2.5 m.", + "Regional_Conditions": "Mexico (MEX); Latin American Region", + "Control_Technologies": "", + "Other_Properties": "CH4 can be emitted from ponds.", + "Value": "0.43", + "Unit": "Kg CH4/Kg BOD", + "Equation": "Equation 6.1, page 6.11, Vol. 5, Chapter 6, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola A. (2015). `Methane emissions from stabilization ponds for municipal wastewater treatment in Mexico`, Journal of Integrative Environmental Sciences, 12, 2, 179-194", + "English_Abstract": "Wastewater treatment (WWT) is applied for environmental protection and water reclamation. However, this activity has been identified as a source of methane (CH4), contributing to climate change. In order to apply effective mitigation strategies in the water sector, a more precise inventory of CH4 emission should be accomplished. In this work, a detailed inventory of CH4 emissions form municipal wastewater management in Mexico was obtained, based on the Tier 1 IPCC methodology. In addition, on-site CH4 emission measurements in five stabilization ponds (SP) were realized. Also, the IPCC (theoretical) estimations showed that CH4 emissions were overestimated if compared with the results obtained in the five sampled facilities.", + "Lower_Bound": "0.32", + "Upper_Bound": "0.58", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The emission factor has been selected as representative from municipal stabilization ponds in Mexico. This is based on data obtained at 5 full scale facilities in Mexico. The EF is reported as kg CH4/kg BOD removed. According to 85% of removal efficiency in the facilities MCF for BOD in influents should be 0.37.", + "Other_Comments": "", + "Data_Provider": "Adalberto Noyola", + "Link": "", + "creation_date": "2022-03-14T08:16:06.362Z", + "last_change_date": "2022-03-14T08:16:06.362Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17627, + "fields": { + "EF_ID": 623670, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Methane correction factor (MCF)", + "Technology_Practices": "Centralized aerobic wastewater facility (well-managed) with anaerobic step for biological nutrient removal and anaerobic sludge digesters", + "Parameter_Conditions": "Well-managed municipal centralized wastewater treatment systems with anaerobic sludge digesters", + "Regional_Conditions": "Intertropical regions", + "Control_Technologies": "", + "Other_Properties": "Some CH4 can be emitted from settling basins and other pockets, and also from tanks for biological nutrient removal. Fugitive emissions from digesters and dissolved CH4 in the influent entering the WWTP are considered.", + "Value": "0.34", + "Unit": "fraction", + "Equation": "Equation 6.1, page 6.11, Vol. 5, Chapter 6, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Noyola, A., Paredes, M.G., Güereca, L.P., Molina, L.T., Zavala, M. (2018). Methane correction factors for estimating emissions from aerobic wastewater treatment facilities based on field data in Mexico and on literature review. Science or the Total Environment, 639, 84–91", + "English_Abstract": "Wastewater treatment (WWT) may be an important source of methane (CH4). Sources of CH4 emissions from WWT facilities can be found in the water and in the sludge process lines. Recent published results show that well managed treatment facilities may emit CH4, due to dissolved CH4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH4 emissions in two facilities in Mexico and on relevant literature data.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The MCF has been calculated based on data compiled from literature and one field measurement, default B0=0.6 from 2016 IPCC Guidelines for National Greenhouse Gas Inventories was used.", + "Other_Comments": "", + "Data_Provider": "Adalberto Noyola", + "Link": "", + "creation_date": "2022-03-14T08:16:06.464Z", + "last_change_date": "2022-03-14T08:16:06.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17628, + "fields": { + "EF_ID": 623671, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane generation rate (k) ", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Paper and paperboard", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.048", + "Unit": "1/yr", + "Equation": "Equation 3.4 and 3.4 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.0384", + "Upper_Bound": "0.0576", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:06.590Z", + "last_change_date": "2022-03-14T08:16:06.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17629, + "fields": { + "EF_ID": 623672, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane generation rate (k) ", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Textile", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.048", + "Unit": "1/yr", + "Equation": "Equation 3.4 and 3.4 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.0384", + "Upper_Bound": "0.0576", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:06.680Z", + "last_change_date": "2022-03-14T08:16:06.680Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17630, + "fields": { + "EF_ID": 623673, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane generation rate (k) ", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Food waste", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.11", + "Unit": "1/yr", + "Equation": "Equation 3.4 and 3.4 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.088", + "Upper_Bound": "0.132", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:06.775Z", + "last_change_date": "2022-03-14T08:16:06.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17631, + "fields": { + "EF_ID": 623674, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane generation rate (k) ", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Wood", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.024", + "Unit": "1/yr", + "Equation": "Equation 3.4 and 3.4 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.0192", + "Upper_Bound": "0.0288", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:06.863Z", + "last_change_date": "2022-03-14T08:16:06.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17632, + "fields": { + "EF_ID": 623675, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane generation rate (k) ", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Garden and park waste", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "1/yr", + "Equation": "Equation 3.4 and 3.4 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.056", + "Upper_Bound": "0.084", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:06.958Z", + "last_change_date": "2022-03-14T08:16:06.958Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17633, + "fields": { + "EF_ID": 623676, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Paper, based on wet waste", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.4", + "Unit": "fraction", + "Equation": "Equation 3.2 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.32", + "Upper_Bound": "0.48", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:07.038Z", + "last_change_date": "2022-03-14T08:16:07.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17634, + "fields": { + "EF_ID": 623677, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Textile, based on wet waste", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.24", + "Unit": "fraction", + "Equation": "Equation 3.2 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.192", + "Upper_Bound": "0.288", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:07.135Z", + "last_change_date": "2022-03-14T08:16:07.135Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17635, + "fields": { + "EF_ID": 623678, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Food waste, based on wet waste", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.15", + "Unit": "fraction", + "Equation": "Equation 3.2 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.12", + "Upper_Bound": "0.18", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:07.213Z", + "last_change_date": "2022-03-14T08:16:07.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17636, + "fields": { + "EF_ID": 623679, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Wood, based on wet waste", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.43", + "Unit": "fraction", + "Equation": "Equation 3.2 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.344", + "Upper_Bound": "0.516", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:07.311Z", + "last_change_date": "2022-03-14T08:16:07.311Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17637, + "fields": { + "EF_ID": 623680, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Degradable organic carbon (DOC)", + "Technology_Practices": "Managed and unmanaged solid waste landfilling for municipal and industrial waste", + "Parameter_Conditions": "Garden and park waste, based on wet waste", + "Regional_Conditions": "Ukraine", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.2", + "Unit": "fraction", + "Equation": "Equation 3.2 on p. 3.9 Vol. 5, Chapter 3, 2006 IPCC Guidelines for National Greenhouse Gas Inventories", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Matveev Y.B., Bereznytska M.V., National model of methane generation for estimation of methane emissions by solid waste disposal in Ukraine/ Materials of the Fourth International Symposium on Energy from Biomass and Waste, http://venicesymposium.it/ ,Venice 2012", + "English_Abstract": "The results of greenhouse gas (GHG) inventory of Ukraine for the period of 1990-2010 in Waste Sector, SWDL (Solid Waste Disposal on Land) category prepared for submission to UN FCCC Secretariat in 2012 are presented in this paper. The results are based on experience gained by the engineering companies in the process of field tests execution and full-scale LFG collection systems operation on the number solid waste disposal sites (SWDS). The national model of methane emissions from SWDS is described. This model includes historical activity data and country specific parameters. The brief characteristic of GHG emissions trends for the period 1990-2010 is provided.", + "Lower_Bound": "0.16", + "Upper_Bound": "0.24", + "Data_Quality": "Several studies of LFG generation were executed by Ukrainian companies Scientific Engineering Centre (SEC) Biomass, Renewable Energy Agency in cooperation with the company SCS Engineers from USA (SCS Engineers, 2007, 2008, Matveev, 2008).", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Modelling was made in accordance with the results of biogas generation pumping tests of at different landfills of Ukraine in 2007-2008", + "Other_Comments": "", + "Data_Provider": "Maryna Bereznytska", + "Link": "https://www.tuhh.de/iue/iwwg/publications/conference-proceedings/venice-2012.html", + "creation_date": "2022-03-14T08:16:07.388Z", + "last_change_date": "2022-03-14T08:16:07.388Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17638, + "fields": { + "EF_ID": 623681, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor - Broccoli", + "Technology_Practices": "Composting", + "Parameter_Conditions": "The production of N2O occurs in anaerobic micro-sites particles of compost materials, when degradation of fresh and easily available organic materials exhausts the oxygen", + "Regional_Conditions": "Western Europe (Portugal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.18", + "Unit": "g N2O/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Santos, C., Goufo, P., Fonseca, J., Pereira, J.L.S., Ferreira, L., Coutinho, J & Trindde, H., (2018) Effect of Lignocellulosic and phenolic compounds on ammonia, nitric oxide and greenhouse gas emissions during composting, Journal of Cleaner Production, (171) 548-556", + "English_Abstract": "Composting is recognised a promising technology for recycling and adding value to agro-food wastes. There are, however, potential environmental risks associated with composting, such as the emission of greenhouse gases (GHGs). The aim of this study was to quantify the emissions of carbon dioxide, methane, nitrous oxide, nitric oxide and ammonia during composting of five agro-food wastes originated from the broccoli, chestnut, olive and grape industries, and to study the relationship between the emissions and the lignin, cellulose, hemicellulose and phenolic contents of the wastes. According to physicochemical indicators monitored during the process, all agro-food residues tested were suitable for composting, with chestnut in the top and broccoli in the bottom of the range. Composting of chestnut and olive led to higher carbon dioxide, methane and nitrous oxide emissions, whereas lower emissions were observed with white grape. A positive correlation was found between phenolics and nitric oxide (r ¼ 0.63; p < 0.01), but not with the other gases. Lignocellulose showed a positive correlation with nitrous oxide (r ¼ 0.51; p < 0.05), but not with carbon dioxide and methane. The accumulation of lignin was highest in the chestnut compost, which was associated with lower nitric oxide and ammonia emissions relative to the other waste materials. The results show that wastes with high lignocellulose can be managed using composting with additional benefits on the environment in relation to mitigating nitrogen losses.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation about the mean value is ± 0.1. N2O detection limits for the analyzer is 0.03 ppm.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Catia Santos", + "Link": "http://dx.doi.org/10.1016/j.wasman.2016.10.020", + "creation_date": "2022-03-14T08:16:07.495Z", + "last_change_date": "2022-03-14T08:16:07.495Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17639, + "fields": { + "EF_ID": 623682, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor - Chestnut", + "Technology_Practices": "Composting", + "Parameter_Conditions": "The production of N2O occurs in anaerobic micro-sites particles of compost materials, when degradation of fresh and easily available organic materials exhausts the oxygen", + "Regional_Conditions": "Western Europe (Portugal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.9", + "Unit": "g N2O/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Santos, C., Goufo, P., Fonseca, J., Pereira, J.L.S., Ferreira, L., Coutinho, J & Trindde, H., (2018) Effect of Lignocellulosic and phenolic compounds on ammonia, nitric oxide and greenhouse gas emissions during composting, Journal of Cleaner Production, (171) 548-556", + "English_Abstract": "Composting is recognised a promising technology for recycling and adding value to agro-food wastes. There are, however, potential environmental risks associated with composting, such as the emission of greenhouse gases (GHGs). The aim of this study was to quantify the emissions of carbon dioxide, methane, nitrous oxide, nitric oxide and ammonia during composting of five agro-food wastes originated from the broccoli, chestnut, olive and grape industries, and to study the relationship between the emissions and the lignin, cellulose, hemicellulose and phenolic contents of the wastes. According to physicochemical indicators monitored during the process, all agro-food residues tested were suitable for composting, with chestnut in the top and broccoli in the bottom of the range. Composting of chestnut and olive led to higher carbon dioxide, methane and nitrous oxide emissions, whereas lower emissions were observed with white grape. A positive correlation was found between phenolics and nitric oxide (r ¼ 0.63; p < 0.01), but not with the other gases. Lignocellulose showed a positive correlation with nitrous oxide (r ¼ 0.51; p < 0.05), but not with carbon dioxide and methane. The accumulation of lignin was highest in the chestnut compost, which was associated with lower nitric oxide and ammonia emissions relative to the other waste materials. The results show that wastes with high lignocellulose can be managed using composting with additional benefits on the environment in relation to mitigating nitrogen losses.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation about the mean value is ± 0.2. N2O detection limits for the analyzer is 0.03 ppm.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Catia Santos", + "Link": "http://dx.doi.org/10.1016/j.wasman.2016.10.020", + "creation_date": "2022-03-14T08:16:07.613Z", + "last_change_date": "2022-03-14T08:16:07.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17640, + "fields": { + "EF_ID": 623683, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor - White Grape", + "Technology_Practices": "Composting", + "Parameter_Conditions": "The production of N2O occurs in anaerobic micro-sites particles of compost materials, when degradation of fresh and easily available organic materials exhausts the oxygen", + "Regional_Conditions": "Western Europe (Portugal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.08", + "Unit": "g N2O/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Santos, C., Goufo, P., Fonseca, J., Pereira, J.L.S., Ferreira, L., Coutinho, J & Trindde, H., (2018) Effect of Lignocellulosic and phenolic compounds on ammonia, nitric oxide and greenhouse gas emissions during composting, Journal of Cleaner Production, (171) 548-556", + "English_Abstract": "Composting is recognised a promising technology for recycling and adding value to agro-food wastes. There are, however, potential environmental risks associated with composting, such as the emission of greenhouse gases (GHGs). The aim of this study was to quantify the emissions of carbon dioxide, methane, nitrous oxide, nitric oxide and ammonia during composting of five agro-food wastes originated from the broccoli, chestnut, olive and grape industries, and to study the relationship between the emissions and the lignin, cellulose, hemicellulose and phenolic contents of the wastes. According to physicochemical indicators monitored during the process, all agro-food residues tested were suitable for composting, with chestnut in the top and broccoli in the bottom of the range. Composting of chestnut and olive led to higher carbon dioxide, methane and nitrous oxide emissions, whereas lower emissions were observed with white grape. A positive correlation was found between phenolics and nitric oxide (r ¼ 0.63; p < 0.01), but not with the other gases. Lignocellulose showed a positive correlation with nitrous oxide (r ¼ 0.51; p < 0.05), but not with carbon dioxide and methane. The accumulation of lignin was highest in the chestnut compost, which was associated with lower nitric oxide and ammonia emissions relative to the other waste materials. The results show that wastes with high lignocellulose can be managed using composting with additional benefits on the environment in relation to mitigating nitrogen losses.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation about the mean value is ± 0.0. N2O detection limits for the analyzer is 0.03 ppm.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Catia Santos", + "Link": "http://dx.doi.org/10.1016/j.wasman.2016.10.020", + "creation_date": "2022-03-14T08:16:07.721Z", + "last_change_date": "2022-03-14T08:16:07.721Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17641, + "fields": { + "EF_ID": 623684, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor - Red Grape", + "Technology_Practices": "Composting", + "Parameter_Conditions": "The production of N2O occurs in anaerobic micro-sites particles of compost materials, when degradation of fresh and easily available organic materials exhausts the oxygen", + "Regional_Conditions": "Western Europe (Portugal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.26", + "Unit": "g N2O/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Santos, C., Goufo, P., Fonseca, J., Pereira, J.L.S., Ferreira, L., Coutinho, J & Trindde, H., (2018) Effect of Lignocellulosic and phenolic compounds on ammonia, nitric oxide and greenhouse gas emissions during composting, Journal of Cleaner Production, (171) 548-556", + "English_Abstract": "Composting is recognised a promising technology for recycling and adding value to agro-food wastes. There are, however, potential environmental risks associated with composting, such as the emission of greenhouse gases (GHGs). The aim of this study was to quantify the emissions of carbon dioxide, methane, nitrous oxide, nitric oxide and ammonia during composting of five agro-food wastes originated from the broccoli, chestnut, olive and grape industries, and to study the relationship between the emissions and the lignin, cellulose, hemicellulose and phenolic contents of the wastes. According to physicochemical indicators monitored during the process, all agro-food residues tested were suitable for composting, with chestnut in the top and broccoli in the bottom of the range. Composting of chestnut and olive led to higher carbon dioxide, methane and nitrous oxide emissions, whereas lower emissions were observed with white grape. A positive correlation was found between phenolics and nitric oxide (r ¼ 0.63; p < 0.01), but not with the other gases. Lignocellulose showed a positive correlation with nitrous oxide (r ¼ 0.51; p < 0.05), but not with carbon dioxide and methane. The accumulation of lignin was highest in the chestnut compost, which was associated with lower nitric oxide and ammonia emissions relative to the other waste materials. The results show that wastes with high lignocellulose can be managed using composting with additional benefits on the environment in relation to mitigating nitrogen losses.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation about the mean value is ± 0.1. N2O detection limits for the analyzer is 0.03 ppm.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Catia Santos", + "Link": "http://dx.doi.org/10.1016/j.wasman.2016.10.020", + "creation_date": "2022-03-14T08:16:07.830Z", + "last_change_date": "2022-03-14T08:16:07.830Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17642, + "fields": { + "EF_ID": 623685, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor - Olive", + "Technology_Practices": "Composting", + "Parameter_Conditions": "The production of N2O occurs in anaerobic micro-sites particles of compost materials, when degradation of fresh and easily available organic materials exhausts the oxygen", + "Regional_Conditions": "Western Europe (Portugal)", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.91", + "Unit": "g N2O/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Santos, C., Goufo, P., Fonseca, J., Pereira, J.L.S., Ferreira, L., Coutinho, J & Trindde, H., (2018) Effect of Lignocellulosic and phenolic compounds on ammonia, nitric oxide and greenhouse gas emissions during composting, Journal of Cleaner Production, (171) 548-556", + "English_Abstract": "Composting is recognised a promising technology for recycling and adding value to agro-food wastes. There are, however, potential environmental risks associated with composting, such as the emission of greenhouse gases (GHGs). The aim of this study was to quantify the emissions of carbon dioxide, methane, nitrous oxide, nitric oxide and ammonia during composting of five agro-food wastes originated from the broccoli, chestnut, olive and grape industries, and to study the relationship between the emissions and the lignin, cellulose, hemicellulose and phenolic contents of the wastes. According to physicochemical indicators monitored during the process, all agro-food residues tested were suitable for composting, with chestnut in the top and broccoli in the bottom of the range. Composting of chestnut and olive led to higher carbon dioxide, methane and nitrous oxide emissions, whereas lower emissions were observed with white grape. A positive correlation was found between phenolics and nitric oxide (r ¼ 0.63; p < 0.01), but not with the other gases. Lignocellulose showed a positive correlation with nitrous oxide (r ¼ 0.51; p < 0.05), but not with carbon dioxide and methane. The accumulation of lignin was highest in the chestnut compost, which was associated with lower nitric oxide and ammonia emissions relative to the other waste materials. The results show that wastes with high lignocellulose can be managed using composting with additional benefits on the environment in relation to mitigating nitrogen losses.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard deviation about the mean value is ± 0.4. N2O detection limits for the analyzer is 0.03 ppm.", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Catia Santos", + "Link": "http://dx.doi.org/10.1016/j.wasman.2016.10.020", + "creation_date": "2022-03-14T08:16:07.941Z", + "last_change_date": "2022-03-14T08:16:07.941Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17643, + "fields": { + "EF_ID": 623686, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "DOC content of wheat straw", + "Technology_Practices": "", + "Parameter_Conditions": "DOC", + "Regional_Conditions": "Portugal", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "467.6", + "Unit": "g C/kg dry matter", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Santos, C., Fonseca, J., Aires, A., Coutinho, J., Trindade, H. (2017) Effect of different rates of spent cofee ground (SCG) on composting process, gaseous emissions and quality end-product. Waste Management 59, 37-47.", + "English_Abstract": "The use of spent coffee grounds (SCG) in composting for organic farming is a viable way of valorising these agro-industrial residues. In the present study, four treatments with different amounts of spent coffee grounds (SCG) were established, namely, C0 (Control), C10, C20 and C40, containing 0, 10, 20 and 40% of SCG (DM), respectively; and their effects on the composting process and the end-product quality characteristics were evaluated. The mixtures were completed with Acacia dealbata L. shoots and wheat straw. At different time intervals during composting, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions were measured and selected physicochemical characteristics of the composts were evaluated. During the composting process, all treatments showed a substantial decrease in total phenolics and total tannins, and an important increase in gallic acid. Emissions of greenhouse gases were very low and no significant difference between the treatments was registered. The results indicated that SCG may be successfully composted in all proportions. However C40, was the treatment which combined better conditions of composting, lower GHG emissions and better quality of end product.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Cátia Santos", + "Link": "", + "creation_date": "2022-03-14T08:16:08.066Z", + "last_change_date": "2022-03-14T08:16:08.067Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17644, + "fields": { + "EF_ID": 623797, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE, CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "DOCf of woods", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Kathuria, A., Barlaz, M., Cowie. A. (2019) Improving understanding of carbon storage in wood in landfills: evidence from reactor studies. Waste Management, 85, 341-350.", + "English_Abstract": "Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:08.200Z", + "last_change_date": "2022-03-14T08:16:08.200Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17645, + "fields": { + "EF_ID": 623798, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of Radiata pine (Pinus radiata) wood", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.56", + "Unit": "ml CH4/g dry wood", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Kathuria, A., Barlaz, M., Cowie. A. (2019) Improving understanding of carbon storage in wood in landfills: evidence from reactor studies. Waste Management, 85, 341-350.", + "English_Abstract": "Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.", + "Lower_Bound": "0.06", + "Upper_Bound": "1.03", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:08.334Z", + "last_change_date": "2022-03-14T08:16:08.334Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17646, + "fields": { + "EF_ID": 623799, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of Blackbutt (Eucalyptus pilularis) natural forest wood", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.4", + "Unit": "ml CH4/g dry wood", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Kathuria, A., Barlaz, M., Cowie. A. (2019) Improving understanding of carbon storage in wood in landfills: evidence from reactor studies. Waste Management, 85, 341-350.", + "English_Abstract": "Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.", + "Lower_Bound": "0.11", + "Upper_Bound": "5.77", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:08.451Z", + "last_change_date": "2022-03-14T08:16:08.451Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17647, + "fields": { + "EF_ID": 623800, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of Spotted gum (Corymbia maculata) wood", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "13.9", + "Unit": "ml CH4/g dry wood", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Kathuria, A., Barlaz, M., Cowie. A. (2019) Improving understanding of carbon storage in wood in landfills: evidence from reactor studies. Waste Management, 85, 341-350.", + "English_Abstract": "Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.", + "Lower_Bound": "11.8", + "Upper_Bound": "15.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:08.585Z", + "last_change_date": "2022-03-14T08:16:08.585Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17648, + "fields": { + "EF_ID": 623801, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of Mountain ash (Eucalyptus regnans) wood", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.9", + "Unit": "ml CH4/g dry wood", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Kathuria, A., Barlaz, M., Cowie. A. (2019) Improving understanding of carbon storage in wood in landfills: evidence from reactor studies. Waste Management, 85, 341-350.", + "English_Abstract": "Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.", + "Lower_Bound": "18.7", + "Upper_Bound": "22.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:08.711Z", + "last_change_date": "2022-03-14T08:16:08.711Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17649, + "fields": { + "EF_ID": 623802, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of Blackbutt (Eucalyptus pilularis) plantation forest wood", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.5", + "Unit": "ml CH4/g dry wood", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Kathuria, A., Barlaz, M., Cowie. A. (2019) Improving understanding of carbon storage in wood in landfills: evidence from reactor studies. Waste Management, 85, 341-350.", + "English_Abstract": "Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.", + "Lower_Bound": "5.1", + "Upper_Bound": "5.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:08.812Z", + "last_change_date": "2022-03-14T08:16:08.812Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17650, + "fields": { + "EF_ID": 623803, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of preservative-treated Radiata pine (Pinus radiata) wood", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "ml CH4/g dry wood", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Björdal, C., Kathuria, A., Barlaz, M., Cowie. A. (2019) Improving understanding of carbon storage in wood in landfills: evidence from reactor studies. Waste Management, 85, 341-350.", + "English_Abstract": "Approximately 1.5 million tonnes (Mt) of wood waste are disposed of in Australian landfills annually. Recent studies have suggested that anaerobic decay levels of wood in landfills are low, although knowledge of the decay of individual wood species is limited. The objective of this study was to establish the extent of carbon loss for wood species of commercial importance in Australia including radiata pine, blackbutt, spotted gum and mountain ash. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Bacterial degradation, identified by both light microscopy and electron microscopy, occurred to a varying degree in mountain ash and spotted gum wood. Fungal decay was not observed in any wood samples. Mountain ash, the species with the highest methane yield (20.9 mL CH4/g) also had the highest holocellulose content and the lowest acid-insoluble lignin and extractive content. As the decay levels for untreated radiata pine were very low, it was not possible to determine whether impregnation of radiata pine with chemical preservatives had any impact on decay. Carbon losses estimated from gas generation were below 5% for all species tested. Carbon losses as estimated by gas generation were lower than those derived by mass balance in most reactors, suggesting that mass loss does not necessarily equate to carbon emissions. There was no statistical difference between decay of blackbutt derived from plantation and older, natural forests. Addition of paper as an easily digestible feedstock did not increase carbon loss for the two wood species tested and the presence of radiata pine had an inhibitory effect on copy paper decay. Although differences between some of the wood types were found to be statistically significant, these differences were detected for wood with carbon losses that did not exceed 5%. The suggested factor for carbon loss for wood in landfills in Australia is 1.4%. This study confirms that disposal of wood in landfills in Australia results in long-term storage of carbon, with only minimal conversion of carbon to gaseous end products.", + "Lower_Bound": "4.6", + "Upper_Bound": "5.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:08.912Z", + "last_change_date": "2022-03-14T08:16:08.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17651, + "fields": { + "EF_ID": 623804, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of medium-density fibreboard", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0", + "Unit": "ml CH4/g medium-density fibreboard", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Kathuria, A., Barlaz, M., Cowie. A. (2018) Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies. Carbon Balance and Management, 13:27.", + "English_Abstract": "Background: There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results: Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.", + "Lower_Bound": "0", + "Upper_Bound": "0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:09.012Z", + "last_change_date": "2022-03-14T08:16:09.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17652, + "fields": { + "EF_ID": 623805, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of particleboard", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.6", + "Unit": "ml CH4/g particleboard", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Kathuria, A., Barlaz, M., Cowie. A. (2018) Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies. Carbon Balance and Management, 13:27.", + "English_Abstract": "Background: There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results: Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.", + "Lower_Bound": "2.6", + "Upper_Bound": "10.5", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:09.138Z", + "last_change_date": "2022-03-14T08:16:09.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17653, + "fields": { + "EF_ID": 623806, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of bamboo", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "64.8", + "Unit": "ml CH4/g bamboo", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Other", + "Technical_Reference": "Ximenes, F., Kathuria, A., Barlaz, M., Cowie. A. (2018) Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies. Carbon Balance and Management, 13:27.", + "English_Abstract": "Background: There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results: Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.", + "Lower_Bound": "64.7", + "Upper_Bound": "64.9", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:09.239Z", + "last_change_date": "2022-03-14T08:16:09.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17654, + "fields": { + "EF_ID": 623807, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of cardboard in MSW", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "207.2", + "Unit": "ml CH4/g cardboard", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Kathuria, A., Barlaz, M., Cowie. A. (2018) Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies. Carbon Balance and Management, 13:27.", + "English_Abstract": "Background: There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results: Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.", + "Lower_Bound": "168.1", + "Upper_Bound": "244.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:09.348Z", + "last_change_date": "2022-03-14T08:16:09.348Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17655, + "fields": { + "EF_ID": 623808, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of copy paper (from Eucalyptus) in MSW", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "326.2", + "Unit": "ml CH4/g copy paper", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Kathuria, A., Barlaz, M., Cowie. A. (2018) Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies. Carbon Balance and Management, 13:27.", + "English_Abstract": "Background: There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results: Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.", + "Lower_Bound": "288.9", + "Upper_Bound": "386.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:09.450Z", + "last_change_date": "2022-03-14T08:16:09.450Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17656, + "fields": { + "EF_ID": 623809, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of copy paper (from Acacia) in MSW", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "300.9", + "Unit": "ml CH4/g copy paper", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Kathuria, A., Barlaz, M., Cowie. A. (2018) Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies. Carbon Balance and Management, 13:27.", + "English_Abstract": "Background: There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results: Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.", + "Lower_Bound": "287.1", + "Upper_Bound": "323.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:09.551Z", + "last_change_date": "2022-03-14T08:16:09.551Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17657, + "fields": { + "EF_ID": 623810, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane yield of recycled copy paper in MSW", + "Technology_Practices": "Solid waste disposal in managed landfills", + "Parameter_Conditions": "Laboratory scale bioreactors", + "Regional_Conditions": "Australia", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "279.7", + "Unit": "ml CH4/g copy paper", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ximenes, F., Kathuria, A., Barlaz, M., Cowie. A. (2018) Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies. Carbon Balance and Management, 13:27.", + "English_Abstract": "Background: There has been growing interest in the development of waste-specific decay factors for estimation of greenhouse gas emissions from landfills in national greenhouse gas inventories. Although engineered wood products (EWPs) and paper represent a substantial component of the solid waste stream, there is limited information available on their carbon dynamics in landfills. The objective of this study was to determine the extent of carbon loss for EWPs and paper products commonly used in Australia. Experiments were conducted under laboratory conditions designed to simulate optimal anaerobic biodegradation in a landfill. Results: Methane generation rates over incubations of 307–677 days ranged from zero for medium-density fibreboard (MDF) to 326 mL CH4g-1 for copy paper. Carbon losses for particleboard and MDF ranged from 0.7 to 1.6%, consistent with previous estimates. Carbon loss for the exterior wall panel product (2.8%) was consistent with the expected value for blackbutt, the main wood type used in its manufacture. Carbon loss for bamboo (11.4%) was significantly higher than for EWPs. Carbon losses for the three types of copy paper tested ranged from 72.4 to 82.5%, and were significantly higher than for cardboard (27.3–43.8%). Cardboard that had been buried in landfill for 20 years had a carbon loss of 27.3%—indicating that environmental conditions in the landfill did not support complete decomposition of the available carbon. Thus carbon losses for paper products as measured in bioreactors clearly overestimate those in actual landfills. Carbon losses, as estimated by gas generation, were on average lower than those derived by mass balance. The low carbon loss for particleboard and MDF is consistent with carbon loss for Australian wood types described in previous studies. A factor for carbon loss for combined EWPs and wood in landfills in Australia of 1.3% and for paper of 48% is proposed. Conclusions: The new suggested combined decay factor for wood and EWPs represents a significant reduction from the current factor used in the Australian greenhouse gas inventory; whereas the suggested decay factor for paper is similar to the current decay factor. Our results improve current understanding of the carbon dynamics of harvested wood products, and allow more refined estimates of methane emissions from landfills.", + "Lower_Bound": "228", + "Upper_Bound": "333.2", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Fabiano Ximenes", + "Link": "", + "creation_date": "2022-03-14T08:16:09.651Z", + "last_change_date": "2022-03-14T08:16:09.651Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17658, + "fields": { + "EF_ID": 624072, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Waste generation rate", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.767", + "Unit": "kg/household/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Trang, P.T.T, Dong, H. Q., Toan, D.Q., Hanh, N. T. X., and Thu. N.T. The Effects of Socio-economic Factors on Household Solid Waste Generation and Composition: A Case Study in Thu Dau Mot, Vietnam, Energy Procedia, 2017, 07 253-258", + "English_Abstract": "This paper estimated the household solid waste (HSW) generation and composition in Thu Dau Mot city. The study also determined the socio-economic factors influencing the waste generation of the households in the city by using Ordinary Least Square (OLS) regression. 300 sample households were selected for the study by using a stratified random sampling methodology. The results indicated that the average HSW generation in Thu Dau Mot was 0.76 kg/household/day. These wastes comprised of six categories of wastes, with the largest component of organic waste (67%). The effect of income, household size and environmental concern on HSW generation is statically significant at 1%. This study suggests new insights concerning the role of socioeconomic characteristics in affecting the generation of household waste in Thu Dau Mot city, Vietnam.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average household size = 4.05 persons. Household solid waste generated per household per day of different income groups in Thu Dau Mot city: Low socio-economic group (monthly income <1,500,000 VND) = 1.161 kg/household/day, lower middle socio-economic group (monthly income 1,500,000-2,500,000 VND) = 0.888 kg/household/day, middle socio-economic group (monthly income 2,500,000-3,500,000 VND) = 0.776 kg/household/day, upper middle socio-economic group (monthly income 3,500,000-4,500,000 VND) = 0.584 kg/household/day, high socio-economic group (monthly income >4,500,000 VND) = 0.425 kg/household/day", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610216317337", + "creation_date": "2022-03-14T08:16:09.751Z", + "last_change_date": "2022-03-14T08:16:09.751Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17659, + "fields": { + "EF_ID": 624073, + "IPCC_Category": "4.A - Solid Waste Disposal", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Organic waste composition", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Vietnam", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Trang, P.T.T, Dong, H. Q., Toan, D.Q., Hanh, N. T. X., and Thu. N.T. The Effects of Socio-economic Factors on Household Solid Waste Generation and Composition: A Case Study in Thu Dau Mot, Vietnam, Energy Procedia, 2017, 07 253-258", + "English_Abstract": "This paper estimated the household solid waste (HSW) generation and composition in Thu Dau Mot city. The study also determined the socio-economic factors influencing the waste generation of the households in the city by using Ordinary Least Square (OLS) regression. 300 sample households were selected for the study by using a stratified random sampling methodology. The results indicated that the average HSW generation in Thu Dau Mot was 0.76 kg/household/day. These wastes comprised of six categories of wastes, with the largest component of organic waste (67%). The effect of income, household size and environmental concern on HSW generation is statically significant at 1%. This study suggests new insights concerning the role of socioeconomic characteristics in affecting the generation of household waste in Thu Dau Mot city, Vietnam.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Household solid waste composition of different income groups in Thu Dau Mot city: Low socio-economic group (monthly income <1,500,000 VND) - organic 70.07% paper 9.0%, PET 0.6%, paper 5.61%, glass 3.63%, others 11.09%; lower middle socio-economic group (monthly income 1,500,000-2,500,000 VND) - organic 68.3%, plastic 9.39%, PET 0.67%, paper 6.37%, glass 3.92%, others 11.35%; middle socio-economic group (monthly income 2,500,000-3,500,000 VND)-organic 67.1%, plastic 10.4%, PET 0.75%, paper 12%, glass 1.2%, others 8.55% ; upper middle socio-economic group (monthly income 3,500,000-4,500,000 VND) - organic 68.4%, plastic 11.7%, PET 0.89%, paper 14.1%, glass 2.53%, others 2.38% ; high socio-economic group (monthly income >4,500,000 VND) - organic 65.5%, plastic 14.0%, PET 0.97%, paper 17.06%, glass 0.77%, others 1.7%", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.sciencedirect.com/science/article/pii/S1876610216317337", + "creation_date": "2022-03-14T08:16:09.869Z", + "last_change_date": "2022-03-14T08:16:09.869Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17660, + "fields": { + "EF_ID": 624074, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for Anaerobic Digestion of food waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.14", + "Unit": "g CH4/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeong, S., Moon, S., Park, J., Kim, J.Y. Field measurement of greenhouse gas emissions from biological treatment facilities of food waste in Republic of Korea, Waste Manag Res. 2019, 37(5), 452-460", + "English_Abstract": "The Republic of Korea is trying to reduce greenhouse gas emissions by 37% from business-as-usual levels by 2030. Reliable greenhouse gas inventory is prerequisite to making effective greenhouse gas reduction plans. Currently, Intergovernmental Panels on Climate Change default emission factors were used in biological treatment of the solid waste sector without any consideration of the biological treatment process in the Republic of Korea. In this study, greenhouse gas emissions from biological treatment facilities of food waste have been monitored in order to develop country-specific emission factors in the Republic of Korea. Greenhouse gas emissions were monitored in two composting facilities and one anaerobic digestion facility. All study sites possess a local exhaust ventilation system and odour treatment system. Continuous greenhouse gas monitoring has been conducted on gathered gases using a non-dispersive infrared detector before entering odour treatment systems. At composting facilities, the emission factors of CH4 and N2O were 0.17–0.19 g-CH4 kg-waste-1 and 0.10–0.13 g-N2O kg-waste-1, respectively. Especially, the emission factors of CH4 in composting facilities showed significantly low values compared with other countries owing to the air blowing by a pump at the studied sites. At anaerobic digestion facilities, the emission factors of CH4 and N2O were 1.03 g-CH4 kg-waste-1 and 0.53 g-N2O kgwaste-1. The emission factors estimated in this study showed a significant difference from the Intergovernmental Panels on Climate Change default value. Therefore, it is recommended to develop a country-specific emission factor in order to reflect the different processes of biological treatment of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncertainty (95% confidence level) = 5.15%", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://journals.sagepub.com/doi/abs/10.1177/0734242X18815956", + "creation_date": "2022-03-14T08:16:09.995Z", + "last_change_date": "2022-03-14T08:16:09.995Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17661, + "fields": { + "EF_ID": 624075, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for Anaerobic Digestion of food waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.60", + "Unit": "g N2O/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeong, S., Moon, S., Park, J., Kim, J.Y. Field measurement of greenhouse gas emissions from biological treatment facilities of food waste in Republic of Korea, Waste Manag Res. 2019, 37(5), 452-460", + "English_Abstract": "The Republic of Korea is trying to reduce greenhouse gas emissions by 37% from business-as-usual levels by 2030. Reliable greenhouse gas inventory is prerequisite to making effective greenhouse gas reduction plans. Currently, Intergovernmental Panels on Climate Change default emission factors were used in biological treatment of the solid waste sector without any consideration of the biological treatment process in the Republic of Korea. In this study, greenhouse gas emissions from biological treatment facilities of food waste have been monitored in order to develop country-specific emission factors in the Republic of Korea. Greenhouse gas emissions were monitored in two composting facilities and one anaerobic digestion facility. All study sites possess a local exhaust ventilation system and odour treatment system. Continuous greenhouse gas monitoring has been conducted on gathered gases using a non-dispersive infrared detector before entering odour treatment systems. At composting facilities, the emission factors of CH4 and N2O were 0.17–0.19 g-CH4 kg-waste-1 and 0.10–0.13 g-N2O kg-waste-1, respectively. Especially, the emission factors of CH4 in composting facilities showed significantly low values compared with other countries owing to the air blowing by a pump at the studied sites. At anaerobic digestion facilities, the emission factors of CH4 and N2O were 1.03 g-CH4 kg-waste-1 and 0.53 g-N2O kgwaste-1. The emission factors estimated in this study showed a significant difference from the Intergovernmental Panels on Climate Change default value. Therefore, it is recommended to develop a country-specific emission factor in order to reflect the different processes of biological treatment of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncertainty (95% confidence level) = 4.84%", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://journals.sagepub.com/doi/abs/10.1177/0734242X18815956", + "creation_date": "2022-03-14T08:16:10.112Z", + "last_change_date": "2022-03-14T08:16:10.112Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17662, + "fields": { + "EF_ID": 624076, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for Composting of food waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17-0.19", + "Unit": "g CH4/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeong, S., Moon, S., Park, J., Kim, J.Y. Field measurement of greenhouse gas emissions from biological treatment facilities of food waste in Republic of Korea, Waste Manag Res. 2019, 37(5), 452-460", + "English_Abstract": "The Republic of Korea is trying to reduce greenhouse gas emissions by 37% from business-as-usual levels by 2030. Reliable greenhouse gas inventory is prerequisite to making effective greenhouse gas reduction plans. Currently, Intergovernmental Panels on Climate Change default emission factors were used in biological treatment of the solid waste sector without any consideration of the biological treatment process in the Republic of Korea. In this study, greenhouse gas emissions from biological treatment facilities of food waste have been monitored in order to develop country-specific emission factors in the Republic of Korea. Greenhouse gas emissions were monitored in two composting facilities and one anaerobic digestion facility. All study sites possess a local exhaust ventilation system and odour treatment system. Continuous greenhouse gas monitoring has been conducted on gathered gases using a non-dispersive infrared detector before entering odour treatment systems. At composting facilities, the emission factors of CH4 and N2O were 0.17–0.19 g-CH4 kg-waste-1 and 0.10–0.13 g-N2O kg-waste-1, respectively. Especially, the emission factors of CH4 in composting facilities showed significantly low values compared with other countries owing to the air blowing by a pump at the studied sites. At anaerobic digestion facilities, the emission factors of CH4 and N2O were 1.03 g-CH4 kg-waste-1 and 0.53 g-N2O kgwaste-1. The emission factors estimated in this study showed a significant difference from the Intergovernmental Panels on Climate Change default value. Therefore, it is recommended to develop a country-specific emission factor in order to reflect the different processes of biological treatment of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncertainty (95% confidence level) = 2.91-3.20%", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://journals.sagepub.com/doi/abs/10.1177/0734242X18815956", + "creation_date": "2022-03-14T08:16:10.221Z", + "last_change_date": "2022-03-14T08:16:10.221Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17663, + "fields": { + "EF_ID": 624077, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for Composting of food waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Republic of Korea", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.10-0.13", + "Unit": "g N2O/kg waste treated", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Jeong, S., Moon, S., Park, J., Kim, J.Y. Field measurement of greenhouse gas emissions from biological treatment facilities of food waste in Republic of Korea, Waste Manag Res. 2019, 37(5), 452-460", + "English_Abstract": "The Republic of Korea is trying to reduce greenhouse gas emissions by 37% from business-as-usual levels by 2030. Reliable greenhouse gas inventory is prerequisite to making effective greenhouse gas reduction plans. Currently, Intergovernmental Panels on Climate Change default emission factors were used in biological treatment of the solid waste sector without any consideration of the biological treatment process in the Republic of Korea. In this study, greenhouse gas emissions from biological treatment facilities of food waste have been monitored in order to develop country-specific emission factors in the Republic of Korea. Greenhouse gas emissions were monitored in two composting facilities and one anaerobic digestion facility. All study sites possess a local exhaust ventilation system and odour treatment system. Continuous greenhouse gas monitoring has been conducted on gathered gases using a non-dispersive infrared detector before entering odour treatment systems. At composting facilities, the emission factors of CH4 and N2O were 0.17–0.19 g-CH4 kg-waste-1 and 0.10–0.13 g-N2O kg-waste-1, respectively. Especially, the emission factors of CH4 in composting facilities showed significantly low values compared with other countries owing to the air blowing by a pump at the studied sites. At anaerobic digestion facilities, the emission factors of CH4 and N2O were 1.03 g-CH4 kg-waste-1 and 0.53 g-N2O kgwaste-1. The emission factors estimated in this study showed a significant difference from the Intergovernmental Panels on Climate Change default value. Therefore, it is recommended to develop a country-specific emission factor in order to reflect the different processes of biological treatment of solid waste.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Uncertainty (95% confidence level) = 2.93-3.48%", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://journals.sagepub.com/doi/abs/10.1177/0734242X18815956", + "creation_date": "2022-03-14T08:16:10.346Z", + "last_change_date": "2022-03-14T08:16:10.346Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17664, + "fields": { + "EF_ID": 624078, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Oxidation factor (OX) ", + "Technology_Practices": "High-loaded managed landfill with a system of isolating layers and waste compaction covered by a sand-clay layer", + "Parameter_Conditions": "", + "Regional_Conditions": "Russian Federation, Kaluga region, Temperate continental climate", + "Control_Technologies": "", + "Other_Properties": "The ambient temperature was about 20 ± 5 ◦C", + "Value": "25", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zyakun, A.M., Muravyev, A.I., Baskunov, B. P., Laurinavichius, K.S., Zakharchenko, V.N., Peshenko, V.P., Lykov, I.N., Shestakova, G.A. Estimation of microbial methane generation and oxidation rates in the municipal solid waste landfill of Kaluga city, Russia, Isotopes in Environmental and Health Studies, 2010, 46 (1), 78-90", + "English_Abstract": "Using a theoretical model and mass isotopic balance, biogas (methane and CO2) released from buried products at their microbial degradation was analysed in the landfill of municipal and non-toxic industrial solid organic waste near Kaluga city, Russia. The landfill contains about 1.34 × 106 tons of waste buried using a ‘sandwich technique’ (successive application of sand–clay and waste layers). The δ13C values of biogenic methane with respect to CO2 were -56.8 (±2.5)‰, whereas the δ13Cof CO2 peaked at+9.12‰ (+1.4 ± 2.3‰ on average), reflecting a virtual fractionation of carbon isotopes in the course of bacterial CO2 reduction at the landfill body. After passing through the aerated soil layers, methane was partially oxidised and characterised by δ13C in the range of -50.6 to -38.2‰, evidencing enrichment in 13C, while the released carbon dioxide had δ13C of -23.3 to -4.04‰, respectively. On the mass isotopic balance forthe δ13C values, the methane production in the landfill anaerobic zone and the methane emitted through the aerated landfill surface to the atmosphere, the portion of methane oxidised by methanotrophic bacteria was calculated to be from 10 to 40% (averaged about 25%).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Standard error of isotope measurements at three repeated analyses of a sample was about ±0.1‰.", + "Data_Provider_Comments": "The portion of bacterially oxidised methane in total landfill methane were calculated using fractionation of carbon isotopes data. The cacluated methane consumed by methanotrophic bacteria in the aerated part of the landfill was in the range of 10–40%.", + "Other_Comments": "", + "Data_Provider": "Govor Irina", + "Link": "", + "creation_date": "2022-03-14T08:16:10.455Z", + "last_change_date": "2022-03-14T08:16:10.455Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17665, + "fields": { + "EF_ID": 624079, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane content in biogas (F)", + "Technology_Practices": "High-loaded managed landfill with a system of isolating layers and waste compaction covered by a sand-clay layer", + "Parameter_Conditions": "", + "Regional_Conditions": "Russian Federation, Kaluga region, Temperate continental climate", + "Control_Technologies": "", + "Other_Properties": "Organic products are about 79% of the buried wastes", + "Value": "68.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zyakun, A.M., Muravyev, A.I., Baskunov, B. P., Laurinavichius, K.S., Zakharchenko, V.N., Peshenko, V.P., Lykov, I.N., Shestakova, G.A. Estimation of microbial methane generation and oxidation rates in the municipal solid waste landfill of Kaluga city, Russia, Isotopes in Environmental and Health Studies, 2010, 46 (1), 78-90", + "English_Abstract": "Using a theoretical model and mass isotopic balance, biogas (methane and CO2) released from buried products at their microbial degradation was analysed in the landfill of municipal and non-toxic industrial solid organic waste near Kaluga city, Russia. The landfill contains about 1.34 × 106 tons of waste buried using a ‘sandwich technique’ (successive application of sand–clay and waste layers). The δ13C values of biogenic methane with respect to CO2 were -56.8 (±2.5)‰, whereas the δ13Cof CO2 peaked at+9.12‰ (+1.4 ± 2.3‰ on average), reflecting a virtual fractionation of carbon isotopes in the course of bacterial CO2 reduction at the landfill body. After passing through the aerated soil layers, methane was partially oxidised and characterised by δ13C in the range of -50.6 to -38.2‰, evidencing enrichment in 13C, while the released carbon dioxide had δ13C of -23.3 to -4.04‰, respectively. On the mass isotopic balance forthe δ13C values, the methane production in the landfill anaerobic zone and the methane emitted through the aerated landfill surface to the atmosphere, the portion of methane oxidised by methanotrophic bacteria was calculated to be from 10 to 40% (averaged about 25%).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = ±1.5%", + "Other_Comments": "", + "Data_Provider": "Govor Irina", + "Link": "", + "creation_date": "2022-03-14T08:16:10.564Z", + "last_change_date": "2022-03-14T08:16:10.564Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17666, + "fields": { + "EF_ID": 624080, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Methane generation rate constant (k)", + "Technology_Practices": "High-loaded managed landfill with a system of isolating layers and waste compaction covered by a sand-clay layer", + "Parameter_Conditions": "", + "Regional_Conditions": "Russian Federation, Kaluga region, Temperate continental climate", + "Control_Technologies": "", + "Other_Properties": "Organic products are about 79% of the buried wastes", + "Value": "0.1", + "Unit": "/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zyakun, A.M., Muravyev, A.I., Baskunov, B. P., Laurinavichius, K.S., Zakharchenko, V.N., Peshenko, V.P., Lykov, I.N., Shestakova, G.A. Estimation of microbial methane generation and oxidation rates in the municipal solid waste landfill of Kaluga city, Russia, Isotopes in Environmental and Health Studies, 2010, 46 (1), 78-90", + "English_Abstract": "Using a theoretical model and mass isotopic balance, biogas (methane and CO2) released from buried products at their microbial degradation was analysed in the landfill of municipal and non-toxic industrial solid organic waste near Kaluga city, Russia. The landfill contains about 1.34 × 106 tons of waste buried using a ‘sandwich technique’ (successive application of sand–clay and waste layers). The δ13C values of biogenic methane with respect to CO2 were -56.8 (±2.5)‰, whereas the δ13Cof CO2 peaked at+9.12‰ (+1.4 ± 2.3‰ on average), reflecting a virtual fractionation of carbon isotopes in the course of bacterial CO2 reduction at the landfill body. After passing through the aerated soil layers, methane was partially oxidised and characterised by δ13C in the range of -50.6 to -38.2‰, evidencing enrichment in 13C, while the released carbon dioxide had δ13C of -23.3 to -4.04‰, respectively. On the mass isotopic balance forthe δ13C values, the methane production in the landfill anaerobic zone and the methane emitted through the aerated landfill surface to the atmosphere, the portion of methane oxidised by methanotrophic bacteria was calculated to be from 10 to 40% (averaged about 25%).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = ±0.01 /year", + "Other_Comments": "", + "Data_Provider": "Govor Irina", + "Link": "", + "creation_date": "2022-03-14T08:16:10.673Z", + "last_change_date": "2022-03-14T08:16:10.673Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17667, + "fields": { + "EF_ID": 624081, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "MSW Composition", + "Technology_Practices": "", + "Parameter_Conditions": "Bulk solid municipal and non-toxic industrial wastes landfilled", + "Regional_Conditions": "Russian Federation, Kaluga region, Temperate continental climate", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "Paper/cardboard = 23.9, food waste = 34.9, wood, foliage = 4, textiles = 4.6, leather/rubber = 2.6, polymer materials = 9.1, ferrous metals =2.3, non-ferrous metal = 0.5, bones =1.5, glass = 6.7, ceramic = 1.8, fine materials (<16 mm)= 8.1", + "Unit": "% (by weight)", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zyakun, A.M., Muravyev, A.I., Baskunov, B. P., Laurinavichius, K.S., Zakharchenko, V.N., Peshenko, V.P., Lykov, I.N., Shestakova, G.A. Estimation of microbial methane generation and oxidation rates in the municipal solid waste landfill of Kaluga city, Russia, Isotopes in Environmental and Health Studies, 2010, 46 (1), 78-90", + "English_Abstract": "Using a theoretical model and mass isotopic balance, biogas (methane and CO2) released from buried products at their microbial degradation was analysed in the landfill of municipal and non-toxic industrial solid organic waste near Kaluga city, Russia. The landfill contains about 1.34 × 106 tons of waste buried using a ‘sandwich technique’ (successive application of sand–clay and waste layers). The δ13C values of biogenic methane with respect to CO2 were -56.8 (±2.5)‰, whereas the δ13Cof CO2 peaked at+9.12‰ (+1.4 ± 2.3‰ on average), reflecting a virtual fractionation of carbon isotopes in the course of bacterial CO2 reduction at the landfill body. After passing through the aerated soil layers, methane was partially oxidised and characterised by δ13C in the range of -50.6 to -38.2‰, evidencing enrichment in 13C, while the released carbon dioxide had δ13C of -23.3 to -4.04‰, respectively. On the mass isotopic balance forthe δ13C values, the methane production in the landfill anaerobic zone and the methane emitted through the aerated landfill surface to the atmosphere, the portion of methane oxidised by methanotrophic bacteria was calculated to be from 10 to 40% (averaged about 25%).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Govor Irina", + "Link": "", + "creation_date": "2022-03-14T08:16:10.782Z", + "last_change_date": "2022-03-14T08:16:10.782Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17668, + "fields": { + "EF_ID": 624082, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts an oxidation ditch (OD) treatment process. The wastewater reaches a grit chamber first and then flows to the OD tank followed by a final sedimentation tank and a chlorine disinfection tank. There are two OD tanks and each pond has two horizontal rotators placed across from each other. Since the OD tanks are not covered, the stripping gas is emitted directly into the air.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are only for the amount of CH4 emission by gaseous gas (without dissolved gas discharge through the effluent).", + "Value": "1.292", + "Unit": "%", + "Equation": "Equation 6.2 p. 6.12 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-590", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.018", + "creation_date": "2022-03-14T08:16:10.883Z", + "last_change_date": "2022-03-14T08:16:10.883Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17669, + "fields": { + "EF_ID": 624083, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts an oxidation ditch (OD) treatment process. The wastewater reaches a grit chamber first and then flows to the OD tank followed by a final sedimentation tank and a chlorine disinfection tank. There are two OD tanks and each pond has two horizontal rotators placed across from each other. Since the OD tanks are not covered, the stripping gas is emitted directly into the air.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are for the amount of CH4 emission by gaseous gas and dissolved gas in effluent water", + "Value": "1.307", + "Unit": "%", + "Equation": "Equation 6.2 p. 6.12 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-591", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.018", + "creation_date": "2022-03-14T08:16:10.984Z", + "last_change_date": "2022-03-14T08:16:10.984Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17670, + "fields": { + "EF_ID": 624084, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts an oxidation ditch (OD) treatment process. The wastewater reaches a grit chamber first and then flows to the OD tank followed by a final sedimentation tank and a chlorine disinfection tank. There are two OD tanks and each pond has two horizontal rotators placed across from each other. Since the OD tanks are not covered, the stripping gas is emitted directly into the air.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are only for the amount of CH4 emission by gaseous gas (without dissolved gas discharge through the effluent).", + "Value": "0.016", + "Unit": "%", + "Equation": "Equation 6.7 p. 6.25 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-592", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.019", + "creation_date": "2022-03-14T08:16:11.093Z", + "last_change_date": "2022-03-14T08:16:11.094Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17671, + "fields": { + "EF_ID": 624085, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts an oxidation ditch (OD) treatment process. The wastewater reaches a grit chamber first and then flows to the OD tank followed by a final sedimentation tank and a chlorine disinfection tank. There are two OD tanks and each pond has two horizontal rotators placed across from each other. Since the OD tanks are not covered, the stripping gas is emitted directly into the air.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are for the amount of CH4 emission by gaseous gas and dissolved gas in effluent water", + "Value": "0.035", + "Unit": "%", + "Equation": "Equation 6.7 p. 6.25 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-593", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.020", + "creation_date": "2022-03-14T08:16:11.194Z", + "last_change_date": "2022-03-14T08:16:11.194Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17672, + "fields": { + "EF_ID": 624086, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts double-ciurculated anoxic-oxic process to remove nutrients. Four reactors are placed in an anoxic , oxic, anoxic, oxic order. Subsequently, the mixed liquor flows to a final sedimentation tank, followed by a sand filtration tank and then an ozone disinfection tank. The emitted gas from the grit chamber, the sludge storage tank, the sludge thickener and the sludge dehydrator in H-STP is gathered by a ventilation duct.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are only for the amount of CH4 emission by gaseous gas (without dissolved gas discharge through the effluent).", + "Value": "0.978", + "Unit": "%", + "Equation": "Equation 6.2 p. 6.12 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-594", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.021", + "creation_date": "2022-03-14T08:16:11.295Z", + "last_change_date": "2022-03-14T08:16:11.295Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17673, + "fields": { + "EF_ID": 624087, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts double-ciurculated anoxic-oxic process to remove nutrients. Four reactors are placed in an anoxic , oxic, anoxic, oxic order. Subsequently, the mixed liquor flows to a final sedimentation tank, followed by a sand filtration tank and then an ozone disinfection tank. The emitted gas from the grit chamber, the sludge storage tank, the sludge thickener and the sludge dehydrator in H-STP is gathered by a ventilation duct.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are for the amount of CH4 emission by gaseous gas and dissolved gas in effluent water", + "Value": "0.979", + "Unit": "%", + "Equation": "Equation 6.2 p. 6.12 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-595", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.022", + "creation_date": "2022-03-14T08:16:11.412Z", + "last_change_date": "2022-03-14T08:16:11.412Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17674, + "fields": { + "EF_ID": 624088, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts double-ciurculated anoxic-oxic process to remove nutrients. Four reactors are placed in an anoxic , oxic, anoxic, oxic order. Subsequently, the mixed liquor flows to a final sedimentation tank, followed by a sand filtration tank and then an ozone disinfection tank. The emitted gas from the grit chamber, the sludge storage tank, the sludge thickener and the sludge dehydrator in H-STP is gathered by a ventilation duct.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are only for the amount of CH4 emission by gaseous gas (without dissolved gas discharge through the effluent).", + "Value": "0.128", + "Unit": "%", + "Equation": "Equation 6.7 p. 6.25 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-596", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.023", + "creation_date": "2022-03-14T08:16:11.537Z", + "last_change_date": "2022-03-14T08:16:11.537Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17675, + "fields": { + "EF_ID": 624089, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts double-ciurculated anoxic-oxic process to remove nutrients. Four reactors are placed in an anoxic , oxic, anoxic, oxic order. Subsequently, the mixed liquor flows to a final sedimentation tank, followed by a sand filtration tank and then an ozone disinfection tank. The emitted gas from the grit chamber, the sludge storage tank, the sludge thickener and the sludge dehydrator in H-STP is gathered by a ventilation duct.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are for the amount of CH4 emission by gaseous gas and dissolved gas in effluent water", + "Value": "0.164", + "Unit": "%", + "Equation": "Equation 6.7 p. 6.25 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-597", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.024", + "creation_date": "2022-03-14T08:16:11.655Z", + "last_change_date": "2022-03-14T08:16:11.655Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17676, + "fields": { + "EF_ID": 624090, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts a conventional activated sludge process modified for nitrogen removal. The 1st tank operates with no aeration, and subsequent tanks are kept in aerobic conditions by spiral flow aeration, which allows the nitrification process to proceed. Since the return sludge ratio is set to be as high as 109%, denitrification also occurs in the 1st tank with the nitrate from the final sedimentation tank and the substrate contained in the wastewater. The mixed liquor flows to the final sedimentation tank followed by a coagulation settling tank, a rapid sand filtration tank and a chlorine disinfection tank.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are only for the amount of CH4 emission by gaseous gas (without dissolved gas discharge through the effluent).", + "Value": "0.304", + "Unit": "%", + "Equation": "Equation 6.2 p. 6.12 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-598", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.025", + "creation_date": "2022-03-14T08:16:11.764Z", + "last_change_date": "2022-03-14T08:16:11.764Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17677, + "fields": { + "EF_ID": 624091, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts a conventional activated sludge process modified for nitrogen removal. The 1st tank operates with no aeration, and subsequent tanks are kept in aerobic conditions by spiral flow aeration, which allows the nitrification process to proceed. Since the return sludge ratio is set to be as high as 109%, denitrification also occurs in the 1st tank with the nitrate from the final sedimentation tank and the substrate contained in the wastewater. The mixed liquor flows to the final sedimentation tank followed by a coagulation settling tank, a rapid sand filtration tank and a chlorine disinfection tank.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are for the amount of CH4 emission by gaseous gas and dissolved gas in effluent water", + "Value": "0.308", + "Unit": "%", + "Equation": "Equation 6.2 p. 6.12 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-599", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.026", + "creation_date": "2022-03-14T08:16:11.873Z", + "last_change_date": "2022-03-14T08:16:11.873Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17678, + "fields": { + "EF_ID": 624092, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts a conventional activated sludge process modified for nitrogen removal. The 1st tank operates with no aeration, and subsequent tanks are kept in aerobic conditions by spiral flow aeration, which allows the nitrification process to proceed. Since the return sludge ratio is set to be as high as 109%, denitrification also occurs in the 1st tank with the nitrate from the final sedimentation tank and the substrate contained in the wastewater. The mixed liquor flows to the final sedimentation tank followed by a coagulation settling tank, a rapid sand filtration tank and a chlorine disinfection tank.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are only for the amount of CH4 emission by gaseous gas (without dissolved gas discharge through the effluent).", + "Value": "0.493", + "Unit": "%", + "Equation": "Equation 6.7 p. 6.25 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-600", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.027", + "creation_date": "2022-03-14T08:16:11.982Z", + "last_change_date": "2022-03-14T08:16:11.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17679, + "fields": { + "EF_ID": 624093, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrous Oxide Emission Factor (EF)", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "WWTP conducts a conventional activated sludge process modified for nitrogen removal. The 1st tank operates with no aeration, and subsequent tanks are kept in aerobic conditions by spiral flow aeration, which allows the nitrification process to proceed. Since the return sludge ratio is set to be as high as 109%, denitrification also occurs in the 1st tank with the nitrate from the final sedimentation tank and the substrate contained in the wastewater. The mixed liquor flows to the final sedimentation tank followed by a coagulation settling tank, a rapid sand filtration tank and a chlorine disinfection tank.", + "Regional_Conditions": "Sendai city, Japan", + "Control_Technologies": "", + "Other_Properties": "These values are for the amount of CH4 emission by gaseous gas and dissolved gas in effluent water", + "Value": "0.587", + "Unit": "%", + "Equation": "Equation 6.7 p. 6.25 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Masuda, S., Sano, I., Hojo, T., Li, Y.Y., Nishimura, O., The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes Chemosphere, 2018, 193, 581-601", + "English_Abstract": "Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, doublecirculated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N2O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.chemosphere.2017.11.028", + "creation_date": "2022-03-14T08:16:12.082Z", + "last_change_date": "2022-03-14T08:16:12.083Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17680, + "fields": { + "EF_ID": 624094, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Methane emission rate", + "Technology_Practices": "The Odense Nord and Stige Ø landfills. The Odense Nord landfill receives different types of waste, including mixed waste, shredder waste, mineral waste, contaminated soil, garden waste and sludge. Until the end of 2015, around 3 million tons of waste and soil had been disposed in the landfill. The Stige Ø landfill received several types of waste, including municipal solid waste from 1967 to 1994 and only soil (1.3 million tons) until its closure in 2005. Two sections of the Odense Nord landfill are covered by around 10 m of soil, and one section is still in operation. The Stige Ø landfill is covered by 1 m of soil.", + "Parameter_Conditions": "January 2016", + "Regional_Conditions": "Odense, Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.93-1.58", + "Unit": "g/m2/day", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Aghdam, E.F., Fredenslund, A.M., Chanton, J., Kjeldsen, P., Scheutz, C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis, Waste Management, 2018, 73, 220-229", + "English_Abstract": "In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73–76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "0.07-0.12 g/ton of waste/day", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:16:12.183Z", + "last_change_date": "2022-03-14T08:16:12.183Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17681, + "fields": { + "EF_ID": 624095, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of oxidized CH4", + "Technology_Practices": "The Odense Nord and Stige Ø landfills. The Odense Nord landfill receives different types of waste, including mixed waste, shredder waste, mineral waste, contaminated soil, garden waste and sludge. Until the end of 2015, around 3 million tons of waste and soil had been disposed in the landfill. The Stige Ø landfill received several types of waste, including municipal solid waste from 1967 to 1994 and only soil (1.3 million tons) until its closure in 2005. Two sections of the Odense Nord landfill are covered by around 10 m of soil, and one section is still in operation. The Stige Ø landfill is covered by 1 m of soil.", + "Parameter_Conditions": "Odense Nord landfill", + "Regional_Conditions": "Odense, Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.32", + "Unit": "fraction", + "Equation": "Equation 3.1 on page 3.8 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Aghdam, E.F., Fredenslund, A.M., Chanton, J., Kjeldsen, P., Scheutz, C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis, Waste Management, 2018, 73, 220-229", + "English_Abstract": "In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73–76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.41", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:16:12.292Z", + "last_change_date": "2022-03-14T08:16:12.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17682, + "fields": { + "EF_ID": 624096, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of oxidized CH4", + "Technology_Practices": "The Odense Nord and Stige Ø landfills. The Odense Nord landfill receives different types of waste, including mixed waste, shredder waste, mineral waste, contaminated soil, garden waste and sludge. Until the end of 2015, around 3 million tons of waste and soil had been disposed in the landfill. The Stige Ø landfill received several types of waste, including municipal solid waste from 1967 to 1994 and only soil (1.3 million tons) until its closure in 2005. Two sections of the Odense Nord landfill are covered by around 10 m of soil, and one section is still in operation. The Stige Ø landfill is covered by 1 m of soil.", + "Parameter_Conditions": "Odense Nord landfill", + "Regional_Conditions": "Odense, Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.37", + "Unit": "fraction", + "Equation": "Equation 3.1 on page 3.8 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Aghdam, E.F., Fredenslund, A.M., Chanton, J., Kjeldsen, P., Scheutz, C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis, Waste Management, 2018, 73, 220-229", + "English_Abstract": "In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73–76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.04", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:16:12.377Z", + "last_change_date": "2022-03-14T08:16:12.377Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17683, + "fields": { + "EF_ID": 624097, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of oxidized CH4", + "Technology_Practices": "The Odense Nord and Stige Ø landfills. The Odense Nord landfill receives different types of waste, including mixed waste, shredder waste, mineral waste, contaminated soil, garden waste and sludge. Until the end of 2015, around 3 million tons of waste and soil had been disposed in the landfill. The Stige Ø landfill received several types of waste, including municipal solid waste from 1967 to 1994 and only soil (1.3 million tons) until its closure in 2005. Two sections of the Odense Nord landfill are covered by around 10 m of soil, and one section is still in operation. The Stige Ø landfill is covered by 1 m of soil.", + "Parameter_Conditions": "Odense Nord landfill", + "Regional_Conditions": "Odense, Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.17", + "Unit": "fraction", + "Equation": "Equation 3.1 on page 3.8 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Aghdam, E.F., Fredenslund, A.M., Chanton, J., Kjeldsen, P., Scheutz, C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis, Waste Management, 2018, 73, 220-229", + "English_Abstract": "In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73–76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.29", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:16:12.478Z", + "last_change_date": "2022-03-14T08:16:12.478Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17684, + "fields": { + "EF_ID": 624098, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of oxidized CH4", + "Technology_Practices": "The Odense Nord and Stige Ø landfills. The Odense Nord landfill receives different types of waste, including mixed waste, shredder waste, mineral waste, contaminated soil, garden waste and sludge. Until the end of 2015, around 3 million tons of waste and soil had been disposed in the landfill. The Stige Ø landfill received several types of waste, including municipal solid waste from 1967 to 1994 and only soil (1.3 million tons) until its closure in 2005. Two sections of the Odense Nord landfill are covered by around 10 m of soil, and one section is still in operation. The Stige Ø landfill is covered by 1 m of soil.", + "Parameter_Conditions": "Stige Ø landfill", + "Regional_Conditions": "Odense, Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.06", + "Unit": "fraction", + "Equation": "Equation 3.1 on page 3.8 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Aghdam, E.F., Fredenslund, A.M., Chanton, J., Kjeldsen, P., Scheutz, C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis, Waste Management, 2018, 73, 220-229", + "English_Abstract": "In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73–76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.19", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:16:12.578Z", + "last_change_date": "2022-03-14T08:16:12.578Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17685, + "fields": { + "EF_ID": 624099, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of oxidized CH4", + "Technology_Practices": "The Odense Nord and Stige Ø landfills. The Odense Nord landfill receives different types of waste, including mixed waste, shredder waste, mineral waste, contaminated soil, garden waste and sludge. Until the end of 2015, around 3 million tons of waste and soil had been disposed in the landfill. The Stige Ø landfill received several types of waste, including municipal solid waste from 1967 to 1994 and only soil (1.3 million tons) until its closure in 2005. Two sections of the Odense Nord landfill are covered by around 10 m of soil, and one section is still in operation. The Stige Ø landfill is covered by 1 m of soil.", + "Parameter_Conditions": "Stige Ø landfill", + "Regional_Conditions": "Odense, Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.07", + "Unit": "fraction", + "Equation": "Equation 3.1 on page 3.8 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Aghdam, E.F., Fredenslund, A.M., Chanton, J., Kjeldsen, P., Scheutz, C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis, Waste Management, 2018, 73, 220-229", + "English_Abstract": "In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73–76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.05", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:16:12.679Z", + "last_change_date": "2022-03-14T08:16:12.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17686, + "fields": { + "EF_ID": 624100, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Fraction of oxidized CH4", + "Technology_Practices": "The Odense Nord and Stige Ø landfills. The Odense Nord landfill receives different types of waste, including mixed waste, shredder waste, mineral waste, contaminated soil, garden waste and sludge. Until the end of 2015, around 3 million tons of waste and soil had been disposed in the landfill. The Stige Ø landfill received several types of waste, including municipal solid waste from 1967 to 1994 and only soil (1.3 million tons) until its closure in 2005. Two sections of the Odense Nord landfill are covered by around 10 m of soil, and one section is still in operation. The Stige Ø landfill is covered by 1 m of soil.", + "Parameter_Conditions": "Stige Ø landfill", + "Regional_Conditions": "Odense, Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.09", + "Unit": "fraction", + "Equation": "Equation 3.1 on page 3.8 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Aghdam, E.F., Fredenslund, A.M., Chanton, J., Kjeldsen, P., Scheutz, C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis, Waste Management, 2018, 73, 220-229", + "English_Abstract": "In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73–76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 0.37", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:16:12.780Z", + "last_change_date": "2022-03-14T08:16:12.780Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17687, + "fields": { + "EF_ID": 624101, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Gas recovery efficiency", + "Technology_Practices": "The Odense Nord and Stige Ø landfills. The Odense Nord landfill receives different types of waste, including mixed waste, shredder waste, mineral waste, contaminated soil, garden waste and sludge. Until the end of 2015, around 3 million tons of waste and soil had been disposed in the landfill. The Stige Ø landfill received several types of waste, including municipal solid waste from 1967 to 1994 and only soil (1.3 million tons) until its closure in 2005. Two sections of the Odense Nord landfill are covered by around 10 m of soil, and one section is still in operation. The Stige Ø landfill is covered by 1 m of soil.", + "Parameter_Conditions": "", + "Regional_Conditions": "Odense, Denmark", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "69", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Aghdam, E.F., Fredenslund, A.M., Chanton, J., Kjeldsen, P., Scheutz, C. Determination of gas recovery efficiency at two Danish landfills by performing downwind methane measurements and stable carbon isotopic analysis, Waste Management, 2018, 73, 220-229", + "English_Abstract": "In this study, the total methane (CH4) generation rate and gas recovery efficiency at two Danish landfills were determined by field measurements. The landfills are located close to each other and are connected to the same gas collection system. The tracer gas dispersion method was used for quantification of CH4 emissions from the landfills, while the CH4 oxidation efficiency in the landfill cover layers was determined by stable carbon isotopic technique. The total CH4 generation rate was estimated by a first-order decay model (Afvalzorg) and was compared with the total CH4 generation rate determined by field measurements. CH4 emissions from the two landfills combined ranged from 29.1 to 49.6 kg CH4/h. The CH4 oxidation efficiency was 6–37%, with an average of 18% corresponding to an average CH4 oxidation rate of 8.1 kg CH4/h. The calculated gas recovery efficiency was 59–76%, indicating a high potential for optimization of the gas collection system. Higher gas recovery efficiencies (73–76%) were observed after the commencement of gas extraction from a new section of one of the landfills. A good agreement was observed between the average total CH4 generation rates determined by field measurements (147 kg CH4/h) and those estimated by the Afvalzorg model (154 kg CH4/h).", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Standard deviation = 7%", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "", + "creation_date": "2022-03-14T08:16:12.889Z", + "last_change_date": "2022-03-14T08:16:12.889Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17688, + "fields": { + "EF_ID": 624102, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N20 emission factor", + "Technology_Practices": "Wastewater treatment plant - Membrane bioreactors", + "Parameter_Conditions": "Two in-series reactors: one anoxic and one aerobic, followed by an MBR compartment. Industrial wastewater contaminated with salt and hydrocarbons.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "% of influent N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mannina, G., Chandran, K., Capodici, M., Cosenza, A., Di Trapani, D., van Loosdrecht, M.C. M. Greenhouse gas emissions from membrane bioreactors: analysis of a two-year survey on different MBR configurations, Water Science & Technology, 2018, 78.4", + "English_Abstract": "This study aimed at evaluating the nitrous oxide (N2O) emissions from membrane bioreactors (MBRs) for wastewater treatment. The study investigated the N2O emissions considering multiple influential factors over a two-year period: (i) different MBR based process configurations; (ii) wastewater composition (municipal or industrial); (iii) operational conditions (i.e. sludge retention time, carbonto-nitrogen ratio, C/N, hydraulic retention time); (iv) membrane modules. Among the overall analysed configurations, the highest N2O emission occurred from the aerated reactors. The treatment of industrial wastewater, contaminated with salt and hydrocarbons, provided the highest N2O emission factor (EF): 16% of the influent nitrogen for the denitrification/nitrification-MBR plant. The lowest N2O emission (EF¼ 0.5% of the influent nitrogen) was obtained in the biological phosphorus removalmoving bed-MBR plant likely due to an improvement in biological performances exerted by the co-presence of both suspended and attached biomass. The influent C/N ratio has been identified as a key factor affecting the N2O production. Indeed, a decrease of the C/N ratio (from 10 to 2) promoted the increase of N2O emissions in both gaseous and dissolved phases, mainly related to a decreased efficiency of the denitrification processes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/30252667", + "creation_date": "2022-03-14T08:16:13.006Z", + "last_change_date": "2022-03-14T08:16:13.006Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17689, + "fields": { + "EF_ID": 624103, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N20 emission factor", + "Technology_Practices": "Wastewater treatment plant - Membrane bioreactors", + "Parameter_Conditions": "Three in-series reactors: one anaerobic, one anoxic and one aerobic, followed by an MBR compartment. Mixture of real and synthetic wastewater.", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.5", + "Unit": "% of influent N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Mannina, G., Chandran, K., Capodici, M., Cosenza, A., Di Trapani, D., van Loosdrecht, M.C. M. Greenhouse gas emissions from membrane bioreactors: analysis of a two-year survey on different MBR configurations, Water Science & Technology, 2018, 78.4", + "English_Abstract": "This study aimed at evaluating the nitrous oxide (N2O) emissions from membrane bioreactors (MBRs) for wastewater treatment. The study investigated the N2O emissions considering multiple influential factors over a two-year period: (i) different MBR based process configurations; (ii) wastewater composition (municipal or industrial); (iii) operational conditions (i.e. sludge retention time, carbonto-nitrogen ratio, C/N, hydraulic retention time); (iv) membrane modules. Among the overall analysed configurations, the highest N2O emission occurred from the aerated reactors. The treatment of industrial wastewater, contaminated with salt and hydrocarbons, provided the highest N2O emission factor (EF): 16% of the influent nitrogen for the denitrification/nitrification-MBR plant. The lowest N2O emission (EF¼ 0.5% of the influent nitrogen) was obtained in the biological phosphorus removalmoving bed-MBR plant likely due to an improvement in biological performances exerted by the co-presence of both suspended and attached biomass. The influent C/N ratio has been identified as a key factor affecting the N2O production. Indeed, a decrease of the C/N ratio (from 10 to 2) promoted the increase of N2O emissions in both gaseous and dissolved phases, mainly related to a decreased efficiency of the denitrification processes.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://www.ncbi.nlm.nih.gov/pubmed/30252667", + "creation_date": "2022-03-14T08:16:13.123Z", + "last_change_date": "2022-03-14T08:16:13.123Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17690, + "fields": { + "EF_ID": 624104, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Wastewater Treatment Plant (WWTP) - Oxidation Ditch (OD)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.14", + "Unit": "% g of N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Vasilaki, V., Massara, T.M., Stanchev, P., Fatone, F., Katsou, E. A decade of nitrous oxide (N2O) monitoring in full-scale wastewater treatment processes: A critical review. Water Research, 2019, 161 392-412", + "English_Abstract": "Direct nitrous oxide (N2O) emissions during the biological nitrogen removal (BNR) processes can significantly increase the carbon footprint of wastewater treatment plant (WWTP) operations. Recent onsite measurement of N2O emissions at WWTPs have been used as an alternative to the controversial theoretical methods for the N2O calculation. The full-scale N2O monitoring campaigns help to expand our knowledge on the N2O production pathways and the triggering operational conditions of processes. The accurate N2O monitoring could help to find better process control solutions to mitigate N2O emissions of wastewater treatment systems. However, quantifying the emissions and understanding the long-term behaviour of N2O fluxes in WWTPs remains challenging and costly. A review of the recent full-scale N2O monitoring campaigns is conducted. The analysis covers the quantification and mitigation of emissions for different process groups, focusing on techniques that have been applied for the identification of dominant N2O pathways and triggering operational conditions, techniques using operational data and N2O data to identify mitigation measures and mechanistic modelling. The analysis of various studies showed that there are still difficulties in the comparison of N2O emissions and the development of emission factor (EF) databases; the N2O fluxes reported in literature vary significantly even among groups of similar processes. The results indicated that the duration of the monitoring campaigns can impact the EF range. Most N2O monitoring campaigns lasting less than one month, have reported N2O EFs less than 0.3% of the N-load, whereas studies lasting over a year have a median EF equal to 1.7% of the N-load. The findings of the current study indicate that complex feature extraction and multivariate data mining methods can efficiently convert wastewater operational and N2O data into information, determine complex relationships within the available datasets and boost the longterm understanding of the N2O fluxes behaviour. The acquisition of reliable full-scale N2O monitoring data is significant for the calibration and validation of the mechanistic models -describing the N2O emission generation inWWTPs. They can be combined with the multivariate tools to further enhance the interpretation of the complicated full-scale N2O emission patterns. Finally, a gap between the identification of effective N2O mitigation strategies and their actual implementation within the monitoring and control of WWTPs has been identified. This study concludes that there is a further need for i) long-term N2O monitoring studies, ii) development of data-driven methodological approaches for the analysis of WWTP operational and N2O data, and iii) better understanding of the trade-offs among N2O emissions, energy consumption and system performance to support the optimization of the WWTPs operation.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "www.elsevier.com/locate/watres", + "creation_date": "2022-03-14T08:16:13.233Z", + "last_change_date": "2022-03-14T08:16:13.233Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17691, + "fields": { + "EF_ID": 624105, + "IPCC_Category": "4.D - Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "WWTP - Sequencing Batch Reactor (SBR)", + "Parameter_Conditions": "", + "Regional_Conditions": "", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2 - 5.6", + "Unit": "% g of N load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Vasilaki, V., Massara, T.M., Stanchev, P., Fatone, F., Katsou, E. A decade of nitrous oxide (N2O) monitoring in full-scale wastewater treatment processes: A critical review. Water Research, 2019, 161 392-412", + "English_Abstract": "Direct nitrous oxide (N2O) emissions during the biological nitrogen removal (BNR) processes can significantly increase the carbon footprint of wastewater treatment plant (WWTP) operations. Recent onsite measurement of N2O emissions at WWTPs have been used as an alternative to the controversial theoretical methods for the N2O calculation. The full-scale N2O monitoring campaigns help to expand our knowledge on the N2O production pathways and the triggering operational conditions of processes. The accurate N2O monitoring could help to find better process control solutions to mitigate N2O emissions of wastewater treatment systems. However, quantifying the emissions and understanding the long-term behaviour of N2O fluxes in WWTPs remains challenging and costly. A review of the recent full-scale N2O monitoring campaigns is conducted. The analysis covers the quantification and mitigation of emissions for different process groups, focusing on techniques that have been applied for the identification of dominant N2O pathways and triggering operational conditions, techniques using operational data and N2O data to identify mitigation measures and mechanistic modelling. The analysis of various studies showed that there are still difficulties in the comparison of N2O emissions and the development of emission factor (EF) databases; the N2O fluxes reported in literature vary significantly even among groups of similar processes. The results indicated that the duration of the monitoring campaigns can impact the EF range. Most N2O monitoring campaigns lasting less than one month, have reported N2O EFs less than 0.3% of the N-load, whereas studies lasting over a year have a median EF equal to 1.7% of the N-load. The findings of the current study indicate that complex feature extraction and multivariate data mining methods can efficiently convert wastewater operational and N2O data into information, determine complex relationships within the available datasets and boost the longterm understanding of the N2O fluxes behaviour. The acquisition of reliable full-scale N2O monitoring data is significant for the calibration and validation of the mechanistic models -describing the N2O emission generation inWWTPs. They can be combined with the multivariate tools to further enhance the interpretation of the complicated full-scale N2O emission patterns. Finally, a gap between the identification of effective N2O mitigation strategies and their actual implementation within the monitoring and control of WWTPs has been identified. This study concludes that there is a further need for i) long-term N2O monitoring studies, ii) development of data-driven methodological approaches for the analysis of WWTP operational and N2O data, and iii) better understanding of the trade-offs among N2O emissions, energy consumption and system performance to support the optimization of the WWTPs operation.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "www.elsevier.com/locate/watres", + "creation_date": "2022-03-14T08:16:13.341Z", + "last_change_date": "2022-03-14T08:16:13.341Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17692, + "fields": { + "EF_ID": 624106, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "Municipal WWTP - Conventional Activated Sludge", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "A separated reject water treatment is a promising strategy to mitigate N2O emissions from biological treatment", + "Other_Properties": "", + "Value": "1.6", + "Unit": "% of total N load", + "Equation": "Equation 6.9, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2019, https://doi.org/10.1016/j.scitotenv.2019.134157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1 - 2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor but significant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted less than 1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N2O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:13.442Z", + "last_change_date": "2022-03-14T08:16:13.442Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17693, + "fields": { + "EF_ID": 624107, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "Municipal WWTP - Activated Sludge (Alternating /Intermitting aeration Plant)", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "A separated reject water treatment is a promising strategy to mitigate N2O emissions from biological treatment", + "Other_Properties": "", + "Value": "1.0", + "Unit": "% of total N load", + "Equation": "Equation 6.9, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2019, https://doi.org/10.1016/j.scitotenv.2019.134157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1 - 2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor but significant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted less than 1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N2O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:13.542Z", + "last_change_date": "2022-03-14T08:16:13.542Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17694, + "fields": { + "EF_ID": 624108, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "Municipal WWTP - activated sludge (Sequencing Batch Reactor - SBR)", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "A separated reject water treatment is a promising strategy to mitigate N2O emissions from biological treatment", + "Other_Properties": "", + "Value": "2.4", + "Unit": "% of total N load", + "Equation": "Equation 6.9, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2019, https://doi.org/10.1016/j.scitotenv.2019.134157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1 - 2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor but significant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted less than 1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N2O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:13.643Z", + "last_change_date": "2022-03-14T08:16:13.643Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17695, + "fields": { + "EF_ID": 624109, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "Municipal WWTP - Conventional Activated Sludge", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "A separated reject water treatment is a promising strategy to mitigate N2O emissions from biological treatment", + "Other_Properties": "", + "Value": "2.0", + "Unit": "% of total N load", + "Equation": "Equation 6.9, Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2019, https://doi.org/10.1016/j.scitotenv.2019.134157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1 - 2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor but significant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted less than 1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N2O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:13.745Z", + "last_change_date": "2022-03-14T08:16:13.745Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17696, + "fields": { + "EF_ID": 624110, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "BOD5 (Biochemical Oxygen Demand)", + "Technology_Practices": "Domestic Wastewater Treatment", + "Parameter_Conditions": "Domestic Wastewater Treatment Plants with secondary biological treatment", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "42", + "Unit": "g BOD/person/day", + "Equation": "Equation 6.3 p. 6.13 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Median value based on available data from 220 Greek WWTPs.", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators. Data collected for the period 2012-2015", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:13.845Z", + "last_change_date": "2022-03-14T08:16:13.845Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17697, + "fields": { + "EF_ID": 624111, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "COD (Chemical Oxygen Demand)", + "Technology_Practices": "Domestic Wastewater Treatment", + "Parameter_Conditions": "Domestic Wastewater Treatment Plants with secondary biological treatment", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "81", + "Unit": "g COD/person/day", + "Equation": "Equation 6.3 p. 6.13 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Median value based on available data from 220 Greek WWTPs.", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators. Data collected for the period 2012-2015", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:13.946Z", + "last_change_date": "2022-03-14T08:16:13.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17698, + "fields": { + "EF_ID": 624112, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "TSS (Total Suspended Solids)", + "Technology_Practices": "Domestic Wastewater Treatment", + "Parameter_Conditions": "Domestic Wastewater Treatment Plants with secondary biological treatment", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "34", + "Unit": "g/capita/d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Median value based on available data from 220 Greek WWTPs.", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators. Data collected for the period 2012-2015", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:14.072Z", + "last_change_date": "2022-03-14T08:16:14.072Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17699, + "fields": { + "EF_ID": 624113, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Sludge production", + "Technology_Practices": "Domestic Wastewater Treatment", + "Parameter_Conditions": "Domestic Wastewater Treatment Plants with secondary biological treatment", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.2", + "Unit": "Kg DS/capita/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "Median value based on available data from 220 Greek WWTPs.", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators. Data collected for the period 2012-2015", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:14.173Z", + "last_change_date": "2022-03-14T08:16:14.173Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17700, + "fields": { + "EF_ID": 624114, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROGEN OXIDES (NO+NO2), METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Share of population served by domestic WWTPs", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "91", + "Unit": "%", + "Equation": "Equation 6.1 p. 6.11 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators. Data collected for the period 2012-2015", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:14.273Z", + "last_change_date": "2022-03-14T08:16:14.273Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17701, + "fields": { + "EF_ID": 624115, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Share of domestic WWTPs with biological nitrogen removal", + "Technology_Practices": "", + "Parameter_Conditions": "183 out of 220 domestic WWTPs", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83", + "Unit": "%", + "Equation": "Equation 6.9 p. 6.26 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators. Data collected for the period 2012-2015", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:14.382Z", + "last_change_date": "2022-03-14T08:16:14.382Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17702, + "fields": { + "EF_ID": 624116, + "IPCC_Category": "4.C.1 - Waste Incineration, 4.D - Wastewater Treatment and Discharge", + "Gases": "METHANE, NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Share of produced WWTPs sludge incinerated", + "Technology_Practices": "Sludge management practice", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators. Data collected for the period 2012-2015", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:14.483Z", + "last_change_date": "2022-03-14T08:16:14.483Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17703, + "fields": { + "EF_ID": 624117, + "IPCC_Category": "4.A - Solid Waste Disposal, 4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Share of produced WWTPs sludge disposed to the landfills", + "Technology_Practices": "Sludge management practice", + "Parameter_Conditions": "", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:14.592Z", + "last_change_date": "2022-03-14T08:16:14.592Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17704, + "fields": { + "EF_ID": 624119, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Total nitrogen (TN) in raw wastewater", + "Technology_Practices": "Domestic Wastewater Treatment", + "Parameter_Conditions": "Domestic Wastewater Treatment Plants with secondary biological treatment", + "Regional_Conditions": "Greece", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "9.1", + "Unit": "g/capita/d", + "Equation": "Equation 6.8 p. 6.25 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Koutsou, O.P., Gatidou, G., Stasinakis, S. A. Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. Journal of Cleaner Production, 2018, 188, 851-859", + "English_Abstract": "Information regarding the domestic wastewater management in Greece was collected and the greenhouse gas emissions from wastewater treatment plants were estimated at country scale using a steady state comprehensive model. In 2016, 220 domestic wastewater treatment plants operated in Greece, serving 91% of the total population and treating almost 1.74 × 106 m3 wastewater per day. All systems provided secondary biological treatment, while 83%, 57% and 93% of them provided also biological nitrogen removal, biological phosphorus removal and wastewater disinfection, respectively. Wastewater reuse was applied in 13% of the existed plants, while 38% and 31% of the produced sludge was incinerated and disposed to the landfills, respectively. The average daily production of wastewater was 210 L per capita, while the average sludge production was 15.3 Kg dry solids per capita and year. The total amount of greenhouse gas emitted from Greek treatment plants was 892,454 t CO2e per year. The on-site emissions contributed to 68.8% of the total emissions and the off-site emissions to the rest 31.2%. Biogenic emissions were calculated to 72.7% of the total emissions. Biogas use and net power consumption were the major mechanisms contributing to the on-site and off-site emissions, respectively. The major source of CH4 was sludge disposal to the landfills, while N2O was mainly emitted through nitrification/denitrification during wastewater treatment. The contribution of on-site and off-site greenhouse gas emissions was affected by treatment plants` capacity; on-site emissions were much more important in plants with more than 100,000 population equivalent. Calculation of the specific CO2 equivalent (CO2e), CH4 and N2O emissions showed that the average per capita daily production was 0.21 Kg CO2e d−1, 4 g CH4 d−1 and 60 mg N2O d−1. Future actions should be taken to assure efficient operation of smaller treatment plants, promote wastewater reuse and integrate reduced greenhouse gas emissions strategies on plants’ design and operation. It is the first time that the greenhouse gas emissions from wastewater treatment plants are estimated at a country scale in Europe.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Data concerning the status of domestic wastewater management in Greece was collected for 220 municipal WWTPs from the webpage of Greek Ministry of Environment and Energy as well as from personal communication of the authors with WWTPs’ operators. Data collected for the period 2012-2015", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "http://www.sciencedirect.com/science/article/pii/S0959652618310527", + "creation_date": "2022-03-14T08:16:14.700Z", + "last_change_date": "2022-03-14T08:16:14.700Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17705, + "fields": { + "EF_ID": 624120, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission Factor", + "Technology_Practices": "Municipal Wastewater Treatment plant", + "Parameter_Conditions": "WWTP applies a conventional activated sludge (CAS) treatment system. The system comprises two clarifiers and a series of biological reaction tanks. Heavy solids are removed from wastewater in the primary clarifier. The water then undergoes biological treatment to decompose organic matter by activated sludge under aerobic and anaerobic conditions. Subsequently, the microbe-rich liquid flows into the secondary clarifier where activated sludge is separated from treated wastewater by gravity. Parts of the settled sludge is continuously recycled back to the aeration tanks to maintain the microbial community and the treated effluent is finally discharged into a neighboring stream.", + "Regional_Conditions": "Southern Germany", + "Control_Technologies": "", + "Other_Properties": "EF expressed as kg C emitted as CH4 per kg COD in influent wastewater.", + "Value": "0.01", + "Unit": "%", + "Equation": "Equation 6.2 p. 6.12 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tumendelger A, Alshboul Z, Lorke A Methane and nitrous oxide emission from different treatment units of municipal wastewater treatment plants in Southwest Germany. PLoS ONE, 2019, 14(1): e0209763.", + "English_Abstract": "We measured the atmospheric emission rates of methane (CH4) and nitrous oxide (N2O) in two wastewater treatment plants in Southwest Germany, which apply different treatment technologies. Dissolved gas concentrations and fluxes were measured during all processing steps as well as in the discharge receiving streams. N2O isotopocule analysis revealed that NH2OH oxidation during nitrification contributed 86–96% of the N2O production in the nitrification tank, whereas microbial denitrification was the main production pathway in the denitrification tank in a conventional activated sludge (CAS) system. During wastewater treatment using a modified Ludzack-Ettinger system (MLE) with energy recovery, N2O was predominantly produced by the NO2 - reduction by nitrifier-denitrification process. For both systems, N2O emissions were low, with emission factors of 0.008% and 0.001% for the MLE and the CAS system, respectively. In the effluent-receiving streams, bacterial denitrification and nitrification contributed nearly equally to N2O production. The CH4 emission from the MLE system was estimated as 118.1 g-C d-1, which corresponds to an emission factor of 0.004%, and was three times lower than the emission from the CAS system with 0.01%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1371/journal.pone.0209763", + "creation_date": "2022-03-14T08:16:14.809Z", + "last_change_date": "2022-03-14T08:16:14.809Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17706, + "fields": { + "EF_ID": 624121, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Municipal Wastewater Treatment plant", + "Parameter_Conditions": "WWTP applies a modified Ludzack-Ettinger (MLE) system with energy recovery. The surplus sludge from the plant is treated in an anaerobic digester for biogas production. Wastewater treated by the primary clarifier enters an anaerobic tank for denitrification and then an aerobic tank for nitrification by activated sludge. From the aeration tank, the mixed liquor flows to the secondary clarifiers to separate treated wastewater from the sludge. Parts of the sludge are recycled back into the biological tank, while the remaining sludge is fed to the anaerobic digester for energy generation. The last step of this treatment system is identical to thea conventional activated sludge (CAS) treatment system.", + "Regional_Conditions": "Southern Germany", + "Control_Technologies": "", + "Other_Properties": "EF expressed as kg C emitted as CH4 per kg COD in influent wastewater.", + "Value": "0.004", + "Unit": "%", + "Equation": "Equation 6.2 p. 6.12 Chapter 6, Volume 5 of 2006 IPCC Guidelines ", + "IPCC_Worksheet": "4D1", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Tumendelger A, Alshboul Z, Lorke A Methane and nitrous oxide emission from different treatment units of municipal wastewater treatment plants in Southwest Germany. PLoS ONE, 2019, 14(1): e0209763.", + "English_Abstract": "We measured the atmospheric emission rates of methane (CH4) and nitrous oxide (N2O) in two wastewater treatment plants in Southwest Germany, which apply different treatment technologies. Dissolved gas concentrations and fluxes were measured during all processing steps as well as in the discharge receiving streams. N2O isotopocule analysis revealed that NH2OH oxidation during nitrification contributed 86–96% of the N2O production in the nitrification tank, whereas microbial denitrification was the main production pathway in the denitrification tank in a conventional activated sludge (CAS) system. During wastewater treatment using a modified Ludzack-Ettinger system (MLE) with energy recovery, N2O was predominantly produced by the NO2 - reduction by nitrifier-denitrification process. For both systems, N2O emissions were low, with emission factors of 0.008% and 0.001% for the MLE and the CAS system, respectively. In the effluent-receiving streams, bacterial denitrification and nitrification contributed nearly equally to N2O production. The CH4 emission from the MLE system was estimated as 118.1 g-C d-1, which corresponds to an emission factor of 0.004%, and was three times lower than the emission from the CAS system with 0.01%.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1371/journal.pone.0209764", + "creation_date": "2022-03-14T08:16:14.919Z", + "last_change_date": "2022-03-14T08:16:14.919Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17707, + "fields": { + "EF_ID": 624191, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Emission factor (EF)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP", + "Parameter_Conditions": "The WWTP has the following processes: preliminary treatment, primary treatment, secondary treatment, effluent disinfection and sludge digestion and disposal. Preliminary treatment includes bar screens and grit chambers; primary treatment is provided by settling tanks; secondary treatment consists of conventional activated sludge and secondary clarifiers, ending with effluent chlorine disinfection. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Nuevo León (MTY)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process. But the WWTP limited by its operation at the lower end (32 °C) of the optimal mesophilic temperature interval and the limited volatile solids removal attained (31%).", + "Value": "0.81", + "Unit": "kg CH4/kg VSrem", + "Equation": "Equation 6.2 in Chapter 6 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 EF after after converting kg VS to kg BOD is 1.38 kg CH4/kg DBOrem. Sludge (as volatile solids, VS) was converted to BOD using the following factors: 1.42 kg COD/kg VS and 2.4 kg COD/kg BOD, resulting in a conversion factor 1.69 kg VS/kg DBO.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.019Z", + "last_change_date": "2022-03-14T08:16:15.019Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17708, + "fields": { + "EF_ID": 624192, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Emission factor (EF)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP", + "Parameter_Conditions": "The WWTP has the following processes: preliminary treatment, primary treatment, secondary treatment, effluent disinfection and sludge digestion and disposal. Preliminary treatment includes bar screens and grit chambers; primary treatment is provided by settling tanks; secondary treatment consists of conventional activated sludge and secondary clarifiers, ending with effluent chlorine disinfection. The excess sludge is thickened and then stabilized in high rate anaerobic digesters.", + "Regional_Conditions": "Central America/Mexico/State of Chihuahua (CHI)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In the WWTP the anaerobic digesters were operated at ambient temperature, which corresponds to the lower level of the mesophilic interval (21 to 26 °C), hindering organic degradation and the corresponding CH4 production. So the digester are not operated under good practices.", + "Value": "0.39", + "Unit": "kg CH4/kg VSrem", + "Equation": "Equation 6.2 in Chapter 6 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 EF after after converting kg VS to kg BOD is 0.66 kg CH4/kg DBOrem. Sludge (as volatile solids, VS) was converted to BOD using the following factors: 1.42 kg COD/kg VS and 2.4 kg COD/kg BOD, resulting in a conversion factor 1.69 kg VS/kg DBO.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.121Z", + "last_change_date": "2022-03-14T08:16:15.121Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17709, + "fields": { + "EF_ID": 624193, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Emission factor (EF)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP", + "Parameter_Conditions": "The WWTP has the following processes: preliminary treatment, primary treatment, secondary treatment, effluent disinfection and sludge digestion and disposal. Preliminary treatment includes bar screens and grit chambers; primary treatment is provided by settling tanks; secondary treatment consists of conventional activated sludge and secondary clarifiers, ending with effluent chlorine disinfection. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Jalisco (GDL)", + "Control_Technologies": "Biogas is used in a combined heat and power equipment that generates 50 to 60% of the overall electricity demand of the facility", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facility is applying good sludge digestion practices.", + "Value": "0.29", + "Unit": "kg CH4/kg VSrem", + "Equation": "Equation 6.2 in Chapter 6 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 EF after after converting kg VS to kg BOD is 0.49 kg CH4/kg DBOrem. Sludge (as volatile solids, VS) was converted to BOD using the following factors: 1.42 kg COD/kg VS and 2.4 kg COD/kg BOD, resulting in a conversion factor 1.69 kg VS/kg DBO.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.239Z", + "last_change_date": "2022-03-14T08:16:15.239Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17710, + "fields": { + "EF_ID": 624194, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Emission factor (EF)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP", + "Parameter_Conditions": "The WWTP has the following processes: preliminary treatment, primary treatment, secondary treatment, effluent disinfection and sludge digestion and disposal. Preliminary treatment includes bar screens and grit chambers; primary treatment is provided by settling tanks; secondary treatment consists of conventional activated sludge and secondary clarifiers, ending with effluent chlorine disinfection. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Querétaro (QRO)", + "Control_Technologies": "Biogas is used in a combined heatand power equipment that generates 50 to 60% of the overall electricity demand of the facility", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facilitiy is applying good sludge digestion practices.", + "Value": "0.4", + "Unit": "kg CH4/kg VSrem", + "Equation": "Equation 6.2 in Chapter 6 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 EF after after converting kg VS to kg BOD is 0.68 kg CH4/kg DBOrem. Sludge (as volatile solids, VS) was converted to BOD using the following factors: 1.42 kg COD/kg VS and 2.4 kg COD/kg BOD, resulting in a conversion factor 1.69 kg VS/kg DBO.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.356Z", + "last_change_date": "2022-03-14T08:16:15.356Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17711, + "fields": { + "EF_ID": 624195, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Emission factor (EF)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP", + "Parameter_Conditions": "The WWTP has the following processes: preliminary treatment, primary treatment, secondary treatment, effluent disinfection and sludge digestion and disposal. Preliminary treatment includes bar screens and grit chambers; primary treatment is provided by settling tanks; secondary treatment consists of conventional activated sludge and secondary clarifiers, ending with effluent chlorine disinfection. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/San Luis Potosí (SLP)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facilitiy is applying good sludge digestion practices.", + "Value": "0.62", + "Unit": "kg CH4/kg VSrem", + "Equation": "Equation 6.2 in Chapter 6 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 EF after after converting kg VS to kg BOD is 1.05 kg CH4/kg DBOrem. Sludge (as volatile solids, VS) was converted to BOD using the following factors: 1.42 kg COD/kg VS and 2.4 kg COD/kg BOD, resulting in a conversion factor 1.69 kg VS/kg DBO.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.464Z", + "last_change_date": "2022-03-14T08:16:15.464Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17712, + "fields": { + "EF_ID": 624196, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Emission factor (EF)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP", + "Parameter_Conditions": "The WWTP has the following processes: preliminary treatment, primary treatment, secondary treatment, effluent disinfection and sludge digestion and disposal. Preliminary treatment includes bar screens and grit chambers; primary treatment is provided by settling tanks; secondary treatment consists of conventional activated sludge and secondary clarifiers, ending with effluent chlorine disinfection. The excess sludge is thickened and then stabilized in high rate anaerobic digesters.", + "Regional_Conditions": "Central America/Mexico/Veracruz (XAL)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "WWTP`s anaerobic digesters were operated at ambient temperature, which corresponds to the lower level of the mesophilic interval (21 to 26 °C), hindering organic degradation and the corresponding CH4 production.", + "Value": "0.21", + "Unit": "kg CH4/kg VSrem", + "Equation": "Equation 6.2 in Chapter 6 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "CH4 EF after after converting kg VS to kg BOD is 0.35 kg CH4/kg DBOrem. Sludge (as volatile solids, VS) was converted to BOD using the following factors: 1.42 kg COD/kg VS and 2.4 kg COD/kg BOD, resulting in a conversion factor 1.69 kg VS/kg DBO.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.565Z", + "last_change_date": "2022-03-14T08:16:15.565Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17713, + "fields": { + "EF_ID": 624197, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Total Solids (TS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Nuevo León (MTY)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process. But the WWTP limited by its operation at the lower end (32 °C) of the optimal mesophilic temperature interval and the limited volatile solids removal attained (31%).", + "Value": "42.8", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.666Z", + "last_change_date": "2022-03-14T08:16:15.666Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17714, + "fields": { + "EF_ID": 624198, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Total Solids (TS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is not thickened and then stabilized.", + "Regional_Conditions": "Central America/Mexico/State of Chihuahua (CHI)", + "Control_Technologies": "Biogas is burned in flares in all cases", + "Other_Properties": "In the WWTP the anaerobic digesters were operated at ambient temperature, which corresponds to the lower level of the mesophilic interval (21 to 26 °C), hindering organic degradation and the corresponding CH4 production. So the digester are not operated under good practices.", + "Value": "39.8", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.775Z", + "last_change_date": "2022-03-14T08:16:15.775Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17715, + "fields": { + "EF_ID": 624199, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Total Solids (TS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Jalisco (GDL)", + "Control_Technologies": "Biogas is burned in flares with electricity generation", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facility is applying good sludge digestion practices.", + "Value": "57.9", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.858Z", + "last_change_date": "2022-03-14T08:16:15.858Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17716, + "fields": { + "EF_ID": 624200, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Total Solids (TS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Querétaro (QRO)", + "Control_Technologies": "Biogas is burned in flares with electricity generation", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facilitiy is applying good sludge digestion practices.", + "Value": "47.2", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:15.950Z", + "last_change_date": "2022-03-14T08:16:15.950Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17717, + "fields": { + "EF_ID": 624201, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Total Solids (TS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/San Luis Potosí (SLP)", + "Control_Technologies": "Biogas is burned in flares in all cases", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facilitiy is applying good sludge digestion practices.", + "Value": "55.8", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.052Z", + "last_change_date": "2022-03-14T08:16:16.052Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17718, + "fields": { + "EF_ID": 624202, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Total Solids (TS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is not thickened and then stabilized", + "Regional_Conditions": "Central America/Mexico/Veracruz (XAL)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "WWTP`s anaerobic digesters were operated at ambient temperature, which corresponds to the lower level of the mesophilic interval (21 to 26 °C), hindering organic degradation and the corresponding CH4 production.", + "Value": "43.4", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.160Z", + "last_change_date": "2022-03-14T08:16:16.160Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17719, + "fields": { + "EF_ID": 624203, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Volatile Solids (VS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Nuevo León (MTY)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process. But the WWTP limited by its operation at the lower end (32 °C) of the optimal mesophilic temperature interval and the limited volatile solids removal attained (31%).", + "Value": "27.3", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.269Z", + "last_change_date": "2022-03-14T08:16:16.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17720, + "fields": { + "EF_ID": 624204, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Volatile Solids (VS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is not thickened and then stabilized.", + "Regional_Conditions": "Central America/Mexico/State of Chihuahua (CHI)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In the WWTP the anaerobic digesters were operated at ambient temperature, which corresponds to the lower level of the mesophilic interval (21 to 26 °C), hindering organic degradation and the corresponding CH4 production. So the digester are not operated under good practices.", + "Value": "22.5", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.370Z", + "last_change_date": "2022-03-14T08:16:16.370Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17721, + "fields": { + "EF_ID": 624205, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Volatile Solids (VS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Jalisco (GDL)", + "Control_Technologies": "Biogas is burned in flares with electricity generation", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facility is applying good sludge digestion practices.", + "Value": "40.4", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.471Z", + "last_change_date": "2022-03-14T08:16:16.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17722, + "fields": { + "EF_ID": 624206, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Volatile Solids (VS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Querétaro (QRO)", + "Control_Technologies": "Biogas is burned in flares with electricity generation", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facilitiy is applying good sludge digestion practices.", + "Value": "32.9", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.589Z", + "last_change_date": "2022-03-14T08:16:16.589Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17723, + "fields": { + "EF_ID": 624207, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Volatile Solids (VS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/San Luis Potosí (SLP)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facilitiy is applying good sludge digestion practices.", + "Value": "30.7", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.689Z", + "last_change_date": "2022-03-14T08:16:16.690Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17724, + "fields": { + "EF_ID": 624208, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Volatile Solids (VS)", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is not thickened and then stabilized", + "Regional_Conditions": "Central America/Mexico/Veracruz (XAL)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "WWTP`s anaerobic digesters were operated at ambient temperature, which corresponds to the lower level of the mesophilic interval (21 to 26 °C), hindering organic degradation and the corresponding CH4 production.", + "Value": "28", + "Unit": "g/l", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.799Z", + "last_change_date": "2022-03-14T08:16:16.799Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17725, + "fields": { + "EF_ID": 624209, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Content in biogas", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Nuevo León (MTY)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process. But the WWTP limited by its operation at the lower end (32 °C) of the optimal mesophilic temperature interval and the limited volatile solids removal attained (31%).", + "Value": "65.9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:16.891Z", + "last_change_date": "2022-03-14T08:16:16.891Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17726, + "fields": { + "EF_ID": 624210, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Content in biogas", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is not thickened and then stabilized.", + "Regional_Conditions": "Central America/Mexico/State of Chihuahua (CHI)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In the WWTP the anaerobic digesters were operated at ambient temperature, which corresponds to the lower level of the mesophilic interval (21 to 26 °C), hindering organic degradation and the corresponding CH4 production. So the digester are not operated under good practices.", + "Value": "64.9", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:17.000Z", + "last_change_date": "2022-03-14T08:16:17.000Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17727, + "fields": { + "EF_ID": 624211, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Content in biogas", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Jalisco (GDL)", + "Control_Technologies": "Biogas is burned in flares with electricity generation", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facility is applying good sludge digestion practices.", + "Value": "67.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:17.100Z", + "last_change_date": "2022-03-14T08:16:17.100Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17728, + "fields": { + "EF_ID": 624212, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Content in biogas", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/Querétaro (QRO)", + "Control_Technologies": "Biogas is burned in flares with electricity generation", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facilitiy is applying good sludge digestion practices.", + "Value": "65.5", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:17.201Z", + "last_change_date": "2022-03-14T08:16:17.201Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17729, + "fields": { + "EF_ID": 624213, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Content in biogas", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is thickened and then stabilized in high rate anaerobic digesters (mixed and heated).", + "Regional_Conditions": "Central America/Mexico/San Luis Potosí (SLP)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "In WWTP the heating systemswere in operation, providing the expected mesophilic temperatures (32 to 36 °C), positively affecting the digestion process so facilitiy is applying good sludge digestion practices.", + "Value": "63.3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:17.302Z", + "last_change_date": "2022-03-14T08:16:17.302Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17730, + "fields": { + "EF_ID": 624214, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 Content in biogas", + "Technology_Practices": "Anaerobic sludge digesters associated with activated sludge process in full-scale WWTP.", + "Parameter_Conditions": "Municipal wastewater treatment plant with activated sludge process with anaerobic sludge digestion. The excess sludge is not thickened and then stabilized", + "Regional_Conditions": "Central America/Mexico/Veracruz (XAL)", + "Control_Technologies": "Biogas is burned in flares", + "Other_Properties": "WWTP`s anaerobic digesters were operated at ambient temperature, which corresponds to the lower level of the mesophilic interval (21 to 26 °C), hindering organic degradation and the corresponding CH4 production.", + "Value": "61.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Paredes, M.G., Güereca, L.P., Molina, L.T., Noyola, A. Methane emissions from anaerobic sludge digesters in Mexico: On-site determination vs. IPCC Tier 1 method. Science of the Total Environment, 2019, 656, 468-474", + "English_Abstract": "Wastewater treatment is an important source of methane (CH4) emissions. In most large-size aerobic treatment plants, the excess sludge is digested in anaerobic reactors (AD), with the concomitant CH4 emissions. The guidelines of the Intergovernmental Panel on Climate Change (IPCC) have been adopted worldwide for quantifying the national emission inventories, which include wastewater treatment plants (WWTP) as a key category. The IPCC recommends using default emission factors (Tier 1) for countries with limited available data (such as Mexico and most developing countries). However, these estimates have a high degree of uncertainty, owing to the lack of reliable information about the operation process and local environmental conditions. In order to reduce uncertainty in the estimation of CH4 emission from WWTP in Mexico, a country-specific emission factor was determined for AD associated with activated sludge process. This was accomplished with on-site data obtained from the AD of six activated sludge WWTP. In addition, the measured CH4 emissions were compared to those resulting from the application of the IPCC Tier 1 method, using the recommended default methane correction factor (MCF: 0.8) as well as alternate values (0.32 and 0.26) recently proposed by the authors. Results show that the IPCC Tier 1 method, using the recommended MCF, highly overestimate CH4 emissions compared with the values obtained on-site. In contrast, the alternate MCF achieved better estimations than the IPCC-recommended MCF, much closer to the observed emission values. The CH4 emission factor proposed as country (Mexico) specific value is 0.49 kg CH4/kg BODrem, which would allow the application of IPCC Tier 2 method. By doing so, the uncertainty associated with CH4 emission from aerobic treatment plants with AD would be reduced. This, in turn, would provide important information for implementing appropriate CH4 mitigation strategies for the water sector", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2018.11.373", + "creation_date": "2022-03-14T08:16:17.402Z", + "last_change_date": "2022-03-14T08:16:17.402Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17731, + "fields": { + "EF_ID": 624215, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal Waste Composition in the landfill", + "Technology_Practices": "Semi-aerobic (SM) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "The SM test cell was designed based on the semi-aerobic landfill concept", + "Value": "44.4 (Food Waste), 30.2 (Plastic), 11.7 (Textile), 7.5 (Foam packaging), 6.2 (Others)", + "Unit": "% of wet weight", + "Equation": "Equation 3.7 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:17.511Z", + "last_change_date": "2022-03-14T08:16:17.511Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17732, + "fields": { + "EF_ID": 624216, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Municipal Waste Composition in the landfill", + "Technology_Practices": "The control (CT) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "The control (CT) test cell was designed following traditional guidelines with a drainage piping system (0.30 m in diameter) and no vertical gas vents.", + "Value": "47 (Food waste), 25.9 (Plastic), 16.8 (Textile), 5.4 (Foam packaging), 4.9 (Other)", + "Unit": "% of wet weight", + "Equation": "Equation 3.7 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:17.629Z", + "last_change_date": "2022-03-14T08:16:17.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17733, + "fields": { + "EF_ID": 624217, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "CH4 Generation Rate Constant (k)", + "Technology_Practices": "Semi-aerobic (SM) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "The SM test cell was designed based on the semi-aerobic landfill concept", + "Value": "1.55", + "Unit": "/year", + "Equation": "Equation 3.4 and 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The k-value for declining phase. For both SM and CT cells the values were similar.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:17.746Z", + "last_change_date": "2022-03-14T08:16:17.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17734, + "fields": { + "EF_ID": 624218, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "CH4 Generation Rate Constant (k)", + "Technology_Practices": "The control (CT) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "The control (CT) test cell was designed following traditional guidelines with a drainage piping system (0.30 m in diameter) and no vertical gas vents.", + "Value": "1.32", + "Unit": "/year", + "Equation": "Equation 3.4 and 3.5 in Chapter 3 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The k-value for declining phase. For both SM and CT cells the values were similar.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:17.863Z", + "last_change_date": "2022-03-14T08:16:17.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17735, + "fields": { + "EF_ID": 624219, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Delay time (Lag-phase)", + "Technology_Practices": "Semi-aerobic (SM) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill test cell case", + "Value": "0.61", + "Unit": "years", + "Equation": "", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:17.982Z", + "last_change_date": "2022-03-14T08:16:17.982Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17736, + "fields": { + "EF_ID": 624220, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Delay time (Lag-phase)", + "Technology_Practices": "The control (CT) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill - control test cell case", + "Value": "0.45", + "Unit": "years", + "Equation": "", + "IPCC_Worksheet": "First Order Decay Model, Waste sector, in the 2006 IPCC Guidelines", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.091Z", + "last_change_date": "2022-03-14T08:16:18.091Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17737, + "fields": { + "EF_ID": 624221, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH/CO2 ratio", + "Technology_Practices": "Semi-aerobic (SM) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate. Dry condition.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill test cell case", + "Value": "0.22", + "Unit": "Ratio", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.191Z", + "last_change_date": "2022-03-14T08:16:18.191Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17738, + "fields": { + "EF_ID": 624222, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH/CO2 ratio", + "Technology_Practices": "Semi-aerobic (SM) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate. Wet condition.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill test cell case", + "Value": "0.57", + "Unit": "Ratio", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.292Z", + "last_change_date": "2022-03-14T08:16:18.292Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17739, + "fields": { + "EF_ID": 624223, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions", + "Technology_Practices": "Semi-aerobic (SM) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate. Dry condition.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill test cell case", + "Value": "20.95", + "Unit": "g/t dry wt./d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.392Z", + "last_change_date": "2022-03-14T08:16:18.392Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17740, + "fields": { + "EF_ID": 624224, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions", + "Technology_Practices": "Semi-aerobic (SM) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate. Wet condition.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill test cell case", + "Value": "61.67", + "Unit": "g/t dry wt./d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.493Z", + "last_change_date": "2022-03-14T08:16:18.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17741, + "fields": { + "EF_ID": 624225, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH/CO2 ratio", + "Technology_Practices": "The control (CT) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate. Dry condition.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill - control test cell case", + "Value": "0.39", + "Unit": "Ratio", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.610Z", + "last_change_date": "2022-03-14T08:16:18.610Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17742, + "fields": { + "EF_ID": 624226, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH/CO2 ratio", + "Technology_Practices": "The control (CT) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate. Wet condition.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill - control test cell case", + "Value": "0.92", + "Unit": "Ratio", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.711Z", + "last_change_date": "2022-03-14T08:16:18.712Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17743, + "fields": { + "EF_ID": 624227, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions", + "Technology_Practices": "The control (CT) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate. Dry condition.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill - control test cell case", + "Value": "60.32", + "Unit": "g/t dry wt./d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.820Z", + "last_change_date": "2022-03-14T08:16:18.820Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17744, + "fields": { + "EF_ID": 624228, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emissions", + "Technology_Practices": "The control (CT) test cell", + "Parameter_Conditions": "High moisture wastes and tropical climate. Wet condition.", + "Regional_Conditions": "Thailand/Tropical climate", + "Control_Technologies": "", + "Other_Properties": "Semi-aerobic landfill - control test cell case", + "Value": "120.33", + "Unit": "g/t dry wt./d", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Wangyao, K., Endo, K., Ishigaki, T., Yamada, M. The effectiveness of passive gas ventilation on methane emission reduction in a semi-aerobic test cell operated in the tropics, Waste Management, 2019, 87 954-964", + "English_Abstract": "Two landfill test cells, with and without gas vents, were used to investigate the effectiveness of passive aeration, through basal leachate pipes, in mitigating methane emissions from municipal solid waste disposal in the tropical climate of Thailand. Surface methane emission rate, as well as methane content in the landfill gas, were determined for a period of three years. The results indicate that the average methane emission rate from the test cell with passive gas vents (42.13 g/t dry wt./d) was about half of that from the test cell without gas vents (90.33 g/t dry wt./d). Methane emission rates from both test cells fluctuated and were influenced by precipitation. The emission rate during the wet period in the test cell with gas vents (61.67 g/t dry wt./d) was 3 times as much as that observed during the dry period (20.95 g/t dry wt./d). The emission rate during the wet period in the test cell without gas vents (120.33 g/t dry wt./d), was twice the value of that observed during the dry period (60.32 g/t dry wt./d). The measurements also revealed the formation of methane hotspots in the test cell with passive vents after rainfall events, leading to higher localized surface emissions. Introduction of gas vents helped reduce methane emissions from solid waste landfills in a tropical region. However, rainfall should be limited to avoid turning semi-aerobic conditions into anaerobic conditions", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.wasman.2018.12.013", + "creation_date": "2022-03-14T08:16:18.929Z", + "last_change_date": "2022-03-14T08:16:18.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17745, + "fields": { + "EF_ID": 624229, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor (EF)", + "Technology_Practices": "Coking wastewater treatment (industrial wastewater treatment) in a biological aerated filter (BAF) reactor", + "Parameter_Conditions": "", + "Regional_Conditions": "China", + "Control_Technologies": "", + "Other_Properties": "The bench-scale biological BAF reactor. The reactor was inoculated by activated sludge taken from a full scale coking WWTP. The concentration of COD and NH3-N was 27,500 mg L-1 and 5150 mg L-1 with high concentrations of cyanide (220 mg L-1)", + "Value": "23.58", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Zheng, M., Zhou, N., Liu, S., Dang, C., Liu, Y., He, S., Zhao, Y., Liu, W., Wang, X. N2O and NO emission from a biological aerated filter treating coking wastewater: Main source and microbial community, Journal of Cleaner Production, 2019, 213, 365-374", + "English_Abstract": "Nitrous oxide (N2O) and nitric oxide (NO) emissions from domestic wastewater treatment had been widely investigated due to their severe greenhouse effect and stratospheric ozone depletion. Researches concerning N2O and NO emissions from industrial wastewater treatment which usually contain high concentrations of nitrogen and refractory organics were still limited. In this study, N2O and NO emissions from a biological aerated filter (BAF) for coking wastewater treatment were investigated that achieved efficient nitrogen and chemical oxygen demand (COD) removal efficiency through short-cut nitrification and denitrification. Notably, emission factor of N2O and NO reached 23.58% and 0.09% respectively, much higher than those emitted from most domestic wastewater treatment plants. Moreover, batch experiments revealed that nitrifier denitrification contributed as high as 97.17% and 93.89% of the total generated N2O and NO, which was supposed to be the main source of green-house gases (GHGs) during coking wastewater treatment. The inhibition of denitrifying reductase by the toxic components in coking wastewater and the severe nitrite accumulations were key factors promoting the high emission of N2O and NO. Microbial community analysis based on high throughput sequencing of 16S rRNA gene revealed that ammonia-oxidizing bacteria and denitrifying bacteria distributed abundantly in the BAF reactor, while nitrite-oxidizing bacteria was almost absent. The huge imbalance between NO and N2O reductase was an underlying explanation for the high N2O emission in the present coking wastewater treatment according to Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) result. This study is of great significance to understanding the high N2O and NO emission and developing the control strategy when treating industrial wastewater with high-strength nitrogen and refractory organics", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.jclepro.2018.12.182", + "creation_date": "2022-03-14T08:16:19.038Z", + "last_change_date": "2022-03-14T08:16:19.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17746, + "fields": { + "EF_ID": 624477, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Wood (garden and park waste)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.35", + "Unit": "kg CH4/t", + "Equation": "Equation 4.1 on page 4.5 in Chapter 4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-79%", + "Upper_Bound": "+79%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.138Z", + "last_change_date": "2022-03-14T08:16:19.139Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17747, + "fields": { + "EF_ID": 624478, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Food waste", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "kg CH4/t", + "Equation": "Equation 4.1 on page 4.5 in Chapter 4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-79%", + "Upper_Bound": "+79%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.213Z", + "last_change_date": "2022-03-14T08:16:19.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17748, + "fields": { + "EF_ID": 624479, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Paper/cardboard", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "kg CH4/t", + "Equation": "Equation 4.1 on page 4.5 in Chapter 4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-79%", + "Upper_Bound": "+79%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.314Z", + "last_change_date": "2022-03-14T08:16:19.314Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17749, + "fields": { + "EF_ID": 624480, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Textile", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "kg CH4/t", + "Equation": "Equation 4.1 on page 4.5 in Chapter 4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-79%", + "Upper_Bound": "+79", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.413Z", + "last_change_date": "2022-03-14T08:16:19.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17750, + "fields": { + "EF_ID": 624481, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Human waste/Johkaso slufge", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "kg CH4/t", + "Equation": "Equation 4.1 on page 4.5 in Chapter 4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-79%", + "Upper_Bound": "+79%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.493Z", + "last_change_date": "2022-03-14T08:16:19.493Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17751, + "fields": { + "EF_ID": 624482, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Industrial solid waste. Waste type: Food waste (animal and vegetable residues, other food waste)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "kg CH4/t", + "Equation": "Equation 4.1 on page 4.5 in Chapter 4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-79%", + "Upper_Bound": "+79%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.560Z", + "last_change_date": "2022-03-14T08:16:19.560Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17752, + "fields": { + "EF_ID": 624483, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Industrial solid waste. Waste type: Sewage sludge", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.96", + "Unit": "kg CH4/t", + "Equation": "Equation 4.1 on page 4.5 in Chapter 4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-79%", + "Upper_Bound": "+79%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.626Z", + "last_change_date": "2022-03-14T08:16:19.626Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17753, + "fields": { + "EF_ID": 624484, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Wood (garden and park waste)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0015", + "Unit": "kg N2O/t", + "Equation": "Equation 4.2 on page 4.5 in Chapter4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-167%", + "Upper_Bound": "+167%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.693Z", + "last_change_date": "2022-03-14T08:16:19.693Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17754, + "fields": { + "EF_ID": 624485, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Food waste", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "kg N2O/t", + "Equation": "Equation 4.2 on page 4.5 in Chapter4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-167%", + "Upper_Bound": "+167%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.784Z", + "last_change_date": "2022-03-14T08:16:19.784Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17755, + "fields": { + "EF_ID": 624486, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Paper/cardboard", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "kg N2O/t", + "Equation": "Equation 4.2 on page 4.5 in Chapter4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-167%", + "Upper_Bound": "+167%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.863Z", + "last_change_date": "2022-03-14T08:16:19.863Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17756, + "fields": { + "EF_ID": 624487, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Textile", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "kg N2O/t", + "Equation": "Equation 4.2 on page 4.5 in Chapter4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-167%", + "Upper_Bound": "+167", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:19.926Z", + "last_change_date": "2022-03-14T08:16:19.926Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17757, + "fields": { + "EF_ID": 624488, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Municipal solid waste. Waste type: Human waste/Johkaso sludge", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "kg N2O/t", + "Equation": "Equation 4.2 on page 4.5 in Chapter4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-167%", + "Upper_Bound": "+167%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:20.002Z", + "last_change_date": "2022-03-14T08:16:20.002Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17758, + "fields": { + "EF_ID": 624489, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Industrial solid waste. Waste type: Food waste (animal and vegetable residues, other food waste)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "kg N2O/t", + "Equation": "Equation 4.2 on page 4.5 in Chapter4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-167%", + "Upper_Bound": "+167%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:20.076Z", + "last_change_date": "2022-03-14T08:16:20.076Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17759, + "fields": { + "EF_ID": 624490, + "IPCC_Category": "4.B - Biological Treatment of Solid Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor", + "Technology_Practices": "Composting", + "Parameter_Conditions": "Industrial solid waste. Waste type: Sewage sludge", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.27", + "Unit": "kg N2O/t", + "Equation": "Equation 4.2 on page 4.5 in Chapter4, Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2018.", + "English_Abstract": "", + "Lower_Bound": "-167%", + "Upper_Bound": "+167%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:20.152Z", + "last_change_date": "2022-03-14T08:16:20.152Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17760, + "fields": { + "EF_ID": 624491, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content in plastics", + "Technology_Practices": "Plastics in MSW (dry basis)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75.1", + "Unit": "%", + "Equation": "Equation 5.2 on page 5.7 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan 2019; Ministry of the Environment, Japan (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average value of the data provided by four municipalities.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844; https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:20.245Z", + "last_change_date": "2022-03-14T08:16:20.245Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17761, + "fields": { + "EF_ID": 624492, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon content in textiles", + "Technology_Practices": "Synthetic textiles in MSW (dry basis)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.0", + "Unit": "%", + "Equation": "Equation 5.2 on page 5.7 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019; Japan Chemical Fibers Association(2018) Textile Handbook; Ministry of Economy, Trade and Industry (2018) Yearbook of Textiles and Consumer Goods Statistics", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Weighted average of carbon content by each type of synthetic textile. For the carbon content of synthetic textile in MSW, the carbon content of the synthetic fibers in the textile products is used. It is set by taking a weighted average of carbon contents determined by the molecular formula of polymer for each type of synthetic textile based on the volume of synthetic textile consumption.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844; https://www.meti.go.jp/statistics/tyo/seidou/result/gaiyo/resourceData/05_seni/nenpo/h2dff2017k.pdf", + "creation_date": "2022-03-14T08:16:20.321Z", + "last_change_date": "2022-03-14T08:16:20.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17762, + "fields": { + "EF_ID": 624493, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for plastics", + "Technology_Practices": "Plastics in MSW (dry basis)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2754", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:20.385Z", + "last_change_date": "2022-03-14T08:16:20.385Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17763, + "fields": { + "EF_ID": 624494, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for synthetic textile", + "Technology_Practices": "Synthetic textiles in MSW (dry basis)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2310", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:20.454Z", + "last_change_date": "2022-03-14T08:16:20.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17764, + "fields": { + "EF_ID": 624495, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor of paper/cardboard (fossil fuel derived)", + "Technology_Practices": "Fossil fuel derived paper/cardboard in MSW (dry basis)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+400%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:20.521Z", + "last_change_date": "2022-03-14T08:16:20.521Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17765, + "fields": { + "EF_ID": 624496, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for nappy (fossil fuel derived)", + "Technology_Practices": "Fossil fuel derived nappy in MSW (dry basis)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "257", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-23%", + "Upper_Bound": "-29%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:20.614Z", + "last_change_date": "2022-03-14T08:16:20.614Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17766, + "fields": { + "EF_ID": 624497, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fossil-fuel derived fraction in waste plastics", + "Technology_Practices": "Plastics in MSW (excl. plastic bottles)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "98.7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:20.704Z", + "last_change_date": "2022-03-14T08:16:20.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17767, + "fields": { + "EF_ID": 624498, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fossil-fuel derived fraction in waste plastics", + "Technology_Practices": "Plastic bottle in MSW", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:20.779Z", + "last_change_date": "2022-03-14T08:16:20.779Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17768, + "fields": { + "EF_ID": 624499, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fossil-fuel derived fraction in waste plastics Fossil-fuel derived fraction in waste plastics", + "Technology_Practices": "Plastics in industrial waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99.8", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:20.888Z", + "last_change_date": "2022-03-14T08:16:20.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17769, + "fields": { + "EF_ID": 624500, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Percentage of synthetic textile in textiles", + "Technology_Practices": "Textiles in MSW", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "63.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Chemical Fibers Association (2018) Textile Handbook; Ministry of Economy, Trade and Industry (2018) Yearbook of Textiles and Consumer Goods Statistics", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Percentage of synthetic textile content in textiles contained in the MSW is calculated using the percentage of synthetic textile products in textile products, which is determined by taking the ratio of the annual domestic demand for synthetic textile to the one for all textiles indicated in the Textile Handbook and the Yearbook of Textiles and Consumer Goods Statistics.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844 https://www.meti.go.jp/statistics/tyo/seidou/result/gaiyo/resourceData/05_seni/nenpo/h2dff2017k.pdf", + "creation_date": "2022-03-14T08:16:20.954Z", + "last_change_date": "2022-03-14T08:16:20.954Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17770, + "fields": { + "EF_ID": 624501, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "Continuous incinerator. MSW.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.7", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector; Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; -> Ref.72. Chap7 in NIR Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1997; -> Ref.40. Chap7 in NIR Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; -> Ref.66. Chap7 in NIR", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of EF of stoker furnace: -39% to +39%, fluidized bed furnace: -100% to +719%.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf; https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:21.021Z", + "last_change_date": "2022-03-14T08:16:21.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17771, + "fields": { + "EF_ID": 624502, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "Semi-continuous incinerator. MSW.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20.4", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector; Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; -> Ref.72. Chap7 in NIR Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1997; -> Ref.40. Chap7 in NIR Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; -> Ref.66. Chap7 in NIR", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of EF of stoker furnace: -82% to +82%, fluidized bed furnace: -100% to +162%.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:21.102Z", + "last_change_date": "2022-03-14T08:16:21.102Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17772, + "fields": { + "EF_ID": 624503, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "Batch type incinerator. MSW.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11.8", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector; Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; -> Ref.72. Chap7 in NIR Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1997; -> Ref.40. Chap7 in NIR Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; -> Ref.66. Chap7 in NIR", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of EF of stoker furnace: -75% to +75%, fluidized bed furnace: -100% to +394%.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:21.188Z", + "last_change_date": "2022-03-14T08:16:21.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17773, + "fields": { + "EF_ID": 624504, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "Gasification melting furnace. MSW.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.9", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector; Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; -> Ref.72. Chap7 in NIR Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1997; -> Ref.40. Chap7 in NIR Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; -> Ref.66. Chap7 in NIR", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of EF of shaft furnace: -100% to +203%, fluidized bed furnace: -100% to +133%, rotary kiln: -54% to +54%.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:21.286Z", + "last_change_date": "2022-03-14T08:16:21.286Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17774, + "fields": { + "EF_ID": 624505, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Continuous incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "38.1", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector; Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; -> Ref.72. Chap7 in NIR Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1997; -> Ref.40. Chap7 in NIR Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; -> Ref.66. Chap7 in NIR", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of EF of stoker furnace: -34% to +34%, fluidized bed furnace: -98% to +98%", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:21.363Z", + "last_change_date": "2022-03-14T08:16:21.363Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17775, + "fields": { + "EF_ID": 624506, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Semi-continuous incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72.3", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector; Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; -> Ref.72. Chap7 in NIR Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1997; -> Ref.40. Chap7 in NIR Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; -> Ref.66. Chap7 in NIR", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of EF of stoker furnace: -82% to +82%, fluidized bed furnace: -64% to +64%.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:21.453Z", + "last_change_date": "2022-03-14T08:16:21.453Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17776, + "fields": { + "EF_ID": 624507, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Batch type incinerator", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "76.2", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector; Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; -> Ref.72. Chap7 in NIR Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1997; -> Ref.40. Chap7 in NIR Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; -> Ref.66. Chap7 in NIR", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of EF of stoker furnace: -100% to +111%, fluidized bed furnace: -100% to +133%.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:21.529Z", + "last_change_date": "2022-03-14T08:16:21.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17777, + "fields": { + "EF_ID": 624508, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N2O emission factor", + "Technology_Practices": "Gasification melting furnace", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "12.5", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2010) Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector; Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; -> Ref.72. Chap7 in NIR Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, City of Kobe, Niigata Prefecture, Hiroshima Prefecture, Hyogo Prefecture, Fukuoka Prefecture, Hokkaido, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1997; -> Ref.40. Chap7 in NIR Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; -> Ref.66. Chap7 in NIR", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The uncertainties of EF of shaft furnace: -45% to +45%, fluidized bed furnace: -100% to +252%, rotary kiln: -87% to +87%.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:21.629Z", + "last_change_date": "2022-03-14T08:16:21.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17778, + "fields": { + "EF_ID": 624509, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon content of waste oil in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "80", + "Unit": "%", + "Equation": "Equation 5.2 on page 5.7 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Environmental Agency, Japan (1992) Report on Estimation of CO2 Emissions in Japan", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wet basis", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "", + "creation_date": "2022-03-14T08:16:21.713Z", + "last_change_date": "2022-03-14T08:16:21.713Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17779, + "fields": { + "EF_ID": 624510, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Carbon content of plastics in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70", + "Unit": "%", + "Equation": "Equation 5.2 on page 5.7 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Environmental Agency, Japan (1992) Report on Estimation of CO2 Emissions in Japan", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wet basis", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "", + "creation_date": "2022-03-14T08:16:21.788Z", + "last_change_date": "2022-03-14T08:16:21.788Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17780, + "fields": { + "EF_ID": 624511, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for fossil-fuel derived fraction of waste oil in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2933", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019; Environmental Agency, Japan (1992) Report on Estimation of CO2 Emissions in Japan", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wet basis", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:21.862Z", + "last_change_date": "2022-03-14T08:16:21.862Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17781, + "fields": { + "EF_ID": 624512, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for fossil-fuel derived fraction of plastics in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2567", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019; Environmental Agency, Japan (1992) Report on Estimation of CO2 Emissions in Japan", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Wet basis", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:21.957Z", + "last_change_date": "2022-03-14T08:16:21.957Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17782, + "fields": { + "EF_ID": 624513, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for fossil-fuel derived fraction of paper/cardboard in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019; Environmental Agency, Japan (1992) Report on Estimation of CO2 Emissions in Japan", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+400%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Dry basis", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:22.046Z", + "last_change_date": "2022-03-14T08:16:22.046Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17783, + "fields": { + "EF_ID": 624514, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Fraction of waste oil from animal and vegetable origin", + "Technology_Practices": "Industrial waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.0", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2018) Japan, the Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes (Volume on Cyclical Use)", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/recycle/report/h29-10/index.html", + "creation_date": "2022-03-14T08:16:22.129Z", + "last_change_date": "2022-03-14T08:16:22.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17784, + "fields": { + "EF_ID": 624515, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of waste oil in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Japan Society of Atmospheric Environment (1997) Report on Emission Factor Results for Combustion Facilities; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+181%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:22.213Z", + "last_change_date": "2022-03-14T08:16:22.213Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17785, + "fields": { + "EF_ID": 624516, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of plastics in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "8.0", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Japan Society of Atmospheric Environment (1997) Report on Emission Factor Results for Combustion Facilities; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+216%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:22.296Z", + "last_change_date": "2022-03-14T08:16:22.296Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17786, + "fields": { + "EF_ID": 624517, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of paper/cardboard in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2006) Review of Greenhouse Gases Emissions Estimation Methods; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+412%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:22.400Z", + "last_change_date": "2022-03-14T08:16:22.400Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17787, + "fields": { + "EF_ID": 624518, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of wood in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2006) Review of Greenhouse Gases Emissions Estimation Methods; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+412%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:22.488Z", + "last_change_date": "2022-03-14T08:16:22.488Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17788, + "fields": { + "EF_ID": 624519, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of textiles (natural fiber) in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2006) Review of Greenhouse Gases Emissions Estimation Methods; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+412%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:22.563Z", + "last_change_date": "2022-03-14T08:16:22.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17789, + "fields": { + "EF_ID": 624520, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of animal and vegetable residues/animal carcassess in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "225", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2006) Review of Greenhouse Gases Emissions Estimation Methods; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+412%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:22.669Z", + "last_change_date": "2022-03-14T08:16:22.669Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17790, + "fields": { + "EF_ID": 624521, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of sludge in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+201%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:22.754Z", + "last_change_date": "2022-03-14T08:16:22.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17791, + "fields": { + "EF_ID": 624522, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor of sludge other than sewage sludge in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.5", + "Unit": "g/ton waste", + "Equation": "Equation 5.4 on page 5.12 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf", + "creation_date": "2022-03-14T08:16:22.837Z", + "last_change_date": "2022-03-14T08:16:22.837Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17792, + "fields": { + "EF_ID": 624523, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for sewage sludge incineration", + "Technology_Practices": "Fluidized bed incinerator. Type of flocculant: high-molecular weight flocculant.", + "Parameter_Conditions": "Normal combustion temperature (around 800 degree Celcius)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1508", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2013) Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector; Kanagawa Prefecture (1994) Report of GHG Emission Factors from Stationary Combustion; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2001) 2000 Annual Report of Investigation and Research for Sewer, NILIM Report 10: pp93-96; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2002) 2001 Annual Report of Investigation and Research for Sewer, NILIM Report 64: pp119-122; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994;Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Uncertainty of the EF for N2O emissions from sludge incineration (industrial waste): +/-84%; Other URLs: http://www.db.pwri.go.jp/pdf/D6747.pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf http://dl.ndl.go.jp/view/download/digidepo_10165598_po_ks0010.pdf?contentNo=1&alternativeNo=", + "creation_date": "2022-03-14T08:16:22.937Z", + "last_change_date": "2022-03-14T08:16:22.937Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17793, + "fields": { + "EF_ID": 624524, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for sewage sludge incineration", + "Technology_Practices": "Fluidized bed incinerator. Excludes multiple hearth air injection incineration method fluidized bed incinerator and two-stage incineration method circulating fluidized bed incinerator. Type of flocculant: high-molecular weight flocculant.", + "Parameter_Conditions": "High combustion temperature (around 850 degree Celcius)", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "645", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2013) Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector; Kanagawa Prefecture (1994) Report of GHG Emission Factors from Stationary Combustion; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2001) 2000 Annual Report of Investigation and Research for Sewer, NILIM Report 10: pp93-96; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2002) 2001 Annual Report of Investigation and Research for Sewer, NILIM Report 64: pp119-122; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Uncertainty of the EF for N2O emissions from sludge incineration (industrial waste): +/-84%; Other URLs: http://www.db.pwri.go.jp/pdf/D6747.pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf http://dl.ndl.go.jp/view/download/digidepo_10165598_po_ks0010.pdf?contentNo=1&alternativeNo=", + "creation_date": "2022-03-14T08:16:23.013Z", + "last_change_date": "2022-03-14T08:16:23.013Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17794, + "fields": { + "EF_ID": 624525, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for sewage sludge incineration", + "Technology_Practices": "Multiple hearth incinerator. Type of flocculant: high-molecular weight flocculant.", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "882", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2013) Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector; Kanagawa Prefecture (1994) Report of GHG Emission Factors from Stationary Combustion; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2001) 2000 Annual Report of Investigation and Research for Sewer, NILIM Report 10: pp93-96; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2002) 2001 Annual Report of Investigation and Research for Sewer, NILIM Report 64: pp119-122; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Uncertainty of the EF for N2O emissions from sludge incineration (industrial waste): +/-84%; Other URLs: http://www.db.pwri.go.jp/pdf/D6747.pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf http://dl.ndl.go.jp/view/download/digidepo_10165598_po_ks0010.pdf?contentNo=1&alternativeNo=", + "creation_date": "2022-03-14T08:16:23.113Z", + "last_change_date": "2022-03-14T08:16:23.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17795, + "fields": { + "EF_ID": 624526, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for sewage sludge incineration", + "Technology_Practices": "Incineration of lime sludge", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "294", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2013) Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector; Kanagawa Prefecture (1994) Report of GHG Emission Factors from Stationary Combustion; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2001) 2000 Annual Report of Investigation and Research for Sewer, NILIM Report 10: pp93-96; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2002) 2001 Annual Report of Investigation and Research for Sewer, NILIM Report 64: pp119-122; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Uncertainty of the EF for N2O emissions from sludge incineration (industrial waste): +/-84%; Other URLs: http://www.db.pwri.go.jp/pdf/D6747.pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf http://dl.ndl.go.jp/view/download/digidepo_10165598_po_ks0010.pdf?contentNo=1&alternativeNo=", + "creation_date": "2022-03-14T08:16:23.223Z", + "last_change_date": "2022-03-14T08:16:23.223Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17796, + "fields": { + "EF_ID": 624527, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for sewage sludge incineration", + "Technology_Practices": "Mutiple hearth air injection incineration method fluidized bed incinerator; two-stage incineration method circulating fluidized bed incinerator; Stoker furnace incinerator. Hiigh combustion temperature (around 850 degree Celcius)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "263", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2013) Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector; Kanagawa Prefecture (1994) Report of GHG Emission Factors from Stationary Combustion; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2001) 2000 Annual Report of Investigation and Research for Sewer, NILIM Report 10: pp93-96; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2002) 2001 Annual Report of Investigation and Research for Sewer, NILIM Report 64: pp119-122; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Uncertainty of the EF for N2O emissions from sludge incineration (industrial waste): +/-84%; Other URLs: http://www.db.pwri.go.jp/pdf/D6747.pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf http://dl.ndl.go.jp/view/download/digidepo_10165598_po_ks0010.pdf?contentNo=1&alternativeNo=", + "creation_date": "2022-03-14T08:16:23.331Z", + "last_change_date": "2022-03-14T08:16:23.331Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17797, + "fields": { + "EF_ID": 624528, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor for sewage sludge incineration", + "Technology_Practices": "Carbonization furnace for solid fuel production", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "31.2", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods (2013) Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector; Kanagawa Prefecture (1994) Report of GHG Emission Factors from Stationary Combustion; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2001) 2000 Annual Report of Investigation and Research for Sewer, NILIM Report 10: pp93-96; Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management (2002) 2001 Annual Report of Investigation and Research for Sewer, NILIM Report 64: pp119-122; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Uncertainty of the EF for N2O emissions from sludge incineration (industrial waste): +/-84%; Other URLs: http://www.db.pwri.go.jp/pdf/D6747.pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf http://dl.ndl.go.jp/view/download/digidepo_10165598_po_ks0010.pdf?contentNo=1&alternativeNo=", + "creation_date": "2022-03-14T08:16:23.432Z", + "last_change_date": "2022-03-14T08:16:23.432Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17798, + "fields": { + "EF_ID": 624529, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of waste oil in industrial waste", + "Technology_Practices": "Waste oil (fossil-fuel derived/animal and vegetable)", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Seki, Current Condition of New Solid Fuel and New Technology C-RPF, Environment Management, 40(8), 2004; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996; Ueno, Tatsuichi, and Ooiwakawa, “Review of Measures to Reduce Nitrous Oxide in Sewage Treatment Plants”, Tokyo Metropolitan Research Institute for Environmental Protection, 1995; Yasuda, Takahashi, Yajima, and Kaneko, “Behavior of Nitrous Oxide Emissions Associated With Incineration of Sewage Sludge”, Journal of Japan Society of Waste Management Experts Vol. 5, No. 4, 1994.", + "English_Abstract": "", + "Lower_Bound": "-76%", + "Upper_Bound": "+76%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Other URLs: https://www.jstage.jst.go.jp/article/jswme1990/5/4/5_4_142/_pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf http://www.db.pwri.go.jp/pdf/D6747.pdf http://pubman.nims.go.jp/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:1141549:2", + "creation_date": "2022-03-14T08:16:23.533Z", + "last_change_date": "2022-03-14T08:16:23.533Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17799, + "fields": { + "EF_ID": 624530, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of plastics in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Seki, Current Condition of New Solid Fuel and New Technology C-RPF, Environment Management, 40(8), 2004; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996; Ueno, Tatsuichi, and Ooiwakawa, “Review of Measures to Reduce Nitrous Oxide in Sewage Treatment Plants”, Tokyo Metropolitan Research Institute for Environmental Protection, 1995; Yasuda, Takahashi, Yajima, and Kaneko, “Behavior of Nitrous Oxide Emissions Associated With Incineration of Sewage Sludge”, Journal of Japan Society of Waste Management Experts Vol. 5, No. 4, 1994.", + "English_Abstract": "", + "Lower_Bound": "-44%", + "Upper_Bound": "+44%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Other URLs: https://www.jstage.jst.go.jp/article/jswme1990/5/4/5_4_142/_pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf http://www.db.pwri.go.jp/pdf/D6747.pdf http://pubman.nims.go.jp/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:1141549:2", + "creation_date": "2022-03-14T08:16:23.650Z", + "last_change_date": "2022-03-14T08:16:23.650Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17800, + "fields": { + "EF_ID": 624531, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of paper/cardboard in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Seki, Current Condition of New Solid Fuel and New Technology C-RPF, Environment Management, 40(8), 2004; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996; Ueno, Tatsuichi, and Ooiwakawa, “Review of Measures to Reduce Nitrous Oxide in Sewage Treatment Plants”, Tokyo Metropolitan Research Institute for Environmental Protection, 1995; Yasuda, Takahashi, Yajima, and Kaneko, “Behavior of Nitrous Oxide Emissions Associated With Incineration of Sewage Sludge”, Journal of Japan Society of Waste Management Experts Vol. 5, No. 4, 1994.", + "English_Abstract": "", + "Lower_Bound": "-64%", + "Upper_Bound": "+64%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Other URLs: https://www.jstage.jst.go.jp/article/jswme1990/5/4/5_4_142/_pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf http://www.db.pwri.go.jp/pdf/D6747.pdf http://pubman.nims.go.jp/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:1141549:2", + "creation_date": "2022-03-14T08:16:23.767Z", + "last_change_date": "2022-03-14T08:16:23.767Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17801, + "fields": { + "EF_ID": 624532, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of wood in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Seki, Current Condition of New Solid Fuel and New Technology C-RPF, Environment Management, 40(8), 2004; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996; Ueno, Tatsuichi, and Ooiwakawa, “Review of Measures to Reduce Nitrous Oxide in Sewage Treatment Plants”, Tokyo Metropolitan Research Institute for Environmental Protection, 1995; Yasuda, Takahashi, Yajima, and Kaneko, “Behavior of Nitrous Oxide Emissions Associated With Incineration of Sewage Sludge”, Journal of Japan Society of Waste Management Experts Vol. 5, No. 4, 1994.", + "English_Abstract": "", + "Lower_Bound": "-64%", + "Upper_Bound": "+64%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Other URLs: https://www.jstage.jst.go.jp/article/jswme1990/5/4/5_4_142/_pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf http://www.db.pwri.go.jp/pdf/D6747.pdf http://pubman.nims.go.jp/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:1141549:2", + "creation_date": "2022-03-14T08:16:23.884Z", + "last_change_date": "2022-03-14T08:16:23.884Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17802, + "fields": { + "EF_ID": 624533, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of textiles (natural fiber) in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Seki, Current Condition of New Solid Fuel and New Technology C-RPF, Environment Management, 40(8), 2004; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996; Ueno, Tatsuichi, and Ooiwakawa, “Review of Measures to Reduce Nitrous Oxide in Sewage Treatment Plants”, Tokyo Metropolitan Research Institute for Environmental Protection, 1995; Yasuda, Takahashi, Yajima, and Kaneko, “Behavior of Nitrous Oxide Emissions Associated With Incineration of Sewage Sludge”, Journal of Japan Society of Waste Management Experts Vol. 5, No. 4, 1994.", + "English_Abstract": "", + "Lower_Bound": "-64%", + "Upper_Bound": "+64%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Other URLs: https://www.jstage.jst.go.jp/article/jswme1990/5/4/5_4_142/_pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf http://www.db.pwri.go.jp/pdf/D6747.pdf http://pubman.nims.go.jp/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:1141549:2", + "creation_date": "2022-03-14T08:16:24.003Z", + "last_change_date": "2022-03-14T08:16:24.003Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17803, + "fields": { + "EF_ID": 624534, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of animal and vegetable residues/animal carcassess in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Seki, Current Condition of New Solid Fuel and New Technology C-RPF, Environment Management, 40(8), 2004; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996; Ueno, Tatsuichi, and Ooiwakawa, “Review of Measures to Reduce Nitrous Oxide in Sewage Treatment Plants”, Tokyo Metropolitan Research Institute for Environmental Protection, 1995; Yasuda, Takahashi, Yajima, and Kaneko, “Behavior of Nitrous Oxide Emissions Associated With Incineration of Sewage Sludge”, Journal of Japan Society of Waste Management Experts Vol. 5, No. 4, 1994.", + "English_Abstract": "", + "Lower_Bound": "-64%", + "Upper_Bound": "+64%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Other URLs: https://www.jstage.jst.go.jp/article/jswme1990/5/4/5_4_142/_pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf http://www.db.pwri.go.jp/pdf/D6747.pdf http://pubman.nims.go.jp/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:1141549:2", + "creation_date": "2022-03-14T08:16:24.129Z", + "last_change_date": "2022-03-14T08:16:24.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17804, + "fields": { + "EF_ID": 624535, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor of sludge excluding sewage sludge in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "99", + "Unit": "g N2O/t", + "Equation": "Equation 5.5 on page 5.14 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Iwasaki, Tatsuichi, Ueno (1992), Review of Causes of Emissions of Nitrous Oxide and Methane from Waste Incinerators, Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection; Ishikawa Prefecture, City of Osaka, Kanagawa Prefecture, City of Kyoto, Hiroshima Prefecture, Hyogo Prefecture, Survey of Compilation of Emission Units of Greenhouse Gas from Stationary Sources, 1991-1999; Japan Society of Atmospheric Environment, Report on Emission Factor Results for Combustion Facilities, 1997; Nakamura et al., “Emission of Nitrous Oxide from Incineration of Sewage Sludge”, Proceedings of the 20th Japan Urban Cleaning Research Conference, pp391-393, 1998; Matsubara and Mizuochi, “Survey of Emissions of Nitrous Oxide from Sewage Treatment Plants”, Environmental and Sanitary Engineering Research, 8(3), 1994; Seki, Current Condition of New Solid Fuel and New Technology C-RPF, Environment Management, 40(8), 2004; Takeishi, Watanabe, Matsubara, Sato, Maebashi, Tanaka, Miwa, Wakasugi and Yamashita, Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1994; Takeishi, Watanabe, Matsubara, Hirayama, Maebashi, Koma, Wakasugi and Yoshikawa, “Report on Joint Research into the Behavior and Reduction of Waste Gas Components in Flux Furnaces”, Public Works Research Institute, Ministry of Construction and Nagoya City Water Authority, 1996; Ueno, Tatsuichi, and Ooiwakawa, “Review of Measures to Reduce Nitrous Oxide in Sewage Treatment Plants”, Tokyo Metropolitan Research Institute for Environmental Protection, 1995; Yasuda, Takahashi, Yajima, and Kaneko, “Behavior of Nitrous Oxide Emissions Associated With Incineration of Sewage Sludge”, Journal of Japan Society of Waste Management Experts Vol. 5, No. 4, 1994.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. Uncertainty of the EF for N2O emissions from sludge incineration (industrial waste): +/-84%; Other URLs: https://www.jstage.jst.go.jp/article/jswme1990/5/4/5_4_142/_pdf https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902108174268158&rel=0", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.tokyokankyo.jp/kankyoken_contents/report-news/1992/1992taiki1.pdf http://www.db.pwri.go.jp/pdf/D6747.pdf http://pubman.nims.go.jp/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:1141549:2", + "creation_date": "2022-03-14T08:16:24.238Z", + "last_change_date": "2022-03-14T08:16:24.238Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17805, + "fields": { + "EF_ID": 624536, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for flammable waste oil in specially controlled industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2933", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Report on the survey for the estimation of GHG emissions from specially-controlled industrial waste, Ministry of the environment” (FY2009 and FY2010)", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. The uncertainty of emission factor is -2% to +2% based on expert judgement. Other URL: https://www.env.go.jp/recycle/%E7%94%A3%E6%A5%AD%E5%BB%83%E6%A3%84%E7%89%A9%E6%8E%92%E5%87%BA%E3%83%BB%E5%87%A6%E7%90%86%E7%8A%B6%E6%B3%81%E8%AA%BF%E6%9F%BB%EF%BC%88%E7%89%B9%E7%AE%A1%E3%83%BB%E5%B9%B3%E6%88%90%EF%BC%92%EF%BC%91%E5%B9%B4%E5%BA%A6%E9%80%9F%E5%A0%B1%E5%80%A4%EF%BC%89.pdf", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/recycle/%E7%94%A3%E5%BB%83%E6%8E%92%E5%87%BA%E3%83%BB%E5%87%A6%E7%90%86%E7%8A%B6%E6%B3%81%E8%AA%BF%E6%9F%BB%EF%BC%88%E7%89%B9%E7%AE%A1%E3%80%80%E5%B9%B3%E6%88%9019%E5%B9%B4%E5%BA%A6%EF%BC%89.pdf", + "creation_date": "2022-03-14T08:16:24.338Z", + "last_change_date": "2022-03-14T08:16:24.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17806, + "fields": { + "EF_ID": 624537, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for specified hazardous industrial waste oil in specially controlled waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1024", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Report on the survey for the estimation of GHG emissions from specially-controlled industrial waste, Ministry of the environment” (FY2009 and FY2010)", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. The uncertainty of emission factor is -2% to +2% based on expert judgement. Other URL: https://www.env.go.jp/recycle/%E7%94%A3%E6%A5%AD%E5%BB%83%E6%A3%84%E7%89%A9%E6%8E%92%E5%87%BA%E3%83%BB%E5%87%A6%E7%90%86%E7%8A%B6%E6%B3%81%E8%AA%BF%E6%9F%BB%EF%BC%88%E7%89%B9%E7%AE%A1%E3%83%BB%E5%B9%B3%E6%88%90%EF%BC%92%EF%BC%91%E5%B9%B4%E5%BA%A6%E9%80%9F%E5%A0%B1%E5%80%A4%EF%BC%89.pdf", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/recycle/%E7%94%A3%E5%BB%83%E6%8E%92%E5%87%BA%E3%83%BB%E5%87%A6%E7%90%86%E7%8A%B6%E6%B3%81%E8%AA%BF%E6%9F%BB%EF%BC%88%E7%89%B9%E7%AE%A1%E3%80%80%E5%B9%B3%E6%88%9019%E5%B9%B4%E5%BA%A6%EF%BC%89.pdf", + "creation_date": "2022-03-14T08:16:24.421Z", + "last_change_date": "2022-03-14T08:16:24.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17807, + "fields": { + "EF_ID": 624538, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor for infectious plastics in specially controlled industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2567", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Report on the survey for the estimation of GHG emissions from specially-controlled industrial waste, Ministry of the environment” (FY2009 and FY2010)", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "EF on wet basis. The uncertainty of emission factor is -2% to +2% based on expert judgement. Other URL: https://www.env.go.jp/recycle/%E7%94%A3%E6%A5%AD%E5%BB%83%E6%A3%84%E7%89%A9%E6%8E%92%E5%87%BA%E3%83%BB%E5%87%A6%E7%90%86%E7%8A%B6%E6%B3%81%E8%AA%BF%E6%9F%BB%EF%BC%88%E7%89%B9%E7%AE%A1%E3%83%BB%E5%B9%B3%E6%88%90%EF%BC%92%EF%BC%91%E5%B9%B4%E5%BA%A6%E9%80%9F%E5%A0%B1%E5%80%A4%EF%BC%89.pdf", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/recycle/%E7%94%A3%E5%BB%83%E6%8E%92%E5%87%BA%E3%83%BB%E5%87%A6%E7%90%86%E7%8A%B6%E6%B3%81%E8%AA%BF%E6%9F%BB%EF%BC%88%E7%89%B9%E7%AE%A1%E3%80%80%E5%B9%B3%E6%88%9019%E5%B9%B4%E5%BA%A6%EF%BC%89.pdf", + "creation_date": "2022-03-14T08:16:24.514Z", + "last_change_date": "2022-03-14T08:16:24.514Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17808, + "fields": { + "EF_ID": 624539, + "IPCC_Category": "4.C - Incineration and Open Burning of Waste", + "Gases": "CARBON DIOXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "CO2 emission factor of open burning of industrial plastic waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1489", + "Unit": "kg CO2 foss/ton waste", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Environmental Agency, Japan, The Report on Estimation of CO2 Emissions in Japan, 1992.", + "English_Abstract": "", + "Lower_Bound": "-2%", + "Upper_Bound": "+2%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Ef on wet basis. The uncertainty of emission factor for plastics is -2% to +2% based on expert judgement.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "", + "creation_date": "2022-03-14T08:16:24.596Z", + "last_change_date": "2022-03-14T08:16:24.596Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17809, + "fields": { + "EF_ID": 624558, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for wastewater treatment processes in sewage treatment plant: methane", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "528.7", + "Unit": "mg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-31%", + "Upper_Bound": "+31%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average of emission factors for wastewater treatment processes", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:24.671Z", + "last_change_date": "2022-03-14T08:16:24.671Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17810, + "fields": { + "EF_ID": 624559, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for sludge treatment processes in sewage treatment plant: methane", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "348.0", + "Unit": "mg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-31%", + "Upper_Bound": "+31%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Average of emission factor for sludge treatment processes", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:24.746Z", + "last_change_date": "2022-03-14T08:16:24.746Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17811, + "fields": { + "EF_ID": 624560, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for sewage treatment plant: methane", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00088", + "Unit": "kg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-31%", + "Upper_Bound": "+31%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Emission factors are established by adding the simple averages for each treatment process, having taken the actual volume of CH4 released from sludge treatment and water treatment processes measured at sewage treatment plants", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:24.866Z", + "last_change_date": "2022-03-14T08:16:24.866Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17812, + "fields": { + "EF_ID": 624561, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for sludge treatment processes in sewage treatment plant: nitrous oxide", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.6", + "Unit": "mg N2O/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2013; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+146%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:24.946Z", + "last_change_date": "2022-03-14T08:16:24.946Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17813, + "fields": { + "EF_ID": 624562, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for wastewater treatment processes in sewage treatment plant: nitrous oxide", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "Standard activated sludge process", + "Other_Properties": "", + "Value": "142", + "Unit": "mg N2O/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2013; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+146%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:25.029Z", + "last_change_date": "2022-03-14T08:16:25.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17814, + "fields": { + "EF_ID": 624563, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for wastewater treatment processes in sewage treatment plant: nitrous oxide", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "Anaerobic-aerobic activated sludge process", + "Other_Properties": "", + "Value": "29.2", + "Unit": "mg N2O/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2013; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+146", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:25.113Z", + "last_change_date": "2022-03-14T08:16:25.113Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17815, + "fields": { + "EF_ID": 624564, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for wastewater treatment processes in sewage treatment plant: nitrous oxide", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "Anaerobic-anoxic-oxic process and recycled nitrification; denitrification process", + "Other_Properties": "", + "Value": "11.7", + "Unit": "mg N2O/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2013; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+146%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:25.218Z", + "last_change_date": "2022-03-14T08:16:25.218Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17816, + "fields": { + "EF_ID": 624565, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for wastewater treatment processes in sewage treatment plant: nitrous oxide", + "Technology_Practices": "Sewage treatment plant", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "Recycled nitrification-denitrification membrane bioreactor", + "Other_Properties": "", + "Value": "0.5", + "Unit": "mg N2O/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, Part 2, 2013; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+146%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:25.313Z", + "last_change_date": "2022-03-14T08:16:25.313Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17817, + "fields": { + "EF_ID": 624566, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant (mainly Johkasou): community plants", + "Technology_Practices": "Community plants: small-scale wastewater treatment facility regionally established", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.062", + "Unit": "kg CH4/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, 2010;", + "English_Abstract": "", + "Lower_Bound": "-32%", + "Upper_Bound": "+32%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:25.396Z", + "last_change_date": "2022-03-14T08:16:25.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17818, + "fields": { + "EF_ID": 624567, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant: current type Johkasou", + "Technology_Practices": "Advanced type Johkaso", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.514", + "Unit": "kg CH4/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, FY2011, Survey and Studies for the Development of Emission Factor for the preparation for the National Greenhouse Gas Inventory, 2012; Ministry of the Environment, FY2012, Survey and Studies for the Development of Emission Factor for the Decentralized Commercial Wastewater Treatment for the National Greenhouse Gas Inventory, 2013.", + "English_Abstract": "", + "Lower_Bound": "-32%", + "Upper_Bound": "+32%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h22/material/Waste_22.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h23/material/Waste_23.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf", + "creation_date": "2022-03-14T08:16:25.479Z", + "last_change_date": "2022-03-14T08:16:25.479Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17819, + "fields": { + "EF_ID": 624568, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant: current type Johkasou", + "Technology_Practices": "Standard type Johkaso", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.477", + "Unit": "kg CH4/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, FY2011, Survey and Studies for the Development of Emission Factor for the preparation for the National Greenhouse Gas Inventory, 2012; Ministry of the Environment, FY2012, Survey and Studies for the Development of Emission Factor for the Decentralized Commercial Wastewater Treatment for the National Greenhouse Gas Inventory, 2013.", + "English_Abstract": "", + "Lower_Bound": "-32%", + "Upper_Bound": "+32%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf", + "creation_date": "2022-03-14T08:16:25.579Z", + "last_change_date": "2022-03-14T08:16:25.579Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17820, + "fields": { + "EF_ID": 624569, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant: old type Johkasou", + "Technology_Practices": "blackwater treatment only", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.46", + "Unit": "kg CH4/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, FY2011, Survey and Studies for the Development of Emission Factor for the preparation for the National Greenhouse Gas Inventory, 2012; Ministry of the Environment, FY2012, Survey and Studies for the Development of Emission Factor for the Decentralized Commercial Wastewater Treatment for the National Greenhouse Gas Inventory, 2013.", + "English_Abstract": "", + "Lower_Bound": "-84%", + "Upper_Bound": "+84%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf", + "creation_date": "2022-03-14T08:16:25.663Z", + "last_change_date": "2022-03-14T08:16:25.663Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17821, + "fields": { + "EF_ID": 624570, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant: vault toilet", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.062", + "Unit": "kg CH4/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, FY2011, Survey and Studies for the Development of Emission Factor for the preparation for the National Greenhouse Gas Inventory, 2012; Ministry of the Environment, FY2012, Survey and Studies for the Development of Emission Factor for the Decentralized Commercial Wastewater Treatment for the National Greenhouse Gas Inventory, 2013.", + "English_Abstract": "", + "Lower_Bound": "-49%", + "Upper_Bound": "+49%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf", + "creation_date": "2022-03-14T08:16:25.738Z", + "last_change_date": "2022-03-14T08:16:25.738Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17822, + "fields": { + "EF_ID": 624571, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant (mainly Johkasou): community plants", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0048", + "Unit": "kg N2O/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, Waste Sector, 2010;", + "English_Abstract": "", + "Lower_Bound": "-45%", + "Upper_Bound": "+45%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:25.813Z", + "last_change_date": "2022-03-14T08:16:25.813Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17823, + "fields": { + "EF_ID": 624572, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant: current type Johkasou", + "Technology_Practices": "Advanced type Johkasou", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0889", + "Unit": "kg N2O/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, FY2011, Survey and Studies for the Development of Emission Factor for the preparation for the National Greenhouse Gas Inventory, 2012; Ministry of the Environment, FY2012, Survey and Studies for the Development of Emission Factor for the Decentralized Commercial Wastewater Treatment for the National Greenhouse Gas Inventory, 2013.", + "English_Abstract": "", + "Lower_Bound": "-45%", + "Upper_Bound": "+45%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h22/material/Waste_22.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h23/material/Waste_23.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf", + "creation_date": "2022-03-14T08:16:25.906Z", + "last_change_date": "2022-03-14T08:16:25.906Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17824, + "fields": { + "EF_ID": 624573, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant: current type Johkasou", + "Technology_Practices": "Standard type Johkasou", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0717", + "Unit": "kg N2O/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, FY2011, Survey and Studies for the Development of Emission Factor for the preparation for the National Greenhouse Gas Inventory, 2012; Ministry of the Environment, FY2012, Survey and Studies for the Development of Emission Factor for the Decentralized Commercial Wastewater Treatment for the National Greenhouse Gas Inventory, 2013.", + "English_Abstract": "", + "Lower_Bound": "-45%", + "Upper_Bound": "+45%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf", + "creation_date": "2022-03-14T08:16:26.129Z", + "last_change_date": "2022-03-14T08:16:26.129Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17825, + "fields": { + "EF_ID": 624574, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant: old type Johkasou", + "Technology_Practices": "blackwater treatment only", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.039", + "Unit": "kg N2O/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, FY2011, Survey and Studies for the Development of Emission Factor for the preparation for the National Greenhouse Gas Inventory, 2012; Ministry of the Environment, FY2012, Survey and Studies for the Development of Emission Factor for the Decentralized Commercial Wastewater Treatment for the National Greenhouse Gas Inventory, 2013.", + "English_Abstract": "", + "Lower_Bound": "-87%", + "Upper_Bound": "+87%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf", + "creation_date": "2022-03-14T08:16:26.204Z", + "last_change_date": "2022-03-14T08:16:26.204Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17826, + "fields": { + "EF_ID": 624575, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for domestic sewage treatment plant: vault toilet", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.000022", + "Unit": "kg N2O/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, FY2011, Survey and Studies for the Development of Emission Factor for the preparation for the National Greenhouse Gas Inventory, 2012; Ministry of the Environment, FY2012, Survey and Studies for the Development of Emission Factor for the Decentralized Commercial Wastewater Treatment for the National Greenhouse Gas Inventory, 2013.", + "English_Abstract": "", + "Lower_Bound": "-72%", + "Upper_Bound": "+72%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "The Johkasou means decentralized wastewater treatment facilities installed at an individual home.", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h24/material/Waste_24.pdf", + "creation_date": "2022-03-14T08:16:26.279Z", + "last_change_date": "2022-03-14T08:16:26.279Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17827, + "fields": { + "EF_ID": 624576, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for human waste treatment plant: anaerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.543", + "Unit": "kg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Environmental Sanitation Center, Report of Analytical Survey of Methane Emissions, FY1989 Commissioned by the Environmental Agency; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006.", + "English_Abstract": "", + "Lower_Bound": "-84%", + "Upper_Bound": "+84%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:26.374Z", + "last_change_date": "2022-03-14T08:16:26.374Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17828, + "fields": { + "EF_ID": 624577, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for human waste treatment plant: aerobic treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00545", + "Unit": "kg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Tanaka, Inoue, Matsuzawa, Osako, and Watanabe, “B-2(1) Research into Volumes Released from Waste Treatment Plants”, 1994 Global Environment Research Fund Outcome Report, 1995; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006.", + "English_Abstract": "", + "Lower_Bound": "-84%", + "Upper_Bound": "+84%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:26.454Z", + "last_change_date": "2022-03-14T08:16:26.454Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17829, + "fields": { + "EF_ID": 624578, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for human waste treatment plant: standard denitrification treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0059", + "Unit": "kg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Tanaka, Inoue, Matsuzawa, Osako, and Watanabe, “B-2(1) Research into Volumes Released from Waste Treatment Plants”, 1994 Global Environment Research Fund Outcome Report, 1995; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006.", + "English_Abstract": "", + "Lower_Bound": "-84%", + "Upper_Bound": "+84%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:26.529Z", + "last_change_date": "2022-03-14T08:16:26.529Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17830, + "fields": { + "EF_ID": 624579, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for human waste treatment plant: high-loaded denitrification treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.005", + "Unit": "kg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Tanaka, Inoue, Matsuzawa, Osako, and Watanabe, “B-2(1) Research into Volumes Released from Waste Treatment Plants”, 1994 Global Environment Research Fund Outcome Report, 1995; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006.", + "English_Abstract": "", + "Lower_Bound": "-84%", + "Upper_Bound": "+84%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:26.613Z", + "last_change_date": "2022-03-14T08:16:26.613Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17831, + "fields": { + "EF_ID": 624580, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for human waste treatment plant: membrane separation", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00545", + "Unit": "kg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Tanaka, Inoue, Matsuzawa, Osako, and Watanabe, “B-2(1) Research into Volumes Released from Waste Treatment Plants”, 1994 Global Environment Research Fund Outcome Report, 1995; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006.", + "English_Abstract": "", + "Lower_Bound": "-84%", + "Upper_Bound": "+84%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:26.688Z", + "last_change_date": "2022-03-14T08:16:26.688Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17832, + "fields": { + "EF_ID": 624581, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for human waste treatment plant: other treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.00545", + "Unit": "kg CH4/m3", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Tanaka, Inoue, Matsuzawa, Osako, and Watanabe, “B-2(1) Research into Volumes Released from Waste Treatment Plants”, 1994 Global Environment Research Fund Outcome Report, 1995; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, February 2006.", + "English_Abstract": "", + "Lower_Bound": "-84%", + "Upper_Bound": "+84%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf", + "creation_date": "2022-03-14T08:16:26.793Z", + "last_change_date": "2022-03-14T08:16:26.793Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17833, + "fields": { + "EF_ID": 624582, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for human waste treatment plant: high-loaded denitrification treatment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0029", + "Unit": "kg N2O-N/kg N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Omura, Kawakubo, and Yamada, “Study of Emission Factors for N2O from High-load Human Waste Management”, Journal of Waste Management 57, 260, 2004.", + "English_Abstract": "", + "Lower_Bound": "-87%", + "Upper_Bound": "+87%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902243922979474&rel=0", + "creation_date": "2022-03-14T08:16:26.888Z", + "last_change_date": "2022-03-14T08:16:26.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17834, + "fields": { + "EF_ID": 624583, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for human waste treatment plant: membrane bioreactor", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0024", + "Unit": "kg N2O-N/kg N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Omura, Kawakubo, and Yamada, “Study of Emission Factors for N2O from High-load Human Waste Management”, Journal of Waste Management 57, 260, 2004.", + "English_Abstract": "", + "Lower_Bound": "-87%", + "Upper_Bound": "+87%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902243922979474&rel=0", + "creation_date": "2022-03-14T08:16:26.979Z", + "last_change_date": "2022-03-14T08:16:26.979Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17835, + "fields": { + "EF_ID": 624584, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for human waste treatment plant: other treatment", + "Technology_Practices": "including anaerobic treatment, aerobic treatment, standard denitrification reatmet", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.0000045", + "Unit": "kg N2O-N/kg N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Tanaka, Inoue, Matsuzawa, Osako, and Watanabe, “B-2(1) Research into Volumes Released from Waste Treatment Plants”, 1994 Global Environment Research Fund Outcome Report, 1995.", + "English_Abstract": "", + "Lower_Bound": "-87%", + "Upper_Bound": "+87%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:27.063Z", + "last_change_date": "2022-03-14T08:16:27.063Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17836, + "fields": { + "EF_ID": 624585, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in human waste", + "Technology_Practices": "Vault toilet", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2700", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Okazaki, Shimizu, and Morita, “Study of Operation Records Based on Precision Function Inspection of Human Waste Management Plant”, Japan Environmental Sanitation Center Report 28, 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.jesc.or.jp/Portals/0/center/library/shoho/H12shoho6.pdf", + "creation_date": "2022-03-14T08:16:27.146Z", + "last_change_date": "2022-03-14T08:16:27.146Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17837, + "fields": { + "EF_ID": 624586, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in Johkasou sludge", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "580", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Okazaki, Shimizu, and Morita, “Study of Operation Records Based on Precision Function Inspection of Human Waste Management Plant”, Japan Environmental Sanitation Center Report 28, 2001.", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.jesc.or.jp/Portals/0/center/library/shoho/H12shoho6.pdf", + "creation_date": "2022-03-14T08:16:27.229Z", + "last_change_date": "2022-03-14T08:16:27.229Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17838, + "fields": { + "EF_ID": 624587, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for industrial wastewater treatment facilities: manufacture of food", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1.2", + "Unit": "g CH4/kg BOD", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.338Z", + "last_change_date": "2022-03-14T08:16:27.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17839, + "fields": { + "EF_ID": 624588, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for industrial wastewater treatment facilities: manufacture of pulp, paper and paper products: methane", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "2.5", + "Unit": "g CH4/kg BOD", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.421Z", + "last_change_date": "2022-03-14T08:16:27.421Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17840, + "fields": { + "EF_ID": 624589, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for industrial wastewater treatment facilities: Manufacture of chemical and allied product", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.92", + "Unit": "g CH4/kg BOD", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.496Z", + "last_change_date": "2022-03-14T08:16:27.496Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17841, + "fields": { + "EF_ID": 624590, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for industrial wastewater treatment facilities: Manufacture of iron and steel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7.3", + "Unit": "g CH4/kg BOD", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.563Z", + "last_change_date": "2022-03-14T08:16:27.563Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17842, + "fields": { + "EF_ID": 624591, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for industrial wastewater treatment facilities: other manufactures", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3.0", + "Unit": "g CH4/kg BOD", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.629Z", + "last_change_date": "2022-03-14T08:16:27.629Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17843, + "fields": { + "EF_ID": 624592, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for industrial wastewater treatment facilities: manufacture of food", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.47", + "Unit": "g N2O/kg N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-95%", + "Upper_Bound": "+95%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.696Z", + "last_change_date": "2022-03-14T08:16:27.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17844, + "fields": { + "EF_ID": 624593, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for industrial wastewater treatment facilities: manufacture of pulp, paper and paper products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "0.014", + "Unit": "g N2O/kg N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-95%", + "Upper_Bound": "+95%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.763Z", + "last_change_date": "2022-03-14T08:16:27.763Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17845, + "fields": { + "EF_ID": 624594, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for industrial wastewater treatment facilities: manufacture of chemical and allied product", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "17", + "Unit": "g N2O/kg N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-95%", + "Upper_Bound": "+95%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.850Z", + "last_change_date": "2022-03-14T08:16:27.850Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17846, + "fields": { + "EF_ID": 624595, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Emission factor for industrial wastewater treatment facilities: manufacture of iron and steel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.0", + "Unit": "g N2O/kg N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-95%", + "Upper_Bound": "+95%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:27.929Z", + "last_change_date": "2022-03-14T08:16:27.929Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17847, + "fields": { + "EF_ID": 624596, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for industrial wastewater treatment facilities: other manufactures", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "5.3", + "Unit": "g N2O/kg N", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey for the Development of Emission Factor to Estimate Effect of the Mitigation Measures for GHG Emissions from the Waste Sector, 2018", + "English_Abstract": "", + "Lower_Bound": "-95%", + "Upper_Bound": "+95%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h29/material/Waste_29.pdf", + "creation_date": "2022-03-14T08:16:28.004Z", + "last_change_date": "2022-03-14T08:16:28.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17848, + "fields": { + "EF_ID": 624597, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from food manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1470", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.071Z", + "last_change_date": "2022-03-14T08:16:28.071Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17849, + "fields": { + "EF_ID": 624598, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from manufacture of beverages, tobacco and feed", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1138", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.138Z", + "last_change_date": "2022-03-14T08:16:28.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17850, + "fields": { + "EF_ID": 624599, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from textile products manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "386", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.202Z", + "last_change_date": "2022-03-14T08:16:28.202Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17851, + "fields": { + "EF_ID": 624600, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from manufacture of pulp, paper and paper products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "556", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.269Z", + "last_change_date": "2022-03-14T08:16:28.269Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17852, + "fields": { + "EF_ID": 624601, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from manufacture of chemical and allied product", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1093", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.369Z", + "last_change_date": "2022-03-14T08:16:28.369Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17853, + "fields": { + "EF_ID": 624602, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from manufacture of petroleum and coal products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "975", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.463Z", + "last_change_date": "2022-03-14T08:16:28.463Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17854, + "fields": { + "EF_ID": 624603, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from manufacture of plastic products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "268", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.528Z", + "last_change_date": "2022-03-14T08:16:28.528Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17855, + "fields": { + "EF_ID": 624604, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from manufacture of rubber products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "112", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.604Z", + "last_change_date": "2022-03-14T08:16:28.604Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17856, + "fields": { + "EF_ID": 624605, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from Manufacture of leather tanning, leather products and fur skins", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1810", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.679Z", + "last_change_date": "2022-03-14T08:16:28.679Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17857, + "fields": { + "EF_ID": 624606, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "BOD concentration in wastewater from manufacture of iron and steel industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "246", + "Unit": "mg BOD/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.754Z", + "last_change_date": "2022-03-14T08:16:28.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17858, + "fields": { + "EF_ID": 624607, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from food manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.829Z", + "last_change_date": "2022-03-14T08:16:28.829Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17859, + "fields": { + "EF_ID": 624608, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from manufacture of beverages, tobacco and feed", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:28.931Z", + "last_change_date": "2022-03-14T08:16:28.931Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17860, + "fields": { + "EF_ID": 624609, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from textile products manufacturing", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:29.021Z", + "last_change_date": "2022-03-14T08:16:29.021Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17861, + "fields": { + "EF_ID": 624610, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from manufacture of pulp, paper and paper products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:29.104Z", + "last_change_date": "2022-03-14T08:16:29.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17862, + "fields": { + "EF_ID": 624611, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from manufacture of chemical and allied product industry", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "191", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:29.188Z", + "last_change_date": "2022-03-14T08:16:29.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17863, + "fields": { + "EF_ID": 624612, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from manufacture of petroleum and coal products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "289", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:29.271Z", + "last_change_date": "2022-03-14T08:16:29.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17864, + "fields": { + "EF_ID": 624613, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from manufacture of plastic products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "11", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:29.354Z", + "last_change_date": "2022-03-14T08:16:29.354Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17865, + "fields": { + "EF_ID": 624614, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from manufacture of rubber products", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "32", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:29.429Z", + "last_change_date": "2022-03-14T08:16:29.429Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17866, + "fields": { + "EF_ID": 624615, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from manufacture of leather tanning, leather products and fur skins", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "60", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:29.526Z", + "last_change_date": "2022-03-14T08:16:29.526Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17867, + "fields": { + "EF_ID": 624616, + "IPCC_Category": "4.D.2 - Industrial Wastewater Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Nitrogen concentration in wastewater from manufacture of iron and steel", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "310", + "Unit": "mg N/L", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Sewage Works Association (1999) Guidelines and Analysis of Comprehensive Planning Surveys for the Provision of Water Mains, by Catchment Area 1999 Edition", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://unfccc.int/documents/194844", + "creation_date": "2022-03-14T08:16:29.621Z", + "last_change_date": "2022-03-14T08:16:29.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17868, + "fields": { + "EF_ID": 624850, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of food waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "43.4", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, 2006.", + "English_Abstract": "", + "Lower_Bound": "38.2", + "Upper_Bound": "48.6", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Original data sources are the the averages of carbon contents of MSW data provided by Tokyo, Yokohama, Kawasaki, Kobe, and Fukuoka (FY1990-2004)", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:29.687Z", + "last_change_date": "2022-03-14T08:16:29.687Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17869, + "fields": { + "EF_ID": 624851, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of paper/cardboard", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.9", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, 2006.", + "English_Abstract": "", + "Lower_Bound": "36.1", + "Upper_Bound": "45.7", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Original data sources are the the averages of carbon contents of MSW data provided by Tokyo, Yokohama, Kawasaki, Kobe, and Fukuoka (FY1990-2004)", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:29.754Z", + "last_change_date": "2022-03-14T08:16:29.754Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17870, + "fields": { + "EF_ID": 624852, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of wood", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.2", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, 2006.", + "English_Abstract": "", + "Lower_Bound": "38.1", + "Upper_Bound": "52.3", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Original data sources are the the averages of carbon contents of MSW data provided by Tokyo, Yokohama, Kawasaki, Kobe, and Fukuoka (FY1990-2004)", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:29.821Z", + "last_change_date": "2022-03-14T08:16:29.821Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17871, + "fields": { + "EF_ID": 624853, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of textiles (natural fibers)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.0", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, 2006.", + "English_Abstract": "", + "Lower_Bound": "38.0", + "Upper_Bound": "52.0", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Original data sources are the the averages of carbon contents of MSW data provided by Tokyo, Yokohama, Kawasaki, Kobe, and Fukuoka (FY1990-2004)", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:29.912Z", + "last_change_date": "2022-03-14T08:16:29.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17872, + "fields": { + "EF_ID": 624854, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of sludge from Human waste treament or Johkaso sludge", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.0", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, 2006.", + "English_Abstract": "", + "Lower_Bound": "-12.5%", + "Upper_Bound": "+12.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:30.004Z", + "last_change_date": "2022-03-14T08:16:30.004Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17873, + "fields": { + "EF_ID": 624855, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of Tsunami sediment", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "4.5", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010; Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.079Z", + "last_change_date": "2022-03-14T08:16:30.079Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17874, + "fields": { + "EF_ID": 624856, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of digested sewage sludge", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "30.0", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Fujimoto, Survey study on recycle by mud of sewage, Snow Management & Construction Technology Research Center of Fukui Pref.-Annual Report, 2002; Fujishima et al., Establishment of Zero-emission Processing Technology for Organic Sludge by Multistage Distillation-Chemical Analysis of Sewage Sludge, Industrial Research Institute of Ishikawa Research Report, 2005.; Oshima, Kawai, Technical Note of PWRI Number 2509, Survey Study on Sewage Sludge Fuel Conversion, Annual Report of Sewage Works Research 1986, Public Works Research Institute, 1986; Tanaka, Adachi, Seno, Yoshida, Components of Sewage Sludge, Tohoku Agriculture Research, National Agricultural Research Center for Tohoku Region Research Report, 27, 1980.", + "English_Abstract": "", + "Lower_Bound": "-12.5%", + "Upper_Bound": "+12.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www.fklab.fukui.fukui.jp/yk/publication/download/2001/pdf30009.pdf www.irii.jp/randd/theme/h15/pdf/study07.pdf", + "creation_date": "2022-03-14T08:16:30.154Z", + "last_change_date": "2022-03-14T08:16:30.154Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17875, + "fields": { + "EF_ID": 624857, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of other sewage sludge", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.0", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, 2006.", + "English_Abstract": "", + "Lower_Bound": "35", + "Upper_Bound": "45", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:30.255Z", + "last_change_date": "2022-03-14T08:16:30.256Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17876, + "fields": { + "EF_ID": 624858, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of waterworks sludge", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "6.0", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010", + "English_Abstract": "", + "Lower_Bound": "-100%", + "Upper_Bound": "+100%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:30.338Z", + "last_change_date": "2022-03-14T08:16:30.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17877, + "fields": { + "EF_ID": 624859, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of organic sludge from maunufacturing process", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "45.0", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Survey Study on Improving the Accuracy of Emission Factors for Greenhouse Gas Emissions from the Waste Sector, 2010; Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, 2006.", + "English_Abstract": "", + "Lower_Bound": "35", + "Upper_Bound": "60", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.405Z", + "last_change_date": "2022-03-14T08:16:30.405Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17878, + "fields": { + "EF_ID": 624860, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Carbon content of livestock waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40.0", + "Unit": "%", + "Equation": "Equation 3.2 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Committee for the Greenhouse Gases Emissions Estimation Methods, Review of Greenhouse Gases Emissions Estimation Methods, 2006.", + "English_Abstract": "", + "Lower_Bound": "-20%", + "Upper_Bound": "+20%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/17/material_2/mat_17-3_2-6.pdf https://www.env.go.jp/earth/ondanka/ghg-mrv/committee/h21/material/Waste_21.pdf", + "creation_date": "2022-03-14T08:16:30.471Z", + "last_change_date": "2022-03-14T08:16:30.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17879, + "fields": { + "EF_ID": 624861, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for food waste", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "145", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.536Z", + "last_change_date": "2022-03-14T08:16:30.536Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17880, + "fields": { + "EF_ID": 624862, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for paper/carboard", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "136", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.625Z", + "last_change_date": "2022-03-14T08:16:30.625Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17881, + "fields": { + "EF_ID": 624863, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for natural fibers in textiles", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.704Z", + "last_change_date": "2022-03-14T08:16:30.704Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17882, + "fields": { + "EF_ID": 624864, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for wood", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "151", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.769Z", + "last_change_date": "2022-03-14T08:16:30.769Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17883, + "fields": { + "EF_ID": 624865, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for sludges from human waste treatment and Johkaso", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-49%", + "Upper_Bound": "+49%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.836Z", + "last_change_date": "2022-03-14T08:16:30.836Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17884, + "fields": { + "EF_ID": 624866, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for Tsunami sediment", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "15", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.903Z", + "last_change_date": "2022-03-14T08:16:30.903Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17885, + "fields": { + "EF_ID": 624867, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for digested sewage sludge", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "100", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-49%", + "Upper_Bound": "+49%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:30.969Z", + "last_change_date": "2022-03-14T08:16:30.969Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17886, + "fields": { + "EF_ID": 624868, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for sewage sludge", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-49%", + "Upper_Bound": "+49%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.036Z", + "last_change_date": "2022-03-14T08:16:31.036Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17887, + "fields": { + "EF_ID": 624869, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for waterwoks sludge", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "20", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-51%", + "Upper_Bound": "+51%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.178Z", + "last_change_date": "2022-03-14T08:16:31.178Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17888, + "fields": { + "EF_ID": 624870, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for organic sludge from maunufacturing process", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "150", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-58%", + "Upper_Bound": "+58%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.271Z", + "last_change_date": "2022-03-14T08:16:31.271Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17889, + "fields": { + "EF_ID": 624871, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for livestock waste", + "Technology_Practices": "anaerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "133", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-51%", + "Upper_Bound": "+51%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.336Z", + "last_change_date": "2022-03-14T08:16:31.336Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17890, + "fields": { + "EF_ID": 624872, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for food waste", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "72", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.403Z", + "last_change_date": "2022-03-14T08:16:31.403Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17891, + "fields": { + "EF_ID": 624873, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for paper/carboard", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "68", + "Unit": "kgCH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.470Z", + "last_change_date": "2022-03-14T08:16:31.470Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17892, + "fields": { + "EF_ID": 624874, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for textiles (natural fibers)", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "kgCH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.546Z", + "last_change_date": "2022-03-14T08:16:31.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17893, + "fields": { + "EF_ID": 624875, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for wood", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-47%", + "Upper_Bound": "+47%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.621Z", + "last_change_date": "2022-03-14T08:16:31.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17894, + "fields": { + "EF_ID": 624876, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for sludges from Human waste treatment and Johkaso", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-49%", + "Upper_Bound": "+49%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.714Z", + "last_change_date": "2022-03-14T08:16:31.714Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17895, + "fields": { + "EF_ID": 624877, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for digested sewage sludge", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "50", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-49%", + "Upper_Bound": "+49%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.804Z", + "last_change_date": "2022-03-14T08:16:31.804Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17896, + "fields": { + "EF_ID": 624878, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for other sewage sludge", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-49%", + "Upper_Bound": "+49%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.888Z", + "last_change_date": "2022-03-14T08:16:31.888Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17897, + "fields": { + "EF_ID": 624879, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for waterwoks sludge", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "10", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-51%", + "Upper_Bound": "+51%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:31.971Z", + "last_change_date": "2022-03-14T08:16:31.971Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17898, + "fields": { + "EF_ID": 624880, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for organic sludge from maunufacturing process", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-58%", + "Upper_Bound": "+58%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:32.054Z", + "last_change_date": "2022-03-14T08:16:32.054Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17899, + "fields": { + "EF_ID": 624881, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Emission factor for livestock waste", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "67", + "Unit": "kg CH4/t dry waste", + "Equation": "Equation 3.3 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan, National Institute for Environmental Studies, Japan (2019) National Greenhouse Gas Inventory Report of Japan, 2019", + "English_Abstract": "", + "Lower_Bound": "-51%", + "Upper_Bound": "+51%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www-gio.nies.go.jp/aboutghg/nir/2019/NIR-JPN-2019-v3.0_GIOweb.pdf", + "creation_date": "2022-03-14T08:16:32.138Z", + "last_change_date": "2022-03-14T08:16:32.138Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17900, + "fields": { + "EF_ID": 624882, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Percentage of open outflow port of leachate collection system at semi-aerobic landfill sites for municipal solid waste", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "73.2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan (2018) The state of municipal waste treatment survey", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/recycle/waste_tech/ippan/h28/index.html", + "creation_date": "2022-03-14T08:16:32.234Z", + "last_change_date": "2022-03-14T08:16:32.234Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17901, + "fields": { + "EF_ID": 624883, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Percentage of open outflow port of leachate collection system at semi-aerobic landfill sites for industrial waste", + "Technology_Practices": "semi-aerobic landfill", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57.2", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Environmental Regeneration and Material Cycles Bureau (2018) Report on the state of Industrial Waste generation and Treatment survey", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.e-stat.go.jp/stat-search/file-download?statInfId=000031695164&fileKind=2", + "creation_date": "2022-03-14T08:16:32.321Z", + "last_change_date": "2022-03-14T08:16:32.321Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17902, + "fields": { + "EF_ID": 624884, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Water content of untreated food waste in MSW", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2018) Japan, the Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www.env.go.jp/recycle/report/h29-10/post_3.html", + "creation_date": "2022-03-14T08:16:32.396Z", + "last_change_date": "2022-03-14T08:16:32.396Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17903, + "fields": { + "EF_ID": 624885, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Water content of untreated food waste in industrial waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment (2018) Japan, the Report of the Research on the State of Wide-range Movement and Cyclical Use of Wastes", + "English_Abstract": "", + "Lower_Bound": "-60%", + "Upper_Bound": "+60%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://www.env.go.jp/recycle/report/h29-10/post_3.html", + "creation_date": "2022-03-14T08:16:32.471Z", + "last_change_date": "2022-03-14T08:16:32.471Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17904, + "fields": { + "EF_ID": 624886, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Water content of sludge from chemical industries", + "Technology_Practices": "Unseparated", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "57", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Clean Japan Center", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "", + "creation_date": "2022-03-14T08:16:32.546Z", + "last_change_date": "2022-03-14T08:16:32.546Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17905, + "fields": { + "EF_ID": 624887, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Water content of sludge from food manufacturing", + "Technology_Practices": "Unseparated", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "77", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Clean Japan Center", + "English_Abstract": "", + "Lower_Bound": "-10%", + "Upper_Bound": "+10%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "", + "creation_date": "2022-03-14T08:16:32.621Z", + "last_change_date": "2022-03-14T08:16:32.621Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17906, + "fields": { + "EF_ID": 624888, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Water content of livestock waste", + "Technology_Practices": "Untreated", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "83.1", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Japan Livestock Technology Association, Controlling the Generation of Greenhouse Gases in the Livestock Industry, 2002.", + "English_Abstract": "", + "Lower_Bound": "-77.5%", + "Upper_Bound": "+77.5%", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "http://jlta.lin.gr.jp/report/detail/pdf/kokunai_h004.pdf", + "creation_date": "2022-03-14T08:16:32.696Z", + "last_change_date": "2022-03-14T08:16:32.696Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17907, + "fields": { + "EF_ID": 624889, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Percentage of anaerobic landfill sites", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "29.6", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan (2018) The state of municipal waste treatment survey", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/recycle/waste_tech/ippan/h28/index.html", + "creation_date": "2022-03-14T08:16:32.771Z", + "last_change_date": "2022-03-14T08:16:32.771Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17908, + "fields": { + "EF_ID": 624890, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Percentage of semi-aerobic landfill sites", + "Technology_Practices": "Municipal solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "70.4", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Japan (2018) The state of municipal waste treatment survey", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.env.go.jp/recycle/waste_tech/ippan/h28/index.html", + "creation_date": "2022-03-14T08:16:32.846Z", + "last_change_date": "2022-03-14T08:16:32.846Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17909, + "fields": { + "EF_ID": 624891, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Percentage of anaerobic landfill sites", + "Technology_Practices": "Industrial solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "37.7", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Environmental Regeneration and Material Cycles Bureau (2018) Report on the state of Industrial Waste generation and Treatment survey", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.e-stat.go.jp/stat-search/file-download?statInfId=000031695164&fileKind=2", + "creation_date": "2022-03-14T08:16:32.938Z", + "last_change_date": "2022-03-14T08:16:32.938Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17910, + "fields": { + "EF_ID": 624892, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "Percentage of semi-aerobic landfill sites", + "Technology_Practices": "Industrial solid waste", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "62.3", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ministry of the Environment, Environmental Regeneration and Material Cycles Bureau (2018) Report on the state of Industrial Waste generation and Treatment survey", + "English_Abstract": "", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://www.e-stat.go.jp/stat-search/file-download?statInfId=000031695164&fileKind=2", + "creation_date": "2022-03-14T08:16:33.029Z", + "last_change_date": "2022-03-14T08:16:33.029Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17911, + "fields": { + "EF_ID": 624893, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Half-life for food waste", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "3", + "Unit": "years", + "Equation": "Equation 3.4 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ito, A Study on Estimating Amounts of Landfill Gas, Metropolitan Tokyo Sanitation Engineering Journal No. 18, 1992.", + "English_Abstract": "", + "Lower_Bound": "1.6", + "Upper_Bound": "4.4", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902189747695110&rel=0", + "creation_date": "2022-03-14T08:16:33.104Z", + "last_change_date": "2022-03-14T08:16:33.104Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17912, + "fields": { + "EF_ID": 624894, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Half-life for paper/cardboard", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "years", + "Equation": "Equation 3.4 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ito, A Study on Estimating Amounts of Landfill Gas, Metropolitan Tokyo Sanitation Engineering Journal No. 18, 1992.", + "English_Abstract": "", + "Lower_Bound": "3.7", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902189747695110&rel=0", + "creation_date": "2022-03-14T08:16:33.188Z", + "last_change_date": "2022-03-14T08:16:33.188Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17913, + "fields": { + "EF_ID": 624895, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Half-life for textiles (natural fiber)", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "7", + "Unit": "years", + "Equation": "Equation 3.4 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ito, A Study on Estimating Amounts of Landfill Gas, Metropolitan Tokyo Sanitation Engineering Journal No. 18, 1992.", + "English_Abstract": "", + "Lower_Bound": "3.7", + "Upper_Bound": "10", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902189747695110&rel=0", + "creation_date": "2022-03-14T08:16:33.263Z", + "last_change_date": "2022-03-14T08:16:33.263Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17914, + "fields": { + "EF_ID": 624896, + "IPCC_Category": "4.A.1 - Managed Waste Disposal Sites", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Half-life for wood", + "Technology_Practices": "", + "Parameter_Conditions": "", + "Regional_Conditions": "Japan", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "36", + "Unit": "years", + "Equation": "Equation 3.4 on page 3.9 in Vol.5 of the 2006 Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "National Inventory Report (Annex I)", + "Technical_Reference": "Ito, A Study on Estimating Amounts of Landfill Gas, Metropolitan Tokyo Sanitation Engineering Journal No. 18, 1992.", + "English_Abstract": "", + "Lower_Bound": "19", + "Upper_Bound": "53", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "Tomonori Ishigaki", + "Link": "https://jglobal.jst.go.jp/detail?JGLOBAL_ID=200902189747695110&rel=0", + "creation_date": "2022-03-14T08:16:33.338Z", + "last_change_date": "2022-03-14T08:16:33.338Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17915, + "fields": { + "EF_ID": 624969, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct N2O emissions", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1); 7.5 d HRT (hydraulic retention time)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "From August to October 2015 the dominant algae in the HRAP was the green algae Scenedesmus. Other abundant microalgae included the dinoflagellate Peridinium as well as the green algae Microctinium, Pediastrum and Oocystis.", + "Value": "12-53", + "Unit": "g N2O/person/year", + "Equation": "Equation 6.9 in Chapter 6 of Volume 5, 2006 IPCC Guidelines", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were estimated from the dissolved N2O concentration based on the well-established “headspace method”. For this particular study, weekly monitoring was performed between June 2015 and May 2016 (n=28 at 10 d HRT and n=22 at 7.5 d HRT).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:33.413Z", + "last_change_date": "2022-03-14T08:16:33.413Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17916, + "fields": { + "EF_ID": 624970, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Direct N2O emissions", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1); 7.5 d HRT (hydraulic retention time)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "From August to October 2015 the dominant algae in the HRAP was the green algae Scenedesmus. Other abundant microalgae included the dinoflagellate Peridinium as well as the green algae Microctinium, Pediastrum and Oocystis.", + "Value": "0.13-0.57", + "Unit": "% of N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were estimated from the dissolved N2O concentration based on the well-established “headspace method”. For this particular study, weekly monitoring was performed between June 2015 and May 2016 (n=28 at 10 d HRT and n=22 at 7.5 d HRT).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:33.507Z", + "last_change_date": "2022-03-14T08:16:33.508Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17917, + "fields": { + "EF_ID": 624971, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Indirect N2O emissions via N discharge", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1); 7.5 d HRT (hydraulic retention time)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "From August to October 2015 the dominant algae in the HRAP was the green algae Scenedesmus. Other abundant microalgae included the dinoflagellate Peridinium as well as the green algae Microctinium, Pediastrum and Oocystis.", + "Value": "7-14", + "Unit": "g N2O/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were estimated from the dissolved N2O concentration based on the well-established “headspace method”. For this particular study, weekly monitoring was performed between June 2015 and May 2016 (n=28 at 10 d HRT and n=22 at 7.5 d HRT).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:33.608Z", + "last_change_date": "2022-03-14T08:16:33.608Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17918, + "fields": { + "EF_ID": 624972, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Indirect N2O emissions via N discharge", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1); 7.5 d HRT (hydraulic retention time)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "From August to October 2015 the dominant algae in the HRAP was the green algae Scenedesmus. Other abundant microalgae included the dinoflagellate Peridinium as well as the green algae Microctinium, Pediastrum and Oocystis.", + "Value": "0.08–0.15", + "Unit": "% of N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were estimated from the dissolved N2O concentration based on the well-established “headspace method”. For this particular study, weekly monitoring was performed between June 2015 and May 2016 (n=28 at 10 d HRT and n=22 at 7.5 d HRT).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:33.710Z", + "last_change_date": "2022-03-14T08:16:33.710Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17919, + "fields": { + "EF_ID": 624973, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Indirect N2O emissions via NH3 emissions", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1); 7.5 d HRT (hydraulic retention time)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "From August to October 2015 the dominant algae in the HRAP was the green algae Scenedesmus. Other abundant microalgae included the dinoflagellate Peridinium as well as the green algae Microctinium, Pediastrum and Oocystis.", + "Value": "2.0-71", + "Unit": "g N2O/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were estimated from the dissolved N2O concentration based on the well-established “headspace method”. For this particular study, weekly monitoring was performed between June 2015 and May 2016 (n=28 at 10 d HRT and n=22 at 7.5 d HRT).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:33.811Z", + "last_change_date": "2022-03-14T08:16:33.811Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17920, + "fields": { + "EF_ID": 624974, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Indirect N2O emissions via NH3 emissions", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1); 7.5 d HRT (hydraulic retention time)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "From August to October 2015 the dominant algae in the HRAP was the green algae Scenedesmus. Other abundant microalgae included the dinoflagellate Peridinium as well as the green algae Microctinium, Pediastrum and Oocystis.", + "Value": "0.02–0.7", + "Unit": "% of N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were estimated from the dissolved N2O concentration based on the well-established “headspace method”. For this particular study, weekly monitoring was performed between June 2015 and May 2016 (n=28 at 10 d HRT and n=22 at 7.5 d HRT).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:33.912Z", + "last_change_date": "2022-03-14T08:16:33.912Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17921, + "fields": { + "EF_ID": 624975, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Total emissions- Direct + Indirect (i.e. via N discharge and NH3 volatilization)", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1); 7.5 d HRT (hydraulic retention time)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "From August to October 2015 the dominant algae in the HRAP was the green algae Scenedesmus. Other abundant microalgae included the dinoflagellate Peridinium as well as the green algae Microctinium, Pediastrum and Oocystis.", + "Value": "21-138", + "Unit": "g N2O/person/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were estimated from the dissolved N2O concentration based on the well-established “headspace method”. For this particular study, weekly monitoring was performed between June 2015 and May 2016 (n=28 at 10 d HRT and n=22 at 7.5 d HRT).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:34.038Z", + "last_change_date": "2022-03-14T08:16:34.038Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17922, + "fields": { + "EF_ID": 624976, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Modeled", + "Description": "Total emissions- Direct + Indirect (i.e. via N discharge and NH3 volatilization)", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1); 7.5 d HRT (hydraulic retention time)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "From August to October 2015 the dominant algae in the HRAP was the green algae Scenedesmus. Other abundant microalgae included the dinoflagellate Peridinium as well as the green algae Microctinium, Pediastrum and Oocystis.", + "Value": "0.23-1.5", + "Unit": "% of N input", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "N2O emissions were estimated from the dissolved N2O concentration based on the well-established “headspace method”. For this particular study, weekly monitoring was performed between June 2015 and May 2016 (n=28 at 10 d HRT and n=22 at 7.5 d HRT).", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:34.163Z", + "last_change_date": "2022-03-14T08:16:34.163Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17923, + "fields": { + "EF_ID": 624977, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Other (e.g. compiled)", + "Description": "N load to the pilot HRAP plant", + "Technology_Practices": "900 L HRAP (water depth of 0.25 m, illuminated area of 3.6 m2)", + "Parameter_Conditions": "The pilot HRAP was treating the waste from 0.38 capita (or person equivalent, 16 g N·cap-1)", + "Regional_Conditions": "New Zealand", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "16", + "Unit": "g N /capita", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Plouviez, M., Chambonnière, P., Shilton, A, Packer, A., Guieysse, B. Nitrous oxide (N2O) emissions during real domestic wastewater treatment in an outdoor pilot-scale high rate algae pond. Algal Research, 2019, 44, 101670", + "English_Abstract": "In order to determine if nitrous oxide (N2O) emissions could affect the sustainability of microalgae-based pond systems, N2O emissions were recorded from an outdoor 900L pilot high rate algal pond (HRAP) fed primary wastewater over 1year. The HRAP was mixed using a paddle wheel and operated at a hydraulic retention time (HRT) of 7.5–10 days. Direct N2O emissions ranged from 4.1 to 6400μg N-N2O·m-2·d-1 (median of 560μg N-N2O·m-2·d-1, n=28) at 10 days HRT, and 70-18300μg N-N2O·m-2·d-1 (median of 4200 μg N-N2O·m-2·d-1, n=22) at 7.5 days HRT. Using 25-75% of the data, we estimated that HRAPs designed for nitrogen removal operated at 7.5 days HRT (i.e. 9.5 m2·capita-1 required) would generate 12-53g N2O·capita·yr-1 which is 4–17 fold higher than the default value of 3.2 g N2O·capita·yr-1 given by the Intergovernmental Panel on Climate Change for centralized wastewater treatment plants with controlled nitrification and denitrification steps. When indirect N2O emissions(vianitrogen discharge and ammonia volatilization) are included, aHRAP operated at 7.5 days HRT could generate total emissions equivalent to 21-138 g N2O·capita-1·yr-1. When expressed as a % of the nitrogen input load into the system, the HRAP direct emissions (i.e. 0.13-0.57%) and total (i.e. 0.23-1.5%) where within the range of 0-14.8% reported in the literature for centralized wastewater treatment.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.algal.2019.101670", + "creation_date": "2022-03-14T08:16:34.280Z", + "last_change_date": "2022-03-14T08:16:34.280Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17924, + "fields": { + "EF_ID": 624978, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N removal rate", + "Technology_Practices": "Conventional activated sludge process (CAS)", + "Parameter_Conditions": "The nitrogen load of 125,000 PE exceeds the COD load, since the WWTP treats the sludge containing reject water of other plants in the region.", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "65", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., and Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2020, 699, 134-157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1–2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor butsignificant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted <1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N2O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:34.389Z", + "last_change_date": "2022-03-14T08:16:34.389Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17925, + "fields": { + "EF_ID": 624979, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N removal rate", + "Technology_Practices": "Alternatingly fed and intermittently aerated activated sludge process (A/I)", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "75", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., and Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2020, 699, 134-157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1–2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor butsignificant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted <1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N2O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:34.489Z", + "last_change_date": "2022-03-14T08:16:34.489Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17926, + "fields": { + "EF_ID": 624980, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N removal rate", + "Technology_Practices": "Sequencing batch reactor activated sludge process (SBR)", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "40", + "Unit": "%", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., and Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2020, 699, 134-157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1–2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor butsignificant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted <1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N2O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:34.590Z", + "last_change_date": "2022-03-14T08:16:34.590Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17927, + "fields": { + "EF_ID": 624981, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Yearly average emissions", + "Technology_Practices": "Conventional activated sludge process (CAS)", + "Parameter_Conditions": "The nitrogen load of 125,000 PE exceeds the COD load, since the WWTP treats the sludge containing reject water of other plants in the region.", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "537-749", + "Unit": "kg N2O-N/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., and Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2020, 699, 134-157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1–2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor butsignificant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted <1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N3O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:34.691Z", + "last_change_date": "2022-03-14T08:16:34.691Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17928, + "fields": { + "EF_ID": 624982, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Yearly average emissions", + "Technology_Practices": "Alternatingly fed and intermittently aerated activated sludge process (A/I)", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "1204", + "Unit": "kg N2O-N/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., and Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2020, 699, 134-157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1–2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor butsignificant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted <1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N4O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:34.800Z", + "last_change_date": "2022-03-14T08:16:34.800Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17929, + "fields": { + "EF_ID": 624983, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "Yearly average emissions", + "Technology_Practices": "Sequencing batch reactor activated sludge process (SBR)", + "Parameter_Conditions": "", + "Regional_Conditions": "Switzerland", + "Control_Technologies": "", + "Other_Properties": "", + "Value": "447–1172", + "Unit": "kg N2O-N/year", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Gruber, W., Villez, K., Kipf, M., Wunderlin, P., Siegrist, H., Vogt, L., and Joss, A. N2O emission in full-scale wastewater treatment: Proposing a refined monitoring strategy, Science of the Total Environment, 2020, 699, 134-157", + "English_Abstract": "Nitrous oxide (N2O) emissions from wastewater treatment contribute significantly to greenhouse gas emissions. They have been shown to exhibit a strong seasonal and daily profile in previously conducted monitoring campaigns. However, only two year-long online monitoring campaigns have been published to date. Based on three monitoring campaigns on three full-scale wastewater treatment plants (WWTPs) with different activated sludge configurations, each of which lasted at least one year, we propose a refined monitoring strategy for long-term emission monitoring with multiple flux chambers on open tanks. Our monitoring campaigns confirm that the N2O emissions exhibited a strong seasonal profile and were substantial on all three plants (1–2.4% of the total nitrogen load). These results confirm that N2O is the most important greenhouse gas emission from wastewater treatment. The temporal variation was more distinct than the spatial variation within aeration tanks. Nevertheless, multiple monitoring spots along a single lane are crucial to assess representative emission factors in flow-through systems. Sequencing batch reactor systems were shown to exhibit comparable emissions within one reactor butsignificant variation between parallel reactors. The results indicate that considerable emission differences between lanes are to be expected in cases of inhomogeneous loading and discontinuous feeding. For example, N2O emission could be shown to depend on the amount of treated reject water: lanes without emitted <1% of the influent load, while parallel lanes emitted around 3%. In case of inhomogeneous loading, monitoring of multiple lanes is required. Our study enables robust planning of monitoring campaigns on WWTPs with open tanks. Extensive full-scale emission monitoring campaigns are important as a basis for reliable decisions about reducing the climate impact of wastewater treatment. More specifically, such data sets help us to define general emission factors for wastewater treatment plants and to construct and critically evaluate N4O emission models.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.scitotenv.2019.134157", + "creation_date": "2022-03-14T08:16:34.900Z", + "last_change_date": "2022-03-14T08:16:34.900Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17930, + "fields": { + "EF_ID": 624984, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "METHANE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "CH4 emission factor", + "Technology_Practices": "Municipal wastewater treatment plant - bioreactors", + "Parameter_Conditions": "Aerated compartments of the plug-flow bioreactor with biological removal of organic matter and nitrogen and chemical removal of phosphorus.", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "WWTP with two-stage tratment and sludge removal", + "Value": "0.28-0.49", + "Unit": "% of COD load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ribera-Guardia, Anna & Bosch, Lluis & Corominas, Lluís & Pijuan, M. (2018). Nitrous oxide and methane emissions from a plug-flow full-scale bioreactor and assessment of its carbon footprint. Journal of Cleaner Production. 212. 10.1016/j.jclepro.2018.11.286.", + "English_Abstract": "Fugitive greenhouse gas (GHG) emissions in the form of nitrous oxide (N2O) and methane (CH4) have been reported from many different wastewater treatment plants. However, the majority of the current literature only reports emissions during short periods of time and only focuses on one of the two GHGs. In this study, N2O and CH4 emissions from the aerated parts of a plug-flow full-scale bioreactor treating municipal wastewater were studied over five months from November through March. A multiple gas hood collection system was used to simultaneously monitor the first three aerated compartments of the plug-flow bioreactor. Results show temporal variations in N2O emissions with N2O detected during November, no emissions during December and January, and a recovery of emissions from February onwards. In addition, different spatial emissions were found across the three aerated zones, with the highest N2O emissions detected in the second aerated zone. A daily N2O emission pattern was characterised by an N2O peak correlated with the ammonium that arrived in the monitored zone. However, CH4 emissions occurred during the whole monitored period and showed a spatial variability inside the plugflow bioreactor, presenting the highest emissions in the first aerated zone and then decreasing in the two subsequent zones. In addition, the dynamic carbon footprint (C-footprint) of the bioreactor is presented in which the contribution of the direct and indirect emissions (related to electricity consumption) is assessed. Results show that CH4 emissions account for the majority of the direct emissions. Moreover, CH4 and N2O emissions represent approximately 60% of the total emissions (direct and indirect) originating from the bioreactors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Influent organic load was measured in COD.", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.jclepro.2018.11.286", + "creation_date": "2022-03-14T08:16:35.001Z", + "last_change_date": "2022-03-14T08:16:35.001Z" + } +}, +{ + "model": "reference.emissionfactor", + "pk": 17931, + "fields": { + "EF_ID": 624985, + "IPCC_Category": "4.D.1 - Domestic Wastewaster Treatment and Discharge", + "Gases": "NITROUS OXIDE", + "Fuel": "", + "Parameter_Type": "Measured", + "Description": "N2O emission factor", + "Technology_Practices": "Municipal wastewater treatment plant - bioreactors", + "Parameter_Conditions": "Aerated compartments of the plug-flow bioreactor with biological removal of organic matter and nitrogen and chemical removal of phosphorus.", + "Regional_Conditions": "Spain", + "Control_Technologies": "", + "Other_Properties": "WWTP with two-stage tratment and sludge removal", + "Value": "0-0.13", + "Unit": "% of TKN load", + "Equation": "", + "IPCC_Worksheet": "", + "Data_Source": "Peer-reviewed journal", + "Technical_Reference": "Ribera-Guardia, Anna & Bosch, Lluis & Corominas, Lluís & Pijuan, M. (2018). Nitrous oxide and methane emissions from a plug-flow full-scale bioreactor and assessment of its carbon footprint. Journal of Cleaner Production. 212. 10.1016/j.jclepro.2018.11.286.", + "English_Abstract": "Fugitive greenhouse gas (GHG) emissions in the form of nitrous oxide (N2O) and methane (CH4) have been reported from many different wastewater treatment plants. However, the majority of the current literature only reports emissions during short periods of time and only focuses on one of the two GHGs. In this study, N2O and CH4 emissions from the aerated parts of a plug-flow full-scale bioreactor treating municipal wastewater were studied over five months from November through March. A multiple gas hood collection system was used to simultaneously monitor the first three aerated compartments of the plug-flow bioreactor. Results show temporal variations in N2O emissions with N2O detected during November, no emissions during December and January, and a recovery of emissions from February onwards. In addition, different spatial emissions were found across the three aerated zones, with the highest N2O emissions detected in the second aerated zone. A daily N2O emission pattern was characterised by an N2O peak correlated with the ammonium that arrived in the monitored zone. However, CH4 emissions occurred during the whole monitored period and showed a spatial variability inside the plugflow bioreactor, presenting the highest emissions in the first aerated zone and then decreasing in the two subsequent zones. In addition, the dynamic carbon footprint (C-footprint) of the bioreactor is presented in which the contribution of the direct and indirect emissions (related to electricity consumption) is assessed. Results show that CH4 emissions account for the majority of the direct emissions. Moreover, CH4 and N2O emissions represent approximately 60% of the total emissions (direct and indirect) originating from the bioreactors.", + "Lower_Bound": "Unknown", + "Upper_Bound": "Unknown", + "Data_Quality": "", + "Data_Quality_Reference": "", + "Other_Data_Quality": "", + "Data_Provider_Comments": "Influent nitrogen load was measured in TKN", + "Other_Comments": "", + "Data_Provider": "IPCC TFI TSU", + "Link": "https://doi.org/10.1016/j.jclepro.2018.11.286", + "creation_date": "2022-03-14T08:16:35.111Z", + "last_change_date": "2022-03-14T08:16:35.111Z" + } +} +] diff --git a/reference/fixtures/GPCSector.json b/reference/fixtures/GPCSector.json new file mode 100644 index 0000000..9b69b78 --- /dev/null +++ b/reference/fixtures/GPCSector.json @@ -0,0 +1,167 @@ +[ +{ + "model": "reference.gpcsector", + "pk": 1, + "fields": { + "path": "0001", + "depth": 1, + "numchild": 6, + "name": "GPC Sector", + "gpc_ref_no": "0", + "gpc_scope": null, + "description": "", + "creation_date": "2021-12-20T10:59:45.377Z", + "last_change_date": "2021-12-20T10:59:45.383Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 8, + "fields": { + "path": "00010007", + "depth": 2, + "numchild": 0, + "name": "Agriculture (AFOLU)", + "gpc_ref_no": "V", + "gpc_scope": null, + "description": "Agriculture, Forestry and Other Land Use (AFOLU)", + "creation_date": "2022-01-06T17:05:32.577Z", + "last_change_date": "2022-01-06T17:05:32.770Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 7, + "fields": { + "path": "00010008", + "depth": 2, + "numchild": 0, + "name": "Industrial Processes (IPPU)", + "gpc_ref_no": "IV", + "gpc_scope": null, + "description": "Industrial Processes and Product Uses (IPPU)", + "creation_date": "2022-01-06T17:04:44.250Z", + "last_change_date": "2022-01-06T17:04:44.318Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 9, + "fields": { + "path": "0001000A", + "depth": 2, + "numchild": 0, + "name": "Other Scope 3", + "gpc_ref_no": "VI", + "gpc_scope": null, + "description": "Other Scope 3", + "creation_date": "2022-01-06T17:05:50.290Z", + "last_change_date": "2022-01-06T17:05:50.396Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 2, + "fields": { + "path": "0001000C", + "depth": 2, + "numchild": 1, + "name": "Stationary Energy", + "gpc_ref_no": "I", + "gpc_scope": null, + "description": "GHG emissions come from fuel combustion, as well as fugitive emissions released in the process of generating, delivering, and consuming useful forms of energy (such as electricity or heat).", + "creation_date": "2021-12-20T10:59:45.377Z", + "last_change_date": "2022-01-06T17:11:00.296Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 10, + "fields": { + "path": "0001000C0002", + "depth": 3, + "numchild": 3, + "name": "Residential Buildings", + "gpc_ref_no": "I.1", + "gpc_scope": 0, + "description": "Residential Buildings", + "creation_date": "2022-01-06T17:07:49.786Z", + "last_change_date": "2022-01-06T17:07:49.844Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 11, + "fields": { + "path": "0001000C00020002", + "depth": 4, + "numchild": 0, + "name": "Res. Buildings Fuel Combustion", + "gpc_ref_no": "I.1.1", + "gpc_scope": 1, + "description": "Emissions from fuel combustion within the city boundary", + "creation_date": "2022-01-06T17:09:29.806Z", + "last_change_date": "2022-01-06T17:09:29.850Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 13, + "fields": { + "path": "0001000C00020005", + "depth": 4, + "numchild": 0, + "name": "Res. Buildings Grid Losses", + "gpc_ref_no": "I.1.3", + "gpc_scope": 2, + "description": "Emissions from transmission and distribution losses from grid-supplied energy consumption", + "creation_date": "2022-01-06T17:10:37.537Z", + "last_change_date": "2022-01-06T17:10:37.599Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 12, + "fields": { + "path": "0001000C00020007", + "depth": 4, + "numchild": 0, + "name": "Res. Buildings Grid Supplied", + "gpc_ref_no": "I.1.2", + "gpc_scope": 1, + "description": "Emissions from grid-supplied energy consumed within the city boundary", + "creation_date": "2022-01-06T17:10:04.684Z", + "last_change_date": "2022-01-06T17:11:18.538Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 5, + "fields": { + "path": "0001000D", + "depth": 2, + "numchild": 0, + "name": "Transportation", + "gpc_ref_no": "II", + "gpc_scope": null, + "description": "City transportation systems are designed to move people and goods within and beyond city borders. Transport vehicles and mobile equipment or machinery produce GHG emissions directly by combusting fuel", + "creation_date": "2021-12-20T10:59:45.377Z", + "last_change_date": "2022-01-06T17:02:31.460Z" + } + }, + { + "model": "reference.gpcsector", + "pk": 6, + "fields": { + "path": "0001000E", + "depth": 2, + "numchild": 0, + "name": "Waste", + "gpc_ref_no": "III", + "gpc_scope": null, + "description": "", + "creation_date": "2022-01-06T17:03:41.265Z", + "last_change_date": "2022-01-06T17:03:41.318Z" + } + } + ] \ No newline at end of file diff --git a/start/fixtures/ORMKeyword.json b/start/fixtures/ORMKeyword.json new file mode 100644 index 0000000..d077eca --- /dev/null +++ b/start/fixtures/ORMKeyword.json @@ -0,0 +1,12 @@ +[ +{ + "model": "start.ormkeyword", + "pk": 1, + "fields": { + "keyword": "Sustainable Finance", + "slug": "Sustainable_Finance", + "link": "https://www.openriskmanual.org/wiki", + "tooltip": "" + } +} +]